
UCLA
UCLA Electronic Theses and Dissertations

Title
Adaptive AI Algorithms for Generic Hardware and Unified Hardware Acceleration 
Architecture

Permalink
https://escholarship.org/uc/item/7zc373j7

Author
Shi, Feng

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zc373j7
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Adaptive AI Algorithms

for Generic Hardware &

Unified Hardware Acceleration Architecture

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Feng Shi

2021



© Copyright by

Feng Shi

2021



ABSTRACT OF THE DISSERTATION

Adaptive AI Algorithms

for Generic Hardware &

Unified Hardware Acceleration Architecture

by

Feng Shi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Song-Chun Zhu, Chair

We are now in an era of the Big Bang of artificial intelligence (AI). In this wave of

revolution, both industry and academia have cast numerous funds and resources. Machine

learning, especially Deep Learning, has been widely deployed to replace the traditional

algorithms in many domains, from the euclidean data domain to the non-euclidean domain.

As the complexity and scale of the AI algorithms increase, the system host these algorithms

requires more computational power and resources than before. Using the design of the

modules of the video analytic platform as the use cases, we analyze the workload cost for

computational resource and memory allocation during the execution of the system. The

video analytic platform is a complex system that comprises various computer vision and

decision-making tasks. Every module accomplishing a specific task is a stage in the pipeline

of the video analytic platform. With the analyses mentioned above, we synthesize the

adaptive AI algorithms from availability and variability perspectives, such as optimization

with tensorization or matricization. We conceive the sparse Transformer and segmented linear
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Transformer as the critical components for the human action recognition task. Constraint

Satisfaction Problem is employed to assist the decision-making in the scene parsing stage. To

facilitate this fulfillment of this task, we designed a hybrid model for graph learning-based

SAT solver. Graph matching is employed at the final stage for the scene understanding

task. We implemented a hybrid model of GNN and Transformer architecture. Finally, we

design the unified hardware acceleration architecture for both dense and sparse data based

on the optimizations of algorithms. Our design of the architecture targets the arithmetic

operation kernels, such as matrix multiplications, with the help of data transformation and

rearrangement. We first transform the inputs and weights with Winograd transform for

dense convolution operations, then we feed the transformed data to the matrix multiplication

accelerator. For sparse data, we need to utilize the index to nonzero to fetch data; therefore,

the indexation, scattering, and gathering are crucial components, effective implementation will

dramatically improve the system’s overall performance. To improve the matrix multiplication

accelerator’s efficiency and reduce the number of heavy arithmetic operations and the number

of memory accesses, we also conduct the hardware-based recursive algorithm, i.e., Strassen’s

algorithm for matrix multiplication.
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CHAPTER 1

Introduction

In the artificial intelligence paradigm, the essential step is feature extraction from data, and

then the extracted features are utilized for different tasks, such as classification and detection.

Data feature extraction has been evolved from traditional algorithms for handcrafted features

to automated approaches with machine learning algorithms in recent decades. Significantly,

the advent of deep learning, a branch of machine learning, brought efficiency and accuracy

even beyond human ability. Many new methods have been developed in such a wave of

advancement, from Multi-Layer Perceptron (MLP) to Convolutional Neural Networks (CNN)

to Transformer with fully attention mechanism, and AI models are becoming more and more

sophisticated. At the same time, researchers have been driven by the increased requests

to design domain-specific hardware to accommodate the complexity of machine learning

models. In such circumstances, hardware and software co-designing become highly crucial.

We target adaptive AI algorithms and unified hardware to construct the system to leverage

both performance and cost from both directions.

We employ the video analytic platform, an ensemble of cognitive tasks with various

algorithms, as a working example. We analyze the overall pipeline of the video analytic

platform from module to module and abstract the standard computational kernels from those

modules. We take these kernels as the bridge between software and hardware.
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Figure 1.1: Scenario of video analytic platform

1.1 The Need for Adaptive Artificial Intelligence Algorithms

1.1.1 Video Analytic Platform

Video today dominates network traffic, data center storage, and even edge platforms for

low-power applications. However, real-time analytic on large video corpora remains out of

reach for many tasks, such as object-based search and reconstruction and analysis of 3D

scenes. Such real-time capabilities will have many critical commercial and national security

applications. To provide a concrete context for developing the architecture and system stack,

we target a set of applications that promise to be commercially crucial over the next 10-20

years, that include a rich diversity of computation and data access patterns, and that is

fundamentally challenging for existing architecture and systems.

The above Figure 1.1 shows that a robust video analytic platform can understand and
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Figure 1.2: An example of intelligent Q.A. system

explain the scene in the frames captured by the cameras. This platform first detects the

existing objects in the frame, then tries to derive the relational connections among these

objects. An And-Or Graph/parse graph can depict the decompositional, spatial, and temporal

relations (even causal relation) among these objects.

After constructing the And-Or Graph and distilling a parse graph from it, we want to

explain what the machine has seen from the picture. A Q&A sub-platform can further

investigate the scene understanding ability of the system as a back-end into the video analytic

platform. This sub-platform possesses a knowledge database storing the ontology graph.

It receives the sub-graph (parse graph or raw And-Or graph) parsed by the front-end of

the video analytic platform as the questions (depicted in the previous paragraph). Then it

retrieves a matched sub-graph from the ontology graph as answers, as shown in Figure 1.2.

Figure 1.2 displays an overview of the system. Take a concrete example for demonstration,

say, we have captured a scene with a graph with leaf nodes as, a girl, a chair, a desk, and a

candle; we also have additional links describing, the girl is sitting on the chair, the candle is
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Figure 1.3: Illustration of the pipeline of the scene parsing and understanding

on the desk. The front end concludes a description, saying, “a girl is sitting in a room with

one chair, one desk, and one candle.” However, such expressions are still unnatural in real

life. The sub-graph, which consists of a chair(s), a desk(s), and candle(s), can be matched to

a category “home office,” which is a sub-graph stored in the ontology graph database, though

this sub-graph may have a node lamp instead of a candle (the most similar one). If we turn

the phrase into “a girl is sitting in a home office,” the expression becomes more natural as a

human being. Figure 4.2 and Figure 1.4 illustrate such a scenario.

1.1.2 The analysis of the bottlenecks in the platform

We provide the analysis of the bottlenecks in the platform stage by stage according to Figure

4.2.

1. The object detection stage mainly consists of convolutional neural networks. This stage

is at the same time compute- and memory-bound; the data fetched into memory are

repeatedly read for the filter windows where the convolution operations are performed

to generate new feature maps. In different layers, the amount of computation varies.
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Figure 1.4: Graph matching used for scene understanding

2. The stage for the 3D reconstruction utilizes the MCMC algorithm. Such algorithms

usually generate many intermediate results, which causes a high rate of memory accesses

and disk accesses where the 3D object models are stored. The trial-and-error sampling

procedure also triggers a bunch of function calls. Furthermore, as the 3D environment

becomes more prominent and more complex, the complexity of the query-reasoning

system proliferates.

3. The graph matching stage is also both compute- and memory-bound. For an iteration of

graph matching, the conventional algorithm is an NP-hard, usually a compute-intensive

case. The matching phase tries to find a similar graph (or some pattern/configuration)

in the database for a computed parse graph from the scene parsing stage. When there

are millions of graphs (predefined patterns) stored in the ontology base (knowledge

database), the matching problem becomes painful. Therefore, this stage is again both

compute- and memory-bound.
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Figure 1.5: The benchmarks of different computational kernels

1.1.3 The need for a new computing paradigm

Video data occupy many physical resources, e.g., network traffic, and storage; it is also the

source of many important commercial and national-security needs. For example, content-

based video search remains far from the goal of enabling high-level specification of objects of

interest and the ability to search across various camera resolutions, perspectives, and viewing

conditions. Another important capability is the ability to reconstruct a 3D environment

and enable rich Spatio-temporal and causal queries. As the target 3D environment grows,

the data volumes increase rapidly; for example, 30 cameras monitoring just one portion

of a single building floor generate TBs of data per hour. Increasingly, these tasks must

happen at line speeds to keep up with the rate of new data products, and often real-

time processing is needed to draw timely inferences. The algorithms currently entail deep

learning, dynamic programming, Monte-Carlo iteration, graph analytic, and natural language

processing. Deployments of real-time video analytic will need to do as much processing in
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MCMC CNN

Figure 1.6: Flame graphs illustrate the tree of function calls

the cameras as possible, so will span edge devices to cloud in implementing an end-to-end

solution. Figure 1.5 and Figure 1.6 provide the statistics and profiling of the video analytic

system.

functions # of calls % of time

one step object adjust(): MCMC process 662 18.90%

compute total likelihood(): MCMC process 265 33.57%

render scene(): 3D rendering 226 31.57%

object detection(): Neural Network 279 15.96%

Table 1.1: Statistics of function calls (Python) in 3D reconstruction platform

For the two example platforms, i.e., video analytic and 3D reconstruction platforms, the

computation- and memory-bound components are the feature extraction and the hierarchical

compose trajectory phrases. As an example, Table 3.5 summarizes the statistics of function

calls in a 3D reconstruction platform. Most deep learning based algorithms, i.e., Deep Neural

Networks (DNNs), Convolutional Neural Networks (CNNs), long/short-term memory (LSTM),

Recurrent neural networks (RNNs), or Transformers, belong to feature extraction category;

while the stochastic process-based planning/decision-making algorithms, i.e., reinforcement

learning (RL), Monte-Carlo Markov Chain (MCMC), and constraint satisfaction problems
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(CSP), fall into the hierarchical compose trajectory category, which need to make decision

through the probability distribution (or any stochastic process) of the interaction between

actions and states. Sometimes, these two categories are combined to perform the decision-

making tasks, especially, in some deep RL models utilize CNNs as policy network to evaluate

the rewards and returns.

In the following chapters, in the context of the video analytic platform, we conduct various

algorithms for relevant applications in such a platform. Our project collects a diverse set

of algorithms into a benchmark suite of challenging applications. However, we primarily

target three algorithms/applications that are highly challenging for current systems. Like we

are considering, advancements would enable substantially new capabilities, which is of high

societal relevance, leading to high impact from our work. Furthermore, these applications

use key algorithmic building blocks whose acceleration will benefit many other applications,

such as machine learning, graph analytic, etc.

1.2 Algorithm abstraction and their implementation

The left column, Figure 1.7(a), gives an example of the potential pipeline architecture of a

video analytic platform. The middle column, Figure 1.7(b), summarizes the kernel algorithms

deployed in the corresponding module of the pipeline. The rightmost column of Figure

1.7 provides implementation details from the arithmetic operation perspective. The key to

achieving a high degree of parallelism is to vectorize, matricize, or tensorize the data access

and processing patterns. The vectorization, matricization, and tensorization are also helpful

to bulky access to the data, which results in a higher locality for caching and the possibility

of reuse of data. Meanwhile, the vectorization (same for matricization and tensorization) for

the irregular data, especially for the non-euclidean data, can be fulfilled with scattering and

gathering operation through indexing data.

Chapter 2 shows the human action recognition engine algorithm, an intermediate module
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Figure 1.7: The abstraction of algorithms and their implementation
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in the video analytic platform for the scene parsing task. This module utilizes the human

skeleton data as input, including temporal information derived from the video sequence and

the spatial information represented by the coordinates in 2D or 3D space in each frame. The

skeleton data are extracted with the help of the human pose detection engine as the front-end

pipeline of the video analytic platform. The human action recognition engine in this work

is designed with two pipelines; each pipeline is a Transformer encoder structure and treats

the skeleton sequence in spatial or temporal domains, respectively. Due to different data

properties within spatial and temporal domains, the two encoders are designed to process

the sparse data with tree structure and time-series data with the linear causal sequence.

Chapter 3 presents the graph matching algorithm with deep learning solution. Graph

matching is a crucial problem in many fields, and it is also an NP-hard problem with very

high complexity. The conventional approaches are often time-consuming and lacking enough

parallelism. The model proposed consists of the graph neural networks for extract graph

nodes’ hidden features or embedding. Then used the dot product between pairs of node

features to conduct a similarity matrix. The key to such a problem lies in whether the two

graphs’ topology is consistent. With the help of graph diffusion, which uses the heat kernel

to construct graph wavelets, we can plot the energy diffusion map on the graph. An energy

diffusion map is an efficient way to depict the topology of graphs by assessing the energy

flowing from node to node in a graph. Therefore, we integrate the energy diffusion map into

the graph matching problem and translate such kind of problem into an energy diffusion

comparison problem.

Chapter 4 proposes a CSP/SAT solver based on deep learning approach. Constraint

Satisfaction Problem (CSP) and Boolean Satisfiability Problem (SAT) are ubiquitous and

adopted in many fields. Such kinds of problems are also NP-complete. Many heuristic

approaches have been invented; however, these algorithms mostly focus on a ”trial and

error” iterative manner that cannot grasp the overall topological relation between nodes of a

bipartite graph constructed by the variables and clauses. They neither can summarize the
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hidden features embedded inside the topology and those derived from nodes’ connectivity.

We also introduce the concept ”meta-paths” into our model to extract the correlated feature

crossing the link between clauses and variables of the bipartite graphs depicting the CSP

instance.

Chapter 5 aims to accelerate the convolution operations in convolutional neural networks,

the bone architecture used in most modern computer vision tasks. We first apply the

Winograd transform on the input tensor and the trained weights (or kernels). This transform

can dramatically reduce the number of operations compared with the direct methods of

convolution operations. With the rearrangement of data access pattern crossing dimensions,

we apply the matricization to those transformed tensors then perform matrix multiplication

between input tensors and weight tensors. So the hardware design part is simplified to the

optimization to accelerate the performance for matrix multiplications. The complexity of

hardware design remains manageable and easy to handle.

Chapter 6 proposes an approach to tackle the complexity of the deconvolution operations.

Deconvolution is a key component of the generative model, such as generative adversarial

networks (GAN), variational autoencoder (VAE). By discovering the regularity of the data

access pattern to the input data and kernels of the deconvolution operations, we decompose

the input tensor and weight tensor into several regular repeated combinations. The regular

convolution operator then operates on each of those combinations. This method simplifies

the hardware design, and also, the hardware tailored for regular convolution operation can

be deployed directly without any modification.

Chapter 7 focuses on designing a versatile accelerator for both sparse and dense matrix

multiplications. The Graph Neural Network (GNNs) is a very suitable use case for this

accelerator since the two phases, feature transform and feature aggregation, of a graph

convolution layer are dense and sparse matrix multiplications, respectively. Of course, this

accelerator is not limited to the GNN model acceleration, especially the spatial and temporal

transformer model in Chapter 2 can also be easily deployed onto it. The hardware algorithm

11



utilized in this accelerator design can be regarded as an extension of the accelerator design in

Chapter 5. Based on the recursive matrix multiplication fashion used in Chapter 5 we further

reduce the number of heavy arithmetic operations, i.e., multiplications, through Strassen’s

algorithm when in the dense mode; for the sparse mode, we introduce the auxiliary FIFOs for

keeping the index to nonzero in processing. In addition, a software approach algorithm for

regrouping the sparse matrices assists in reducing the idled time slots during index alignment.

1.3 Acknowledgment of Funding Source and Disclaimer

The research was funded in part by CRISP, one of six centers in JUMP, a Semiconduc-

tor Research Corporation (SRC) program sponsored by DARPA. The grant number is

GI18518.156870. The U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied, of

DARPA or the U.S. Government.
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CHAPTER 2

STAR: Sparse Transformer-based Action Recognition

This chapter, as shown in Figure 2.1, presents the human action recognition engine algorithm,

an intermediate step of the scene parsing in the video analytic platform. It uses the human

skeleton data to classify the human action. The skeleton data, extracted with the help of

the human pose detection engine as the front-end pipeline of the video analytic platform,

comprises a sequence of video frames, the coordinates in 2D or 3D space in each frame

presents the spatial information; and each sequence of the same body joint in the frames

forms the temporal information. This thesis’s human action recognition engine consists of two

pipelines; each pipeline is a Transformer encoder structure and treats the skeleton sequence

in spatial or temporal domains, respectively. Due to different data properties within spatial

and temporal domains, the two encoders process the sparse data with tree structure and

time-series data with the linear causal sequence.

2.1 Introduction

Human action recognition plays a crucial role in many real-world applications, such as

holistic scene understanding, video surveillance, and human-computer interaction [79, 27]. In

particular, skeleton-based human action recognition has attracted much attention in recent

years and has shown its effectiveness. The skeleton representation contains a time series of

2D or 3D coordinates of human key-joints, providing dynamic body movement information

that is robust to variations of light conditions and background noises in contrast to raw RGB

representation.
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Figure 2.1: The overview of the position of this chapter

Earlier skeleton-based human action recognition methods focus on designing hand-crafted

features extracted from the joint coordinates [161, 164] and aggregating learned features

using RNNs and CNNs [185, 175, 192, 107, 90]. However, these methods rarely explore the

relations between body joints and result in unsatisfactory performance. Recent methods

focus on exploring the natural connection of human body joints and successfully adopted the

Graph Convolutional Networks (GCNs), especially for non-Euclidean domain data, similar to

Convolutional Neural Networks (CNNs) but executing convolutional operations to aggregate

the connected and related joints’ features. Yan et al. [180] proposed a ST-GCN model to

extract discriminative features from spatial and temporal graphs of body joints. Following

the success of ST-GCN, many works proposed optimizations to ST-GCN to improve the

performance and network capacity [140, 103, 110].

However, the existing GCN-based models are often impractical in real-time applications

due to their vast computational complexity and memory usage. The baseline GCN model, e.g.,

ST-GCN, consists of more than 3.09 million parameters and costs at least 16.2 GFLOPs to

run inference on a single action video sample [180]. DGNN, which is composed of incremental

GCN modules, even contains 26 million model parameters. [140] Such high model complexity
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leads to difficulty in model training and inference, makes the model not suitable for deployment

on edge devices. Furthermore, these GCN-based models process fixed-size action videos by

padding repetitive frames and zeros to match the maximum number of frames and persons

depicted in the videos. These additional paddings increase the latency and memory required

hindering their adoption in real-time and embedded applications.

This paper proposes a sparse transformer-based action recognition (STAR) model as a

novel baseline for skeleton action modeling to address the above shortcomings. Transformers

have been a popular choice in natural language processing. Recently, they have been employed

in computer vision to attain competitive results compared to convolutional networks, while

requiring fewer computational resources to train [42, 82]. Inspired by these Transformer

architectures, our model consists of spatial and temporal encoders, which apply sparse

attention and segmented linear attention on skeleton sequences along the spatial and temporal

dimension, respectively.

Our sparse attention module along the spatial dimension performs sparse matrix multi-

plications to extract correlations of connected joints, whereas previous approaches utilize

dense matrix multiplications where most of the entries are zeros, causing extra computation.

The segmented linear attention mechanism along temporal dimension further reduces the

computation and memory usage by processing variable length of sequences. We also apply

segmented positional encoding to the data embedding to provide the concept of time-series

ordering along the temporal dimension of variable-length skeleton data. Additionally, seg-

mented context attention performs weighted summarization across the entire video frames,

making our model robust compared to GCN-based models with their fixed-length receptive

field on the temporal dimension.

Compared to the baseline GCN model (ST-GCN), our model (STAR) achieves higher

performance with much smaller model size on the two datasets, NTU RGB+D 60 and 120.

The major contributions of this work are listed below:
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• We focus on designing an efficient model purely based on self-attention mechanism.

We propose sparse transformer-based action recognition (STAR) model that process

variable length of skeleton action sequence without additional preprocessing and zero

paddings. The flexibility of our model is beneficial for real-time applications or edge

platforms with limited computational resources.

• We propose a sparse self-attention module that efficiently performs sparse matrix

multiplications to capture spatial correlations between human skeleton joints.

• We propose a segmented linear self-attention module that effectively captures temporal

correlations of dynamic joint movements across time dimension.

• Experiments show that our model is 5∼7× smaller than the baseline models while

providing 4∼18× execution speedup.

2.2 Related works

2.2.1 Skeleton-Based Action Recognition

Recently, skeleton-based action recognition has attracted much attention since its compact

skeleton data representation makes the models more efficient and free from the variations

in lighting conditions and other environmental noises. Earlier methods to skeleton-based

action modeling have mainly worked on designing hand-crafted features and relations between

joints [27, 161, 164]. Recently, by looking into the inherent connectivity of the human body,

Graph Convolutional Networks (GCNs), especially, ST-GCNs have gained massive success

in getting satisfactory results in this task. The model consists of spatial and temporal

convolution modules similar to conventional convolutional filters used for images [180]. The

graph adjacency matrix encodes the skeleton joints’ connections and extracts high-level

spatial representations from the skeleton action sequence. On the temporal dimension, 1D

convolutional filters facilitate extracting dynamic information.
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Many following works have proposed improvements to ST-GCN to improve the perfor-

mance. Li et al. [103] proposed AS-GCN, which leveraged the potential of adjacency matrices

to scale the human skeleton’s connectivity. Furthermore, they generated semantic links to

capture better structural and action semantics with additional information aggregation. Lei

et al. [141] proposed Directed Graph Neural Networks (DGNNs), which incorporate joint

and bone information to represent the skeleton data as a directed acyclic graph. Liu et

al. [110] proposed a unified spatial-temporal graph convolution module (G3D) to aggregate

information across space and time for effective feature learning.

Some studies have been focusing on the computational complexity of GCN-based methods.

Cheng et al. [24] proposed Shift-GCN, which leverages shift graph operations and point-wise

convolutions to reduce the computational complexity. Song et al. [147] proposed multi-

branch ResGCN that fuses different spatio-temporal features from multiple branches and

used residual bottleneck modules to obtain competitive performance with less number of

parameters. Compared to these methods, our spatial and temporal self-attention modules

have several essential distinctions: our model can process variable length of skeleton sequence

without preprocessing with zero-paddings. Our model can retrieve global context on the

temporal dimension by applying self-attention to the input sequence’s entire frames.

2.2.2 Transformers and Self-Attention Mechanism

Vaswani et al. [155] first introduced Transformers for machine translation and have been the

state-of-the-art method in various NLP tasks. For example, GPT and BERT [125, 40] are

currently the Transformer-based language models that have achieved the best performance.

The core component of Transformer architectures is a self-attention mechanism that learns

the relationships between each element of a sequence. In contrast to recurrent networks that

process sequence in a recursive fashion and are limited to attention on short-term context,

transformer architectures enable modeling long dependencies in sequence. Furthermore, the

multi-head self-attention operations can be easily parallelized. Recently, Transformer-based

18



models have attracted much attention in the computer vision community. Convolution

operation has been the core of the conventional deep learning models for computer vision

tasks. However, there are downfalls to the operation. The convolution operates on a fixed-

sized window, which only captures short-range dependencies. The same applies to GCNs

where the Graph Convolution operation is incapable of capturing long-range relations between

joints in both spatial and temporal dimensions.

Vision Transformer (ViT) [42] is the first work to completely replace standard convolutions

in deep neural networks on large-scale image recognition tasks. Huang et al. [82] explored

the sparse attention to study the trade-off between computational efficiency and performance

of a Transformer model on the image classification task. A recent study [121] proposed a

hybrid model consists of the Transformer encoder and GCN modules on the skeleton-based

human action recognition task. Nevertheless, no prior study has completely replaced GCNs

with the Transformer architecture to the best of our knowledge.

2.3 Methodology

In this section, we present the algorithms used in our model and the relevant architecture of

our model. Section 2.3.1 depicts the sparse multi-head self-attention (MHSA) mechanism

used in spatial Transformer encoder module; Section 2.3.2 introduces the novel data format

and the relevant linear multi-head self-attention (MHSA) mechanism for temporal

Transformer encoder; Section 2.3.3 shows the overall framework of our model and related

auxiliary modules.

2.3.1 Spatial domain: Sparse MHSA

The crucial component of our spatial transformer encoder is the sparse multi-head self-

attention module. GCN-based models and previous Transformer models, such as ST-GCN

and ST-TR, utilize dense skeleton representation to aggregate the features of neighboring
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Figure 2.2: Illustration of our Sparse attention module: Given the queries Q and the keys

K of the skeleton embedding, feature vectors of joint i and j are correlated with attention

weight αi,j The solid black line on the skeleton represents the physical connection of human

skeleton. The dashed line connecting two joints represents the artificial attention of joints.

nodes. This dense adjacency matrix representation contains 625 entries for the NTU dataset,

while the actual number of joint connections representing the skeletons is only 24. It means

that 96% of the matrix multiplications are unnecessary calculations for zero entries. So we

propose a sparse attention mechanism, which only performs matrix multiplications on the

sparse node connections. This allows each joint to only aggregate the information from its

neighboring joints based on the attention coefficients, which are dynamically assigned to the

corresponding connections.

The joint connections are based on the topology of skeleton, which is a tree structure.

The attentions inherited from this topology are seen as physical attention (or real attention),

as illustrated in Figure 2.2. To augment the attending field, we also artificially add more links
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between joints according to the logical relations of body parts, and we call these artificially

created attentions as artificial attention, as the dashed yellow arrows shown in Figure 2.2.

