
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Sexual Selection and Signal Evolution: Diversification of Peacock Spiders (Genus: Maratus)

Permalink
https://escholarship.org/uc/item/7zq7x7m4

Author
Girard, Madeline Brown

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zq7x7m4
https://escholarship.org
http://www.cdlib.org/


Sexual Selection and Signal Evolution:  
Diversification of Peacock Spiders (Genus: Maratus) 

 
 

by 
 

Madeline Brown Girard 
 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree of 

Doctor of Philosophy 

in 

Environmental Science, Policy, and Management 

in the 

Graduate Division 

of the 

University of California, Berkeley 

 

 

 

Committee in charge: 

Professor Erica B. Rosenblum, Chair 
Professor Rosemary G. Gillespie 

Professor Eileen A. Lacey 
 

 

Summer 2017



 

 

 

 
 
 
 
 
 
 
 
 
 

Sexual Selection and Signal Evolution:  
Diversification of Peacock Spiders (Genus: Maratus) 

 
 

© 2017 

by Madeline Brown Girard 

 

 

 

 



	 1	

Abstract 
 

Sexual Selection and Signal Evolution:  
Diversification of Peacock Spiders (Genus: Maratus) 

by 
Madeline Brown Girard 

 
Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 
Professor Erica Bree Rosenblum, Chair 

 
Across taxa, sexual communication is fundamental to an organism’s reproductive fitness, 

and ultimately, its evolutionary success. Consequently, strong selection pressures often lead to 
extreme adaptations in male physiology, morphology, and behavior to increase the efficacy of 
signal transfer to females. Similarly, selection acts on females to detect, process, and respond to 
information emitted by males. By these processes, theory predicts sexual selection has the 
potential to drive vast and rapid diversification of some traits, and indeed empirical evidence has 
shown this to be the case. Of particular interest to biologists are the more extravagant radiations 
of sexual ornamentation, those characterized by an overwhelming amount of diversity in not just 
one or two sexually selected traits, but instead on whole suite of signals. While many animals use 
multi-modal (more than one sensory modality) displays during courtship, the majority of work 
on female choice has thus far focused on individual signaling elements individually, or species 
that produce relatively simple, quantifiable displays such as cricket calls, and house finch 
coloration. Comparable work on systems with extremely elaborate displays has lagged behind, 
and it remains unclear if the same forces driving the evolution of more basic unimodal signals 
are the same as those shaping complex displays.  

For my dissertation research, I have used Australian endemic peacock spiders of the 
Maratus genus (Family: Salticidae) to explore the role of complex signals in mating behavior 
and diversification of this group. Members of this genus are ideal study organisms for such 
research as males use both visual and vibratory displays to attract and secure a mate. The 
adaptive significance (if any) of complex signaling is poorly understood, as is how females 
evaluate males based on these signals. Thus, my research has focused on understanding the role 
of sexual selection in the evolution and maintenance of such elaborate male courtship displays.  
Specifically, my dissertation work has aimed to: (A) describe multi-modal signal structure in 
peacock spiders; (B) investigate female preferences for these signals; (C) uncover how different 
signaling modalities act together or in isolation to affect mating and (D) elucidate patterns of 
signal evolution and species diversification across the genus.  

In the first few chapters of this dissertation, I demonstrate that: peacock spider males 
produce complex multimodal courtship displays; male mating success in M. volans is predicted 
by suites of combinatorial elements; both vibrations and visual displays are important for male 
mating success, although visual displays seem to play a more crucial role. The latter part of this 
dissertation provides a molecular phylogenetic framework of Maratus spiders, and as such, 
informs our knowledge about the evolutionary history of peacock spider courtship signals. As 
communication underlies all social networks, this body of research is important because it 
enhances our understanding of broad scale links between sensory processing, decision-making, 
behavior, and evolution. 
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For the spiders… 
 

 
 

 
“Sometimes [said Pooh] the smallest things take up the most room in your heart.” 

- A.A. Milne 
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Chapter 1: Introduction1 
 
 
 
 
 
1.1 Abstract 

 
Natural history is the foundation of behavioral ecology research; it provides premise for 

the conception of both ecological and evolutionary theory, offers context for good experimental 
design, and also informs interpretation of all types of data collected. Here we present some 
natural history of Maratus peacock spiders and a more detailed overview of the dissertation 
chapters to follow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

1A portion of this chapter is reprinted, with permission, from the original journal article: Girard 
MB, Endler JA (2014) Peacock Spiders. Current Biology 24(13): R588-R590.  
http://doi.org/10.1016/j.cub.2014.05.026 
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1.2 Background 
 

Arachnid behavioral repertoires are ample in size and diversity, yet they are an 
underrepresented group in behavioral ecology (Schneider and Andrade, 2011). This is 
unfortunate as spiders are ideal organisms to answer questions spanning sexual selection, 
communication and mating systems for many reasons. For starters, spiders are often cannibalistic 
to conspecifics, which means that mating poses significant threat, especially to males (Andrade, 
1996; Elgar 1992). Additionally, the genetalic morphology of many spiders favors intense 
postcopulatory sexual selection, which in turn generates the potential for wide variance in 
reproductive success (Elias et al. 2011).  Moreover, paired genitalia and sperm storage organs 
allow for some curious copulatory patterns for both males and females and as a result, spider 
mating systems are often unique and complex (Elias et al. 2011; Uhl, 2002). Lastly, spiders offer 
a great wealth of opportunity to study communication as many are known to make use of visual, 
acoustic, chemical and/or tactile signals (Uhl and Elias, 2011). Some spiders, such as those in the 
family Lycosidae, have been shown to use combinations of these signaling modalities in 
conjunction to produce multimodal signals (Uhl, and Elias, 2011; Utez and Roberts, 2002). Even 
though there is a growing body of research on spider communication, much is left to be learned, 
few species have been explored, and the sensory world for a majority of spiders is still a 
complete mystery. For instance, visual system data is only available for a handful of terrestrial 
invertebrate groups, and any information about color-vision sensitivities is lacking in all but a 
few of the more than 40,000 spider species. Additionally, vibratory communication, which is 
ubiquitous across small invertebrates (Cocroft and Rodriguez, 2005; Hill, 2001; Hill, 2008), is 
one of the most poorly understood, likely because humans cannot perceive substrate-borne 
vibrations without the aid of specialized equipment.  
 
 
1.3  Study System 

 
 1.3.1 What is a peacock spider?  
  Peacock spiders are small (2-6mm) jumping spiders belonging to the genus Maratus, a 
group endemic to Australia.  Males generally have conspicuously colorful abdomens as well as 
elongated third legs that are brown/black and often tipped with white brushes (Figure 1.1). By 
contrast, females are cryptically colored, usually mottled brown/beige. During courtship, a male 
peacock spider will raise his abdomen, and wave it at a female in synchrony with his third pair of 
legs (Dunn, 1947). Males of many species also have lateral flaps that can be extended from their 
abdomen like a fan. This fan-structure, combined with remarkable ornamentation of Maratus 
males, is reminiscent of a peacock’s display, hence their common name. 

With more than 500 genera and over 5,000 species, jumping spiders make up the largest 
family (Salticidae) in the order Araneae (Maddison and Hedin, 2003a), and based on the rich 
array of morphology, behavior and ecology of the group, salticid diversity rivals that of birds 
(Hill and Richman, 2009).  Maratus is part of the Euophryine subfamily of salticids. While the 
monophyly of this clade is well supported (Maddison and Hedin, 2003a; Zhang, 2012), 
distinguishing between Maratus and other closely related groups has been difficult. Within 
Maratus, relationships between species are also currently not well understood, but evidence 
suggests there are upwards of 60 species (Figure 1.2a; Otto and Hill, 2017b), and likely many 
more are yet to be discovered. At present, several morphological and behavioral species-groups  
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Figure 1.1. Courtship displays of three different male peacock spider species (from left to right, 
M. volans, M. mungiach, and M. splendens).  
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are evident (MG, pers. obs.) but again, molecular data are crucial to determine the validity of 
these groupings. 
 
1.3.2 When and where are they found? 
 Generally, the Maratus breeding season occurs during the Austral Spring, but male and 
female activity patterns during this period seem to be species and region specific. Temperature 
and humidity are likely important in determining when the season commences and how long it 
will last, although this has not been empirically demonstrated.  

 Peacock spiders are widespread across the southern-half of Australia and live in a 
diverse range of habitats (Figure 1.2b), from sand dunes on the temperate coasts to grasslands in 
the semi-arid regions (J. Waldock, pers. comm.). More recent collection records indicate that 
peacock spiders can be found in every Australian state (QLD, NSW, SA, TAS, WA) and 
territory (ACT, JBT, and NT), and are not just the southern portion of the country. Like many 
other salticids, some Maratus species have a large distribution and occupy a wide array of 
environments (e.g. M. volans) whereas others are more specialized or geographically limited 
(e.g. M. sarahae, which is found exclusively in heath habitats on two peaks in the Stirling 
Ranges; Waldock, 2013). The majority of peacock spiders studied are ground-dwelling, 
predominantly found on leaf-litter under eucalypt woodlands. However, some species, such as 
M. speciosus, seem to occur more in shrubs or young grass-trees (Xanthorrhoea).  

 
1.3.3 What do they eat, and how do they hunt? 
  Peacock spiders are diurnal cursorial hunters feeding primarily on insects and other 
spiders. The evolution of an acute visual system in salticids almost certainly originated as an 
adaptation for stalking prey (Foelix, 1996; Land, 1985). However, this development also 
facilitated a wandering lifestyle different from that of their sit-and-wait ancestors, enabling 
jumping spiders to roam and encounter many environments (Eakin and Brandenburger, 1971). 
Keen eyesight has probably been useful for peacock spiders in navigating, inhabiting and 
exploiting new types of habitats, and undoubtedly set the stage for the evolution of complex 
visual signals.  
 
1.3.4 How do males produce their visual signals? 
  Tiny scales/hairs (Figures 1.3-1.4) produce the distinct color patterns observed across the 
group.  Like many other salticids studied to date (Lim and Li, 2006), peacock spider scales 
reflect light in both the visible and/or ultraviolet range (Figure 1.5). Multilayer reflectors are 
responsible for producing the iridescent colors seen in several salticids (Ingram et al. 2011; Land 
et al. 2007; Taylor and McGraw, 2007). While only a few peacock spider species have been 
examined in any detail, it also appears that blue and green iridescent scales of Maratus males are 
structural, perhaps combining surface diffraction gratings with multilayer reflectors to produce 
interference-based colors (Foelix et al. 2013).  The red and yellow patches of Maratus males 
instead arise from pigmented brush-like hairs (Foelix et al. 2013). Maratus males are among the 
most brightly colored and sexually dimorphic of the salticids. Fortunately, the detection and 
processing of such amazing colors isn’t a problem for jumping spiders, which are among the 
most visually specialized of the invertebrates. 
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Figure 1.3. Abdominal scales of a M. volans male. 

 
 
 
 
 
 
 
 

Figure 1.4. A close-up image of M. volans abdominal scales. 
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Figure 1.5. UV signalling in M. volans.Both images were taken using a Fujifilm Finepix IS Pro, 
with a quartz lens under full spectrum ligth (including UV). The image on the left was filtered 
with with an astronomical filter that only allowed UV light to pass, while the one on the right 
had no such filter. The lighter areas on the left are the patches that reflect the most UV light (see 
appendix A1 for methods). 
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1.3.5 How is their visual system special? 
  Using the full complement of eyes (eight), jumping spiders have exceptional abilities to 
perceive motion and depth (Nagata et al. 2012; Zurek and Nelson, 2012; Zurek et al. 2010). 
Furthermore, specialized structures in their primary eyes have allowed them to approach the 
physical limit of optical resolution for their compact size (Land, 1969; Land and Nilsson, 2002). 
Their minimum resolution angle (acuity) is about 0.04°, or about 1/13 the diameter of the sun 
disk; this is not much worse than ours (0.007°) and considerably better than the best insects 
(0.4°; Land and Nilsson, 2002; Lim and Li, 2006). Salticids are easily distinguished from other 
spiders by their enlarged anterior median eyes (AME). These eyes are equipped with a telephoto 
lens and a tiered retina, each layer containing photoreceptor cells of distinct absorption spectra 
(Blest et al. 1981; Koyanagi et al. 2008; Land, 1985; Land, 1969; Williams and McIntyre, 1980). 
Salticid color vision is much better than ours, more similar to that of birds, with as many as four 
evenly spaced channels, including a UV sensitive photoreceptor (humans have only three and no 
UV). There is strong morphological and behavioral evidence for color vision being used in both 
predation and sexual selection.  Not surprisingly, the region of jumping spider brains used for 
visual processing is much larger than that of other comparably sized arthropods (Eakin and 
Bradenburger, 1971), and color learning has been demonstrated (Nakamura and Yamashita, 
2000). 
 
1.3.6 Do peacock spiders use other types of signals? 
  Substrate-borne vibrations are important for mating success in several salticids, including 
at least one species of peacock spider, M. volans (Elias et al. 2005; Girard et al. 2015; 
Sivalinghem et al. 2010), and likely many more. Maratus males seem to use their abdomens 
almost exclusively to produce vibrations. A preliminary high-speed video analysis showed that 
the primary form of signal production is tremulation (MG, unpub. data), simple vibrations 
originating from rapid movements of the abdomen. Some species also have a percussive signal 
that they will use intermittently throughout their display. Although males appear to be drumming 
their third legs on the ground, in fact, the majority of percussive energy is produced through 
abdominal contact with the substrate (MG, unpub. data). A third signal production mechanism, 
stridulation, may be used occasionally (Elias et al. 2003), but seems less common in this group. 
  In addition to visual and vibratory signals, Maratus males may also make use of chemical 
communication to locate and secure a mate. Salticids do not build webs, but they constantly 
produce silk as they move about their environment. Contact pheromones in salticid silk drag-
lines are common, and these are detected by chemoreceptors on both the legs and palps.  While 
visual cues alone can elicit courtship in salticids (Crane, 1949), contact pheromones can also 
elicit male courtship in the absence of visual cues; this has been directly observed with many 
species of peacock spiders (MG, unpub. data). While there is less empirical evidence for salticids 
using airborne pheromones (Crane, 1949; Cross and Jackson, 2009; Jackson, 1987; Nelson et al. 
2012; but see Pollard et al. 1987), they may also be important. Since female peacock spiders are 
often very aggressive once they have already mated, it may be vital for males to identify a 
female's receptivity and quality from contact or airborne pheromones before risking getting close 
enough to court (Hoefler, 2007). 
 

1.3.7 How does male courtship proceed? 
  Peacock spiders have elaborate courtship, even by salticid standards. During a search for 
a mate, a male will periodically pause atop a perch to wave his third pair of legs, presumably to 
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attract the attention of any females nearby. When a male finally spots a female, he may begin 
courtship by producing vibrations (Girard et al. 2011). If the female orients towards the male, he 
will raise his abdomen, extend his abdominal fan-flaps and wave the whole structure back and 
forth, accompanied by third leg movements that accentuate this dance.  
  Male courtship ranges from a few minutes to over an hour, depending on the female 
response. If a male is not attacked nor does the female flee, he will slowly approach her, dancing 
and vibrating as he does so. When he is a distance of about one body length from the female, he 
commences what is known as the pre-mount display, a highly conserved behavior across the 
genus. This display lasts until the male completes his advance and attempts to mount and mate 
with the female.  As with courtship, copulation duration can range from several minutes to an 
hour or more (MG, unpub. data).  
  Mating trials conducted with M. volans indicate that Maratus females are very choosy, 
and once a female has already mated, she is unlikely to mate again (Girard et al. 2015). 
Compared to virgins, mated females are also more aggressive and generally spent a lower 
proportion of time attending subsequent males' displays. Overall, low mating rates, and no 
multiple mating, suggests that strong sexual selection is operating in this system.  
 
1.3.8 Is there other evidence for sexual selection in this group? 
  Male sexually selected traits and visually mediated displays are important during 
courtship of females in the majority of salticids examined (Foelix, 1996; Forster, 1982). The 
complex display repertoires of jumping spiders probably reflect sexual selection rather than a 
need for reproductive isolation or reduction of cannibalism. In peacock spiders, and other 
salticids using abdominal displays, the location of abdominal ornaments correspond to how and 
from what direction the abdomen is held and waved so that the female can see the ornaments 
during courtship. Peacock spider males do not develop their bright colors until they become 
mature, further suggesting a strong role for sexual selection in generating conspicuous male 
appearances. Moreover, there is direct genetic and behavioral evidence for sexual selection in 
jumping spiders. Numerous studies across the family show an association between species 
richness and the development of sexual traits, suggesting that sexual selection, supported by 
superb vision as a key innovation, could be an important driver of diversity in the group 
(Richman and Jackson, 1992).   
 
1.3.9 Why are peacock spiders a unique biological system? 

Small terrestrial arthropods are inherently different from their well-known vertebrate 
counterparts. As such, these organisms provide exceptional opportunities to test our 
understanding of fundamental biological principles. For example, are there processes that are 
unique to the miniature spatial scales on which salticids operate?  Also, what is the cognitive 
architecture required for organisms of such a compact size to produce, perceive, and process 
complex behavioral displays? Members of the Maratus genus exhibit some of the most 
spectacular arthropod displays known. Different species vary widely in habitat as well as visual 
and vibrational signaling traits, making them particularly tractable for studies of multi-modal 
signaling. While we are only just beginning to uncover aspects of their physiology, behavior, and 
ecology, it is clear that peacock spiders will enrich our understanding of sensory ecology, sexual 
selection, and trends in diversification. 
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1.4  Dissertation Overview 
 

  To begin to understand complex signaling in peacock spiders, it was first necessary to 
categorize and describe all courtship display elements of a focal species. In chapter 2, I present 
data on the full signaling repertoire of the species Maratus volans. In this chapter, I demonstrate 
that males of this species use multimodal signals including visual ornaments (fan coloration), 
motion displays (fan dancing, third leg waving) and substrate-borne signals. Importantly, this 
was the first description of substrate borne signals in Maratus, which have been shown to be a 
critical component of mate choice in other spider groups. Therefore, this study not only expands 
our knowledge of jumping spider behavior, but also the use of multi-modal signaling in animals. 

In chapter 3, I investigate female preference for courtship displays of male peacock 
spiders. Animal mating displays have long captured the attention of biologists, however, for most 
systems, the specific male traits or trait combinations underlying female mating behavior remain 
obscure. In order to elucidate male traits/ trait combinations that predict mating success, I 
conducted a series of mating trials, in a controlled laboratory set-up, with M. volans males and 
females collected from the field. Using recordings from courtship trials, I examined female 
response to male dances and vibrational songs and found that females use multiple, independent 
suites of interrelated traits to select mates across both visual and vibrational modalities; however 
visual displays alone describe more of the variation in mating success between males. This work 
also supports several of the major hypotheses for the evolution of complex displays spanning 
multiple modalities as many male traits are correlated, yet different elements of male signaling 
behavior affected distinct aspects of male mating success (copulation, latency to copulation, 
copulation duration, and egg laying behavior). Additionally, we observed that females only 
mated once, suggesting that sexual selection is strong in this system. Lastly, females reliably 
provide feedback to males during courtship to signify their mating receptivity, or lack thereof, 
which may play a role in modulating male signaling behavior. 

Understanding how different aspects of multi-modal signals function together or in 
isolation is fundamental to our understanding of how these signals actually evolve. In chapter 4 
of my dissertation I conduct an experiment where male signaling environments are artificially 
manipulated to elucidate the relative role of visual and vibratory displays in M. volans courtship. 
As found in chapter 3, visual modalities appear to be more important to females than vibratory 
signals as substrate-borne aspects of male courtship did not increase mating rates. Additionally, 
this study set out to investigate the importance of long wavelength signals, as red, orange and 
yellow color patches on male fans make up one major axis of peacock spider signaling diversity. 
These types of signals are prolific across the group but more rarely used as interspecific signals 
by other jumping spiders. As peacock spiders certainly exhibit ornamentation that imply an 
ability to discriminate between a wide range of colors under a diverse set of habitat parameters 
(background contrast, ambient light, etc.), it was surprising to find that chromatic characteristics 
of longer wavelength ornaments are not driving female mate choice decisions, and instead 
achromatic contrast and vibrations seem to be more useful for drawing attention to motion 
aspects of displays. 

