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Abstract

A Skew-product decomposition of diffusions on a manifold equipped with a group action, A
Lorentz model with variable density in a conservative force field, and Reconstruction of a

manifold from the intrinsic metric of an associated Markov chain

by

Eric Stephen Wayman

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Steven N. Evans, Chair

My thesis consists of three different projects.

1) We consider a 2× 2 matrix-valued process (xt)t≥0 that is obtained by taking a matrix-
valued process with entries that are independent one-dimensional standard Brownian
motions and time-changing it in a natural way so that the determinant is nonzero
for all t ≥ 0. The QR factorization decomposes (xt)t≥0 into a “radial” part (Tt)t≥0

that is an autonomous diffusion on the set of upper triangular matrices with positive
determinant and an “angular” process (URt)t≥0, where U is a Brownian motion on
the group SO(2) of 2 × 2 orthogonal matrices with determinant one and the time-
change (Rt)t≥0 is adapted to the filtration generated by (Tt)t≥0. In this project we show
that, unlike classical skew-products such as the celebrated skew-product decomposition
of planar Brownian motion into its radial and angular parts, the Brownian motion
(Ut)t≥0 on SO(2) is not independent of the radial part (Tt)t≥0. We observe that our
process fits into the framework of a theorem from [Lia09] on the existence of a skew-
product decomposition of a general continuous Markov process on a smooth manifold
whose distribution is equivariant under the action of a Lie group. Our result is a
counterexample to the main result of [Lia09], but the conclusion of that result holds
after a slight strengthening of the hypotheses. These results appear in [EHW14].

2) In Chapter 2, which is based on [HRW14], we study the diffusion limit of a transport
process that models the trajectory in R2 of a particle under the influence of a conser-
vative, spherically symmetric force field U . The particle travels along the trajectory
determined by its initial conditions and U until, according to a Poisson process with
variable intensity on this trajectory, it reflects in a uniform direction. We show that
under a proper rescaling of time, energy and the density of obstacles, the trajectory
converges to a diffusion whose generator can be found explicitly. This generalizes
[BR14], where the force field was taken to be constant, to a large class of force fields.
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3) A Dirichlet form on a Hilbert space naturally induces a metric on its domain in terms
of the energy measure of the form. This metric, which is known as the Carathéodory or
intrinsic metric, is studied extensively in [Dav93] where it is used to establish estimates
for the heat kernel of a discrete Laplacian operator on a weighted graph. We study
the Carathéodory metric associated with the generator of a continuous time Markov
chain on a graph of points sampled independently from a distribution on an embedded
manifold. Under a proper rescaling of the edge weights, the generator of the Markov
chain converges to a weighted Laplacian on the manifold as the number of points goes
to infinity. In this third project we conjecture that a rescaling of the Carathéodory
distances between any two fixed points on the graph converges to the geodesic distance
on the manifold as the number of points on the graph goes to infinity. We prove that
the geodesic distances form a limiting lower bound for the Carathéodory distances, and
provide some heuristic arguments to indicate why they may be limiting upper bounds
as well. However, the upper bound limit remains an open question for future study.
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Chapter 1

A Skew-Product Decomposition
Counterexample

1.1 Introduction

The archetypal skew-product decomposition of a Markov process is the decomposition of
a Brownian motion in the plane (Bt)t≥0 into its radial and angular part

Bt = |Bt| exp(iθt).

Here the radial part (|Bt|)t≥0 is a two-dimensional Bessel process and θt = yτt , where (yt)t≥0

is a one-dimensional Brownian motion that is independent of the radial part (|Bt|)t≥0 and τ
is a time-change that is adapted to the filtration generated by the process |B|. Specifically,
τt =

∫ t
0

1
|Bs|2ds. See Corollary 18.7 from [Kal02] for more details.

The most obvious generalization of this result is obtained in [Gal63]. The process con-
sidered is any time-homogeneous diffusion (xt)t≥0 with state space R3 that satisfies the
additional assumptions that almost surely every path does not pass through the origin at
positive times and that (xt)t≥0 is isotropic in the sense that the law of (xt)t≥0 is equivariant
under the group of orthogonal transformations; that is, if we consider a point (r, θ) ∈ R3 in
spherical coordinates, where r ∈ R+ is the radial coordinate and θ is a point on the unit
sphere S2, and if we take k ∈ O(3), the orthogonal group on R3, then

P(r,kθ) (kA) = P(r,θ) (A)

for any Borel set A in path space C(R+,R3). Here Px(A) is the probability a path started
at x belongs to the Borel set A [Gal63, (2.2)]. Theorem 1.2 of [Gal63] states that we can
decompose (xt)t≥0 as xt = rtθt where the radial motion (rt)t≥0 is a time-homogeneous Markov
process on R+ and the angular process (θt)t≥0 can be written as θt = Bτt , with (Bt)t≥0 a
spherical Brownian motion independent of the radial part and with the time-change (τt)t≥0

adapted to the filtration generated by the radial part.
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More generally, one can consider a group G acting on Rn and (xt)t≥0 a Markov process
on Rn such that the distribution of (xt)t≥0 satisfies the equivariance condition

Pgx(gA) = Px(A)

for any Borel set A in path space. The existence of a skew-product decomposition for this
setting is explored in [Chy08] when (xt)t≥0 is a Dunkl process and G is the group of distance
preserving transformations of Rn.

The paper [PR88] investigates the skew-product decomposition of a Brownian motion on
a C∞ Riemannian manifold (M, g) which can be written as a product of a radial manifold
R and an angular manifold Θ, both of which are assumed to be smooth and connected.
Provided the Riemannian metric respects the product structure of the manifold in a suitable
manner, Theorem 4 of [PR88] establishes the existence of a skew-product decomposition
such that the radial motion is a Brownian motion with drift on R and the angular motion
is a time-change of a Brownian motion on Θ that is independent of the radial motion.

A related skew-product decomposition is obtained in [Lia09] for a general continuous
Markov process (xt)t≥0 with state space a smooth manifold X and distribution that is equiv-
ariant under the smooth action of a Lie group K on X. Here the decomposition of (xt)t≥0 is
into a radial part (yt)t≥0 that is a Markov process on the submanifold Y which is transversal
to the orbits of K and an angular part (zt)t≥0 that is a process on a general K-orbit which
can be identified with the homogeneous space K/M , where M is the isotropy subgroup of
K that is assumed to be the same for all elements x ∈ X. Theorem 4 of [Lia09] asserts that
under suitable conditions the process (xt)t≥0 has the same distribution as (B(at)yt)t≥0, where
the radial part (yt)t≥0 is a diffusion on Y , (Bt)t≥0 is a Brownian motion on K/M that is
independent of (xt)t≥0, and (at)t≥0 a time-change that is adapted to the filtration generated
by (yt)t≥0.

Analogous skew-product decompositions of superprocesses have been studied in [Per92,
EM91, Hir00]. The continuous Dawson-Watanabe (DW) superprocess is a rescaling limit
of a system of branching Markov processes while the Fleming-Viot (FV) superprocess is a
rescaling limit of the empirical distribution of a system of particles undergoing Markovian
motion and multinomial resampling. It is shown in [EM91] that a FV process is a DW process
conditioned to have total mass one. More generally, it is demonstrated in [Per92] that the
distribution of the DW process conditioned on the path of its total mass process is equal
to the distribution of a time-change of a FV process that has a suitable underlying time-
inhomogeneous Markov motion. The latter result is extended to measure-valued processes
that may have jumps in [Hir00].

A sampling of other results involving skew-products can be found in [Tay92, LCO09,
ELJL10,BN06].

This paper was motivated by our desire to understand better the structural features that
give rise to skew-product decompositions of Markov processes. In attempting to do so, we
read the paper [Lia09] but were unable to follow some of the details of the proof of the main
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result, Theorem 4. We subsequently came across a natural and quite simple counterexample
to that result which we believe is rather illuminating and which we describe here.

We construct a diffusion (xt)t≥0 with state space the manifold of 2 × 2 matrices that
have a positive determinant. This diffusion can be represented via the well-known QR
decomposition as the product of an autonomously Markov “radial” process (Tt)t≥0 on the
manifold of 2×2 upper-triangular matrices with positive diagonal entries and a time-changed
“angular” process (URt)t≥0, where (Ut)t≥0 is a Brownian motion on the group SO(2) of
2 × 2 orthogonal matrices with determinant one and the time-change (Rt)t≥0 is adapted
to the filtration of the radial process. However, unlike in the skew-product decompositions
described above, the processes (Ut)t≥0 and (Tt)t≥0 are not independent.

Our process (xt)t≥0 satisfies the assumptions of [Lia09, Theorem 4] which asserts that the
processes (Ut)t≥0 and (Tt)t≥0 are independent. This apparent contradiction appears because
the assumption from [Lia09] that K/M is irreducible is not strong enough to ensure the
nonexistence of a nonzero M -invariant tangent vector in the case when, as in our construc-
tion, K/M has dimension 1. It is the nonexistence of such a tangent vector that is used in
the proof in [Lia09] to deduce the independence of the processes (Ut)t≥0 and (Tt)t≥0.

1.2 Construction of the counterexample

Recall the well-known QR decomposition which says that any square matrix can be
written as the product of an orthogonal matrix and an upper triangular matrix, and that
this decomposition is unique for invertible matrices if we require the diagonal entries in the
upper triangular matrix to be positive (see, for example, [HJ13]). This decomposition is
essentially a special case of the Iwasawa decomposition for semisimple Lie groups.

In the 2×2 case, uniqueness also holds for invertible matrices if we require the orthogonal
matrix to have determinant one and there are simple explicit formulae for the factors. Indeed,
if

A =

(
a b
c d

)
(1.2.1)

and detA = ad− bc 6= 0, then A = Q̃R̃, where

Q̃ =
1√

a2 + c2

(
a −c
c a

)
∈ SO(2) (1.2.2)

and

R̃ =

(√
a2 + c2 ab+cd√

a2+c2

0 ad−bc√
a2+c2

)
. (1.2.3)

In this setting, we consider a 2 × 2 matrix of independent Brownian motions and time-
change it to produce a Markov process with the property that if the determinant is positive
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at time 0, then it stays positive at all times. This ensures that uniqueness of the QR-
factorization holds at all times and also that the time-changed process falls into the setting
of [Lia09].

Following the notation of [Lia09], we consider the following set-up.

1. Let X be the manifold of 2 × 2 matrices over R with strictly positive determinant
equipped with the topology it inherits as an open subset of R2×2 ∼= R4.

2. Let K be the Lie group SO(2) of 2× 2 orthogonal matrices with determinant 1. This
group acts on X by A 7→ Q−1A for Q ∈ K and A ∈ X.

3. The quotient of X with respect to the action of K can, via the QR decomposition,
be identified with the set Y of upper triangular 2 × 2 matrices with strictly positive
diagonal entries.

4. The isotropy subgroup of K for an element x ∈ X is, as usual, the subgroup {k ∈ K :
kx = x}. Since every element of X is an invertible matrix, this subgroup is always the
trivial group consisting of just the identity. In particular, this subgroup is the same for
every y in the interior of Y , as required in [Lia09, pg 168]. We denote this subgroup
by M .

5. Let (xt)t≥0 be the X-valued process that satisfies the stochastic differential equation
(SDE)

dxt =

(
dx1,1

t dx1,2
t

dx2,1
t dx2,2

t

)
=

(
f(xt) dA

1,1
t f(xt) dA

1,2
t

f(xt) dA
2,1
t f(xt) dA

2,2
t

)
, x0 ∈ X, (1.2.4)

where A1,1
t , A1,2

t , A2,1
t , and A2,2

t are independent standard one-dimensional Brownian
motions, and f(x) := det(x)

tr(x′x)+1
with det and tr denoting the determinant and the trace.

We establish below that (1.2.4) has a unique strong solution and that this solution
does indeed take values in X.

It follows from the QR decomposition that xt = QtTt, where, in the terminology of [Lia09],
the “angular part” Qt belongs to K and the “radial part” Tt belongs to Y . We will show that
(Tt)t≥0 is an autonomous diffusion on Y and that Qt = URt , where (Ut)t≥0 is a Brownian
motion on K and (Rt)t≥0 is an increasing process adapted to the filtration generated by
(Tt)t≥0. However, we will establish that it is not possible to take the Brownian motion
(Ut)t≥0 to be independent of the process (Tt)t≥0. This will contradict the claim of Theorem
4 of [Lia09] once we have also checked that the conditions of that result hold.

Note that if we consider f as a function on the space R2×2 ∼= R4 of all 2×2 matrices, then it
has bounded partial derivatives, and hence it is globally Lipschitz continuous. Consequently,
if we allow the initial condition in (1.2.4) to be an arbitrary element of R2×2, then the resulting
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SDE has a unique strong solution (see, for example, [RW00, Ch 5, Thm 11.2]). Moreover,
the resulting process is a Feller process on R2×2 (see, for example, [RW00, Ch 5, Thm 22.5]).

We now check that (xt)t≥0 actually takes values in X. That is, we show that if x0 has
positive determinant, then xt also has positive determinant for all t ≥ 0. It follows from
Itô’s Lemma that

[det(x·)]t =

∫ t

0

tr(x′sxs)f
2(xs) ds,

[tr(x′·x·)]t =

∫ t

0

4tr(x′sxs)f
2(xs) ds,

and

[det(x·), tr(x
′
·x·)] =

∫ t

0

4 det(xs)f
2(xs) ds.

Thus, ((det(xt), tr(x
′
txt)))t≥0 is a Markov process and there exist independent standard one-

dimensional Brownian motions (B1
t )t≥0 and (B2

t )t≥0 such that

d det(xt) =
√

tr(x′txt)f(xt) dB
1
t

and

d tr(x′txt) =
4 det(xt)f(xt)√

tr(x′txt)
dB1

t +

√
4tr2(x′txt)− 16 det(xt)2

tr(x′txt)
f(xt) dB

2
t

+ 4f 2(xt) dt.

When we substitute for f , the above equations transform into

d det(xt) =
det(xt)

√
tr(x′txt)

tr(x′txt) + 1
dB1

t

and

d tr(x′txt) =
4(det(xt))

2√
tr(x′txt)(tr(x

′x) + 1)
dB1

t +

√
4tr2(x′txt)− 16 det(xt)2

tr(x′txt)

det(xt)

tr(x′txt) + 1
dB2

t

+ 4

(
det(xt)

tr(x′txt) + 1

)2

dt.

In particular, the process (det(xt))t≥0 is the stochastic exponential of the local martingale
(Mt)t≥0, where

Mt =

∫ t

0

√
tr(x′sxs)

tr(x′sxs) + 1
dB1

s .
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Since x0 ∈ X, we have det(x0) > 0, and hence

det(xt) = det(x0) exp

(
Mt −M0 −

1

2
[M ]t

)
is strictly positive for all t ≥ 0. This shows that (xt)t≥0 takes values in X.

We now check that (xt)t≥0 satisfies all the assumptions of [Lia09, Theorem 4]. These are
as follows:

1. The process (xt)t≥0 is a Feller process with continuous sample paths.

2. The distribution of (xt)t≥0 is equivariant under the action of K. That is, for k ∈ K the
distribution of (kxt)t≥0 when x0 = x∗ is the same as the distribution of (xt)t≥0 when
x0 = kx∗ [Lia09, (2)].

3. The set Y is a submanifold of X that is transversal to the action of K [Lia09, (3)].

4. For any y ∈ Y 0 (that is, the relative interior of Y – which in this case is just Y itself)
TyX, the tangent space of X at y, is the direct sum of tangent spaces Ty(Ky)

⊕
TyY

[Lia09, (5)].

5. The homogeneous space K/M is irreducible; that is, the action of M on To(K/M)
(the tangent space at the coset o containing the identity) has no nontrivial invariant
subspace [Lia09, pg 177].

The verifications of (1)–(5) proceed as follows:

1. We have already observed that solutions of (1.2.4) with initial conditions in R2×2 form
a Feller process and that this process stays in the open set X if it starts in X, and so
(xt)t≥0 is a Feller process on X.

2. Suppose that (xt)t≥0 is a solution of (1.2.4) with x0 = x∗ and (x̂t)t≥0 is a solution of
(1.2.4) with x̂0 = kx∗ for some k ∈ K. We have to show that if we set x̃t = k−1x̂t, then
(x̃t)t≥0 has the same distribution as (xt)t≥0. Note that det x̃t = det x̂t and x̃′tx̃t = x̂′tx̂t,
so that f(x̃t) = f(x̂t). Thus,

dx̃t = f(x̃t)k
−1

(
dA1,1

t dA1,2
t

dA2,1
t dA2,2

t

)
, x̃0 = x∗.

Now the columns of the matrix (
A1,1
t A1,2

t

A2,1
t A2,2

t

)
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are independent standard two-dimensional Brownian motions, and so the same is true
of the columns of the matrix

k−1

(
A1,1
t A1,2

t

A2,1
t A2,2

t

)
by the equivariance of standard two-dimensional Brownian motion under the action of
SO(2). Hence,

k−1

(
A1,1
t A1,2

t

A2,1
t A2,2

t

)
=

(
α1,1
t α1,2

t

α2,1
t α2,2

t

)
,

where (α1,1
t )t≥0, (α1,2

t )t≥0, (α2,1
t )t≥0, and (α2,2

t )t≥0 are independent standard Brownian
motions. Since,

dx̃t = f(x̃t)

(
dα1,1

t dα1,2
t

dα2,1
t dα2,2

t

)
, x̃0 = x0,

the existence and uniqueness of strong solutions to (1.2.4) establishes that the distri-
butions of (xt)t≥0 and (x̃t)t≥0 are equal.

3. It follows from the existence of the QR decomposition for invertible matrices that X
is the union of the orbits Ky for y ∈ Y , and it follows from the uniqueness of the
decomposition for such matrices that the orbit Ky intersects Y only at y.

4. Since the tangent space of K = SO(2) at the identity is the vector space of 2 × 2
skew-symmetric matrices and the tangent space of Y at the identity is the vector space
of 2 × 2 upper-triangular matrices, we have to show that if W is a fixed invertible
upper-triangular 2× 2 matrix and M is a fixed 2× 2 matrix, then

M = SW + V

for a unique skew-symmetric 2× 2 matrix S and unique upper-triangular 2× 2 matrix
V . Let

M :=

(
m11 m12

m21 m22

)
and W :=

(
w11 w12

0 w22

)
.

It is immediate that

S =

(
0 −m21

w11
m21

w11
0

)
and

V =

(
m11

m12w11+m21w22

w11

0 m22w11−m21w12

w11

)
.

5. We have already noted that the tangent space of K at the identity is the vector space
of skew-symmetric 2 × 2 matrices. This vector space is one-dimensional and so this
condition holds trivially.
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We have now shown that (xt)t≥0 satisfies all the hypotheses of [Lia09, Theorem 4]. How-
ever, we have the following result.

Proposition 1.2.1. In the decomposition xt = QtTt the Y -valued process (Tt)t≥0 is Markov
and the K-valued process (Qt)t≥0 may be written as Qt = URt, where (Ut)t≥0 is a K-valued
Brownian motion and (Rt)t≥0 is an increasing continuous process such that R0 = 0 and
Rt − Rs is σ{Tu : s ≤ u ≤ t}-measurable for 0 ≤ s < t < ∞. However, there is no such
representation in which (Tt)t≥0 and (Ut)t≥0 are independent.

Proof. For all t ≥ 0 we have xt = QtTt, where

Qt =
1√

(x11
t )2 + (x21

t )2

(
x11
t −x21

t

x21
t x11

t

)
∈ K

and

Tt =

√(x11
t )2 + (x21

t )2 x11t x
12
t +x21t x

22
t√

(x11t )2+(x21t )2

0 det(xt)√
(x11t )2+(x21t )2

 ∈ Y.
Note that det(xt) = det(Tt) and tr(x′txt) = tr(T ′tTt), and so f(xt) = f(Tt). Note also

that the complex-valued process (x11
t + ix21

t )t≥0 is an isotropic complex local martingale in
the sense of [Kal02, Ch 18], that is

[x11] = [x21]

and
[x22, x21] = 0.

In our case

d[x11]t = d[x21]t = f 2(Tt) dt.

By [Kal02, Thm 18.5], (log(x11
t + ix21

t )t≥0 is a well-defined isotropic complex local martingale
that can be written as

log(x11
t + ix21

t ) = log
(
T 11
t

)
+ iθt,

where

d[θ]t = d[log(T 11)]t =
1

(T 11
t )2

d[x11]t =

(
f(Tt)

T 11
t

)2

dt.

By the classical result of Dambis, Dubins and Schwarz (see, for example, [Kal02, Thm 18.4]),
there exists a standard complex Brownian motion (B̃t + iBt)t≥0 such that log(x11

t + ix21
t ) =

B̃Rt + iBRt , where

Rt =

∫ t

0

(
f(Ts)

T 11
s

)2

ds, t ≥ 0.
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So, θt = BRt and log(T 11
t ) = B̃Rt . Hence,

x11
t + ix21

t√
(x11

t )2 + (x21
t )2

= (cos(θt) + i sin(θt))

and

Qt =

(
cos(BRt) − sin(BRt)
sin(BRt) cos(BRt)

)
.

Consequently, Qt = URt , where

Ut =

(
cos(Bt) − sin(Bt)
sin(Bt) cos(Bt)

)
,

and (Bt)t≥0 is a standard one-dimensional Brownian motion.
Note that (Ut)t≥0 is certainly a Brownian motion on K = SO(2), and so we have uniquely

identified the K-valued Brownian motion (Ut)t≥0 and the increasing process (Rt)t≥0 that
appear in the claimed decomposition of (xt)t≥0.

To complete the proof, it suffices to suppose that (Ut)t≥0 is independent of (Tt)t≥0 and
obtain a contradiction. An application of Itô’s Lemma shows that the entries of (Ut)t≥0

satisfy the system of SDEs

dU1,1
t = −U2,1

t dBt −
1

2
U1,1
t dt

dU2,1
t = U1,1

t dBt −
1

2
U2,1
t dt

dU1,2
t = −U1,1

t dBt +
1

2
U2,1
t dt = −dU2,1

t

dU2,2
t = −U2,1

t dBt −
1

2
U1,1
t dt = dU1,1

t .

We apply Proposition 1.2.2 below to each of the four SDEs in the system describ-
ing (Ut)t≥0, with, in the notation of that result, (ζt, Ht, Kt) being the respective triples
(U1,1

t , U2,1
t , U1,1

t ), (U2,1
t , U1,1

t , U2,1
t ), (U1,2

t , U1,1
t , U2,1

t ), and (U2,2
t , U2,1

t , U1,1
t ). In each of the four

applications, we let

• (Ft)t≥0 be the filtration generated by (Ut)t≥0,

• (Gt)t≥0 be the filtration generated by (Tt)t≥0,

• βt = Bt,

• ρt = Rt,

• Jt =
(
f(Tt)

T 11
t

)2

,
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• γt = Wt =
∫ t

0

√
1
R′s
dBRs .

Let Ht = Fρt ∨ Gt, t ≥ 0, as in the Proposition 1.2.2. It follows by the assumed inde-
pendence of (Ut)t≥0 and (Tt)t≥0, part (iii) of Proposition 1.2.2, and equation (1.2.5) that the
entries of the time-changed process Qt = URt satisfy the system of SDEs

dQ1,1
t = −Q2,1

t

√
R′t dWt −

1

2
Q1,1
t R′t dt = −Q2,1

t

f(Tt)

T 11
t

dWt −
1

2
Q1,1
t

(
f(Tt)

T 11
t

)2

dt

dQ2,1
t = Q1,1

t

√
R′t dWt −

1

2
Q2,1
t R′t dt = Q1,1

t

f(Tt)

T 11
t

dWt −
1

2
Q2,1
t

(
f(Tt)

T 11
t

)2

dt

dQ1,2
t = −dQ2,1

t = Q1,1
t

√
R′t dWt −

1

2
Q2,1
t R′t dt = Q1,1

t

f(Tt)

T 11
t

dWt −
1

2
Q2,1
t

(
f(Tt)

T 11
t

)2

dt

dQ2,2
t = dQ1,1

t = −Q2,1
t

√
R′t dWt −

1

2
Q1,1
t R′t = −Q2,1

t

f(Tt)

T 11
t

dWt −
1

2
Q1,1
t

(
f(Tt)

T 11
t

)2

dt.