For simplicity, suppose that the skeleton adjacency matrix is A, then the artificial links for

additional spatial attention are obtained through A2 and A3. Hence, in our model, the spatial

attention maps are evaluated based on the topology representation of A+ A2 + A3.

The sparse attention is calculated according to the connectivity between joints. As

described in below equations: after the embedding in Equation 2.1, the joint-to-joint attention

between a pair of connected joints is computed first by an exponential score of the dot product

of the feature vectors of these two joints (Equation 2.2), then the score is normalized by the

sum of exponential scores of all neighboring joints as described in Equation 2.3.

Q = XWq, K = XWk, V = XWv (2.1)

αi,j =
〈qi, kj〉∑

n∈N(i) 〈qi, kn〉
(2.2)

v′i =
∑
j∈N(i)

αi,jvj, or V ′ = AV (2.3)

where Q, K, and V are queries, keys, and values in Transformer’s terminology, respectively;

and qi = Q(i), kj = K(j), vj = V (j), and 〈q, k〉 = exp
(
qT k√
d

)
. Finally, we obtain attention

maps A as multi-dimension (multi-head) sparse matrices sharing the identical topology

described by a single adjacency matrix (including links for the artificial attention), where

attention coefficients are A(i, j) = αi,j. The sparse operation can be fulfilled with tensor

gathering and scattering operations for parallelism.

2.3.2 Temporal domain: Segmented Linear MHSA

The most apparent drawbacks in the previous approaches [180, 142] are utilizing (1) the

fixed number of frames for each video clip and (2) zero-filling for the non-existing second

person. The first drawback constrains their scalability to process video clips longer than the

predefined length and their flexibility on a shorter video clip. The second drawback due to
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batch size =  

concatenate into one tensor 

remove zero frames and remove zero-valued person

batch indices

frames

Figure 2.3: Illustration of our data format used in our framework: Previous works used the

upper data format, which has fixed-sized time and person dimensions. Our work adopts new

data format on the bottom, which has combined batch, person, and time dimensions into a

single variable length sequence.

the zero’s participation in computation causes latency degradation. Moreover, a significant

amount of memory space is allocated to those zero-valued data during the computation. So

we propose a compact data format to bypass these drawbacks. Also, we propose Segmented

Linear MHSA to process our compact data format.

2.3.2.1 Variable Frame Length Data Format

The Figure 2.3 shows the comparison between our data format and the format used by

previous works. In the data format adopted by previous works, longer videos are cut off to

the predefined length and shorter videos are padded with repeated frames. Furthermore,

the frames with a single person are all zero-padded to match the fixed number of persons.

The upper data format from Figure2.3 illustrates the NTU RGB+D data format used by

previous works. In each fixed-length video V (i), P
(i)
1 and P

(i)
2 represent two persons. In NTU

RGB+D 120 dataset, only 26 out of 120 actions are mutual actions, which means that the
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(a) standard attention (b) linearized attention (c) segmented linear attention

Figure 2.4: Illustration of Different Attention Operations: (a) Standard attention is obtained

from Softmax(QKT )V with a complexity of O(n2). (b) Linearized attention φ(Q)(φ(KT )V )

with kernel function φ(·) reduces the complexity to O(n), (c) we extend the linearized

attention (b) to process segments of sequences.

second person’s skeleton is just zeros (P
(i)
2 = 0 in Figure 2.3) in most data samples. In

contrast to the previous data format, the proposed format maintains the original length of

each video clip. Additionally, when a video clip contains two persons, we concatenate them

along the frame dimension. Instead of keeping an individual dimension for a batch of video

clips, we further concatenate the video clips in a batch along the frame dimension, and the

auxiliary vector stores the batch indices to indicate to which video clip a frame belongs, as

shown in the bottom data format of Figure 2.3. Moreover, given the new dimensions (N , V ,

C) as shown in Figure 2.3, where N is the total number of frames after concatenating the

video clips along the temporal dimension and V is the number of skeleton’s joints, we regard

dimension N as the logical batch size for spatial attention and dimension V as the logical

batch size for temporal attention.

2.3.2.2 Segmented Linear Attention

With the new data format introduced in the previous section, we propose a novel linear

multi-head attention tailored for this data format. We call it a Segmented Linear Attention.
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Figure 2.5: Segmented Attention: directly applying the linearized attention to our new data

format will calculate unexpected attention between the two irrelevant video clips, which is

error-prone. Therefore, we use segmented attention corresponding to each video sequence.

As stated in the previous sections, Transformers are originally designed for sequential data.

In the human skeleton sequence, each joint’s dynamic movement across the frames can be

regarded as a time series. Therefore, the 3D coordinates, i.e., (x, y, z), of every joint can be

processed individually through the trajectory along the time dimension, and the application

of attention extracts the interaction among time steps represented by frames.

Linear Attention. Standard dot product attention mechanism [155] (Equation 2.4)

with the global receptive field of N inputs are prohibitively slow due to the quadratic time

and memory complexity O(N2). The quadratic complexity also makes Transformers hard

to train and limits the context. Recent research toward the linearized attention mechanism

derives the approximation of the Softmax -based attention. The most appealing ones are

linear Transformers [88, 29, 139] based on kernel functions approximating the Softmax. The

linearized Transformers can improve inference speeds up to three orders of magnitude without

much loss in predictive performance [153]. Given the projected embeddings Q, K, and V

for input tensors of queries, keys, and values, respectively, according to the observation
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from the accumulated value V ′i ∈ Rd for the query Qi ∈ Rd in position i, d is the channel

dimension, the linearized attention can be transformed from Equation 2.4 to Equation 2.5,

the computational complexity is reduced to O(Nd), when d is much smaller than N , the

computational complexity is approaching linear O(N):

V ′i =

∑N
j=1 〈Qi, Kj〉Vj∑N
j=1 〈Qi, Ki〉

(2.4)

V ′i =
φ(Qi)

T
∑N

j=1 φ(Kj)V
T
j

φ(Qi)T
∑N

j=1 φ(Kj)
=
φ(Qi)

TU

φ(Qi)TZ

U =
N∑
j=1

φ(Kj)V
T
j , Z =

N∑
j=1

φ(Kj)

(2.5)

where φ(·) is the kernel function. In work of [88], kernel function is simply simulated with

ELU, φ(x) = elu(x) + 1; while [29] introduces the Fast Attention via Orthogonal Random

Feature (FAVOR) maps as the kernel function, φ(x) = c√
M
f(Wx + b)T , where c > 0 is a

constant, and W ∈ RM×d is a Gaussian random feature matrix, and M is the dimensionality

of this matrix that controls the number of random features.
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Figure 2.6: Illustration of the overall pipeline of our approach (STAR)

Segmented Linear Attention. Since we concatenate the various length of video clips

within a single batch along the time dimension, directly applying linear attention will cause

the cross clip attention, leading to irrelevant information taken into account from one video
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clip to another, as shown in Figure 2.5. Therefore, we consider the frames of a video clip

arranged as a segment, and then we design the segmented linear attention by reformulating

Equation 2.5 with segment index. Therefore, for each Vi in segment Sm, we summarize

V ′i∈Sm =
φ(Qi∈Sm)T

∑
j∈Sm φ(Kj)V

T
j

φ(Qi∈Sm)T
∑

j∈Sm φ(Kj)

=
φ(Qi∈Sm)TUSm

φ(Qi∈Sm)TZSm

USm =
∑
j∈Sm

φ(Kj)V
T
j , ZSm =

∑
j∈Sm

φ(Kj)

(2.6)

where Sm is the m-th segment, and the reduction operation
∑

j∈Sm f(x) can be easily

implemented through the indexation to segments; and with help of the gathering and scattering

operations [47], the segmented linear attention maintains the highly-paralleled computation.

Figure 2.4 illustrates the comparison of different attention operations.

2.3.3 STAR Framework

In this work, we propose the Sparse-Transformer Action Recognition (STAR) framework.

Figure 2.6 (c) shows the overview of our STAR framework. The STAR framework is built

upon several Spatial-Temporal Transformer blocks (ST-block) followed by context-aware

attention and MLP head for classification. Each ST-block comprises two pipelines: the spatial

Transformer encoder and the temporal Transformer encoder. Each Transformer encoder

consists of several key components, including the multi-head self-attention (MHSA),

skip connection (AND & Norm part in Figure 2.6 (c)), and feed-forward network . The

spatial Transformer encoder utilizes sparse attention to capture the topological correlation of

connected joints for each frame. The temporal Transformer encoder utilizes the segmented

linear attention to capture the correlation of joints along the time dimension. The output sum

from the two encoder layers is fed to the context-aware attention module to perform weighted

summarization on the sequence of frames. Positional encoding is also utilized before ST-block

to provide the context of ordering on the input sequence. Below is a brief introduction to
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each of them.

2.3.3.1 Context-aware attention

A batch of video clips with variable length of frames

 is the context-aware attention 
of -th frame of -th video clip 

Figure 2.7: The context-aware attention is utilized to summarize each video clip.

In previous works [180, 142], before connecting to the final fully-connected layer for

classification, summarizing the video clip embedding along the temporal dimension is imple-

mented by global average pooling. Alternatively, we utilize a probabilistic approach through

context-aware attention, which is extended from the work of [13], to enhance this step’s

robustness, as demonstrated in Figure 2.7. Denote an input tensor embedding of video clip

Sm as V ∈ RF×N×D, for F is the number of frames in video clip Sm, N is the number of

joints of skeleton, and each joint possessing D features, where vi ∈ RN×D is the embedding

of frame i of V . First, a global context c ∈ RN×D is computed, which is a simple average

of embedding of frames followed by a nonlinear transformation: c = tanh
(

1
F
W
∑F

i∈Sm
vi

)
,

where W ∈ RD×D is a learnable weight matrix. The context c provides the global structural

and feature information of the video clip that is adaptive to the similarity between frames in

video clip Sm, via learning the weight matrix. Based on c, we can compute one attention

weight for each frame. For frame i, to make its attention an aware of the global context,

we take the inner product between c and its embedding. The intuition is that, frames
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similar to the global context should receive higher attention weights. A sigmoid function

σ(x) = 1
1+exp(−x)

is applied to the result to ensure the attention weights is in the range (0, 1).

Finally, the video clip embedding v′ ∈ RN×D is the weighted sum of video clip embeddings,

v′ =
∑F

i∈Sm
aivi. The following equations summarize the proposed context-aware attentive

mechanism:

c = tanh

(
1

N
W

F∑
j∈Sm

vj

)
= tanh

(
1

F

(
V T · 1

)
W

)

v′ =
F∑

i∈Sm

σ

(
vTi

[
tanh

(
1

F
W

F∑
j∈Sm

vj

)])
vi

=
F∑

i∈Sm

σ
(
vTi c
)
vi = [σ(V c)]T V

(2.7)

2.3.3.2 Positional Encoding

As the attention mechanism is order-agnostic to the permutation in the input sequence [155,

154] and treats the input as an unordered bag of element. Therefore, an extra positional

embedding is necessary to maintain the data order, i.e., time-series data are in the inherently

sequential ordering. Then these positional embedding are participating the evaluation of the

attention weight and value between token i and j in the input sequence.

Segmented Sequential Positional Encoding However, as we arrange the variable-

length video clips into a batch along the temporal dimension, it is not feasible to directly apply

positional encoding to the whole batch. Therefore, we introduce the segmented positional

encoding where each video clip gets its positional encoding according to batch indices. An

example of such encoding is shown in Figure 2.8.

Structural Positional Encoding. we also attempt to apply the structural positional

encoding, e.g., tree-based positional encoding [143, 116], to the spatial dimension, i.e., the

tree topology of skeleton. Experiments show that the current approach which we used cannot

improve our model’s performance significantly. Hence, to reduce our model’s complexity, we
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decide not to apply the structural positional encoding for this work and leave it for future

research.

0 20 40 60 80
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Figure 2.8: Illustration of Segmented Positional Encoding for a batch of 4 video clips. x-axis

represents the number of frames and y-axis represents the feature dimension.

NTU-60 NTU-120

Method X-subject X-view X-subject X-setup

ST-GCN 81.5 88.3 72.4 71.3

ST-TR 88.7 95.6 81.9. 84.1

STAR-64 (ours) 81.9 88.9 75.4 78.1

STAR-128 (ours) 83.4 89.0 78.3 80.2

Table 2.1: Comparison of models’ accuracy on NTU RGB+D 60 and 120 datasets

Model CUDA time (ms) num. of parameters GMACs

ST-GCN 333.89 3.1M 261.49

ST-TR 1593.05 6.73M 197.55

STAR-64 (ours) 86.54 0.42M 15.58

STAR-128 (ours) 191.23 1.26M 73.33

Table 2.2: Comparison of models’ efficiency
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2.4 Experiments

In this section, we conduct experiments and ablation studies to verify the effectiveness

and efficiency of our proposed sparse spatial and segmented linear temporal self-attention

operations. The comparison has been made with ST-GCN [180], the baseline GCN model,

and ST-TR [121], one of the state-of-the-art hybrid model, which have utilized full attention

operation coupled with graph convolutions. The corresponding analysis demonstrates the

potential of our model and the possible room for improvements. ST-TR is a hybrid model,

though the its overall architecture is based on Transformer, the embedding still highly relies on

convolution-based feature extraction mechanism, i.e., 1D convolution for temporal dimension

features, graph/2D convolution for the spatial dimension features. Therefore, convolution still

occupies most of the computational resource in their pipeline. The Transformer structure in

ST-TR is used to enforce the long-distanced feature similarity calculation while convolution-

based feature similarity calculation is captured only in a short range of receptive fields,

especially for long time-series alike data, i.e., a joint of skeleton moving along the sequence of

frames of video.

2.4.1 Datasets

In the experiments, we evaluate our model on two largest scale 3D skeleton-based action

recognition datasets, NTU-RGB+D 60 and 120.

2.4.1.1 NTU RGB+D 60

This dataset contains 56,880 video clips involving 60 human action classes. The samples

are performed by 40 volunteers and captured by three Microsoft Kinect v2 cameras [136].

It contains four modalities, including RGB videos, depth sequences, infrared frames, and

3D skeleton data. Our experiments are only conducted with the 3D skeleton data. The

length of the action samples vary from 32 frames to 300 frames. In each frame, there are at
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most 2 subjects and each subject contains 25 3D joint coordinates. The dataset follows two

evaluation criteria, which are Cross-Subject and Cross-View. In the Cross-View evaluation

(X-View), there are 37,920 training samples captured from camera 2 and 3 and 18,960 test

samples captured from camera 1. In the Cross-Subject evaluation (X-Sub), there are 40,320

training samples from 20 subjects and 26,560 test samples from the rest. We follow the

original two benchmarks and report the Top-1 accuracy as well as the profiling metrics.

2.4.1.2 NTU RGB+D 120

The dataset [108] extends from NTU RGB+D 60 and is currently the largest dataset with

3D joint annotations. It contains 57,600 new skeleton sequences representing 60 new actions,

a total of 114,480 videos involving 120 classes of 106 subjects captured from 32 different

camera setups. The dataset follows two criteria, which are Cross-Subject and Cross-Setup.

In the Cross-Subject evaluation, similar to the previous dataset, splits subjects in half to

training and testing dataset. In the Cross-Setup evaluation, the samples are divided by the

32 camera setup IDs, where the even setup IDs are for training and the odd setup IDs for

testing. Similar to the previous dataset, there is no preprocessing to set the uniform video

length for all the samples. We follow the two criteria and report the Top-1 accuracy and the

profiling metrics.

Unlike GCN-based models, where the length of all the samples and the number of subjects

need to be fixed (e.g. 300 frames and 2 subjects), our model can process varying length of

input samples and of the number of subjects. So no further preprocessing with padding is

done on the samples.

2.4.2 Configuration of experiments

Implementation details. As the original Transformer framework [155] employs the unified

model size d for every layer, we follow the same notion and keep the hidden channel size
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uniform across the attention heads and the feedforward networks. We run the experiments

with two different hidden channel sizes, 64 and 128 for our Transformer encoders (STAR-64

and STAR-128), respectively. The hidden channel size of the MLP head is also proportional

to that of the attention heads. Our model consists of 5 layers, each layer comprises one spatial

encoder and one temporal encoder in parallel and the output sum from the two encoders

is fed to the next layer. Drop rates are set to 0.5 for every module. We also replace the

ReLU non-linear activation funciton with SiLU (or Swish) [45, 126] to increase the stability

of gradients in back-propagation phase (GELU or SELU also bring similar effect). Our model

is implemented with the deep learning framework PyTorch [119] and its extension PyTorch

Geometric [51]. The scattering/gathering operations and sparse matrix multiplications are

based on PyTorch Scatter [47] and PyTorch Sparse [48], respectively.

MACs Parameters Latency

ST-GCN

Conv2d : 260.4 GMACs

BatchNorm2d : 737.3 MMACs

ReLU : 184.3 MMACs

Conv2d : 3.06M

BatchNorm2d : 6.4K

Linear : 15.4K

Conv2d : 149.92ms

BatchNorm2d : 19.92ms

ReLU : 4.49ms

ST-TR

Conv2d : 810.57 GMACs

MatMul : 161.1 GMACs

BatchNorm2d : 138.4 MMACs

Conv2d : 2.7M

BatchNorm2d : 10.5K

Linear : 30.8K

Conv2d : 692.39ms

MatMul : 161.38ms

BatchNorm2d : 38.97ms

STAR-64

MatMul(attention): 24.4 GMACs

Mul(sparse): 12.3 GMACs

Linear: 6.2 GMACs

Linear:83.2K

LayerNorm: 1.3K

MatMul: 25.27ms

Mul: 12.81ms

Linear:6.53ms

Table 2.3: The breakdown analysis and top-3 components in each metrics

Training setting. The maximum number of training epochs is set to 100. We used the

Adam optimizer [92] with β1 = 0.9, β2 = 0.98 and ε = 10−9. Following the setting of the

original Transformer paper [155], the learning rate is adjusted throughout the training:

lrate = d−0.5 ·min(t−0.5, t · w−1.5) (2.8)
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where d is the model dimension, s is step number, and w is the warmup steps. According to

the equation 2.8, the learning rate linearly increases for the first w training steps and then

decreases proportionally to the inverse square root of the step number. We keep the original

settings for the baseline models in their papers [180, 121], and use their codes provided online.

All our training experiments are performed on a system with two GTX TITAN X GPUs and

a system with one TITAN RTX GPU, while the inferences are executed on a single GPU.

2.4.3 Results and Analysis

We evaluate the accuracy and the efficiency of the baseline GCN model (ST-GCN), our

model (STAR) and the hybrid model (ST-TR), which utilize both transformer and GCN

frameworks.

2.4.3.1 Accuracy

We first evaluate the effectiveness of our Transformer encoder based model compared to

ST-TR and ST-GCN models. Each model’s accuracy is evaluated with the NTU RGB+D 60

and 120 testing datasets. As shown in the Table 2.1, our model outperforms ST-GCN in both

cross-view (cross-set) and cross-subject benchmarks of the two dataset. Our model achieves

3.6 ∼ 7.7 percent lower accuracy compared to ST-TR, which heavily relies on convolution-

based key components inherited from ST-GCN and utilizes them in both spatial and temporal

pipelines. Our model yields modest performance compared to the state-of-the-art models

in NTU RGB+D 60 and 120 when trained from scratch. The Figure 2.12 shows that there

exists a performance gap between the training and testing. Transformer architectures’ lack

of inductive biases, especially translation equivariance and locality that are essential to

convolution networks, could result in weak generalization. In NLP, Transformers are usually

pretrained on a large corpus of text and fine-tuned on a smaller task-specific dataset to

boost the performance. We would like to conduct extensive experiments on pre-training and
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fine-tuning our model on a larger dataset in the future to improve the accuracy comparable

to those of the state-of-the-art models. For our future study, we want to address effective

generalization methods for Transformer models, which resolves overfitting issues and improve

the overall performance.

2.4.3.2 Efficiency

In this section, we evaluate the efficiency of the different models. As shown in Table 2.2,

our model (STAR) is significantly efficient in terms of model size, the number of multiply-

accumulate operations (GMACs) and the latency. Each metric for the different models is

evaluated by running inference with sample dataset. Our model is fed with the original

skeleton sequence of varying length. The other two models are fed with fix-sized skeleton

sequence padded to 300 frames and 2 persons. We use the official profiler of PyTorch (v1.8.1)

[119], and Flops-Profiler of DeepSpeed [127] to measure the benchmarks. The results are

summarized with the following metrics:

0 5 10 15 20 25

ST-GCN

ST-TR

STAR

Conv2d:260400.0 BatchNorm2d:737.0 ReLU:184.0

Conv2d:81570.0 BatchNorm2d:38.4 ReLU:19.2

Linear:6200.0 SiLU:22.0

MACs breakdown for top-3 modules (bar length taken log(KMACs))

Figure 2.9: The breakdown of MACs for top-3 modules

0 2 4 6 8 10 12

ST-GCN

ST-TR

STAR

Conv2d:3060.0 BatchNorm2d:6.4 Linear:15.4

Conv2d:7000.0 BatchNorm2d:1.5 Linear:30.8

Linear:83.2 LayerNorm:1.3

# of parameters breakdown for top-3 modules (bar length taken log(K))

Figure 2.10: The breakdown of # parameters for top-3 modules

MACs. The number of Multiply-Accumulate (MAC) operations is used to determine

the efficiency of deep learning models. Each MAC operation is counted as two floating point

operations. With the same hardware configuration, more efficient models require fewer MACs
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0 2 4 6 8 10 12 14 16

ST-GCN

ST-TR

STAR

Conv2d:149.9 BatchNorm2d:19.9 ReLU:4.5

Conv2d:692.4 BatchNorm2d:39.0 MatMul:161.4

Linear:6.5 Mul:12.8 MatMul:25.3

latency breakdown for top-3 modules (bar length taken log(us))

Figure 2.11: The breakdown of latency for top-3 modules

than other models to fulfill the same task. As shown in Table 2.2, both of our model with

different channel sizes execute only 1
3
∼ 1

17
amount of GMACs (i.e., Giga MACs) compared

to ST-GCN and ST-TR models, respectively.

Model size. Model size is another metric to measure the efficiency of a machine learning

model. Given the same task, smaller model delivering the same or very close performance

is preferable. Smaller model is not only beneficial for the higher speedup and less memory

accesses but also gives better energy consumption, especially for embedded systems and

edge devices with scarce computational resources and small storage volume. The column of

the number of parameters in Table 2.2 depicts the size of the models, these parameters are

trainable weights in the model. Among all the model, STAR possesses the smallest model

size, 0.42M and 1.26M for STAT-64 and STAR-128, respectively.
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Figure 2.12: The training and testing curve for STAR-64(left) and STAR-128(right) on

NTU-RGB+D 60 X-subject benchmark.

Breakdown analysis. The breakdown analysis is used to identify potential bottlenecks

within different models (STAR-64, ST-TR, and ST-GCN). Table 2.3 provides the detailed

profiling results for the top-3 computation modules that are dominant in each models.
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According to Figure 2.9, 2.10 and 2.11, the convolution operations cost significant number of

MAC operations and lead to computation bound. ST-GCN and ST-TR mainly consist of

the convolution operations followed by batch normalization, which requires relatively large

computational resources. Our Transformer model is based on sparse and linear attention

mechanisms. It only produces relatively small attention weights from sparse attention; and

performs low-rank matrix multiplication for linear attention (O(n)). This replaces huge

dynamic weights of attention coefficients from the standard attention mechanism, which has

a quadratic time and space complexity (O(n2)).

2.4.4 Ablation Study

In this section, we evaluate the effectiveness and efficiency of our sparse self-attention operation

in spatial encoder compared to the standard transformer encoder with full-attention operation.

Table 2.4 and Table 2.5 show that our model with sparse self-attention operation achieves

higher accuracy on both X-subject and X-view benchmarks and use significantly less number

of GMACs and runtime. This shows that additional correlations of distant joints calculated

by full attention do not improve the performance but rather contribute noise to the prediction.

To handle such issue, learnable masks, consistent with adjacency matrix of skeleton, can be

integrated to the full attention calculation to avoid accuracy degradation. But it requires

extra computation involving learnable masks.

NTU-60 NTU-120

Method X-subject X-view X-subject X-setup

STAR (sparse) 83.4 84.2 78.3 78.5

STAR (full) 80.7 81.9 77.4 77.7

Table 2.4: Classification accuracy comparison between Sparse attention and Full attention on

the NTU RGB+D 60 Skeleton dataset.
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Model CUDA time (ms) GMACs

STAR-sparse 105.7 15.58

STAR-full 254.7 73.33

Table 2.5: Efficiency comparison between Sparse attention and Full attention on the NTU

RGB+D 60 Skeleton dataset.

2.5 Conclusion

In this work, we propose an efficient Transformer-based model with sparse attention and

segmented linear attention mechanisms applied on spatial and temporal dimensions of

action skeleton sequence. We demonstrate that our model can replace graph convolution

operations with the self-attention operations and yield the modest performance, while

requiring significantly less computational and memory resources. We also designed compact

data representation which is much smaller than fixed-size and zero padded data representation

utilized by previous models. This work was supported in part by Semiconductor Research

Corporation (SRC).
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CHAPTER 3

Deep Graph Similarity through Linear Attention and

Heat Kernel

This chapter presents the graph matching algorithm with deep learning solution, as shown

in Figure 3.1. Graph matching, though with a high complexity as an NP-hard problem, is

essential in many fields. The conventional approaches are often time-consuming and lacking

enough parallelism. The model proposed consists of the graph neural networks for extract

graph nodes’ hidden features (or embedding) and a graph similarity measurement module.

