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Abstract

Mass, Spin, and Physics Beyond the Standard Model at Colliders

by

William Lathrop Klemm

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hitoshi Murayama, Chair

The Standard Model of particle physics has thus far proven extremely effective at describ-
ing the composition and interactions of matter we observe. However, theoretical consider-
ations, such as the large hierarchy between the weak and Planck scales, and experimental
evidence, such as the observation of non-baryonic dark matter, suggest the possibility of
new physics beyond the Standard Model (BSM). In many scenarios, such new physics
would occur around the TeV scale, and therefore has an excellent chance of being seen at
current and future collider experiments.

Following a review of the standard model, its problems, and some new physics scenar-
ios, we explore a number of ways in which colliders may be used to study such new physics.
We first discuss a technique for determining the masses of new particles in single-step de-
cay chains, a task which is typically complicated by missing energy associated with discrete
symmetries prevalent in BSM models. We then address the determination of the spins of
new particles at colliders, developing a model-independent technique and demonstrating
how it could be used to distinguish two specific models, supersymmetry and universal ex-
tra dimensions, at a future linear collider. We further demonstrate that the effectiveness
of this technique could be realized experimentally using existing data from both e+e− and
hadron colliders. Finally, we turn away from model-independent techniques and propose
a search for color sextet scalars, which could be copiously produced at the Large Hadron
Collider. Pair production of such particles could potentially be seen in the relatively clean
same-sign dilepton + jets + missing energy channel, for which we propose an effective
reconstruction of the sextet pair.
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Chapter 1

Introduction

The standard model (SM) of particle physics has been one of the great successes of
theoretical physics and has withstood the rigors of extensive experimental testing. How-
ever, an increasing number of questions are proving to be beyond the scope of the SM.
Some of these are observational, such as the nature of the dark matter which accounts for
a large fraction of the energy in our universe. Theoretical considerations, such as the large
hierarchy between the gravitational and electroweak scales, also remain unsolved puzzles.
A vast array of theoretical scenarios have been formulated to deal with these issues, and
many of them predict new physics at the TeV scale, which is currently being probed at the
CERN Large Hadron Collider (LHC). This thesis presents a number of novel techniques
for studying such new physics at collider experiments.

In this introduction, Section 1.1 provides a brief review the SM and electroweak sym-
metry breaking. Section 1.2 then discusses two of the major shortcomings of the SM –
the hierarchy problem and non-baryonic dark matter – and demonstrates the connection
between these questions and the TeV scale. Finally, Section 1.3 discusses two scenarios of
physics beyond the standard model (BSM), supersymmetry and extra dimensions, and how
they relate to the aforementioned questions. In each case, a new symmetry is introduced
which produces a dark matter candidate and has important phenomenological implications.

Producing new particles at a collider is only useful if we are able to relate the data to
the properties of those particles, and therefore the underlying theory. One of the most basic
properties of any particle is its mass, knowledge of which is useful not only for understand-
ing the underlying model, but also for performing event reconstruction in other analyses.
Mass measurement may be complicated in many BSM scenarios by stable particles (usu-
ally a dark matter candidate) which go unseen in the detector. Chapter 2 discusses a new
method for mass measurement in such cases for certain event topologies. The effectiveness
of this technique is demonstrated for a particular supersymmetric model, but the method is
generally applicable to many BSM models.

Determining the masses of new particles is an important step, but as we elaborate in
Section 1.3, determination of spins can play an important role in differentiating BSM mod-
els. Chapters 3 and 4 present a novel, model-independent technique for measuring parti-
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cle spins. Chapter 3 introduces this technique and demonstrates its ability to distinguish
between models (comparing supersymmetry with universal extra dimensions for concrete-
ness) at a future linear collider. Further support for the efficacy of this technique is pre-
sented in Chapter 4, which demonstrates that it may be implemented using existing data
from both lepton and hadron colliders to determine the spins of weak gauge bosons.

Identifying channels where new physics may appear and determining how best to use
data from those channels is also important for BSM studies at colliders. This approach is
taken in Chapter 5, which considers pair production of color sextet scalars. Such new parti-
cles, which are not present in the standard model, appear in a number of theories, including
unification schemes, and could be produced in large numbers at the LHC if present at the
TeV scale. After a brief review of color sextet scalars, a search channel and reconstruction
scheme for the LHC are presented.

The conclusions of this thesis are summarized in Chapter 6.

1.1 The Standard Model
The standard model is constructed by selecting a set of gauge symmetries under which

the Lagrangian must remain locally invariant. The matter content is then specified and
assigned charges under the gauge groups, and the interactions of those particles are defined
by writing down all possible renormalizable terms which respect the symmetries of the
theory.

Experimental observation has led us to the fermionic particle content and charge as-
signments shown in Table 1.1, with interactions governed by the gauge group SU(3)C ×
SU(2)L × U(1)Y . With each symmetry comes an associated gauge field, denoted Ga

µ, W i
µ,

andBµ, respectively. Each fermion apparently comes in three generations. Of the fermions,
only the quarks are charged under the color SU(3) symmetry; together, the quarks and glu-
ons compose the very successful theory of chromodynamics. Only the left-handed fermions
are charged under the SU(2)L symmetry, which has the effect of forbidding bare fermion
mass terms in the Lagrangian. Their masses can be generated when the scalar Higgs field,
φ =

(
φ+

φ0

)
, an SU(2)L doublet with weak hypercharge yφ = 1/2, acquires a vacuum expec-

tation value (vev) at low energies (see Section 1.1.2), spontaneously breaking the SM sym-
metry to SU(3)C × U(1)EM . In this section we describe the details of the SM Lagrangian
and the consequences of spontaneous symmetry breaking of the electroweak theory.

1.1.1 The Standard Model Lagrangian
Here we describe the SM Lagrangian as a sum of four parts,

LSM = Lf + Lgauge + Lφ + LYuk., (1.1)

where the fermionic kinetic term is Lf , the Yang-Mills terms for gauge fields Lgauge, the
Higgs term Lφ, and the Yukawa interactions between fermionic and Higgs fields LYuk.. The
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Name SU(3)C SU(2)L U(1)Y

Qi =
(
u
d

)
L
,
(
c
s

)
L
,
(
t
b

)
L

3 2 +1/6

ūi = ucR, c
c
R, t

c
R 3̄ 1 −2/3

d̄i = dcR, s
c
R, b

c
R 3̄ 1 +1/3

Li =
(
νe
e

)
L
,
(
νµ
µ

)
L
,
(
ντ
τ

)
L

1 2 −1/2

ēi = ecR, µ
c
R, τ

c
R 1 1 +1

Table 1.1: Fermionic content of the SM, listed as left-handed Weyl spinors.

first is given by
Lf =

∑
j

ψ̄jαi��D
α
βψ

β
j , (1.2)

where the sum j is over all fermions (given in Table 1.1); a sum over SU(3)×SU(2) gauge
numbers, α and β, is implied. The gauge covariant derivative is given by

Dβ
µα = ∂µδ

β
α + igsG

a
µ(T a)βα + igW i

µ(T i)αβ − ig′Y Bµδ
α
β , (1.3)

where T a and T i denote the generators of the SU(3) and SU(2) groups, respectively. This
term describes the propagation of fermions as well as their interactions with gauge fields.

The gauge fields each contribute a Yang-Mills term to the Lagrangian,

Lgauge = −1

4
Ga
µνG

µνa − 1

4
W i
µνW

µνi − 1

4
BµνB

µν , (1.4)

where their field strength tensors are given by

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ. (1.5)

The self interactions of the SU(3)C and SU(2)L gauge fields are governed by their group
structures, with structure constants fabc and εijk defined in terms of the group operators,
e.g., [

T a, T b
]

= ifabcT
c. (1.6)

Because U(1) is an Abelian group, the structure constant is zero, and there are no self
interactions of the Bµ gauge field.

The Lagrangian describing the yet to be observed Higgs scalar field is given by

Lφ = (Dµφ)†Dµφ− V (φ). (1.7)
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Here, the requirements of SU(2)×U(1) invariance and renormalizability limit the form of
the Higgs potential V (φ) to

V (φ) = +µ2φ†φ+ λ(φ†φ)2. (1.8)

The parameters must satisfy µ2 < 0 for spontaneous symmetry breaking to occur, and
λ > 0 for vacuum stability.

Finally, the Yukawa term describes the interaction of the Higgs field with the matter
fields. Because of the different weak hypercharge assignments for the up and down-type
quarks, gauge invariance necessitates representations of the Higgs field with both y = 1/2
and y = −1/2. The representation φ† satisfies y = −1/2, but transforms as a conjugate
2∗ under SU(2)L. However, the fundamental and conjugate representations of SU(2) are
equivalent, allowing us to use a single Higgs doublet1 by using the representation φ̃ =
iτ2φ

†, which transforms as a 2 with y = −1/2. This allows us to write the Yukawa term as

LYuk. = −Y ij
u Q̄iφ̃uj − Y ij

d Q̄iφdj − Y ij
l L̄iφej + h.c., (1.9)

where the Y ij are the Yukawa matrices. These are the the terms which give rise to fermion
masses, as described in Section 1.1.2.

Finally, if we keep with the idea of including in our Lagrangian every renormalizable
term which is locally invariant under SM symmetries, there is additional term, the CP
violating

Lθ = − g2
sθ

32π2
Ga
µνG̃

µνa. (1.10)

However, experimental effects of such a term have not been observed, and limits on the
neutron electric dipole moment [1] imply that θ < 10−10. While the smallness of this
parameter has prompted a considerable amount of theoretical speculation, a detailed dis-
cussion is beyond the scope of this thesis.

1.1.2 Electroweak Symmetry Breaking
Gauge invariance prevents us from including mass terms in the Lagrangian for the

gauge bosons or chiral fermions. If the gauge invariance is broken spontaneously in the vac-
uum state, effective masses may be induced for the particles propagating through it while
maintaining the renormalizability of the theory. When µ2 < 0, such symmetry breaking
occurs as the Higgs field acquires a vev. The Higgs potential (Eq. 1.8) contains and O(4)
symmetry which gives us the freedom to choose the direction of the vev; the canonical
choice is

〈φ〉 =
1√
2

(
0√
−µ2/λ

)
=

1√
2

(
0

v

)
, (1.11)

1This is a consequence of the specific structure of SU(2), and many extensions of the SM require multiple
Higgs fields.
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which corresponds to a minimum of the potential. This vev breaks the T 1, T 2, and T 3 − Y
symmetries but leaves Q = T 3 + Y unbroken. Thus our SU(2)L × U(1)Y symmetry is
broken to U(1)EM .

We next quantize our Higgs field around the classical vacuum, which in unitary gauge
gives

φ =
1√
2

(
0

v +H

)
. (1.12)

In this gauge, the Higgs kinetic term becomes

(Dµφ)†Dµφ =
1

2
(0 v)

(
g

2
σiW

i
µ +

g′

2
Bµ

)2(
0

v

)
+H terms

= M2
WW

+µW−
µ +

M2
Z

2
ZµZµ +H terms (1.13)

Here we introduce the states corresponding to the broken generators

W± =
1√
2

(W 1 ∓ iW 2)

Z = −sin θWB + cos θWW
3, (1.14)

where the weak mixing angle relates the gauge couplings: tan θW = g′/g. The degrees
of freedom corresponding to Nambu-Goldstone bosons for a broken global symmetry are
eaten by these gauge bosons, giving rise to the mass terms in Eq. 1.13, with

MW =
gv

2
,

MZ =
√
g2 + g′2

v

2
=

MW

cos θW
. (1.15)

Because theU(1)EM symmetry remains intact, the corresponding linear combination,Aµ =
cos θWB + sin θWW

3, the photon, is massless and does not appear in Eq. 1.13. The H
terms suppressed in Eq. 1.13 contain the Higgs kinetic energy and the interactions of the
W± and Z bosons with the Higgs field. We note that the weak boson masses depend only
on the vev v = (−µ2/λ)1/2; independent determination of the parameters µ2 and λ requires
consideration of the Higgs field itself.

When the Higgs acquires a vev, the Yukawa term for up-type quarks in Eq. 1.9 becomes,
in the unitary gauge,

Y ij
u Q̄iφ̃uj → Y ij

u ūLi

(
v +H√

2

)
uRj. (1.16)

The down-type quarks and lepton terms transform in an equivalent fashion. We see that
this gives both the mass matrix, Mu = Y uv/

√
2, as well as the Yukawa matrix, hu =

Mu/v, which determines the strength of the interaction of the fermions with the Higgs
field. Because the Yukawa matrix is proportional to the mass matrix, heavy quarks have
stronger couplings, and consequently take on a more important role in Higgs searches.
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In general, the mass matrix is not diagonal, hermitian, or symmetric. If we wish to
understand the theory in terms of the mass eigenstates, we may diagonalize the mass matrix
with two unitary matrices,

Au†L M
uAuR = Mu

D =

 mu

mc

mt

 . (1.17)

We perform an equivalent diagonalization for the down-type quarks and leptons,

Ad†LM
dAdR = Md

D,

Ae†LM
eAeR = M e

D. (1.18)

These unitary transformations cancel out of neutral current interactions; however, the mis-
match between weak and mass eigenstates becomes relevant for the weak charged current.
From Eqs. 1.2 and 1.3, after symmetry breaking the W± bosons interact with the fermions
according to

Lcc = − g

2
√

2

(
JµWW

−
µ + Jµ†WW

+
µ

)
, (1.19)

where the weak charge raising current is

Jµ†W = ν̄iLγ
µeiL + ūiLγ

µdiL. (1.20)

We focus on the second (quark) term. In order to see this in terms of the mass eigenstates,
we perform the unitary transformations

uiL → AuijL ujL, diL → AdijL djL. (1.21)

This term then becomes
ūiLγ

µdiL → ūiLγ
µV ij

CKMd
j
L, (1.22)

where we have introduced the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix,

VCKM ≡ Au†L A
d
L =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtd

 . (1.23)

Consequently, the weak charged current allows for flavor-changing processes in the SM.
A unitary 3× 3 matrix has nine real degrees of freedom, but in the CKM matrix, five of

these are unobservable relative phases of the six quark fields. This leaves four parameters:
3 mixing angles and one CP violating phase. Experimentally, the CKM matrix is found
to have a highly hierarchical structure, with mixing among the first two generations the
strongest. This is made evident by the Wolfenstein parameterization [2],

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (1.24)
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where all parameters are O(1) and λ ∼ 0.22.
We have thus far not discussed the small neutrino masses, for which there is clear evi-

dence, so in this description there is no equivalent mixing matrix. However, for describing
processes for which neutrino masses are relevant, particularly neutrino oscillations, the
analogous PontecorvoMakiNakagawaSakata (PMNS) matrix is required. In processes for
which neutrino mass is negligible, the neutrinos are defined entirely by their weak interac-
tions, so there are no physically observable effects.

Finally, we turn to the Higgs potential, which after symmetry breaking, becomes in the
unitary gauge

V (φ) = −µ
2

4λ
− µ2H2 + λνH3 +

λ

4
H4. (1.25)

The first term is a constant which reflects the definition of the potential and is of no con-
sequence to physics in the absence of gravity. The final two terms represent the Higgs
self-couplings. The second gives a tree-level Higgs mass of mH =

√
−2µ2 =

√
2λv, and

represents the final unmeasured parameter of the SM. Direct searches at the CERN LEP
and Tevatron colliders exclude the mass ranges mH < 114.4 GeV [3] and 158 < mH <
173 GeV [4], respectively, for the SM Higgs.

We have begun with a set of symmetries, written all possible renormalizable terms
respecting those symmetries, and assigned charges for the experimentally observed matter
content. After spontaneous symmetry breaking in the Higgs sector, we are left with a
rich theory with 19 physical parameters: 9 fermion masses, 3 gauge couplings, 4 CKM
parameters, 2 parameters of the Higgs sector, and a tightly constrained strong CP violating
phase. This theory has been remarkably consistent with experiment, but is not sufficient
for describing all phenomena observed in nature. We discuss few of the possible issues and
potential solutions in the following sections.

1.2 Shortcomings of the Standard Model
While the SM has proven effective at describing most of the phenomena we observe,

there is growing evidence that it alone is not sufficient for describing the universe in which
we live. A number of observations such as the following suggest that new ingredients must
be added to the model.

• The observation of neutrino oscillations indicates that neutrinos have nonzero masses,
which are absent in the SM.

• Several observations indicate the existence of non-baryonic dark matter in abun-
dances that cannot be explained by SM particles alone.

• Supernova observations indicate that the expansion of the universe is accelerating.
Together with fits of the cosmic microwave background power spectrum, the data
indicate that the majority of the energy in our current universe is attributed to a “dark
energy,” with negative pressure.
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• Our universe is dominated by matter, not antimatter, and the SM does not provide a
mechanism for generating such a baryon asymmetry.

Additionally, the SM contains many unsettling theoretical issues, as follows.

• The great disparity between the gravitational (∼ 1019 GeV) and weak (∼ 103 GeV)
scales is unexplained, and leads to large divergent corrections to the Higgs mass,
which must be remedied with an extremely finely-tuned cancellation. This is referred
to as the hierarchy problem.

• The CP violating term (Eq. 1.10) allowed by gauge invariance and renormalizability
appears to be extremely small, and the SM provides no explanation for why.

• The SM provides no explanation for why the matter content must be repeated with
three generations.

This list is by no means exhaustive, and in this section we focus on two issues – dark matter
and the hierarchy problem, both of which point to the possibility of new physics at the TeV
scale. In Sec. 1.3 we discuss a few examples of such new physics.

1.2.1 The Hierarchy Problem
While the Higgs mechanism provides an elegant way of providing masses to SM par-

ticles, the Higgs boson has yet to be observed experimentally. Regardless, there is good
reason to expect to find a Higgs or other physics around the weak scale. In the absence of
Higgs boson exchange, calculation of the scattering probability for the longitudinal modes
of W bosons, W+

LW
−
L → W+

LW
−
L , blows up at high energies and exceeds unity above the

TeV scale. If the electroweak theory is to remain perturbative above this scale, exchange of
another particle below this scale is necessary to counteract the divergent behavior. Indeed,
in the SM, the Higgs boson serves this role, as long as it is sufficiently light. Including SM
Higgs boson exchange, the high-energy behavior of the J = 0 partial wave amplitude for
longitudinal W scattering is given by [5]

∣∣a0(W+
LW

−
L → W+

LW
−
L )
∣∣→ m2

H

8πv2
. (1.26)

Partial wave unitarity then places an upper limit on the Higgs mass set by the electroweak
scale,

mH ≤
√

8πv ' 1 TeV. (1.27)

Consideration of other gauge boson scattering processes provides a slightly stricter, but still
O(TeV), constraint [5][6].