Set

dw1
t =

x11
t√

(x11
t )2 + (x21

t )2
dA11

t +
x21
t√

(x11
t )2 + (x21

t )2
dA21

t

dw2
t =

−x21
t√

(x11
t )2 + (x21

t )2
dA11

t +
x11
t√

(x11
t )2 + (x21

t )2
dA21

t

dw3
t =

x11
t√

(x11
t )2 + (x21

t )2
dA12

t +
x21
t√

(x11
t )2 + (x21

t )2
dA22

t

dw4
t =

−x21
t√

(x11
t )2 + (x21

t )2
dA12

t +
x11
t√

(x11
t )2 + (x21

t )2
dA22

t .

The processes (wit)t≥0 are local martingales with [wit, w
j
t ]t = δijt, and thus they are indepen-

dent standard Brownian motions. An application of Itô’s Lemma shows that (Tt)t≥0 is a
diffusion satisfying the following system of SDEs.

dT 11
t = f(Tt) dw

1
t +

f 2(Tt)

T 11
t

dt

dT 12
t =

T 22
t f(Tt)

T 11
t

dw2
t + f(Tt)dw

3
t −

T 12
t f

2(Tt)

2(T 11
t )2

dt

dT 22
t =

T 12
t f(Tt)

T 11
t

dw2
t + f(Tt)dw

4
t −

T 22
t f

2(Tt)

2(T 11
t )2

dt.

The assumed independence of the processes (Ut)t≥0 and (Tt)t≥0 and part (iv) of Proposi-
tion 1.2.2 give that [Qi,j, T k,l] ≡ 0 for all i, j, k and l. It follows from Itô’s Lemma that
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d(QtTt)
1,1 = dNt +

Q1,1
t f 2(Tt)

T 1,1
t

(
1− 1

2T 1,1
t

)
dt,

where (Nt)t≥0 is a continuous local martingale for the filtration (Ht)t≥0. This, however, is not
possible because (QtTt)

1,1 = x1,1
t and the process (x1,1

t )t≥0 is a continuous local martingale
for the filtration (Ht)t≥0.

We required the following proposition that collects together some simple facts about
time-changes.

Proposition 1.2.2. Consider two filtrations (Ft)t≥0 and (Gt)t≥0 on an underlying probability
space (Ω,F ,P). Set F∞ =

∨
t≥0Ft and G∞ =

∨
t≥0 Gt. Assume that the sub-σ-fields F∞ and

G∞ are independent. Suppose that

ζt = ζ0 +

∫ t

0

Hs dβs +

∫ t

0

Ks ds,

where ζ0 is F0-measurable, the integrands (Ht)t≥0 and (Kt)t≥0 are (Ft)t≥0-adapted, and

(βt)t≥0 is an (Ft)t≥0-Brownian motion. Suppose further that ρt =
∫ t

0
Js ds, where (Jt)t≥0

is a nonnegative, (Gt)t≥0-adapted process such that ρt is finite for all t ≥ 0 almost surely.
For t ≥ 0 put

Fρt = σ{Ls∧ρt : s ≥ 0 and L is (Ft)t≥0-optional}.

Set Ht = Fρt ∨ Gt, t ≥ 0. Then the following hold.

(i) The process (βρt)t≥0 is a continuous local martingale for the filtration (Ht)t≥0 with
quadratic variation [βρ· ]t = ρt.

(ii) The process (γt)t≥0, where

γt =

∫ t

0

√
1

Js
dβρs ,

is a Brownian motion for the filtration (Ht)t≥0.

(iii) If ξt = ζρt, t ≥ 0, then

ξt = ξ0 +

∫ t

0

Hρs

√
Js dγs +

∫ t

0

KρsJs ds.

(iv) If (ηt)t≥0 is a continuous local martingale for the filtration (Gt)t≥0, then (ηt)t≥0 is also
a continuous local martingale for the filtration (Ht)t≥0 and [η, γ] ≡ 0.
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Remark 1.2.3. The apparent counterexample to [Lia09, Theorem 4] arises because K/M is
one-dimensional and hence trivially irreducible. When K/M has dimension greater than
1, irreducibility implies the nonexistence of a nonzero M -invariant tangent vector and it is
this latter property that is actually used in the proof of [Lia09, Theorem 4]. However, in
our setting M is the trivial group {Id} and every nonzero 2 × 2 skew-symmetric matrix is
M -invariant, even though K/M is irreducible.
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Chapter 2

A Lorentz model with variable
density in a conservative force field

2.1 Introduction

We study a Lorentz gas-type model of a (tracer) particle moving in a conservative force
field with a large number of scatterers distributed randomly in space. We suppose the
particle has mass m > 0 and moves in R2 under the influence of a force field with spherically
symmetric potential energy U(r). The particle has fixed total energy E and evolves along
a path determined by U until at random ‘reflection’ times the particle undergoes jumps in
velocity. The reflections leave the speed of the particle unchanged but assign the particle a
new outgoing direction according to a uniform distribution on the unit circle S1. We look
at scaling limits (diffusion approximations) of the trajectory of the particle and show how
in the limit we get a diffusion whose generator we can find as a function of the parameters
of the model.

Our work can be seen as a significant generalization of [BR14] where the authors study
a particle moving in a constant gravitational field with a large number of infinitely-small
scatterers placed along the particle’s trajectory according to a Poisson point process with
variable density. The particle moves along a parabola until it hits a ‘heavy’ particle (scat-
terer) and then it reflects uniformly with the same absolute velocity but with a reflection
angle that is an independent uniform random variable. The authors of [BR14] study scaling
limits of the trajectory of the particle. They show that the scaling limits are diffusions whose
generators can be explicitly written down. We extend the results of [BR14] from constant
forces to any radially symmetric conservative force satisfying some mild assumptions.

A model that is related to the one from[BR14] but where the scatterer density is constant
can be found in [RT99]. The model from [BR14] is heuristically similar to the model known
to physicists as the Galton board: a particle moving under a constant external force and
bouncing off a periodic array of convex domains (scatterers). In [CD09] it is shown that the
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scaling limit for the trajectory of a ball in a Galton board is a diffusion that is recurrent.
These models can be seen as specific types of a random evolution, in which a system

changes its law of motion because of random changes in the environment. Some physical
examples of random evolutions are: a radio signal propagating through a turbulent medium
in which the index of refraction is changing at random and a population of bacteria evolving
in an environment that is subject to random fluctuations. See [Her74] for an overview of
random evolutions.

Transport processes are a type of random evolution that model the motion of a particle
whose velocity undergoes jumps of random size at random times. Diffusion approximations
of transport processes in smooth domains and with compact velocity state space are studied
in [Pap75] and [BPL76]. Even though the models considered in [Pap75] are very general, the
coefficients of the generator of the limiting diffusion are only expressed in terms of infinite
series - there are no closed form formulas. In our model we allow for unbounded velocities
and we are also able to find the generator of the diffusion approximation explicitly.

General transport processes are analyzed in [Cos91]. The author studies a particle that
is moving in a piecewise smooth domain of Rd. In the interior of the domain the particle
moves under the influence of a potential U ; at random exponentially distributed times it
changes velocity, according to a probability distribution which can depend on both the
current position and velocity; when the particle hits the boundary it reflects physically,
that is, the angle of reflection equals the angle of incidence. It is shown that under some
assumptions and after an appropriate rescaling, the position of the particle converges to a
reflecting diffusion process whose coefficients can be identified as functions of the potential
U . A model where the reflections (both in the interior and on the boundary) are more general
but there is no potential (U = 0) is studied in [CK06]. Our model cannot be analyzed in the
framework of [Cos91] because some of the assumptions from [Cos91] are not verified. See
Remark 2.1.2 for more details.

2.1.1 The Model

We start by defining our model more rigorously in order to be able to present our as-
sumptions and results.

Throughout let R+ := [0,∞), N0 := {0, 1, 2, . . . } = N∪ {0}, and Ck(S) be the set of real
valued functions on S having k continuous derivatives.

As before, we suppose we have a particle with mass m > 0 that travels in R2 under the
influence of a spherically symmetric force field with potential energy U(r). The particle is
assumed to have fixed total energy E and evolves along a path determined by U until at
random exponentially distributed ‘reflection’ times the particle undergoes jumps in velocity.
The reflections leave the speed of the particle unchanged but assign the particle a new
outgoing direction according to a uniform distribution on the unit circle S1.

Let ((R(t), A(t)), t ≥ 0) denote the polar-coordinate trajectory of this particle. We first
introduce some definitions which we will use in the construction of ((R(t), A(t)), t ≥ 0).
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• v(r) is the speed of a particle with mass m and energy E in a conservative field U when
the particle is at (r, α).

• ((r(r0, θ, t), α(r0, α0, θ, t)), t ≥ 0) denotes the trajectory of a particle with mass m, total
energy E, initial position (r0, α0) and whose velocity vector at time 0 makes angle θ
with the radial vector.

• Tk denotes the random time of the k’th reflection of the process ((R(t), A(t)), t ≥ 0).

Total energy is conserved so we can write

mv2(r)

2
+ U(r) = E (2.1.1)

where v(r) is the speed of the particle as a function of the radial coordinate r of the particle.
As a result,

v(r) =

√
2

m
(E − U(r)). (2.1.2)

and by the spherical symmetry of U , v is not a function of the angular trajectory α. We
assume that the distribution of the time between consecutive reflections is given by

P {Tk+1 − Tk > t+ s | Tk = s} = exp

(
−
∫ t+s

s

g(r(u))v(r(u))du

)
(2.1.3)

for any k ∈ N0 and for some g : R+ 7→ R+ that is a function of the radial position of the
particle only.

The motivation for the distribution of the reflection time is the following: after a reflection
at (r0, α0) in direction θ the particle moves according to the potential U(r). On the trajectory
of the particle there is a Poisson point process with variable intensity g per unit length. The
points of this Poisson process represent other (heavy) particles in the gas, and g their density.
After hitting the first of these points, our particle reflects and the process starts anew. We
assume that no energy loss occurs in between reflections, so the total energy of the tracer
particle remains E. We define T1 as the hitting time of the first point of the Poisson process
and then define T2, . . . , Tk, . . . recursively.

The trajectory process of the particle ((R(t), A(t)), t ≥ 0) can be constructed piecewise
as follows. Set T0 = 0 and let the particle start at (R(0), A(0)) and move in the direction
Θ0. Then for any k ∈ N0 and t ∈ [Tk, Tk+1) we can write

R(t) = r(R(Tk), A(Tk),Θk, t− Tk)
A(t) = α(R(Tk), A(Tk),Θk, t− Tk)

(2.1.4)

where (Θk)k∈N are i.i.d. uniformly distributed on S1.
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2.1.2 Assumptions

Our main interest lies in deriving a diffusion approximation for the process

((R(t), A(t)), t ≥ 0) .

We will both identify the limiting diffusion and prove convergence to this limit under the
following assumptions.

(A1) To obtain a nontrivial diffusion (scaling) limit we rescale the density of the scat-
terers

gn :=
√
ng,

the potential energy of the field

Un :=
1√
n
U

and the total energy of the particle

En :=
1√
n
E.

By (2.1.2) we can write the speed as a function of E and U ; consequently the speed v is also
rescaled as

vn(r) :=
1

n1/4
v(r).

The trajectory of the particle with these rescaled parameters we denote by

((rn(r0, θ, t), αn(r0, α0, θ, t)), t ≥ 0) .

When no confusion will arise, we will write (r(t), α(t)) for (r(r0, θ, t), α(r0, α0, θ, t)) and
leave the dependence on r0, α0, and θ implicit. Likewise, the corresponding random trajec-
tory process with these rescaled parameters we denote by ((Rn(t), An(t)), t ≥ 0). That is,
((Rn(t), An(t)), t ≥ 0) is constructed in the same way as the process ((R(t), A(t)), t ≥ 0) but
with the parameters gn, Un and En replacing g, U and E respectively. Similarly, the time of
the k’th reflection for the rescaled process is denoted T nk .

(A2) We assume that for all n ∈ N the process ((Rn(t), An(t)), t ≥ 0) evolves in a
domain which is represented in polar coordinates by D×R ⊂ R+×R or D = [h−, h+], where
0 ≤ h− < h+ ≤ ∞. The domain D is chosen so that E − U(r) > 0 for all r ∈ D◦. This is
equivalent to v(r) > 0 for all r ∈ D◦.

We require the particle to have positive speed in the interior D◦ so the time between
reflections approaches 0 as n goes to infinity. This way we obtain a nontrivial diffusion
limit.

(A3) On the boundary ∂D we have the following assumptions.
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• If h− > 0 then

U(h−) = E

−∂rU(h−) := −∂U
∂r

(h−) > 0

• If h+ <∞ then

U(h+) = E

−∂rU(h+) < 0.

The conditions on U force the speed of the particle to be zero at the respective endpoints h−
and h+, while the conditions on ∂U

∂r
ensure the force field at the endpoints is pointing towards

the interior D◦. Having zero speed at the boundaries and having the force field point ‘inwards’
prevents the particle from leaving the domain D.

• If h− = 0 then
E − U(0) > 0.

This condition ensures the particle is not trapped at the origin.

• If h+ =∞ we require that for any ε > 0, inf [h−+ε,∞)(E − U(r)) > 0.

This condition implies that for any ε > 0, inf [h−+ε,∞) v(r) > 0 which shows that the reflection
rate does not go to 0 as the process goes to infinity.

(A4) U ∈ C1(D)
This smoothness assumption ensures that the velocity and the acceleration of the particle

depend continuously on the position r(t). If D = [0, h] we can relax this condition to U ∈
C1((0, h]) so that we can allow potentials of the form U(r) = −1

r
which are not defined at 0.

(A5) The density g is spherically symmetric and satisfies

g ∈ C(D) ∩ C1(D◦)

together with
inf
r∈D

g(r) > 0.

We require some smoothness from g because the diffusion limit we get depends on the deriva-
tive g′. The second assumption is needed because we do not want to have regions where the
the reflection rate goes to 0. If one allows g to approach 0, then a different scaling may be
required to obtain a diffusive limit when the process is started in these regions. Examples of
such situations are dealt with in Section 8 of [BR14].
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2.1.3 Results

The following Theorem is our main result.

Theorem 2.1.1. Let (R,A ) be a diffusion on D ×R whose generator G acts on functions
f ∈ C2(D × R) with compact support in C2(D◦ × R) by

G f(ρ, a) =
v(ρ)

2g(ρ)
fρρ(ρ, a) +

v(ρ)

2g(ρ)ρ2
faa(ρ, a) +

v(ρ)

g(ρ)

(
−g
′((ρ)

2g(ρ)
+

1

2ρ
− ∂rU(ρ)

2mv2(ρ)

)
fρ(ρ, a).

Suppose the process ((Rn(t), An(t)), t ≥ 0) satisfies Assumptions (A1)-(A5) above. Fix l, u ∈
D◦ with l < u and define

ιnl,u = inf{t ≥ 0 : Rn(t) ≥ u or Rn(t) ≤ l}

and
τl,u = inf{t ≥ 0 : R(t) ≥ u or R(t) ≤ l}.

Then as n→∞ we have the following convergence in distribution((
Rn(n3/4t ∧ ιnl,u), An(n3/4t ∧ ιnl,u)

)
, t ≥ 0

)
→ ((R(t ∧ τl,u),A (t ∧ τl,u)) , t ≥ 0) .

Futhermore, if the left boundary of D is inaccessible then we can remove the stopping at l
while if the right boundary of D is inaccessible we can remove the stopping at u.

Remark 2.1.2. The approach from [Cos91] is different from the approach we take. The
author looks at the Markov process given by (X(t), V (t)) where X(t) ∈ Rd is the position
of the particle and V (t) ∈ Rd is its velocity, while we just look at the position X(t) (which
is not a Markov process). As a result, our methods are different from the ones in [Cos91].
Our results can not be recovered from [Cos91] because our model does not satisfy all the
underlying assumptions: The function Q−1 from [Cos91] has to be differentiable up to the
boundary of the region where the motion takes place (see assumption (H2) from [Cos91]). In
our case we have singularities at the origin and when D = [0, h] we also have singularities at
the boundary of the domain. Furthermore, the speed of the particle cannot be unbounded
in [Cos91], while there is no such restriction in our model.

Remark 2.1.3. From Theorem 2.1.1 it follows that up until the first hitting time of l or u,
the rescaled radius of the particle’s position Rn(n3/4t) converges as n→∞ to a diffusion R
on D◦ with generator Gr that acts on functions f ∈ C2(D) with compact support in D◦ by

Grf(ρ) =
v(ρ)

2g(ρ)
f ′′(ρ) +

v(ρ)

g(ρ)

(
− g

′(ρ)

2g(ρ)
+

1

2ρ
− ∂rU(ρ)

4(E − U(ρ))

)
f ′(ρ).

Also, the rescaled angle of the particle’s position, An(n3/4t), converges as n→∞ to

B

(∫ t

0

v(R(s))

R2(s)g(R(s))
ds

)
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where B is a 1-dimensional Brownian motion independent of R. So the limiting process
is a skew-product in the sense that the radial part evolves as a diffusion independent of
the angular process, and the angular process evolves independently from the radial product
except it evolves on a clock that is dependent on the radial process.

Remark 2.1.4. Assume U ≡ 0 and the scatterer density is constant. If we normalize the
parameters of that g ≡ 1 and m/E = 2, so that v(r) ≡ 1, then by Remark 2.1.3 the limiting
radial process R is a 2-dimensional Bessel process, while the limiting angular process A is
an independent Brownian motion with a time change t 7→

∫ t
0

1
R2(s)

ds. Hence, as one might
suspect, we recover the skew-product decomposition of 2 dimensional Brownian in polar
coordinates.

Theorem 2.1.1 is proved in 2.4.1. The proof is broken into several steps. First, we study
the skeleton process ((Rn

k , A
n
k), k ∈ N0) which is the Markov process that observes the process

only at reflection times. That is,

((Rn
k , A

n
k), k ∈ N0) := ((Rn(T nk ), An(T nk )), k ∈ N0) (2.1.5)

where T nk denotes the time of the the k’th reflection for the process ((Rn(t), An(t)) , t ≥ 0). In

Theorem 2.3.1 we prove the continuous time step process
((
Rn
bntc, A

n
bntc

)
, t ≥ 0

)
converges

in distribution to a limiting diffusion ((Rt,At), t ≥ 0). Next, we use the convergence of the
step process to show convergence of the full trajectory

(
(Rn(n3/4t), An(n3/4t)), t ≥ 0

)
. This

is done by first time changing the skeleton process so that we observe reflections at their
real times (with a scaling factor 1

n3/4 ) rather than at the index of how many reflections have
occurred. Then we push this time change through the limit to show that a time-changed

version of the step process
((
Rn
bntc, A

n
bntc

)
, t ≥ 0

)
converges to ((Rt,At), t ≥ 0) with a time

change. Finally, by showing that the time-changed step process and the full trajectory(
(Rn(n3/4t), An(n3/4t)), t ≥ 0

)
agree at reflection times and stay close in between reflections,

we can prove the convergence for the full trajectory from the convergence of the step process.
The rest of the paper is organized as follows. In Section 2.2 we prove preliminary results

about the reflection times and the skeleton process. The results are technical lemmas that
are necessary to prove the convergence of the skeleton process, which is the main goal of
Section 2.3. In Section 2.4 we prove convergence of the skeleton process on its natural time
scale and use this result to prove convergence of the full trajectory. Lastly, in Section 2.5 we
discuss how to classify the boundaries of D so that we can remove the stopping in Theorem
2.1.1 at a boundary that is inaccessible.

2.2 Preliminaries

In this section we prove a series of technical lemmas that are used in the sequel to prove
the convergence in distribution of the Markov process ((Rn

k , A
n
k), k ∈ N0) defined in (2.1.5).
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Our proofs are complicated by the fact that for a general potential U , it is not possible
to explicitly find the trajectory ((r(t), α(t)), t ≥ 0). However, the following lemma provides
local estimates for the radial trajectory r(t).

Lemma 2.2.1. For any r0 ∈ D◦ and θ ∈ [−π, π]

r(t) := r(r0, θ, t) = r0 + v0 cos(θ) · t+
1

2

(
−∂rU(r(τ))

m
+
v2

0r
2
0 sin2(θ)

r(τ)3

)
t2

for some 0 ≤ τ ≤ t depending on r0, θ and t.

Proof. By definition r(t) := (r(r0, θ, t), α(r0, α0, θ, t)) is the solution to the equations of
motion in polar coordinates for a particle of mass m in the potential U :

1

r

d

dt
(r2α̇)eα + (r̈ − rα̇2)er = −∂rU(r)

m
er (2.2.1)

with initial conditions

r(0) = (r0, α0)

d

dt
r(0) = v(r0) cos θer + v(r0) sin θeα

(2.2.2)

where er is the radial unit vector, eα is the angular unit vector and θ is the angle the initial
velocity d

dt
r(0) makes with r(0). Let v̄(t) := v(r(t)) denote the speed of the particle as a

function of time. We can also write v̄(t) as a function of angular and radial velocity:

v̄(t) =
√
ṙ2(t) + r2(t)α̇2(t) (2.2.3)

where

ṙ(t) = r′(t) :=
dr

dt
(t)

is the radial velocity and

α̇(t) = α′(t) :=
dα

dt
(t)

is the angular velocity. The initial conditions (2.2.2) become

ṙ(0) = v(r0) cos θ

α̇(0) =
v(r0)

r0

sin θ.
(2.2.4)

Equation (2.2.1) implies
1

r

d

dt
(r2α̇) = 0 (2.2.5)
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and

r̈ − rα̇2 = −∂rU(r)

m
. (2.2.6)

As a result of (2.2.5) and (2.2.4)

α̇(t) =
v(r0)r0 sin θ

r(t)2
. (2.2.7)

By (2.2.6) and (2.2.7)

r̈(t) =

(
−∂rU(r(t))

m
+
v(r0)2r2

0 sin2(θ)

r(t)3

)
. (2.2.8)

Taylor expanding r(t) and using (2.2.6), (2.2.4) together with (2.2.7) yields

r(t) = r0 + v(r0) cos(θ) · t+
1

2

(
−∂rU(r(τ))

m
+
v(r0)2r2

0 sin2(θ)

r(τ)3

)
t2. (2.2.9)

Remark 2.2.2. Throughout the remainder of this section we let S, S ′ be closed intervals
satisfying

S ⊂ (S ′)◦ ⊂ S ′ ⊂ D◦.
Also, for any δ > 0, we define

Λn
δ (S) = inf

(r0,θ)∈S×[−π,π]
inf
t≥0
{t : |rn(r0, θ, t)− r0| ≥ δ} (2.2.10)

to be the shortest time it takes the radial displacement of the particle to change by δ when
started inside S.

If
0 < δ < d(S, S ′)c := inf {|x− y| : x ∈ S, y ∈ D \ S ′} ,

then for all (r0, θ, t) ∈ S × [−π, π]× [0,Λn
δ (S)] one has

rn(r0, θ, t) ∈ S ′.

The radial speed ṙn(t) can be bounded above by

ṙn(t) ≤
√
ṙ2
n(t) + r2

n(t)α̇2
n(t) := v̄n(t) := vn(rn(t)).

Since rn(t) ∈ S ′ for all t ∈ [0,Λn
δ (S)], we can bound Λn

δ (S) below by δ divided by the
maximum of the particle speed vn inside the interval S ′. Namely,

Λn
δ (S) ≥ n1/4 · δ

supρ∈S′ v(ρ)
> 0

where supρ∈S′ v(ρ) <∞ since S ′ is bounded away from ∂D.
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The next lemma shows that, over a fixed time interval [0, T ], rn(r0, θ, t) converges uni-
formly to r0 as a function of r0, θ and t.

Lemma 2.2.3. Fix T > 0. Then

lim
n→∞

sup
(r0,θ,t)∈S×[−π,π]×[0,T ]

{|rn(r0, θ, t)− r0|} = 0

and

lim
n→∞

sup
(r0,θ,t)∈S×[−π,π]×[0,T ]

{∣∣∣∣√nr̈n(t, r0, θ)−
(
−∂rU(r0)

m
+
v2(r0) sin2(θ)

r0

)∣∣∣∣} = 0. (2.2.11)

Proof. Let δ > 0 such that δ ≤ d(S, (S ′)c). By Remark 2.2.2 there exists M ∈ N large
enough such that Λn

δ (S) ≥ T whenever n ≥M . Equivalently, for n ≥M we have

|rn(r0, θ, t)− r0| ≤ δ

for all (r0, θ, t) ∈ S × [−π, π]× [0, T ]. This proves the uniform convergence of rn(r0, θ, t) to
r0. Define

ψ(ρ, r0, θ) :=

(
−∂rU(ρ)

m
+
v2(r0)r2

0 sin2(θ)

ρ3

)
(2.2.12)

and note by (2.2.8) that

r̈n(t, r0, θ) =
1√
n
ψ(rn(t), r0, θ).