The key to such a problem lies in whether the two graphs’ topology is consistent. With the

help of graph diffusion, which uses the heat kernel to construct graph wavelets, we can sketch

the energy diffusion map on graphs. An energy diffusion map is an effective way to depict

the topology of graphs by assessing the energy flowing from one node to another node along

the path between them. Therefore, we integrate the energy diffusion map into the graph

matching problem and translate such kind of problem into an energy diffusion comparison

problem.

3.1 Introduction

Graph similarity learning (or matching) solves the problem of finding structural correspon-

dences between graphs using node and edge features. Since graphs excel at representing

connectivity and structural information, graph matching has been extensively studied in social

network analysis [72], fake review spammer detection[131], body keypoint identification[195],
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Figure 3.1: The position of this chapter in the platform

image matching in computer vision [186, 167, 55] and matching molecular structures of

proteins in bioinformatics [56].

Conventionally, graph matching is formulated as a learning problem, exploiting several

metrics for measuring the structural distance between graphs , including Graph Edit Distance

(GED) [17] and Maximum Common Subgraph (MCS ) [18], to evaluate the similarity (or

distance) between graphs. However, computing the pairwise graph-graph GED or MCS score

is known to be NP-Hard [188].

This work proposes a Transformer-based Graph Similarity (TRGSim) model combining

the heat kernel based graph convolution, which models the probability distributions of energy

diffusion according to the graph’s topology, and efficient Transformer architecture adopting

linear cross attention mechanism, which implicitly evaluates the similarity matrices between

two graphs in attention module. The contributions of this work are summarized as:

1. We propose a scalable, ultra-lightweight, and computational efficient model - TRGSim

- for learning graph structural similarity through integration of heat kernel and linear

cross attention.
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2. We mathematically reformulate the graph matching from a high-dimensional quadratic

assignment problem to a tractable low-dimension problem.

3. We conduct extensive experiments to verify the effectiveness and efficiency of the

proposed model, and show the superior matching performance and scalability.

3.2 Related Works

Graph Neural Networks and Transformers There have been various node and graph

embedding methods proposed over the years [132, 68, 15, 16, 104] and these graph neural

networks have proven useful in a wide range of applications [61, 16, 130, 168, 23]. Generalized

CNN architectures with their message-passing scheme in local neighboring nodes especially

have gained much attention [61, 16]. A separate line of works [158, 168] introduced graph

neural networks with self-attention mechanism [156] to capture long-range dependencies.

These works have shown impressive progress on supervised prediction problems in computer

vision and graphical models. However, applying neural networks with self-attention mechanism

on relational and symbolic domain remain largely unexplored.

Graph Matching There has been ongoing research on relational and symbolic domain

especially on graph matching problem [186, 194]. GraphSim [12] learns graph-level similarity

patterns by directly using node-level embeddings via pairwise node-node similarity scores.

Graph Matching Network (GMN) [105], based on Message Passing Network [61], learns

inter-graph information via a cross-graph attention mechanism. These approaches either

calculate graph-level similarity scores [105, 14], focus merely on local characteristics of

graph nodes, or do not generalize to new instances [167, 39]. Generally, local topological

properties of nodes (e.g., node degrees, number of k-cliques) are mainly used to compute node

similarities. Graph-level topological properties, which are essential to recovering structurally

similar nodes, are typically overlooked. Thus, existing approaches usually yield consistent

node alignment results, but fail to align edges and are subject to small perturbations in
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the graph topology. We argue that instead of localized structures, the topology encodes

macro-structural information that is fundamental in determining cross-graph discrepancies,

and thus, their GED and MCS. It is because, especially in graph signal processing, the

diffusion of energy is determined by the graph-level topology.

3.3 Preliminaries
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Figure 3.2: (a) The GED between the two graphs is 3, as the transformation requires 2 edge

deletions, 1 edge insertion. (b) the MCS is measured as counting the number of nodes with

same indecencies

Let G = (V,A,X) be a graph possessing a set of n vertices V = {v1, v2, · · · , vn}, and a

node feature matrix X ∈ R|V |×|F |, |F | is the dimension of the feature vector. The adjacency

matrix A = {Ai,j = 1 : edge (i, j) exists} is obtained from connectivity of graph G.

The degree matrix D is given by Di,i =
∑

j Ai,j; the normalized Laplacian matrix is

calculated by L = I −D− 1
2AD−

1
2 .

Graph matching (or similarity) problem indicates finding the vertex and edge corre-

spondences between two graphs. Given a source graph Gs = (Vs, As, Xs) and a target graph

Gt = (Vt, At, Xt), it aims to find a similarity matrix S = {Si,i′ = 0 or 1 : i ∈ Vs and i′ ∈ Vt}

representing the pairwise vertex correspondence between Vs and Vt. The mathematical

description of graph matching [62, 65, 26, 55] is given as

arg max
S

∑
i∈Vs

∑
j∈Vs

∑
i′∈Vt

∑
j′∈Vt

Si,i′A
(s)
i,jA

(t)
i′,j′Sj,j′ (3.1)
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which is categorized as a Quadratic Assignment Problem (QAP).

If the perfect matching has been found between vertices i ∈ Vs and i′ ∈ Vt, also j ∈ Vs

and j′ ∈ Vt, then it corresponds to Si,i′ = 1 and Sj,j′ = 1.

The complexity of searching for an exact solution arises in a high-dimensional space.

3.3.1 Metrics used in General Graph Similarity

Graph Edit Distance (GED) [17] is a metric of the dissimilarity between two graphs Gs

and Gt, which measures the minimal number of edit operations to transform one graph into

another. An edit operation is either an insertion or a deletion of a node or edge, or the

relabeling of a node. Figure 3.2(a) demonstrates a concrete example.

The two graphs Gs and Gt considered to apply with such measures often have similar sizes.

Maximum Common Subgraph (MCS ) [18] is another generalized metric, defined as

the largest induced graph of a graph pair that contains the maximum number of vertices. For

two graphs Gs and Gt, their pairwise similarity scores is evaluated as the number of nodes in

their MCS, as shown in Figure 3.2(b).

3.3.2 Graph Fourier Transform and Graph Convolutional Networks

A Graph Convolutional Network (GCN) model consists of a stack of graph convolution layers.

The graph Fourier transform is defined as x̂ = UTx on node signal x ∈ Rn of a graph G, its

inverse is x = Ux̂, where U = [u1, u2, · · · , un] is a complete set of orthonormal eignvectors of

L = UΛUT and Λ = diag({λl}nl=1) for λ1 ≤ λ2 ≤ · · ·λn. Performing graph Fourier transform

on both graph signal x in spatial domain and its filter f(·), the graph convolution operator

∗G becomes x ∗G f = U
((
UTf

)
�
(
UTx

))
= UgθU

Tx,

where � is the element-wise Hadamard product, and gθ = diag({θi}ni=1) . ChebyNet [35]

proposes a polynomial expansion of parameterized gθ =
∑K−1

k=0 αkΛ
k, which builds the graph

convolution layer as:
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y = UgθU
Tx = U

(
K−1∑
k=0

αkΛ
k

)
UTx = (α0I + α1L+ · · ·+ αK−1L

K−1)x (3.2)

GCN [96] simply takes the first two terms of Equation 3.2 by presuming K = 2 and

α = α0 = −α1, and becomes y = UgθU
T ≈ α(I − L)x.

3.3.3 Linearized Attention

Linearized attention [89, 29, 138], which has linear complexity, is the variant of standard

attention of the quadratic complexity. The entry of the attention map A ∈ RL1×L2 is of the

form A(i, j) = SM(Qi, Kj), where SM(·) is a softmax. Assume a kernel function φ(·) is

provided, then with the assistance of this kernel function, the attention evaluation becomes

linearized by low-rank approximation

SM(Q,K)V =
(
φ(Q)φ(KT )

)
V = φ(Q)

(
φ(K)TV

)
(3.3)

3.4 Methodology

In this section, we present TRGSim, an end-to-end, deep graph similarity learning framework

in detail. Section 3.4.1 describes the reformulation of the graph matching problem; section

3.4.2 discusses the design of TRGSim; section 3.4.3 introduces using linear cross attention to

estimate similarity matrix of two graphs; section 3.4.4 delivers the graph convolution with

heat kernel; and finally we conduct complexity analysis in section 3.4.5.

3.4.1 Reformulating Graph Matching

In order to overcome the curse of dimensionality, TRGSim tackles the problem of searching

the similarity matrix from a different angle. Instead of estimating the maximum similarity

by performing high-order loops on Equation (3.1), we first reformulate the GED (similar for
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Figure 3.3: reformulating the estimation of graph similarity.

MCS ) from matrix computation perspective. The evaluation of the GED can be generalized

as

GED ←
∑
i

|Si,i = 0|︸ ︷︷ ︸
number of unmatched nodes

+
∑
i,j

(|A(s)
i,j − Â

(t)
i,j |)︸ ︷︷ ︸

number of unmatched edges

, where Â(t) = SA(t)ST . (3.4)

Assume we have a perfect similarity matrix S with exactly one entry of 1 in each row and

each column, and 0 elsewhere (in such cases, it becomes a permutation matrix). The first

part of Equation (3.4) indicates the number of unmatched nodes (with different labelling) by

counting the number of zero entries along the diagonal of the similarity matrix, Si,i = 0. The

second part of Equation (3.4) infers the number of unmatched edges between graph Gs and

Gt by computing the difference between A(s) and Â(t), where Â(t) = SA(t)ST is both row- and

column-reordered with respect to A(s). If the entries of A(s) and Â(t) at coordinates (i, j) are

not equal, it contributes 1 to the number of unmatched edges. Therefore, by counting the

number of nonzero entries in the residual adjacency matrix |A(s) − Â(t)| as shown in Figure

3.3 (a), we obtain a graph-graph similarity measure. A similar procedure can be applied to

MCS, except that we utilize the element-wise product of A(s) and Â(t). The coordinates (i, j)

of A(s) � Â(t) holds 1 only when a common edge exists between node i and node j in both

graphs, as shown in Figure 3.3(b). Looking back to Equation (3.1), it is an optimization of

the Integer Programming Problem.
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However, with the above analysis, we attain a lower-dimensional solution space compared

with Equation (3.1) since Equation (3.4) only works on the 2D residual adjacency matrices.

Hence, TRGSim focuses on obtaining a high-quality similarity matrix S, which makes

|A(s) − SA(t)ST | match the optimal value, i.e., the ground truth GED. The trend of the first

term
∑

i|Si,i = 0| in Equation (3.4) is consistent with that of the second term since they are

controlled by the same S.We further transform the Equation 3.4 by multiplying S at the

right hand side, we get

GED ∝ |A(s) − SA(t)ST |S = |A(s)S − SA(t)| (3.5)

3.4.2 The TRGSim model
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Figure 3.4: An overview of our proposed architecture TRGSim. Our model comprises four

stages: 1) the graph convolution layers learning graph node encoding through the heat kernel

φ(·); 2) the Transformer encoder computes embedded similarity matrix through linear cross

attention;3) average pooling used to summarize the graph embeddings ; 4) the final MLP

evaluates the similarity scores.

Figure 3.4 illustrates the overall architecture of our model. The model approximates

|A(s)S−SA(t)|, which is proportional to the ground truth GED. The GCN layer accompanying

the heat kernel gθ(x) = e−sL, which portrays the graph topology, computes the graph node

embedding, where normalized Laplacian L is derived from adjacency matrices A. The node

embedding from the previous stage also emulates the kernel function φ(·) utilized by the

linear cross attention of the Transformer encoder. Linear cross attention in Transformer
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encoder embeds the computation of similarity matrix S into kernel function. The average

pooling layer is employed for graph-level embedding, and the final multi-layer perceptron

(MLP) layer evaluates the mean square error (MSE) loss.

3.4.3 Linearized Cross Attention as Similarity Matrix

attention map

softmax
+

softmax 

+

(a) cross attention (a) linearized cross attention

residual residual

Figure 3.5: Linear cross attention evaluates similarity matrix

Suppose the encoding of graph nodes x ∈ Gs and y ∈ Gt of two different graphs in

terminology of Transformer: Qi = Wqy,Kj = Wkx, Vj = Wvx. The similarity matrix S of the

two graphs can be estimated through the cross attention of the two graphs’ encoding. We

derive the kernel function of linear cross attention. Without considering the normalization

factor, the main operation of softmax is through exp(Qi, Kj). Furthermore, by introducing a

random feature map ω with a normal distribution P (ω − c) = (2π)−d/2exp (−‖ω − c‖2/2),

we evaluate an auxiliary term exp
(
‖Qi+Kj‖2

2

)
,

exp

(
‖Qi +Kj‖2

2

)
= exp

(
‖Qi +Kj‖2

2

)∫
P (!− (Qi +Kj)) d!

=

∫
P (!) exp

(
ωT (Qi +Kj)

)
d!

= Eω∼N (0,1)exp
(
ωT (Qi +Kj)

)
(3.6)

with help of the above Equation 3.6 for exp
(
‖Qi+Kj‖2

2

)
, we further derive
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exp
(
QT
i Kj

)
= exp

(
‖Qi +Kj‖2

2

)
exp

(
−‖Qi‖2

2

)
exp

(
−‖Kj‖2

2

)
= Eω∼N (0,1)exp

(
ωTQi −

‖Q2
i ‖

2

)
exp

(
ωTKj −

‖K2
j ‖

2

)
≈

N−1∑
n=0

(
eω

T
nQi

)(
eω

T
nKi

)
= φ(Qi)

T · φ(Kj)

(3.7)

where φ(Qi) = [eω0Qi , eω1Qi , · · · , eωN−1Qi ]T and φ(Kj) = [eω0Kj , eω1Kj , · · · , eωN−1Kj ]T are

obtained from Monte-Carlo sampling. Taking Λ = diag({ωi}N−1
n=0 ), we finally get φ(Qi) = eΛQi

and φ(Kj) = eΛKj . With the help of Equation 3.7, we further compute the cross attention

representation for the embedding of graph node y in one graph using all nodes’ embedding

of graph node x in another graph to compare the similarity, as expressed in Equation 3.8.

This attention weighed representation is added to the skip connection of its original node

embedding (residual), as shown in Figure 3.5

Q′ = φ (Wqy)
(
φ (Wkx)T (Wvx)

)
; Q

′′
= Q′ +Wqy (3.8)

3.4.4 Graph Heat Kernel imitates Gaussian Kernel

Heat kernel is defined as f(λi) = e−sλi , where s ≥ 0 is a scaling hyper-parameter. Denote

Λs = diag
(
{e−sλi}ni=1

)
. By applying heat kernel, the convolution kernel is now becoming

gθ =
∑K−1

k=0 θk
(
e−skΛs

)
,
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then the graph convolution applied to signal x is derived as

y = UgθU
T = U

(
K−1∑
k=0

θk
(
e−skΛs

))
UTx

=
[
θ0I + θ1

(
e−sλ1u1u

T
1 + · · ·+ e−sλnunu

T
n

)
+ · · ·

+ θK−1

(
e−(K−1)sλ1u1u

T
1 + · · · e−(K−1)sλnunu

T
n

) ]
x

=

θ0I + θ1e
−sL + θ2e

−2sL + · · ·+ θK−1e
−(K−1)sL︸ ︷︷ ︸

negligible terms

x ≈
(
θ0I + θ1e

−skL)x
(3.9)

with the guarantee that eigenvectors {ui}Nn=1 are orthonormal and Laplacian matrix L

is positive definite, we substitute the kernel function φ(x) = eΛx of Equation 3.3 and 3.7

with the first two terms of Equation 3.9: φ(x) =
(
θ0I + θ1e

−skL)x, which is also the graph

convolution operation of our GCN layer in the representation stage.

3.4.5 Analysis of complexity

The computation of node-level embedding stage. This stage comprises of GNN layers

which performs the node-level embedding. Each layer of this stage has the computational

complexity of O(|E|CHF ), where C, H, F are the dimensions of input, hidden, and output,

respectively; |E| is the number of edges. The edges number is normally much larger than

other dimensions, therefore, the computational complexity of this stage is towards O(|E|).

Furthermore, when heat kernel e−sL is applied to the Laplacian matrix L, which is symmetric,

and the exponential operation on edges is element-wise; therefore, the complexity is alsoO(|E|).

The complexity of the linear attention. The matrix multiplication V ′ = φ(K)T · V has

the time complexity of O(Ndr) for K ∈ RN×d and V ∈ RN×r, and the space complexity for

this step is O(Ld+Lr+ rd). The second matrix multiplication V ′′ = φ(Q) ·V ′, for Q ∈ RN×d,

has the time complexity of O(Ndr) and space complexity O(Nd+ rd). Normally, r and d

are much smaller than N , then the complexity of both time and space is approaching O(N).
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3.5 Experiments

3.5.1 Datasets

We use well-established benchmark datasets from literature [14, 11] - AIDS, LINUX, and

IMDBMulti [91], and their statistics are summarized in Table 3.1. The graph nodes in

these datasets are annotated with discrete features. We split the datasets into training,

validation, and testing sets with ratios of 60%, 20%, and 20% . We use Mean Squared Error

(MSE) to measures the average squared difference between the predicted similarities and the

ground-truth similarities. To evaluate the global ranking results, we employ Spearman’s Rank

Correlation Coefficient (ρ) and Kendall’s Rank Correlation Coefficient (τ), both measuring

the discrepancies between the predicted and the actual ranking results. Compared with ρ and

τ , precision at k (p@k) focuses on the top k ranking results, computed as the intersection of

the predicted and ground-truth top k results divided by k.

Dataset Graph Definition graphs pairs

LINUX Program Dependency Graphs 1000 1M

IMDB Actor/Actress Ego-Networks 1500 2.25M

AIDS Chemical Compounds 700 490K

Table 3.1: Statistics of datasets [14]

3.5.2 Baselines and Experiment Configurations

We choose SimGNN [14], GMN [105], and GraphSim [12] as the baseline models, since

TRGSim accomplishes the same tasks in real-world application as these architectures.

SimGNN generates node features using GCN, aggregates node embeddings using an at-

tention mechanism, and learns graph-level embeddings through a Neural Tensor Network.

GMN learns the node embeddings through a message passing mechanism in its GNN layers.

It computes the similarity score between an input graph pair by jointly reasoning on the

pair through a new attention-based matching mechanism. GraphSim utilizes a multi-scale
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convolutional set architecture and it constructs a very deep pipeline with a large amount

of parameters. We implemented TRGSim using PyTorch [118] and an efficient deep graph

learning library PyTorch Geometric Library (PyG) [53] based on PyTorch. The first stage of

model consists of two graph convolution layers with output dimensions of 64, 32 for node

feature embeddings. Two variants of graph convolution layer have been adopted and tested,

including GCN [96] and GIN [178]. Each graph convolution layer yields a two-dimensional

graph feature vector for both Gs and Gt. In the second stage, the cross-graph similarity

matrices are computed as the dot products between feature vectors of Gs and those of Gt.

The last stage comprises a pipeline of two 2D convolution layers and two fully-connected

layers. For all experiments, we fixed the learning rate at 10−3 for the optimizer, and use

ADAM [92] as the optimizer. For both baseline models and our model, we set the batch size

to 128 and the number of training epochs to 10,000.

LINUX AIDS700 IMDBMulti

Model MSE ρ τ p@10 MSE ρ τ p@10 MSE ρ τ p@10

SimGNN 1.459 0.931 0.675 0.713 1.279 0.824 0.575 0.401 1.754 0.861 0.755 0.759

GMN 1.135 0.892 0.669 0.684 2.041 0.708 0.569 0.374 4.636 0.717 0.564 0.604

GraphSim 0.783 0.945 0.724 0.730 1.084 0.833 0.674 0.491 1.531 0.856 0.787 0.782

TRGSim 0.370 0.983 0.892 0.779 1.011 0.857 0.715 0.814 1.594 0.878 0.691 0.804

Table 3.2: Experiment results on GED metric (bold is the best)

LINUX AIDS700 IMDBMulti

Model MSE ρ τ p@10 MSE ρ τ p@10 MSE ρ τ p@10

SimGNN 0.751 0.849 0.779 0.834 3.513 0.790 0.655 0.374 1.315 0.924 0.752 0.681

GMN 0.608 0.893 0.756 0.825 4.785 0.673 0.478 0.591 0.619 0.903 0.657 0.783

GraphSim 0.182 0.929 0.814 0.832 3.143 0.821 0.667 0.505 1.250 0.941 0.791 0.802

TRGSim 0.073 0.953 0.820 0.858 2.947 0.826 0.674 0.610 0.807 0.932 0.773 0.821

Table 3.3: Experiment results on MCS metric (bold is the best)
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LINUX AIDS700 IMDBMulti

Metric MSE ρ τ p@10 MSE ρ τ p@10 MSE ρ τ p@10

GED 0.501 0.987 0.884 0.783 2.412 0.813 0.663 0.875 2.748 0.806 0.720 0.741

MCS 0.245 0.923 0.797 0.604 3.640 0.672 0.537 0.648 1.531 0.765 0.545 0.622

Table 3.4: Experiment results on synthetic data with TRGSim

3.5.3 Results

For both GED and MCS, TRGSim outperforms all baseline models in 10 out of 12 mea-

surements. This demonstrates that TRGSim’s strategy of exploring graph topology through

spectral graph wavelets outweighs the conventional approach of only investigating graphs’

local connectivity. Note that TRGSim has slightly suboptimal results than the baselines on

MSE and τ in IMDBMulti, since these graphs have denser incidence relationships. This is

because TRGSim manipulates wavelet coefficients well with graphs of higher sparsity, which

is due to the selection of the scaling parameter. A small scaling parameter constrains the

ability to diffuse energy of the graph signals to farther nodes. We further observe that more

layers of transformation implies less stability, making the model subject to perturbations. So

we fix the number of convolution layers to 2. In addition, we experimented with synthesized

examples to verify the feasibility of our model. We generate these synthetic graphs with a

certain noise rate. These experiments simulate the real-world environment of deployment

of TRGSim. The results are shown in Table 3.4 and it shows that TRGSim keeps a stable

performance in various situations.

3.5.4 Computation runtime comparison

We evaluate the performance of speed on different models. We take 78400 graph pairs from

the synthesized LINUX/AIDS700 dataset as samples to perform the matching and then take

the average runtime for the comparison.
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Model time (ms)

SimGNN 8.90 ± 0.36

GraphSim 33.57 ± 0.64

GMN 11.57 ± 0.58

Ours 4.89 ± 0.73

Table 3.5: Comparison of runtime

3.5.5 Ablation Study

We conducted the ablation study of our model and analyze the result in this section. Below

is part of the ablation experiment with GIN alternative. GCN used in our model has less

parameters and competitive performance with GIN. Both GNN alternatives used in our model

achieve very similar results, this demonstrates that the performance is viable with node-level

embedding. The performance with GIN alternative in Table 3.6 shows the robustness of our

model with different dataset.

LINUX AIDS700

Metric MSE ρ τ p@10 MSE ρ τ p@10

GED 0.425 0.980 0.886 0.775 3.311 0.888 0.621 0.798

MCS 0.073 0.952 0.818 0.331 5.946 0.645 0.473 0.109

Table 3.6: Ablation study with replacing GCN [96] by GIN [178]

3.5.6 Graph Signal Diffusion Analysis

In this work, we also conduct the analysis of the heat diffusion on graphs, which is a good

measure to display the graph topology involving the energy dissipation among connected

nodes. The experiment first picks a pair of corresponding nodes from each of the two graphs,

then a pulse signal δ(vi) is propagated from each graph node vi separately. Figure 3.6 gives a

concrete illustration of how energy diffuses on the two graph pairs as probability distribution
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a	=	1 a	=	4 a	=	7

a	=	1 a	=	4 a	=	7

(b)	The	GED	is	5	between	 	(top)	and	 	(bottom);	

a	=	1 a	=	4 a	=	7

a	=	1 a	=	4 a	=	7

(a)	The	GED	is	3	between	 	(top)	and	 	(bottom);	

Figure 3.6: Heat diffusion as probability distribution (with heat kernel e−aλ) of energy

diffusion on graph pairs from (a) LINUX dataset and (b) IMDBMulti dataset

(with heat kernel e−aλ). The graph pairs are taken from Linux and IMDBMulti datasets, as

shown in Figure 3.6(a) and (b), respectively. The spectral graph wavelets are calculated and

plotted with the assistance of the graph signal processing library PyGSP [37]. The diffusion

of heat is able to delineate the graph topology. In Figure 3.6, the yellow nodes represent the

source nodes of energy, and the brightness of the node depicts the amount of energy received

from the source. The scaling factor a sets up how far the energy will dissipate. In each

pair of graphs, the yellow coloring nodes are also the nodes with highest similarity between

two graphs, so that we can see the relationship between the energy diffusion and the graph

topology.

