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ABSTRACT OF THE THESIS 

 

Exploratory Clusters of Student Technology Participation 

with Multivariate Regression Trees 

 

by 

 

Peter Tyrel Skipper 

Master of Science in Statistics 

University of California, Los Angeles, 2014 

Professor Frederic R. Paik-Schoenberg, Chair 

 

Classroom practices in regards to technology use may have a significant impact (positive or 

negative) on the effectiveness of a curriculum.  This paper looks at temporal frequency of 

technology use in the context of a high school statistics curriculum, and generates exploratory 

clusters of that usage with multivariate regression trees.  It examines both Euclidean distance 

and two versions of Kullback-Leibler divergence, ultimately discovering that Euclidean clusters 

are more robust to outliers and have lower cross-validated error. 
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1 MOTIVATION 

 Mobilize (MZ) is a collaboration between Los Angeles Unified School District (LAUSD) 

and the University of California at Los Angeles (UCLA).  MZ designs data-science curriculum at 

the secondary level.  That curriculum involves participatory sensing campaigns, in which 

students collect data about themselves via smartphones on a variety of topics (e.g. snacking 

habits, trash and recycling in their neighborhood, media placement in their neighborhood).  The 

provided data can be measured repeatedly and delved into on more than a surface level (think 

“What type of food did I eat today, and how healthy was it?” as opposed to “What is my favorite 

color?”).  The data is shared with classmates and analyzed using the open-source R statistical 

software package.  The curriculum thus provides a pragmatic framework to develop skills in 

algebra, biology, computer science and statistics, one that is grounded in issues affecting the 

students’ own communities.   

 Of course, all of this requires that students actually collect the data.  Many of the 

statistical and computational aspects of the curriculum are new to teachers, and as such the 

course creators are not certain that teachers are strictly adhering to those aspects of the 

program.  As a result, how students actually collect the data is of interest.  Particular classroom 

processes may have a positive (or negative) effect on instruction, and this information would be 

useful for future implementations of the curriculum. 

2 DATA 

Table 1 summarizes the volume of survey responses by general subject area.  A 

“response” occurs when a student contributes data to the shared dataset, via a smartphone (or 

on a computer).    
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Table 1: Number of Campaigns and Average Responses per Campaign 

Subject Total 
Campaigns 

Average Responses  
per Campaign 

Exploring Computer Science (ECS) 15 364.06 

Algebra 1 35 116.51 

Biology 4 77.0 

 

Student responses are collected in a campaign.  One campaign represents a single 

teacher’s implementation of the provided curriculum.  For example, a biology campaign might 

ask students to collect data about the types of trash they throw away, answering survey 

questions on the phones about frequency, size, type, etc.  Fifty-four campaigns are considered 

here, executed from spring 2012 to spring 2013.  Twenty-one teachers participated in the 

examined campaigns, most of whom executed a couple of them.  Campaigns in the dataset 

range in length from a single day to almost two months.  The average campaign lasts 17.5 days.  

Student responses are distributed across those days in myriad ways.  Figure 1 shows a sample 

of five of the campaigns.  Some of them, like number 25, appear to have a cyclical pattern.  

Others, such as number 84, have significant interest initially, but responses peter out as the 

campaign continues.  Still others, like number 85, are over almost as quickly as they begin.  Of 

course, these anecdotal comparisons may or may not hold in a mathematical sense.  In the 

following section, methods to determine rigorous clusters will be discussed. 
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Figure 1: Bar Plots of Five of the Campaigns 
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3 METHODS 

3.1 MULTIVARIATE REGRESSION TREES 

 Classification trees attempt to predict a categorical response via a decision tree.  A 

decision tree is a graphical technique, recursively dividing the dependent variable into a number 

of groups (or classifications); the impact of the explanatory variables is described at each split of 

the tree.  Regression trees apply a similar procedure when the response variable is numeric.  

Breiman et al (1984) combined the two techniques into Classification and Regression Trees, or 

CART. 

