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ABSTRACT OF THE DISSERTATION

When Galaxies Go Quiet: Elucidating the Drivers of Environmental Quenching Across
Cosmic Time

By

Devontae Cortez Baxter

Doctor of Philosophy in Physics

University of California, Irvine, 2023

Professor Michael C. Cooper, Chair

It has long been discovered that environment plays a major role in galaxy evolution, with

galaxies in dense regions of the cosmos more likely to have their star formation suppressed

or “quenched” relative to their more isolated counterparts. Despite this remarkable dis-

covery, our current understanding of the physical processes responsible for the suppression

(or “quenching”) of star formation remains woefully incomplete. This is especially true for

galaxies that are members of massive galaxy groups and clusters – i.e. “satellite” galax-

ies – given that our best cosmological models struggle to reproduce key observations, such

as the satellite quenched fraction. This dissertation aims to advance our knowledge in the

areas of environmental quenching that are poorly understood, focusing on the quenching

of low-mass dwarf satellite galaxies and satellite populations at intermediate and high red-

shifts. Observational studies of low-mass satellite quenching have been limited by their

inability to robustly characterize the local environment and star-formation activity of faint

systems. This work overcomes these limitations by combining supervised machine learning

and statistical background subtraction techniques to constrain the satellite quenched frac-

tion of group populations (Mhalo = 1013−14 M⊙) down to a satellite stellar mass limit of

∼107 M⊙. This approach successfully reproduces the established quenched fraction trends

at high-masses while finding that ram-pressure stripping – the rapid removal of cold gas from
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the interstellar medium of satellites as they move through the hot and dense intra-group or

intracluster medium permeating the host halo – is the likely dominant quenching mecha-

nism responsible for shutting down star formation in the low-mass regime. The importance

of investigating intermediate and high redshift is that the vast majority of environmental

quenching studies are limited to the very local Universe (z ≲ 0.1). This work addresses this

shortcoming by combining multi-wavelength spectroscopic observations of massive clusters

(Mhalo = 1014−15 M⊙) at z ≳ 1 with the infall histories of analogs from N -body simulations

to model satellite quenching at this poorly studied epoch. The quenching timescales derived

from this study indicate that “starvation” – the slow depletion of cold gas in the absence of

cosmological accretion after a satellite becomes a member of a more massive host – is the

dominant driver of environmental quenching at this epoch. However, this study lends sup-

port to the scenario where ram-pressure stripping potentially acts as a secondary quenching

mechanism in massive clusters at this epoch. Overall, this work provides valuable insights

into the quenching timescales and underlying mechanisms of satellite galaxies in massive

clusters at z ≳ 1, while introducing an impactful methodology that combines supervised

machine learning and statistical background subtraction to study the quenching of low-mass

satellites beyond the Local Group.
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Chapter 1

Introduction

Es más fuerte, si es vieja la verde encina; más bello el sol parece cuando declina; y esto se

infiere porque ama uno la vida cuando se muere.

– Rosaĺıa de Castro

Prior to the early 1920s, the prevailing view held that the Milky Way, our home galaxy,

represented the entirety of the known Universe. However, this all changed in the year

1923 when the astronomer Edwin Hubble made a monumental discovery that shattered this

notion, revealing that the Milky Way is just one of countless galaxies dispersed across the

vast expanse of space and time.

In the subsequent years, astronomers observed and studied various properties of galaxies,

including their morphology, size, color, and star formation activity. These observations led to

the emergence of the field of galaxy formation and evolution as a distinct scientific discipline.

A major milestone in this field was the discovery of strong correlations between various

galaxy properties and their surrounding environment. Notably, the morphology-density re-

lation (Dressler, 1980) highlighted the higher prevalence of elliptical galaxies in densely pop-
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ulated regions. Additionally, the star formation rate (SFR)-density relation (Dressler, 1984)

revealed that local clusters tend to host galaxies with no ongoing star formation, commonly

referred to as “quenched” or “quiescent” galaxies.

Advancements in observational techniques and technology, exemplified by large-scale galaxy

surveys like the Sloan Digital Sky Survey (SDSS), have played a pivotal role in further

revolutionizing our understanding of the interplay between galaxy properties and their en-

vironment. These surveys generated vast amounts of data, enabling statistical analyses that

unveiled critical trends and patterns in galaxy populations. One important discovery was the

revelation that over the past 7 − 10 Gyr the population of quiescent galaxies has increased

by more than a factor of two such that these systems represent the bulk of the stellar mass

budget at z ∼ 0 (Bell et al., 2004; Bundy et al., 2006; Faber et al., 2007).

Despite this remarkable discovery, our current understanding of the physical processes re-

sponsible for the suppression (or “quenching”) of star formation remains woefully incomplete.

This is especially evident for galaxies that are members of dense galaxy groups and clusters,

known as “satellite” galaxies, given that current state-of-the-art semi-analytic and cosmo-

logical models struggle to reproduce the observed fractions of quenched satellites, especially

at low-masses (M⋆ < 1010 M⊙) and beyond the local Universe (z > 0.1) (Kimm et al., 2009;

Weinmann et al., 2012; Hirschmann et al., 2014; Donnari et al., 2021). These discrepancies

highlight the incomplete nature of our current prescriptions for environmental quenching

and underscore the necessity for further investigations into the underlying drivers of this

phenomenon.

2



1.1 The Impact of Environment on Galaxy Quenching

Environmental quenching, analogous to a dying flame, is the process by which the star forma-

tion in satellite galaxies is extinguished as a result of the interactions and influences of their

surrounding environment. Although our understanding is limited, it is widely acknowledged

that environmental quenching involves either i) the depletion of gas without replenishment

or ii) the stripping and removal of cold gas, which serves as fuel for star formation. Two

prominent candidates for environmental quenching that satisfy these conditions are: i) “star-

vation” (Larson et al., 1980; Kawata & Mulchaey, 2008), characterized by the slow depletion

of cold gas in satellite galaxies after they become part of a more massive host, in the ab-

sence of cosmological accretion; and ii) “ram-pressure stripping” (RPS Gunn & Gott, 1972;

Poggianti et al., 2017), involving the rapid removal of cold gas from the interstellar medium

of satellites as they traverse the hot and dense intra-group or intracluster medium within

the host halo. There are several other mechanisms that may contribute to the quenching

of satellite galaxies. These include gravitationally-driven processes such as tidal stripping

(Merritt, 1983; Moore et al., 1999; Gnedin, 2003), galaxy mergers (Lavery & Henry, 1988;

Makino & Hut, 1997; Gottlöber et al., 2001), and galaxy harassment via high-speed impulsive

encounters (Farouki & Shapiro, 1981; Moore et al., 1996, 1998).

1.2 Environmental Quenching Across Cosmic Time

A primary distinguishing feature of the aforementioned environmental quenching mecha-

nisms is the efficiency at which they shut down star formation – i.e. the timescale upon

which satellite quenching proceeds, denoted τquench. Several environmental quenching stud-

ies, largely limited to the very local Universe (z < 0.05), have successfully constrained τquench

as a function of satellite and host halo mass (e.g. Wetzel et al., 2013; Wheeler et al., 2014;

3



Fillingham et al., 2015). These investigations provide important constraints on the dominant

drivers of environmental quenching, playing a critical role in refining the prescriptions used

in hydrodynamical cosmological simulations and semi-analytic models.

This work builds upon the aforementioned studies by employing innovative techniques to

enhance our understanding of satellite quenching in two distinct cosmic epochs: the present-

day local Universe and a time when the Universe was only half its current age. In order to

overcome the limitations imposed by current astronomical datasets, Chapter 2 introduces

a novel approach that I developed, utilizing supervised learning and statistical background

subtraction, to measure the quiescent fraction of dwarf satellites (M⋆ ∼ 106−9 M⊙) beyond

the Local Group (< 3 Mpc), which includes galaxies like the Milky Way and Andromeda.

Shifting the focus to the cosmic epoch when the Universe was about half its current age,

Chapter 3 explores satellite quenching in massive clusters at z ∼ 1, aiming to constrain

the quenching timescale for galaxies in this environment. Lastly, Chapter 4 presents an

environmental model that not only determines the timescale of environmental quenching but

also identifies the host-centric radius where this process initiates, offering robust constraints

on the dominant quenching mechanism operating during this critical epoch. Together, this

work contributes to a more comprehensive understanding of satellite quenching and provides

valuable insights into the underlying mechanisms shaping galaxy evolution across cosmic

time.

4



Chapter 2

A Supervised Learning Approach for

Exploring Low-Mass Satellite

Quenching Beyond the Local Group

By seeking and blundering we learn.

– Johann Wolfgang von Goethe

2.1 Introduction

The recent generation of large-scale galaxy surveys have revealed that the population of

non-star-forming (i.e. “quiescent” or “quenched”) galaxies increased by more than a factor

of two in the past 7− 10 Gyr, such that quenched systems, as opposed to their star-forming

counterparts, comprise the majority of the stellar mass budget at z ∼ 0 (Bell et al., 2004;

Bundy et al., 2006; Faber et al., 2007). While the growth of the global quenched population
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is relatively well measured at late cosmic time, our current understanding of the physical

processes responsible for the suppression (or “quenching”) of star-formation remains woefully

incomplete as evidenced by many models of galaxy formation overestimating the observed

satellite quenched fraction (Kimm et al., 2009; Weinmann et al., 2012; Hirschmann et al.,

2014). Nevertheless, a wide assortment of physical processes have been put forth to explain

how galaxies transition from star forming to quiescent. In general, these processes are split

into two distinct categories, namely, internal and environmental quenching. The former,

which acts independent of local environment (i.e. on both central and satellite systems), refers

to any quenching process that suppresses star formation from within a galaxy. Examples

of internal quenching mechanisms include feedback from star formation (Oppenheimer &

Davé, 2006; Ceverino & Klypin, 2009) and active galactic nuclei (AGN, Di Matteo et al.,

2005; Hopkins et al., 2005; Croton et al., 2006). On the other hand, environmental quenching,

which typically applies to low-mass satellites (≲ 1010 M⊙), refers to a range of quenching

mechanisms that suppress star formation due to environmental factors – e.g. ram-pressure

stripping (Gunn & Gott, 1972; Abadi et al., 1999), tidal stripping (Merritt, 1983; Moore

et al., 1999; Gnedin, 2003), strangulation or starvation (Larson et al., 1980; Kawata &

Mulchaey, 2008), and harassment (Moore et al., 1996, 1998). In general, environmental

quenching mechanisms suppress star formation by either preventing satellites from accreting

gas (e.g. strangulation) or by removing pre-existing gas reservoirs through galaxy-galaxy

interactions (i.e. harassment), gravitational tidal forces (e.g. tidal stripping), or interaction

with the circumgalactic medium of the host (e.g. ram-pressure stripping).

At z ∼ 0, galaxy surveys find that satellites, not centrals, comprise the largest fraction of

passive systems over a wide range of stellar masses (≲ 1010.7 M⊙, Wetzel et al. 2013). Fur-

thermore, observations of low-mass (≲ 109 M⊙) galaxies in the local Universe have demon-

strated that nearly all field galaxies are star forming, signaling that environmental quenching

is primarily responsible for suppressing star formation in the low-mass regime (Haines et al.,

2008; Geha et al., 2012). Altogether, these observations demonstrate the importance and
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ubiquity of satellite quenching at late times and especially low satellite masses. Yet, hy-

drodynamic and semi-analytic models, which successfully predict the fraction of quiescent

centrals, continue to significantly overpredict the relative number of passive satellites, espe-

cially at low-masses (Kimm et al. 2009; Hirschmann et al. 2014; Wang et al. 2014, but see

also Henriques et al. 2017). This discrepancy between theoretical predictions and observa-

tions is driven by a failure to properly model the physical processes responsible for satellite

quenching. This lack of agreement between observations and theoretical models further em-

phasizes that understanding the details of satellite quenching is tantamount to advancing

our understanding of galaxy formation.

Our current understanding of satellite quenching at low masses is largely derived from studies

of dwarf galaxies (M⋆ ∼ 106 − 108 M⊙) in the very local Universe, including our own Local

Group. First and foremost, a range of observations demonstrate that the vast majority

of low-mass satellites are gas-poor and passive, in contrast to their gas-rich, star-forming

counterparts in the field (e.g. Grcevich & Putman, 2009; Spekkens et al., 2014; Weisz et al.,

2014a,b). Furthermore, studies of the accretion history of these systems using N -body

simulations demonstrate that quenching is highly efficient, such that the typical timescale

over which quenching occurs is ∼ 2 Gyr at M⋆ ≲ 108 M⊙ (likely driven by an increase in

the efficacy of ram-pressure stripping, Fillingham et al. 2015, 2016, 2018; Wetzel et al. 2015;

Weisz et al. 2015). On the other hand, studies of the more massive satellites (M⋆ ≳ 108 M⊙)

in the Local Group and nearby groups/clusters find that these systems have significantly

longer quenching timescales (≳ 5 Gyr), consistent with starvation acting as the dominant

quenching mechanism (De Lucia et al., 2012; Wetzel et al., 2013; Wheeler et al., 2014).

Taken together, this implies that a transition in the dominant quenching mechanism occurs

at M⋆ ∼ 108 M⊙ (at least within Milky Way-like host halos, Mhalo ∼ 1012 M⊙, Fillingham

et al., 2016; Rodriguez Wimberly et al., 2019a).

A major step towards increasing our understanding of satellite quenching involves determin-
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ing if the aforementioned results extend beyond the Local Group. Is a similar increase in the

quenched fraction observed at low masses outside of the Local Group (and/or in more massive

host halos), indicating a corresponding increase in the efficiency of environmental (or satel-

lite) quenching at this mass range? Unfortunately, the current generation of spectroscopic

surveys lack the necessary combination of depth, area, and/or completeness to reliably probe

this mass regime. For example, at the magnitude limit of the main spectroscopic survey,

the Sloan Digital Sky Survey (SDSS, York et al., 2000) can only probe galaxies with stellar

masses less than 108 M⊙ at z < 0.01. While more recent surveys push fainter, including the

Galaxy and Mass Assembly (GAMA) (GAMA, Driver et al., 2009, 2011) survey, the corre-

sponding area of sky mapped is significantly smaller, again limiting the number of nearby

hosts around which we can study their satellites. In contrast to spectroscopic data sets, wide

and deep imaging programs are able to probe both star-forming and passive galaxies down

to stellar masses of ∼ 107 M⊙ at z ≲ 0.1, covering significant areas on the sky.

Herein, we present a method for measuring the satellite quenched fraction down to M⋆ ∼

107 M⊙ by applying machine learning and statistical background subtraction techniques to

wide and deep photometric data sets, pushing beyond the limits of current spectroscopic

samples. In §2.2, we describe the spectroscopic and photometric data sets utilized in our

analysis. In §2.3, we discuss the training, testing, and performance of our neural network

classifier (NNC) as well as our use of the trained model to classify galaxies in our photo-

metric sample as star forming or quenched. In §2.4, we describe our statistical background

subtraction technique and use it to measure the satellite quenched fraction around nearby

groups. Lastly, in §2.5, we discuss and summarize our results. When necessary, we adopt a

flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3. All magnitudes are on

the AB system (Oke & Gunn, 1983).
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2.2 Data

2.2.1 Photometric Sample

Our analysis utilizes the co-added images and photometry from the Sloan Digital Sky Survey,

focusing on the deeper Stripe 82 data set (S82, Annis et al., 2014; Bundy et al., 2015). Stripe

82 is centered on the Celestial Equator and is comprised of an area of ∼ 300 deg2 that spans

between −50◦ < α < 60◦ and −1.25◦ < δ < +1.25◦. The co-added images in S82 reach a

depth ∼ 2 magnitudes deeper in ugriz relative to the SDSS single-pass data. Overall, the

wide area and impressive depth (r ∼ 22.4, 95% complete for galaxies) of Stripe 82 make it

well-suited for studying the properties of low-mass galaxies in the local Universe. For the

purpose of our analysis, we limit the S82 sample to only include galaxies (defined using the

SDSS TYPE parameter) with 13 < r < 21.5. This apparent r-band magnitude cut is applied

to ensure that galaxies in our sample are below the SDSS saturation limit and above the

95% completeness limit for galaxies in the gri passbands.

We exclude the shallower and less complete u and z bands throughout our analysis. Further-

more, as discussed in Bundy et al. (2015), the TYPE-based galaxy classification is contami-

nated with a non-negligible fraction of stars (∼ 10%), which is attributed to PSF character-

ization issues in the co-added images. Based on visual inspections, we find that the fraction

of stars misclassified as galaxies is higher and more pronounced at brighter magnitudes.

To eliminate stars from the photometric sample, we remove sources at 15 < r < 18 that

are classified as stars in the corresponding single-pass SDSS images. At the very brightest

magnitudes (r < 15), where number counts are lower, we remove stars based on a visual

inspection of the single-pass SDSS images. Combined, these two procedures remove ∼ 6%

of sources at r < 18 from our sample, such that our final catalog includes 1,293,392 galaxies

with non-extinction-corrected gri photometry in S82. Accounting for Galactic extinction

does not change our qualitative results, in part due to the low extinction in the S82 field
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(Schlegel et al., 1998).

2.2.2 Spectroscopic Training Set

To train our classification scheme, which aims to identify galaxies as star forming or quenched,

we use spectroscopic data products from the Max Planck Institute for Astrophysics and

Johns Hopkins University DR7 catalog (MPA-JHU, Kauffmann et al., 2003; Brinchmann

et al., 2004) along with photometry from SDSS Data Release 7 (Aihara et al., 2011). The

MPA-JHU catalog is a value-added data set derived from the spectroscopic SDSS DR7, con-

taining stellar mass and star formation rate (SFR) estimates for nearly a million galaxies up

to z ∼ 0.3. When available, the SFRs are derived using the extinction-corrected Hα emis-

sion line luminosities. For galaxies that lack emission lines, the SFRs are estimated using a

relationship between SFR and the 4000Å-break index (D4000, Bruzual A., 1983; Hamilton,

1985; Brinchmann et al., 2004). Likewise, the stellar masses are computed using model fits

to the broad-band ugriz photometry (Kauffmann et al., 2003).

We match galaxies in the MPA-JHU and SDSS DR7 catalogs using their unique MJD, plate

ID, and fiber ID to construct a cross-matched catalog that includes both photometric and

spectroscopic galaxy properties. These properties include gri model magnitudes, specific

star-formation rates (sSFR; SFR divided by stellar mass), redshifts, and stellar masses.

Furthermore, we limit our cross-matched catalog to only include galaxies in which CLEAN

= 1, RELIABLE ̸= 0. The former is a photometric flag that removes sources suffering

from saturation, deblending, and/or interpolation issues. The latter is a spectroscopic flag

that omits galaxies with unreliable line profiles and physical parameters. Overall, these cuts

remove roughly 3% of galaxies from the original MPA-JHU catalog. Finally, we limit our

sample to only include galaxies at z < 0.1 and M⋆ > 106.5 M⊙, with measured specific

star formation rates. Overall, our final sample includes ∼ 240,000 galaxies, with a median
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redshift of 0.07, median stellar mass of 2.7× 1010 M⊙, and median r-band magnitude of 17.

2.2.3 Host Sample

Our spectroscopically-confirmed host sample is selected from the group catalog of Yang et al.

(2007). We select groups within the Stripe 82 footprint at z < 0.1 and 1013 < Mhalo h
−1 M⊙ <

1014, excluding groups that are located within 0.5 degrees of the edges of the Stripe 82 field.

Our final sample consists of 110 hosts, with a median redshift of 0.077 and a median halo

mass of 1.6 × 1013 M⊙. The central galaxies in these groups have a median stellar mass of

1.3× 1011 M⊙.

2.3 Neural Network Classifier

2.3.1 Feature Selection and Pre-Processing

The first step in constructing our training set for supervised machine learning involves se-

lecting the appropriate features that will enable our machine learning model to accurately

classify galaxies as either star forming or quenched. Moreover, we can only include photomet-

ric features since we ultimately seek to apply our neural network classifier (NNC) to galaxies

without spectra. To that end, we construct a heatmap to visualize the degree of correlation,

as measured by the Pearson correlation coefficient, between the specific star formation rate

of the MPA-JHU galaxies and their photometric properties. As shown in Figure 2.1, we find

a relatively strong negative correlation between the optical colors of the galaxies and their

specific star formation rates, which implies that optically blue (red) galaxies tend to have

higher (lower) specific star formation rates. With this correlation in mind, we construct our

training set using only the g− r, r− i, and g− i observed colors as features. The inclusion of
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Figure 2.1: A heatmap displaying the correlation between observed colors, apparent mag-
nitudes, and specific star-formation rates for galaxies in our spectroscopic training set. In
general, supervised neural network classifiers rely heavily on an existing correlation between
input features and target variables (i.e. quenched or star-forming label). For our sample, we
detect a relatively strong correlation between observed color and sSFR.
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magnitude information (i.e. apparent gri magnitudes) has a negligible effect on the resulting

classifications, and as such was not utilized in the final configuration.