3.6 Conclusion

In this work, we proposed a novel approach to graph similarity learning using heat kernel

and linear cross attention. We introduced TRGSim, a novel, light-weighted, three-staged

neural architecture for learning structural embedding and graph similarities in a supervised

fashion. The heat kernel is used to simulate a probability distribution of energy diffusion.
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TRGSim captures the graph’s structural (topological) information by tracking how the heat

diffuses over the network while simple graph convolution does not possess such property. We

treat the cross attention as the similarity between two graphs and the linear cross attention

dramatically reduces both the time and space complexity. Various experiments on both

real-world and synthetic graphs have shown that our model can achieve superior results on

approximating graph similarity scores, i.e. Graph Edit Distance and Maximum Common

Subgraph, over the state-of-the-art graph matching models.
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CHAPTER 4

Transformer-based Machine Learning for Fast SAT

Solvers and Logic Synthesis

This chapter focuses on the design of an AI-based approach for SAT solvers. Due to the

availability of several solvers and benchmarks targeted at logic synthesis for SAT solvers,

logic synthesis is used to elaborate the effectiveness of our work. However, the contribution

directly benefits the constraint solving problems involved in our video analytics pipeline.

The CSP/SAT solver discussed in this chapter is based on a deep learning approach. Con-

straint Satisfaction Problem (CSP) and Boolean Satisfiability Problem (SAT) are ubiquitous

and adopted in many fields. Such kinds of problems are also NP-complete. In decades, people

have conceived many heuristic approaches; however, these algorithms primarily concentrate

on a backtracking mechanism from an analytical approach. These methods do not consider

the overall topological relation between nodes of a bipartite graph constructed by the variables

and clauses. They neither can summarize the hidden features embedded inside the topology

and those derived from nodes’ connectivity. We also propose the concept ”meta-paths” into

our model to derive the correlated feature crossing the link between clauses and variables of

the bipartite graph of SAT instance.

Figure 4.2 depicts a scenario of using canonical normal form and related SAT solver to

process the scene understanding problem [84]. The platform at the left hand side of the

Figure 4.2 constructs the And-Or graph to describe the interactions among objects or their

components, the relationship shows the decomposition, combination, related position, or

even the logic reasoning process. The constructed graph can further be transformed into
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Figure 4.2: The rule-based scene parsing and understanding using can be processed with

canonical normal form and the SAT solver [84]
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canonical normal form, which is widely used in logic reasoning. This form is easily solved

with deliberated solvers.

4.1 Introduction

Logic synthesis is a crucial step in design automation systems where abstract logic is

transformed to physical gate-level implementation. There has been significant improvement

in hardware performance and cost by optimizing logic at the synthesis level. The task to

synthesize and minimize digital circuits is often translated to the Constraint Satisfaction

Problem (CSP). CSP aims at finding a consistent assignment of values to variables such that

all constraints, which are typically defined over a finite domain, are satisfied. The Boolean

Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) solvers have been the core of

the Constraint Satisfaction methods to seek a minimal satisfiable representation of logic.

Extensive studies have been conducted on MaxSAT problem for logic synthesis [102, 76, 111].

Previous SAT solvers are based on well-engineered heuristics to search for satisfying

assignments. These algorithms focus on solving CSP via backtracking or local search

for conflict analysis. David-Putnam-Logemann-Loveland (DPLL) algorithm exploits unit

propagation and pure literal elimination to optimize backtracking Conjunctive Normal Form

(CNF) [33]. Derived from DPLL, conflict-driven clause learning (CDCL) algorithms such as

Chaff, GRASP, and MiniSat have been proposed [113, 145, 44]. Since SAT algorithms can

take exponential runtime in the worst case, the search for additional speed up has continued.

SAT Sweeping is a method to merge equivalent gates by running simulation and SAT solver in

synergy [3, 122]. MajorSAT proposed efficient SAT solver for solving the instances containing

majority functions [30]. Another method used directed acyclic graph topology for the Boolean

chain to restrict on the search space and reduce runtime [66]. The heuristic models improved

computational efficiency but are bounded by the greedy strategy, which is sub-optimal in

general.
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Recently, the machine learning community has seen an increasing interest in applications

and optimizations related to neural symbolic, including solving CSP and SAT. With the fast

advances in deep neural networks (DNN), various frameworks utilizing diverse methodologies

have been proposed, offering new insights into developing CSP/SAT solvers and classifiers.

NeuroSAT is a graph neural network model that aims at solving SAT without leveraging

the greedy search paradigm [135, 134]. It approaches SAT as a binary classification problem

and finds an SAT assignment from the latent representations during inference. The model is

able to search for solutions to problems of various difficulties despite training for relatively

small number of iterations. As an extension to this line of work, PDP-solver [4] proposes

a deep neural network framework that facilitates satisfiability solution searching within

high-performance SAT solvers on real-life problems. However, most of these works, such as

neural approaches utilizing RNN or Reinforcement Learning, are still restricted to sequential

algorithms, while clauses are parallelizable even though they are strongly correlated through

shared variables.

RTL CNF 
generator

SAT-based
irredundant

SOP

improved
circuit

SAT-based
factoring

Figure 4.3: CNF-based SAT solver in logic synthesis flow.

In this work, we propose a hybrid model of the Transformer architecture [157] and the

Graph Neural Network for solving CSP/SAT.

Our main contributions in this work are:

• We leverage meta-paths, a concept introduced in [150], to formulate the message

passing mechanism between homogeneous nodes. This enables our model to perform

self-attention and pass messages through either variables sharing the same clauses,

or clauses that include the same variables. We apply the cross-attention mechanism

to perform message exchanges between heterogeneous nodes (i.e., clause to variable,
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or variable to clause). This enhances the latent features, resulting in better accuracy

in terms of the completion rate compared to other state-of-the-art machine learning

methods in solving MaxSAT problems.

• In addition to using a combination of self-attention and cross-attention mechanism

on the bipartite graph structure, we combine the Transformer with Neural Symbolic

methods to resolve combinatorial optimization on graphs. Consequently, our model

shows a significant speedup in CNF-based logic synthesis compared to heuristic SAT

solvers as well as machine learning methods.

• We propose Transformer-based SAT Solver (TRSAT), a general framework for graphs

with heterogeneous nodes. In this work, we trained the TRSAT framework to approxi-

mate the solutions of CSP/SAT. Our model is able to achieve competitive completion

rate, parallelism, and generality on CSP/SAT problems with arbitrary sizes. Our

approach provides solutions with completion rate of 97% in general SAT problem and

88% for circuit problem with significant speed up over prior techniques.

Gate CNF equation

z = a · b φ = (a+ ¬z) · (b+ ¬z) · (¬a+ ¬b+ z)

z = a+ b φ = (¬a+ z) · (¬b+ z) · (a+ b+ ¬z)

z = ¬a φ = (a+ z) · (¬a+ ¬z)

z = a⊕ b φ = (a+ b+ ¬z) · (a+ ¬b+ z) (¬a+ ¬b+ ¬z) · (¬a+ b+ z)

Table 4.1: CNF equations for the basic logic gates [166]

4.2 Background

In this section, we introduce the preliminaries for CNF-based logic synthesis and the advanced

machine learning models, i.e., Transformers and Graph Neural Networks.
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4.2.1 CNF equations for logic gates

For a logic gate with function z = f(a, b, . . . ), it equals to logic expression (z ⇒ f(a, b, . . . )) ·

(f(a, b, . . . ) ⇒ z), which then derives (¬z + f(a, b, . . . )) · (¬f(a, b, . . . ) + z). We further

expand the above equation in product of sum (POS) form to obtain the CNF for the gate.

Table 4.1 summarize the CNF equations for basic logic gates,

4.2.2 Transformers and relation to GNNs

To combine the advantages from both CNNs and RNNs, [157] presents a novel architecture,

called Transformer, using only the attention mechanism. This architecture achieves paral-

lelization by capturing recurrence sequence with attention and at the same time encodes each

item’s position in the sequence. As a result, Transformer leads to a compatible model with

significantly shorter training time. The self-attention mechanism of each Transformer layer is

depicted as a function T : RN×F → RN×F ; given x ∈ RN×F , the lth layer Tl computes,

Q = xWQ, K = xWK , V = xWV (4.1)

Al(x) = V ′ = softmax(
QKT

√
D

)V (4.2)

Tl(x) = fl(Al(x) + x) (4.3)

where WQ,WK ∈ RF×D and WV ∈ RF×M are projection matrices for evaluating queries Q,

keys K, and values V , respectively. Al(x) are self-attention matrices which describe the

similarities between vector entries of x. The self-attention matrix Al is a complete graph

which represents the connectivity between queries and keys. When queries and keys are

loosely related, the attention map becomes a sparse matrix, similar to the aggregation phase of

the Graph Neural Network (GNN). Another difference between the self-attention mechanism

used in Transformer and the Graph Attention Network (GAT) [160] is that Transformer’s

attention mechanism is multiplicative, which is accomplished by dot product, while GAT

employs additive attention.
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4.2.3 How Attention Works for Solving CNF?

Given an example CNF: φ = (v1 ∨ v2 ∨ ¬v4) ∧ (¬v1 ∨ v2 ∨ ¬v3) ∧ (v3 ∨ v4), when v2 is set to

1, two clauses are solved; while setting other variables, e.g., v1 or v4 and their complements,

cannot immediately conduct the solution. Consequently, v2 attracts more attention (or higher

probability of flipping or set value) than other variables.

4.3 Methodology

Variable Clause

(a) bipartite graph of CNF (b) Decomposition into positive and negative Constraints

Figure 4.4: (a) bipartite graph for the CNF with measure

φ = (v1 ∨ v2 ∨ ¬v4) ∧ (¬v1 ∨ v2 ∨ ¬v3) ∧ (v3 ∨ v4), where solid lines are the positive

incidences of vi in uj, and dashed lines are the negative incidences of ¬vi in uj; (b) the

decomposition of the bipartite graph according to the positive and negative relations.

+
+

+

(a) bipartite graph of CNF (b) planar bipartite graph and meta-paths

-

-
-

+/+

~

~

-/-

+/-

-/+

~

~

(c) decomposition into meta-paths according to polarities

Figure 4.5: left: bipartite graph from Fig.4.4(a); right: planar topology of bipartite graph

and the meta-paths marked with {+,−}

In this section, we present the methodologies applied in this work. Specially, we discuss
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the graph representation of CNF in Section 4.3.1, a flexible sparse attention for both self- and

cross-attention in Section 4.3.2, and the overall architecture of framework in Section 4.3.4.

sparse cross-attention

SoftMax

SoftMax residual

+

Figure 4.6: Sparse attention mechanism

4.3.1 CNF as bipartite graph and the concept of meta-paths

Each CNF equation can be formulated as,

φ(V, U) =
M∏
j=1

∑
i∈uj

{vi or ¬vi} for vi ∈ V and uj ∈ U (4.4)

where V and U are the sets of variables and clauses, respectively. Either variable vi or

¬vi appears in the clause uj , but not both at the same time. The expression can be properly

presented as an undirected bipartite graph, as shown in Fig.4.4(a). We then construct such

a bipartite graph G((V, U), E) by defining the set of variables V = {v1, . . . , vn}, the set of

clauses U = {u1, . . . , um}, and edges E by: ei,j ∈ E iff variable vi is involved in constraint uj

either in positive or negative relation. To assist the message passing mechanism used in graph

neural network, we further separate the bipartite graph in two sub-graphs, one for positive

constraints and another for negative constraints, e.g., φ+ = (v1 ∨ v2)u1 · (v2)u2 · (v3 ∨ v4) and

φ− = (¬v2 ∨ ¬v4) · (¬v1). Moreover, given the adjacency matrix A of the bipartite graph,

each edge is assigned with a type depending on the polarity of the variable to which it
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connects. The positive occurrence of a variable vi in a clause (or factor) uj is represented

with the positive sign (+), whereas its negative occurrence ¬vi in uj gets the negative sign

(−). Hence, a pair of n ×m bi-adjacency matrix A = (A+, A−), which correspond to the

pair (φ+, φ−), is used to store two types of edges such that A+(i, j) = 1 ⇔ vi ∈ uj and

A−(i, j) = 1 ⇔ ¬vi ∈ uj, the example of decomposed sub-graphs are shown in Fig.4.4(b).

Here vi ∈ uj implies that vi instead of its negation ¬vi is directly involved in uj. Each edge

ei,j ∈ E is then assigned a value equal to 1 for edges in A+ and −1 for edges in A−. With

the graph representation, graph neural network can be applied to solve symbolic reasoning

problem, e.g., CSP/SAT-solver [135, 184]. These two sub-graphs are then applied with the

self-attention on positive and negative links, i.e., the positive and negative constraints in

CNFs, respectively, as explained in Section 4.3.2.

Due to bipartite properties, variables are only connected to clauses, and vice versa, as

shown in Figure 4.4.

Consequently, every node must traverse a node with different type to reach a node with

same type. Furthermore, traditional GNN can only transfer messages between nodes with

the same attributes. In this work, we propose to pass message through 2-hop meta-paths

[150] in addition to existing edges, which enables variables (clauses) to incorporate the

information from variables (clauses) that share the same clauses (variables) during the update

of their states. In a CSP/SAT factor graph, we define that a meta-path mi,j = (vi, uk, vj)

between nodes vi and vj exists if there exists some uk ∈ U s.t. ∃ei,k ∈ E and ∃ek,j ∈ E .

Since self-attention mechanism is not symmetric, our meta-path is directed. As a result, we

get four types of meta-paths in total, i.e., {(+,+), (+,−), (−,+), (−,−)}, as illustrated in

right-hand side of Fig.4.5. The adjacent matrix of such a meta-path can be easily computed

by matrix multiplication of A+ and A− or their transposes. Take A(+,+), A(+,−) as examples,

the adjacency matrix A(+,+) = A+A
T
+ stores all (+,+) meta-paths, and A(+,−) = A+A

T
− stores

all (+,−) meta-paths. A diagonal entry A(+,+)[i, i] indicates the number of positive edges

that vi has, and an off-diagonal entry A(+,+)[i, j] indicates the existence of (+,+) meta-path
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from vi to vj.
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Figure 4.7: Our Transformer-based SAT (TRSAT) solver architecture consists of a set of

encoders and decoders connected sequentially, as in (a). Its encoder and decoder architectures

are shown in (b) and (c), respectively.

4.3.2 Sparse attention and graph Transformer

This work employs sparse attention coefficients for both the self-attention of meta-paths

and the cross-attention between variables and clauses, as explained in section 4.3.4. The

sparse attention coefficient is calculated according to the connectivity between graph nodes.

As described in below equations: after the embedding in Equation 4.5, where X = Y for

self-attention and X 6= Y for cross-attention, as shown in Figure 4.6. The node-to-node

attention between a pair of connected nodes is computed first by an exponential score of

the dot product of the feature vectors of these two nodes (Equation 4.6). Then the score is

normalized by the sum of exponential scores of all neighboring nodes as described in Equation
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4.7.

Q = XWq, K = YWk, V = YWv (4.5)

αi,j =
〈qi, kj〉∑

n∈N(i) 〈qi, kn〉
or SM(〈Q[rows], K[cols]〉) (4.6)

v′i =
∑
j∈N(i)

αi,jvj, or V ′ = A︸︷︷︸
sparse

×V (4.7)

where Q, K, and V are queries, keys, and values in Transformer’s terminology, respectively;

and qi = Q(i), kj = K(j), vj = V (j), 〈q, k〉 = exp
(
qT k√
d

)
, and SM(·) is the SoftMax operation.

Finally, we obtain attention maps A as multi-dimension (multi-head) sparse matrices sharing

the identical topology described by a single adjacency matrix, where attention coefficients

are A(i, j) = αi,j. The sparse matrix multiplications can be efficiently implemented in high

parallelism with the tensorization of node feature gathering and scattering operations through

indexation.

4.3.3 Loss Evaluation

For a given SAT(V, U), each combination of variable assignments corresponds to a probability.

The original measure φ(V, U) is a non-differentiable staircase function defined on a discrete

domain. φ(V, U) evaluates to 0 if any uj ∈ U is unsatisfied, which disguises all other

information including the number of satisfied clauses. For training purpose, a differentiable

approximate function is desirable. Therefore, the proposed model generates a continuous

scalar output xi ∈ [0, 1] for each variable, and the assignment of each vi can be acquired

through:

vi = b xi
0.5 + ε

c (4.8)

where ε is a small value to keep the generated vi in {0, 1}. With continuous xi, i = 1, ..., N ,

we can approximate disjunction with max(·) function and define φ(·) as

φ(x1, ..., xN) =
M∏
j=1

max({l(xi) : vi ∈ uj}) (4.9)
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Here, the literal function l(xi, eia) = 1−eia
2

+ eiaxi is applied to specify the polarity of each

variable. We replace the max function with a differentiable smoothmax, Sr(·):

Sτ (x1, ..., xN) =

∑n
i=1 xie

τxi∑n
i=1 e

τxi
(4.10)

Mathematically, Sτ (x1, ..., xN) converges to max(x1, ..., xN) as τ →∞.

We note that τ = 5 is enough for our model in practice. By maximizing the modified

φ, the proposed model is trained to find the satisfiable assignment for each CSP problem.

For numerical stability and computational efficiency, we train our model by minimizing the

negative log-loss

L(xi, ..., xN) = −
M∑
j=1

log(Sτ ({l(xi) : vi ∈ uj})) (4.11)

4.3.4 Heterogeneous Graph Transformer Architecture

We further propose the Heterogeneous Graph Transformer (TRSAT) which adopts an encoder-

decoder structure, as illustrated in Figure 4.7(a). It is a flexible architecture allowing the

number of encoder- and decoder-layers to be adjustable.

Encoder. Within each encoder-layer, every graph node first aggregates the message

(or information) from nodes of its kind through meta-paths. Note that a node (variable or

clause) of bipartite graph has no direct connection within homogeneous nodes. Messages

can only pass among homogeneous nodes through meta-paths. We emphasize such type of

communication between nodes of the same kind as self-attention, which is implemented with

homogeneous attention mechanism regarding the polarity of variables. The attention are then

connected to the residual block and layer normalization [9], as shown in Figure 4.7 (b).

Decoder. Inside each decoder-layer, the weighted messages are passed between variables

and clauses through the cross-attention mechanism, implemented as the heterogeneous

attention regarding nature of graph nodes (either variables or clauses), followed by residual
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connection and layer normalization, as in Figure 4.7 (c). The attention-weighted node features

are then fed into the feed-forward network (FFN ) for enhancing the node feature embedding.

4.3.5 Analysis of the Complexity

We initiate the discussion of the complexity from computing single attention head, multi-head

follows the same analysis. Both the self-attention of meta-paths and the cross-attention

between variables and clauses described in previous sections rely on the connectivity (or

topology) of the relevant bipartite graphs, so the time complexity of computing these attention

coefficients is O(|E|×|F |), where |E| is the number of edges in a graph and |F | is the number

of features of graph node. The node encoding module, which is a linear layer in the model,

and the feed-forward network (FFN) module possess the time complexity of O(|V |×F × F ′),

for |V | the number of graph nodes. As |E|� |F | and |V |� |F |, total complexity of a

single attention head is proportional to the number of nodes and edges. Furthermore, space

complexity of the memory footprint for sparse attention is also linear in terms of nodes and

edges.

4.3.6 MaxSAT approximates Exact SAT

Depends on the application’s requirement, the SAT problem can be further categorized as

the maximum satisfiability problem (MAX-SAT) and exact SAT. MaxSAT determines the

maximum number of clauses of a given Boolean formula in Conjunctive Normal Form (CNF),

which can be made true by an assignment of truth values to the formula’s variables [170]. It

is a generalization of the Boolean satisfiability problem (exact SAT), asking whether a truth

assignment makes all clauses valid. Machine learning-based algorithms explore the solution

space by minimizing the loss to ground truth and updating their models’ weights through

gradient descent during the training phase. This constraint has naturally drawn the machine

learning-based approaches to focus on MaxSAT problems by performing probabilistic decision-
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making. Rather than obtaining the deterministic and complete solution, they approximate

variable assignments. To remedy this drawback, iterative algorithms can be applied. Different

from the decimation strategy employed in PDP, which selectively fixes the values of variables

of the solved clauses, we deliver Algorithm 1 which conditionally removes the solved clauses

and their related variables from current problem. As the decimation approach of PDP does

not reduce the problem’s scale by fixing values of variables, our model can generate a faster

and more efficient solution by decreasing the size of the problem.

With high accuracy in solving MaxSAT, we intend to approximate the solution of SAT

by further replacing the unit propagation module of CDCL algorithm with TRSAT, as shown

in Algorithm 1. To accomplish this task, we also need to perform two auxiliary procedures

conflict search and conflict select.

4.4 Experiments Evaluation

Class Distribution Variables (n) Clauses (m) / Edges (p)

Random 3-SAT rand3(n,m) n = {100, 150, 200} m = {430, 645, 860}

k-coloring colork(N, p) n = k ×N for N={5, 10} p = 50%

k-cover coverk(N, p) n=(k + 1)×N for N={5, 7} p = 50%

k-clique cliquek(N, p) n = k ×N for N={5, 10} p = {20%, 10%}

Table 4.2: The summary of our chosen dataset. For random k-SAT problems, n and m refer

to the number of variables and clauses. For graph problems, N is the number of vertices, k is

the problem-specific parameter, and p is the probability that an edge exists.

4.4.1 Dataset

To learn a CSP/SAT solver that can be applied to diverse classes of satisfiability problems,

we selected our training set from four classes of problems with distinct distributions: random
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3-SAT, graph coloring (k-coloring), vertex cover (k-cover), and clique detection (k-clique).

For the random 3-SAT problems, we used 1200 synthetic SAT formulas in total from the

SATLIB benchmark library [78]. These graphs, consisting of variables and clauses of various

sizes, should reflect a wide range of difficulties. For the latter three graph-specific problems,

we sampled 4000 instances from each of the distributions that are generated according to the

scheme proposed in [184].

For evaluating our model’s performance on CNF-based logic synthesis, we collected

several circuit datasets [85, 86], including various Data Encryption Standard (DES) circuits

and arithmetic circuits, from real-life hardware designs, and translated them into their

corresponding CNF formats. Each dataset consists of 100 to 200 samples. Each benchmark

subfamily of the DES circuit models, denoted as des r b, is parameterized by the number of

rounds (r) and the number of plain-text blocks (b). The selected arithmetic circuits consist

classical adder-tree (atree) as well as Braun multipliers (braun), and are denoted by their

names. The largest instances from these circuit dataset contain 14K variables and 42K clauses

on average, which is comparable to medium-sized SAT competition instances [77].

4.4.2 Baselines

Baseline models. To fully assess the validity and performance of our model in both

CSP/SAT solving and CNF-based logic synthesis, we compared our framework against three

main categories of baselines: (a) the classic stochastic local search algorithms for SAT solving

- WalkSAT [133] and Glucose [6] (a variant of MiniSAT [44]), (b) the reinforcement

learning-based SAT solver with graph neural network used for embedding phase - RLSAT

[184], (c) the generic but innovative graph neural framework for learning CSP solvers - PDP

[4]. Among these baselines, PDP falls into the hybrid of recurrent neural network and graph

neural network based one-shot algorithm.
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RLSAT
99.01%

±9.93%

71.49%

±20.92%

93.78%

±12.12%

92.04%

±13.76%

95.72%

±15.40%

97.96%

±12.35%

Ours 87.51%±1.45% 97.77%±0.11% 97.35%±0.37%

Table 4.3: Our model TRSAT’s solver performance compared to that of the baseline model

RLSAT. We present the metric of percentage completion in the format of: [avg.completion

rate]±[std. deviation]%.

4.4.3 Experimental Configuration

Hardware. Every experiment is performed on the system with AMD Ryzen 7 3700X 8 core

16 threads CPU equipped with GeForce RTX 2080 8 GB of memory GPU. Since RLSAT,

PDP, and our model consists of paralizable operations, we fully deployed on the GPU. Glucose

and WalkSAT, which are sequential algorithms using backtracking, are unable to exploit the

GPU.

Software. Our model is implemented with PyTorch deep learning framework and employs

PyTorch Geometric [54] for graph representation learning, and is able to achieve high efficiency

in both training and testing by taking full advantage of GPU computation resources via

parallelism.

rand3(100, 430) rand3(150, 645) rand3(200, 860)

Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%)

PDP 0.0743 96.51±0.69 0.0413 95.50±0.23 0.0915 93.65±0.62

Ours 0.00368 97.06±0.28 0.00361 96.80±1.31 0.0128 96.19±1.57

Table 4.4: Our model TRSAT’s performance compared to that of the baseline model PDP [4].

We present the validation accuracy (completion rate) in the format of: [avg.accuracy]±[std.

deviation] %.
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General setup. Our model for the experiments discussed in this section is configured as

follows. Structures are implemented according to the architecture presented in Figure 4.7.

For the encoder, we adopted four layers for both the encoder-layers and decoder-layers with

the number of channels setting to 64 for all of them. Optimizer Adam [93] with β1 = 0.9,

β2 = 0.98, ε = 10−9 was applied to train the model. Our learning rate varies with each step

taken, and follows a pattern that is similar to the one adopted by Noam [157].

