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Abstract 

 

Automated approaches for extracting individual tree level forest information  

using high spatial resolution remotely sensed data 

 

by 

 

Jun Hak Lee 

 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 

 

Professor Gregory S. Biging, Chair 

 

Detailed forest information is increasingly desired not only for forest management 

purposes but also for maintaining and enhancing sustainable forest ecosystems. Although precise 

measurements of forests can be gathered by field measurements, they are labor intensive and 

time consuming especially when obtaining enough measurements over large and heterogeneous 

forest areas. Therefore we need automated and accurate methods which can supplement field 

measurements. High spatial resolution remotely sensed data can be applied for this objective 

because developing technologies keep increasing spatial resolution and make it possible to 

handle large amounts of remotely sensed digital data by powerful computers at reasonable prices. 

Although high spatial resolution remotely sensed data holds the potential to be a valuable source 

of information for forest characteristics, a number of challenges still exist in extracting the 

desired information from this data. Therefore, it is critical to develop and improve automated 

methods to extract forest information. In this dissertation, I develop and improve the automated 

methods of extracting individual tree level forest biophysical parameters using high spatial 

resolution remotely sensed data. While there are many new remote sensing technologies, such as 

digital aerial photographs, LiDAR (Light Detection and Ranging), radar, and multispectral (or 

hyperspectral) data, I mainly focus on small footprint LiDAR and aerial images (by digital frame 

camera) in this study, because these sensors can provide very high spatial resolution data, which 

are necessary to extract individual tree level biophysical characteristics.  

This study consists of three parts, which are basic procedures to exploit high spatial 

remotely sensed data to extract individual tree level forest biophysical parameters. All three 

studies are conducted in a mixed-conifer forest at Angelo Coast Range Reserve on the South 

Fork of the Eel River in Mendocino County, California, USA. First, I develop a robust method to 

reconstruct Digital Terrain Model (DTM) by classifying raw LiDAR points into ground and non-

ground points with the Progressive Terrain Fragmentation (PTF) method. PTF applies iterative 

steps for searching terrain points by approximating terrain surfaces using the TIN (Triangulated 

Irregular Network) model constructed from the ground return points. Instead of using absolute 

slope or offset distance, the proposed method utilizes orthogonal distance to and relative angle 

between a triangular plane and a node. For that reason, PTF was able to classify raw LiDAR 

points into ground and non-ground points on a heterogeneous steep forested area with a small 

number of parameters. The results show the robust performance of the proposed method even 

under complex terrain conditions. Second, I develop an automated method to detect individual 
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tree tops and delineate individual tree-crown boundaries using airborne LiDAR data. Because of 

heterogeneous site conditions, I divide the study site into two height classes (high and low trees). 

For high trees (>= 25 m), I detect tree tops by using a progressive window-size local maximum 

filter and I conduct an additional verification procedure to reduce false tree top detection by 

using the shape of canopy profiles between trees. Then, I delineate tree-crown boundaries by 

marker-controlled watershed segmentation. For low trees (< 25 m), I apply a fixed window-size 

local maximum filter (1 m radius) to detect tree tops, and I apply the skeleton by influence zones 

(SKIZ) segmentation to delineate crown boundaries. Compared to fixed window-size local 

maximum filtering method, our method performed better for detecting and delineating individual 

trees regardless of tree sizes. Third, I combine aerial images and LiDAR data by means of 

automated registration procedures using tree tops as corresponding control points. A 

morphological operation (extended-maxima transformation) is applied to detect tree tops (as 

common control points) from aerial images and LiDAR data. I conduct the preliminary matching 

by using the small region of the image center, which was near the principal point. Then, I 

iteratively expand the control points to the entire images by using the backward projection of the 

tree top points of the LiDAR data over the aerial images. I employ a local transformation method 

(piecewise linear transformation) by using detected control points. The adjacent geo-rectified 

images are mosaicked into one large image by using the seam lines, which are created from the 

common control points between images. The result shows that the proposed approach enables us 

to register aerial images with airborne LiDAR data by using individual trees as common control 

points. 

In this study, I develop and improve the automated approaches for extracting individual 

tree level forest information with high spatial resolution remotely sensed data. I expect the 

proposed approaches may contribute to cope with a number of challenges for forest information 

extraction from high spatial resolution remotely sensed data. 
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Chapter 1 Introduction 

1.1 Background 

Forests, as major components of land surface, play important roles in sustaining the Earth’s 

ecosystems. However, forested areas have rapidly decreased because of the demand for resources 

and land use by population growth (Franklin, 2001). In addition, decreasing forest areas and 

increasing fossil fuel consumption have been altering global climate (Houghton et al., 2001). 

Forest disturbances are increasingly caused by climate change and these disturbances threaten 

the sustainability of forest ecosystems (Millar et al., 2007; Dale et al., 2001). Because forests are 

complex and characterized by multiple-scale structure and dynamical patterns, continuous and 

precise monitoring and assessments of large forest areas are critically required (Lamonaca et al., 

2008). Although precise measurements of individual trees can be gathered by field 

measurements, field measurements are labor intensive and time consuming especially when 

obtaining enough measurements over large and heterogeneous forest areas. In addition, a data 

collection approach using field measurements provides only a narrow window of the entire area, 

so that it is difficult to depict the heterogeneity and complexity of the system by using only field 

measurements.  Therefore, we need automated and accurate methods which can supplement field 

measurements. High spatial resolution remotely sensed data can be applied for this objective 

because developing technologies keep increasing spatial resolution and make it possible to 

handle large amounts of remotely sensed digital data by powerful computers at reasonable prices.  

Interpretation of the term “high spatial resolution” (or “low spatial resolution”) is 

subjective and mainly depends on the field of application and the feature of interest. Strahler et al. 

(1986) mention that spatial resolution can be determined by the size of the object that we desire 

to sense. In the low resolution case, the resolution cells of the image are larger than the objects of 

interest. On the other hand, the resolution cells of the image are smaller than the objects of 

interest in the high resolution case (Strahler et al., 1986). Therefore, high spatial resolution 

images contain multiple pixels for each object. Because the object of our interest is an individual 

tree, which is a fundamental structural element in forests, high spatial resolution refers to images 

whose pixel dimensions are less than or equal to 1 m (Culvenor, 2003; Wang, 2003).  

While we have many new remote sensing technologies, such as digital aerial photographs, 

LiDAR (Light Detection and Ranging), radar, and multispectral (or hyperspectral) data, proper 

automated processing methods, which can detect individual trees in the forests, still need further 

development (Brandtberg, 1999).  In this study, we mainly focus on small footprint LiDAR and 

aerial images (from a digital frame camera) because these sensors can provide very high spatial 

resolution data, which are necessary to extract individual tree level biophysical characteristics. 

 

1.2 High spatial resolution remote sensing data 

LiDAR (Light Detection and Ranging) 

Among the various remote sensing methods, discrete-return, small-footprint LiDAR systems are 

highly effective in extracting detailed forest biophysical parameters, because LiDAR can provide 

detailed 3-dimentional surfaces (both canopy and ground) data with high spatial resolution and 

accuracy (Lim et al., 2003; Reutebuch et al., 2005). The basic measurement made by LiDAR is 

the range between the sensor and a target surface. The range is determined by the elapsed time 

between the emissions of a short-duration laser pulse and the arrival of the reflection of that 

pulse in the sensor. Based on our knowledge of the speed of light, the elapsed time is converted 
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to the distance between the sensor and a target surface (Lefsky et al., 2002; Wulder et al., 2008). 

The precise sensor location is obtained by a Differential Global Positioning System (DGPS) and 

the orientation is acquired from an Inertial Navigation System (INS). Based on this information, 

every laser pulse can be automatically geo-registered with vertical and horizontal accuracies of 

approximately 15 and 40 cm, respectively (Davenport et al., 2004). Because discrete-return 

LiDAR systems have a small diameter of footprint (0.1 to 2 m) and high repetition pulse rates, 

we can obtain very high spatial resolution data with dense sampling points (Lim et al., 2003; 

Lefsky et al., 2002). The high density of laser pulses enables us to observe individual tree crowns 

from a cloud of LiDAR points (Wulder et al., 2008). Subsequently, there are a growing number 

of attempts to detect individual trees and to extract individual tree attributes (such as tree height, 

timber volume, and forest biomass) over extensive forested areas by using discrete-return 

LiDAR (Jensen et al., 2006; Lee and Lucas, 2007; Naesset et al., 2004; Popescu, 2007; Wulder et 

al., 2008).   

 

Aerial photography (digital aerial images) 

Aerial photographs (and digital aerial images) have widely used as a tool for monitoring and 

managing forest resources mainly because we can acquire very high spatial resolution images 

with large geographic extent at reasonable cost. The geographic extent, resolution and cost of 

imagery have made this type of imagery more widely used than any other data source. (Hall, 

2003; Fensham and Fairfax, 2002). Traditionally, the extraction of forest inventory parameters 

was conducted by a visual interpretation method (Yu, 2007).  However an increasing number of 

automated approaches have been proposed to extract features that represent detailed forest 

structural characteristics (Hall, 2003). Aerial photographs provide geometrically and 

radiometrically high quality images with multispectral capability (Baltsavias, 1999). In addition, 

aerial photographs span a greater time than other remote sensing data so that aerial photographs 

have been used for retrospective analysis of forest ecosystem dynamics (Fensham and Fairfax, 

2002; Vega and St-Onge, 2008; Kadmon and Harari-Kremer, 1999).  

 

1.3 Motivation 

With growing demands for detailed forest information, high spatial resolution remotely sensed 

data is receiving more attention as a valuable source of information. However, automation of 

image (data) analysis procedures is essential to utilize the full potential of high spatial resolution 

data, due to the volume and complexity of the data, which make it almost impossible to apply 

manual interpretation methods to extract forest inventory information from extensive forested 

areas. Therefore, it is critical to develop and improve automated methods to extract forest 

inventory information from high spatial resolution data. Although the continuously improving 

spatial resolution of the sensors provide a rapidly growing amount of data, the higher spatial 

resolution does not directly improve the quality and context of forest inventory information due 

to the fact that each pixel describes just a part of the object of interest (individual tree crown) and 

cannot fully represent the object. To overcome this limitation, we need an alternative approach, 

which recognizes and extracts meaningful objects from the remotely sensed data (e.g. individual 

trees as a fundamental structural element in forests). Accordingly, it is critical to improve 

automated methods to recognize individual trees and extract forest inventory parameters from 

high spatial resolution data. Although extensive attempts have been made to extract information 

from the data sets, there are strong demands for continuing development and improvement of the 

automated interpretation methods.  Therefore, it is necessary to improve a method to detect and 
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recognize individual trees from the data sets (Koch and Dees, 2008; Koch et al., 2006). In 

addition, a robust method to reconstruct ground surface information needs to be developed and 

improved so that ground surface information can be employed to extract the vertical structure of 

forested areas (Liu, 2008). Regardless of sensor type, more and more data are acquired from 

different sources.  Consequently, integrated analysis of spatial data has become increasingly 

important. In particular, an integration of multisource high spatial resolution data is difficult 

because of the high demand for the geometric accuracy, and the high variances and complexities 

of the data sets. As a critical prerequisite to fully utilize the advantages of multisource remote 

sensing data, we also need a new approach to integrate high spatial resolution multiple data 

sources (Habib et al., 2005; Schenk and Csathó, 2002) 

 

1.4 Objectives of the dissertation 

The objective of this dissertation is to develop an automated method of extracting individual tree 

level biophysical parameters using high spatial resolution remotely sensed data. I am focusing on 

developing and evaluating new approaches which are essential for using high spatial resolution 

data (discrete-return LiDAR and digital aerial images) in forest ecosystem applications. More 

specifically, I intend to achieve three objectives through my dissertation:   

 

1. To develop a robust method that classifies raw LiDAR points into ground and non-

ground points by using a progressive terrain fragmentation method, which iteratively 

densifies a triangular surface by relatively robust criteria. 

 

2. To develop a method to detect tree tops and delineate an individual tree crown with a 

LiDAR driven digital surface model as well as with raw LiDAR point clouds. 

 

3. To combine aerial images and LiDAR data by means of automated registration 

procedures using tree tops as corresponding control points. 

 

1.5 Organization of the dissertation 

The dissertation consists of five chapters and is arranged as follows: 

 

Chapter 1 discusses the background and motivation of this research, and introduces the 

objectives and organization of the dissertation. 

 

Chapter 2 describes a new approach to reconstruct DTM (Digital Terrain Model) from discrete-

return raw LiDAR points. I propose the Progressive Terrain Fragmentation (PTF) method, which 

applies iterative procedures for searching terrain points by approximating terrain surfaces using 

the TIN (Triangulated Irregular Network) model constructed from the ground return points 

which are classified from the previous steps. 

 

Chapter 3 illustrates a new method for detecting and delineating individual trees in structurally 

heterogeneous forests using airborne LiDAR data. In this chapter, I describe the proposed 

method which employs a progressive filter size to detect tree tops from the raw LiDAR points 

and uses a DSM (Digital Surface Model) to delineate canopy boundaries.      
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Chapter 4 focuses on an individual tree-based automatic registration of aerial images with 

airborne LiDAR data. In this chapter, I introduce an automated approach to extract feature points 

(tree tops) from the aerial images and the LiDAR data and to find corresponding pairs to improve 

the accuracy of image registration.      

 

Chapter 5 concludes the dissertation work and discusses future developments 
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Chapter 2  Classifying Discrete Return LiDAR Data for Generating Terrain 

Model in Forested Environment Using Progressive Terrain Fragmentation 

Method 

 

2.1 Introduction 

Using airborne light detection and ranging (LiDAR) for topographic mapping is rapidly 

becoming a standard practice in geo-spatial science because LiDAR system is one of the most 

effective methods of extracting three-dimensional shapes of a terrestrial environment (Hodgson 

and Bresnahan, 2004; Liu, 2008). LiDAR expands its attractiveness in various types of 

applications such as hydrological modeling, coastal management, urban planning, landscape 

ecology, and forest management (Lefsky et al., 2002; Lim et al., 2003; Wulder et al., 2008)  

Compared to traditional remote sensing techniques, LiDAR provides both horizontal and 

vertical information (Lim et al., 2003). Therefore, LiDAR is one of the most effective methods 

for quantitative assessment of forest parameters because it is able to directly depict 3D object 

shapes by capturing high density and high accuracy three-dimensional point clouds in object 

space (Habib et al., 2005). Because the LiDAR signal has the ability to pass through gaps in 

foliage and reflect from different parts of a forest canopy, several studies used LiDAR data for 

extracting forest biophysical parameters (such as tree height, timber volume, and forest biomass) 

over extensive forested areas (Jensen et al., 2006; Lee and Lucas, 2007; Naesset et al., 2004; 

Popescu, 2007; Wulder et al., 2008). Forest measurement by airborne laser scanning requires a 

DTM (digital terrain model) for representing the ground surface and a DSM (digital surface 

model) for describing the canopy surface (Hyyppä et al., 2008). Thus, creating an accurate 

terrain surface is critical for accurate forest parameter estimation because an incorrect terrain 

surface model causes propagational errors in forest parameter estimation.  

