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Abstract

Partial Left-Looking Structured Multifrontal Factorization & Algorithms for Compressed
Sensing

by

Cinna Julie Wu

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

In this dissertation, we explore two problems involving large matrix computations. In
the first half, we study the fast factorization of a large, sparse symmetric positive definite
matrix and explain the underlying structures of the intermediate steps in the computation.
Using these underlying structures, we present a new algorithm which takes advantage of these
structures to reduce computational and memory costs. Our new algorithm is an improvement
upon the well known and commonly used multifrontal method. We incorporate the use of
fast structured computations to improve the algorithm as in [95, 92, 99].

In the second part of the dissertation, we explore a new algorithm for solving minimization
problems of the form

min ‖Ax− b‖ s.t.‖x‖1 ≤ τ,

where A is a wide matrix. This problem is often referred to in some fields as the Lasso
problem. We improve upon an existing method by making a simple modification. Then we
prove that this method is locally linearly convergent under certain reasonable conditions.
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Chapter 1

Introduction

Rapidly performing computations with extremely large matrices has become a ubiquitous
task in applications involving massive data sets such as solving large scale PDEs. Such large,
structured linear systems of equations are critical in many computational and engineering
problems. The special structures are often a result from using various techniques to linearize
or discretize the problem at hand. For a general matrix of size n × n, such computations
cost O(n2) to O(n4) operations and require huge amounts of memory, scaling dramatically
with matrix size. When matrices have special structures, one can exploit these properties
to decrease the costs. Thus, designing efficient and reliable structured matrix computations
has been an intensive focus of recent research. Numerically stable fast and superfast algo-
rithms have been developed for structured matrices such as Toeplitz matrices, Vandermonde
matrices, and various forms of semi-separable matrices. In this dissertation, we focus on fast
structured methods for computing the Cholesky factorization of a large, sparse symmetric
positive-definite matrix.

1.1 Problem Statement

Consider a symmetric positive definite (SPD) system of equations

Ax = b

where A is a large, sparse structured matrix of size N×N . We wish to quickly and accurately
solve such a system for x. Typical Cholesky factorization methods have a computational
complexity of O(N3) and are not practical for large problems. Thus, we develop a direct,
generalized Cholesky factorization method which reduces computational and memory costs
by taking advantage of the structure of A. Our algorithm factors A as

A = LLT

where L is product of lower triangular and orthogonal matrices.
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In particular, we are interested in large matrices A such that, with proper ordering, the
intermediate matrices arising in the factorization possess a low-rank property: all off-diagonal
blocks have small numerical ranks. These intermediate matrices can be approximated using a
structure called a hierarchically semiseparable (HSS) representation. Existing fast algorithms
for HSS matrices may then be applied to reduce costs. Such structured matrices often arise
in the discretization of partial differential equations (PDEs) on a finite element mesh (grid)
M. See Section 1.2.1 for more details.

In this dissertation, we present a general direct solver for solving such a system via
a generalized Cholesky factorization method. The method combines and improves upon
various existing methods and is made up of the following five components:

• First, reorder the matrix A using the nested dissection technique (George 1973) [39].
This determines an order to eliminate the variables of A which will reduce fill-in
(nonzero entries created in the Cholesky decomposition not in the original matrix)
during the factorization.

• Next, apply a symbolic Cholesky decomposition to pre-determine the nonzero pattern
of the factors L during the actual computation. This has been found to be essential
for designing efficient sparse factorization algorithms.

• Perform the decomposition using the multifrontal method by Duff and Reid [30] which
essentially reorganizes the factorization of a large, sparse matrix into factorizations of
smaller dense matrices. This method is integrated with structured matrices as seen in
[99, 92]. We incorporate a new way of storing the intermediate dense matrices which
reduces memory costs by maintaining their special structures.

• The smaller dense matrices are factorized via a new generalized HSS Cholesky factor-
ization which reduces costs by avoiding the need of computing Schur complements.
Improvements in speed are made by incorporating randomization techniques with the
matrix structures.

• Apply forward and backward substitutions to solve for x.

We have developed a Matlab software package which implements this algorithm.

1.2 Applications

Many computational engineering problems require numerically solving linear second-order
partial differential equations (PDEs), i.e.,

−
d∑

i,j=1

cij
∂

∂xi

(
∂u

∂xj

)
+−

d∑
i=1

bi
∂u

∂xi
+ au = f in Ω,
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where the function u is unknown. Here, we examine the 2D and 3D cases where d = 2, 3.
Some common examples of such PDEs include the Helmholtz equation, Laplace equation,
and Poisson’s equation. The Laplace and Poisson equations are examples of elliptic PDEs,
i.e. the coefficient matrix C = (cij) is symmetric positive definite.

Two common numerical methods to solve PDEs are the finite element method (FEM)
and the finite difference methods (FDM). Both methods involve first subdividing the domain
Ω using a grid called a mesh where the intersection points are called mesh points, see Figure
1.1. The solution u is then approximated by solving a system of linear equations

Figure 1.1: Example of an FEM mesh.

Ax = b (1.1)

where A ∈ RN×N and N is the number of mesh points. The matrix A is typically very large,
sparse, and symmetric positive definite (SPD), see Figure 1.2. We focus on the problem
of computing the Cholesky factorization of a large, sparse, SPD matrix arising from the
discretization of a PDE. For the purpose of presentation, we focus on the 2D case with
rectangular domains Ω.

1.2.1 Finite element mesh

In this manuscript, a finite element mesh M refers to a grid which is formed by partitioning
a 2D or 3D region into subregions. The subregions are called elements, the boundaries of
these subregions are called edges, and the connecting points of the edges are the nodes or
mesh points. A finite element system associated to a mesh M is a symmetric positive definite
(SPD) system

Ax = b
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Figure 1.2: Example of a sparse symmetric positive matrix A from discretizing a PDE.

where each variable corresponds to a node of M, and Aij 6= 0 if and only xi and xj belong to
the same element in M. Thus, an n× n regular mesh corresponds to an n2 × n2 matrix A.
Such a matrix A arises when applying finite difference or finite element techniques to solve
linear boundary value problems as seen in the next subsection.

1.2.2 Laplace’s equation

As an example, Laplace’s Equation, the simplest example of an elliptic PDE, is given by

∇2u :=
∂2u

∂x21
+ · · ·+ ∂2u

∂x21
= 0. (1.2)

As mentioned above, we assume that the domain Ω is rectangular. Given boundary condi-
tions of u on Ω, the finite difference method (FDM) may be applied to solve the boundary-
value problem for u in the following way.

First the domain, Ω, is given an n×n square grid (regular mesh); see Figure 1.3. The five-
point stencil of a mesh point is defined to be the point itself together with its four neighbors,
and for each mesh point (xi, yj), the five-point stencil may be used to write a finite difference
approximation to u(xi, yj). To solve for all the values of u on the mesh points, this leads to
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solving the system of equations
Ax = b

where A is a five-diagonal n2 × n2 sparse matrix of the form

A =


T −I 0

−I
. . .

. . .
. . .

. . . −I
0 −I T

 , T =


4 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 4

 . (1.3)

Figure 1.3: Rectangular domain with a regular mesh and five-point stencil.

When the right-hand side of Laplace’s equation (1.2) is generalized to any function f , we
have what is known as the Poisson’s equation. Boundary-value problems involving Poisson’s
equation may also be solved using a discretization on a five-point stencil.

1.3 Cholesky Factorization

The Cholesky factorization of a matrix A is the decomposition of a symmetric positive-
definite matrix into the product of a lower triangular matrix and its transpose, i.e.

A = LLT

where L is a lower triangular matrix. It is mainly used for finding the solution to a system
of equations Ax = b: If A = LLT , one can easily solve for x by first solving Ly = b for y
using forward substitution and then LTx = y for x using backward substitution.

We illustrate the Cholesky factorization by presenting one step of the computation. We
say that a variable xj has been eliminated when the j-th step of the Cholesky factorization
has been computed. Write an N ×N matrix A as

A =

(
A11 AT21
A21 A22

)
.
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This factorization is easily generalized to block form if we interpret A11 as a submatrix of
A. Eliminating A11 via one step of the Cholesky factorization gives

A =

(
L11

L21 I

)(
LT11 LT21

Ā22

)
=

(
L11

L21 I

)(
I

Ā22

)(
LT11 LT21

I

)

where A11 = L11L
T
11, L21 = A21L

−T
11 , and Ā22 = A22 − A21A

−1
11 A

T
21. The submatrix Ā22 is

what is known as the Schur complement and is what remains to be factored. If Ā22 is then
factored as L22L

T
22, then

A =

(
L11

L21 L22

)(
LT11 LT21

LT22

)
.

Note that since A21A
−1
11 A

T
21 = (A21L

−T
11 )(A21L

−T
11 )T , we can interpret the formation of the

Schur complement as subtracting an outer-product update from the original matrix.

1.4 Existing Algorithms and Methods

In general, there are two types of linear system solvers: direct methods and iterative methods.
Iterative methods can be designed to take advantage of the sparsity of the matrix, and they
also require less storage. However, theyf can be slow to converge or diverge without the
use of effective preconditioners. On the other hand, direct methods are reliable and are
efficient when multiple solves are required. However, they can be very expensive due to
the generation of fill-in (loss of sparsity) but can be designed to take advantage of special
structures to decrease costs.

Depending on the algorithm, there are very different complexities for computing the
factorizations. Some iterative methods, such as multi-grid, may cost as little as O(n) for
certain PDEs. In the case of direct methods, for a 2D regular grid of size n × n, a basic
Cholesky factorization has a complexity of O(N3) = O(n6). When column-wise/row-wise
mesh orderings are first performed, the complexity may be reduced to O(N2) = O(n4). In
fact, there exist orderings, reducing fill-in, which have complexity of O(N3/2) = O(n3) for 2D
problems and O(n6) for 3D problems. Well known methods such as the multifrontal method
can then be applied to these large, sparse matrices to further reduce costs.

Our algorithm is a direct method which combines nested dissection with a structured
multifrontal method. The matrix elements are preordered using nested dissection and the
elimination process is organized via the multifrontal method. The multifrontal method is
structured in the sense that it takes advantage of the structures that can be found in the
frontal and update matrices (intermediate dense matrices defined in Chapter 3). Nested
dissection was first introduced by George in 1973 and is a divide and conquer heuristic based
on graph partitioning for solving sparse SPD systems of equations. It involves the following
steps:
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1. Form an undirected graph where the vertices represent the variables in the matrix and
each edge represents a nonzero matrix entry.

2. Recursively partition the graph into two subgraphs using separators (small subset of
vertices such that upon removal, graph will be partitioned into disjoint subgraphs).
The fill-in is then at most the size of separator squared.

3. Vertices of matrix are then ordered so that the vertices in the two subgraphs are ordered
before their parent separator. This helps determine the order of elimination when later
performing the Cholesky factorization.

The multifrontal method was first introduced by Duff and Reid in 1983. A detailed and
exhaustive description of the multifrontal method by J. W. H. Liu may be found in [64]. The
multifrontal method was a huge advancement in direct methods for solving sparse matrix
equations and is widely used in many large-scale problems such as finite element problems
[5, 10, 77], computational fluid dynamics [3], separable optimization problems [26], and
semiconductor device simulations [66]. Here, we use a supernodal version of the multifrontal
method where each node corresponds to the group of elements that make up a separator
from the nested dissection method. The factorization of the matrix is then organized by
creating an elimination tree where each tree node is one of these supernodes. Sparse matrix
factorization now becomes a series of factorizations of small dense blocks.

As seen in the work by Xia and Gu, the multifronal method may be combined with
HSS methods to reduce complexity costs. Although the nested dissection method helps to
reduce fill-in, there is still a significant amount of fill-in that can occur. Typically, fill-in
is handled by approximating the intermediate matrices by structured matrices such as H-
matrices [48, 50, 53], quasiseparable matrices [32], semiseparable matrices [20, 23, 24], etc.
In particular, when the matrices arise from solving discretized PDEs as described in Section
1.2.1, the off-diagonal blocks of the fill-in have been observed to have small numerical ranks
[99]. In [99], Xia combines the multifrontal method with algorithms for HSS matrices for a
direct solver with total complexity O(pn2) where p is a constraint related to the PDE and
accuracy in the matrix approximations and n is the mesh size. The dense submatrices in
the multifrontal method are approximated by hierarchically semiseparable (HSS) matrices,
first introduced by Chandrasekaran, Gu, et al. in [22, 21]. For 2D elliptic equations, the
method computes structured approximate factorizations with nearly linear complexity and
linear storage. Improvements to this method are made in a more recent paper by Xia [92].
Additionally, this structured multifrontal method may be implemented as a parallel solver.
In [90], Wang, Hoop, et al. present a parallel structured multifrontal solver for time-harmonic
elastic waves in 3D anisotropic media.

In this dissertation, we present an algorithm along the same lines as [99] with two major
improvements.

1. Storage of the frontal/update matrices: The frontal/update matrices can be seen to be
made up of three components - a sparse matrix, sum of low-rank updates, and small
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dense blocks. We preserve the structure by storing the low-rank updates and small
dense blocks as vectors in a stack. Pieces of the frontal matrix are then reconstructed
as needed. This helps cut down on memory and operation costs.

• In Xia’s Superfast Multifrontal Method [99], the dense intermediate blocks are
stored as HSS matrices, and all subsequence operations (dense factorization, block
permutation, splitting, merging) on these dense blocks involve HSS algorithms.
That is, all operations take in an HSS matrix and output the matrix in HSS form.
However, because the HSS form is quite involved, there arise many difficulties and
complications in preserving this HSS format during implementation.

• In the more recent paper [92], Xia simplifies the previous method by only storing
some (frontal matrices) of the dense submatrices in HSS form and the rest (update
matrices) as dense matrices. This change helps simplify the implementation since
some of the HSS methods may be replaced by their non-structured versions.

2. Usage of a new algorithm for HSS Cholesky factorization; see Chapter 4: In our new
algorithm for computing the HSS Cholesky factorization, we organize the factorization
so that there is no need to compute Schur complements. This helps to cuts down on
operation costs. Moreover, we use a randomization technique [67, 62, 56] for com-
pression to speed up computations. Unlike some previous methods, compression and
factorization occur at the same time. Thus, the method does not require the input
matrix to be of HSS form and integrates well with our first improvement.

• In [99], Xia uses a generalized Cholesky factorization. Input and output are in
HSS format and Schur complement computations are done via HSS computations.

• In [92], partial ULV-type factorizations are used.

1.5 Organization of Part I of Dissertation

This part of the dissertation is organized as follows. In Chapter 2, we introduce the multi-
frontal method. We give brief descriptions of the nested dissection and symbolic factorization
steps, and then give an outline of the method. The update and frontal matrices are defined
in detail.

In Chapter 3, we discuss the structure of the frontal and update matrices. Different
storage and computation methods for these dense submatrices are discussed, and our new
storage framework is presented. Examples are used to illustrate the structure. We also
present our main algorithm which we call the partial left-looking multifrontal structured
method.

Finally, in the Chapter 4, we present our new algorithm for computing a generalized HSS
factorization. The HSS matrix structure is defined, and we show how to incorporate this
algorithm into our new structured multifrontal method framework.
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Chapter 2

Multifrontal Method

2.1 Introduction to the Multifrontal Method

In this section we review the multifrontal method and present the framework of our algorithm.
Here, we describe the three main components of our algorithm: (1) Nested Dissection (2)
Symbolic factorization (3) Cholesky factorization. One of our main contributions involves
the storage of the frontal and update matrices, defined in Section 2.3.2.

2.2 Preprocessing Steps

Before applying the multifrontal method to compute the factorization, we use two well known
steps which greatly improve the algorithm. The first involves reordering the matrix, and the
second involves symbolically performing the factorization.

2.2.1 Step 1: Nested dissection ordering

As previously mentioned, when solving a sparse symmetric positive-definite (SPD) system,
Ax = b, direct methods are often expensive due to the amount of fill-in (nonzero matrix
entries created in the Cholesky decomposition that are not part of A) that is generated. This
fill-in results in a loss of sparsity. In the context of discretizing PDEs, A is associated to a
mesh on its domain. It turns out that reordering the mesh points or equivalently, reordering
A, can reduce fill-in and improve the performance of direct methods.

Nested dissection was first proposed by George to solve systems of equations defined
on square meshes. For a mesh of size n × n, the algorithm requires O(n2log2n) memory
and O(n3) time [39]. It has been shown [39], that for the problems we are concerned with,
given any ordering of the mesh nodes, the Cholesky factorization will require at least such
a complexity. Thus, nested dissection gives an optimal ordering. In [63], the method is
generalized to work with any linear system on a planar/almost-planar graph with the same
computational costs. The method is further improved in [82]. In our Matlab package, we use
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the METIS package for the nested dissection step by the Karypis Lab at the University of
Minnesota [60].

2.2.1.1 Outline

Although our algorithm is a general solver, we describe the nested dissection method for
square meshes. In this dissertation, we use the following example:

Example 2.2.1. Consider the square (0, n)× (0, n) of size n× n. Let M be the n× n mesh
formed by partitioning the square in n2 pieces, where each element is a square of size 1× 1.
The finite element matrix A corresponding to this mesh is then of size n2×n2. Each variable
of A corresponds to a mesh node of M, and Aij 6= 0 if and only if the variables xi and xj
belong to the same element. See Figure 1.3 for an example.

The nested dissection method is outlined as follows:

1. Choose a set of nodes of M such that upon removal, the remaining nodes are divided
into two disjoint sets; i.e., no element in the mesh contains nodes from both sets.
This set of nodes is called the separator ; see Figure 2.1(a) for an example. In the
general graph partitioner METIS, the separators are found using a multilevel recursive
bisection [60].

2. Repeat this process recursively on the two disjoint pieces until the separators are below
a certain size or a certain level of subdivisions is reached; see Figure 2.1(c).

(a) Level 1 partition. (b) Level 2 parition. (c) Completed partitioning.

Figure 2.1: Nested dissection.

George proved the following result about nested dissection.

Theorem 2.2.2. [39] The number of multiplicative operations required to factorize A is
O(n3), and the number of nonzero off-diagonal components in L (storage required) is
O(n2log2n).
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2.2.1.2 Separator ordering

Once the separators have been found, they may be organized using a binary tree structure,
T , where each node corresponds to a separator. In this dissertation and our algorithm,
the binary tree is given a postordering. Later, we show how this tree integrates with the
supernodal multifrontal method. Essentially, each separator will correspond to a supernode,
and the tree determines the elimination order. The levels of the tree are are ordered top-
down, with the first separator to divide M (top-level separator) at level 1. See Figure 3.4.

Remark 2.2.3. In this dissertation, the separators (nodes) in each level of the separator tree
correspond to the same level of division in the mesh and are either all horizontal or vertical.
In some literature [39, 63], the separators in a level involve cross-shaped cuts in the same
level of division, splitting the domain into four disjoint pieces.

It is easy to show the following results [93] assuming that n = 2k−1 for a positive integer
k for an n× n mesh. We use this lemma in the proofs of Theorems 3.3.1 and 3.3.4.

Lemma 2.2.4. For an n× n mesh with n = 2k − 1 and positive integer k > 0,

1. All the separators in the same level have the name number of nodes.

2. The total number of levels is l = 2log2(n+1)−1, and for general n, there are O(log2n)
levels.

The matrix can now be reordered based on the organization of the separators in the
postordered binary tree, T . We order the variables of the matrix so that, the set of variables
corresponding to each separator are ordered before the variables in the separators with higher
numbering T . That is, the variables in a separator Si (separator corresponding to node i in
T ) come before the variables in separator Sj (separator corresponding to node j in T ) in
the reordered matrix A. Thus, the variables in Si are eliminated before Sj. See Figure 2.4
for more details.

2.2.1.3 Ordering of nodes within separators

In Section 2.2.1.2, we described how the sets of variables in the separators are ordered but not
how the variables within each separator are ordered. We can think of reordering the variables
in A as two levels of ordering: a courser level (order of the sets of separator variables) and
a finer level (ordering of the variables within the separator). It has been shown in [93], that
because of the physical nature of the problems described in Section 1.2.1, the intermediate
dense matrices in the multifrontal method will possess the qualities of the HSS structure (off-
diagonal blocks have low numerical rank) depending on how the nodes within a separator
are ordered. See [99] for more details.
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2.2.1.4 Node elimination and fill-in

Once the matrix has been reordered, one can compute the Cholesky factorization, A = LLT ,
by eliminating variables in the order of the new matrix. In our algorithm, the factorization is
organized via the multifrontal method, and the separator variables are eliminated according
to the postorder binary tree we described above. Recall that eliminating variable xi refers
to computing the ith step of the Cholesky factorization.

We now illustrate the effects of eliminating the set of variables in a separator and how the
matrix is “filled-in” as a result. First we outline the block Cholesky factorization algorithm.
Assume the matrix A is split up into K2 blocks of sizes m1, . . . ,mK (the (i, j)-th block is
of size mi ×mj). The block Cholesky factorization is the same as the Cholesky algorithm
except one eliminates entire submatrices at once. See Algorithm 1.

Algorithm 1 Block Cholesky Factorization

Require: SPD matrix A partitioned into K2 blocks; block sizes m1, . . . ,mK .
Ensure: Cholesky factor L where A = LLT with lower-triangular block columns

Li =
[
L
(1)
i ;L

(2)
i

]
.