SAT Dataset Ours Glucose WalkSAT

Data #V #C p% t(CPU) t(GPU) t t

des-3-1 5181 15455 90.7 1.56 0.113 0.73 1.26

des-4-1 7984 23944 89.5 6.77 1.102 6.36 6.14

des-4-2 14027 42232 87.4 7.45 1.396 6.17 7.33

atree 13031 41335 88.8 8.61 2.396 7.14 8.50

braun 4116 13311 92.7 6.37 1.166 5.06 6.68

Table 4.5: Average test completion rate (p% = solved samples
#SAT samples

) and average solving time (t

seconds) between our model and other approaches for CNF-based logic synthesis.

4.4.4 Results and Evaluation

4.4.4.1 General CSP/SAT solving

We first compare the accuracy metric with RL-based deep model. The accuracy metric repre-

sents the average percentage of clauses solved by the models with the generated assignments

to variables. Due to the sequential nature of RL, the runtime performance compared to

our model is not insightful. Table 4.3 summarizes the performance of our model and that

of RLSAT, after training for 500 epochs, on the chosen datasets. Since our model adopts

a semi-supervised training strategy, and is capable of processing graphs of arbitrary size,

we were able to combine numerous distributions of the same problem class into one single
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Figure 4.8: The learning curve of Our model (TRSAT) and that of RLSAT (RL).

dataset during training, regardless of the problem-specific parameters. Our model achieves

higher completion rate than RLSAT.

For further analysis, we present the holistic learning curves in Figure 4.8. In this figure,

both models are trained on {KC: color3(10, 0.5), KV: cover3(7, 0.5), KQ: clique3(10, 0.1)},

and the shaded areas visualize the standard deviations of each model’s validation scores.

From the figure, we noticed that for the latter 100 epochs, RL-KC and RL-KV ’s validation

performance oscillate significantly. Investigating the characteristics of Reinforcement Learning,

we discovered that RLSAT, upon encountering graphs with new scales, performs a whole

new process of exploration. Therefore, RLSAT fails to generalize its learnt experience to

subsequent larger graphs, which results in an unstable validation score during training. In

contrast to RL-based model, our model adopts a highly parallel message-passing mechanism,

which updates all nodes of all graphs simultaneously at each epoch.

In addition to testing on a diversified distribution of graph problems, we also experimented
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Figure 4.9: The inference speedup for CSP/SAT solving.

on the classic random 3-SAT dataset, and compared our results with that of PDP, which is

recent work following NeuroSAT with a hybrid of GNN and RNN. As seen in Table 4.4, our

model retains the ability to achieve a high clause assignment completion rate. In comparison,

PDP takes a significantly longer time for inference, while reaching an average completion rate

that does not exceed ours. To further analyze these speed discrepancies, we present in Figure

4.9 the average speedup of our model against that of PDP, with the performance of WalkSAT

as the metric. As demonstrated in the figure, our model is capable of achieving higher average

test speeds regardless of the graph structure. This observation can be explained by the

fact that our model allows communication within homogeneous nodes, which provide all

nodes with abundant semantic information when updating their states. Therefore, our model

requires fewer iterations of message passing, and achieves greater efficiency.
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4.4.4.2 CNF-based logic synthesis

Apart from the general CSP/SAT evaluations, we also assessed our model’s performance

on solving CNF-based logic synthesis problems. Our proposed model is highly parallel and

one-shot model based on neural symbolic learning for solving the CNF-based logic synthesis

problems. Hence, we selected the classic stochastic algorithms WalkSAT and Glucose as

authoritative baselines for comparison. We summarized the test results in Table 4.5. After

training our model on the selected dataset for 500 epochs, our model achieves an average

completion rate up to 88.7% for circuit of DES datasets, and 89.3% for arithmetic circuit

datasets. We did not compare the completion rate of our model to those of the heuristic

solvers, since they eventually solve all the problems without time limitation. Rather we

focused on our model’s latency to pursue acceleration, which could potentially help discovering

early partial assignments to the heuristic solvers. The average solving time in Table 4.5 was

calculated based on all the solved (including unsatisfied cases) cases in demanded time period.
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Some difficult test cases causes the heuristic solver trapped into infinite loop and took hours

to stop even by force; while learning-based approach with trainable weights has fixed pipeline

(fixed execution time), for those hard problem, it quits quickly with wrong answer (false

assignment or wrong counter example for unsatisfied cases) compared to ground truth.

Consequently, our solver paired with a more guaranteed but slower deterministic solver,

provides substantial overall speedup, while ensuring a solution. Visualized in Figure 4.10 are

our model’s average solve speeds compared against that of Glucose, with the performance

of WalkSAT as the metric. Once again, our model significantly outperforms the baseline

models, regardless of the circuit structures being analyzed. Furthermore, it is worth noting

that our test set contains instances with very different distributions regarding variable and

clause numbers, which reflects our model’s scalability to work on wide range of tasks (as

shown in Table4.5) for logic synthesis problems of diverse difficulties without changing the

main architecture.

Hybrid mode comparison. We also perform the experiment in which our solver is

paired with a deterministic solver (CDCL), provides substantial overall speedup, while

ensuring a solution, as shown in Table 4.6.

Table 4.6: Hybrid mode (TRSAT + CDCL) v.s Glucose

SAT Dataset
Glucose Ours

# of run t/run(sec) # of run t/run(sec)

rand3(20, ∗) [78] 10 3.11e-5 4 1.05e-5

des-4-2 [85] 733 2.82e-5 156 1.86e-5

MaxSAT2016 (v70c700) [maxsat2016] 47 6.97e-5 11 2.17e-5

MaxSAT2016 (v110c800) [maxsat2016] 289 4.43e-5 75 1.91e-5

Our model dramatically reduces the number of backtracking iterations (# of run) by 60%

to 78% compared to the heuristic-based solver, and each iteration benefits higher parallelism

and costs much less time (t/run(sec)) giving 57% to 69% improvement. The hybrid model

improves the overall unit propagation latency by 86% to 93% from that of Glucose solver. In
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a case where TRSAT is solving the instance on the very first try, for example, the overall unit

propagation latency for solving one of the instances of rand3(20, ∗) is only 0.00047s which is

roughly 10 times less than that of Glucose, which is 0.0045s.

4.5 Conclusion

In this work, we proposed Transformer-based SAT Solver (TRSAT), a one-shot model

derived from the eminent Transformer architecture for bipartite graph structures, to solve

the MaxSAT problem. We then extended this framework for logic synthesis task. We defined

the homogeneous attention mechanism based on meta-paths for the self-attention between

literals or clauses, as well as the heterogeneous cross-attention based on the bipartite graph

links from literals to clauses, vice versa. Our model achieved exceptional parallelism and

completion rate on the bipartite graph of MaxSAT with arbitrary sizes. The experimental

results have demonstrated the competitive performance and generality of TRSAT in several

aspects. For future work, we want to analyze our initial results to check how the predicted

partial solutions could contribute to the heuristic solvers to reduce the number of backtracking

iteration in finding exact SAT solutions.
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Algorithm 1 MaxSAT algorithm approximates exact-SAT in hybrid mode

function ExactSAT(V,C)

. V = {v1, v2, · · · , vN}, C = {c1, c2, · · · , cM}, and

. VAR(ci): set of all variable in the clause ci; A: bipartite graph of C and V

Vsat ← Ø;U ← C;

for U 6= Ø do

. our model replaces unit-propagation and fused with CDCL

(V,C) = TRSAT(V,C);

U ← {ci = 0 : ci ∈ C} . get unsolved clauses

if U = Ø then

return Vsat ∪ {vi ∈ V }

else

Vu ← ∪{VAR(ci) : ci ∈ U}

if V − Vu = Ø then

return solvable← false

else

C ← C − {ci = 1 : ∃vj ∈ ci and vj /∈ Vu} . conflict search

Vu ← Vu ∪ {VAR(ci) : ci ∈ C}

cconflict ← max(A · AT · 1T ) . conflict select

(V,C)← CDCL(Vu, cconflict)

return Vsat
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Part II

Unified Hardware Acceleration

– Chip for AI
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CHAPTER 5

Sparse Winograd Convolutional neural networks on

small-scale systolic arrays

This chapter intends to accelerate the convolution operations in convolutional neural networks,

as shown in Figure 5.1 — the bone architecture used in most modern computer vision tasks. We

implement the Winograd transform on the input tensor and the trained weights. Winograd

transform can dramatically reduce the number of operations compared with the direct

convolution operations. With the rearrangement of data access pattern traversing dimensions,

we utilize the matricization to transform tensors and then perform matrix multiplication

between input tensors and weight tensors. Therefore the hardware design part is simplified to

optimize the acceleration of the matrix multiplications. The complexity of hardware design

resides manageable and easy to handle.

5.1 Introduction

Convolutional neural network (CNN) is a class of deep learning algorithms which has become

dominant in various computer vision tasks [1, 109], so it is attracting research on acceleration

for computational and power efficiencies. The core computations in the algorithm are

convolution operations with multi-dimensional data, e.g. 3-D feature maps (FM) and 4-

D filters, which require a high density of memory accesses and high throughput of the

computation engine. One research topic emerging in recent years is to deploy the convolution

operations onto FPGAs [190, 149, 189, 41], since FPGAs consist of massive compute units,
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Figure 5.1: The position of this chapter in the platform

e.g. DSP blocks, and storage elements interconnected by reconfigurable switch blocks. The

most recent works on systolic array-based FPGA accelerators [169, 31] deliver significant

performance improvement on the automation of high-level synthesis (HLS) design flow. Unlike

the works [46, 169], which first construct 2-D mesh architecture for systolic array then let

the loops of codes to fit on these arrays (bitstream generated once), we recursively break

the memory layout down to small blocks then map these blocks onto small-scale systolic

arrays to perform multiplications of submatrices, and share these submatrices among working

arrays to reduce required memory bandwidth. Another performance improvement can be

achieved from algorithmic perspective by applying the Winograd transform. This approach

attracts more and more attention from researchers since its first GPU implmentation [100].

Winograd CNN accelerators on FPGAs are also well studied recently [41, 8]; however, the

greater volume after the Winograd transformation is stressing on FPGAs. To handle this

issue we adopt an efficient memory layout, adopt the pruned Winograd weights [28] and their

elaborate hardware, and extend the computation into 3-D. Pruning neural networks has been

proven to greatly decrease both latency and energy consumption for all range of devices [70].

The major contributions are summarized in the following:
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• Unified small-scale systolic arrays for both Winograd transform and matrix

multiplications. We maximize the reusability of the existing design, e.g. RTL, for mul-

tiple modules. These modules share common characteristics, like matrix multiplication

alike arithmetic operations.

• Efficient memory access layout. We employ a recursive memory access pattern to

increase locality of buffers. This pattern significantly impacts the overall performance.

• Block-based sparse matrix compression. We employ this compression technique

to adopt the above mentioned recursive memory layout.

• A comprehensive model analysis of Winograd convolution. We propose an

analytical model to investigate the performance and energy consumption, and based on

the analysis we use the conclusion as our design guidance.

5.2 Background

5.2.1 Spatial Convolution

The convolution layer in a feedforward pass takes C channels of H ×W feature maps D as

input, and convolve each of K filters of dimension C × r × r with the input feature maps

to produce K output featre maps, Y, of dimension (H − r + 1)× (W − r + 1). Let s be the

stride and assume that the width and height of the filters are the same, then the mathematical

description of the convolution is

Yk,i,j =
C∑
t=1

r∑
p=1

r∑
q=1

Gk,t,p,q ×Dt,i∗s+p,j∗s+q (5.1)

5.2.2 Winograd Algorithm

Winograd proposed an efficient algorithm for short convolutions [173] in computing of finite

impulse response (FIR) filters in the signal processing field. [100] extends the Winograd
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algorithm to convolutional neural networks on GPU and CPU.

By applying Winograd transform to an r-tap FIR filter denoted as F (m, r), which

computes m outputs with the filter size of r, the number of multiplications is reduced from

m× r, if through the spatial convolution, to m+ r + 1.

5.2.2.1 1-D Winograd Convolution

Taking F (2, 3) as an example, Winograd algorithm first transforms an input vector d =

(d0, d1, d2, d3) and filter g = (g0, g1, g2) into j = (j0, j1, j2, j3) and h = (h0, h1, h2, h3) respec-

tively through

j0 = d0 − d2, h0 = g0

j1 = d1 + d2, h1 =
g0 + g1 + g2

2

j2 = d2 − d1, h2 =
g0 − g1 + g2

2

j3 = d1 − d3, h3 = g2

Next, element-wise multiplications are performed:

c0 = j0 × h0, c1 = j1 × h1, c2 = j2 × h2, c3 = j3 × h3 (5.2)

Finally, the output y = (y0, y1) can be generated via:

y0 = c0 + c1 + c2, y1 = c1 − c2 − c3 (5.3)
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The matrix form of the above procedure can be written as y = AT
[
(Gg)�

(
BTd

)]
, where �

represents element-wise multiplication and

AT =

1 1 1 0

0 1 −1 −1

 G =


1 0 0

1
2

1
2

1
2

1
2
−1

2
1
2

0 0 1

 BT =


1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1


The element-wise product in (5.2) requires m+ r − 1 = 4 multiplications, whereas the

direct method does m× r = 2× 3 = 6 multiplications.

5.2.2.2 2-D Winograd Convolution

The 1-D Winograd algorithm can be easily extended to 2-D or higher dimensional convolutions

by being nested with itself. 2-D Winograd algorithm F (m×m, r × r) can be formulated as

follows,

Y = AT
[(
GgGT

)
�
(
BTdB

)]
A (5.4)

where d and g are tiles of input and the filter, having size of l × l (l = m+ r − 1) and r × r,

respectively. The size of the output tile Y is m×m. For larger input images, the Winograd

transform is performed with the overlapping of tiles, with overlapping size r − 1, along each

dimension. When applying Winograd algorithm to a convolution layer of CNNs, the tiles

along the channel dimension of this layer can be fetched simultaneously and each of them is

applied with (5.4).

5.3 Algorithm and Optimizations

This section gives an overview of our algorithm and presents several optimization methods.

Fig. 5.2 shows the overview of our algorithm which consists of three stages of the Winograd-

based convolution: input feature map and kernel transformations, matrix multiplications,
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Figure 5.2: An overview of Winograd convolution layer.

and the inverse transformation of the output feature maps. These three stages form the

pipeline of the data flow of our system design.

5.3.1 Reduction to Matrix multiplication

By reformulating (5.4) with the augmentation on the channel dimension, filter k, tile coordi-

nates (x̃, ỹ), and substitution of U = GgGT and V = BTdB, we get

Yk,x̃,ỹ = AT

[
C∑
c=1

Uk,c � Vc,x̃,ỹ

]
A (5.5)

The summation part inside the parenthesis of (5.5) can be disentangled into (m+r−1)2 in-

dividual multiplication of a matrix of size (C ×K) with another of size (C × dH/medW/me).
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Mk,x̃,ỹ =
C∑
c=1

Uk,c � Vc,x̃,ỹ
collapsing (x̃, ỹ) to b
−−−−−−−−−−−−−−−→(̃

i, j̃
)

of tile

M(ĩ,j̃)
(k,b) =

C∑
c=1

U
(ĩ,j̃)
k,c V

(ĩ,j̃)
c,b

Another benefit of this reformation into matrix multiplications is that the number of

inverse transforms has also been reduced over C channels [100], since the factorization of

inverse transform along channels amortizes the cost. With this reformation, the matrix

multiplications are then efficiently implemented on FPGAs.

5.3.2 Matrix multiplications and memory access patterns

Figure 5.3: Z-Morton memory layout for both dense and sparse matrix [58, 34]: (a) the

translation from logical layout to physical layout, (b) the block-based compressed coordinates

(BCOO, l × l block and l = 4 for our design) for pruned Winograd weights

As described in section 5.3.1, Winograd convolution can be computed efficiently with

matrix multiplications on GPUs or FPGA platforms. To optimze the performance of matrix

multiplication, we employ the Z-Morton memory layout [58], which has been widely studied

for the Cache oblivious algorithms on multithreaded CPUs [58, 2] and image processing on
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FPGAs [34]. This memory layout increases both spatial and temporal locality of memory

accesses of matrix multiplication and arithmetic operations [58].

Algorithm 2 Divide and Conquer Matrix Multiplication

1: function recursive matmult(A,B) . given l is the smallest tiling size

2: n = A.rows

3: if n = l then

4: C = A×B . matrix multiply of l × l tiles

5: else

6: partition A, B, and C into tiles of size n
2
× n

2

7: C1,1 = recursive matmult(A1,1, B1,1) [1]

8: +recursive matmult(A1,2, B2,1)

9: C1,2 = recursive matmult(A1,1, B1,2)

10: +recursive matmult(A1,2, B2,2)

11: C2,1 = recursive matmult(A2,1, B1,1)

12: +recursive matmult(A2,2, B2,1)

13: C2,2 = recursive matmult(A2,1, B1,2)

14: +recursive matmult(A2,2, B2,2)
return C

Z-Morton uses a divide and conquer approach to access the memory as in Fig. 5.3 (a). It is

actually derived from the recursive matrix multiplication described in Algorithm 2. Compared

with Strassen’s algorithm, the latter is not cache-friendly in real situations, whereas the

former can provide notable improvement in performance [2]. Note, instead of implementing

the algorithm exactly, we unrolled memory access order to reorganize the memory layout.

The physical memory layout in FPGAs is essentially linear, Fig 5.3 (a) also provides an

example of translating the logical block address to physical block address. As shown in Fig.

5.3 (a), the address translation is easily implemented with LUTs in FPGAs by interleaving

the bits of the logical column and row addresses to generate the physical address of a block.
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5.3.3 Pruned Winograd weights and memory access patterns

After pruning the Winograd weights, we store them in a block-based sparse coordinates

format (BCOO)–only those 4× 4 blocks containing nonzeros will be compressed and stored.

Fig. 5.3 (b) shows an example where the block B5 is a 4 × 4 tile, and it has 3 nonzeros.

The information of these nonzeros are stored into vectors BN , BI, AI, AJ , and AN . BN

contains the block number for each block in memory layout, e.g. 5 for B5. BI is the list

of starting indices of each block within the other three arrays, e.g. i5 of BI refers to the

starting index in AI, AJ , and AN of information corresponding to B5. Elements in AI and

AJ represent the row and column number of the nonzeros in its own block, respectively,

and AN stores the value of the corresponding nonzero. For B5, the values of nonzeros are

b0,0, b1,2, and b3,1, the corresponding column numbers are 0, 2, 1 and row numbers are 0, 1,

3 in AJ and AI, respectively. The compressed blocks are still fetched following the order

determined by Z-Morton layout.

5.4 Architecture Design

This section discusses our implementation of accelerator for Winograd convolution. The most

time-consuming parts in the computation pipeline are the Winograd transform for feature

maps and matrix multiplications. In our design, we propose using unified small-scale systolic

arrays, of size l × l (l = m+ r − 1), for both these arithmetic operations.

5.4.1 Winograd transform by Systolic Arrays

Recall the 2-D Winograd transform nesting 2 transform matrices, BT · D · B. Instead of

directly computing BT · D · B, we change it into
(
DT ·B

)T · B. Thus, we let transform

matrix B be stationary inside the systolic arrays. In the first iteration 1 of the Fig. 5.4 DT

passes through systolic arrays to operate with B and the output is P =
(
C +DT ·B

)T
(no
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Figure 5.4: Small-scale Systolic Arrays for Winograd Transform

additional transpose needed). This intermediate result
(
DT ·B

)T
feeds back to systolic arrays

as ”new DT” in the second iteration 2 . Then P ′ = C ′+P ·B =
(
DT ·B

)T ·B = BT ·D ·B is

the final resutl. Note that C and C′ are zero-matrices and there is no multiplication occured

inside these systolic arrays–the value of elements of B is just used to control the adder–such

as, ”1” for addition, ”-1” for subtraction, and ”0” for passing by the data to next processing

element (PE) inside its systolic array.

The data sharing is through the overlapping of tiles, which has been described in section

5.2.2.2. Fig. 5.4 illustrates that (m+ r − 1) wide data stream into each systolic array, and

among these data, (r − 1) of them travel through the current systolic array and are forwarded

to the next systolic array at the same direction. The output is streamed out in the orthogonal

direction after two iterations as stated previously, and is transfered into shift-registers for

scattering into matrices.
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5.4.2 Matrix Multiplication by Systolic Arrays

To perform the recursive matrix multiplication Algorithm 2 with hardware, we conceive the

cluster of small-scale systolic arrays. Each cluster consists of 4 l × l systolic arrays (l = 4 for

our case) and a set of shared circular FIFO built by shift-registers, shown in Fig. 5.5. To

understand how this cluster works, let us examine the example from Fig. 5.3. By unrolling

the recursive code given by Algorithm 2 and using the tiles of matrices organized by Z-Morton

layout, we calculate sub-matrix C0 by summing up the products of submatrices A0 ×B0 and

A1 ×B2, C4 by sum of A0 ×B4 and A1 ×B6, and so on.

C0 +=A0 ×B0 +A1 ×B2;

C4 +=A0 ×B4 +A1 ×B6;

C8 +=A8 ×B0 +A9 ×B2;

C12 +=A8 ×B4 +A9 ×B6;

· · ·

C0 +=A4 ×B8 +A5 ×B10;

C4 +=A4 ×B12 +A5 ×B14;

· · ·

As shown in Fig.5.5 (a), A0 is shared by northwest and southwest systolic arrays, A8 is

shared by northeast and southeast systolic arrays, and so on. After the first iteration, the

partial results of C0, C4, C8, and C12 are produced and stored inside the corresponding systolic

arrays. In the second iteration, the blocks A1, A9, B4, and B9 get into their corresponding

systolic arrays and perform the matrix multiplications, and their products are accumulated

to the partial results, which still stay in their systolic arrays from iteration 1. At iteration 3

the results of C0, C4, C8, and C12 are spilled out, and systolic arrays continue to work on the

partial results of C1, C5, C9, and C13. This procedure continues until all the submatrices are

calculated. Also the sharing of circular FIFOs reduces the memory bandwidth requirement by
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Figure 5.5: Systolic Arrays for Algorithm 2: (a) the original design for dense case, (b) modified

architecture for sparse case

4 folds. Recent work of [165] proposes an automatic flow for generating systolic array-based

accelerator, which is able to facilitate the design of our approach.

When the computation is comprised of sparse matrix multiplications, we need some

modifications on the cluster of systolic arrays. First, each of the circular FIFOs which supply

the compressed Winograd weight blocks need to be equipped with a decompressor. Second,

the circular FIFOs for Winograd feature maps are virtually split into two halves since some

Winograd feature maps blocks are no longer shared between the systolic arrays. The overall

memory access pattern is now determined by how the sparse blocks distributed in the memory

layout. Take the sparse blocks B2 and B5 from Fig. 5.3 for example; now we notice that the

computation of C0 becomes A1 ×B2 only, C8 becomes A9 ×B2, block B2 is still shared by

the products of submatrices C0 and C8.

5.4.3 Extends the computation into third dimension

Whenever the computation resource is available, we can extend the computation into higher

dimensions. As we have analyzed in section 5.3.1, there are (m+ r − 1)2 independent matrix
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Figure 5.6: Extension of computation to 3-D dimension

multiplications, and they can be executed in parallel with several clusters of systolic arrays

as demonstrated in Fig. 5.6. With this enhencement, the DSP utilization and throughput of

the FPGA system are dramatically improved. In our design, we organize the DSPs into 8

clusters due to the limited amount of DSPs in our FPGA board.

5.4.4 Extension to other types of layers

In addition to convolution layers, fully-connected (FC) layers are essentially computed through

matrix multiplications. Therefore, the techniques previously discussed can be also employed

to FC layers. ReLU layers and Max Pooling layers are easily implemented by accompanying

comparators to the output buffers.

5.4.5 Overall architecture

The overall architecture of our model is illustrated in Fig. 5.7. We use a cluster of small

systolic arrays for Winograd transform, as described in Section 5.4.1. A larger cluster of

small systolic arrays are grouped into sets of 4 to perform the recursive version of matrix

multiplications as described in Section 5.4.2. Data buffers are utilized to synchronize data
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Figure 5.7: Architecture of our design

transfer between modules and keep the pipeline filled up. The tile indices are generated as

by-product during the Winograd transform, and their buffers are served for two purpose:

1) when dense matrix multiplication is performed (e.g., FC layers), the tile index is used

for selecting which cluster and systolic arrays to be dispatched; 2) when sparse mode is set,

the tile index is also used to indicate whether current weight tile containing only zeros and

assist to skip the matrix multiplication with corresponding Winograd-transformed feature

map tiles. The weights are pre-processed through Winograd transform and directly stored in

memory and fetched into Wino-weight buffers.