 De’ath (2002) suggested an extension to CART with a multivariate response, 

Multivariate Regression Trees.  MRT begins with a parent node containing all of the observed 

data.  The first explanatory variable is examined, and all possible splits of the observations 

along that single variable are considered.  MRT inspects the within-group sums of squares on 

the response, looking for the split that minimizes SSgroup1 and SSgroup2 (or alternatively, 

maximizes the between-group sums of square).  The process is then repeated for the other 

explanatory variables.  Whichever split results in the absolute minimum sum of squares is 

chosen, resulting in two child node clusters.  Splits are recursively examined for each of the 

child nodes individually, and the single best split (from ALL the nodes) is chosen for the next 

branching of the tree. 

 One important measure of a tree’s “fit” to the data is relative error (RE).  RE is defined as 

the ratio of the sum of the within-group SS from each node, to the global SS of the complete 

data.  Thus, RE is a measure of the variation in the data still unexplained by the tree.  While 

useful, an obvious problem arises from sole dependence on this metric.  The splits could 

logically continue until each data point occupies its own cluster.  This would minimize the within-



5 
 

group sums of square, but it would hardly be informative for whatever purpose the researcher 

had in mind.  To avoid this trivial solution, De’ath proposes “pruning” the tree (i.e. removing 

branches) by resampling and cross-validating.  Data are randomly assigned into a pre-defined 

number of groups, all roughly equal in size.  Each of the groups is excluded from the analysis in 

turn, and a tree is constructed from the remaining data (called the “training” data).  The 

observations from the excluded group (called the “test” group) are individually assigned to the 

terminal nodes in the tree (the “leaves”) following the splitting rules previously derived from the 

training data.  A distance is computed between the centroid of that leaf and the test observation.  

This distance can be summed over all test groups via the following formula for cross-validated 

relative error (CVRE): 

      ∑
∑ ∑ (   ( )   ̂ ( ))

  
   

 
   

∑ ∑ (     ̅ )
  

   
 
   

 

   

 

In the above formula,    ( ) is a single observation from test set k,  ̂ ( ) is the predicted value of 

variable j for that observation (the centroid of its predicted leaf), and  ̅  is the overall mean for 

variable j.  This is now a ratio of the errors summed across all K test groups compared to the 

total variance of the data.  Perfect predictor(s) would thus have a CVRE of 0, with values closer 

to 1 representing a poorer set of independent variables.  It is possible for the ratio to extend 

above 1, if the splitting rules in the training group force the test group into clusters which are not 

the nearest, or to which they are very distant from the centroids. 

 Appropriate tree size can be derived from calculating CVRE for successive numbers of 

total leaves (1, 2, 3, etc.).  CVRE should decrease at first for most datasets.  At some point, 

however, a larger tree will result in a flattened or perhaps even increased CVRE, as 

progressively more complicated splitting rules force test observations into groups that they are 
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(in an overall sense, across all parameters in an individual y observation) more distant from the 

centroid. 

 CVRE is subject to some variability.  For each partitioning of the tree, data are randomly 

assigned to the K test groups, resulting in slightly different error estimates.  For small numbers 

of K, it is feasible to create estimates of the standard error of CVRE.  Express the divisions of 

the regression tree as a function of θ, where θ is the size of the tree (i.e. the number of nodes) 

and   (  ) returns the predicted value (i.e. the centroid of the corresponding leaf) for 

observation    in that particular tree.  The particular estimate will depend on which test group is 

excluded from the training set, so the exclusion of test set k from the tree algorithm is expressed 

as   
  , and the error from test set k as   ( )   ∑ (        

  (  ))
   .  Then the CVRE for test 

set k of tree size θ is      ( )   
  ( )

∑ ∑ (     ̅ )
  

   
 
   

 and a sample standard deviation of the set 

     ( )        ( ) is SD( )   √   (             ) .  An estimate of the standard error 

of CVRE for tree size θ is thus SE( )     ( ) √ ⁄  . 