1: Set A0 = A.
2: for i = 1, . . . , K − 1 do
3: Write Ai−1 as

Ai−1 =

(
Di BT

i

Bi Āi

)
,

where Di is of size mi ×mi.
4: Compute the following:

• Di = L
(1)
i L

(1)T
i where L

(1)
i is the Cholesky factor of Di,

• L
(2)
i = BiL

(1)−T
i ,

• Ai = Āi − L(2)
i L

(2)T
i .

5: end for
6: Compute AK−1 = L

(1)
K L

(1)T
K = LKL

T
K .

The Cholesky factor L of A is made up of the submatrices, L
(1)
i and L

(2)
i , defined in

Algorithm 1 in the following way. Let

L =


L11

L21 L22

...
...

. . .

LK1 LK2 . . . LKK
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where the i-th block column has mi columns. Then

L
(1)
i ≡ Lii and L

(2)
i ≡

Li+1,i

...
LKi

 .

As a result, the nonzero pattern of the ith off-diagonal block column of the resulting
Cholesky factor L corresponds to the nonzero pattern of the corresponding off-diagonal block
column Bi in Ai−1 since L

(2)
i = BiL

(1)−T
i . Moreover, the nonzero pattern in Ai is “updated”

by the nonzero pattern of Bi since Ai = Āi − L(2)
i L

(2)T
i . Although the original matrix may

be sparse, subsequent Schur complements Ai may become dense, and the Cholesky factor L
may no longer be sparse. The nonzeros created are commonly referred to as the fill-in.

One step of the block factorization process is shown in Figure 2.2 to illustrate the fill-in
process of a sparse matrix. Figure 2.2(a) shows the nonzero pattern of the sparse matrix

A =

(
D1 BT

1

B1 Ā1

)
to be factorized. Figures 2.2 (b) and (c) show the nonzero patterns of B1

and L
(2)
1 , respectively. Notice how they have the same nonzero rows. Finally, Figures 2.2

(d) and (e) show the nonzero patterns of L
(2)
1 L

(2)T
1 and A1, respectively, showing their very

similar sparsity patterns.
We use the following terminology in this dissertation to describe changes to the variables

during elimination as in [93].

Definition 2.2.5. For i = 1, . . . , K, consider the matrix Ai defined in Algorithm 1 and
variables xj and xk for j, k > i. Then, xj and xk are connected if the corresponding
off-diagonal component in Ai is nonzero.

As seen above, in the i-th step of the block Cholesky factorization xj and xk will be
connected if they both are connected to the same variable xi in Di. This is because the
(j, k)-th component in L

(2)
i L

(2)T
i will be nonzero (assuming that it does not cancel with the

corresponding component in Āi. This observation is summarized in the following theorem.

Theorem 2.2.6. [39] If the variable xi is connected to variables xk for k > i, then upon
elimination of xi, all such xk will be connected pairwise.

For a finite element system Ax = b, recall that Aij 6= 0 if and only xi and xj belong to
the same element in the corresponding mesh. In the context of a mesh, if xj and xk belong
to the same element as the nodes in separator i, then upon elimination of the i-th separator,
they will become connected as shown in Figure 2.3.

In the case of nested dissection, each of the blocks in A correspond to a separator. Con-
sider the example where we have seven nodes in the separator tree T . The corresponding
matrix structure is shown in Figure 2.4. Following the block Cholesky factorization with
the blocks as the separators and eliminating them in the order of the nodes in T , we see
that eliminating separators 1 and 2 connects the variables in separators 3 and 7. Similarly,
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(a) Original matrix A

(b) B1 spar-
sity

(c) L
(2)
1

sparsity

(d) L
(2)
1 L

(2)T
1 sparsity (e) A1 sparsity

Figure 2.2: One step of block Cholesky.
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(a) Before elimination. (b) After elimination.

Figure 2.3: Connections during the factorization.

eliminating separators 4 and 5 connects the variables in separators 6 and 7. Finally, elimi-
nating the separators 3 and 6 will connect the variables in separator 7. Thus, for a matrix
reordered using nested dissection, upon elimination of node i, only the ancestors of i in T
are affected. In the next section, we show how to take advantage of this elimination pattern
using the multifrontal method.

2.2.2 Step 2: Symbolic factorization

Before the factorization, we apply a symbolic factorization stage to predict the nonzero
pattern in L. This allows us to create suitable data structures for the factorization and
efficiently implement the sparse factorization algorithm. No computations are done and for
each separator, the indices of the nonzero rows in the corresponding block column of L are
predicted and stored for later usage.

2.3 Step 3: Multifrontal Method

As seen in the previous section, eliminating the i-th separator only affects its ancestors in
T . The multifrontal method can be used to organize the entire factorization process to take
advantage of this. The basic idea is to organize the factorization into factorizations of smaller
dense matrices called frontal matrices which contain only the indices that are affected by
the elimination of an appropriate separator.

The multifrontal method is a well known, significant direct method for solving sparse
matrix problems. It was first developed for solving indefinite sparse symmetric linear equa-
tions and is a generalization of the frontal method by Irons [59]. In our algorithm, we use
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(a) Separator tree T . (b) Matrix reordered according to T .

Figure 2.4: Matrix reordered with nested dissection.

the supernodal version of the multifrontal method. This is a generalization of multifrontal
method which works with groups of nodes called supernodes rather than individual nodes.
In our algorithm, the supernodes correspond to the separators from the nested dissection
step. In this section we describe the supernodal multifrontal method. A detailed description
of both methods can be found in the paper by Liu [64].

Remark 2.3.1. From this point on, we refer to the nodes in a tree as supernodes, and the
variables within a supernode as nodes.

We first revisit the block Cholesky factorization in Algorithm 1. Given an N ×N matrix
A with Cholesky factor L, partition them into K2 blocks in the following way:

A =

A11 . . . ATK1
...

. . .
...

AK1 . . . AKK

 and L =

L11

...
. . .

LK1 . . . LKK

 . (2.1)

In the i-th step of the block Cholesky algorithm, we wish to factor the i-th Schur complement
Ai. Thus, one of the main components of the block Cholesky algorithm is to form and factor
Ai efficiently. To do this, we explore the underlying structure of Ai. For ease of notation, we
define the block outer product update as the block form of the outer product update described
in Section 1.3.



CHAPTER 2. MULTIFRONTAL METHOD 18

Definition 2.3.2. In the i-th step of the block Cholesky algorithm, the block outer product
update from the j-th block column of L is

Ũ
(i)
j =

Lij...
Lnj

(LTij . . . LTnj
)
,

and the j-th block outer product update is defined to be

Ũj := Ũ
(j)
j .

Recall that the Schur complement Ai is defined inductively where Ai = Āi− Ũ (i)
i and Āi

is a subblock of Ai−1. Using induction, it is easy to show that

Ai =

Aii . . . ATKi
...

. . .
...

AKi . . . AKK

− i∑
j=1

Ũ
(i)
j . (2.2)

In other words, the i-th Schur complement is made up of the appropriate subblock of the
original matrix A minus the first i block outer product updates.

It turns out that for sparse matrices or matrices with a sparse block pattern, it is not
necessary to include all i block outer product updates in the formation of the Schur comple-
ment since the computation of L

(1)
i and L

(2)
i only involves the first block row and column of

Ai. The multifrontal method is a systematic way to take advantage of this and remove these
unnecessary steps. In the case of where nested dissection is used, each block corresponds to
a separator (see Figure 2.4), and the matrix has a block sparse pattern as seen in Figure 2.4.
As an example, consider applying the sixth step of the block Cholesky factorization. Then

A6 =

(
A66 AT76
A76 A77

)
− Ũ (6)

1 − Ũ
(6)
2 − Ũ

(6)
3 − Ũ

(6)
4 − Ũ

(6)
5 ,

where the sparsity pattern can be seen in Figure 2.5. Computing L
(1)
6 and L

(2)
6 only involves

the first block row/column of A6 which Ũ
(6)
1 , Ũ

(6)
2 , and Ũ

(6)
3 do not contribute to. Thus, it

is only necessary to include Ũ
(6)
4 and Ũ

(6)
5 in the computation of the Schur complement to

correctly calculate Li.
The block Cholesky factorization may be reorganized to work only with partial Schur

complements involving the block outer products that contribute to the first block row/column
of the Schur complement. This reorganization is the main idea of the multifrontal method.
In what follows, we assume that we are working with a matrix that has been previously
reordered by nested dissection.
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(a) A subblock. (b) Ũ
(6)
1 , Ũ

(6)
2 , Ũ

(6)
3 . (c) Ũ

(6)
4 , Ũ

(6)
5 .

Figure 2.5: Nonzero structure of the Schur complement components.

2.3.1 Elimination tree

To understand the multifrontal method, we first define something called the elimination tree
which organizes the update contributions to the Schur complement. The elimination tree
was defined for the sparse symmetric case by Schreiber [81]. Here, we generalize the definition
for the block matrix A and its Cholesky factor L in (2.1). A supernode [4, 83] is defined to
be a set of consecutive variables in A.

Definition 2.3.3. [65, 64, 81] The elimination tree, T (A), of a K ×K block matrix A
is the tree with K supernodes {1, . . . , K}. Each supernode of the tree corresponds to the set
of variables in a block, and supernode p is the parent of j if and only if

p = min {i > j : Lij 6= 0} .

As an example, consider the matrices in Figure 2.6 which show the block sparsity patterns
for a matrix A, its Cholesky factor L, and the corresponding elimination tree T (A). Assume
that no zeros are introduced through cancellation during the factorization.

When the block matrix is irreducible (can not be permuted to a block diagonal matrix),
the elimination tree is a tree, but if the matrix is reducible, then the structure is a forest [64].
In this dissertation, unless specified otherwise, we assume that the matrix A is reducible. It
turns out that the nested dissection ordering tree T is related to the elimination tree of the
corresponding matrix T (A).

Theorem 2.3.4. For a matrix A ordered with nested dissection, its postordered nested dis-
section ordering tree T and elimination tree T (A) are the same.

Proof. In T (A), supernode p is the parent of j if and only if

p = min {i > j : Lij 6= 0} .

By definition of the postordered nested dissection tree, p is also the parent of j in T .

In the following discussions, we assume that the elimination tree is a balanced binary
tree. Additionally, the following two theorems have been proven regarding the elimination
tree for single nodes. We state the equivalent results for the case of supernodes.
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(a) A (b) L; Light purple blocks denotes
fill-in

(c) T (A)

Figure 2.6: Elimination Tree.

Theorem 2.3.5. [64] If a supernode k is a descendant of j in the elimination tree, then the

nonzero block structure of the block matrix
(
LTjk, . . . , L

T
nk

)T
is contained in the nonzero block

structure of
(
LTjj, . . . , L

T
nj

)T
Theorem 2.3.6. [81] If Ljk 6= 0 and k < j, then the supernode k is a descendent of j in
the elimination tree.

These theorems imply that for the computation of the j-th block column of the Cholesky
factor L, since the block sparsity pattern is the same as the corresponding block column in
the Schur complement matrix Ai, only the block outer product updates from the descendants
of j in T (A) are necessary. This was observed in the previous subsection in Figure 2.5.
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2.3.2 Frontal and update matrices

We are now ready to define the frontal and update matrices. The idea of the j-th frontal
matrix is to isolate only what is needed in the Schur complement Aj−1 to compute the j-th
block column of L. This involves three key changes from the Schur complement:

• Recall that only the block outer product contributions from the descendants of j are
necessary in the Schur complement. The frontal matrix contains only these updates.
In other words, we form a partial Schur complement.

• Only the j-th block column and row from the original matrix A are included.

• In the case of the nested dissection and other sparse matrix structures, the first block
column of Aj−1 contains many zero blocks. Thus, the frontal matrix reduces storage
by only considering a particular dense submatrix of the partial Schur complement
containing only certain nonzero blocks.

The definition of the frontal matrix summarizes these concepts. Let i0 := i, i1, . . . , ip be
the block row subscripts of the nonzero blocks in the i-th block column of L.

Definition 2.3.7. The i-th frontal matrix Fi for A is

Fi =


Aii ATi1i . . . ATipi
Ai1i
... 0

Aipi

− ∑
j:proper descendent of i


Lij
Li1j
...

Lipj

(Lij LTi1j . . . LTipj
)
(2.3)

= F 0
i −

∑
j:proper descendent of i

Ū
(i)
j . (2.4)

The initial frontal matrix F 0
i is the first matrix on the right-hand side, and the update

matrix Ui is the Schur complement from one step of elimination of Fi to get the i-th block
column of L:

Fi =


Lii
Li1i 1
...

. . .

Lipi 1



LTii LTi1i . . . LTipi

Ui

 . (2.5)

Figure 2.7 compares the block sparsity pattern between the (i − 1)-st Schur comple-
ment Ai−1 and the i-th frontal matrix Fi of the matrix in Figure 2.6(a). Thus, the i-th
frontal matrix contains the appropriate contributions from A and the block outer-product
contributions from the proper descendants of i. The i-th update matrix contains the block
outer-products from the subtree of T (A) with root i. It turns out that the i-th frontal
matrix can be written as the i-th initial frontal matrix combined with the update matrices
from its two children under an operation called extend-add. One can think of extend-adding
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(a) Schur complement Aj−1 (b) Frontal matrix Fi

Figure 2.7: Schur complement vs. frontal matrix.

as a generalized matrix addition for matrices of different sizes. The idea of applying the

extend-add operator, , to two matrices is to add the two matrices after padding them

with columns and rows of zeros to align indices.
To see an example of the extend-add operation, consider the two matrices

R =

(
a b
c d

)
, S =

(
e f
g h

)

which correspond to the indices {2, 4} and {3, 4}, respectively. Then R S is the following

matrix corresponding to the indices {2, 3, 4}:

R S =

a 0 b
0 0 0
c 0 d

+

0 0 0
0 e f
0 g h

 =

a 0 b
0 e f
c g d+ h

 .

We may now present the following theorem relating the frontal matrix with the update
matrices of its children. In this formulation, frontal matrices are formed according to the
postordering of the elimination tree.

Theorem 2.3.8. [64] Let the supernodes c1 and c2 be the children of i in T (A). Then

Fi =


Aii ATi1i . . . ATipi
Ai1i
... 0

Aipi

 Uc1 Uc2 . (2.6)
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In our algorithm, we use an equivalent definition of the frontal matrix using a combination
of the last two representations of the frontal matrix. For an elimination tree of height l, fix
a level s ∈ {0, . . . , l − 1}. We call this level the switching level. See Figure 3.1. This new
definition represents the frontal matrix as the sum of the initial frontal matrix, block outer
products updates from the proper descendants up to the switching level, and the update
matrices of the supernodes at the switching level. In our algorithm, it turns out that the
block outer product updates are of low-rank, and the update matrices have a sparse block
structure. The definition is given in (3.3).

2.3.2.1 Storage of the update matrices

The update matrices are traditionally stored as dense matrices in a stack structure. That
is, for the i-th separator where i < K and K is the number of separators, one can update
the stack with the update matrix Ui as follows. Assume that r is the parent of i.

1. • If i is a leaf node: Form the frontal matrix from the appropriate subblock of A.

• If i is a leaf node: Pop the frontal matrix from the stack.

2. Eliminate i to get Ui.

3. • If i is the left child of r: Partially form the frontal matrix of the parent r with

Fr = F0
r Ui.

• If i is the right child of r: Pop the partially formed Fr from the stack and extend-
add Ui to it to complete the formation.

4. Push Fr back onto the stack.

This method outlined above is what is done in the case of [93]. In our algorithm, we
continue to store the update matrix information in a stack. However, we do not explicitly
form the update matrices. The details are explained in Chapter 3.

2.3.3 Multifrontal method with dense update block storage

The version of the multifrontal method which stores the update matrices as dense matrices
in a stack is given in Algorithm 2. The following theorem regarding the complexity and
memory requirements of this algorithm was proven in [93]. Notice that Algorithm 2 is the
complexity of the nested dissection method.

Theorem 2.3.9. Algorithm 2 requires O(n3) multiplicative operations and has O(n2log2n)
nonzeros in the Cholesky factor. If the elimination tree is full and balanced, then the update
matrix stack requires O(n2) storage.
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Algorithm 2 Multifrontal method with dense update block storage.

Require: SPD matrix A partitioned into blocks; elimination tree T (A) with K nodes.
Ensure: Cholesky factor L where A = LLT with block columns Li.

1: for i = 1, . . . , K − 1 do
2: if i is a leaf node then
3: Form the frontal matrix Fi with the appropriate subblock of A.
4: else
5: Pop the frontal matrix from the stack.
6: end if
7: Perform one step of a block Cholesky algorithm to Fi to get Ui and Li.
8: if i is a left child then

9: Form Fi = F0
r Ui.

10: else
11: Pop Fi off the stack.

12: Form Fi = Fi Ui.
13: end if
14: Push Fi onto the stack.
15: end for
16: Pop FK off the stack and factorize to get LK .

Step 7 of Algorithm 2 requires performing one step of a block Cholesky factorization.
Many different structured algorithms may be used. In particular, we use a new algorithm
for factoring HSS matrices which we describe in Chapter 4.
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Chapter 3

Partial Left-Looking Multifrontal
Method

In this chapter, we describe and motivate our main algorithm which we call the Partial
Left-Looking Multifrontal Method. In [95], Xia proposes a randomized direct solver for gen-
eral large, sparse matrix equations based on integrating randomization into a structured
multifrontal method such as the one proposed in [92]. As we will show, the frontal and up-
date matrices have a certain low-rank structure which can be taken advantage of when they
are passed to their parent in the elimination tree. One can save memory and computation
time by passing these structures to the parents rather than losing them by passing the up-
date/frontal matrices as dense matrices. Xia accomplishes this by using randomized HSS
construction and factorization techniques. Moreover, Xia only partially factorizes the frontal
matrix in each step. In our algorithm, we adopt the same overarching principles of passing
the structures of the update/dense matrices up to the parents and only partially factorizing
the frontal matrix. However, we carry out these concepts in a different manner and tailor
our method to symmetric positive definite matrices while Xia’s algorithm applies to general
sparse matrices. Moreover, our factorization scheme (see Chapter 4) is Schur monotonic and
ensures a structured SPD factorization, leading to a guaranteed factorization of the entire
matrix. Lastly, in our dense matrix factorizations, our compression (low-rank approxima-
tion) scheme is more efficient than Xia’s. In our method, we use a randomized trucated
SVD algorithm for compression (see Algorithm 5) rather than the randomized interpolative
decomposition used in [95]. Our compression scheme gives a better (smaller) rank estimate,
making the algorithm more efficient.

An outline of this chapter is as follows. We first describe the underlying structure of the
frontal and update matrices which we take advantage of in our algorithm. Next we present
our algorithm which is a version of the multifrontal method with a left-looking approach.
Finally, we describe the memory and computational costs of our method along with some
numerical results. First we review the terminology used in this chapter.
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3.0.4 Terminology

Let A be the N ×N matrix we wish to factorize. Assume that we have already applied the
nested dissection method to A, and we have the elimination tree T (A) with K supernodes.
Although it will not always be the case, for simplicity of discussion, we assume that A is
reducible and thus a tree rather than a forest. For each supernode i, define the frontal matrix
index set to be the supernode indices of the nonzero blocks in the i-th block column of the
Cholesky factor L. We use the following notation:

Ii = {i := i0, i1, . . . , ip} Ji = {i1, . . . , ip} . (3.1)

Suppose Fi is the i-th frontal matrix corresponding to the i-th separator. Write

Fi =

(
F11 F T

21

F21 U0
i

)
(3.2)

where the first block column F11 and F21 contain the nodes belonging to the i-th supernode.
We refer to this block column as the separator block Si. Let S0

i be the initial separator block;
the first block column of F 0

i . The remainder of the frontal matrix U0
i corresponds to the

nodes belonging to the i-th update matrix Ui. Indeed, Ui is U0
i updated by the i-th block

outer-product update. We call this matrix the initial update matrix.
In the discussion that follows, we refer to the subblock of the i-th block outer product

update L
(2)
i L

(2)T
i , consisting only of the blocks in Ji, as Ūi. For each j, let Ū

(j)
i be the sub-

matrix of Ūi containing only the supernodes with index greater than or equal to j. In the
case where Ū

(j)
i = Ūi, we use the notation Ūi. The notation U (j)

i is used in the same way.

Remark 3.0.10. Given the notation in this section:

• Only Si is required to calculate the i-th block column of L, Li =

(
L
(1)
i

L
(2)
i

)
, since F11 =

L
(1)
i L

(1)T
i and L

(2)
i = F21L

(1)−T
i . Thus, the (initial) update matrices need to be stored

but not necessarily explicitly formed.

• Ūi, U0
i , Ui have supernode indices Ji.

• Si has row supernode indices Ii and column supernode index i.

• Fi, F 0
i , have supernode indices Ii

Finally, for a supernode i, let lvl(i) equal the level of i in the elimination/nested dissection
tree.
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3.1 Frontal and Update matrix structures

We now explore the structure of the frontal and update matrices. In our algorithm, we
use the following, equivalent definition of the frontal matrix using a combination of the two
representations of the frontal matrix found in Chapter 2.

For an elimination tree of height l, fix a level s ∈ {0, . . . , l − 1}. We call this level the
switching level. See Figure 3.1. Let lvl(i) equal the level of supernode i. This new definition
represents the frontal matrix as the sum of the initial frontal matrix, block outer products
updates from the proper descendants up to the switching level, and the subblocks of the
update matrices of the supernodes at the switching level. In our algorithm, it turns out that
the block outer product updates are of low rank, and the update matrices have a sparse
block structure. Moreover, these matrices have a hierarchical block structure that we will
describe. See Figure 3.2 for an illustration of this representation.