Even though airborne laser scanning provides highly accurate 3D point clouds 

representing surface shapes in great detail, there is no distinction in raw LiDAR points whether a 

point represents a terrain or non-terrain object. It is a prerequisite to separate clouds of LiDAR 

points into ground returns and non-ground returns in almost all of the applications using airborne 

laser scanning (Evans and Hudak, 2007). Accordingly, efficient and accurate ground filtering is 

critical in using airborne laser scanning across disciplines as well as in forest applications. 

Although terrain surface extraction is an essential part of processing LiDAR data, it is 

surprisingly difficult to extract accurate terrain surface from raw LiDAR point clouds and there 

is a broad range of studies for extracting bare earth surface from LiDAR data (Liu, 2008).   

Sithole and Vosselman (2004) used four categories including slope-based, block-

minimum, surface-based, and clustering/segmentation methods and discussed characteristics of 

each approach. Liu (2008) used slightly different categories to review several research studies 

and addressed interpolation-based, slope-based, and morphological methods as the most popular 

approaches.  
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The slope-based method developed by Vosselman (2000) used an assumption that the 

gradient of natural ground slope is distinctly different from the slope of non-ground objects such 

as trees and buildings to separate ground and non-ground points (Sithole and Vosselman, 2001). 

Vosselman’s method is only applicable for gently sloped areas because a single static gradient 

threshold failed to distinguish terrain slope vs. non-terrain object when the terrain has steep 

slopes. Sithole and Vosselman (2001) modified previous methods so that the threshold changes 

with the terrain slopes. However, this method still has limited filtering performance in areas with 

large buildings or low vegetation penetration.  

Interpolation-based methods, first proposed by Kraus and Pfeifer (1998), iteratively 

approximate the ground using weighted linear least squares interpolation. This method creates a 

rough approximation of the terrain surface and uses it to calculate residuals (offset between the 

points and the surface). Based on calculated residual, different weights are assigned to each point. 

Points of negative residual are more likely to be ground points than the others so that more 

weight is assigned for points of negative residuals to calculate terrain interpolation. Lee and 

Younan (2003) enhanced Kraus and Pfeifer’s method by implementing adaptive line 

enhancement (ALE) - substituting the least squares method with normalized least squares so that 

it creates a robust terrain surface even for steep slopes or spurious peaks. However, the ALE 

method needs a number of parameters (delay factor and adaptation parameters) and relatively 

subjective trial and error procedures are still required to select appropriate parameters.   

Morphological methods exploit morphological operators (mainly opening) to remove 

non-terrain objects. Morphological methods are relatively simple and fast so that they have an 

advantage in processing large amounts of LiDAR points. Defining optimal operator size is the 

key factor in creating a correct terrain surface; removing non-ground objects, yet keeping the 

shape of the terrain surface. However, it is almost impossible to meet this demand with one fixed 

window size. Kilian et al. (1996) applied the morphological operator (opening) several times 

with different operator sizes starting from the smallest window size. Then each point was 

assigned different weights proportional to the window size when it is classified as a ground point. 

Zhang et al. (2003) suggested progressive use of morphological filters to remove non-ground 

features by gradually increasing the window size of the filter and the thresholds were determined 

by the elevation difference between surfaces before and after filtering. This method assumed the 

slope is constant. However, the major limitation of this method is that a constant slope over the 

area is not a realistic condition especially in complex environments. Chen et al. (2007) improved 

the method of Zhang et al. (2003) in that their method does not require the assumption of a 

constant slope. They used the fact that non-terrain objects (such as buildings) normally have 

sudden elevation changes along the edges but the change of ground is usually not abrupt like 

non-terrain objects. This method showed encouraging results compared to other methods with 

minimum required parameters and assumptions. In general, this method performs well but when 

LiDAR points do not have enough penetration through vegetation (such as in old and densely 

forested areas), this method can create false flat terrain surfaces under large trees in steep terrain 

areas.  
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The block-minimum (or local minimum) method is relatively simple. This method 

searches the minimum value from the neighbor points within a given spatial extent. (Clark et al., 

2004; Cobby et al., 2001; Suarez et al., 2005). Even though the idea is simple, it is almost 

impossible to find one filter size that removes all non-terrain objects without compromising 

details of the terrain surface. Wack and Wimmer (2002) used an improved block-minimum 

method by implementing a hierarchical approach to detect non-ground raster elements.  

Regardless of types of filtering methods, it is challenging to distinguish between ground 

returns and points reflected in the vegetation, where there is steep slope under dense forest cover 

(Kobler et al., 2007). This is because this type of area has sparse and spatially heterogeneous 

ground returns. In addition, due to a steep gradient of this type of area, slope based threshold 

methods do not work properly (Sithole and Vosselman, 2001). As raw LiDAR point data are 

normally processed in automated approaches due to large amounts of data, it is required to 

optimize filtering parameters with minimal user intervention (Kobler et al., 2007). Most existing 

filtering methods are based on the assumption that variations of natural terrain are more gradual 

than those of non-terrain surfaces. So, the majority of filtering methods calculate elevation 

differences and slopes changes and determine certain threshold values for distinct points (Meng 

et al., 2009; Sithole and Vosselman, 2004). Thus, it is necessary to gain prior knowledge of the 

sites to select threshold or parameter values. In addition, this assumption has shown limited 

success on steep and densely forested areas where the basic assumption breaks often because of 

steep terrain gradients and sparse ground points.  

The objective of this study is to develop a robust method that classifies raw LiDAR 

points into ground and non-ground points by using a progressive terrain fragmentation method, 

which iteratively densifies a triangular surface by relatively robust criteria. This method is 

similar to Axelsson (2000)’s method. The unique point of our method is prioritizing a set of 

LiDAR points, which are used to approximate a triangulated irregular network (TIN) surface, so 

that important terrain points are added earlier than the other points in conjunction with 

minimizing to incorrectly include non-ground points during the iteration process.  

 

2.2 Materials and methods  

2.2.1 Progressive Terrain Fragmentation (PTF) Algorithm 

The characteristics of TIN structure, which represents a surface as a set of non-overlapping 

contiguous triangular facets of irregular shape and size, are very effective in identifying 

subgroups of surfaces to represent heterogeneous terrain surfaces (Lee, 1991). The seed point set 

is used to generate the initial terrain surface in TIN structure and additional terrain points are 

included at the end of each iteration for the following terrain estimation. The key factor in this 

method is to set up criteria to select correct terrain points. It is challenging to set up criteria to 

filter out non-terrain points from the raw LiDAR point cloud for a large area of varied terrain 

characteristics.  Even though there are extensive research studies for extracting the terrain 

surface model from raw LiDAR points, there is much room for improving efficiency and 
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accuracy of filtering methods with minimum user intervention (Liu, 2008; Silvan-Cardenas and 

Wang, 2006). 

 

 

 
 

Figure 2-1. The flowchart of progressive terrain fragmentation algorithm.  
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In this study, first, multi-level local minimum point sets are prepared as candidate ground 

points from all raw LiDAR point clouds. From sparse point sets, the terrain approximation 

surface is estimated in TIN structure. Then, the points are added to TIN estimation in each 

iteration if the point satisfies certain criteria. The criteria differ by characteristics of each 

triangular surface in order to give priority to more important (or significant) points to 

approximate the terrain surface, yet minimize commission errors, where a non-ground point is 

incorrectly selected as a ground point. It is similar to Sohn and Dowman (2008)’s approach to 

classify TIN surfaces based on the characteristics of contained points. In our research, we 

classify TIN facet into convex and concave surfaces based upon the orthogonal distance between 

the facet and points as follows. The orthogonal distance between the TIN facet and candidate 

points are calculated. Then, if there is at least one negative point in the member points, the 

surface is classified as a “concave surface”. For concave surfaces (downward surface), the point 

with maximum distance in the negative direction from the facet surface is selected and added to 

terrain points. Otherwise, if there are only positive offset points, it is classified as a “convex 

surface”. For convex surfaces (upward surface), the point with the minimum angle (between a 

facet and a node point) within a certain threshold is selected. Then the selected point is added 

into the set of ground points for the next iteration. The flowchart of progressive terrain 

fragmentation algorithm is illustrated in Figure 2-1.  

 

2.2.1.1. LiDAR points reduction 

One of the most beneficial characteristics of LiDAR data is the ability to acquire high spatial 

data density with unprecedented detail by a 3D point cloud. On one hand, extremely high 

sampling point density makes it possible to extract a broad range of useful information from the 

data sets. On the other hand, a large volume of data requires a lot of storage resource and 

processing power. The iterative process especially requires extensive processing time and power. 

In optimal conditions, higher LiDAR point density (sampling density) can provide more accurate 

surface description. However, because only a small part of all data points is returned from terrain 

surfaces (especially heterogeneous forested areas), processing all raw LiDAR data pulses would 

be inefficient when there is no accuracy improvement for retrieving terrain elevation models (Liu, 

2008).   

In this research, we started with coarse data point density and increased data point density 

in the iteration processes. The approach used by this study is similar to the progressive TIN 

densification method (Axelsson, 2000) and recursive terrain fragmentation (Sohn and Dowman, 

2008). These methods use a coarse-to-fine strategy, which starts with sparse points for an initial 

surface estimation and increases point density for fitting a real terrain surface by fragmenting 

triangular surfaces. Although only a small fraction of LiDAR points are selected and used for 

approximating the terrain surface at a coarse level of estimation, if all raw LiDAR points are 

used for the search process, it significantly drags down the efficiency of the process. In order to 

cope with this problem, multi level point sets are generated so that reduced point sets are used for 
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coarse scale stage and the next level of point sets (higher density) are used as the iteration 

continues.  

 

 

 
 

Figure 2-2. Example of LiDAR points reduction at different level and TIN surface fragmentation 
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Local minimum elevation points are selected as candidate terrain points in the 

hierarchical configuration that follows.  A non-overlapping grid with squared cells is 

superimposed over the original raw LiDAR points. The minimum elevation value within each 

cell was selected as a candidate ground point. It started from a 1m x 1m sized cell and the size is 

doubled at each grid level until it reaches the maximum cell size, which could vary by user’s 

decision. The maximum cell size is selected based on the largest type of structure in the area 

(Axelsson, 2000). In this study, 32 m is selected for the maximum cell size because 32 m is large 

enough to filter out the largest type of object (i.e. trees). Even though the surface fragmentation 

process is performed from coarse to fine scale, searching for the minimum value at each level is 

carried out in reverse scale (fine to coarse level) because the minimum point at a certain level is 

one of four minimum values of the previous level. For this reason, the number of points for 

searching for minimum elevation is decreased by 1/4 of the previous level and it is exponentially 

decreased throughout levels (Figure 2-2).   

 

2.2.1.2. Triangulation and assign point for each facet 

An initial TIN surface is derived from the coarsest level of the point sets with a grid size of L1 

(32 m). After that, the next level of point sets (extracted from a grid size of L2 (16 m)), falling 

into the same facet, are grouped and the points of each group are processed separately with their 

own set of plane parameters from the facet where the points belong. Instead of calculating all the 

LiDAR points in each iteration step, coarse to fine scale level of point sets are used. Figure 2-2 

illustrates triangulation from the set of reduced LiDAR points. 

       

2.2.1.3. Searching terrain points 

We calculated the orthogonal distance between all the member points, which falls into a certain 

triangle, and the triangle plane. Each triangle is defined by three nodes (terrain points selected 

from previous approximation) so that each planar surface is modeled from those three points. 

Initially, the planar equation is derived from three points. The orthogonal distance is calculated 

for each member point. Then, the characteristic of each triangle is classified as either a concave 

(downward) or convex (upward) plane as follows:  

 

Concave: If there is at least one negative offset point in a facet, it is classified as a concave facet 

(Figure 2-3a). Then, a point, which has the minimum offset height (maximum distance in a 

negative direction from the facet), is searched within a specific facet and the selected point is 

added to the terrain point set (Figure 2-3b). These points, classified as terrain points, are used for 

creating the new surface at the next iteration.   

  

Convex: A facet with no negative offset point is classified as a convex surface (Figure 2-3c). In 

this case, the minimum divergent point within a threshold angle is selected as a terrain point. For 

searching the minimum divergent point, we calculated angles between the node and the facet. 

There are three angles between a node and a TIN facet (tetrahedral shape) and the maximum 
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angle out of three is assigned to the node (as a representing angle) and used for assessing 

whether it is a ground or non-ground point in the filtering procedure (Figure 2-3d). The purpose 

of using the minimum divergent angle for concave surfaces is to minimize the possibility of 

commission errors (classifying non-ground point as ground points incorrectly). In this iterative 

procedure, commission errors could lead to serious propagational errors because falsely created 

terrain surfaces are used as a basis for the following raw point assessment. 

 

 
 

 

Figure 2-3. Illustration of triangular surface types and searching terrain points. (a) concave 

surface (b) selecting the maximum distance offset point in negative direction (c) convex surface 

(d) searching the minimum angle point within admissible angle range.   

 

 

2.2.1.4. LiDAR points classification 

It is common to interpolate raw LiDAR points into raster images before applying filtering 

procedures because filtering on raster images runs faster than processing raw LiDAR point 

clouds (Chen et al., 2007; Liu, 2008). However, interpolating LiDAR points into raster images 

causes significant loss of information. Therefore, instead of converting LiDAR point into raster 

images, all raw LiDAR points were explicitly classified into either ground points or non-ground 

points. The terrain surface which is created at the end of the iteration is used as the basis for 

point classification. If the orthogonal distance is less than 0.3 m, those points are classified as 

ground points and others are assigned as non-ground points. Offset distance threshold was 

selected by doubling typical vertical accuracy of the ALTM 1233 laser mapping system (15 cm). 