Additionally, if we take the view that the SM must only be valid up to some scale, Λ,
above which there is a new physical description, we must ensure that the quartic coupling
λ remains finite up to that scale. Calculation of the running of λ shows that the SM breaks
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H H

H

H H

H H H H

W

W

W

f

f

Figure 1.1: Radiative corrections to the Higgs mass.

down before the next known mass scale, the Planck scale, for mH . 180 GeV [7]. If
we assume that some new physics lies between the weak and Planck scales and take the
conservative case of Λ ≈ 2mH , the constraint on the Higgs mass is still below the TeV
scale, mH . 700 GeV [8]. Furthermore, a SM Higgs mass in this range is suggested by
experiment – a global fit to precision electroweak data favors a Higgs mass below the TeV
scale [9].

In addition to the implications for the feasibility of experimental searches, a sub-TeV
Higgs mass poses theoretical concerns. Fermion masses and dimensionless couplings are
sensitive only to corrections logarithmic in the scale of new physics. Scalar masses, how-
ever, are quadratically sensitive to the scale Λ. The 1-loop radiative corrections to the SM
Higgs mass are shown in Fig. 1.1, and produce such a quadratic divergence,

m2
H = (m2

H)bare +O(λ, g2, h2)Λ2. (1.28)

If Λ is much larger than the weak scale, as is the case with the Planck and GUT scales,
then by Eq. 1.28 the natural scale for the Higgs mass is Λ. This is of course contrary to
the expectation of a weak scale Higgs mass. There then must be a very precise cancellation
between the bare mass and the radiative corrections, a cancellation to about 30 digits in the
case of Λ ∼MP . Such fine-tuning is theoretically undesirable and reveals our ignorance as
to why the weak and Planck scales are so many orders of magnitude apart. This is known
as the hierarchy problem.

There are a few different approaches to the hierarchy problem. One is to replace the
elementary Higgs field with a dynamical symmetry breaking mechanism based on new
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strong dynamics, as in the case of technicolor. Other models introduce new symmetries to
the theory which eliminate the divergent behavior, as in the case of the little Higgs. TeV
scale supersymmetric theories contain canceling quadratic divergences between fermions
and bosons. Another approach is to reduce the Planck scale by introducing additional
dimensions. We discuss the last two of these approaches in Sec. 1.3.1 and Sec. 1.3.2,
respectively. Finally, one might also take the view that the hierarchy problem is indeed not
a problem at all, and the seemingly fine-tuned cancellation is simply present because it is
required for our universe to exist as it does. While such “anthropic” arguments have proven
compelling in other contexts (e.g., [10]), we shall not discuss them further here.

1.2.2 Dark Matter
While the SM effectively describes most of the matter we see, there is increasing evi-

dence that ordinary matter accounts for only a small fraction of the total energy budget of
the universe. In particular, a number of observations suggest the existence of an abundance
of matter which is non-luminous, and therefore dubbed “dark.” As we will see, the SM
particle content is unable to account for this matter, suggesting the existence of a new type
of particle. Here we review some of the evidence for dark matter and possible dark matter
candidates.2

Some of the most direct evidence for the existence of cold dark matter (CDM, meaning
it is not relativistic) comes at the galactic scale, where observation of the rotation of spiral
galaxies is inconsistent with the expectation from visible matter. In the outskirts of a galaxy,
there are very few stars, but there is cold neutral hydrogen gas, which emits λ = 21 cm
photons as a result of the hyperfine splitting of Hydrogen’s energy levels. By examining
spiral galaxies which are viewed edge on, the speed of the rotating gas can be measured
from the redshift of the 21 cm line. The expected rotation speed is given by Newtonian
dynamics as

v =

√
GN

M(r)

r
, (1.29)

where M(r) is the total mass contained within a radius r. In the outer regions where only
gas is expected to be present, M(r) is expected to be approximately constant, which would
lead to a rotation curve v(r) ∝ r−1/2. The observed behavior, however, is flat at large
radius. This suggests that the profile of the mass density of the galaxy is ρ(r) ∝ r−2 in this
region. Such behavior is consistent with a spherical halo of dark matter containing the disk
of the galaxy. While the exact dark matter profile, especially near galactic centers, remains
uncertain, the behavior of rotation curves provides compelling evidence for the presence of
dark matter in galaxies.

The scale of galactic clusters is where evidence for dark matter first appeared. In 1933,
Zwicky determined the velocities of galaxies in the Coma cluster by measuring the Doppler

2For a more complete review of dark matter, see [11][12][13], on which much of this section is based.
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shifts of spectral lines. Assuming the motion of the galaxies was virialized [14],

mv2 = 2〈Ekin.〉 = −〈Egrav.〉 = GNm〈M/r〉, (1.30)

he was able to determine the mass of the cluster, which he found far exceeded the luminous
matter. This large discrepancy suggested the presence of a significant amount of dark mat-
ter. As observational techniques have advanced, more sophisticated methods of measuring
cluster masses have been developed. X-ray telescopes, for example, make it possible to
see the hot gas that accounts for much of the baryonic matter in clusters, and gravitational
lensing of light from distant galaxies by a cluster allow its total mass to be estimated; these
techniques corroborate the dark matter claims of virial mass observations.

Some of the most important recent observations for understanding the matter content
of the universe come from cosmology. The standard model of cosmology contains three
ingredients: the relationship between the geometry and energy/matter content, given by
the Einstein equations; symmetries, as reflected by the metric; and the properties of the
matter/energy content, given by their equations of state. The universe is observed to be
largely homogeneous and isotropic; this implies a specific form for the metric, which when
combined with some components of the Einstein equations, gives the Friedmann equation,

H2 +
k

a2
=

8πGN

3
ρtot. (1.31)

Here a is the scale factor of the universe, ρtot is the total energy density, and k = −1, 0, or 1
describes the spatial curvature. The Hubble parameter, H = ȧ/a, is often expressed as
H = 100 h km s−1 Mpc−1, where h ≈ 0.7 is a dimensionless parameter. There is a critical
density,

ρc =
3H2

8πGN

, (1.32)

for which the universe is flat (k = 0). For a specific species of energy or matter, we
define Ωi ≡ ρi/ρc. Because the different components of matter and energy have different
equations of state, their evolutions over time vary, leading to a general expression for the
expansion of the universe as a function of redshift (z):

H2(z)

H2
0

= − k

a2
0H

2
0

(1 + z)2 + ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4, (1.33)

where M refers to matter, R is radiation, and Λ is the vacuum energy, here taken to be a
cosmological constant.

These parameters can be fit to the power spectrum of the cosmic microwave background
(CMB) recorded by the Wilkinson Microwave Anisotropy Probe (WMAP) collaboration.
Because the acoustic peaks of the CMB arise from gravity driven oscillations of photons
which were coupled with baryons, their form is separately sensitive to both the total matter
component (which determines the gravitational potential) and baryonic component. The
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WMAP 7-year data alone, with a six-parameter ΛCDM fit, finds a large discrepancy be-
tween the total matter ΩMh

2 = 0.1345+0.0056
−0.0055 and baryonic matter Ωbh

2 = 0.02249+0.00056
−0.00057

[15]. This not only indicates the presence of a non-baryonic dark matter component, but
also gives a measure of its size. These values are consistent with those required for cor-
rect elemental abundances in Big Bang neucleosynthesis [16] and for the imprint of baryon
acoustic oscillations on the galaxy-galaxy correlation function [17].

While the evidence for non-baryonic dark matter is well established, the true nature of
dark matter is still unknown. What is known is that it must be stable on cosmological time
scales, it must be produced with the correct relic abundance, and it must interact only very
weakly with electromagnetic radiation.

A natural candidate for a dark matter particle within the SM would be the neutrino, due
to its weak coupling to other SM particles. However, the relic abundance of SM neutrinos
is known to be

Ωνh
2 =

3∑
i=1

mi

93 eV
, (1.34)

where mi are the masses of the three generations of neutrinos. But tritium beta decay
experiments put an upper limit on the neutrino masses3 of about 2 eV [18], giving Ων .
0.07, which is not sufficient to account for the total dark matter abundance. Furthermore,
neutrinos are bound by the Tremaine-Gunn limit [19][20]. The idea is that if neutrinos are
too light, packing them densely enough to provide enough mass for certain galactic dark
matter halos would violate the Pauli exclusion principle; to avoid this violation, the mass
must be raised to & 500 eV, giving Ων > 1, which would over-close the universe. Neutrino
dark matter runs into further problems with structure formation [21] and fits to the CMB
power spectrum [15].

Another possible dark matter candidate is a massive astronomical object, such as a
star or planet which is too dark to be seen, or an exotic object such as a primordial black
hole. Such candidates are referred to as MAssive Compact Halo Objects (MACHOs), and
have been searched for by their gravitational microlensing effects. These searches have
determined that for a large range of masses, there are not enough such objects to account
for the mass in the galactic halo [22].

Perhaps the most currently viable dark matter candidates are weakly interacting massive
particles, or WIMPs. Such particles are stable and heavy enough to have escaped our de-
tection, but light enough to have been generated in the early universe. The current expected
abundance of a WIMP candidate is determined by its mass and interactions. In the early hot
universe, WIMPs would have been created until the temperature dropped below their mass.
At that point they would begin to annihilate with one another, producing lighter particles.
However, as the universe expanded, annihilations would become less common and eventu-
ally cease at the “freeze-out temperature,” when the expansion rate becomes comparable to

3Although the determination of this bound is specific to electron neutrinos, the relatively smaller mass
splittings observed in neutrino oscillation experiments indicate that other species are also bounded by this
limit.
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the annihilation rate. This sets the abundance, as we are requiring our WIMPs to be stable
on cosmological time scales; the current density is then determined by the expansion of the
universe since freeze-out. Calculation of this process gives an estimate for the annihilation
cross section of a WIMP candidate χ, assuming its present-day abundance to account for
the dark matter we see, of

〈σann.v〉 ≈ 10−9 GeV, (1.35)

where the brackets denote a thermal average. Comparing this to a typical annihilation cross
section for an interaction of electromagnetic strength,

σann.v ≈
πα2

m2
χ

, (1.36)

we get an estimate for our WIMP mass,

mχ ≈ 300 GeV. (1.37)

This is an interesting result, as it coincides with the scale of the hierarchy problem, and it
lies beyond the reach of past collider experiments, but within reach of the LHC. We will
discuss two examples of theories with WIMP candidates in Section 1.3.

1.3 Beyond the Standard Model
As discussed in Section 1.2, a number of questions are left unanswered by the standard

model, and both the hierarchy problem and WIMP dark matter scenario suggest that new
physics may appear at the TeV scale. In this section we discuss two of the most widely stud-
ied ideas for answering these questions, supersymmetry and extra dimensions. Both have
TeV-scale realizations which provide a dark matter candidate, along with a large spectrum
of new particles that may be seen in future collider experiments. Some of the challenges of
using colliders to measure and distinguish such models will be addressed in Chapters 2−5.

1.3.1 Supersymmetry
One approach to solving the hierarchy problem is to take a note from history4 – in

particular, if we consider the case of classical electromagnetism, we find that the electron
mass receives a correction from its self-energy which is quadratically divergent. In order
to explain the electron mass we observe, a negative bare mass term would be required to
precisely cancel the self-energy contribution; otherwise, the theory would break down at a
scale O(10−13 cm). This problem is solved by doubling the degrees of freedom with the
introduction of another particle, the positron, whose contribution to the electron mass is

4We note, however, that this argument did not provide the original motivation for studying supersymmetry.
See [13] for a more detailed calculation, and [23] for a more thorough review of supersymmetry.
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also quadratically divergent, but with a negative sign. This leaves only a logarithmically
divergent term, which dramatically reduces the need for tuning.

This type of quadratic divergence is just what we have in the hierarchy problem, and
the idea of supersymmetry (SUSY) as a solution is very much the same – we cancel the
divergence by doubling the degrees of freedom. If we consider, for example, a fermion
loop contribution generated by an interaction −λfff̄H in Fig. 1.2, we get the correction

∆(m2
H)f = −|λf |

2

8π2
Λ2 + . . . . (1.38)

If our theory also contained a scalar S which interacted with the Higgs as −λS |H|2 |S|2 as
in Fig. 1.2, we would get an additional correction of

∆(m2
H)S = +

λS
16π2

Λ2 + . . . (1.39)

The key here is the sign difference between Eqs. 1.38 and 1.39; because fermions and
bosons contribute corrections with opposite signs, if there is a symmetry which properly
relates them, and therefore their couplings, their contributions will cancel, thereby elimi-
nating the divergent behavior. This is exactly what supersymmetry provides.

H H

S

H H

f

f

Figure 1.2: Radiative corrections to the Higgs mass from a fermion (left) and scalar (right).

A supersymmetric theory then contains supermultiplets with both bosonic and fermionic
components. The supersymmetric theory with minimal additional matter content, the so-
called minimal supersymmetric standard model (MSSM), assigns a partner to each of the
SM fields. The chiral supermultiplets contain SM fermions and new scalar counterparts,
which are named by adding an “s” to the SM name, e.g. squarks and sleptons. The gauge
supermultiplets contain the SM gauge bosons and new fermionic partners, denoted by the
suffix “-ino,” e.g. Wino and Bino. All new partners are denoted with a tilde, so a sneutrino
is written ν̃. In addition to the usual SM fields, in the MSSM the Higgs sector must be
expanded to two Higgs doublets, which separately give rise to up-type quarks (Hu) and
down-type quarks (Hd), which allows the theory to be anomaly-free.5 Because of the ef-
fects of electroweak symmetry breaking, the superpartners of SM gauge bosons will in

5Apart from the anomaly condition, two Higgs doublets are necessary due to the requirement that the
superpotential be a holomorphic function of the superfields.



15

general mix with one another. We denote the mass eigenstates of charged gauginos as
charginos (χ̃±1 ,χ̃±2 ), and the mass eigenstates of neutral gauginos as neutralinos (χ̃0

1, χ̃0
2, χ̃0

3,
χ̃0

4).
If all interactions obeyed supersymmetry, then the generation of masses to SM particles

would impart equal masses to their superpartners. Clearly this is not the case, as they
would have been produced and detected at collider experiments. Therefore, SUSY must be
broken at some higher scale, which sets the fermion masses. Here we do not discuss the
different SUSY breaking scenarios, but note the implications of mass differences between
SM particles and their superpartners. In particular, returning to the hierarchy problem, the
main fermion contribution to quadratic divergence of the Higgs mass will come from the
top quark, due to its large Yukawa coupling. If its mass were the same as that of its partner,
the stop, the two diagrams in Fig. 1.2 would cancel each other completely. Because we
expect their masses to be different, while the quadratic divergence cancels, a logarithmic
divergence remains,

(∆m2
H)top + (∆m2

H)stop = −3h2
t

4π2
(m2

t̃ −m
2
t ) log Λ/mt̃ + . . . (1.40)

While this divergence is much milder than what we started with, a stop mass of ∼ 1 TeV
already requires a tuning of the cancellation with the bare mass at the 1% level. This
suggests that if SUSY is responsible for solving the hierarchy problem, the SUSY-breaking
scale, and therefore the superpartner masses, should not lie too far above the TeV scale.

One of the main concepts behind constructing the SM Lagrangian is that once the sym-
metries are specified, the Lagrangian must contain all renormalizable terms which respect
those symmetries. If we take this approach with the MSSM, however, we are left with
several possible terms which violate either lepton number or baryon number, both of which
are conserved by accidental symmetries in the SM. One consequence is that processes
violating both lepton and baryon number, such as proton decay, could occur. Fig. 1.3
shows an example of such a process, p → e+π0. If the relevant couplings were O(1) and
the SUSY partners had O( TeV) masses, this would give a decay rate for this process of
around τ ∼ m4

s̃/m
5
p ≈ 10−12 s, which is in clear violation of the current bound of over 1033

years [24].
These types of interactions can be avoided by introducing a new Z2 symmetry known

as “R parity,” defined as
PR = (−1)3B+L+2s, (1.41)

which must be conserved by all interactions. Under this, all SM particles have PR = +1,
and all superpartners have PR = −1. This means that there can be no mixing between SM
particles and superpartners, and there can be no interaction vertices with an odd number of
superpartners. An important consequence of this is that if R-parity is exactly conserved,
the lightest particle with PR = −1, known as the lightest supersymmetric particle (LSP),
will be stable. This is especially interesting because if the LSP is a neutral particle, such as
a sneutrino or neutralino, then it could be a dark matter candidate. R-parity conservation
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Figure 1.3: A possible interaction leading to proton decay via a supersymmetric particle.

also has implications for collider physics: superpartners may only be produced in pairs,
and any superpartner produced will have a decay chain which includes an odd number of
LSPs, which would not be seen by a detector.

One additional attractive feature of SUSY is its role in unification. One appealing
idea in particle physics is that at some high scale, the gauge couplings of the three SM
symmetries all converge on a single value, at which point the three interactions are all
merged into one under a single larger symmetry. In the SM, the running of the coupling
constants does not result in a single intersection. However, the addition of superpartners
modifies the runnings and causes the couplings to converge at a single point at a scale of
ΛGUT ≈ 1016 GeV. As a consequence, many models of unification assume supersymmetry.

1.3.2 Extra Dimensions
In the previous section we discussed how the large O(Λ2) correction to the Higgs mass

could be remedied by introducing a symmetry which caused the cancellation of this term.
An alternate approach is to reduce the scale at which this term is evaluated. Normally, we
take the next scale of physics to be the Planck scale, MPl = G

−1/2
N ≈ 1019 GeV, at which

the size of the gravitational force becomes comparable to the other forces, and the effects
of quantum gravity can no longer be safely ignored. Here, however, we consider a scenario
in which gravity becomes relevant at much lower energies.6

One idea for explaining the apparent relative weakness of the gravitational force is the
introduction of additional, compact, large extra dimensions [28]. The basic idea is that we
introduce n additional dimensions of radius R, so that at distances r � R, two masses m1

and m2 would have a gravitational potential energy given by Gauss’s law in 3 + n spatial
dimensions,

V (r) =
m1m2

Mn+2
D

1

rn+1
(r � R), (1.42)

where MD is the Planck mass in D = n + 3 spatial dimensions. The changed dependence

6Much of this section was based on the reviews of [25][26][27].
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on r is a consequence of the field lines spreading out in these additional dimensions. At
large distances, r � R, however, the spread of the field lines in the extra dimensions is
confined by the size, so the usual 1/r behavior is restored,

V (r) =
m1m2

M2
Pl

1

r
(r � R). (1.43)

Continuity at r = R then gives us the true D-dimensional scale,

Mn+2
D Rn = M2

Pl. (1.44)

If we wish to reduce the scale of gravity to be comparable to the electroweak scale, MD ≈
1 TeV, then we find that our extra dimensions must have R ≈ 1015, 10−1, 10−6 cm, . . . for
n = 1, 2, 3, . . .. The n = 1 case would cause deviations on the scale of the solar system,
and is clearly ruled out. The n = 2 case is ruled out by a sensitive test of the inverse square
force law, which finds that such extra dimensions are limited to R ≤ 44µm [29]. Larger
numbers of extra dimensions, however, are consistent with this bound.