5.5 Design Space Exploration

5.5.1 Model Analysis

A detailed study of the complexity of Winograd convolution is conducted in the following

subsections, it helps us to design an optimzed accelerator for both dense and sparse cases.
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5.5.1.1 Data Layout of Winograd transform

As previously mentioned, the input feature maps are fed in system in real-time. It’s not

convenient to prune them during the inference, and it will increase the difficulty in system

design. Moreover, the multiplication of a sparse matrix with a dense one does not necessarily

produce another sparse matrix. In such case, our analysis keeps the same characteristics of

feature maps for both dense and sparse cases. The volume of ith Winograd convolution layer

Di
wi, the volume of corresponding Winograd weights Di

wk (without pruning), and the volume

of the results Di
wo before the inverse Winograd transform can be computed as

Di
wi =

⌈
H

m

⌉
×
⌈
W

m

⌉
× C × l2 ≈

(
l

m

)2

×H ×W × C (5.6)

Di
wo =

⌈
H

m

⌉
×
⌈
W

m

⌉
×K × l2 ≈

(
l

m

)2

×H ×W ×K (5.7)

Di
wk = C ×K × l2 (5.8)

The Winograd transform dilates both the input feature maps and weights by a scale factor of(
l
m

)2
, e.g. when m takes value of 2 and r of 3, the transformed feature maps and weights

require roughly 1.78 times larger storage. The increased volume of the storage not only affects

the latency of computations due to the drastically slow access speed, but also causes more

energy consumption.

5.5.1.2 Arithmetic complexity

The arithmetic complexity greatly depends on the data layout since the volume of feature

maps and weights decides how much data does the algorithm needs to process. The number

of multiplications performed by Winograd convolution layer i is

M i
W =

⌈
H

m

⌉
·
⌈
W

m

⌉
· C ·K · l2 ≈ H ·W · C ·K ·

(
l

m

)2

The number of additions involved in matrix multiplications is
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SiW =

⌈
H

m

⌉
·
⌈
W

m

⌉
· (C − 1) ·K · l2 ≈ H ·W · (C − 1) ·K ·

(
l

m

)2

The number of additions required by Winograd transforms are SB and SA for
(
BTdB

)
and(

AT [Mk,x̃,ỹ]A
)

respectively. In most cases, Winograd transform matrices B and A are sparse,

therefore, (5.9) and (5.10) utilize the operator nnz (·) (number of nonzeros).

SiB = 2×
⌈
H

m

⌉
×
⌈
W

m

⌉
× C ×K × l × [nnz (B)− l] (5.9)

SiA = 2×
⌈
H

m

⌉
×
⌈
W

m

⌉
× C ×K × l × [nnz (A)−m] (5.10)

The Winograd weights are pre-calculated and stored in memory, so the overhead of computing

Winograd weights has not been taken into account.

5.5.1.3 Optimal Winograd transform and the corresponding ”m”

Figure 5.8: Data movement energy comparison among memory hierarchies [151]

When the value of r is specified, e.g. r = 3 for every layer of V GG, the value of m is crucial

for determining both the power consumption and the arithmetic complexity. Furthermore,

the calculation of the optimal power consumption is straightforward, whereas the optimal

computation time is much more complicated to evaluate. Since the degree of parallelism and

the memory access patterns are dynamic, these uncertain factors hinder accurate estimation

of optimal computation time in an obvious mathematical analysis. Therefore, we focus on

the analysis of achieving the optimal power consumption as the reference.
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As shown in Fig. 5.8, the energy consumption for local (e.g. buffers, FIFOs) and external

memory accesses are several times and orders of magnitude higher than arithmetic operations,

respectively [151]. Let us assume for the sake of simplicity that every storage element in both

local and external memory is accessed exactly once, transformed feature maps are stored in

local memory after Winograd transform, and the Winograd weights are read from external

memory.

Let Eme and Eml be the unit energies consumed by an access to the external memory and

an access to the local memory, respectively. Let Emul and Eadd be the unit energies consumed

by a multiplication operation and an addition operation, respectively. Then the total energy

consumption of layer i is

Ei
tot = Eml ·

(
Di
wi +Di

wo

)
+ Eme ·Di

wk+

Emul ·M i
W + Eadd ·

(
SiW + SiB + SiA

)
Another fact derived by eq. (5.6) and (5.8) is that greater m generates less elements of the

transformed feature maps but more elements of the transformed weights. This fact indicates

that the pruning of Winograd weights is more efficient with greater m.

After having given the above formulas and summarizations, we conduct the analysis and

experiments in section 5.6.2.

5.6 Experimental Evaluation

V GG [146] is one of the most popular and mature deep learning models which has been

widely used in research and industry. In this work, we use V GG16 for our analysis and

experiments.
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Table 5.1: number of parameters in each convolution layer of different stages in V GG [146]

after Winograd transform (m=2)

Stage [146] # of Winograd neurons # of Winograd weights

Conv1 (×2) 12,845,056 65,536

Conv2 (×3) 6,422,528 262,144

Conv3 (×4) 3,211,264 1,048,576

Conv4 (×4) 1,605,632 4,194,304

Conv5 (×4) 401,408 4,194,304

Conv6 131,072 4,194,304

5.6.1 Experiment Setup

For the CNN model part, we set the input feature map size to 224 × 224 × 3, which are

standard input dimensions for VGG pipeline.

Table 5.1 shows the number of neurons and weights of each layer in different stages after

the Winograd transform. For the hardware part, we implemented our design with RTL Verilog

and Chisel [10]. We then evaluate our design on an FPGA board, Xilinx Virtex Ultrascale

XCVU095. Although it is not fabricated with the lastest technologies, and equips only with a

medium amount of DSPs (768 DSPs), this configuration reveals better the performance gain

than the lastest FPGAs since optimizations for FPGAs with scarce computation power is

more representative. Table 5.4 further demonstrates the resource consumption by each block.

5.6.2 Experiment on energy consumption analysis

Fig. 5.9 (a) plots the trend when different m is applied. The simulations run by synthesis

tools show that the design with small values of m normally consume less energy. In order

to simplify our design, we decide to use m = 2, which eventually affects the dimension of

our systolic arrays, tiling size, memory access patterns of our accelerator design, and so
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Table 5.2: Comparison with State-of-the-art implementations
Impl. FPGA’15 [190] FPGA’16 [189] FPGA’16 [149] DAC ’17 [169] our impl.

FPGA V7 VX485T Xilinx VC709 Stratix-V GSD8 Arria10 GT1150 V-Ultra XCVU095

Precision 32 bit float 16 bit fixed 8-16 bit fixed 32 bit float 8-16 bit fixed 8-16 bit fixed

Frequency (MHz) 100 200 120 221.65 231.85 150

Throughput (Gops/s) 61.6 354 47.5 460.5 1171.3
460.8/230.4

(8 bit/16 bit fixed)
921.6 (8 bit sparse fixed)

DSP utilization 1120/1400 2833/3632 727/1963 1340/1523 1500/3046 (512+128)/768

Power efficiency (Gops/s/W) 3.31 14.22 1.84 25.78 55.9

Figure 5.9: Energy consumption estimation and latency of Winograd convolution

on. Although the plot indicates that m = 4 might be the optimal value for the energy

consumption, we are limited by other hardware resources in our FPGA system, but the

situation might be different if designing with a different FPGA system. In Fig. 5.9 (b) we

provide the latencies for the inference by VGG with different configuration of m and sparsity

ranging from 60% to 90%. For the best case, we achieve almost 5× speedup.

Table 5.3: Resource usage

Resources LUTs FF BRAM DSP

Used 241,202 634,136 1,480 512 (arith.) + 128 (wino.)

Available[83] 537,600 1,057,200 1,728 640

Percentage 44.9% 60.8% 85.6% 67% + 16.7% = 83.7%
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Table 5.4: Breakdown of resource

Module Number LUTs FF BRAM DSP

SmartConnect. 2 2,973 3,913 0 0

rst ps7 0 100M 1 38 80 0 0

processing system7 0 1 224 0 0 0

axi apb bridge 0 1 178 288 0 0

index dispatcher 0 1 384 576 0 0

wino transform wrapper 0 4 47,181 125,255 295 128

matmul wrapper 0 8 188,724 501,023 1180 512

5.6.3 Results and analysis

With m = 2, we get the synthesized result with the resource usage as shown in Table 5.3. The

end-to-end comparison with the state-of-art CNN FPPGA accelerators is listed in Table 5.2.

We achieve the highest DSP usage and power efficiency. Since we are targeting the low-power

FPGA for edge or smart devices, we only test our design on a medium scale FPGA. In current

design, we use four 4 × 4 systolic arrays as one cluster for one matrix multiplication, and

stack 8 such clusters for eight matrix multiplications in parallel. Meanwhile, 8 4× 4 systolic

arrays work on the Winograd transform, and forms the pipeline with the systolic arrays. In

total, all 640 PEs are used.

5.7 Conclusion

In this work we propose a design with highly efficient recursive memory access layout for

both dense and sparse Winograd convolution, unified systolic arrays for both Winograd

transform and matrix multiplication, and three dimensional compute engine for Winograd

convolution. We also provide a comprehensive algorithmic level analysis for the performance

model of Winograd convolution. We achieve high computation power utilization and high
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power efficiency in our design. There are several aspects that we can investigate further in

the future. In particular, the automation design flow will help a lot to reduce the burden of

development. And the processing in memory technology is also a promising solution, as more

and more new FPGA architecture incorporate such kind of brilliant concept.
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CHAPTER 6

HUGE2: a Highly Untangled Generative-model Engine

for Edge-computing

This chapter proposes an approach to tackle the complexity of the deconvolution operations,

as shown in Figure 6.1. Deconvolution, possessing particular characteristics compared to

standard convolution, is a crucial component of the generative model, especially for generative

adversarial networks (GAN), variational autoencoder (VAE). We observe the regularity of

the data access pattern to the input data and kernels of the deconvolution operations, and

we decompose the input tensor and weight tensor into certain regular repeated combinations.

The standard convolution operator then operates on each of those combinations. This method

can be easily deployed on generic hardware platforms, e.g., CPU, GPU, FPGA, even novel

accelerators.

6.1 Introduction

Recently, the deep generative models and semantic segmentation algorithms have shown

their stunning abilities in various fields, such as creating realistic images from the learned

distribution of a given dataset, providing the robots with the ability to learn from environment

without human input, generating the synthetic 3D objects for the scene parsing in a scenario,

and so forth. These creative deep learning models attract great interests in research by both

scholar and industry. The representative works include the Generative Neural Networks

(GAN) [64], the Variational Auto-encoder (VAE) [94], and the semantic image segmentation
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Figure 6.1: The position of this chapter in the platform

algorithms [137, 22].

However, the generative models and semantic segmentation algorithms rely heavily on the

deconvolution which is an inefficient, and both computation- and memory-intensive operation.

The inefficiency comes either from the zero insertions in either input tensor or kernels or from

repeatedly accesses to the overlapped regions. Zero insertions cause wasteful computations,

hence high latency. The non-consecutive memory access manner in deconvolutions also hurts

system performance drastically. The overlapped region in outputs hinders the concurrent

processing because the chained memory-writings happen to the same location.

In this work, we conceive a set of solutions from an algorithmic perspective to improve

the performance of deconvolution for embedded systems. And the experiments show that we

achieve the speedup nearly 10× on GPUs and 5× on CPU, the memory storage and their

accesses are reduced by more than 50 percent.
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6.2 Background

6.2.1 Deconvolution

The so-called deconvolution used in the deconvolution layers of the generative adversarial

networks and the semantic image segmentation is actually not as exact as the reverse operation

of the convolution. Actually, the deconvolution layers are learnable up-sampling layers. Two

categories of special convolution operations can fulfill such kind of task, they are the transposed

convolution and the dilated convolution, respectively. The following subsections give details

about how these operations work.

6.2.1.1 Transposed Convolution

Transposed convolution, also called Fractionally-Strided Convolution, is used not only to

upsample an initial layer but also to create new features in enlarged output feature maps.

Theoretically, transposed convolution works as a process of swapping the Forward and

backward passes of a convolution, and this is where its name comes from. Algorithm 3

describes how this kind of convolution works. As it shows, when sm and sn are bigger

than 1, the kernels slide on the feature maps with fractional steps. Figure 6.2 shows the

implementations of the transposed convolution and its counterpart.

It is always possible to emulate a transposed convolution with a direct convolution. Such

process first spreads the input feature map by inserting zeros (or blank lines) between each

pair of rows and columns. The original input tensor I now becomes Î. It then applies a

standard convolution, with strides of 1 (equivalent to sliding step of 1
stride

on the original

input [43]), on the resulting input representation, as shown in Algorithm 3. Let us take

left hand side of Figure 6.3 as an example. It illustrates a 2D transposed convolution of a

zero-inserted feature map of size 6× 6 and a 3× 3 transposed kernel.
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Figure 6.2: The upper is the implementation of a strided convolution, and the bottom is its

related transposed convolution.

6.2.1.2 Dilated Convolution

Strictly speaking, despite of that dilated convolution, also known as atrous convolution,

is not acknowledged as a kind of deconvolution, it has been widely explored to upsample

input tensors in the semantic image segmentation algorithms. Moreover, it shares some

characteristics on which we can apply our acceleration algorithm as it does for the transposed

convolution. On the contrary to transposed convolution, dilated convolution inserts zeros into

kernels but not input tensors. The kernels are dilated so as to enlarge their corresponding

receptive fields. One thing needs to be noticed is that only stride bigger than 1 has the effect
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Algorithm 3 Transposed Convolution

function Conv2DTranspose(I,K,O, sm, sn) . sm, sn are fraction factor also

zero-insertion stride on input tensors

for 0 ≤ k ≤ N − 1 do

for 0 ≤ h ≤ H −R + 1 do

for 0 ≤ w ≤ W − S + 1 do

for 0 ≤ c ≤ C − 1 do

for 0 ≤ m ≤ R− 1,m = m+ sm do

for 0 ≤ n ≤ S − 1, n = n+ sn do

O[h,w, k]+ = I[h+ m
sm
, w + n

sn
, c]×K[h mod sm +m,w mod sn +

kn, c, k]

Figure 6.3: left: the transposed convolution of a 3× 3 kernel over a 6× 6 input padded with

a 1× 1 border of zeros using 2× 2 strides; right: dilated convolution of a 3× 3 kernel over a

7× 7 input with a kernel of the dilation factor of 2 [43].

of upsampling on input tensors. Details are demonstrated in Algorithm 4 and right side of

Figure 6.3.

6.2.2 Previous Work

To our best knowledge, up to this work, most of optimized solutions have been proposed are

from the research of the hardware accelerator realm. These designated designs achieve much

higher throughput compared with non-optimized generic hardware. Hence, our goal is to

conceive an easily-accessible and cost-efficient solution for the generic hardware.
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Algorithm 4 Dilated Convolution

function Conv2DDilated(I,K,O, sm, sn) . sm, sn are dilation factors also

zero-insertion stride on kernels

for 0 ≤ k ≤ N − 1 do

for 0 ≤ h ≤ H −R + 1 do

for 0 ≤ w ≤ W − S + 1 do

for 0 ≤ c ≤ C − 1 do

for 0 ≤ m ≤ R− 1 do

for 0 ≤ n ≤ S − 1 do

O[h,w, k] += I[h+ sm ×m,w + sn × n, c]×K[m,n, c, k]

1. Zero-Skipping: [182, 181] present a set of designs by swapping zero rows and columns

with non-zeros ones, and then rearranging non-zero rows and columns into effective

working groups. However, this design doesn’t thoroughly solve the unbalanced working

load problem among effective computation groups. [148] discovers the delicate math-

ematical relation of indices among input tensors, kernels, and output tensors. These

relations help rearrange the computations to skip zeros. But this method lacks memory

access coalescing. Therefore, input tensors and kernels are accessed in a non-consecutive

fashion with degradation in the overall performance of the system.

2. Reverse Looping and Overlapping: Reverse Looping is introduced by both [193]

and [176]. This technique avoids accessing the output tensors in an overlapped manner

with more operations, especially the accumulations and memory writings. Reverse

looping, on the contrary, uses the output space to determine corresponding input

blocks, and thus eliminating the need for the additional accumulations and memory

accesses. However, the overlapped regions are not evenly distributed, hence the work

load unbalancing issue among processing elements is still not well solved by such kind

of solution.
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6.3 Algorithm

In this section, we introduce our algorithm for accelerating the deconvolution operations.

Our algorithm consists of three steps: 1) kernel decomposition, 2) untangling of kernels and

matrix multiplications, and 3) dispatching and combining the results to the output tensor.

The following subsections provide the explanation for each of them.

* * * *

( , , , )

Decompose

Convovle
(Each with Stride 2)

Combine

(2, 0)

(0, 2)(0, 0) (0, 1) (0, 3)

(2, 1)

(1, 0)(1, 2)

(3, 0)

(1, 1)(1, 3)

(3, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 6.4: the kernel of the transpose convolution is decomposed into 4 patterns, each

convolves with zero-inserted feature maps with stride 2, the final result is obtained by

combining the 4 partial feature maps; the yellow, pink, and blue patches correspond to sliding

windows at different positions.

6.3.1 Decompose Deconvolution

Given an input tensor with stride 2 zero-inserted as example, and let us take a transposed

kernel to slide on it. We discover that there exists 4 kinds of patterns as shown at the bottom

of Figure 6.4 where the nonzero elements in the kernel meet the nonzero elements in the

zero-inserted input tensor Î, and thus generate non-overlapped effective outputs as shown on

the top of Figure 6.4. Mathematical description of these 4 patterns is given below:
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Pattern 1: odd columns and odd rows of kernel convolve with stride 2 on input tensor Î

and generate even columns and even rows of output tensor O.

O[2h, 2w, k] =
C∑
c=0

R∑
m=0

S∑
n=0

K[2m+ 1, 2n+ 1, k, c]× Î[2h+ 2m, 2w + 2n, c] (6.1)

Pattern 2: even columns and odd rows of kernel convolve with input tensor Î and

generate odd columns and even rows of output tensor O.

O[2h, 2w + 1, k] =
C∑
c=0

R∑
m=0

S∑
n=0

K[2m+ 1, 2n, k, c]× Î[2h+ 2m, 2w + 2n+ 1, c] (6.2)

Pattern 3: odd columns and even rows of kernel convolve with input tensor Î and

generate even columns and odd rows of output tensor.

O[2h+ 1, 2w, k] =
C∑
c=0

R∑
m=0

S∑
n=0

K[2m, 2n+ 1, k, c]× Î[2h+ 2m+ 1, 2w + 2n, c] (6.3)

Pattern 4: even columns and even rows of kernel convolve with input tensor Î and

generate odd columns and odd rows of output tensor.

O[2h+ 1, 2w + 1, k] =
C∑
c=0

R∑
m=0

S∑
n=0

K[2m, 2n, k, c]× Î[2h+ 2m+ 1, 2w + 2n+ 1, c] (6.4)

One benefit of such decomposition is that the non-overlapped sparse regions on the output

tensor do not cause any race conditions for writing in memory, since it will not be blocked by

consecutive memory writings.

After having investigated the relation between indices of the nonzeros in input tensor

and the decomposed kernels, we draw the conclusion that we can safely remove all the zero

inserted in both input tensor and the decomposed kernels as shown in Figure 6.5. The

flow demonstrates the zero-removal for all patterns where they become 4 smaller standard

convolutions on input tensors without zero-insertion. Then we scatter and combine their

results. The scattering of the results from each pattern follows the corresponding indices

used in the zero-inserted version.
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zero-inserted 

feature maps
kernels

Zero removal

Zero removal

Decompose Kernels

convolve

convolve

convolve

convolve

Intermediate output 

feature maps

scatter

scatter

scatter

scatter

combine

 ✕ N

N N

C

CC N

output 

feature maps

Figure 6.5: The corresponding flow of the example; bottom:

And the simplified flow in the Figure 6.6 resembles the Inception module of GoogLeNet

[152] except that the last step here is scattering and combination instead of stacking.

6.3.2 Untangling

To further improve the parallelism of arithmetic computations, we propose an algorithm

to untangle every decomposed pattern of the transposed convolution into a set of 1 × 1

convolutions.

6.3.2.1 Untangle standard convolution

As shown in the right side of Figure 6.5 each pattern convolves with input tensor as a standard

convolution. To better understand our algorithm, let us take pattern 4 (the 3× 3 one) as

an example. The process is shown in Figure 6.7. Given N decomposed kernels of pattern 4

(with zero removed) from previous subsection and the original input tensor, each kernel has

dimension of m× n× C and the input tensor has dimension H ×W × C. We regroup the
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Figure 6.6: A simplified view

Extract Corresponding Receptive Fields
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Partial output FMsN kernels of C ✕ m ✕ n 

Feature Maps of C ✕ H ✕ W

(H- m + 1) ✕ (W - n + 1)

Figure 6.7: untangle a standard convolution into a set of 1×1 convolutions

elements of the kernels by gathering N columns along the dimension C from every kernel

at position (x, y) (e.g. (0, 0) at top left case, (0, 2) for the bottom right case in the Figure

6.7) of the (m,n) plane. These columns form a matrix of dimension N × C. Then, their

corresponding receptive fields on the input tensor can be fetched for input tensor to form

another matrix of dimension (H−m+1)(W −n+1)×C. Such configuration can be regarded

as a 1× 1 convolution with N 1× 1 kernels working with a cropped tensor. The products

of the m × n matrix multiplications are then accumulated together. The elements of the

resultant matrix are then dispatched to the corresponding position in the output tensor.
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Figure 6.8: Untangle a dilated convolution

6.3.2.2 Untangle dilated convolution

Dilated convolution can also take the advantage of untangling. As it shows in left side of

Figure 6.8 untangling technique is also applicable. The sliding step on input tensor is larger,

and the receptive field shrink with multiple of stride.

Input feature maps
kernels
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2

3

4

5

Figure 6.9: Training of discriminator with dilated convolutions

110



6.3.2.3 Training of GAN

The back-propagation of the discriminator of GAN can be seen as a special case of dilated

convolution. Step 3 of right side of Figure 6.9 depicts that, in order to propagate the

derivatives of the output errors, there are C × N convolutions by C input feature maps

and N derivative maps. Each derivative map is dilated (since discriminator uses the strided

convolution) and convolves with each input feature map.

Therefore, we can make C copies of each of N derivative maps from output errors to form

N new dilated kernels of C channels. Then the dilated kernels convolve with input tensor to

form the derivates of kernels and the results are subtracted from corresponding kernels.

The dilated convolution in step 4 of right side of Figure 6.8 is actually a depth-wise version.

Hence, it corresponds to C = 1 in left side of Figure 6.8 which is seen as a outer-product of

two vectors.

The back-propagation of generator of GAN can be seen as a strided convolution of

derivative maps of output errors and input tensor (not shown in this paper).

6.4 Experimental Results

This section provides the evaluation of our algorithms. We use the deconvolution layers of

DCGAN [124] and cGAN [112] as case study. Their configurations are shown in Table 6.1.

In this paper, we mainly focus on the inference phase of deconvolution layers, and all models

are pretrained with CIFAR100 [97] dataset. The experiments for GAN’s training are only

investigated at several typical layers.

The baseline of library we pick up is DarkNet [129] since it is open-sourced, and the

commercial library such as cuDNN [25] only delivers with binary code. The system used in

our experiments equips with embedded CPU, 4-core ARM Cortex-A57, and a Nvidia’s GPU

(256-core NVIDIA Pascal™ Embedded GPU). The experiments are run on both embedded
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Table 6.1: Configuration of deconvolution layers

GAN Layer Input Kernel Stride

DCGAN DC1 4× 4× 1024 5× 5× 1024, 512 2× 2

DC2 8× 8× 512 5× 5× 512, 256 2× 2

DC3 16× 16× 256 5× 5× 256, 128 2× 2

DC4 32× 32× 128 5× 5× 128, 3 2× 2

CGAN DC1 8× 8× 256 4× 4× 256, 128 2× 2

DC2 16× 16× 128 4× 4× 128, 3 2× 2

CPU and embedded GPU. The metrics used for performance comparison includes the speedup

and memory access reduction. We compared our implementations of transposed convolution

and dilated convolution with the baseline, which is the naive implementations from DarkNet

for both CPU and GPU. Most 2D standard and transpose convolution implementation in

modern deep learning library are based on im2col.

6.4.1 Speedup of Computation

The speedup is obtained by the comparison of the computational runtime with the baseline.

Figure 6.10 demonstrates the speedup gained by applying kernel decomposition and untangling

for DCGAN and cGAN, respectively.

From the results, we can see that the shallower deconvolution layer are more compute-

bounded since they have more kernels which deconvolve with input tensor and require much

more computational operations. Untangling transposed kernels can efficiently improve the

parallelism by taking advantage of larger C and N .

112



6.4.2 Reduction of Memory Access

The results of experiments for the memory access reduction by decomposition and untangling

are provided in Figure 6.11.

One more thing we want to mention is that untangling technique we applied favors the

C × N × R × S memory layout for the transposed kernels and C × H ×W for the input

tensor. This is because elements along C and N dimensions are stored consecutively in these

layouts, and this helps with the data fetching in coalescing memory access pattern.

As shown in Figure 6.11, it is obvious that the deeper deconvolution layers are data-

bounded, the reduction can be obtained more on the deeper layers since the output tensor

becomes larger by the unsampling effects. We achieve a memory access reduction around

30% to 70% by only applying untangling technique.