For a comprehensive study of the evolution of multi-modal signals in Maratus peacock 
spiders and a better understanding of the role of complex signals in the diversification of this 
group, it was important to zoom out and look at the genus at large. In particular, the goals of 
chapter 5 were to: (a) characterize the majority of the diversity of Maratus, a largely undescribed 
genus endemic to Australia; (b) infer and test predictions of multi-modal signal organization 
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across species (c) investigate if/ how explain species-level differences in complex signaling. In 
order to meet these goals, I constructed a molecular phylogeny for the Maratus genus using 
RAD-sequencing. Next, using videography, laser vibrometry, and hyperspectral imaging I 
recorded and quantified male display traits for each Maratus species. The data presented in 
chapter 5 data not only inform our knowledge of the relationships between different species, but 
also illuminates the evolutionary history of certain male courtship traits, and patterns of signal 
use that now serve as the foundation for our understanding the evolution of signal complexity in 
these spiders. These data also challenge the current monophyly of this group and thus have 
numerous implications for taxonomy of the genus. 
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Chapter 2: Multi-modal courtship in the peacock spider, Maratus volans  
(O.P.-Cambridge, 1874)2 
 
 
 
 
 
2.1 Abstract 
 

The peacock spider, Maratus volans, has one of the most elaborate courtship displays in 
arthropods. Using regular and high-speed video segments captured in the lab, we provide 
detailed descriptions of complete male courtship dances. As research on jumping spiders has 
demonstrated that males of some species produce vibrations concurrently with visual displays, 
we also used laser vibrometry to uncover such elements for this species. Our recordings reveal 
and describe for the first time, that M. volans males use vibratory signals in addition to complex 
body ornaments and motion displays. The peacock spider and other closely related species are 
outstanding study organisms for testing hypotheses about the evolution and functional 
significance of complex displays, thus, this descriptive study establishes a new model system for 
behavioral ecology, one that certainly stands to make important contributions to the field. 
 

 

 

 

 

 

 

 

 

 

 

2This chapter is reprinted, with permission, from the original journal article: Girard MB, 
Kasumovic MM, Elias DO (2011) Multi-Modal Courtship in the Peacock Spider, Maratus volans 
(O.P.-Cambridge, 1874). PLoS ONE 6(9): e25390. doi:10.1371/journal.pone.0025390 
 



	

	 13	

2.2 Introduction 
 

Research on animal courtship has demonstrated that males of many species produce 
elaborate multi-component signals spanning more than one sensory modality (multi-modal 
signals e.g. combinations of tactile, visual, acoustic, etc. signals). The adaptive significance of 
multi-modal signal structure, however, is not well understood. For instance, each component of 
multi-modal signals may be informative to females in a different way (multiple message 
hypothesis; Hebets and Papaj, 2005). In contrast, different multi-modal signal components may 
independently reflect the same information, providing back-up for intrinsic signaling errors 
(redundant signal hypothesis; Hebets and Papaj, 2005). Moreover, females may evaluate only 
one, or a few, traits at a time with complex male signals; or instead, they may process many 
signal components together to facilitate the evaluation of potential mates (Condolin, 2003; 
Hebets and Papaj 2005; Rowe, 1999). Although complex signaling has become a recent focus of 
much communication research, careful dissection of signaling behavior and the signals involved 
in mating interactions is often missing from these studies.  Additionally, biases in human senses 
have led to an oversimplification in the potential information contained in animal signals (Huber, 
2005; Johansson and Jones, 2007), and in some instances even failed to identify the modalities 
and signals most involved in female choice (Elias et al. 2005; Scheffer et al. 1996; Taylor and 
McGraw, 2007).  Comprehensive study of the signals themselves is an overlooked, yet crucial 
component of animal behavior research. 

Jumping spiders (Family: Salticidae) are visual specialists among the arthropods (Foelix, 
1996). Not surprisingly, in the majority of species examined to date, males possess sex-specific 
visually-mediated displays that are important during courtship (Clark and Morjan, 2001; Hill and 
Richman, 2009; Li et al. 2008; Lim et al. 2008; Maddison and Hedin, 2003a; Uhl and Elias, 
2011). Substrate-borne vibrations, in conjunction with visual displays, have also been 
demonstrated to function in jumping spider courtship (Edwards, 1981; Elias et al. 2003; Gwynne 
and Dadour, 1985; Jackson, 1982; Maddison and Stratton, 1988a; Maddison and Stratton 1988b; 
Noordam, 2002; Sivalinghem et al. 2010; Uhl and Elias, 2011) and are important for mating 
success in a number of species (Elias et al. 2005; Sivalinghem et al. 2010; Elias et al. 2004; Elias 
et al. 2006a).  In particular, those in the genus Habronattus are well known to communicate 
using a dynamic repertoire of both visual displays and intricate vibrational signals (Elias et al. 
2003; Elias et al. 2006b; Elias et al. 2006c). Intense sexual selection is predicted to lead to the 
evolution of such complex displays (Andersson, 1994) and has also been implicated as being an 
important driver of diversification in jumping spiders (Maddison and Hedin, 2003b; Maddison 
and McMahon, 2000; Masta, 2000; Masta and Maddison, 2002).  

Although male salticids are often highly ornamented relative to their female counterparts, 
the Australian endemic peacock spider (Maratus volans) stands out as an exceptional example. 
During courtship, a male peacock spider unfurls its brightly colored opisthosomal flaps, which 
are typically kept tucked around the abdomen (Hill, 2009). The whole structure, which bears 
resemblance to the fan of a peacock, is then waved at a female in synchrony with an ornamented 
3rd pair of legs.  

Despite the charismatic nature of the Maratus genus, virtually no work has been 
conducted on the displays of these species, including, Maratus volans (Hill, 2009). However, 
based on the diversity of their behavior, particularly the species-specific mating displays that are 
likely to exist (Otto and Hill, 2010), research on Maratus promises to yield important insights on 
patterns of signaling and signaling complexity. Accordingly, we set out to uncover the complete 
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repertoire of behaviors these males utilize during courtship. To characterize and quantify all male 
courtship displays and vibrational signals, we used regular and high-speed video as well as laser 
vibrometry. In this paper we describe, in detail, the remarkable courtship display of the peacock 
spider, Maratus volans. We show that males of this species make use of both visual and 
vibratory modalities in their courtship efforts.   Distinct components of male behavior emphasize 
different aspects of a male’s morphology and each display element consists of a unique 
combination of visual and vibratory signaling. These behavioral descriptions provide the 
necessary foundation for future work on M. volans as well as the entire Maratus genus.  
 
 
2.3 Methods 
 
2.3.1 Ethics Statement 

All necessary permits were obtained for the described field studies: New South Wales 
National Parks and Wildlife Service license to MMK (# S12762).  
 
2.3.2 General Methods 

Specimens were collected around the Sydney, New South Wales, area (field sites: Ku-
ring-gai Chase National Park, and Cowan Field Station in the Muogamarra Reserve) during 
October and November of 2009. Live spiders were housed in individual containers and kept in 
the lab on a 12-hour on/off light cycle. Spiders were fed weekly a diet of fruit flies (Drosophila 
melanogaster) and occasionally crickets (Acheta domesticus). 

First, live mature males (N=11) and females (N=10) were paired randomly between the 
hours of 09:00-15:00, and interactions between the pairs recorded on a digital VCR (Sony 
DVCAM DSR-20 digital VCR). Visual and vibratory courtship display elements of males were 
captured using a JAI CCD camera (CV-S3200) and a Polytec Scanning Laser Vibrometer (PSV-
400, digitized at a 48.1 kHz sampling rate), respectively.  Courtship recordings were conducted 
on an arena consisting of nylon fabric stretched over a circular wooden needlepoint frame 
(diameter: ~ 27 cm). This fabric was used as it has been shown to pass frequencies with minimal 
distortion (Elias et al. 2006c). The arena was situated on wooden dowels (height: ~7.5 cm) atop a 
larger rotating, circular platform (diameter: ~35 cm). The camera was stationary, so rotation of 
the circular platform allowed us to keep males in the recording frame as they moved around the 
arena after females. Several square pieces of reflective tape (area: ~1 mm²) were stuck to the 
surface of the nylon fabric, at the center of the arena, to serve as measurement points for laser 
vibrometry recordings. In between use, our arenas were cleaned with 75% ethanol to remove any 
chemical traces of previously run spiders.  

One of the main merits of this set up was that males and females were allowed to move 
about freely on the arena and thus interactions would be more similar to those in the wild. In that 
sense, these recordings were helpful for making preliminary observations and capturing the 
overall progression of male visual displays and vibrational signals. However, because it is very 
difficult to maintain focus on moving spiders, this setup was not ideal for capturing entire 
courtship displays. Therefore, additional recordings were employed, similar to techniques used 
by Elias et al. (2006c).   

Instead of live females, dead female models were used to elicit males to court in a more 
contained and determined area.  Conspecific female models were prepared by attaching freshly 
dead females to an insect pin, using melted bee’s wax on the ventral surface of the 
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cephalothorax. The previous arena set-up was modified so that the female models could be 
positioned at the center, atop the nylon fabric near the pieces of reflective tape. Glued to the top 
of the larger platform was a belt-pulley system with one pulley attached at the center of the 
platform (Figure 2.1). On top of the centrally placed pulley we attached a small piece of cork to 
which female models could be attached and swiveled by rotating the other pulley, which was 
situated at the outermost part of the larger platform.  This arrangement allowed us to move 
female models in a “lifelike” manner, which helped to entice males to court. One at a time, males 
(N=11) were dropped into the arena and allowed to court freely.  If males did not notice the 
female, mounted females were rotated until males took an interest and started to approach. 
Females were then positioned as if they were observing a male’s activity head on. If males 
stopped courting for more than several minutes, female models were rotated slightly, in order to 
draw the male’s attention.  Pinned females were placed in the freezer at the end of each day for 
preservation, and were used for 1-2 weeks maximum. 

Video and laser recordings were extracted from tapes and imported into Sony 
Soundforge. 

 
2.3.3 Visual Display Characterization 

Videos were assessed (resolution: 30 frames/sec), in order to record distinct behaviors. 
Information was compiled and displays of males (N=11) from tethered female trails were used to 
construct ethograms. Courtship recordings with live females could not be easily analyzed, thus 
they were omitted for measurement purposes.  In a subset of data where we could analyze 
displays, we observed no differences in courtship (data not shown). Measurements of rates and 
durations were averaged for each individual. An Iconico screen protractor (v3.3) was used on 
individual video frames to find angle ranges of the 3rd legs of males (N=5). 

In addition, we also recorded displays of males (N=3) with a high-speed camera (Photron 
fastcam SA3, 1000 frames/second) so that certain features of male movement could be more 
easily clarified. Using the larger rotating platform, we positioned the regular speed camera to a 
“female’s eye view” and the high-speed camera with a side view of the courting male.  

 
2.3.4 Vibrational Signal Analysis 

Laser recordings from each individual were filtered below 80 Hz in Sony Soundforge to 
remove background noise. For quantification of vibratory signal elements, 5 samples of each 
element were randomly selected across an individual’s display and averaged. Duration, dominant 
(peak) frequency, and bandwidth (10dB below peak frequency) were measured using custom 
written Matlab scripts (Mathworks Inc., v7.0.).  

Only complete displays that progressed to a copulation attempt were used. In total, 
vibrations from 5 different males were scored.  Coefficients of variation were calculated to 
quantify variation of signal elements within individuals and across the entire group sampled. 
 
 
2.4 Results 
 

Total courtship time of Maratus volans ranged from 6 -51 minutes (mean= 24.35 +19.49 
min, N=5). Use of visual and vibrational signals varied although overall patterns in the sequence 
of mating behavior included many distinct, stereotyped behavioral elements that could be 
consistently identified across individuals. 
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2.4.1 Visual Displays 
For an initial review of M. volans displays and a comprehensive collection of images, 

refer to Hill (2009). Table 2.1 gives detailed descriptions, including contextual information, of 
distinct behaviors. Behaviors are presented in the general order of their appearance within a 
courtship sequence.   
 

pedipalp flicker 
Pedipalp flickers were observed to occur intermittently throughout the entire duration of 

courtship, alone or in conjunction with all other displays.  During interactions between live 
individuals of both sexes, males performed pedipalp flickers even when females were not 
oriented in their direction; females were also observed doing this behavior.  This behavior was 
common and occurred in other contexts (i.e. when individuals were feeding, or just moving 
about their individual containers alone), suggesting that pedipalp flickering may not be specific 
to the mating display. Regardless, it is included here as it is a prominent behavior during 
courtship. Pedipalp flickering ramps up in intensity immediately preceding movements, such as 
opisthosomal bobbing or leg waving. 
 

opisthosomal bobbing 
Male peacock spiders can move their abdomen up and down independently of expanding 

and retracting opisthosomal flaps, and vise-versa (Hill, 2009). Vibrational signals are associated 
with this movement (discussed at length in the “Vibrational Signals” section). High-speed video 
analysis revealed that in between “bobs”, lateral movements of the abdomen sometimes occur, 
particularly during the pre-mount display.  

 
3rd leg wave 

The majority of a male peacock spider’s courtship display is comprised of 3rd leg waves 
(Figure 2.2a-f). Similar to jumping spiders in the Habronattus genus, the 3rd legs of Maratus 
males are elongated and ornamented relative to the other pairs (Hill, 2009).  Specifically, the 
metatarsi of M. volans’ 3rd legs are covered with a dense tuft of black setae and a comparably 
thick clump of white setae adorn the tarsi (Hill, 2009).  If not already in position, leg waving 
begins with the male raising his 3rd legs into the air rapidly. Sometimes simultaneously, or 
shortly after, the opisothoma is lifted and flaps are unfurled, though often, especially if the male 
is further from the female, leg waves precede this expansion of the “fan.” Once the 3rd legs are 
brought upright, they are immediately lowered, while remaining extended (Figure 2.2a-e). They 
are only flexed at the patella when they crest the bottom of their rotation and are smoothly re-
extended as they return to a vertical position. Rotation of the 3rd legs is most likely around the 
coxa-trochanter joint (Parry, 1957), although this could not be confirmed. 
 Leg waving usually occurs bilaterally, but occasionally one 3rd leg was waved 
completely on its own (this was observed for both right and left legs), or each side was waved 
asynchronously, in an alternating fashion.  Bouts of leg waving occur intermittently, sometimes 
while a male is stationary, but often, 3rd leg waving occurs in conjunction with a side-stepping 
motion akin to the side-to-side motion that occurs during the fan dance of Maratus pavonis and 
Maratus splendens (Hill and Otto, 2011). High-speed video analysis revealed that the male takes 
each side step as the 3rd legs pass through the lowest part of a leg wave. A male will move in 
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Figure 2.2. Fan dance of Maratus volans. (A) Males begin this display by swiftly raising the 3rd 
legs to an erect leg wave stance. (B) Immediately after, extended 3rd legs are lowered and (C) 
brought forward slightly until they are just above the top of the carapace.  (D) At this point 3rd 
legs are slightly bent at the patella and (E) quickly raised until they are returned to their initial 
position. One cycle of fan dancing occurs between (B) and (F). Angle measurements (#1-4) are 
provided in Table 2.1. 
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semi circles around the female, going in one direction for a while before heading back the way 
he just came, getting slightly closer to where she is standing with each shift in direction. During 
this side stepping, the 3rd leg in the direction of movement is commonly held perpendicular to the 
substrate while the other leg was held slightly lower (albeit still extended) and waved much more 
intensely. Hill and Otto (2011) also observed this tendency in Maratus pavonis. 

 
fan dance 

The opisthosomal fan is the feature for which spiders in the Maratus genus are named 
(Dunn, 1947); accordingly, the fan dance is the most notable aspect of this spider’s courtship. 
High-speed video analysis revealed that when a male is fan dancing in conjunction with leg 
waving (Figure 2.2c-e), each cycle of fan movement reliably corresponds with a single 3rd leg 
wave (Figure 2.2a-f). The closer a male is to a female, the more likely he is to adopt a “hunker-
down” pose when performing a stationary fan dance. This stance is characterized by lowering of 
the carapace, almost to the ground, and bending of the front legs more sharply at the patella to 
bring them tight against the carapace; the 3rd legs remain in an erect in “V” position. While still 
in this pose, males will regularly follow fan dancing with some opisthosomal bobbing. 

 
fan flapping 

Males often pause after a bout of 3rd leg waving/fan dancing, seemingly to gauge female 
attention and/or intention. Sometimes during these pauses, especially if a female is not oriented 
directly in front of males any more (either by his or her movement), males will slowly flutter the 
portion of the opisthosomal fan that can be tucked around the abdomen for a few seconds (Figure 
2.3a-d). In the context that it was seen to occur, fan flapping is potentially a means of drawing 
attention back to the male. Indeed in several cases, fan flapping elicited such a response by 
females who would reorient themselves towards the male after he performed this behavior. 
During courtship displays evoked using pinned dead females, a male would flap his fans until the 
female was swiveled slightly, in a manner to mimic a female tracking male movement, at which 
point the male would commence fan dancing again.  

 
pre-mount display 

In contrast with the majority of the male peacock spider’s courtship display, the pre-
mount display proceeds in a precisely stereotyped sequence (Figure 2.4). To begin, the 3rd legs 
are rotated to the front of the carapace, which is brought forward and uplifted over the 1st and 2nd 
legs (Figure 2.4a-b) at the same time. Simultaneously, the opisthosomal fan flaps are retracted 
and the abdomen is tilted until the anterior portion is level with the top of the carapace and the 
posterior portion is fairly close to the substrate. Regularly spaced bouts of opisthosomal bobbing 
follow, each of which correspond with tremors of extended 3rd legs (Figure 2.4c); this aspect of 
the display is discussed more thoroughly under the “Vibrational Signals” section below. During 
tremors, the 3rd legs are moved up and down only slightly, but very rapidly. At the end of a 
tremor, the 3rd legs are lowered and spread further apart than when they started. When the 3rd 
legs are lowered to about the top of the carapace, after approximately 3-8 tremors, the 1st legs are 
flexed and raised slightly off the substrate (Figure 2.4d). During the next tremor, the 3rd legs are 
rotated all the way down in front of the carapace and continue to be rotated back behind the 1st 
and 2nd legs where they are held extended in an upside down “V” (Figure 2.4e). The 1st legs are 
then held erect out in front of the body at carapace level almost touching the female, termed the 
“glider pose.” Now with each bout of opisthosomal bobbing the male bends the tarsi and  
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Figure 2.3. Fan-flapping of M. volans. (A) 3rd legs in erect leg wave stance, (B) initial retraction 
of the distal portion of the flaps commences. (C) Flaps are further contracted before (D) being 
quickly expanded again. 
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Figure 2.4. Pre-mount display of M. volans. (A) From an initial leg wave stance, the 3rd legs are 
rotated forward and (B), (C) the carapace is brought up over the 1st and 2nd legs. Simultaneously, 
opisthosomal fan flaps are retracted and the abdomen is tilted until the posterior portion is close 
to the substrate. (D) Regularly spaced tremors following paired lowering of the 3rd legs. Once 
legs are lowered to be approximately parallel to the substrate, the 1st legs are flexed and raised 
slightly while (E) the 3rd legs are rotated all the way down and held extended in an upside down 
“V” behind the 2nd legs. The 1st legs are now held erect out in front of the carapace and gradually 
moved down closer to female. Angle measurement (#5) is provided in Table 2.1. 
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metatarsi of the 3rd legs slightly, and moves the 1st legs down closer to the female until finally 
touching her carapace. It was previously inferred (Hill, 2009) that the 1st legs do not play a role 
in the visual courtship display of these spiders, but this is not true of the pre-mount display. The 
time between opisthosomal bobbing bouts continues to decrease at this point and in time, the 
male makes advances over the top of the female’s carapace towards her abdomen. 
 
