
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Adaptive Solution to Compress Deep Neural Networks for Resource-Constrained Devices

Permalink
https://escholarship.org/uc/item/7xb9j5mc

Author
Wang, Ruzhuo

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xb9j5mc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Adaptive Solution to Compress Deep Neural Networks for Resource-Constrained
Devices

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Ruzhuo Wang

March 2019

Thesis Committee:

Professor Hyoseung Kim, Chairperson
Professor Shaolei Ren,
Professor Daniel Wong

Copyright by
Ruzhuo Wang

2019

The Thesis of Ruzhuo Wang is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I would like to thank Professor Hyoseung Kim for his expert advice and

encouragement helping me finish this thesis, as well as my colleagues in the Rten lab for

their kindly help, they supported me greatly and were always willing to help me.

To my parents and my young sister: for always being there to support me when I

was studying at the United States these two years. Especially my father, who always gave

me guides when I was confused about something here. To my mother, although I may not

plan to pursue PhD right now, I tried my best to not live up to you. To my little sister:

Little buddy you are smarter than me, wish you can have a health and happy life in the

future.

iv

To my parents for all the support.

v

ABSTRACT OF THE THESIS

Adaptive Solution to Compress Deep Neural Networks for Resource-Constrained Devices

by

Ruzhuo Wang

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, March 2019

Professor Hyoseung Kim, Chairperson

Recent advantages of deep neural networks (DNNs) motivate their use in many

applications, but in order to apply DNNs on resource-constrained devices like embedded sys-

tems, there are many difficulties to overcome. One effective solution is compressing DNNs.

However, existing compression techniques have problems such as, they can only compress

specific types of neural networks or they have to find the sparsity of weight matrices. This

motivates us to develop compression methods for pre-trained deep neural networks in order

to meet specific requirements, such as reducing execution time and decreasing model size.

We propose a new compression solution, called Adaptive-Surgery, which has two

important properties. First, Adaptive-Surgery presents a unified approach that is able

to compress all commonly used deep learning structures, including fully-connected and

convolutional neural networks, as well as their combinations. It does so by applying different

compression methods based on the type of the structures. Second, Adaptive-Surgery targets

at the weights matrices and compresses the weights matrices by reserving only the most

significant parameters while trying not to lose too much accuracy of the original deep

vi

neural networks. Importantly, unlike the traditional dropout model compression method

that randomly drops components in the weights matrices, Adaptive-Surgery will use singular

value decomposition in the process of pruning fully-connected structures. We call this new

compression method SVD-based dropout.

After compressed by Adaptive-Surgery, the new model can be directly used on

embedded systems without further modifications. In our evaluation, Adaptive-Surgery is

used to compress two different deep neural networks, and we will test the performance of

generated models on Raspberry Pi 3. Each deep neural network can be compressed in three

different degrees: ‘Rare’, ‘Medium’ and ‘Well-Done’, where the corresponding compression

ratios (ratio of the size of pruned parameters to that of the original parameters) are 43.75%,

75% and 93.75%, respectively. Experiment results show that our proposed work can yield

a significant reduce in execution time and model size without causing appreciable loss in

accuracy.(e.g., Adaptive-Surgery can have the compression ratio of 75% on the modified

Alexnet, while the accuracy is decreased only from 90.6% to 90.0%)

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 3
1.3 Contribution . 4

2 Background and Related work 5
2.1 Model compression methods . 5

2.1.1 Least weight prune . 5
2.1.2 Weight reconstruction by Singular Value Decomposition 7
2.1.3 Dropout . 8

2.2 Model compression framework . 9
2.2.1 DeepIoT . 9

3 System Framework 12
3.1 Adaptive-Surgery . 12
3.2 SVD-based dropout . 16
3.3 Least weight prune . 17

4 Evaluation 20
4.1 Experiment setup . 20

4.1.1 Software . 20
4.1.2 Hardware . 21
4.1.3 Alexnet . 21
4.1.4 CIFAR-10 . 23

4.2 Architecture . 25
4.3 Experiment result . 25

5 Conclusions 29

viii

Bibliography 31

ix

List of Figures

2.1 Singular Value Decomposition [16] . 6
2.2 Layer insertion for SVD decomposition [3] 8
2.3 Dropout Neural Net Model. Left : A standard neural net with 2 hidden

layers. Right : An example of a thinned net produced by applying dropout
to the network on the left. Crossed units have been dropped. [4] 9