The second important step in constructing our training set for supervised machine learning

involves systematically labeling galaxies as either star forming or quenched. We achieve this

by taking advantage of the strong bimodality in sSFR-M⋆ space, which for our MPA-JHU

sample is illustrated if Figure 2.2. In particular, we adopt a cut of sSFR = 10−11 yr−1 as

our quenching threshold, such that galaxies above (below) this threshold are labeled as star

forming (quenched). This results in a balanced training set where 49% (51%) of galaxies are

classified as quenched (star forming). This is important because imbalanced training sets can

result in uninformative models that naively overpredict the majority class and underpredict

the minority class. Furthermore, we standardize the features of our training set to have a

mean of zero and standard deviation of one according to Xst = (X − µ)/σ, where X, µ,

and σ are the input feature, mean, and standard deviation of the sample, respectively. This

pre-processing procedure is implemented to optimize the performance and stability of the

neural network classifier, which assumes that the inputs are standardized.

Lastly, to construct our validation set, we remove 6600 out of the ∼ 240,000 galaxies in

our training set. The validation set is composed of a subset of those galaxies cross-matched

between the MPA-JHU and the S82 photometric catalogs using a search radius of 1′′. We

omit these galaxies from the training and testing process, so that they can ultimately be

used to evaluate the performance of the resultant NNC.

2.3.2 Supervised Neural Network Classifier

The supervised neural network classifier is a machine learning model that is trained using

labeled observations in order to learn a mapping function between input features and out-

put targets. The utility of these models is that once they are trained they can be readily
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Figure 2.2: Specific star formation rate versus stellar mass for galaxies in our spectroscopic
training set. The contours highlight the star-forming and quenched galaxy population within
our sample. We divide the galaxy sample at sSFR = 10−11 yr−1, such that galaxies above
this threshold are labeled as star forming and galaxies below this threshold are labeled as
quenched.
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Figure 2.3: Classification accuracy in the validation set as a function of redshift and stellar
mass (left) along with observed g − r and g − i color (right). The accuracy of the NNC
is largely independent of host halo redshift and weakly dependent on stellar mass, with
high-mass galaxies more likely to be incorrectly classified. Despite the training set being
largely composed of high-mass galaxies (∼ 90% of the training set has M⋆ > 109.5 M⊙), we
find that the overall classification accuracy as well as our primary satellite quenched results
remain qualitatively unchanged when high-mass systems are omitted from the training set.
As expected, the NNC is less reliable at classifying galaxies at intermediate colors (i.e. in the
“green valley” of the color bimodality) precisely due to the binary nature of the classification
scheme.
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used to classify unlabeled observations. Moreover, neural network classifiers are constructed

using a variety of hyperparameters that influence the overall performance of the machine

learning model. The optimal hyperparameters for our NNC are obtained using a K-fold

cross-validation grid search. The names and values of these hyperparameters are as follows:

(i) the number of hidden layers is two; (ii) the number of nodes in the first and second hidden

layer are 8 and 4, respectively; (iii) the batch size is 64; (iv) the number of epochs is 10; (v)

the dropout is 20%. As is standard for binary classification, we use the rectified linear unit

(ReLU) activation function for the input and hidden layers, while the sigmoid activation

function is used for the output layer. Our model is compiled using a binary cross-entropy

loss function and stochastic gradient descent with a learning rate of 0.01. Lastly, we use a

stratified K-fold cross validation procedure with k=5 to determine the average accuracy and

logarithmic loss of our model.

2.3.3 Performance of Neural Network Classifier

The K-fold cross validation yields an average classification accuracy of 0.94 and logarithmic

loss of 0.17. Here, the accuracy measures the fraction of galaxies that are correctly classified

during the training/testing process, while the logarithmic loss measures the uncertainty of

the predictions made by the NNC. Therefore, the high average classification accuracy and

low logarithmic loss suggest that our NNC returns both accurate and precise classifications.

Another diagnostic for determining the reliability of the NNC involves applying the trained

model to labeled data that was not utilized during the training or testing process. In our case,

we use our validation set that is composed of a subset of the galaxies cross-matched between

our spectroscopic training set and the S82 photometric sample. Upon applying the NNC to

our validation set, we find that 93% of galaxies in the validation set are correctly classified

as quenched, and 95% of star forming galaxies in the validation set are correctly classified

as star forming. Moreover, we find that the true quenched fraction for the validation set
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is reproduced by the NNC with an average percent error of ∼ 2%, largely independent of

stellar mass.

In addition to classifying the galaxies in the validation set, the NNC also provides a clas-

sification probability (CP) between 0 and 1 for each prediction such that the CP equals 0

(1) when the model is 100 percent certain that a given galaxy is quenched (star forming).

With this information, we define the classification confidence to be equal to the classification

probability when CP > 0.5 and equal to 1 − CP when CP < 0.5. The mean and median

classification confidence are 0.927 and 0.98, respectively. Overall, these results provide fur-

ther confidence in the reliability and accuracy of the predictions made by the neural network

classifier.

Using the validation set, we also explore how the classification accuracy varies with galaxy

properties. As shown in Figure 2.3, we find that the classification accuracy remains relatively

constant across our specified redshift range, such that host halos at slightly lower redshift are

not biased relative to their higher-z counterparts within the sample. We do find, however,

a modest correlation between classification accuracy and stellar mass, such that the NNC

achieves higher levels of accuracy when classifying lower-mass galaxies (M⋆ ≲ 109 M⊙).

While the spectroscopic training set is dominated by more massive galaxies (∼ 90% of the

spectroscopic training set has M⋆ > 109.5 M⊙), the classification accuracy – and our primary

results regarding the satellite quenched fraction – are qualitatively unchanged when limiting

the spectroscopic training set to systems with 106.5 M⊙ < M⋆ < 109.5 M⊙.

As suggested in Figure 2.1, g−r and g−i color are the most informative features with respect

to predicting whether a galaxy is star forming or quenched. In Figure 2.3, we explore the

relationship between the classification accuracy and these two features. As expected, the

classification accuracy is highest for very blue and red galaxies, with a modest decrease

for galaxies residing in the green valley. This is in part due to the binary nature of our

classification scheme (i.e. the lack of a transitory phase between star forming and quenched)
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Figure 2.4: An illustration of our background subtraction technique, in which we measure the
radial number density of galaxies around our host galaxies (left) and in randomly-selected
background fields (middle). Using the photometric sample, we compute the mean number
density profile as a function of projected radial distance, averaged over our sample of hosts
and 6× 104 background fields (right). The error bars for both radial profiles correspond to
1-σ Poisson errors in the measured surface density of galaxies.

along with the overlap between dusty star-forming galaxies and quiescent systems in rest-

frame optical color (e.g. Yan et al., 2006; Maller et al., 2009; Williams et al., 2009).

2.3.4 Classification of Galaxies in Stripe 82

Using the hyperparameters discussed in §2.3.1, we train our NNC on the entirety of the

spectroscopic training set (§2.2.2). Next, we standardize the apparent g− r, g− i, and r− i

colors of the galaxies in our S82 photometric sample to have a mean of zero and standard

deviation of one using the same procedure outlined in §2.3.1. Classifying our photometric

sample using the trained NNC, we find that 66% of the galaxies in our photometric sample

are classified as quenched while 34% are classified as star forming. We recognize that the

fraction of passive galaxies in our photometric sample is biased high due to the inevitable

inclusion of high-z galaxies. Many of these high-z sources have red apparent colors, and are

more likely to be classified as quenched. Ultimately, the success of our approach relies on

correctly classifying the low-z sources (i.e. the satellites of our targeted group sample). With
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that objective, the next step in our analysis involves combining the classification results with

a statistical background subtraction technique to ultimately determine the satellite quenched

fraction of our low-z host sample.

2.4 Analysis of the S82 Sample

2.4.1 Statistical Background Subtraction

While deep imaging allows the satellite population around nearby hosts to be detected and

our NNC is able to robustly classify sources as star forming or quenched, identifying the true

satellites amongst the sea of background sources remains a challenge. This is primarily due

to the lack of highly-complete line-of-sight velocity information for our photometric sample,

which is required to cleanly determine if a particular source is truly a satellite of a given host.

However, instead of identifying properties of individual satellites, we employ a statistically-

driven background subtraction technique that enables us to robustly measure the average

properties of the satellite population. Figure 2.4 illustrates our methodology, by which we

compare the radial distribution of galaxies around nearby hosts to that measured in random

positions on the sky. By subtracting the random background, we are able to measure the

average properties (e.g. radial profile, rest-frame color distribution, quenched fraction) of the

underlying satellite population.

This statistical approach has proven effective in previous studies of satellites at intermediate

redshift (Tal et al., 2013; Kawinwanichakij et al., 2014; Nierenberg et al., 2011, 2012). In

general, the background subtraction procedure utilized in these studies involves measuring

the radial distribution of galaxies around spectroscopically-confirmed hosts and subtracting

the contribution from the background/foreground galaxies. For our analysis, we utilize the

110 centrals from the Yang et al. (2007) group catalog that overlap with the S82 footprint as
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our sample of spectroscopically-confirmed host galaxies. As stated in §2.2.3, our host sample

is situated at z < 0.1 and have halo masses between 1013 and 1014 h−1 M⊙.

Our technique for estimating the contribution from background galaxies involves measuring

the radial distribution of galaxies at random positions within the S82 footprint. In particular,

we generate 106 random positions within Stripe 82, assigning each a corresponding redshift

between 0.02 < z < 0.1 as randomly drawn from a uniform distribution. As was done for the

host sample, the random positions are also required to be less than 0.5 degrees from the edges

of the S82 field. We have also considered requiring the random points to be sufficiently far

away from the spectroscopic hosts (e.g. dproj > 1− 2 Mpc). However, we ultimately omitted

this constraint since both scenarios return qualitatively similar results.

We partition our hosts and random positions into six evenly-spaced redshift bins between

0.02 < z < 0.1. For a given redshift bin, we count the number of quenched and star-forming

galaxies in annuli centered on the hosts in bins of r-band magnitude. This procedure is

repeated at the location of the background pointings, for which we count the number of

quenched and star-forming galaxies in bins of r-band magnitude within annuli centered on

100 random positions. Specifically, the photometric sample is partitioned into seven r-band

magnitude bins between 13 < r < 21.5 and the galaxies are counted in five annuli between 15

and 1000 kpc. For each r-band magnitude and redshift combination, we calculate the average

number of quenched and star-forming galaxies per annuli for both the background and the

spectroscopically-confirmed centrals. Moreover, for each individual host/random position,

we calculate the 1-σ Poisson error associated with our measurement and propagate this error

in the calculation of the average number of galaxies per annuli. Increasing the number of

random pointings used to determine the background (i.e. > 100) yields no significant change

in our results.

The galaxies are counted in the manner outlined above because it allows us to robustly

estimate stellar masses for our statistical satellite population by capitalizing on the strong
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correlation between apparent r-band magnitude and stellar mass at fixed redshift. To deter-

mine this mapping from r and z to stellar mass, we fit the following relation to galaxies in

the MPA-JHU catalog

M⋆(r, z) = γ ∗ r + b(z) , (2.1)

where γ and b(z) correspond to the slope and y-intercept of the fit in a given redshift bin.

In particular, we fit this relation in redshift bins (with typical width of ∆z = 0.005), such

that the statistically-inferred galaxy counts as a function of r-band magnitude (following

background subtraction) can be mapped to stellar mass based on the redshift of the host

system. In Figure 2.5, we compare the stellar masses estimated using our best-fit parameters

for Equation 2.1 to the corresponding stellar masses from the MPA-JHU catalog, which are

based on fitting the multi-band photometry to model spectral energy distributions. Our

stellar mass estimates, inferred solely from the observed r-band magnitude, are relatively

accurate with a median difference of −0.030 dex and a 1σ scatter of 0.22 dex. There is a

slight bias towards our method under- and over-predicting the masses of high-mass and low-

mass galaxies, respectively. Not surprisingly, the fits to Equation 2.1 are best at intermediate

stellar masses, where the spectroscopic training set is more abundant. Tuning our fits to

better reproduce the stellar masses of low-mass systems does not yield a significant change

in our results, with our measurements of the satellite quenched fraction computed in bins of

stellar mass that exceed the typical measurement uncertainty.

Altogether, the statistical background procedure provides us with a measure of the average

number of quenched and star-forming galaxies as a function of projected distance and stellar

mass at the location of both the spectroscopically-confirmed host galaxies and the random

background positions. With these galaxy counts and classifications, we compute the average

number of quenched and star-forming satellites as a function of stellar mass and projected

21



distance according to

N̄sats(dproj,M⋆) =
∑

(N̄back+sats − N̄back) , (2.2)

where N̄back+sats and N̄back are the average number of galaxies measured in annuli centered

on the spectroscopically-confirmed centrals and random positions, respectively.

In Figure 2.6, we show the resulting average number of satellites as a function of stellar

mass and projected host-centric distance. We adopt 400 kpc as the outer extent of our

groups (roughly R200) based upon a comparison to similar halos in the IllustrisTNG project

(Nelson et al., 2018, 2019; Naiman et al., 2018a; Marinacci et al., 2018; Springel et al., 2018;

Pillepich et al., 2018). For host halos at z = 0 and 1013 h−1 M⊙ < M200 < 1014 h−1 M⊙

within the TNG300 simulation, a sample of > 2000 halos with a median mass of M200 ∼

1.85 × 1013 h−1 M⊙, the median R200 is 430 h−1 kpc with a 1σ scatter of 97 h−1 kpc.

Given that our measurements are made in projection, we limit our selection of the satellite

population to projected distances of < 400 kpc. While this excludes a subset of satellites

at host-centric distances of 400 kpc < R < R200, it also reduces contamination from objects

in the surrounding infall regions (R ∼ 1-2 R200). As discussed in §2.4.2, our results are

qualitatively unchanged when including satellites out to projected distances of 600 kpc or

800 kpc.

Selecting satellites within 400 kpc, we find excellent agreement between our inferred satellite

stellar mass function and that measured for the IllustrisTNG hosts. As shown in Figure 2.7,

our integrated satellite counts are very tightly bracketed by the corresponding predicted

counts in the TNG100 and TNG300 simulations, where we select satellites at projected

distances of < 400 kpc for hosts with M200 = 1013−14 h−1 M⊙. In addition, we compare

to the observed satellite mass function from Yang et al. (2008, 2009), based on a sample

of spectroscopically-confirmed satellites in ∼ 300,000 low-z groups (see also Vázquez-Mata
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Figure 2.5: Comparison between our estimated stellar masses and those provided by the
MPA-JHU catalog. Our stellar mass estimator, which we infer by fitting galaxies in the
MPA-JHU catalog using Equation 2.1, provides robust mass measurements in the absence of
multi-band photometry. In comparison to the MPA-JHU measurements, the median stellar
mass difference is −0.030 dex with a standard deviation of 0.22 dex.
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Figure 2.6: The average number of satellites as a function of stellar mass in projected distance
bins. The vertical error bars gives the standard deviation in the distribution of the number
of satellites after repeating the background subtraction procedure 100 times, whereas the
horizontal error bars represent the standard deviation within the stellar mass bin. For our
analysis, we limit our satellite population to systems at dproj < 400 kpc.
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Figure 2.7: The cumulative satellite stellar mass function based on our statistical background
subtraction technique in comparison to that from spectroscopic observations and simulations.
The dark and light crimson bands show our satellite counts (per group) at R < 400 kpc and
R < 600 kpc, respectively. The purple band corresponds to the satellite stellar mass function
for groups with Mhalo = 1013.2−13.8 h−1 M⊙ from Yang et al. (2009), while the black dashed
and dotted lines denote the satellite counts for host halos with M200 = 1013−14 h−1 M⊙ and
satellites at projected distances of < 400 kpc within the TNG100 and TNG300 simulations,
respectively. We find excellent agreement between our inferred satellite counts and those
based on simulations and shallower spectroscopic samples.

et al., 2020). Overall, our measured satellite mass function is in remarkably good agreement,

especially at low masses (or faint magnitudes). While our background-subtraction technique

is unable to identify individual satellite galaxies, it is quite robust at indirectly identifying

the satellite population, such that its properties may be characterized.
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2.4.2 Measuring the Satellite Quenched Fraction

As a benchmark for comparison, we measure the quenched fraction as a function of satellite

stellar mass for the spectroscopically-confirmed satellites in the Yang et al. (2007) group

catalog. We limit our sample of host halos to those with 1013 h−1 M⊙ < Mhalo < 1014 h−1 M⊙,

identifying satellites as quenched according to the sSFR cut of 10−11 yr−1 described in

§2.3.1. Unlike our photometric analysis, however, we include groups across the entire SDSS

spectroscopic footprint — i.e. both within and beyond the Stripe 82 footprint. From this

parent population, we then select two subsamples at z < 0.06 and at z < 0.1. The lower-z

(z < 0.06) sample includes ∼ 1500 groups with ∼ 14,000 satellite galaxies, complete down

to a stellar mass of ∼ 1010 M⊙. The higher-z sample includes more host systems (∼ 8000

groups with ∼ 40,000 satellites), but only probes down to ∼ 1010.5 M⊙. In agreement with

many previous studies of satellite properties at z ∼ 0 (e.g. Baldry et al., 2006; Wetzel et al.,

2013; Woo et al., 2013; Hirschmann et al., 2014; Omand et al., 2014), we find that the

satellite quenched fraction decreases with decreasing satellite stellar mass, such that nearly

all satellites are quenched at > 1011 M⊙ with a quenched fraction of < 50% at ∼ 1010 M⊙.

In an effort to push measurements of the satellite quenched fraction to lower masses (i.e. <

1010 M⊙), we use the background subtraction technique described in §2.4.1 as applied to our

photometric sample in Stripe 82. Accordingly, we compute the satellite quenched fraction

as a function of stellar mass as

f sats
q (dproj,M⋆) =

N̄sats,q

N̄sats,q + N̄sats,sf

, (2.3)

where N̄sats,sf and N̄sats,q are the average number of star-forming and quenched satellites

detected at dproj < 400 kpc, respectively. As discussed in §2.4.1, we adopt 400 kpc as the

outer extent of ours groups based upon a comparison to comparable halos in the IllustrisTNG

simulation suite. Our resulting satellite quenched fraction, however, remains qualitatively
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Figure 2.8: The satellite quenched fraction as a function of stellar mass for group environ-
ments with Mhalo = 1013−14 h−1 M⊙. The solid red points represent the median quenched
fraction for our statistically-derived satellite population. The vertical error bars correspond
to the 1σ Poisson error in the quenched fraction, while the horizontal error bars denote the
standard deviation of the binned stellar masses. The shaded grey (light-grey) band repre-
sents the quenched fraction for the spectroscopic members of the Yang et al. (2007) groups
at z < 0.1 (z < 0.06). Our statistically-driven approach using S82 photometry successfully
reproduces the satellite quenched fraction results at high masses (> 1010 M⊙), and pushes
beyond previous studies to probe satellite quenching down to 107 M⊙. We find an increase
in the quenched fraction at low masses (≲ 109 M⊙), potentially indicating an increase in the
efficiency of quenching in the low-mass regime.
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unchanged when integrating satellite counts out to 600 kpc or 800 kpc.

Figure 2.8 shows the measured satellite quenched fraction as a function of satellite stellar

mass using the spectroscopic group membership and our photometric analysis. For the

stellar mass range at which both approaches overlap (i.e. M⋆ > 1010 M⊙), we find excellent

agreement between the independent measurements. This serves as a strong validation of the

background-subtraction technique and our classification model.

Using the deeper photometry in Stripe 82, we are able to push our measurements of the

satellite quenched fraction down to ∼ 107 M⊙, probing satellite quenching in group envi-

ronments across four orders of magnitude in satellite stellar mass. In contrast to measure-

ments in the high-mass regime (> 1010 M⊙), we find that the satellite quenched fraction

in Mhalo ∼ 1013−14 h−1 M⊙ groups increases below satellite stellar masses of ∼ 109 M⊙.

This transition in the quenched fraction suggests a change in the quenching efficiency (and

possibly dominant quenching mechanism), such that the suppression of star formation in

low-mass satellites is increasingly efficient at M⋆ ≲ 109 M⊙.

2.5 Summary and Discussion

We have utilized a combination of supervised machine learning and statistical background

subtraction to measure the satellite quenched fraction in group environments across four

orders of magnitude in satellite stellar mass ranging from M⋆ ∼ 107−11 M⊙. Our analysis

utilizes a neural network classifier trained on a spectroscopic training set to label galaxies in

the co-added Stripe 82 photometric catalog as either star forming or quenched based solely

on their g − r, g − i, and r − i colors. The results from this procedure were subsequently

used to statistically identify the quenched and star-forming satellite populations around

spectroscopically-confirmed hosts within Stripe 82 with halo masses between 1013−14 h−1 M⊙.
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The main results from this analysis are as follows:

1. Using our photometric approach, we successfully reproduce the measured satellite quenched

fraction at M⋆ ≳ 1010 M⊙, as derived from spectroscopic studies in the local Universe.

We find that the satellite quenched fraction increases with increasing satellite mass at

M⋆ ≳ 1010 M⊙.

2. We measure the satellite quenched fraction down to M⋆ ∼ 107 M⊙, pushing measurements

of satellite quenching in ∼ 1013−14 h−1 M⊙ halos to a new regime that is not readily probed

outside of the Local Group.

3. We find that the satellite quenched fraction increases towards lower satellite masses below

∼ 109 M⊙.

4. The increase in satellite quenching at low masses potentially indicates a change in the

dominant quenching mechanism at ∼ 109 M⊙, where ram-pressure stripping begins to

become increasingly effective (see discussion that follows).