S ′ is bounded away from 0 and U ∈ C1(D◦) imply that ψ is uniformly continuous on S ′ ×
S × [−π, π]. By construction rn(t) ∈ S ′ for all n ≥ M and t ∈ [0, T ]. Because rn(r0, θ, t)
converges uniformly to r0 on compact sets, we have

lim
n→∞

sup
(r0,θ,t)∈S×[−π,π]×[0,T ]

{∣∣√nr̈n(t, r0, θ)− ψ(r0, r0, θ)
∣∣} = 0 (2.2.13)

where

ψ(r0, r0, θ) =

(
−∂rU(r0)

m
+
v2(r0) sin2(θ)

r0

)
by (2.2.12). This completes the proof.

Since the skeleton process tracks the process at reflection times, we want to apply the
estimates for (2.2.9) between reflections. By (2.1.3) and the rescaling, we know that for
every k, T nk+1 − T nk is distributed like the random variable N (n)(r0, θ) which we define by

P(N (n)(r0, θ) > t) = exp

(
−
∫ t

0

n1/4λ(rn(r0, θ, s)) ds

)
(2.2.14)



23

where
λ(ρ) := g(ρ)v(ρ). (2.2.15)

Throughout, we will often suppress the r0 and θ dependencies of N (n)(r0, θ) and write N (n)

or N (n)(θ) when no confusion will arise.
For many of our proofs we require estimates that show the time between reflections

approaches 0 with high probability as the scaling factor n goes to infinity. This will allow
us to apply the local estimates from the expansion of r(t) in Lemma 2.2.1 and to show the
skeleton process does not undergo large jumps. We first prove some bounds on the moments
of N (n)(r0, θ).

Lemma 2.2.4. The family

{n1/4N (n)(ρ, θ) : (ρ, θ, n) ∈ S × R× N}

is bounded in Lp for 1 ≤ p <∞.

Proof. We will assume that D = [0, h] or D = [0,∞). The cases D = [h−, h+] and [h,∞)
can be treated similarly.

Case I: D = [0, h]
By Assumptions (A3) and (A4) there exist δ > 0 and m > 0 such that

min
[h−δ,h]

|∂rU(ρ)| ≥ δ. (2.2.16)

Let S ⊂ D◦ be a compact set, let η > 0 and assume our particle enters the annulus Aη with
inner radius h− η and outer radius h at time t0. By (2.1.2)

v(h− η) =

√
2

m
(E − U(h− η)). (2.2.17)

Using (2.2.6) and (2.2.7)

r̈(t) = −∂rU(r(t))

m
+ r(t)α̇2(t) ≤ −∂rU(r(t))

m
+

[v(h− η)]2

r
. (2.2.18)

Let
te := inf{s > t0 : r(s) = h− η}

be the time when the particle exists the annulus. By Assumption (A3)

U(h) = E.

Since U is continuous this means that we can make v(r) as small as we like if we are close
enough to r = h. This together with (2.2.17), (2.2.18) and (2.2.16) implies that there exist
γ > 0,mγ > 0 such that

r̈(t) ≤ −mγ
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whenever r(t) ∈ [h− γ, h]. Set η = γ.
We can now find an upper bound on the time te − t0. Note that

|ṙ(t0)| ≤ v(h− γ).

Therefore te − t0 is bounded above by the time it would take a particle started at r = h− γ
with speed v(h− γ) pointed along the radius and with acceleration r̈ = −mγ < 0 to return
to r = h− γ. Thus,

te − t0 ≤ 2
v(h− γ)

mγ

<∞. (2.2.19)

Next, define
tr := inf{s > te : r(s) = h− γ}.

This is the first return time to the annulus Aγ. We want to bound tr − te below. If
ṙ(t0) ≤ 0 then the particle would not spend any time in the annulus Aγ, that is te − t0 = 0.
Therefore, we can assume that ṙ(t0) > 0. It is clear by conservation of angular momentum
and conservation of energy that ṙ(te) = −ṙ(t0) < 0. Since r̈ is finite we immediately get that

tr − te ≥
ṙ(t0)∣∣∣−∂rU(r)

m
+ r(α̇)2

∣∣∣ ≥ ṙ(t0)
supS |∂rU(r)|

m
+ supS |r(α̇)2|

> 0.

Clearly, since U ∈ C1(D◦) by Assumption (A4), tr− te is a continuous function of the initial
conditions (r0, θ). Since S × [−π, π] is compact there exists % > 0 such that

inf
S×[−π,π]

{tr(r0, θ)− te(r0, θ)} = % > 0. (2.2.20)

Combining (2.2.19) and (2.2.20),

sup
S×[−π,π]

te − t0
tr − t0

≤ 2v(h− γ)

%mγ

<∞ (2.2.21)

where we assume that if t0 =∞ then te − t0 = 0 and

te − t0
tr − te

= 0.

By Assumption (A2) we know that

inf
S
v(ρ) > 0.

Suppose that t > 2v(h−γ)
mγ

+ ρ ≥ sup(te − t0) + inf(tr − te).
Using (2.2.21) together with the fact that the worst case scenario is when the particle spends
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the longest possible time in the ‘bad region’ Aγ and the least amount of time in the ‘good
region’ D \ Aγ, we have

P{N (n) > t} = exp

(
−
∫ t

0

n1/4g(rn)v(rn) ds

)
≤ exp

(
−
∫ 1

1+( 2v(h−γ)
%mγ )

t

0

n1/4 inf
S
g(rn) inf

S
v(rn) ds

)

= exp

− 1

1 +
(

2v(h−γ)
%mγ

)tn1/4 inf
S
g(rn) inf

S
v(rn)


which decays exponentially in n as n→∞ as long as t is large. Therefore,

E
[(
n1/4N (n)

)p]
=

∫ ∞
0

ptp−1P
(
n1/4N (n) > t

)
dt <∞.

Case II: D = [0,∞)
Set gmin := infr∈D g(r). We know by Assumption (A2) that there exists δ̄ > 0 such that

infD v(r) ≥ δ̄ so by (2.2.14)

P{N (n) > t} ≤ exp
(
−n1/4δ̄tgmin

)
which, like before, forces

E
[(
n1/4N (n)

)p]
=

∫ ∞
0

ptp−1P
(
n1/4N (n) > t

)
dt <∞.

Lemma 2.2.4 also provides us with the following corollary which will prove useful in
showing that the probability that N (n)(ρ, θ) is larger than any fixed value decays rapidly as
the scaling parameter n goes to infinity.

Corollary 2.2.5. For all k ∈ R and for all ε > 0,

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

nkP
{
N (n)(ρ, θ) ≥ ε

}
= 0

Proof. For any k ∈ R,

nkP{N (n)(ρ, θ) ≥ ε} ≤ nk

ε4(k+1)
E[N (n)(ρ, θ)4(k+1)] =

1

n
· n

k+1

ε4(k+1)
E[N (n)(ρ, θ)4(k+1)]→ 0

(2.2.22)
as n→∞ uniformly for (ρ, θ) ∈ S×[−π, π] by the uniform bounds on {nk+1E[N (n)(ρ, θ)4(k+1)]}∞n=1

from Lemma 2.2.4.
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In addition, we have also the following corollary that shows that tails of the moments of
N (n)(ρ, θ) decay rapidly as well.

Corollary 2.2.6. For all k ∈ R, l ≥ 1 and ε > 0

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

nkE
[
(Nn(ρ, θ))l 1{N(n)>ε}

]
= 0.

Proof. By Cauchy-Schwarz,

(
nkE

[
(Nn(ρ, θ))l 1{N(n)>ε}

])2

≤ nl/2E
[(
N (n)(ρ, θ)

)2l
]
· n2k−l/2P

{
N (n)(ρ, θ) > ε

}
→ 0

(2.2.23)
as n→∞ by Lemma 2.2.4 and Corollary 2.2.5.

From Lemma 2.2.4, we have the following estimates on the moments of N (n).

Lemma 2.2.7. Let 1 ≤ p <∞. Then

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

∣∣∣∣E (np/4[N (n)(ρ, θ)]p
)
−
∫ ∞

0

ptp−1 exp (−g(ρ)v(ρ)t) dt

∣∣∣∣ = 0. (2.2.24)

Proof. First let M ∈ R+ and note that the truncated moments E
[
np/4N (n)(ρ, θ)p

]
∧Mp] can

be written as

E
[
np/4N (n)(ρ, θ)p ∧Mp

]
= p

∫ ∞
0

tp−1P
[
n1/4N (n)(ρ, θ) ∧M > t

]
dt

= p

∫ M

0

tp−1P
[
n1/4N (n)(ρ, θ) > t

]
dt.

(2.2.25)

Making the change of variables u = n1/4s, we have

P
(
n1/4N (n)(ρ, θ) > t

)
= exp

(
−
∫ t

0

g(r(ρ, θ, u/n1/4))v(ρ, θ, u/n1/4)

)
du. (2.2.26)

Both r = r(ρ, θ, t) v = v(ρ, θ, t) are continuous functions on O := S× [−π, π]× [0,M ]. Since
O is compact, r and v are in fact uniformly continuous on S. By Assumption (A5) g is
continuous on S, and therefore is uniformly continuous. This implies that g ◦ r is uniformly
continuous on O. By Lemma 2.2.3 it follows that

lim
n→∞

g(rn(ρ, θ, u/n1/4)) = g(r(ρ, θ, 0)) = g(ρ) (2.2.27)

and
lim
n→∞

v(ρ, θ, u/n1/4) = v(ρ, θ, 0) := v(ρ) (2.2.28)
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both uniformly onO. As a result, P
(
n1/4N (n)(ρ, θ) > t

)
converges uniformly to exp (−g(ρ)v(ρ)t)

on O, which implies

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

∣∣∣∣E [np/4N (n)(ρ, θ)p ∧Mp
]
−
∫ M

0

ptp−1 exp (−g(ρ)v(ρ)t)

∣∣∣∣ = 0. (2.2.29)

To extend the result to the expectation without truncation, define q as the solution to

1/q + p/(p+ 1) = 1.

By Hölder’s inequality,

E
[
np/4N (n)(ρ, θ)p −

(
np/4N (n)(ρ, θ)p ∧Mp

)]
= E

[
np/4N (n)(ρ, θ)p1{n1/4N(ρ,θ)>M}

]
≤ E

[
n(p+1)/4N (n)(ρ, θ)p+1

]p/(p+1) P
{
n1/4N (n)(ρ, θ) > M

}1/q

≤ E
[
n(p+1)/4N (n)(ρ, θ)p+1

]p/(p+1) E
[
n1/4N (n)(ρ, θ)

]1/q 1

M1/q
.

(2.2.30)

By Lemma 2.2.4, both of these moments are uniformly bounded in ρ and θ, so the bound
goes to 0 uniformly in ρ and θ as M →∞ and n→∞.

Furthermore, since v is bounded away from 0 on S by Assumption (A2) and since g is
bounded away from 0 on D by Assumption (A5), it follows that for every ρ ∈ S

lim
M→∞

∫ ∞
M

ptp−1 exp(−g(ρ)v(ρ)t) = 0

uniformly on S. The proof then follows from the truncated case.

For the cases p = 1, 2 we have by Lemma 2.2.7

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

∣∣∣∣E [n1/4N (n)(ρ, θ)
]
− 1

g(ρ)v(ρ)

∣∣∣∣ = 0 (2.2.31)

and

lim
n→∞

sup
(ρ,θ)∈S×[−π,π]

∣∣∣∣E [n1/2
(
N (n)(ρ, θ)

)2
]
− 2

g2(ρ)v2(ρ)

∣∣∣∣ = 0. (2.2.32)

The next result shows that on the event {N (n) > ε} the kth moment of the difference of
the radius of the particle at time 0 and at the first reflection N (n) decays faster than 1

nm
as

n→∞.

Lemma 2.2.8. Fix ε > 0 , m, k ∈ N. Then

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

nmE
[∣∣rn (N (n)(θ)

)
− r0

∣∣k 1{N(n)>ε}

]
= 0.
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Proof. For any t ≥ 0 we have

|rn(t)− r0| =
∣∣∣∣∫ t

0

ṙn(s)ds

∣∣∣∣ ≤ ∫ t

0

|ṙn(s)|ds ≤
∫ t

0

vn(rn(s))ds

where the last inequality holds because the radial velocity is always less than or equal to the
total velocity. Hence

E
[∣∣rn(N (n)(Θ))− r0

∣∣k 1{N(n)>ε}

]
≤ E

(∫ N(n)

0

vn(rn(s))ds

)k

1{N(n)>ε}


By (2.2.14) we know that N (n)(r0, θ) has density function

pnN(t) := n1/4λ(rn(t)) exp

(
−
∫ t

0

n1/4λ(rn(s))ds

)
, t ≥ 0.

so

E

(∫ N(n)

0

vn(rn(s))ds

)k

1{N(n)>ε}

 =

n1/4

∫ ∞
ε

(∫ t

0

vn(rn(s))ds

)k
exp

(
−n1/4

∫ t

0

λ(rn(s))ds

)
λ(rn(t))dt

≤ 1

gkmin

· 1

n(k−1)/4

∫ ∞
ε

(∫ t

0

λ(rn(s))ds

)k
exp

(
−n1/4

∫ t

0

λ(rn(s))ds

)
λ(rn(t))dt

=
1

gkmin

· 1

n(k−1)/4

∫ Ln∞

Lnε

uke−n
1/4udu ≤ 1

gkmin

· 1

n(k−1)/4

∫ ∞
Lnε

uke−n
1/4udu.

where Lnε :=
∫ ε

0
λ(rn(s))ds and Ln∞ :=

∫∞
0
λ(rn(s))ds. The dependence of Lnε and Ln∞ on r0

and θ is implicit. Now to establish uniform bounds in r0 and θ, we bound Lnε uniformly away
from 0 as follows. By Lemma 2.2.3, rn(s) converges uniformly on [0, ε]. So if we fix S ′ as
in the proof of Lemma 2.2.3, that is we choose S ′ compact so that S ⊆ (S ′)◦ and S ′ ⊆ D◦.
Then for n large enough, rn(r0, θ, s) ∈ S ′ for all (r0, θ, s) ∈ S × [−π, π]× [0, ε]. By uniform
continuity of v on S ′, for large n we can bound Lnε uniformly below as follows

Lnε =

∫ ε

0

g(rn(s))v(rn(s))ds ≥ εgmin inf
ρ∈S′

v(ρ) := Lε > 0

since v is bounded away from 0 on S ′ by Assumption (A2).
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For u > 0, en
1/4u/2 dominates uk as n→∞. As a result,

lim
n→∞

1

gkmin

· 1

n(k−1)/4

∫ ∞
Lnε

uke−n
1/4udu ≤ lim

n→∞

1

gkmin

· 1

n(k−1)/4

∫ ∞
Lε

e−n
1/4u/2du

= lim
n→∞

1

gkmin

· 2

nk/4

(
e−

n1/4

2
Lε

)
= 0.

A consequence of Lemma 2.2.8 is the analogous result for the angular jumps.

Corollary 2.2.9. Fix ε > 0 , m, k ∈ N. Then

lim
n→∞

sup
(r0,θ,α0)∈S×[−π,π]×R

nmE
[∣∣αn(r0, α0, N

(n)(θ))− α0

∣∣k 1{N(n)>ε}

]
= 0.

Proof. By (2.2.3) we have the bounds

|α̇(t))r(t)| ≤
√
ṙ2(t) + r2(t)α̇2(t) := v(r(t)).

Let 0 < δ < Λn
δ (S). For n large enough, we have Λn

δ (S) ≤ T , which implies rn(t) ∈ S ′ for all
t ∈ [0, T ]

|α̇(t))| ≤ v(r(t))

inf S ′
.

From this we have the bounds

|αn(t)− α0| =
∣∣∣∣∫ t

0

α̇n(s)ds

∣∣∣∣ ≤ ∫ t

0

|α̇n(s)|ds ≤ 1

inf S ′

∫ t

0

vn(rn(s))ds.

We can now apply the estimates from the proof of Lemma 2.2.8 unchanged save for multi-
plying by a factor of 1

inf S′
.

The next lemma will be used to evaluate the radial drift of the limiting diffusion for the
the skeleton process ((Rn

k , A
n
k), k ∈ N0).

Lemma 2.2.10.

lim
n→∞

sup
r0∈S

∣∣∣∣n3/4 · E
[
N (n)(r0,Θ) cos(Θ)

]
− 1

2g2(r0)v(r0)
·
(

∂rU(r0)

2(E − U(r0))
− g′(r0)

g(r0)

)∣∣∣∣ = 0.

(2.2.33)
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Proof. First, for notational convenience, define the auxiliary function

Fn(r0, θ, t) :=

∫ t

0

gn(rn(r0, θ, s))vn(rn(r0, θ, s))ds. (2.2.34)

In the usual way, we will often suppress the r0 and θ dependencies of F and write F (t) when
no confusion will arise. If we let Mn(r0, α0, θ, t) be the number of Poisson process points
on the path ((rn(r0, θ, s), αn(r0, α0, θ, s)), 0 ≤ s ≤ t), then standard facts about Poisson pro-
cesses show that

(Mn(r0, α0, θ, t)− Fn(r0, θ, t), t ≥ 0)

and (
(Mn(r0, α0, θ, t)− Fn(r0, θ, t))

2 − Fn(r0, θ, t), t ≥ 0
)

are martingales. An optional stopping argument shows that

1 = E[Fn(r0, θ, N
(n)(r0, θ))] (2.2.35)

and
2 = E[Fn(r0, θ, N

(n)(r0, θ))
2]. (2.2.36)

See for example (3.1-2) of [BR14].
In order to prove uniform convergence, we need to work on a compact set, so we fix a

time T > 0 and split the expectations as

1 = E[Fn(r0, θ, N
(n)(θ))1{N(n)(θ)<T}] + E[Fn(r0, θ, N

(n)(θ))1{N(n)(θ)≥T}] (2.2.37)

Taylor expanding Fn(r0, θ, t) about t = 0 yields

Fn(r0, θ, t) = gn(r0)vn(ρ)t+
1

2
F̈n(r0, θ, τ(t))t2 (2.2.38)

for some τ(t) ∈ [0, t]. Here F̈n denotes the second derivative with respect to time t. Then
after setting t = N (n)(θ)), multiplying both sides by 1{N(n)(θ)<T} and taking expectations we
have

E
[
Fn(r0, θ, N

(n)(θ))1{N(n)(θ)<T}
]

= gn(r0)vn(r0)E
[
N (n)(θ)1{N(n)(θ)<T}

]
+

1

2
E
[
F̈n(τ(θ))(N (n))2(θ)1{N(n)(θ)<T}

]
.

(2.2.39)

If we substitute this into (2.2.37) we can write

E
[
N (n)(θ)1{N(n)(θ)<T}

]
=

1

gn(r0)vn(r0)

[
1− E

[
Fn(r0, θ, N

(n)(r0, θ))1{N(n)(θ)≥T}
]

− 1

2
E
[
F̈n(τ(θ))(N (n)(θ))21{N(n)(θ)<T}

] ]
,

(2.2.40)
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and so

n3/4E
[
N (n)(θ)

]
=

n1/2

g(r0)v(r0)

[
1− E[Fn(r0, θ, N

(n)(r0, θ))1{N(n)(θ)≥T}]

− 1

2
E
[
F̈n(τ(θ))(N (n)(θ))21{N(n)(θ)<T}

] ]
+ n3/4E

[
N (n)(θ)1{N(n)(θ)≥T}

]
.

(2.2.41)

Next we compute the limit as n → ∞ of each term in the expansion (2.2.41). By applying
Corollary 2.2.6 with k = 3/4 and l = 1, it follows that

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

n3/4E
[
N (n)(r0, θ)1{N(n)(θ)≥T}

]
= 0. (2.2.42)

Similarly, by Cauchy-Schwarz, (2.2.36) and by an application of Corollary 2.2.5 with k = 1
we have

n1/2E
[
Fn(r0, θ, N

(n)(θ))1{N(n)(θ)≥T}
]
≤ n1/2

√
E[F 2

n(r0, θ, N (n)(θ)]P{N (n)(θ) ≥ T}

=
√

2
√
nP{N (n)(θ) ≥ T}

→ 0

(2.2.43)

uniformly for (r0, θ) ∈ S × [−π, π] as n→∞. Differentiating equation (2.2.34) twice yields

F̈n(t) = vn(rn(t))ṙn(t)g′n(rn(t)) + gn(rn(t))v′n(rn(t))ṙn(t)

= n1/4ṙn(t) (v(rn(t))g′(rn(t)) + g(rn(t))v′(rn(t))) .

To evaluate limn→∞ n
1/4ṙn(t), note that by (2.2.4) and Lemma 2.2.3

|n1/4ṙn(t)− v(r0) cos θ| = n1/4|ṙn(t)− ṙn(0)|

= n1/4

∣∣∣∣∫ t

0

r̈n(s)ds

∣∣∣∣
=

1

n1/4

∣∣∣∣∫ t

0

√
nr̈n(s)ds

∣∣∣∣
→ 0

(2.2.44)

uniformly for (r0, θ, t) ∈ S × [−π, π]× [0, T ] as n→∞. Differentiating (2.1.2) shows

v′(r0) = −∂rU(r0)

mv(r0)
,
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which together with (2.2.44), Lemma 2.2.3, and the continuity of v′ and g′ on S forces

lim
n→∞

F̈n(t) = F̈1(0) = ṙ(0) (v(r0)g′(r0) + g(r0)v′(r0)) =

(
v2(r0)g′(r0)− g(r0)

∂rU(r0)

m

)
cos θ

uniformly for (r0, θ, t) ∈ S × [−π, π]× [0, T ]. Thus,

lim
n→∞

sup
(r0,θ,t)∈S×[−π,π]×[0,T ]

∣∣∣∣F̈n(t)−
(
v2(r0)g′(r0)− g(r0)

∂rU(r0)

m

)
cos θ

∣∣∣∣ = 0. (2.2.45)

In conjunction with Lemma 2.2.7 this yields

sup
(r0,θ)∈S×[−π,π]

√
n · E

[∣∣∣F̈n(r0, θ, N
(n)(θ))− F̈1(r0, θ, 0)

∣∣∣ (N (n)(θ)
)2
1{N(n)(θ)<T}

]
≤

sup
(r0,θ,t)∈S×[−π,π]×[0,T ]

{∣∣∣F̈n(r0, θ, t)− F̈1(r0, 0)
∣∣∣}√n sup

(r0,θ)∈S×[−π,π]

E
[(
N (n)(θ)

)2
1{N(n)(θ)<T}

]
→ 0

as n→∞. This combined with (2.2.32) shows

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

E
[√

nF̈n(r0, θ, N
(n)(θ))

(
N (n)(θ)

)2
1{N(n)(θ)<T} −

2

g2(r0)v2(r0)
F̈1(r0, θ, 0)

]
= 0.

(2.2.46)
By the expansion (2.2.41) of n3/4N(θ), we have

n3/4E
[
N (n)(Θ) cos(Θ)

]
=
n3/4

2π

∫ π

−π
E
[
N (n)(θ)

]
cos(θ)dθ

=
n1/2

2π

1

g(r0)v(r0)

∫ π

−π
cos(θ)dθ

− 1

2π

1

g(r0)v(r0)

∫ π

−π
n1/2E[Fn(r0, θ, N

(n)(r0, θ))1{N(n)(θ)≥T}] cos(θ)dθ

− 1

4π

1

g(r0)v(r0)

∫ π

−π
n1/2E

[
F̈n(τ(θ))(N (n)(θ))21{N(n)(θ)<T}

]
cos(θ)dθ

+
1

2π

∫ π

−π
n3/4E

[
N (n)(θ)1{N(n)(θ)≥T}

]
cos(θ)dθ.

(2.2.47)

Finally, using (2.2.42), (2.2.43) and (2.2.45)

lim
n→∞

n3/4E
[
N (n)(Θ) cos(Θ)

]
= − 1

4π

2

g3(r0)v3(r0)

(
v2(r0)g′(r0)− g(r0)

∂rU(r0)

m

)∫ π

−π
cos2 θdθ

=
1

2g2(r0)v(r0)

(
−g
′(r0)

g(r0)
+
∂rU(r0)

mv2(r0)

)
.

(2.2.48)
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This completes the proof.