2.4.2 Vibrational Signals 

In general, vibrations are extensively utilized throughout male courtship and are often a 
precursor to motion displays, especially when the female was at a distance and/or not oriented 
directly at a male. Vibrations are caused by oscillation of the abdomen (Elias and Mason, 2011; 
Uhl and Elias, 2011), and indeed, analysis of video recordings demonstrated that all vibrational 
signals coincide with opisthosomal bobbing; vibrations were absent during any lateral movement 
of the abdomen between bouts of bobbing. It remains unclear which mechanisms males are using 
to produce vibrations though. Stridulation of paired structures on their abdomen and 
cephalothorax may be employed. Vibrations might also be generated by tremulation, that is, 
abdominal oscillations transferred directly to the substrate via the animals’ legs (Uhl and Elias, 
2011). Further study using synchronous high-speed video/laser vibrometry and ablation 
experiments are needed. 

Vibrational signals can be broken down into two categories: (1) those that occur 
immediately and continue intermittently throughout the majority of the display, termed rumble-
rumps, and (2) those that occur during the pre-mount display only, which include (a) crunch-
rolls, and (b) grind-revs.  

Some vibrational signals are comprised of several components.  Not all vibrational 
signals correspond with visual displays. For ease of discussion, signaling elements have been 
given names according to the acoustic characteristics of that signal. Table 2.2 summarizes 
properties of each signal element and for each measure, quantifies variation seen within and 
between individuals. As a general trend, variation in signal elements was greater for the group 
than within an individual for dominant frequency. The opposite trend was observed for signal 
duration.  

 
1. rumble-rumps (Rb-Ru) 

Rumble-rumps are the most common signals produced during courtship, seemingly as 
soon as a male detects the presences of a female, and even at long-distances. Rumble-rumps are 
short in duration (2.44 +0.28 sec, range 2.20-2.80 sec, N = 5). Intervals between signals are 
usually longer than the signals themselves (3.46 +2.48 sec, range 0.19-7.17 sec, N = 5). The 
mean number of Rb-Ru’s in a bout is 17.4 +12.8 (range= 4-39, N=5). Rb-Ru bout numbers and 
duration correspond with that of opisthosomal bobbing, as reported in Table 2.1. 

Rumble-rumps are composed of two distinct elements (Figure 2.5b, Table 2.2), 
“rumbles” (Rb) and “rumps” (Ru), although, there is considerable variation in the way that 
rumble rumps are put together.  All Rb-Ru’s start with a Rb, followed by 1-5 (typically 3) Ru’s. 
This is annotated as follows: Rb Ru1-5. Other rumble-rump combinations observed include: Rb 
Ru1-5 Rb, and Rb Ru1-5 Rb Ru1-5. An example of a longer Rb-Ru (Rb Ru4 Rb Ru5) is shown in  
Figure 2.5b.  Each Rb is made up of 3-8 “bumps” (b) (Figure 2.5b, Table 2.2), which occur at a 
mean rate of 12.1 +2.9 bumps per second (N = 5).  The interval between Ru’s in a rumble-rump 
ranges from 0.07-0.62 seconds (mean= 0.25 +0.26 sec, N = 5). As a general rule, Ru’s that occur  
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Figure 2.5. Substrate borne signals of courting male M. volans. (A) Spectrogram (window size= 
26422) and waveform of a bout of rumble-rumps. (B) Waveform of a single rumble-rump. 
Substrate-borne signals occur throughout the M. volans display 
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immediately at the end of a Rb are usually highest in amplitude. Ru-Rb’s continue to be produced 
during breaks in fan-dancing and leg waving until the pre-mount display begins. 

 
2a. crunch-rolls (Cr-Roll) 

The first Cr-Roll signal is always preceded by a very brief (mean= 0.21 +0.19 sec) intro 
signal, which is just visible in the waveform in Figure 2.6a. It was difficult to determine if this 
intro was a signal or a byproduct of adopting the pre-mount display position (Figure 2.4a-b), 
when a male’s legs and body are simultaneously raised.  Either way, it was the lowest frequency 
vibration observed, with a peak frequency of 84 +18 Hz (N=5).  

Cr-Rolls are the vibrational signals produced during the opisthosomal bobbing and leg 
tremors that occur at the beginning of the pre-mount display. Cr-Roll signals consist of “swish” 
(Sw), “crunch” (Cr), “roll” (Roll), and “tail” (Tail) elements (Fig 2.6b, Table 2.2). Sw’s occur at 
the beginning of Cr-Roll’s and are quickly followed by a single Cr. Some Cr-Roll’s don’t have 
Sw’s, typically the first and last Cr-Roll’s of a bout, but in Cr-Roll’s that do (74.6 +7.7% of Cr-
Rolls), high-speed video revealed that the tarsi of 3rd legs are flicked down at the end of each Sw 
and brought back up at the beginning of each Cr. Roll’s follow Cr’s and are paired with the swift 
and shallow flick of 3rd legs at the patella. During the second or third to last Cr-Roll, a male lifts 
legs I off the substrate (Figure 2.4d). During the last Roll of the last Cr-Roll, a male would lower 
3rd legs to a near upside-down “V” position, while the body was again lifted and legs I were 
further outstretched in front of the carapace. Roll’s in all but the last Cr-Roll are made up of 3-7 
(mean= 5.5 +2.1, N=5) smaller elements (r’s) (Figure 2.6b, Table 2.2), which occur at a rate of 
9.6 +0.3 r’s per second (N=5). Roll’s in the last Cr-Roll were much longer and included a mean 
of 17.9 + 2.1 r’s. Also, in contrast with the other Cr-Roll’s, the last Cr-Roll signal in a bout never 
had a Tail portion.  

On average, a single Cr-Roll was 1.32 +0.13 seconds (N=5), and the interval between Cr-
Roll’s was 0.88 +0.37 seconds. Bouts of Cr-Roll’s lasted a mean of 14.13 +5.00 (N=5) seconds 
and included 5-11 (mean= 7.2 +1.8, N=5) individual Cr-Roll’s. The mean interval between the 
end of the last Cr-Roll and the first grind-rev signal was 0.71 +0.26 seconds (N=5). 

 
2b. grind-revs (Gr-rev) 

Grind-revs are produced in the final stages of the pre-mount display and continue to 
occur as a male mounts and attempts to copulate with a female. As seen with Cr-Rolls, leg 
movement is highly coordinated with Gr-rev vibrations. When a male begins Gr-rev signal 
production, he is in the “glider pose” (Figure 2.4e), that is, 3rd legs are in a downward “V” 
position and the 1st legs are extended out in front of the carapace. With each successive Gr-rev 
signal, legs I are brought closer together at the most distal end and lowered (albeit still extended) 
nearer to the female’s carapace. At this point, she is now positioned almost directly below the 
male’s leg I tarsi. Once he is touching the female, the male begins to move over the female’s 
carapace towards her abdomen in time with Gr-rev’s. An average bout of Gr-rev’s lasts for 38.77 
+19.08 seconds N = 5) and includes anywhere from 12-34 Gr-rev’s (mean=26.9 +6.4, N = 5). 
However, it is difficult to distinguish individual Gr-rev’s approaching the finale of the pre-mount 
display as the interval between Gr-rev’s becomes increasingly small (mean= 1.04 +0.30 sec, 
range= 0.67-1.34 sec, N = 5). As a general rule, during the progression of the pre-mount display 
the duration of individual Gr-rev’s (range= 0.16-0.81 sec, N=5) and the interval between each 
increases and decreases, respectively, as a male advances towards a female. The spectrogram of 
Gr-rev’s included much higher frequencies than all other signals measured, (Figure 2.5a).  
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Figure 2.6. Pre-mount display substrate-borne signals of courting male M. volans. (A) 
Spectrogram (window size= 11206) and waveform of a bout of crunch-rolls and grind-revs as 
they occur in sequence. (B) Waveform of a single crunch-roll. (C) Waveform of a single grind-
rev. Crunch rolls and grind revs are produced exclusively during pre-mount displays. 
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Gr-rev’s are composed of a sequence of “grinds” (g) (Figure 2.6c, Table 2.2), which are 
emitted in groups of 3-11 (mean= 8.54 +0.23, N = 5) at a rate of 12.64 +3.88 g’s per second, N = 
5); again, these groups blur at the end of the pre-mount display as the interval between Gr-rev’s 
becomes increasingly small. In contrast, throughout a bout of Gr-rev’s, intervals between g’s 
remain fixed around a mean of 0.05 +0.10 seconds (N = 5). At the end of a Gr-rev bout, males 
attempted to copulate with the female (or female model). 

 
 

2.5 Discussion 
 

Our results show that peacock spiders use visual displays in conjunction with vibratory 
signals during courtship. The full repertoire of these males is truly remarkable, particularly the 
visual components. While visual and vibrational signals are variable between males, some 
overall patterns were evident.  For instance, male courtship usually began with rumble-rump 
vibrations produced at a distance.  When males get close to females, they begin to perform 
multimodal displays, primarily 3rd leg waving and fan dancing (visual) along with rumble-rumps 
(vibrational). Males add new elements as courtship progresses to the finale, specifically the pre-
mount display and associated crunch-roll and grind-rev vibratory signals. Unfortunately, our 
study was limited by the number of males and complete displays we were able to capture. Larger 
samples are needed to assess more accurately the amount of natural variation in courtship that 
exists for individual males, as well as within and between wild populations of these spiders.  

It should be noted that even with complete video footage of male courtship, precisely 
characterizing displays is still a challenge. This is especially the case when trying to pick out 
features that might be important to animals with sensory systems unlike our own. Display and 
signal elements were quantified as thoroughly as possible, but the former should only be treated 
as estimates. The sequence of animal behaviors is often influenced by many dynamic factors in 
the wild, and at this point it is difficult to accurately predict if the sequence and durations of 
individual behaviors observed in the lab are as similar to that which would be seen in nature. Our 
immobile female models offered us the freedom to easily document male displays, however, the 
progression of courtship is unlikely to progress in such a simple manner. In the case of these 
spiders, female feedback, in the form of receptivity and/ or aggression (often seen in trials 
between both live sexes) undoubtedly contributes greatly to the way in which males proceed in 
their courtship efforts.  

While both visual and vibratory signals are well demonstrated as being important in 
mating systems of spiders (Foelix, 1996; Uhl and Elias, 2011), our understanding of complex 
multimodal signals is still in the very early stages (Partan and Marler, 2005). The adaptive 
significance of multi-modal signal structure remains poorly studied (Partan and Marler, 2005), as 
are mechanisms by which sexual selection operates on multi-modal signals (Candolin, 2003). 
Natural signaling habitats are rarely homogeneous and therefore provide a variety of signaling 
channels and strategies to exploit, each of which may vary contextually in their efficacy of 
information transfer.  Not surprisingly, evidence suggests that in a mating context, males may 
actually use multiple different signal strategies, alone or in conjunction, in response to varying 
abiotic and biotic factors (Coleman et al. 2004; Endler, 1990; Endler, 1992; Hebets and Papaj, 
2005). 

We observed that Maratus volans males use vibratory signals over visual displays at long 
distances. In contrast, one well studied example from the North American genus Habronattus, H. 
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dossenus only uses vibrational signals at close proximities to females, mainly using visual 
displays when greater than 5-8mm away from females. Presumably H. dossenus behavior is 
adapted to variable vibratory environments (Elias et al. 2004). Our descriptions might then 
suggest that the visual environment of Maratus is more heterogeneous than the signaling 
substrate, and thus offers a better channel for communication over a greater distance. Future 
work on the ecology, habitat usage patterns, and signaling environment of Maratus species will 
test this hypothesis. Given that multimodal signal structure is a most likely a product of a 
combination of dynamic selection pressures (Bro- Jørgensen, 2010; Hebets and Papaj, 2005), 
some of the plasticity observed in M. volans displays could be favored by selection in order to 
minimize costs of signals production and maximize success in variable environments. 

Although Maratus has evolved independently from Habronattus, the two genera possess 
several similarities in morphology, behavior, and habitat. Specifically, species of Maratus and 
Habronattus share elongated 3rd legs, have similarly structured genitalia, and are primarily 
ground-dwelling (Hill, 2009). Both genera also show a remarkable amount of interspecific 
morphological diversity (Elias et al. 2005; Elias et al. 2006b; Hill, 2009; Hill and Otto, 2011; 
Maddison and McMahon, 2000; Otto and Hill, 2010) and much diversity remains to be 
discovered in Maratus and its relatives. Direct comparisons of complex signals in these two 
genera will better inform our understanding of multi-modal signal structure and function. For 
instance, while Maratus and Habronattus both make use of multimodal signals, Maratus 
vibrational signals are relatively simple compared to those seen in some Habronattus species 
(Elias et al. 2003; Elias et al. 2006b; Elias et al. 2006c). Instead, Maratus volans males invest 
more in their ornamentation and visual displays (as evidenced by the evolution of the 
opisthosomal flaps). This pattern is predicted in several models of multiple signal evolution and 
has been empirically shown in several groups of birds (Badyaev et al. 2002; Shutler and 
Weatherhead, 1990; Snell-Rood and Badyaev, 2008). The opposite pattern from Maratus volans, 
where vibrations are emphasized over visual displays, is seen in some closely related species 
from the genus Lycidas (Żabka, 1987). In work on Lycidas michaelseni (Saitus michaelseni in 
Gwynne and Dadour, 1985), behavioral observations suggested that males primarily courted 
females using audible substrate-borne signals.  Interestingly, visual signals were deemphasized 
as males stridulated directly above female nests out of view (Gwynne and Dadour, 1985).  This 
type of behavior also occurs in several other Lycidas species found in the same habitats as M. 
volans (Girard and Elias, unpublished observations). It is quite possible that signal complexity 
may be limited by evolutionary tradeoffs where investment in one modality necessitates 
reduction in another (Gibson and Uetz, 2008; Iwasa and Pomiankowski, 1994; Johnstone, 1996; 
Pomiankowski and Iwasa, 1998) and this might explain the pattern observed for greater visual 
complexity in Maratus multi-modal signals. 

Despite their common occurrence in nature, multi-modal signals have received relatively 
little attention thus far (but see Elias et al. 2005; Hebets and Papaj, 2005; Partan and Marler, 
2005). Female choice has long been the subject of in-depth investigations, but we are only now 
starting to use this framework to examine complex multimodal signals. Jumping spider 
communication offers an excellent system to study behavior and the role of sexual selection in 
the evolution of species and mating systems. Specifically, the Maratus genus lends itself as a 
perfect system for such studies. In conclusion, this study provides the foundation necessary for 
future research on the Maratus genus and the evolution of complex signals.  
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Chapter 3: Female preference for multi-modal courtship: multiple signals are 
important for male mating success in peacock spiders3 
 
 
 
 
 
3.1 Abstract 
 

A long-standing goal for biologists has been to understand how female preferences 
operate in systems where males have evolved numerous sexually-selected traits. Jumping spiders 
of the Maratus genus are exceptionally sexually dimorphic in appearance and signaling behavior. 
Presumably, strong sexual selection by females has played an important role in the evolution of 
complex signals displayed by males of this group, however, this has not yet been demonstrated. 
In fact, despite apparent widespread examples of sexual selection in nature, empirical evidence is 
relatively sparse, especially for species employing multiple modalities for intersexual 
communication. In order to elucidate whether female preference can explain the evolution of 
multi-modal signaling traits, we ran a series of mating trials using Maratus volans. We used 
video recordings and laser vibrometry to characterize, quantify and examine which male 
courtship traits predict various metrics of mating success. We found evidence for strong sexual 
selection on males in this system, with success contingent upon a combination of visual and 
vibratory displays. Additionally, independently produced, yet correlated suites of multi-modal 
male signals are linked to other aspects of female peacock spider behavior. Lastly, our data 
provide some support for both the redundant signal and multiple messages hypotheses for the 
evolution of multi-modal signaling. 
 
 
 
 
 
 
 
 
 
 
 
 
 

3This chapter is reprinted, with permission, from the original journal article: Girard MB, Elias 
DO, Kasumovic MM (2015) Female preference for multi-modal courtship: multiple signals are 
important for male mating success in peacock spiders. Proc. R. Soc. B 282(1820). DOI: 
10.1098/rspb.2015.2222.  

 
Additionally, data for this chapter are deposited in the Dryad repository: 
http://dx.doi.org/10.5061/dryad.9gr00 
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3.2 Introduction 
 

Decades of research exploring the effect of female preference has established that this 
mode of selection can lead to exaggerated traits (Andersson, 1994; Coleman et al. 2004; Masta 
and Maddison, 2002; Ritchie, 2007). Despite this, we still have a relatively poor understanding 
of if/how female preferences have shaped the more extreme examples of sexual ornamentation 
seen in the animal kingdom, specifically those characterized by an elaboration of a whole suite of 
signals. For example, birds of paradise (family: Paradisaeidae) are considered one of the most 
extravagant groups in this regard, exhibiting vocal signaling, extreme variation in coloration, and 
intricate dances that accompany both (Irestedt et al. 2009; Scholes, 2008). Although the 
ostentatious traits and behaviors exhibited by this and analogous systems are often attributed to 
sexual selection, empirical support for this idea is lacking. Moreover, studies that identify 
particular aspects of multi-faceted signals important for mating success are scarce. 

While it is clear that selection acts on several traits simultaneously (Blows et al. 2003; 
Guilford and Dawkins, 1993; Hebets and Papaj, 2005; Hunt et al. 2009; Partan and Marler, 
2005), previous research has primarily examined individual traits in isolation or focused on 
species employing simple signals for mate attraction (i.e. bird color patches, cricket calls, etc.). 
Thus, a potentially biased impression that females assess males based on single traits exists in the 
literature. Additionally, prevailing theoretical work, which predicts the evolution of female 
preferences for one informative signal, not multiple indicators of quality (Iwasa and 
Pomiankowski, 1994; Partan and Marler, 2005; Pomiankowski and Iwasa, 1993; Pomiankowski 
and Iwasa, 1998; but see Kuijper et al. 2012), has reinforced an emphasis on simple trait-choice 
relationships. 

Australian peacock spiders of the Maratus genus (family: Salticidae) truly serve as 
excellent organisms to study complex signal evolution within a multi-dimensional framework.  
During courtship, male peacock spiders wave ornamented abdominal flaps and elongated third 
legs to nearby females (Girard and Endler, 2014; Girard et al. 2011; Uhl and Elias, 2011). In 
conjunction with visual displays, males also use vibratory signals (Girard et al. 2011) for 
intersexual communication. Preliminary data suggest this group may contain as many as 40 
different species (Girard and Endler, 2014) varying widely in habitat, distribution, morphology 
and behavior. The main objective of our research was to examine male courtship displays and 
female behavior of one species, M. volans, in order to pinpoint if/which male traits or trait 
combinations predict mating success and to better understand the nature of the selective 
pressures acting on male peacock spiders. We expect that there will be multiple traits of 
importance to females, all of which will be positively correlated with various metrics of mating 
success, such as copulation, shorter latency to mate, longer mating duration, and egg laying. We 
also anticipate other aspects of female behavior; in particular, orientation and aggression toward 
males, will be linked, positively and negatively, respectively, with the same traits that are 
important for mating success.   