Given that low-mass field galaxies are almost entirely star forming as a population, the

increase in the satellite quenched fraction at < 109 M⊙ can be interpreted as a corresponding

increase in the satellite quenching efficiency within 1013−14 h−1 M⊙ halos. This increase is

similar to that observed in the Local Group, where there is an apparent transition in the

dominant quenching mechanism at ∼ 108 M⊙ with lower-mass satellites quenched more

efficiently following infall. Both hydrodynamic simulations and analytical modeling of the

satellite population find that ram-pressure stripping is much more efficient below 108 M⊙

within Milky Way-like galaxies (Mayer et al., 2007; Fillingham et al., 2016; Simpson et al.,
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2018; Akins et al., 2020), while more massive satellites are primarily quenched via starvation

(Fillingham et al., 2015). Given that our host sample is more massive (Mhalo = 1013−14 M⊙)

relative to Milky Way-like halos, it is expected that an increase in infall velocities and the

density of the circumgalactic medium would cause this transition mass to increase, such that

starvation is the primary driver of satellite quenching above ∼ 109.5 M⊙ and ram-pressure

stripping becoming increasingly important in the low-mass regime. A more detailed study

of the potential quenching mechanisms at play requires further analysis of the timescales

on which the observed satellites are quenched following infall to the host halos. In future

work (Baxter et al. in prep), we aim to bridge this gap by combining the measured satellite

quenched fractions from this work with the accretion and orbital histories determined using

high-resolution cosmological simulations, to estimate the typical quenching timescale as a

function of satellite mass.

The satellite quenched fractions that we obtain at low-masses (M⋆ < 109 M⊙) are generally

lower than what have been reported in studies of dwarf galaxies in more massive nearby

clusters. For example, Weinmann et al. (2011) studied the satellite galaxy population in

the nearby Virgo (Mhalo ∼ 1.4–4 × 1014 M⊙), Coma (Mhalo ∼ 1.3 × 1015 M⊙), and Perseus

(Mhalo ∼ 6.7× 1014 M⊙) clusters, finding red fractions between 70− 80% at stellar masses of

∼ 108−10 M⊙ (see also Boselli et al. 2016a). At slightly higher redshift (z ∼ 0.2), analysis of

the satellite population in Abell 209 (Mhalo ∼ 1015 M⊙) by Annunziatella et al. (2016) also

finds an elevated quenched fraction relative to our results in less massive halos. Interestingly,

while the study of Annunziatella et al. (2016) only probes down to ∼ 108.6 M⊙ in satellite

stellar mass, the results show a quenched fraction that decreases from near unity (∼ 95%)

at M⋆ ∼ 1010.5 M⊙ to ∼ 75% at M⋆ ∼ 109 M⊙ (see also Sarrouh et al. in prep). Naively, if

there is a transition in the dominant quenching mechanism (or efficiency) in these massive

clusters similar to that found in the Local Group and our group sample, we would expect

the transition scale to occur at higher satellite masses (e.g. ≳ 109.5 M⊙) as ram-pressure

stripping (and other cluster-specific processes) should be increasingly effective in hosts with
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Mhalo ∼ 1015 M⊙. Extrapolations of the mass functions from Annunziatella et al. (2016),

however, do not support this picture.

Finally, we report satellite quenched fractions in the low-mass regime (< 108 M⊙) that

are potentially lower than expected when compared to studies of satellite quenching in the

Local Group, where ∼ 90% of satellites with M⋆ < 108 M⊙ are passive. As discussed above,

environmental quenching mechanisms are expected to be more efficient in our more-massive

host halos relative to the Local Group. Of course, our results are based on a study of ∼ 100

groups, whereas studies of the Local Group satellites sample only two host halos. While

observations of the nearby M81 group yield a satellite quenched fraction comparable to that

measured for the Local Group (Kaisin & Karachentsev, 2013; Karachentsev et al., 2013),

various studies also indicate that the Local Group satellites may be outliers relative to the

cosmic mean (e.g. Boylan-Kolchin et al., 2010; Busha et al., 2011; Tollerud et al., 2011; Ibata

et al., 2013; Pawlowski & Kroupa, 2020). Moreover, recent results from the Satellites Around

Galactic Analogs (SAGA) Survey (Geha et al., 2017; Mao et al., 2020) find lower satellite

quenched fractions (∼ 20%) around hosts with halo masses comparable to those of the Milky

Way and M31. We contend that the application of the methodology presented in this work to

Milky Way-like hosts is an intriguing way to better place the Local Group into a cosmological

context and constrain the quenching of satellites around hosts with Mhalo ∼ 1012 M⊙.
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Chapter 3

Constraining the Satellite Quenching

Timescale in Massive Clusters at

z ≳ 1

The lifetime of a human being is measured by decades, the lifetime of the Sun is a hundred

million times longer. Compared to a star, we are like mayflies, fleeting ephemeral creatures

who live out their lives in the course of a single day.

– Carl Sagan

3.1 Introduction

Observations of galaxies in the local Universe have long shown that various galaxy properties

are strongly correlated with the local environment (i.e. the local galaxy density). For exam-

ple, satellite galaxies that reside in high-density groups and clusters are more likely to have
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older stellar populations, exhibit elliptical or spheroidal morphologies, and have depressed

rates of star formation relative to their counterparts that reside (primarily as central galax-

ies) in the lower-density field (Oemler, 1974; Dressler, 1980; Balogh et al., 1997; Gómez et al.,

2003; Blanton et al., 2005; Cooper et al., 2010a). More recent studies suggest that these envi-

ronmental trends extend out to z ∼ 3, with passive galaxies already favoring higher-density

regions at earlier cosmic times (Cooper et al., 2006, 2007, 2010b; Muzzin et al., 2012; Darvish

et al., 2016; Lee-Brown et al., 2017; Lemaux et al., 2019; McConachie et al., 2021). This

distinction between central galaxies that reside in the low-density field and satellite galaxies

that reside in high-density groups and clusters may be partially due to the latter population

being unable to accrete cold gas after crossing into the virialized region of a group or cluster

through a process known as ‘starvation’ or ‘strangulation’ (Larson et al., 1980; Kawata &

Mulchaey, 2008). However, this is far from the only proposed environmentally-driven mech-

anism for suppressing (or “quenching”) star formation; other competing mechanisms include

ram-pressure stripping (Gunn & Gott, 1972; Abadi et al., 1999), tidal stripping (Merritt,

1983; Moore et al., 1999; Gnedin, 2003), harassment (Farouki & Shapiro, 1981; Moore et al.,

1996, 1998), and feedback-related processes such as overconsumption (McGee et al., 2014;

Balogh et al., 2016). Despite the vast number of proposed environmental quenching scenar-

ios, the exact physical mechanism(s) responsible for the aforementioned trends observed in

groups and clusters and how they evolve throughout cosmic time remain poorly understood.

A common goal of many studies of environmental (or satellite) quenching is to determine

the efficiency with which the local environment suppresses star formation – i.e. the timescale

upon which satellite quenching operates. For that reason, a frequently employed method for

understanding quenching efficiency, and potentially isolating the dominant physical mecha-

nism(s) responsible for quenching star formation in dense environments, involves combining

observations of groups and clusters with simple quenching models applied to N -body simu-

lations to infer the satellite quenching timescale (τquench), which is typically defined as the

time required for a galaxy to transition from star forming to quiescent after becoming a
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satellite (i.e. after infall onto its host system). A general assumption of this technique is

that galaxy quenching can largely be divided into two regimes: [i ] internal quenching that

acts in all environments (or at least within the field population) with increasing efficiency

at higher stellar masses and [ii ] environmental quenching that operates in massive halos or

high-density environments (i.e. groups and clusters) with efficiency that likely depends on

local environmental density as well as the mass of the satellite and that of the host halo –

a scenario that is supported by observations at low and intermediate redshift (e.g. Baldry

et al., 2006; Peng et al., 2010; Woo et al., 2013; Reeves et al., 2021). To a large extent,

the application of this methodology has primarily been dominated by studies of satellite

quenching in the local Universe. In fact, numerous analyses of low-redshift groups and clus-

ters, spanning a broad range in host halo mass, have utilized high-resolution, cosmological

simulations to infer the typical satellite quenching timescale down to the ultra-faint dwarf

regime (De Lucia et al., 2012; Wetzel et al., 2013; Hirschmann et al., 2014; Wheeler et al.,

2014; Fillingham et al., 2015; Davies et al., 2016; Pallero et al., 2019; Rodriguez Wimberly

et al., 2019b).

Herein, we aim to extend the aforementioned studies of the satellite quenching timescale

at low redshift to z ∼ 1 by performing a similar analysis utilizing observations of satellite

galaxies residing in clusters at 0.8 < z < 1.4. In §3.2, we describe our observed galaxy cluster

data set, including a discussion of cluster membership criteria and completeness corrections.

In §3.3, we detail the high-resolution, cosmological simulation data utilized in our analysis

and explain how we construct our simulated sample of cluster galaxies. We describe our

satellite quenching model and present the results from implementing said model in §3.4 and

§3.5, respectively. Finally, in §3.6, we discuss variations of our model and how our results

relate to similar analyses as a function of cosmic time, before summarizing our results in

§3.7. When necessary, we adopt a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and

Ωm = 0.3. All magnitudes are on the AB system (Oke & Gunn, 1983).
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Name
M200 R200 z Nmembers[1014 M⊙] [cMpc]

SpARCS0034 0.6 1.08 0.867 23
SpARCS0035 3.8 2.17 1.335 18
SpARCS0036 3.6 2.09 0.869 45
SpARCS0215 2.4 1.70 1.004 34
SpARCS0335 1.8 1.59 1.368 7
SpARCS1047 2.5 1.78 0.956 26
SpARCS1051 2.2 1.80 1.035 26
SpARCS1613 11.1 2.97 0.871 68
SpARCS1616 3.3 1.98 1.156 39
SpARCS1634 2.7 1.85 1.177 34
SpARCS1638 1.7 1.56 1.196 20
SPT0205 3.1 1.77 1.323 19
SPT0546 5.8 2.42 1.067 27
SPT2106 7.3 2.62 1.131 30

Table 3.1: Properties of our GOGREEN cluster sample, including M200, R200, cluster red-
shift, and the number of spectroscopic members (with M⋆ > 1010 M⊙). The values in the
R200 and M200 columns were obtained using the MAMPOSSt method (Mamon et al., 2013)
as outlined in Biviano et al. (2021). Details regarding the cluster membership criteria are
discussed in Sec. 3.2.2.

3.2 Observed Cluster Sample

3.2.1 GOGREEN and GCLASS Cluster Sample

Our cluster sample is drawn from the Gemini CLuster Astrophysics Spectroscopic Sur-

vey (GCLASS) and the Gemini Observations of Galaxies in Rich Early ENvironments

(GOGREEN) survey (Muzzin et al., 2012; Balogh et al., 2017, 2021).1 These surveys com-

bine deep, multi-wavelength photometry with extensive Gemini/GMOS (Hook et al., 2004)

spectroscopy of galaxies in 26 overdense systems over a redshift range of 0.867 < z < 1.461,

with the primary objective of studying galaxy evolution in high-density environments. The

sample utilized in our analysis consists of 14 clusters with halo masses in the range from

1013.8−15 M⊙ and spectroscopic redshifts of 0.867 < z < 1.368. Eleven of these clusters

1http://gogreensurvey.ca/data-releases/data-packages/gogreen-and-gclass-first-data-release/
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were selected from the Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS,

Wilson et al., 2009; Muzzin et al., 2009; Demarco et al., 2010), where they were detected in

shallow z′ and IRAC 3.6µm images due to their overdensity of red-sequence galaxies (Glad-

ders & Yee, 2000). The remaining three clusters were drawn from the South Pole Telescope

(SPT) survey (Brodwin et al., 2010; Foley et al., 2011; Stalder et al., 2013) and were initially

detected via their Sunyaev-Zeldovich (Sunyaev & Zeldovich, 1970) signature and later spec-

troscopically confirmed. In Table 3.1, we provide properties of our cluster sample including

halo mass (M200) and radial scale (R200) – which are both obtained using the MAMPOSSt

method (Mamon et al., 2013) as outlined in Biviano et al. (2021) – along with redshift and

the number of spectroscopic cluster members with M⋆ > 1010 M⊙.

We also utilize data from the deep, multi-wavelength imaging of each GOGREEN system

(van der Burg et al., 2013, 2020). From the photometric catalogs, we employ photometric

redshift and stellar mass measurements as well as rest-frame U −V and V − J colors, which

are used to determine cluster membership and classify galaxies as either star forming or

quenched (see §3.2.2). As described in van der Burg et al. (2020), the photometric redshifts

were estimated using the EAZY code (Version May 2015, Brammer et al. 2008) by fitting the

multi-wavelength photometry to spectral energy distribution templates from the PEGASE

model library (Fioc & Rocca-Volmerange, 1997) along with a red galaxy template from

Maraston (2005). Furthermore, the stellar masses were estimated by fitting the photometry

to stellar population synthesis models (Bruzual & Charlot, 2003) using the FAST code (Kriek

et al., 2009), assuming solar metallicity, a Chabrier (2003) initial mass function, and the

dust law from Calzetti et al. (2000).
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3.2.2 GOGREEN Cluster Membership and Classification

We determine cluster membership for our observational sample by first measuring the co-

moving projected radial cluster-centric distance, Rproj, for all objects – excluding the centrals

– in the field of the 14 clusters that comprise our sample. We then exclude all objects that

are not within R200 of the cluster, which is defined as the comoving radius of a sphere cen-

tered at the position of the central within which the mean density is 200 times the critical

density of the Universe. We further restrict our satellite sample to only include objects with

M⋆ > 1010 M⊙, which is slightly above the ∼ 80% stellar mass completeness limit for the

sample (van der Burg et al., 2020). From here, we apply the following cluster member-

ship selection criteria to the subsample of objects with high-quality spectroscopic redshifts.

Namely, we only include objects with secure spectroscopic redshifts (Redshift Quality = 3,4)

and |zspec − zcluster| ≤ 0.02(1 + zspec).
2 Likewise, for the subsample of objects without high-

quality spectroscopic redshifts, we identify membership based on objects with STAR ̸= 1 and

|zphot−zcluster| ≤ 0.08(1+zphot), where the STAR flag is the GOGREEN star/galaxy classifi-

cation based on color selection, as described in van der Burg et al. (2020). The choice to only

include galaxies with |zphot − zcluster| ≤ 0.08(1 + zphot) was informed by our knowledge that

the photometric-redshift uncertainty for galaxies more massive than 1010 M⊙ is 0.048(1+ z).

Nevertheless, we find that if we subsequently characterize and account for interlopers and

incompleteness, as described in §3.2.3, the results of our analysis do not depend on the

∆z threshold adopted as part of this particular membership criterion. Altogether, these

membership selection criteria yield a total of 1072 cluster members (416 spectroscopic/656

photometric). Lastly, we classify the quiescent members of our cluster population using the

following rest-frame UV J color-color cuts defined by Whitaker et al. (2011, see also Williams

2Please refer to Balogh et al. (2021) for a description of the redshift quality flags and the assignment
process.
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et al. 2009):

(U− V) > 1.3 ∩ (V − J) < 1.6 ∩

(U− V) > 0.88× (V − J) + 0.59 .

(3.1)

3.2.3 Completeness Correction

In order to obtain an accurate measurement of the satellite quenched fraction, we must

account for incompleteness and interlopers that inevitably contaminate our photometric

sample. This is accomplished following the methodology utilized in van der Burg et al.

(2013, 2020) that accounts for completeness in the cluster sample by computing a membership

correction factor using the sample of galaxies with both multi-band photometry and zspec

measurements and then applying that factor to the photometric sample. The membership

correction factor (Eqn. 3.2) is defined as the sum of the number of galaxies that are either

secure cluster members or false negatives divided by the sum of secure cluster members and

false positives,

Cfactor =
N(secure cluster) + N(false negative)

N(secure cluster) + N(false positive)
. (3.2)

Here, secure cluster members are defined as objects identified as cluster members based

on their spectroscopic redshift and with photometric redshifts consistent with membership,

whereas false negatives are objects that are spectroscopically-confirmed cluster members with

a photo-z that is inconsistent with cluster membership. Lastly, false positives are defined as

objects that are not cluster members based on their spectroscopic redshift but have a photo-z

consistent with the redshift of the cluster. Following the methodology of van der Burg et al.

(2020), we compute the correction factor separately for star-forming and quiescent galaxies

in order to account for the presumed color dependence of field contamination. Furthermore,

for both populations we compute the correction factor in bins of stellar mass ranging from
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1010.0−11.4 M⊙ and Rproj/R200 from 0 − 1. As a function of galaxy color, we find a very

modest variation in the completeness correction, with the correction factor as applied to the

star-forming and quiescent populations differing by ≲ 2%. Finally, we apply the appropriate

correction factor as a weight to each cluster member, which we find yields a modest change in

the measured quenched fractions (at the level of ∼ 1−2.5%), such that the final results of our

analysis and the conclusions therein drawn remain unchanged irrespective of the application

of this completeness correction.

3.3 Simulated Cluster Sample

3.3.1 IllustrisTNG Cluster Sample

We utilize the TNG300-1 simulation from the IllustrisTNG project3 (TNG, Nelson et al.,

2018; Naiman et al., 2018b; Springel et al., 2018; Pillepich et al., 2018; Marinacci et al., 2018)

to establish a simulated cluster population that is matched on redshift to our observed cluster

sample. TNG300-1 is a large volume (∼ 300 cMpc3), high-resolution (2 × 25002 resolution

elements), cosmological, gravo-magnetohydrodynamical simulation that utilizes the moving

mesh AREPO code and solves for the coupled evolution of dark matter, cosmic gas, luminous

stars, and supermassive black holes from a starting redshift of z = 127 to the present

day, z = 0. TNG300-1 has a dark matter (gas) mass resolution of mDM = 5.9 × 107 M⊙

(mbaryon = 1.1 × 107 M⊙), which corresponds to a halo mass (stellar mass) completeness of

∼ 1010 M⊙ (∼ 109 M⊙). As explained in §3.3 of Pillepich et al. (2018), we augment the

stellar masses for TNG300-1 galaxies at z ∼ 1 by a factor of 1.3× to account for resolution

limitations that systematically underestimate stellar masses within the simulations.

Our simulated cluster sample is drawn from the group catalogs and sublink merger trees

3https://www.tng-project.org

39



0.8 0.9 1.0 1.1 1.2 1.3 1.4

Redshift

13.8

14.0

14.2

14.4

14.6

14.8

15.0

lo
g 1

0(
M

20
0
/

M
�

)

GOGREEN

TNG

Figure 3.1: M200 versus z for the observed and simulated cluster samples. The open circles
(filled diamonds) represent the TNG (GOGREEN) clusters. While matched on redshift, the
simulated sample is biased towards less-massive systems relative to the observed sample,
with the majority of the TNG clusters having halo masses less than 1014.3 M⊙. As discussed
in §3.3.1, this bias towards low-mass hosts does not significantly impact our results, with a
sample matched on M200 yielding qualitatively similar results.

40



10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4

log10(M? / M�)

0.1

0.2

0.3

0.4

0.5

0.6

N
ga

l/
N

sa
m

p
le

Star-forming

Quiescent

Quenching Model

GOGREEN

Figure 3.2: Comparison of the normalized stellar mass distributions for GOGREEN cluster
members to that of our simulated satellite population. The blue and red solid (dashed) lines
illustrate the simulated (observed) stellar mass distribution for star-forming and quenched
galaxies, respectively. Note that the simulated cluster members are classified according to
our quenching model that is designed to reproduce the observed f sat

q (M⋆) results (see §3.4).
While the TNG sample slightly underpredicts the total number of satellites due its bias
towards lower host halo masses, the relative distribution of satellite masses is in excellent
agreement.
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associated with the TNG300-1 simulation. As a whole, TNG300-1 contains a total of 100

snapshots ranging from z = 20.05 to z = 0; however, our cluster sample is constructed using

only 10 snapshots ranging from z = 1.36 to z = 0.85, so as to match the redshift distribution

of the GOGREEN cluster sample. Each of these snapshots contains a unique group catalog

that includes both friends-of-friends (FoF; Davis et al., 1985) and Subfind objects (Springel

et al., 2001; Dolag et al., 2009). The FoF catalog contains the GroupFirstSub column that

holds the indices into the Subfind catalog for the first/primary/most massive subhalo group

within each FoF group, and we define these subhalos to be our centrals. With the total central

population defined, we use the TNG300-1 Sublink merger trees to track the Subfind IDs of

the sample from z = 0.85 to z = 1.36, which allows unique centrals to be identified across

the 10 snapshots. Moreover, we combine this information with the redshift distribution of

our observed cluster population to construct a sample of simulated clusters that is matched

on redshift to the GOGREEN cluster sample. Given the relatively large volume of the

TNG300-1 simulation box, we are able to select a total of 56 unique comparison cluster

halos from snapshots that range from z = 1.36 to z = 0.85 with a median redshift of z = 1.1.

The median redshift difference between a GOGREEN cluster and its simulated analog is

|∆z| ∼ 0.03. As illustrated in Fig. 3.1, our simulated host sample has a median halo mass

of Mhalo = 1014.12 M⊙ and is, on average, less massive than the GOGREEN cluster sample,

which has a median host mass of 1014.5 M⊙. A consequence of this is that the number of

simulated cluster members in our sample is generally less than their observed counterparts by

a factor of∼ 3. With this in mind, we repeat our analysis using a more restricted sample of 12

clusters constructed to better match the observed GOGREEN cluster sample with respect to

redshift, halo mass, and R200. Utilizing this more-precisely matched sample, we find that our

results are qualitatively similar to those based on the the larger and less-precisely matched

sample. The robustness of our results is, in part, due to the fact that at fixed stellar mass the

infall time distribution for satellites in the low-mass and high-mass clusters, a key ingredient

in our modeling (see §3.4), is weakly dependent on host mass with differences in average
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infall times on the order of ∼ 0.02 − 0.03 Gyr. All things considered, we choose the larger

host sample, matched solely on redshift, as our simulated cluster population in part due to

its ability to better sample the distribution of infall times (and formation histories).