These classified points were compared to the reference plot data sets and used for final accuracy 

assessment.  

(a) (b)

(c) (d)
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2.2.2 Test site and data 

2.2.2.1 Test site 

To evaluate this method, we performed our analysis at the Angelo reserve area (39° 45' N; 123° 

38' W; 430-1290 m elevation), which is a component of the University of California Natural 

Reserve System (NRS) in Mendocino County, CA. This site is particularly adequate for our 

purpose (evaluating the performance of a non-terrain filtering method) because this area consists 

of heterogeneous mixed forests with various density and a steep topographic slope. In other 

words, the site well represents difficult conditions for separating ground and non-ground points 

from raw LiDAR data in automated procedures. In north-facing slopes, old conifer species are 

dominant (Pseudotsuga) mixed with broadleaf trees (Lithocarpus). On other aspects, tanoak is 

less frequent than Quercus species (Pseudotsuga-mixed hardwood forest) compared to the north-

facing slope (Hunter and Barbour, 2001; Polis et al., 2004). We used a study site of size 4 km
2
, 

which is a subset of the entire data set (180 km
2
) of the South Fork Eel river watershed.  

 

2.2.2.2 LiDAR data 

LiDAR data used in this study were generated by the NSF-supported National Center for 

Airborne Laser Mapping (NCALM). Airborne laser scanning was performed on June, 2004. The 

data were acquired by the ALTM 1233 laser mapping system (Optech Inc) mounted on a fixed 

wing airplane. The laser pulse frequency is 33 kHz and the swath width is 20 degrees per half 

angle. The datasets include the first and last pulses for x, y, z coordinates, intensity value, and 

GPS time. Combined with inertial navigation and kinematic GPS, this system provides absolute 

elevation of the ground surface with vertical accuracy of 15 cm in open areas. The density of 

LiDAR points is varied by flight height, ground surface elevation changes, and overlap between 

swaths. The average point density of this study is 3.1 pulses per square meter (first and last 

returns combined). 

 

2.2.2.3 Reference plots 

Because the main object of this study is to separate ground and non-ground point from raw 

LiDAR point clouds, the performance is accessed by accuracy of filtering non-ground points 

rather than absolute elevation errors. Several research studies conducted field measurement of 

reference points with a combination of total station and GPS units (Hodgson and Bresnahan, 

2004; Kobler et al., 2007; Reutebuch et al., 2003; Bater and Coops, 2009) 

 Sithole and Vosselman (2004) created the reference data for their comparison of filter 

algorithms by the manual point interpretation method. In addition, Kobler et al. (2007) suggested 

that manual filtering is the best possible method given no additional information. Accordingly, 

we manually created the reference data from the original LiDAR point cloud. Because point 

density is high enough to depict ground surface and non-ground object (e.g. tall trees and sub-

canopy vegetation), we were able to create reference data by manual interpretation of three 

dimensional LiDAR point plots. Non-ground points were carefully selected and removed by 3D 
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visualization software (Quick Terrain Modeler, Applied Imagery). Only terrain points remained 

and assigned as terrain points and all the other points are assigned as ground points. By this 

visual interpretation procedure all points were explicitly assigned either “ground points” or “non-

ground points” and used for selecting optimal parameters and assessing performance of this 

method. Even though we are familiar with this area, it is impossible to discover the pattern of 

LiDAR point distribution over the entire area before analyzing data sets. Thus, we placed 16 

reference plots (10 m by 10m) systematically under the assumption that we did not have any 

prior knowledge of this site. The distance between plots is set to 200 m in two perpendicular 

directions (either North-South or East-West) so that plots were well distributed over the study 

site. Figure 2-4 shows the distribution of 16 reference plots. 

 

 

Figure 2-4. Reference plots (10 m by 10 m) in test area (4 km
2
)   

 

2.2.3 DEM for qualitative analysis 

Even though the main purpose of this study is classifying raw LiDAR points into ground and 

non-ground points, we generated a DEM for visual inspection of classification quality. Because 

with a continuous surface is easier for the human eye to detect abnormal shapes, an interpolated 

surface is utilized to identify inaccurate LiDAR point filtering results. Evans and Hudak (2007) 
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suggested that thin-plate interpolation provides a better result than others, such as ordinary 

kriging and inverse distance weight. Accordingly, we used thin plate interpolation (TPI) for 

interpolating terrain point and creating DEM for visualizing terrain surfaces.   

 

2.2.4 Parameter optimization 

Optimal threshold (admissible angle) value is selected by comparing percent errors between 

different threshold values. For a quantitative analysis of this method, the filtering errors, which 

were produced by comparing the filtering result with the reference data, were investigated. There 

are two types of errors in filtering LiDAR data - Type I (omission) error and Type II error 

(commission). A type I error is to miss ground points even though the points are truly ground 

points and a type II error is to falsely classify non-ground points as ground points. Total errors 

can represent combined error (Type I and Type II). However, it is considered that the total 

number of errors are greatly influenced by the proportion between ground and non-ground points 

(Sithole and Vosselman, 2004).  

     

2.3 Results 

2.3.1 Parameter selection 

The PTF method requires 3 parameters: 1) angle threshold between a triangular surface and a 

node point, 2) distance threshold, and 3) grid size for initial seed points. Because distance 

threshold is intended to remove only outliers (either positive or negative), it does not have a huge 

impact if there is no outlier in the raw LiDAR points. We used 100 m for both positive and 

negative direction. Also, the result is not sensitive to the grid size for the initial seed points. A 

grid size for initial seed points can be selected based on the largest non-ground object (e.g. 

building) within the filtering area (Axelsson, 2000). In this study, there is no large artificial 

object in the filtering area so that a value is set to 32 m, which is larger than the canopy diameter 

of tall trees. Angle threshold is the key parameter to decide performance of this method. It is 

important to determine an adequate threshold value to maximize filtering performance. In this 

study, we used 16 systematically distributed plots to assess the performance of this method.   

As an admissible angle is enlarged, Type II errors (falsely accept non-ground points as 

ground points) are decreased but Type I errors (misclassifying true ground points as object points) 

are increased. If an admissible angle is decreased, Type II errors are increased and Type I errors 

are reduced. Depending on the priority in filtering purpose, the balance between Type I and Type 

II errors can be adjusted. For example, minimizing Type II errors intends to remove as many 

non-ground points so that a terrain model from ground points does not create false peaks and 

spikes. However, it compromises the detail of the terrain surface by removing true ground points. 

Because the two error types react in an opposite manner, a total error can be use to assess the 

performance of certain methods. Figure 2-5 shows total, type I, and type II errors by different 

admissible angles (from 15° to 20°). As the angle threshold is increased, a Type I error is 

decreased, but a Type II error is increased. The minimum total error is acquired at the angle 

value of 18°. Table 2-1 shows the confusion matrix with angle threshold 18° (all 16 plots 
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combined). 10.71 % of ground points (48 out of 448) were misclassified as non-ground points 

(Type I error) and 0.72 % of non-ground points (35 out of 4,893) were falsely classified as 

ground points (Type II error).  The total error is 1.55 % and the total error is mostly influenced 

by Type II error because non-ground points have a large proportion of all plots. 

 

 

Figure 2-5.  The result of total, type I, and type II errors by different admissible angles  

 

Table 2-1. Accuracy assessment table (angle threshold: 18°). BE (Bear Earth), OBJ (Object) 

 
 

 

2.3.2 Error analysis by plot characteristics 

Even though the plots were selected by a systematic sampling scheme, certain plots are able to 

represent different filtering conditions so that we can recognize the source of errors and optimize 

the threshold value for the best performance in this type of heterogeneous forested area with 

steep hill slope. Table 2-2 shows total, type I and type II error for the 16 reference plots. 

A Type I error at Plot 9 is 95.3% with 15° angle threshold and the error is changed to 

25.6% with a 20° angle threshold. Because plot 9 is located on a steep ridge line, a small angle 

threshold is not able to detect ground points during iteration procedures so that this plot shows a 

large type I error at the low angle threshold. We found that a value of 18° is the minimum 

threshold to retrieve correct terrain shapes for this plot. Plot 1 and plot 10 show similar results 

(with less magnitude) because both plots are also on ridge lines. For plot 4 and plot 12, Type II 
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errors are increased as angle threshold is increased. These plots have relatively low vegetation so 

that it is more likely to falsely detect non-terrain point (low vegetation) as terrain points. Other 

plots (2, 3, 5 to 8, 11, 13 to 16), are not sensitive to angle threshold and show almost the same 

amount of errors regardless of error types. This is because these plots have large gaps between 

terrain surfaces and canopy layers (tall trees) so that the confusion between ground and non-

ground points is less likely to happen. 

 

Table 2-2. Confusion matrix by reference plots. Total, Type I, and Type II errors  

 
  

 

2.3.3 Qualitative assessment of filtering performance 

Although we performed quantitative analysis by a contingency matrix with 16 reference plots 

data, we also performed qualitative analysis by visual inspection of the interpolated DEM. Figure 

2-6 shows DEM created from ground points for qualitative analysis. The angle threshold value is 

set to 18°, which is acquired from previous procedures. This angle threshold is large enough to 

remove all major Type I errors (omission errors) in the area so that we cannot detect major loss 

of terrain surface description. However, it falsely classifies low vegetation points as ground 

points and we can detect commission errors at south facing slopes, which are covered by low 

vegetation.  

15° 16° 17° 18° 19° 20° 15° 16° 17° 18° 19° 20° 15° 16° 17° 18° 19° 20°

1 0.6 0.6 0.6 0.3 0.3 0.3 0 0 0 0 0 0 28.6 28.6 28.6 14.3 14.3 14.3

2 1.8 1.8 1.8 1.8 1.8 1.8 0 0 0 0 0 0 26.3 26.3 26.3 26.3 26.3 26.3

3 0.4 0.4 0.4 0.4 0.4 0.4 0 0 0 0 0 0 4.8 4.8 4.8 4.8 4.8 4.8

4 2.1 2.1 2.1 2.1 5.3 5.3 2.3 2.3 2.3 2.3 5.7 5.7 0 0 0 0 0 0

5 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0

6 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 6.3 6.3 6.3 6.3 6.3 6.3

7 1.4 1.4 1.4 1.4 1.4 1.4 0.6 0.6 0.6 0.6 0.6 0.6 8.1 8.1 8.1 8.1 8.1 8.1

8 1.3 1.3 1.3 1.3 1.3 1.3 0 0 0 0 0 0 11.1 11.1 11.1 11.1 11.1 11.1

9 10.1 10.1 9.4 3.2 3.2 3.2 0 0 0 0.6 0.6 0.6 95.3 95.3 88.4 25.6 25.6 25.6

10 2.9 2.6 3.4 3.4 3.1 3.1 0 0 1.2 1.2 1.2 1.2 29.7 27.0 24.3 24.3 21.6 21.6

11 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 1.4 1.4 1.4 1.4 1.4 1.4

12 7.3 7.3 8.0 8.0 8.0 8.0 6.3 6.3 7.0 7.0 7.0 7.0 30.8 30.8 30.8 30.8 30.8 30.8

13 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 14.3 14.3 14.3 14.3 14.3 14.3

14 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0 0 0 0 5.8 5.8 5.8 5.8 5.8 5.8

15 0.3 0.3 0.3 0.3 0.3 0.6 0 0 0 0 0 0.3 7.1 7.1 7.1 7.1 7.1 7.1

16 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 3.6 3.6 3.6 3.6 3.6 3.6

Plot #

Type II error (%)Total error (%)

Angle threshold (°)

Type I error (%)

Angle threshold (°)Angle threshold (°)
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2.4 Discussion 

The result from our study shows one universal threshold value cannot perform optimally for all 

types of terrain characteristics. Even though a threshold value can be adjusted by a user’s 

preferences, more study should be conducted to optimize a threshold value with minimum user 

interventions. The major limitation of our method is to use one universal threshold value for the 

entire level of filtering procedures. We found different threshold values are required for different 

levels of scale (especially coarse-to-fine scale approaches). For example, relatively large 

threshold values are needed only for the early stage of terrain approximation so as not to omit 

terrain points, and smaller threshold values are preferred to reduce commission errors (falsely 

detect low object points as terrain points).  

Although this method has been developed for complex forested areas with steep terrain 

slopes, we need to test the performance of this method for different environmental conditions.  

Also, for more objective comparison with other filtering method, we need to perform our 

method with common data set and reference data, such as The ISPRS Commission III/WG3 

dataset (Sithole and Vosselman, 2004).  

 

2.5 Conclusion 

In this study, the Progressive Terrain Fragmentation (PTF) method is developed to improve the 

performance of filtering non-terrain points from raw airborne laser scanning data. Iterative 

procedures for searching terrain points gradually approximates terrain surface. Instead of using 

absolute slope or offset distance, this method utilizes orthogonal distance to and relative angle 

between a triangular plane and a node. For that reason, PTF was able to classify raw LiDAR 

points into ground and non-ground points on a heterogeneous steep forested area with a small 

number of parameters. We found “admissible angle” is the most influential parameter for 

accurate filtering procedures. We found a smaller admissible angle threshold causes inaccurate 

terrain approximation by omitting terrain points around ridge lines. On the contrary, a large 

admissible angle threshold brings failure to remove low vegetation. The optimum threshold 

value for admissible angle was selected by examining 16 reference plots, which minimizes the 

total number of errors for classifying raw LiDAR points. Classifying raw LiDAR points (ground 

vs. non-ground) for generating terrain surface is a basis for other analysis related to forest 

biophysical parameter extraction. Thus, we expect our study will provide more accurate terrain 

approximation and contribute to improving extraction of other forest biophysical parameters. 
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Figure 2-6.  Shaded relief map of DEM by 18° angle threshold. (1 m grid cell size, thin-plate 

interpolation)   

 

 

        

   

  

/

0 0.25 0.5 0.75 10.125
Kilometers



20 

 

Chapter 3 Detecting and delineating individual trees in a heterogeneous forest 

using airborne LiDAR data 

3.1 Introduction 

Forests, as major components of the land surface, have important roles to sustain the Earth’s 

ecosystems. However, forested areas have rapidly decreased because of the demand for resources 

and land use by population growth (Franklin, 2001). In addition, these decreasing forest areas 

and increasing fossil fuel consumption have been altering global climate ((Houghton et al., 2001). 