With the results above, we are now in a position to prove some results about the limiting
behavior of the skeleton process ((Rn

k , A
n
k), k ∈ N0) defined in (2.1.5). In the next five lemmas

we identify the limiting drift, variance and covariance terms of the limiting diffusion for
((Rn

k , A
n
k), k ∈ N0). These results will be instrumental in the next section when we prove

convergence of the skeleton process.

Lemma 2.2.11. Let
µr,n(r0) := nE [Rn

1 −Rn
0 |Rn

0 = r0]

be the scaled drift of the Markov process (Rn
k , k ∈ N0). Then

lim
n→∞

sup
r0∈S

∣∣∣∣µr,n(r0)− 1

g2(r0)

(
− g

′(r0)

2g(r0)
+

1

2r0

− ∂rU(r0)

4(E − U(r0))

)∣∣∣∣ = 0.

Proof. By definition, of Rn
k ,

µr,n(r0) = nE
[
rn
(
N (n)(Θ)

)
− r0

]
.

Let Λδ(S) := Λ1
δ(S) as defined in (2.2.10). Since Λn

δ (S) is increasing in n, we have by
construction that rn(t) ∈ S ′ for all n ∈ N and t ∈ [0,Λδ(S)]. So in particular, rn(t)
is bounded away from ∂D. To compute µr,n we first split the expectation on the events
{N (n)(Θ) ≤ Λδ(S)} and {N (n)(Θ) > Λδ(S)}. This allows us to write

µr,n(r0) = nE
[(
rn
(
N (n)(Θ)

)
− r0

)
1{N(n)≤Λδ(S)}

]
+ nE

[(
rn
(
N (n)(Θ)

)
− r0

)
1{N(n)>Λδ(S)}

]
.

(2.2.49)

To compute the first term of (2.2.49), we utilize a second order Taylor expansion of rn(t)
evaluated at t = N (n)(Θ) which yields

rn
(
r0, N

(n)(Θ)
)
− r0 = vn(r0) cos(Θ) ·

[
N (n)(Θ)

]
+

1

2
r̈n(τ)

[
N (n)(Θ)

]2
for some 0 ≤ τ := τ(r0, N

n(Θ)) ≤ Nn(Θ). Hence

nE
[(
rn
(
N (n)(Θ)

)
− r0

)
1{N(n)≤Λδ(S)}

]
= E

[
nvn(r0) cos(Θ) ·N (n)(Θ)1{N(n)≤Λδ(S)}

]
+
n

2
E
[
r̈n(τ) ·N (n)(Θ)21{N(n)≤Λδ(S)}

]
.

(2.2.50)

Note that∣∣E [nvn(r0) cos(Θ) ·N (n)(Θ)1{N(n)>Λδ(S)}
]∣∣ ≤ sup

S
|v(r0)|n3/4E

[
N (n)(Θ)1{N(n)>Λδ(S)}

]
→ 0
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uniformly for r0 ∈ S as n → ∞ by Corollary 2.2.6. The limit of the first term of (2.2.50)
can be computed by a direct application of Lemma 2.2.10.

lim
n→∞

E
[
nvn(r0) cos(Θ) ·N (n)(Θ)1{N(n)≤Λδ(S)}

]
= lim

n→∞
v(r0)E

[
n3/4 cos(Θ) ·N (n)(Θ)

]
=

1

g2(r0)
·
(

∂rU(r0)

4(E − U(r0))
− g′(r0)

2g(r0)

) (2.2.51)

uniformly for r0 ∈ S. We now compute the limit of the second term on the right hand side
of (2.2.50).

Since τ(N (n)(θ)) ≤ N (n)(θ), by Lemma 2.2.3 and Lemma 2.2.4

sup
(r0,θ)∈S×[−π,π]

∣∣E [(√nr̈n(τ(N (n)(θ))− ψ(r0, r0, θ)
)√

n(N (n)(θ))21{N(n)≤Λδ(S)}
]∣∣ ≤

sup
(r0,θ)∈S×[−π,π]

{
sup

t∈t×[0,Λδ(S)]

∣∣∣√nr̈n(r0, θ, t)− ψ(r0, r0, θ)
∣∣∣ · E [√n(N (n))2(θ)1{N(n)≤Λδ(S)}

]}
→ 0

as n→∞. This together with Corollary 2.2.6 and Lemma 2.2.7 yields

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

∣∣∣∣E [nr̈n(τ(N (n)(θ))(N (n))2(θ)1{N(n)≤Λδ(S)}
]
− 2ψ(r0, r0, θ)

g2(r0)v2(r0)

∣∣∣∣ = 0.

Since this convergence is uniform in θ, we can evaluate the limit of the second order term of
equation (2.2.50) by

lim
n→∞

E
[n

2
r̈n(τ(N (n)(Θ)) · (N (n))2(Θ)1{N(n)(Θ)≤Λδ(S)}

]
=

1

4π

∫ π

−π
lim
n→∞

E
[√
nr̈n(τ(N (n)(θ)) ·

√
n(N (n))2(θ)1{N(n)(θ)≤Λδ(S)}

]
dθ

=
1

2π

∫ π

−π

ψ(r0, r0, θ)

g2(r0)v2(r0)
dθ =

1

2π

∫ π

−π

1

g2(r0)v2(r0)

(
−∂rU(r0)

m
+
v2(r0) sin2(θ)

r0

)
dθ.

=
1

g2(r0)

(
1

2r0

− ∂rU(r0)

mv(r0)2

)
=

1

g2(r0)

(
1

2r0

− ∂rU(r0)

2(E − U(r0))

)
.

(2.2.52)

uniformly for r0 ∈ S.
By Lemma 2.2.8, the second term of (2.2.49) converges to 0 uniformly for r0 ∈ S. So by

adding the right hand sides of 2.2.51 and 2.2.51 we have

lim
n→∞

µr,n(r0) =
1

g2(r0)

(
− g

′(r0)

2g(r0)
+

1

2r0

− ∂rU(r0)

4(E − U(r0))

)
uniformly for r0 ∈ S.
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Lemma 2.2.12. Let
σ2
r,n(r0) := nE

[
(Rn

1 −Rn
0 )2 |Rn

0 = r0

]
.

be the scaled variance of the Markov process (Rn
k , k ∈ N0). Then

lim
n→∞

sup
r0∈S

∣∣∣∣σ2
r,n(r0)− 1

g2(r0)

∣∣∣∣ = 0.

Proof. We proceed as in the proof of Lemma 2.2.11 by splitting σ2
r,n on the events {N (n)(Θ) ≤ Λδ(S)}

and {N (n)(Θ) > Λδ(S)}.

σ2
r,n(r0) = nE

[(
rn(N (n)(Θ))− r0

)2
1{N(n)≤Λδ(S)}

]
+ nE

[(
rn(N (n)(Θ))− r0

)2
1{N(n)>Λδ(S)}

] (2.2.53)

To evaluate the limit of the first term on the right hand side of (2.2.53), we utilize a first
order Taylor expansion of rn(t) evaluated at t = N (n)(Θ) which yields(

rn(r0, N
(n)(Θ))− r0

)2
=
(
ṙn(τ)N (n)(Θ)

)2

for some 0 ≤ τ := τ(r0, N
n(Θ)) ≤ Nn(Θ). Hence

nE
[(
rn(N (n)(Θ))− r0

)2
1{N(n)≤Λδ(S)}

]
= nE

[
ṙ2
n(τ)

(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
. (2.2.54)

Using (2.2.3) we can solve for ṙ2(t):

ṙ2(t) = v̄2(t)− r2(t)α̇2(t) = v̄2(t)− v̄2(0)r2
0 sin2 θ

r(t)2
. (2.2.55)

Define

γ(ρ, r0, θ) = v2(ρ)− v2(r0)r2
0 sin2 θ

ρ2
(2.2.56)

and note that by (2.2.55) we have

ṙ2
n(t, r0, θ) =

1√
n
γ(rn(t), r0, θ).

Since S ′ is bounded away from 0, it follows that γ is uniformly continuous on S ′×S×[−π, π].
So by Lemma 2.2.3

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

{
sup

t∈[0,Λδ(S)]

∣∣√nṙ2
n(t, r0, θ)− γ(r0, r0, θ)

∣∣} = 0 (2.2.57)
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where
γ(r0, r0, θ) = v2(r0)− v2(r0) sin2(θ) = v2(r0) cos2(θ)

by (2.2.56).
Since τ(N (n)(θ)) ≤ N (n)(θ), we can apply (2.2.57) and Lemma 2.2.4 to show

sup
(r0,θ)∈S×[−π,π]

∣∣∣E [(√nṙ2
n(τ)− γ(r0, r0, θ)

)√
n
(
N (n)(θ)

)2
1{N(n)≤Λδ(S)}

]∣∣∣ ≤
sup

(r0,θ)∈S×[−π,π]

{
sup

t∈[0,Λδ(S)]

∣∣√nṙ2
n(t, r0, θ)− γ(r0, r0, θ)

∣∣ · E [(√nN (n)(θ)
)2
1{N(n)≤Λδ(S)}

]}
→ 0

as n→∞. Along with Corollary 2.2.6 and Lemma 2.2.7 this implies

lim
n→∞

nE
[(
rn(N (n)(θ))− r0

)2
1{N(n)≤Λδ(S)}

]
=

2γ(r0, r0, θ)

g2(r0)v2(r0)
=

2 cos2 θ

g2(r0)

uniformly for (r0, θ) ∈ S × [−π, π]. So by the uniform convergence in θ, we can evaluate the
limit of the first term of (2.2.53)

lim
n→∞

nE
[(
rn(N (n)(Θ))− r0

)2
1{N(n)≤Λδ(S)}

]
=

1

2π

∫ π

−π
lim
n→∞

nE
[(
rn(N (n)(θ))− r0

)2
1{N(n)≤Λδ(S)}

]
dθ

=
1

2π

∫ π

−π

2 cos2 θ

g2(r0)
dθ =

1

g2(r0)

uniformly for r0 ∈ S. By Lemma 2.2.8, the second term of (2.2.53) converges to 0 uniformly
for r0 ∈ S. So

lim
n→∞

σr,n(r0) =
1

g2(r0)

uniformly for r0 ∈ S.

Lemma 2.2.13. Let
µα,n(r0, α0) = nE [An1 − An0 |An0 = α0]

be the scaled drift of Ank in the Markov process ((Rn
k , A

n
k), k ∈ N0). Then

lim
n→∞

sup
(r0,α0)∈S×R

|µα,n(r0, α0)| = 0.

Proof. By (2.2.7), the second order Taylor expansion for α(t) is given by

α(t)− α0 = α̇(0)t+
α̈(τ)

2
t2 =

v(r0) sin(θ)

r0

t− v(r0)r0 sin(θ)ṙ(τ)

r3(τ)
t2 (2.2.58)
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for some 0 ≤ τ := τ(t) ≤ t. Then by splitting the expectation on the events {N (n)(Θ) ≤
Λδ(S)} and {N (n)(Θ) > Λδ(S)} and substituting (2.2.58) in the {N (n)(Θ) ≤ Λδ(S)} term
we have

µα,n =E
[
v(r0)

r0

n3/4N (n)(Θ) sin(Θ)1{N(n)≤Λδ(S)}

]
−n3/4v(r0)r0E

[
ṙn
(
τ
(
N (n)(Θ)

))
r3
n (τ (N (n)(Θ)))

(
N (n)(Θ)

)2
sin(Θ)1{N(n)≤Λδ(S)}

]
+nE

[(
αn
(
N (n)(Θ)

)
− α0

)
1{N(n)>Λδ(S)}

]
.

(2.2.59)

An application of Corollary 2.2.9 shows the last term on the right hand side of (2.2.59)
converges to 0 uniformly for (r0, α0) ∈ S×R. For the first term of (2.2.59), we apply (2.2.41)
which yields

E
[
n3/4N (n)(Θ) sin(Θ)1{N(n)≤Λδ(S)}

]
=

1

2π

∫ π

−π
E
[
n3/4N (n)(θ)1{N(n)≤Λδ(S)}

]
sin(θ)dθ

=

√
n

2πg(r0)v(r0)

∫ π

−π
sin(θ)dθ −

√
n

2πg(r0)v(r0)

∫ π

−π
E
[
Fn(θ,N (n)(r0, θ))1{N(n)>Λδ(S)}}

]
sin(θ)dθ

−
√
n

4πg(r0)v(r0)

∫ π

−π
E
[
F̈n(τ1)(N (n)(θ))21{N(n)≤Λδ(S)}}

]
sin(θ)dθ

(2.2.60)

for some 0 ≤ τ1 := τ1

(
N (n)(θ)

)
≤ N (n)(θ). Now∫ π

−π

√
n sin(θ)dθ = 0

for all n, and

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

∣∣√nE[Fn(θ,N (n)(ρ, θ))1{N(n)>Λδ(S)}]
∣∣ = 0

by equation (2.2.43). To compute the limit of the last term, we first observe that

lim
n→∞

√
nE
[
F̈n(τ1)(N (n)(θ))21{N(n)≤Λδ(S)}

]
=

2

g2(r0)v2(r0)

(
v(r0)2g′(r0)− g(r0)

∂rU(r0)

m

)
cos(θ)

uniformly in (r0, θ) ∈ S × [−π, π] by equation (2.2.45). By the uniform convergence in θ we
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have

lim
n→∞

E
[
n3/4N (n)(Θ) sin(Θ)1{N(n)(Θ)≤Λδ(S)}

]
=

∫ π

−π
lim
n→∞

E
[
F̈n(τ1)(N (n)(θ))21{N(n)≤Λδ(S)}

]
sin(θ)dθ

= − 1

2πg3(r0)v3(r0)

(
v(r0)2g′(r0)− g(r0)

∂rU(r0)

m

)∫ π

−π
cos(θ) sin(θ)dθ = 0

(2.2.61)

uniformly for r0 ∈ S. To evaluate the limit of second term of (2.2.59), we first compute

lim
n→∞

n

2
E
[
α̈n(0)

(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
= − lim

n→∞

v2
0

r2
0

√
nE
[(
N (n)(Θ)

)2
sin (Θ)1{N(n)≤Λδ(S)}

]
= −v

2
0

r2
0

∫ π

−π
lim
n→∞

√
nE
[(
N (n)(θ)

)2
1{N(n)≤Λδ(S)}

]
sin(θ)dθ

= − 2

g2(r0)r2
0

∫ π

−π
sin(θ)dθ = 0

(2.2.62)

by (2.2.32). Using Lemma 2.2.3 and (2.2.44)

lim
n→∞

n1/4

(
ṙn(t)

r3
n(t)
− ṙn(0)

r3
n(0)

)
= lim

n→∞

n1/4ṙn(t) (r3
n(0)− r3

n(t)) + n1/4 (ṙn(t)− ṙn(0)) r3
n(t)

r3
n(t)r3

0

=
v(r0) cos(θ) · 0 + 0 · r3

0

r6
0

= 0

(2.2.63)

uniformly for (r0, θ) ∈ S× [−π, π]. By Lemma (2.2.7), Corollary (2.2.6) and (2.2.63) we have

lim
n→∞

sup
(r0,α0)∈S×R

n

2
E
[{
α̈n(0)− α̈n

(
τ
(
N (n)(θ)

))} (
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
≤ lim

n→∞
sup

(r0,α0,t)∈S×R×[0,Λδ(S)]

√
n

2
|α̈n(0)− α̈n(t)| sup

(r0,α0)∈S×R
E
[√

n
(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
= −v(r0)r0 lim

n→∞
sup

(r0,α0,t)∈S×R×[0,Λδ(S)]

∣∣∣∣n1/4 ṙn(t)

r3
n(t)
− ṙn(0)

r3
n(0)

∣∣∣∣
× lim

n→∞
sup

(r0,α0)∈S×R
E
[√

n
(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
= 0× 2

g2(r0)v2(r0)

= 0.

(2.2.64)
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Combining (2.2.62) and (2.2.64) yields

lim
n→∞

sup
r0∈S

n3/4v(r0)r0E

[
ṙn
(
τ
(
N (n)(θ)

))
r3
n (τ (N (n)(θ)))

(
N (n)(Θ)

)2
sin(Θ)1{N(n)≤Λδ(S)}

]
= 0.

Since we have shown that all the three terms from (2.2.59) converge to zero uniformly for
(r0, α0) ∈ S × R we are done.

Lemma 2.2.14. Let
σ2
α,n(r0, α0) = nE

[
(An1 − An0 )2 |An0 = α0

]
be the scaled variance of Ank in the Markov process ((Rn

k , A
n
k), k ∈ N0). Then

lim
n→∞

sup
(r0,α0)∈S×R

∣∣∣∣σ2
α,n(r0, α0)− 1

g2(r0)r2
0

∣∣∣∣ = 0.

Proof. By (2.2.58)

σ2
α,n = E

[
v2(r0)r2

0 sin2(Θ)

r4
n(τ)

n1/2
(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
+ nE

[(
αn
(
N (n)(Θ)

)
− α0

)2
1{N(n)>Λδ(S)}

] (2.2.65)

for some τ := τ
(
N (n)(Θ)

)
≤ N (n)(Θ).

The second term of (2.2.65) converges uniformly to 0 by Corollary 2.2.9. To compute
the limit of the first term, we have by Lemma 2.2.4 and Lemma 2.2.3 that

sup
r0∈S

∣∣∣∣E [(v2(r0)r2
0 sin2(Θ)

r4
n(τ)

− v2(r0) sin2(Θ)

r2
0

)
n1/2

(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]∣∣∣∣
≤ sup

r0∈S
{v2(r0)} sup

(r0,θ,t)∈S×[−π,π]×[0,Λδ(S)]

{∣∣∣∣ r2
0

r4
n(t)
− 1

r2
0

∣∣∣∣} · sup
r0∈S

E
∣∣∣n1/2

(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

∣∣∣
= 0.

(2.2.66)

Corollary 2.2.6 and (2.2.32) yield

lim
n→

sup
r0∈S

∣∣∣∣v2(r0)

r2
0

E
[
n1/2

(
N (n)(Θ)

)2
sin2(Θ)1{N(n)≤Λδ(S)}

]
− 1

g2(r0)r2
0

∣∣∣∣ = 0.

This together with (2.2.66) implies

lim
n→∞

sup
(r0,α0)∈S×R

∣∣∣∣σ2
α,n(r0, α0)− 1

g2(r0)r2
0

∣∣∣∣ = 0. (2.2.67)
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Next we will show the scaled covariance of Rn and An goes to 0 uniformly as a function
of the initial position (r0, α0) as n→∞.

Lemma 2.2.15.

lim
n→∞

sup
(r0,α0)∈S×R

|nE [(Rn
1 −Rn

0 )(An1 − An0 )|(Rn
0 , A

n
0 ) = (r0, α0)]| = 0

Proof. By (2.2.9) and (2.2.7) we have

(αn(t)− α0)(rn(t)− r0) = α̇n(τα)ṙn(0)t2 +
α̇(τα)r̈n(τr)

2
t3 (2.2.68)

for some 0 ≤ τα(t), τr(t) ≤ t. So by splitting the expectation on the events {N (n)(Θ) ≤ Λδ(S)}
and {N (n)(Θ) > Λδ(S)} it follows that

nE
[(
αn
(
N (n)(Θ)

)
− α0

) (
rn
(
N (n)(Θ)

)
− r0

)]
=

nE
[
α̇n(τα)ṙn(0)

(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]
+ nE

[
α̇n(τα)r̈n(τr)

2

(
N (n)(Θ)

)3
1{N(n)≤Λδ(S)}

]
+ nE

[(
αn
(
N (n)(Θ)

)
− α0

) (
rn
(
N (n)(Θ)

)
− r0

)
1{N(n)>Λδ(S)}

]
.

(2.2.69)

We will show each of these terms converges to 0 uniformly for (r0, α0) ∈ S × R.
For the first term, we first note that by (2.2.4) and (2.2.7)

α̇n(τα)ṙn(0) =
1√
n

v2(r0)r0

rn(τα)
sin(θ) cos(θ)

Furthermore, by Lemma 2.2.3

lim
n→∞

sup
(r0,θ)∈S×[−π,π]

sup
t∈[0,Λδ(S)]

∣∣√nα̇n(t)ṙn(0)− v2(r0) sin(θ) cos(θ)
∣∣ = 0.

Corollary 2.2.6 and (2.2.32) show

= lim
n→∞

sup
r0∈S

√
nE
[
v2(r0)

(
N (n)(Θ)

)2
sin Θ cos Θ1{N(n)≤Λδ(S)}

]
=
v2(r0)

4π

∫ π

−π
lim
n→∞

sup
r0∈S

√
nE
[(
N (n)(θ)

)2
1{N(n)≤Λδ(S)}

]
sin(2θ)dθ

=
1

2πg2(r0)

∫ π

−π
sin(2θ)dθ = 0.

(2.2.70)

Since none of the bounds involve α0 it follows that

lim
n→∞

sup
(r0,α0)∈S×R

∣∣∣nE [α̇n(τα)ṙn(0)
(
N (n)(Θ)

)2
1{N(n)≤Λδ(S)}

]∣∣∣ = 0.
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For the second term of (2.2.69) note that by Lemma 2.2.3 and (2.2.13)

lim
n→∞

sup
(r0,θ,t,s)∈S×[−π,π]×[0,Λδ(S)]×[0,Λδ(S)]

∣∣∣∣n3/4α̇n(s)r̈n(t)− v(r0)

r0

sin(θ)ψ(r0, r0, θ)

∣∣∣∣ = 0.

By Lemma 2.2.4

sup
(r0,θ)∈S×[−π,π]

E
[(
N (n)(r0, θ)

)3
]

= O
(

1

n3/4

)
,

so

sup
(r0,θ)∈S×[−π,π]

nE
[
α̇n(τα)r̈n(τr)

2

(
N (n)(Θ)

)3
1{N(n)≤Λδ(S)}

]
= O

(
1√
n

)
which shows the second term of (2.2.69) converges uniformly to 0. Finally, for the last term
we have by Cauchy-Schwarz, Lemma 2.2.8 and Corollary 2.2.9

n
(
E
[(
αn
(
N (n)(Θ)

)
− α0

) (
rn
(
N (n)(Θ)

)
− r0

)
1{N(n)>Λδ(S)}

])2

≤ n · E
[(
αn
(
N (n)(Θ)

)
− α0

)2
1{N(n)>Λδ(S)}

]
· E
[(
rn
(
N (n)(Θ)

)
− r0

)2
1{N(n)>Λδ(S)}

]
→ 0

uniformly for r0 ∈ S. Finally, note that none of the upper bounds depend on α0, which
shows that the convergence of the covariance to 0 is uniform in α0 as well. This completes
the proof.

2.3 Convergence of the Skeleton Process

In this section we will prove the convergence of the skeleton process ((Rn
k , A

n
k), k ∈ N0)

defined in (2.1.5). By construction, the transition operator P n for ((Rn
k , A

n
k), k ∈ N0) is given

by
P nf(r0, α0) = E

[
f
{
rn(r0,Θ, N

(n)(r0,Θ)), αn(r0, α0,Θ, N
(n)(r0,Θ))

}]
. (2.3.1)

The following is the main theorem of this section.

Theorem 2.3.1. Let (R,A) be a diffusion on D × R whose generator G acts on functions
f ∈ C2(D × R) with compact support in C2(D◦ × R) by

Gf(ρ, a) =
1

2g2(ρ)
fρρ(ρ, a) +

1

2g2(ρ)ρ2
faa(ρ, a) +

1

g2(ρ)

(
−g
′((ρ)

2g(ρ)
+

1

2(ρ)
− ∂rU(ρ)

2mv2(ρ)

)
fρ(ρ, a)

(2.3.2)

Suppose ((Rn
k , A

n
k), k ∈ N0) is a Markov process whose transition operator P n is given by

(2.3.1). Consider any l, u ∈ D◦ with l < u and start the process ((Rn
k , A

n
k), k ∈ N0) at

(r0, α0), where l < Rn
0 = r0 < u and An0 := α0 ∈ R. Define the stopping times

τnl,u := inf{k ∈ N0 : Rn
k ≥ u or Rn

k ≤ l}



42

and
τl,u := inf{t ≥ 0 : Rn

t ≥ u or Rn
t ≤ l}.

Then, as n → ∞, the family of continuous time processes ((Rn
bntc∧τnl,u

, Anbntc∧τnl,u
), t ≥ 0)

converges in distribution on the Skorokhod space to the diffusion
(
(Rt∧τl,u ,At∧τl,u), t ≥ 0

)
.