3.3.2 TNG Cluster Membership

For each of the simulated clusters, our sample of cluster members is drawn from the TNG300-

1 group catalogs and sublink merger trees. In particular, we define potential cluster mem-

bers as any object in the Subfind catalog that is not defined as the host within each FoF

group. From here, we establish cluster membership for our simulated cluster sample us-

ing a procedure similar to that outlined in §3.2.2. Specifically, simulated cluster members

are galaxies that satisfy the condition dhost(zobs) < R200, where dhost(zobs) is the three-

dimensional comoving radial cluster-centric distance at the redshift of observation. We note

that this satellite selection criterion is distinct from how observational samples are selected,

where projected separations are typically utilized given that three-dimensional separations

are largely unattainable. For this reason, we repeat our analysis using a cluster member

sample composed of galaxies that lie within a cylinder of radius R200 projected on an imag-

inary sky plane perpendicular to the z-direction of the simulation box, which we define as

the line-of-sight direction. In general, we find that selecting satellites according to projected

cluster-centric distance yields consistent, though slightly shorter quenching timescales, with

the difference (relative to selecting in 3-D) being most pronounced at low satellite masses

(∆τquench ≲ −0.1 Gyr). We find that this remains true even if the satellite selection criterion

is expanded to include a line-of-sight velocity threshold analogous to the ∆z threshold used

for the observed satellite sample. The weak bias towards shorter quenching timescales, when

working in projected space, is primarily driven by the inclusion of star-forming interlopers

from the field population (Donnari et al., 2021).
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In addition to the separation criterion, we also restrict our simulated satellite sample to

only include galaxies with resolution-corrected stellar mass of M⋆ > 1010 M⊙, where the

stellar masses are given by the total mass of all star particles associated with each galaxy

(i.e. IllustrisTNG SubhaloMassType masses with Type=4). Our adopted stellar mass limit,

selected to mirror that of the GOGREEN sample, is well above the stellar mass completeness

limit for TNG300-1 of approximately M⋆ ∼ 109 M⊙, which corresponds to ∼ 100 star parti-

cles. Overall, these constraints yield a total of 1220 cluster members across the 56 simulated

clusters. As illustrated in Figure 3.2, the TNG-based stellar masses reproduce the relative

distribution of satellite stellar masses from the GOGREEN sample. The stellar masses for

the simulated satellite sample are taken at zobs, such that we do not explicitly model the

stellar mass growth of satellites prior to or following infall. The difference in mass due to

subsequent star formation (or lack thereof) in comparison to the star formation histories de-

fined by the TNG hydro-dynamical modeling is modest (typically ∆M⋆ ≲ 0.3 dex). In lieu

of using the stellar masses provided by TNG300-1, we discuss the implications of defining

the stellar masses of our cluster satellites using the stellar mass-halo mass (SMHM) relation

from Behroozi et al. (2013) in §3.6.4. Finally, after establishing the simulated galaxy sample

we proceed to use the TNG300-1 sublink merger trees to track relevant properties (e.g. po-

sition, mass, R200, etc.) of the clusters and their members along the main progenitor branch

from z = 20.05 to zobs.

3.4 Quenching Model

Our quenching model utilizes the TNG simulations to detail the accretion history of the

cluster population and complementary “field” observations to describe the properties of

infalling galaxies. Together, these inputs allow the model to probabilistically characterize

galaxies that quenched prior to infall onto the cluster using the coeval field quenched fraction.
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Figure 3.3: Field quenched fraction versus redshift in bins of stellar mass ranging from
109.5 M⊙ < M⋆ < 1011.5 M⊙ as inferred from CANDELS observations. The colored circles
represent the observed field quenched results in their respective stellar-mass bins, whereas
the curves illustrate the corresponding fits to the observed results using an exponentially
decaying function. The vertical error bars correspond to the 1-σ binomial uncertainties in
the quenched fraction.
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At its core, the model has one primary parameter, the satellite quenching timescale (τquench),

which is defined as the time following infall before a star-forming satellite is quenched.

This model parameter is tuned so as to reproduce the observed dependence of the satellite

quenched fraction on stellar mass, f sat
q (M⋆), thereby yielding τquench(M⋆).

3.4.1 Infall Times of Simulated Cluster Members

Our procedure for classifying the simulated cluster members that quenched prior to infall

begins with computing the infall time (tinfall) for each simulated satellite, which we define

as the time at which a galaxy first crosses R200 of the cluster halo. For our simulated

satellite population, less than 20% are backsplash systems that crossed R200 more than

once, with tinfall defined as the time of the first crossing. As discussed in §3.6.1, we also

investigate an alternative approach in which we classify simulated cluster members at the

redshift of observation (versus at the time of infall) to account for the possibility of internal

quenching after infall. To measure tinfall, we use the TNG300-1 sublink merger trees (see

§3.3.2) to track the separation between our simulated cluster and satellite samples across

the 55 snapshots between z = 20.05 and z = 0.85. This corresponds to a median time

resolution of approximately 100 Myr between each snapshot, which is not ideal for precisely

measuring tinfall given that the radial cluster-centric separation can change on the order

of a few hundred kpc between each snapshot. Therefore, with the objective of obtaining

greater precision on tinfall, we map the spatial position of each galaxy (relative to their host

cluster halo) in 10 Myr intervals by spline interpolating the position of each galaxy and

corresponding host from z = 20.05 to the redshift of the given snapshot. We find that the

infall times procured using the spline-interpolated positions are typically ∼ 60 Myr earlier

when compared to the infall times obtained using the non-interpolated positions. In the

following section, we explain how we use these infall times to probabilistically classify our

simulated cluster members as star forming or quiescent.
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Figure 3.4: Satellite quenched fraction as a function of satellite stellar mass (left) and pro-
jected cluster-centric distance normalized by R200 (right). The green circles illustrate the
GOGREEN quenched fraction results with the membership correction factor applied. The
black circles represent the TNG results fit to the GOGREEN quenched fraction results. The
colored profiles in the background represent the TNG quenched fraction results using a con-
stant quenching timescale ranging from 0 to 3 Gyr. The constant quenching timescale model
fails to reproduce the observed quenched fraction as a function of stellar mass and cluster-
centric radius, however, these trends are reproduced by a model assuming a mass-dependent
quenching timescale. All error bars correspond to the 1-sigma binomial uncertainties.
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3.4.2 Classifying Simulated Cluster Members

Within our satellite quenching model, each infalling system is probabilistically classified

as star forming or quenched according to the corresponding field quenched fraction at the

time of infall. In Figure 3.3, we show the field quenched fraction as a function of redshift

and stellar mass, ffield
q (z,M⋆), computed using derived data products from the v1.1 inter-

nal data release of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

(CANDELS, Grogin et al., 2011; Koekemoer et al., 2011; Guo et al., 2013; Galametz et al.,

2013; Santini et al., 2015; Stefanon et al., 2017; Nayyeri et al., 2017; Barro et al., 2019). To

obtain the field quenched fraction, we first identified objects in the CANDELS catalogs with

reliable photometry (PHOTFLAG==0) and identified the fraction in the quiescent region of

the UV J diagram following Whitaker et al. (2011). Our field sample totals 57, 971 galaxies,

with each bin in redshift and mass including no fewer than 20 galaxies. In agreement with

previous analyses, we find that the field quenched fraction depends strongly on stellar mass

and redshift, with more massive galaxies more likely to be quenched and the prevalence of

quenched systems decreasing at earlier cosmic time. We also find that corresponding mea-

surements of the field quenched fraction, computed using a Ks-selected catalog drawn from

the COSMOS/UltraVISTA field (Muzzin et al., 2013a,b; Marsan et al., 2022), yield results

that are generally consistent with those derived from the CANDELS dataset.

As previously mentioned, we use ffield
q (z,M⋆) to probabilistically classify the simulated cluster

members that quenched prior to infall. We accomplish this by first fitting the measurements

of the field quenched fraction in mass bins (see Fig. 3.3) using an exponentially decaying

function to obtain functional forms for the four stellar mass bins between 109.5−11.5 M⊙. We

then use zinfall and M⋆,infall values of our simulated satellite population to obtain the expected

field quenched fraction at the time of infall. Next, we randomly draw a number from a uni-

form distribution between zero and one and compare it with the corresponding field quenched

fraction. If the randomly drawn number is greater (less) than the observed quenched fraction
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then we classify the galaxy as star forming (quenched). This step is repeated 50 times in

order to generate an ensemble of classified cluster members that capture the slight variations

inherent to this probabilistic classification scheme. As such, the quenched fraction results

discussed in §3.5.1 represent the median of the ensemble of classified cluster members.

3.4.3 Determining the Satellite Quenching Timescale

We characterize environmental quenching by employing a simple quenching model that as-

sumes that star-forming satellites quench after some fixed amount of time (τquench) following

infall onto their host cluster halo. The simplicity of this model is that it contains one pri-

mary parameter, τquench(M⋆), which we allow to vary linearly with satellite stellar mass so

as to reproduce the f sat
q (M⋆) measurements for our observed cluster sample. In other words,

our model translates the observed f sat
q (M⋆) into typical quenching timescales by inferring

τquench in bins of stellar mass so as to minimize the difference between the model and the

observations (|fq,obs(M⋆)− fq,model(M⋆)|). For an infinitely-long quenching timescale (i.e. no

environmental quenching), the minimum satellite quenched fraction is defined by the portion

of satellites quenched prior to infall. In §3.5, we present the results of our environmental

quenching model and discuss the implications of the inferred quenching timescales.

3.5 Results

3.5.1 Quenched Fraction Results

In Figure 3.4, we compare the GOGREEN observed satellite quenched fraction as a func-

tion of stellar mass and projected cluster-centric distance with the corresponding quenched

fraction results from our environmental quenching model. The green circles represent the
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observed results with the membership correction factor applied. As noted in §3.2.3, the

membership correction factor has a relatively small impact on the observed quenched fraction

results. We find a strong dependence of the quenched fraction on both M⋆ and Rproj/R200,

such that more massive and more centrally-located satellites are more likely to be quenched.

These observed trends are in good agreement with similar results at low and intermediate

redshift (e.g. Balogh et al., 1998; Christlein & Zabludoff, 2005; Patel et al., 2009; Vulcani

et al., 2015; Cooke et al., 2016; Lee-Brown et al., 2017; Baxter et al., 2021). The faded col-

ored lines in Fig. 3.4 show the simulated quenched fraction results when assuming a constant

quenching timescale (independent of satellite stellar mass), ranging from τquench = 0−3 Gyr.

As illustrated, a fixed quenching timescale fails to reproduce the observed satellite quenched

fraction versus stellar mass trend. In contrast, the results of our fiducial quenching model,

which assumes a mass-dependent satellite quenching timescale, are illustrated by the black

circles in Fig. 3.4. While our model yields the observed fq,sat(M⋆), by design, it also success-

fully reproduces the observed dependence of quenched fraction on projected cluster-centric

distance within the GOGREEN cluster sample.

In Figure 3.5, we compare the observed satellite quenched fraction as a function of redshift

to the results from our fiducial quenching model. Over the limited redshift range probed by

the GOGREEN survey, the measured satellite quenched fraction is relatively constant (see

also Nantais et al. 2017), with excellent agreement between the results for the observed and

simulated cluster samples. Overall, our fiducial quenching model is extremely successful,

reproducing the observed quenched fraction as a function of stellar mass (by construction),

projected cluster-centric distance, and redshift.
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3.5.2 Inferred Quenching Timescales

In Figure 3.6, we present the τquench(M⋆) results that we infer from our fiducial environmental

quenching model. Within the framework of our modeling approach, we find that a mass-

dependent quenching timescale in which higher-mass galaxies quench more rapidly following

infall onto their host halo is necessary to reproduce the measured quenched fraction as

a function of satellite stellar mass. In particular, the quenching timescales that we infer

steadily decrease with increasing satellite stellar mass, going from ∼ 1.6 Gyr at 1010 M⊙ to

∼ 0.6 Gyr at 1011 M⊙.

In general, the relatively short quenching timescale that we infer is consistent with previous

studies at z ∼ 1. For example, analyzing a sample of clusters from GCLASS, including some

of the systems studied herein, Muzzin et al. (2014) utilize the location of post-starburst

galaxies within the cluster to infer a satellite quenching timescale of ∼ 1 Gyr for a sample

of satellites with a median stellar mass of roughly a few × 1010 M⊙. Likewise, using stellar

population modeling to infer the rest-frame color evolution of satellites in 4 clusters at

z ∼ 1.5, Foltz et al. (2018) find a quenching timescale of τquench ∼ 1.1 Gyr for satellites with

M⋆ ≳ 1010.5 M⊙. Finally, Balogh et al. (2016) utilize a method similar to that employed

in our analysis and allow for a quenching timescale that depends on stellar mass within a

sample of GCLASS clusters at z ∼ 1. At satellite stellar masses of > 1010 M⊙, however,

Balogh et al. (2016) find a remarkably constant quenching timescale as a function of satellite

mass (τquench ∼ 2 Gyr). While our estimates of the field quenched fraction are similar to

those utilized by Balogh et al. (2016), the infall time distribution of our satellite population

– as inferred from the TNG simulations – depends non-negligibly on satellite mass, such that

lower-mass satellites are preferentially accreted earlier. Quantitatively, we find the median

difference in infall times to be about 0.4 Gyr between galaxies with stellar masses of 1010 M⊙

and 1011 M⊙. In contrast, Balogh et al. (2016) adopt a model where the accretion history of

their clusters depends only on host halo mass and not the mass of the satellite. In addition,
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the infall times adopted by Balogh et al. (2016) are taken with respect to first infall onto

any more massive halo (versus just the cluster halo, McGee et al. 2009). These differences

may account for the lack of mass dependence inferred in that work.

As a low-z comparison, in Fig. 3.6, we show the quenching timescale inferred for the highest-

mass clusters from the Wetzel et al. (2013) sample (i.e. Mhalo = 1014−15 M⊙), which should

roughly correspond to the descendants of our z ∼ 1 cluster sample.4 Scaling our results at

z ∼ 1 according to the evolution in the dynamical time – i.e. τquench(M⋆) × (1 + z)−1.5 –

we find good agreement between our inferred mass-dependent satellite quenching timescale

and that from Wetzel et al. (2013). In §3.6.2 and §3.6.3, we further examine our quenching

timescale constraints with an eye towards the potential physical mechanisms at play.

3.6 Discussion

3.6.1 Internal Quenching after Infall

In contrast to some previous studies of satellite quenching (e.g. Balogh et al., 2016), a fun-

damental assumption of our fiducial model is that environmental and internal quenching

mechanisms are separable, such that only environmental processes are at play once a galaxy

becomes a satellite within the cluster halo. That is, we construct our model to account for

the impact of internal quenching mechanisms by referencing the coeval field quenched frac-

tion at the time of infall. This, however, inherently assumes that environmental quenching

mechanisms dominate within the cluster. To test the validity of this assumption we adopt

an alternative approach that allows internal quenching mechanisms to continue operating

unabated after infall. We simulate this scenario by modifying our fiducial quenching model

4While the typical GOGREEN cluster will evolve into a system with Mhalo ∼ 1015 M⊙ at z ∼ 0, our
simulated cluster population will evolve into slightly less massive systems (Mhalo ∼ 1014.5 M⊙ at z ∼ 0).
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Figure 3.5: Satellite quenched fraction versus redshift. The green circles represent the ob-
served results with the membership correction applied. The black circles shows the cor-
responding measurements for our fiducial model based on tuning τquench(M⋆) to reproduce
the observed satellite quenched fraction as a function of stellar mass. For both the ob-
served and simulated samples, the uncertainties correspond to 1-σ binomial errors. Our
fiducial quenching model is able to successfully reproduce the observed GOGREEN satellite
quenched fraction as a function of stellar mass, projected cluster-centric radius, and redshift.
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Figure 3.6: Satellite quenching timescale versus satellite stellar mass. The solid grey line
illustrates the empirically-derived cold gas (HI + H2) depletion timescale from Popping et al.
(2015) at z ∼ 1.5, with the corresponding grey shaded region spanning the variation in the
depletion timescale over the redshift range 1 < z < 2. The solid black line represents
the results from our fiducial model as applied to the GOGREEN cluster sample at z ∼ 1
(Mhalo ∼ 1014.5). The dashed grey line represents the estimated quenching timescale at
z ∼ 0 obtained by scaling the results from our fiducial model at z ∼ 1 by (1 + z)−3/2.
In our fiducial model, we find a mass-dependent quenching timescale, favoring more rapid
suppression of star formation for more massive satellites. For comparison, the tan colored
band shows the quenching timescale constraint from Wetzel et al. (2013) for satellites in
clusters (Mhalo ∼ 1014−15 M⊙) at z ∼ 0. For massive hosts, the evolution in the quenching
timescale roughly follows the evolution in the dynamical time (×(1 + z)−3/2), as shown by
the dashed grey line.
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such that we classify galaxies as star forming or quenched at the redshift of observation (zobs)

instead of at zinfall, then determine the satellite quenching timescale (still relative to infall)

needed to achieve the measured satellite quenched fraction as a function of stellar mass.

Interestingly, we find that this approach yields very similar results to the scenario in which

galaxies are classified at zinfall, with the resulting satellite quenching timescale (τquench) as a

function of satellite stellar mass consistent within ±0.02 Gyr for the two formulations of the

quenching model.

The relative unimportance of internal quenching post infall for satellites at z ∼ 1 is, in part,

due to the short satellite quenching timescales at this epoch. In addition, the role of internal

mechanisms after infall is minimized by the mass-dependent efficiency of internal quenching

(see Fig. 3.3) combined with the stellar mass dependence of the infall time distribution,

such that more massive galaxies are more likely to be quenched internally but also typically

become satellites later than their low-mass counterparts. In other words, given the mass

dependence of typical infall times and given that the field quenched fraction as a function

of cosmic time increases more slowly (rapidly) for low-mass (high-mass) galaxies, we find

that the typical quenched fraction inferred at zobs and zinfall are quite similar, thus yielding

relatively similar results for the satellite quenching timescale. Overall, the aforementioned

modification to our fiducial model indicates that internal quenching mechanisms play at most

a secondary role to the environmental quenching mechanism(s) operating within clusters at

z ∼ 1.

3.6.2 Physical Processes Driving Satellite Quenching

The relatively long satellite quenching timescales inferred at low z (τquench ∼ 4−7 Gyr) favor

a slowly-acting quenching mechanism. Among the possible mechanisms, the long timescales

for satellites atM⋆ ≳ 109 M⊙ strongly favor the starvation scenario by which satellites quench
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Figure 3.7: Field quenched fraction as a function of cosmic time and stellar mass. The
faded lines represent our fits to the observed field quenched fraction from CANDELS (see
Fig. 3.3). The dotted lines are the field quenched fraction results scaled to include the
excess quenching due to additional satellite pre-processing in the infall regions of clusters.
As discussed in §3.6.3, the scaling factor is derived from the measurement of the quenched
fraction excess between the field and the infall region at z ∼ 1 (Werner et al., 2022).
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as a result of gas depletion in the absence of cosmological accretion following infall (Wheeler

et al., 2014; Fillingham et al., 2015, 2016; Wetzel et al., 2015). As shown by Fillingham

et al. (2015), the long satellite quenching timescales inferred for massive satellites in low-z

groups and clusters (Mhalo ∼ 1012−15 M⊙) significantly exceed the molecular gas depletion

timescales for similar systems at 0 < z < 2 (Bigiel et al., 2011; Saintonge et al., 2011;

Tacconi et al., 2010, 2013, 2018; Freundlich et al., 2019). When factoring in the potential

fuel supply associated with atomic gas, however, the dependence of τquench on satellite stellar

mass at z ∼ 0 is shown to be in reasonably good agreement with the total cold gas (H2 +

HI) depletion timescale at z ∼ 0 (Fillingham et al., 2015).

Measurements of the quenching timescale in lower-mass halos at z ∼ 1 (Mhalo ∼ 1013−14 M⊙)

likewise yield timescales of ∼ 2− 3 Gyr at M⋆ ∼ 109.5−10.5 M⊙ (Balogh et al., 2016; Fossati

et al., 2017; Reeves et al., 2021, but see also Mok et al. 2013, 2014). This exceeds the

timescale upon which mechanisms like ram-pressure stripping are expected to act (Tonnesen

et al., 2007; Bekki, 2014) and also exceeds the molecular depletion timescale at the given

mass scale and cosmic time (Genzel et al., 2010; Tacconi et al., 2018). Similarly, while

our fiducial model yields rapid quenching at high satellite masses, the inferred quenching

timescale at lower masses (∼ 1010 M⊙) is longer than the molecular depletion timescale

(tdepl ∼ 0.5− 1 Gyr) for field samples at z ∼ 1− 2. With that said, some measurements of

CO-based molecular gas masses in z > 1 clusters do indicate that gas fractions (and depletion

timescales) may be elevated in cluster populations (Noble et al., 2017, 2019; Hayashi et al.,

2018). Other recent studies, however, find little variation in the molecular depletion timescale

with environment (Rudnick et al., 2017; Williams et al., 2022) or argue for depressed gas

levels and thus shorter depletion timescales in high-density environments (Alberts et al.,

2022).