Forest disturbances are increasingly caused by climate change and these disturbances threaten 

the sustainability of forest ecosystems (Millar et al., 2007; Dale et al., 2001). Thus, continuous 

and precise monitoring and assessments of large forest areas are critically required. Although 

precise measurements of individual trees can be gathered by field measurements, field 

measurements are labor intensive and time consuming especially for enough measurements over 

large and heterogeneous forest areas. Therefore, we need automated and accurate methods which 

can supplement field measurements. High spatial resolution remotely sensed data can be applied 

for this objective because developing technologies keep increasing spatial resolution and make it 

possible to handle large amounts of remotely sensed digital data by powerful computers at 

reasonable prices. 

Among the various remote sensing methods, discrete-returns, small-footprint LiDAR 

systems are highly effective for extracting detailed forest biophysical parameters, because 

LiDAR can provide detailed 3-dimentional surfaces (both canopy and ground) data with high 

spatial resolution and accuracy (Lim et al., 2003; Reutebuch et al., 2005). There have been 

extensive attempts to extract forest biophysical parameters from LiDAR data. Hyyppä et al. 

(2008) categorized those methods into two approaches which are based on statistical canopy 

height distribution and individual tree detection. Previously, distribution based methods were 

more commonly used because these methods can be used even when the point density is not high 

enough to isolate an individual tree (Holmgren, 2004; Naesset, 2002). 

As the sensing technology has developed, individual tree based methods are gaining 

utility. Compared to distribution-based methods, individual tree based methods require less 

amount of field measured reference data for calibration to extract forest physical parameters. In 

addition, individual tree based methods provide more precise information especially in 

heterogeneous forest structures (Hyyppä et al., 2008; Koch et al., 2006). A variety of methods for 

identifying and delineating individual trees have been elaborated. Koch et al. (2006), Leckie et 

al.(2003) and Maltamo et al.(2004) extracted local maxima from the canopy surface model 

(CSM) to detect individual trees from LiDAR data and delineate canopy boundary by 

segmentation methods. Popescu et al. (2003) improved individual tree detection by applying 

variable window sizes (filtering) selected by the relationship between the height of the trees and 

their crown size. Andersen et al (2001) and Chen et al. (2006) used morphological image 

processing techniques to isolate a single tree from canopy height model (CHM) generated from 

LiDAR data. As for individual tree delineations, it is common to use a raster surface model 

interpolated from raw LiDAR points (Wang et al., 2007). However, because the process of 

interpolating from discrete LiDAR points to a raster model always causes loss of information, 

there have been several attempts to use raw LiDAR points rather than interpolated a raster 

surface model (Morsdorf et al., 2003; Wang et al., 2007). 
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The correct detection and delineation of an individual tree from LiDAR data is an 

important prerequisite for achieving precise forest biophysical parameters (such as tree counts, 

crown volume, canopy closure, tree height, diameter at breast height distribution, volume, and 

biomass) because all the subsequent estimation could contain propagated errors from the initial 

individual tree isolation (Koch and Dees, 2008; Koch et al., 2006). 

The objective of this study was to develop a method to detect tree tops and delineate an 

individual tree crown with a LiDAR driven digital surface model as well as with raw LiDAR 

point clouds. Prior to tree top detection and delineation, we divided our study site into two height 

classes (high and low trees). For high trees, we applied the marker-controlled watershed 

segmentation for delineating a single tree from the digital surface model (similar to Chen et al. 

(2006)’s approach). However, we detected tree tops (markers) directly from raw LiDAR points 

instead of interpolated surfaces by using a progressive filter size (from large to small), so that our 

approach does not require steps to optimize the parameters to detect tree tops. In addition, we 

conducted an additional verification procedure to reduce false tree top detection by using the 

shape of canopy profiles between trees. For low trees, instead of a progressive filtering size, we 

used a small fixed window-size local maximum filter (1 m radius) to detect tree tops and applied 

the skeleton by influence zones (SKIZ) segmentation to delineate crown boundaries. We refined 

the crown boundaries by removing the crown areas, which were lower than the mean elevation of 

each canopy boundary.   

 

3.2 Study Sites and Materials 

3.2.1 Study Site 

The study site of this research is located at the Angelo Coast Range Reserve, part of the 

University of California Natural Reserve System on the South Fork of Eel River in Mendocino 

County, CA. The Angelo Coast Range Reserve is mainly covered by mixed evergreen forests 

(Hunter and Barbour, 2001). This site is dominated by Pseudotsuga menziesii (Douglas Fir), 

Sequoia sempervirens (Coast redwood), and mixed deciduous trees, such as Lithocarpus 

densiflorus (tanbark oak), Arbutus menziesii (madrone), and Quercus kelloggii (black oak) 

(Kotanen, 2004; Power et al., 2004). The elevation ranges from 378 – 1290 m. Average 

temperatures range from 16 – 31ºC (UC Natural Reserve System, 2010). We used a subset (0.15 

km
2
) of the larger 180 km

2
 of the South Fork Eel river watershed to develop and evaluate our 

method to delineate individual tree crowns (Figure 3-1) 

 

3.2.2 Data 

Both the LiDAR data and aerial photography were acquired simultaneously on the same airplane 

on June 29
th

, 2004.  In this study, LiDAR data were mainly used for the analysis and aerial 

photographs were used only for visual reference purposes. LiDAR data were recorded by 

Airborne Laser Swath Mapping (ALSM). The ALSM system is composed of an Optech Inc. 

model 1233 Airborne Laser Terrain Mapper (ALTM) unit, Differential Global Positioning 

System (DGPS) and Inertial Measurement Unit (IMU). The laser pulse frequency is 33 kHz and 

swath width is ±20º. The datasets have the first and last returns for x, y, z coordinates, relative 

intensity value (from a 1064-nm laser), and GPS time. The system obtains 2-3 pulses per 1 m
2
 

with vertical accuracy of 15 cm. Simultaneous to LiDAR data, digital aerial photographs were 

acquired by an optical 3-Charge-Coupled Device (CCD) digital multispectral camera (Redlake 
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MASD Inc., model MS4100). The resolution is 1920(H) x 1080(V) with 3 visible bands (R,G,B). 

The images have roughly 15-20 cm spatial resolution at 600-800 m flight height. 

 

 

Figure 3-1. Overview of the study site. The background image was created from the National 

Agricultural Imagery Program (NAIP).  

 

3.3 Methods 

The proposed method for detecting and delineating individual trees from airborne LiDAR data is 

composed of four main steps; (a) data preparation, (b) tree top detection, (c) crown delineation, 

and (d) crown boundary refinement. The procedures of our method are presented in Figure 3-2. 

 

3.3.1 Preprocessing 

Although LiDAR data contain information for canopy and terrain surfaces, it is necessary to 

separate and extract both surfaces from the original raw LiDAR points. To extract trees from 

LiDAR data, it is common to calculate canopy height (Canopy Height Model; CHM) by 

subtracting a ground elevation model (Digital Terrain Model; DTM) from a canopy surface 

model (Digital Surface Model; DSM) . In our study, we used the Progressive Terrain 

Fragmentation (PTF) Algorithm to extract the DTM from the raw LiDAR data (Lee, Chapter 2). 

The PFT method is suitable for our site which has heterogeneous tall conifer trees with steep hill 

slopes. The PFT method prioritizes a set of LiDAR points, which are used to approximate a 

triangulated irregular network (TIN) surface, so that important terrain points are added earlier 

than the other points, and we can minimize the possibility of including false-ground points 

during the iteration process. 

 For tree top detection, we used discrete pixels of raw LiDAR points instead of an 

interpolated continuous surface model (i.e. CHM), because we intended to minimize the 

influence of interpolation errors. Although we used discrete point data, the raw LiDAR points 

were converted to discrete raster pixels for efficient neighborhood operations (Wack et al., 2003). 

When multiple points existed within in one pixel, the highest point was selected and the height of 

the point was assigned to the pixel value. Consequently, this conversion procedure reduced the 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

0 80 160 240 32040
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amount of data points and improved the efficiency of calculations (data thinning effect). A 

spatial resolution of the raster data was set to 0.25 meters, which was an approximate footprint 

diameter of LiDAR pulses (average flight height of 800 m). The aboveground height of each 

pixel was calculated by subtracting the ground elevation value of the DTM from the surface 

elevation value of each pixel. 

 

 

Figure 3-2. Flow chart of the procedures used in the study 

  

 Even though we used discrete pixels of raw LiDAR points for tree top detection, the 

CHM was prepared to delineate crown boundaries and extract canopy profile information 

between tree tops. Because the CHM was calculated by subtracting the DTM from the DSM, the 

DSM should be created before the CHM. The DSM was generated with the highest elevation 
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point from either first or last returns for each cell location. In theory, last returns should be 

reflected from the ground under the canopy in forested area. However, when there is only one 

return which is strong enough to be recorded, it is recorded as a last return. Therefore, some 

points recorded as last returns might be actually from the outermost surface. Thus, we used both 

first and last returns to generate the DSM. As the laser beam has an ability of passing the canopy 

of trees, we can extract both a tree canopy surface and a ground surface from LiDAR data. 

However, this ability causes large height variance especially in structurally heterogeneous 

conifer forests. Because a large portion of our study sites is also dominated by tall conifer trees, 

the ability of canopy penetration causes small holes and pitfalls in canopy surface reconstruction. 

These small holes are problematic when the crown boundaries of individual trees are determined 

by the shape of the canopy surface. In order to remove these errors, these small holes were 

detected by a morphological operation (extended-minima transform). We applied the extended-

minima transform to detect the points which caused small holes and pitfalls and excluded those 

points when we constructed the DSM. The extended-minima transform is the regional minima of 

the h-minima transform (Soille, 2003). Thus, the extended-minima detected all regional minima 

(holes) in the image whose depths were deeper than a certain threshold (h). We selected 5 meters 

as the h value, which is large enough to remove only falsely created holes.   “Then, the points, 

which caused these minima, were excluded for reconstructing CHM. Figure 3-3 shows the effect 

of removing small holes in the CHM.  

 

 
                                 (a)                                                                    (b) 

Figure 3-3. Effect of removing small holes and pitfalls from CHM by using the extended-minima 

transformation. (a) CHM before removing small holes. (b) CHM after small holes were detected 

and removed.  

 

 Because the study site was composed of two distinct canopy structures (very tall conifer 

trees and small deciduous trees), we separated the region into two classes based on the height of 

the canopy and canopy shapes (the slope of canopy surface). When the height of the canopy was 

smaller than 25 m and the slope of canopy surface was lower than 45°, the region was classified 

as low trees. Otherwise, the region was classified as high trees. For high trees, a progressive filter 
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size was applied to detect tree tops, followed by marker controlled watershed segmentation to 

delineate crown boundaries. For low trees, tree tops were detected using a small fixed window-

size local maximum filter (1 m radius) and the crown boundaries were segmented by using the 

skeleton by influence zones. 

  

3.3.2 Tree Top Detection 

In general, an individual tree crown has a convex shape, so that the tree tops can be detected by 

selecting the peak (local maxima) of the canopy (Popescu et al., 2003). It is critical to select an 

appropriate window size for detecting trees from images. However, it is not simple because trees 

have different shapes and sizes. If the window size is too large, there would be a lot of omission 

errors (missing trees tops). Conversely, if the window size is too small, large number of local 

maxima would be incorrectly detected as tree tops. So, it is difficult to find an optimal window 

size to perform the best for all different site conditions. The relationship between tree height and 

crown width was adopted to decide appropriate window sizes (variable window-size) to detect 

tree tops from LiDAR data (Popescu and Wynne, 2004; Chen et al., 2006; Wack et al., 2003). 

Although the variable window-size method performs better than the fixed window-size method, 

the variable window-size method still requires priori knowledge about the relationship between 

tree height and canopy width. Because the parameters to describe this relationship are site and 

species specific, different site conditions need different parameters. In addition, if the 

relationship between tree height and canopy width is not strong enough, and the variance of 

canopy width is large (asymmetrical shape), the improvement of accuracy by using variable 

window-size method would be limited.  

 In this study, we used the discrete canopy height pixels, which represent raw LiDAR 

points in raster data model, in order to minimize the errors during the surface interpolation and 

smoothing procedures (Wack et al., 2003). We applied a progressive window-size (from large to 

small) filter to detect local maxima. Then, the geometric characteristics of a canopy profile were 

used to justify if the detected point is a true tree top.  

 First, local maxima points were searched by a relatively large window size to detect tree 

tops. Then, the window size was progressively decreased to detect omitted tree tops at the 

previous level. For each detected tree top candidate, additional procedures were applied to 

evaluate whether the detected local maximum point was a true tree top or not. When the 

candidate point was classified as a tree top point, the point was added to a set of detected tree top 

points and used as pre-existing tree tops for the following neighbor searching step. In contrast, if 

the tree top was classified as a false tree top, the point was marked as a non-treetop point and 

excluded for the following tree searching procedures. Under the assumption that trees have 

convex shapes and tree tops have relatively higher elevation compared to their connected 

neighbor canopies, a valley should exist between two tree tops. We used the CHM profile 

between two local maxima points (candidate point vs. neighbor treetop point) to extract and 

assess geometric characteristics. If a local minimum (valley) can be detected in the profile of the 

CHM, we can classify the candidate point as a true tree top. If the tree top is not present in the 

CHM, there is no local minimum in the profile of the CHM. Thus, the tree top cannot be detected 

correctly. In this case, the gradient of the CHM profile can be used to depict a weak tree top as a 

peak (see Figure 3-5(b)). The magnitude of the gradient increases from the tree top to the valley, 

decreases toward the other tree top, and increases again passing the other tree top (the gradient is 

always calculated in the direction from the higher tree top to the lower tree top).  
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Figure 3-4. The data sets prepared to detect and delineate individual trees from the LiDAR data. 