Remark 2.3.2. If the left boundary point of D is inaccessible for the diffusion R then we
do not need the stopping at l, and we have that, as n → ∞, ((Rn

bntc∧τnu
, Anbntc∧τnu

), t ≥ 0)

converges in distribution on the Skorokhod space to the diffusion ((Rt∧τu ,At∧τu), t ≥ 0) where
τu and τnu denote the hitting times of u by R and Rn respectively.

Similarly, if the right boundary point of D is inaccessible one can remove the stopping at
u. See Section 2.5 for how one can determine when a point is inaccessible.

We prove Theorem 2.3.1 at the end of this section. The proof utilizes Theorem IX.4.21
from [JS03] which gives sufficient conditions to prove a continuous time step process converges
to a diffusion. We reproduce the result here for completeness.

Theorem 2.3.3. Suppose that for each n ∈ N, Xn is a pure step Markov process. That is,
its generator has the form

Anf(x) =

∫
[f(x+ y)− f(x)]Kn(x, dy)

where Kn is a finite transition kernel on Rd. Then define bn and cn by

bn(x) =

∫
yKn(x, dy), cn,ij(x) =

∫
yiyjKn(x, dy). (2.3.3)

Let b, c be continuous functions on Rd and suppose X is a diffusion whose generator is given
by

Gf(x) =
∑
i≤d

bi(x)Dif(x) +
1

2

∑
1≤i,j≤d

ci,j(x)Di,jf(x) (2.3.4)

and defines a martingale problem with a unique solution (see Assumption IX.4.3 from [JS03]).
Assume that

(i) bn → b, cn → c locally uniformly;

(ii) supx:|x|≤a
∫
Kn(x, dy)|y|21{|y|>ε} → 0 as n ↑ ∞ for all ε > 0;

(iii) νn → ν weakly, where νn and ν are the initial distributions of Xn
0 and X0 respectively.

Then the laws L(Xn) converge weakly to P =
∫
Pxν(dx), the law of the diffusion process X

started with the initial distribution ν.
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We define
r̃n(r0, θ) := rn(r0, N

(n)(r0, θ))− r0

and
α̃n(r0, α0, θ) := αn(r0, α0, N

(n)(r0, θ))− α0

to represent the radial and angular displacements respectively.

We suppose
((
Rl,u,n
k , Al,u,nk

)
, k ∈ N0

)
is a Markov process whose transition operator P n

l,u

is given by

P n
l,uf(r0, α0) = E [f (r0 + r̃n((r0 ∨ l) ∧ u,Θ)) , α0 + α̃n ((r0 ∨ l) ∧ u, α0,Θ)] . (2.3.5)

We refer to
((
Rl,u,n
k , Al,u,nk

)
, k ∈ N0

)
as the cut-off process.

((
Rl,u,n
k , Al,u,nk

)
, k ∈ N0

)
evolves

as the original Markov process when Rl,u,n
k ∈ (l, u), but is cut-off near ∂D.

More precisely, the transition operator P n
l,u has the following properties:

• When r0 ∈ (l, u) the operator P n
l,u coincides with P n.

• When r0 < l the operator P n
l,u describes a process that starts at r0 but evolves like the

process defined by P n started at l.

• When r0 > u the operator P n
l,u describes a process that starts at r0 but evolves like the

process defined by P n started at u.

The cut-offs act to prevent the coefficients of the generator from blowing up when Rl,u,n

approaches ∂D. Note also that P l,u,nf(r0, α0) is defined for all r0 ∈ R. We will proceed with
the proof of Theorem 2.3.1 by first proving the following lemma which the shows convergence
of the cut-off process. Then since the transition operators P n and P n

l,u agree on the interval
[l, u], by stopping at the first exit time of this interval, we can pass to a convergence result
for the original skeleton process.

Lemma 2.3.4. Fix l, u ∈ D with l < u and (r0, α0) in (l, u)×R. Suppose
((
Rl,u,n
k , Al,u,nk

)
, k ∈ N0

)
is a Markov process with transition operator P n

l,u started from (r0, α0), and let (Γt, t ≥ 0) be

a Poisson process with rate 1 that is independent of
((
Rl,u,n
k , Al,u,nk

)
, k ∈ N0

)
. Then the

continuous time step processes
((
Rl,u,n

Γnt
, Al,u,nΓnt

)
, t ≥ 0

)
converge as n → ∞ in distribution

on the Skorokhod space D(R+,R) × D(R+,R) to the diffusion
((
Rl,u
t ,A

l,u
t

)
, t ≥ 0

)
with

generator Gl,u and started at (r0, α0). The generator Gl,u acts on functions f ∈ C2(R2) as

Gl,uf(r0, α0) =
1

2g2((r0 ∨ l) ∧ u)
fρρ(r0, α0) +

1

2g2((r0 ∨ l) ∧ u)((r0 ∨ l) ∧ u)2
faa(r0, α0)

+
1

g2((r0 ∨ l) ∧ u)

(
− g

′((r0 ∨ l) ∧ u)

2g((r0 ∨ l) ∧ u)
+

1

2((r0 ∨ l) ∧ u)
− ∂rU((r0 ∨ l) ∧ u))

4((E − U(r0 ∨ l) ∧ u))

)
fρ(r0, α0).

(2.3.6)



44

Proof. Step I:

We work with
(
Rl,u,n

Γnt
, Al,u,nΓnt

)
because one needs a continuous time pure jump process to

apply Theorem 2.3.3. To determine the generator of
((
Rl,u,n

Γnt
, Al,u,nΓnt

)
, t ≥ 0

)
, let f ∈ C2

c (R2)

and compute

1

t
E[f(Rl,u,n

Γnt
, Al,u,nΓnt

)− f(r0, α0)] =
∞∑
k=0

P(Γnt = k)
1

t
E[f(Rl,u,n

k , Al,u,nk )− f(r0, α0)]

= 0 +
1

t
P (Γnt = 1)E[f(Rl,u,n

1 , Al,u,n1 )− f(r0, α0)]

+
∞∑
k=2

1

t
P(Γnt = k)E[f(Rl,u,n

k , Al,u,nk )− f(r0, α0)]

(2.3.7)

where the first equality follows by the independence of Γnt and
(
Rl,u,n, Al,u,n

)
. Furthermore,

lim
t→0

1

t
P(Γnt = 1) = lim

t→0

e−ntnt

t
= n

and

lim
t→0

1

t
P(Γnt > 1) = lim

t→0

e−nt

t
(ent − 1− nt) = lim

t→0
e−ntO (t) = 0.

As a result

lim
t→0

∣∣∣∣∣
∞∑
k=2

P(Γnt = k)
1

t
E[f(Rl,u,n

k , Al,u,nΓnt
)− f(r0, α0)]

∣∣∣∣∣ ≤ 2f∞ lim
t→0

1

t
P(Γnt > 1) = 0

which forces

lim
t→0

1

t
Ex[f(Rl,u,n

Γnt
, Al,u,nΓnt

)− f(r0, α0)] = nEx[f(Rl,u,n
1 )− f(r0, α0)] = n(P n

l,u − 1)f(r0, α0).

This shows that
(
Rl,u,n

Γnt
, Al,u,nΓnt

)
is a continuous time process whose generator is given by

Gnl,uf(r0, α0) := n(P n
l,u − I)f(r0, α0). Define the kernel

Kn
l,u((r0, α0), ·)

:= nP
((

(rn((r0 ∨ l) ∧ u,N (n)(Θ))− (r0 ∨ l) ∧ u, αn((r0 ∨ l) ∧ u, α0, N
(n)(Θ))− α0

)
∈ ·
)

= nP ((r̃n((r0 ∨ l) ∧ u,Θ), α̃n((r0 ∨ l) ∧ u, α0,Θ) ∈ ·) .
(2.3.8)

Using Gnl,uf(r0, α0) := n(P n
l,u − 1)f(r0, α0), it follows that

Gnl,uf(r0, α0) =

∫
R2

(f(r0 + ρ, α0 + a)− f(r0, α0))Kn
l,u((r0, α0), dρda).
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This shows that
(
Rl,u,n

Γnt
, Al,u,nΓnt

)
is a pure jump process.

We proceed by checking all the assumptions of Theorem 2.3.3 hold.
Step II:
First, we will show Gl,u defines a martingale problem with a unique solution. By Section

8.3 from [Øks03], this holds for G as defined in Theorem 2.3.3 if the matrix c(x) := (ci,j(x))
is everywhere positive definite, ci,j(x) is continuous, b(x) := (bi(x)) is measurable and there
exists a D such that

|b(x)|+ |c(x)|1/2 ≤ D(1 + |x|)

From (2.3.6) we observe the diffusion matrix of of Gl,u is diagonal with diagonal entries

1

2g2((· ∨ l) ∧ u)((· ∨ l) ∧ u)2
,

1

2g2((· ∨ l) ∧ u)
.

Since the density g is continuous and bounded away from 0 by Assumptions (A3) and (A5)
both terms above are clearly positive, continuous and bounded.

The drift vector for Gl,u has sole nonzero entry

1

g2((r0 ∨ l) ∧ u)

(
− g

′((r0 ∨ l) ∧ u)

2g((r0 ∨ l) ∧ u)
+

1

2((r0 ∨ l) ∧ u)
− ∂rU((r0 ∨ l) ∧ u))

4((E − U(r0 ∨ l) ∧ u))

)
which is bounded since:

• ∂rU is bounded on [l, u] by Assumption (A4).

• g and E − U are both bounded away from 0 on [l, u] ⊂ D◦ by Assumptions (A4) and
(A5).

Step III:
Next we check that Assumption (i) of Theorem 2.3.3 holds. If we let S = [l, u], then

Lemmas 2.2.11, 2.2.12, 2.2.13, 2.2.14 and 2.2.15 show that as n→∞

µr,n(r0) := nE [r̃n(r0,Θ)]→ 1

g2(r0)

(
− g

′(r0)

2g(r0)
+

1

2r0

− ∂rU(r0)

4(E − U(r0))

)
σ2
r,n(r0) := nE

[
r̃2
n(r0,Θ)

]
→ 1

g2(r0)

µα,n(r0, α0) := nE [α̃n(r0, α0,Θ)]→ 0

σ2
α,n(r0, α0) := nE

[
α̃2
n(r0, α0,Θ)

]
→ 1

g2(r0)r2
0

nE [r̃n(r0,Θ) · α̃n(r0, α0,Θ)]→ 0

(2.3.9)
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uniformly for r0 ∈ S and α0 ∈ R. This implies

nE [r̃n((r0 ∨ l) ∧ u,Θ)]→ 1

g2((r0 ∨ l) ∧ u)

(
− g

′((r0 ∨ l) ∧ u)

2g((r0 ∨ l) ∧ u)
+

1

2(r0 ∨ l) ∧ u
− ∂rU(r0)

4(E − U((r0 ∨ l) ∧ u))

)
nE
[
r̃2
n((r0 ∨ l) ∧ u,Θ)

]
→ 1

g2((r0 ∨ l) ∧ u)

nE [α̃n((r0 ∨ l) ∧ u, α0,Θ)]→ 0

nE
[
α̃2
n((r0 ∨ l) ∧ u, α0,Θ)

]
→ 1

g2((r0 ∨ l) ∧ u)((r0 ∨ l) ∧ u)2

nE [r̃n((r0 ∨ l) ∧ u,Θ) · α̃n((r0 ∨ l) ∧ u, α0,Θ)]→ 0

(2.3.10)

uniformly for all (r0, α0) ∈ R2 as n→∞. This verifies Assumption (i).
Step IV:
We now show Assumption (ii) holds. Fix ε > 0. By Lemma 2.2.3 and (2.2.58) we have

lim
n→∞

sup
(r0,θ)∈[l,u]×[−π,π]

{
sup
t∈[0,T ]

‖rn(r0, θ, t)− α0‖

}
= 0.

and

lim
n→∞

sup
(r0,α0,θ)∈[l,u]×R×[−π,π]

{
sup
t∈[0,T ]

‖αn(r0, θ, t)− r0‖

}
= 0.

As a result there exists a δ > 0 such that for n large enough, and for any (r0, α0) ∈ [l, u]×R,
|rn(r0, t)− r0| > ε√

2
implies t > δ, and |αn(r0, α0, t)− α0| > ε√

2
implies t > δ. Thus,

{‖(r̃n((ρ ∨ l) ∧ u,Θ), α̃n((ρ ∨ l) ∧ u,Θ)‖ > ε}

⊆ {|r̃n((ρ ∨ l) ∧ u,Θ)| > ε√
2
} ∪ {|α̃n((ρ ∨ l) ∧ u, α0,Θ)| > ε√

2
}

⊆ {N (n)((ρ ∨ l) ∧ u,Θ) > δ}.

So for large n,

sup
(r0,α0)∈R2

∫
(ρ2 + a2)1{‖ρ̂‖>ε}K

n
l,u(r̂0, dρ̂)

= n sup
(r0,α0)∈R2

E
[(
r̃2
n((ρ ∨ l) ∧ u,Θ) + α̃2

n((ρ ∨ l) ∧ u, α0,Θ)
)
1{‖(r̃n,α̃n)‖>ε}

]
≤ n sup

(r0,α0)∈R2

E
[
r̃2
n((ρ ∨ l) ∧ u,Θ)1{N(n)>δ}

]
+ n sup

(r0,α0)∈R2

E
[
α̃2
n((ρ ∨ l) ∧ u, α0,Θ)1{N(n)>δ}

]
→ 0

(2.3.11)
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where the last limit follows from Lemma 2.2.8 and Corollary 2.2.9. This shows assumption
(ii) holds. Assumption (iii) is trivially satisfied since the starting points are fixed to be
(r0, α0) for all n. Therefore, all the assumptions of Theorem 2.3.3 hold and so (Rl,u,n

Γnt
, Al,u,nΓnt

)
converges in distribution to the diffusion with generator Gl,u.

To apply the convergence of the cut-off process from Lemma 2.3.4 to the proof of Theorem
2.3.1, we first require a technical lemma about the continuity of first passage times. The
following lemma shows that if a sequence of functions converges in the Skorokhod topology,
then their first passage times converge as well as long as the level is not a local extrema of
the limiting function.

Lemma 2.3.5. For γ ∈ D[0,∞) define τx(γ) = inf{t : γ(t) ≥ x} to be the first passage time
of γ across x. Consider an f ∈ C[0,∞) and an a > 0 such that

0 < τa(f) <∞ and inf{t > τa(f) : f(t) > a} = τa(f).

If (fn)n≥1 is a sequence in D[0,∞) such that fn → f in D[0,∞), then τa(fn)→ τa(f).

Proof. Fix an arbitrary ε > 0. Since f is continuous, fn converges to f uniformly on compact
sets. In particular, we may fix T > τa(f) and consider fn converging to f uniformly on [0, T ].
Since inf{t > τa(f) : f(t) > a} = τa(f), we can find s0 such that 0 < s0 − τa(f) < ε and
f(s0) > a. Moreover, because f is a continuous function, sup{f(t) : t ≤ τa(f) − ε/2} < a.
Since fn → f uniformly on [0, T ], there exists N such that n ≥ N implies that

sup
0≤t≤T

|fn(t)− f(t)| < min

(
f(s0)− a

2
,
a− sup{f(t) : t ≤ τa(f)− ε/2}

2

)
.

For n ≥ N , we have

fn(s0) ≥ f(s0)− f(s0)− a
2

=
f(s0) + a

2
> a

and therefore τa(fn) ≤ s0 < τa(f) + ε. Moreover, for n ≥ N ,

sup{fn(t) : t ≤ τa(f)− ε/2} ≤ sup{f(t) : t ≤ τa(f)− ε/2}+
a− sup{f(t) : t ≤ τa(f)− ε/2}

2

=
a+ sup{f(t) : t ≤ τa(f)− ε/2}

2
< a,

and thus τa(fn) ≥ τa(f) − ε/2. Hence for n ≥ N we have |τa(fn) − τa(f)| < ε. Since ε is
arbitrary, the lemma is proved.

We now prove Theorem 2.3.1.
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Proof. (Theorem 2.3.1) By the Skorokhod representation theorem (see for example Theorem
6.7 from [Bil99]) and by Lemma 2.3.4 we can construct the relevant process on a single
probability space so that for any T > 0(

(Rl,u,n
Γnt

, Al,u,nΓnt
), 0 ≤ t ≤ T

)
→
(

(Rl,u
t ,A

l,u
t ), 0 ≤ t ≤ T

)
a.s. in the Skorokhod topology on D[0, T ]. Since limn→∞

Γnt
n

= t uniformly on every compact
interval we have (

(Rl,u,n
bntc , A

l,u,n
bntc ), 0 ≤ t ≤ T

)
→
(

(Rl,u
t ,A

l,u
t ), 0 ≤ t ≤ T

)
(2.3.12)

a.s. in the Skorokhod topology on D[0, T ]. Since the radial diffusion term of Gl,u, 1
2g2((r0∨l)∧u)

is bounded away from 0, Rl,u
t almost surely fluctuates across fixed levels after first hitting

them. So, in the notation of Lemma 2.3.5, we have τu(Rl,u
· ) = inf{t : Rl,u(t) ≥ u}. By

applying Lemma 2.3.5, it follows that τu(R
l,u,n
bn·c ) → τu(Rl,u

· ) as n → ∞. Likewise, if for any

γ ∈ D[0,∞) we define τ−(γ) := inf{t : γ(t) < l}, then τl−(Rl,u,n
bn·c ) → τl−(Rl,u

· ) as well. To
simplify notation, let

∆n := τu(R
l,u,n
bn·c ) ∧ τl−(Rl,u,n

bn·c )

and
∆ := τu(Rl,u

· ) ∧ τl−(Rl,u
· )

Then it follows that(
(Rl,u,n
bntc∧∆n

, Al,u,nbntc∧∆n
), 0 ≤ t ≤ T

)
→
(

(Rl,u
t∧∆,A

l,u
t∧∆), 0 ≤ t ≤ T

)
(2.3.13)

a.s. in the Skorokhod topology. By (2.3.5), the transition operators P n(r0, α0) and P n
l,u(r0, α0)

agree when r0 ∈ (l, u). Furthermore, Gl,uf = Gf for any f ∈ C2
c ([l, u],R). Since Gl,u defines

a martingale problem with a unique solution (see the proof of Lemma 2.3.4), we have by
(2.3.13) that(

(Rn
bntc∧τnl,u

, Anbntc∧τnl,u
), 0 ≤ t ≤ T

)
→
(
(Rt∧τl,u ,At∧τl,u), 0 ≤ t ≤ T

)
a.s. in the Skorokhod topology, hence also in distribution.

2.4 The Process on its Natural Time Scale

In this section, we study the convergence of the full trajectory of the particle. To this
end, we need to keep track of the reflection times and the angle of reflection. That is, we
will look at the Markov process ((Rn

k , A
n
k ,∆

n
k ,Θk) , k ∈ N0) with transition operator

P̂ nf(r0, α0, z0, θ0) = E
[
f
(
rn(N (n)(Θ)), αn(N (n)(Θ)), n1/4N (n)(Θ),Θ

)]
.
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The real time of the k-th reflection is given by T nk = n−1/4
∑k

j=0 ∆n
j , where we set ∆n

0 = 0.
Furthermore, we extend T n to all [0,∞) by linear interpolation:

T ns := T nbsc + (s− bsc)(T nbsc+1 − T nbsc), ∀s ∈ [0,∞) (2.4.1)

By (2.1.4) the full trajectory (Rn(t), An(t)), t ≥ 0) of the particle after rescaling is given by

Rn(t) := rn (Rn
k ,Θk, t− T nk )

An(t) := αn (Rn
k , A

n
k ,Θk, t− T nk )

(2.4.2)

for t ∈ [T nk , T
n
k+1). Recall that rn(r0, θ0, t) and αn(r0, α0, θ0, t) represent the radius and angle

respectively of a particle at time t in the potential Un when started at position (r0, α0) and
having total energy En. θ0 is the angle the initial velocity vector makes with the the initial
position vector.

The following theorem is the main result of this section.

Theorem 2.4.1. Let (Rn(t), An(t)) denote the full trajectory of the particle as defined in
(2.4.2) and let

ιnl,u := inf{t : Rn(t) ≤ l or Rn(t) ≥ u}

denote the first time Rn(t) leaves the interval (l, u). Then for any fixed l, u ∈ D◦ with l < u,
as n→∞ we have the following convergence in distribution on D(R+,R):((

Rn(n3/4t ∧ ιnl,u), An(n3/4t ∧ ιnl,u)
)
, t ≥ 0

)
→ ((R(Ω(t) ∧ τl,u)A(Ω(t) ∧ τl,u)) , t ≥ 0)

where Ω is the time change given by

Ω(t) := I
(∫ ·

0

ds

λ(R(s ∧ τl,u))

)
(t)

and I is the inverse operator defined by I(f)(t) = inf{s : f(s) > t}. Furthermore, the
generator for the time changed process ((R(Ω(t)),A(Ω(t)), t ≥ 0)) is G , the generator of the
diffusion ((R(t),A (t)), t ≥ 0) from Theorem 2.1.1.

Remark 2.4.2. The stopping at u and/or at l can be removed when the left and/or right
boundary points of D are inaccessible for the diffusion R. See Remark 2.3.2 and Section 2.5.

The idea of the proof is to time change the step-process Rn
bn·c by a function Ωn(t) such

that

• Ωn → Ω as n→∞,

• Rn(n3/4·) and Rn
nΩn(·) agree at reflection times, as do An(n3/4·) and AnnΩn(·).
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More specifically, Ωn is chosen to satisfy nΩn

(
1

n3/4T
n
k

)
= k so that(

Rn(n3/4t), An(n3/4t)
)

=
(
Rn
nΩn(t), A

n
nΩn(t)

)
= (Rn

k , A
n
k)

whenever t = 1
n3/4T

n
k . We can then utilize our previous convergence results for the step-

process Rn
bn·c to show that

(
Rn(n3/4·), An(n3/4·)

)
and

(
Rn
nΩn(·), A

n
nΩn(·)

)
remain close on each

interval
[

1
n3/4T

n
k−1,

1
n3/4T

n
k

)
.

We will also need to make use of the cut-off process
(

(Rl,u
k , A

l,u
k ,∆

l,u,n
k ), k ∈ N0

)
with

transition operator

P̃ l,u,nf(r0, α0) =

E
[
f
(
rn(N (n)(((r0 ∨ l) ∧ u,Θ)), αn(N (n)((r0 ∨ l) ∧ u,Θ)), n1/4N (n)((r0 ∨ l) ∧ u,Θ)

)]
and the corresponding cut-off reflection-time process:

T l,u,ns :=
1

n1/4

bsc∑
j=1

∆l,u,n
j +

1

n1/4
(s− bsc)(∆l,u,n

bsc+1 −∆l,u,n
bsc ).

Note that T l,u,n is just the cut-off version of T n from (2.4.1).
To motivate the definition of the time change Ω, we first need to evaluate the limiting

behavior of T l,u,n as n → ∞ . The next lemma shows that the following convergence in
distribution holds in D(R+,R) for the cut-off time process T l,u,n.

Lemma 2.4.3. Let
((
Rl,u
t ,A

l,u
t

)
, t ≥ 0

)
be a diffusion whose generator extends the operator

Gl,u defined in (2.3.6). Then we have the following convergence in distribution on the product
space D(R+,R)×D(R+,R)×D(R+,R+).((

Rl,u,n
bntc , A

l,u,n
bntc ,

1

n3/4
T l,u,nns

)
, t, s ≥ 0

)
→

((
Rl,u
t ,A

l,u
t ,

∫ s

0

1

λ((Rl,u
s̃ ∨ l) ∧ u)

ds̃

)
, t, s ≥ 0

)
(2.4.3)

In particular, we have(
1

n3/4
T l,u,nns , s ≥ 0

)
→

(∫ s

0

1

λ((Rl,u
s̃ ∨ l) ∧ u)

ds̃, s ≥ 0

)
(2.4.4)

as n→∞.