As peacock spiders are diverse in vibrational and visual signaling traits, with repertoires 
rivaling those of the better-known birds of paradise, this group provides a unique system for 
evaluating current theories for complex signal evolution. At present, there are several non-
mutually exclusive hypotheses to explain the evolution of multi-modal signalling based on: (1) 
the quality, type and/or amount of information conveyed in complex displays, (2) the efficacy 
with which these signals are transferred in response to varying biotic and abiotic factors, and (3) 
considerations of potential interactions between signals and how integration of signal elements 
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could affect signal production or reception. Another goal of this study was to explore evidence 
for two of the main hypotheses related to adaptive preferences for informative signals (Hebets 
and Papaj, 2005; Partan and Marler, 2005). The first, the multiple messages hypothesis proposes 
that each component of multi-modal signals will be informative to females in a different way. By 
contrast, the redundant signal hypothesis proposes that different multi-modal signal components 
will independently reflect the same information, providing back-up for intrinsic signaling error. 
To investigate support for either of these hypotheses, we examined patterns of correlations 
between different courtship traits. One simple prediction of the redundant signal hypothesis is 
that elements of multi-modal signals are expected to have tight covariance (Hebets and Papaj, 
2005). Conversely, the multiple messages hypothesis (Hebets and Papaj, 2005; Jacob et al. 2011; 
Johnstone, 1996; Moller and Pomiankowski, 1993) predicts independence between each signal 
component and thus, we do not expect distinct signal elements to covary.  

Given that complex multi-modal signals are used by many animals, not just peacock 
spiders (Narins et al. 2005; Vallin et al. 2005), major objectives for behavioral ecologists and 
evolutionary biologists are to elucidate both the preferences for, and function of, these signals. 
Such insight will not only inform what we know about the evolution of extremely exaggerated 
traits, but also why some species seem to use simpler modes of communication. One benefit of 
our study is that it examines how authentic integrated multi-modal signal structure affects mating 
success, rather than focusing on single traits in isolation or manipulated traits at the extreme ends 
of naturally occurring variation. Another advantage of this work is that we were able to measure 
mating success at multiple stages (i.e. latency to mate, copulation, mating duration and egg 
laying) and correlate these data with various courtship traits. Both aspects of this research 
contribute to a more complete and realistic picture of how female preferences are driving mate 
choice, and in turn, guiding both male and female behavior. 
 
 
3.3 Methods  
 
3.3.1 Sampling 

Juvenile Maratus volans specimens were collected around the Sydney, NSW from August 
5th to November 29th, 2011. Live spiders were brought back to the lab, where they were housed 
individually with leaf litter from their environment and kept on a 14:10hr light:dark cycle. 
Spiders were fed a diet of fruit flies  (Drosophila melanogaster) and crickets (Acheta domestica). 
 
3.3.2 First Mating Trials 

Mating trials between mature males and females were conducted from October 28th - 
December 12th, 2011, between the hours of 09:00-16:00. Weights of all individuals were 
recorded prior to trials. For each trial (N=64), a unique male and female, both virgin, were paired 
and all interactions were recorded using a Canon EOS Kiss X4 with a 100mm macro lens. The 
camera was stationary and positioned directly above the arena. Concurrently, vibratory courtship 
was captured using a laser vibrometer (Polytec PDV100) and recorded onto a digital recorder 
(Sound Devices 744T, 48.1 kHz sampling rate).   

Courtship recordings were conducted on an arena of nylon fabric stretched over a circular 
frame (diameter: ~ 10 cm). This fabric was used as it has previously been shown to pass male 
signaling frequencies with minimal distortion (Elias and Mason, 2014). Several pieces of 
reflective tape (~1 mm²) were stuck to the surface to serve as measurement points for the 
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vibrometer. Transparency sheets were fastened to the frame to create a 10 cm tall cylinder 
around the arena, which prevented spiders from escaping during trials. We used a tungsten 
halogen light (800W bulb) to provide broad-spectrum illumination (3200K). Lab temperature 
was monitored using an ibutton (Maxim DS1923), and averaged 27°C, which is well within the 
natural temperature range experienced in the wild. 

Our set-up allowed males and females to move about freely in the arena and thus 
interactions would be more similar to those in the wild. Males were given 15 minutes to court 
and attempt a mating. After this point, if a female was not paying attention to a male, or was 
being aggressive toward him, the trial was terminated. If the female was still watching the male’s 
courtship display at 15 minutes, we allowed him to continue courting until the female: (1) turned 
away, (2) became aggressive, or (3) copulated with the male. We cleaned the arenas with 75% 
ethanol between use to remove any chemical cues.  
 
3.3.3 Second Mating Trials 

To assess re-mating rates, all females that mated in the trials above (N=16), as well as six 
additional females that mated during preliminary trials, were tested with a second male (total 
N=22). For each trial, we paired a novel male with a previously-mated female two days after her 
initial mating. All interactions were measured and recorded in the same manner as the first 
mating trials. 
 
3.3.4 Visual Display Analysis 

We first constructed ethograms for male and female behaviors (Table 3.1). We next used 
JWatcher Video (Blumstein et al. 2010) to score each trial. We used proportions of time spent 
engaged in each behavior, rather than durations because trials varied considerably in duration 
depending on a male’s success. We also calculated the rate of 3rd leg movement in the “third-leg-
wave” display, which directly corresponded to fan movement in the “fan-dance” display as well 
(Girard et al. 2011), using an average of three distinct samples of each behavior randomly 
selected from the beginning, middle, and end of male courtship. A male’s proximity to a female 
was scored using four categorical ranges measured in terms of the focal female’s body length 
(~4mm): (1) 0-5, (2) 6-10, (3) 11-15, or (4) >15 body lengths. Lastly, for females, we tallied all 
occurrences of aggressive events towards males. 
 
3.3.5 Vibrational Signal Analysis 

We imported the vibrometry recordings into Sony Soundforge Pro (version 10.0e) for 
various signal analyses. To quantify vibratory signals, we first randomly selected continuous 
sequences of “rumble-rumps” (Rb-Ru’s), which are the primary vibratory signal given by males 
early on and throughout the majority of the display (Girard et al. 2011).  For this study, we 
sampled three sequences across displays, and when possible, chose sequences consisting of at 
least five Rb-Ru’s. Rumble-rumps separated by another type of male display were not considered 
part of the same sequence. For each sequence, we calculated the mean Rb-Ru duration, as well as 
the mean number and rate of Ru’s within each Rb-Ru. Overall mean durations of Rb-Ru’s were 
calculated from the mean duration of three Rb-Ru within the sequence, averaged across three 
different sequences.  

Using JWatcher we calculated the proportion of time males were producing bouts of Rb-
Ru’s by summing these bouts and dividing them by the total trial time. We also calculated the 
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Table 3.1. Ethogram of male and female behaviors scored using JWatcher. Rows are     
mutually exclusive with other like-colored, adjacent rows. 

Behavior Description 
        MALE:  
     Away Male is moving away from female 
     Toward Male is moving toward female 
     Still Male is sitting still 
     Side-step  Male is performing the side-step display 
     Pre-mount  Male is performing the pre-mount display 
     Mate Male is copulating with the female 
     Vibrate Male is producing vibrations 
     Fan-dance Male is performing fan-waving display 
     None Male is not moving abdomen in any way 
     Fan-raise Male’s fan is raised and fan flaps are extended 
     Fan-down Fan flaps are retracted and male’s fan is down 
     Third-leg-wave Male is performing a third-leg display 
     No-leg-wave Male’s third legs are on the ground 
     Oriented Male is oriented at the female 
     Not-oriented Male is not oriented at the female 

      FEMALE:  
     Away  Female is moving away from male 
     Toward Female is moving toward male 
     Still Female is sitting still 
     Oriented Female is oriented at the male 
     Not-oriented Female is not oriented at the male 
     Aggressive Female is attacking male 
     Abdomen-wiggle Female’s abdomen is moving back and forth (sometimes circularly) 
     None Female is not moving abdomen in any way 
PROXIMITY:  
     <  5 Male and female are less then or equal to 5 female-body-lengths apart 
     6 - 10 Male and female are between 6 and 10 female-body-lengths apart 
     11 - 15 Male and female are between 11 and 15 female-body-lengths apart 
     16 - 20+ Male and female are equal to or greater than 16 female-body-lengths apart 
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amount of silence taken up by gaps between rumple-rumps. This allowed us to calculate a 
“signal-to-silence” ratio, which we defined as the mean proportion of time males were actively 
producing vibrations during sequences. We calculated signal-to-silence ratios by multiplying the 
number of Rb-Ru signals produced in each sequence by the mean Rb-Ru signal duration within 
that sequence, and dividing the product by the total sequence duration. Again, when possible, 
these values were averaged across the three sequences taken for a given male. 

Only successful males made it to the final courtship stage, the pre-mount display (Girard 
et al. 2011), during which males produce two other types of vibratory signals, “crunch-rolls” 
(Cr-Roll’s) and “grind-revs” (Gr-Rev’s). For these males, we also measured: the number of Cr-
Roll’s produced at the beginning of the display, duration of the Cr-Roll sequence and mean 
duration Cr-Roll’s, duration of the first and second distinct phases of Gr-Rev production, as well 
as number and duration of individual Gr-Rev’s in the first Gr-Rev phase. We also measured the 
duration of the pre-mount display. 

Additionally, we examined the dominant (peak) frequency and bandwidth (10dB above 
and below peak frequency) for each of the signals produced using custom written Matlab scripts 
(Mathworks Inc., v2013b.). For Rb-Ru’s, we averaged peak frequency and bandwidth for nine 
different signals (three signals were taken from each of the three sampled Rb-Ru sequences).  As 
males produce only a single sequence of Cr-Roll’s, and Gr-Rev’s, the peak frequency and 
bandwidth for these signals are not means, but instead were measured from a single sample. 
Finally, males that successfully mate with a female produce vibrations similar to Gr-Rev’s 
continuously throughout copulation. Although we did not examine the duration of the signal (as 
it is closely linked to copulation duration), we did measure the peak frequency and bandwidth for 
a sample of these vibrations. 
 
3.3.6 Statistical Analyses 

All statistical analyses were performed using the software JMP (version 11.1.1, SAS 
Institute Inc., 2013) and G*Power (version 3.1.9.2) (Faul et al. 2007). 

 
male behaviors/traits that predict mating success 

Two principal components analyses (PC) were performed using the correlation matrix 
approach to standardize data and the varimax rotation method to simplify the interpretation 
(Kaiser, 1958; McGarigal et al. 2000). Components were extracted using a scree test and 
variables were considered to have high loadings if they had a value of ≥0.5 or ≤-0.5.  

The first PCA included all male traits and behaviors, as well as the various vibrational 
signal components (Table 3.2). We used a Generalized Linear Model (GLM) with a binomial 
distribution and logit link to analyze how male mating success was related to factor scores of the 
retained principal components (PC’s). Trial date was included as a random effect.  

In order to examine if/how male traits affected latency to mate, copulation duration and 
success in egg laying, we ran a second PCA for the subset of males that successfully copulated 
(N=16). This PCA contained the original explanatory values as well as signals produced by 
males during the pre-mount display (Table 3.3). We used two separate GLMs, each with a 
normal probability distribution and identity function, to look at latency to mate and copulation 
duration. We used a third GLM with a binomial distribution and logit link function to examine 
female egg-laying. For these three tests, we used Firth-Bias adjusted estimates to correct for 
small sample sizes (N=16).  
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Finally, we ran two-sided, unpaired t-tests (assuming unequal variances) to examine 
whether male orientation toward a female, total courtship effort, proximity of time spent at 
different distances from the female, and male movement patterns (motion towards or away from 
the female) were different between successful and unsuccessful males. Using the subset of males 
that successfully mated, we also ran linear regressions and two-sided, unpaired t-tests (assuming 
unequal variances) to investigate whether these additional male behaviors were related to mating 
latency, copulation duration or egg laying behavior. 
 

female behavior 
We used a logistic regression and a one tailed Fisher’s exact test to determine if greater 

female orientation or aggression, respectively, were correlated with mating. Then, to further 
examine whether greater female orientation, aggression (number of attacks) or the presence of 
female abdomen wiggling (another behavior we observed from some females; see Table 3.1) 
were related the same male qualities that predict mating success, we ran GLMs using the original 
explanatory variables. 

In order to see if a greater number of mated females were aggressive towards males than 
either receptive (those that went on to mate) or unreceptive (those that did not mate) virgin 
females, we used a one-tailed Fisher’s exact test. We also tested whether mated females 
performed more aggressive attacks or paid less attention towards males than either category of 
virgin females using a one-way ANOVA. A one-way ANOVA was also used to test for abdomen 
wiggling (Table 3.1) behavioral differences among receptive and unreceptive virgins as well as 
previously-mated females. For each ANOVA, female ID was included as a random effect, and 
we used Tukey’s HSD to determine which means were unequal between groups. 

 
 

3.7 Results 
 

We conducted 64 mating trials with virgin females, of which 16 (25%) ended with a male 
successfully copulating with a female. We also conducted 22 mating trials with mated females 
that were each presented with a second male; none of these females re-mated.  
 

male behaviors/traits that predict mating success 
Of the ten PC scores included in our first analysis (Table 3.2), PC A1, A8 and A9 

strongly predicted copulation (Table 3.4; GLM: χ 2=36.08, p<0.0001). PC A1 had positive 
loadings for fan-dancing, side-stepping and third-leg waving, suggesting these visual displays are 
important for male mating success. As these behaviors cluster together in the sense that they all 
measure the proportion of time that visual displays are performed, A1 was labeled “visual 
effort”. PC A8 only had a single trait load positively, the signal-to-silence ratio, our metric to 
quantify differences in tempo (i.e. “vibrational vigor”). PC A9 had a positive loading for the total 
proportion of time males spent vibrating, suggesting that “vibrational effort” is important to 
females. Neither female age nor trial date had an effect on male mating success and were thus 
subsequently dropped from all final models reported here. 
For the males that successfully mated, PC B1, B4, B6 and B11 significantly (Table 3.3) 
predicted the latency to copulation (Table 3.5; GLM: χ 2=21.09, p<0.05). Because the power to 
detect differences in latency to mate was low (power= 0.067, effect size= 0.182), our results 
reflect Firth-Bias adjusted estimates for small sample sizes; this is also true for our tests on 
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     Table 3.4. GLM Parameter Estimates: Male traits that predict mating success, all males     
     (N=64) with boxes around significant components.  

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept -5.283381 2.2040037 31.094176 <.0001* -11.08309 -2.158103 
Comp. A1 4.1531212 1.6269194 30.288771 <.0001*** 1.8119454 8.3516613 
Comp. A2 0.8838637 0.6118188 2.4868273 0.1148 -0.200186 2.3284057 
Comp. A3 -0.942619 0.6462091 2.4331283 0.1188 -2.391909 0.2297004 
Comp. A4 -0.208505 0.4640891 0.2066781 0.6494 -1.23398 0.6975084 
Comp. A5 0.3000136 0.5315127 0.3265984 0.5677 -0.737769 1.5059431 
Comp. A6 -0.350398 0.5423958 0.4359202 0.5091 -1.555979 0.6773105 
Comp. A7 0.8392206 0.6495979 2.0898998 0.1483 -0.26386 2.3898163 
Comp. A8 1.6516908 1.068903 4.3384291 0.0373* 0.0682 4.2362017 
Comp. A9 4.0609628 1.757263 15.095356 0.0001*** 1.4256057 8.5700748 
Comp. A10 0.1954228 0.5124449 0.1479884 0.7005 -0.791244 1.2928092 

 

     *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
 
 
 
 
 
 
 
    Table 3.5. GLM Parameter Estimates: Male traits that predict latency to mate, only the   
     subset of successful males (N=16), with boxes around significant components. 

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept 1069287.4 109870.53 29.847767 <.0001* 839393.31 1299181.5 
Comp. B1 -501735.1 113726.81 12.477804 0.0004** -739698.1 -263772.1 
Comp. B2 -71024.19 113726.81 0.3850357 0.5349 -308987.2 166938.8 
Comp. B3 99164.362 113726.81 0.7416597 0.3891 -138798.6 337127.36 
Comp. B4 393662.66 113726.81 8.8066959 0.0030* 155699.66 631625.65 
Comp. B5 44608.385 113726.81 0.1530698 0.6956 -193354.6 282571.38 
Comp. B6 -251521.3 113726.81 4.2334802 0.0396* -489484.3 -13558.32 
Comp. B7 96594.125 113726.81 0.704589 0.4012 -141368.9 334557.12 
Comp. B8 106227.14 113726.81 0.8480296 0.3571 -131735.9 344190.14 
Comp. B9 -155786.8 113726.81 1.7680284 0.1836 -393749.8 82176.227 
Comp. B10 -25186.33 113726.81 0.048966 0.8249 -263149.3 212776.67 
Comp. B11 -253779.9 113726.81 4.2998741 0.0381* -491742.9 -15816.9 
Comp. B12 25804.595 113726.81 0.0513954 0.8207 -212158.4 263767.59 

 

     *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
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copulation duration (power=0.067, effect size=0.282) and egg laying behavior (power=0.062, 
effect size=0.131) summarized below. Similar to PC A1, PC B1 had positive loadings for visual 
effort (fan-dancing, side-stepping and third-leg waving), but negative loading for vibrational 
effort. This is the opposite pattern seen for the role of vibratory effort on mating success, but was 
largely driven by the fact that visual and vibratory displays are performed asynchronously. 
Consequently, for successful males that spent a majority of their time courting, engagement in 
one behavior diminished time available for the other. PC B4, B6, and B11 were all related to 
specific vibrational qualities of crunch-rolls and grind-revs, which are the late stage vibrations 
produced during the pre-mount display. Essentially, shorter latencies to mate were correlated 
with more Cr-Rolls, increased Cr-Roll duration, shorter Gr-Rev duration, and higher Cr-Roll 
peak frequency.  

Five PC scores (B1, B2, B5, B10, and B12) from Table 3.3 predicted copulation duration 
(GLM: χ 2=40.80, p<0.0001, Table 3.6). Again, PC B1 significantly predicted success indicating 
that visual effort was important, and negatively related to vibrational effort. PC B5 and B10 both 
had loadings for vibrational characteristics of early stage vibrations, and PC B2, B10 and B12 
had loadings for late stage vibrations. Copulation duration was positively correlated with a 
greater number of rumps, increased Rb-Ru duration, higher Rb-Ru peak frequency, larger Cr-
Roll bandwidth, a greater number of Gr-Rev’s and a longer Gr-Rev duration in phase 1, as well 
as a longer pre-mount duration. Finally, PC B12 also had positive loading for male weight, 
suggesting that heavier males were more successful. No PC scores significantly explained 
whether females successfully laid eggs (GLM: χ 2=11.460, p=0.4899), although copulation 
duration and egg laying behavior were significantly positively related (unpaired t-test: 
t(9.88)=2.02, p=0.04).  

In terms of other male behaviors, total courtship effort (the proportion of time males were 
engaged in any display type) was greater for successful males (Figure 3.1; unpaired t-test: 
t(57.16)=-4.91, p < 0.0001). Successful males also spent more time oriented at females during 
mating trials (Figure 3.1; unpaired t-test: t(46.82)=4.10, p=0.0002), and more time in the closest 
category of proximity, < 5 female body lengths, (Figure 3.1; unpaired t-test: t(16.64)=2.72, 
p=0.01). Lastly unsuccessful males spent a higher proportion of time moving away from females 
as compared to those that were successful (Figure 3.1; unpaired t-test: t(46.12)=-2.87, p=0.01). 