2.4 Overall DeepIoT system framework. Orange boxes represent dropout oper-
ations. Green boxes represent the parameters of the original neural network
(this figure is captured from [7]). 11

3.1 Example of how Adaptive-Surgery framework compress a DNN model. Blue
boxes represent the weight matrices for fully-connected layer 14

3.2 Process of SVD-based dropout compression. The black dotted line in the S
matrix represent the diagonal none zero parameters. The orange dotted line
in the U and S matrix represent the prune process. 17

3.3 Overall process of least weight prune process for convolutional structure. . 18

4.1 Modified Alexnet architecture . 22
4.2 The structure of cifar10-quick . 24

x

List of Tables

4.1 Performance summary for Alexnet . 26
4.2 Performance summary for Cifar10-quick . 26
4.3 Adaptive-Surgery model Accuracy (%) and Initial random value model Ac-

curacy (%) for modified Alexnet . 28
4.4 Adaptive-Surgery model Accuracy (%) and Initial random value model Ac-

curacy (%) for Cifar10-quick . 28

xi

Chapter 1

Introduction

1.1 Motivation

Because there is massive amount of data that is available nowadays and has been

gathered over the last year and decades, deep learning has best-in-class performance on

solving problems with huge amount of data that significantly outperforms other approaches

in plenty of domains. This enables neural networks to really show their potential since they

get smarter the more data you used to train them. Much researches in recent years have

focused on remarkable potential of neural networks, and numerous experiments have be

established to apply neural networks in multiple domains such as a deep cascaded multi-

task framework for face detection [9], a deep convolutional neural network to classify the 1.2

million high-resolution images [1] and a convolutional neural network (CNN) to map raw

pixels from a single front-facing camera directly to steering command [2]. More further, in

order to make it possible for people to take the advantages of neural networks in daily life,

implementations of neural networks on embedded systems such as running deep learning

1

models locally on the wearable devices [10] or building a mobile audio sensing framework

from deep neural networks [11] play a pivot role.

However, currently there exists a big challenge for the growing need for compu-

tational ability to deal with huge amount of data and the ability of resource constrained

embedded systems to execute deep neural networks [6]. In the process of seeking a way to

narrow the gap, researchers find a powerful tool called model compression including prun-

ing the fully-connected structure using singular value decomposition [3] or dropout [4] and

pruning the feature map by magnitude of kernel weights in convolutional structure [7].

In 2017, a new compression solution called DeepIoT [7] is created, it presents a

striking approach that compresses most deep learning structures for sensing applications,

including fully-connected, convolutional, and recurrent neural networks, as well as their

combinations. It can also reduce the size of deep neural networks by over 90% without

loss of accuracy. It does so by using a recurrent neural network to learn the parameters

redundancies of dense matrices layer by layer. But it takes massive time to learn the

redundancies and we do not see the experiment results for DeepIoT that show its ability to

manually set the compression ratio for itself.

We want to keep the advantages of this framework such as the ability to compress

all commonly used deep learning structures and solve the shortage of this framework such

as unable to manually set compression ratio, thus we develop a new compression solution

named Adaptive-Surgery. Adaptive-Surgery can have a unified approach for compressing

the convolutional structure, fully-connected structure as well as their combinations. More-

2

over, we can set three compression ratios for Adaptive-Surgery which are 43.75%, 75% and

93.75%.

1.2 Thesis Outline

The thesis is organised as follows:

In chapter 2, we first discuss the technical details about: Singular Value Decom-

position (SVD) for compressing fully-connected structure; Dropout for compressing fully-

connected structure, because it helps to understand the new compression method we build

called SVD-based dropout. We will discuss the DeepIoT [7] at the end of chapter two, so

that it will be more clear to see the differences between DeepIoT and Adaptive-Surgery.