Figure 3.1: Levels in a elimination tree with height l and switching level at level s.

Theorem 3.1.1. Fix a switching level s in the tree T (A). Then

Fi =


Aii ATi1i . . . ATipi
Ai1i
... 0

Aipi

 ∑
k:lvl(k)=s

U (i)
k

∑
k:lvl(j)<lvl(k)<s

−Ū (i)
k . (3.3)

Proof. By definition of the frontal matrix, for a non-leaf separator i with children c1 and c2,
the initial update matrix is given by

U0
i = U (i+1)

c1
U (i+1)
c2

.

Thus, the update matrix can be written as

Ui = U (i+1)
c1

U (i+1)
c2

− Ūi. (3.4)
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In general, since U (j)
i is just a submatrix of Ui, by Theorem 2.3.5, it is easy to see that that

U (j)
i = U (j)

c1
U (j)
c2

− Ū (j)
i . (3.5)

Repeatedly applying this equation to (3.4) until the update matrices in the right-hand side
are at level s finishes the proof.

Remark 3.1.2. The last two summations on the right-hand side of (3.3) grow in the number
of terms as j increases, but each term shrinks in size. This implies that eventually, each
of these terms consist of small dense/low-rank blocks. In fact, we later show that in some
cases, many of these pieces are mutually almost disjoint in a hierarchical way.

(a) How the supernodes contribute to F31. Yellow supernodes contribute to the second sum.
Orange supernodes contribute to the third sum.

(b) Illustration of (3.4) and (3.5)

Figure 3.2: Illustration of the representation of Fi in (3.3)



CHAPTER 3. PARTIAL LEFT-LOOKING MULTIFRONTAL METHOD 29

We now show that in some applications, the matrices given by the two summations in
(3.3) have a special hierarchical sparse block structure. In fact, the terms in the summations
will correspond to almost disjoint matrices. To see this, we examine the case of a finite
element system with a regular mesh ordered by nested dissection. Consider the separator
i. The element containing i consists of the (parts of) separators bordering i. That is, the
separators {p1, p2, p3, p4} form an element as shown in Figure 3.3.

Figure 3.3: Element containing i

We have the following observation.

Lemma 3.1.3. For a separator i:

• The frontal matrix Fi will contain exactly the nodes from the separators {i, p1, p2, p3, p4}.

• The nodes in the update matrix Ui are the nodes from the separators {p1, p2, p3, p4}.

Proof. Suppose i is a leaf separator. Then by definition, Fi = F0 which is a submatrix of
A. Since Aij is nonzero if and only if xj and xi belong to the same element, Fi consists only
of the nodes belonging to the same element as i. Moreover, in this case, by definition of the
update matrix, Ui consists of the nodes belonging to {p1, p2, p3, p4}.

If i is a non-leaf separator, then Fi = F0 Uc1 Uc2 where c1 and c2 are the children

of i. Thus, Fi consists of the union of nodes belonging to F0 (nodes in {i, p1, p2, p3, p4}),
Uc1 , and Uc2 . Using induction, we can show that the nodes of Uc1 , and Uc2 are a subset of
the nodes in {i, p1, p2, p3, p4}.

Remark 3.1.4. By definition, the nodes contained in Ūi are exactly the same as the nodes
contained in Ui.

Thus, in the representation of the frontal matrix in (3.3), we can determine the structure
of the contribution of each term in the right-hand side sums by looking at the separators
in the element that contains them and ignoring the ones that have already been eliminated.
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Consider the case in in Figure 3.4 where there are 31 separators/supernodes, five levels of
dissection, and switching level s = 5.

Suppose i = 15. Then the F15 has the nodes belonging to {15, 31}, and the terms in
(3.3) have the following structures:

• F0
15:

•
∑

k:lvl(k)=5 U
(15)
k before the extend-add:

•
∑

k:lvl(k)=5 U
(15)
k after the extend-add (note the overlap of the blocks):



CHAPTER 3. PARTIAL LEFT-LOOKING MULTIFRONTAL METHOD 31

•
∑

k:2<lvl(k)<5 Ū
(15)
k :

–
∑

k:lvl(k)=3 Ū
(15)
k :

–
∑

k:lvl(k)=3 Ū
(15)
k :
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(a) Regular mesh with 31 separtors.

(b) Separator tree T with five levels.

Figure 3.4: Illustration of the representation of Fi in (3.3)
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These examples illustrate the underlying structure of the frontal matrices. If we write

Fi =

(
F11 F T

21

F21 U0
i

)
(3.6)

then one can see that not only do the pieces F11, F21 and U0
i have a hierarchical block

structure, each of these blocks are made up of low rank pieces. Thus, each of these matrices
contain a hierarchical low-rank structure which can be characterized by the HSS format.
In [99], Xia verifies the low-rank structure of these matrices through numerical experiments
where he uses the standard multifrontal method to solve a 5-point discretized Laplacian.
Exploiting this structure can result in better storage of update matrices, fast multiplica-
tion to random matrices, and storage reduction. Xia incorporated HSS operations into the
multifrontal method to improve operation costs [99]. In our algorithm, we also exploit this
structure to reduce memory and computational costs.

3.2 Partial Left-Looking Multifrontal Method

There three high level approaches to Cholesky factorization. Right-looking Cholesky (eager
method) traverses the columns from left to right, and the entire Schur complement matrix
is formed at every step. Left-looking Cholesky (lazy method) traverses the columns from
left to right, and at each step, only updates to the current column from previous columns.
Computations are then done on the current column. In this case, the updates to the current
column are done at the very last minute. Both these methods are easily generalized to the
block Cholesky factorization case. In the multifrontal method, columns are traversed in the
order of the elimination tree. If the matrix has been already been permuted, the columns are
traversed from left to right. At each step, update matrices (subblock of a partially formed
Schur complement) are fully formed. Thus, the multifrontal method is considered a type of
right-looking method.

3.2.1 Left-looking multifrontal method

In our algorithm, we use a combination of a left-looking multifrontal method (Algorithm 3)
with the traditional multifrontal method (Algorithm 2). Recall the representation of the
frontal matrix in Theorem 3.3. In the left-looking multifrontal method, the update/frontal
matrices are not stored. Instead, we compute the appropriate block column of the frontal
matrix (separator block Si) on the fly by updating the appropriate piece in the initial frontal
matrix from the previously computed blocks of L. Although we could get these previously
computed pieces from L, we store them in a stack which we explain in Section 3.2.3. See
Algorithm 3 for the left-looking multifrontal method. Recall that Si is the separator block
(first block column of Fi).
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Algorithm 3 Left-looking multifrontal method.

Require: SPD matrix A partitioned into blocks; elimination tree T (A) with K nodes.
Ensure: Cholesky factor L where A = LLT with block columns Li.

1: for i = 1, . . . , K do
2: if i is a leaf node then
3: Form the Fi with the appropriate subblock of A.
4: else
5: Form the Fi using using the formula

Fi = F 0
i

∑
k:lvl(j)<lvl(k)<s

−Ū (i)
k ,

where the matrix Ū
(i)
k is a product of subblocks in Li.

6: end if
7: Apply a Cholesky algorithm to Fi to get Li.
8: end for

Remark 3.2.1. In Algorithm 3, it is unnecessary to form the entire matrix Fi at each step.
It suffices to only form the separator block Si (first block column of Fi). The algorithm does
not change with this modification.

In this dissertation, we use a partial left-looking multifrontal method in the sense that
given a switching level s in the elimination tree, we use the traditional multifrontal method
for supernodes with level greater than or equal to s and the left-looking multifrontal method
for levels less than s. Thus, the frontal matrices Fi with lvl(i) < s are formed according
to (3.3). At the switching level, the update matrices are stored to be looked up later when
forming the frontal matrix.

3.2.2 Stack storage

In Algorithm 2, the update/frontal matrices are stored as dense blocks in a stack. This stack
structure is related to the postorder traversal of the elimination tree T (A). We first examine
this stack structure. For simplicity, we assume that the elimination tree is full and balanced
with l levels and 2l − 1 nodes.

One can either store the update matrices in the stack or the frontal matrices in the stack.
We discuss both methods. In the first method, the update matrices are stored in the stack
as follows. In the i-th step, the i-th update matrix is pushed onto the stack.

1. • If i is a leaf node: Form the frontal matrix with the appropriate subblock of A.

• If i is a leaf node: Pop the update matrices Uc1 and Uc2 from the top of the stack
and form Fi.
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2. Eliminate i in Fi to get Ui.

3. Push Ui onto the stack.

One thing to notice from this basic algorithm is that at Step i, both Uc1 and Uc2 are
stored in the stack, and both need to be popped from the stack to be combined into Fi.
However, one can save space by forming Fi in two steps: first partially form Fi in Step c1
and finish forming Fi in Step c2. Once we reach Step i, Fi will be on the top of the stack.
At Step i, the (partial) frontal matrix of the parent of i is stored in the stack as follows. Let
r be the parent of i.

1. • If i is a leaf node: Form the frontal matrix from the appropriate subblock of A.

• If i is a non-leaf node: Pop the frontal matrix from the stack.

2. Eliminate i in Fi to get Ui.

3. • If i is the left child of r: Partially form the frontal matrix of the parent r with

Fr = F0
r Ui.

• If i is the right child of r: Pop the partially formed Fr from the stack and extend-
add Ui to it to complete the formation.

4. Push Fr back onto the stack.

Both methods are compared in Table 3.1. Notice that storing the frontal matrices in the
stack require less memory. We have the following theorem regarding the maximum length
of the stack compared to the height of the tree.

Theorem 3.2.2. Suppose the elimination tree is balanced and full with l levels, then the
maximum height of the stack is l when used to store the update matrices and l− 1 when used
to store the frontal matrices.

Proof. It is easy to see that adding one more level increases the maximum height of the stack
by one. Thus, the theorem follows immediately from an induction argument.

In the algorithms that we consider, we will use the stack for storing the frontal matrix.

3.2.3 Storage of the supernodal frontal matrix within the stack

There are many different ways to store the frontal matrices themselves within the stack struc-
ture. In the traditional multifrontal method, the frontal matrices are stored as dense blocks.
In Liu’s multifrontal paper [64], he discusses the storage required in this case: Working
storage is needed for the entire frontal matrix during its formation and partial elimination.
However, since the first supernodal column (separator block) of Fj can overlap with the
storage of the corresponding block column Lj in L, we can store the frontal matrix in two
pieces:
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i Storing update matrices in the stack. Storing frontal matrices in the stack.

2

5

9

12

Table 3.1: Comparison of two stack uses. Highlighted nodes are nodes in the stack at step i.
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1. Store the first supernode column (separator block) in the respective block column of L.
This reduces the amount of data movement after partial elimination, since the nodes
are already in place.

2. Working array for the update matrix portion (initial update matrix). Thus, only
working storage for the update matrices is needed.

In the Section 3.1, we described the underlying structure of the frontal and update matrices
and its representation as HSS matrices (see Chapter 4 for a definition). In [99], Xia discusses
storing the frontal and update matrices as HSS matrices within the stack. In [92], the
frontal matrices are stored as HSS matrix, and the update matrices are stored as dense
blocks. Algorithms for HSS structures are then applied to these matrices when computing
the partial factorizations.

3.2.4 Partial left-looking structured multifrontal method

In our partial left-looking structured multifrontal method, Algorithm 4, we use a stack to
store the frontal matrices in their structured form. That is, the frontal matrices are not
formed until needed, but the components that make up the frontal matrices are organized
in a stack. The components consist of the pieces from the update matrices at the switching
level and the outer product updates from levels less than the switching level as in (3.3). The
update and outer product update matrices are each stored as vectors. Thus, each element
of the stack contains two vectors. Although the outer-product pieces can be retrieved from
L, we use this schema to improve data locality. Moreover, this schema may be used in
a parallel implementation. In Chapter 4, we show that the block outer-product updates
may be approximated by low-rank matrices. This algorithm has the advantage in that the
amount of storage needed is reduced. Also, because the structure is preserved, the frontal
matrices can be quickly multiplied to random matrices in the essential compression step in
our factorization method.

3.2.5 An example

Here we give an example of Algorithm 4 when applied to the example in Figure 3.4. Our
elimination tree has 31 nodes, five levels, and switching level s = 4. The first 15 steps of the
algorithm are shown below in Table 3.2.

3.3 Comparison of Memory Costs

The main goal of our new multifrontal algorithm is to reduce the working memory costs for
the update matrices. These matrices can become very large for large mesh sizes and no longer
fit into the available working memory. Here, we compare the complexity and memory costs
of the traditional multifrontal method with our partial left-looking structured multifrontal
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Algorithm 4 Partial left-looking structured multifrontal method.

Require: SPD matrix A; T (A) with K nodes, height l; switching level s < l
Ensure: Cholesky factor L where A = LLT with block columns Li.

1: for i = 1, . . . , K − 1 do
2: if i is a leaf node then
3: Form the frontal matrix Fi with the appropriate subblock of A.
4: Apply a Cholesky algorithm to Fi to get Li and Ui.
5: else
6: if lvl(i) ≥ s then
7: Pop the frontal matrix Fi from the stack S.
8: Apply a Cholesky algorithm to Fi to get Li and Ui.
9: else

10: Pop the top element of S, {S1, S2}, which contain the pieces of Fi .

11: Apply a structured Cholesky algorithm to {S1, S2} to get Li =
[
L
(1)
i ;L

(2)
i

]
.

12: Update S1 and S2 by replacing each U
(i)
k , U (i)

k with U
(i+1)
k , U (i+1)

k , respectively.
13: end if
14: end if
15: if lvl(i) > s then
16: if i is a left child then
17: Form Fi = F 0

r Ui. Push Fi onto the stack.

18: else
19: Pop Fi off the stack. Form Fi = Fi Ui. Push Fi onto the stack.

20: end if
21: else if lvl(i) = s then
22: if i is a left child then
23: Initialize S1 = [ ]. Set S2 = [Ui]. Push {S1, S2} onto the stack.
24: else
25: Pop {S1, S2} off the stack. Update S2 = [S2 Ui]. Push {S1, S2} onto the stack.
26: end if
27: else
28: if i is a left child then
29: Update S1 = [S1 L

(2)
i ]. Push {S1, S2} onto the stack.

30: else
31: Pop {S1, S2} off stack. Set S1 = [S1 L

(2)
i ], S2 = [S2 Ui]. Push {S1, S2} on stack.

32: end if
33: end if
34: end for
35: Pop the top element of S, {S1, S2}, which contain the pieces of FK .
36: Apply a structured Cholesky algorithm to {S1, S2} to get LK .
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F1 =

1
3
7

 ,U1 =

[
3
7

]
, S =

[
F3

]
F9 =

 9
10
14

 ,U9 =

[
10
14

]
, S =

 F10

Ū7 U (8)
3

U (8)
6



F2 =

 2
7
15

 ,U2 =

[
7
15

]
, S =

[
F3

]
F10 =

10
14
15

 ,U10 =

[
14
15

]
, S =

 U10

Ū7 U (8)
3

U (8)
6



F3 =

 3
7
15

 ,U3 =

[
7
15

]
, S =

[
U3

]
F11 =


11
13
14
15
31

 ,U11 =

13
14
15
31

 , S =


F13

U10

Ū7 U (8)
3

U (8)
6



F4 =

 4
6
7
31

 ,U4 =

 6
7
31

 , S =

[
F6

U3

]
F12 =

12
13
14
31

 ,U12 =

13
14
31

 , S =


F13

U10

Ū7 U (8)
3

U (8)
6



F5 =

 5
6
15
31

 ,U5 =

 6
15
31

 , S =

[
F6

U3

]
F13 =

13
14
15
31

 ,U13 =

14
15
31

 , S =


U13

U10

Ū7 U (8)
3

U (8)
6



F6 =

 6
7
15
31

 ,U6 =

 7
15
31

 , S =

[
U3

U6

]
F14 =

14
15
31

 U10 U13, Ū14 =

[
15
31

]
, S =


Ū7 U (8)

3

U (8)
6

Ū14 U (15)
10

U (15)
13



F7 =

 7
15
31

 U3 U6, Ū7 =

[
15
31

]
, F15 =

[
15
31

]
U (8)
3 U (8)

6 U (15)
10 U (15)

13 Ū7 Ū14,

S =

[
Ū7 U (8)

3

U (8)
6

]
Ū15 =

[
31
]
, S =


Ū

(16)
7 U (16)

3

U (16)
6

Ū
(16)
14 U (16)

10

Ū15 U (16)
13


F8 =

 8
10
14
15

 ,U8 =

10
14
15

 , S =

 F10

Ū7 U (8)
3

U (8)
6


Table 3.2: First 15 steps of Algorithm 4 when applied to the example in Figure 3.4. The
elimination tree has 31 nodes, five levels, and switching level s = 4.

method for a 2D discretized problem with mesh size n×n. In our new multifrontal method,
we factorize the frontal matrices using the algorithm in Chapter 4 which is shown to have
complexity O(pN2) where N is the size of the matrix, and p is an upper bound for numerical
ranks of the off-diagonal blocks. This algorithm requires O(pN) storage. Lastly, we give
some numerical examples comparing the costs of computation.

Theorem 3.16 of [93] gives the complexity and storage requirements for the traditional
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multifrontal method. We outline the proof since the ideas are used again in Theorem 3.3.4.
Note that the complexity is the complexity of nested dissection.

Theorem 3.3.1. The traditional multifrontal method requires O(n3) multiplicative opera-
tions to factorize A and has O(n2 log2 n) nonzeros in the Cholesky factors. If the elimination
tree is full and balanced, the storage requirement for the update matrix stack is O(n2).

Proof. Since A is of size n2 × n2, there exist a total of l = O(log2 n) levels in the elimina-
tion tree and O(2l/2) = O(n). At each level k, there are 2k−1 supernodes (subproblems).

Each problem (frontal matrix) has dimension O(2
l−k
2 ) since it involves the nodes in the ele-

ment containing the corresponding separator. Each traditional Cholesky factorization takes
O(2

l−k
2 )3. Thus, the total cost is

l∑
k=1

2k−1O(2
l−k
2 )3 = O(23l/1) = O(n3). (3.7)

Each update matrix in the k-th level requires O(2l−k) space to store the corresponding factor
in L. Thus, the total storage space for L is

l∑
k=1

2k−1O(2
l−k
2 )2 = O(l2l) = O(n2 log2 n). (3.8)

For the update matrix stack, as mentioned before, there exist l − k + 1 update matrices in
the stack at the k-th level. Thus, the total storage for the update matrices in the stack is

O(2l−k) +O(2l−k−1) + · · ·+O(12) = O(2l−k). (3.9)

The maximum storage needed for the stack occurs at k = 1, and we have O(2l−1) = O(n2).
Thus, the total space needed is O(n2 log2 n).

Before we state the complexity and storage requirements for the partial left-looking struc-
tured multifrontal method, we first prove a few facts about its stack elements; that is, the
frontal matrices stored in structured form. The following lemma shows that a frontal matrix
in structured form of order N requires O(N2) storage, O(N2q) operations to multiply it to a
matrix of size N × q, and O(pN2) to reconstruct it, where p is an upper bound on the rank
of the off-diagonal blocks.

Lemma 3.3.2. A frontal matrix of size n× n stored in the format in (3.3) requires

1. O(N2) storage,

2. O(N2q) operations to multiply it to a matrix of size n× q,

3. O(N2p) to reconstruct the matrix.
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Proof. Suppose s is the switching level of the elimination tree. We first compute the

memory needed to store the i-th frontal matrix Fi as the terms
{
U (i)
k : lvl(k) = s

}
and{

U
(i)
k : s0 < lvl(k) < s, lvl(i) = s0

}
. At level k, there are 2k−1 supernodes, and the frontal

matrices are of size O(2
l−k
2 ) Thus, Fi is of size O(2

l−s0
2 ), and at level s, the terms in{

U (i)
k : lvl(k) = s

}
require

2s−s0O
(

2
l−s
2

)2
= O

(
N2
)

(3.10)

storage.

Similarly, the terms in
{
U

(i)
k : s0 < lvl(k) < s

}
require

s−1∑
j=s0+1

2j−s0O(2
l−j
2 )p = O

(
p

s−1∑
j=s0+1

2l−s0
1

2(l−j)/2

)
= O

(
p2

l−s0
2 (1− 2

s−s0+1
2 )

)
= O

(
p2

l−s0
2

)
= O (pN)

storage. Thus, we need a total of O(N2) memory.
In the case where the frontal matrix is multiplied to a matrix of size n × q, each dense

block operation will require O(2
l−s
2 )2q operations at level s and O(2

l−k
2 )2pq operations at

level k between s and s0. The calculation is carried out in exactly the same way to show
that we need O(N2q) operations.

Finally, in order to reconstruct Fi, we need to perform 2s−s0 extend-adds of matrices of
size O(2

l−s
2 )2, and at each level j between s and s0, we need to perform 2j−s0 extend-adds

of matrices of size O(2
l−j
2 )2 and 2j−s0 multiplications requiring O(2

l−j
2 )2p operations. This

results in a total of
O(N2) +O(N2) +O(N2p) = O(N2p) (3.11)

operations.

Remark 3.3.3. In the case of a 2D finite element problem on a regular grid, the number
of nonempty terms in (3.3.3) is reduced by a factor of 2bs−s0−1c. Thus, the number of terms

becomes 2
s−s0

2 and becomes O(N2/2
s
2 ). If we choose 2s/2 ≈ N/p then we have O(N2/2

s
2 ) =

O(Np), and the total storage needed for a frontal matrix in structured form is O(Np).