Proof. Let Fk = σ
(

(Rl,u,n
j , Al,u,nj )), 0 ≤ j ≤ k

)
, and consider the martingale with respect to

the filtration (Fk)k≥0 given by

W n
k :=

k∑
j=1

(
∆l,u,n
j − E[∆l,u,n

j |Fj−1]
)
, k ∈ N0. (2.4.5)
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Define
φn(ρ) = n1/4E

(
N (n)((ρ ∨ l) ∧ u),Θ)

)
. (2.4.6)

It follows from the Markov property that

E[∆l,u,n
j |Fj−1] = φn(Rl,u,n

j−1 ). (2.4.7)

By Lemma 2.2.4 we have
sup
n,ρ

φn(ρ) <∞

which in turn implies

ξ := sup
(j,n)∈(N0,N)

E
[(

∆l,u,n
j − E[∆l,u,n

j |Fj−1]
)2
]
<∞. (2.4.8)

Hence by Doob’s maximal inequality, for every ε > 0, and for every m ≥ 1

P
{

sup
1≤k≤mn

|W n
k | ≥ nε

}
≤ 1

n2ε2
E
[
|W n

mn|2
]
≤ mξ

nε2
(2.4.9)

from which it follows that

sup
1≤k≤mn

∣∣∣∣ 1nW n
k

∣∣∣∣→ 0 (2.4.10)

in probability as n→∞. By Lemma 2.2.7

lim
n→∞

sup
ρ∈D

∣∣∣∣φn(ρ)− 1

λ((ρ ∨ l) ∧ u)

∣∣∣∣ = 0.

It follows that

lim
n→∞

sup
1≤k≤mn

1

n

k∑
j=1

∣∣∣∣∣φn (Rl,u,n
j−1

)
− 1

λ((Rl,u,n
j−1 ∨ u) ∧ v)

∣∣∣∣∣→ 0 (2.4.11)

almost surely.
Hence, by (2.4.5), (2.4.6), (2.4.7), (2.4.10), (2.4.11) and the triangle inequality

lim
n→∞

sup
1≤k≤mn

∣∣∣∣∣ 1n
k∑
j=1

∆l,u,n
j − 1

n

k∑
j=1

1

λ((Rl,u,n
j−1 ∨ u) ∧ v)

∣∣∣∣∣ = 0, (2.4.12)

in probability. Let

ψl,u(f)(t) :=

∫ t

0

1

λ((f(s) ∨ l) ∧ u)
ds. (2.4.13)
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Then since Rl,u,n
bn·c is a step function with step size 1

n
,

ψl,u
(
Rl,u,n
bn·c

)(k
n

)
=

1

n

k∑
j=1

1

λ(Rl,u,n
j−1 ∨ l) ∧ u)

which implies together with (2.4.12)

lim
n→∞

sup
1≤k≤mn

∣∣∣∣∣ 1n
(

k∑
j=1

∆l,u,n
j

)
− ψl,u

(
Rl,u,n
bn·c

)(k
n

)∣∣∣∣∣ = 0

in probability. Or equivalently,

lim
n→∞

sup
k≤m

∣∣∣∣ 1

n3/4
T l,u,nnk − ψl,u

(
Rl,u,n
bn·c

)
(k)

∣∣∣∣ = 0 (2.4.14)

in probability. Now f → ψl,u(f) is a continuous mapping in the Skorokhod topology. By
(2.3.12) we have the convergence in distribution of the cut-off processes:((

Rl,u,n
bntc , A

l,u,n
bntc

)
, t ≥ 0

)
→
((
Rl,u,
t ,Al,ut

)
, t ≥ 0

)
as n→∞, which implies(

Rl,u,n
bntc , A

l,u,n
bntc , ψ

l,u(Rl,u,n
bn·c )(s), t, s ≥ 0

)
→
(
Rl,u
· ,Al,u· , ψl,u(Rl,u

· )(s), t, s ≥ 0
)

in distribution as n → ∞. The above together with the convergence of the time process
(2.4.14) yield the following convergence in distribution(

Rl,u,n
bntc , A

l,u,n
bntc , n

−3/4T l,u,nns , t, s ≥ 0
)
→
(
Rl,u
· ,Al,u· , ψl,u(Rl,u

· )(s), t, s ≥ 0
)

as n→∞.

As in the proof of Theorem 2.3.1, if we apply the previous lemma and the fact that the
transition operators P n(r0, α0) and P n

l,u(r0, α0) agree when r0 ∈ (l, u), we can show analogous
an result for the non cut-off processes stopped before hitting u or l. The exact statement is
given by the following lemma.

Lemma 2.4.4. Suppose (Rn
k , A

n
k ,∆

n
k , k ∈ N0) is a Markov process with transition operator

Ũn, and (R(t),A(t), t ≥ 0) a diffusion with generator G defined in (2.3.2). If we fix l <
u ∈ D(:= [0, h] or R+), with r0 ∈ (l, u), and let τnl,u = inf{k ≥ 0 : Rn

k ≥ u or Rn
k ≤ l} and

τl,u = inf{t ≥ 0 : Rt ≥ u or Rt ≤ l}, then((
Rn
bntc∧τnl,u

, Anbntc∧τnl,u
, n−3/4T nns∧τnl,u

)
, t, s ≥ 0

)
→
((
R(t ∧ τl,u),A(t ∧ τl,u),

∫ s∧τl,u

0

ds̃

λ(R(s̃ ∧ τl,u))

)
, t, s ≥ 0

)
in distribution on D(R+,R+)×D(R+,R)×D(R+,R+).
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Let us now define the time change Ωn : R+ → R+ by

Ωn(t) = I
(

1

n3/4
T n(n·)∧τnl,u + (· − 1

n
τnl,u)

+ 1

λ(R(τl,u))

)
(t) (2.4.15)

Remark 2.4.5. The reason for the (· − 1
n
τnl,u)

+ 1
λ(R(τl,u))

term is so that we fall in the setting

of Lemma 5.2 from [BR14], which we reproduce here for convenience.

Lemma 2.4.6. If f ∈ D(R+,R+) is continuous and strictly increasing with limt→∞ f(t) =
∞, then I(f) ∈ D(R+,R+) and I is continuous at f .

This result is useful for proving our next lemma which shows weak convergence of the
time-changed step process.

Lemma 2.4.7.((
RbnΩn(t)c∧τnl,u , AbnΩn(t)c∧τnl,u

)
, t ≥ 0

)
→ ((R(Ω(t) ∧ τl,u),A(Ω(t) ∧ τl,u)) , t ≥ 0)

in distribution on D(R+,R+)×D(R+,R) as n→∞.

Proof. By Lemma 2.4.4 and the Skorokhod representation theorem (see for example Theorem
6.7 of [Bil99]) we can construct the relevant processes on a single probability space so that((

Rn
bntc∧τnl,u

, Anbntc∧τnl,u
, n−3/4T nns∧τnl,u

)
, t, s ≥ 0

)
→
((
R(t ∧ τl,u),A(t ∧ τl,u),

∫ s∧τl,u

0

ds̃

λ(R(s̃ ∧ τl,u))

)
, t, s ≥ 0

)
a.s. in the Skorokhod topology on D(R+,R+)×D(R+,R).

Since
∫ s

0
ds̃

λ(R(s̃∧τl,u))
increases linearly in s after s ≥ τl,u, it is clear to see that fn(s) :=

1
n3/4T

n
(ns)∧τnl,u

+ (s− 1
n
τnl,u)

+ 1
λ(R(τl,u))

→
∫ s

0
ds̃

λ(R(s̃∧τl,u))
for s ≥ τl,u as well as s ≤ τl,u. Let

f(s) :=

∫ s

0

ds̃

λ(R(s̃ ∧ τl,u))

Since λ is bounded away from 0 on [l, u], f is strictly increasing. The function f is also
differentiable by the Fundamental Theorem of Calculus, so f meets the assumptions of
Lemma 2.4.6. Hence I is continuous at f and, as n→,∞ Ωn(t) = I(fn)(t)→ I(f)(t) = Ω(t)
a.s. on D(R+,R+). What is more, by Lemma 2.4.4 we have that(

Rn
bntc∧τnl,u

, Anbntc∧τnl,u
,Ωn(s), t, s ≥ 0

)
→ (R(t ∧ τl,u),A(t ∧ τl,u),Ω(s), t, s ≥ 0)
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a.s. on D(R+,R+) ×D(R+,R) ×D(R+,R+) as n → ∞, hence also in distribution. By the
Continuous Mapping Theorem, the result will follow if we can show the function

Ψ : D(R+,R)×D(R+,R)×D(R+,R+)→ D(R+,R)×D(R+,R),

Ψ(f1, f2, φ) := (f1 ◦ φ, f2 ◦ φ)

is a.s. continuous at (R,A,Ω). By considering the coordinate projections, this is equivalent
to showing the composition map (f, φ) 7→ f ◦ φ on D(R+,R) is continuous. It can be shown
that continuity of f implies continuity of the composition map in the Skorokhod topology
(see for example [Bil99][pg 151]). Now, (R,A) has a.s. continuous paths because it is a
diffusion. The function s 7→

∫ s
0

ds̃
λ(R(s̃∧τl,u))

is a.s. strictly increasing and differentiable with

derivative bounded below on compact sets. Thus Ω(s) = I
(∫ s

0
ds̃

λ(R(s̃∧τl,u))

)
is a.s. continuous.

In conclusion, Ψ is a.s. continuous at (R(· ∧ τl,u),A(· ∧ τl,u),Ω(·)) and so by the continuous
mapping theorem(

Rn
bnΩn(t)c∧τnl,u

, AnbnΩn(t)c∧τnl,u
, t ≥ 0

)
→ (R(Ω(t) ∧ τl,u),A(Ω(t) ∧ τl,u), t ≥ 0)

in distribution D(R+,R+)×D(R+,R).

We can now prove the main result of this section: Theorem 2.4.1.

Proof. (Theorem 2.4.1.) To simplify the arguments, we note that Ωn(t) = I
(

1
n3/4T

n
(n·)∧τnl,u

)
(t)

when t ≤ 1
n3/4T

n
τnl,u

.

By construction, T nbn·c maps the reflection index k/n to the kth reflection time. Hence,

the inverse map I(T nbn·c)(t) maps the kth reflection time T nk to the reflection index k/n.

Since I
(

1
n3/4T

n
(n·)∧τnl,u

)
(t) = I

(
T n(n·)∧τnl,u

)
(n3/4t), we have that nΩn

(
1

n3/4
T nk

)
= k when-

ever k ≤ τnl,u. Or equivalently,

R(n3/4t) = Rn
nΩn(t) = Rn

k

whenever t =
Tnk
n3/4 and k ≤ τnl,u. As a consequence, n3/4t ∈ [T nk−1, T

n
k ] implies Ωn(t) ∈ [k−1, k),

so by the piecewise definition of the full trajectory Rn(t) (equation (2.4.2)), if we fix S > 0
we have

sup
0≤t≤S

∣∣∣Rn(n3/4t ∧ T nτnl,u)−Rn
bnΩn(t)c∧τnl,u

∣∣∣
≤ sup

k≤nΩn(S)∧Tn
τn
l,u

sup
t∈[Tnk−1,T

n
k ]

∣∣rn (Rn
k−1,Θk−1, t− T nk−1

)
−Rn

k−1

∣∣ . (2.4.16)
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By fixing M,C > 0, applying a union bound and utilizing the fact that for each k, T nk −T nk−1

is distributed like N (n), we have the following bounds

P
{

sup
0≤t≤S

|Rn(n3/4t ∧ T nτnl,u)−Rn
bnΩn(t)c∧τnl,u

| > ε,Ωn(S ∧ T nτnl,u) ≤M

}
≤ nM sup

(r0,θ)∈[l,u]×[−π,π]

P

{
sup

t∈[0,N(n)(θ)]

|rn(r0, θ, t)− r0| > ε,Ωn(S ∧ T nτnl,u) ≤M

}

≤ nM sup
(r0,θ)∈[l,u]×[−π,π]

P

{
sup

t∈[0,N(n)(θ)∧C]

|rn(r0, θ, t)− r0| > ε,Ωn(S ∧ T nτnl,u) ≤M

}
+ nM sup

(r0,θ)∈[l,u]×[−π,π]

P
{
N (n)(r0,Θ) > C

}
.

By Lemma 2.2.3, for n large enough

sup
(r0,θ)∈[l,u]×[−π,π]

sup
t∈[0,C]

|rn(r0, θ, t)− r0| < ε.

So for such n, P{supt∈[0,C] |rn(r0, θ, t)− r0| > ε} = 0 for all (r0, θ) in [l, u]× [−π, π]. Also, by

Corollary 2.2.5, nM sup(r0,θ)∈[l,u]×[−π,π] P
{
N (n)(r0,Θ) > C

}
approaches 0 as n→∞. So

lim
n→∞

P
{

sup
0≤t≤S

|Rn(n3/4t ∧ T nτnl,u)−Rn
bnΩn(t)c∧τnl,u

| > ε,Ωn(S ∧ T nτnl,u) ≤M

}
= 0. (2.4.17)

By the proof of Lemma 2.4.7, we have(
(Ωn(t), n−1τnl,u), t ≥ 0

)
→ ((Ω(t), τl,u), t ≥ 0)

in distribution as n→∞. So for M > 0 large enough we have

lim
n→∞

P
{

Ωn(t) ∧ T nτnl,u ≤M
}

= 1.

From this and (2.4.17) it follows that

lim
n→∞

P
{

sup
0≤t≤S

|Rn(n3/4t ∧ T nτnl,u)−Rn
bnΩn(t)c∧τnl,u

| > ε

}
= 0.

for any any ε, S > 0. Furthermore, by (2.2.58), we can show that

sup
(r0,α0,θ)∈[l,u]×R×[−π,π]

sup
t∈[0,C]

|αn(r0, α0, θ, t)− α0| < ε.

Calculations identical to those in (2.4.17) show that

lim
n→∞

P
{

sup
0≤t≤S

|An(n3/4t ∧ T nτnl,u)− AnbnΩn(t)c∧τnl,u
| > ε

}
= 0.
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So by Lemma 2.4.7 it follows that((
Rn(n3/4t ∧ T nτnl,u), An(n3/4t ∧ T nτnl,u)

)
, t ≥ 0

)
→ ((R(Ω(t) ∧ τl,u),A(Ω(t) ∧ τl,u)), t ≥ 0)

in distribution. Recall that that ιnl,u = inf{t : Rn(t) ≤ l or Rn(t) ≥ u} is the first time
the full time trajectory Rn(t) exits the interval (l, u) and τnl,u = inf{k : Rn

k ≤ l or Rn
k ≥

u}. Together these imply T nτnl,u is the time of first reflection after the Markov process

Rn
k exits (l, u). An immediate consequence is that ιnl,u ≤ T nτnl,u . Then by continuity of(
Rn(n3/4t ∧ T nτnl,u), An(n3/4t ∧ T nτnl,u)

)
and (R(Ω(t) ∧ τl,u),A(Ω(t) ∧ τl,u)) we conclude that(

Rn(n3/4t ∧ ιnl,u), An(n3/4t ∧ ιnl,u), t ≥ 0
)
→ ((R(Ω(t) ∧ τl,u),A(Ω(t) ∧ τl,u)), t ≥ 0)

in distribution.
Lastly, by Theorem 8.5.1 from [Øks03], if G is the generator of (R(t),A(t), t ≥ 0) then

the generator of (R(Ω(t)),A(Ω(t)), t ≥ 0) will be λ(ρ)G. Since

G = λ(ρ)G

this completes the proof.

2.5 Classifying the boundaries of D
In this section we want to give conditions under which the boundary points of D are

inaccessible. This would imply that the boundary points cannot be reached in finite time.
These results can then be used to remove the stopping at u and/or l in Theorem 2.1.1.

Suppose we have a regular diffusion X with state space the interval (`, r). Every diffusion
has two basic characteristics: the speed measure m(dx) and the scale function s(x).

We assume the infinitesimal generator G : D(G) 7→ Cb(I) of X is a second order differen-
tial operator

Gf(x) =
1

2
σ2(x)∂xxf(x) + µ(x)∂xf(x)

where σ, µ ∈ C(I) and σ2(x) > 0 for all x ∈ I. Then it is well-known that

• The speed measure is absolutely continuous with respect to Lebesgue measure and has
density

m′(x) = 2σ−2(x)eB(x)

• The scale function has density
s′(x) = e−B(x)
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with B(x) :=
∫ x
a

2σ−2(y)µ(y) dy for some arbitrary (fixed) a ∈ I. The domain D(G)
consists of all functions in Cb(I) such that Gf ∈ Cb(I) together with the appropriate boundary
conditions.

The boundary point ` is called accessible when∫ x

`

(∫ x

y

m′(η) dη

)
s′(y) dy <∞

and inaccessible when ∫ x

`

(∫ x

y

m′(η) dη

)
s′(y) dy =∞.

Similarly, one can classify the boundary r.
As we have shown above, the one-dimensional diffusion defining the limiting radial process

has generator Gr that acts on compactly supported functions in C2(D◦) as

Grf(ρ) := µr(ρ)f ′(ρ) +
σ2
r(ρ)

2
f ′′(ρ)

=
1

g2(ρ)

(
− g

′(ρ)

2g(ρ)
+

1

2ρ
− ∂rU(ρ)

4(E − U(ρ))

)
f ′(ρ) +

1

2g2(ρ)
f ′′(ρ).

(2.5.1)

The density of the scale function will be

s′(y) = exp

(
−
∫ y

a

2µr(ρ)

σ2
r(ρ)

dρ

)
= exp

(∫ y

a

(
g′(ρ)

g(ρ)
− 1

ρ
+

∂rU(ρ)

2(E − U(ρ))

)
dρ

)
= exp

(
ln(g(y))− ln(y)− 1

2
ln(E − U(y))− C

)
= exp

(
ln

(
g(y)

y
√
E − U(y)

)
− C

)

=
a
√
E − U(a)

g(a)

(
g(y)

y
√
E − U(y)

)

where C := ln

(
g(a)

a
√
E−U(a)

)
. As a result, if we fix an arbitrary c ∈ D◦ the scale function will

be given by

s(x) =

∫ x

c

s′(y)dy =
a
√
E − U(a)

g(a)

∫ x

c

(
g(y)

y
√
E − U(y)

)
dy. (2.5.2)

The speed measure density for the radial diffusion will be

m′(x) =
2

σ2
r(x)s′(x)

=
2g(a)

a
√
E − U(a)

(
g(x)x

√
E − U(x)

)
. (2.5.3)
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One can then find the speed measure by setting

m(J) :=

∫
J

m′(x)dx =
2g(a)

a
√
E − U(a)

∫
J

g(x)x
√
E − U(x)dx

for any Lebesque measurable J ⊆ D◦.

2.5.1 Examples

As an illustrative example, we consider case when the potential is a gravitational force
directed towards the origin. That is, the potential function is given by

U(ρ) = −k
ρ

for some constant k > 0. Suppose the the total energy of the particle is positive E > 0. We
have

s(x) =

√
(Ea+ k)a

g(a)

∫ x

c

(
g(y)√

(Ey + k)y

)
dy.

Since g is bounded above and bounded away from 0 on R+, for y ↓ 0,

g(y)√
(Ey + k)y

= O
(

1
√
y

)
which implies limx↓0 |s(x)| <∞. For y ↑ ∞ one has

g(y)√
(Ey + k)y

= O
(

1

y

)
so that limx↑∞ s(x) =∞. The speed measure density is given by

m′(x) =
g(a)

a
√
E − U(a)

g(x)
√

(Ex+ k)x

and the speed measure

M(J) =
g(a)

a
√
E − U(a)

∫
J

g(x)
√

(Ex+ k)xdx

for x ∈ R+. If we fix an arbitrary b > 0, then we can observe that limx↓0M([x, b]) <∞, and
and limx↑∞M([b, x]) =∞. We can then apply the boundary classification from [KT81][Table
6.2].



59

lim
x↓0
|s(x)| <∞, lim

x↓0
M([x, b]) <∞

which implies that 0 is a regular boundary, and

lim
x↑∞

s(x) =∞, lim
x↑∞

M([b, x]) =∞

which implies that∞ is a natural boundary. As a result 0 is accessible while∞ is inaccessible.
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Chapter 3

Reconstruction of a manifold from the
intrinsic metric of an associated
Markov chain

3.1 Introduction

We study the Carathéodory metric ρN associated with the infinitesimal generator GN of a
continuous time Markov Chain on a finite weighted graph ΛN . Our goal is to prove a rescaling
of the sequence {ρN}N converges when the corresponding sequence of rescaled generators
{GN}N converges to a diffusive limit. Our basic set up is the following: the vertices of ΛN

are a set of random data points {xi}Ni=1 sampled independent from a distribution P on a
compact Riemannian manifoldM which is embedded in Rn and equipped with Riemannian
volume measure. ΛN is a complete graph on these data points, and has edge weights assigned
by a kernel function K. The transition probabilities for the random walk are constructed
using these edge weights which are chosen to reflect how close different points are in the
ambient Euclidean space, but also attempt to just capture “local” similarities. The specifics
of the construction are discussed in complete detail in the following section.

The Carathéodory metric, also known as the intrinsic metric, is a metric associated with
a Dirichlet form. Since the generator of a reversible Markov chain defines a Dirichlet form
in a natural way, we can associate a Carathéodory metric with this form. These metrics
are studied extensively in [Stu94] and in [Dav93] where they are used to establish bounds
on heat kernels on weighted graphs. More specifically, the Carathéodory metric defined on
a graph with edge weights can be found in Section 4 of [Dav93], where it is assigned the
notation d3. It is observed in that paper that this metric arises naturally from considerations
in noncommutative geometry.

Under a proper rescaling and with a suitable choice of weight functions, as the number
of data points we sample goes to infinity, the infinitesimal generators GN converge in the
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supremum norm to the Laplace-Beltrami operator on M (see for example Theorem 3 of
[THJ11]). In other words, a suitably sped up version of the Markov chain associated with
GN converges to the natural Brownian motion on the manifold. This leads us to conjecture
that after a suitable rescaling, the Carathéodory metric ρN associated with GN also converges
in some sense to the Carathéodory metric associated with the Laplace-Beltrami operator,
which is the geodesic distance metric on M. A more precise statement of the conjecture is
given below in Theorem 3.2.5. If this theorem holds, then for large N , ρN rescaled will be able
to approximate the distances between the points {x1, . . . , xN} in our embedded manifold.
Since the geodesic metric uniquely identifies the Riemannian inner product structure on a
manifold, this shows that in essence we can reconstruct the manifoldM by sampling a large
number of data points from the distribution P and computing the intrinsic metric distances
between these data points.

Before going further, we first give a precise definition for the Carathéodory metric. Sup-
pose E is a Dirichlet form with domain D(E ) on a real Hilbert Space H = L2(X,m), where
X is a locally compact separable Hausdorff with positive measure m fully supported on X
(see [Stu94] for the full details). Then it can be show than E has the form

E (u, v) =

∫
X

dΓ(u, v) (3.1.1)

where Γ is a symmetric bilinear form on D(E ) with values in the signed Radon measures on
X. Γ is known as the energy measure for E . Γ(u, u) is defined by∫

X

φdΓ(u, u) = E (u, φu)− 1

2
E (u2, φ)

for every u ∈ D(E ) ∩ L∞(X,m) and every φ ∈ D(E ) ∩ C0(X). Γ can be extended to any
u, v ∈ D(E ) ∩ L∞(X,m) by polarization:

Γ(u, v) =
1

4
(Γ(u+ v, u+ v)− Γ(u− v, u− v)) .

We can then define the Carathéodory metric associated with E in terms of the corresponding
energy measure Γ by

ρ(x, y) = sup {u(x)− u(y) : u ∈ Dloc(E ) ∩ C(X), dΓ(u, u) ≤ dm on X} (3.1.2)

where Dloc(E ) is the set of all functions in D(E ) whose restriction to any compact set S ⊂ X
is in L2(S), and dΓ(u, u) ≤ dm means the energy measure Γ(u, u) is absolutely continuous
with respect to the reference measure m and with Radon-Nikodym derivative d

dm
Γ(u, u) ≤ 1.

For example, suppose ∆M is the Laplace-Beltrami operator on the compact Riemmanian
manifold M. Then the Dirichlet form associated with ∆M is given by

EM(u, v) := −
∫
M
〈u(x),∆Mv(x)〉dvolMx
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with domain D(EM) = C∞(M), and where dvolMx is the volume element associated with
M. By the definition of ∆M we have

EM(u, u) =

∫
M
|∇u|2 dvolMx

which shows the energy density with respect to the volume element dvolMx is given by
dΓM = |∇u|2 . By (3.1.2), the Carathéodory metric associated with EM is defined by

ρM(x, y) := sup
{
u(x)− u(y) : |∇u|2 ≤ 1 on M

}
, x, y ∈M

which is the geodesic distance on M.