In chapter 3, we begin with presenting the system framework of our thesis by

providing the technical details of Adaptive-Surgery framework, such as what rules it will

obey to compress different DNN structures. Next we present the mathematical formula for

SVD-based dropout, and we present a flow chart to illustrate the compression process of

SVD-based dropout. Finally we manage to demonstrate the compression methods Adaptive-

Surgery used to compressing convolutional structure.

In chapter 4, we first introduce two DNN models, one is modified Alexnet, the

other one is Cifar10-quick. We conduct experiments on these two DNN models, so it will

be helpful to understand our work by having an overall idea of this two DNN models. Then

we present the experiment environment and experiment results to evaluate the performance

of Adaptive-Surgery. We will show the process of how we conduct our experiments on two

3

different DNN models under two different criterion. Finally, we will summarize observations

of the experiments and evaluate the performance of Adaptive-Surgery.

In chapter 5, we revisit the previous researches and recall the specific limitations

for previous works. Then we summarize the methodologies of Adaptive-Surgery and the

observations from experiments, as well as our contributions for this specific area. And we

discuss the future work for our works.

1.3 Contribution

The contributions of this thesis are summarized as follows:

• We proposed the Adaptive-Surgery framework, which keeps the advantages of the

previous works and can take a input compression ratio from user without causing

unacceptable accuracy penalty in the compressing process.

• We make efforts to combine two commonly-used compression methods(singular value

decomposition and dropout) to a new compression method called SVD-based dropout

that can be applied on fully-connected structure.

• We propose the Adaptive-Surgery framework, which uses the combination of different

compression methods to have a unified compression approach for the whole DNN

model.

4

Chapter 2

Background and Related work

In this chapter, we want to provide readers with a basic idea of some commonly-

used model compression methods as well as a good compressor-critic framework. We begin

with introducing three model compression methodologies which compress the original DNN

models by parameter pruning or weight reconstruction. Then we discuss the detail of the

compressor-critic framework DeepIoT as well as the limitation for their work.

2.1 Model compression methods

2.1.1 Least weight prune

Before we introduce least weight prune model compression method, we need first

simply introduce the Singular Value Decomposition(SVD) [15]. For SVD, it has three

important properties:

• It can be applied on any m× n matrices.

5

Figure 2.1: Singular Value Decomposition [16]

• The mathematical formula is:

Am×n = Um×m · Sm×n · Vn×n

• The Diagonal value of S matrix are the non-negative square roots of the eigenvalues

of ATA, they are called singular values.

The least weight prune [14] compression method targets at the convolutional layer

in the DNN model. Each convolutional layer consists of many feature maps, which is also

called convolutional kernel, these feature maps are responsible for the computation time in

the forward and backward propagation in the DNN model. This method will prune the less

useful filters from a pre-trained model for accelerating the execution while minimizing the

accuracy penalty. They first calculate the l1-norm of a convolutional kernel in each layer,

this value also gives an expectation of the magnitude of the output feature map. Filters

6

with smaller kernel weights tend to have smaller influence on the forward and backward

propagation process, so we will prune the filters with small kernel weights.

2.1.2 Weight reconstruction by Singular Value Decomposition

Weight reconstruction by Singular Value Decomposition [3] targets at two fully-

connected layers. For two fully-connected layers L and L+ 1, updating states of all nodes

requires evaluating the product: WL · xL, where, xL ∈ Rn is the state of nodes in the

previous layer and WL ∈ Rm×n is the matrix representing all the connections between layer

L and L + 1. Now, in order to compress the original DNN model by decrease the matrix

multiplication, the basic idea is to replace the weight matrix WL with a product of two

different matrices, i.e.,

WL = U · V

Under SVD, the weight matrix can be efficiently factorized as:

WL
m×n = Xm×m · Σm×n ·NT

n×n

where, Σm×n is a rectangular diagonal matrix containing L singular values of WL
m×n as the

diagonal elements. To gain computational efficiency the weight matrix can be approximated

well by keeping k highest singular values, meanwhile, we need to prune the X matrix and

NT matrix correspondingly, i.e.:

WL
m×n ≈ Xm×k · Σk×k ·NT

k×n

Now, the architecture of a fully-connected layer of a DNN model can be modified by re-

placing WL with U = Xm×k and V = Σk×k ·NT
k×n, as is shown in the Figure.