(a) DSM, (b) DEM, (c) CHM, and (d) LiDAR pulses for a progressive local maximum filter to 

detect tree tops 

(a) (b)

(c) (d)



27 

 

If the peak (local maximum) exists on the gradient of CHM and the peak value is greater than a 

certain value, the condition is satisfied (the peak is considered as distinctive tree top). The 

threshold value for the gradient in the profile was set to -0.2 based on several attempts for our 

site. We found that this threshold value performed consistently for all sizes of trees if canopy 

shapes were not very different. When the conditions for all directions are accepted, the point is 

classified as a true tree top. The method steps are summarized:  

 

 Create strongly smoothed CHM. Gaussian filtering with  = 15 pixels (3.75 m); 

 Search local maxima value with progressive filter size (large to small); 

 Sort detected tree top candidate points in descending order; 

 Search pre-existing neighbor tree tops of the candidate point by Delaunay triangulation; 

 Reconstruct the profile of CHM and the gradient of the CHM from the higher point to the 

lower point direction; 

 Access the geometric characteristics of the profile. The pseudo code of the procedure is: 

 

If local minima exist? 

The candidate point = true tree top  

Else 

If gradient value of local maxima > - 0.2 

The candidate point = true tree top 

Else 

The candidate point = non-treetop 

end 

end  
 

 Repeat above procedures until the filter size reaches the minimum size (1 m radius). 

 

 Our method applied progressive window-size (large to small) filters to detect local 

maxima point from 3D points. Then, the detected local maxima points were verified if the point 

was a true tree top or not based on the profile of the CHM and the gradient of CHM among the 

candidate point and the neighbor tree tops. Because local maxima were searched by a 

progressive window-size filter, our method detected tree tops over the all scales. In addition, 

using the gradient of the CHM for assessing geometric characteristics reduced omission errors by 

strongly smoothed surface model and prevented commission errors by small filter sizes. Figure 

3-5 shows the example of tree top verification procedures. The detected potential tree top is 

represented as “P” and the neighboring trees are represented “T1 to T6” in Figure 3-5(a). The 

profile of the CHM (T3 to P direction) is plotted in solid line in Figure 3-5 (b). It has a local 

minimum value (valley shape) between the candidate peak and the neighboring tree top so that 

we can verify that two tree tops are distinctive for this direction. Figure 3-5(c) shows that the 

profile of CHM does not have a local minimum value between two points (T1 and P) so that the 

profile of the CHM cannot verify the potential tree top and the neighboring tree are distinctive. 

In this case, the gradient of the CHM profile (dashed line in Figure 3-5(c)) is additionally used 

to check if the candidate point is a true tree top or not. Because the peak (local maximum) exists 

in the gradient of the CHM profile between the candidate point and the neighboring tree top, we 

can verify two tree tops are distinctive for this direction.   
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Figure 3-5. Example of the verification of detected tree tops. (a) Representation of CHM and tree 

tops. P is a candidate tree point and T1 to T6 are previously detected neighboring trees. The 

profiles between the candidate tree top (P) and each neighbor tree (T1 - T6) are tested. (b) The 

profile of DCM (T3 to P direction). (c) The profile of DCM (T1 to P direction) and the gradient of 

the profile 

 

 For low trees, a small fixed filter size (1 m radius) was used to detect tree tops. Because 

the LiDAR point density of our data was not high enough to depict the characteristics of the 

canopy surface, the progressive window-size local maximum filter did not performed effectively 

in detecting and separating individual trees. Thus, we employed a small fixed window size to 
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search the local maximum point as a tree top and omitted additional verification steps, which 

applied for high trees.      

 

3.3.3 Crown Delineation 

Watershed segmentation is an effective method to delineate boundaries of individual trees, 

because watershed segmentation is applicable to a wide range of scales and it performs well for 

the segmentation of height data (Straub and Heipke, 2007). Conceptually, the watershed 

segmentation is similar to a gradual immersion of a basin. Assume that each basin has a hole at 

its minimum elevation and water begins to flood areas adjacent to each hole. Adjacent basins are 

separated by “dams” so that divided basins are not merged in the segmentation process (Chen et 

al., 2006; Soille, 2003).  Watershed segmentation commonly has over-segmentation problems 

because local minima points, which are used as seed points, are prone to being falsely detected. 

With marker-controlled segmentation it is possible to overcome this problem by correctly 

selecting markers, which are tree tops in individual tree delineation (Wang et al., 2004; Chen et 

al., 2006).  

 Although we used only point data for detecting tree tops, we used the CHM to delineate 

tree boundaries because, conceptually, the boundaries should be continuous and closed. In 

addition, creating a boundary can be performed more efficiently with continuous surfaces rather 

than with discrete points. Because the watershed segmentation is applicable to the basin shaped 

surface, the CHM was inverted so that local maxima became local minima and convex shaped 

canopy surfaces formed basins. Then, previously detected tree tops were used as markers for the 

segmentation.  

 In this study, we detected tree tops from LiDAR point data instead of the CHM. Thus, the 

seed points for the watershed segmentation were not local minima in the inverted CHM. In this 

case, the created boundaries might have incorrect shapes (thin and narrow shapes to the 

maximum slope direction). In order to prevent this problem, we used a small circular objects 

maker (1 m radius). For low trees, the marker-controlled segmentation with a small circular 

object marker frequently did not perform correctly. Although the radius of marker was small, 

when the distance among individual trees were smaller than the radius of the marker, multiple 

clustered trees were merged and incorrect boundaries were generated because the small markers 

overlapped each other. Instead of maker-controlled watershed segmentation, we employed the 

skeleton by influence zones (SKIZ) for low trees. The influence zone (IZ) is defined as the set of 

pixels of a binary image that are closer to a given connected component than any other connected 

component. The SKIZ is defined as the points that do not belong to any influence zone. The 

SKIZ operation produces the boundary of influence zone, which is equivalent to the Voronoi 

diagram (Soille, 2003; Whelan, 2001).  

 

3.3.4 Crown Boundary Refinement  

The watershed segmentation performs well when trees are close to each other. However, when 

the trees are adjacent to open spaces or have neighboring canopy gaps, the boundaries generated 

by the watershed segmentation are only poor approximations of individual crowns (Straub and 

Heipke, 2007). We employed two additional steps to correct these types of cases. First, when the 

trees were adjacent to open spaces, the crown boundaries could not be delineated correctly 

because the absence of markers for open spaces caused a failure of splitting tree crowns and open 

spaces. To cope with this problem, we created the boundaries between forested areas and open 
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spaces. Because the elevations of open spaces are near the ground elevation, we used 1.5 m as 

the threshold to separate open areas and forested areas. Then, we added this boundary when the 

marker-controlled watershed segmentation was conducted. Second, when large canopy gaps 

existed among trees, the gaps were included in the crown boundary of the neighboring trees. 

Hence, the segmented boundaries could not depict the actual crown edges. We assumed that 

incorrectly generated edges (outliers) have much lower elevation values compared to the average 

of all the crown edge elevation values. Accordingly, we calculated the average height of all the 

crown edge pixels and used this average value as the threshold value. The regions, which were 

lower than the threshold, were excluded from the canopy boundaries and the new boundaries 

were generated by this procedure.   

 

3.3.5 Accuracy Assessment 

To evaluate the accuracy of our crown delineation results, we prepared a reference crown map of 

our study site by manual delineation (Figure 3-6). We laid out 15 reference plots (30 m by 30 m) 

inside of our site in a systematic scheme. All the trees, located inside of the plot, were selected as 

reference trees. The crowns of the selected trees were carefully delineated from the CHM. 

Because the spatial resolution is very high (0.25 m), most of trees were visually identified with 

confidence in the laboratory. In addition, when the shape was not clear from the CHM, raw 

LiDAR points were visualized with 3D visualization software (e.g. ESRI’s ArcGIS-ArcScene) 

and carefully examined from the various viewpoints and angles. Then, ortho-rectified aerial 

photos were separately used to verify the accuracy of crown delineation. 

  

 

Figure 3-6. Example of accuracy assessment (from reference plot 2). Gray polygons indicate 

crown boundaries generated by our method. Black polygons represent reference crown 

boundaries created by manual delineation.  

 

 The comparison between automatically and manually extracted trees was conducted 

according to the overlapping area between a reference tree boundary and an automatically 

extracted tree boundary. If the ratio of the overlapping area (between the extracted boundary and 
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the reference polygon) to the reference tree crown area was greater than 0.5, we considered this 

as a correctly detected tree. We assumed only a one-to-one relationship between reference and 

extracted trees, and all the extracted trees counted only once. Hence, when there was more than 

one extracted tree crown overlapping with one reference tree polygon, the only one having the 

largest overlapping area was considered as a correctly detected tree. Conversely, when multiple 

reference tree polygons were contained by one extracted tree, only one tree was considered as the 

corresponding tree (if the overlapping area ratio was bigger than 0.5) and the others were 

considered as erroneously detected trees (commission errors). If a reference tree did not have a 

corresponding detected tree, the tree was classified as an undetected tree (omission errors). 

 

3.4 Results and Discussion 

Table 3-1 presents the accuracy assessment results. From the 15 reference plots in our study site, 

442 trees were manually delineated to evaluate the performance of our method. The reference 

trees were split into two groups (high trees and low trees) as the criteria that we used previously. 

Among 442 trees, 180 trees were classified as high trees and 262 trees were classified as low 

trees. Overall, our method correctly detected 60.2% of trees. The percentage of missed trees was 

39.8% and the percentage of falsely detected trees was 30.2%. For high trees, the proportion of 

correct, omitted, and committed trees were 71.1%, 28.9%, and 8.3%, respectively.  For low trees, 

52.7% of trees were correctly detected, whereas 47.3% of trees were missed and 19.8% of trees 

were erroneously detected. Figure 3-7 represents the final result of isolating individual trees by 

using LiDAR data in our site.   

 Because of inconsistency in accuracy assessment methods and differences in site 

conditions, it is difficult to compare our results with other studies directly. Persson et al. (2002) 

correctly detected 71% of all trees and 90% of larger trees (DBH > 20 cm). Maltamo et al. (2004) 

achieved 40% of accuracy for all trees and 80% of the dominant trees. Solberg (2006) got an 

accuracy of 93% for the dominant trees but 19% for the suppressed trees. Chen et al. (2006) 

isolated individual trees in deciduous forests with 64.1% of the absolute accuracy with much 

stricter accuracy assessment criteria than other methods. Although our method was applied in a 

structurally heterogeneous forest with steep slopes, we achieved 71.1% of accuracy for high trees 

and 52.7% of accuracy for low trees.  

 

Table 3-1. Accuracy assessment of automatic tree isolation  

 
 

 

 Although the proposed method performed well for high trees, the errors were caused 

mainly by low trees. Because the crown shapes of low trees (deciduous trees) were less 

distinctive compared to those of high trees (tall conifer trees), it was more difficult to correctly 

detect tree tops. In addition, when the canopy size was too small, individual tree crowns did not 

have enough points (or pixels), so that the proposed method could not perform well enough to 

n % n % n % n %

All 442 100.0 266 60.2 176 39.8 67 15.2

High trees 180 100.0 128 71.1 52 28.9 15 8.3

Low trees 262 100.0 138 52.7 124 47.3 52 19.8

Reference Correct Omission Commission
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isolate individual trees. In order to improve the accuracy of the tree detection and delineation, a 

higher pulse density is required so that the LiDAR data can depict crown shape more accurately.  

 

 

 

Figure 3-7. The result of individual tree detection and delineation by the proposed method. White 

squares represent the reference plots used for accuracy assessment.  
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Comparison of different fixed-sized local maxima filtering methods 

 In order to compare our method to fixed window-size local maxima filtering methods, we 

applied different fixed window-size local maximum filters (4, 6, 8 and 10 m radius) to detect tree 

tops. Then, we delineated tree boundaries by the marker-controlled watershed segmentation. For 

the accuracy assessment, we employed the same criteria that we used for the assessment, which 

was used previously. The comparison between our method and fixed window-size local 

maximum filtering methods were summarized in Table 3-2. As expected, increasing the size of 

the filtering window increased the percentage of missed trees (omission errors). On the contrary, 

decreasing the size of filtering window increased the percentage of erroneously detected trees 

(commission errors). In order to represent all errors by one value and to compare different tree 

isolation methods, we calculated overall accuracy, which was proposed in Pouliot et al. (2002)’s 

research. The accuracy index (AI), which is defined as: 

 

AI (%) = [(n - (O +  C)) / n] * 100 

 

where n is the total number of the reference trees, O and C represent the number of omission and 

commission errors. 

  

Table 3-2. Comparison of individual tree isolation accuracy by the proposed method and 

different fixed window-size local maximum filtering methods (4 m to 10 m radius) 

 
 

 When the 4 m radius local maximum filter was applied, we acquired the lowest accuracy 

index (9.7%) because of the large percentage of commission errors (mostly from high trees). The 

commission errors were mainly caused by irrelevant surface fluctuations, which were falsely 

detected as tree tops. Increasing the window size of local maximum filter decreased commission 

errors, whereas this process also increased omission errors. When the 10 m radius local 

maximum filter was applied, we got a large portion of missing trees. Because the window size 

was too large, tree tops could not be correctly separated. With the 8 m radius filter, we obtained 

the best accuracy index (33%) among different fixed window-size local maximum filters (Figure 

3-8). However, we achieved a better accuracy index (45%) with our method than with the 

optimized fixed window-size filter (31.7%, when the radius was 8 m), because our method was 

r = 4m r = 6m r = 8m r = 10m

ALL

Omission 39.8% 52.0% 60.6% 65.2% 70.4%

Commission 15.2% 25.1% 9.3% 3.2% 0.7%

Accuracy Index 45.0% 22.9% 30.1% 31.7% 29.0%

High Trees

Omission 28.9% 30.0% 38.9% 47.8% 56.7%

Commission 8.3% 58.3% 21.1% 6.1% 1.7%

Accuracy Index 62.8% 11.7% 40.0% 46.1% 41.7%

Low Trees

Omission 47.3% 67.2% 75.6% 77.1% 79.8%

Commission 19.8% 2.3% 1.1% 1.1% 0.0%

Accuracy Index 32.8% 30.5% 23.3% 21.8% 20.2%

Fixed window-size local maximaum filters
Our method
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more balanced for reducing both omission and commission errors. Because our method applied a 

progressive window-size filter (from large to small), various sized trees could be correctly 

detected without the user’s intervention. In addition, the geometric characteristics of a canopy 

profile were examined to reduce false tree top detection. For high trees, we also obtained a better 

accuracy index (62.8%) with our method than with the optimized fixed window-size filter 

(46.1%, when the radius was 8 m). For low trees, performance improvement by using our 

method was limited because low trees did not have distinctive canopy shapes. We expect the 

accuracy for low trees can be improved by using LiDAR data sets with higher point densities. 