3.2 Construction of the Graph Carathéodory Metric

We now provide a derivation of the second order cone problem that defines our main
object of study: the Carathéodory metric ρN associated with the infinitesimal generator GN

for the Markov chain which we also now define. We let DN = {x1, · · · , xN} denote the data
points which constitute the vertex set of the weighted graph ΛN . We let WN = (wij)

N
i,j=1

denote the N × N symmetric matrix of edge weights between the points of DN . Here wij
represents the weight assigned to the edge connecting xi and xj. wij is assumed to have the
form

wij = K

(
‖xi − xj‖2

h2
N

)
for some kernel function K : R 7→ R+, and some parameter hN ∈ R+ known as the
bandwidth. ‖ · ‖ is the usual Euclidean distance in the ambient space Rn. K is assumed
to be exponential decreasing, and as N → ∞, hN ↓ 0 so that only edges connecting points
close in the ambient space are assigned numerically significant weights. For convenience, we
introduce the function

Kh(x, y) :M×M 7→ R, Kh(x, y) := K

(
‖x− y‖2

h2

)
.

The exact assumptions on K are given in the next section. However, a standard choice
for K is K(x) = e−x so that

wNij = exp(−‖xi − xj‖2/h2
N), 1 ≤ i, j ≤ N,

Remark 3.2.1. Note that the weights wij depend on N , but to simplify notation we leave
this dependence on N implicit. We follow this same convention throughout for the entries
of other matrices and vectors which depend on N .
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For a given matrix of weights, WN , we define a stochastic matrix ΠN = (pij)
N
i,j=1 via

pij =
wij∑N
k=1wik

, 1 ≤ i, j ≤ N. (3.2.1)

The matrix ΠN is reversible with respect to the stationary distribution π given by

πi =

∑N
k=1wik∑N

j=1

∑N
k=1 wjk

;

that is, πipij = πjpji for 1 ≤ i, j ≤ N .
The matrix GN := ΠN − I = (gij)

N
i,j=1 is the infinitesimal generator of a continuous time

Markov chain. GN is also reversible with respect to π, and
∑

j gij = 0 for 1 ≤ i ≤ N .
As with any reversible Markov process, we can associate the Markov chain with in-

finitesimal generator GN to the corresponding Dirichlet form. In our case, this will be the
nonnegative definite, symmetric bilinear form EN on RN given by

EN(u, v) = −
∑
i

πiui(GNv)i

= −
∑
i,j

uivjπigij

=
1

2

∑
i,j

(ui − uj)(vi − vj)πigij

=
1

2

∑
i,j

(ui − uj)(vi − vj)πipij.

Following [Stu94], we associate each pair u, v ∈ RN with the signed energy measure ΓN(u, v)
on DN defined in (3.1.1). So

EN(u, v) =

∫
DN

dΓ(u, v). (3.2.2)

Of course, in our case we can just think of ΓN(u, v) as an element of RN . Specializing the
general recipe for ΓN to our situation, we have that∫

DN
φ dΓN(u, u) = EN(u, φu)− 1

2
EN(u2, φ) (3.2.3)

for all φ ∈ RN . Here we think of u as a function from DN to R, and so u2 and φu are defined
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coordinate-wise. Thus,

ΓN(u, u)k =

∫
DN

δk dΓN(u, u)

= EN(u, δku)− 1

2
EN(u2, δk)

= −
∑
i

uiukπiqik +
1

2

∑
i

u2
iπigik

=
1

2

∑
i

(ui − uk)2πigik

=
1

2

∑
i

(ui − uk)2πipik.

Furthermore, ΓN(u, v) is given by polarization; that is,

ΓN(u, v)k =
1

4
[ΓN(u+ v, u+ v)k − ΓN(u− v, u− v)k] ,

so that

ΓN(u, v)k =
1

2

∑
i

(ui − uk)(vi − vk)πigik

=
1

2

∑
i

(ui − uk)(vi − vk)πipik.

Because πipij = πjpji and πigij = πjgji, we have the alternative formulae

ΓN(u, v)k =
1

2

∑
i

(ui − uk)(vi − vk)πkgki

=
1

2

∑
i

(ui − uk)(vi − vk)πkpki.

In our setting, the procedure for constructing a metric ρN on D from ΓN reduces to the
formula

ρN(xs, xt) = sup{us − ut : u ∈ RN , ΓN(u, u)k ≤ πk, 1 ≤ k ≤ N}, s, t ∈ [N ]. (3.2.4)

That is,

ρN(xs, xt) = sup{us − ut :
1

2

∑
i

(ui − uk)2pki ≤ 1, 1 ≤ k ≤ N}, s, t ∈ [N ]. (3.2.5)
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For the sake of completeness, we give the proof that ρN is a genuine metric on D when
the matrix ΠN is irreducible. It is clear that ρN(xs, xs) = 0 for all s ∈ [N ]. Since all the
vectors u in some ball around 0 satisfy the constraints 1

2

∑
i(ui − uk)2pki ≤ 1, 1 ≤ k ≤ N ,

it is clear that ρN(xs, xt) > 0 for all s, t ∈ [N ] with s 6= t. Also, if the vector u satisfies
these constraints, then so does the vector −u, and hence ρN(xs, xt) = ρN(xt, xs) for all
s, t ∈ [N ]. By the irreducibility of ΠN , if s, t ∈ [N ], then there exist s = i1, i2, . . . , ik = t in
[N ] such that pij ,ij+1

> 0 for 1 ≤ j ≤ k − 1. If the vector u satisfies the constraints, then
(uij+1

− uij)2pij ,ij+1
≤ 2 and so

ρN(s, t) ≤
k−1∑
j=1

|uij+1
− uij | ≤

√
2
k−1∑
j=1

(pij ,ij+1
)−

1
2 <∞.

Lastly, by the triangle inequality ρn(xr, xt) ≤ ρN(xr, xs) + ρN(xs, xt) for all r, s, t ∈ [N ] is
immediate from the observation that ur − ut = (ur − us) + (us − ut). For fixed s, t ∈ [N ]
then, we can pose the computation of ρN(xs, xt) as a second-order cone program as discussed
in [LVBL98]. If we note that maximizing us − ut is equivalent to minimizing ut − us, then
−ρ(s, t) is the value of the following second-order cone program:

minimize (et − es)Tu
subject to ‖ANk u‖ ≤ 1, 1 ≤ k ≤ N,

(3.2.6)

where ei the column vector that has a 1 in coordinate i and 0 elsewhere, the superscript T
denotes the transpose, and ANk is the N ×N matrix 1√

2
diag(

√
pk·)(I − 1̃eTk ), where pk· is the

row vector given by the kth row of the matrix P and 1̃ is the column vector whose entries
are all 1.

The problem (3.2.6) is clearly strictly feasible in the terminology of [LVBL98]; that is,
there is a vector u such that ‖ANk u‖ < 1 for 1 ≤ k ≤ N (all the vectors in some ball around
0 satisfy this condition). Moreover, as we have shown above, the value of (3.2.6) is finite for
all s, t ∈ [N ] and so any vector u ∈ RN that satisfies ANk u = 0 for 1 ≤ k ≤ N must also
satisfy ut − us = 0 for all s, t ∈ [N ] and hence be a multiple of 1̃.

From (29) of [LVBL98], the dual problem to (3.2.6) is

maximize −
N∑
k=1

wk

subject to
N∑
k=1

(ANk )T zk = et − es

and ‖zk‖ ≤ wk, 1 ≤ k ≤ N

(3.2.7)

where the unknowns zk belong to RN and the unknowns wk belong to R.
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As observed in Section 4 of [LVBL98], the strong feasibility of the primal problem (3.2.6)
implies that the dual problem (3.2.7) is feasible, the optima are attained in both the primal
and the dual problems, and these optima are equal.

It is clear that we can rewrite the dual problem (3.2.7) as

maximize −
N∑
k=1

‖zk‖

subject to
N∑
k=1

(ANk )T zk = et − es.

Because of the sign change we made leading to (3.2.6), we see that ρN(xs, xt) is the value of
the program

minimize
N∑
k=1

‖zk‖

subject to
N∑
k=1

(ANk )T zk = et − es.

Sufficient conditions for optimality of the primal problem are given by (32),(33) and
(34) in Section 4 of [LVBL98]. These conditions generalize the complementary slackness
conditions between the primal and dual solutions in the linear programming setting. That
is, a point u is optimal for (3.2.6) if u is feasible for (3.2.6) and there exists a dual-feasible
set {zk}Nk=1 such that u and {zk}Nk=1 satisfy

‖ANk u‖ < 1 =⇒ ‖zk‖ = 0

‖ANk u‖ = 1 =⇒ zk = −‖zk‖ANk u
(3.2.8)

If both the primal and dual problems are strictly feasible, then the generalized complemen-
tary slackness conditions are also necessary.

3.2.1 Assumptions

We now describe in detail our underlying assumptions on the data points, the manifold
M and the kernel K. These assumptions will be required to show convergence of the metrics
{ρN}N .

Assumption 3.2.2. (Data Point Assumptions)

1. The data points {xi}∞i=1 are independent random variables sampled from a distribution
P on M. DN = {x1, . . . , xN} denotes the first N points of this set.
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2. We suppose P has density p ∈ C3(M) with respect to the natural volume element
dvolM on M, and p is bounded below by some pmin > 0 on M.

Assumption 3.2.3. (Manifold Assumptions) We assume M is an m-dimensional compact
manifold and is isometrically and smoothly embedded in Rn. The embedding allows us to
think of the tangent spaces to the manifold as hyperplanes in Rn and we can use the usual
Euclidean inner product on Rn to put a Riemannian inner product on these tangent spaces.
In addition, we will assume our m-dimensional manifold M satisfies the conditions from
Assumption 1 of [HAvL05] which we restate here:

1. The boundary ∂M of M is empty.

2. M has a bounded second fundamental form.

3. M has bounded sectional curvature.

4. For any x ∈M, the regularity radius r at x is defined by

r(x) = sup

{
r > 0| ‖x− y‖2 ≥ 1

2
d2
M(x, y) ∀y ∈ BM(x, y)

}
.

We assume r is continuous and for any x ∈M, r(x) > 0.

5. for any x ∈ M, δ(x) := infy∈M\BM(x, 1
3

min inj(x),r(x)) ‖x − y‖ > 0 where inj denotes the
injectivity radius x.

We suppose also that we have have a kernel K satisfying Assumption 2 of [HAvL05],
which we also restate here.

Assumption 3.2.4. (Kernel assumptions) K : R+ 7→ R is measurable, non-negative and
non-increasing. In addition,

1. K ∈ C2(R+). In particular, this implies K and ∂2K
∂x2

are bounded.

2. K, |∂K
∂x
| and |∂2K

∂x2
| have exponential decay; that is, there exist c, α, and A in R+ such

that for any t ≥ A, f(t) ≤ ce−αt, where f(t) = max{K(t), |∂K
∂x
|(t), |∂2K

∂x2
|(t)}.

These assumptions allow us to apply the machinery from Theorem 4 of [THJ11] and The-
orem 3 of [HAvL05]. Both of these theorems show convergence of weighted graph Laplacians
to a weighted Laplace-Beltrami operator on M.

Under these assumptions, we conjecture the sequence {ρN}N converges in the following
sense.
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Theorem 3.2.5. Let dM denote the geodesic distance metric on M. Then

lim
N→∞

‖ChN · ρN − dM|DN×DN‖∞ = 0 a.s.

where {hN} is an appropriately defined sequence of bandwidth functions going to 0 as N →
∞, and C is a constant depending on M and K. In particular, C =

√
M2/2M0 where

M0 :=
∫
Rm K(‖y‖2)dy and M2 :=

∫
Rm K(‖y‖2)y2

1dy. For the lower bound estimates, we
require that limN→∞ h

m+4
N

N
logN

→∞.

We let ρ̃N :=
√

M2

2M0
ρN denote the rescaled metric. In the next section we prove dM is a

limiting lower bound for the sequence {ρ̃N}N in the sense that dM|DN×DN ≤ ρ̃N + O (hN).
In section 3.4 we give some heuristic arguments for why dM is a limiting upper bound, but
we have not yet found a rigorous proof.

3.3 Lower bound limits for the graph Carathéodory

metric

In this section we prove the geodesic metric dM is a limiting lower bound for the rescaled
Carathéodory metric in the sense of the following proposition.

Proposition 3.3.1. As above, let ρ̃N :=
√

M2

2M0
h · ρN . Then almost surely

dM|DN×DN ≤ ρ̃N +O (hN)

where O (hN) is a function depending on M and ‖p‖C3. For any k ∈ N, the norm ‖ · ‖Ck(M)

is given by
‖f‖Ck(M) := sup

|α|≤k,x∈M
|∂αf(x)|

where α denotes a multi-index.

We first note that by (3.2.6)

ChN · ρN = sup{ChN(us − ut) :
1

2

∑
i

(ui − uk)2pki ≤ 1, 1 ≤ k ≤ N}

= sup{us − ut :
1

2

∑
i

(ui − uk)2pki ≤ C2h2
N , 1 ≤ k ≤ N}

(3.3.1)

The proof of Proposition 3.3.1 centers around estimating the limiting value of the left hand
side of the constraint in (3.3.1) as N →∞.
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If we let PN = 1
N

∑N
i=1 δxi be the empirical distribution on DN , then we can rewrite the

left hand side of the constraints in the problem 3.3.1 in the form:

1

2

∑
i

(ui − uk)2pki =
1

2

(
1

N

∑
i

(ui − uk)2Kh(xk, xi)

)(
1

1
N

∑
jKh(xk, xj)

)
=

1

2
PN
(
(f(·)− uk)2Kh(xk, ·)

) 1

PN(Kh(xk, ·))

where we let Q(φ) := EQ[φ] for any measure Q and any function φ integrable with respect to
this measure. The limiting behavior of this constraint is established in the following lemma.

Lemma 3.3.2. Suppose f ∈ C∞(M) and let uN := f |DN ∈ RN denote the restriction of f
to the data points DN . Suppose hN ↓ 0 as N → ∞, and limN→∞ h

m+4
N

N
logN

→ ∞. Then we
have almost surely for all k = 1, . . . , N ,

1

2

∑
i

(ui − uk)2pki =
1

2
PN
(
(f(·)− uk)2KhN (xk, ·)

) 1

PN(KhN (xk, ·))

=

(
M2

2M0

|∇f(xk)|2
)
h2
N +O(h3

N)

(3.3.2)

where O(h3
N) is a function of ‖f‖C3, ‖p‖C3 and M, and a bounded function in xk.

To prove Lemma 3.3.2, we make use of Proposition 2 of [HAvL05], which gives esti-
mates for integrals of functions against the kernel Kh with respect to the measure P . For
completeness, we reproduce the proposition here.

Proposition 3.3.3. ifM satisfies Assumption 3.2.3 and K satisfies Assumption 3.2.4, and
if P satisfies Assumption (2) of 3.2.2, then we have for any x ∈ M\∂M there exists an
h0(x) > 0 for any g ∈ C3(M) such that for all h < h0(x),

1

hm
P (Kh(x, ·)g(·))

= M0p(x)g(x) +
h2

4
M2

(
p(x)g(x)

[
−R +

1

2
‖
∑
a

Π(∂a, ∂a)‖2
TxRn

]
+ 2(∆(pg))(x)

)
+O(h3).

where R is the scalar curvature, M0 :=
∫
Rm K(‖y‖2)dy <∞ and M2 :=

∫
Rm K(‖y‖2)y2

1dy <
∞, and O(h3) is a function depending on x, ‖g‖C3, and ‖p‖C3.

Remark 3.3.4. WhenM is compact and without boundary, as in our situation, the estimates
in Proposition 3.3.3 are uniform in x, so that we can remove the x dependence of O(h3). For
example see Lemma 8 of [CL06] which states similar result to Proposition 3.3.3, but with
estimates uniform in x for all x bounded away from ∂M, which is empty in our setting.
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Proof. (Lemma 3.3.2) The proof is done in two steps. First, we show that the quantity

1

2
PN
(
(f(·)− uk)2KhN (xk, ·)

) 1

PN(KhN (xk, ·))

can be estimated with the quantity

1

2
P
(
(f(·)− uk)2KhN (xk, ·)

) 1

P (KhN (xk, ·))

with error O (h3
N). Next, we apply Proposition 3.3.3 to show that this quantity in turn

estimates
(
M2

2M0
|∇f(xk)|2

)
h2
N with error that is alsoO (h3

N). To simplify notation throughout

this proof, we will leave the depedence of hN on N implicit and instead write just h. We
now investigate the convergence of the integrals with respect to the empirical distribution
PN . In particular, we need to show

lim
N→∞

sup
k∈[N ]

1

h3

∣∣∣∣P ((f(·)− f(xk))
2Kh(xk, ·))

P (Kh(xk, ·))
− PN ((f(·)− f(xk))

2Kh(xk, ·))
PN(Kh(xk, ·))

∣∣∣∣ = 0 a.s.

(3.3.3)
where the convergence is uniform for f ∈ C∞(M) such that |∇f |2 ≤ 1. By the triangle
inequality, for any x ∈M we have the bounds

1

h3

∣∣∣∣P ((f(·)− f(xk))
2Kh(xk, ·))

P (Kh(xk, ·))
− PN ((f(·)− f(xk))

2Kh(xk, ·))
PN(Kh(xk, ·))

∣∣∣∣
≤
∣∣∣∣ 1

1
hm
P (Kh(x, ·))

∣∣∣∣ · 1

hm+3

∣∣PN ((f(·)− f(x))2Kh(x, ·)
)
− P

(
(f(·)− f(x))2Kh(x, ·)

)∣∣
+

∣∣∣∣ 1

hm
PN
(
(f(·)− f(x))2Kh(x, ·)

)∣∣∣∣ · 1

h3

∣∣∣∣ 1
1
hm
PN(Kh(x, ·))

− 1
1
hm
P (Kh(x, ·))

∣∣∣∣ .
(3.3.4)

The quantity

1

hm+3

(
PN
(
(f(·)− f(x))2Kh(x, ·)

)
− P

(
(f(·)− f(x))2Kh(x, ·)

))
we can rewrite as 1

hm+3

∑N
j=1 Zj, where

Zj(x) :=
1

N

(
(f(xj)− f(x))2Kh(x, xj)− P

(
(f(·)− f(x))2Kh(x, ·)

))
are i.i.d. centered random variables.

Then we have the following bounds for all j = 1, . . . , N and x ∈M

|Zj(x)| ≤ 8

N
|Kmax||CM|2 :=

C1

N
.
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where Kmax and CM are constants such that K(·) ≤ Kmax <∞ onM, and f(·) ≤ CM <∞
for all f ∈ C∞(M) with |∇f |2 ≤ 1 and f(xi) = 0 for some xi ∈ D. By the compactness of
M, it is possible to choose CM to be finite.

Furthermore, the proof of Theorem 3 from [THJ11] shows that the first and second
moments of Kh are O (hm+2), so we can bound P [Zj(x)2] by

P [Zj(x)2] := Var(
1

N
Kh(x, xj)) ≤ C2

hm+2

N2

for some constant C2 <∞.
Then an application of Bernstein’s inequality shows for all x ∈M and ε > 0,

P

{
1

hm+3

∣∣∣∣∣
N∑
j=1

Zj(x)

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− 3hm+4ε2

6
∑N

j=1 P [Zj(x)2] + 2C1

N
hm+3ε

)

≤ 2 exp

(
− 3Nhm+4ε2

6C2hm+2 + 2C1hm+3ε

)
.

Since this holds for all x, by a union bound we have that for arbitrary collection of N points
yk ∈M (k = 1, . . . , N)

P

{
sup
k≤N

∣∣∣∣∣ 1

hm+3

N∑
j=1

Zj(yk)

∣∣∣∣∣ > ε

}
≤ 2N exp

(
− 3Nhm+4ε2

6C2hm+2 + 2C1hm+3ε

)
. (3.3.5)

A sufficient condition for the left hand side of (3.3.5) to be summable in N is that

lim
N→∞

hm+4
N

N

logN
→∞. (3.3.6)

If we replace the points yk above with the random variables xk for k = 1, . . . , N , then by the
Borel-Cantelli lemma

lim
N→∞

1

hm+3

∣∣PN ((f(·)− f(xk))
2Kh(xk, ·)

)
− P

(
(f(·)− f(xk))

2Kh(xk, ·)
)∣∣ = 0 a.s.

(3.3.7)
uniformly in k and in f . To estimate the second term of (3.3.4), we again apply the bounds∣∣ 1
a+t
− 1

a

∣∣ ≤ C|t| with a = 1
hm
P (Kh(x, ·)) = M0p(x) + O(h2) ≥ M0pmin + O(h2) > 0 for h

small enough, and t = PN(Kh(xk, ·))− P (Kh(xk, ·)), we see that

1

h3

∣∣∣∣ 1
1
hm
PN(Kh(x, ·))

− 1
1
hm
P (Kh(x, ·))

∣∣∣∣ =
1

h3
O
(∣∣∣∣ 1

hm
PN(Kh(xk, ·))−

1

hm
P (Kh(xk, ·))

∣∣∣∣) .
By an argument identical to the one above, we can show

lim
N→∞

sup
k∈[N ]

1

hm+3
|PN(Kh(xk, ·))− P (Kh(xk, ·))| = 0 a.s. (3.3.8)
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since (3.3.6) holds by assumption.
Then for all x ∈M and for all small enough h > 0,

1
1
hm
P (Kh(x, ·))

≤ 1

M0pmin

+O(h2) <∞ (3.3.9)

by Proposition 3.3.3. Furthermore, we have the estimates

1

hm
PN
(
(f(·)− f(x))2Kh(x, ·)

)
≤ 4M0pmaxC2

M <∞. (3.3.10)

Combining (3.3.7) with (3.3.9) shows the first term on the right hand side of (3.3.4) converges
a.s. to 0. Similarly, (3.3.8) and (3.3.10) show the second term also converges a.s. to 0. This
proves (3.3.3).

We now show convergence of the quantity

1

2
P
(
(f(·)− uk)2KhN (xk, ·)

) 1

P (KhN (xk, ·))
.

For the function g(·) = (f(·)− uk)2, we have

∇g(·) = 2 (f(·)− uk)∇f(·),
∆g(·) = 2(f(·)− uk)∆f(·) + 2|∇f(·)|2.

In particular, g(xk) = 0, ∇g(xk) = 0, and ∆g(xk) = 2|∇f(xk)|2, so applying Proposition
3.3.3 to g we have that

1

hm
P (g(·)Kh(xk, ·)) = M2

h2

4
(2(∆(pg))(xk)) +O(h3)

= M2
h2

2
(p(xk)(∆g)(xk) + 2(∇p)(xk)(∇g)(xk) + (∆p)(xk)g(xk)) +O(h3).

= h2M2p(xk)|∇f(xk)|2 +O(h3).

(3.3.11)

Applying Proposition 3.3.3 with f = 1:

1

hm
P (Kh(xk, ·)) = M0p(xk) +O(h2). (3.3.12)

Thus, P (Kh(xk, ·)) ≥ M0pmin + O(h2) > 0 for h small enough. The first order Taylor
expansion of the function f(x) = 1/x centered at a 6= 0 shows∣∣∣∣ 1

a+ t
− 1

a

∣∣∣∣ ≤ C|t|
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for t in a neighborhood of 0. If we apply this bound with a = P (Kh(xk, ·)) and t =
1
hm
P (Kh(xk, ·))−M0p(xk) it follows that

1
1
hm
P (Kh(xk, ·))

=
1

M0p(xk)
+O

(
1

hm
P (Kh(xk, ·))−M0p(xk)

)
=

1

M0p(xk)
+O(h2).

(3.3.13)
By multiplying (3.3.11) and (3.3.13),

1

2

1

hm
P
(
(f(·)− uk)2Kh(xk, ·)

) 1
1
hm
P (Kh(xk, ·))

=

(
M2

2M0

|∇f(xk)|2
)
h2 +O(h3). (3.3.14)

Combined with (3.3.3), this proves Lemma 3.3.2.

We are now able to prove Proposition 3.3.1.