7

Figure 2.2: Layer insertion for SVD decomposition [3]

2.1.3 Dropout

For Dropout method, it target at the fully-connected structure in the DNN models.

In [4], the dropout method is described as “The term ‘dropout’ refers to dropping out units

(hidden and visible) in a neural network. By dropping a unit out, it means temporarily

removing it from the network, along with all its incoming and outgoing connections.”. In

the training process the neurons in each fully-connected layers are dropped randomly, so

that there are plenty of thinner DNN models are generated in order to prevent overfitting.

But the dropped neurons will come back in the testing process, which means the matrix

computation in the testing process does not change.

8

Figure 2.3: Dropout Neural Net Model. Left : A standard neural net with 2 hidden layers.
Right : An example of a thinned net produced by applying dropout to the network on the
left. Crossed units have been dropped. [4]

2.2 Model compression framework

2.2.1 DeepIoT

There is a paper that introduces a compressor-critic framework called DeepIoT [7].

This framework obtains the optimal dropout probabilities for the neural network and ex-

ploits the network parameters themselves. In fully-connected neural networks, neurons are

dropped in each layer; in convolutional neural networks, filters are dropped in each layer.

This means that DeepIoT can be applied to all commonly-used neural network structures

and their combinations. DeepIoT use a recurrent neural network to learn the parameter

redundancies, and generates the dropout probabilities layer by layer.

DeepIoT reduces the size of deep neural networks by 90% to 98.9%. It is thus able

to shorten execution time by 71.4% to 94.5%, and decrease energy consumption by 72.2%

to 95.7%. These improvements are achieved without loss of accuracy. In order to have no

9

loss on the accuracy, it will be very cautious about the compression process, which means it

will compress the network little by little. Meanwhile, for each compression step, it needs a

recurrent neural network to learn the redundancies and compress the neural network based

on this redundancies information, then retrains the compressed networks. This means it

will take huge time for each compression step and the time consuming works accumulate

through the whole compression process. We want to find a solution that compress the neural

network that costs relatively less time and do not have too much penalty on the accuracy,

meanwhile, DeepIoT does not present the ability to take a compression ratio as input. So

we design Adaptive-Surgery that can compress the commonly used neural network to three

user input compression ratios with acceptable compression time and acceptable accuracy

penalty.

10

Figure 2.4: Overall DeepIoT system framework. Orange boxes represent dropout opera-
tions. Green boxes represent the parameters of the original neural network (this figure is
captured from [7]).

11

Chapter 3

System Framework

In this chapter, we will first introduce the framework we propose named Adaptive-

Surgery, and exactly what compression methods it will apply on different structures. Then

we will present a new model compression method for fully-connected structure, which is

SVD-based dropout. Finally, we introduce how we apply least weight prune in the convolu-

tional structure. Since there may be other layers between the convolutional layers that will

change the output feature map numbers of the previous convolutional layer, we assume for

two adjacent convolutional layers, they are independent. So that we can apply least weight

prune for two dimensions of each convoutional layer.

3.1 Adaptive-Surgery

We create Adaptive-Surgery, a unified neural network compression solution. Adaptive-

Surgery will take a compression ratio as an input, then compute the compression parameter

12

β for each layer. For each convolutional layer:

β =
Targetdimensionlengthbeforepruning

Targetdimensionlengthafterpruning

For each fully-connected layer:

β =
Neuronsnumberafterprune

Neuronsnumberbeforeprune

Since for convolution layer, we will apply least weight prune [14] on two dimensions, which

means if we use a four dimensions tensor to mathematically represent this layer, the size

of the tensor for each convolutional layer is
1

β2
of the original tensor. Meanwhile if we

use a weight matrix to represent the inner product of two fully-connected layer, the size

of the weight matrix after pruning is
1

β2
of the original weight matrix. Then we can have

a comprehensive compression ratio for convolutional structure and fully-connected layer

which is 1− β2. So that for each input compression ratio:

β =
√

1− Compressionratio

We present an example of compressing a neural network with three convolutional

layer and three fully-connected layer. The detail is shown in Figure 3.1. The basic steps of

compressing neural networks with Adaptive-Surgery can be summarized as below:

1. For the first convolutional layer that connected to the input data, Adaptive-Surgery

will compute the summary of the the absolute value for each kernel and use this

absolute value as the weights for each kernel, then prune the kernel with least weights

based on the determined compressing ratio.

13

Figure 3.1: Example of how Adaptive-Surgery framework compress a DNN model. Blue
boxes represent the weight matrices for fully-connected layer

14

2. For the second and following convolutional layer, since the pruning process will prune

the output kernel for previous layer, which means we need to prune the current layer’s

kernel tensor in one dimension that corresponding to previous layer. Adaptive-Surgery

will first use least weight prune to prune the dimension that corresponding to previous

layer to the determined compression ratio, then prune the kernels that least weights

in another dimension based on the β that compute from the input compression ratio.

3. For the first fully-connected layer that connected to the last convolutional layer:

(a) If it is the only fully-connected layer, Adaptive-surgery will not compress it, since

this layer is responsible for the generated result of this neural network.

(b) If it is not the only fully-connected layer, but totally there are only two fully-

connected layer, Adaptive-Surgery will target at the weight matrix between the

adjacent fully-connected layer and using least weight prune to prune the dimen-

sion of the weight matrix corresponding to the first fully-connected layer, leave

the dimension corresponding to the second fully-connected layer unaffected.

(c) If there exist more than two fully-connected layers, Adaptive-Surgery will still us-

ing least weight prune to prune the dimension of the weight matrix corresponding

to the first fully-connected layer. Then target at the adjacent weight matrices,

two adjacent weight matrices are responsible for three fully-connected layers, so

after Adaptive-Surgery applying SVD-based dropout on two adjacent weight ma-

trices, the middle fully-connected layer will be pruned by β. Adaptive-Surgery

will keep applying SVD-based dropout until it meet the final fully-connected

layer.

15

3.2 SVD-based dropout

In this subsection, we will discuss the technical detail of SVD-based dropout.

Adaptive-Surgery will compress each fully-connected layer in an iterative manner and enable

this compression process to be applied on the whole fully-connected structure and using the

property of Singular Value Decomposition to lower the loss of accuracy.

We want to discuss this compression method by giving an example of how SVD-

based dropout compress a 3× 4× 3 fully-connected structure. We donate the two adjacent

weight matrices to be W1 and W2, and the bias matrices is b1 and b2. Then assume the

input of this fully-connected structure is x and the output is y, so we have:

y = W2 · (W1 · x+ b1) + b2

We assume W3 = W2 ·W1, and the parameters in bias matrices are far less than weight

matrices, then we have:

y ≈W2 ·W1 · x = W3 · x

We apply Singular Value Decomposition on the matrix W3, so that W3 = Um×m · Sm×n ·

V hn×n, then we set β =
1

2
and assume the neurons number for the middle fully-connected

layer is k, then Um×m and Sm×n will be pruned to be U ′m×k/2 and S′k/2×n, we will have:

W ′2 = U ′m×k/2

W ′1 = S′k/2×n · V hn×n

If in the pruning process, we keep as much parameters of the diagonal value of matrix Sm×n,

we can assume we keep as much as possible the information of original matrix, then we can

16

Figure 3.2: Process of SVD-based dropout compression. The black dotted line in the S
matrix represent the diagonal none zero parameters. The orange dotted line in the U and
S matrix represent the prune process.

assume W3 ≈ W ′3 = W ′2 ·W ′1. Once we donate the output of the pruned fully-connected

structure to be y′, we have:

y ≈ y′ = W ′3 · x = W ′2 ·W ′1 · x

3.3 Least weight prune

In this subsection, we will discuss the technical detail of least weight prune and

random prune. Adaptive-Surgery will compress each convolutional layer in an iterative man-

ner and enable this compression process to be applied on the whole convolutional structure

and using least weight prune to lower the loss of accuracy.