Apart from the question of whether the extra dimensions are consistent with tests of
gravity, we must also consider the effects of allowing particles to propagate in additional
dimensions. We take x to be the usual 3 + 1 dimensional coordinates and y to be the
additional coordinates, which we take to lie on an n-dimensional torus of radius R. Then
a bosonic field, for example, can be expanded into Fourier modes of the new coordinates,
which is a discrete sum due to the finite size of the additional dimensions,

φ(x, y) ∼
∑
~n

φ(~n)(x) exp

(
i
~n · ~y
R

)
. (1.45)

The component of the momentum in the extra dimensions of a mode is then ~n/R, so we
see each mode as a particle propagating in 3 + 1 dimensions with a mass

m2
~n = m2

0 +
|~n|2

R
, (1.46)

where m0 is the mass of the zero mode. Thus we see a tower of particles, referred to as
Kaluza Klein (KK) states.

However, if our SM particles are propagating in extra dimensions of this size, we
should have seen KK states by now, as we have already probed up to scales of order
R ≈ (1 TeV)−1 ≈ 10−17 cm. This issue can be averted by preventing SM particles from
propagating in the extra dimensions, which is often done by restricting them to a 3 + 1-
dimensional brane, which may imply a connection with string theory. In such models, only
gravity is allowed to propagate freely in the extra dimensions.

An alternate approach is to choose much smaller extra dimensions, R−1 ≈ 1 TeV,
in which the KK modes are heavy enough to avoid detection thus far,7 allowing us to

7From Eq. 1.46, it would appear that with R−1 much larger than most SM masses, the KK spectrum is
highly degenerate. Loop corrections modify the masses given by of Eq. 1.46, generating some small mass
splittings.
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freely choose which fields propagate in the additional dimensions. One notable way of
having such small extra dimensions while still providing an explanation to the hierarchy
problem is to introduce an exponential, not flat, metric on a single extra dimension [30].
In this scenario, the graviton wavefunction becomes warped, and the hierarchy problem
may be solved if the Higgs field lives on or near the “IR” brane, where the gravitational
scale is exponentially suppressed relative to the “UV” brane on the other end of the extra
dimension.

Another popular option for small extra dimensions is to choose a flat metric and allow
all SM fields to propagate freely throughout, a setup known as universal extra dimensions
(UED) [31]. Because the dimensions are TeV scale and flat, UED alone does not a provide
an explanation for the hierarchy problem, but it has many appealing phenomenological
features. In particular, because all of the fields propagate in the extra dimension, they will
have TeV scale KK modes. This is similar to the setup supersymmetry, where each SM
particle has a heavy superpartner, with one notable exception – in UED, the heavy partners
have the same spins as their SM counterparts. This similarity has given UED the nick-
name “bosonic supersymmetry,” and demonstrates the importance of spin determination as
a means of distinguishing models of new physics. We will discuss this situation in further
detail in Chapter 3.

Allowing fermions to propagate in an additional dimension introduces a new difficulty
in creating chiral fermions. In the case of one extra dimension, we have five-dimensional
fermions, which are necessarily vector-like. The Clifford algebra of five dimensions is
created by five anti-commuting matrices, Γα (α = 0, 1, 2, 3, 4), which can be written in
terms of the usual gamma matrices of four dimensions as Γµ = γµ (µ = 0, 1, 2, 3) and
Γ4 = iγ5. Because Γ4 ∝ Γ0Γ1Γ2Γ3, it is impossible to create an operator analogous to
γ5 in four dimensions – that is, a matrix with unit norm that commutes with all Γα. This
means that a bilinear term necessary for an axial current is not invariant under 5D Lorentz
transformations, and we cannot create chiral fermions. This is clearly a problem, because
the SM distinguishes left and right-handed fermions, so we must be able to generate chiral
zero modes.

One approach to this issue is to introduce a process called orbifolding. If we suppose
that our fifth dimension is compactified on a circle S1, with y ∈ [−πR, πR], then if we
identify points y and −y, we are left with a half circle, S1/Z2, with fixed points at y = 0
and y = πR. The 5D action of a fermion ψ,

Sψ =

∫
d4x

∫ πR

0

dy
i

2

(
ψ̄Γα∂αψ − (∂αψ̄)Γαψ

)
, (1.47)

must be stationary under an arbitrary variation of the field, both between and at the fixed



19

points, giving

δSvψ = −
∫
d4x

∫ πR

0

dy i(∂αψ̄)Γαδψ = 0,

δSsψ =

∫
d4x

∫ πR

0

dy
i

2
(ψ̄Γ4δψ|y=πR − ψ̄Γ4δψ|y=0) = 0. (1.48)

If we define our 5D fermion in terms of 4D chiral fermions,

ψ(xµ, y) =
1 + iΓ4

2
ψ(xµ, y) +

1− iΓ4

2
ψ(xµ, y) = ψL(xµ, y) + ψR(xµ, y), (1.49)

then the first stationary condition of Eq. 1.48 can be decomposed into

Γµ∂µψL = −Γ4∂4ψR,

Γµ∂µψR = −Γ4∂4ψL. (1.50)

The second condition of Eq. 1.48, which is a consequence of the existence of fixed points,
allows us to generate chiral zero modes with a judicious choice of boundary condition. In
particular, if we wish to generate a left-handed SM fermion, we may choose the boundary
conditions

∂4ψL(xµ, 0) = ∂4ψL(xµ, πR) = 0,

ψR(xµ, 0) = ψR(xµ, πR) = 0. (1.51)

This allows us to write the KK decomposition of our fermion field as

ψ(xµ, y) =
1√
πR

{
ψ

(0)
L (xµ) +

√
2
∑
n≥1

[
ψ

(n)
L (xµ) cos

(ny
R

)
+ ψ

(n)
R (xµ) sin

(ny
R

)]}
.

(1.52)
We see that the condition of Eq. 1.51 forces our right-handed modes to be ∼ sin(ny/R),
which eliminates the right-handed component from the SM. Thus we have chiral SM
fermions along with a tower of heavier KK states with both chiralities.

The process of orbifolding has consequences beyond allowing chiral 4D fermions. Be-
cause KK number is a measure of a particle’s momentum in the extra dimension, one might
expect conservation of momentum to lead to conservation of KK number. The translational
symmetry of the dimension is broken by the orbifolding process, and so therefore is the
conservation law. However, a Z2 symmetry remains under y → πR − y, which leads to a
new conserved quantity, called KK parity, which carries a value of (−1)n for the nth KK
mode. This has phenomenological implications quite similar to R-parity in supersymmetry
– the lightest new particles n = 1 have KK parity opposite their SM counterparts, and
so may only be produced in pairs at colliders. Furthermore, the lightest such KK partner
(LKP) cannot decay into SM particles, making it a good, stable dark matter candidate.
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As with the LSP, the LKP will appear at the end of any decay chain of a n = 1 partner,
resulting in large missing energy signatures.

We now turn to a discussion in Chapter 2 of how to extract information from these
events where multiple heavy particles go unseen, and we discuss how the phenomenologi-
cally similar theories of SUSY and UED could be distinguished in Chapter 3.
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Chapter 2

Mass Measurement in Boosted Decay
Systems at Hadron Colliders

One of the most important steps in understanding new physics accessible at a collider
is to determine the masses of new particles. In this chapter, we report a new possibility of
using the MCT2 (Constransverse mass) variable for mass measurement of single step decay
chains involving missing particles with moderate transverse momentum. We show that its
experimental feasibility is enhanced compared to the corresponding MT2-kink method and
apply this method to reconstruct the masses in a chargino decay into a sneutrino, which
was not possible previously.

2.1 Introduction
As discussed in Section 1.3, many theories of new physics beyond the Standard Model

(SM) are expected to provide a rich invisible energy signal from their Lightest New Parti-
cles (LNP), which are stable dark matter candidates, missing in the detector. In this situ-
ation only the so-called “MT2-kink” method can provide the information necessary to de-
termine the masses of both mother particle and missing LNP simultaneously for the events
with a pair of single step decay chains [32, 33].

The origin of theMT2-kink is the variety of “Extreme Kinematic Configurations (EKCs)”
in the events which can contribute to the maximum of the MT2 distribution. In general, for
a given trial LNP mass, χ, the different EKCs will take on different values, so in different
regions of χ, Mmax

T2 (χ) will follow different functional forms. At the true value, χ = mX ,
all of the EKCs should provide the same MT2 maximum value as the true mother particle
mass, mY , by the definition of MT2 [34]. Consequently, Mmax

T2 (χ) shows a slope disconti-
nuity at the kink point, Mmax

T2 (χ = mX) = mY .
Let us consider the system of a pair of single step decay chains at the LHC: p + p →

δT + Y1/Y2(→ αX1/βX2), where Y1,2 are the two mother particles with identical masses,
each decaying to visible α(β) and missing LNP (X1(2)). Here δT denotes the other remnants
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(and its transverse momentum) not from Yi decays, i.e., from the Initial State Radiation
(ISR) or decays before Yi, so that they provide the total transverse momentum of the Y1+2

system of −δT . In this event topology, there are two physical degrees of freedom that can
generate the variety of EKCs developing the kink. One is the invariant mass of visible
particles mα,β in N (≥ 3)-body decays, generating a so-called “Mass Kink” [32], and the
other one is non-zero transverse momentum (δT ) leading to a “Boosted Kink (BK)” [33] of
the Y1+2 system of our interest. When α(β) consists of a single visible particle and has a
fixed invariant mass, then only the BK provides enough constraints for simultaneous mass
measurement.

However, the BK is not easy to identify [33]. This is because it requires very large δT
to have a clear kink structure, and with the highest practical values of δT/mY ∼ O(1− 10)
at the LHC, the kink structure is not clear enough to be reliably measured. Additionally,
since the real profiles of the δT distribution must be sharply decreasing for large values
at the LHC, the endpoint structure of the MT2(χ) distribution becomes worse with a long
tail if we require large δT . This may introduce significant systematic errors in fitting the
endpoint.

2.2 The MCT2 Boosted Kink
In this section we present the maximal endpoint behavior of the MCT2(χ) distribution

[35] for single step decay chains with non-zero δT . Mmax
CT2 (χ) is sensitive to changes in δT ,

which can enhance the experimental feasibility of measuring the masses of both mother
and missing LNP simultaneously. In particular, for systems with near degenerate mass
spectra, mX/mY ≈ 1, the shift of MCT2 endpoint can be magnified significantly compared
to that of the MT2 endpoint. The amount of the shift can easily be beyond the region
of experimental uncertainties; one can have a good opportunity to measure both of the
masses by reconstructing the functional value of Mmax

CT2 (χ) for several values of δT . As an
example, we demonstrate a way to measure the χ̃±1 and ν̃ masses in a SUSY model using
the properties of MCT2.

MCT2 (Constransverse mass) [35] for the Y1+2 system is defined as follows:

MCT2(χ) = min
k1T+k2T=E/T

[
max {M (1)

CT ,M
(2)
CT}

]
(2.1)

M
(1)
CT (χ)2 = χ2 + 2(|αT |e1 + αT · k1T ),

where k1,2T and e1,2 are the transverse (Tr) momenta and Tr energy, respectively, of missing
X1,2, with total missing Tr momentum, E/T = −(αT + βT ) − δT . The αT (βT ) are the Tr
momenta of visible particles from Y1(Y2) decays, and −δT is the total Tr momentum of the
Y1+2 system. For the Y2 decays, M (2)

CT is defined with βT and k2T . Here χ denotes the trial
test mass of Xi, and visible particle masses are assumed to be zero, but the definition of the
MCT2 can be easily generalized for massive visible particle events. Basically, the MCT2

variable is a mixture of MT2 (Stransverse Mass) [34] and MCT (Contransverse Mass) [36].
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In [35] it was found that the endpoint structure of the MCT2 distribution can be amplified
depending on the value of trial mass, χ, andMCT2 was employed to measure some physical
constraints involving squark and gluino masses with fewer systematic errors in pinpointing
the endpoint than with the MT2 analysis.

When δT = 0, the MCT2(χ) has a one-to-one correspondence with MT2(χ), and its
maximum value is given as follows [35] :

Mmax2
CT2 (χ) = χ2 + 2(α0E

0
X − α2

0), (2.2)

where α0 =
m2
Y −m

2
X

2mY
and E0

X =
√
χ2 + α2

0. However, if δT 6= 0, the maximum profile
of the MCT2(χ) distribution shows a 2nd-order Boosted Kink, 2BK, structure which is
different from the BK of MT2. As investigated in [32, 33], the Mmax

T2 (χ, δT ) value of the
Y1+2 system is the same as the Mmax

T (χ, δT/2) of single Yi decay system, and the EKC
for the Mmax

T2 can be characterized by a pair of identical EKCs corresponding to the Mmax
T

of single Yi decays although they have to be combined to produce the event with general√
s ≥ 2mY . Then, in the language of single Yi decay, the BK of Mmax

T2 (χ) is provided by
two EKCs of the single Yi decay events, characterized as follows:

a) φmax = 0 for χ ≤ mX b) φmax = π for χ ≥ mX

where φmax is the azimuthal angle between visible Tr momentum and δT in the rest frame of
the Yi with vanishing ∆η(≡ ηvis − ηinv). Similarly, the EKCs for Mmax

CT2 (χ) with 2BK can
be also characterized by single Yi decays, but the azimuthal angle dependence is different:

1) cosφmax =
m2
Xm

2
Y

|δ̄T |EY (m2
Y −m

2
X)

[
χ2

m2
X

+ |δ̄T |2
m2
Y

]
for χ ≤ χ∗

2) cosφmax = −1 for χ ≥ χ∗,

where |δ̄T | = |δT |/2 and EY =
√
m2
Y + |δ̄T |2. Fig. (2.1a) shows MCT2(χ) − χ vs. χ for

(mY ,mX) = (130, 100) GeV with δT = 20 GeV. In the plot, the Mmax
CT2 (χ) is described

by the two curves in the two regions of χ divided by 2BK, χ∗ = 21.8 GeV. For χ ≤ χ∗,
Mmax

CT2 (χ) follows the blue curve; it switches to the red one for χ ≥ χ∗ with a continuous
slope at χ = χ∗, where the χ∗ is given by

χ2
∗ = |δ̄T |

(
2α− |δ̄T |

)
, (2.3)

with α = |α0|( |δ̄T |mY
+ EY

mY
). It is not hard to see that whenever χ∗ is real, a 2BK appears

and the EKC − 1) contributes to the Mmax
CT2 (χ < χ∗). Then the Mmax

CT2 for the full χ range
is given as follows:

Mmax2
CT2 = 2χ2 + |δ̄T |2 for χ ≤ χ∗ (2.4)

= χ2 + 2α(|δ̄T | − α) + 2α
√
χ2 + (|δ̄T | − α)2

for χ ≥ χ∗ (2.5)
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Figure 2.1: a) Mmax
CT2 (χ) for (mY ,mX) = (130, 100) GeV and δ∗T = 247.9 GeV with δT =

20 (χ∗ = 21.8 GeV). b) MCT2(χ) distribution for δT = 250 GeV (no 2BK).

On the other hand, if χ∗ is imaginary,Mmax
CT2 (χ) just follows the line given by Eq. (2.5). The

two maximal curves of Eq. (2.4,2.5) come into contact at χ∗ with the same inclination, but
the curvature of Mmax

CT2 (χ) is discontinuous at χ = χ∗. For given parameters (mY ,mX ,δT ),
χ∗ is real and observable if

1. mX
mY
≤ 1√

2
, then χ∗ ∈ R.

2. 1√
2
< mX

mY
< 1, then χ∗ ∈ R if δT ≤ δ∗T ,

where δ∗T ≡ 4|α0|/
√

1− 4|α0|
mY

.

Although the reality condition of χ∗ for the existence of a 2BK is not always met, it can
be made to appear by concentrating on events with relatively small values of |δT |. Since
δ∗T > 4|α0|, the 2BK appears with a conservative choice of δT < 4|α0|. The spectrum for
Fig. (2.1) belongs to the second category of reality condition with δ∗T = 247.9 GeV. For
the choice of events with small δT = 20 GeV, there is a 2BK present at χ∗ = 21.8 GeV.
In Fig. (2.1b), δT = 250 GeV > δ∗T , so no 2BK arises. Whenever a 2BK exists, there is
a boost-trapped distribution with χ < χ∗ for which the boundaries are independent of any
physical masses in the decay system, as shown in Eq. (2.4).

The shift of Mmax
CT2 (χ) for a change in δT can be sizable even for moderate values of

non-zero δT . This is the most significant property of Mmax
CT2 (χ) for mass measurement. The

rates of Mmax
CT2/T2(χ) shift with respect to a change in δT are given as follows:

∂Mmax
CT2R/T2R

∂|δ̄T |
for χ > χ∗ or χ > mX (2.6)

=
αEχ

Mmax
CT2R/T2REY

{
1± |δ̄T | − α

Eχ

}{
1± EY − α

Eχ

}
,
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for MCT2/T2, respectively, with Eχ ≡
√
χ2 + (|δ̄T | − α)2 and Mmax2

T2R = χ2 − 2α(|δ̄T | −
α)+2αEχ. Here the subscript letter R denotes the maximum curves for the χ values larger
than the corresponding kink position, χ∗/mX . The Mmax

T2R results from the EKC − b) [33]
and the only difference with Eq. (2.5) is the flipped sign of the second momentum product
terms. This sign-flipped maximum of MCT2 originates from the definition (2.1), and in
[35] it has been utilized to get a compact distribution in which the endpoint singularity
structures are highly amplified and accentuated for the case of δT = 0. The flipped sign
also provides an interesting result for the δT 6= 0 case: the δT -shift of the maximal point
can be magnified as indicated in Eq. (2.6). In particular, when the mass difference between
MY and MX is small enough so that |δ̄T | > α for a moderate value of |δ̄T |, the shift can be
large. Fig. (2.2a) shows how much the δT -shift of the Mmax

CT2 can be amplified compared to

MX
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Figure 2.2: a) Ratios of δT -shift between Mmax
CT2 and Mmax

T2 with respect to δT/MY for
various mass spectra, MX/MY . b) δT -shift of Mmax

CT2 −Mmax
CT2 (mX = 0) for mX = (10 −

190) GeV with the α0 = 62.4 GeV and the trial LNP mass, χ = χ∗ + 50 GeV.

that of Mmax
T2 . We define R as

R(
|δ̄T |
MY

,
MX

MY

) ≡ Mmax
CT2 (χ1, |δ̄T |+ ∆)−Mmax

CT2 (χ1, |δ̄T |)
Mmax

T2 (χ2, |δ̄T |+ ∆)−Mmax
T2 (χ2, |δ̄T |)

.