Including atomic gas as a potential fuel for star formation, our quenching model yields

satellite quenching timescales in closer agreement to the total cold gas (H2 + HI) depletion

57



10.2 10.4 10.6 10.8 11.0 11.2

log10(M? / M�)

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
qu

ie
sc

en
t

ga
la

xi
es

fiducial model

prior to entering cluster

after entering cluster

10.2 10.4 10.6 10.8 11.0 11.2

log10(M? / M�)

w/ additional pre-processing

Figure 3.8: For the population of quiescent satellite galaxies in our model, we plot – as a
function of stellar mass – the fraction of systems that were quenched prior to infall (blue
points) versus quenched after infall (orange points) onto the cluster. The left panel shows
results for our fiducial quenching model, while the right panel corresponds to results with
additional pre-processing included (see §3.6.3). At the highest masses (M⋆ ≳ 1011 M⊙), the
majority of satellites are quenched prior to infall onto the cluster host halo, especially when
accounting for pre-processing.

timescale at intermediate redshift. Given the typical infall time of our simulated sample, we

include in Fig. 3.6 the atomic + molecular depletion timescale as a function of stellar mass

from the semi-empirical modeling of the gas reservoirs of galaxies as a function of cosmic

time (Popping et al., 2015). As found at z ∼ 0, the relative agreement between the total

cold gas depletion timescale and the satellite quenching timescale favors a scenario in which

environmental quenching is driven by starvation. Moreover, similar to results at z ∼ 0,

where the satellite quenching timescale in groups and clusters shows little dependence on

host halo mass for massive satellites (Wetzel et al., 2013), current measurements of τquench

at z ∼ 1 point towards a relative lack of variation in satellite quenching efficiency with host

halo mass (see §3.5.2; Balogh et al., 2016; Fossati et al., 2017). This further supports a

picture in which satellite quenching is driven by starvation and follows a timescale dictated

by the depletion of fuel for star formation following infall.

At high stellar masses, the cold gas (H2 + HI) depletion timescale does exceed the quenching
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timescale. However, it may be that the depletion timescales from Popping et al. (2015)

overestimate the atomic fraction in these systems – as measurements of gas density in star-

forming systems at intermediate redshift suggest a lower atomic component (e.g. Tacconi

et al., 2013) and some simulations predict a decrease in the atomic fraction in high-mass

galaxies at z > 1 (Davé et al., 2017). In addition, our model may underestimate the role

of pre-processing that occurs prior to accretion, especially at high masses where increasing

numbers of quenched ultra-massive galaxies have been identified in field surveys (e.g. Forrest

et al., 2020a,b; Valentino et al., 2020; McConachie et al., 2021; Werner et al., 2022). As dis-

cussed in §3.6.3, including pre-processing within the infall regions surrounding our simulated

clusters would lead to a corresponding lengthening of the satellite quenching timescale in

Fig. 3.6, especially at M⋆ ≳ 1010.5 M⊙. Another possibility is that complementary physical

processes, such as ram-pressure stripping or feedback, are acting to decrease the reservoir of

cold gas within satellites. Observations, both locally and at intermediate redshift (z ≲ 1),

find that stripping is clearly an active process in massive clusters (e.g. Poggianti et al., 2017;

Vulcani et al., 2017; Boselli et al., 2019; Moretti et al., 2022). Alternatively, stripping can

also lead to increases in the surface density of star formation activity in satellite systems

(Merluzzi et al., 2013; Vulcani et al., 2018, 2020b), which could contribute to expediting

starvation via feedback (McGee et al., 2014).

3.6.3 Role of Pre-Processing

Several studies of environmental quenching at low and intermediate z find that “pre-processing”

plays an important role in the build up of quiescent galaxies (e.g. McGee et al., 2009; Cybul-

ski et al., 2014; Hou et al., 2014; Just et al., 2019; Pallero et al., 2019; Sengupta et al., 2022).

This occurs when a galaxy is subjected to environmental quenching as a consequence of be-

coming a satellite of a more massive galaxy prior to infall onto a group or cluster (or possibly

via a filament, Sarron et al. 2019; Castignani et al. 2022). Our infalling satellite population is
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modeled using the “field” quenched fraction from CANDELS (§3.4.2), such that our fiducial

model includes some quenching due to pre-processing in lower-mass groups. This built-in

level of pre-processing is most significant at lower satellites masses in our sample, where the

fraction of satellite galaxies (relative to centrals) is greater.

Recent studies have attempted to quantify the role of pre-processing through measurements

of the quenched fraction excess (QFE, van den Bosch et al. 2008), which is also referred to

in the literature as the conversion factor or quenching efficiency and defined as

QFE2−1 =
fq,2 − fq,1
1− fq,1

, (3.3)

where fq,2 is the fraction of quenched galaxies in a given environment (e.g. the cluster regime)

as compared to that in another environment (e.g. the field or infall region surrounding a

cluster, fq,1). In this context, a QFE of zero implies that there is no excess quenching between

the two probed environments, while a QFE of one indicates that all star-forming galaxies

in a given environment would be quenched were they to reside in the second (typically

higher-density) environment.

Werner et al. (2022) presents a relevant and recent study of pre-processing for satellites

of GOGREEN clusters at 0.8 < z < 1.4 by computing the QFE between coeval cluster,

infall (inf, 1 < Rproj/R200 < 3), and control (con) field samples. They find that QFEinf−con

strongly correlates with stellar mass, such that high-mass galaxies (M⋆ ∼ 1011 M⊙) that are

star forming in the field are more likely to be quenched in the infall regions relative to their

lower-mass (M⋆ ∼ 1010 M⊙) counterparts. To incorporate the impact of pre-processing in

our quenching model, we scale our field quenched fraction as a function of redshift and stellar

mass from Fig. 3.3 by the aforementioned QFEinf−con(M⋆) results from Werner et al. (2022).

As shown in Figure 3.7, this effectively augments the field quenched fraction of the most

massive field galaxies (i.e. M⋆ = 1011−11.5 M⊙) as a function of redshift, such that a higher
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fraction of high-mass galaxies are quenched prior to infall. At low-masses, the level of pre-

processing is significantly less, with the field quenched fraction largely unchanged relative to

that utilized in our fiducial model. As illustrated in Figure A.1 and A.2 in Appendix A.1,

the quenching model is specifically tuned to reproduce the observed quenched fraction as a

function of stellar mass, however, it also reproduces the correlation between the quenched

fraction and projected cluster-centric radius and redshift within the GOGREEN survey.

As shown in Figure 3.8, including pre-processing increases the fraction of satellites that

are quenched prior to infall onto the simulated clusters. This effect is most pronounced at

higher stellar masses, with ∼ 65 − 80% of simulated satellites quenched prior to infall at

M⋆ > 1011 M⊙ with the inclusion of pre-processing. In contrast to the results presented in

Figure 8 from Werner et al. (2022), however, we do not find that > 90% of ultra-massive

(> 1011 M⊙) galaxies are quenched prior to infall. In general, we find that the importance of

pre-processing is likely weaker. In part, our results differ due to our more complete modeling

of the accretion histories of satellite galaxies in our cluster sample. Comparing the quenched

fractions of coeval populations via a measure of QFE partially ignores the evolution in those

populations. Put simply, when compared to a sample of cluster members at z ∼ 1, the

coeval infall population does not represent the properties of the satellite population at the

time of infall. Instead, a large fraction of the satellites in a cluster at z ∼ 1 were accreted at

z ≳ 1.5 − 2. Moreover, it is likely that our estimate of the quenched fraction for the “pre-

processed” population of infalling satellites is slightly overestimated. Studies of the QFE

within groups and clusters as a function of cosmic time suggest that QFE (at fixed stellar

mass) decreases with increasing redshift (Lemaux et al., 2019; Sarron & Conselice, 2021).

As such, by scaling our field quenched fractions by the QFEinf−con at z ∼ 1 from Werner

et al. (2022), we likely overestimate the quenched fraction within infall regions at higher z.

Similarly, a more complete analysis of the infall region would also factor in the contribution

from quenched back-splash galaxies, which were quenched within the cluster but now reside

within the infall regions (e.g. Balogh et al., 2000; Gill et al., 2005; Fillingham et al., 2018).
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By accounting for pre-processing in our quenching model, we find that the best-fit quenching

timescale is less strongly dependent upon stellar mass as shown in Fig. 3.9. At all masses,

the inferred quenching timescale exceeds the typical depletion timescale for molecular gas.

In Fig. 3.9, we illustrate the median molecular depletion timescale as a function of stellar

mass for our simulated infalling satellite population based on the measured mass and redshift

dependence of the depletion timescale for galaxies on the star-forming main sequence from

Tacconi et al. (2018), adopting the relationship between star formation rate and stellar mass

from Speagle et al. (2014). For comparison, we also include the empirically-derived H2 + HI

gas depletion timescale for galaxies at z = 1.5 from Popping et al. (2015). The predicted cold

gas depletion timescale depends on redshift at 1 < z < 2, decreasing with increasing z over

the redshift range where a large fraction of our simulated satellite population is accreted.

With pre-processing included in our model, the resulting satellite quenching timescale at

z ∼ 1 is in relatively good agreement with the cold gas (H2 + HI) depletion timescale at

intermediate redshift, similar to results at z ∼ 0 (Fillingham et al., 2015) and consistent

with starvation as the dominant mechanism for satellite quenching.

3.6.4 Impact of Stellar Mass Estimation

As discussed in §3.3.2, our fiducial model makes use of stellar masses from TNG that are

defined to include the sum of all star+wind particles gravitationally bound to a given galaxy.

A minor change would be to define stellar masses as the sum of all gravitationally bound

star+wind particles within twice the stellar half-mass radius. We find that this change simply

shifts the stellar masses lower by an average of ∼ 0.1 dex, but it does not significantly modify

the results from the fiducial model. As shown in Fig. 3.2, our fiducial model reproduces

the relative distribution of satellite stellar masses for both the star-forming and quenched

populations within GOGREEN.
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Figure 3.9: Quenching timescale versus stellar mass. The black solid line represents the
quenching timescale results from our fiducial model, while the crimson line shows the results
from our model including additional pre-processing (see §3.6.3). The solid grey line illustrates
the empirically-derived cold gas (HI + H2) depletion timescale from Popping et al. (2015)
at z ∼ 1.5, with the grey shaded region corresponding to the variation in the depletion
timescale over the redshift range 1 < z < 2. Finally, the dotted grey line denotes the median
molecular depletion timescale for our simulated infalling satellite population based on the
scaling relations of Tacconi et al. (2018). Including additional pre-processing, we find a
quenching timescale that is less strongly dependent on satellite stellar mass and is roughly
consistent with the estimated cold gas (H2 + HI) depletion timescale at z ∼ 1− 2.
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Another aspect of our model is that it effectively defines crude star formation histories (SFHs)

for the simulated satellites (e.g. explicitly determining when particular systems quench);

these SFHs may thereby differ from those within the TNG hydro-dynamical simulation,

which are closely coupled to the stellar masses. Therefore, an alternative approach, which

would more fully decouple our results from the prescriptions of baryonic physics utilized

within TNG, is to define our simulated satellite stellar masses according to the assump-

tion of a stellar mass-halo mass (SMHM) relation. We accomplish this using the Behroozi

et al. (2013) SMHM relation which estimates the stellar masses of galaxies using their peak

halo mass and corresponding redshift. Compared to the TNG masses utilized in our fiducial

model, the stellar masses inferred from the Behroozi et al. (2013) SMHM relation are system-

atically less massive (by a few tenths of a dex). This bias towards lower masses is partially

driven by a lack of ultra-massive galaxies (> 1011 M⊙) predicted via abundance matching.

Consequently, the observed distribution of satellite stellar masses from GOGREEN is not

reproduced when assuming the Behroozi et al. (2013) SMHM relation, in contrast to our

fiducial model. However, when inferring stellar masses via abundance matching, we find

that the resulting satellite quenching timescales – τquench(M⋆) – are only slightly shorter (by

∼ 0.1− 0.2 Gyr) relative to those of our fiducial model.

3.6.5 Success of Our Model

Overall, our satellite quenching model reproduces many of the major observables from the

GOGREEN survey – the quenched fraction as a function of stellar mass (by construction),

projected cluster-centric radius, and redshift. As a result, our model also reproduces the

measured QFE as a function of stellar mass from van der Burg et al. (2020). Finally, our

model likewise yields the observed stellar mass functions for both star-forming and quenched

systems (van der Burg et al., 2020). As shown in Figure 3.2, our model reproduces the

relative distribution of galaxy stellar masses for the quenched and star-forming populations
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in comparison to the corresponding observed counts from GOGREEN. With respect to the

normalization of the resulting mass functions, our model underpredicts the total number of

satellites due to our simulated clusters being biased towards lower halo masses (see Fig. 3.1).

As discussed in §3.3.1, however, the distribution of infall times for our simulated satellites

is weakly dependent on host halo mass (at z > 1 and 1014 < Mhalo/M⊙ < 1015), such that

an increase in the number of satellites would not impact our measured satellite quenched

fractions (i.e. the results of the model).

While a quantitative comparison is beyond the scope of this work, the relatively short satel-

lite quenching timescales (thus efficient environmental quenching) inferred by our modeling

would yield older stellar ages and less extended SFHs for the GOGREEN cluster population

relative to field galaxies of the same stellar mass. This is in agreement with recent results

from Webb et al. (2020), which find that satellites within the GOGREEN clusters are typ-

ically ∼ 0.3 Gyr older than their field counterparts, with less extended SFHs. In addition,

measurements of galaxy morphologies within the GOGREEN clusters find an excess of qui-

escent disks, particularly at low stellar masses (Chan et al., 2021), which is also consistent

with our results. Suppressing star formation via starvation will preferentially yield disky

systems relative to processes such as mergers or harassment (e.g. Mastropietro et al., 2005;

Cortese et al., 2007). As found in the observations, within our model, the difference between

the field and cluster morphologies should be most significant at lower satellite masses, where

the environment plays a greater role in quenching (e.g. see Fig. 3.8).

Altogether, our model of satellite quenching is remarkably successful. In contrast, modern

simulations of galaxy evolution tend to greatly overproduce the quenched satellite population

at intermediate redshift, particularly at lower satellite masses (Donnari et al. 2021; Kukstas

et al. in prep). This over-quenching problem is a long-standing one (e.g. Font et al., 2008;

Kimm et al., 2009; Weinmann et al., 2012; Hirschmann et al., 2014; Wang et al., 2014; Bahé

et al., 2017), though progress has been made recently in reproducing observations of groups
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and clusters at z ∼ 0 (e.g. De Lucia et al., 2019a; Xie et al., 2020; Donnari et al., 2021).

3.7 Summary and Conclusions

Using simulated cluster and satellite populations from TNG, we model the quenching of

satellite galaxies at z > 1 in comparison to observations from the GOGREEN survey. The

model includes one primary parameter, the satellite quenching timescale (τquench) that sets

the time that a satellite remains star forming after infall onto the cluster. This timescale is

tuned as a function of stellar mass to reproduce the observed satellite quenched fraction as

a function of stellar mass. The main results from this modeling effort are as follows:

1. We measure the quenched fraction of GOGREEN cluster members as a function of stellar

mass, projected cluster-centric radius, and redshift. We find that the satellite quenched

fraction increases with stellar mass, decreases with projected radial cluster-centric separa-

tion, and remains relatively flat with redshift.

2. Our model reproduces the observed quenched fraction as a function of stellar mass (by

construction), projected cluster-centric radius, and redshift as measured at z ∼ 1 from the

GOGREEN survey. In addition, our quenching model reproduces the relative galaxy stellar

mass distribution (both in the field and in the cluster) as a function of galaxy type (star

forming versus quenched).

3. In agreement with van der Burg et al. (2020), we find that satellite quenching is mass

dependent at z ∼ 1, in conflict with models that favor mass-independent environmen-

tal quenching (e.g. Peng et al., 2010). For our fiducial model, the quenching timescale

depends on satellite stellar mass, such that galaxies at M⋆ = 1010 M⊙ typically quench
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within ∼ 1.6 Gyr following infall, while galaxies at M⋆ = 1011 M⊙ quench much more

rapidly (within ∼ 0.6 Gyr). Including pre-processing within the infall regions of clusters,

the dependence of τquench on satellite stellar mass weakens slightly, with satellites typically

quenching on timescales of ∼ 1− 1.5 Gyr post infall, depending on mass.

4. In comparison to similar analyses at low redshift, we find that the satellite quenching

timescale evolves roughly like the dynamical time (∝ (1 + z)−3/2), as noted by several pre-

vious studies (Tinker & Wetzel, 2010; Balogh et al., 2016; Foltz et al., 2018).

5. When including pre-processing within the cluster infall regions, we find that the vast ma-

jority (∼ 65 − 80%) of massive satellites (> 1011 M⊙) in clusters are quenched at z ∼ 1

clusters prior to infall. In contrast, the majority of lower-mass satellites (≲ 1010.5 M⊙)

quenched within the cluster.

6. Our satellite quenching model yields quenching timescales that are longer than the observed

molecular depletion timescales at intermediate redshift. Instead, the inferred quenching

timescales are roughly consistent with the predicted total cold gas depletion timescale

(HI+ H2) at 1 < z < 2. Similar to the results of modeling satellite populations in the local

Universe, this may indicate that environmental quenching at z > 1 is primarily driven by

starvation, where galaxies exhaust their fuel supply for star formation after being cut off

from cosmological accretion.
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Chapter 4

When the Well Runs Dry: Modeling

Environmental Quenching in Massive

Clusters at z ≳ 1

Your assumptions are your windows on the world. Scrub them off every once in a while, or

the light won’t come in.

– Alan Alda

4.1 Introduction

Environmental studies in the local Universe and extending out to z ∼ 2 have found that

galaxies that are members of massive galaxy groups and clusters – i.e. satellites – are more

likely to be passive (or quenched) relative to their counterparts of similar mass in the low-

density field (Oemler, 1974; Dressler, 1980; Balogh et al., 1997; Gómez et al., 2003; Baldry
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et al., 2006; Cooper et al., 2006, 2007, 2010a; Guo et al., 2017; Lee-Brown et al., 2017; Ji et al.,

2018; Lemaux et al., 2019; Pintos-Castro et al., 2019; Shi et al., 2021; McConachie et al.,

2021). It has long been understood that satellite galaxies – by virtue of their environment –

are uniquely subject to a variety of environmental quenching mechanisms (e.g. Baldry et al.,

2006; Peng et al., 2010, 2012) that suppress star formation by way of (i) gas depletion without

replenishment or (ii) stripping and removal of cold gas (i.e. the fuel for star formation).

Two of the leading environmental quenching candidates that satisfy these conditions include

“starvation” (Larson et al., 1980; Bekki et al., 2002; Kawata & Mulchaey, 2008) – the slow

depletion of cold gas in the absence of cosmological accretion after a galaxy becomes a

satellite of a massive host – and “ram-pressure stripping” (RPS; Gunn & Gott, 1972; Abadi

et al., 1999; Poggianti et al., 2017) – the rapid removal of cold gas from the interstellar

medium of a satellite as it moves through the dense intra-group or intracluster medium

permeating the host halo. Other potential environmental quenching mechanisms include

gravitationally-driven processes such as tidal stripping (Merritt, 1983; Moore et al., 1999;

Gnedin, 2003), mergers (Lavery & Henry, 1988; Makino & Hut, 1997; Gottlöber et al., 2001),

and galaxy harassment via high-speed impulsive encounters (Farouki & Shapiro, 1981; Moore

et al., 1996, 1998) – as well as “outflow-based” processes such as overconsumption (McGee

et al., 2014; Balogh et al., 2016).

Although these mechanisms primarily impact fully accreted satellites, several studies have

shown that galaxies can undergo “group pre-processing” (Fujita, 2004; De Lucia et al., 2012;

Wetzel et al., 2015; Bianconi et al., 2018; Sarron et al., 2019; Werner et al., 2022), wherein

they quench within a more massive halo prior to becoming a satellite of the final group or

cluster. Thus, understanding the dominant driver of environmental quenching is challeng-

ing, as it entails making assumptions regarding the relative contributions of pre-processed

satellite galaxies to the observed quiescent fraction. Moreover, an additional challenge is

that environment-independent quenching processes (often referred to as “mass quenching”

or “self-quenching”, Peng et al., 2010) may be dominant, particularly for massive galaxies
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(e.g. Tacchella et al., 2015; Reeves et al., 2021; Werner et al., 2022). Such mechanisms,

including feedback from star formation (Oppenheimer & Davé, 2006; Ceverino & Klypin,

2009), supernovae (Springel et al., 2005; Lagos et al., 2013), and active galactic nuclei (Di

Matteo et al., 2005; Croton et al., 2006; Hopkins et al., 2006), are capable of quenching

galaxies prior to them becoming fully incorporated into a galaxy group or cluster.