 

 

Figure 3-8. Comparison of tree detection and delineation methods by the accuracy index 

 

3.5 Conclusion 

In this study, we applied a progressive window-size local maximum filter to detect tree tops from 

raw LiDAR pulses, followed by the verification of the detected tree tops by the shape of canopy 

profiles between trees. Then, tree-crown delineation was conducted to separate individual trees. 

By using the proposed method we were able to correctly detect 65.9% of the reference trees. 

When we evaluated the accuracy based on crown areas (instead of based on tree counts), we 

correctly detected 87% of the reference trees in structurally heterogeneous forests. The accuracy 

index of our method was 81.9%, which was higher than the accuracy index of fixed window-size 

local maximum filters. Because we used a progressive filter size, we were able to detect a wide 

range of tree sizes. On the contrary, fixed window-size local maximum filters correctly detected 

only limited parts of various sizes of trees (depending on the filter size) and were more likely to 

produce either omission or commission errors. Also, applying additional verification of detected 

tree tops by using the shape of canopy profiles between trees, we were able to reduced 

commission errors.  

 These results showed that the proposed method was able to detect and delineate 

individual trees in heterogeneous forests using airborne LiDAR data. The delineated trees with 

the proposed method can be used to extract detailed and precise forest biophysical parameters 
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(such as tree counts, crown volume, canopy closure, tree height, and biomass) in large forested 

area in automated manner. Further improvement can be accomplished by increasing the LiDAR 

pulse density for small trees. Also, more precise species separation will enhance the accuracy of 

isolating individual trees because we can apply different tree top detection methods, which are 

selected by the characteristics of trees (both tree species and sizes).       
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Chapter 4 Combining aerial photographs and LiDAR data with automated 

tree top detection and registration 

4.1 Introduction 

As for the quantitative assessment of forest parameters, one of the most promising techniques is 

light detection and ranging (LiDAR) (Hollaus et al., 2006). There are an increasing number of 

studies to extract forest biophysical parameters such as tree height, canopy cover, diameter at 

breast height (DBH), basal area, timber volume, and biomass from LiDAR data (Koch and Dees, 

2008; Hyyppä et al., 2008; Lim et al., 2003). LiDAR remote sensing is receiving extensive 

attention in forest applications because it has the capability of providing both horizontal and 

vertical information at high spatial resolutions (Hyyppä et al., 2004; Lim et al., 2003). 

Nonetheless, LiDAR has limited spectral information, which is needed to extract species or 

health information from the trees. Furthermore, because LiDAR is relatively new, the spatial and 

historical archives are limited (Baltsavias, 1999). 

In contrast, aerial photographs provide spectral information and relatively longer 

historical archives. Unlike LiDAR, however, it is difficult to acquire accurate 3D forest structural 

information (such as tree heights) with aerial photography because forest floors are barely visible 

in dense forest areas (Popescu et al, 2002). Even though the stereo-photogrammetric method can 

be used to retrieve 3D surface information, automation of the matching is still a difficult task, 

especially over forested areas, which do not have enough distinctive features (Habib et al., 2005). 

Given the complementary characteristics of LiDAR and aerial photography, there have been 

several attempts to combine the two data sets in order to extract forest biophysical characteristics 

in high spatial resolution. However, the major problem that continues to arise is image 

registration, particularly when automated (Leckie et al., 2003, McCombs et al., 2003, Suarez et 

al., 2005). St-Onge et al. (2004) used LiDAR data only for extracting topographic elevation to 

measure tree height with aerial photographs. Popescu & Wynne (2004) used high spatial 

resolution CASI imagery to extract land cover information when using LiDAR to estimate tree 

height. Leckie et al (2003) extracted individual tree information from LiDAR and multi-spectral 

imagery, but matching between two data sets was not performed. While there has been much 

research, it is still not easy to combine two data sources at the individual tree level, so the benefit 

of high spatial resolutions cannot be fully maintained. Holmgren et al. (2008) used a combination 

of LiDAR data and multi-spectral images for species identification of individual trees, but it 

required manual registration procedures.  

The accurate registration of the photogrammetric and LiDAR data is an essential 

prerequisite to fully utilize the advantages of both systems (Habib et al., 2005; Schenk and 

Csathó, 2002). The registration between different datasets requires common features, which are 

used to geometrically align multiple images. Traditional procedures employ a manual selection 

of common control points from two datasets for the registration (Habib et al., 2004). However, 

these manual approaches can be subjective and labor intensive. Also, they may extract only a 

limited number of usable points with poor spatial distribution so that the overall registration 

accuracy is reduced (Liu et al., 2006). Automated procedures to extract common features are 

able to cope with the limitation of manual procedures (Kennedy and Cohen, 2003) There have 

been various studies about automated image registration techniques (Zitova and Flusser, 2003). 

In brief, the techniques for identifying control points are categorized into two categories: area-

based methods and feature-based methods (Kennedy and Cohen, 2003). Area-based methods 



37 

 

have the advantage of easy implementation and no requirement of pre-processing for the feature 

extraction. In addition, the resulting control points are evenly distributed over the image so that 

more robust registration can be performed (Liu et al., 2006; Zitova and Flusser, 2003). However, 

area-based methods may not be applicable to registering aerial images and LiDAR data because 

the spatial patterns of pixel grey-scale values (optical reflectance) in aerial images hardly exist in 

raw LiDAR point data. Conversely, feature-based methods use salient features rather than direct 

intensity value so that feature-based methods are more suitable for multi-sensor analysis (i.e. 

LiDAR and aerial images in this study) (Zitova and Flusser, 2003). For feature-based methods, 

distinctive and detectable common objects (features) should be extracted from both datasets. The 

common features selected for the registration greatly influence subsequent registration 

procedures. Hence, it is crucial to decide on the appropriate common features to be used for the 

registration between the datasets (Habib et al., 2004). Since there is nothing in common at the 

level of raw data (discrete points in LiDAR and pixels in aerial image), additional processing is 

required to extract the common features (Schenk and Csathó, 2002). Habib et al. (2005) used 

linear features for matching. Mitishita et al. (2008) extracted the centroids of rectangular 

building roofs as common features. Lara Jr. & E.A. Mitishita (2009) proposed corner and edge 

detection methods for automatic integration of digital aerial images and LiDAR data. However, 

these methods cannot be applied to non-urban forested areas which do not have built-up objects 

because these methods require urban objects (e.g. buildings, roads, roofs, etc) for the registration.  

Common features for the registration should be distinct, evenly distributed over the entire 

images, and easily detectable. In forested areas, trees are usually distinctive and spread  across 

the areas so that there is great potential in utilizing distinctive (dominant) trees as control points. 

Several studies have verified the feasibility of automated tree apex detection in both aerial 

images and LiDAR data. For aerial images, the studies used the association of a tree top with a 

local maximum image brightness value (Dralle and Rudemo, 1996; Pouliot et al., 2002; Wulder, 

2000). Also, for LiDAR data, there have been extensive studies to detect individual trees by 

using Digital Surface Model (DSM) from LiDAR data (Chen et al., 2006; Persson et al., 2002; 

Popescu and Wynne, 2004; Solberg et al., 2006).   

The objective of this study is to combine aerial images and LiDAR data by means of 

automated registration procedures by using tree tops as corresponding control points. More 

specific aims are: 1) detecting individual tree top locations from LiDAR data and aerial images 

by using image processing techniques (morphological operation), 2) finding corresponding point 

pairs between aerial images and LiDAR data, and 3) mosaicking registered multiple aerial 

images on LiDAR data. The proposed method is specifically designed for structurally 

heterogeneous forested areas with complex local distortion, which are challenging for automated 

multi-source data integration at high spatial resolution.   

 

4.2 Study area and remote sensing data 

4.2.1 Study Site 

This study was conducted at the Angelo Coast Range Reserve (39° 45' N; 123° 38' W; 430-1290 

m elevation), part of the University of California Natural Reserve System on the South Fork Eel 

River in Mendocino County, CA. The Angelo Coast Range Reserve is composed of old conifer 

forest, dominated by Pseudotsuga menziesii (Douglas Fir) and Sequoia sempervirens (Redwood) 

trees (Kotanen, 2004). Elevation ranges from 378 m to 1290 m. Average temperatures range 

from 16ºC to 31ºC with annual average precipitation of 216 cm/yr (UC Natural Reserve System, 
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2010). We studied a subset of the larger 180 km
2
 of the South Fork Eel river watershed for which 

LiDAR and aerial photos were acquired by the National Center for Earth-surface Dynamics. 

Figure 4-1 shows the overview of the subset area by means of the DSM generated from the 

LiDAR data. 

 

 
Figure 4-1. Overview of the study area (Digital Surface Model generated from LiDAR data) 

 

4.2.2 Data 

Both the LiDAR data and aerial photography were acquired simultaneously on the same airplane 

on June 29th, 2004.  LiDAR data were recorded by the Airborne Laser Swath Mapping (ALSM) 

system mounted on a Cessna 337 airplane. The ALSM system is comprised of an Optech Inc. 

model 1233 Airborne Laser Terrain Mapper (ALTM) unit, Inertial Measurement Unit (IMU) and 

Differential Global Positioning System (DGPS). The laser pulse frequency is 33 kHz, and the 

swath width is 20 degrees per half angle. The datasets include the first and last pulses for x, y, z 

coordinates, intensity value, and GPS time. The system acquires 2-3 pulses per 1 m
2
 so that the 

spatial resolution is generally less than 1 m with vertical accuracy of 15-20 cm. Digital aerial 

images were recorded by an optical 3-Charge-Coupled Device (CCD) digital multispectral 

camera (Redlake MASD Inc., model MS4100). The resolution is 1920 (H) x 1080 (V) for 2 

million pixels with 3 visible bands (R,G,B). The 28 mm focal length lens has a 25 cm x 25 cm 

spatial resolution at 950 m flying height above ground.  

 

4.3 Methods 

The work flow of our method is depicted in Figure 4-2. In this study, we extracted tree tops as 

common control points from the aerial images and the LiDAR DSM by morphological 

operations. Then, feature matching between the two data sets was performed to find an initial 

matching of control points. Because we used point features as control points, we applied a point 

pattern matching method to find corresponding pairs. In order to cope with radial relief 

displacement problems in aerial images, only the subset of the detected points (near the principal 

point) was used for the initial matching. Also, the searching range for the reference points (from 

the LiDAR DSM) was limited based on camera orientation information such as aerial image 

center coordinates, flight directions, and flight heights. Once the initial referencing was 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

California
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conducted, exterior orientation parameters of the aerial image were estimated coarsely. Based on 

the initial estimation, we iteratively refined exterior orientation by back-projecting tree top 

locations from LiDAR data onto the aerial images to search and expand corresponding pairs. We 

rectified aerial images onto LiDAR data by a piecewise-linear transformation with the previously 

paired control points. After we registered all of each aerial image, adjacent aerial images were 

combined by means of automatic image mosaicking procedures.      

 

 

Figure 4-2. Workflow of proposed method 

 

 

4.3.1 LiDAR Data Analysis 

4.3.1.1 Digital Surface Model (DSM) 

Tree top detection is typically performed using a canopy height model (CHM), which is 

calculated by subtracting the DEM from the DSM. However, in this study, we used the DSM 

rather than the CHM because the DSM is a more realistic representation of canopy surface. In 

order to detect tree tops by morphological operations, discrete LiDAR points needed to be 

converted to a regular grid. First, a regular grid was laid out and the maximum elevation point 

within each cell was assigned as a cell value to derive top vegetation surface (Popescu and 

Wynne, 2004). Then linear interpolation was performed to create the DSM. The cell size was set 

to 0.25 m because we intended to process the DSM with aerial photographs which have a spatial 

resolution of 20 to 30 cm. 
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4.3.1.2 Smoothing DSM  

It is common to smooth the surface before detecting tree tops because smoothing reduces 

irrelevant surface fluctuations, which can cause inaccurate tree top detection (Wang et al., 2004; 

Wulder, 2000; Pouliot et al., 2002; Leckie et al., 2005). In this study, we used a 2D Gaussian 

filter to smooth the DSM. With coarse scales (large smoothing filter sizes), small trees could be 

missed and overlapping trees could be mistakenly detected as a single tree. In contrast, with fine 

scales (small smoothing filter sizes), large branches or other variances within a crown could be 

falsely detected as tree tops. Even though it is impossible to detect all tree tops without any 

errors by applying just one smoothing parameter, it is required to optimize smoothing parameters 

for our purpose, which can minimize the number of falsely detected tree tops with enough 

distance between the points, yet acquire enough correctly detected control points. We used an 

empirical approach to select an optimum filter size. In this study, it was more important to detect 

distinctive tree tops rather than not to miss any tree tops. Also, falsely detected tree tops were 

more problematic than omission errors (missed trees). However, it was required to extract 

enough tree tops (control points) to construct the accurate transformation equation. Hence, the 

filter size had to be as small as possible to maximize a number of control points, given that the 

minimum of the nearest neighbor distances between detected tree tops was larger than the 

threshold distance. The threshold distance was determined by the searching radius for point 

matching between the LiDAR data and the aerial images. In order to prevent incorrect control 

point matching, the distances between the nearest neighbor points are preferred to be larger than 

the search radius. The search radius was set as 3 meters (12 pixels),   Figure 4-3 shows the 

minimum distance between tree top locations by the different Gaussian filter sizes. We selected 

4.75 meters (19 pixels) as the filter size, because the value was the smallest which provided the 

minimum of neighbor distance which was larger than the threshold value (12 pixels).     

 

 

Figure 4-3. The minimum distance between the nearest neighbor tree top points (extracted from 

the LiDAR data) by different filter sizes 
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Figure 4-4. An example of the effect of different filter sizes for tree top detection with LiDAR 

DSM (in meters).  w: Gaussian filter width   

 

4.3.1.3 Tree top detection by morphological operation with DSM 

Extended-maxima transformation, which is the regional maxima of the H-maxima 

transformation, is a useful method to detect tree tops (“maximal structure”) in the canopy surface 

model (Equation 1).  