The simplest choice the researcher can make is to choose tree size θ that minimizes 

CVRE.   However, due to the variability of this statistic, individual iterations of tree formation 

may result in different recommended tree sizes.  Borcard et al suggest repetition of the 

procedure 100-500 times, and selecting the most frequent recommended tree size (Borcard, 

2011).  Breiman et al recommend a further adjustment, choosing the smallest tree within one 

standard error of the minimum (Breiman, 1984).  This has the advantage of retaining a tree with 

small CVRE while further reducing the likelihood of over-fitting to the training data.  The method 

has been popularized in many studies, and is often referred to colloquially as the “1se” rule.  

Lane takes issue with its application to functional response data, and asserts that using 1se 

results in over-pruning when the response is a probability distribution (Lane, 2012).  Because 

the data vectors are similar in structure to a pdf (see Feature Selection below), both standards 
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(minimum and 1se) are applied in order to compare their predictive powers (see the Results 

section below). 

3.2 JACCARD COEFFICIENT 

 Consider two possible partitions (P1 and P2) of a dataset X into clusters.  When all pairs 

of points in X are examined, those points must fall into one of four categories: 

 The two points belong to the same group in P1 and they belong to the same group in P2.  

Designate the total of all these pairs a. 

 The two points belong to the same group in P1, but they belong to different groups in P2.  

Designate the total of all these pairs b. 

 The two points belong to different groups in P1, but they belong to the same group in P2.  

Designate the total of all these pairs c. 

 The two points belong to different groups in P1 and they belong to different groups in P2.  

Designate the total of all these pairs d. 

If X has N total observations, then the total number of pairs T = N(N-1)/2 = a + b + c + d.  Paul 

Jaccard proposed an index for the similarity of two partitions J = a / (a + b + c) (Halkidi, 2001).  

Jaccard’s similarity coefficient ranges [0, 1].  It holds the significant advantage that it ignores 

pairs that are dissimilar in both groups, rather than artificially inflating the similarity of two 

clustering schemes because they both put pairs of points into different groups.  Indeed, in any 

dataset with moderately large numbers of clusters the outcome in which a particular pair of 

points is split into different groups is likely to be quite common. 
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4 CLUSTERING STRUCTURE 

4.1 FEATURE SELECTION 

 The first question to answer when measuring the similarity between two data points is, 

according to what?  In other words, what information will be collected about the data in order to 

frame comparisons?  Rather than type of interaction, this study is interested specifically with the 

temporal frequency of technology use.  How often the students are interacting with the 

smartphones in the context of the curriculum needs to be quantified. 

 The longest campaign in the dataset lasted for fifty-nine days.  Campaigns are defined 

on a vector from day 1 to day 59, with the total number of responses on each day corresponding 

to each individual “bucket.”  Campaigns that saw no observations on a particular day simply 

score a zero for that bucket.  Seven of the observed variables (days 41, 47, 53, 54, 55, 56, and 

58) were perfectly collinear through all 54 observations, and were thus removed for clustering 

purposes.  

 Figure 2 shows a histogram of the number of responses by campaign.  The distribution 

is clearly right-skewed.  The median number of responses is 121.5 and the inter-quartile range 

is 214.25.  To prevent skewing of the results from a handful of campaigns with a great number 

of responses, standardization is necessary.  Thus, the campaign vectors are divided by the total 

number of responses for each campaign to create a proportion of technology use on each of the 

days in the range [0, 1]. 
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Figure 2: Histogram of Total Responses in the 54 Campaigns 

  

4.2 PROXIMITY MEASURE 

 How to quantify the “closeness” of one data point to another must also be addressed.  

After standardization, a logical representation is squared Euclidean distance.  For observations 

xi and xk, with j features, the squared Euclidean distance is simply: 

∑(       )
 

 

 

The metric has the advantage of straightforwardness, and that it weights each of the fifty-nine 

days equally.  It is also the standard for calculation of the CVRE in R’s statistical package, 

mvpart. 

 The Kullback-Leibler divergence is a measure of the distance between two probability 

distributions, and can be thought of as the cost when one pdf is used to approximate another.  
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The formula for the divergence of distribution p from distribution q is   (   )  ∑  ( )    (
 ( )

 ( )
)  .  