At present, our current understanding of the dominant quenching mechanism driving en-

vironmental quenching in galaxy groups and clusters is largely limited to the very local

(z < 0.1) Universe (e.g. De Lucia et al., 2012; Wetzel et al., 2013; Hirschmann et al., 2014;

Wheeler et al., 2014; Fillingham et al., 2015, 2016, 2018; Davies et al., 2016; Pallero et al.,

2019; Rodriguez Wimberly et al., 2019b; Baxter et al., 2021). In fact, our best cosmological

models routinely fail to reproduce the observed fraction of quenched satellites as a func-

tion of stellar mass beyond the local Universe, signaling that our current prescriptions for

environmental quenching are incomplete at intermediate and high redshift (e.g. Guo et al.,

2010; Hirschmann et al., 2014; De Lucia et al., 2019b; Xie et al., 2020; Donnari et al., 2021;

Kukstas et al., 2023).

In our recent work (Baxter et al., 2022, hereafter B22), we built upon previous efforts to

constrain the dominant quenching mechanism in massive clusters at z ∼ 1 (e.g. Muzzin

et al., 2014; Balogh et al., 2016; Foltz et al., 2018) by constraining the timescale (τquench)

upon which satellite quenching proceeds following infall. Given that different mechanisms

operate on distinct timescales, knowledge of τquench at a given epoch can aid in distinguishing

the underlying quenching mechanism at play (e.g. Wetzel et al., 2014; Fillingham et al., 2015;

Wright et al., 2019; Park et al., 2022). In B22, we accomplish this by developing an infall-

based environmental quenching model – with prescriptions for “field quenching” (i.e. self-

quenching in the field) and “pre-processing” – that infers the quenching timescale consistent

with the observed satellite quiescent fraction as a function of stellar mass as measured in 14

massive clusters (Mhalo = 1014−15 M⊙) from the GOGREEN survey (Balogh et al., 2021) –
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the hitherto largest and most comprehensive spectroscopic and multi-passband photometric

cluster and group survey at z ≳ 1. Many of the conclusions drawn in B22 are consistent with

results from previous GOGREEN studies (Webb et al., 2020; Reeves et al., 2021; McNab

et al., 2021), including that (i) the majority of massive galaxies (M⋆ ≳ 1010.5 M⊙) quench

before they become cluster members and (ii) low-mass galaxies are preferentially quenched

after infall. In addition, the analysis presented in B22 finds that the satellite quenching

timescale at z ∼ 1 is in good agreement with the estimated cold gas (HI+H2) depletion

timescale, suggesting that starvation may be the dominant quenching mechanism within

GOGREEN clusters.

While the modeling from B22 suggests that the inferred satellite quenching timescale in

massive clusters is consistent with starvation being the dominant driver of environmental

quenching at z < 2, there is a wealth of literature showing that RPS is an active process in

cluster environments in the nearby Universe (Yagi et al., 2007; Boselli et al., 2016b; Gavazzi

et al., 2018; Moretti et al., 2018; Vulcani et al., 2018; Poggianti et al., 2019; Gullieuszik

et al., 2020; Luber et al., 2022). Moreover, recent observational studies find direct evidence

of satellites in clusters at z ∼ 0.7 − 1.6 suffering from RPS (Boselli et al., 2019; Noble

et al., 2019; Matharu et al., 2021; Cramer et al., 2022), while simulations find that RPS

should be effective in cluster environments up to z ∼ 2 (see review from Boselli et al., 2022).

Given that the efficiency of RPS depends directly on the density of the intracluster medium

(ICM) – i.e. higher near the core of a cluster – we generalize the environmental quenching

model developed in B22 to include the radius at which quenching begins (Rquench) as a free

parameter. In addition, we explore model results regarding where within the cluster and with

what velocity satellites quench. These modifications permit the exploration of potentially

distinct quenching pathways, by no longer assuming that environmental quenching begins

immediately after crossing R200, allowing us to test whether or not the main conclusion

drawn in B22 – i.e. whether starvation is the dominant quenching pathway at z < 2 – is

robust to changes in our modeling regarding where in a cluster environmental quenching
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becomes effective.

In §4.2 and §4.3 of this work, we describe our observed galaxy cluster sample and our

simulated satellite population, respectively – leaving details regarding cluster membership

criteria to B22. In §4.4, we describe our updated environmental quenching model, with

the results from our MCMC analysis and comparison of model predictions with observed

properties of transition galaxies presented in §4.5. In §4.6, we discuss our procedure for

isolating distinct quenching pathways and contextualize our results with respect to previous

studies at z ∼ 1. Finally, in §4.7 we summarize our investigation and present our conclusions.

When necessary, we adopt a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm =

0.3 as well as a Chabrier (2003) initial mass function. All magnitudes are on the AB system

(Oke & Gunn, 1983).

4.2 Observed Cluster Sample

4.2.1 GOGREEN and GCLASS Cluster Sample

We select our cluster sample from the Gemini CLuster Astrophysics Spectroscopic Sur-

vey (GCLASS) and the Gemini Observations of Galaxies in Rich Early ENvironments

(GOGREEN) surveys (Muzzin et al., 2012; Balogh et al., 2017, 2021).1 The main focus

of these surveys is to study galaxy evolution in high-density environments by combining

deep, multi-wavelength photometry with extensive Gemini/GMOS (Hook et al., 2004) spec-

troscopy of galaxies in 26 overdense systems over a redshift range of 0.867 < z < 1.461. For

the purposes of our investigation, we select 14 massive clusters with halo masses in the range

1013.8−15 M⊙ and spectroscopic redshifts of 0.867 < z < 1.368. Eleven of these clusters were

selected from the Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS, Wilson

1http://gogreensurvey.ca/data-releases/data-packages/gogreen-and-gclass-first-data-release/
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Name
M200 R200 σ

z
Nmembers

[1014 M⊙] [cMpc] [km s−1] [> 1010 M⊙]
SpARCS0034 0.6 1.08 700± 150 0.867 23
SpARCS0035 3.8 2.17 840± 50 1.335 18
SpARCS0036 3.6 2.09 750± 90 0.869 45
SpARCS0215 2.4 1.70 640± 130 1.004 34
SpARCS0335 1.8 1.59 540± 30 1.368 7
SpARCS1047 2.5 1.78 660± 120 0.956 26
SpARCS1051 2.2 1.80 690± 40 1.035 26
SpARCS1613 11.1 2.97 1350± 100 0.871 68
SpARCS1616 3.3 1.98 780± 40 1.156 39
SpARCS1634 2.7 1.85 715± 40 1.177 34
SpARCS1638 1.7 1.56 565± 30 1.196 20
SPT0205 3.1 1.77 680± 60 1.323 19
SPT0546 5.8 2.42 980± 70 1.067 27
SPT2106 7.3 2.62 1055± 85 1.131 30

Table 4.1: Properties of our GOGREEN cluster sample, including M200, R200, velocity dis-
persion, cluster redshift, and the number of spectroscopic members (with M⋆ > 1010 M⊙).
The values in the R200 and M200 columns were obtained using the MAMPOSSt method
(Mamon et al., 2013) as outlined in Biviano et al. (2021). Details regarding the cluster
membership criteria are discussed in §4.2.2. Details regarding the total number of members
used to measure the velocity dispersion is provided in Table 1 of Balogh et al. (2021).
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et al., 2009; Muzzin et al., 2009; Demarco et al., 2010), where they were detected in shallow

z′ and Spitzer/IRAC 3.6µm images due to their overdensity of red-sequence galaxies (Glad-

ders & Yee, 2000). The remaining three clusters were drawn from the South Pole Telescope

(SPT) survey (Brodwin et al., 2010; Foley et al., 2011; Stalder et al., 2013) and were ini-

tially detected via their Sunyaev-Zeldovich (Sunyaev & Zeldovich, 1970) signature and later

spectroscopically confirmed. Table 4.1 lists the properties of our cluster sample including

halo mass (M200) and radial scale (R200) – which are both obtained using the MAMPOSSt

method (Mamon et al., 2013) as outlined in Biviano et al. (2021).

4.2.2 Cluster Membership and Classification

We define our initial satellite population to consists of all objects – excluding the central

– within R200 (projected) of a given cluster and with a stellar mass M⋆ > 1010 M⊙ – i.e.

the ∼ 80% stellar mass completeness limit for the photometric sample (van der Burg et al.,

2020). In addition, for objects with a secure spectroscopic redshift (Redshift Quality2 =

3,4), we limit our satellite population to those systems with |zspec− zcluster| ≤ 0.02(1+ zspec).

Meanwhile, for sources without a secure spectroscopic redshift, we define the members of the

satellite population as those systems with STAR ̸= 1 and |zphot − zcluster| ≤ 0.08(1 + zphot),

where the STAR flag is the GOGREEN star/galaxy classification based on color selection

as described in van der Burg et al. (2020). As discussed in B22, the photometric redshift

selection was informed by our knowledge that the zphot uncertainty for galaxies more massive

than 1010 M⊙ is 0.048(1+ z). Nevertheless, we find that if we subsequently characterize and

account for interlopers and incompleteness, as described in §4.2.3, the results of our analysis

do not depend on the ∆z threshold adopted as part of this particular membership criterion.

Altogether, these membership selection criteria yield a total of 1072 cluster members (416

spectroscopic/656 photometric). Lastly, we classify the quiescent members of our cluster

2Please refer to Balogh et al. (2021) for a description of the redshift quality flags and the assignment
process.
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population using the following rest-frame UV J color-color cuts defined by Whitaker et al.

(2011, see also Williams et al. 2009):

(U − V ) > 1.3 ∩ (V − J) < 1.6 ∩

(U − V ) > 0.88× (V − J) + 0.59 .

(4.1)

4.2.3 Completeness Correction

Following the methodology utilized in van der Burg et al. (2013, 2020), we apply a com-

pleteness correction to account for incompleteness and interlopers that contaminate our

photometric sample. To accomplish this, we compute a membership correction factor based

on the subset of galaxies that have both multi-band photometry and spectroscopic redshift

measurements, and subsequently apply this factor to the photometric sample. The mem-

bership correction factor (Eqn. 4.2) is defined as the sum of the number of galaxies that are

either secure cluster members and false negatives divided by the sum of the number of secure

cluster members and false positives,

Cfactor =
N(secure cluster) + N(false negative)

N(secure cluster) + N(false positive)
. (4.2)

Secure cluster members are objects with spectroscopic and photometric redshifts that are

consistent with cluster membership. False negatives, on the other hand, refer to objects that

are spectroscopically confirmed as cluster members but have photometric redshifts inconsis-

tent with cluster membership. Conversely, false positives are objects that are not cluster

members based on their spectroscopic redshift, yet exhibit photometric redshifts consistent

with the redshift of the cluster.

To account for the presumed color dependence of field contamination, we separately compute
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the correction factor for star-forming and quiescent galaxies. Moreover, we compute the

correction factor within bins of stellar mass (ranging from 1010.0−11.4 M⊙) and Rproj/R200

(ranging from 0 to 1) for both galaxy populations. Notably, we observe a negligible variation

in the completeness correction with respect to galaxy color, as the correction factor applied

to star-forming and quiescent populations differs by less than 2%.

Lastly, we apply the appropriate correction factor as a weight to each cluster member. This

adjustment leads to a modest change in the measured quenched fractions (∼ 1 − 2.5%).

Importantly, this completeness correction has no bearing on the final results of our analysis

or the conclusions drawn, as they remain consistent irrespective of its application.

4.3 Simulated Cluster Sample

4.3.1 IllustrisTNG Cluster Sample

As in B22, we once again construct our simulated cluster population – which is matched

on redshift to our observed cluster sample – using the TNG300-1 simulation from the Il-

lustrisTNG project3 (TNG, Nelson et al., 2018; Naiman et al., 2018b; Springel et al., 2018;

Pillepich et al., 2018; Marinacci et al., 2018). TNG300-1 is a large volume (∼ 300 cMpc3),

high-resolution (2×25002 resolution elements), cosmological, gravo-magnetohydrodynamical

simulation that utilizes the moving mesh AREPO code and solves for the coupled evolution

of dark matter, cosmic gas, luminous stars, and supermassive black holes from a starting

redshift of z = 127 to the present day, z = 0. TNG300-1 has a dark matter (gas) mass

resolution of mDM = 5.9 × 107 M⊙ (mbaryon = 1.1 × 107 M⊙), which corresponds to a halo

mass (stellar mass) completeness of ∼ 1010 M⊙ (∼ 109 M⊙). As explained in §3.3 of Pillepich

et al. (2018), we augment the stellar masses for TNG300-1 galaxies at z ∼ 1 by a factor of

3https://www.tng-project.org
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1.3× to account for resolution limitations that systematically underestimate stellar masses

within the simulations.

Our simulated cluster population consists of 56 unique clusters drawn from snapshots that

range from z = 1.36 to z = 0.85 with a median redshift of z = 1.1, where the median redshift

difference between an observed cluster and its simulated analog is |∆z| ∼ 0.03. In an effort to

avoid repetition, please refer to §3.1 of B22 for specific details on how the simulated clusters

are selected to match the redshift distribution of our observed cluster sample.

4.3.2 Satellite Membership in Simulated Cluster Population

We apply the exact cluster membership criteria as described in section §3.2 of B22; please

refer to this work for a more detailed description of our membership selection procedure. In

short, our simulated satellite population consists of objects that satisfy the following condi-

tions: (i) located within R200 of a given cluster as measured at the redshift of observation

(zobs) and (ii) objects with resolution-corrected stellar mass of M⋆ > 1010 M⊙ measured at

zobs – where the stellar masses are given by the total mass of all star particles associated

with each galaxy (i.e. IllustrisTNG Subhalo-MassType masses with Type=4). Our final

simulated cluster population includes 1220 cluster members across the 56 simulated clusters.

Though our simulated cluster sample is comprised of more hosts than the observed cluster

sample, the former is biased towards less-massive systems (Mhalo < 1014.3 M⊙) – see figure 1

of B22. However, as discussed in §3.1 of B22, this bias towards low-mass hosts has a negli-

gible impact on our results due to there being a weak dependence between the distribution

of satellite infall times (at fixed stellar mass) and host halo mass.
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4.4 Modeling Environmental Quenching

4.4.1 Updated Environmental Quenching Model

In our previous work B22, we developed an infall-based environmental quenching model

to constrain the quenching timescale required to reproduce the satellite quiescent fraction

versus satellite stellar mass trend as measured in our aforementioned observed cluster sample.

The updated environmental quenching model developed in this investigation shares many

similarities with the original model in that it (i) accounts for the contribution from “field

quenching” in the simulated cluster population using the coeval field quenched fraction

measurements derived from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy

Survey (CANDELS, Grogin et al., 2011; Koekemoer et al., 2011; Guo et al., 2013; Galametz

et al., 2013; Santini et al., 2015; Stefanon et al., 2017; Nayyeri et al., 2017; Barro et al.,

2019) – for more details, see §4.2 of B22; (ii) incorporates the contributions from satellite

pre-processing (Fujita, 2004; De Lucia et al., 2012; Werner et al., 2022; Salerno et al., 2022)

in the infall region (1 − 3 R200) of the clusters – for more details, see §6.3 of B22; and

(iii) implements an infall-based environmental quenching model in which quenching of the

simulated satellites occurs some time τquench after the first crossing of R200 – for more details,

see §4.3 of B22. The model proved to be highly successful, reproducing the observed satellite

stellar mass function and satellite quenched fraction trends – i.e. the satellite quenched

fraction as a function of stellar mass, projected host-centric radius, and redshift – associated

with our observed cluster population at z ≳ 1. The inferred satellite quenching timescale was

found to be mass-dependent and consistent with the empirically-derived cold gas (HI + H2)

depletion timescale at intermediate z from Popping et al. (2015), suggesting that starvation

is the dominant quenching mechanism at z < 2.

The objective of the investigation herein is to test the validity of the aforementioned conclu-

sion by developing a generalized model for environmental quenching that allows Rquench – i.e.
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the radius at which quenching, and therefore the clock measuring τquench, is assumed to begin

– to vary as a free parameter. While some environmental quenching studies use estimates of

the virial radius of the host halo (e.g. R200) as the physical location at which environmental

quenching begins (e.g. Balogh et al., 2000; Fillingham et al., 2018), it has been found that

both cold gas stripping and the removal of diffuse gas from the circumgalactic medium of

a galaxy can begin to occur beyond R200 (Bahé et al., 2013; Cen et al., 2014; Zhang et al.,

2019; Ayromlou et al., 2021). As mentioned above, our original model accounts for this

scenario by allowing quenching to occur in the infall regions (1–3 R200) of our clusters – see

§6.3 of B22 for a description of how this is implemented in our model. Furthermore, cer-

tain environmental quenching mechanisms are simply more efficient at smaller host-centric

radii – e.g. RPS is most efficient near pericenter (Cortese et al., 2021; Boselli et al., 2022).

Therefore, by imposing the condition that Rquench = 1.0 R200, the environmental quenching

model developed in B22 neglects potentially important regions of parameter space, thereby

potentially overlooking alternative quenching pathways. The impact of including Rquench as

a free model parameter is that, under the assumption that satellite orbits are not exclusively

radial, it allows the model to potentially explore quenching pathways distinct from the “spe-

cial case” assumed in B22. Should the aforementioned assumption be invalid, our model

would suffer from a severe degeneracy between Rquench and τquench, limiting the amount of

new information that could be gained from adding the quenching radius as a free parameter.

Additionally, distinguishing between a slow quenching process and a long delay time followed

by rapid quenching would be challenging. However, if the satellite galaxies exhibit a mix

of orbital anisotropies, which perhaps depend on mass and redshift, this degeneracy can be

partially broken.

Another modification is the inclusion of the condition that environmental quenching can only

occur at z < 2.5, so as to allow for the formation of a hot halo or dense ICM whereby mech-

anisms such as starvation and RPS can thereby effectively act to quench cluster members.

In other words, it is difficult to explain how potential environmental quenching mechanisms
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could effectively operate prior to the emergence of massive, virialized halos with a hot or

dense ICM. In practice, this constraint potentially allows for a small fraction of satellites

(≲ 7%) that are accreted prior to z = 2.5 to quench almost immediately after this condition

is satisfied.

Finally, we now also perform a comprehensive Monte Carlo Markov Chain (MCMC) analysis

using the emcee ensemble sampler package (Foreman-Mackey et al., 2013). This step is

included to ensure that the parameter space associated with the updated environmental

quenching model is thoroughly explored, with the primary parameters being the radius at

which environmental quenching begins (Rquench) along with the slope (m) and y-intercept

(b) of the satellite quenching timescale (τquench) that we allow to vary linearly with satellite

stellar mass, as defined below:

τquench = m ∗ log10(M⋆/M⊙) + b. (4.3)

Given that our model inherently accounts for quenching in the infall region (1− 3 R200), we

limit Rquench < 1.0 R200. Furthermore, we apply uniform priors to all model parameters and

define the log likelihood function as

ln p(y |Rquench,m, b, f) =

− 1

2

N∑
i=1

[
(yi,obs − yi,model)

2

s2i
+ ln

(
2π s2i

)]
,

(4.4)

where

s2i = σ2
i + f 2y2i,model .

Thus, our chosen likelihood function is a Gaussian where the observed variance (σ2
i ) is

assumed to be underestimated by a fractional amount f in order to account for the possibility
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that the uncertainties are not Gaussian4 and uncorrelated. Lastly, yobs and ymodel are 1D

vectors that contain, respectively, the observed and predicted satellite quenched fractions

binned as a function of satellite stellar mass, host-centric radius, and redshift. In the following

section, we discuss the results from our Bayesian inference analysis.

4.5 Results

4.5.1 MCMC Analysis & Competing Solutions

As a reminder, the two primary parameters of our environmental quenching model are the

host-centric radius where quenching begins (Rquench) and the time – as measured from Rquench

– required for satellites to environmentally quench (τquench). The utility of this model is that

by using the infall histories of our simulated satellite population we are able to predict the

quiescent fraction as a function of satellite stellar mass, host-centric radius, and redshift.

Thus, the goal of this Bayesian inference analysis is to determine the model parameters

that are most consistent with observed data by comparing model results with the quiescent

fraction measurements derived from our observed cluster sample. Although several initial

configurations were tested – all yielding similar conclusions – the MCMC results that we

discuss herein were acquired using 100 walkers initialized in a tiny Gaussian ball centered

on Rquench = 1.0 R200, m = −0.6, and b = 0.80. For this particular configuration, it took

45,800 steps for the model to converge, where the condition for convergence is defined such

that the number of steps taken is greater than 100 times the average auto-correlation time.

We find that the highest likelihood model occurs when Rquench = 0.90 R200, m = −0.68, and

b = 8.23, whereas the 16th, 50th, and 84th percentiles of the model parameters are given by

Rquench = 0.84+0.11
−0.21 R200, m = −0.58+0.40

−0.26, and b = 7.19+2.74
−4.20.