We take ∆ = MY /2, χ1 =(2χ∗ calculated for |δ̄T | = |δ̄T | + ∆ for MX/MY = 0.1 − 0.7,
MX+MY /2 forMX/MY = 0.8−0.9). χ2 is set toMX+MY /2 in Fig. (2.2a). This clearly
shows a δT -shift enhancement in Mmax

CT2 (χ, δT ). The optimal choices of χ1,2, for which
each of the shifts is maximized and well-measured, are ambiguous. We chose χ1 ∼ O(χ∗)
because it is always observed to provide sizable shift with sharp endpoint structures of
the MCT2 distributions. However, a practical choice of χ2 was quite difficult. Indeed, as
we take larger value of χ2, the denominator of R increases up to some value in principle,
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reducing R down to O(1) in some cases. However, as seen in Fig. (2.3d), there are usually
faint long tails near the expected endpoint for the MT2 distribution with large δT , making it
difficult to measure the endpoint and the shift even with large χ and sizable ∆.

It is also worthwhile to check some real scale values of the shift in Mmax
CT2/T2(χ).

For (MY ,MX , |δ̄T |,∆) = (150, 100, 100, 100)|(500, 100, 100, 100), ∆Mmax
CT2 (χ = χ∗) =

73.5|38.4 GeV, while ∆Mmax
T2 (χ = 200 GeV) = 12.7|11.6 GeV. Fig. (2.2b) also shows

the δT -shift of Mmax
CT2 −Mmax

CT2 (mX = 0) for various missing LNP masses, mX = (10 −
190) GeV while the α0 is fixed by 62.4 GeV and the trial LNP mass, χ = χ∗ + 50 GeV.
For δT = 0, no resolution power exists as expected; however, one can see that the δT -shift
of Mmax

CT2 can be large enough to measure the new particle masses with the resolution of
O(1 − 10) GeV for δT ∼ O(10 − 100) GeV. It is also enhanced for the large mX/mY

case. We fixed the α0 because it is the basic momentum scale we can observe in detector
regardless of the mass spectra. It can be also measured by Mmax

T2/CT2 for δT = 0.
These illustrations indicate that the MCT2 shifts might be experimentally feasible with

clear endpoint structures, because the shifts can be well beyond typical experimental un-
certainties. This is the power of using the MCT2 variable. By projecting events in the
MCT2(χ ∼ O(χ∗), δT 6= 0) basis, one can get a more sharper edged and δT -sensitive event
distribution. The flipped sign in the definition of the MCT2 variable makes the distribution
compact with respect to the internal momentum scale of the system, while being much
more sensitive for the external boost momentum δT , like a flubber ball. This means that
one can have a better chance to measure both of the masses in a boosted decay system at
hadron colliders, by observing the Mmax

CT2 (χ) for several (at least two) different δT values.

2.3 A SUSY Example
Having explained the properties of MCT2(χ, δT 6= 0) distribution, let us now check

and employ it for the mass measurement of a pair of χ̃±1 decay system in a SUSY model.
Here we focus on the decay channel, χ̃±1 → ν̃ + `±. The chargino decay is rather diffi-
cult to reconstruct in usual methods because of the missing neutrinos in the cascade de-
cay following the process. In mSUGRA prejudice, χ̃±1 decays dominantly into τ̃ , through
its left-right mixing and branching ratio into the decay mode is small. However, the χ̃±1
can be heavier than the ν̃ in non-minimal models. For example, a model where 3rd gen-
eration sfermions are heavy and left-handed sleptons are lighter than χ̃±1 was proposed
recently in [37] to solve the SUSY flavor problem. We take a benchmark point of the pa-
per where (mg̃,mq̃R ,mq̃L ,mχ̃±1

,mχ̃0
2
,ml̃L

,mν̃ ,mχ̃0
1
) = (724.9, 624.1, 645.6, 231.5, 231.4,

175.9, 157.2, 123.3) GeV. For this point, BR(χ̃±1 → ν̃ + `±|l̃±L + ν`) ∼ (0.63|0.34).
We simulated SUSY event production of 25fb−1 at the LHC energy of 14 TeV using the

PYTHIA Monte Carlo event generator [38] with ISR/final state radiation turned on. Fully
showered and hadronized events were passed to the PGS4 [39] detector simulator. The
energy resolution parameter in the hadronic calorimeter was given by ∆E/E = 0.6/

√
E,

and jets were reconstructed using a cone algorithm with ∆R = 0.5. We chose same sign
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(SS) dileptonic events with N(≥ 2)-jets + E/T . The SS dilepton condition can efficiently
remove various dileptonic backgrounds from SUSY neutralino decays and SM processes
such as tt̄, WW , W/Z + jets. The event selection cuts are as follows: SS dilepton with
PT (`1,2) > 20 GeV, PT (jet1,2) > (100, 80) GeV, E/T > 100 GeV. Using these cuts, the
signal to background ratio becomes high and the endpoint is expected to appear clearly
without pollution from the SM process and neutralino decays [40]. Since χ̃±1 has large
branching ratios in two different channels, there exist three types of dilepton signal from
a pair of χ̃±1 decay chains. The 1st type is the case where the both leptons come from
χ̃±1 → ν̃ + `± decays and the 2nd type is when both are from χ̃±1 → l̃±L + ν` with l̃±L →
`± + χ̃0

1, subsequently. The 3rd is the mixed case of 1st and 2nd type leptons. Thus, we
can expect that there are 3 types of different endpoints in the inclusive dileptonic MCT2

distribution. However, in this benchmark point it was found that the 1st type of dilepton
provides the largest endpoint forMCT2(χ, δT ) [41], and here we simply applied our method
to determine both the mχ̃±1

and mν̃ . Using the dileptons MCT2 was calculated by its
definition, Eq. (2.1), with extra jets considered as δT . Fig. (2.3a) shows the δT distribution
for the dilepton + E/T system in the benchmark point. The first peak in the distribution
is from direct weakly interacting gaugino pair production and most of the large δT values
are from decays of colored superparticles. The δT profile shows that the event statistics of
δT ∼ O(100) GeV are quite rich so that one might practically observe the endpoints and
their shifts in the MCT2 distribution using events with few hundred GeV of δT . We made
plots of the MCT2 distributions with various χ values using events with δT bounded by
some maximal value, δmaxT . Because the endpoint increases with respect to δT , it is given
by Mmax

CT2 (χ, δmaxT ) with inclusive event samples. Fig. (2.3c) illustrates such MCT2(χ, δT <
δmaxT ) distributions. Here two values of δmaxT = (200|400) GeV cuts are used, and each
corresponds to dashed and solid distributions, respectively. The 2BK position for each
δmaxT cases are calculated as χ∗ = (94.8|120.7) GeV, and we include several plots of χ =
(0(green|green), χ∗ + 10(magenta|yellow)) GeV for δmaxT = (200|400) GeV, respectively. As
seen in the plot, the MCT2 endpoints for various (χ, δmaxT ) values are found clearly near the
expected position (arrows) so that we could reconstruct the Mmax

CT2 (χ, δmaxT ) with tolerable
errors. The shift between the MCT2 distributions for different δmaxT cuts is visibly apparent.
For example, in the χ = χ∗+ 10 GeV case, Mmax

CT2 (χ, 200) and Mmax
CT2 (χ, 400) show clearly

measurable shifts larger than about 60 GeV. It is also true for the other values of χ ∼
χ∗. We also tested the MT2(χ, δmaxT ) distribution with same event sample and cuts. Fig.
(2.3d) presents the result ofMT2 case. It had larger ambiguities in pinpointing the expected
endpoints, (87.8|112.2) GeV, and measuring the shift so that it was hard to reconstruct
Mmax

T2 (χ, δmaxT ) precisely. Based on the plots of MCT2(χ, δmaxT ), we fitted the endpoints
with simple linear functions, and Mmax

CT2 (χ, δmaxT ) was reconstructed by segmented-fitting
with Eq. (2.4,2.5). Fig. (2.3b) shows the reconstructed lines (Green) and expected maximal
lines (Red, Blue) for two δmaxT = (200|400) cases. The two α values could be extracted
quite precisely by α(1,2) = (132.6± 3.4, 92.4± 2.5 GeV). Using this result, the masses of
χ̃±1 and ν̃ were resolved to be (mχ̃±1

,mν̃) = (231.2 ± 9.9, 159.3 ± 5.9 GeV). Systematic
errors were not considered in this analysis.
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Figure 2.3: Top: a) δT distribution for dilepton + E/T system b) Reconstructed
Mmax

CT2 (χ, δmaxT = 200|400 GeV) Bottom: c) MCT2 and d) MT2(χ = 600) distribu-
tions for δmaxT = (200dashed|400solid) GeV. The χ for MCT2(δmaxT = 200|400) are
0(green|green), χ∗ + 10(magenta|yellow) GeV, respectively.

2.4 Conclusion
We have demonstrated the effectiveness of the MCT2 variable for mass determination

in boosted single-step decay chains. The MCT2 projection makes the distribution compact
with respect to the internal momentum scale, and it is sensitive to the external momen-
tum. This can be utilized to measure the masses in boosted decay systems with a pair of
symmetric decay chains, which we have demonstrated for a particular SUSY model. The
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technique also works for a single mother particle decay system with non-zero transverse
momentum. We now turn from our discussion of mass measurement to a new technique for
spin determination in Chapter 3.



30

Chapter 3

Discriminating Spin Through Quantum
Interference

Many of the proposed solutions to the hierarchy and naturalness problems postulate
new “partner” fields to the Standard Model (SM) particles, as discussed in Section 1.3.
Determining the spins of these new particles will be critical in distinguishing among the
various possible SM extensions, yet proposed methods rely on the underlying models. We
propose a new model-independent method for spin measurements which takes advantage of
quantum interference among helicity states. We demonstrate that this method will be able
to discriminate scalar particles from higher spin states at the ILC, and discuss application
to higher spins and possible uses at the LHC.

3.1 Introduction
The Large Hadron Collider (LHC) is now up and running, granting us at long last access

to the scale of electroweak symmetry breaking and beyond. One of the major puzzles
we hope the LHC may provide answers to is the hierarchy problem [42][43][44][45]: the
origin and stability of the orders of magnitude gulf between the Higgs vev at ∼ 300 GeV
and the Planck scale at ∼ 1019 GeV. Without experimental results, theorists over the years
have collected an impressive array of possible solutions to this problem. Arguably, the
leading contender is supersymmetry [46], but there are many others: extra dimensions
[28][47][48][49][50][30][51], technicolor [52][43][44], and little Higgs [53] to name a few.
Many of these models also provide a long-lived, weakly coupled particle suitable to be a
dark matter candidate.

In many of these possibilities the immediate experimental signature from the LHC
would be the presence of beyond the Standard Model particles partnered with some or all of
the known particles. For example, the minimal supersymmetric standard model (MSSM)
doubles the number of particles by adding a new field with the same gauge quantum num-
bers and Yukawa couplings as in the SM, but spins differing by one half of a unit. Alter-



31

natively, the minimal universal extra dimensions (UED) model [31] has compactified extra
dimensions which solve the hierarchy problem by “ending physics” at the scale of elec-
troweak symmetry breaking. That is, the Planck scale of the true 4 + d dimensional theory
is not far above a TeV, but appears much larger in 4D once the compactification occurs.
This results in a tower of KK states, each containing a heavier version of the SM particles
with identical quantum numbers, including spin.

It is well known that, due to the similarities in the particle spectrum and quantum num-
bers, it may be difficult to distinguish the signatures of MSSM particles from the KK=1
modes of UED at future collider experiments [54][55]. The existence of the KK=2 modes
could serve as a discriminator between supersymmetry and extra dimensions, but their high
masses may make them kinematically inaccessible. Even if produced, they typically decay
through KK=1 states, and so their presence would only be felt through an increase in the
KK=1 production cross section [56][57]. Determining the spin of the new particles will be
necessary to confirm the theory underlying any new particles.

There have been several proposals for measuring spin in future collider experiments.
The possibilities at a linear collider are far more numerous, due to the control over the cen-
ter of mass energy in each event. Threshold scans can distinguish scalars from spinors or
vector bosons, as the former cross section rises like β3 while the latter two are proportional
to β [58]. However, such a method cannot be used at a hadron collider, and cannot discrim-
inate between spin 1/2 and spin 1. The differential cross section with respect to production
angle in s-channel pair produced scalars is proportional to sin2 θ, while for spinors it is
1 + E2−m2

E2+m2 cos2 θ. Model dependence may be present in the form of t-channel diagrams,
which introduce a forward peak which is similar for both spin statistics [58]. Such dia-
grams make the production angle measurement of spin more difficult, but may be possible
in some cases [59].

The polar angular dependence in decays can also be used for spin measurements. How-
ever, extracting spin from these measurements assumes knowledge of the final state spins
and also requires chiral couplings, introducing a model dependence on the spin measure-
ment [60]. While this method was originally proposed for the International Linear Collider
(ILC), it was shown that, with sufficiently long decay chains and exploitation of the asym-
metry in production of squarks versus antisquarks, supersymmetric spinors could be dis-
tinguished from phase space decays at the LHC [56][60][61][62][63][64]. Yet this method
relies heavily on the underlying models as the entire decay chain must be considered.

Clearly, determination of spin is a problem still requiring novel solutions. In this paper
we investigate a model-independent method to determine the spin of new particles at the
ILC, first proposed in [65]. Through interference between the different helicity states in a
coherent sum, the cross section of pair produced particles decaying to two-body final states
develops a non-trivial dependence on the azimuthal angle φ of the decay. By extracting this
dependence, one can determine which helicity states entered into the sum, and thus the spin
of the decaying particle. This method is similar to (and was inspired by) the determination
of the quark spin measurement at SPEAR [66]. At the end of this paper, we will discuss
how this general method may be extended to the LHC.
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This chapter is organized as follows. In Section 3.2 we derive the angular dependence of
the cross section as a function of particle spin. We then determine appropriate experimental
quantities and develop the necessary measurement techniques. In Section 3.3 we apply our
method to distinguish scalars in pair production at the ILC from production of higher spin
states. Spin 1/2 and 1 measurements are considered in Section 3.4, and we conclude in
Section 3.5. Additional calculations are supplied in the Appendices.

3.2 Azimuthal Angular Dependence
To determine the azimuthal dependence of the cross section for pair production fol-

lowed by decay, we start with a particle of helicity h moving in the ẑ direction. When this
decays into a two-body final state, the momenta of the daughter particles are confined to a
decay plane. If we consider the rotation of this plane about the ẑ axis by an angle φ, it is
clear that the action of the rotation on the matrix element of the decay must be equivalent
to the action of the rotation on the parent particle.

Rotations of the particle about the ẑ axis introduce a phase e−iJzφ, where Jz is the total
angular momentum in the ẑ direction. However, as the momentum is defined to be in the ẑ
direction, the orbital component is zero, and Jz reduces to h:

Jz =
(~s+ ~x× ~p) · ~p

|~p|
=
~s · ~p
|~p|

= h. (3.1)

Therefore, the dependence of the decay matrix elementMdecay on φ must be

Mdecay(h, φ) = eihφMdecay(h, φ = 0). (3.2)

Were we to produce particles in only one helicity state, then the total cross section (pro-
portional to the square ofMprod.Mdecay) would be independent of φ. However, if two or
more helicity states are produced and then decay, the total cross section is proportional to
the coherent sum squared:

σ ∝

∣∣∣∣∣∑
h

Mprod.(h)eihφMdecay(h, φ = 0)

∣∣∣∣∣
2

. (3.3)

This expression is true only within the validity of the narrow-width approximation. How-
ever, for “weakly-coupled” physics, such an approximation is justified [67].

As a result of this interference among the various helicity states, the cross section de-
velops a cos(nφ) dependence, where n is an integer running from zero to twice the largest
value of h for the decaying particle. That is to say, the φ dependences for a scalar, spinor,
and massive vector boson can be written as

σ(s = 0) = A0 (3.4)
σ(s = 1/2) = A0 + A1 cos(φ) (3.5)
σ(s = 1) = A0 + A1 cos(φ) + A2 cos(2φ), (3.6)
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where the Ai are not functions of φ (though they are non-trivial functions of the other
kinematics of the problem). The exact forms of the cross section must be worked out
from the standard rules of constructing matrix elements from Feynman diagrams, in which
case the φ dependence will become apparent. However, from this general argument the
relationship between spin and φ dependence is made clear.

To exploit this φ dependence, we consider pair production of particles from e+e− at the
future ILC. As motivated by solutions to the dark matter problem, we expect the production
of beyond the SM particles to cascade down to some weakly coupled particle which will
escape the detector. Such WIMPs are present in the supersymmetric spectrum as the light-
est supersymmetric particle (LSP), typically the lightest neutralino, or in universal extra
dimensions as the lightest Kaluza-Klein odd particle (LKP), typically the B1. Examples of
such event topologies in the UED and SUSY models are shown in Fig. 3.1. However, our
methods do not rely on such specific models.
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Figure 3.1: a) Pair production of KK = 1 muons in universal extra dimensions decaying to
opposite-sign muons and missing energy in the form of two B1 gauge bosons (the LKP).
b) Pair production of smuons in supersymmetry decaying to opposite-sign muons and the
lightest neutralinos as LSP missing energy.

Measuring the azimuthal dependence of the cross section requires that we are able to
reconstruct the momentum of the parent particle. For simplicity, we specialize to cases
where the pair produced particles each decay to a charged lepton and missing energy, in
which case the events of interest consist of `±`∓ /E. While we risk losing some model
independence at this stage, such signatures are fairly generic in many extensions to the
SM.

Let the pair produced particles whose spin we wish to measure (µ1 in Fig. 3.1a or µ̃ in
Fig. 3.1b) have 4-momenta pA and pB and mass M . These particles each decay to visible
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(effectively massless) leptons and a weakly coupled particle with mass m (the χ̃0
1 or B1

in Fig. 3.1). We label the visible lepton momenta p1 and p2, and assume that the particles
running in each leg are identical. The production angle θ and decay angles θi and φi (i = 1
for the decay of A and i = 2 for the decay of B) defined relative to the production plane
are shown in Fig. 3.2.

-

+ +

-

-

/B

Figure 3.2: The pair produced µ̃ or µ1 in the lab frame. The beam axis is defined as the z
axis, with the production angle θ in the x− z plane. The ẑ axis is defined to point along the
production axis. The decay angle φ1 is invariant to boosts along ẑ, and so may be defined
in either the lab frame or the frame of the decaying particle. The angle θ1 is defined in the
rest frame of µ̃−/µ−1 . Decay angles θ2 and φ2 (not shown) are defined equivalently for the
µ̃+/µ+

1 .