17

Figure 3.3: Overall process of least weight prune process for convolutional structure.

18

We want to discuss this compression method by giving an example of how least

weight prune and random prune compress a convolutional structure with three convolutional

layer. Since the GPU will process multiple neural network with same structure in parallel

manner, we use the a dimension in the tensor to represent how many neural network are

processing at the same time, which is also called batch size. For each convolutional layer,

it will have several convolutional kernels, we use b dimension in the tensor to represent how

many kernels in each layer. Meanwhile, we use c to represent the size of each kernel, kernel

is also called feature map.

For the first convolutional layer, we want to keep the batch size for data input

remain unaffected, so we only apply least weight prune on the b dimension. So for each

kernel with size of c1, we compute the summary of the absolute value for each element in

the c1 × c1 kernel and name this result to be the weight for this kernel. Then Adaptive-

Surgery will only prune the kernel will the least value of weight repeatedly until the pruned

structure reach the compression ratio.

For the second and following convolutional layers, we will apply least weight prune

on both a and b dimensions until both dimensions reach the determined β.

19

Chapter 4

Evaluation

In the evaluation chapter, we first introduce the experiment setup by introducing

the deep learning framework we use to develop and evaluate Adaptive-Surgery, and the

device we used to test the execution time of different DNN models. We also give the details

of the two DNN models we fed for Adaptive-Surgery as well as their dataset. Then we give

the process of how we conducted the experiment followed by the experiment summary.

4.1 Experiment setup

4.1.1 Software

We use Caffe [8] as deep-learning framework. Caffe is a deep learning framework

made with expression, speed, and modularity in mind. It is developed by Berkeley AI

Research (BAIR) and by community contributors. Yangqing Jia created the project during

his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license.

20

4.1.2 Hardware

We use Raspberry Pi 3 Model B [5] for estimating the execution time performance

of different Deep Neural Network models. The Raspberry Pi 3 Model B is the earliest model

of the third-generation Raspberry Pi, it has following basic parameters:

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

• 1GB RAM

4.1.3 Alexnet

The original structure of Alexnet is designed in the paper named ’ImageNet Clas-

sification with Deep Convolutional Neural Networks’ [1]. The first convolutional layer filters

the 227×227×3 input image with 96 kernels of size 11×11×3 with a stride of 4 pixels (this

is the distance between the receptive field centers of neighboring neurons in a kernel map).

The second convolutional layer takes as input the (normalized and pooled) output of the

first convolutional layer and filters it with 256 kernels of size 5× 5× 96. The third, fourth,

and fifth convolutional layers are connected to one another without any intervening pooling

or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 × 256

connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth

convolutional layer has 384 kernels of size 3× 3× 384 , and the fifth convolutional layer has

256 kernels of size 3× 3× 384. The fully-connected layers have 4096 neurons each.

We conduct experiments on a modified Alexnet model [12] that implemented by

Adil Moujahid, he uses a DNN model which is similar to the original Alexnet, but change

21

Figure 4.1: Modified Alexnet architecture

22

the order of the pool layer and Relu layer for each convolutional layer, while the last fully-

connected layer is modified to have only 2 neurons, since this model is designed to classifying

between images of cats and dogs. The dataset is download from Kaggle’s Cats and Dogs

challenge [17].

4.1.4 CIFAR-10

CIFAR-10 is a dataset [13] that consists of 60000 32×32 colour images in 10 classes,

with 6000 images per class. There are 50000 training images and 10000 test images. We

use a model called cifar10− quick that built in Caffe framework to classify the CIFAR-10

dataset.