We can now state and prove the following theorem.

Theorem 3.3.4. The partial left-looking structured multifrontal method requires O(n2p log2 n)
multiplicative operations to factorize A if p ≈ 2s and has O(n2 log2 p) nonzeros in the
Cholesky factors. If the elimination tree is full and balanced, then the storage requirement
for the update matrix stack is O(n2).

Proof. The proof is similar to the proof in Theorem 3.3.1. Before the switching level s, we
use direct Cholesky and have the following computation costs:
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• s bottom levels,

• for each level k, 2k−1 factorizations, each of dimension O(2
l−k
2 ),

• subcost
∑l

k=l−s+1 2k−1O(2
l−k
2 )3 = O(2l2s) = O(n22s).

After the switching level, we have the structured Cholesky factorization which has a compu-
tational cost of O(pN2). There are:

• l − s upper levels,

• for each level k, 2k−1 factorizations, each of dimension O(2
l−k
2 ),

• subcost
∑l−s

k=1 2k−1O(p22 l−k
2 ) = O(p2l(l − s)) = O(pn2(l − s)).

If we choose p ≈ 2s, then we have a total cost of O(pn2 log2 n).
Similarly, since the structured Cholesky factors require O(pN) storage, the total storage

needed for the Cholesky factor L is:

l∑
k=l−s+1

2k−1O(2
l−k
2 )2 +

l−s∑
k=1

2k−1O(p2
l−k
2 ) = O(2ls) +O(p2l/2s) = O(n2log2p). (3.12)

The storage needed for the update matrix stack is exactly the same as in (3.9). Thus, the
total space needed is O(n2 log2 p).

Remark 3.3.5. In the case of a 2D finite element problem on a regular grid as in Remark
3.3.3, the storage requirement for the update matrix stack is O(np) since each frontal matrix
only needs a storage space of O(pN).

3.4 Numerical Experiments

Here we give some numerical examples comparing our method with the traditional multi-
frontal method. We test our method on a 2D discrete Laplacian on a 5-point stencil where A
is a 5-diagonal n2 × n2 sparse matrix. An example of such a matrix before and after nested
dissection is given in Figure 3.5. The two methods are implemented in Matlab and are tested
on a 2.2 GHz Intel Core i7 processor with 8GB memory. We use the following notation:

We first compare the number of flops needed on our model problem for different values
of n, l, and s. See Table 3.3. In Table 3.4, we run the same experiment and compare the
maximum sizes of the memory used in the frontal matrix stacks. In Figures 3.6 and 3.7,
we plot the ratios of the time and memory for PMF over MF, respectively. We see that
PMF does better than MF and does better when more structured levels are used. Finally
in Figure 3.8, we show how the computation time, maximum stack size, and relative error
change with switching level for n = 511 and n = 1023.
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(a) Before nested dissection.

(b) After nested dissection.

Figure 3.5: 2D discrete Laplacian on a 5-point stencil with n = 500
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(a) Time vs. mesh size.

(b) Ratio of computation times.

Figure 3.6: Computation time comparisons for different mesh sizes.
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(a) Memory vs. mesh size.

(b) Ratio of memory costs.

Figure 3.7: Maximum stack sizes for different mesh sizes.
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Notation Meaning
TMF Traditional Multifrontal Method
PMF Partial Left-Looking Structured Multifrontal Method
n mesh size
τ tolerance
l total number of levels
s switching level
time time in seconds
ms max stack size (nonzeros)

Mesh n = 127 n = 255 n = 511 n = 1023 n = 2047
l s flops l s time l s time l s time l s time

MF 10 3.83s 12 16.19s 12 36.25s 14 517.47s 14 1758.49s

PMF
10 4 3.78s 12 5 15.33s 12 5 28.18s 14 5 323.28s 14 5 1101.77s
10 6 4.15s 12 7 15.28s 12 7 26.02s 14 7 267.80s 14 7 896.74s

Table 3.3: Computational time comparisons; τ = 10−4.

Mesh n = 127 n = 255 n = 511 n = 1023 n = 2047
l s ms l s ms l s ms l s ms l s ms

MF 10 7.91E4 12 2.94E5 12 1.35E6 14 6.28E6 14 2.18E7

PMF
10 4 5.59E4 12 5 2.17E5 12 5 7.09E5 14 5 2.95E6 14 5 1.07E7
10 6 3.81E4 12 7 1.28E5 12 7 3.07E5 14 7 1.49E6 14 7 5.35E6

Table 3.4: Maximum stack size comparisons; τ = 10−4.
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(a) Relative Residual. (b) Computation Time.

(c) Max stack size.

Figure 3.8: PMF comparisons for different switching levels; l = 12, tol = 10−8.
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Chapter 4

Cholesky Factorization of the Frontal
Matrices

It has been observed [99] that the frontal/update matrices in the generalized multifrontal
method, when applied to problems such as the ones in Section 1.2.1, possess certain low-rank
properties with appropriate choices of tolerance and block sizes. In particular, if we write
the i-th frontal matrix as

Fi =

(
Aii AiB
ABi ABB

)
=

(
Lii
LBi I

)(
LTii LTBi

Ui

)
,

where Ui is the ith update matrix, then

• AiB is numerically of low-rank,

• Aii and Ui have off-diagonal blocks with numerically low-ranks.

Matrices with this low-rank property can be approximately described using a hierar-
chically semiseparable (HSS) representation. Such matrices are called HSS matrices. As a
result, fast algorithms which exploit this structure may be used to compute the Cholesky
factorization of the frontal matrices. In this chapter, we propose a robust Cholesky fac-
torization method for symmetric positive definite (SPD), hierarchically semiseparable (HSS)
matrices. Classical Cholesky factorizations and some semiseparable methods need to sequen-
tially compute Schur complements. In contrast, we develop a strategy involving orthogo-
nal transformations and approximations which avoids the explicit computation of the Schur
complement in each factorization step. The overall factorization requires fewer floating point
operations and has better data locality when compared to the recent HSS method in [96].
Our strategy utilizes a robustness technique so that an approximate generalized Cholesky
factorization is guaranteed to exist.

In [61], three different methods are tested for compressing the off-diagonal blocks in each
iteration, i.e., rank-revealing QR, SVD, and SVD with random sampling. In the comparisons,
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using SVD with random sampling is fast and stable with high probability. Thus, in this
dissertation, we use the random sampling technique for compression. Later, we show how
to combine this randomization with our method of storing the frontal matrices to improve
speed. The complexity of this algorithm is O(N2p), where N is the dimension of matrix and
p is the maximum off-diagonal (numerical) rank.

4.1 Overview

The HSS matrix structure was first discussed in [23, 24] and arose from an algebraic ab-
straction of the fast integral equation solver developed in [47]. More broadly, the HSS matrix
is closely related to other rank-structured matrices such as the H [48, 51], H 2 [52, 49],
quasiseparable [33, 89, 88], and sequentially semiseparable (SSS) [23, 24] matrices. Among
other things, some of these matrix structures, such as the HSS, H , and H 2 matrices, have
proven to be invaluable tools in the fast numerical solutions of integral equations. Recently,
they have been shown to play central roles in the superfast direct factorization and precon-
ditioning of certain classes of large, sparse matrices [43, 42, 48, 49, 99].

The semi-separable matrix structures share the common feature that all their off-diagonal
blocks have rapidly decaying singular values. Thus, the numerical ranks of off-diagonal blocks
are significantly smaller than the matrix dimensions [22, 21, 40, 68, 79, 7, 14, 23]. Recently,
Xia and Gu have proposed an efficient algorithm that computes the approximation

A = R>R +O (τ) , (4.1)

where R>R is an HSS matrix and R is upper triangular [96]. This algorithm costs O(N2k)
floating operations (flops), where N is the order of A and k is the HSS rank. The main
attractiveness over the algorithms in [23, 24, 21, 67] is that all Schur complements of A are
kept SPD throughout the computation, thereby ensuring the existence of R for any given
positive τ value. This robustness characteristic, often referred to as Schur-monotonic, is
achieved by an approximation process, whereby the difference between the approximated
and true Schur complement is a small, non-negative definite matrix. This technique is
referred to as Schur compensation in [96].

Given an SPD matrix A, we are interested in the rapid computation of an SPD, hierar-
chical semi-separable (HSS) matrix S such that

A = S +O (τ) , (4.2)

where τ is a user-prescribed tolerance. We propose a new algorithm for computing the
approximation S in (4.2), where S = PP> is a generalized Cholesky factorization with P
an HSS matrix, computed through a sequence of Householder transformations and Cholesky
factorizations. Our algorithm is designed to be Schur-monotonic and free of any direct Schur
complement computations, resulting in faster computation and better data locality.

Recent work has suggested the efficiency and effectiveness of utilizing randomized algo-
rithms [56, 97, 44, 45] for low-rank matrix compression during the HSS matrix construction.
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As pointed out in [44, 45], some of these randomized algorithms are equivalent to subspace
iteration methods with an excellent start matrix, and the feature that the off-diagonal blocks
of A have rapidly decaying singular values allows such algorithms to compute low-rank ap-
proximations quickly. Our algorithm adopts a reliable version of the randomized algorithm
that maintains Schur-monotonicity and yet allows fast low-rank compression. When the
matrix is large, our algorithm is much faster than that of [96] (see [61]). Note that Mar-
tinsson [67] has developed an efficient algorithm to approximately construct HSS matrices
using random sampling techniques. However, this algorithm does not appear to maintain
Schur-monotonicity during the factorization process, and can produce an indefinite HSS
approximation even when the original matrix is SPD.

Depending on the tolerance level, the matrix S in (4.2) can either be used as a ma-
trix factorization for a rapid linear system solver or as a preconditioner in the context of
preconditioned conjugate gradient iterations.

4.2 Preliminaries

In this section, we introduce some notation and give a brief introduction to the key concepts
of HSS structures. We also describe some standard low-rank matrix approximation methods,
including the random sampling method, which will be used to compress off-diagonal blocks.

4.2.1 Notation and terminology

As in the previous notation, let T be a full binary tree. The root of T is denoted by root(T ),
and for each node i, sib(i) and par(i) denote the sibling and parent of i. If i is a non-leaf
node, we represent the left and right child of i with i1 and i2, respectively. For our purposes,
T is assumed to be postordered. That is, the nodes are ordered so that non-leaf nodes i
satisfy the ordering i1 < i2 < i. We assume the levels of T are ordered top-down. In other
words, root(T ) is at level 0 and the leaves of T are at the largest level; see Figure 4.1(c).

Let A ∈ RN×N be a symmetric matrix with indexing set I := {1, . . . , N}. For a subset ti
of I, let tci be the set of all indices less than those of ti and tri be the set of all indices greater
than those of ti; then, I = tci ∪ ti ∪ tri . Allow Atitj to represent the submatrix of A with row
index set ti and column index set tj.

4.2.2 Introduction to symmetric HSS matrices

We introduce the postordered HSS form of a symmetric matrix A; see [96] for the general case.
The HSS representation of A depends on a recursive partitioning of the rows and columns.
Since A is symmetric, we assume the rows and columns have the same partitioning, and it
is understood that the ith partition of A refers to both the ith row and column partition.
As in [96], the partitioning is organized via a full, postordered binary tree T ; i.e., the ith
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node of T corresponds to the ith partition of A. The indices of the ith partition of A are
contiguous and satisfy the following:

• ti ∪ tsib(i) = tpar(i),

• troot(T ) = I.

Figure 4.1 illustrates these sets.

(a) Bottom level (b) Level 1 (c) HSS postordering tree

Figure 4.1: Matrix partition and the corresponding index sets and binary tree T .

Each node i of T is associated with a set of matrices Di, Ui, Ri, Bi called generators,
where Bi is empty if i is a right child. The generators satisfy the recursive relationships

Di =

(
Di1 Ui1Bi1U

>
i2

Ui2B
>
i1
U>i1 Di2

)
, Ui =

(
Ui1Ri1

Ui2Ri2

)
, (4.3)

where Di ≡ Atiti . For example, a 4× 4 block HSS form looks like
D1 U1B1U

>
2 U1R1B3R

>
4 U
>
4 U1R1B3R

>
5 U
>
5

U2B
>
1 U
>
1 D2 U2R2B3R

>
4 U
>
4 U2R2B3R

>
5 U
>
5

U4R4B
>
3 R
>
1 U
>
1 U4R4B

>
3 R
>
2 U
>
2 D4 U4B4U

>
5

U5R5B
>
3 R
>
1 U
>
1 U5R5B

>
3 R
>
2 U
>
2 U5B

>
4 U
>
4 D5

 , (4.4)

and the corresponding HSS tree is shown in Figure 4.1(c). Following the notation of [96], a
block row (column) of A excluding the diagonal block is called an HSS block row (column),
or simply HSS block. For instance, the ith HSS block row and block column are

Hrow
i =

(
Atitci Atitri

)
and Hcol

i =

(
Atci ti
Atri ti

)
,

respectively. Our algorithm is introduced using HSS block rows; the discussions for HSS
block columns are similar. We call the maximum (numerical) rank of all HSS blocks the
HSS rank of the matrix.



CHAPTER 4. CHOLESKY FACTORIZATION OF THE FRONTAL MATRICES 52

Many efficient algorithms have been developed for working with matrices represented or
approximated by HSS structures. As shown in [21], there exist O(N) algorithms for solving
an HSS linear system. To clearly describe such HSS algorithms, we review the definition of
a visited set [96].

Definition 4.2.1. The visited set associated with a node i of a postordered binary tree T is

Vi := {j|j is a left node and sib(j) ∈ pred(i)}, (4.5)

where pred(i) is the set of predecessors associated with node i, i.e.,

pred(i) =

{
{i},
{i} ∪ pred(par(i)),

if i = root(T ),
otherwise.

The set Vi can be interpreted as the stack before the visit of i in the postordering traversal
of T [96]. For example, we have

V4 = V6 = {3}, V5 = {3, 4}, V11 = V13 = {7, 10}, V12 = {7, 10, 11};

see Figure 4.2.

Figure 4.2: The visited set V5. (The number under each node i in Figure 4.2 denotes the
cardinality si of Vi.)

We later use the following theorem involving Vi to analyze the complexity of the HSS
construction algorithm. In particular, the theorem shows that for a perfect binary tree, the
maximum number of nodes in Vi is proportional to the height of the tree.

Theorem 4.2.2. [94] Let T be a perfect binary tree with levels ordered top-down and si be
the cardinality of Vi. Then for any node i at level l, 1 ≤ si ≤ l. Moreover, there are exactly
f lj :=

(
l
j

)
nodes i at level l with si ≡ j for some 1 ≤ j ≤ l.
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4.2.3 Low-rank matrix approximation

In [61], three different methods are used for computing low-rank approximations to a matrix
B ∈ Rm×n. Each method can be computed either by setting a tolerance τ or an explicit rank
k. That is, there are two types of approximations:

• Fixed-precision approximation: Seek matrices U ∈ Rm×rτ and T ∈ Rrτ×n such that

‖B − UT‖2 ≤ τ, (4.6)

where rτ is determined by τ .

• Fixed-rank approximation: Seek matrices U ∈ Rm×r and T ∈ Rr×n such that

‖B − UT‖2 = min
rank(X)≤k

‖B −X‖2. (4.7)

The first method is a rank-revealing QR (RRQR) factorization. It is well known that
RRQR can be used to compute low-rank approximations [19, 46] since RRQR allows one to
(approximately) factor B as

BP ≈ QR,

where Q ∈ Rm×k has orthonormal columns, R ∈ Rk×n is upper triangular, and P ∈ Rn×n is
a permutation matrix. The second method is the commonly used truncated singular value
decomposition (SVD) [41] where

B ≈ UΣV >

with U ∈ Rm×k, V ∈ Rn×k, and Σ ∈ Rk×k.
The third method is a randomized algorithm to compute the low-rank approximations.

Since this algorithm has been shown to typically be very fast and accurate [61], we use
this method of compression in our algorithm. In general, such randomized algorithms are
divided into two stages [62, 56]. First, a low-dimensional subspace approximately spanning
the range of B is constructed. Then, the desired matrix decomposition is computed on a
reduced matrix.

Stage A: Compute an approximate low-rank basis Q ∈ Rm×k of the range of B such that
Q has orthonormal columns and

B ≈ QQ∗B.

Stage B: Compute the desired matrix decomposition on the smaller matrix C := Q∗B ∈
Rk×n.
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Algorithm 5 Random Low-Rank Approximation

Require: l such that k ≤ l < min{m,n} where k is an approximation for the rank of B
Ensure: U , T where UT is a low-rank approximation of B

1: Draw an n× l random matrix Ω whose entries are Gaussian random variables with zero
mean and unit variance.

2: Compute the sample matrix
Y = BΩ.

3: Let Q ∈ Rm×k consist of the left singular vectors correspond to the k largest singular
values of Y . This can be computed using an SVD where

Y = BΩ = UΣV > = [Q | P ]ΣV >.

Here, U ∈ Rm×l and V ∈ Rl×l have orthonormal columns, Σ is an l × l nonnegative
diagonal matrix, and P ∈ Rm×(l−k).

4: return U = Q and T = Q∗B

The HSS construction requires computing low-rank approximations of Hrow
i (or Hcol

i )
satisfying (4.6) or (4.7). This can be achieved by approximating the orthonormal row (or
column) bases. Thus, it is enough to compute the basis Q in Stage A. The following
algorithm, equivalent to the random SVD algorithm proposed in Section 5.2 of [69], is used
to quickly find Q.

The following theorem, summarized from [69], says that QQ∗B closely approximates B
with very high probability for small values of p as long as the (k + 1)st singular value of B
is small. For instance, we can choose p = 8, 10.

Theorem 4.2.3. Let B ∈ Rm×n, k and p be positive integers such that 1 ≤ k ≤ k +
p ≤ min{m,n}, and Ω ∈ Rn×(k+p) be a Gaussian random matrix with zero mean and unit
variance. Let Q be the m × k matrix computed from Algorithm 5 and σk+1 be the (k + 1)st
largest singular value of B. Then

‖B −QQ∗B‖2 ≤ 10σk+1

√
(k + p)n,

with probability at least 1− φ(p) for a decreasing function φ.

Remark 4.2.4. 1. The function φ decreases rapidly. For example, φ(8) < 10−5 and
φ(20) < 10−17.

2. In [61], Algorithm 5 is typically observed to be faster than the deterministic algorithms
RRQR and SVD.
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4.3 Generalized HSS Cholesky Factorization for SPD

matrices

In this section, we discuss our new algorithm for computing a generalized HSS Cholesky
factorization. We begin with a simple 2× 2 block partitioning of an N ×N SPD matrix A
where

A =

(
A11 A12

A>12 A22

)
, (4.8)

with A12 ∈ Rm×(N−m) and m ≤ N
2

. We will assume the off-diagonal submatrix A12 has
rapidly decaying singular values. Thus, A12 is a low-rank matrix up to a given tolerance
τ > 0. Our approach exploits this low-rank property.

To motivate this approach, we introduce the scheme developed in [96]. First compute the
Cholesky factorization of A11 as L11L

>
11, and let L21 = A>12L

−>
11 . Then A can be factored as

A =

(
L11

L21 I

)(
L>11 L>21

S

)
,

where S = A22 − L21L
>
21 is the Schur complement. The computation of this factorization

can be sped up by taking the truncated SVD of L>21. We have

L>21 = (U Û)

(
Σ

Σ̂

)(
V >

V̂ >

)
= UΣV > + ÛΣ̂V̂ > = UΣV > +O(τ), (4.9)

where Σ = diag(σ1, . . . , σk), Σ̂ = diag(σk+1, . . . , σm), and σk ≥ τ ≥ σk+1. Then UΣV > is the
τ -truncated SVD of L>21 and can be used to approximate the Schur complement S by

S̃ = A22 − V Σ2V >. (4.10)

Since S̃ = A22−L21L
>
21 + V̂ Σ̂2V̂ > = S+ V̂ Σ̂2V̂ >, S̃ is always SPD for any tolerance τ . Thus,

one can continue the Cholesky factorization on S̃ in the same fashion, and an approximate
HSS factorization of A is guaranteed for any τ > 0. See [96] for more details.

In this algorithm, we take a different approach. Instead of keeping track of the approx-
imate Schur complement S̃ throughout the computation, we completely avoid any explicit
computation of the Schur complements throughout the generalized Cholesky factorization.

We again use the matrix (4.8) to illustrate the main idea of our new algorithm. To this
end, we only factorize part of the first block row. There are two phases in this algorithm:
compression and merging. The main idea is to find an orthonormal matrix U such that the
Cholesky factorization of U >AU be approximately computed without calculating the Schur
complement.

Compute the Cholesky factorization A11 = L1L
>
1 and an orthogonal decomposition

L−11 A12 = Q1W1 + Q2W2, where Q = [Q1 Q2] is an orthonormal matrix with Q2 ∈ Rm×k

and ‖W1‖2 = O(τ). Now further compute a QL factorization U (1)L̂ = L1Q which leads to

U (1)L̂
(
U (1)L̂

)>
= L1Q (L1Q)> = L1L

>
1 = A11,
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and

A12 = L1Q

(
W1

W2

)
= U (1)L̂

(
W1

W2

)
.