 

 EMAX ( ) RMAX HMAX ( )h hf f      (1) 

   

The H-maxima transform suppresses all maxima whose depth is lower than or equal to a given 

threshold level h (Soille, 2003). When it is applied to the DSM, this transformation removes 



42 

 

small fluctuations of the tree canopies, so that the cap of the canopy can be detected by following 

the regional maxima transformation. The regional maxima transformation identifies “objects”, 

which are higher than their surroundings (Vincent, 1993). In this case, the regional maxima 

transformation identifies plateaus around tree tops (flattened by the H-maxima transformation) in 

the canopy surface model. H-maxima transformation is achieved by performing the 

reconstruction by dilation of f from f-h (Equation 2): 

 

HMAX ( ) ( )h ff R f h         (2) 

 

The regional maxima transformation is performed by subtracting the dilation of f-1 from f 

(Equation 3) and this transformation identifies regional maxima as 1 and all others as 0. 

 

RMAX( ) 1 ( )ff f R f          (3) 

 

When the h-value is too small, the results are too sensitive to small fluctuations of the DSM so 

that the h-value creates too many false tree tops. On the other hand, when the h value is too large, 

the extended maxima transformation cannot detect tree tops properly. Based on a result from 

pilot tests, we set the h-value to 1 meter, which was not too sensitive to the fluctuation of DSM 

and small enough to detect tips of the canopy surface as tree tops. Because the result of extended 

maxima transformation was a region (connected cells), the point with maximum elevation value 

in the region was marked as a tree top location. 

 

4.3.2 Aerial Image Analysis 

For an individual tree, the tree top is the brightest part because the peak is more likely to be 

directly illuminated from different sun angles than the edge parts for the convex shape of a tree; 

adjacent trees will shade the edges of their neighbor (Wulder, 2003). Therefore, reflectance value 

(image intensity) can represent relative height within an individual tree. The same method as 

described for extracting individual tree tops from the CHM with the LiDAR data was applied to 

extract tops of individual trees from aerial images with reflectance values. 

 

4.3.2.1 Grayscale intensity surface 

The aerial images, which were used in this study, have three visible bands (red, green, blue). 

Although multispectral information is useful for object classification, morphological analysis is 

applicable to only single band images. Accordingly, we converted color images into 

panchromatic images (intensity) by the “rgb2gray” function in Matlab. Once intensity images 

were created, these images were processed with the same method we used for the DSM from the 

LiDAR data.  

 

4.3.2.2 Smoothing aerial images 

We applied Gaussian filtering to reduce image noise and remove in-canopy fluctuations (Pouliot 

et al., 2002). As we did for LiDAR DSM, the optimal smoothing parameters were empirically 

selected to maximize detecting distinctive tree tops and minimize falsely detected tree tops. 

Figure 4-5 shows the minimum distance between tree top locations by the different Gaussian 

filter sizes. We selected 23 pixels as the filter size, because the value was the smallest which 

provided the minimum of neighbor distance which was larger than a threshold value (12 pixels).  
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Figure 4-5. The minimum distance between the nearest neighbor tree top points (extracted from 

the aerial images) by different filter sizes  

 

4.3.2.3 Tree top detection by morphological operation with aerial images 

The extended-maxima transformation was applied to identify groups of pixels that represent the 

tip of tree crowns. Then, the tree apex was detected by selecting the maximum intensity value 

within a certain group of pixels. An h-value was set to 1 in grayscale images (0 to 255), which 

was decided by similar pilot tests we did previously. We utilized brightness gradients 

information to detect tree tops. However, not all of the brighter spots were associated with tree 

apexes. Thus, we separated vegetation pixels from non-vegetation pixels and excluded non-

vegetation pixels because falsely detected tree tops from non-vegetation pixels may cause 

problems in finding a correct pair of tree tops (as control points). We applied a threshold value 

for this purpose (Dralle and Rudemo, 1996; Pitkänen, 2001; Pouliot and King, 2005). By using 

the histogram of brightness values of the detected peak locations, we plotted a histogram and 

determined the threshold value as 130. Accordingly, only the points, whose pixel value was 

lower than 130, were classified as tree tops and used as control points.    

 

4.3.3 Initial transformation estimation 

Relief displacement increases as the radial distance is increased in aerial photographs (Wolf and 

Dewitt, 2000). Accordingly, there is only a negligible amount of relief displacement near the 

principal point so that those parts of the images are close to ortho-rectified images without relief 

displacement. Because LiDAR data are already geo-rectified with the Differential Global 

Positioning System (DGPS) and the Inertial Navigation System (INS) system, feature points 

(tree tops) detected from LiDAR DSM were already geo-registered without any displacement. 

Tree top point features that were detected from the near principal point in the aerial images have 

a negligible amount of displacements as well. Hence, a geometric transformation (linear 

conformal transformation in this study) was applicable to align two sets of points. The major 

problem to align two data sets was finding correct matching pairs.  
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Figure 4-6. An example of initial transformation estimation. (a) Tree tops detected near the 

center of aerial image (b) tree tops detected from LiDAR DSM (searching area for the matching) 

(c) an example of incorrect matching (d) an example of correct matching. White circles (O) 

indicate correctly matched control points, and white crosses (X) indicate incorrectly matched 

control points. X-axis and Y-axis are coordinates in meters.    
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In order to solve this problem, we used the fact that the transformation equation estimated 

from corresponding pairs has the highest number of matching pairs, while the transformation 

equations from non-corresponding pairs have a limited number of matching pairs. We applied a 

conformal affine transformation composed of four parameters:  s, θ, tx, and ty, where s was a 

scale factor, θ the rotation angle, and tx and ty the translation along the x and y directions, 

respectively.  The transformation employed in this step was described by Equation 4. 

 

cos sin

sin cos

x photoLiDAR

y photoLiDAR

t xx s s

t yy s s

 

 

      
       

      
       (4) 

 

If the two point pairs are selected from two data sources, transformation parameters (from 

the aerial images to the LiDAR data) can be estimated. Once the transformation parameters are 

estimated from the two point pairs, all other points from aerial images are transformed using the 

transformation equation estimated previously. Then, the nearest point between the two data 

sources was paired. If the distance between the paired points was within a given threshold (12 

pixels), the condition was considered as matching pairs. By using these procedures, all possible 

point pairs had the count of the correct matching pairs. Then, the pairs with the highest count 

were selected as corresponding pairs. Figure 4-6 shows an example of the initial transformation 

estimation. It started with selecting a pair of points (P16 - P19) from the center region of the 

aerial image (Figure 4-6a). Then, a pair of points was selected from the LiDAR data (Figure 

4-6b). Figure 4-6c shows an example of an incorrect matching. When an incorrect pair of points 

(P59 - P71) was selected from the LiDAR data, the transformation provided small number of 

matching points (5 cases in this example). Conversely, when the correct pair of points (P59 - 

P61), we acquired the highest number of matching pairs (23 cases in this example) (Figure 4-6d).  

In order to speed up the search procedure, we reduced the search sets by setting up 

threshold values for transformation angles and scales. The point pairs which are out of the range 

of the threshold values were excluded when finding matching pairs. Also, these threshold values 

helped to prevent false corresponding pairs. The angle thresholds were calculated from the flight 

line data. The flight line data had the approximate orientation of each image so that the angle 

thresholds are set to the flight line orientation angle ± 5 degrees. The scale threshold is estimated 

from the average flight height. The range of threshold height was set to ± 200 m of the average 

flight height. Then, the scale threshold range was calculated from the focal length and the 

average flight height. We intended to expand the threshold value of the orientation angle and the 

scale, but we were able to find the corresponding point pairs using the initial threshold values. 

Therefore, we did not need to expand threshold values. 

 

4.3.4 Iterative matching point expansion and exterior orientation refinement 

Although we used geometric relations of the points between the two data sets for finding 

corresponding pairs between aerial images and LiDAR DSM for initial matching, this approach 

was only applicable to a limited part of the image (near the principal point). As the radial 

distance increased, the relief displacement was increased, and the geometric relations of points 

were not consistent. Consequently, it was necessary to consider relief displacement of aerial 

images for finding corresponding pairs by the nearest point matching scheme (the nearest points 

between two data sources were paired if the distance between two points was smaller than a 

threshold value). Because the feature points from the LiDAR data had 3D information (x,y,z) 
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and the external orientation parameters were already estimated from the previous steps, we were 

able to apply the backward projection of 3D feature points from the LiDAR DSM (in object 

space) into the aerial images (in image space) for searching and adding corresponding pairs. The 

backward projection was conducted using the collinearity equation (Equation 5)  
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where Xc, Yc, and Zc, were ground coordinates of the camera location, and x0 and y0 were 

image coordinate of the principal point. f was the camera focal length, and r11, r12, … r33 were the 

camera orientation parameters estimated from the previous steps.  

Once we performed the backward projection, the nearest point matching scheme could be 

used to find corresponding pairs between the two data sets. Based on newly added control point 

pairs, external orientation parameters were updated and used for the next step. At each step, the 

radius (a distance from the principal point) of the search area is gradually increased until all the 

points in the image were used. 

 

4.3.5 Image rectification 

Once the feature corresponding between the LiDAR data (reference) and the aerial images was 

established, the mapping function should be determined for the image registration (Zitova and 

Flusser, 2003). In order to establish the mapping function, the type of the mapping function 

needs to be selected and the parameters for the function should be estimated. Models of mapping 

functions can be divided into two broad groups; global and local transformation models. For 

global transformation models, the model parameters are the same for the entire image so that 

they are inappropriate to handle various local distortions. In contrast, local transformation 

models can have different model parameters, which depict local distortions across the whole 

image (Zitova and Flusser, 2003). Because the aerial images are acquired over the heterogeneous 

mixed forests that consist of tall conifer trees and steep topographic slopes, the aerial images 

have various local geometric distortions. Thus, in this study, we employed a local transformation 

model to determine the mapping function. More specifically, we applied a piecewise linear 

mapping, which decomposes the whole image into triangular facets, and then used local mapping 

functions to model the local geometric distortions (Goshtasby, 1986; Liu et al., 2006). We 

constructed a Delaunay triangulation to decompose the input image by using the extracted 

control points, and we rectified the image by estimating the transformation of each triangular 

facet. In addition, we employed three global transformation models (affine, 2nd, and 3rd) for the 

purpose of comparison.  

 

4.3.6 Multi-frame mosaicking 

Mosaicking combines several image frames into a single composite image to cover a large area 

(Kerschner, 2001). Aerial photographs are a common source for creating photo mosaics because 

multiple frames are acquired to cover a large area (Afek and Brand, 1998). Because we rectify 

multi-frame images, which cover a part of the study area, we also perform image mosaicking to 
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combine the rectified aerial images. In mosaicking two adjacent images, it is necessary to decide 

how to process the overlapping areas. In most cases, a seam line (cutline) is defined between two 

images and the overlapping regions are blended to create a seamless mosaic (Afek and Brand, 

1998). In this study, we decomposed each frame into triangular facets which was constructed by 

the common control points. Accordingly, each triangle facet had different transformation 

functions based on the control points. Then, the whole mapping function was acquired by piecing 

triangular regions together. Because the image mosaicking combined multiple images into one 

large image, adjacent image frames had overlapping areas. We used the proximity of the 

triangular facet to the center of the images in order to determine which image frame would be 

selected for each triangular region. The proximity was calculated by finding the nearest image 

center point from the vertices of the triangle.  

 

4.3.7 Evaluation of the image registration accuracy 

For evaluating the accuracy of the registration, we applied the Leave-One-Out Cross-Validation 

(LOOCV), which is a common cross-validation method. Cross-validation is a statistical method 

of evaluating and comparing the performance of learning algorithms by dividing data into two 

groups (one is for learning or training, and the other is for validation (Stone, 1974). The LOOCV 

is a special case of the k-fold cross-validation method, which split the data into k mutually 

exclusive subsets of equal (or almost equal) size (Kohavi, 1995). In k-fold cross-validation, a 

single subset is retained for validation, and the remaining k-1 subsets are used as training data. 

The training and validation are performed iteratively (k times) so that each of the k subsets is 

used exactly once (Refaeilzadeh and Tang, 2009). The LOOCV uses only one observation for 

validation and uses the remaining observations as training data. In other words, the LOOCV is a 

k-fold cross validation, where k is equal to the size of the dataset. Accordingly, we retained one 

control point from the pool as a validation point and estimated a geometric transformation 

function using the remaining points. Then, we applied this transformation function to locate the 

retained control point. In each iteration, we calculated the residual (distance) between the true 

point and the estimated point. By using the calculated residuals, we calculated the maximum x-

residual, the maximum y-residual, the total RMSE, the median absolute deviation (MAD), and 

the standard deviation (SD) of the residuals to evaluate the registration errors. Also, we used 

these indexes to compare the differences between transformation models (affine, 2
nd

 polynomial, 

3
rd

 polynomial, and piecewise linear model).         

 

4.4. Results and Discussions 

4.4.1 Tree top detection and matching 

Table 4-1 shows the number of feature points extracted from aerial images and LiDAR data in 

the initial matching step. In this study, the aerial images had more feature points than the LiDAR 

data. Accordingly, the matching points between two data sets were mainly limited by the feature 

points obtained from the LiDAR data. Although some images had fewer corresponding points 

than the others, all the images had enough control points to estimate initial exterior orientation 

parameters. Table 4-2 lists the number of feature points obtained in automatic tree top detection 

from both data sets and the number of corresponding points by iterative matching point 

expansion. On average, we detected 1038 feature points from each aerial image, and we detected 

394 points from the LiDAR data from the equivalent area. Overall, 80 percent of the feature 

points from the LiDAR data were matched to corresponding points for the transformation. 
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However, only 30.5% of the feature points from the aerial images were paired with the 

corresponding points from the LiDAR data. This was mainly because small deciduous trees had 

less distinctive apexes in the canopy. Consequently, those fluctuations were removed by strong 

low pass filtering. 