At the ILC, assuming knowledge of the masses M and m, it is possible to completely
reconstruct the 4-momenta pA and pB (and thus the angles φ1 and φ2) up to a two-fold am-
biguity [68][69]. We note that there are 4 unknown values for both of the missing particles
in the decay, for a total of 8 unknowns. There are 4 measured values of the total missing
4-momentum /p; and for each massive particle in the diagram there is a mass relation, for
a total of 4 constraints. Therefore, one would expect this event to be completely recon-
structible. When solving the mass relations, however, one finds an ambiguity in sign when
taking a square root, leading to the two-fold ambiguity in the reconstructed momentum.
For the details of the reconstruction, see Appendix A.1.

With less than perfect knowledge of the masses, muon momenta, and center of mass
energy (from beamstrahlung [70] and initial state radiation), the true solution will not
be reconstructed perfectly. At the ILC, masses of lepton and gaugino partners are ex-
pected to be measured to one part per mille [71][72], the tracking resolution as good as
∼ 5× 10−5(pT/GeV) [73], and beamstrahlung/initial state radiation (ISR) should be a few
percent [74]. As such, we expect that the errors introduced in φ from these effects will be
minimal.
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As we have two solutions for the momenta pA and pB, this leads to two solutions each
for φ1 and φ2. The extracted signal in the azimuthal distribution is therefore obtained in the
combination of the true and false solutions and compared to the expected values given in
Eqs. (3.4), (3.5), and (3.6). In particular, a particle of spin n/2 should have Ai = 0 for all
i > n.

3.3 Scalars vs. Spinors
To demonstrate the utility of this method of spin determination, we consider the pair

production of scalar right-handed smuons in supersymmetry which decay to muons and
LSP χ̃0

1s (e−e+ → µ̃−Rµ̃
+
R → µ−µ+χ̃0

1χ̃
0
1). We compare the azimuthal distributions of

φ1 and φ2 in this scenario to that in the pair production of µ1Rs decaying to muons and
LKP B1s in a UED model (e−e+ → µ−1Rµ

+
1R → µ−µ+B1B1). The Feynman diagrams

for these processes are shown in Fig. 3.1. Analytic formulae for the production and decay
cross sections for both models are presented in Appendix A.2. We stress that SUSY and
UED are chosen only as benchmark models with differing spins and similar final states; the
method used to determine spin can in principle work equally well for any other scenario.

Representative spectra are required for both supersymmetry and universal extra dimen-
sions. In addition, we wish to avoid any possible model-specific effects on the azimuthal
distributions arising from different choices of spectra for supersymmetry and extra dimen-
sions. Therefore, as the masses of the µ̃/µ1 and χ̃0

1/B1 are assumed to be known, we
perform our analysis twice for each model. In the first case we assign the masses of the µ
and B partners as per a SUSY spectrum, and then repeat the processes with the UED case.

As a representative supersymmetry point, we chose SPS 3 [75][76] in mSUGRA pa-
rameter space, which has m0 = 90 GeV, m1/2 = 400 GeV, A0 = 0, tan β = 10, and a
positive µ parameter. Universal extra dimensions are represented by the minimal version
(MUED) [77], which requires only four parameters: the number and radius R of the extra
dimensions, the scale Λ to set flavor-universal boundary terms equal to zero, and the Higgs
mass. We chose one extra dimension with R−1 = 300 GeV, Λ = 20R−1, and a Higgs mass
of 120 GeV. The resulting particle spectra at the TeV scale are shown in Table 3.1.

Backgrounds consist of the standard model production of W−W+ pair production with
leptonic decays to muons and neutrinos, ZZ production with decays to muons and neu-
trinos, and model-background of χ̃+

1 χ̃
−
1 /W

+
1 W

−
1 production decaying to muons and ν̃/ν1.

While kinematic cuts on the invariant mass of the muon pairs can greatly reduce the SM
background, more efficient cuts can be obtained by requiring successful reconstruction of
the µ̃R/µ1R momentum as outlined in Appendix A.1.

The reconstruction algorithm assumes that the masses of the produced and escaping
particles are known. By assuming that the signature of µ−µ+ /E arises from pair production
of µ̃R (or µ1R) decaying to LSP or LKP, all other events with the same signature but dif-
ferent particle masses develop inconsistencies in their reconstruction. That is, the visible
momenta are not compatible with the pair production of particles with masses other than
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SPS 3 MUED
χ̃0

1/B1 161 GeV 302 GeV
˜̀
R/`1R 181 GeV 304 GeV

˜̀
L/`1L 289 GeV 309 GeV

χ̃±1 /W
±
1 306 GeV 327 GeV

ν̃`/ν1` 276 GeV 309 GeV

Table 3.1: Relevant particle spectra for the mSUGRA parameter point SPS 3 and the
minimal universal extra dimension parameters R−1 = 300 GeV, Λ = 20R−1 and
mH = 120 GeV. The MUED spectrum was derived using the MUED package [78] for
CalcHEP [79]. Here ` refers to the light charged leptons: electrons or muons.

that for the µ̃R/µ1R decaying into particles with masses other than that of the LSP/LKP. In
practice, the parameter y defined in Eq. (A.11) becomes imaginary.

With perfect knowledge of masses and muon momentum, requiring reconstruction to
succeed cuts nearly all of the background events. Once detector smearing and mass mea-
surement errors are included, it is inevitable that some background will survive the recon-
struction cut. Again, with the small errors in mass measurements to be available at the ILC,
we do not expect large backgrounds to pollute the data set.

The total center of mass energy at the ILC is expected to reach up to 1 TeV, and an inte-
grated luminosity of 500 fb−1 is not unrealistic. For the mass spectra chosen, the resulting
cross sections times branching ratios are shown in Fig. 3.3 for

√
s running from threshold

up to 1 TeV. As a result, we expect several thousand to several hundreds of thousands of
events available.

To simulate the effects of necessary cuts due to the geometry of the detector, we place
cuts on the pseudo-rapidity η. We require η to be less than 2.5 for both visible muons, as
otherwise the leptons would vanish unseen down the beam. Also, if the missing momentum
also points down the beam pipe, we cannot be sure that the missing energy is truly in the
form of WIMPs and not merely unobserved SM particles, so we cut on η for missing ~pT as
well.

Using HELAS [80] the production and decay matrix elements were calculated at tree
level for each helicity state. Using the narrow width approximation, the cross sections as
a function of θ, φ1, θ1, φ2, and θ2 were obtained. BASES [81], an adaptive Monte Carlo
program was used to integrate over the other kinematic angles to determine the differential
cross sections with respect to φ1 and φ2. As both decaying particles have the same spin
statistics, the differential distributions are the same for both of the φ, and so, to increase
statistics, the distributions for φ1 and φ2 were added.

Representative distributions for scalars and spinors (including rapidity cuts) are shown
in Fig. 3.4. As can be clearly seen in Fig. 3.4a, both the true and false UED distributions
have clear cosφ dependence, as expected from spinor decay (Eq. (3.5)). The true distri-
butions for the scalar SUSY decay in Fig. 3.4b is flat, as expected from Eq. (3.4). It is
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Figure 3.3: Cross sections times branching ratios as a function of the beam energy for the
UED process e−e+ → µ−1Rµ

+
1R → µ−µ+B1B1 and the SUSY process e−e+ → µ̃−Rµ̃

+
R →

µ−µ+χ̃0
1χ̃

0
1. Figure a) uses the SPS 3 spectrum, while b) uses the MUED spectrum (see

Table 3.1).

therefore apparent even at this level of analysis that the φ dependence of the distribution
contains the spin information necessary for our method.

Considering the combined true and false distribution in Fig. 3.4, a systematic issue for
our method becomes readily apparent. An unexpected cos 2φ dependence develops due to
the false distribution and rapidity cuts, a situation we regard as an indication of practical
limitations to our method, not a fundamental flaw. Whereas the cos 2φ dependence may
be unimportant for the discrimination of scalar versus higher spin states, it will become
important in distinguishing spinors from vectors (Section 3.4). Though harder to see by
eye, the UED distribution also develops a cos 2φ dependence in the false solution. As such,
we fit not to A0 + A1 cosφ but rather to A0 + A1 cosφ+ A2 cos 2φ.

The overall scaling of the Ai parameters in Eqs. (3.4), (3.5), and (3.6) depends on the
total number of events, which is a function of the total cross section. To remove this model-
dependent effect, the parameter of interest in spin determination is not A1, but A1/A0,
which is independent of the scaling due to total cross section.

Using the least-squares method the generated distributions were fit to A0 + A1 cosφ+
A2 cos 2φ. The errors for each parameter Ai were obtained after marginalizing over the
other two parameters. The ratio A1/A0 for the scalar µ̃R and spinor µ1R are shown in
Fig. 3.5. As can be seen, for both the SPS3 and MUED spectra the values of A1/A0 for µ̃R
are consistent with zero for all energies and for both the true and false distributions. For the
spinor µ1R, the ratio is manifestly non-zero, allowing us to distinguish scalars from higher
spin states.

Several aspects of Fig. 3.5 require closer examination. The large error bars for the
supersymmetric particles in both spectra are due to the relatively poor statistics compared to
the pair production of the spinor KK modes in universal extra dimensions. This is especially
apparent near threshold. For the spinor particles we also note that, near threshold, the signal
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Figure 3.4: Histograms of number of events per azimuthal angle φ for both the true solution
to the reconstruction algorithm and the combined true and false distribution. The center of
mass energy is

√
s = 370 GeV and the luminosity if 500 fb−1. Figure a) shows the UED

distribution for e−e+ → µ−1Rµ
+
1R → µ−µ+B1B1 while b) is the SUSY distribution for

e−e+ → µ̃−Rµ̃
+
R → µ−µ+χ̃0

1χ̃
0
1.

is on the order of 10%, and decreases toward zero at progressively higher energies. This
decrease can be readily explained as follows. Far from threshold, the mass of the pair
produced particles becomes less relevant, and so their spins become more correlated due to
chirality conservation. To determine the distribution of φ1 (φ2), we integrate over all other
angles in the problem, including φ2 (φ1). Due to the correlation of spins in this energy
regime, this integration results in decoherence of the sum of matrix elements. That is, rather
than considering |

∑
hM(h)|2, at high energies the cross section becomes proportional to∑

h |M(h)|2, which has no azimuthal angle dependence due to the lack of interference
between terms.

Finally, in considering the distribution of true solutions versus that of the combined
solutions, we note that for the spinor case the signal is less once the false solutions are
added in. At low energies the difference between the two is comparatively small, but grows
as we move away from threshold. This agrees well with the naive intuition that the false
distribution should be flat in φ1 and φ2; however, we stress that at higher frequencies such
intuition fails us and the flat distribution may develop non-trivial cos 2φ dependences.

To demonstrate this effect we plot in Fig. 3.6 the ratio A2/A0 for the decay of spinor
µ1R (using SPS3 parameters). As can be seen in the top plot, the true solution without
cuts has a coefficient of zero for the cos 2φ term, as predicted by Eq. (3.5) for spinor decay.
However, once cuts and the false solutions are added a non-zero value is generated. Clearly,
this can cause confusion between a spin-1/2 particle and a vector or higher spin state.

To attempt to correct for this effect we generate events in which the particles decay
according to phase space. This flat distribution is reconstructed using the method outlined
in Appendix A.1 and rapidity cuts are applied just as in the SUSY and UED cases. As
a result, the flat distributions also develop a cos 2φ dependence. The resulting values for
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Figure 3.5: Top: Ratio A1/A0 for mSUGRA parameter point SPS3 as a function of energy
for both scalar (SUSY) and spinor (UED) pair production with 500 fb−1 luminosity. Error
bars correspond to 95% exclusion region. Blue lines correspond to true solution only with
no rapidity cuts, black dashed lines are true solutions with rapidity cuts, red lines are true
and false solutions without cuts, and green are true and false solutions with cuts. Bottom:
Ratio A1/A0 for MUED parameters as in Table 3.1 for both scalar (SUSY) and spinor
(UED) production. Color labeling identical to the above.
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A2/A0 using only true solutions (with and without cuts) and then both solutions (with and
without cuts) are subtracted from the appropriate spinor ratios to isolate the spin-dependent
effect. The resulting corrected A2/A0 values are displayed in the lower plot in Fig. 3.6. As
can be seen, the flat distribution corrects the cos 2φ contribution due to cuts but does not
remove the false distribution’s effect, leaving a ∼ 0.5% spurious signal at high energies.
For reasons we do not yet fully understand, at low energies the false distribution’s effects
are minimal, allowing for the possibility of accurate spin measurements. However, it is
exactly in this regime that statistics are poor due to the proximity of the threshold.

3.4 Spinor vs. Vector
Due to the large A1/A0 signal for non-scalars (on the order of 10%) and minimal effect

of rapidity cuts and false distributions on this ratio, the ILC should have little difficulty
discerning that a particle is spin-0. However, for higher spins the cuts and false solutions
introduce potentially dangerous higher frequency contributions, as has been demonstrated.

As a result, the question still remains whether this method may be practically applied
to discriminate spinors from vectors in general cases. We therefore consider a case of pair
production of massive vector bosons in UED contrasted with spinor production in SUSY.
In particular, we consider e−Le

+
L → W−

1 W
+
1 → `−`′+ν̄1`ν1`′ in universal extra dimensions

and e−Le
+
L → χ̃−1 χ̃

+
1 → `−`′+ν̃∗`′ ν̃`′ in supersymmetry where the leptons ` and `′ can be

either muon or electron type (see Fig. 3.7). Even though the ν1/ν̃ are not the LSP/LKP,
they decay to neutrinos and the LSP, neither of which is visible in the detector.

For these final states, the total cross sections times branching ratios as a function of
energy are shown in Fig. 3.8. Once again, the supersymmetric cross section is considerably
less than that in extra dimensions. Furthermore, the small mass splittings in the MUED
spectrum lead to small cross sections compared to the SPS 3 case. Backgrounds include
SM W± and ZZ production, and model backgrounds from χ̃0

2χ̃
0
2/W

3
1W

3
1 , and ˜̀− ˜̀+/`−1 `

+
1

pair production decaying to charged leptons and missing energy. However, we once again
find that demanding successful reconstruction effectively cuts the background to negligi-
ble levels. In addition, we apply the η ≤ 2.5 cuts on the charged leptons and missing
momentum.

We perform fits to A0 + A1 cosφ + A2 cos 2φ as in Section 3.3 and consider the ratio
A2/A0, using 1 ab−1 of integrated luminosity (due to the smaller cross sections). The
results for the SPS3 spectrum are displayed in Fig. 3.9, and those of the MUED spectrum
are shown in Fig. 3.10. Note that the true solutions for the vector bosons consist of an
approximately 1% signal in the SPS3 spectrum and ∼ 0.5% in MUED. In both spectra the
true solution for spinors is consistent with zero. As with the production of µ1R, however, the
presence of the false distribution introduces significant spurious values of A2/A0, dwarfing
the true signal by a factor of ∼ 5.

In the SPS3 spectrum, even with 1 ab−1 the error bars on the true solution for the vector
bosons barely exclude zero at 95% confidence. For the MUED case, the situation is much
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Figure 3.6: Top: Ratio A2/A0 for mSUGRA parameter point SPS3 as a function of energy
for spinor (UED) pair production with 500 fb−1 luminosity. Error bars correspond to 95%
exclusion region. Blue lines correspond to true solution only with no rapidity cuts, black
dashed lines are true solutions with rapidity cuts, red lines to true and false solutions with-
out cuts, and green are true and false solutions with cuts. Bottom: Ratio A2/A0 for SPS3
parameters for spinor (UED) production after correcting for effects of false distribution and
cuts on a flat distribution. Color labeling identical to the above.
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worse, as a smaller signal is combined with cross sections suppressed by nearly an order of
magnitude compared to those in the SPS3 case. Thus, statistics may be a limiting factor in
measuring non-zero spins.

We attempt to correct for the effects of cuts and false solutions by generating events
which decay according to phase space. As the production angle may be measured up to the
two-fold reconstruction ambiguity, we generate the particles with the correct θ distributions
and flat θi, φi distributions and run the resulting events through the reconstruction and
detector simulator. The resulting values for A2/A0 are subtracted from those in Figs. 3.9
and 3.10 in an attempt to isolate the spin effects arising from quantum interference from
the non-zero A2/A0 coming from cuts and the false solutions. The adjusted results are
shown in Fig. 3.11 for the SPS3 spectrum. Due to the small signal and poor statistics in the
MUED spectrum, even the uncorrected signal in the true solution cannot be distinguished
from zero, so we do not adjust for cuts or the false solutions.

Examining Fig. 3.11, we find that the flat distribution captures the effects of cuts on
the ratio A2/A0 but does not correctly account for the false distributions. We do find that
the false distributions do not contribute significantly to the ratio near threshold, as in the
measurements of A1/A0. Once again, this behavior is not well understood and statistics in
this regime are limited. It is conceivable that better results would be obtained by coupling
a flat decay in φi with the measured distribution of θi to attempt to account for the false
distribution. This matching has not been performed as yet.

Thus, while the quantum interference measurement for spin-0 stands on solid ground,
the situation for higher spins is less certain. Even neglecting the issue of false solutions,
the vector boson ratio A2/A0 is on the order of 1%, and so requires significant statistics
in order to distinguish from spinor decays. Furthermore, the false distribution introduces
a spurious A2/A0 value which has not been fully understood by the authors and can dwarf
the signal. Finally, the case of of the MUED spectrum demonstrates that, while the method
of spin measurement is model independent, it is vulnerable to model-dependent effects
such as total cross section, which control the statistical error of the fit. However, note that
we could do much better statistically by adding hadronic final states for one of the χ̃±1 /W1

while requiring leptonic final states for the other. We again would have two-fold ambiguity,
but the rest of the measurement remains the same as long as we can measure the hadronic
energies well enough. This may be possible by using the energy-flow method that matches
tracking and calorimeter information.

3.5 Conclusion
We have demonstrated that the quantum interference of multiple helicity states can

provide a model-independent method of spin measurements at the ILC. Specifically, with
reasonable luminosities, scalar particles can be easily distinguished from spin-1/2 or higher
possibilities in pair production followed by decays to visible leptons and missing energy.
Determining whether a particle is spin-1/2 or spin-1 suffers from two major problems. The
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first is simply statistics: as the signal is on the order of 1%, the requisite luminosity will be
a stretch for the ILC, at least in the SUSY and UED models considered.

The second issue concerns the false solution to the reconstruction of the pair produced
particles’ 4-momentum, and hence the derived values of the azimuthal angles φ1 and φ2.
With 8 missing momentum components from the two weakly interacting particles escaping
the detector, 4 measured total missing momenta, and 4 mass constraints, the system can be
solved only up to a two-fold ambiguity. While the cosφ distribution is flat in the false so-
lution, non-trivial dependences on cos 2φ develop. From explicit calculations, these depen-
dences appear to be different for flat, spinor, and vector boson distributions, and so cannot
be subtracted from the combined solutions without losing the desired model-independence.