6.4.2.1 Speedup in GAN training

The right side of Figure 6.11 plots the speedup of training of GANs. We select several

typical layers for the experiments, we want to cover both the cases for dilated derivative

maps convolving input tensor and derivative maps stridedly convolving input tensors.

6.5 Conclusion

In this paper we presented a set of efficient algorithms and optimizations for deconvolutions,

these algorithms are the core components in our deep generative model engine ”HUGE”.

We devised them as pervasive as possible to fit on most hardware platforms. HUGE really

accomplishes the outstanding results for our applications. It shows great improvements in

two crucial aspects, computation loads and memory access, respectively.
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Figure 6.10: The speedups of the inference of GANs on embedded system. Top: on CPU

(4core Cortex-A57) of the same board; bottom: on embedded GPU of Jetson TX2
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CHAPTER 7

VersaGNN: a Versatile accelerator for Graph Neural

Networks

This chapter focuses on designing a versatile accelerator for both sparse and dense matrix

multiplications. This module is for the acceleration of graph analytic, as shown Figure 7.1.

The Graph Neural Network (GNNs) is a very suitable use case for this accelerator since the

two phases, feature transform and feature aggregation, of a graph convolution layer are dense

and sparse matrix multiplications, respectively. The hardware algorithm employed in this

accelerator design can be regarded as an extended version of the one in Chapter 5. Based

on the recursive matrix multiplication fashion used in Chapter 5, we further decrease the

number of complex arithmetic operations, i.e., multiplications, through Strassen’s algorithm

for the dense case; for the sparse case, we propose novel FIFOs design for storing the index

of nonzero during the processing. Moreover, a software approach algorithm for regrouping

the sparse matrices reduces the idled time slots during index alignment.

7.1 Introduction

Graph Neural Networks (GNNs) have achieved state-of-the-art performances in node clas-

sification [96, 69], link prediction [95, 191], graph classification [183], graph generation [95,

163], and clustering [162, 183] on arbitrarily structured graphs. The power of representation

learning on graphs comes from feature embedding, which includes extracting structured, low

dimensional features from unstructured, high dimensional graphs.
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Figure 7.1: The position of this chapter in the platform

On one hand, traditional Convolutional Neural Networks (CNNs) [101] that operate on

Euclidean data are characterized by local connections and shared weights, and are able

to extract multi-scale localized spatial features. Euclidean data, such as images, can be

represented as regular grids in the Euclidean space. Thus, a CNN is able to exploit the

shift-invariance and local connectivity of Euclidean data. On the other hand, GNNs inherit

the irregular computing patterns and processing dataflow of graph analytics, resulting in the

inefficient use of CPUs and GPUs.

Meanwhile, the majority of real-word graphs for GNNs follow the Power-Law distribution

- the number of nodes with degree N is proportional to Nα for some constant α [60].

Thus, a minority of nodes share high degrees, leading to remarkably unbalanced adjacency

matrices. Therefore, hardware architectures must adapt to the varying shapes of the high-

dimensional convolutions in GNN. Generally, two primary execution phases, Aggregation

and Transformation, occupy the most execution time [52, 69, 174, 179].

Aggregation (Message Passing) Phase: GNN follows a neighborhood aggregation

strategy in which each node’s representation is updated by aggregating features of its
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adjacencies. Common aggregation strategies include Sum, Average, Mean, and Max.

After N iterations of aggregation, a node’s representation captures the structural information

within its N -hop network neighborhood. The main computation kernels are data loading,

which collects feature vectors that are indexed by the neighboring node’s addresses, and the

execution of aggregation. Due to their sparsity, the feature vectors can be efficiently fetched

by coalescing their elements. Within the feature matrix, the feature vectors of adjacent

nodes can be separated by strides. Poor use of these inter-vertex data parallelism can incur

significant cache misses and address calculations.

Transformation (Node Encoding) Phase: This phase is usually expressed as a Multi-

layer Perceptron (MLP) that transforms node feature vectors to lower dimensional embeddings

using Matrix-Vector Multiplication (MVM). The matrix multiplication can be either dense

or sparse, depending on the sparsity of feature matrices at different convolutional layers. A

non-linear activation function is applied to each vertex to yield the outputs. This phase is

characterized by regular computational graph and homogeneous data access patterns.

To accelerate GNN-based applications that harness these two distinct stages and process

highly variable real-world graphs, we propose several optimization approaches for accelerating

GNN with a software/hardware co-design paradigm. Our main contributions are:

• We unify the processing of Aggregation and Transformation stages using a single

processor that is competent in handling the irregular data access patterns and the

hybrid computing mode of GNNs.

• We apply the classic Strassen’s algorithm to accelerating dense matrix multiplication,

significantly reducing the number of costly multiplications.

• We exploit an ultra-efficient, greedy-based load-balancing approach that achieves

considerable speedup in sparse-dense multiplication.

• We propose VersaGNN, a high-throughput and memory-efficient Graph Neural Network

accelerator based on the well-known systolic array design.

118



• We implement our architecture design using Chisel HDL [10], and test our VersaGNN

using four well-known GNN models on six benchmark graph datasets. Compared to the

state-of-the-art software frameworks, our work achieves on average 3712× speedup with

1301.25× energy reduction on CPU, and 35.4× speedup with 17.66× energy reduction

on GPU, respectively.

7.2 Background

In this section, we review the core concepts of Graph Neural Networks. Table 7.1 lists the

notations of GNNs used throughout the paper.

Table 7.1: Notations of GNN
Notation Description Notation Description

G graph G = (V,E,H0) V nodes/vertices of G

E edges of G deg(v) degree of node v

ei,j edge between node i and j N(v) neighbors of node v

Θ(·) Neural Networks a
(i)
v aggregated feature vector of v at layer i

A, Ai,j adjacency matrix, element at (i, j) W (i) weight matrix of ith layer

h
(i)
v r hidden feature vector of node v b(i) bias of ith layer

H0 initial state of feature matrix σ(.) activation function

7.2.1 Graph Convolutions

Graph Neural Networks utilize the message passing mechanism [196, 174] for graph node

embedding, usually generated by graph convolutions. A classic GNN is constructed with a

stack of two or three graph convolution layers, whose structure is illustrated in Fig.7.2. A

graph convolution layer takes the feature matrix as the input, arranged by graph node signals,

and performs convolution on the feature matrix, followed by one or two optional nonlinear

operators, such as nonlinear activation (e.g ReLU, LeakyReLU) and pooling.

Convolutional GNNs can be categorized as spectral-based GNNs or spatial-based GNNs

[174]. Spectral-based approaches such as [96, 75, 36] define graph convolutions by adopting
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filters from the perspective of graph signal processing [144]. The graph convolution operations

are interpreted as removing noises from graph signals. Spatial-based approaches, including

[5, 61, 114], exploits the information propagation paradigm and aims at collecting features of

each node from its K-hop neighbors.
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Figure 7.2: For the graph in (a), (b) shows how the node signals are passing through the

graph convolution operator

The convolution operator in a graph convolution layer consists of two consecutive phases,

the Aggregation (or Message Passing) phase, and the Transformation (or Node En-

coding) phase. Equation (7.1) gives a mathematical formulation of the message-passing

network [52],

h
(k)
i = Θ

(k)
i

(
h

(k−1)
i ,Ξj∈N(i) Θ

(k)
j

(
h

(k−1)
i ,h

(k−1)
j , ej,i

))
(7.1)

, where Ξ embodies a differentiable and permutation-invariant aggregation function, e.g.,

Sum, Mean, or Max. Θi and Θj indicate neural networks or linear transformations. In

the following subsections, we discuss some state-of-the-art models and their aggregation

strategies.
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7.2.2 Direct Aggregation

GraphSAGE [69] exploits vertex features such as text attributes and node degrees to learn

an embedding function, formulated as:

ĥi = Θ
(

meanj∈N(i)∪{i} (hj)
)

h′i =
ĥi

‖ ĥi ‖2

(7.2)

where the feature aggregation is the mean operator marked in Equation (7.2). Instead

of training individual node-wise embedding vectors, GraphSAGE generates embeddings

through uniform sampling and feature aggregation from the node’s neighbors, thus taking

into account both the node’s own features as well as its neighboring features, and balance

execution overhead with accuracy.

GIN [177] utilizes the Graph Isomorphism Operator to enhance the representation power

of GNNs. For each graph node, GIN recursively aggregates and transforms representation

vectors of its adjacent nodes. With its high expressive power, GIN is able to capture the

structural information of both large and small graphs.

h′i = Θ

(1 + ε) · hi +
∑
j∈N(i)

hj

 (7.3)

ε is a learnable parameter that improves the node’s self-confidence, and Θ represents a

Multi-Layer Perceptron (MLP). GIN uses summation as its aggregation operator, which can

represent universal functions over multisets, as marked in Equation (7.3).

7.2.3 Weighted Aggregation

GCN [96] is composed of two or three convolutional layers with residual connections.

H′ = D̂−1/2ÂD̂−1/2HΘ (7.4)
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Â = A + I denotes the adjacency matrix with self-loops, and D̂i,i =
∑
Âi,j represents its

diagonal degree matrix. Expanding Equation (7.4), we get

h
(k)
i = Θ

 ∑
j∈N(i)∪{i}

1√
deg(i) ·

√
deg(j)

· h(k−1)
j

 (7.5)

We observe from Equation (7.5) that the feature aggregation phase performs a weighted

summation (aggregation) of neighbor features. The coefficients within the marked region are

derived from the degree matrix and perform a degree-based normalization.

GAT [159] leverages masked self-attention layers in feature aggregation to assign com-

putation importance to each nodes. It does not require costly matrix operations as well as

pre-knowledge of graph structural information, and is able to achieve computation efficiency

including intra-graph parallelization.

h′i = αi,i Θhi +
∑
j∈N(i)

αi,j Θhj

= Θ

 ∑
j∈N(i)∪{i}

αi,j · hj

 (7.6)

The attention coefficient αi,j denoting the importance of node j’s features to node i is

computed as

αi,j = SoftMax
(
LeakyReLU

(
a>[Θhi ‖Θhj]

))
(7.7)

Equation (7.6) uses attention coefficients for the weighted aggregation of neighbor node

embeddings. The denominator marked in Equation (7.7) also has a form similar to aggregation,

where SoftMax is a normalization performed after the node-level exponential operation exp(·).

7.3 Motivation

GNNs can be considered as an extension of classic deep neural networks with irregular

topology that support graph-structured inputs and outputs. Specialized architecture designs
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for GNNs are required because existing machine learning accelerators are not suited to GNNs

for the following reasons.

Compounded Execution Mode Most GNN models are shallow with approximately

three layers. The weight matrices W are generally dense as the result of layer-wise node

aggregation. Current sparse matrix accelerators are specialized solely in processing sparse

data formats, but will suffer significant overhead with dense matrix operations. However, the

execution flow of GNNs follows a hybrid mode. Despite the sparsity of the input node feature

matrices, the following aggregation operations will gradually populate the intermediary node

embeddings with non-zero values. On the other hand, node feature transformation involves

dense matrix multiplications. Present GNN accelerators are designed either to undertake the

sparsity in Aggregation, or to employ the regularity in dense matrix multiplications that

constitute Transformation, but lack the generality to handle both cases.

Workload Imbalance The irregular access and computation patterns of the Aggrega-

tion phase, which involves graph traversals that require tremendous memory access relative to

only small amounts of calculation, make the mainstream computation platforms unsuitable for

GNNs. CPUs and GPUs are not capable of irregular data movements and computations that

constitute GNN operations. Their inefficiency in memory access causes the waste of off-chip

memory bandwidths. Although modern GPUs such as NVIDIA A100 support sparse matrix

multiplication with pruning techniques; for many real-world graph datasets, their feature

matrices cannot be pruned, as the features are represented using binary values. Meanwhile,

the adjacency matrices are subject to significant loss of graph structural information, making

compression unrealistic despite their sparsity.

For traditional computation platforms including GPUs, their performance bottleneck

on GNNs originates from their inability to settle the irregularity in Aggregation phase.

Their relatively high performance on GNNs is mostly attributed to the high-bandwidth

memory, which incurs considerable energy consumption. Furthermore, although they leverage

the regularity in Transformation phase, the data copying and synchronization between
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threads for parameter reusing are expensive. Meanwhile, graph analytics accelerators are

only optimized to alleviate irregularity or exploit regularity.

Usecase Generality Aggregation can be direct aggregation or weighted aggregation.

The weighted one is not just performing summation or other aggregation operation. Neighbor

node’s feature vector is scaled with a factor before applying the aggregation operator, e.g.,

Equation 7.6 of GAT. Current GNN accelerators such as EnGN [106] and HyGCN [179]

are only optimized for the directed aggregation case. This scaling issue can be solved by

sparse-dense matrix multiplication and is more efficient than other designs.

HyGCN [179] is a GNN accelerator with a hybrid architecture. To harness the hybrid

execution patterns of GNNs, HyGCN separates the modules for the regular neural network

processing and irregular graph processing. The Aggregation Engine and Combination Engine,

used for node aggregation and transformation respectively, each require separate on-chip

buffers which consume considerable chip area. Despite their potentials for pipelining, the

distinct computing patterns of these two processing stages make it difficult to harness both

modules for efficient processing of general GNN structures.

EnGN [106] adopts the Ring-Edge-Reduce(RER) dataflow to tames the poor locality

of sparsely connected vertices, and manipulates the ring-edge-reduce (RER) PE-array to

practice RER dataflow. However, RER’s storage of neighbor node indices consumes enormous

local registers. Moreover, the index comparisons incurred by RER data movements may

induce considerable latency and soaring computation cycles.

The characteristics of Aggregation phase reveals that it can adopt sparse matrix mul-

tiplication, then it provides an option to unify the Transformation phase and Aggregation

phase into one single arithmetic operation, i.e., matrix multiplication, but aggregation phase

tends to be sparse-dense case. Fig.7.3 demonstrates the possibility of unification.

Our Solution Therefore, we propose to accelerate the two phases with one versatile

accelerator. We propose a unified hardware design that can reuse the limited on-chip buffers
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Figure 7.3: Unify transformation and aggregation phases

among the different processing stages. We can turn the aggregation stage into pseudo sparse

matrix multiplication. Our design is a scalable and efficient parallel processing engine and

support large-scale GNNs.

7.4 Microarchitecture

In this section, we discuss the hardware design of VersaGNN, with its system-level overview

outlined in Fig.7.4. VersaGNN consists of a general-purpose processor, a memory management

interface, a multi-purpose bus, and an accelerator. The processor is used to control the whole

system, send instructions to both the accelerator and the memory system, and collect the

status of the accelerator. The accelerator comprises an instruction queue, a DMA engine, a

scratchpad memory with several banks, and the systolic array tiles which are interconnected

side-by-side in a chain/ring fashion. An additional Block Address Mapping module is equipped

for address matching when tiling is applied, and a Result Reordering module is used for the

write-back phase of sparse-dense matrix multiplications (SpMM). Since the bulk of GNN

calculations are matrix computations, our accelerator targets the acceleration of both dense

and sparse matrix addition and multiplication.
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Figure 7.4: Overview of the hardware system design

7.4.1 Systolic Style Matrix Multiplier

The Transformation phase of the Graph Neural Network, formed by Multi-Layer Perceptrons

(MLP), is essentially a multiplication of node feature matrix with layer weight matrix [196,

174] that maps the high dimensional node features to lower dimensional spaces. The input

feature vector of a graph node is usually very sparse [174], implying that a node does not

hold all its defined features, with absent features holding zero values. The intermediary node

embeddings are gradually populated with non-zero values as feature aggregation proceeds,

whereas most weight matrices for these layers are dense. To fuse matrix operations among

these disparate structures, GNN requires a versatile accelerator architecture to tackle both

dense and sparse matrix calculations.

7.4.1.1 Revisiting Strassen’s Algorithm

Before diving into systolic array tile design, we revisit Strassen’s algorithm [172], and expand

it to block-based dense matrix multiplications to reduce the volume of expensive arithmetic

multiplications. Strassen’s algorithm has been studied and deployed on FPGA and GPU in
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the work of [32] and [81], respectively, which deliver eminent performance gains.

Given two matrices (or matrix tiles) A and B as input, we partition each of them into 4

sub-blocks: A0, . . . , A3 for A, and B0, . . . , B3 for B. Similarly, the result matrix C can be

divided into C0, . . . , C3.

S4 = B2 −B0

S0 = A3 + A0 S1 = B0 +B3

S6 = A2 − A0 S7 = B0 +B1

M0 = S0 × S1 C0 += M0

M3 = A3 × S4 C2 += M3

M5 = S6 × S7 C3 += M5

C0 += M3

C3 += M0

S2 = A2 + A3

S8 = A1 − A3 S9 = B2 +B3

S5 = A1 + A0 S3 = B1 −B3

M1 = S2 ×B0 C2 += M1

M2 = A0 × S3 C3 += M2

M4 = S5 ×B3 C1 += M4

M6 = S8 × S9 C0 += M6

C3 −= M1

C1 += M2

C0 −= M4

(7.8)
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We rearrange the equations of Strassen’s algorithm into 6 groups, as shown in Equation

(7.8). Equations inside each group are performed in parallel, and the right-hand side of some

equations in identical groups also share their operands, e.g., A0, B0 in the right-hand side of
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Figure 7.6: A simulated cycle-level illustration of the execution in a systolic tile of the

Strassen’s Algorithm. All 4 systolic tiles execute in parallel

the upper-left equation. To harness this element-wise parallelism, the three groups in the

left column can be executed in pipeline mode, the same for the three groups in the right

column. For example, after calculating M3, we can directly apply it to computing C2, and

simultaneously forward M3 to the next group and calculate C0 without saving or fetching

the intermediate result.

With the above analysis, we group the tiles of the systolic array into clusters (or meshes).

Fig.7.5(a) illustrates the layout of a systolic array cluster. Unlike the mesh architecture of

Gemmini [59], data across rows and columns are also shared in diagonal directions. The

shared buffers act as interfaces to the scratchpad memory. Our systolic method minimizes the

I/O cost by allowing each row or column of matrix operands to enter the processing element

array only once for all its associated matrix computations [98]. Since matrix additions are

element-wise operations, addition along rows and columns are independent. Further, the

matrix additions can overlap with matrix multiplications as the pipeline proceeds. In our

case, every systolic array receives the result of row or column addition from a pair of 1-D

adder arrays. Each 1-D adder array is either a column or a row of adders located at one side

of a systolic array, as shown in Fig.7.5 (a). The systolic arrays can forward the data through

interconnections between neighboring systolic arrays within the ring structure.
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Algorithm 5 One cycle in each PE of the systolic array for hybrid mode matrix multiplication.

1: function Mac( acol, aval, brow, bval, a sparse, a dense, direct aggr,FA )

. direct aggr: direct or weighted aggregation

. FA: circular FIFO CAM (increasing order)

2: found← false

3: if a dense or (a sparse and acol = brow) then

4: abuf ← aval; bbuf ← bval

5: found← true

6: if a sparse then

7: purge(FA)

8: else

9: if acol > brow then

10: (found, abuf )← Find&Skip (FA, brow)

11: bbuf ← bval

12: push(FA, acol, aval)

13: if found then

14: if direct aggr then . reduction operation can be add, min, max, or mean

15: cval ← reduction operation(cval, bbuf )

16: else

17: cval ← cval + abuf × bbuf

18: if a sparse then

19: (ch idx, cv idx)← (arow, bcol) . indices used for write-out phase when sparse

20: brow ← brow + 1;

21: found← false

22: else

23: cval ← cval

24: aout ← (aval, acol)

25: bout ← bval
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Algorithm 6 Find&Skip

function Find&Skip(FI,FV, idx)

. FI : circular FIFO CAM of nonzero indices;

. FV : circular FIFO of nonzero values;

. idx: an index value to be found;

. val: the value of nonzero found;

. found: indicates existence of idx;

mask[ : ]← 1

for all i < FI.size do

if FI[i].idx < idx or i < FI.head then

else

mask[i]← 0

. use the leading zero detector to find the position of first bit-one. And set the new

head of FIFO

FI.head← LeadingZeros(mask)

val← FV[FI.head]

found← equal(idx,FI.head)

return val, found

Fig.7.5 (b-d) demonstrates the execution of the right three groups in Equation (7.8).

The left three groups can be performed similarly and pipelined with the right three groups.

Within each cycle, every 1-D adder array imports data from shared buffers to produce a

row or column, and feed them to systolic array for matrix multiplication. 1-D adder arrays

and systolic arrays orchestrate in a pipeline mode. Once the marginal PEs of systolic array

receives the resultant row and column, they perform the MAC (Multiply-Accumulate) and

forward the inputs to their neighboring PEs to perform MAC of Mis, as shown in Fig.7.5

(b). The MAC starts execution one cycle after the adder array as the row of Fig.7.6. As

the results of matrix multiplication Mi are stored in the local register of PEs (in output
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stationary mode), we want to reuse them for the following matrix additions, then they are

transferred to the neighboring systolic array in the ring, as shown in Fig.7.5 (c). As the two

Ci = Ci +Mj operations in Fig.7.5 (b) and (c) are independent, they can be pipelined along

with data forwarding of Mis, but the one in stage 3 need to transmit Mi to be align with

those at the same coordinates in the systolic arrays prior to performing addition. All PEs

perform addition simultaneously during the last cycle, as shown in the 4th row of Fig.7.6.

(a)	GEMM	for	dense	matrices (c)	SpMM	for	weighted	aggregation (d)	SpAcc	for	direct	aggregation
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Figure 7.8: Three operation modes of PE: (a) dataflow of dense-dense matrix multiplication

for Transformation phase; (b) dataflow for the SpMM of weighted Aggregation; (c) dataflow

of the direct Aggregation; where RO is reduction operation, e.g., add, min, max, etc.

With this hardware-level implementation of Strassen’s algorithm, we decrease the volume of
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multiplication and data transfer of operands from memory by profiting the internal bandwidth

among PEs, as well as reading and writing of intermediate results from and to the scratchpad

memory. Strassen’s algorithm takes an asymptotic complexity of O(N2.8074) when applied

in recursive manner, compared with O(N3) of standard matrix multiplication. As shown in

Fig.7.5 (b), the four tiles of systolic array execute in parallel and form a cluster, with skid

buffers serving as bridges for inter-tile communication and the interface to local memory.

Compared with the case in which four tiles are consolidated into one large systolic array,

our design adopts a data source at the geometric center of the tile cluster, which effectively

halved the data transmission path. Meanwhile, The hardware approach in VersaGNN is in

1-level Strassen’s, and the software support of 2-level Strassen’s can be combined with this

design for further performance gain. [80].

7.4.1.2 Hybrid Mode Processing Elements

Fig.7.8(b) shows the internal structure of the processing element. To enable high-throughput

operations on both dense and sparse matrix data structures, we devise an efficient hybrid

mode processing element (PE) of the systolic array, it equips with dedicated searchable

FIFOs, with which we call it FIFO CAM. The FIFO CAM can search a target element

within its elements and skip unused elements as depicted in Algorithm 6 and Fig.7.8 (c).

Instead of using a shared storage structure, we leverage distributed FIFO CAM s design. Our

design accepts the COO (Coordinate list) and CSR/CSC (Compressed Sparse Row/Column)

formats [171]. The row is interpreted as a graph node and the column indices in such row are

the node’s neighbors. As the column indices moving in and out of the FIFO CAM, it only

needs to keep a relatively small sliding window for the indices under processing. Thus, it is

not necessary to store a whole list of neighbors for a graph node in the FIFO CAM of a PE.

Empirical result shows that 4 entries of FIFO CAM is big enough to accommodate ongoing

data.

As described in previous section, Transformation phase of intermediate layers of GNNs is
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simply a dense-dense matrix multiplication. In Algorithm 5, the PE conduct directly the

MAC operation for the dense matrix multiplication, the dataflow is shown as the light green

and red curve lines in Fig.7.9 (a), the FIFOs for operating sparse data are bypassed and

concealed.

Recall the general mathematical expression of the convolution layer of GNN:

X
′
= XW︸ ︷︷ ︸

Transform

; X
′′

= AX
′︸ ︷︷ ︸

Aggregate

(7.9)

In order to reuse X
′
, the result of dense matrix multiplication of Transformation phase, and

to avoid transferring X
′

back to scratchpad memory, we introduce an additional dataflow

path from bottom to up in PE and stored locally into register d of PE, as shown in Fig.7.7

(b). At the initial cycle of Aggregation, the PE selects the value of c register by setting signal

prop c to 1 and passes it down to the south neighbor PE. After this cycle, each PE sets prop c

back to 0 and transfer value of c register as b of dense matrix. At bottom row of systolic

array, PEs feed back the c to d register of PEs, the matrix X
′

turns back from bottom to

up inside the systolic array, as shown in Fig.7.8 (b) and (c). This manner avoids the long

distance data transfer leaping across all rows used in the ring structure of RER in EnGN

[106] which leads to imbalance of data transfer rate between rows of processing array.