4In fact, the uncertainties that correspond to our observed quiescent fractions are binomial, however, we
find that in general σlower ≈ σupper. For this reason, we simply define σ = σlower.
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Figure 4.1: Corner plot showing the one- and two-dimensional projections of the posterior
probability distributions of the environmental quenching model parameters. The 16th, 50th,
and 84th percentiles associated with the model parameters are shown by the dashed vertical
lines. The contours are drawn from the 0.5σ to 2σ level in increments of 0.5σ. The model
parameters associated with the highest likelihood model are Rquench = 0.90 R200, m = −0.68,
and b = 8.23, where these values are consistent with those found in B22. Nevertheless, we
observe that the 1D posterior probability distribution of Rquench has an additional local
maxima located at Rquench ∼ 0.25 R200, suggesting that there is another region – albeit
relatively small – in this parameter space with solutions that are potentially consistent with
the observed satellite quenched fraction trends at z ≳ 1. We test this by isolating four
solutions at 0.25, 0.40, 0.50, and 0.90 R200 – depicted by the filled stars – and performing
a more in-depth analysis of how each reproduces the observations. Lastly, the inset in
the top right-hand corner illustrates the quenching timescale associated with each of the
aforementioned solutions.
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Figure 4.2: Satellite quenched fraction as a function of satellite stellar mass (left panel),
projected host-centric radius (middle panel), and redshift (right panel). The orange circles
are the measurements associated with our observed cluster sample. The remaining circles
are the measurements associated with the four solutions highlighted in Fig. 4.1, which, for
simplicity, are labeled according to their associated Rquench values. To enhance clarity, we
introduce a slight horizontal offset to visually differentiate between the different models,
while also including vertical red lines at the top of each panel to indicate the position of the
unaltered values. We note that the median redshift bins between the simulated and observed
data are inherently offset, likely due to the former being based on discrete snapshots instead
of continuous values. With the exception of the model with Rquench = 0.50 R200, which
overproduces the satellite quenched fraction at low masses and large host-centric radius,
these results suggest that there exists a broad range of solutions in the Rquench-τquench(M⋆)
parameter space that yield models able to reproduce the observed satellite quiescent fraction
as a function of stellar mass, host-centric radius, and redshift as probed by the GOGREEN
data set.
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The results from our Bayesian inference analysis are summarized in Fig. 4.1, displaying

a corner plot that depicts the 1D and joint 2D posterior probability distributions of our

model parameters. The first notable observation is that there exist two local maxima in

the marginalized distribution of Rquench (top-left panel of Fig. 4.1) at ∼ 0.25 and 1.0 R200,

respectively. This suggests that there are non-unique solutions in the parameter space of our

environmental quenching model that are potentially consistent with observations. However,

the relative importance of these two local maxima implies that the potential solutions asso-

ciated with the less prominent peak are confined to a more limited region within the model

parameter space. The second notable observation is that there is a well-defined “ridge”

of quenching timescales, as illustrated by the strong covariance between the slope and y-

intercept of the linear satellite quenching timescale (bottom row, middle column of Fig. 4.1).

Specifically, this ridge shows that there are three classes of quenching timescales that are

potentially permissible according to our environmental quenching model (see the inset in the

top-right corner of Fig. 4.1). The first class consists of quenching timescales that decrease

with increasing satellite stellar mass – i.e. the region with m < 0. The second class consists

of short quenching timescales that are largely independent of satellite stellar mass – i.e. the

region around m ∼ 0. The third class consists of quenching timescales that increase with

increasing satellite stellar mass – i.e. the region with m > 0. Interestingly, despite the high-

est likelihood model being found at Rquench = 0.90 R200, the aforementioned observations

suggest that the Rquench-τquench parameter space is potentially degenerate with a range of pos-

sible solutions that are consistent with observations. This observation aligns with the recent

findings from Tacchella et al. (2022), which indicate that galaxies likely undergo quenching

over a diverse range of timescales. Moreover, recent studies have also highlighted a similar

degeneracy between the onset of quenching and the quenching timescale at z ∼ 0 (Oman

et al., 2021; Reeves et al., 2023), signaling the need for additional observable(s) beyond the

quiescent fraction to constrain these parameters.

To investigate whether this degeneracy is present in our environmental quenching model, we
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select four solutions in our model parameter space – illustrated by the four colored stars in

Fig. 4.1 – and directly compare their estimated quiescent fractions with observations. These

solutions are selected to probe specific regions of our model’s parameter space – i.e. the

two local maxima (purple, light-green), the “saddle” between the local maxima (blue), and

the outskirts of the covariance relationship between the slope and y-intercept of the linear

quenching timescale (green). Furthermore, these four solutions, henceforth denoted by their

respective Rquench values, are purposely selected to run the gamut of potentially permissible

classes of quenching timescales (see top-right inset in Fig. 4.1). As shown in Fig. 4.2, nearly

all of these solutions are roughly consistent with the observed satellite quenched fraction

trends as a function of satellite stellar mass, host-centric radius, and redshift. The only

exception occurs for the solution that probes the outskirts of the covariance between the

slope and the y-intercept of the linear quenching timescale, given that it overpredicts the

quiescent fraction at both low satellite stellar mass and large host-centric radius by more

than 2σ. This suggest that quenching timescales that increase towards higher satellite stellar

mass are inconsistent with observations, and as such, we will no longer consider the m > 0

family of solutions.

In summary, we find that our results are degenerate given that there exists a region in the

multi-dimensional parameter space in which seemingly distinct solutions return quiescent

fraction trends that are consistent with observations. Nevertheless, two additional questions

naturally arise from this observation with the first one being: (i) is it possible to rule out

solutions by comparing their results with additional measurements derived from our observed

cluster population?; and (ii) are these seemingly disparate solutions truly distinct or do they

represent the same underlying quenching pathway? Regarding the first question, we address

it immediately in the following subsection, however, we save discussion of the second question

for §4.6.2.
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4.5.2 Comparison of the Observed and Estimated Properties of

Transition Galaxies

One feasible approach to break the aforementioned degeneracy would be to use information

from the environmental quenching model – e.g. the time at which satellites environmentally

quench – to isolate a population of “transition galaxies” and compare their properties with

observations. By transition galaxies, we refer to a class of galaxies that exhibit properties –

e.g. intermediate colors and moderate levels of star formation activity – that suggests that

they are in a transitional phase between actively star-forming and passive galaxies. They can

divided into different types, such as “post-starbursts” (PSB, Dressler & Gunn, 1983, 1992;

Couch & Sharples, 1987) and “green valley” (GV, Schiminovich et al., 2007; Schawinski

et al., 2014; Vulcani et al., 2015), each with its own distinct evolutionary pathway. PSB

galaxies, also known as “E+A” or “K+A” galaxies, are a class of galaxies that have recently

undergone a sudden and dramatic cessation of star formation, typically within the last few

hundred million years, resulting in strong Balmer absorption lines (EW(Hδ) ≥ 4Å) in their

spectra due to the presence of young and hot A-type stars. The “green valley” was initially

defined as the region between the “red sequence” and “blue cloud” in color-color or color-

stellar mass diagrams. However, many studies have found this definition to be problematic,

particularly at high stellar masses and high redshifts, as it is inadvertently includes dusty,

star-forming galaxies (DSFGs) (Brammer et al., 2009; Salim et al., 2009). Nevertheless,

this issue of contamination from DSFGs can be ameliorated by using rest-frame color-color

diagrams, such as (NUV − V ) vs (V − J), to define the green valley as the intermediate

region between the quiescent and star-forming populations (Mendez et al., 2011; Mok et al.,

2014; McNab et al., 2021).

Our approach to isolate the population of transition galaxies associated with our environ-

mental quenching models is to assume that these galaxies are only visible for a limited time

window, twindow, relative to the redshift of observation of our simulated cluster sample. This
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Figure 4.3: The relative abundance of transition galaxies as a function of host-centric radius.
The orange circles show the relative abundance of PSB and GV galaxies from the GOGREEN
cluster sample (McNab et al., 2021). The remaining circles depict the model results under
the assumption that the transition population consists of galaxies that quenched within a
fixed time window relative to zobs. In particular, for a given model we define the transition
population as satellites that either quench < 0.30 Gyr before zobs or star-forming satellites
that will quench < 0.30 Gyr after zobs. To improve clarity, a small horizontal offset is
applied to distinguish between the various models, while red vertical lines are included
slightly above the horizontal axis to mark the position of the unaltered values. We find that
all models – with the exception of those at Rquench = 0.25 R200 – are generally consistent
with observations.

87



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Model at 0.25 R200

PSB & GV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Model at 0.4 R200

PSB & GV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Model at 0.9 R200

PSB & GV

Projected Radius (Rproj/R200)

∆
v
/
σ

cl
u

st
e
r

Figure 4.4: The “folded” projected phase-space distribution for transition galaxies selected
at the redshift of observation. Each panel compares the projected phase-space distribution
associated with the transition galaxies selected from one of the three solution drawn from our
environmental quenching model at Rquench = 0.25, 0.4, and 0.9 R200 with the corresponding
distribution of PSB and GV galaxies identified in the GOGREEN cluster sample. The
solid contours illustrate the phase-space bins adopted by Muzzin et al. (2014). We observe
that the solution at Rquench = 0.25 R200 has a relative dearth of transition galaxies in the
outer regions of the cluster. Moreover, within the inner ≲ 0.30 − 0.35 R200, the Rquench =
0.25 R200 solution yields transition galaxies with much higher line-of-sight velocities relative
to the observed transition galaxy population. A similar argument could also be made for
the Rquench = 0.40 R200 solution, such that only the Rquench = 0.90 R200 solution yields
line-of-sight velocities in the inner regions of the cluster that are roughly consistent with
observations.
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observed distribution, whereas all of the other lines correspond to the distributions predicted
by the competing environmental quenching models. The legend includes the KS two-sided p-
values derived from comparing the observed and predicted line-of-sight velocity distributions.
This analysis shows that the null hypothesis can only be rejected for the model with Rquench =
0.25 R200.
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definition is inspired by the concept of the “visibility time” of transition galaxies, which

refers to the limited period during which the defining features of transition galaxies, such

as intermediate colors and strong Balmer absorption lines, can be observed. In the frame-

work of our model, we identify the transition galaxy population as galaxies that are within

±0.30 Gyr of quenching, as measured relative to the redshift of observation. As will be

discussed in §4.6.1, this is consistent with the timescales associated with various classes of

observationally-identified transition galaxies — e.g. PSB and GV galaxies. In Fig. 4.3, we

compare the relative abundance of transition galaxies for each quenching model relative to

the abundance of GV and PSB galaxies identified in the GOGREEN cluster sample from

McNab et al. (2021). We find that the quenching model with Rquench = 0.25 R200 underpro-

duces the observed relative abundance of transition galaxies beyond the very inner regions

of the cluster (mainly due to relatively rapid quenching timescale and small quenching ra-

dius). Meanwhile, the other two models (with Rquench = 0.4 R200 and Rquench = 0.9 R200)

are generally consistent with the observed abundance of transition galaxies as a function of

host-centric distance.

In Fig. 4.4, we also compare the projected phase-space distribution of the simulated transition

galaxies with the observed distribution of transition galaxies, as constrained by PSB and GV

galaxies in the GOGREEN sample. The first notable observation, in line with the results

from Fig. 4.3, is that the solution at Rquench = 0.25 R200 yields very few transition galaxies

in the outer regions of the cluster. Additionally, within the inner ≲ 0.30 − 0.35 R200, the

Rquench = 0.25R200 solution yields transition galaxies with much higher line-of-sight velocities

relative to the observed transition galaxy population. On the surface, it appears that only the

Rquench = 0.90 R200 solution yields line-of-sight velocities in the inner regions of the cluster

that are roughly consistent with observations. To test this, we compute the cumulative line-

of-sight velocity normalized by the cluster velocity dispersion (vlos/σ) distributions of the

inferred transition galaxies, limited to the inner 0.35 R200 of the cluster, and compare the

results with the corresponding distribution for the observed sample of transition galaxies from
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GOGREEN. This information is shown in Fig. 4.5 along with the Kolmogorov-Smirnov (KS)

two-sided p-values. The first major takeaway is that, in addition to failing to reproduce the

observed relative abundance of transition galaxies, the model at Rquench = 0.25 R200 yields a

p-value less than 0.05, indicating that the null hypothesis can be rejected – i.e. the transition

population predicted by this model is not drawn from the same parent distribution as the

observed sample. Consequently, we consider the solution at Rquench = 0.25 R200 to be less

viable as it does not adequately reproduce the observed relative abundance of transition

galaxies and results in an overabundance of high-velocity satellites in the inner regions of

the cluster. Lastly, these results imply that only the solutions with relatively long and mass

dependent timescales are unable to be rejected based on the KS test. This, in turn, brings us

back to the second question posed at the end of §4.5.1 – i.e. do these solutions represent the

same quenching pathway with apparent differences driven by a covariance between τquench

and Rquench? In addition to addressing this question, in the following section §4.6, we explore

how the aforementioned conclusion depends on our definition of transition galaxies as well

as how our results compare with previous environmental quenching studies at z ∼ 1.

4.6 Discussion

4.6.1 Transition Galaxies and Visibility Times

As mentioned in §4.5.2, our approach for isolating the population of transition galaxies

within the framework of our environmental quenching model assumes that these galaxies

are visible for a limited time window, twindow, relative to the redshift of observation in

our simulated cluster sample. For PSB galaxies, the visibility times typically indicates the

time required for the galaxy’s Balmer absorption lines to weaken to the level of a quiescent

galaxy, often inferred from the equivalent width measurement of the Hδ absorption line
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in the galaxy’s spectrum. In contrast, for green valley (GV) galaxies, the visibility time

(referred to as the “crossing time”) signifies the time required to cross the green valley and

is typically inferred using statistical analyses of galaxy properties in the GV region of the

color-magnitude diagram.

Studies have indicated that PSB galaxies have a relatively short visibility time, with estimates

ranging from 0.1 − 1 Gyr (Wild et al., 2009; Muzzin et al., 2014; Wild et al., 2016; French

et al., 2018; Rowlands et al., 2018; Belli et al., 2019; Wild et al., 2020). On the other

hand, GV galaxies have a more extended visibility time, with some studies suggesting that

the transition phase can last up to 1 − 2 Gyr (Bremer et al., 2018; Forrest et al., 2018;

Smethurst et al., 2018; Noirot et al., 2022). However, an investigation by Schawinski et al.

(2014) found that this timescale depends on morphology, with early-type galaxies crossing

the green valley in timescales of less than 0.25 Gyr, and late-type galaxies crossing it in less

than 1.0 Gyr. Nevertheless, the exact duration of the visibility time for transition galaxies

depends on various factors, including the methodology for identifying them, the specific

diagnostic used to estimate transition timescales, the spectral resolution, the signal-to-noise

ratio of the observations, and other observables such as the host environment (Paccagnella

et al., 2017, 2019; Socolovsky et al., 2019; Mao et al., 2022) and galaxy mass (McNab et al.,

2021). Therefore, the exact visibility of PSB and GV galaxies remains uncertain and depends

on multiple factors.

The selection of transition galaxies in this analysis, namely satellites within ±0.30 Gyr of

quenching, aligns with the aforementioned estimates of the visibility time for PSB and GV

galaxies. While this choice is consistent with observations, widening the visibility window,

for example, to ±0.60 Gyr, would result in the Rquench = 0.25 R200 solution predicting a

relative abundance of transition galaxies consistent with observations. However, the second

conclusion regarding the Rquench = 0.25 R200 solution, namely an overabundance of transition

galaxies with high line-of-sight velocities in the inner region of the cluster, remains true
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Figure 4.6: Quenching timescales versus satellite stellar mass. The colored lines correspond
to the three observationally consistent solutions to our environmental quenching model iso-
lated in Fig. 4.1. The dashed grey line and shaded band represent the results associated
with the median and corresponding 1-sigma error of the model parameters derived from
our MCMC analysis. The upper panel shows the quenching as measured from the time of
crossing Rquench, whereas the lower panel augments these timescales by adding the median
time required for the satellites in a given model to travel from 1.0 R200 to Rquench. These
results, namely that the timescales associated with the various solutions do not overlap after
taking into consideration the delay time between first crossing 1.0 R200 and reaching Rquench,
suggest that our satellite orbits are not exclusively radial.93
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Figure 4.7: The cumulative distribution for the redshift (left panel), velocity (middle panel)
and host-centric radius (left panel) corresponding to the time at which the competing
models fully quenched their satellite population. With the exception of the models with
Rquench ≤ 0.25 R200, all of the models have strongly overlapping cumulative distributions for
the radius and line-of-sight velocity at which their satellite populations were environmentally
quenched. However, for redshifts above z ∼ 1.3, there is a clear stratification of the models
such that the fraction of galaxies that quench at relatively earlier times increases as Rquench

decreases. These results suggest that the models with Rquench ≤ 0.25 R200 experience a dis-
tinct quenching pathway from the other models given that they environmentally quench the
bulk of their galaxies at earlier times, smaller host-centric radii and with relatively higher
line-of-sight velocities.

and even worsens if the visibility window is expanded. Likewise, we find that the general

conclusion drawn in §4.5.2 remains true, namely that only solutions with long quenching

timescales (τquench ≳ 1 Gyr) and large quenching radius (Rquench ≳ 0.4 R200), are capable of

reproducing the observed abundance and phase-space distribution of transition galaxies in

clusters at z ∼ 1. This holds even if we modify our definition of observed transition galaxies

to include only PSB or GV galaxies.

4.6.2 Distinct Quenching Pathways?

As stated in §4.5.1, it is important to determine if the various observationally consistent

solutions truly represent distinct environmental quenching mechanisms or if instead they

represent the same quenching mechanism with the differences in quenching timescales being

directly tied to changes in the host-centric radius at which quenching begins. A simple
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method to test this is to compare the quenching timescale results associated with each of the

solutions, which we show in Fig. 4.6. The top panel depicts the quenching timescales relative

to crossing Rquench, whereas the bottom panel augments this timescale by adding the median

time required for a satellite to travel from 1.0 R200 to Rquench. The results from Fig. 4.6

suggest that despite having different assumptions for where quenching begins, the solutions

at 0.40 and 0.90 R200 yield fairly consistent quenching timescales when measured relative to

1.0 R200. Moreover, as illustrated in Fig. 9 from B22, the timescales associated with these two

solutions are roughly consistent with the empirically-derived cold gas (HI + H2) depletion

timescale at intermediate z from Popping et al. (2015). Following the logic presented in

that analysis, we interpret these solutions to potentially be associated with starvation as the

dominant quenching pathway. Nevertheless, additional information is required to determine

if the solution at Rquench = 0.25 R200 represents a distinct quenching pathway.

A more detailed method of testing if these solutions represent distinct quenching pathways is

to compare the properties of their satellite populations – e.g. positions and velocities – at the

time in which the quenching process ends. Thus, we compare the cumulative distributions of

the host-centric radius at the time in which the three solutions fully environmentally quench

their satellite population (Rquench,final) along with the corresponding line-of-sight velocity and

redshift (vquench,final/σ and zquench,final, respectively). Together with the quenching timescale

information, these additional constraints allow us to answer the following questions: (i)

how long does the satellite quenching process last? (ii) where in the cluster does satellite

quenching begin and end?; (iii) what is the velocity distribution of satellites at the moment

at which quenching ends?

The left, middle, and right panels in Fig. 4.7, respectively, compare the cumulative distribu-

tions of zquench,final, Rquench,final, and vquench,final/σ associated with each of the solutions. The

first notable observation is that zquench,final depends on Rquench such that the solutions for

which quenching begins at larger (smaller) radii finish quenching at later (earlier) times. In
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Figure 4.8: Quenching timescale versus redshift for satellites of massive clusters (Mhalo ∼
1014−15 M⊙). The filled (unfilled) red star represents the quenching timescale measured
at M⋆ = 1010.5 M⊙ (M⋆ = 1010 M⊙) derived from our MCMC analysis (i.e. the dashed
grey line in Fig. 4.6). Likewise, the orange unfilled star represents the quenching timescale
measured at M⋆ = 1010 M⊙ scaled according to the evolution of the dynamical time –
τquench(M⋆) × (1 + z)−1.5. The black points show the quenching timescales obtained from
comparable studies of environmental quenching in clusters at z ∼ 1 (left panel) and 0 < z <
1.6 (right panel) as measured by Wetzel et al. (2013), Muzzin et al. (2014), Balogh et al.
(2016), and Foltz et al. (2018). With the exception of the point from Wetzel et al. (2013) –
which is evaluated at M⋆ = 1010.0 M⊙ – all of the results from separate studies are evaluated
for satellites with M⋆ > 1010.5 M⊙. The dashed gray line depicts the empirically-derived cold
gas (HI + H2) depletion timescale from Popping et al. (2015) evaluated at M⋆ = 1010.5 M⊙.

line with the results shown in the bottom panel of Fig. 4.6, this indicates that for models

with a small Rquench, the time interval between becoming a satellite (i.e., first crossing R200)

and reaching Rquench is shorter than the time required to quench satellites for the mod-

els with a large Rquench. Additionally, we observe that the solutions at 0.40 and 0.90 R200

have consistent cumulative distribution of Rquench,final and vquench,final/σ. This suggests that

these solutions are agnostic towards where quenching begins given that they quench their

satellite populations at similar host-centric radii and with overlapping line-of-sight velocities

distributions. By the same token, we observe that the quiescent satellites associated with

the solution at Rquench = 0.25 R200 predominantly quench in the core of the cluster (80%

quenched at < 0.40 R200) with relatively high line-of-sight velocities.

We interpret the results from Figs. 4.6 and 4.7 as evidence of two distinct quenching path-
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ways, which we define as “starvation” and “core-quenching”. The former, which applies to

the solutions with Rquench = 0.40 and 0.90 R200, is characterized by relatively long (> 1.0

Gyr) mass-dependent quenching timescales that are roughly consistent with the total cold

gas (HI+H2) depletion timescale at intermediate z. Meanwhile, the latter is characterized by

satellites with relatively high line-of-sight velocities that quench on short timescales (∼ 0.25

Gyr) after reaching the inner region of the cluster (< 0.25 R200). It is interesting to note

that the “core-quenching” pathway and RPS exhibit similar characteristics: both tend to

quench high-velocity satellites located at small distances from their host galaxy’s center,

and the quenching occurs relatively quickly (≲ 1 Gyr) (Boselli et al., 2022). These simi-

larities raise the possibility that the “core-quenching” pathway could be similar to the RPS

mechanism responsible for forming “jellyfish galaxies” (Poggianti et al., 2017; Vulcani et al.,

2020a), especially since many of these galaxies are also observed in the inner regions of clus-

ters (< 0.40 R200) (Gullieuszik et al., 2020). Nevertheless, while the idea is captivating, we

assert that it is beyond the scope of this study to establish a direct equivalence between the

“core-quenching” pathway and RPS.