It therefore behooves us to consider methods for full reconstruction of the event. If the
decay proceeds by emitting several visible particles in a cascade of particles with known
mass down to the LSP/LKP, then we may overconstrain the decay, allowing for full recon-
struction. In particular, if the pair produced particles decay to the LSP through an interme-
diate state, then there would be 6 mass constraints on the system. With only 8 unknown
quantities and 4 measured values, the false solution is no longer present. Unfortunately, all
such decays considered by the authors so far have too low a cross section to provide useful
spin measurements.

However, such lengthy decay chains raise the possibility of applying this method to the
LHC. At a hadron collider the center of mass energy and frame of reference are unknown
for a particular parton-parton level event. Thus, only 2 measured quantities may be obtained
in the event: the components of the missing transverse momentum /pT . With a multi-
step decay we obtain 6 mass constraints, and combining these with the measured /pT , we
can solve the system of 8 missing momentum components up to the two-fold ambiguity.
Additionally, the reconstruction algorithm can be used in a modified form [69] to measure
the masses in the decay chain as a necessary preliminary step to determining the azimuthal
angles. As the cross section for producing TeV-scale particles with color charge at the LHC
is very large (e.g.∼ 1 pb for g̃ or q̃ pair production [82]), it seems likely that we may obtain
enough statistics in such a case to at least measure the spin of scalar particles if not those
of spin 1 or 1/2. This may possibly allow discrimination between the gluino and the KK
gluon.

Note that the method proposed can be used and tested already in the Tevatron Z+jet
and LEP-II W pair samples. We turn to this possibility in Chapter 4.
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Figure 3.7: a) s-channel and b) t-channel pair production of KK = 1 W bosons in universal
extra dimensions decaying to opposite-sign leptons and missing energy in the form of two
ν1s. c) s-channel and d) t-channel pair production of charginos χ̃±1 in supersymmetry
decaying to opposite-sign leptons and sneutrino missing energy
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Figure 3.8: Cross sections times branching ratios as a function of beam energy for the
UED process e−Le

+
L → W−

1 W
+
1 → `−`′+ν̄1`ν1`′ and the SUSY process e−Le

+
L → χ̃−1 χ̃

+
1 →

`−`′+ν̃∗`′ ν̃`′ . Figure a) uses the SPS 3 spectrum, while b) uses the MUED spectrum (see
Table 3.1).
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Figure 3.9: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor produc-
tion e−Le

+
L → χ̃−1 χ̃

+
1 → `−`′+ν̃∗`′ ν̃`′ for the SPS3 spectrum. Bottom: Ratio A2/A0 for

the UED vector boson production e−Le
+
L → W−

1 W
+
1 → `−`′+ν̄1`ν1`′ for the same spec-

trum. Color coding as in Fig. 3.5. Error bars correspond to 95% exclusion region assuming
1 ab−1 luminosity.
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Figure 3.10: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor pro-
duction e−Le

+
L → χ̃−1 χ̃

+
1 → `−`′+ν̃∗`′ ν̃`′ for the MUED spectrum (see Table 3.1). Bottom:

Ratio A2/A0 for the UED vector boson production e−Le
+
L → W−

1 W
+
1 → `−`′+ν̄1`ν1`′ for

the same spectrum. Color coding as in Fig. 3.5. Error bars correspond to 95% exclusion
region assuming 1 ab−1 luminosity.
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Figure 3.11: Top: Ratio A2/A0 versus beam energy for the supersymmetric spinor produc-
tion e−Le

+
L → χ̃−1 χ̃

+
1 → `−`′+ ˜̄ν`′ ν̃`′ for the SPS3 spectrum adjusted to account to detector

and cut effects. Bottom: Ratio-adjusted values ofA2/A0 for the UED vector boson produc-
tion e−Le

+
L → W−

1 W
+
1 → `−`′+ν̄1`ν1`′ for the same spectrum. Color coding as in Fig. 3.5.

Error bars correspond to 95% exclusion region assuming 1 ab−1 luminosity.
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Chapter 4

Quantum Interference Effects Among
Helicities at LEP-II and Tevatron

A completely model-independent method of obtaining information on the spin using
the quantum interference effect among various helicity states was proposed in Chapter 3.
In this chapter, we point out that this effect should be demonstrable in the existing data on
e−e+ → W+W− at LEP-II and pp̄→ Z0 + j at the Tevatron.

4.1 Introduction
There are many reasons to expect that new particle degrees of freedom will be dis-

covered at the TeV energy scale (Terascale), beginning with the recent start of the Large
Hadron Collider (LHC). The fact that the Terascale must have interesting physics has been
known since Fermi’s 1933 theory of nuclear beta decay which introduced a dimensionful
constant GF ≈ (0.3 TeV)−1. In its more modern incarnation, this constant represents the
size of the Bose–Einstein condensate that makes the universe a gigantic superconductor.
The analog of the Meissner effect then makes the range of the weak force as short as a
billionth of a nanometer.

At the least we expect the gap excitation of the superconductor, the Higgs boson, to be
discovered at the LHC. In addition, the quantum instability of this energy scale suggests
new particles below a TeV in order to protect it from diverging to infinity. Many theoret-
ical frameworks have been proposed in the literature: new strongly coupled gauge theory
(technicolor [43, 44]), fermionic dimensions of spacetime (supersymmetry [46]), bosonic
dimensions of spacetime (extra dimensions [47, 30]), new hidden extra symmetries (little
Higgs [53]), Higgsless theories [83, 84] etc. Many of these also provide candidates for the
mysterious dark matter of the universe. With great anticipation the community awaits the
imminent discovery of such exotic new particles in the upcoming LHC experiments.

Once new particles are discovered, determining what theoretical framework they belong
to is of foremost importance. For this purpose truly basic measurements will be required:
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the mass, parity, and spin of the new particles. Among these, the spin measurement is both
the key and the most challenging. Numerous studies exist that try to formulate strategies
for spin measurements at the LHC [61, 58, 63, 56, 62, 60, 59, 64]. Unfortunately, it is very
difficult to avoid model-dependent assumptions in the proposed measurement strategies.

In Chapter 3, we proposed a completely model-independent way of obtaining informa-
tion about spin at collider experiments.1 The key element is quantum interference among
various helicity states of the new particle, which, to our surprise, has not been discussed
in the modern literature (see, however, [85]). We discussed how this method may work to
discriminate the smuon in supersymmetry or the Kaluza–Klein muon in extra dimensions
at the proposed International Linear Collider (ILC).

In this chapter, we point out that the effectiveness of our proposed method should be
demonstrable in the existing data. In particular, e−e+ → W+W− at LEP-II and pp̄ →
Z0 + j at the Tevatron should allow highly significant studies of the quantum interference
among helicities, and demonstrate the spin-one nature of the W and Z bosons without any
model assumptions. As discussed in Chapter 3, this method works particularly well close
to the production threshold. This is good news for the LHC, as new physics there will likely
be dominated by the energy range just above threshold.

The proposed strategy is extremely simple. In order to obtain model-independent in-
formation about spin, or angular momentum in general, we resort to the general principles
of quantum mechanics. The angular momentum operators generate spatial rotations; the
unitary operator U(~φ) = ei

~J ·~φ/~ rotates space around the axis ~φ by the angle |~φ|. If we
choose the rotation axis to be the momentum vector of a free particle, it isolates the spin
component because the orbital angular momentum is always orthogonal to the momentum
vector ~L · ~p = (~x × ~p) · ~p = 0. Therefore, the angular momentum along the momentum
vector is nothing but its helicity, h = (~s · ~p)/|~p|. The rotation around the momentum axis
by an angle φ therefore gives the phase eihφ to the quantum mechanical amplitudes.

Obviously a single phase factor does not lead to a physical observable since the prob-
ability does not depend on phases. However, an interference effect may pick up the differ-
ences in phases among interfering amplitudes. Fortunately, particles produced in collisions
are often in a linear superposition of various helicity states, which interfere when they de-
cay into a common final state. This interference of different helicity states produces a cross
section dependent on the coherent sum of individual matrix elements squared:

σ ∝

∣∣∣∣∣∑
h

Mprod.(h)Mdecay(h, φ)

∣∣∣∣∣
2

(4.1)

Mdecay(h, φ) = eihφMdecay(h, φ = 0).

Here Mprod.(h) and Mdecay(h, φ = 0) are the production and decay matrix elements,
which depend in detail on the helicity state h. However, all φ dependence has been factored
out into the exponential. It is clear from this sum that the azimuthal angular dependance of

1This possibility was originally suggested in [65].
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the event distributions N = σ × L (where L is the luminosity) is

dN

dφ
=
dσ

dφ
× L = A0 + A1 cosφ+ · · ·+ An cos(nφ), (4.2)

where n = ∆h is the difference between the highest and lowest helicity states contributing
to the sum in Eq. (4.1). In this way, we obtain an unambiguous lower limit on the spin
of the particle, s ≥ (∆h)/2. As we will see, this limit is saturated, s = ∆h/2, in the
examples below, and the presence of the highest mode is clearly visible in collider data
given sufficient statistics.

4.2 Spin Measurement at LEP-II and Tevatron
In the cases of e−e+ → W+W− with leptons plus jets final states and pp̄ → Z0 + j

with decays to electrons, spin-1 particles are produced in a superposition of helicity states.2

In both cases, the event is fully reconstructable using the visible momentum in the event,
and hence the angle φ can be fully determined from data.

The angle φ is defined in the lab frame of the event as the angle between the production
plane described by theW+W− or Z0 +j and the decay plane containing the leptonic decay
products from the vector bosons. If we define the positive z axis in the lab frame of LEP-II
(Tevatron) as the direction of the e− (proton) beam, then the cosine of φ at LEP-II can be
calculated as follows:

n̂prod. ≡
ẑ × ~pW±
|ẑ × ~pW±|

, n̂decay ≡
~pW± × ~p`±
|~pW± × ~p`± |

cosφ = n̂prod. · n̂decay, (4.3)

where ~p`± is the charged lepton from the decay of the W± boson. The definition of φ at the
Tevatron is the same as in Eq. (4.3) with the substitution of Z0 for W±. An arbitrary (but
consistent) choice must be made to define which side of the production plane will contain
positive φ. For LEP-II, we chose this positive direction to be in the direction of ẑ crossed
with the momentum of the leptonically decaying W±. Similarly, we chose the direction
of the proton beam crossed with that of the Z0 at the Tevatron (see Fig. 4.1). Based on
our argument above, we expect to see cross sections for these events as in Eq. (4.2) with
n = 2.3

The LEP-II luminosities from the years 1997-2000 [86] are reported in Table 4.1. The
OPAL collaboration has observed 1574 events identified as qq̄eν and an additional 1573

2It is for this reason we cannot consider pp̄ → Z without jets. In such events, the Z is produced in only
one spin state, depending on the spin of the initial-state quarks. While the cross section would contain a sum
over Z helicity, the sum would be incoherent.

3It should be noted that if the collider beams are identical, this choice of positive φ suffers from an
ambiguity which maps φ → φ + π. This may, for example, introduce difficulties in measuring An (n odd)
parameters at the LHC.
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Production Plane

Decay Plane of Leptons

Beam Axis

Vector Boson 
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e  / p-
e  / p+

W /Z0-

W /jet+

Figure 4.1: The event kinematics of e−e+ → W+W− → qq̄`±ν at LEP-II and pp̄ →
Z0 + j → e−e+ + j at the Tevatron. The plane of pair produced vector bosons and the
plane formed by the leptonic decay of one boson are shown. The angle φ is the relative
azimuthal angle between these two planes, defined in the lab frame of the event, as defined
in Eq. (4.3). Positive φ are in the direction of the e− (p) beam momentum crossed with the
W− (Z0) momentum for LEP-II (Tevatron).

qq̄µν events [87]. Due to the low purity of the qq̄τν sample, we ignore those events. Similar
data sets are available from the ALEPH [86], DELPHI [88], and L3 [89] collaborations.

The CDF collaboration has data for Z0 +j consisting of 6203 events [90] after selection
cuts from 1.7 fb−1 of luminosity at 1.96 TeV beam energy. DØ has a similar data set
available [91]. A total luminosity of 8 fb−1 is expected to be available from the Tevatron at
the conclusion of data collection.

Parton level matrix elements forW+W− and Z0+j (where the jet consists of a gluon or
first generation (anti) quark at the parton level) production were calculated in HELAS [80],
while the numerical integration program BASES [81] was used to determine the differential
cross section and integrate over all other kinematic variables. For the simulation of the
Tevatron results, a K factor of 1.4 was used to correct for higher order QCD effects, in
accordance with [90], and CTEQ5L PDFs were implemented using LHAPDF [92]. The
Tevatron results and fits were confirmed using ALPGEN [93].

The generated histograms are assigned Gaussian statistical error bars based on the re-
alistic experimental luminosities. However, no statistical fluctuations are assigned to the
central values. As a consequence, the fit results correspond to an average experiment [94].

Before the application of cuts, the differential cross sections for the two processes of
interest show a clear cosφ and cos 2φ dependence, as expected for the decays of spin-1
bosons. These distributions are shown in Fig. 4.2. We then fit the parametersA0, A1, A2, A3,
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√
s (GeV) L (pb−1)
182.25 56.8±0.3
188.63 174.2±0.8
191.58 28.9±0.1
195.52 79.9±0.4
199.52 86.3±0.4
201.62 41.9±0.2
204.86 81.4±0.4
206.53 133.2±0.6

Table 4.1: LEP-II integrated luminosity L as a function of beam energy
√
s [86].
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Figure 4.2: Differential distribution of events dσ/dφ×L for a) e−e+ → W+W− → qq̄`±ν
using the LEP-II run data in Table 4.1 and b) pp̄ → Z0 + j → e−e+ + j with luminosity
L = 1.7 fb−1. No cuts are applied on the LEP-II simulation; Tevatron results have pT >
30 GeV and |η| < 2.1 on the jet.

and A4 in Eq. (4.2) to the event distributions.4 For each of the five parameters An, 1σ er-
ror bars are calculated after marginalizing over the other four. Results for the LEP-II and
Tevatron simulations are shown in Table 4.2; in order to compare simulations with different
numbers of events, values of An/A0 are reported rather than An. It it clear at this stage that
the results are consistent with the decay of spin-1 bosons.

4.3 The Effects of Cuts
However, cuts must be applied to the events recorded at LEP-II and Tevatron, both

due to detector geometry and in order to reduce background. These cuts will affect the
azimuthal distribution present in dσ/dφ × L, and so can obscure the signal necessary for

4These fits are to the numerically integrated differential cross-section, not generated events.
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LEP-II Tevatron
A1/A0 −0.267±0.023 0.036±0.009
A2/A0 −0.085±0.025 0.100±0.009
A3/A0 0.000±0.025 0.000±0.009
A4/A0 0.000±0.026 0.000±0.010

Table 4.2: Fits to the parametersAn in Eq. (4.2) for the differential distributions of e−e+ →
W+W− → qq̄`±ν (LEP-II) using the integrated luminosity in Table 4.1, and pp̄ → Z0 +
j → e−e+ + j (Tevatron) using L = 1.7 fb−1. Errors for each parameter are obtained by
marginalizing over the other four parameters in the fit. No cuts are applied on the LEP-II
simulation; Tevatron results have pT > 30 GeV and |η| < 2.1 on the jet.

Jet transverse momentum pT,j > 30 GeV
Jet η |η| < 2.1

Invariant mass of lepton pair 66 < m`` < 116 GeV
Central electron η |η| < 1
Second electron η |η| < 1 or 1.2 < |η| < 2.8

Electron ET ET > 25 GeV
Electron isolation cuts ∆Rej > 0.7

Table 4.3: Event selection cuts imposed by the CDF collaboration on pp̄ → Z0 + j →
e−e+ + j events. In each event, one electron must be central, and pass stricter cuts than the
second electron. The isolation cut parameter is defined as

√
(∆φ)2 + (∆η)2 ≡ ∆R [90].

spin measurements. The Tevatron cuts (Table 4.3) were taken from the CDF experiment
[90], while the OPAL [95] cuts (Table 4.4) were used to simulate the LEP-II data.

Our simulation did not include parton showers or hadronization, so we could not im-
plement the lepton isolation cut used by OPAL, which placed a limit on the total energy de-
posited in a cone centered on the lepton. Instead, we used a cut on ∆R ≡

√
(∆φ)2 + (∆η)2

between the jet and the leptons. Three values for ∆R were used: 0.2, 0.5, and 0.75, which
gave total efficiencies for the cuts of 79%, 76%, and 72%, respectively. The cuts used by
the OPAL collaboration had an efficiency of 85% for final states with an electron and 89%
for muons. The distributions of the Tevatron and LEP-II (with ∆R = 0.75) simulations
after cuts are shown in Fig. 4.4.

Fitting the distributions to Eq. (4.2), we find the results in Table 4.5. These results
clearly show that the imposed cuts introduce spurious high-frequency modes. The corre-
sponding non-zero A3 and A4 components may naively be confused for evidence of spin-2
particles. However, the cuts are responsible for introducing new φ dependence by selecting
out new directions relative to the production axis of the gauge bosons.

We illustrate this effect for the case of cuts in the forward direction (large |η| and | cos θ|)
in Fig. 4.3. Here we see two decays which are kinematically identical in the boson rest
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Lepton momentum p` > 25 GeV
Polar angle θ of final state particles | cos θ| < 0.95

Neutrino energy fraction Rν > 0.07
Visible energy fraction Rvis > 0.3

Neutrino transverse momentum pT,ν > 16 GeV
Lepton isolation ∆R > 0.75, 0.5, 0.2

Table 4.4: Event selection cuts imposed by the OPAL collaboration on e−e+ → W+W− →
qq̄`±ν events. Energy fraction is defined as Rα ≡ Eα/

√
s, where α is either the neu-

trino ν or the total visible energy. The lepton isolation cut was implemented using√
(∆φ)2 + (∆η)2 ≡ ∆R with a range of ∆R values rather than limiting the total energy

deposited in a cone surrounding the lepton as in [95].

frame save for azimuthal rotations. In Fig. 4.3a, the event survives the cuts, as neither
lepton lies sufficiently close to the z axis. However, in Fig. 4.3b, rotating the decay plane
about the axis of the boson momentum yields an event which is eliminated by the cuts. This
is the source of unwanted φ dependences in the differential distributions with cuts. Similar
problems arise due to isolation cuts, which depend on the proximity of the leptons to the
other particles in the final state, as well as cuts on leptonic transverse momentum.

Since this φ dependence did not arise from the quantum interference of helicity ampli-
tudes, we cannot expect the φ dependence of the cross section to accurately reflect the spin
of the decaying particles. Thus non-zero A3 and A4 components do not indicate a higher
spin state, but rather a breakdown of the proposed spin-measurement technique.