Lennert-Cody et al show that Kullback-Leibler divergence can be effectively used to compare 

binned frequency distributions (Lennert-Cody, 2010).  Lennert-Cody defines the average of a 

set of distributions P1 to Pn,  ̅  
 

 
∑   
 
    and calculates the divergence of a node m as      

∑  (    ̅ )   . 

 One drawback of Kullback-Leibler divergence is that it is not a symmetric measure.  

Lennert-Cody accommodates for this by constricting the divergence measure to always be an 

observation’s distance from an individual observation to some centroid, as defined above.  As a 

result, distances between individual observations are never calculated.  In most clustering 

applications a more robust, symmetric measure of distance is preferred.  Lee uses the Kullback-

Leibler average, a symmetric distance measure: 

       
 

 
( (   )   (   )) 

Findings suggest that Kullback-Leibler provides more accurate clustering of time-series forecast 

data than traditional Euclidean metrics (Lee).  For this study, as interest pertains only to the 

relative distance between observations, the average is dropped and the Kullback-Leibler 

distance is defined as         (   )   (   ).  Using this metric, the technology participation 

data is clustered and compared to the results of traditional Euclidean measures (see Results 

below).  

 One additional caveat is necessary.  Because Kullback-Leibler divergence uses a ratio 

of probabilities, 
 ( )

 ( )
, the metric explodes whenever the two distributions are not symmetrically 

zero at i.  Lennert-Cody accommodates for this by very carefully choosing binning sizes to 

create non-zero frequencies.  This additional constraint is undesirable in the current context, in 
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which day-to-day use of the technology is a natural and meaningful descriptor, even though it 

results in some “zero days.”  Two remedies are examined.  (1) For all yij = 0, simply add one 

“dummy” response to the jth category of observation i before normalizing the vector.  In 

campaigns with large numbers of responses (>100), this should have minimal effect on the 

shape of the distributed responses.  (2) For all yij = 0, add 0.0001 to the jth category of 

observation i before normalizing the vector.  This allows campaigns with fewer observations to 

avoid being overwhelmed by the dummy responses.  This second procedure of negligibly 

altering the observations will be referred to as KLmin.   
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5 RESULTS 

5.1 OPTIMUM TREE SIZE 

 The default 10-fold cross-validation was used throughout to choose the appropriate 

multivariate regression tree size.  Figure 3 displays bar plots for the chosen tree size according 

to the different standards for CVRE and distance metrics discussed above, after 500 repetitions 

each. 

Figure 3: Bar Plots for “1se” Rule and Minimum CVRE Rule, by Distance Metric 
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The modes for optimal tree size are twelve and seven (Euclidean), nine and three (KL distance), 

and thirteen and two (KLmin distance).  As expected, choosing the minimum CVRE results in 

larger trees for all of the distance measures.  The Kullback-Leibler distances generally exhibit 

greater variability, which can be an indication of a larger standard error of the CVRE (see 

Evaluation of Trees below).  Furthermore, the difference between KLmin’s minimum CVRE and 

1se tree is very large (thirteen compared to two), indicating that the information gained by 

adding nodes to that tree is minimal (a lot of complexity must be added to gain a nominal 

increase in predictive power).  In the next section, the trees themselves will be examined in 

greater detail. 

  



14 
 

5.2 REGRESSION TREE OUTPUT 

Figure 4 shows the Euclidean 1se rule tree. 

Figure 4: Euclidean Tree Following 1se Rule 

 

The most important splits happen on early days, with the first partition separating campaigns 

with more than 53% of their responses on day 1 from the rest of the group.  This type of 

campaign indicates significant early enthusiasm for the technology, followed by a significant 

decline in participation.  Leaves of the tree indicate the number of campaigns in each split, and 

the within-group sum of squares.  Figure 5 shows the fuller Euclidean tree with minimum CVRE.  

The splits are retained and expounded on, creating smaller clusters on the right side of the tree. 