4.6.3 Comparison with Previous Studies

In the left panel of Fig. 4.8, we compare the quenching timescale inferred from this inves-

tigation with results from previous environmental quenching studies of cluster populations

(Mhalo > 1014 M⊙) at z ∼ 1 for satellites with M⋆ > 1010.5 M⊙. These studies include

Muzzin et al. (2014), Balogh et al. (2016), and Foltz et al. (2018), and they were selected

given that they utilize a compatible definition of τquench – i.e. defined as the timescale upon

which satellites quench as measured relative to first infall. Nevertheless, we acknowledge

that these studies utilize distinct methodologies for inferring the quenching timescale. For

example, Balogh et al. (2016) inferred quenching timescales of 1.5± 0.5 Gyr by relating the

passive fraction in 10 galaxy clusters from the GCLASS survey to infall histories estimated
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from semi-analytic simulations. Meanwhile, Muzzin et al. (2014) used galaxy spectral fea-

tures to identify PSB galaxies in the GCLASS cluster sample and related the distribution

of this population in phase space to the phase-space distribution of infalling subhalos in

dark-matter-only zoom-in simulations to obtain a quenching timescale of 1.0 ± 0.25 Gyr.

Lastly, Foltz et al. (2018) inferred a total quenching timescale of 1.3 ± 0.3 by relating the

observed numbers of star-forming, quiescent, and green valley galaxies in 10 galaxy clusters

to a simulated cluster mass accretion rate using a “delayed-then-rapid” quenching model

(Wetzel et al., 2013; McGee et al., 2014; Mok et al., 2014; Balogh et al., 2016; Fossati et al.,

2017).

Despite the different methodologies utilized in these studies, the inferred timescales broadly

agree that satellite quenching at z ≳ 1 proceeds on timescales between 1− 1.5 Gyr following

accretion onto an established cluster. As shown in Fig. 4.8, these timescales are all roughly

consistent with the total cold gas depletion timescale at this epoch, suggesting that the

consumption of cold gas in absence of cosmological accretion – i.e. starvation – could be the

dominant quenching mechanism at this epoch. Nevertheless, it is important to acknowledge

the findings of Muzzin et al. (2014), whose PSB-focused quenching study concludes that RPS

is the dominant mechanism in massive clusters. Likewise, the results of Foltz et al. (2018)

suggest that quenching takes place on the dynamical timescale of the cluster, although they

cannot dismiss the possibility of quenching due to gas depletion in the absence of cosmological

accretion.

In the left panel of Fig. 4.8, we explore the redshift dependence of the satellite quenching

timescale by including results fromWetzel et al. (2013) at z ∼ 0 – evaluated atM⋆ = 1010 M⊙

for Mhalo = 1014−15 M⊙ – and results at z ∼ 1.6 from Foltz et al. (2018). We also include the

quenching timescale estimate at z ∼ 0 from Balogh et al. (2016), obtained by scaling τquench

according to the dynamical time – i.e. τquench×(1+z)−1.5. We perform a similar scaling using

our inferred quenching timescale evaluated at M⋆ = 1010 M⊙ to obtain an estimate of the
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quenching timescale at z ∼ 0. As noted in several previous studies, we find that the satellite

quenching timescale evolves roughly like the dynamical time (Tinker & Wetzel, 2010; Balogh

et al., 2016; Foltz et al., 2018; Baxter et al., 2022). Although the catalyst behind the redshift

evolution of the quenching timescale remains unknown, one possible interpretation of the

aforementioned observation is that the environmental quenching mechanism(s) responsible

for producing the observed quenched fraction results in clusters at z ∼ 1 are potentially

equivalent to those at play in their low-z descendants, where the differences in timescales

between the separate epochs is due to the evolution of the host system properties (e.g. halo

masses, velocity dispersion, etc.), but not the quenching mechanism itself.

In comparing our investigation to previous studies, it is important to highlight that the

transition galaxy phase space analysis detailed in §4.5.2 shares similarities with the approach

used in Muzzin et al. (2014) to constrain Rquench and τquench at z ∼ 1. Specifically, in

Muzzin et al. (2014) they compare the projected phase space distribution of PSB galaxies

from the GCLASS cluster sample with that of simulated PSB galaxies, which they infer

by isolating galaxies in time-steps of 0.2 Gyr after first passage of 0.25, 0.50, and 1.0 R200.

Moreover, by using a 2D KS test to compare these distributions, they rule out all scenarios

in which quenching begins after the first passage of 1.0 R200 and lasts between 0.5−1.1 Gyr.

Additionally, they find that the combination of Rquench = 0.50 R200 and τquench = 1.0 Gyr

is most consistent with the data. In essence, despite the fact that the clusters explored in

Muzzin et al. (2014) constitute a subset of our sample, we arrive at contrasting conclusions

regarding where within the cluster - and for how long - quenching takes place.

Nevertheless, comparing these two investigations objectively presents challenges due to sev-

eral key differences. Firstly, the studies employ different populations of transition galaxies

and clusters. For instance, in the study by Muzzin et al. (2014), the transition galaxies

are exclusively limited to spectroscopically selected PSB galaxies primarily sourced from

two massive clusters at a redshift of z = 0.87. In contrast, our study includes both photo-
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metrically selected GV galaxies and spectroscopically selected PSB galaxies as part of the

transition galaxy population, predominantly obtained from higher-redshift clusters. Consid-

ering that Muzzin et al. (2014) attributes quenching to RPS, one possible interpretation is

that the influence of RPS becomes more pronounced with increasing halo mass and decreas-

ing redshift. Additionally, besides utilizing distinct infall histories to select our simulated

transition galaxy populations, both studies employ unique methodologies. For example,

in contrast to their analysis, we investigate the stellar mass dependence of environmental

quenching and track the self-quenching of the infalling field population. The considera-

tion of stellar mass dependence is important since, as demonstrated in figure 4 of B22,

the observed quiescent fraction trends cannot be replicated under the assumption that the

quenching timescale, measured since first passage of 1.0 R200, is independent of satellite

stellar mass. Moreover, incorporating a self-quenching prescription based on measurements

of the observed field quenched fraction introduces an additional stellar mass dependence to

the satellite quenching process, indicating that more massive satellites, on average, would

be expected to undergo quenching in the field or infall region compared to their less massive

counterparts. Considering all these factors, it is highly likely that the discrepancies between

our analyses stem from a combination of disparate methodologies and variations in cluster

and transition galaxy populations.

4.7 Summary and Conclusions

In our recent paper, B22, we investigated the dominant quenching mechanism in massive

clusters at z ≳ 1, using a simple infall-based environmental quenching model parameterized

by the quenching timescale τquench. The success of this model was that it: (i) improved upon

previous studies by implementing a prescription for field quenching and pre-processing in

the infall region; (ii) is fairly simple in that it involves one primary parameter - i.e. the
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satellite quenching timescale τquench; (iii) roughly reproduces the observed satellite stellar

mass function as well as the satellite quenched fraction as a function of stellar mass (by

construction), host-centric radius, and redshift; and (iv) yields quenching timescales that

are consistent with the total cold gas depletion time at intermediate z, suggesting that

“starvation” - i.e. the depletion of cold gas in the absence of cosmological accretion - is the

dominant driver of environmental quenching at z < 2.

Thus, the motivation for this follow-up investigation was to further test the validity of this

conclusion by developing a more generalized environmental quenching model that allows for

potentially distinct quenching pathways through the introduction of the parameter Rquench –

i.e. the host-centric radius corresponding to the onset of environmental quenching. To this

end, we performed a comprehensive MCMC analysis to fully explore the parameter space of

our updated environmental quenching model, and ultimately discovered two local maxima

at approximately 0.25 and 1.0 R200 in the 1D posterior probability distribution of Rquench.

From here, we isolated four distinct solutions in the Rquench − τquench parameter space - i.e.

two near the aforementioned local maxima, one in the “saddle” between the local maxima,

and one in the outskirts of the covariance relationship between the slope and y-intercept of

the linear quenching timescale. We discovered that, with the exception of the solution in

the outskirts of the aforementioned covariance relation, all solutions reproduce the satellite

quenched fraction trends associated with our GOGREEN cluster population.

In an effort to determine if these solutions represent distinct quenching pathways, we com-

pared their quenching timescales (relative to first crossing R200) as well as their positions and

velocities at the time of quenching. Based on this information, we separated the solutions

between those driven by “starvation” and “core-quenching”. The former quenching pathway

corresponds to model solutions that exhibit quenching timescales that are aligned reasonably

well with the total cold gas (HI+H2) depletion timescale at intermediate z. On the other

hand, the latter pathway, which bears resemblance to ram-pressure stripping, is characterized
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by satellites with relatively high line-of-sight velocities, experiencing rapid quenching within

a short timescale (∼ 0.25 Gyr) after entering the inner region of the cluster (< 0.30 R200).

To break the degeneracy among these solutions, we compared our model results with ob-

served properties of transition galaxies in massive clusters at z ≳ 1 from the GOGREEN

survey. From this analysis, we found that only the solutions associated with the starvation

quenching pathway are consistent with both the observed quiescent fraction trends and the

phase-space distribution and relative abundance of transition galaxies at z ≳ 1.

In conclusion, this investigation provides further insight into the dominant quenching mech-

anisms in massive clusters at z ≳ 1, and shows that results from a simple environmental

quenching model can be used to isolate distinct quenching pathways. By comparing model

results with observations, we found that the “core-quenching” pathway is not consistent

with the observed transition galaxy trends. Conversely, our results are consistent with the

scenario in which galaxies quench on relatively long timescale between 1.0−1.5 Gyr after ac-

cretion, thus supporting the idea that starvation may be the dominant quenching mechanism

at z < 2. Nonetheless, despite the concordance between the inferred quenching timescales

and the total gas depletion time during this epoch, this study provides evidence supporting

the importance of group pre-processing in shaping the observed quiescent fraction, as well as

the notion that RPS contributes as a secondary mechanism for quenching in massive clusters

at z ≳ 1, in line with recent environmental quenching reviews (Cortese et al., 2021; Alberts

et al., 2022).
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Chapter 5

Summary and Conclusion

Qu’est-ce qu’un scientifique après tout? C’est un homme curieux qui regarde à travers

un trou de serrure, le trou de serrure de la nature, essayant de savoir ce qui se passe.

– Jacques-Yves Cousteau

This dissertation represents the culmination of approximately 6 years of dedicated research,

professional development as a scientist, and the invaluable guidance and support from an

extensive network of scientists and mentors. The focus of this chapter is to showcase the

outcomes and conclusions derived from my graduate work.

5.1 Dwarf Satellite Quenching with Machine Learning

In this chapter, we develop a supervised machine learning and statistical background sub-

traction technique to study the poorly understood regime of low-mass satellite quenching.

The primary findings and conclusions from this investigation are as follows:

• We successfully reproduce the measured satellite quenched fraction at M⋆ ≳ 1010 M⊙,
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as derived from spectroscopic studies in the local Universe. We find that the satellite

quenched fraction increases with increasing satellite mass at M⋆ ≳ 1010 M⊙.

• We measure the satellite quenched fraction down to M⋆ ∼ 107 M⊙, pushing measure-

ments of satellite quenching in ∼ 1013−14 h−1 M⊙ halos to a new regime that is not

readily probed outside of the Local Group.

• We find that the satellite quenched fraction increases towards lower satellite masses

below ∼ 109 M⊙.

• The increase in satellite quenching at low masses potentially indicates a change in the

dominant quenching mechanism at ∼ 109 M⊙, where ram-pressure stripping begins to

become increasingly effective.

5.2 Quenching Timescales of Cluster Satellites at z ≳ 1

In this chapter, we address the uncertainty on the dominant quenching mechanism at play in

massive clusters at z ∼ 1, as evidence by modern cosmological models inability to reproduce

observed trends of satellite quenched fractions at this epoch. Our focus is to constrain the

crucial timescale of satellite quenching (τquench), which characterizes the efficiency of star

formation shutdown and sheds light on dominant environmental quenching mechanisms.

Using a similar approach employed in low-z environmental quenching studies, we model

satellite quenching to place constraints on τquench. To achieve this, we combine observations

of 14 massive clusters (Mhalo = 1014−15 M⊙) at z ≳ 1 from the GOGREEN and GCLASS

surveys with the accretion and orbital histories of analogous cluster populations extracted
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from N -body simulations. The following are the key findings of our investigation:

• Our infall-based environmental quenching model successfully reproduces the observed

satellite quenched fraction as a function of stellar mass, projected cluster-centric ra-

dius, and redshift.

• We find that satellite quenching is mass dependent at z ∼ 1, such that the efficiency

of environmental quenching increases with satellite stellar mass.

• In comparison to similar analyses at low redshift, we find that the satellite quenching

timescale evolves roughly like the dynamical time (∝ (1 + z)−3/2).

• When including pre-processing within the cluster infall regions, we find that the vast

majority (∼ 65 − 80%) of massive satellites (> 1011 M⊙) in clusters are quenched

at z ∼ 1 clusters prior to infall. In contrast, the majority of lower-mass satellites

(≲ 1010.5 M⊙) quenched within the cluster.

• Our satellite quenching model yields quenching timescales that are longer than the

observed molecular depletion timescales at intermediate redshift. Instead, the inferred

quenching timescales are roughly consistent with the predicted total cold gas depletion

timescale (HI+ H2) at 1 < z < 2.

5.3 Environmental Quenching in Clusters at z ≳ 1

In this chapter, we explore models of satellite quenching in massive clusters at z ≳ 1 using

an MCMC framework, focusing on two primary parameters: Rquench (the host-centric radius
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at which quenching begins) and τquench (the timescale upon which a satellite quenches after

crossing Rquench). The primary findings and conclusions from this investigation are as follows:

• A comprehensive MCMC analysis revealed two local maxima in the 1D posterior prob-

ability distribution of Rquench at approximately 0.25 and 1.0 R200.

• Four distinct solutions were identified in the Rquench−τquench parameter space, including

those near the local maxima, in the saddle between them, and in the outskirts of

the covariance relationship between the slope and y-intercept of the linear quenching

timescale.

• The solutions were classified into two quenching pathways based on quenching timescales

relative to first crossing R200, positions, and velocities at the time of quenching.

1. Starvation Pathway: Solutions aligned with the total cold gas depletion timescale

and indicated gradual quenching over 1.0− 1.5 Gyr after accretion.

2. Core-Quenching Pathway: Solutions resembling ram-pressure stripping, with rapid

quenching within a short timescale after entering the inner region of the cluster.

• Comparing model results with observed properties of transition galaxies in massive

clusters at z ≳ 1 from the GOGREEN survey, only solutions associated with the star-

vation quenching pathway were consistent with observed trends in quiescent fraction,

phase-space distribution, and relative abundance of transition galaxies.

• The study supports the idea that starvation is the dominant quenching mechanism at

z < 2. However, it also highlights the importance of group pre-processing and suggests

that ram-pressure stripping contributes as a secondary mechanism for quenching in

massive clusters at z ≳ 1.
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Gottlöber S., Klypin A., Kravtsov A. V., 2001, ApJ, 546, 223

Grcevich J., Putman M. E., 2009, ApJ, 696, 385

Grogin N. A., et al., 2011, ApJS, 197, 35

Gullieuszik M., et al., 2020, ApJ, 899, 13

Gunn J. E., Gott J. Richard I., 1972, ApJ, 176, 1

Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111

Guo Y., et al., 2013, ApJS, 207, 24

Guo Y., et al., 2017, ApJ, 841, L22

Haines C. P., Gargiulo A., Merluzzi P., 2008, MNRAS, 385, 1201

Hamilton D., 1985, ApJ, 297, 371

Hayashi M., et al., 2018, ApJ, 856, 118

111

http://dx.doi.org/10.3847/2041-8213/ab5b9f
https://ui.adsabs.harvard.edu/abs/2020ApJ...890L...1F
http://dx.doi.org/10.3847/1538-4357/abb819
https://ui.adsabs.harvard.edu/abs/2020ApJ...903...47F
http://dx.doi.org/10.3847/1538-4357/835/2/153
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..153F
http://dx.doi.org/10.3847/1538-4357/aacb2d
https://ui.adsabs.harvard.edu/abs/2018ApJ...862....2F
http://dx.doi.org/10.1051/0004-6361/201732223
https://ui.adsabs.harvard.edu/abs/2019A&A...622A.105F
http://dx.doi.org/10.1093/pasj/56.1.29
https://ui.adsabs.harvard.edu/abs/2004PASJ...56...29F
http://dx.doi.org/10.1088/0067-0049/206/2/10
https://ui.adsabs.harvard.edu/abs/2013ApJS..206...10G
http://dx.doi.org/10.1051/0004-6361/201833427
https://ui.adsabs.harvard.edu/abs/2018A&A...618A.130G
http://dx.doi.org/10.1088/0004-637X/757/1/85
https://ui.adsabs.harvard.edu/abs/2012ApJ...757...85G
http://dx.doi.org/10.3847/1538-4357/aa8626
https://ui.adsabs.harvard.edu/abs/2017ApJ...847....4G
http://dx.doi.org/10.1111/j.1365-2966.2010.16969.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407.2091G
http://dx.doi.org/10.1111/j.1365-2966.2004.08562.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356.1327G
http://dx.doi.org/10.1086/301557
https://ui.adsabs.harvard.edu/abs/2000AJ....120.2148G
http://dx.doi.org/10.1086/344636
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..141G
http://dx.doi.org/10.1086/345593
https://ui.adsabs.harvard.edu/abs/2003ApJ...584..210G
http://dx.doi.org/10.1086/318248
https://ui.adsabs.harvard.edu/abs/2001ApJ...546..223G
http://dx.doi.org/10.1088/0004-637X/696/1/385
https://ui.adsabs.harvard.edu/abs/2009ApJ...696..385G
http://dx.doi.org/10.1088/0067-0049/197/2/35
https://ui.adsabs.harvard.edu/abs/2011ApJS..197...35G
http://dx.doi.org/10.3847/1538-4357/aba3cb
https://ui.adsabs.harvard.edu/abs/2020ApJ...899...13G
http://dx.doi.org/10.1086/151605
https://ui.adsabs.harvard.edu/abs/1972ApJ...176....1G
http://dx.doi.org/10.1111/j.1365-2966.2010.16341.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.1111G
http://dx.doi.org/10.1088/0067-0049/207/2/24
https://ui.adsabs.harvard.edu/abs/2013ApJS..207...24G
http://dx.doi.org/10.3847/2041-8213/aa70e9
https://ui.adsabs.harvard.edu/abs/2017ApJ...841L..22G
http://dx.doi.org/10.1111/j.1365-2966.2008.12954.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385.1201H
http://dx.doi.org/10.1086/163537
https://ui.adsabs.harvard.edu/abs/1985ApJ...297..371H
http://dx.doi.org/10.3847/1538-4357/aab3e7
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..118H


Henriques B. M. B., White S. D. M., Thomas P. A., Angulo R. E., Guo Q., Lemson G.,
Wang W., 2017, MNRAS, 469, 2626

Hirschmann M., De Lucia G., Wilman D., Weinmann S., Iovino A., Cucciati O., Zibetti S.,
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Appendix A

Appendix Title

A.1 Quenched Fractions including Additional Pre-Processing

In Fig. A.1 and Fig. A.2, we illustrate the results from our modified quenching model that

incorporates additional pre-processing.
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Figure A.1: Satellite quenched fraction as a function of satellite stellar mass (left) and
projected cluster-centric distance normalized by R200 (right). Unlike Fig. 3.4, the results
illustrated here are obtained using a modification to our fiducial quenching model designed
to incorporate the effects of additional pre-processing. As before, the green circles illustrate
the GOGREEN quenched fraction results with the membership correction factor applied.
The colored translucent profiles in the background represent the TNG quenched fraction
results using a constant quenching timescale ranging from 0 to 3 Gyr. The black circles
represent the TNG results fit to the GOGREEN quenched fraction results. The observed
quenched fraction as a function of stellar mass and cluster-centric radius are reproduced by
a model assuming a mass-dependent quenching timescale, however, unlike the fiducial model
it is clear that this modified model can reproduce both results by simply assuming a constant
quenching timescale. All error bars represent 1-σ binomial uncertainties.
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Figure A.2: Satellite quenched fraction versus redshift. Unlike Fig. 3.5, the results illus-
trated here are obtained using a modification to our fiducial quenching model designed to
incorporate the effects of additional pre-processing. The green circles represent the observed
results with the membership correction applied. The black circles shows the corresponding
measurements for our modified fiducial model based on tuning τquench(M⋆) to reproduce the
observed satellite quenched fraction as a function of stellar mass. For both the observed
and simulated samples, the uncertainties correspond to 1-σ binomial errors. Our modified
quenching model that incorporates additional pre-processing is also able to successfully re-
produce the observed GOGREEN satellite quenched fraction as a function of stellar mass,
projected cluster-centric radius, and redshift.
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