4.4 A Solution: Rotationally Invariant Cuts
The solution to this problem is relatively straightforward. For new azimuthal depen-

dences to be avoided, the cuts cannot pick out “special” directions relative to the original
momentum of the decaying boson. Therefore, we impose “rotationally invariant cuts” in
which we require that each event not only passes the experimental cuts but continues to do
so when the decay plane is rotated around the boson production axis. This avoids the in-
troduction of a new directional dependence since we restrict ourselves to only those events
which could never overlap the forbidden regions of the detector regardless of orientation.
However, these cuts are very inefficient: the cuts on LEP-II data preserve only 12% of the
original events, while the cuts for the Tevatron leave less than 1%.

The CDF cuts are very inefficient due to the small allowed |η| region for the central
electron (see Table 4.3). Recent preliminary CDF measurements have demonstrated that
the cuts can be relaxed while still maintaining a background level of less than 5% [96].
These loosened cuts are identical to those in Table 4.3 for pT and η of the jet and the
invariant mass of m``. However, the central lepton is allowed ET > 20 GeV and |η| < 2.6,
while the second electron must have ET > 10 GeV and |η| < 2.6. If both leptons have
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LEP-II
∆R = 0.75 ∆R = 0.5 ∆R = 0.2

A1/A0 −0.082±0.025 −0.082±0.026 −0.082±0.025
A2/A0 −0.293±0.026 −0.302±0.027 −0.308±0.026
A3/A0 0.110±0.027 0.114±0.028 0.117±0.028
A4/A0 −0.099±0.028 −0.099±0.029 −0.096±0.029

Tevatron
A1/A0 0.029±0.012
A2/A0 −0.277±0.012
A3/A0 −0.021±0.013
A4/A0 −0.123±0.014

Table 4.5: Fits of the differential distribution of e−e+ → W+W− → qq̄`±ν (LEP-II) with
the cuts in Table 4.4 and pp̄→ Z0 + j → `−`+ + j (Tevatron) with the cuts in Table 4.3 to
parameters An in Eq. (4.2). Luminosities are as in Table 4.2. 1σ errors for each parameter
are obtained by marginalizing over the other four parameters in the fit.

2.6 > |η| > 1.0, ET must be greater than 25 GeV. Finally, ∆Rej must be greater than 0.4.
With these relaxed numbers, the total number of events in the simulated sample is 5821 and
the efficiency of the rotationally invariant cuts is 18%.

The result of these rotationally invariant cuts on the LEP-II and Tevatron data are shown
in Fig. 4.5 (compare to Fig. 4.2). Table 4.6 confirms that this technique restores the φ
dependence expected by the interference argument.

In the case of the Tevatron results with loosened cuts, the data are clearly consistent
with the Z being a spin-1 vector boson. The A1 parameter is non-zero at 1.8σ, the A2

parameter is non-zero at nearly 4σ, and the higher modes are consistent with zero. It is
important to recall that a lower bound on the spin is obtained from the highest non-zero
mode, therefore the 4σ signal in A2 is far more important then the 1.8σ deviation from zero
in A1.

From these results there is always the possibility that the parent Z is a higher spin parti-
cle and that some conspiracy amongst the matrix elements in Eq. (4.1) prevents the A3 and
A4 terms from appearing in the sum. In this interpretation, we can still state unambiguously
that the Z is at least spin-1, and that the data suggest it is not of higher spin.

Higher statistics would allow a reduction of error bars and increase our confidence in
the result correspondingly. Using, for example, the estimated total integrated luminosity
of 8 fb−1 for the Tevatron, the parameters have the values shown in Table 4.7. Another
possibility is to use the muon decays of the Z0. However, the rotationally invariant cuts
will likely take a high toll on such events, as the muon tracking system at CDF extends
only up to |η| = 1.5 [97].

The situation with the LEP-II simulation is more complicated. While theA1 parameters
are non-zero at over 3σ, the A2 parameters differ from zero by only one standard deviation.
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LEP-II
∆R = 0.75 ∆R = 0.5 ∆R = 0.2

A1/A0 −0.215±0.069 −0.214±0.060 −0.207±0.053
A2/A0 −0.068±0.071 −0.071±0.062 −0.072±0.055
A3/A0 0.000±0.073 0.000±0.064 0.000±0.057
A4/A0 0.000±0.075 0.000±0.065 0.000±0.058

Tevatron
A1/A0 0.039±0.022
A2/A0 0.083±0.021
A3/A0 0.000±0.022
A4/A0 0.000±0.023

Table 4.6: Fits of the differential distribution of e−e+ → W+W− → qq̄`±ν (LEP-II) and
pp̄ → Z0 + j → `−`+ + j (Tevatron) to the parameters An in Eq. (4.2), requiring events
that pass the cuts in Tables 4.4 and 4.3 (with relaxed ET , |η|, and ∆R cuts as described
in the text) after rotation about the momentum axis of the decaying vector boson. The
luminosities are the same as in Tables 4.2 and 4.5. 1σ errors for each parameter are obtained
by marginalizing over the other four parameters in the fit.

A larger data set would of course solve this problem. As all four LEP-II experiments
(ALEPH, DELPHI, L3, and OPAL) have approximately equal statistics available, a two-
fold increase in the statistical significance could be achieved by combining the events from
these collaborations; the resulting ratios An/A0 are shown in Table 4.7.

Another possibility is that some reduction in required cuts would increase the efficiency
of the rotationally invariant cuts without greatly degrading the sample purity. A likely
candidate for this in our analysis is the ∆R cut, which was introduced as a stop-gap measure
to approximate the jet-lepton proximity cut used in the OPAL analysis. However, even with
the value of ∆R = 0.2, the efficiency of the cut is lower than the 85% reported by OPAL.
Setting ∆R = 0 is clearly an unrealistic cut, but as demonstrated in Table 4.7 indicates the
possibilities offered by higher statistics.

4.5 Conclusion
In conclusion, we have demonstrated that the quantum interference among the matrix

elements of different helicity states provides a model-independent probe of particle spin.
Using realistic data sets, rotationally invariant cuts can be implemented which correct for
the spurious high-frequency noise introduced by the cuts imposed by detector geometry
and background reduction. Though these techniques come at a price in terms of efficiency,
it seems possible to relax the cuts in such a way that the weak gauge boson spins can be
measured at sufficient significance at current colliders.
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Measurements of the spin of new particles is expected to be a critical discriminator
of new physics at the LHC. As a result, techniques such as the one proposed here are very
important. Though the spins of theW andZ bosons are not in doubt, we find it encouraging
that this new method can be tested on the available data. Such work would be of great use
as we embark upon the LHC era.

LEP-II Tevatron
Combined ∆R = 0 L = 8 fb−1

A1/A0 −0.207±0.027 −0.211±0.050 0.039±0.010
A2/A0 −0.072±0.028 −0.081±0.052 0.083±0.010
A3/A0 0.000±0.028 0.000±0.053 0.000±0.010
A4/A0 0.000±0.029 0.000±0.054 0.000±0.010

Table 4.7: Fits of the differential distribution to the parameters An in Eq. (4.2) for e−e+ →
W+W− → qq̄`±ν with the jet-lepton cut parameter ∆R = 0.2 and combining the data sets
of ALEPH, DELPHI, L3, and OPAL (LEP-II, Combined), e−e+ → W+W− → qq̄`±ν with
the OPAL data set and ∆R set to zero (LEP-II, ∆R = 0), and pp̄ → Z0 + j → `−`+ + j
with 8 fb−1 integrated luminosity (Tevatron). We require that all events pass the cuts in
Tables 4.4 (with ∆R as indicated) and 4.3 (with relaxed ET and |η| cuts as described in the
text) after rotation about the momentum axis of the decaying vector boson. 1σ errors for
each parameter are obtained by marginalizing over the other four parameters in the fit.
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Figure 4.3: A depiction of the detector volume demonstrating the rotational dependence
induced by the cuts. The shaded forward regions (large values of |η| and | cos θ|) are in-
accessible due to detector geometry and background cuts. Two sample events are depicted
in a) and b). These events are kinematically identical in the boson rest frame save for a
rotation in φ. Event a) survives the cuts, while event b) fails.
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Figure 4.4: Differential distributions for a) e−e+ → W+W− → qq̄`±ν with the cuts in
Table 4.4 and ∆R = 0.75 and b) pp̄ → Z0 + j → e−e+ + j with the cuts from Table 4.3.
Luminosities are as in Fig. 4.2.
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Z0 + j → e−e+ + j requiring rotationally invariant cuts. Luminosities are as in Fig. 4.2.
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Chapter 5

Color Sextet Scalars at the CERN Large
Hadron Collider

We now turn from model-independent techniques for measuring the properties of new
particles to dedicated searches. In this chapter, taking a phenomenological approach, we
study a color sextet scalar at the LHC. We focus on the QCD production of a color sextet
pair Φ6Φ̄6 through gg fusion and qq̄ annihilation. Its unique coupling to ψ̄cψ allows the
color sextet scalar to decay into same-sign diquark states, such as Φ6 → tt/tt∗. We propose
a new reconstruction in the multijet plus same-sign dilepton with missing transverse energy
samples (bb+ `±`± +��ET +Nj, N ≥ 6) to search for on-shell ttt̄t̄ final states from sextet
scalar pair production. Thanks to the large QCD production, the search covers the sextet
mass range up to 1 TeV for 100 fb−1 integrated luminosity.

5.1 Introduction
The Large Hadron Collider (LHC) at CERN now provides a great opportunity for ex-

ploring physics at the TeV scale. As a proton-proton collider with a target center-of-mass
energy of 14 TeV, the LHC is truly a Quantum Chromodynamics (QCD) machine. We
therefore wish to study color exotics, since any accessible new physics in the strong inter-
action sector will appear in the early stages of LHC operation. Many models of physics
beyond the standard model (SM) naturally require the presence of color exotics, such as
gluinos and squarks in supersymmetric extensions of Standard Model (SM), KK-gluons
andKK-quarks in extra dimensional models, or the top-prime in Little Higgs or twin Higgs
models. All of these are either quark or gluon partners which belong to the fundamental
and adjoint representations of the QCD gauge group SU(3)C , respectively. It is natural
to consider colored particles in other representations; in this paper, we focus on a scalar
which is in the sextet(6) representation of SU(3)C . Color sextet particles have been widely
discussed in nuclear physics as diquark condensate states; in the SSC era, sextet quarks
were discussed in [98].
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Color sextet scalars are naturally present in partial unification [99], grand unifica-
tion [100] and composite models; in some cases they may be present around the weak
scale. For instance, in a supersymmetric Pati-Salam SU(2)R × SU(2)L × SU(4)C model,
light color sextet scalars can be realized around the weak scale, even though the scale of
SU(2)R × SU(4)C symmetry breaking is around 1010 GeV due to existence of acciden-
tal symmetries with the masses of color sextet Higgs arising only through high-dimension
operators [101, 102]. In this case, the introduction of a color sextet Higgs will not lead
to proton decay but only to neutron-anti-neutron (n − n̄) oscillation and is fully compat-
ible with present limits [101, 102]. In a similar framework, light color sextet scalars also
help in Post-Sphaleron baryogenesis [103]. In this paper, however, we will take a purely
phenomenological approach toward the sextet scalar without assuming any model a priori.

Among all the color exotics, the color sextet scalar is unique in its coupling to quarks.
In group theory language, the color sextet lies in 3 ⊗ 3 = 6 ⊕ 3̄ as a symmetric 2nd rank
tensor under SU(3)C . The Lorentz structure for this scalar coupling to quarks is given
by ψTC−1ψφ, where ψ is a Dirac spinor and φ is the scalar. Under the SM gauge group
SU(3)C × SU(2)L×U(1)Y , the sextet scalar can be ∆6, a SU(2)L adjoint (6, 3, 1/3); Φ6,
a SU(2)L singlet (6, 1, 4/3); φ6, a SU(2)L singlet (6, 1,−2/3); or δ6, a SU(2)L singlet
(6, 1,+1/3). The color sextet scalars are also charged under the global baryon symmetry
U(1)B and the electromagnetic symmetry U(1)EM. To avoid breaking U(1)EM, these scalar
fields should not develop a non-zero vacuum expectation value. This condition removes
any possibility of n − n̄ oscillation in the minimal model involving color sextet scalars.
We may write down the flavor independent Lagrangian of such a minimal model by only
considering SM gauge invariants and keeping U(1)EM unbroken,

L = Tr[(Dµ∆6)†(Dµ∆6)]−M2
∆Tr[∆†6∆6] + f∆Q

T
LC
−1τ2∆†6QL

+ (DµΦ6)†(DµΦ6)−M2
ΦΦ†6Φ6 + fΦu

T
RC
−1uRΦ†6

+ (Dµφ6)†(Dµφ6)−M2
φφ6

†φ6 + fφd
T
RC
−1dRφ

†
6

+ (Dµδ6)†(Dµδ6)−M2
δ6
δ6
†δ6 + fδd

T
RC
−1uRδ

†
6

− λ∆(Tr[∆†6∆6])2 − λΦ(Φ†6Φ6)2 − λφ(φ6
†φ6)2 − λδ(δ6

†δ6)2

− λ′∆Tr[∆†6∆6∆†6∆6]− Tr[∆†6∆6](λ1Φ6
†Φ6 + λ2φ6

†φ6 + λ3δ6
†δ6)

− λ4Φ6
†Φ6φ6

†φ6 − λ5Φ6
†Φ6δ6

†δ6 − λ6φ6
†φ6δ6

†δ6 , (5.1)

where the QCD covariant derivative is defined as Dµ = ∂µ − igsG
a
µT

a
r , and the T ar are

the representation matrices for the sextet; M2
i , λi and fi are all positive-definite model

parameters.
If we consider the SU(2)L adjoint sextet scalar ∆6 , there will be three physical sextet

scalar states that couple to up-type quark pairs, down-type quark pairs, and up-down-type
quark pairs. When the sextet scalar decays into light quark states, the existing search strate-
gies for massive octet scalars or vectors [104] may be employed. ∆6, Φ6, and δ6 may all
contribute to the single top plus jet signal and tt̄ + Nj signal from pair production. Here
we consider the scenario in which a color sextet scalar decays into a top quark pair so that
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one can use the leptons from the top quark decay to determine the features of the sextet.
The signature that contains multi-top final states has been discussed in the context of many
new physics models as resonance decaying into top quarks or top composite [102, 105].
To illustrate this and simplify our search, our study will focus on the color sextet SU(2)
singlet scalar Φ6 that only couples to right-handed up-type quarks.

5.2 Decay of the Color Sextet Scalar
The decay of the Φ6 depends on its mass, MΦ6 , and its couplings to quarks, fij (i, j =

u, c, t). To illustrate our reconstruction algorithm in the discussion of discovery, we con-
sider the case where MΦ6 > 350 GeV and the Φ6 decays into two onshell top quarks;
other mass ranges are discussed in the conclusion section. Above threshold, the general
expression for the decay partial widths of the sextet scalar are

Γii =
3

16π
|fii|2MΦ6λ

1/2(1, r2
i , r

2
i )(1− 4r2

i ),

Γij =
3

8π
|fij|2MΦ6λ

1/2(1, r2
i , r

2
j )(1− r2

i − r2
j ), (5.2)

where λ(x, y, z) = (x− y − z)2 − 4yz and ri = mi/MΦ6 .
By far, the most stringent bounds on these parameters come from D0 − D̄0 mixing,

to which Φ6 would make a tree-level contribution proportional to f11f22/M
2
Φ6

. The off-
diagonal coupling fij will contribute to flavor violation processes, for instance D → ππ
which is proportional to f12f11/M

2
Φ6

. The current bounds require that

f11f22 . 10−6; f11f12 . 10−2, (5.3)

for MΦ6 of a few hundred GeV to TeV mass range [102, 106, 107]. One will also expect
less stringent constraints from one loop processes such as c → uγ. To escape from the
bound, for accessible values of MΦ6 we expect at least one of the couplings, f11 or f22, to
be negligible. However, from our purely phenomenological perspective, we take the decay
branching fraction BR(Φ6 → tt) to be a completely free parameter whose value may be
determined at the LHC.

Because the sextet is a colored object, we need to consider the possibility of it hadroniz-
ing before decaying. For example, it may form a tetraquark-like bound state with 3̄3̄, such
as Φ6ūū, Φ6ūd̄, or Φ6d̄d̄, with charges 0, 1, or 2, respectively. If the total width is less than
ΛQCD ≈ mπ, then the colored object will hadronize before it decays. To determine the
constraint imposed by the possibility of hadronization, in Fig. 5.1 we plot the contour for
which decay width of Φ6 is equal to ΛQCD as a function of the couplings and the mass.
Setting fuu = 0.001, fut = 0.001, and eliminating any coupling to c, we see the possibility
that a large portion of our parameter space will be protected from the risk of hadronization.
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Figure 5.1: Decay width contour for Φ6 in the mass and coupling plane.

5.3 Production of Φ6

Because it carries color, Φ6 can be produced directly through the QCD strong interac-
tion at the LHC. The pair of Φ̄6Φ6 is produced from gluon-gluon fusion or qq̄ annihilation:

g(p1) + g(p2)→ Φ̄6(k1) + Φ6(k2)

q(p1) + q̄(p2)→ Φ̄6(k1) + Φ6(k2). (5.4)

The total production cross section depends only on the mass of Φ6, since the vertex is just
the strong coupling, gs, as shown in Eq. (5.6). By comparison, the electroweak production
of Φ̄6Φ6 is small enough to be neglected in our search.

From the scalar QCD gauge interaction

(DµΦ6)†(DµΦ6), where Dµ = ∂µ − igsGa
µT

a, (5.5)

one may obtain the Feynman rules

Ga
µΦ6Φ̄6 : igs(p1 − p2)µT

a

Ga
µG

b
νΦ6Φ̄6 : −ig2

sgµν(T
aT b + T bT a). (5.6)

The momenta are assigned according to VµS(p1)S̄(p2) and all momenta are outgoing. In
group theory langauge, this is 6⊗ 6̄ = 27⊕ 8⊕ 1.

The parton level cross sections for color sextet pair production are given by

σ(qq̄ → Φ̄6Φ6) = πC(3)C(R)
d8

d2
3

α2
s

3s
β3 =

10π

27s
α2
sβ

3 (5.7)
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dR 3 6 8
C(R) 1/2 5/2 3
C2(R) 4/3 10/3 3

Table 5.1: Normalization factor C(R) and quadratic Casimir C2(R) for dR = 3, 6, 8 under
SU(3).

and

σ(gg → Φ̄6Φ6) = dRC2(R)π
α2
s

6s

1

d2
8

[3β(3− 5β2)− 12C2(R)β(β2 − 2)

+ ln|β + 1

β − 1
|(6C2(R)(β4 − 1)− 9(β2 − 1)2]

=
5π

96s
α2
s[β(89− 55β2) + ln|β + 1

β − 1
|(11β4 + 18β2 − 29)] , (5.8)

where
√
s is the total energy, β =

√
1− 4M2

Φ6
/s and R is 6 with the normalization factor

C and Casimir C2 satisfying

Tr[T aRT
b
R] = C(R)δab and T aRT

a
R = C2(R)1. (5.9)

We list the values for different representations under SU(3) as in Table 5.1.
The QCD production cross sections for the color sextet scalar pair Φ̄6Φ6 at both LHC

and Tevatron are plotted in Fig. 5.2 with factorization scale µF = MΦ6 , renormalization
scale µR = mZ and the CTEQ6L [108] parton distribution function (PDF). The matrix
elements in our calculations here and elsewhere are generated by SUSY-Madgraph [109]
with modified color factors. For comparison, we also show the pair production cross sec-
tions for SU(3)C triplet and octet scalars at the LHC. As we can see, the total production
cross section of the sextet scalar is similar to that of the octet scalar, but is about one order
maginitude larger than that of the triplet scalar, which can be understood from values of C
and C2 for different reprensentations in Table 5.1.