 

Table 4-1.  Numbers of detected feature points and matched points (initial matching)  

 

* m/A: number of matched point / number of feature points from aerial images,  m/L: number of matched point / 

number of feature points from LiDAR data 

 

Table 4-2. Numbers of detected feature points and matched points (final matching) 

 

* m/A: number of matched point / number of feature points from aerial images,  m/L: number of matched point / 

number of feature points from LiDAR data 

 

4.4.2 Transformation model comparison 

We applied a local transformation model (piecewise linear model) to register the aerial images to 

the LiDAR data. In addition, we used three global transformation models (affine, 2
nd

 polynomial, 

and 3
rd

 polynomial) for the purpose of comparison. We employed the LOOCV method to 

evaluate the accuracy of the registration between the aerial images and LiDAR data. Table 4-3 

shows the result of accuracy assessment by using four different registration error indexes: 

maximum x-residual, maximum y-residual, total RMSE, and MAD. All the registration error 

Image 

number Aerial Image LiDAR n m/A m/L

7552 30 26 25 83.3% 96.2%

7553 34 19 16 47.1% 84.2%

7554 27 18 16 59.3% 88.9%

7732 33 14 14 42.4% 100.0%

7733 22 15 13 59.1% 86.7%

7734 33 14 13 39.4% 92.9%

Total 179 106 97 54.2% 91.5%

Feature extraction Matching points

Image 

number Aerial Image LiDAR n m/A m/L

7552 1135 468 414 36.5% 88.5%

7553 1111 450 384 34.6% 85.3%

7554 1106 486 387 35.0% 79.6%

7732 1016 356 201 19.8% 56.5%

7733 947 306 276 29.1% 90.2%

7734 917 296 239 26.1% 80.7%

Total 6232 2362 1901 30.5% 80.5%

Feature extraction Matching points
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indexes verify that the piecewise linear model produced the smallest registration errors. Because 

a global transformation model cannot properly handle local image deformation, a global 

transformation model has relatively larger registration errors than a local transformation model. 

Therefore, when we applied a piecewise linear model, the total RMSE of the residual was 9.21 

pixels (2.3 meters), and MAD was 6.81 pixels (1.41 meters). The maximum X directional errors 

were larger than the maximum Y directional errors, because the aerial images were wider in the 

X (1920 pixels) direction than in the Y direction (1080 pixels). As the distance from the principal 

point increased, the relief displacement also increased. Therefore, it was more likely to have a 

larger number of points which were further away from the principal point in the X direction than 

in the Y direction. 

 

Table 4-3. Comparison between models and accuracy indexes (in meters) 

 
 

4.4.3 Image mosaicking 

We mosaicked six overlapping images into one by using common control points which were 

shared by adjacent images. We visually examined the transitional areas between images for 

comparisons. Compared to the outcome of the simple proximity based image mosaicking method, 

the result of our method showed seamless transitions around the seam lines (Figure 4-8). The 

quality of the seamless transition between images was better when enough common control 

points existed. However, when the overlapping area had sparse common points, the seam lines 

were more noticeable because of misalignment between the neighboring images. In this study, 

the test site included the open areas without trees. Thus, these open areas have sparsely 

distributed control points so that the transitions between the images around the open areas were 

less smooth than the transitions between the images around the densely forested areas.  

Transformation

Model

Max X

Residual

Max Y

Residual

Total

RMSE
MAD

S.D. of

the residual

Affine 15.08 13.51 4.88 3.77 2.42

2nd Polynomial 13.33 8.54 2.94 1.87 1.78

3rd Polynomial 11.65 8.05 2.48 1.70 1.42

Piecewise Linear 10.12 6.27 2.30 1.41 1.41
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Figure 4-7. The result of initial registration of aerial images with LiDAR DSM.  Aerial images 

are overlaid on LiDAR DSM.  (○): Tree tops from aerial images, ( • ): tree tops from LiDAR 

DSM. X-axis and Y-axis are coordinates in meters 
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Figure 4-8. Result of the mosaicked aerial image. Lines indicates seam lines between aerial 

images 

 

4.5 Discussion 

Automatic registration of multi-source remote sensing is not an easy task because it needs to 

handle various radiometric characteristics, image resolution, sensor orientation, and local 

deformation in the registration procedures: feature identification, feature matching, spatial 

transformation, and interpolation (Zitova and Flusser, 2003). Combining multi-spectral images 

and LiDAR data is useful because the complementary characteristics of LiDAR and aerial 

photography enable us to fully utilize the advantages of both systems (Habib et al., 2005; Schenk 

and Csathó, 2002) . However, these multi-source data sets have very different radiometric 

characteristics, so that it is challenging to identify and match common corresponding features to 

register the two data sets by automated procedures. In this study, we employed trees, which are 

abundant over forested areas, as common control points for the feature-based registration. In 

addition, we utilized the geometric distribution (or constellation) of the detected tree tops to find 

initial corresponding point pairs to cope with the difficulty of finding corresponding pairs 

between the aerial images and the LiDAR data, which had very different radiometric 

characteristics. The results indicated that tree tops were able to be used to register high spatial 

resolution multi-source remote sensing data in forested areas. Also, as we expected, the 

piecewise linear transformation was more accurate than other polynomial and affine 

0 50 10025 Meters

Å
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transformation methods. However, the accuracy differences between the piecewise linear 

transformation and other polynomial transformation methods were less distinctive than our 

expectation. We suspect some regions do not have enough control points for the accurate 

registration and this problem might diminish the advantage of using a local transformation 

method, which can reflect various localized geometric distortions, over global transformation 

methods. It is worth mentioning that this problem is directly related to the limitations of the 

proposed method.  

We applied Gaussian filtering on the aerial images and the LiDAR data to detect only 

distinctive tree tops. We dismissed small trees by applying relatively strong smoothing on the 

images to prevent false matching between two data sets. As we previously explained, we 

determined the Gaussian filter size to ensure enough distances between the nearest neighbor 

points. Because the filter size was mainly optimized to minimize false matching between control 

points, relatively small trees, which had the potential to be served as feature points, were not able 

to be detected and used for the registration procedures. Consequently, in the regions dominated 

by small trees, our method detected and matched only a limited number of feature points, so that 

the accuracy of the registration diminished. This limitation suggested to us that variable filter 

size can be implemented to improve tree top delectability so that small trees contribute to the 

improvement of registration accuracies 

As we mentioned before, our method is intended to be used mainly for forested areas, 

which do not have commonly used distinctive features (such as buildings, roads, roofs, etc). 

Hence, we use tree tops as common feature points to register the aerial images to LiDAR data. 

However, we expect that it may be difficult to find feature points in areas with no trees so that 

the accuracy of the registration will be decreased in those areas. Furthermore, because initial 

matching between the aerial images and the LiDAR data is conducted around the center of the 

aerial images, the initial matching might encounter problems when the center of the aerial image 

does not have any trees. Consequently, the following iterative matching point expansion might 

not be able to be conducted correctly. Although we do not have this problem from the 6 test 

images, we need to consider the possibility of this problem and to improve our method in future 

research. 

In this study, we acquired the aerial images by a non-calibrated, non-metric digital 

camera. Hence, the interior orientation information was not included in the backward projection 

for the control point expansion steps. Because we did not perform any analytical 

photogrammetric measurements, omitting the interior did not cause any critical problems on our 

registration procedures. However, we expected that including interior orientation information 

would improve the accuracy of the image registration results. 

 

4.6 Conclusion 

In this study, we proposed an approach for automatic registration of aerial images with LiDAR 

data. We started from extracting tree tops as common feature points from both data sets by 

applying a morphological operation (extended-maxima transformation). Then, we conducted the 

preliminary matching by using the small region of the image center, which was near the principal 

point. Because we intended to search corresponding points between two data sets by using only 

geometric distribution of the control points, we initially used only a small region near the image 

center, which did not have relief displacement problems. We iteratively expanded the control 

points to the entire images by using the backward projection of the tree top points of the LiDAR 

data over the aerial images. The backward projection was performed based on the exterior 



53 

 

orientation parameters estimated from the previous step and corresponding points were paired by 

the nearest neighbor searching method. Once the corresponding point pairs were found, the 

transformation function was estimated to register the aerial images to the LiDAR data. We 

compared a local transformation method and global transformation method. The evaluation of 

the accuracy was performed by the LOOCV method. A local transformation method (piecewise 

linear transformation) provided us better registration accuracy than the other global 

transformation methods (affine, 2
nd

 polynomial, and 3
rd

 polynomial transformation). Finally, we 

mosaicked the previously geo-rectified aerial images into one large image. The seam lines were 

selected using the triangulation of common control points between adjacent images. Although 

the adjacent triangles had different transformation functions, the discrepancies between the 

images on the shared border lines were hardly noticeable, because the border line shared two 

common control points (both end points of the line) between two images. Our approach of the 

image mosaicking was fully automated in searching for the seam lines and combining multiple 

images. Consequently, we were able to acquire a qualitative image mosaic from the multiple 

aerial images. 

The main limitation of our approach was to use only tree tops as matching feature points 

for the registration. Although our approach performed well over the forested area with enough 

distinctive trees, it would be very difficult to register the aerial images with LiDAR data over an 

area with no detectable trees. We need more efforts to include other corresponding features 

(other than tree tops) to cope with this problem for future studies.  

We expect the proposed approach will enable us to integrate aerial images and LiDAR 

data at the individual tree level. Hence, the integrated data sets may serve to extract detailed 

forest biophysical parameters so that more detailed and accurate information will help to expand 

our understanding of forest ecosystem dynamics. 
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Chapter 5 Conclusions  

In this dissertation, three important topics, related to extracting individual tree level biophysical 

parameters by using high spatial resolution remotely sensed data, were studied. Although the 

potential of using high spatial resolution data to extract detailed forest inventory parameters were 

substantial, they could be realized only if we employed adequate methods for extracting detailed 

information inherent in the LiDAR and aerial imagery. Accordingly, I developed and evaluated 

new approaches for three different topics related to this objective:  1) classifying raw LiDAR 

points into ground and non-ground points, 2) detecting tree tops and delineating an individual 

tree crown, and 3) combining aerial images and LiDAR data by means of automated registration 

procedures. 

Classifying raw LiDAR points (ground vs. non-ground) for generating a terrain surface is 

a basis for other analysis related to forest biophysical parameter extraction. In Chapter 2, I 

developed the Progressive Terrain Fragmentation (PTF) method to improve the performance of 

filtering non-terrain points from raw airborne laser scanning data. Iterative procedures for 

searching terrain points gradually approximates terrain surface. Instead of using absolute slope or 

offset distance, this method utilizes orthogonal distance to and relative angle between a 

triangular plane and a node. For that reason, PTF was able to classify raw LiDAR points into 

ground and non-ground points on a heterogeneous steep forested area with a small number of 

parameters. I found an angle threshold to be the most influential parameter for accurate filtering 

procedures. I also found a smaller angle threshold causes inaccurate terrain approximation by 

omitting terrain points around ridge lines. Conversely, a large angle threshold failed to remove 

low vegetation. The optimum threshold value was determined by examining reference plots in 

the study site, and the selected threshold value was applied for the entire level of filtering 

procedures. However, the result of the accuracy assessment indicated the accuracies were vary 

depend on the site conditions (e.g. tall vegetation vs. low shrubs). Accordingly, in future work 

these methods should be tested under different environmental conditions. 

Detecting and delineating individual tree crowns is an important prerequisite in extracting 

various forest inventory parameters from high spatial resolution data. In Chapter 3, I developed 

an automated method to detect individual tree tops and delineate individual tree-crown 

boundaries using airborne LiDAR data. I applied a progressive window-size local maximum 

filter to detect tree tops from raw LiDAR pulses, followed by the verification of the detected tree 

tops by the shape of canopy profiles between trees so that I was able to improve the accuracy of 

tree top detection by reducing commission errors. Then, tree-crown delineation was conducted to 

separate individual trees. Further improvement can be accomplished by increasing the LiDAR 

pulse density for small trees. Also, more precise species separation will enhance the accuracy of 

isolating individual trees because we can apply different tree top detection methods, which are 

selected by the characteristics of trees (both tree species and sizes).  

In Chapter 4, I proposed a new approach for automatic registration of aerial images with 

LiDAR data. I employed trees, which were abundant over forested areas, as common control 

points for the feature-based registration. In addition, I utilized the geometric distribution (or 

constellation) of the detected tree tops to find initial corresponding point pairs to cope with the 

difficulty of finding corresponding pairs between the aerial images and the LiDAR data, which 

had very different radiometric characteristics. The results indicated that tree tops were able to be 

used to register high spatial resolution, multi-source remote sensing data in forested areas. In 
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addition, the piecewise linear transformation was more accurate than other polynomial and affine 

transformation methods. The geo-registered images were combined into one large image by 

using common control points between adjacent images so that a qualitative image mosaic was 

able to be acquired. The main limitation of this approach was to use only tree tops as matching 

feature points for the registration. Although this approach performed well over the forested area 

with enough distinctive trees, it would be very difficult to register the aerial images with LiDAR 

data over an area with no detectable trees. Further study is needed to include other corresponding 

features (other than tree tops) to cope with this problem. 

 

Future implications 

The results from this dissertation can be used as the foundation for further research on extracting 

various forest biophysical parameters. In Chapter 2, I separated raw LiDAR points into ground 

returns and non-ground returns. The LiDAR points, which were classified as ground returns by 

PTF method, were initially used to reconstruct the terrain surface model. Because tree heights are 

obtained by subtracting a digital terrain model from a canopy surface model, reconstructing an 

accurate terrain model will contribute to accurate estimation of tree height in forested areas. 

Although non-ground return points were filtered out for reconstructing the ground surface model, 

those non-ground return points can be used to extract other forest biophysical characteristics 

related to tree canopies. For example, Leaf Area Index (LAI) can be estimated by the ratio 

between total returns (ground returns + canopy returns) and canopy returns. In addition, the 

distribution of non-ground returns (canopy returns) can be used to determine the tree species. In 

Chapter 3, I detected and delineated individual trees in heterogeneous forests using airborne 

LiDAR data. Because obtaining forest biophysical measurements from the LiDAR data require 

an object from which to extract those measurements, it is effective to use individual trees as an 

object for this purpose. For example, tree height and crown diameter can be extracted only if the 

boundaries of individual trees are delineated. Then, indirect forest inventory variables, such as 

diameter at breast height (DBH), basal area, stem volume, and biomass can be estimated. 

Furthermore, detailed individual tree measurements can be used for developing and calibrating 

forest ecosystem models. In Chapter 4, I integrated aerial images and airborne LiDAR data by 

the feature-based automatic registration procedures. Because the spectral information from aerial 

images provides complementary information, which cannot be acquired by only LiDAR data, 

combining aerial images and LiDAR data may improve our ability to extract forest information. 

In particular, this work can improve the classification of tree species by providing additional 

spectral information. In addition, I expect that multi-temporal aerial images can be co-registered 

so that the proposed method might be applicable to change detection and retrospective analysis 

for forest ecosystems.  
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