Neither latency to mate, nor copulation duration were related to any of the following 
male behaviors: proportion of time oriented, total courtship effort, proportion of time spent in 
any of the different distances categories from the female; male movement patterns (motion 
towards or away from the female). There was also no difference in total male courtship effort 
towards females that went on to lay eggs versus those that did not.  

 
female behavior 

For virgin females, greater orientation to males was positively correlated with mating 
(r2=0.185, χ2=13.33, p =0.0003). Visual effort (PC A1) and male weight (PC A5) in Table 3.2 
significantly predicted greater female orientation (Table 3.7; GLM: χ 2=18.90, p=.04). 
Additionally, females spent a greater proportion of time oriented towards males that spent a 
greater proportion of time in the closest proximity category (r2=0.12, F1,62=7.30, p=0.009).  

Unlike female orientation, female aggression was expressed more by unreceptive females 
(Fisher’s: p=.02); only 1 out of 16 (6.3%) females that mated ever attacked the male first, 
whereas 17 out of 48 (35.4%) females that did not mate attacked their paired male at least once 
as he courted. In the GLM examining which male behaviors correlated with greater female  
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     Table 3.6. GLM Parameter Estimates: Male traits that predict copulation duration, only the      
     subset of successful males (N=16), with boxes around significant components. 

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept 1124994.6 54196.206 50.880221 <.0001*** 1011594 1238395.2 
Comp. B1 269099.03 56098.403 13.947126 0.0002** 151718.23 386479.84 
Comp. B2 517219.92 56098.403 28.457697 <.0001*** 399839.11 634600.72 
Comp. B3 -81436 56098.403 1.9718496 0.1603 -198816.8 35944.802 
Comp. B4 45260.001 56098.403 0.6371932 0.4247 -72120.8 162640.8 
Comp. B5 315761.96 56098.403 17.029768 <.0001*** 198381.16 433142.76 
Comp. B6 -67524.37 56098.403 1.3830705 0.2396 -184905.2 49856.43 
Comp. B7 2099.0909 56098.403 0.0014 0.9702 -115281.7 119479.89 
Comp. B8 77059.653 56098.403 1.7773358 0.1825 -40321.15 194440.46 
Comp. B9 -89017.06 56098.403 2.3276303 0.1271 -206397.9 28363.739 
Comp. B10 -394300.8 56098.403 21.856677 <.0001*** -511681.6 -276920 
Comp. B11 43928.372 56098.403 0.6009801 0.4382 -73452.43 161309.18 
Comp. B12 212857.13 56098.403 10.092694 0.0015* 95476.33 330237.94 

 

     *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
 
 
 
     Table 3.7. GLM Parameter Estimates: Male traits that predict female orientation, all males      
     (N=64), with boxes around significant components. 

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept 0.3637511 0.0231574 96.221613 <.0001*** 0.3176014 0.4099009 
Comp. A1 0.0718696 0.0228397 9.1418591 0.0025* 0.0263531 0.117386 
Comp. A2 -0.02665 0.0226594 1.3669661 0.2423 -0.071807 0.0185076 
Comp. A3 -0.001184 0.0226452 0.0027316 0.9583 -0.046313 0.0439454 
Comp. A4 0.033258 0.022713 2.1054179 0.1468 -0.012006 0.078522 
Comp. A5 -0.049076 0.0237599 4.1166872 0.0425* -0.096426 -0.001726 
Comp. A6 -0.012063 0.0227255 0.2810921 0.5960 -0.057352 0.0332258 
Comp. A7 0.0346012 0.022626 2.2927536 0.1300 -0.010489 0.0796918 
Comp. A8 -0.004197 0.0228581 0.0336988 0.8543 -0.04975 0.0413565 
Comp. A9 0.0297378 0.0246705 1.4350834 0.2309 -0.019427 0.0789029 
Comp. A10 -0.00884 0.0225799 0.1530733 0.6956 -0.053839 0.0361587 

 

     *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
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Figure 3.1. Proportion of time successful and unsuccessful males were engaged in 
various behaviors.  
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aggression, only two PC scores were significant and negatively correlated with female 
aggression; PC A7 and A9, which had positive loadings for leg waving rates and vibrational 
effort respectively (Table 3.8; GLM: χ 2=18.74, p=0.044), were significant and negatively 
correlated with female aggression. Males also spent less time oriented (unpaired t-test: t(41.10)=-
4.10, p=0.0002) to more aggressive females and their total courtship effort towards these females 
was lower (unpaired t-test: t(24.01)=-3.34, p < 0.0027).  

Females’ abdomen wiggling behavior was similar to aggression in that unreceptive 
females were more likely to perform the display (Fisher’s: p=0.04); we never saw this behavior 
from virgin females that went on to mate, whereas 10 out of 48 (20.8%) unreceptive virgin 
females abdomen-wiggled. In the GLM examining whether abdomen wiggling was associated 
with any male traits, we found that visual effort (PC A1), and vibrational effort (A9) were 
positively correlated with abdomen wiggling, similar to mating success. Additionally, PCA3 and 
PC A6 both had positive loadings on specific vibrational characteristics related to Ru-Rb’s and 
were negatively (A3) and positively (A6) correlated with female abdomen wiggling (Table 3.9; 
GLM: χ 2=23.57, p=0.009).  

Lastly, we found that previously-mated and virgin females differed in their response to 
male displays during our trials. When looking at female orientation across mated and both 
receptive and unreceptive virgin females, we found significant differences across the three 
groups (3.2; F 2,84 = 7.22, p, 0.0015). Receptive virgin females spent a greater proportion of time 
oriented towards males than unreceptive virgin or mated females. However, compared to virgin 
females, mated females were much more aggressive; during trials, 20 out of 22 (90.9%) mated 
females attacked the male at least once, compared to 35.4% of unreceptive virgin females 
(Fisher’s: p<.0001) and 6.3% receptive virgin females (Fisher’s: p<.0001). Additionally the 
number of aggressive attacks differed significantly across these same three groups (Figure 3.2; 
F2,84=37.582, p= 0.0001) with mated females performing significantly more attacks on males 
than either receptive or unreceptive virgins. Lastly, a greater number of mated females (14/22, 
63.6%), performed abdomen wiggle displays compared to receptive (20.8%; Fisher’s: p<.0001) 
and unreceptive virgins (0%; Fisher’s: p=.0007). The proportion of time that females spent 
abdomen wiggling differed significantly across the three groups (Figure 3.2; F2,84=8.46, 
p=0.0005) with mated females spending a significantly higher proportion of time abdomen 
wiggling than both receptive and unreceptive virgins.  

 
 

3.8 Discussion 
 

One of the greatest challenges in mating behavior studies is to elucidate which male traits 
are important to female mating decisions, especially when complex displays spanning many 
modalities are involved. The main objective of this research was to explore both visual motion 
and vibratory courtship traits of one species of peacock spider, Maratus volans, to better 
understand multi-dimensional female preferences in this system. We found that M. volans males 
use a combination of visual and vibratory signaling, and our data indicate that each modality is 
important for mating success (Table 3.10). Females were more likely to mate with males that put 
forth more visual effort, those that spent the largest proportion of time engaged in these displays. 
The production of vibrational signals, specifically, the proportion of time males spent vibrating 
and the vigor with which they signaled was also linked, although less strongly, with mating 
success. For females that mated, increased visual courtship effort by males was also strongly  
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     Table 3.8. GLM Parameter Estimates: Male traits that predict female aggressive events, all     
     males (N=64), with boxes around significant components. 

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept 0.320378 0.0671341 19.210312 <.0001*** 0.1865886 0.4541674 
Comp. A1 -0.091587 0.0662128 1.8824153 0.1701 -0.22354 0.0403667 
Comp. A2 -0.113884 0.0656903 2.9302815 0.0869 -0.244797 0.0170277 
Comp. A3 0.0257648 0.0656491 0.1538227 0.6949 -0.105065 0.1565948 
Comp. A4 -0.006182 0.0658455 0.0088131 0.9252 -0.137403 0.1250399 
Comp. A5 0.1112117 0.0688805 2.54992 0.1103 -0.026058 0.2484815 
Comp. A6 -0.100039 0.065882 2.2610726 0.1327 -0.231333 0.031255 
Comp. A7 -0.132809 0.0655933 3.9611784 0.0466* -0.263528 -0.002091 
Comp. A8 0.0560247 0.0662663 0.7104127 0.3993 -0.076035 0.1880847 
Comp. A9 -0.193744 0.0715205 6.9098709 0.0086* -0.336275 -0.051213 
Comp. A10 0.0258367 0.0654599 0.155576 0.6933 -0.104616 0.1562897 

 

     *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
 
 
 
 
 
      Table 3.9. GLM Parameter Estimates: Male traits that predict female abdomen waving    
      behavior, all males (N=64), with boxes around significant components. 

Term Estimate Std Error L - R  χ2 Prob > χ2 Lower CL Upper CL 
Intercept 3.2558057 1.0233853 37.148576 <.0001*** 1.7476828 3.2558057 
Comp. A1 1.5116427 0.8469098 5.700619 0.0170* 0.205224 1.5116427 
Comp. A2 0.9901666 0.6175398 3.5753365 0.0586 -0.031296 0.9901666 
Comp. A3 -1.458135 0.8466997 5.634737 0.0176* -3.601345 -1.458135 
Comp. A4 0.4648346 0.6708322 0.5169507 0.4721 -0.760071 0.4648346 
Comp. A5 -0.967048 0.639816 2.2923621 0.1300 -2.413485 -0.967048 
Comp. A6 1.4503601 0.7631433 5.9666013 0.0146* 0.2399728 1.4503601 
Comp. A7 1.057427 0.6580455 3.7160175 0.0539 -0.015631 1.057427 
Comp. A8 -0.765539 0.6526607 1.5897149 0.2074 -2.30548 -0.765539 
Comp. A9 1.0958743 0.5959337 4.0862189 0.0432* 0.0315818 1.0958743 
Comp. A10 0.3098178 0.5351152 0.3770522 0.5392 -0.623716 0.3098178 

 

      *Significant at alpha=0.05, **significant at alpha=0.001, ***significant at alpha=0.0001 
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Figure 3.2. Female (A) orientation, (B) aggression and (C) abdomen wiggling towards 
males based on mate-status (virgin vs. previously-mated).  
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Table 3.10. A summary: various aspects of male courtship significantly affect female mating and 
associated behaviors.  Positive and negative correlations between male traits and female 
behaviors are denoted with a “+” and “-” sign, respectively. The first column shows behavioral 
groupings of male traits according to clusters that were revealed by the PCA in Table 3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Mating 
Success 

Mating 
Latency 

Copulation 
Duration 

Female 
Orientation 

Female 
Aggression 

Female 
Abd. Wave 

Visual Effort +  - + +   +  
Visual Vigor     -  

Vibrational Effort +  + -  -  
Vibrational Vigor +      + 

Size   + -   



	

	 48	

correlated with reduced latency to mate, and increased copulation durations. Although we found 
no relationship between visual courtship effort and egg production, copulation duration and egg 
laying were highly positively correlated. 

The finding that visual effort explained more than twice the variance in male mating 
success than either vibrational effort or vigor suggests that in M. volans visual signaling 
modalities are more important for success (e.g. Papke et al. 2007). Overall though, females 
prefer males that excelled at multiple aspects of their performance (total courtship effort). 
Successful males were also more persistent, continuously moving toward the female to stay in 
close proximity and maintain constant visual contact with her (Figure 3.1). These results support 
previous research that courtship effort and/or motor performance may be better indicators of 
male quality than individual trait elements (Barske et al. 2011; Byers et al. 2010; Shamble et al. 
2009) Alternatively, it may be the male’s ability to keep a female interested that matters most 
and greater courtship effort across modalities prevents habituation to male displays.  

For peacock spiders, female orientation was especially informative as a metric of female 
preference. Many of the same characteristics that predicted male mating success also predicted 
the attention males garnered from females. Females demonstrated aggressive behaviors when 
unreceptive, particularly when males made less vibratory effort and performed leg waving at 
lower rates. The other female behavior we scored, abdomen wiggling, was exclusively 
performed by females that did not mate, thus we think this female display is an anti-receptivity 
signal to males, akin to that of other taxa (Blackenhorn et al. 2000; Rowe, 1992; Schnell et al. 
2015). A female may benefit from deterring unworthy mates from continuing their efforts as 
displaying males are potentially much more conspicuous to predators, drawing unwanted 
attention her way (Su and Li, 2006). This form of feedback is perhaps also important to males, in 
that they may tailor their behavior to better avoid costs associated with courting an unreceptive 
female (Baena and Eberhard, 2007; Linley and Hinds, 1975), specifically, wasted time, lost 
energy and in some cases, death.  

Aspects of both major hypotheses for the evolution of multi-modal signaling are 
consistent with our results. As we found many suites of correlated traits across males, our study 
provides at least partial evidence for the redundant signal hypothesis. Some of these correlations 
were unsurprising because certain male displays are often produced in conjunction (i.e. third-leg 
waves, fan-dancing and side-stepping), albeit using different independent morphological 
structures. Beyond these correlations though, there appear to be several other traits with tight 
covariance across modalities (i.e. vibrational effort with visual vigor). On the other hand, even 
though many of the visual and vibrational traits we looked at were highly correlated, when 
separated into disjoint sets using varimax rotation, traits primarily segregated by modality, and 
each modality independently predicted mating success. The independence of each modality may 
suggest that each offers unique information about distinct aspects of male quality as predicted by 
the multiple messages hypothesis (Hebets and Papaj, 2005; Jacob et al. 2011; Johnstone, 1996; 
Moller and Pomiankowski, 1993). Further support for this hypothesis comes from the fact that 
individual vibrational signaling qualities affected each stage of the mating process (copulation, 
latency, duration, egg laying) in a different way.  

For this study, we were unable to measure the complex abdominal fan ornamentation of 
M. volans males (i.e. size, shape, reflectance). This is because the small size of the fans and 
complex color patches precluded the use of a traditional spectrophotometer. Future work using a 
hyperspectral camera (Garcia et al. 2015) will avoid these problems and will allow us to (1)  
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investigate how variation in color traits affects female preferences, (2) explore patterns of 
correlation between color and other aspects of courtship, and (3) examine if ornamentation 
patterns act as independent signals or if they serve predominantly as amplifiers for other 
elements of courtship displays, as observed in the more simply ornamented Schizocosa wolf 
spiders (Hebets, 2005). In peacock spiders, males are much more likely to perform vibratory 
displays when females are not looking at them (Girard et al. 2011), suggesting that vibrations 
may serve to capture a female’s attention, and direct her focus toward other more salient visual 
signals. 

Our research demonstrates that, in peacock spiders, sexual selection in the form of female 
preference acts on complex groupings of correlated and non-correlated suites of male traits. At 
present, our data best support theoretical models that predict the optimal coding strategy for 
receivers is a combination of redundancy and multiple messages, as this allows for robust yet 
efficient processing of complex information (Ay et al. 2007). In this study, low mating rates and 
no evidence for multiple mating in Maratus volans suggest that selection on males of this group 
is strong. Many Maratus species are found in sympatry and robustness may be especially vital 
for these spiders, or in other systems where mating errors are likely to come at a high cost. There 
is already at least some evidence from insects that multi-modal signals facilitate more quick and 
reliable decision-making (Balkenius and Dacke, 2013; Kulachi et al. 2008; van Doorn, and 
Weissing, 2004). In a mate selection context, these types of benefits may outweigh potential 
costs associated with having multiple signals (Partan and Marler, 2005; Roberts et al. 2007). 
However, experimental manipulations of male signals and work on male quality are still needed 
in order to more accurately evaluate and distinguish between existing hypotheses related to the 
evolution of complex displays. Across taxa, surprisingly few studies exist quantifying trait 
combinations that predict mating success in semi-natural contexts. We advocate for an increase 
in these types of studies in order to better place empirical manipulations of signaling behavior 
into their proper context and to help address hypotheses on signal evolution and function. 
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Chapter 4: What makes males red-hot? Longer wavelengths may mean doodly-
squat for mating success in peacock spiders4 
 
 
 
 
 
4.1 Abstract 
 

Research on animal signaling enhances our understanding of broad scale links between 
sensory processing, decision-making, behavior, and evolution. Studies of sexually-selected 
signals may be particularly informative as mate choice provides access to decision patterns in the 
way that male courtship leads to an easily observable behavioral output in females, i.e. mating. 
Male peacock spiders have some of the most elaborate and varied courtship displays known 
among animals. Particularly striking to human observers is the diversity of red, orange and 
yellow ornaments that males exhibit across the genus. The primary objective of our research was 
to investigate how visual ornaments interact with vibratory displays to affect female mating 
behavior of one species, Maratus volans. Accordingly, we conducted mating trials under a series 
of experimentally manipulated vibratory and lighting conditions. Contrary to expectation, 
chromatic characteristics of longer wavelength ornaments are not driving female mate choice 
decisions, despite their extensive presence on male fans. Instead, our results suggest that 
achromatic contrast may be important to females. This study illustrates, as researchers, we must 
be careful not to inflate the importance of particular animal signals according to our own biases, 
their prominence and/or prevalence. Additionally, we found that vibratory signals were not 
necessary and did not increase mating rates. Our study demonstrates the intricacies inherent in 
complex signaling systems and suggests that individual signaling elements may evolve to serve 
different functions inherent to the process of mating. 

 
  

 
 
 
 
 
 
 
 
 
 
 

 

4This chapter is in review: Girard MB, Kasumovic MM and Elias DO (2017) What makes males 
red-hot? Longer wavelengths may mean doodly-squat for mating success in peacock spiders 
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4.2 Introduction 
 

For many animal systems, the manner in which females evaluate male courtship signals is 
unknown. Empirical work is needed to improve upon existing models for decision-making in 
mate choice, but designing experiments to elucidate male traits of interest to females is difficult. 
This is especially true for complex signals spanning multiple modalities (multi-modal signals), 
where it is difficult to tease apart the role of each type of signal. However, in systems where 
male courtship displays are characterized by multi-modal signals, determining how females 
assess different signaling modalities is critical to understanding how sexual selection shapes 
male phenotypes.  

The challenges of studying multimodal signals are further compounded by the inherent 
subjectivity of observing animal signals through a human lens, especially when our knowledge 
of the perceptual capabilities of the animal in question is limited. Displays and features that 
stimulate our eyes and ears grab our attention such that we forget prominent features to human 
observers might not be those most salient to the focal organism. In fact, the most relevant 
components of signals may escape our notice entirely. For example, many animals utilize visual 
features that are invisible to us, such as polarization (Chiou et al. 2008; Foster et al. 2014), and 
UV coloration (Cronin and Bok, 2016; Hausmann et al. 2003; Hogg et al. 2011; Xu and Fincke, 
20015). Additionally, the bulk of our planet’s animal diversity is composed of species that utilize 
modes of communication completely imperceptible to humans, including: substrate-borne signals 
(Aiken, 1985; Cocroft and Rodriguez, 2005; Ladich, 2015; Sueur et al. 2011), water-borne 
signals (Parmentier et al. 2017; Patek and Oakley, 2003; Popper et al. 2001),  near field particle 
signals (Cator et al. 2009; Heidelbach et al. 1991; Santer and Hebets, 2008; Shamble et al. 
2016), and/or chemical signals (Cardé and Millar, 2004).  

Even in systems where we understand something about the physiological capabilities of 
animals and can measure the pertinent signals, it is still easy to draw erroneous conclusions about 
how different aspects of these signals are utilized and processed. For example, recent work on 
mantis shrimp overturned the existing assumption that these exceptionally colorful stomatopods 
also have remarkable color vision. Despite having four times the number of photoreceptor types 
as humans, the way mantis shrimp process color is different from our color opponency system, 
and only allows for coarse color discrimination at best (Thoen et al. 2014). Another example 
comes from research on the fly Ormia ochracea, which revealed they use very different 
mechanism of sound localizing than was expected based on how other, larger auditory animals 
accomplish such a task (Miles et al. 1995; Robert et al. 1996). These studies, like so many others 
(Mason et al. 2001) highlight the necessity of behavioral data to test hypotheses about signal use 
across taxa. 