Defining

U1 :=

(
U (1)

I

)
(4.11)

leads to

U >
1

(
A11 A12

A21 A22

)
U1 =

 L̂L̂> L̂

(
W1

W2

)
(
W>

1 W>
2

)
L̂> A22

 ,

and the partitioning

L̂ =

(
L̂11

L̂21 L̂22

)
yields

U >
1

(
A11 A12

A21 A22

)
U1

=

 L̂11

L̂21 I
W>

1 I

I L̂22L̂
>
22 L̂22W2

W>
2 L̂
>
22 A22 −W>

1 W1

 L̂11

L̂21 I
W>

1 I

>

≈

L̂11

L̂21 I
I

I L̂22L̂
>
22 L̂22W2

W>
2 L̂
>
22 A22

L̂11

L̂21 I
I

> .
In the last equation, we have set W1 to zero in each of the matrices, resulting in an error
of O(τ) in the first and last matrices and an error of O(τ 2) in the center matrix. Since A
is SPD, the center matrix in the last equation is also SPD for any τ > 0. In the following
context, we denote the compressed off-diagonal block of node i as A

(i)

t̂itri
. For example, after

the compression of node 1, we may use A
(1)

t̂1t2
to denote L̂22W2. A

(1)

t̂1t2
is a matrix with fewer

rows than At1t2(= A12).
This summarizes how to compress the (1, 2) block in a 2 × 2 block partition setting.

In general, the compression process is similar to that of [96]. The main difference of our
algorithm is in the need to determine the HSS block row

Hrow
i :=

[
A

(j1)T

t̂j1 ti
, . . . , A

(jsi )T

t̂jsi
ti
| Atitri

]
,

where j1, j2, . . . , jsi are the elements of the visited set Vi for a node i. Figure 4.4 illustrates
how to obtain the HSS block row for i = 2. To compress Hrow

i , we apply the above com-
pression procedure to node i. Below, we summarize the general procedure for leaf nodes i,
following the ordering of the postordered tree. Note that since A is symmetric, it is enough
to work on the block rows in the upper triangular section of A.
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(a) Original matrix (b) Fact. of 1 (c) Fact. of 2

(d) Merge of 1, 2 (e) Fact. of 3,4,5 (f) Merge of 4, 5

(g) Fact. of 6 (h) Fact. of root

Figure 4.3: The factorization process.

Figure 4.4: The second HSS block row
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Algorithm 6 Compressing off-diagonal block rows

Require: SPD matrix A partitioned into n2 blocks (n leaf nodes in the HSS tree T ); off-
diagonal block corresponding to node i has mi rows and rank ki.

Ensure: Generators U (i), L̂
(i)
11 , L̂

(i)
21

1: for i = 0, 1, 2, . . . ,root(T ) do
2: if i is a leaf node then
3: Identify the ith diagonal block Atiti and ith HSS block row

Hrow
i =

[
A

(j1)T

t̂j1 ti
, . . . , A

(jsi )T

t̂jsi
ti
| Atitri

]
,

where Vi = {j1, j2, . . . , jsi} is the visited set of node i.
4: Compute the Cholesky factorization of Atiti = LiL

>
i .

5: Compute the orthogonal decomposition L−1i Hrow
i = Q1W1 + Q2W2, where Q =

[Q1 Q2] is an orthonormal matrix with Q2 ∈ Rmi×ki , to obtain the compression
L−1i Hrow

i ≈ Q2W2.
6: Compute U (i) from the QL decomposition LiQ = U (i)L̂(i), and write

L̂(i) =

(
L̂
(i)
11

L̂
(i)
21 L̂

(i)
22

)
,

where L̂
(i)
22 ∈ Rki×ki .

7: Compute the HSS block Ĥi = L̂
(i)
22W2 and Di = L̂

(i)
22 L̂

(i)T
22 .

8: end if
9: end for

Remark 4.3.1. 1. The matrices U (i), L̂
(i)
11 , L̂

(i)
21 , and the scalar ki are the generators of

node i and are stored to later reconstruct the preconditioner or be used in the HSS
solver. The matrix Di and remaining HSS block Ĥi are passed to par(i).

2. In Step 3 of Algorithm 6, computing Q is a classical low-rank matrix approximation
problem with many possible algorithms (RRQR, τ -truncated SVD, SVDR).

3. The HSS block Hrow
i can be formed with the aid of the visited set Vi: If node i is a left

node, push i onto a stack Sv; otherwise, pop an element from the stack. The elements
of the stack Sv are exactly the nodes in Vi right before i is visited.

4. In Algorithm 6, we compress the off-diagonal block row Hrow
i . We can similarly com-

press the off-diagonal block column Hcol
i .

After compression, the first and second block rows, A
(1)

t̂1t4
and A

(2)

t̂2t4
, are of full rank.
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However, when the two block rows are merged to form the matrix

H3 =

[
A

(1)

t̂1t4

A
(2)

t̂2t4

]
,

H3 may be again be of low-rank. Thus, our algorithm hierarchically compresses the off-
diagonal blocks. The process is outlined in the next section.

4.3.1 Merging child blocks

For each parent node, we merge the appropriate blocks of its children together and compress
it again. Take for example node 3, where the resulting blocks from nodes 1 and 2 are merged
to form

A3 =

 D1 B1 A
(1)

t̂1t4

B>1 D2 A
(2)

t̂2t4

A
(1)>
t̂1t4

A
(2)>
t̂2t4

At4t4

 , (4.12)

where B1 is obtained when compressing the second HSS block, see Figure 4.3(c). The size of
the original matrix is then reduced. In general, for parent nodes we need to first determine
the ith diagonal block Di and ith HSS block Hi. In the case of node 3,

D3 =

[
D1 B1

B>1 D2

]
, H3 =

[
A

(1)

t̂1t4

A
(2)

t̂2t4

]
(4.13)

are formed by merging the appropriate blocks of the children, node 1 and node 2. For a
general parent node i, the diagonal block Di and its off-diagonal block Hi are of the form

Di =

[
Di1 Bi1

B>i1 Di2

]
, Hi =

 [A
(j1)>
t̂j1 t̂i1

· · · A
(jsi )>
t̂jsi

t̂i1
A

(i1)

t̂i1 t
r
i
]

[A
(j1)>
t̂j1 t̂i2

· · · A
(jsi )>
t̂jsi

t̂i2
A

(i2)

t̂i2 t
r
i
]

 , (4.14)

where i1 and i2 are the children of node i. The blocks
[
A

(j1)>
t̂j1 t̂i1

, . . . , A
(jsi )>
t̂jsi

t̂i1

]
and[

A
(j1)>
t̂j1 t̂i2

, . . . , A
(jsi )>
t̂jsi

t̂i2

]
make up the leftmost block of HSS block row Hi which makes up the

portion in front of Di in A.
The computation is continued in the manner of the leaf nodes; that is, we Cholesky

factorize Di = LiL
>
i and compute the compression L−1i Hi ≈ Q2W2 + O(τ), where Q =

[Q1 Q2] is orthonormal and Q2 ∈ Rmi×ki . The generators, U (i), L̃
(i)
11 , L̃

(i)
21 and ki are computed

from LiQ = U (i)L̃(i). Traversing the HSS tree T in postorder, our algorithm alternates
between compressions and merges until arriving at root(T ). The complete Generalized HSS
Cholesky factorization algorithm is summarized in Algorithm 7.

See Figure 4.3 for an illustration of the entire process. As seen in Figure 4.3(a), the
original matrix A is partitioned into 16 blocks; i.e., there are four leaf nodes in the HSS tree.
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Algorithm 7 Generalized HSS Cholesky factorization

Require: SPD matrix A; HSS tree T with NT nodes.
Ensure: Generators U (i), L̂

(i)
11 , L̂

(i)
21 , ki

1: for i = 1, . . . , NT − 1 do
2: if i is a leaf node then
3: Cholesky factorize Atiti = LiL

>
i , and form the ith HSS block row,

Hrow
i =

[
A

(j1)>
t̂j1 ti

, . . . , A
(jsi )>
t̂jsi

ti
| Atitri

]
,

where Vi = {j1, j2, . . . , jsi} is the visited set of node i.
4: Compress L−1i Hrow

i ≈ Q2W2, where Q = [Q1 Q2] is an orthonormal matrix.
5: Compute U (i) from LiQ = U (i)L̂(i).
6: Factorize node i, and compute Ĥi = L̂

(i)
22W2, Di = L̂

(i)
22 L̂

(i)>
22 (see Algorithm 6).

7: if i is a right node then
8: Construct Bsib{i} from Ĥi.
9: end if

10: else
11: Merge Di1 , Di2 , Bi1 , Ĥi1 , and Ĥi2 to form

Di =

[
Di1 Bi1

B>i1 Di2

]
, Hi =

 [A
(j1)>
t̂j1 t̂i1

· · · A
(jsi )>
t̂jsi

t̂i1
A

(i1)

t̂i1 t
r
i
]

[A
(j1)>
t̂j1 t̂i2

· · · A
(jsi )>
t̂jsi

t̂i2
A

(i2)

t̂i2 t
r
i
]

 .
12: Compute Di = LiL

>
i and compress L−1i Hi using Algorithm 1, to obtain U (i), L̂(i),

ki, and Ĥi.
13: if i is a right node then
14: Construct Bsib{i} from Ĥi.
15: end if
16: end if
17: end for
18: Merge DNT 1

, DNT 2
, BNT 1

to form DNT .
19: Compute the Cholesky factorization DNT = LNT L

>
NT

.
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Figure 4.3(b) represents the factorization of node 1 after compression; note that the first
off-diagonal block row has been approximated by a low-rank matrix. The factorization of
node 2 is represented in Figure 4.3(c), and the appropriate blocks of node 1 and node 2 are
merged to form a smaller matrix (Figure 4.3(d)). Continuing the process in Figure 4.3(e),
nodes 3, 4 and 5 are factorized. Nodes 4 and 5 are then merged to form node 6 as seen in
Figure 4.3(f). Finally, node 6 is factorized and merged with node 3, which is then in turn
factorized (Figure 4.3(h)).

4.3.2 HSS solver with generalized Cholesky factors

We briefly describe the HSS solver proposed in [98] for solving Ax = b where A has a general-
ized Cholesky factorization organized by an HSS tree T . As in a classical LU decomposition,
the HSS solver involves a forward substitution and a backward substitution. Each node i
of T has generators U (i), L̂

(i)
11 , L̂

(i)
21 and ki, where ki is the approximate rank of node i. To

solve the linear system, we traverse the HSS tree T in postorder to implement forward and
backward substitution. We first partition b according to the bottom level (leaf) nodes, and
denote the partition corresponding to leaf node i with bi. Assume there are NT nodes.

After the forward substitution, each node has updated an bi. Then, the solution x can
be computed from bi using backward substitution. The procedure is very similar to forward
substitution with similar operation counts. We omit the details.

4.3.3 Complexity of construction

Table 4.1: Flops counts of some matrix operations.

Operation Flops

Cholesky factorization of an n× n matrix n3

3

Inverse of an n× n lower triangular matrix times an n× k matrix n2k

Product of a general m× n matrix and an n× k matrix 2mnk

QR factorization of an m× k tall matrix (m > k) 2k2(m− k
3
)

QL factorization for an n× n matrix 4
3
n3

SVD of a general m× n matrix A = UΣV ∗,m > n, computing U,Σ 4m2n

Product of an n× n lower triangular matrix

and an n× n upper triangular matrix 2n3

3
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Algorithm 8 Forward Substitution

Require: HSS tree T with NT nodes of an SPD matrix A; Generators U (i), L̂
(i)
11 , L̂

(i)
21 , ki of

the generalized Cholesky factor P of A where A = PP T ; b
Ensure: P−1b

1: for i = 1, . . . , NT − 1 do
2: if i is a leaf node then
3: Compute

b̂i = U (i)>· bi =

[
b̂i;1
b̂i;2

]
mi − ki
ki

, bi =

[
L̂
(i)
11

L̂
(i)
21 I

]−1
· b̂i =

[
bi;1
bi;2

]
mi − ki
ki

.

4: else

5: Form bi from the lower sections of its children, i.e., bi =

[
bi1;2
bi2;2

]
, where i1, i2 are the

left and right child of node i, respectively. Then compute

bi =

[
L̂
(i)
11

L̂
(i)
11 I

]−1
·U (i)>· bi =

[
bi;1
bi;2

]
mi − ki
ki

.

6: end if
7: end for
8: Compute

bNT = L−1NT · bNT ≡
[
bNT 1;2

bNT 2;2

]
,

where NT 1, NT 2 are the left and right child of node NT , respectively.

Assume A is an N×N SPD matrix and has been assigned a full HSS tree T . Furthermore,
assume the HSS rank of A is k, and at the bottom level, each leaf node has m rows, where
m is of O(k). Then the generalized HSS Cholesky factorization method has complexity of
O(N2k).

We outline the complexity computation here. A detailed computation can be found in
[61]. In the following discussion, assume T is ordered top-down with L levels so that the
bottom level is at L − 1 and the root is at level 0. Since T is a full binary tree, T has
n := 2L−1 leaf nodes and a total of 2n − 1 nodes. Moreover, assume all off-diagonal blocks
of A have rank k, and each leaf node contains m rows (that is, N = mn). Denote the set of
leaf nodes by LN := {i| node i is a leaf node}. We compute the cost level by level. Let Ni

be the number of columns in Atitri . According to Theorem 4.2.2 in [94],

∑
i at level l

si =
l∑

j=1

j

(
l
j

)
=

1

2
l2l, (4.15)
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∑
i at level l

Ni =
2l∑
j=1

(
n− j n

2l

)
m =

1

2
mn

(
2l − 1

)
. (4.16)

The following illustrates the computation when using SVD to compress the HSS block
rows. The major operations of our generalized HSS Cholesky factorization are as follows.

For each leaf node i (bottom level nodes):

• Cholesky factorization of Aii = LiL
>
i requires m3

3
flops.

• Compressing H>i L
−>
i = QiRiL

−>
i requires 2m2(Ni − m

3
) + m3 + 2m2ksi flops, where

Hi ∈ Rm×(k×si+Ni) and si is the cardinality of Vi.

• Computing W>
2 = QiU1Σ1, where RiL

−>
i = [U1 U2]

[
Σ1

Σ2

]
V > and V = [V1 V2]

with V1 ∈ Rm×k, requires 2Nimk +m3 +mk + 2mk2si flops.

• Computing U (i) from LiQ = U (i)L̂(i) where Q = [V2 V1] requires m3 + 4m3

3
flops.

• Computing Di = L̂
(i)
22 L̂

(i)>
22 and Ĥi = L̂22(i)W2 requires 2k3

3
+ 2Nik

2 + 2k3si flops.

Therefore, the total cost of all the leaf nodes is approximately Cf ≈ O(N2k) where N = mn
and m = O(k). At level l, there are 2l parent nodes, and there are a total of n− 1 non-leaf
nodes. The analysis for non-leaf nodes is the same as for leaf nodes. The difference is that
the main diagonal block of each parent node is a 2k× 2k matrix; thus, m = 2k in the above
flop counts.

The complexity of each non-leaf node (except the root) is 14k2Ni+
98
3
k3+14k3si. Summing

over the levels between 0 and L−1, Cp ≈ O(N2k) where n = 2L−1, N = mn, and m = O(k).

The complexity of the root node is Cr = (2k)3

3
< N2k. Thus, the total complexity is

C = Cf + Cp + Cr = 8N2k +O(Nk2).

Remark 4.3.2. 1. The complexity of the algorithm in [96] is also O(N2k). However, in
our numerical results, our algorithm requires fewer flops when using the same low-rank
matrix approximation method for compression.

2. With modern computer architectures, floating-point operations are no longer the dom-
inant factor in execution speed. Although the randomized algorithm SVDR requires
more flops than RRQR and SVD, in our experience, SVDR is much faster.

4.4 Incorporating into the Partial Left-Looking

Structured Multifrontal Method

In order to incorporate our new algorithm for Cholesky factorization into the partial left-
looking structured multifrontal matrix, we use the randomized compression technique ver-
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sion. Thus, we make the following modifications. Note that the changes will only occur in
the leaf nodes.

1. Since we never explicitly form the update matrices, we only work with the separator
block column of the frontal matrix.

2. For each leaf node, we form the i-th diagonal block Atiti and HSS block row Atitri on
the fly from the pieces in the structured storage of Fi.

3. The off-diagonal piece Atitri needs to be multiplied on the right by a random matrix

and on the left by the matrix Ui(:, 1 : p)TL−1i where p is the numerical rank of the
compressed off-diagonal. These operations can be done on the fly without first forming
the matrices. In particular, to multiply Atitri to a random matrix, we apply the method
of Martinsson in [67] for multiplying matrices to a random matrix. An outline of the
method is as follows: Given an N ×N matrix A with m2 blocks, we wish to multiply
each of its off-diagonal blocks to a random matrix. We can do the following.

• Choose a random matrix Ω of size N × q and compute B = AΩ.

• For the i-th off-diagonal, obtain the i-th diagonal block of A, Aii, and multiply it
to the corresponding rows of Ω. Call this matrix Bii.

• The i-th off-diagonal matrix of A multiplied to a random matrix is then Bi−Bii,
where Bi is the i-th block row of B.

4. In our original implementation of the new Cholesky factorization, the intermediate
compressed off-diagonal blocks are stored in the original matrix A itself. Since we no
longer have an explicit A to store these blocks, we must store them in an alternate
fashion that takes up less memory than the size of A. Thus, if the matrix A is of
size N2, we hope to store it in less O(N2) space. To do this, we store the compressed
off-diagonal pieces in a stack structure as we traverse the postordered HSS tree. The
method is outlined as follows: In Step i of the new Cholesky factorization,

• If i is a left-leaf node, create a new stack element with the i-th compressed diagonal
and off-diagonal blocks.

• If i is a right-leaf node, merge the i-th compressed diagonal and off-diagonal blocks
to the top stack element to form the merged diagonal/off-diagonal blocks for the
parent.

• If i is a left-parent node, replace the top stack element with the new compressed
diagonal/off-diagonal blocks.

• If i is a right-parent node, merge the i-th compressed diagonal and off-diagonal
blocks to the top stack element to form the merged diagonal/off-diagonal blocks
for the parent.
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4.4.1 Complexity and memory requirements

For a matrix A of size N × N , the Cholesky factorization algorithm we have presented
has O(pN2) complexity where p is an upper bound on the rank of the off-diagonal blocks
and O(pN) storage space for the factors. We now show that the complexity and memory
requirements are not affected by our modifications. For each of the changes, we have the
following added computational and memory costs:

1. No added memory or computational costs.

2. By Lemma 3.3.2, reconstruction of the entire matrix requiresO(N2p) operations. There
are no significant extra storage requirements since we only temporarily form subblocks
in each iteration.

3. By Lemma 3.3.2, the computation of AΩ requires O(N2q) = O(N2p) operations. The
workspace required is O(qN) = O(pN) for the random matrix. The other multiplica-
tions do not add extra operations since they already need to be computed.

4. Assuming that HSS tree has height l = O(log2N), as seen in Chapter 3, the stack will
have a maximum length of O(l). Since each of the compressed blocks have size O(pN),
the maximum size of the stack is of O(pN log2N).

Thus, the total additional computation costs is O(N2p) +O(N2p) = O(N2p), and the total
additional workspace required is O(pN) + O(pN log2N). Thus, the total computational
complexity does not change, the storage for the factors does not change, but we do require
an additional workspace of O(pN log2N).

4.4.2 Schur-monotonicity

As shown in Section 4.3, our generalized Cholesky factorization algorithm is Schur-monotonic
(all Schur complements are positive-definite), thus ensuring an algorithm that is always
successful. Because of this, our partial left-looking structured multifrontal method is also
Schur-monotonic, and a solution is always guaranteed: It is easy to show by induction that
after Step i of the multifrontal method, the ith Schur complement of the block Cholesky
algorithm can be reassembled by extend-adding all matrices in the current stack to the
corresponding sparse submatrix of A. Additionally, the dense frontal matrix factorization
in Step i of our new multifrontal method is equivalent to the partial factorization of the
ith Schur complement (factorization of the first subblock) in the block Cholesky algorithm.
Thus, the multifrontal method is just a reorganization of the block Cholesky algorithm, and
since our dense matrix factorization algorithm has been shown to be Schur-monotonic, the
partial factorization of the ith Schur complement will be Schur-monotonic as well. The
partial left-looking multifrontal algorithm is then guaranteed to be Schur-monotonic.
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Part II

An Algorithm for Compressed Sensing
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Chapter 5

Introduction

Signal processing typically involves massive data sets. Most data sets are compressible in
the sense that they have a sparse representation under a particular basis. The process of
acquiring large amounts of data only to discard most of it (through compression) is wasteful
in terms of space and time. Compressed sensing is the process of simultaneously acquiring
and compressing data. In particular, k << n measurements of an unknown signal of size
n are taken in such a way that the unknown signal may be recovered. In this part of the
dissertation, we propose a new algorithm which may be used to recover the unknown signal
in compressed sensing problems.

Here, we present an algorithm, nesta-lasso, for the lasso problem, i.e., an underde-
termined linear least-squares problem with a 1-norm constraint on the solution:

ls(τ) min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ. (5.1)

We prove under the assumption of the restricted isometry property (rip) and a sparsity
condition on the solution, that nesta-lasso is guaranteed to be almost always locally
linearly convergent. As in the case of the algorithm nesta, proposed by Becker, Bobin, and
Candès, we rely on Nesterov’s accelerated proximal gradient method, which takes O(

√
1/ε)

iterations to come within ε > 0 of the optimal value. We introduce a modification to
Nesterov’s method that regularly updates the prox-center in a provably optimal manner.
The aforementioned linear convergence is in part due to this modification.