Proof. (Proposition 3.3.1) We first introduce some new terminology. A function f ∈ C∞(M)
is said to be dM-admissible if |∇f |2 ≤ 1. in other words, f satisfies the constraints of the
optimization problem

sup {u(x)− u(y) : |u ∈ C∞(M), |∇u| ≤ 1} (3.3.15)

whose optimal value is the geodesic distance dM(x, y). Likewise, a vector u ∈ RN is ρ̃N -
admissible if u satisfies all the constraints of the primal problem (3.3.1). That is,

1

2

∑
i

(ui − uk)2pki ≤ C2h2
N

for 1 ≤ k ≤ N . Suppose f is dM-admissible, and let u := f |DN . Then by Lemma 3.3.2,

1

2

∑
i

(ui − uk)2pki
2M0

M2

1

h2
≤ |∇f(xk)|2 +O(hN) ≤ 1 +O(hN). (k = 1, . . . , N)

This shows that if f is dM-admissible then u√
1+O(hN )

is ρ̃N -admissible. Since the problems

(3.3.1) and are invariant under translations f 7→ f + c, without loss of generality we can
assume f(x0) = 0 for some fixed x0 ∈M. Now the set

S := {f ∈ C∞(M), f(x0) = 0, |∇f | ≤ 1}

is uniformly bounded in C3(M). Since the value of O (hN) depends on f through ‖f‖C3 , it
is uniformly bounded over all dM-admissable f .

Now
u√

1 +O (hN)
= u+ uO(hN) = u(1 +O(hN))
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since u = f |DN can be bounded uniformly for all N and for all f ∈ S. So we have shown
that every dM-admissable function f defines a ρ̃N -admissable vector f |DN (1 +O (hN)). Fur-
thermore, the difference between the objective function of the problem for (3.3) evaluated at
f and the objective function of the problem (3.3.1) evaluated at f |DN (1 +O (hN)) is O (hN).
It follows that dM|DN×DN ≤ ρ̃N +O(hN).

3.4 Uppper bound limits for the graph Carathéodory

metric

In this section we provide some heuristic arguments which suggest why the geodesic
metric may be a limiting upper bound for the sequence of metrics {ρ̃N}N . In the previous
section we showed that dM was a limiting lower bound for {ρ̃N}N by examining the limiting
behavior of the constraint for the rescaled primal problem (3.3.1). We will analyze the
rescaled dual problem to try to establish upper bounds for the metric ρ̃N . Consider the
rescaled primal problem:

maximize

√
M2

2M0

hN(et − es)Tu

subject to ‖ANk u‖ ≤ 1, 1 ≤ k ≤ N.

It is equivalent to the problem:

maximize (et − es)Tu

subject to ‖ANk u‖ ≤
√

M2

2M0

· hN , 1 ≤ k ≤ N.
(3.4.1)

The corresponding dual problem is given by

minimize

(√
M2

2M0

hN

)
·
N∑
k=1

‖zk‖

subject to
N∑
k=1

(ANk )T zk = et − es.

(3.4.2)

From the complementary slackness conditions (3.2.8), we know that if u∗ is the optimal
solution for the primal problem (3.4.1), then the optimal dual solution (z∗k)

N
k=1 has the form

z∗k = ckA
N
k u
∗, for some constants {ck}Nk=1.

The strategy we propose for attempting to show dM is a limiting upper bound for the se-
quence {ρ̃N}N is the following. We estimate the primal optimal solution u∗ with the function
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dM(xs, ·)|DN , which we can identify with the vector (dM(xs, xj))
N
j=1. By the complementary

slackness conditions (3.2.8), we will in turn estimate the dual optimal solution (z∗k)
N
k=1 by

(z̄k)
N
k=1, where

z̄k := ckA
N
k (dM(xs, xj))

N
j=1 (3.4.3)

for some constants {ck}Nk=1 which are yet to be determined. Without loss of generality, we
can assume that (z̄k)

N
k=1 is a feasible point for a perturbation of (3.4.2) which has the form

minimize

(√
M2

2M0

hN

)
·
N∑
k=1

‖zk‖

subject to
N∑
k=1

(ANk )T zk = et − es + νN

(3.4.4)

where

νN :=
N∑
k=1

(ANk )T z̄k − (et − es).

We want to show that as N → ∞, the optimal value of (3.4.4) approaches dM(xs, xt) and
also that the difference between the optimal values of (3.4.4) and (3.4.2) goes to 0. That is,
we need to find a set of constants {ck}Nk=1 such that

lim
N→∞

∣∣∣∣∣
(√

M2

2M0

hN

)
·
N∑
k=1

‖z̄k‖ − dM(xs, xt)

∣∣∣∣∣ = 0 (3.4.5)

and

lim
N→∞

(√
M2

2M0

hN

)∣∣∣∣∣
N∑
k=1

‖z̄∗k‖ −
N∑
k=1

‖z∗k‖

∣∣∣∣∣ = 0 (3.4.6)

where (z̄∗k)
N
k=1 is optimal for (3.4.4), and the convergence holds either almost surely or with

probability going to 1 as N → ∞. Furthermore, we want these bounds to be uniform
in the indices s, t ∈ [N ] of the objective functions of (3.4.2) and (3.4.4). Since (3.4.4) is
a minimization problem, the objective value of any point feasible for (3.4.4) is an upper

bound for the optimal value. In particular,
(√

M2

2M0
hN

)
·
∑N

k=1 ‖z̄k‖ is an upper bound

for
(√

M2

2M0
hN

)
·
∑N

k=1 ‖z̄∗k‖. If (3.4.6) holds, then
(√

M2

2M0
hN

)
·
∑N

k=1 ‖z̄k‖ would also be an

approximate upper limit for the optimal value of the unperturbed problem (3.4.2). Combined
with (3.4.5), this would show that the geodesic distance dM(xs, xt) is an approximate upper
bound for ρ̃N .

We now investigate selecting constants ck to make (3.4.5) hold. Let γ denote a path
length minimizing geodesic from xs to xt. We will assume the coefficients ck have the form:

ck =
1

h2
N

2M0

M2

· µk (3.4.7)
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for some µk ≥ 0 which are chosen so that∑
i

µi = |γ| = dM(xs, xt) (3.4.8)

where |γ| denotes the arc length of γ, and the last equality holds because γ is a geodesic.
For this choice of ck, the dual objective function evaluated at (z̄k)

N
k=1 is given by:(√

M2

2M0

hN

)
·
N∑
k=1

‖z̄k‖ =

(√
2M0

M2

)
N∑
k=1

(
µk ·

∥∥∥∥∥ANk (dM(xs, xj))
N
j=1

hN

∥∥∥∥∥
)

=

(
N∑
k=1

µk

)
(1 +O (hN)) = dM(xs, xt) (1 +O (hN)) .

(3.4.9)

In the second equality, we applied Proposition 3.3.2 with f(·) = dM(xs, ·) to show

‖ANk (dM(xs, xj))
N
j=1 ‖

2

h2
N

=
M2

2M0

|∇dM(xs, ·)|2 +O (hN) ,

followed by the first order Taylor expansion of the function f(x) =
√
x centered at a 6= 0,

which shows
|
√
a+ t−

√
a| ≤ C|t|

for t in a neighborhood of 0. We apply this with a = M2

2M0
|∇dM(xs, ·)|2 and t = hN , which

gives the estimate
‖ANk (dM(xs, xj))

N
j=1 ‖

hN
=

√
M2

2M0

+O (hN) ,

since |∇xdM(xs, x)| = 1 for x 6= xs.

The estimates in (3.4.9) show that if we choose {ck}Nk=1 according to (3.4.7) and (3.4.8),
our approximation for the dual solution, (z̄)Nk=1 satisfies almost surely(3.4.5) with error
O (hN).

To show (3.4.6) holds, we want to show first that the perturbation νN → 0 in some sense
as N → ∞; then we must establish conditions under which this implies the optimal values
of (3.4.2) and (3.4.4) converge with high probability. To this end, we will show that νN
converges to 0 in a weak sense. That is, we will show

lim
N→∞

|〈νN , f |DN 〉| = 0.

for all f belonging to a set of test functions F which is yet to be determined.
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We begin by rewriting the constraint for (3.4.2). When {zk}Nk has the form zk = ckA
N
k u

for some u ∈ RN , the dual constraint equation for (3.4.2) becomes

N∑
k=1

ck(A
N
k )TANk u = et − es.

Since ANk = 1√
2
diag(

√
pk·)(I − 1̃eTk ), by expanding we see that∑

k

ck(A
N
k )TANk u =

1

2

∑
k

cK(I − ek1̃T )diag(pk·)(I − 1̃eTk )u∗

=
1

2

∑
k

ck

[
(pkjuj)

N
j=1 − (pkjuk)

N
j=1 −

(
N∑
l=1

pklul

)
ek + ukek

]
.

Let f :M 7→ R, and let fk = f(xk). Then if we take the Euclidean inner product of the left
hand side of the above equation with the restriction vector (fk)

N
k=1, we have

1

2

∑
j

(∑
k

ck(A
N
k )TANk u

)
j

fj

=
1

2

∑
k

ck

[∑
j

pkjujfj −

(∑
j

pkjfj

)
uk −

(∑
l

pklul

)
fk + fkuk

]

=
1

2

∑
k

ck

[(∑
j

pkjujfj − ukfk

)
−

(∑
j

pkjfj − fk

)
uk −

(∑
l

pklu
∗
l − u∗k

)
fk

]

=
1

2

∑
k

ck
[
GN((f |DN · u)Nk=1)(xk)− uk ·GN(f |DN )(xk)− fk ·GN(u)(xk)

]
.

As above, GN = ΠN − I denotes the generator of the random walk on DN with transition
probability matrix Πn, and the vector u is viewed as the function u : DN 7→ R such that
u(xk) = uk. Then by taking the Euclidean inner product of the right hand size of the
constraint equation with (fk)

N
k=1, we see that the constraint equation

∑N
k=1 ck(A

N
k )TANKu =

et − es is equivalent to the weak form

1

2

∑
k

ck
[
GN((f |DN · u)Nk=1)(xk)− uk ·GN(f |DN )(xk)− fk ·GN(u)(xk)

]
= ft − fs (3.4.10)

for all (fk)
N
k=1 ∈ RN .

Let us now investigate the limiting behavior of the left hand side of this constraint when
(fk)

N
k=1 = f |DN for a sufficiently smooth f :M 7→ R. By Theorem 3 of [THJ11], if hN → 0

and
Nhd+2

N

logN
→∞, then for any φ ∈ C2(M)

‖ZK,d
h2
N

GN(φ|DN )−∆2φ‖∞ → 0 a.s. (3.4.11)
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Here ∆2 := 1
p2

div(p2grad) denotes the 2-weighted Laplacian with respect to the density p.

By Theorem 1 of [HAvL05], the constant ZK,d = 2M0

M2
. Then the left hand side of the weak

form of the dual constraint (3.4.10) evaluated at (z̄k)
N
k=1 is given by

1

2

∑
k

µk [∆2(f(·)dM(xs, ·))(xk)− dM(xs, xk) ·∆2f(xk)− f(xk) ·∆2(dM(xs, ·))(xk)) + ε∆]

(3.4.12)
where ε∆ is the error depending on N , hN and f that was incurred by applying the estimate
(3.4.11).

To bound the error ε∆, we define the operator

(∆h,2f) (x) :=
1

h2

(
1

dh(x)

∫
M

1

hm
Kh(x, y)f(y)p(y)dvolM(y)− f(x)

)
where dh(x) =

∫
M

1
hm
Kh(x, y)p(y)dvolM(y) is the continuous degree operator. From the

triangle inequality,

ε∆ ≤
2M0

M2

∣∣∣∣ 1

h2
N

GN(f |DN )−∆h,2f(x)

∣∣∣∣+

∣∣∣∣2M0

M2

∆h,2f(x)−∆2f

∣∣∣∣ .
These two terms are known as the variance and the bias term respectively. By Theorem 1
of [HAvL05] we can bound the bias term by∣∣∣∣2M0

M2

∆h,2f(x)−∆2f

∣∣∣∣ = O
(
h2
)
,

where O (h2) is a function depending on ‖f‖C3 and ‖p‖C3 . For the variance term, we have
by Theorem 2 of [HAvL05] that for any ε > 0 the probabilistic bounds

P

(∣∣∣∣ 1

h2
N

GN(f |DN )−∆h,2f(x)

∣∣∣∣ ≥ ε

)
≤ CNe

−Nhm+4ε2

C

which shows almost sure convergence when Nhm+4/logN → ∞. If we replace ε with ε · h,

then this shows that 1
h

∣∣∣ 1
h2N
GN(f |DN )−∆h,2f(x)

∣∣∣→ 0 a.s. under the stronger condition that

Nhm+6/logN →∞. In this case, we have 1
h2N
GN(f |DN ) = ∆h,2f(x)+O (h) ). Hence, we have

that ε∆ = O (h), and we can improve this bound to O (h2) if we allow Nhm+8/logN →∞.
that we have shown the error ε∆ goes to 0 under appropriate conditions, we now want to

show the sum

1

2

∑
k

µk [∆2(f(·)dM(xs, ·))(xk)− dM(xs, xk) ·∆2f(xk)− f(xk) ·∆2(dM(xs, ·))(xk))]
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converges to f(xt) − f(xs). To do this, in addition to (3.4.8), we require that measure µ
given by

µ :=
N∑
k=1

µkδxk

converges weakly to the arc-length measure on γ. That is,∫
M
fdµ =

N∑
k=1

f(xk)µk →
∫
γ

fd‖γ‖

as N → ∞ for any f in our suitably chosen family of test functions, F . To find a measure
µ approximating the arc length measure of γ, we apply Theorem 2.7 from [BCC+10], which
states that for all 1

2
< α < 3

2
, there exists a c > 0 with the following property: If range(γ) =

γ1 ∪ · · · ∪ γK is a decomposition of range(γ) into disjoint pieces with length |γj| = ωj, then
there exists a distribution of points {qj}Kj=1 with qj ∈ γj such that∣∣∣∣∣

K∑
j=1

ωjf(qj)−
∫
M
fd|γ|

∣∣∣∣∣ ≤ c max
1≤j≤K

{
|γαj |

}
‖f‖Wα,2 (3.4.13)

where ‖ · ‖Wα,2 denotes the standard norm on the Sobolev space Wα,2 of all functions in
L2(M) with weak derivatives up to order α with finite L2(M) norm.

We will say the δ-sampling condition holds on the manifoldM for the data points {xj}Nj=1

if for every point z ∈M, there exists a data point xi for which dM(z, xi) ≤ δ. For any δ > 0,
when N is large, the δ-sampling condition holds with high probability since the data point
density p(x) is bounded away from 0 by (2) of Assumption 3.2.2 ( see the Sampling Lemma
in Section 4 of [BSLT00] for details). If we assume the δ-sampling condition holds for some
δ > 0, then for each qi (1 ≤ i ≤ K), let xγ(i) denote a data point such that dM(xγ(i), qi) < δ.
Then for any Holder continuous f :M 7→ R we have the estimate∣∣∣∣∣

K∑
j=1

ωjf(xγ(j))−
K∑
j=1

ωjf(qj))

∣∣∣∣∣ ≤ ‖f‖0,1
C

∣∣∣∣∣
K∑
j=1

ωj‖xγ(j) − qj‖

∣∣∣∣∣
≤ ‖f‖0,1

C ·
K∑
j=1

dM(xγ(j), qj)ωj ≤ ‖f‖0,1
C · δ · |γ|.

(3.4.14)

Here ‖xγ(j) − qj‖ denotes the Euclidean distance of the extrinsic coordinates in Rn, and
we have used the fact that ‖x − y‖ ≤ dM(x, y). If we combine (3.4.14) with (3.4.13) from
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Theorem 2.7 of [BCC+10], then we have the bounds∣∣∣∣∣
K∑
j=1

ωjf(xγ(j))−
∫
M
fd|γ|

∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
j=1

ωj
(
f(xγ(j))− f(qj)

)∣∣∣∣∣+

∣∣∣∣∣
K∑
j=1

ωjf(qj)−
∫
M
fd|γ|

∣∣∣∣∣
≤ ‖f‖0,1

C · |γ| · δ + c max
1≤j≤K

{|γj|} ‖f‖W1,2 .

(3.4.15)

Motivated by these estimates, let us define µk in (3.4.7) by µγj = ωj = |γj| for j = 1 . . . , K,
and µk = 0 otherwise, so that

µ :=
∑
k

µkδxk =
K∑
j=1

ωjδxγ(j) .

Then, if our family of test functions F is uniformly bounded in the Holder semi-norm ‖ · ‖0,1
C

and the Sobolev norm ‖ · ‖W1,2 , and if the decomposition of γ above is into pieces of length
|γj| = O (δ), then µ weakly approximates the arc length measure d|γ| in the sense that∣∣∫
M fdµ−

∫
M fd|γ|

∣∣ = O (δ) for all f ∈ F .

Now since the measure µ =
∑N

k=1 µkδxk approximates the arc length on γ, the above sum
is an approximation for the integral

1

2

∫
γ

[∆2(f · dM(xs, ·))− dM(xs, ·) ·∆2f − f ·∆2dM(xs, ·)] d|γ| (3.4.16)

where by (3.4.15), the error incurred from this estimate is O (δ) provided we have uniform
bounds on ∆2(f · dM(xs, ·)) and ∆2f in the semi norm ‖ · ‖0,1

C and the norm ‖ · ‖W1,2 for
all f ∈ F . Or equivalently, F should be uniformly bounded in ‖ · ‖0,1

C and in ‖ · ‖W3,2 . To
simplify this integral, we will make use of the following identities (see for example page 152
of [Cha06]):

div(f∇g) = f ·∆Mg + 〈∇f,∇g〉
∆M(f · g) = f ·∆Mg + 2〈∇f,∇g〉+ g ·∆Mf

By the first equation, it follows that

∆sf :=
1

ps
div(ps∇f) = ∆Mf +

1

ps
〈∇ps,∇f〉 = ∆Mf +

s

p
〈∇p,∇f〉.

Hence,

∆s(f · g)

= ∆M(fg) +
s

p
〈∇p,∇(fg)〉

= g∆Mf + f∆Mg + 2〈∇f,∇g〉+ g
s∇p
p
· ∇f + f〈s∇p

p
,∇g〉

= g∆sf + f∆sg + 2〈∇f,∇g〉.
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Applying this identity to the integral (3.4.16) shows it is equal to∫
γ

〈∇f,∇dM(xs, ·)〉d|γ|. (3.4.17)

Without loss of generality, let us assume that γ is parameterized by arc length so that
γ(0) = xs, and γ(dM(xs, xt)) = xt. To further simplify the integral (3.4.17), we will show
that ∇dM(xs, γ(l)) = γ′(l) by an application of Gauss’ lemma. In order to prove this fact,
we will need to make use of Theorems 14 and 15 in chapter 9 of [Spi79], which we reproduce
here.

Theorem 3.4.1. For every p ∈M there is a neighborhood W and a number ε > 0 such that

1. Any two points of W are joined by a unique geodesic in M of length < ε.

2. Let v(q, q′) denote the unique vector v ∈ TqM of length < ε such that expq(v) = q′.
Then (q, q′) 7→ v(q, q′) is a C∞ function from W ×W 7→ TM.

3. for each q ∈ W , the map expq maps the open ε-ball in Mq diffeomorphically onto an
open set Uq ⊃ W .

and

Theorem 3.4.2. (Gauss’ Lemma). In Uq, the geodesics through q are perpendicular to the
hypersurfaces

{expq(v) : ‖v‖ = constant < ε}

Now let γ(l), 0 ≤ l ≤ dM(xs, xt) denote an arbitrary point on the curve γ. Let W denote
a neighborhood of γ(l) satisfying the conditions of Theorem 3.4.1 for some ε > 0. Now
choose l− < l sufficiently close to l so that γ(l−) ∈ W . By (1) of Theorem 3.4.1, γ(l) and
γ(l−) are connected by a unique geodesic. Clearly, this geodesic must be the segment of γ
connecting γ(l) and γ(l−). If we let v (γ(l−), γ(l)) be as in (2) of Theorem 3.4.1, then by
Gauss’ lemma, at the point γ(l), the curve γ is perpendicular to the hypersurface

{expγ(l−)(v) : ‖v‖ = ‖v
(
γ(l−), γ(l)

)
‖} = {p ∈M : dM(γ(l−), p) = dM(γ(l−), γ(l))}

:= Sγ(l−)(dM(γ(l−), γ(l)), dM),

where we let Sp(r, d)denote the sphere inM centered at p with radius r under the metric d. In
other words, γ′(l) is orthogonal to the level set of dM(γ(l−), ·) passing through γ(l). Since this
level set is a hypersurface, its orthogonal compliment has dimension one, which implies that
γ′(l) is parallel to ∇dM(γ(l−), ·)|γ(l), which is also orthogonal to the level set of dM(γ(l−), ·)
passing through γ(l). From this fact we can then reach our desired conclusion that γ′(l)
is parallel to ∇dM(xs, ·)|γ(l) by proving that the spheres Sxs := Sxs(dM(xs, γ(l); dM) and
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Sγ(l−) := Sγ(l−)(dM(γ(l−), γ(l)), dM), which both pass through γ(l−), have the same tangent
space at γ(l−).

Now suppose we fix a tangent vector v ∈ Tγ(I)Sxs , and let c : (−ε, ε) 7→ Sγ(l−) be
a curve with c′(0) = v, and thus c(0) = γ(l). Then c′(0) ∈ Tγ(l)Sγ(l−) if dM(γ(l−), c(τ)) =
dM(γ(l−), c(0)) for all τ in some neighborhood of 0. Given an orthonormal basis {e1, . . . , em}
of Tγ(l−)M, by (3) of Theorem 3.4.1, we can define a chart n : W 7→ Rd by ni(q) =
〈(exp|W )−1q, ei〉 which establishes Riemannian normal coordinates around γ(l−) (See page
90 of [Cha06]). From n, we can naturally define a polar coordinate chart on W by φ = (r, θ),
where r is the radial parameter and θ = (θ1, . . . , θm−1) is a parameterization of the unit
(m− 1)-dimensional sphere. If we let φ ◦ c(τ) = (r(τ), θ(τ)) denote the representation of the
curve in spherical coordinates, then an equivalent condition for C ′(0) to be in Tγ(l)Sγ(l−) is
r′(0) = 0. By the triangle inequality, we have

dM(xs, γ(l)) = dM(xs, c(τ)) ≤ dM(xs, γ(l−)) + dM(γ(l−), γ(l))

= dM(xs, γ(l−)) + r(τ) ∀τ ∈ (−ε, ε).
Also,

dM(xs, r(0)) = dM(xs, γ(l)) = dM(xs, γ(l−)) + dM(γ(l−), γ(l)) = dM(xs, γ(l−) + r(0)

where the second equality holds because γ(l−) lies on the geodesic from xs to γ(l). From
these two equations, it follows that r attains a local min at τ = 0, and hence r′(0) = 0
as desired. Also, v ∈ Tγ(l)Sγ(l−), which implies Tγ(l)Sxs) ⊆ Tγ(l)Sγ(l−). Furthermore, since
both vector spaces have dimension m, we actually have that Tγ(l)Sxs) = Tγ(l)Sγ(l−), which
leads to our conclusion that γ′(l) is parallel to ∇dM(xs, ·)|γ(l) because we showed above
that it is parallel to ∇dM(γ(l−, ·)|γ(l). So there exists a real valued function κ such that
∇dM(xs, ·)|γ(l) = κ(l)γ′(l) for all l ∈ [0, dM(xs, xt)]. Now, since γ is parameterized by arc
length, it follows that

1 =
∂

∂l
dM(xs, γ(l)) = 〈∇dM(xs, ·)|γ(l), γ

′(l)〉 = 〈κ(l)γ′(l), γ′(l)〉 = κ(l)‖γ′(l)‖2 = κ(l).

Thus, ∇dM(xs, ·)|γ(l) = γ′(l). Finally, we can use this fact to compute the integral (3.4.17)∫
γ

〈∇f,∇dM(xs, ·)〉d|γ|

=

∫ dM(xs,xt)

0

〈∇f(γ(l)), γ′(l)〉‖γ′(l)‖dl =

∫ dM(xs,xt)

0

∂

∂l
f (γ(l)) dl

= f(γ(dM(xs, xt)))− f(γ(0)) = f(xt)− f(xs).

By the definition of νN in (3.4.4), it follows that |〈νN , f〉| → 0 for any f ∈ C2(M). To attain
bounds uniform for f ∈ F , we need F to be uniformly bounded in ‖ · ‖0,1

C and ‖ · ‖W3/2 .
Heuristically, this shows that the perturbation νN is in some sense small for large N . It
remains to show rigorously that these estimates can be used to show (3.4.6) holds. This
question is open for further study.
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Inst. Henri Poincaré Probab. Stat. 44 (2008), 593–611. ↑1.1

[CK06] C. Costantini and T. G. Kurtz, Diffusion approximation for transport processes with general
reflection boundary conditions, Mathematical Models and Methods in Applied Sciences 16 (2006),
no. 05, 717–762. ↑2.1
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