For the weighed aggregations, we treat them as SpMM (AX
′
). Instead of using b register

of PE, now the dataflow uses d register of PE, which flows into PE in opposite direction,

as dense matrix element for MAC operation. The sparse data (from matrix A) are fed into
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PEs, in horizontal direction, from west to east. As described in Algorithm 5 and shown in

Fig.7.7(b), PE possesses a counter, brow, for the row number of dense matrix, it augments itself

at each cycle. When condition acol = brow satisfies, the PE performs the MAC directly as the

dense-dense case. However, if condition acol > brow meets, the PE checks whether FIFO CAM

of A contains indices smaller than or equal to brow, if there exists acol = brow, it fetches

the corresponding nonzero value aval from FIFO of nonzero, performs the MAC operation,

and puts acol and the corresponding nonzero into FIFO CAM and FIFO, respectively. All

iacol < brow and their corresponding nonzeros are expelled from FIFO ’s for sparse A. Note

that indices are enqueued into the FIFO CAM s in increasing order, thus are already in

sorted order in FIFO CAM s. Algorithm 6 describes the logic that performs searching and

skipping mechanism, and we can integrate FIFO with such logic into our FIFO CAM, as

shown in Fig.7.8(c). The detection in FIFO CAM is performed in parallel with all elements

as Fig.7.8(c). With the help of these FIFO CAM s, the PE can produce one result per cycle

without any inter-cycle stalls.

Fig.7.9 delivers a concrete example. Suppose that in Fig.7.9(a), S and D are a sparse

matrix and a dense matrix, respectively. The dataflow traversing PE(0,0) are the first row

of S in compressed format and first column of D that enter the PE from left and above in

Fig.7.9(b), respectively. Fig.7.9(c) demonstrates the cycle-by-cycle execution. In the first

two cycles, the comparison operator does not find the matching index of current element.

Thus, the FIFO CAM stores them, and the MAC bypasses the data of dense matrix to

neighboring PE s. At Cycle2, the FIFO CAM performs parallel comparisons of row indices

of S it stored with the incoming column index of D, and fetch the nonzero value of matched

entry. Since the FIFO CAM and MAC are fully pipelined, at Cycle 3, MAC performs the

multiplication and accumulation on the data fetched from previous cycle, and FIFO CAM

performs the comparison of new incoming index in parallel. The MAC utilization rate relates

to the number of matched indices. This issue can be solved with the algorithm introduced in

Section 7.5.2.
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The direct Aggregation can be seen as a special case of weighted Aggregation, where every

nonzero is value one. Therefore, it is useless to perform multiplication with value one. As the

light-red dataflow shown in Fig.7.8 (c), when indices acol and brow matches each other or it

found a column index in FIFO CAM equal to brow, PE directly performs the addition of c

and d register of PE without touching multiplier.

7.5 Software Approach

(a)		The	memory	layout	of	matrices	in	a	layer

(b)	Tile	mapping	for	SpMM	 (c)	Tile	mapping	for	GEMM

nonzero	tile
empty	tile

	

Figure 7.10: Memory layout and tiling strategy

7.5.1 Tile Traversal strategy

The vast majority of real-world graphs that GNNs operate on cannot be fitted to the limited

on-chip memory of accelerators. Thus, the algorithms often divide these large-scale graphs
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into tiles using grid partition approaches before applying arithmetic operations, and then

merge individual tiles into the full result layout.

There exist several tiling traversal strategies, including row/column-major, Z-Morton,

U-Morton, and Hilbert layouts [57, 20], that can be harnessed by GNN accelerators. However,

the shape of feature matrix X and weight matrix are constantly changing through different

layers. The feature matrix tends to become narrower and taller as the layers going deeper,

whereas the weight matrix becomes smaller in size. As modern deep learning libraries

support batched matrix multiplication with which the feature matrix can be seen as batched

independent smaller matrices. In such way, small matrices are streamed into accelerator

consecutively. In this work, we utilize two tile mapping strategies. For Transformation phase,

we directly map the 4 tiles in a bigger square onto the ring of systolic arrays from both input

and weight matrices, as shown in Fig.7.10 (c). In this way, the four systolic arrays in a ring

perform the dense Strassen’s algorithm as described in Section7.8. While, for the SpMM of

Aggregation phase, we adopt an alternative strategy. After tiling, only tiles with nonzeros

will take into account, those empty tiles are eliminated directly; the non-consecutive nonzero

tiles in the same column are mapped onto the four systolic arrays, which is now in a chain,

the dense tile from input matrix X is then traversing the four tiles. with such manner, the

systolic arrays perform the batched SpMM, as shown in Fig.7.10 (b).

7.5.2 Greedy Workload Balancing

As the sparse matrix elements are irregularly distributed, some graph nodes may have

relatively more neighbors. For sparse matrices in compressed formats, e.g., CSR or COO,

each row of systolic array PEs processes features of a single node and aggregates its neighbor

nodes’ information. PEs in different rows will be assigned different workloads. The imbalanced

workload can cause significant idling of PEs, with modules having less assigned workload

finishing earlier and kept idle while waiting for those with heavier workload before the advent

of next data stream, which will lead to degradation of the overall system-level performance.
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Figure 7.11: The greedy algorithm used for workload balancing: Given two tiles in CSR (or

COO) format, each row represents one graph node, and the number in each row represent

the column indices col index (or neighboring nodes) belonging to that row (or node).

To remedy these issues, We introduce an effective greedy algorithm for workload balancing,

which is an offline software scheme that groups tiles of sparse matrices into condensed ones.

Our algorithm first sets a sparsity threshold α%, e.g. 40% < α ≤ 50%. Assume the sparse

adjacency matrix is split into tiles, and each tile is stored in CSR or COO format. For each

tile with sparsity greater than α%, the algorithm searches for a complementary tile with

sparsity less than α% to combine with, as shown in Fig.7.11. Note that the number in each

cell represents the column index of sparse matrix but not the value of non-zeros. Rows of

the two tiles are sorted in reverse orders according to their number of elements and then

combined (or packed) into one single tile. As shown in Fig.7.11, the column indices are

arranged in increasing order. Duplicated elements are eliminated in each row, which prevents

overlapping summation of feature vectors that belong to the same neighboring node when

multiple vertices share a common set of neighbors. Our approach exploits an element mask

as an identifier to trace the affiliation relationship between cells and their corresponding tiles.

For combination of two tiles, each entry will have a single bit. Meanwhile, we adopt two 1-D

arrays, i.e. two reorder vectors, to record the original row ordering of tile elements. When
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this combined tile is fed into the systolic array, almost every PE is utilized to its full capacity

during each cycle. The mask and reorder vectors are utilized by the Reordering Module in

the accelerator to direct the final results back to the scratchpad memory. Each entry of the

combined tile, in form of ((row, col), val), is fetched with:

row ← row reordering[i,masks[i, j]]

col← bcol

val← values[i, j]

(7.10)

The execution of Reordering Module can be coordinated with that systolic arrays whenever

the output is ready, causing execution overhead that is generally negligible. Further, to

facilitate packed sparse tiles, both CSR and COO formats are treated internally as COO

within systolic arrays. This approach is extensible to combine 3 or more tiles.

7.6 Evaluation

In this section, we begin with the experimental datasets and hardware configurations. Then,

we deliver the detailed analysis of our optimizations.

Table 7.2: Configurations of system
PyG-CPU PyG-GPU HyGCN EnGN VersaGNN

Compute Unit
3.0GHz @

65 cores

1.25GHz @

5120 cores

1GHz @ 32 SIMD 16 cores

and 32×128 arrays

1GHz @ 128×16 arrays

32 PE units in VPU

1GHz @ 8 tiles of

32×32 arrays

On-Chip Memory 60MiB 34MiB 22MiB + 128KiB 1600KiB 4MiB + 256KiB

Peak Performance (GOP/s) - - 8704 6144 8192

Area (mm2) - - 7.8 (12nm) 4.54 (14nm) 4.78 (16nm)

Power (W) 150 120 6.7 2.56 3.58

Energy Efficiency (GOPS/W) - - 1.30 2.4 1.71

Area Efficiency (GOPS/mm2) - - 1.16 1.35 1.65
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7.6.1 Experiment Configurations

Methodology We implemented our accelerator, VersaGNN, along with the baselines using

Chisel3 Hardware Design Language (HDL) [10] Our design is also inspired by Gemmini [59]

and HardFloat [128]. The systolic array adopts the output-stationary fashion with 16-bit

floating point input and 32-bit floating point output. We evaluated the performance of the

entire system and individual modules of VersaGNN with FireSim [87], a highly efficient, open-

source simulator that simulates ASIC RTL designs with timing-accurate system components,

which is of several magnitudes faster than software-based RTL simulation. We used FireSim to

facilitate the full-system simulation by enabling integration of the simulated SoC with accurate

peripheral and system-level interface models such as DDR3 memory or High Bandwidth

Memory (HBM) and a last-level-cache (LLC). We synthesized VersaGNN using open-source

Yosys and the TSMC 16nm process technology. Power and area are evaluated using a Cadence

VLSI flow with TSMC 16 nm FinFET technology libraries. The placement and routing of

the physical design were performed using Innovus, and power estimation using Voltus. The

accelerators aim at achieving frequency of 1 GHz. To afford the high-throughput request

volume, we equip the accelerator with HBM 2.0 interface with 256GB/s bandwidth, and a

256 KiB L2 Cache and a 4MiB last level cache (LLC). The energy of HBM 2.0 is estimated

with 3.9 pJ/bit as in [115]. The configuration of VersaGNN and the baselines are described

in Table 7.2.

Baselines We choose three distinct types of baseline architectures for performance and

energy efficiency comparison, including the general-purpose processors (GPP), i.e. CPU

and GPU, and two state-of-the-art GNN accelerators including HyGCN and EnGN. We

selected the server processor, an Intel Xeon (Skylake) 6151@3.0GHz processor with 512GiB

DRAM, as the CPU platform. The GPU platform is equipped with NVIDIA Tesla V100 and

32GiB HBM2. The software environment for the two platforms is PyTorch [120] and PyTorch

Geometric (PyG) [52]. PyG is the state-of-the-art library for geometric deep learning that

provides the majority of mainstream GNN models. We denote CPU and GPU platforms
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Table 7.3: Dataset Statistics
Dataset Nodes Edges Features Classes Storage Sparsity Ave. Degree

Cora (CA) 2,708 10,556 1,433 7 1.5MB 1.44E-03 4

Citeseer(CR) 3,327 9,104 3,703 6 47MB 8.22E-04 5

Pubmed (PB) 19,717 88,648 500 3 38MB 2.28E-04 6

IMDB-BIN (IB) 2,647 28,624 136 2 1.5MB 4.09E-03 39

Reddit (RD) 23,296 114,615,892 602 41 972MB 2.11E-03 9

Amazon (AM) 8.6M 231.6M 86 22 30.4MB 3.13E-06 2

COLLAB (CL) 12,087 1,446,010 492 3 28MB 9.90E-03 263

running PyG as PyG-CPU and PyG-GPU, respectively. The configuration of HyGCN and

EnGN are listed in Table 7.2.

Benchmark Graph Datasets. Table 7.3 shows the statistics of benchmark graph

datasets. The Feature column specifies the length of initial feature vector (H0 from Table

7.1). The Class column marks the number of labels. The graphs in all listed datasets do not

contain edge attributes. The sparsity of adjacency matrix is determined by the ratio of the

number of graph edges to the square of the number of graph nodes. As we have stated in

previous section, the Aggregation phase, i.e. A×X ′ , is essentially SpMM, so we focus on

how the sparsity affects the efficiency of the accelerator in executing SpMM. Lengths of node

feature vectors determine tiling sizes and strategies of the dense matrix multiplication in the

Transformation phase.

GNN models We benchmark the performance of VersaGNN using 4 GNN models,

including GCN [96], GraphSAGE (GSA) [69], GIN [177], and GAT [159]. The first three

models are mainly used for semi-supervised classification, while GAT can also be applied

to inductive tasks, such as graph edge prediction and node feature prediction. To make the

GAT profiting the sparse matrix multiplication and addition, we reformulate the calculation

of the attention coefficients of Equation 7.6 and 7.7. Equation 7.6 can be expressed in matrix
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form,

H
′
= AHW (7.11)

where A is the attention matrix and A[i, j] corresponds to αi,j of Equation 7.6. Suppose

trainable vector a of Equation 7.7 can be split into two sections:

aT [h
′

i||h
′

j] = (a1||a2)T [h
′

i||h
′

j] = aT1 · h
′

i + aT2 · h
′

j (7.12)

where h
′
i = Θhi and h

′
j = Θhj . Turning it into matrix form, we get H

′
1 = H · a1, H

′
2 = H · a2.

And the calculation of attention coefficient matrix A becomes:

A = Softmax
(
σ
(
Diag(H

′

1) · A+ A ·Diag(H
′

2)
))

(7.13)

where A is the adjacency matrix and σ is the activation function LeakyReLU. We then

implement our customized code and replace the one in PyG. Most parts of Equation 7.11,

and 7.13 can be executed by SpMM, thus GAT can also benefit from our highly efficient

SpMM engine.

Evaluation Metrics We conduct our experiment with several metrics. We estimate 1)

performance through the end-to-end inference time of GNN models; 2) throughput by billion

operations per second (GOP/s); and 3) energy-efficiency by billion operations per second per

Watt (GOPS/W).

7.6.2 Results of experiment

IB CR CA CL PB RD AM IB CR CA CL PB RD AM IB CR CA CL PB RD AM IB CR CA CL PB RD AM

100

101

102

103

104

GCN GSA       GIN GAT CPU
GPU

Figure 7.12: Performance speedup of VersaGNN over PyG-CPU/GPU

Power & Area We summarize the power and area of HyGCN, EnGN, and VersaGNN

in Table 7.2. As reported by the CAD tool, the 4 banked 512 KiB scratchpad memory
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Figure 7.13: Performance speedup of VersaGNN over HyGCN and EnGN
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Figure 7.14: Energy breakdown of VersaGNN, left: GCN; right: GAT

and 128 KiB L2 Cache are the biggest part in our place-and-routed design. In the floor

plan we organize the SRAMs of the accelerator in a semi-ring around the computational

tiles. The second contributor of the area is the wires of the interconnections between tiles of

systolic array. Due to the limit of process technology at 16nm, the power of VersaGNN is

higher than EnGN but still achieves a higher energy efficiency than both EnGN and HyGCN.

Static timing analysis at net-list level shows that there is still some positive slack, signifying

potential for further frequency increases of our design. Fig.7.14 provides the breakdown of

the energy consumed by arithmetic operations, memory accesses, and interconnect between

tiles for the model of GCN and GAT. As the figures illustrates that the sparser dataset tends

to be compute-bound and denser dataset tends to be memory-bound. It is crucial to improve

the cache utilization for the denser dataset; while sparser graph’s neighbors having larger

stride crossing several tiles cause cache to evict more frequently.
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Figure 7.15: Effects of Strassen’s algorithm for GEMM (dense) on 4 tiles of systolic array

compared with a single large systolic array used by the baseline Gemmini ; Left: normalized

execution time; Right: bandwidth utilization rate

Performance The performance of VersaGNN is compared with baseline platforms

including PyG-CPU and PyG-GPU, HyGCN, and EnGN. The original implementation of

PyG adopts the Pytorch Scatter Library [49] for the Aggregation phase. Our experimental

results show that the average performance speedup of all models on all datasets compared with

PyG-CPU is 3712×, as shown in Fig.7.12. For the case of GPU, we rewrite the Aggregation

function as SpMM by using PyTorch Sparse library [50] and solved the memory leakage

problem for the version that we used in this experiment. As the writing of this work, PyG has

announced the re-implementation of the Aggregation phase as SpMM in its future release. We

obtained an average 35.4× speedup compared to PyG-GPU over all models on all datasets, as

shown in Fig.7.12. Compared to HyGCN and EnGN, VersaGNN achieves higher performance

speedup on both small and big datasets, especially for the model with weighted Aggregation

since prior to perform the summation the neighbor node’s feature vector, it needs to scale up

with the coefficient, e.g., the fraction of degree term in GCN, and the attention coefficient in

GAT. Finally, VersaGNN is 6.32× faster than HyGCN and 2.73× faster than EnGN.

Throughput Through our experiments, we observe that datasets with higher densities
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of graph connections (the number of edges) or longer node feature vector tend to yield higher

throughput. This is because longer feature vectors are well-suited to dense-dense matrix

multiplication due to their superior memory coalescing mechanisms, whereas their high graph

connectivity facilitates the memory access pattern since connected nodes are more likely to

share neighbors, which increases the spatial locality of memory access. By applying greedy

workload balancing, VersaGNN is able to maintain a steady throughput even on datasets

with massive irregular memory access, thus leveraging the computation and irregular memory

access of the SpMM.

7.6.3 Analysis of Optimization of VersaGNN

In this section, we evaluate the performance improvement of each optimization for Transfor-

mation and Aggregation, respectively.

Strassen’s Algorithm This optimization is applied only to the Transformation phase

which consists primarily of dense-dense matrix multiplication. The normalized execution time

and the bandwidth utilization in Fig.7.15 show that VersaGNN achieves 1.7∼3.1× speedup

when Strassen’s algorithm is applied at hardware level. The performance gain is due to the

parallelism from simultaneous matrix multiplications by 4 tiles of systolic array instead of

one large tile, and the data transmission traversing the boundaries of neighboring tiles is

achieved by utilizing the internal bandwidth of systolic arrays, which facilitates data reuse

and reduces the data write-backs. This demonstrates that through collaboration, smaller

spatial accelerators are able to achieve superior results than a single large module.

Greedy Workload Balancing The greedy algorithm introduced in Section 7.5.2 can

be utilized by both direct and weighted Aggregation phases. The efficiency of this greedy

approach is also affected by the sparsity of datasets, with sparser graphs bearing more tiles

to be coalesced. Graphs with higher average degree tend to produce denser tiles, and better

sparse tile packing strategy delivers more parallelism and utilizes less operation cycles to

improve the utilization of PEs. To further evaluate the improvement in SpMM of Aggregation
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Figure 7.16: the speedup of SpMM of Aggregation phase compared with SCNN [117]

phase, we use the SCNN, specialized for sparse model, as baseline. Experiments show that

SCNN is less efficient for GNN, since Cartesian Product-based SpMM consumes most of

time in processing massive irregular reduction of intermediate results, and the out-of-order

scattering operation causes stall when multiple intermediate results are written into same

memory location; while VersaGNN’s greedy algorithm feed the operands according to the

increasing order of indices in pipeline, which guarantees free of stalling, as shown in Fig.7.16.

This greedy algorithm is also affected by the tiling strategy described in Section 7.5.1, since

the sparsity varies according to the tile size and the distribution of node neighbors. Generally,

the greedy workload balancing algorithm afford great improvement in performance of speed

and energy saving. Since it is a static data pre-processing method prior to the execution of

model, greedy workload balancing improves the utilization of PEs and packs the sparse tiles

to increase more useful workload, as shown in Fig.7.17. Our greedy algorithm is more flexible

than the tile packing algorithm used in EnGN, which requires two tiles with fully compatible

empty slots. Moreover, HyGCN ’s window sliding strategy cannot remove zero-entries inside

the tiles.
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7.7 Related Work

There have been ongoing researches on tackling the hybrid computing pattern of Graph Neural

Networks [187, 179, 38, 7, 60]. GraphACT [187] devises an algorithm to exploit redundant

operations by looking for neighbor pairs. HyGCN [179] and EnGN [106] design high-

performance ASIC accelerators with two individual computing components for Aggregation

and Transformation phases, respectively. GraphZoom [38] proposes an efficient clustering

algorithm to condense the graph, reducing considerable inference latency.

Deep Learning Acceleration on Sparse Structures The latest machine learning

models, especially those for embedded and mobile systems[21], reduce their weight volumes

by driving smaller weight parameters towards zeros in the feature maps and filters, leading

to highly sparse models. Several works have been proposed for accelerating SparseNN and

sparse matrix computing [71, 123, 73, 74, 99]. [99] describes a novel approach of packing

sparse networks into denser formats for efficient implementation using systolic arrays. [21]

proposes Eyeriss v2 for execution of both compact and sparse DNNs. Architectures such as

[117] and [63] are committed to the sparse model design. Although the Cartesian-product

in [117] avoids the index matching in producing products, the calculation of destination

addresses corresponding to indices of products are still required while doing the partial sums,

which can be seen as a postponed index matching. SparTen [63] provides an effective inner

join mechanism, but their vector-vector multiplier cannot share broadcast inputs internally as

the highly-efficient systolic array. The bandwidth is wasteful, and the broadcasting demands

an intricate protocol for data synchronization.

Graph Analytics Systems solve graph-related problems from different dimensions.

Generally, they optimize conventional graph algorithms using a deterministic approach. Node

in these graph structures typically do not possess high-dimension attributes. Therefore, the

software and hardware solutions targeting these types of graphs [67, 19] are ineffective for

GNN models.
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7.8 Conclusion

The hybrid computation mode of Graph Neural Networks impose huge obstacles in acceleration

of GNN architectures. In this paper, we tackled GNN acceleration by first generalizing its

computation pattern into two stages, Aggregation and Transformation. Aggregation phase

is essentially formed by sparse matrix multiplication, whereas the Transformation phase is

dominated by dense matrix calculation. Then, we propose VersaGNN, a high-throughput

and memory-efficient GNN accelerator based on the systolic array paradigm. To offer the

flexibility towards both dense and sparse matrix multiplication, we re-factor the processing

element of systolic arrays. We further design the architecture of multiple tiles that form a

computing cluster, which supports efficient execution of Strassen’s algorithm. This hardware-

level Strassen’s algorithm dramatically reduces the computation and memory access. At

the same time, We also designed a greedy workload balancing algorithm from software

perspective to improve the efficiency of sparse matrix multiplication. Our vast experiments

have demonstrated that, under the state-of-the-art GNN software frameworks, VersaGNN

achieves on average 3712× performance gain with 1301.25× energy reduction on CPU, and

35.4× speedup with 17.66× energy reduction on GPU.
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CHAPTER 8

Conclusion

This dissertation contributes to building a full-stack platform for video analytic. The video

analytic platform introduces machine intelligence to assist humans to fulfill various tasks and

interactions between machines and humans. The whole system integrates several well-studied

modules as front-end, including object detection, object classification, human action detection,

etc., and these front-end modules produce information observed from the environment. This

information needs to be further processed by the backend modules to obtain the underlying

relationship between objects and humans; These backend modules synthesize new or hidden

information, which plays an essential role in scene parsing and understanding of the videos.

In such cases, the backend modules involve more sophisticated algorithms, such as graph

analytics and logic reasoning, which are not limited to deep learning.

8.1 Dissertation Summary and Contributions

Most of the works in this dissertation are focusing on the backend part of the video analytic

platform. This dissertation first presents a set of artificial intelligence algorithms utilized

for various scene parsing and scene understanding modules of the video analytic platform.

Then, according to the essential operation performed in these modules, this dissertation

demonstrated the design and implementation of the customized hardware accelerator and

optimization from an algorithmic angle by accelerating the underlying arithmetic operations,

such as tensor or matrix operations.
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Chapters 2, 3, and 4 are targeting efficient algorithm design for various modules in video

analytic platform. The combination of logic reasoning, graph algorithms with deep learning

approach are actually categorized as neural symbolic learning. Especially for traditional

NP-complete/hard problem, neural symbolic learning dramatically reduces the complexity of

computation while still keeps very close accuracy compared to traditional heuristic based

approaches. The works in this dissertation also target efficiency for low volume storage usage,

as the data format introduced for human action recognition and the dynamically generated

sparse attention coefficients during the computation.

Chapters 5, 6, and 7 are targeting design efficient hardware acceleration solution for the

aforementioned algorithms. Since we adopt the hardware/software co-design paradigm, the

hardware designs can keep their architecture as simple as possible while the software approach

facilitates the data transfer and reduces the number of complicated operations.

8.2 Future Work

As the video analytic platform becomes more and more complex, more functionalities

are required to fulfill more advanced tasks. The design complexity gradually exceeds the

manipulation ability of human beings, where it requires more involvement of machine

intelligence to assist. Meanwhile, the artificial intelligence community and the VLSI design

community are active and vital. The advancement in one community also improves another.

It is evident in demand for faster accelerators for AI algorithms. Recently, the AI community

is welcoming its new era for helping the VLSI community; especially, the deep learning

approach found its role in assisting electronic design automation (EDA), neural architecture

search, and high-level synthesis (HLS).

As the trial of the deep learning approach used for logic synthesis, an essential step in

VLSI design, in Chapter 4 has shown a promising solution; we want to extend this approach

to other graph algorithms utilized in EDA. The stochastic approach, such as deep learning,
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has notable characteristics other than the traditional deterministic approach, such as faster

convergence, better scalability, higher robustness.

The popularity of the Transformer model and its variants also drew many researchers’

attention. Moreover, people found that the Transformer model could be an omnipotent

model surpassing the convolutional neural network. The transformer model can be seen as a

particular case of the graph neural networks as they share some key characters and basic

operations. Therefore, in future work, we want to transfer the design of graph neural network

accelerator in Chapter 7 for the Transformer model.
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