Peacock jumping spiders of the species-rich Maratus genus present an ideal system for 
examining the role of complex signaling traits in female choice of mates. During courtship, a 
male peacock spider will unfurl colorfully-patterned flaps attached to his abdomen, which he 
waves at a female in coordination with an ornamented third pair of legs (Girard et al. 2011). The 
extensive use of visual signals by male peacock spiders is not surprising because jumping spiders 
(Family: Salticidae) are widely considered visual specialists and have many adaptations that 
allow them to approach the physical limit of optical resolution for their compact size (Land, 
1985; Land, 1969; Nagata et al. 2012; Zurek et al. 2012; Zurek et al. 2010). Behaviorally, visual 
traits have been demonstrated to play an important role in courtship of many jumping spiders 
(Forster, 1982; Jackson, 1981; Uhl and Elias, 2011). In M. volans, aspects of male displays were 
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shown to predict mating success (Girard et al. 2015), although it is not known if male coloration 
contributes to this outcome. Studies of the effects of color in other species of jumping spiders 
have generated equivocal results (Lim et al. 2007; Taylor and McGraw, 2013). Moreover, 
physiological studies investigating color vision in salticids indicate that there is interspecific 
variation in the number and spectral sensitivities of photoreceptors, although most are believed to 
be UV-green sensitive dichromats (Blest et al. 1981; DeVoe, 1975; Nagata et al. 2012).  

 In addition to complex ornaments and displays, Maratus males employ vibratory signals 
during courtship, as do males in several other groups of jumping spiders. Some genera use 
simple substrate-borne vibrations (Phidippus; Elias et al. 2014; Elias et al. 2008) while others 
evolved more complex vibratory displays (Habronattus: Elias et al. 2012; Elias et al. 2003; 
Saitus: Gwynne and Dadour, 1985; and Maratus: Girard et al. 2011). The few studies that have 
examined the impact of vibratory signals on female mate choice determined that these signals are 
essential for males to achieve copulation (Elias et al. 2016; Elias et al. 2005; Sivalinghem et al. 
2010). Although previous work on M. volans identified several aspects of male vibrational 
signals that predict mating success, elements of motion displays by males explain more than 
twice the variance in mating success as any aspect of vibrational signals, suggesting that visual 
signaling modalities are dominant in this species (Girard et al. 2015). To date, however, no 
studies of Maratus have examined the impacts of vibrational and visual signals in isolation or 
how these two courtship elements interact in combination to affect mating. Is the presence of 
both modalities required for, or possibly serve to amplify, mating success? Instead, perhaps each 
modality can compensate	for	the	other	in	diverse	signaling	environments. 

Here, we examine how interactions between different signal modalities during courtship 
affect mate choice by female M. volans. In particular, we focus on vibrations and long 
wavelength ornaments (575-700 nm), which exemplify the major axes of visual signaling 
diversity across this genus. Unlike most other jumping spiders studied thus far, Maratus appears 
to have evolved sensitivity to long wavelengths (Morehouse et al., in prep.), but the role of this 
sensitivity in mate choice remains untested. To explore the impact of long wavelength visual 
signals on female mate choice to assess the relative contributions of visual and vibratory signals 
to male fitness, we compared patterns of male mating success under various vibratory and 
lighting conditions. In addition to generating new insights into the mate choice decisions of 
females, our analyses reveal how interactions between signaling modalities may vary across taxa, 
thereby highlighting the importance of assessing multiple sensory modalities when evaluating 
the impact of female choice on signal evolution. 
 
 
4.3 Methods 
 
4.3.1 Study animals 

M. volans specimens were collected from four locations around Sydney, New South 
Wales from 15 September to 11 November, 2015 and, 13 September to 11 November, 2016. 
Live spiders were brought back to the laboratory, where they were housed individually with leaf 
litter from their environment and kept on a natural 14:10 light:dark cycle. Spiders were fed a diet 
of fruit flies (Drosophila melanogaster) and occasionally pinhead crickets (Acheta domestica). 
Only females that were collected as juveniles and that matured in the lab were used in this 
experiment so that we could ensure their virgin mating status.  
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4.3.2 Experimental Design  
To assess the effects of vibratory and visual cues on female mating decisions, we used a 

2x2 factorial design to conduct mating trials under variable vibratory and lighting conditions. In 
order to modify the chromatic properties of male signals, trials were conducted in chambers with 
one of two illumination types (Figures 4.1 & 4.2): broadband (full spectrum light: FS, 400-
700nm) or lighting with longer wavelengths removed (minus red light: MR, 400-575nm); a more 
detailed description of the illumination chambers is provided in the “experimental 
manipulations” section below. Under each type of lighting, we also varied the vibratory 
environment of our mating arenas (again, see “experimental manipulations” section below for 
more details). The two mating arena types used in our trials either propagated all male signaling 
frequencies (vibration: V) or attenuated all vibrations (no vibration: NV). Our four treatments 
were thus labeled as follows: full spectrum-vibration (FS-V), full spectrum-no vibration (FL-
NV), minus red-vibration (MR-V), and minus red-no vibration (MR-NV). This design allowed 
us to distinguish between the importance of vibratory signals and chromatic signals in dictating 
female mating behavior. 

By truncating the longer wavelengths of the visible spectrum for our MR treatments, we 
greatly reduced the total level of lighting in the arenas compared to the FS treatments (Figure 
4.2); the latter were 1.76 times brighter. To address this potential confounding factor, once initial 
mating trials were complete, we conducted a fifth manipulation to test whether the differences in 
mating rates detected in the first experiment were related to the color composition of the lighting 
environment or the overall brightness of the chamber illumination. In this additional treatment, 
the MR condition was the same in terms of wavelength range (400-575nm) but the brightness 
(area under the curve) was adjusted to be similar to that of the full spectrum treatment (Figure 
4.2, increased brightness: +MR); vibrations were not manipulated and thus we labeled this 
treatment  +MR-V. 

 
4.3.3 Mating Trials 

Mating trials proceeded as follows: two to three weeks post maturation, each female was 
randomly paired with a mature male and assigned to one of the treatment groups. Immediately 
prior to each trial, vibratory arenas were placed inside the cylinders, which were then covered 
with blackout cloth to ensure that our setups were completely sheltered from all other ambient 
light. All mating trials (N=175, 35 for each treatment) were conducted between 09:00–17:00 hrs; 
temperature in the arena was monitored using ibuttons (Maxim Integrate Thermochron iButton) 
to ensure that all experiments were run under approximately the same ambient temperature (26 + 
1.0412 °C ). Trials were allowed to run for 15 minutes (we ensured that all males made courtship 
attempts during this time) and we recorded interactions between the pairs using a Go Pro (Hero 
4) mounted to the top of each lighting chamber. In between use, our arenas and chambers were 
cleaned with 85% ethanol to remove any potential chemical cues remaining from previous trials. 
Whenever possible, females were paired with males collected from the same population (only 
16/175 females were paired with males from a different collection location).  

 
4.3.4 Experimental Manipulations 

We used irradiance measurements (obtained with a Jaz, Ocean Optics Inc.) from the 
shady understory of Eucalyptus forests, Maratus volans’ native habitat, to reconstruct the 
approximate spectrum and brightness of natural illumination conditions. Light treatments were 
created using Radion XR15w Pro lamps which consisted of tunable arrays of LED’s across a 
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   Figure 4.1.  Experimental set-up. 
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Figure 4.2. Irradiance spectra across natural and experimental conditions: lighting conditions (at 
noon) of the natural environment of M. volans (green); experimental lighting condition for the 
Full Spectrum (FS) light treatment (red); experimental lighting condition for the Minus Red 
(MR) light treatment (light blue); experimental lighting condition for augmented brightness 
Minus Red (+MR) light treatment (dark blue). 
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broad spectrum of wavelengths. Six cyan (490-520nm) LED’s were used to augment the light 
provided by these lamps and help smooth the middle (green) part of each spectrum. LED arrays 
were mounted aerially inside lighting chambers made from cardboard cylinders (r= 12.5cm, 
h=30.48cm) spray painted matte white. The removal of the long wavelengths from ambient 
illumination affected color patches that reflect light in the 575-700 nm portion of visible 
spectrum (yellow, orange and red ornaments; Figure 4.3), presumably reducing the ability of 
females to detect these signals or to distinguish differences in these patches between individual 
males. While we were not able to recreate the UV portion of sunlight, all treatments were equal 
in this regard and thus should have affected female behavior equally in all trials. 

In the treatments that allowed vibratory communication by males (FS-V and MR-V, 
+MR-V), our arenas consisted of nylon fabric stretched over a circular wooden needlepoint 
frame (diameter: 10 cm) and surrounded with white Teflon sheets to prevent spiders from 
leaving the arena. Nylon was used as the signaling substrate because it passes relevant 
frequencies with minimal distortion (Elias and Mason, 2014). The arena for our non-vibration 
treatment groups (FL-NV and MR-NV) used wooden needlepoint frames filled with cement. 
Nylon fabric was also stretched over these frames to replicate the background color and texture 
of the vibratory arenas; because the nylon was directly in contact with the cement, however, it 
was unable to move freely and thus drastically attenuated vibrational signals (Figure 4.4: 
muted/non-muted spectral display and video demonstrating audio difference as well as).  To 
remove any effects of potential vibrational noise in the room during our trials, we always ran 
similar vibration treatments concurrently. For example, FS-NV trials were run simultaneously 
with MR-NV trials and FS-V trials were run simultaneously with MR-V trials.  
 
4.3.5 Measuring Male Color 

In order to understand which color patches of male M. volans would be affected by our 
lighting manipulations, we used a SOC710 hyperspectral imaging system (Surface Optics Co., 
USA) with 128 channels (bands) to collect spectral data from their fans. Pinned specimens of 
dead male M. volans were imaged under a broadband 800W tungsten halogen photographic light 
(StudioPRO). The camera was operated using a PC laptop and the Lumenera software v.6.3.0 
provided by the manufacturer.  The integration time for image capture was 300 ms, which was 
determined to work best with our illumination levels. The raw hyperspectral image cube 
(hypercube) generated by the system’s CCD sensor was calibrated to express camera responses 
for each pixel in radiance units (mW⋅cm−2⋅nm−1⋅sr−1) using a dark image reference file 
(recorded immediately after photographing each spider), and a calibration file provided by 
Surface Optics. Absolute reflectance data (this imaging system detected wavelengths between 
380-750nm) for each pixel location was then reconstructed using the manufacturer’s spectral 
radiance analysis software with an additional light reference calibration step. The light reference 
consisted of a pixel sample area from a Munsell grey N5 panel that was positioned next to the 
focal spider in every photo. See Garcia et al. (2015) for similar methods. For all individuals 
imaged  (N=21), two non-overlapping pixel samples within each color patch on a male (Figure 
4.3a) were randomly selected for analysis. When possible, the samples analyzed were sized to be 
approximately 10 X 10 pixels, although some samples (e.g., patch F in Figure 4.3a) were 
necessarily smaller. Finally, all spectral data were exported into excel where samples were 
averaged within and then across individuals (N=21) to generate Figure 4.3b. 
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Figure 4.3.  M. volans fan ornamentation coloration. (a) color patches lettered A-F 
correspond to reflectance curves A-F in (b). Wavelengths to the right of the dotted line in 
(b) are those that were removed in our MR treatments. Data shown is averaged for N=21 
individuals, and the shaded region around each curve reflects standard error for each 
wavelength. 
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Figure 4.4. Waveforms of M. volans vibratory displays in both the a) Vibration treatment and b) 
No-Vibration treatment arenas. These waveforms accompany videos S1 and S2 provided in the 
supplementary data section. 
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4.3.6 Scoring Behavior  
We constructed ethograms for both males and females. We then used the JWatcher Video 

software package (Blumstein et al. 2010) to score each trial from the original four treatments. 
For males, we recorded the proportion of time spent engaged in visual displays such as fan 
dancing or leg waving (Girard et al. 2011). To quantify the proportion of time that males spent 
vibrating, we identified this behavior based on the abdominal movements of males (Girard et al. 
2011) that were visible on recordings. Both visual and vibratory courtship displays are important 
for male mating success (Girard et al. 2015), thus we wanted to examine whether male behavior 
was similar across treatment groups or if there were any differences in male courtship under 
separate lighting and vibratory conditions that would account for any differences we saw in 
mating rates.  For females, we recorded the proportion of time spent oriented at males, as well as 
any instances of aggression and abdomen wiggling. All three of these female behaviors correlate 
with female mating receptivity, positively in the case of orientation, and negatively with 
aggressive attacks or abdomen waiving (Girard et al. 2015). For pairs of spiders that mated, we 
also scored latency to mate and mating duration.  
 
4.3.7 Statistical analyses 

Statistical analyses were performed using JMP (v.13.0.0, SAS Institute Inc., 2016).  To 
examine differences in mating rates across treatments, we used a nominal logistic regression, 
with population, temperature, trial date and time as random effects. For pairs that mated during 
one of the original four treatment groups, we used one-way ANOVAs to determine if treatment 
type affected latency to mate or copulation duration. We also used one-way ANOVAs to 
determine if male behavior was consistent across lighting and vibrational regimes and to assess 
whether female behavior changed under different treatments. Finally, we used unpaired t-tests 
(assuming unequal variances) to investigate whether the same aspects of male and female 
behavior that were found previously to be correlated with mating success (Girard et al. 2015) 
were important in our study. Similarly we used two separate GLMs, each with a normal 
probability distribution and identity function, to examine whether latency to mate or copulation 
duration predicted by male behavior. 
 
 
4.4 Results 
 

We completed a total of 175 mating trials, 86 (49.1%) of which ended with a male 
successfully copulating with a female. Population of origin, temperature, trial date and time had 
no effect on mating rates and thus these parameters were dropped from all subsequent analyses.  

As predicted, the number of successful copulations differed significantly among the five 
treatment groups (Figure 4.5; χ2=10.760, df=4, p=0.0294). Of the original four treatment groups, 
FS-V had the greatest mating rate (65.7%); this rate was significantly higher than that for both 
reduced spectrum (MR) treatment groups (MR-V: χ2=7.033, p=0.0080; MR-NV: χ2=5.780, 
p=0.0160), which had mating rates of 34.3% and 37.1%, respectively. Between MR treatments, 
there was no significant difference in mating rate for trials with and without vibratory signals 
(MR-V versus MR-NV; χ2=0.062, p=0.8030). The final treatment group (FS-NV) did not differ 
significantly from any of the other treatment groups (MR-NV: χ2=0.936, p=0.3334; FS-V: 
χ2=2.112, p=0.1462; MR-V: χ2=1.478, p=0.2241). Interestingly though, this FS-NV treatment 
groups, FS-V had the greatest mating rate (65.7%); this rate was significantly higher than that for 
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Figure 4.5.  Number of males that mated in each experimental treatment: Succesful matings 
(dark grey) vs. non-successful matings (white) for each of the five treatments groups (Full 
spectrum–Vibration, Minus Red–Vibration, Full spectrum–No Vibration, Minus Red–No 
Vibration, Augmented Brightness Minus Red–Vibration).  Letters above bars indicate significant 
statistical differences between treatment groups. 
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both reduced spectrum (MR) treatment groups (MR-V: χ2=7.033, p=0.0080; MR-NV: χ2=5.780, 
p=0.0160), which had mating rates of 34.3% and 37.1%, respectively. Between MR treatments, 
there was no significant difference in mating rate for trials with and without vibratory signals 
(MR-V versus MR-NV; χ2=0.062, p=0.8030). The final treatment group (FS-NV) did not differ 
significantly from any of the other treatment groups (MR-NV: χ2=0.936, p=0.3334; FS-V: 
χ2=2.112, p=0.1462; MR-V: χ2=1.478, p=0.2241). Interestingly though, this FS-NV treatment 
had a mating rate (48.6%) that was intermediate to the FS-V and both MR treatments, 
suggesting that there may be some reduction in female receptivity when vibrational signals are 
reduced. 

 Surprisingly, overall brightness levels appeared to be the major factor impacting mating 
rates during our trials, and not the specific chromatic characteristics of the ambient illumination. 
Specifically, the increased brightness of the +MR-V treatment versus the MR-V treatment 
resulted in a significantly greater number of matings (χ2=4.697, p=0.0302). We observed a 60% 
mating rate in our +MR-V treatment, which is comparable to the mating rate we observed in the 
FS-V treatment group.  

For the subset of spiders that did mate during trials, we found no difference across the 
original four treatments with respect to the latency to mate (F3,62=1.694, p=0.1780) or the 
duration of copulations (F3,61=0.159, p=0.9232). However, regardless of treatment we found that 
both the proportion of time that males spent displaying visually and the proportion of time spent 
vibrating (including the pre-mount display) strongly predicted mating latency (χ2=39.854, df=59, 
p<0.0001), with a negative relationship between the amount of time engaged in both signal types 
and the interval to mating. The amount of time that males spent dancing also predicted 
copulation (F3,134=17.269, p<0.0001). Together, these data suggest that successful males spend a 
greater amount of time engaged in courtship displays, which is consistent with previous data for 
this species (Girard et al. 2015).  

We found no difference in the proportion of time that males engaged in visual 
(F3,134=0.302, p=0.8240) or vibrational (F3,134=1.282, p=0.2832) signaling across the original 
four treatment groups (Figure 4.6). Looking at only the short wavelength lighting treatments 
(MR-V and MR-NV), however, revealed a significant difference in the proportion of time that 
males spent vibrating (Figure 4.7: F1,67=3.099, p=0.0415), with males vibrating more on arenas 
with the unmanipulated nylon substrate than on those that dampened vibrations using concrete. 
This suggests males may alter their activity in response to their substrate or in response to female 
behavior when vibrations are present.  

Lastly, the proportion of time that females spent oriented (F3,134=1.0646, p=0.3666) in the 
male’s direction, the number of aggressive responses toward males (F3,134=0.897, p=0.4449), and 
the occurrence of abdomen wiggling (F3,134=1.653, p=0.1805) did not differ with respect to 
treatment. However, across the original four treatments, females that mated during our trials 
performed significantly fewer aggressive attacks than females that did not mate (Figure 4.8: 
F3,134=17.029, p<0.0001). 
 
 
4.5 Discussion 
 

In systems where complex displays spanning many modalities are involved, it remains a 
great challenge to elucidate which male traits are important to female mating decisions. Contrary 
to expectation collectively our data indicate that chromatic aspects of long wavelength (LW)  
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Figure 4.6. Proportion of time males spent dancing during mating trials relative to 
copulation success: Across treatments (FS-V, FS-NV, MR-V, and MR-NV), males that 
mated (dark grey) spent more time dancing than males that did not (white). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Pr

op
or

tio
n 

 o
f  

Ti
m

e 
 D

an
ci

ng

Yes No
Mating



	 63	

 
 

 
Figure 4.7. Proportion of time males spent vibrating in Minus Red (MR) treatments. 
Males in the vibration treatment spent significantly more time vibrating than those in the 
No-Vibration treatment. 
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Figure 4.8. Number of aggressive attempts made by females relative to mating success: 
across the treatments (FS-V, FS-NV, MR-V, and MR-NV), females that mated (dark 
grey) were less likely than females that did not (white) to make aggressive lunges at 
males. 
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signals do not play a role in female preference for male courtship signals. While there was a 
significant decrease in mating rates in our minus red (MR) treatment groups as compared to our 
full spectrum (FS) treatments, the increase in mating we saw with our +MR-V treatment 
suggests that elements of male visual signals other than long-wavelength colors are the focus of 
female attention. We also observed that attenuating vibratory signals did not significantly affect 
mating rates. However, we found evidence that vibrations may be useful in some contexts, 
supporting the idea that vibratory signals may serve to complement visual signals. The 
proportion of time that males invested in courtship did not differ across our treatment groups, 
suggesting that differences in mating rates were based on female responses to male signals. 
 