Next, we attempt to solve the basis pursuit denoising (bpdn) problem (i.e., approximating
the minimum 1-norm solution to an underdetermined least squares problem) by using nesta-
lasso in conjunction with the Pareto root-finding method employed by van den Berg and
Friedlander in their spgl1 solver. The resulting algorithm is called parnes. We provide
numerical evidence to show that it is comparable to currently available solvers.
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5.1 Problem Statement and Background

We would like to find a solution to the sparsest recovery problem with noise

min ‖x‖0 s.t. ‖Ax− b‖2 ≤ σ. (5.2)

Here, σ specifies the noise level, A is an m-by-n matrix with m� n, and ‖x‖0 is the number
of nonzero entries of x. This problem comes up in fields such as image processing [80],
seismics [58, 57], astronomy [16], and model selection in regression [31]. Since (5.7) is known
to be ill-posed and NP-hard [38, 70], various convex, l1-relaxed formulations are often used.

Relaxing the 0-norm in (5.7) gives the basis pursuit denoising (bpdn) problem

bp(σ) min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ. (5.3)

The special case of σ = 0 is the basis pursuit problem [25]. Two other commonly used
l1-relaxations are the lasso problem [85]

ls(τ) min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ (5.4)

and the penalized least-squares problem

qp(λ) min ‖Ax− b‖22 + λ‖x‖1 (5.5)

proposed by Chen, Donoho, and Saunders [25]. A large amount of work has been done to
show that these formulations give an effective approximation of the solution to (5.7); see
[28, 86, 17]. In fact, under certain conditions on the sparsity of the solution to (5.7), these
formulations can exactly recover the solution whenever A satisfies the restricted isometry
property (rip).

There is a wide variety of algorithms which solve the bp(σ), qp(λ), and ls(τ) problems.
Refer to Section 8.1 for descriptions of some of the current algorithms. Our work has been
motivated by the accuracy and speed of the recent solvers nesta and spgl1. In [71],
Nesterov presents an algorithm to minimize a smooth convex function over a convex set
with an optimal convergence rate. An extension to the nonsmooth case is presented in [73].
nesta solves the bp(σ) problem using the nonsmooth version of Nesterov’s work.

For appropriate parameter choices of σ, λ, and τ , the solutions of bp(σ), qp(λ), and
ls(τ) coincide [12]. Although the exact dependence is usually hard to compute [12], there
are solution methods which exploit these relationships. The matlab solver spgl1 is based on
the Pareto root-finding method [12] which solves bp(σ) by approximately solving a sequence
of ls(τ) problems. In spgl1, the ls(τ) problems are solved using a spectral projected-
gradient (spg) method.

While we are ultimately interested in solving the bpdn problem in (5.9), our main result
is an algorithm for solving the lasso problem (5.11). Our algorithm, nesta-lasso (cf.
Algorithm 11), essentially uses Nesterov’s work to solve the lasso problem. We introduce
one improvement to Nesterov’s original method, namely, we update the prox-center every



CHAPTER 5. INTRODUCTION 69

K steps instead of fixing it throughout the algorithm. With this modification, we prove in
Theorem 6.1.8 that nesta-lasso is guaranteed to be almost always locally linearly conver-
gent for sufficiently large K, as long as the solution is s-sparse and A satisfies the restricted
isometry property of order 2s. In fact, Theorem 6.1.8 also provides the choice for the optimal
K.

Finally, we show that replacing the spg method in the Pareto root-finding procedure,
used in spgl1, with our nesta-lasso method leads to an effective method for solving bp(σ).
We call this modification parnes and compare its efficacy with the state-of-the-art solvers
presented in Section 8.1.

5.1.1 Motivation

In the field of digital technology one hopes to efficiently find digital representations of ana-
log signals, such as images and audio. The classical two stage approach consists first of
collecting measurements of the analog signal. The number of measurements can be quite
large depending on the desired resolution. In the case of an image, the number of measure-
ments can be in the millions. In the second step, called source coding, the measurements are
quantized, and the resulting signal is sparsified and compressed using an appropriate basis
- e.g., Fourier, discrete cosine transform. In some cases, even sparser representations may
be found by using a redundant dictionary. These dictionaries consist of unions of different
bases. Mathematically, the aim is to have

f ≈ Bx (5.6)

where f ∈ Rk is the sampled signal and B ∈ Rk×n, k ≤ n, represents a redundant dictionary
under which there is a compressed signal x which is sparse. Since such dictionaries do not
have a unique representation of f , they would only be useful if computationally tractable
methods were available to recover a sparse x.

The method described above can be somewhat inefficient since most of the collected data
is disregarded at the compression stage. In fact, for settings such as magnetic resonance
imaging (mri), it can be inconvenient to take large amounts of measurements. Thus, in such
cases where measurements are difficult, one would like a method which only samples what
is necessary without affecting the quality of the resulting signal. The ideas of compressed
sensing aim to sample and compress in one stage.

Compressed sensing techniques may be useful in applications where signals are sparse in
a known basis and/or measurements are expensive but computations are cheap. Some useful
setting include image processing [80], seismics [58, 57], astronomy [16], and model selection
in regression [31].

To understand the basics of compressed sensing, suppose f ∈ Rk is a signal that admits
a sparse representation under the redundant dictionary B ∈ Rk×n. The idea of compressed
sensing is to choose a measurement matrix M ∈ Rm×k with m ≤ k which will allow us to
recover the sparse signal x. In turn, this will let us approximately recover f = Bx. We have

b ≈Mf with f = Bx
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where b ∈ Rm is the set of measurements. In practice one would like to choose M so that
m� k.

Setting A = MB, compressed sensing hopes to recover x by solving the optimization
problem

min ‖x‖0 s.t. ‖Ax− b‖2 ≤ σ, (5.7)

where σ is a bound on the noise level of b. Since this problem is known to be NP-hard, the
various l1-relaxed formulations described below are often used.

5.1.2 Various l1-relaxed formulations

An l1-relaxation is naturally motivated by the fact that ‖ · ‖1 is the largest convex underesti-
mator of ‖ · ‖0 on unit l∞-ball. There has been a large amount of work done to show that this
gives an effective approximation of the solution to (5.7); see [17, 28, 86]. In particular, under
certain conditions on the sparsity of the solution x, x can be recovered exactly provided that
the matrix A satisfies the restricted isometry property ; see Appendix 3. We will make this
and some other reasonable assumptions on A to prove the linear convergence of parnes.

Relaxing the zero-norm in (5.7) gives the basis pursuit problem [25]

bp min ‖x‖1 s.t. Ax = b. (5.8)

Similarly, relaxing the zero-norm in (5.7) gives the basis pursuit denoise (bpdn) problem

bp(σ) min ‖x‖1 s.t. ‖Ax− b‖2 ≤ σ. (5.9)

The special case of σ = 0 gives the basis pursuit problem.
Alternatively, there are two other commonly used l1-relaxations. The penalized least-

squares problem
qp(λ) min ‖Ax− b‖22 + λ‖x‖1 (5.10)

is one possible relaxation proposed by Chen, Donoho, and Saunders [25]. Another formulation
is the lasso problem [85] with the one-norm constrained by a parameter τ

ls(τ) min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ. (5.11)

Note that among all the formulations, bp(σ) is often the most natural one in applications.
This is because one often has an idea of what the noise level σ is, while it is not so clear
what λ and τ should be. Also note that the name, basis pursuit denoise, is often applied
to what we call the penalized least-squares problem, originally proposed by Chen, Donoho,
and Saunders in [25]. We will follow the naming convention in the spgl1 and nesta papers
[12, 9].

Such formulations are useful since they are all convex optimization problems. In par-
ticular, bp is a linear program while qp(λ), ls(τ), and bp(σ) are quadratic programming
problems. In fact, for appropriate parameter choices of σ, λ, and τ , the solutions of bp(σ),
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qp(λ), and ls(τ) coincide [78]. The exact dependence is hard to compute unless A is orthog-
onal [12]. However, there are solution methods which exploit these relationships. In fact,
parnes is based on the algorithm spgl1 [12] which solves bp(σ) by solving a sequence of
ls(τ) problems. In spgl1, the ls(τ) problems are solved using a spectral gradient-projection
method whereas we use a method based on the ideas in nesta [9].

There is now a wide variety of available algorithms which solve the bp(σ), qp(λ), and
ls(τ) problems. The nesta algorithm is part of a larger class of algorithms often described
as promixal gradient methods. Algorithms such homotopy [74, 75] and lars [31] belong
to an early class of methods using a homotopy method; the solution to bp(σ) is found by
solving qp(λ) for various values of λ. Another class consists of using Bregman iterative
procedures. An example of this type of algorithm is the fixed-point continuation method,
fpc [54, 55], which is tested in our experiments.

We focus on solving the relaxation bp(σ) where σ is an estimate of the noise level in the
data. We present an algorithm that solves bp(σ) for any value of σ ≥ 0 by combining certain
features of the available solvers spgl1 and nesta.

As mentioned above, spgl1 approaches the solution of bp(σ) by solving ls(τ) for a
sequence of τ ’s. We incorporate it into parnes since we have observed that it is suitable
for large-scale problems and faster than many other solvers. In spgl1, the bp(σ) problem
is interpreted as finding the root of a single-variable nonlinear equation. An approximate
Newton’s method is used, and each iteration involves solving the lasso problem and its
dual.

The algorithm nesta solves the bp(σ) problem based on a method by Nesterov which
has been shown to achieve an optimal convergence rate [73, 71]. Combined with continuation
techniques [54, 55], the algorithm is experimentally shown to be accurate, robust and com-
parable in speed to spgl1. In parnes, we use the methods of Nesterov to approximately
solve the lasso problem in each iteration of our Newton’s iteration.

5.1.3 Notation, terminology, and assumptions

In this paper, a vector is s-sparse if it has exactly s nonzero elements. We say that a vector is
at least s-sparse if it has at most s nonzero elements. For a nonzero, s-sparse vector x ∈ Rn,
let Ix be the set of indices of the nonzero coefficients of x, i.e. the support of x; x is the
vector containing the nonzero elements of x. For an I ⊆ {1, . . . , n}, Ic is the complement
of I. Given a matrix A ∈ Rm×n and I ⊆ {1, . . . , n}, AI is the submatrix of A containing
the j-th columns of A where j ∈ I. Throughout the paper, we use matlab terminology
to describe vectors and matrices. Thus, x[s : r] represents the subvector of x containing
elements s to r. For a set S, let int(S) be the interior of S and ∂S be the boundary of S.

Throughout the paper, we make the blanket assumption that b ∈ range(A). That is, Ax−
b = 0 is always possible. In many applications, A has full rank and therefore automatically
satisfies this assumption; see [12].
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5.1.4 Organization of Part II of dissertation

In Section 5.2, we present and describe the background of nesta-lasso. We show in Sec-
tion 6.1 that, under some reasonable assumptions, nesta-lasso is almost always locally
linearly convergent. In Section 7.1, we describe the Pareto root-finding procedure behind
the bpdn solver spgl1 and show how nesta-lasso can be used to solve a subproblem.
Section 5 describes some of the available algorithms for solving bpdn and the equivalent
qp(λ) problem. Lastly, in Section 6, we show in a series of numerical experiments that using
nesta-lasso in spgl1 to solve bpdn is comparable with current competitive solvers.

5.2 NESTA-LASSO

We present the main parts of our method to solve the lasso problem. Our algorithm, nesta-
lasso (cf. Algorithm 11), is an application of the accelerated proximal gradient algorithm of
Nesterov [71] outlined in Section 5.2.1. Additionally, we have a prox-center update improving
convergence which we describe in Section 6.1. In each iteration, we use the fast l1-projector
of Duchi et al. [29] given in Section 5.2.3.

5.2.1 Nesterov’s algorithm

Let Q ⊆ Rn be a convex closed set. Let f : Q → R be smooth, convex and, Lipschitz
differentiable with L as the Lipschitz constant of its gradient, i.e.

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, for all x, y ∈ Q.

Nesterov’s accelerated proximal gradient algorithm iteratively defines a sequence xk as a
judiciously chosen convex combination of two other sequences yk and zk, which are in turn
solutions to two quadratic optimization problems on Q. The sequence zk involves a strongly
convex prox-function, d(x), which satisfies

d(x) ≥ α

2
‖x− c‖22. (5.12)

For simplicity, we have chosen the right-hand side of (5.12) with α = 1 as our prox-function
throughout this paper. The c in the prox-function is called the prox-center. With this
prox-function, we have:

yk = argmin
y∈Q

∇f(xk)
>(y − xk) +

L

2
‖y − xk‖22,

zk = argmin
z∈Q

k∑
i=0

i+ 1

2
[f(xi) +∇f(xi)

>(z − xi)] +
L

2
‖z − c‖22,

xk =
2

k + 3
zk +

k + 1

k + 3
yk.
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Nesterov showed that if x∗ is the optimal solution to

min
x∈Q

f(x),

then the iterates defined above satisfy

f(yk)− f(x∗) ≤ L

k(k + 1)
‖x∗ − c‖22 = O

(
L

k2

)
.

An implication is that the algorithm requires O(
√
L/ε) iterations to bring f(yk) to within

ε > 0 of the optimal value.

Algorithm 9 Accelerated proximal gradient method for convex minimization

Require: function f , gradient ∇f , Lipschitz constant L, prox-center c.
Ensure: x∗ = argminx∈Q f(x)

1: initialize x0;
2: for k = 0, 1, 2, . . . , do
3: compute f(xk) and ∇f(xk);
4: yk = argminy∈Q∇f(xk)

>(y − xk) + L
2
‖y − xk‖22;

5: zk = argminz∈Q
∑k

i=0
i+1
2

[f(xi) +∇f(xi)
>(z − xi)] + L

2
‖z − c‖22;

6: xk = 2
k+3

zk + k+1
k+3

yk;
7: end for

In [73], Nesterov extends his work to minimize nonsmooth convex functions f . Nesterov
shows that one can obtain the minimum by applying his algorithm for smooth minimization
to a smooth approximation fµ of f . Since ∇fµ is shown to have Lipschitz constant Lµ = 1/µ,
if µ is chosen to be proportional to ε, it takes O

(
1
ε

)
iterations to bring f(xk) within ε of the

optimal value.
The recent algorithm nesta solves bp(σ) using Nesterov’s algorithm for nonsmooth min-

imization. Our algorithm, nesta-lasso, solves ls(τ) using Nesterov’s smooth minimization
algorithm. In [72], Nesterov suggests an algorithm for minimizing composite functions which
has a complexity of O( 1

ε1/2
). We are motivated by the accuracy and speed of nesta, and

the fact that the smooth version of Nesterov’s algorithm has a faster convergence rate than
the nonsmooth version.

5.2.2 NESTA-LASSO-K: An accelerated proximal gradient
algorithm for LASSO

We apply Nesterov’s accelerated proximal gradient method, Algorithm 9, to the lasso prob-
lem ls(τ). We make one slight improvement to Algorithm 9. Namely, we update our prox-
centers every K steps (cf. Algorithm 10); that is, Algorithm 9 is restarted every K iterations
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with a new prox-center. We will see that this leads to local linear convergence under a suit-
able application of rip (see Corollary 6.1.9 for details). In fact, we show in Section 6.1 that
the prox-centers may be updated in an optimal fashion (cf. Algorithm 11).

In our case, f = 1
2
‖b−Ax‖22, ∇f = A>(Ax− b), and Q is the 1-norm ball ‖x‖1 ≤ τ . The

initial point x0 is used as the prox-center c. To compute the iterate yk, we have

yk = argmin
‖y‖1≤τ

∇f(xk)
>(y − xk) +

L

2
‖y − xk‖22

= argmin
‖y‖1≤τ

y>y − 2(xk −∇f(xk)/L)>y

= argmin
‖y‖1≤τ

‖y − (xk −∇f(xk)/L)‖2

= proj1(xk −∇f(xk)/L, τ)

where proj1(v, τ) returns the projection of the vector v onto the 1-norm ball of radius τ . By
similar reasoning, computing zk can be shown to be equivalent to computing

zk = proj1

(
c− 1

L

∑k

i=0

i+ 1

2
∇f(xi), τ

)
.

In each iteration, we use the fast l1-projector proj1 described in the next section.
In nesta-lasso-k, Nesterov’s method is restarted every K steps with the new prox-

center proj1(yiK − ∇f(yiK)/L, τ). Here, yiK−1 is the K-th iterate of Nesterov’s method
after the i-th prox-center change; see Algorithm 10. In nesta-lasso, Nesterov’s method is
restarted in the same manner, except K is chosen in an optimal way. Algorithms 2 and 3
are stopped when the duality gap ηk is sufficiently small.

5.2.3 l1-projector

The projection of an n-vector, d, onto the 1-norm ball, ‖x‖1 ≤ τ , is the solution to the
minimization problem

proj1(d, τ) := argmin
x
‖d− x‖2 s.t. ‖x‖1 ≤ τ.

Let d̂ be a reordering of d with |d̂1| ≥ ... ≥ |d̂n|. Then a = proj1(d, τ), is given by

ai = sgn(di) ·max{0, |di| − η} with η =
(|d̂1|+ · · ·+ |d̂k|)− τ

k
, (5.13)

where k is the largest index such that η ≤ |d̂k|.
See [29], by Duchi et al., and [12] for fast algorithms to compute a. Such algorithms cost

O(n log n) in the worst case but have been shown experimentally to cost much less [12]. The
results in [87] imply the two calls to proj1 in the inner loop of nesta-lasso can be reduced
to one call, but due to the low cost of proj1, we do not make this modification.
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Algorithm 10 nesta-lasso-k algorithm with prox-center updates every K steps

Require: initial point x0, lasso parameter τ , tolerance η, steps to update K
Ensure: xτ = argmin{‖b− Ax‖2 : ‖x‖1 ≤ τ}.

1: for j = 0, . . . , jmax, do
2: cj = x0, h0 = 0, r0 = b− Ax0, g0 = −A>r0, η0 = ‖r0‖2 − (b>r0 − τ‖g0‖∞)/‖r0‖2;
3: for k = 0, . . . , K − 1 do
4: yk = proj1(xk − gk/L, τ);
5: hk = hk + k+1

2
gk;

6: zk = proj1(cj − hk/L, τ);
7: xk = 2

k+3
zk + k+1

k+3
yk;

8: rk = b− Axk;
9: gk = −A>rk;

10: ηk = ‖rk‖2 − (b>rk − τ‖gk‖∞)/‖rk‖2;
11: end for
12: x0 = proj1(yk + A>(b− Ayk)/L, τ);
13: if ηk ≤ η then
14: return xτ = yk;
15: end if
16: end for
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Algorithm 11 nesta-lasso algorithm with optimal prox-center updates

Require: initial point x0, lasso parameter τ , tolerance η.
Ensure: xτ = argmin{‖b− Ax‖2 : ‖x‖1 ≤ τ}.

1: for j = 0, . . . , jmax, do
2: cj = x0, h0 = 0, r0 = b− Ax0, g0 = −A>r0, η0 = ‖r0‖2 − (b>r0 − τ‖g0‖∞)/‖r0‖2;
3: for k = 0, . . . , kopt − 1, do
4: if ηk ≤ e−2η0 then
5: return yk, ηk
6: end if
7: yk = proj1(xk − gk/L, τ);
8: hk = hk + k+1

2
gk;

9: zk = proj1(cj − hk/L, τ);
10: xk = 2

k+3
zk + k+1

k+3
yk;

11: rk = b− Axk;
12: gk = −A>rk;
13: ηk = ‖rk‖2 − (b>rk − τ‖gk‖∞)/‖rk‖2;
14: end for
15: x0 = proj1(yk + A>(b− Ayk)/L, τ);
16: if ηk ≤ η then
17: return xτ = yk;
18: end if
19: end for
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Chapter 6

Convergence Proofs

6.1 Local Linear Convergence and Optimality

Under reasonable assumptions on the matrix A and the solution x∗ of the lasso problem,
we prove that nesta-lasso-k almost always has a local linear convergence rate for large
enough K. We also show that we can update the prox-centers c in a provably optimal
way (nesta-lasso). Let yk be the k-th iterate of Nesterov’s accelerated proximal gradient
method when minimizing a function f . Recall,

f(yk)− f(x∗) ≤ L

k(k + 1)
‖x∗ − c‖22 (6.1)

where L is the Lipschitz constant for ∇f and c is the prox-center [71, 73].
In our case, f(x) = 1

2
‖Ax − b‖22, where A ∈ Rm×n with m < n. We will assume that A

satisfies the restricted isometry property (rip) of order 2s as described in [18, 84]. Namely,
there exists a constant δ2s ∈ (0, 1) such that

(1− δ2s)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2s)‖x‖22 (6.2)

whenever ‖x‖0 ≤ 2s. Since the rip helps ensure that the solution to (5.7) is closely approx-
imated by the solution to (5.9) [84], and we are ultimately interested in solving (5.9), this
is a reasonable assumption. Moreover, since we hope to recover the sparse solution to the
solution to (5.7), we assume that the solution x∗ to the lasso problem is s-sparse. We plan
to analyze the approximately sparse case for future work.

Under these assumptions, the lasso problem has a unique solution (see Theorem 5 in
[75]). Since the 1-norm ball is compact, the sequence of yk’s converges to the solution x∗.