As discussed in the introduction, the color sextet scalar Φ6 only couples to the right-
handed up-type quark quark pair. Thus we may also have single production of a Φ6 through

uu(cc)→ Φ6. (5.10)

However, the production cross section is proportional to the coupling |fuu|2 and |fcc|2, and
may therefore be suppressed due to the D0 − D̄0 mixing constraint. Some studies of the
single Φ6 production at the Tevatron and the LHC have been done in Ref. [102].

5.4 Searching for the Color Sextet Scalar through ttt̄t̄
As discussed in the previous sections, the most distinct feature of the color sextet scalar

is its decay mode Φ6 → tt, which leads to a same-sign dilepton signature in the final state
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Figure 5.2: Production of Φ̄6Φ6 at the LHC and Tevatron with µF = MΦ6 , fixed scale
αS(µR) with µR = mZ . The PDF set CTEQ6L has been used in all calculations.

if both top quarks decay semileptonically, i.e., t→ W+b→ `+νb. To avoid ambiguities in
lepton assignments during reconstruction, we require the anti-top quark pair from the Φ̄6 to
decay hadronically. Hence, the final state of Φ̄6Φ6 is

pp→ Φ̄6Φ6 → ttt̄t̄→ 4b+ `±`± +��ET +Nj, (5.11)

where ` = e and µ and N ≥ 4 to allow initial and final state QCD radiation. In our study,
however, the QCD radiation is not included. To get this final state, the decay branching
ratio will be

BR = BR2(Φ6 → tt)×
(

2

9

)2

×
(

2

3

)2

× 2, (5.12)

where the situation that the top quark decays hadronically and the anti-top quark decays
semileptonically is also included. Figure 5.2 also clearly shows that a color sextet with
MΦ6 ≥ 350 GeV will not be bounded by Tevatron data, as the same-sign dilepton plus
multi-jet final state from ttt̄t will be less than one event for 2 fb−1 luminosity.

To illustrate the kinematic features of the color sextet scalar pair, we consider the decay
process Φ6Φ̄6 → ttt̄t̄ → bbb̄b̄`+`

′+ + 4jets and take MΦ6 = 600 GeV. The leading and
second-leading jet pT distributions are shown in Fig. 5.3. The typical hardness of these jets
is the basis for one of our selection cuts introduced later in this section. In order to simulate
the detector effects on the energy-momentum measurements, we smear the electromagnetic
energy and the muon momentum by a Gaussian distribution whose width is parameterized
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as [110]

∆E

E
=

acal√
E/GeV

⊕ bcal, acal = 5%, bcal = 0.55%, (5.13)

∆pT
pT

=
atrackpT

TeV
⊕ btrack√

sin θ
, atrack = 15%, btrack = 0.5%. (5.14)

The jet energies are also smeared using the same Gaussian formula as in Eq. (5.13), but
with [110]

acal = 100%, bcal = 5%. (5.15)

We first reconstruct the two on-shell hadronically decaying W s. Our procedure is to
consider all dijet invariant masses except for those containing one of the two tagged b-jets,
since we require b-tagging in the event selection discussed later, and choose the two closest
Mjj combinations, which we then require to lie within the mass window

|Mjj −mW | < 15 GeV. (5.16)

From this, we get the two reconstructedW momenta. We then consider all combinations of
reconstructed pW with all jets and again choose the two closest invariant masses MjW . In
this way, we reconstruct the two hadronically decaying anti-top quarks. The distributions
of these reconstructed invariant masses are shown in Fig. 5.4.

Once we have the reconstructed two anti-top quarks, the reconstruction of the sextet
(Φ̄) can be done using the 6-jet invariant mass M6j for the two hadronic anti-top quarks.
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Figure 5.4: Reconstructed hadronic top pair. The black (red) line represents the first (sec-
ond) reconstructed hadronically decaying anti-top quark.

Although the production of neutrinos prevents us from fully reconstructing the sextet which
produces the leptonic decays, we may reconstruct the transverse massMT for the remaining
two jets plus same-sign dilepton and��ET as

MT =

√
(
∑
j

ET +
∑
`

ET +��ET )2 − (
∑

~p(j) +
∑

~p(`) + ��~p)
2
T . (5.17)

As seen in Fig. 5.5, our reconstruction shows a clear resonance in both the M6j and MT

distributions.
Finally, since the two anti-top quarks may be fully reconstructed, we can boost back to

the rest frame of the Φ̄6 and study its spin. As shown in Fig. 5.6, the angular distribution of
the anti-quark clearly shows that the Φ̄6 is a scalar. Since there are two missing neutrinos
from the decay of two top quarks, it is challenging to fully reconstruct the top quark’s
momentum and study the spin information of top quarks, which can be used to check this
model, since Φ6 only decays into a right-handed top quark pair. We leave this for future
work.

We next consider the backgrounds for our signal. We require at least 2 tagged b-jets
plus a same-sign dilepton and multijet. The irreducible SM background for this final state
consists of tt̄W±+Nj, bb+W±W±+Nj and tt̄tt̄. We estimate the QCD bb+W±W±+Nj
background by computing jjW±W± production. This is only 14 fb, and one expects the
bb + W±W± + Nj is about three orders of magnitude lower and therefore < 0.1 fb. The
SM 4-top tt̄tt̄ is less than 0.1 fb to start with. The leading background thus comes from
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Figure 5.5: Reconstructed Sextet from m6j and MT .
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Figure 5.6: Distribution of cos θ between reconstructed top momentum and reconstructed
sextet momentum. Dashed (solid) line shows the distribution without (with) smearing ef-
fects and kinematic cuts.

tt̄W± with one hadronic top decay and one semileptonic top decay with the same sign as
W± leptonic decay.
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We propose the following selection cuts:

• min{pT (j)} > 15 GeV, max{pT (j)} > 100 GeV, next-to-max{pT (j)} > 75 GeV,
|η(j) < 3.0|

• same-sign dilepton with pT (`) > 15 GeV, |η(`) < 2.8|

• ∆Rjj, ∆Rjl, ∆Rll > 0.4

• at least two b-tagged jets

• ��ET > 25 GeV.

Since the production rate of our signal only depends on the mass MΦ6 and branching
ratio of Φ6 decay to a top quark pair, we scan these two parameters to study the discovery
potential. We summarize our results in Fig. 5.7 as the signal production rate for bbb̄b̄ +
`±`± +��ET + 4j from Φ6Φ̄6 with SM tt̄W± background included. We use a factor of 25%
in both plots in Fig. 5.7 for tagging two b jets with 50% effeciency to tag each b-jet. The
SM background is taken as 1 fb in the significance contour. As we can see in the left plot
of Fig. 5.7, for 100 fb−1 luminosity, the statistical significance can surpass the 5σ level for
MΦ6 . 800GeV if BR(Φ → tt) is about 0.5. Also note that the mass of the sextet scalar
can be determined by reconstructing two hadronically decaying top (or anti-top) quarks,
and the branching ratio of Φ6 → tt can be roughly estimated from the total signal event
rate if one can understand the backgorund sufficiently well. No reconstruction selection has
been implemented since we did not simulate the events with initial state/final state radiation
and the reconstruction efficiency is thus unknown. In principle, we expect that the S/

√
B

can be further improved by including reconstruction.

5.5 Conclusion
In this paper, we discuss the production of a new exotic particle, a color sextet scalar, at

the CERN Large Hadron Collider. Taking a purely phemenological approach, we discuss
the discovery of the color sextet scalar through its decay into a top-top quark pair. The
unique feature of same-sign dilepton plus multijet makes it easy to identify and reconstruct
the color sextet scalar object. Due to its large QCD production, it is possible to cover the
color sextet scalar up to a mass range of 1 TeV for 100 fb−1 integrated luminosity.

In the text, we only consider the case ofMΦ6 > 2mt, where Φ6 decays into two on-shell
top quarks. In the case 2MΦ6 < mZ , there is a possiblity of a Z decaying into a sextet pair,
since Φ6 carries a U(1)Y charge, which we expect is highly constrained by LEP data. We
also expect to find strong constraints from Tevatron data. For example, for MΦ6 just above
mt+mb threshold, the Φ̄6Φ6 signal will directly contribute to the tt̄X sample as the offshell
top decay products are soft.
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Chapter 6

Conclusions

The standard model, described in Section 1.1, has been a great success of modern
physics – with a few modest assumptions, it has been consistently able to describe phe-
nomena observed below the electroweak scale. With the LHC now in operation, we are in
an exciting era of the exploration of physics at the TeV scale. As we discussed in Section
1.2, we have good reason to expect new physics at this energy scale, and the LHC may
help us to understand the hierarchy problem and the nature of dark matter. We may find
the remaining unobserved ingredient in the SM, the Higgs boson, and we may produce
new physics beyond the standard model, possibly in the form of superpartners, Kaluza-
Klein excitations of SM particles, or something entirely different and as yet theoretically
unexplored.

In order to make the most of the many high-energy collisions that will take place at
the LHC and future colliders, we must know which events to look for and how to extract
information about the new particles we produce from the experimental data. In Chapter 2
we proposed a new technique for mass measurement in boosted decay systems. As dis-
cussed in Section 1.3, this is a task which is made more difficult for BSM physics, as many
scenarios provide a dark matter candidate which goes unseen in the detector. Focusing on
the transverse direction is a common approach to this challenge, and the sensitivity of the
MCT2 variable on boosts from upstream decays and radiation makes it a useful tool for
mass determination in short decay chains. In Chapter 2, we demonstrated the effectiveness
of our technique for a specific SUSY model, but it could be useful in many BSM scenarios.

In Chapters 3 and 4, we introduced a new technique for measuring spins of particles
produced in collider experiments. This is important for distinguishing models such as
SUSY and UED, which provide particles with similar masses but different spins, which we
demonstrated in Chapter 3. In order to show that this technique is really experimentally
feasible, we demonstrated in Chapter 4 that the spins of weak gauge bosons could be deter-
mined using existing data from both an e+e− collider, LEP, and a hadron collider, Tevatron.
This required careful treatment of the real effects of selection cuts, and we proposed a tech-
nique for extracting a clean signal from the data.

Finally, in Chapter 5, we proposed a search at the LHC for color sextet scalars. Because
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of their QCD interactions, TeV scale sextet scalars could be produced in great abundance at
hadron colliders such as the LHC, and their unique couplings to quarks allow them to gen-
erate a final state containing same-sign dileptons, which has a relatively small background.
Our final state contains several jets, and we have determined a scheme which allows us
to reconstruct the sextet. Ultimately, we find that searching in this channel at the LHC is
feasible for a large range of masses and couplings.

We have embarked upon the LHC era, and the coming years are certain to be challeng-
ing but ultimately rewarding.
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Appendix A

Chapter 3 Appendices

A.1 Reconstruction
The two charged leptons in the events shown in Fig. 3.1 have momenta p1 and p2,

respectively. We define the perpendicular momentum in the event ~p⊥ = ~p1 × ~p2. We refer
to the pair produced unstable particles asA (for µ−1R or µ̃−R) andB (µ+

1R or µ̃+
R). The missing

4-momentum from the decay of A is /p1
, while /p2

is the missing momentum from the decay
ofB. Both the particles escaping the detector have massm, which is assumed to be known.

Since the pair produced particlesA andB (with massM ) are back to back, it suffices to
solve for pA, as ~pA = −~pB. The final-state leptons are effectively massless, so p2

1 = p2
2 = 0.

For the massive particles, we have

p2
A = p2

B = M2 (A.1)

/p
2

1
= /p

2

2
= m2. (A.2)

Finally, since pA (pB) decays into /p1
(/p2

) and p1 (p2),

/p1
= pA − p1

/p2
= pB − p2. (A.3)

At the ILC, the energy of the beamsE is known, and for pair production the total energy
in the event must be split equally, so p0

A = p0
B = E. Therefore, using Eqs. (A.1), (A.2) and

(A.3), we may define the following variables:

c1 ≡ ~pA · ~p1 =
1

2
(m2 −M2 + 2Ep0

1) (A.4)

c2 ≡ ~pA · ~p2 = −1

2
(m2 −M2 + 2Ep0

2) (A.5)

b2 ≡ ~pA · ~pA = E2 −M2 (A.6)
aij ≡ ~pi · ~pj (i, j = 1, 2). (A.7)
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We can write the momentum ~pA as

~pA = t1~p1 + t2~p2 + y~p⊥. (A.8)

Using this definition in Eq. (A.4) and (A.5), we find

c1 = t1a11 + t2a12

c2 = t1a12 + t2a22

t1 =
a22c1 − a12c2

a11a22 − a2
12

(A.9)

t2 =
a11c2 − a12c1

a11a22 − a2
12

. (A.10)

Finally, using Eqs. (A.6), (A.9), and (A.10),

b2 = (t21a11 + 2t1t2a12 + t22a22) + y|~p⊥|2

y = ±

√
b2 − (t21a11 + 2t1t2a12 + t22a22)

|~p⊥|2
. (A.11)

The ± sign in this last equation is the two-fold ambiguity in the reconstruction.

A.2 Amplitudes
The matrix elements for right-handed smuon pair production from polarized e−e+

beams are

M(e−Le
+
R → µ̃−Rµ̃

+
R) = (−ie2)

√
1−

4m2
µ̃

s2
sin θ×(

1 +
s(−1/2 + s2

W )

c2
W (s− 4m2

Z)

)
(A.12)

M(e−Re
+
L → µ̃−Rµ̃

+
R) = (−ie2)

√
1−

4m2
µ̃

s2
sin θ×(

1 +
s2
W s

c2
W (s− 4m2

Z)

)
.

Here,
√
s is the center-of-mass energy and mµ̃ is the mass of the right-handed smuon. The

angle θ is defined as in Fig. 3.2.
The decaying µ̃± goes to µ±R and a right-handed χ̃0

1. We make the approximation that
the neutralino is primarily bino, and so the decay matrix element is

M(µ̃± → µ±χ̃0
1) = −

√
2g′
√
m2
µ̃ −m2

χ̃. (A.13)
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Here g′ is the hypercharge gauge coupling g′ = e/ cos θw. Making the narrow width ap-
proximation, the cross section for the four-body final state is simply the incoherent sum
over initial helicities

dσ =
dΦ4

4

∑
L,R

∣∣∣M(e−L/Re
+
R/L → µ̃−µ̃+)M(µ̃−R → µ−Rχ̃

0
1)×

M(µ̃+
R → µ+

Rχ̃
0
1)
∣∣2 2πδ(sµ+χ̃0

1
−m2

µ̃)×

2πδ(sµ−χ̃0
1
−m2

µ̃)
1

(2mµ̃Γ)2
, (A.14)

where Γ is the total width of the µ̃1R. Note the lack of dependence on φ1 and φ2, in
accordance with Eq. (3.4).

Pair production for right-handed µ1 requires four helicity combinations for the µ1Rs.
Recall that KK states of the chiral muons are massive particles; as such, they can have
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either helicity. Thus, the production matrix elements are

M(e−Le
+
R → µ−1R(↓)µ+

1R(↑)) = (ie2)(1− cos θ)×(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↓)µ+

1R(↑)) = (−ie2)(1 + cos θ)×(
1 +

s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↓)µ+

1R(↓)) = (−ie2)
2mµ1√
s

sin θ(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↓)µ+

1R(↓)) = (−ie2)
2mµ1√
s

sin θ(
1 +

s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↑)µ+

1R(↓)) = (−ie2)(1 + cos θ)×(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↑)µ+

1R(↓)) = (ie2)(1− cos θ)×(
1 +

s2
W s

c2
W (s−m2

Z)

)
M(e−Le

+
R → µ−1R(↑)µ+

1R(↑)) = (ie2)
2mµ1√
s

sin θ(
1 +

s(−1/2 + s2
W )

c2
W (s−m2

Z)

)
M(e−Re

+
L → µ−1R(↑)µ+

1R(↑)) = (ie2)
2mµ1√
s

sin θ(
1 +

s2
W s

c2
W (s−m2

Z)

)
.

(A.15)

Here, ↑ corresponds to right-handed helicity, while ↓ is left-handed.
In the rest frame of the decaying µ1R, there are two possible helicities (↑ and ↓) decaying

to right-handed muons and three possible polarization vectors for the B1 (ελ, λ = ±1, 0).
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For the decay of the µ−1R, the matrix elements are

M(µ−1R(↑)→ µ−RB1(−1)) = 0

M(µ−1R(↑)→ µ−RB1(0)) = g′
mµ1

mB1

√
m2
µ1
−m2

B1
×

e+iφ1/2 cos
θ1

2

M(µ−1R(↑)→ µ−RB1(+1)) = −
√

2g′
√
m2
µ1
−m2

B1
×

e+iφ1/2 sin
θ1

2
M(µ−1R(↓)→ µ−RB1(−1)) = 0

M(µ−1R(↓)→ µ−RB1(0)) = g′
mµ1

mB1

√
m2
µ1
−m2

B1
×

e−iφ1/2 sin
θ1

2

M(µ−1R(↓)→ µ−RB1(+1)) =
√

2g′
√
m2
µ1
−m2

B1
×

e−iφ1/2 cos
θ1

2
. (A.16)

We see here the dependence on the helicity of the µ1R as in Eq. (3.5). Similar equations
hold for the decay of µ+

1R, with φ1 → φ2 and θ1 → θ2.
The total cross section for the event is the coherent sum over µ1R helicities and the

incoherent sum over the helicities h of the electrons and polarizations λ of the KK photons:

dσ =
dΦ4

4

∑
L,R,λλ′

∣∣∣∣∣∑
hh′

M(e−L/Re
+
R/L → µ−1R(h)µ+

1R(h′))

M(µ−1R(h)→ µ−RB1(λ))M(µ+
1R(h′)→ µ+

RB1(λ′))
∣∣2

2πδ(sµ+B1
−m2

µ1
)2πδ(sµ+B1

−m2
µ1

)
1

(2mµ1Γ)2
. (A.17)

Once again, Γ is the total width of µ1R and there is an implied momentum conserving δ
function.
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