4.5.1 Why do males have long-wavelength visual signals?  

We hypothesized that chromatic characteristics of LW fan ornaments (e.g. hue, chroma, 
saturation, chromatic contrast) were likely important to female peacock spiders, as they are to 
females of some other species (Blows et al. 2003; Hill, 1990; Houde, 1987; Kodric-Brown and 
Nicoletto, 2001), because LW signals make up the immense diversity of male ornamentation 
across Maratus, and are fairly unique across jumping spiders. If the long-wave color signals 
(e.g., reds, oranges, yellows) that are so prominent on male peacock spider fans are not used by 
females in mate choice, why do males invest in the production of these signals?  One possibility 
is that females are evaluating overall fan pattern and not the specific color components of the 
fan. Under this hypothesis, the long-wave components of fan color are not themselves important 
but instead function to establish the contrast between adjacent ornament patches (achromatic 
contrast). Our treatment with enhanced overall illumination (+MR treatment) provides 
compelling support for this achromatic contrast hypothesis, as do data from other species (Barry 
et al. 2015; Cole and Endler, 2015; Fuller, 2002; Gaskett et al. 2017) Enhanced contrast may 
serve to capture and then perhaps maintain a female’s attention. Lighting in natural environments 
is heterogeneous (Endler, 1993; Warrant and Johnsen, 2013) and red, yellow and orange signal 
components may be important to create a contrast with the mottled brown/green backdrop of the 
forest floor (Lovell et al. 2005; Maria et al. 2014). Contrast between LW signals and green/blue 
backgrounds have been used to explain the prevalence of these ornaments in aposematic 
coloration across taxa (Arenas, 2014).  If this function applies to our study species, it is possible 
that the reason we found no effect of LWs during our experiments was because our trials were 
run in simple mating arenas with no other stimuli and thus contrast against the background was 
not required.  

Although reliance on achromatic contrast may explain the apparent lack of importance of 
long-wave chromatic signals in our study, other explanations are possible. First, neural 
mechanisms may compensate for the absence of LWs such that females still perceive red 
coloration in the absence of the associated wavelengths (color constancy: Balkenius and Kelber, 
2004; Chittka et al. 2014; Neumeyer, 1998). In this case, the perception of LWs remains 
important although females are unlikely to select males based on variation in chromatic 
properties of LW reflections.  Accordingly, the decreased mating rates observed during MR 
treatments without enhanced illumination may have resulted from poor signal contrast in low 
light levels. Second, females may be capable of plasticity with regard to the types of visual 
signals used under different conditions. For example, blue and red ornaments may be redundant, 
with females using one or the other depending on the available lighting. Finally, while our results 
suggest that chromatic properties of LWs are not used in mate choice, they may be used in other 
contexts such as foraging, learning and navigation (de Ibarra et al. 2001; Hoefler and Jakob, 
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2006; Jakob et al. 2007; Taylor et al. 2016; VanderSal and Hebets, 2007); future work is needed 
test explicitly these hypotheses. 

 
4.5.2 Role of vibratory signals in mating success 

Similar to our findings for the chromatic features of long wavelength visual signals, our 
data suggest that vibrations do not play a crucial role in female willingness to mate. This finding 
is consistent with previous research (Girard et al. 2015) indicating that even though vibratory 
signaling predicts copulation, this effect is much smaller than for visual signals. Males may alter 
their use of vibrational signals in response to the substrate, vibrating more only when signals can 
be effectively produced (Gordon and Uetz, 2011; Gray et al. 2014; Heuschele et al. 2009; 
Patricelli et al. 2016; Partan, 2017). This shift in signal use may allow an animal to compensate 
for reduced efficacy in signal transmission in one sensory modality, for example by increasing 
the amount of time spent vibrating under low light condition.  Similar results are reported for 
other types of spiders (Gordon and Uetz, 2011; Sullivan-Beckers and Hebets, 2014). In peacock 
spiders, males tend to produce more substrate-borne vibrations when females are not attentive to 
visual displays, which results in females reorienting themselves toward males and thus 
presumably paying more attention to visual displays (Girard et al. 2015). Thus we suggest that 
the interaction between vibratory and visual signals in our study species is not static but varies in 
response to the environmental conditions in which courtship occurs.  

 
4.5.3 Multi-modal courtship signals 

Animal courtship displays are complex and often involve multiple signals that employ 
more than one sensory modality. Presumably females evaluate more than one signal when 
making mate choice decisions. Recent models suggest that multiple signals evolve when 
different signals convey distinct types of information and thus serve distinct functions (Ay et al. 
2007; Bro-Jørgensen 2010; Wilson et al. 2013). With regard to peacock spider signals, which 
employ multiple sensory modalities (i.e. vibratory versus visual signals), each modality may 
have unique functions and represent different axes of overall variation in courtship behavior. 
Vibratory signals likely function to draw a female’s attention across long distances, when the 
female is not oriented toward a male (Girard et al. 2015; Girard et al. 2011), or when lighting 
conditions are less than ideal (this study). Once a female is attentive to a male, achromatic 
contrast patterns on the fan may become more important, possibly to enhance contrast with the 
background environment or as a signal of species identity (this study). Finally, it is possible that 
motion (dancing) is assessed as a signal of mate quality given that males that dance at higher 
rates are preferred as mates (Girard et al. 2015). Thus, although dancing is also a visual signal, it 
may function quite differently from color-based signals. More generally, we suggest that the 
evolution of complex signals in peacock spiders is driven by the need for different types of 
information (species identity, mate quality, multiple messages) and for maximal signal 
transmission in less than optimal environments (use of long wavelengths, behavioral 
compensation, redundant backups). Future studies are needed to investigate this hypothesis 
directly. As many have stated, trying to understand an organism that is unlike ourselves is the 
biggest challenge to animal behavior research (Nagel, 1974) but also one of the most meaningful 
as we seek to understand the natural world.  
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Chapter 5: Molecular phylogeny and courtship evolution of peacock spiders 
(genus: Maratus) and their relatives 5 
 
 
 
 
 
5.1 Abstract 
 

Peacock spiders of Australia comprise at least sixty described species that are currently 
classified into two genera, Maratus (Karsch, 1878) and Saratus (Otto and Hill, 2017b) and 
several undescribed species. Whereas some peacock spiders are seemingly easily sorted into 
species groups based on morphological or behavioral characters, the evolutionary relationships 
among groups, and among species within groups, remain unclear. To help determine the 
phylogeny of this group of spiders, we use restriction site-associated DNA sequencing (RAD-
seq) and maximum likelihood (ML) methods. To better interpret the patterns of complex signal 
evolution in this group, we also present data that we collected on male ornamentation and 
courtship displays. For the first time, our molecular phylogeny sheds light on relationships 
between peacock spiders and their relatives, including several major clades that emerge with 
strong support. Implications for the taxonomy and diversification of courtship displays in 
peacock spiders are also discussed. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

5This chapter is work in collaboration with: Ke Bi, Michael M. Kasumovic, Damian O. Elias, 
Julianne Waldock, and  Erica Bree Rosenblum 
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5.2 Introduction 
 

Peacock spiders of the Maratus genus are an extremely diverse clade of jumping spiders 
distributed across Australia. Males of this group are generally characterized by their 
conspicuously colorful abdomens and elongated, brush-adorned, third pair of legs, which are 
used in visual and vibrational courtship displays. The extensive radiation of peacock spider 
courtship ornaments and displays is comparable to that of the better-known birds of paradise 
(Irestedt et al. 2009; Scholes, 2008), but these animals have largely remained obscure until 
recently because of their small size. Previous research on jumping spiders provides evidence that 
complex signals have the potential to diverge rapidly (Masta and Maddison, 2002), and thus may 
be driving the pattern of extreme signal diversity we see in Maratus today. Thus far, peacock 
spiders have been divided into groups based on morphological and display features (Otto and 
Hill, 2017b). While the putative species groups are a helpful starting point for studying species 
diversity, a more comprehensive understanding of evolution in this genus has been hampered by 
the lack of a robust phylogeny.  

Previous work has placed Maratus within a well-supported monophyletic subfamily, but 
distinguishing between Maratus and other closely related groups (Hypoblemum, Jotus, Lycidas, 
Maileus, Maratus, Saitis, Prostheclina) has been difficult (Zhang and Maddison, 2013; Zhang 
and Maddision, 2015).  A few challenges to resolving these relationships include: many of the 
type species of closely related genera are not well known; large numbers of transition species in 
all groups remain undescribed; and genetalic structures, the primary morphological feature used 
to distinguish species, vary little across species (Otto and Hill, 2012). Originally, Żabka (1987) 
had separated the genera Lycidas (Karsch, 1878) and Maratus on the basis of the presence of 
opisthosomal flaps in the latter. However, many more recently described species, such as M. 
linnaei (Waldock, 2008), have minimal flaps or sometimes none at all, has rendered this 
distinction useless (Otto and Hill, 2012). Besides lateral flaps on the opisthosoma, Waldock 
(2002) proposed several other characters to separate Lycidas and Maratus, however, Lycidas was 
recently synonymized with Maratus (Otto and Hill, 2012), therefore the species previously 
associated with Lycidas have either been subsumed by Maratus or are awaiting assignment to 
another genus. One feature that still seems to encompass the vast majority of peacock spiders is 
their ability to raise and display colorful patterns associated with the abdomen (Girard and 
Endler, 2014; Hill, 2009). Based on this criterion alone, several new species have been placed 
within the genus over the last five years, but a robust molecular phylogeny is needed to uncover 
if these additions are valid as well as to reveal patterns of trait evolution among peacock spiders. 

In this study, we collected behavioral and molecular data from an extensive sampling of 
peacock spider taxa to resolve the phylogenetic relationships within the genus Maratus and to 
reveal signaling evolution patterns across the group. To do this, we characterized visual and 
vibrational signaling diversity for living individuals that were then collected and prepared as 
specimens. Using the DNA extracted from the same specimens, we generated restriction-site 
associated DNA (RAD) libraries for sequencing. After filtering and assembling our RAD 
sequences, we had data for a total of fifty-four peacock spider species spanning the major axes of 
the group’s diversity. Here, we present the first strongly resolved molecular phylogeny for 
peacock spiders as well as preliminary findings regarding the evolution of elaborate male 
courtship traits. Given current taxonomy, the genus Maratus is a paraphyletic group containing 
several major, strongly supported monophyletic sub-clades that correlate with patterns of 
courtship behaviors. Importantly, some of the morphological/behavioral groupings we expected 



	 70	

to see were not supported by the molecular data, suggesting that these characteristics are not 
sufficient for robust taxonomic classification. Accordingly, the phylogeny and associated 
courtship characterizations provided here establish a critical comparative framework for future 
studies of Maratus morphology, behavior, and evolution.  
 
 
5.3 Methods 
 
5.3.1 Specimen Collection  

Specimens representing a large proportion of the known Maratus diversity were collected 
across Australia (from ACT, NSW, QLD, SA, TAS, VIC, and WA) between: August 20th-
Decemeber 16th, 2013; September 30th- December 8th, 2014; September 24th-December 24th, 
2015. At least three individuals from each location were sampled when possible. For species 
thought to occur across a large geographic area, we sampled several populations located 
throughout their putative range.  
 
5.3.2 Behavioral data 

Visual and vibrational courtship signals were characterized using videos and laser 
vibrometer recordings that were obtained from each putative species (see Girard et al. 2011 for a 
detailed description of these methods) prior to their preservation in 100% ethanol.  

 
5.3.3 Molecular Work 
 We used a Qnap DNA micro kit (Qiagen, Valencia, CA, USA) to extract and isolate 
genomic DNA from tissues of spider legs (N= 192 individuals, for a few very small-bodied taxa, 
whole spiders were used).  We then generated two restriction-site associated DNA (RAD) 
libraries using the protocol provided in Ali et al. (2016). The only deviations from this protocol 
were that we did not complete the targeted bait capture step and we used Pippin Prep (Sage 
Science, Beverely, MA USA) instead of beads to select fragments between 250-600bp. Lastly, 
we sequenced our libraries on two lanes of Illumina HiSeq 4000 at the U.C. Davis Genome 
Center with 150bp paired end reads. 
 
5.3.4 RAD Sequence Filtering/ Phylogenetic Reconstruction 

We used the pipelines implemented in a custom script calling various external programs 
for processing ddRAD-seq data (pipelines are available at https://github.com/CGRL-QB3-
UCBerkeley/RAD).  Raw fastq reads were first de-multiplexed based on the sequences of 
internal barcodes with a tolerance of one mismatch. De-multiplexed reads were removed if the 
expected cut site (also one mismatch allowed) was not found at the beginning of the 5’-end of 
sequences. Exact duplicates were removed by using Super Deduper 
(https://github.com/dstreett/Super-Deduper). The reads were then filtered using Cutadapt 
(Martin, 2011) and Trimmomatic (Bolger et al. 2014) to trim adapter contaminations and low 
quality reads. The resulting cleaned forward reads for each individual were clustered using Cd-
hit (Fu et al 2012; Li and Godzik, 2006); only clusters with at least two supported reads were 
kept.  We used Blastn (Altschul et al. 1990) to compare clustered loci against themselves, as well 
as to remove any locus that matched a locus other than itself. We used this stringent filtering to 
remove any potential paralogs or loci containing repeats within an individual. The resulting RAD 
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loci from each individual were then combined for all individuals and the resulting marker sets 
were renamed and served as a master reference. We then used Blastn (Altschul et al. 1990) to 
compare markers from each individual to the master reference and we kept only those with 
unique hits. The unique markers from each individual served as a reference for that individual. 
We made the name of each marker in individual references consistent with that in the master 
reference.  

Cleaned sequence reads from each individual were then aligned to their own reference 
using Novoalign (http://www.novocraft.com) and reads that mapped uniquely to the reference 
were kept. We used Picard (http://picard.sourceforge.net) to add read groups and GATK 
(McKenna et al. 2010) to perform realignment around indels. We finally used 
SAMtools/BCFtools and “vcfutils.pl vcf2fq” implemented in SAMTools (Li et al. 2009) to 
generate individual consensus sequences by calling genotypes and incorporating ambiguous sites 
in the markers. We kept a consensus base only when its depth was at least 3X or above and every 
locus that was retained contained no more than 80% missing data (Ns). We also masked sites 
within 5 bp window around an indel. We converted the resulting consensus fastq sequence file to 
fasta format using Seqtk (https://github.com/lh3/seqtk). Using Mafft (Katoh and Standley, 2013), 
the final filtered markers from each individual were aligned according to their name determined 
by comparing them to the master reference. Ambiguously aligned regions in alignments were 
then trimmed using Trimal (Capella-Gutierrez et al. 2009). To avoid too much missing data, we 
also removed alignments if more than 90% missing data (Ns) were present in 30% (or above) of 
the samples.  We combined all filtered individual alignments in phylip format for phylogenetic 
analysis.  Maximum-likelihood method was performed in RAxML-HPC v8.1.11 (Stamatakis, 
2014) using the GTRGAMMA general time reversible model of nucleotide substitution with 
gamma distributed rate heterogeneity. Branch support was assessed with 1000 bootstrap 
replicates using the rapid bootstrapping algorithm.  
 
 
5.4 Results 
 
5.4.1 Molecular Data & Phylogeny  
In total, molecular and behavioral data were collected for 54 unique species of Maratus (N=192 
individuals) plus 5 additional species belonging to 4 different genera (Jotus, Hypoblemum, 
Lycidas, and Saitis) that served as outgroups.  A complete list of species included in this study, 
with general collection localities (Figure 5.1) are provided in Table 5.1. 

The number of reads (de-multiplexed reads that contain expected restriction cutting sites) 
we obtained from our RAD data set ranged from 101,077 to 3,623,248 among samples.  We had 
an average of 16,637.6 (9,155-27,683) RAD markers per individual, but the number of shared 
orthoglous loci among all samples was low, likely due to the deep phylogenetic distances among 
many samples. After filtering our RAD data (no more than 30% of taxa were allowed to be 
missing), we were left with 161 individuals with an average per-individual coverage of RAD 
markers of 12.1X (ranging from 3.1X to 61.2X). The resulting concatenated alignments for 
RaxML analysis were derived from 524 markers with a total length of 60,904 kb (including 
19788 SNPs, 11,962 of which are informative). 
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The best tree resulting from our ML analysis is shown in Figure 5.2; all nodes with less 
than 70% bootstrap support were collapsed. All putative species sampled were supported as 
monophyletic with one exception; our two outgroup samples of L. scutulans. At this time, it is 
unclear what the true placement of this species should be relative to the other outgroup members. 
Although the phylogenetic relationships among some species remain incompletely resolved, 
seven major monophyletic Maratus clades were revealed and strongly supported by our 
bootstrap analysis: speculifer clade (bs=100%), chrysomelas clade (bs=100%), anomalus clade 
(bs=100%), pavonis clade (bs=100%), digitatus clade (bs=100%), volans clade (bs=100%), and 
the mungiach clade (bs=70%). Several of these clades are mostly congruent with species group 
divisions previously proposed by Otto and Hill (2017b) on the basis of several morphological 
and behavioral similarities. Here we outline, by clade (when applicable), specific aspects of the 
morphological and behavioral characteristics we examined in our study (these data are also 
summarized in Table 5.1).  

 
5.4.2 Morphological and Behavioral Data  
 

“speculifer clade” 
Species in this group include (Figures 5.2 & 5.3): M. speculifer, M. sp. “flame” and M. 

sp. “carmel.” It is likely that M. fimbriatus fits into this group as well, but molecular data are 
needed to confirm.  Males of the speculifer clade lack lateral fan flaps yet still raise their 
abdomens to display to females. These spiders lack typical Maratus features, such as tufted legs 
and a traditional pre-mount display. The pre-mount display of these species (described in Girard 
et al. 2011) is different in that legs III are not extended at 90° angles from the body, but instead 
remain touching the substrate.  In the three species examined, vibrations were not used prior to 
the modified pre-mount display. Lastly, the use of third legs in male displays is either severely 
reduced or nonexistent and instead legs I are primarily employed.  

 
“chrysomelas clade” 

This group is contains (Figures 5.2 & 5.4): M. chrysomelas, M. niagromaculatus, M. sp. 
“meteor,” as well as M. robinsoni, M. purcellae, and M. spicatus, which were previously placed 
in a “spicatus” group by Otto and Hill (2017b).  According to our phylogeny, members of the 
spicatus do not comprise a monophyletic clade and thus this grouping is not utilized here. 
However, as Otto and Hill (2017b) predicted, these three species are closely related to M. 
chrysomelas. Males of the chrysomelas clade do not have lateral fan flaps although M. 
niagromaculatus has erectile bristles adorning the outside of their abdomen.  All individuals 
raise their fans during courtship. None of these species use vibrations prior to mounting females. 
The only species with a true pre-mount display are M. chrysomelas and M. niagromaculatus. The 
pre-mount displays of all other members of the chrysomelas clade are similar to those exhibited 
by members of the speculifer clade. M. chrysomelas and M. niagromaculatus are also the only 
members of the chrysomelas group to have a white brush of setae on the tarsi of their third legs, 
with these legs being used extensively during courtship (M. robinsoni was observed using third 
legs on very rare occasions).  
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Figure 5.3. Members of the speculifer clade: M. speculifer and M. sp. “flame”  
(from left to right). 