15 
 

 The Kullback-Leibler 1se tree is displayed in Figure 6.  The tree is much smaller and 

(unsurprisingly) the group sizes are much larger.  The splits, however, are quite different.  The 

KL tree splits on day 17 (the average campaign length for the 54 campaigns was 17.5 days), 

creating clusters out of the short and long campaigns first, rather than the initial participation 

rates.  Because the bins are all non-zero (see Proximity Measure above), a wider range of 

possible splits is available.  Figure 7 expands the splits into the minimum CVRE tree for 

Kullback-Leibler. 

 Similar to the KL 1se tree, the KLmin 1se tree is most noticeable for its parsimony.  The 

tree makes only a single split, as shown in Figure 8.  The minimum CVRE tree, by contrast, has 

the largest number of nodes in the group (thirteen).  Some of these splits are on vanishingly 

small distinctions (e.g. the split on day 13 for campaigns with less than 0.0000008375 of the 

total responses).  The entire KLmin tree for the minimum CVRE rule is shown in Figure 9. 
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Figure 5: Euclidean Tree Following Minimum CVRE Rule
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Figure 6: Kullback-Leibler Tree Following 1se Rule 

 

Figure 7: Kullback-Leibler Tree Following Minimum CVRE Rule 
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Figure 8: KLmin Tree Following 1se Rule 

 

 

  



19 
 

Figure 9: KLmin Tree Following Minimum CVRE Rule 
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5.3 SIMILARITY OF TREES 

 The six trees are all exploratory attempts to cluster the underlying campaigns, yet their 

sizes vary dramatically.  How similar are the clusters?  The Jaccard coefficient (see Jaccard 

Coefficient above) provides an objective measure, scaled from 0 (completely dissimilar) to 1 

(identical clustering).  Table 2 summarizes comparisons between the trees. 

Table 2: Jaccard Coefficients for the Six Multivariate Regression Trees 

 Euclid 
1se 

KL 
1se 

KLmin 
1se 

Euclid Min 
CVRE 

KL Min 
CVRE 

KLmin Min 
CVRE 

Euclid 1se 1.00 
     

KL 1se 0.24 1.00 
    

KLmin 1se 0.30 0.36 1.00 
   

Euclid Min 
CVRE 

0.48 0.16 0.15 1.00 
  

KL Min CVRE 0.13 0.53 0.25 0.11 1.00 
 

KLmin Min 
CVRE 

0.18 0.15 0.15 0.23 0.18 1.00 

 

Euclidean clusters according to both rules (1se and minimum CVRE) are generally similar at 

0.48, as are both Kullback-Leibler distance clusters (0.53).  The KLmin procedure is highly 

volatile, and is not even particularly analogous according to the separate rules.  The other 

similarity metrics are mostly quite low, suggesting that the clusters differ significantly according 

to the different rules and distance metrics. 

 Figure 10 provides more information.  The scatterplots suggest weak to medium 

correlation between the Euclidean distance and the two versions of Kullback-Leibler.  Table 3 

confirms this intuition.  Euclidean distance is only 0.3 correlated with Kullback-Leibler, and only 

0.18 correlated with KLmin.  The issue is one of compactness.  The longest campaign is fifty-nine 

days, but many of the responses are concentrated over only a handful of days, resulting in a 
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sizeable number of days with zero responses.  In fact, the median campaign has forty-two zero 

days.  This is not an issue for Euclidean distance, but the minor tweaks required for Kullback-

Leibler distance (see Proximity Measure above) begin to add up and shift the structure of the 

underlying campaign.  Since the clusters are effectively different, the following section evaluates 

their individual performances as a predictive measure. 

Figure 10: Scatterplots of the Distances between Campaigns via the Three Metrics 

Table 3: Correlations between Distances According to the Three Metrics 

 Euclidean KL KLmin 

Euclidean 1.00 
  

KL 0.30 1.00 
 

KLmin 0.18 0.69 1.00 
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5.4 EVALUATION OF TREES 

 Table 4 summarizes the CVRE and its standard error for the 500 iterations that were 

used to create each tree.  By design, the minimum CVRE trees have lower relative error than 

the 1se trees.  The Euclidean trees clearly outperform the Kullback-Leibler metrics by a 

significant margin (more than 0.2 less CVRE under both rules).  In addition, the CVRE has 

considerably less fluctuation using Euclidean distance: the standard error of the CVRE is about 

half the size of the Kullback-Leibler measures.  The Euclidean distance is thus less error-prone, 

and simultaneously the accuracy of that measure is less in doubt.  The 1se tree is almost as 

accurate as the minimum tree (0.522 compared to 0.482), and has the further advantage of 

being less complex. 