Lemma 6.1.1. If A satisfies the restricted isometry property (rip) of order 2s, and the
optimal solution x∗ is s-sparse, then the sequence of yk’s converges to x∗.
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6.1.1 Almost sure sparsity of Nesterov’s method

We first state and prove the following results before proving our main results, i.e. the local
linear convergence of nesta-lasso-k and the optimality of nesta-lasso. In particular, we
show that under certain assumptions on the lasso problem, the solution is almost always
non-degenerate (see Proposition 6.5), and the iterates of Algorithm 9 are almost always
eventually s-sparse. Our first lemma describes when the image of proj1 is s-sparse.

For d ∈ Rn, recall from Section 5.2.3 that if d̂ is a reordering of d with |d̂1| ≥ ... ≥ |d̂n|,
then a = proj1(d, τ) is given by

ai = sgn(di) ·max{0, |di| − η} with η =
(|d̂1|+ · · ·+ |d̂k|)− τ

k
, (6.3)

where k is the largest index such that η ≤ |d̂k|. For each i ∈ {1, . . . , n}, define

ηi :=
|d̂1|+ · · ·+ |d̂i| − τ

i
.

The ηi’s satisfy the following property which is used in the proof of our next lemma.

Claim 6.1.2. η = max {ηi : i = 1, . . . , n}.

Proof. Assume, without loss of generality, that d ≥ 0 and d = d̂ so that d1 ≥ ... ≥ dn ≥ 0.
A simple algebraic manipulation shows that ηi − ηi−1 = 1

i−1(di − ηi) for i ∈ {2, . . . , n}.
Thus, sgn(ηi − ηi−1) = sgn(di − ηi). Suppose η = ηk for some k. Then ηk ≤ dk. Since
sgn(ηi − ηi−1) = sgn(di − ηi), it follows that ηk−1 ≤ ηk and so ηk−1 ≤ dk−1; thus, we can
repeatedly apply this argument to show that ηi ≤ ηk for any i < k. A similar argument
shows that ηi ≤ ηk for any i > k.

Given a nonempty I ⊆ {1, . . . , n} with |I| = s and τ > 0, if s < n, define the set

CI,τ :=
{
x ∈ Rn :

∑
i∈I
|xi| − τ ≥ s · |xj| for j /∈ I

}
.

If I = {1, . . . , n}, let CI,τ := {x ∈ Rn : ‖x‖1 ≥ τ}. The following lemma shows that proj1
sends vectors in CI,τ to vectors that are at least s-sparse.

Lemma 6.1.3. Suppose I ⊆ {1, . . . , n} with |I| = s. If d ∈ CI,τ then Iproj1(d,τ) ⊆ I. Namely,
proj1(d, τ) is at least s-sparse.

Proof. Suppose d ∈ CI,τ . Assume, without loss of generality, that d ≥ 0 and d = d̂ so that
d1 ≥ ... ≥ dn ≥ 0. For simplicity, let [1], . . . , [n] be a labeling of the indices of d so that
I = {[1], . . . , [s]}, d[1] ≥ . . . ≥ d[s], and d[s+1] ≥ . . . ≥ d[n].

By (6.3), a[s+1] ≥ . . . ≥ a[n], so it is enough to show that a[s+1] = 0. Since d ∈ CI,τ ,

s · d[s+1] ≤ d[1] + . . .+ d[s] − τ. (6.4)



CHAPTER 6. CONVERGENCE PROOFS 79

Let r ≤ s be the largest index such that d[r] ≥ d[s+1]. Such an r exists since s · d[1] ≥
d[1] + · · ·+ d[s] − τ ≥ s · d[s+1]. By (6.4),

r · d[s+1] ≤ d[1] + · · ·+ d[r] + (d[r+1] − d[s+1]) + · · ·+ (d[s] − d[s+1])− τ
≤ d[1] + · · ·+ d[r] − τ,

which implies,

d[s+1] ≤
d[1] + · · ·+ d[r] + d[s+1] − τ

r + 1
= ηr+1.

The last equality holds since we assumed that r is the largest index such that r ≤ s and
d[r] ≥ d[s+1]. Thus, d[1] + · · · + d[r] + d[s+1] = d1 + · · · + dr + dr+1. By the above claim,
d[s+1] ≤ η, and so a[s+1] = 0 by definition of a[s+1].

The next few lemmas involve the lasso problem. First note the following lasso opti-
mality conditions (see e.g. [36] and [37]).

Proposition 6.1.4 (LASSO optimality conditions). For an x∗ ∈ Rn, let I = Ix∗. Then
x∗ is the optimal solution to the lasso problem if and only if the gradient, −∇f(x∗) =
A>(b− Ax∗), at x∗ satisfies

A>I (b− AIx∗) = γ · sgn(x∗), (6.5)

‖A>Ic(b− AIx∗)‖∞ ≤ γ. (6.6)

for some γ ≥ 0. Moreover, there is a one-to-one correspondence between the γ and τ .
Following the typical convention, if (6.6) is a strict inequality, we say that x∗ is a non-
degenerate solution. Otherwise, we say that x∗ is a degenerate solution.

The following lemma relates non-denerate lasso solutions x∗ to the previously defined
set int(CIx∗ ,τ ).

Lemma 6.1.5. If x∗ is a non-degenerate solution with Ix∗ = I, then x∗ − ∇f(x∗)/L ∈
int(CI,τ ).

Proof. By (6.5) and (6.6), for any j /∈ I, we have∑
i∈I

∣∣∣∣x∗i +
a>i (b− AIx∗)

L

∣∣∣∣ − τ =
∑
i∈I

∣∣∣∣x∗i +
γ · sgn(x∗i )

L

∣∣∣∣ − τ

=
∑
i∈I

|x∗i | + |I| · γ
L
− τ

≥ |I| · |a>j (b− AIx∗)|/L
= |I| · |x∗j + a>j (b− AIx∗)|/L.

The third equation on the right holds since we must have ‖x∗‖1 = τ . If not, then we must
have Ax∗ − b = 0 which is only possible when x∗ is a degenerate solution.
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We now prove that under our assumptions on the lasso problem, the gradient at the
optimal solution will almost always lie in a desirable direction. In other words, we have the
following result.

Theorem 6.1.6. Suppose A ∈ Rm×n satisfies the restricted isometry property (rip) of order
2s, and the optimal solution x∗ is s-sparse. The solution x∗ will almost always be non-
degenerate.

Proof. Fix positive integers m, n, and I ⊆ {1, . . . , n} with |I| = s ≤ m. Define ls(m,n, I)
to be the set of lasso problems

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ

with s-sparse solutions x∗ such that Ix∗ = I and A ∈ Rm×n satisfying the rip of order 2s.
As seen in the proof of Lemma 6.1.1, x∗ is unique.

The lasso optimality conditions above say that x∗ is the solution to a lasso problem
if and only if A>I (b− AIx∗) = γ · sgn(x∗) and ‖A>Ic(b− AIx∗)‖∞ ≤ γ for some γ ≥ 0. Since
there is a one-to-one correspondence between τ and γ, we represent each lasso problem in
ls(m,n, I) with the quadruple (AI , AIc , b, γ). Following this notation,

ls(m,n, I) = T1 ∪ T2

where

T1 :=
{

(AI , AIc , b, γ) ∈ ls(m,n, I) : ‖A>Ic(b− AIx∗)‖∞ = γ
}
,

T2 :=
{

(AI , AIc , b, γ) ∈ ls(m,n, I) : ‖A>Ic(b− AIx∗)‖∞ < γ
}
.

We show that T1 has Lebesgue measure zero and T2 has nonzero Lebesgue measure.
By the rip, AI has full rank since

0 < (1− δ2s)‖x‖22 ≤ ‖AIx‖22 ≤ (1 + δ2s)‖x‖22

for all nonzero x ∈ Rs. Thus, A>I AI is invertible, and if x∗ is the solution to (AI , AIc , b, γ) ∈
ls(m,n, I) then

x∗ = (A>I AI)
−1(A>I b− γ · sgn(x∗)).

Let U :=
{

(AI , AIc , b, γ) ∈ Rm×s × Rm×(n−s) × Rm × R+ : AI nonsingular
}

. For each
w ∈ {−1, 1}s, define the function gw : U → Rn−s by

gw(AI , AIc , b, γ) =
A>Ic

(
b− AI(A>I AI)−1(A>I b− γ · w)

)
γ

,

If S :=
{
x ∈ R(n−s) : |x| ≤ 1

}
with boundary ∂S and interior int(S), then

T1 ⊆
⋃
w

g−1w (∂S)
⋃

Rm×s × Rm×(n−s) × Rm × {0} .
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Each component function of gw involves exactly one row of the variables in A>Ic , and gw
is the composition of matrix inversion and basic matrix operations. Thus, gw is a smooth
map of constant rank (n − s) on the open set U \ g−1w (0). An application of Theorem 1 of
[76] shows that g−1w (∂S) has measure zero. Hence, T1 has Lebesgue measure zero.

To see that T2 has nonzero measure, note that T2 is the set of (AI , AIc , b, γ) ∈ U such
that A satisfies the rip of order 2s intersected with⋃

w

g−1w (int(S)) ∩
{

(AI , AIc , b, γ) ∈ U : sgn
(
(A>I AI)

−1(A>I b− γ · w)
)

= w
}
.

Using the triangle inequality, it is easy to see that the former set is open since

(1− δ2s)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2s)‖x‖22

holds under small perturbations of A. The latter set is open since gw and (AI , AIc , b, γ) 7→
(A>I AI)

−1(A>I b − γ · w) are continuous functions for each w. Thus, T2 is open. Moreover,
it is easy to see that if (AI , AIc , b, γ) ∈ T1 then there exists a small perturbation E such
that (AI , AIc +E, b, γ) ∈ T2. If ls(m,n, I) is nonempty, it must be that T2 is nonempty and
therefore, has nonzero measure.

This argument is easily extended for any I ⊆ {1, . . . , n}. Since there are a finite number
of I’s and a finite union of measure zero sets has measure zero, our lemma holds.

Let yk be the k-th iterate of Nesterov’s accelerated proximal gradient method applied to
the lasso problem. The previous results allow us to make the following conclusion regarding
the sparsity of yk.

Theorem 6.1.7. Suppose A satisfies the restricted isometry property (rip) of order 2s, and
the optimal solution x∗ is s-sparse. The iterates yk are almost always eventually s-sparse.

Proof. By Lemma 6.1.1, the sequence {yk} converges to the optimal solution x∗. Since
xk = 2

k+3
zk + k+1

k+3
yk and ∇f(x) = A>(Ax− b) is continuous, the sequence {xk −∇f(xk)/L}

converges to x∗ −∇f(x∗)/L.
Theorem 6.1.6 says that x∗ is almost always nondegenerate, in which case, by Lemma 6.1.5,

x∗ − ∇f(x∗)/L ∈ int(CIx∗,τ ), where int(CIx∗,τ ) is the interior of CIx∗,τ . Thus, if x∗ is
non-degenerate, there exists an N such that for k ≥ N , xk − ∇f(xk)/L ∈ int(CIx∗ ). By
Lemma 6.1.3, for such k, yk = proj1(xk −∇f(xk)/L, τ) is s-sparse.

6.1.2 Local linear convergence of NESTA-LASSO

We now show that nesta-lasso-k, Algorithm 10, is almost always locally linearly con-
vergent under certain assumptions. First we give some motivation for why we update the
prox-centers in nesta-lasso-k.

Consider applying Nesterov’s accelerated proximal gradient method, Algorithm 9, to the
lasso problem. Suppose A satisfies the restricted isometry property (rip) of order 2s and
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the optimal solution x∗ is s-sparse. As seen in Theorem 6.1.7, the iterates yk are almost
always eventually s-sparse. Thus, it is reasonable to assume that yk is s-sparse.

Let δ = 1− δ2s where δ2s is the rip constant of A. We have

‖A(x∗−yk)‖22+2(yk−x∗)>A>(Ax∗−b) = f(yk)−f(x∗) ≥ ‖A(yk−x∗)‖22 ≥ δ‖yk−x∗‖22. (6.7)

To see the first inequality, let y = x∗ + τ(yk − x∗) for τ ∈ [0, 1]. Due to the convexity of the
1-norm ball, y is feasible. Since x∗ is the minimum, for any τ ∈ [0, 1],

f(y)− f(x∗) = τ 2‖A(x∗ − yk)‖22 + 2τ(yk − x∗)>A>(Ax∗ − b) ≥ 0.

Thus, (yk − x∗)>A>(Ax∗− b) ≥ 0. The second inequality follows from (6.2) since the vector
yk − x∗ has at most 2s nonzeros. Then from (6.1), we have

δ‖yk − x∗‖22 ≤
L

k(k + 1)
‖x∗ − c‖22.

Putting everything together gives

‖yk − x∗‖2 ≤

√
L

k(k + 1)δ
‖x∗ − c‖2 ≤

1

k

√
L

δ
‖c− x∗‖2. (6.8)

The above relation and (6.1) suggest that when solving the lasso problem, we can speed up
Algorithm 9 by updating the prox-center, c, every K steps. With our assumptions, we prove

in the first part of following theorem that for every K >
√

L
δ
, restarting Algorithm 9 every

K steps with the new prox-center, proj1(yk−∇f(yk)/L, τ), is locally linearly convergent. In
the second part of Theorem 6.1.8, we prove that there is an optimal number of such steps.

In the following, allow the iterates to be represented by yjk where j is the number of
times the prox-center has been changed (the outer iteration) and k is number of iterations
after the last prox-center change (the inner iteration).

Theorem 6.1.8. Suppose A satisfies the restricted isometry property of order 2s and the
solution x∗ is s-sparse. The following holds if x∗ is non-degenerate and the initial point
p0 := x0 in Algorithm 2 is chosen to be sufficiently close to x∗.

(i) Algorithm 10 is locally linearly convergent for any K >
√

L
δ

.

(ii) In Algorithm 2, let jtot be the total number of prox-center changes. The total number
of iterations, jtot ·K, to get ‖pj − x∗‖2 ≤ ε is minimized if K is equal to

kopt := e

√
L

δ
(6.9)

where e is the base of the natural logarithm. Moreover, for each j,

‖pj − x∗‖2 ≤
1

ej
‖p0 − x∗‖2.
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Proof. (i) By Lemma 6.1.5, x∗ −∇f(x∗)/L ∈ int(CIx∗ ,τ ), where int(CIx∗ ,τ ) is the interior
of CIx∗ ,τ . Let Uα be a ball of radius α > 0, centered at x∗ − ∇f(x∗)/L, such that
Uα ⊆ int(CIx∗ ,τ ). By continuity, we may choose an ε > 0 such that ‖x − x∗‖2 < ε
implies x−∇f(x)/L ∈ Uα.

Now choose β > 0 such that for all ‖x‖1 ≤ τ , f(x)− f(x∗) < β implies ‖x− x∗‖2 < ε.
To see that β > 0 exists, suppose for a contradiction that ∀ n, ∃ xn with ‖xn‖1 ≤ τ
where f(xn)−f(x∗) < 1/n but ‖xn−x∗‖2 ≥ ε. Since the 1-norm ball is compact, there
is a subsequence {xnk} of {xn} converging to some x′. By continuity, f(xnk) converges
to f(x′). As mentioned right before the statement of Lemma 6.1.1, x∗ is a unique
minimum. Thus, f(x′) 6= f(x∗) contradicting the assumption that f(xn) converges to
f(x∗).

We now show that Algorithm 10 is linearly convergent if the initial prox-center p0 is
close enough to x∗. Suppose ‖p0 − x∗‖2 < β/L. Then (6.1) implies

f(y1K)− f(x∗) ≤ L

K(K + 1)
‖p0 − x∗‖22 < β,

and so ‖y1K − x∗‖ < ε. By Lemma 6.1.3, p1 = proj1(y1K −∇f(y1K)/L, τ) is s-sparse,
and by (6.7),

δ‖p1 − x∗‖22 ≤ f(p1)− f(x∗). (6.10)

Note that p1 is the result of a step of the projected gradient method, i.e. xk+1 =
proj1(xk −∇f(xk)/L, τ). Since this method is monotonically decreasing (see [101] for
a proof),

f(p1)− f(x∗) ≤ f(y1K)− f(x∗). (6.11)

Combining (6.10) and (6.11) with (6.1), gives

‖p1 − x∗‖2 ≤
1

K

√
L

δ
‖p0 − x∗‖2.

Since we assume that K >
√

L
δ
, we have ‖p1−x∗‖2 < β/L. Thus, the above arguments

can be repeatedly applied to show that for any j,

‖pj − x∗‖2 ≤

(
1

K

√
L

δ

)j

‖p0 − x∗‖2. (6.12)

(ii) First observe that (6.12) implies

‖pj − x∗‖2 ≤

(
1

K

√
L

δ

)j

‖p0 − x∗‖2 ≤ ε‖p0 − x∗‖2
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Table 6.1: Number of products with A and A> for nesta-lasso without prox-center updates
(cf. Algorithm 9) and nesta-lasso with prox-center updates (cf. Algorithm 11). These
values are given by NA and Nupdate

A respectively.

Number of Rows of A Number of Columns of A τ NA Nupdate
A

100 256 6.28 69 37
200 512 12.6 77 47
400 1024 25.1 157 45

when

j log

(
1

K

√
L

δ

)
= log ε.

This relation allows us to choose K to minimize the product j ·K. Since

j ·K =
K log ε

log
√
L/δ − logK

,

taking derivative of the expression on the right shows that j ·K is minimized when

K = e

√
L

δ
,

where e is the base of the natural logarithm. The total number of iterations will then
be

jtot ·K = −e
√
L

δ
log ε.

Theorem 6.1.6 implies that we almost always have local linear convergence:

Corollary 6.1.9. If A satisfies the restricted isometry property of order 2s and the solution

x∗ is s-sparse, Algorithm 10 is almost always locally linearly convergent for any K >
√

L
δ

.

In our experiments, there are some cases where updating the prox-center will eventually
cause the duality gap to jump to a higher value than the previous iteration. This can cause
the algorithm to run for more iterations than necessary. A check is added to prevent the
prox-center from being updated if it no longer helps.

In Table 6.1, we give some results showing that updating the prox-center is effective when
using nesta-lasso to solve the lasso problem.
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Chapter 7

Parnes: Solving the Basis Pursuit
Denoise Problem

7.1 PARNES

In applications where the noise level of the problem is approximately known, it is preferable
to solve bp(σ). The Pareto root-finding method used by van den Berg and Friedlander [12]
interprets bp(σ) as finding the root of a single-variable nonlinear equation whose graph is
called the Pareto curve. Their implementation of this approach is called spgl1. In spgl1,
an inexact version of Newton’s method is used to find the root, and at each iteration,
an approximate solution to the lasso problem, ls(τ), is found using an spg approach.
Refer to [27] for more information on the inexact Newton method. In Section 8.2, we show
experimentally that using nesta-lasso in place of the spg approach for solving the ls(τ)
subproblems can lead to improved results. We call this version of the Pareto root-finding
method, parnes. The pseudocode of parnes is given in Algorithm 12.

7.1.1 Pareto curve

Suppose A and b are given, with 0 6= b ∈ range(A). The points on the Pareto curve are given
by (τ, ϕ(τ)) where ϕ(τ) = ‖Axτ − b‖2, τ = ‖xτ‖1, and xτ solves ls(τ). The Pareto curve
gives the optimal trade-off between the 2-norm of the residual and 1-norm of the solution to
ls(τ). It can also be shown that the Pareto curve also characterizes the optimal trade-off
between the 2-norm of the residual and 1-norm of the solution to bp(σ). Refer to [12] for a
more detailed explanation of these properties of the Pareto curve. An example of a Pareto
curve is shown in Figure 7.1.

Let τbp be the optimal objective value of bp(0). The Pareto curve is restricted to the
interval τ ∈ [0, τbp] with ϕ(0) = ‖b‖2 > 0 and ϕ(τbp) = 0. The following theorem, proven
by van den Berg and Friedlander, shows that the Pareto curve is convex, strictly decreasing
over the interval τ ∈ [0, τbp], and continuously differentiable for τ ∈ (0, τbp).
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Figure 7.1: An example of a Pareto curve. The solid line is the Pareto curve; the dotted red
lines give two iterations of Newton’s method.

Proposition 7.1.1. [12] The function ϕ is

(i) convex and nonincreasing;

(ii) continuously differentiable for τ ∈ (0, τbp) with ϕ′(τ) = −λτ where λτ = ‖ATyτ‖∞ is
the optimal dual variable to ls(τ) and yτ = rτ/‖rτ‖2 with rτ = Axτ − b;

(iii) strictly decreasing and ‖xτ‖1 = τ for τ ∈ [0, τbp].

7.1.2 Root finding

Since the Pareto curve characterizes the optimal trade-off for both bp(σ) and ls(τ), solving
bp(σ) for a fixed σ can be interpreted as finding a root of the non-linear equation ϕ(τ) = σ.
The iterations consist of finding the solution to ls(τ) for a sequence of parameters τk → τσ
where τσ is the optimal objective value of bp(σ).

Applying Newton’s method to ϕ gives

τk+1 = τk + (σ − ϕ(τk))/ϕ
′(τk).

Since ϕ is convex, strictly decreasing and continuously differentiable, τk → τσ superlinearly
for all initial values τ0 ∈ (0, τbp) (see Proposition 1.4.1 in [13]). By Proposition 7.1.1, ϕ(τk)
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is the optimal value to ls(τk) and ϕ′(τk) is the dual solution to ls(τk). Since evaluating
ϕ(τk) involves solving a potentially large optimization problem, an inexact Newton method
is carried out with approximations of ϕ(τk) and ϕ′(τk).