 
 
 
 
 

 

 
Figure 5.4. Members of the chrysomelas clade: M. Chrysomelas, and M. niagromaculatus (top, 
from left to right); M. sp. “meteor,” M. spicatus, M. robinsoni, and M. purcellae (bottom, from 
left to right). 
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“pavonis clade” 
The pavonis clade is comprised of the following species (Figures 5.2 & 5.5): M. pavonis, 

M. splendens, M. leo, M. cf. leo, M. watagansi, M. martimus, and M. literatus. This group also 
likely includes M. montanus. All males of this clade use ornamented third legs extensively 
during courtship. Additionally, males of this group produce some of the most powerful 
vibrations throughout courtship, including percussive taps on the substrate that are generated by 
the abdomen and third legs. M. splendens is the only member of this group to have sizable lateral 
fan flaps, whereas most other members of the group have minimal (M. literatus and some M. 
pavonis morphs) or no (M. watagansi, M. leo, M. martimus) flaps.  M. leo, and M. cf. leo are 
known to only lift their abdomen slightly during displays while, M. martimus, and M. watagansi 
do not lift their abdomens at all. All the other members of this species group lift their abdomens 
completely when displaying to females.  
 

“anomalus clade” 

The anomalus clade is comprised of the following species (Figures 5.2 & 5.6): M. 
anomalus, M. albus, M. aurantius, M. cinereus, M. michaelorum, M. neputunus, M. cf. neptunus 
“red-rodgers,” M. vultus, and M. sceletus, which was originally hypothesized by Otto and Hill 
(2017b) to be part of the calcitrans group. According to genital as well as general morphology 
(Otto and Hill, 2017b), this group also likely includes M. julianneae, M. kochi, and M. lentus. 
This clade in is particularly phenotypically diverse with regard to courtship behavior. Vibrational 
signals were observed in the courtship displays of most species, although the extent to which 
these vibrations are used varies. M. anomalus and M. albus are the only members of this clade to 
utilize intense percussive tapping to punctuate their visual displays. In contrast, vibrations are 
severely dampened or are rarely used by M. cinereus, M. cf. neptunus and M. aurantinus.  M. 
vultus is the only species in this group to have any form of lateral fan flaps, although the rounded 
flaps of M. splendens are very minimal relative to those in other Maratus species. M. albus males 
do not raise their fans during courtship. Ornamented tarsi are present in most species, although 
brushes are severely reduced in M. sceletus, M. cinereus and M. aurantius. Lastly, elongated 
spinnerets are used in the displays of M. sceletus males, and to a much lesser extent (in spinneret 
size and movement) in M. cinereus, M. neptunus, M. cf. neptunus “red-rodgers,” and M. 
aurantius males.  
 

S. hesperus 
S. hesperus (Figures 5.2 & 5.7) males have no fan and no ornamentation on the tarsi of 

legs III. This is the only peacock spider species outside of the speculifer and chrysomelas clades 
that does not use its third legs during courtship, including the final pre-mount display. S. 
hesperus males use powerful vibrations during courtship with very vigorous percussive tapping 
by legs III and the abdomen.  

 
M. amablilis 

M. amabilis (Figures 5.2 & 5.8) have large lateral fan flaps and ornamented third legs. 
They also make use of vigorous percussive tapping during their displays. Males of this species 
use a normal pre-mount display.  
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Figure 5.5. Members of the pavonis clade: M. cf. leo, M. leo (top, from left to right); M. 
literatus, M. splendens, and M. pavonis (bottom, from left to right). 
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Figure 5.6. Members of the anomalus clade: M. neptunus, M. cf. neptunus “red-rogers,” M. 
aurantinus, and M. cinereus (top, from left to right); M. sceletus, M. anomalus, M. michaelorum, 
M. vultus, and M. albus (bottom, from left to right). 
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Figure 5.7. S. hesperus. 

 
 
 
 
 
 
 
 

 
Figure 5.8. M. amabilis. 
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M. speciosus 
M. speciosus (Figures 5.2 & 5.9) has no fan, but instead has erectile bristles along the 

outside of its abdomen that are inflated and splayed out when abdomen is raised. Legs III of this 
species are ornamented and used in male courtship displays, as are vibrations (no tapping 
though). This species has a normal pre-mount display. 

 
M. vespertillio 

M. vespertillio (Figures 5.2 & 5.10) has large fan flaps that are lobed. Although legs III 
are not ornamented with white tarsi they are still used extensively during male courtship. M. 
vespertillio has a normal pre-mount display.  

 
M. velutinus 

M. velutinus (Figures 5.2 & 5.11) does not have a fan nor does it have third leg 
ornamentation. This species, however, raises and uses both its abdomen and third legs during 
male courtship. This species also produces vibrations but without percussive elements. Males 
engage in a normal pre-mount display. 
 

M. proszynskii 
M. proszynskii (Figures 5.2 & 5.11) is very similar to M. velutinus, see description above.  
 

M. harrisi 
M. harrisi (Figures 5.2 & 5.12)  is likely very closely related to M. lobatus (not included 

in this study). Similar to M. vespertillio, M. harrisi males have large lobed fan flaps that are 
raised with the abdomen and unfurled during courtship. M. harrisi produce percussive vibrations 
akin to those made by male S. hesperus and M. amabalis. The tarsi of legs III have white brushes 
and are used often during courtship. Males engage in a normal pre-mount display. 
 

“calcitrans clade” 
Species in this group include (Figures 5.2 & 5.13): M. calcitrans, M. jactatus, M. ottoi, 

M. eliasi, and M. digitatus. Note: despite their pronounced morphological and behavioral 
similarities, this clade does not contain M. plumosus or M. sceletus. Males of all species in this 
group inflate elongated spinnerets during courtship, which are waved at females. Members of 
this clade are additionally typified by an asymmetric display, in which the raised abdomen is 
alternatingly waved toward one side and then the other (legs III are also extended one at a time in 
alternating directions). Species in the calcitrans clade all have white setae on third leg tarsi. 
Presence of a lateral fan flap varies across species, with flaps ranging from large in M. digitatus 
and M. eliasi to non-existent in M. ottoi and M. calcitrans. Vibrations (excluding percussive 
tapping) are employed by all species during courtship, albeit minimally in M. eliasi, M. ottoi and 
M. jactatus. 

 
“volans clade” 

The volans clade is comprised of only two species (Figures 5.2 & 5.14): M. volans and 
M. elephans, but contrary to Otto and Hill (2017b) does not include M. pardus. Males in this 
group raise their abdomens during courtship and extend large lateral fan flaps that form an  
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Figure 5.9. M. speciosus. 

 
 
  
 

 
Figure 5.10. M. vespertillio. 

 
 
 
 

 

 
Figure 5.11. M. velutinus and M. proszynskii (from left to right). 
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Figure 5.12. M. harrisi. 

 
 
 
 
 

 
Figure 5.13. Members of the calcitrans clade: M. digitatus, M. eliasi, and M. calcitrans (top, 
from left to right); M. jactatus, and M. ottoi (bottom, from left to right). 
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Figure 5.14. Members of the volans clade: M. volans and M. elephans (from left to right). 
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elliptical shape when opened. M. volans and M. elephans make use of vibrations throughout their 
courtship displays, including the pre-mount display, although no percussive tapping is produced 
as part of these signals. Legs III of both species are ornamented with white brushes on the tarsi.  

 
M. cf. plumosus “plumosassy” 

 M. cf. plumosus “plumosassy” (Figures 5.2 & 5.15) is very similar to M. plumosus, see 
description below. Despite this similarity, our molecular data did not support this species being 
more closely related M. plumosus than they were to M. tasmanicus (Figure 5.2, bs=86%). 
 

M. plumosus 
M. plumosus (Figures 5.2 & 5.15) males have minimal fan flaps, restricted to the 

posterior portion of the abdomen. Spiders of this species lack leg III tarsi ornamentation but use 
both their raised abdomen and third legs to perform an asymmetrical display similar to that of 
calcitrans group members. Inflated spinnerets, however, are not used in the display of M. 
plumosus. Light vibrations are produced intermittently throughout courtship. The pre-mount 
display proceeds normally in this species. 
 

M. tasmanicus 
M. tasmanicus (Figures 5.2 & 5.16) has large fan flaps that are lobed, similar to that of 

M. harrisi. Legs III are ornamented with white tarsi and are used extensively during male 
courtship. M. vespertillio produces light vibrations throughout courtship and has a normal pre-
mount display.  
  

M. australis 
M. australis (Figures 5.2 & 5.16) is very similar to M. tasmanicus, see description above. 

Despite this similarity, our molecular data support M. personatus as more closely related to M. 
australis (Figure 2, bs= 89%). 

 
M. personatus 

M. personatus (Figures 5.2 & 5.17) does not have fan flaps and does not raise its 
abdomen during courtship. This species uses ornamented third legs and vibrations to court 
females. M. personatus has a normal pre-mount display. 
 

“mungiach clade” 
This group includes the following species (Figures 5.2 & 5.18): M. mungiach, M. avibus, 

M. caeruleus, M. madelineae, M. sarahe, M. vespa, M. pardus, M. linnaei, M. clupeatus, M. sp. 
“col. mustard.” Morphological, behavioral and geographical evidence suggests this group likely 
also includes M. bubo, M. hortorum, M. karrie, M. melindae, although we were not able to 
include specimens of these species in our phylogeny. The majority of males in this group have 
ornamented third legs (white brushes on tarsi, reduced in M. linnaei), as well as large lateral fan 
flaps. When opened, these flaps make an elliptical fan shape. As exceptions, M. vespa, M. linnaei 
and M. sp. “col. mustard” have either greatly reduced (M. vespa) or no flaps (M. linnaei). While 
males of this group use vibrations prior to and during the pre-mount display, they do not exhibit 
percussive tapping of the third legs or abdomen.  

 



	

	 87	

 
Figure 5.15. M. cf. plumosus “plumosassy” and M. plumosus (from left to right). 

 
 
 

 
 

 
Figure 5.16. M. australis and M. tasmanicus (from left to right). 

 
 
 
 
 

 
Figure 5.17. M. personatus. 
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Figure 5.18. Members of the mungiach clade: M. avibus, M. caeruleus, and M. linnaei (top, 
from left to right); M. madelinae, M. mungiach, and M. sarahe (middle, from left to right); M. sp. 
“col. mustard,” M. pardus, M. clupeatus, and M. vespa (bottom, from left to right). 
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5.5 Discussion 
 

This study provides a taxonomically broad phylogenetic analysis of peacock spiders 
using genome wide markers. In general, our goals were to a) characterize relationships between 
different species of Maratus, (b) investigate multi-modal courtship signal organization across the 
group and (c) make inferences about the evolution of species-level differences in complex 
courtship signaling. We sampled 59 species and used hundreds of molecular markers to generate 
a robust molecular phylogeny for this group, upon which our interpretations regarding signal 
evolution are based. First, our results challenge the current status of peacock spiders as 
monophyletic and, accordingly, our molecular phylogeny has important implications for the 
taxonomy of not only Maratus, but also that of closely related genera. However, our 
phylogenetic analyses largely corroborate several species groups proposed by Otto and Hill 
(2017b) and clarify instances where previous, morphologically based studies were unable to 
reveal the relationships between these taxa.  Lastly, the topology of our tree lends support to the 
idea that Maratus displays have evolved from simple, primarily unimodal signals to more 
complex, multi-modal displays. 

The recent transfer of several species of Lycidas to Maratus (Otto and Hill, 2017a; now 
M. speculifer, M. chrysomelas, and M. niagromaculatus) as well as the description of several 
new species of peacock spiders (Otto and Hill, 2017a; Otto and Hill, 2013; M. robinsoni, M. 
purcellae and M. spicatus) have made Maratus a paralyphyletic genus, as it no longer includes 
all decedents (e.g. L. scutulans and H. albovittatum are missing) of the most recent ancestor to all 
other Maratus species. Another problematic area of the phylogeny is the location of S. hesperus, 
which was placed in its own genus because its genitalia differ significantly from other Maratus 
species examined to date (Otto and Hill, 2017a). As there is typically limited interspecific 
variation in genital morphology of Maratus and closely related taxa (Otto and Hill, 2017a; 
Waldock, 2013), identification of distinct species of Maratus has relied largely on secondary 
sexual characteristics. Determining the limits of what constitutes a “true Maratus” is outside the 
scope of this paper, but the central placement of Saratus hesperus among other well established 
species of Maratus certainly advocates for a taxonomic revision of this species.  

Taken together, our molecular and behavioral data provide strong support for seven 
distinct monophyletic sub-clades within the genus Maratus. The seven clades are as follows: 
speculifer, chrysomelas, pavonis, anomalus, digitatus, volans, and mungiach. While several 
species currently fall outside these sub-clades, the discovery of additional species may reveal 
more sub-clades within the genus. Interestingly, our phylogeny revealed that some of the 
morphological/behavioral groupings that we had expected were not supported with our tree. For 
example, based on fan shape and overall courtship behavior of male M. plumosus and M. cf. 
plumosus “plumosassy”, we anticipated that these species would be most closely related to 
members of the calcitrans group. Similarly, the inflated spinnerets exhibited by male M. sceletus 
during courtship lead us to hypothesize a phylogenetic position within the calcitrans clade for 
this species.  Finally, M. cf. plumosus “plumosassy” and M. tasmanicus are sister taxa to each 
other rather than to the species with which they share an appearance, M. plumosus and M. 
australis, respectively. Similar apparent mismatches between phenotype and phylogenetic 
relationship occurred in other sub-clades in our tree. For example, some of the pavonis and 
mungiach group members with more similar phenotypes did not cluster together on the tree. This 
is illustrated with M. madelineae, which is more closely related to M. linnaei than either M. 
mungiach or M. sarahe, although these two species are much more similar to M. madelineae in 
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their displays, fan shape, size and coloration. For M. pavonis, we have a case in which 
individuals of the same species from geographically disparate populations are more distantly 
related to each other than they are to individuals classified as a different species; specifically, M. 
pavonis from WA are more closely related to M. martimus than to M. pavonis from the eastern 
states. Instead, the latter is more closely related to M. literatus and M. leo. It is possible that M. 
pavonis is currently made up of several geographically distinct cryptic species. However, 
disagreement between morphological/behavioral groupings and our molecular phylogeny could 
also stem from hybridization-mediated introgression, as well incomplete lineage sorting. 
Additional analyses are needed to explore these possibilities in greater detail.  

Prior to this study, secondary sex characteristics were the only way to infer evolutionary 
relationships among different species of Maratus. For example, we had expected that the most 
ancient lineage of Maratus spiders are those now placed within the speculifer clade (M. 
speculifer, M. sp. “flame,” and M. sp. “carmel”) owing to: the relative simplicity of male 
morphological phenotypes, the differentiation of their displays as compared to other species, and 
the assumption that complex structure and morphology evolved later within Maratus. Several of 
these traits do mirror apparent phylogenetic relationships among species, which makes intuitive 
sense, as these are traits on which sexual selection acts. Moreover, paired with our phylogenetic 
data, the species characters examined in this study do indeed suggest that on the whole, evolution 
of male signaling has been from more simple displays, lacking vibrations and elaborate male 
ornamentation, to displays that incorporate more extensive vibrations and larger, more 
elaborately pattered fan/flaps (Figure 5.19). Features of closely related outgroups in our study 
(Table 5.1) provide evidence that the most recent common ancestor of all Maratus very likely 
had the following features: an opisothoma that was raised during courtship, no ornamentation on 
legs III, simple vibrations reserved for the pre-mount displays, and an incomplete pre-mount 
display that lacks the engagement of legs III. At present, inferences regarding the evolution of 
the use of legs III in any aspect of courtship is ambiguous based on comparisons with our 
outgroup and speculifer group members.  

Our data suggest that the evolution of male courtship behavior in this group has moved 
toward greater complexity via a number of one-time evolutionary events (i.e. development of leg 
III ornamentation, development of courtship vibrations and development of fan flaps). 
Occasional reversions to simpler morphologies (reduced fan flaps, with less patterning, loss of 
leg III ornaments or use in male displays) are thus suspected to have occurred several times in 
the course of peacock spider evolution, perhaps most notably in species such as M. personatus, 
as well as in M. velutinus and M. proszynski. There are also specific aspects of complexity that 
have seemingly emerged independently in different lineages (elongated and inflated spinnerets, 
vigorous tapping).  Additional phylogenetic analysis will be required to better understand trait 
evolution in this group and we suggest that these studies should focus on areas of the phylogeny 
where morphological and behavioral groupings fail to match relationships constructed using 
molecular data. 
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Appendices 
 
 
A.1 UV Photography Protocol 
 
 
A1.1 Equipment/Supplies 

• Fujifilm Finepix IS Pro 
• Hyper Utility HS-V3 Software 
• Tripod 
• Adapters/Filters:  

1. Fotodiox 55mm Filter Thread Lens, Macro Reverse Ring Camera Mount Adapter 
2.  T-NI T-mount adaptor for F-mount 
3.  Nikon BR-3 52mm Mount Adapter Ring 
4. Adorama Step-Up Adapter Ring 52mm Lens to 55mm Filter Size 
5.  Hyperion DT-Ring SP54/M55 for DT54 and Hyperion Eyepieces 
6. 2" filter holder 
7.  Baader UV-IR-Cut Filter 2" 
8. Unmounted Astrodon Sloan UV’ filter (mounted on a 52-46 step-down adapter) 

• Lens (UV5035B 50mm F/3.5 UV lens) 
• Nikon Bellows 
• UV-Vis spectrum light: i.e. Lamda LS Light (Type B Parabolic Cermax PE300BUV 

lamp in Damian’s lab) 
 
 
A1.2 Assembling the hardware 
 

First, attach the bellows to the camera, then attach the battery pack, lastly attach the 
whole unit to the tripod. We highly suggest anchoring your camera set-up as it may be very 
heavy on one side. After the initial hardware set-up, refer to Figures A1.1 & A1.2 for 
Adapter/Filter placement- it is easiest to start with the UV/IR cut filter set-up. 
 
 
A1.3 Setting up the software 
 

Make sure that your camera firmware is up-to-date and install HS-V3. Plug in USB cable 
linking camera to computer, then turn on camera. 
 

Open “Studio Utility.” 
Under [shoot] select “control finepixS5 pro” 
A control panel will open 
Choose the camera select option 
Wrench button: for file naming conventions 
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Figure A1.1. UV/IR cut filter set-up 
 
 
 
 
 

 
Figure A1.2. UV’ filter set-up 
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A1.4 Software Settings 
 

• ISO- should probably be set at 100 (if pictures are not bright enough- may want to adjust 
this to be higher/more sensitive, but photo may become more fuzzy) but ISO should be 
set at the same value for all shots (i.e. not set on auto). 

• Raw + Fine: this saves both jpgs and raw files 
• Keep on M (for manual) 
• Exposure time: We used 2.5” (seconds, don’t get confused by 2.5 vs 2.5 ‘’) for UV’, and 

50 for UV/IR cut (to let in less light) although this will be different if your light is less 
powerful. 

• RGB- STD 
• Image quality- select Raw+F 
• Keep on L 
• Leave everything else as is (on STD) 
• White balance: use sun setting (or if possible, it’s better to use the color temperature of 

your light source, in which case you select the “k” option and specify temperature of light 
source in kelvin) 

• Memory mode: center weighted focus 
Note: you can save your settings for later use. 

 
 
A1.5 Focusing the camera system 
 

Focus the camera set-up by adjusting the height of the camera from the table’s surface as 
well as by adjusting the bellows (self-explanatory, but takes some playing around). Note: you 
can write down the Bellow’s stop # that is used in each filter set-up to minimize refocusing effort 
between changes. Depending on how long it takes to run each specimen, you may be able to run 
multiple specimens using the UV/IR cut filter set-up before switching to the UV’ set-up. This 
allowed us to minimize the amount of readjusting that needed to be done- we only re-focused 
between filters, rather than between individuals. 
 
 
A1.6 Prepping Specimens 
 

If you must kill your specimens, we highly recommend not freezing them because this 
process might alter the UV coloration. Killing with ethyl acetate is best.  
 
 
A1.7 Camera Settings 
 

• Put it in manual mode 
• F-stop 16 (aperture, set manually on the lens): this allowed us to maximize focal plane, 

and our specimens were dead so a long exposure (small aperture) time was fine. 
• UV lens fully in (doesn’t really matter but best to be consistent) 
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