Table 4: Average CVRE and SE for the Six Trees after 500 iterations 

 1se Rule Minimum CVRE Rule 
 CVRE SE CVRE SE 

Euclidean 0.522 0.068 0.482 0.067 
KL 0.781 0.124 0.689 0.107 
KLmin 0.843 0.138 0.760 0.142 

 

 A useful appraisal of the effectiveness of MRT should involve comparison to another 

technique.  Figure 11 shows the re-substitution error for k-means clustering and MRT across all 

six trees.  MRT results in lower error than k-means only in one instance, the 1se rule Euclidean 

tree. 
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Figure 11: Comparison of MRT to K-means Clusters 

 

6 DISCUSSION 

 Lennert-Cody suggests that Kullback-Leibler divergence is an effective clustering 

technique for multivariate response data.  However, the analysis above suggests that the 

method is not particularly robust, and relies on very precise binning of the data.  When natural 
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divisions exist (e.g. days) that result in zero or near-zero proportions in some bins, the metric 

loses accuracy.  As a result, using the classic Euclidean distance is preferable in those 

situations. 

 Lane’s assertion of over-pruning when using the 1se rule does not appear to be 

supported by the data applied here.  CVRE between the two Euclidean trees is comparable, and 

the 1se tree is generally to be preferred for its increased simplicity.  Rather than asserting a 

general rule, it appears that the optimum tree is best chosen on a case-by-case basis, validated 

with later study.  In the present context, the Euclidean 1se tree is more than sufficient to 

summarize the exploratory clusters. 

 The Euclidean 1se tree provides some important information about the underlying 

campaigns.  The far right cluster represents intuitively what we might hope for in terms of 

participation, with a more even spread of responses across most of the days.  The students 

appear to be participating regularly, and it is also the largest cluster!  Adjacent nodes to the far 

right represent a deadline pressure, with many responses concentrated at the end of the 

campaign.  Alternately, the two leftmost nodes represent a sharp decline in interest or 

participation in the project, with most responses happening in the first couple days.  The clusters 

could be used to determine which teachers to invite back into the MZ program for the following 

year (based on which teachers were most successful at promoting participation).  Conversely, a 

further analysis of the procedures implemented by teachers in the far right cluster could provide 

a variety of professional development best practices that new teachers to the program would 

benefit from.   

 A caveat does need to be included, however.  The Euclidean 1se tree creates two 

clusters with only two campaigns in each.  Such tiny clusters are often indicative of over-fitting.  

These tiny clusters exist even after pruning back the tree from its minimum CVRE.  Though it is 
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the best of the options explored, care should be taken in testing and applying the Euclidean 1se 

tree to ensure that it is not unduly influenced by the dataset explored in this paper. 

 Given more time, this study could be improved via application of the 632+ bootstrap 

estimator to CVRE (Merler & Furlanello, 1997).  Using both real and simulated data, Merler et al 

show that a weighted estimate of CVRE between the re-substitution error examined above and 

a bootstrap estimate of the same (drawing sample observations for the training set with 

replacement) has the dual advantages of lower standard error estimates for CVRE and 

mitigation of the possibility of over-fitting that is not uncommon with regression tree methods.  

Application of the method would require a significant extension to the code of the existing 

mvpart library in R, though it would be a useful further investigation. 

 Ultimately, the most important next step is to compare the exploratory clusters created 

here to academic performance, preferably at the individual level.  Do particular patterns of 

technology use correspond to increased engagement or retention of science and math 

curriculum?  If so, they should be endorsed and publicized to teachers and independently 

verified in classroom trials.  Even small gains in educational achievement could have a major 

impact on overall student success in some quite challenging subjects. 
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