Let yτ and λτ be the approximations of the yτ and λτ defined in Proposition 7.1.1. The
duality gap at each iteration is given by

ητ = ‖rτ‖2 − (bTyτ − τλτ ).

The following convergence result has been proven by van den Berg and Friedlander.

Theorem 7.1.2. [12] Suppose A has full rank, σ ∈ (0, ‖b‖2), and the inexact Newton method
generates a sequence τk → τσ. If ηk := ητk → 0 and τ0 is close enough to τσ, we have

|τk+1 − τσ| = γ1ηk + ζk|τk − τσ|,

where ζk → 0 and γ1 is a positive constant.

7.1.3 Solving the LASSO problem

Approximating ϕ(τk) and ϕ′(τk) require approximately minimizing ls(τ). The solver spgl1
uses a spectral projected-gradient (spg) algorithm. T he method follows the algorithm by
Birgin, Mart́ınez, and Raydan [15] and is shown to be globally convergent. The costs include
evaluating Ax, A>r, and a projection onto the 1-norm ball ‖x‖1 ≤ τ . In parnes, we replace
this spg algorithm with our algorithm, nesta-lasso (cf. Algorithm 11).

Algorithm 12 parnes: Pareto curve method with nesta-lasso

Require: initial point x0, bpdn parameter σ, tolerance η.
Ensure: xσ = argmin{‖x‖1 : ‖Ax− b‖2 ≤ σ}

1: τ0 = 0, ϕ0 = ‖b‖2, ϕ′0 = ‖A>b‖∞;
2: for k = 0, . . . , kmax, do
3: τk+1 = τk + (σ − ϕk)/ϕ′k;
4: xk+1 = nesta-lasso(xk, τk+1, η);
5: rk+1 = b− Axk+1;
6: ϕk+1 = ‖rk+1‖2;
7: ϕ′k+1 = −‖A>rk+1‖∞/‖rk+1‖2;
8: if ‖rk+1‖2 − σ ≤ η ·max{1, ‖rk+1‖2} then
9: return xσ = xk+1;

10: end if
11: end for
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Chapter 8

Numerical Experiments

8.1 Other Solution Techniques and Tools

In the our numerical experiments, we compare parnes with other state-of-the-art methods.
The algorithms we test and their experimental details are described below. Note that the
algorithms either solve bp(σ) or qp(λ).

8.1.1 NESTA [9]

NESTA is used to solve bp(σ). Its code is available at http://www.acm.caltech.edu/

~nesta. The parameters for nesta are set to be

x0 = A>b, µ = 0.02,

where x0 is the initial guess and µ is the smoothing parameter for the 1-norm function in
bp(σ).

Continuation techniques are used to speed up nesta in [9]. Such techniques are useful
when it is observed that a problem involving some parameter λ is faster for large λ, [74, 54].
Thus, the idea of continuation is to solve a sequence of problems for decreasing values of λ.
In the case of nesta, it is observed that convergence is faster for larger values of µ. When
continuation is used in the experiments, there are four continuation steps with µ0 = ‖x0‖∞
and µt = (µ/µ0)

t/4µ0 for t = 1, 2, 3, 4.

8.1.2 GPSR: Gradient projection for sparse reconstruction [34]

gpsr is used to solve the penalized least-squares problem qp(λ). The code is available
at http://www.lx.it.pt/~mtf/GPSR. The problem is first recast as a bound-constrained
quadratic program (bcqp) by using a standard change of variables on x. Here, x = u1− u2,
and the variables are now given by [u1, u2] where the entries are positive. The new problem
is then solved using a gradient projection (gp) algorithm. The parameters are set to the
default values in the following experiments.
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A version of gpsr with continuation is also tested. The number of continuation steps
is 40, the variable tolerancea is set to 10−3, and the variable minitera is set to 1. All
other parameters are set to their default values.

8.1.3 SpaRSA: Sparse reconstruction by separable
approximation [35]

sparsa is used to minimize functions of the form φ(x) = f(x) + λc(x) where f is smooth
and c is non-smooth and non-convex. The qp(λ) problem is a special case of functions of
this form. The code for sparsa is available at http://www.lx.it.pt/~mtf/SpaRSA.

In a sense, sparsa is an iterative shrinkage/thresholding algorithm. Utilizing continua-
tion and a Brazilai-Borwein heuristic [6] to find step sizes, the speed of the algorithm can be
increased. The number of continuation steps is set to 40 and the variable minitera is set
to 1. All remaining variables are set to their default values.

8.1.4 SPGL1 [12] and SPARCO [11]

SPGL1 is available at http://www.cs.ubc.ca/labs/scl/spgl1. The parameters for our
numerical experiments are set to their default values.

Due to the vast number of available and upcoming algorithms for sparse reconstruction,
the authors of spgl1 and others have created sparco [11]. In sparco, they provide a much
needed testing framework for benchmarking algorithms. It consists of a large collection of
imaging, compressed sensing, and geophysics problems. Moreover, it includes a library of
standard operators which can be used to create new test problems. sparco is implemented
in matlab and was originally created to test spgl1. The toolbox is available at http:

//www.cs.ubc.ca/labs/scl/sparco.

8.1.5 FISTA: Fast iterative soft-thresholding algorithm [8]

fista solves qp(λ). It can be thought of as a simplified version of the Nesterov algorithm
in Section 5.2.1 since it involves two sequences of iterates instead of three. In Section 4.2
of [9], fista is shown to give very accurate solutions provided enough iterations are taken.
Due to its ease of use and accuracy, fista is used to compute reference solutions in [9]
and in this paper. The code for fista can be found in the nesta experiments code at
http://www.acm.caltech.edu/~nesta.

8.1.6 FPC: Fixed point continuation [54, 55]

fpc solves the general problem minx ‖x‖1 + λf(x) where f(x) is differentiable and convex.
The special case with f(x) = 1

2
‖Ax− b‖22 is the qp(λ) problem. The algorithm is available

at http://www.caam.rice.edu/~optimization/L1/fpc.
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FPC is equivalent to iterative soft-thresholding. The approach is based on the obser-
vation that the solution solves a fixed-point equation x = F (x) where the operator F is a
composition of a gradient descent-like operator and a shrinkage operator. It can be shown
that the algorithm has q-linear convergence and also, finite-convergence for some compo-
nents of the solution. Since the parameter λ affects the speed of convergence, continuation
techniques are used to slowly decrease λ for faster convergence. A more recent version of
fpc, fpc-bb, uses Brazilai-Borwein steps to speed up convergence. Both versions of fpc
are tested with their default parameters.

8.1.7 FPC-AS: Fixed-point continuation and active set [91]

fpc-as is an extension of fpc into a two-stage algorithm which solves qp(λ). The code
can be found at http://www.caam.rice.edu/~optimization/L1/fpc. It has been shown
in [54] that applying the shrinkage operator a finite number of times yields the support and
signs of the optimal solution. Thus, the first stage of fpc-as involves applying the shrinkage
operator until an active set is determined. In the second stage, the objective function is
restricted to the active set and ‖x‖1 is replaced by cTx where c is the vector of signs of
the active set. The constraint ci · xi > 0 is also added. Since the objective function is now
smooth, many available methods can now be used to solve the problem. In the following
tests, the solvers l-bfgs and conjugate gradients, cg (referred to as fpc-as (cg)), are used.
Continuation methods are used to decrease λ to increase speed. For experiments involving
approximately sparse signals, the parameter controlling the estimated number of nonzeros is
set to n, and the maximum number of subspace iterations is set to 10. The other parameters
are set to their default values. All other experiments were tested with the default parameters.

8.1.8 Bregman iteration [100]

The Bregman Iterative algorithm consists of solving a sequence of qp(λ) problems for a fixed
λ and updated observation vectors b. Each qp(λ) is solved using the Brazilai-Borwein version
of fpc. Typically, very few (around four) outer iterations are needed. Code for the Breg-
man algorithm can be found at http://www.caam.rice.edu/~optimization/L1/2006/10/
bregman-iterative-algorithms-for.html. All parameters are set to their default values.

8.1.9 C-SALSA [1, 2]

This state-of-the-art method solves bp(σ) and has been shown to be competitive with spgl1
and nesta. The method solves the general constrained optimization problem

min
x
φ(x) s.t. ‖Ax− b‖2 ≤ ε.

First, the method transforms the problem into an unconstrained problem which is then trans-
formed into a different constrained problem and then solved with an augmented Lagrangian
scheme.
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The algorithm requires a method to compute the inverse of (A>A + αI) with α > 0
and an efficient method for computing the denoising operator associated with φ. We have
hand-tuned the parameters µ1 and µ2 for optimal performance. The code for c-salsa can
be found at http://cascais.lx.it.pt/~mafonso/salsa.html.

8.2 Numerical Results

In the nesta paper [9] extensive experiments are carried out, comparing the effectiveness
of the state-of-the-art sparse reconstruction algorithms described in Section 8.1. The code
used to run these experiments is available at http://www.acm.caltech.edu/~nesta. We
have modified this nesta experiment infrastructure to include parnes and c-salsa, and
we repeat some of the tests in [9] using the same experimental standards and parameters.
Refer to the [9] for a detailed description of the experiments.

One difficulty that arises in carrying out such broad experiments is that some of the
algorithms solve qp(λ) whereas others solve bp(σ). Comparing the algorithms thus requires
a way of finding a (σ, λ) pair for which the solutions of qp(λ) and bp(σ) coincide. The
nesta experiments utilize a two-step procedure. Given the noise level ε, the authors choose

σ0 :=
√
m+ 2

√
2mε, and then use spgl1 to solve the corresponding bp(σ0) problem. The

spgl1 dual solution then provides an estimate of the corresponding λ. In practice, the
computation of λ is not very stable, and so a second step is performed in which fista is
used to compute a σ corresponding to λ using a very high accuracy of around 10−14.

The highly accurate solution computed by fista is used to determine the accuracy of the
solutions computed by the other solvers. Section 4.2 of [9] shows that this is reasonable since
fista gives very accurate solutions provided that enough iterations are taken. For each test,
fista is ran twice. In the first run, fista is ran with no limit on the number of iterations
until the relative change in the function value is less than 10−14. This solution is used to
determine the accuracy of the computed solutions. The results recorded for fista are from
running fista a second time with either stopping criterion (8.1) or (8.2).

Since the different algorithms utilize different stopping criteria, to maintain fairness, the
codes have been modified to allow for two new stopping criteria. Intuitively, the algorithms
are run until they achieve a solution at least as accurate as the one obtained by nesta.
In [9], nesta (with continuation) is used to compute a solution xNES. Let x̂k be the k-th
iteration in the algorithm being tested. The stopping criteria used are:

‖x̂k‖`1 ≤ ‖xNES‖`1 and ‖b− Ax̂k‖`2 ≤ 1.05 ‖b− AxNES‖`2 , (8.1)

and

λ‖x̂k‖`1 +
1

2
‖Ax̂k − b‖2`2 ≤ λ‖xNES‖`1 +

1

2
‖AxNES − b‖2`2 . (8.2)

The rationale for having two stopping criteria is to reduce any potential bias arising from
the fact that some algorithms solve qp(λ), for which (8.2) is the most natural, while others
solve bp(σ), for which (8.1) is the most natural. It is evident from the tables below that
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there is not a significant difference between using (8.1) and (8.2). For each test, the number
of calls to A and A> (NA) is recorded, and the algorithms are said to have not converged
(dnc) if the number of calls exceeds 20,000.

In Tables 8.2 and 8.3, we repeat the experiments done in Tables 5.1 and 5.2 of [9].
These experiments involve recovering an unknown, exactly s-sparse signal with n = 262,144,
m = n/8, and s = m/5. For each run, the measurement operator A is a randomly subsampled
discrete cosine transform, and the noise level is set to 0.1. The experiments are performed
with increasing values of the dynamic range d where d = 20, 40, 60, 80, 100 dB.

The dynamic range d is a measure of the ratio between the largest and smallest mag-
nitudes of the non-zero coefficients of the unknown signal. Problems with a high dynamic
range occur often in applications. In these cases, high accuracy becomes important since
one must be able to detect and recover low-power signals with small amplitudes which may
be obscured by high-power signals with large amplitudes.

Table 8.1 compares the accuracy of the different solvers when used to calculate the results
in the last column of Table 8.2. As this corresponds to a very high dynamic range (100 dB),
one hopes to obtain very accurate results. Although fista produces the most accurate
results (‖x− x∗‖1/‖x∗‖1 = 3.63 · 10−4), with at least twice the accuracy of the other solvers,
it requires the over 10,000 calls to A and A>. In contrast, parnes only requires 632 function
calls to reach a relative accuracy of ‖x− x∗‖1/‖x∗‖1 = 6.93 · 10−4. The solvers fpc-as and
fpc-as (cg) do well and only require around 300 iterations to reach a relative accuracy of
around 6.93 · 10−4. The remaining algorithms reach relative accuracies of around 8 · 10−4 or
more, and gspr does not converge. Without continuation, nesta only achieves a relative
accuracy of 4.12 · 10−3 after 15,227 function calls. However, nesta with continuation does
much better and reaches a relative accuracy of 8.12 · 10−4 after 787 function calls.

In Tables 8.2 and 8.3, the same experiment is ran for the two stopping criteria. Since
there is no notable difference between the two sets of results, we only analyze Table 8.2.
Here, fpc-as and fpc-as (cg) perform the best for large values of d, and the number of
function calls ranges from 200 to 375 for all values of the dynamic range. In these cases,
we see a relatively small increase in NA as d increases from 20 dB to 100 dB. Our method,
parnes, and spgl1 generally perform well and do particularly well for small values of d.
However, both exhibit a larger increase in NA with d, with parnes increasing from 122 to
632 function calls and spgl1 ranging between 58 and 504. The solvers nesta + ct and
sparsa perform relatively well for large values of d with NA ranging between 500 and 800.

In applications, the signal to be recovered is often approximately sparse rather than
exactly sparse. Again, high accuracy is important when solving these problems. The last
two tables, Tables 8.4 and 8.5, replicate Tables 5.3 and 5.4 of [9]. Each run involves an
approximately sparse signal obtained from a permutation of the Haar wavelet coefficients
of a 512 × 512 image. The measurement vector b consists of m = n/8 = 5122/8 = 32,768
random discrete cosine measurements, and the noise level is set to have a variance of 1 in
Table 8.4 and 0.1 in Table 8.5. For more specific details, refer to [9].

We have seen that nesta + ct, sparsa, spgl1, parnes, and both versions of fpc-
as perform well in the case of exactly sparse signals for all values of the dynamic range.
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Table 8.1: Comparison of accuracy using experiments from Table 8.2. Dynamic range 100
dB, σ = 0.100, µ = 0.020, sparsity level s = m/5. Stopping rule is (8.1).

Methods NA ‖x‖1 ‖Ax− b‖2 ‖x−x∗‖1
‖x∗‖1 ‖x− x∗‖∞ ‖x− x∗‖2

parnes 632 942197.606 2.692 0.000693 8.312 46.623
nesta 15227 942402.960 2.661 0.004124 45.753 255.778
nesta + ct 787 942211.581 2.661 0.000812 9.317 52.729
gpsr dnc dnc dnc dnc dnc dnc
gpsr + ct 11737 942211.377 2.725 0.001420 15.646 90.493
sparsa 693 942197.785 2.728 0.000783 9.094 51.839
spgl1 504 942211.520 2.628 0.001326 14.806 84.560
fista 12462 942211.540 2.654 0.000363 4.358 26.014
fpc-as 287 942210.925 2.498 0.000672 9.374 45.071
fpc-as (cg) 361 942210.512 2.508 0.000671 9.361 45.010
fpc 9614 942211.540 2.719 0.001422 15.752 90.665
fpc-bb 1082 942209.854 2.726 0.001378 15.271 87.963
bregman-bb 1408 942286.656 1.326 0.000891 9.303 52.449
c-salsa 1338 942219.455 2.317 0.000851 9.541 55.14

However, in the case of approximately sparse signals, sparsa and all versions of fpc no
longer converge in under 20,000 function calls. In Table 8.4, parnes, spgl1, and c-salsa
perform well, with parnes and c-salsa taking around 650 function calls for some runs
(compare to nesta + ct which takes at least 3,000 iterations). These algorithms also
perform the best in Table 8.5, and most other algorithms no longer converge in under 10,000
function calls.

8.2.1 Choice of parameters

As Tseng observed, accelerated proximal gradient algorithms will converge so long as the
condition given as equation (45) in [87] is satisfied. In our case this translates into

min
x∈Rn

{
∇f(yk)

>x+
L

2
‖x− xk‖22 + P (x)

}
≥ ∇f(yk)

>yk + P (yk), (8.3)

upon setting γk = 1 and

P (x) =

{
0 if ‖x‖1 ≤ τ,

∞ otherwise,

in (45) in [87]. In other words, the value of L need not necessarily be fixed at the Lipschitz
constant of ∇f but may be decreased, and decreasing L has the same effect as increasing the
stepsize. Tseng suggests to decrease L adaptively by a constant factor until (45) is violated,



CHAPTER 8. NUMERICAL EXPERIMENTS 94

Table 8.2: Number of function calls where the sparsity level is s = m/5 and the stopping
rule is (8.1).

Method 20 dB 40 dB 60 dB 80 dB 100 dB

parnes 122 172 214 470 632
nesta 383 809 1639 4341 15227
nesta + ct 483 513 583 685 787
gpsr 64 622 5030 dnc dnc
gpsr + ct 271 219 357 1219 11737
sparsa 323 387 465 541 693
spgl1 58 102 191 374 504
fista 69 267 1020 3465 12462
fpc-as 209 231 299 371 287
fpc-as (cg) 253 289 375 481 361
fpc 474 386 478 1068 9614
fpc-bb 164 168 206 278 1082
bregman-bb 211 223 309 455 1408
c-salsa 242 602 702 970 1338

Table 8.3: Number of function calls where the sparsity level is s = m/5 and the stopping
rule is (8.2).

Method 20 dB 40 dB 60 dB 80 dB 100 dB

parnes 74 116 166 364 562
nesta 383 809 1639 4341 15227
nesta + ct 483 513 583 685 787
gpsr 62 618 5026 dnc dnc
gpsr + ct 271 219 369 1237 11775
sparsa 323 387 463 541 689
spgl1 43 99 185 365 488
fista 72 261 1002 3477 12462
fpc-as 115 167 159 371 281
fpc-as (cg) 142 210 198 481 355
fpc 472 386 466 1144 9734
fpc-bb 164 164 202 276 1092
bregman-bb 211 223 309 455 1408
c-salsa 202 550 650 898 1230
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Table 8.4: Recovery results of an approximately sparse signal (with Gaussian noise of vari-
ance 1 added) and with (8.2) as a stopping rule.

Method Run 1 Run 2 Run 3 Run 4 Run 5

parnes 838 810 1038 1098 654
nesta 8817 10867 9887 9093 11211
nesta + ct 3807 3045 3047 3225 2735
gpsr dnc dnc dnc dnc dnc
gpsr + ct dnc dnc dnc dnc dnc
sparsa 2143 2353 1977 1613 dnc
spgl1 916 892 1115 1437 938
fista 3375 2940 2748 2538 3855
fpc-as dnc dnc dnc dnc dnc
fpc-as (cg) dnc dnc dnc dnc dnc
fpc dnc dnc dnc dnc dnc
fpc-bb 5614 7906 5986 4652 6906
bregman-bb 3288 1281 1507 2892 3104
c-salsa 742 626 630 1226 826

Table 8.5: Recovery results of an approximately sparse signal (with Gaussian noise of vari-
ance 0.1 added) and with (8.2) as a stopping rule.

Method Run 1 Run 2 Run 3 Run 4 Run 5

parnes 1420 1772 1246 1008 978
nesta 11573 10457 10705 8807 13795
nesta + ct 7543 13655 11515 3123 2777
gpsr dnc dnc dnc dnc dnc
gpsr + ct dnc dnc dnc dnc dnc
sparsa 12509 dnc dnc 3117 dnc
spgl1 1652 1955 2151 1311 2365
fista 10845 12165 10050 7647 11997
fpc-as dnc dnc dnc dnc dnc
fpc-as (cg) dnc dnc dnc dnc dnc
fpc dnc dnc dnc dnc dnc
fpc-bb dnc dnc dnc dnc dnc
bregman-bb 3900 3684 2045 3292 3486
c-salsa 1886 1926 1770 1754 1854
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then backtrack and repeat the iteration (cf. Note 6 in [87]). For simplicity, and very likely
at the expense of speed, we do not change our L adaptively in parnes and nesta-lasso.
Instead, we choose a small fixed L by trying a few different values so that (8.3) is satisfied
for all k and likewise for the tolerance η in Algorithm 11. However, even with this crude way
of selecting L and η, the results obtained are still rather encouraging.

8.3 Conclusions

As seen in the numerical results, spgl1 and nesta are among some of the top perform-
ing solvers available for basis pursuit denoising problems. We have therefore made use of
Nesterov’s accelerated proximal gradient method in our algorithm nesta-lasso and shown
that updating the prox-center leads to improved results. Through our experiments, we have
shown that using nesta-lasso in the Pareto root-finding method leads to results compa-
rable to those of currently available state-of-the-art methods. Moreover, parnes performs
consistently well in all our experiments.
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