The cifar10− quick consist of three convolutional layers, three pool layers, three

ReLU layers and two fully-connected layers. The first convolutional layer filters the 32 ×

32 × 3 input image with 32 kernels of size 5 × 5 × 3 with a stride of 2 pixels. The second

convolutional layer takes as input the (rectified and pooled) output of the first convolutional

layer and filters it with 32 kernels of size 5 × 5 × 32. The third convolutional layer takes

as input the (rectified and pooled) output of the second convolutional layer and filters it

with 64 kernels of size 5 × 5 × 32. All the three convolutional layers are followed by the

Max-pooling layer and ReLU layer, the property of these two kinds of layer is defined in the

Caffe framework, since the Adaptive-Surgery only focus on convolutional structure, fully-

connected stucture and their combination, we will not spend much time on dicussing the

Max-pooling layer and ReLU layer. Followed by the third convolutional layer is the first

fully-connected layer, it has 64 neurons. The second fully-connected layer has 10 neurons

23

Figure 4.2: The structure of cifar10-quick

24

to classify the ten classes for the input image dataset. The dataset is download from the

Cifar10 challenge [18].

4.2 Architecture

Given the original neural network structure and parameters as well as the in-

put compression ratio, Adaptive-Surgery can compute β for each layer and automatically

compress the original neural network by β, the generated neural networks can be directly

implemented on the computer or embedded system. In the experiments, we first set three

compression ratio for Adaptive-Surgery to compress modified Alexnet and Cifar10-quick.

After the Adaptive-Surgery compress the original pre-trained DNN models to three com-

pression ratio, we measure the model size and the accuracy performance on the generated

models. Then we test the execution time for the generated models on the Raspberry Pi 3.

For three different compression ratio, we also build three new DNN models, whose initial

parameters are randomly chosen, and we train these models using the same training police

on the same dataset as the model that generated by Adaptive-Surgery does. And compare

the accuracy between the models that generated by Adaptive-Surgery and the accuracy

that trained from the models whose initial parameters are randomly chose.

4.3 Experiment result

We test the execution time for each structure in the two DNN models. We can tell

from the figures that the convolutional structure as well as fully-connected structure are

25

Figure 4.3: The pie charts of execution time for each structure in the modified Alexnet

(Left) and Cifar10-quick (Right)

Table 4.1: Performance summary for Alexnet

Model Size (MB) Actual Compression Ratio (%) Execution time (ms) Speedup Accuracy

Alexnet-modified 227.5 0% 2158.85 1× 90.64%

Alexnet-modified (43.75%) 128 43.7% 1252.46 1.72× 92.44%

Alexnet-modified (75%) 56.5 75.2% 613.974 3.52× 90.02%

Alexnet-modified (93.75%) 14.3 93.71% 128.902 16.75× 55.24%

responsible for over 90% of the execution time in the original DNN models. This means if we

apply compression methods only on convolutional structure and fully-connected structure,

the whole DNN model can still research determined compression ratio.

We use Adaptive-Surgery to compress Alexnet to three degree, which are ‘Rare’,

‘Medium’ and ‘Well-Done’, and the corresponding compression ratio are 56.25%, 25% and

6.25%. And the below two table are the model size, actual compression ratio, excution

time, speedup and accuracy for the DNN models that generated by Adaptive-Surgery.

So we can tell from the first two tables that:

Table 4.2: Performance summary for Cifar10-quick

Model Size(KB) Actual Compression Ratio (%) Execution time (ms) Speedup Accuracy

Cifar10-quick 583.3 0% 27.3646 1× 71.56%

Cifar10-quick (43.75%) 331 43.3% 18.1045 1.51× 73.60%

Cifar10-quick (75%) 149.9 74.3% 10.384 2.64× 70.17%

Cifar10-quick (93.75%) 39.9 93.16% 4.887 5.60× 64.35%

26

1. For three user input compression ratios, we can compute the actual compression ratio

from the actual pruned model size. The experiment result for actual compression

ratios shows that Adaptive-Surgery can automatically compress the original DNN

models to meet the determined compression ratios.

2. Since the execution time should be proportional to the amount of remaining pa-

rameters after prune, which means for three compression ratios: 43.75%, 75% and

93.75% the ratio of remaining amount of parameters to the original models’ parame-

ters should be 56.25%, 25% and 6.25%. Then the corresponding speed up should be

1/56.25% ≈ 1.78, 1/25% = 4 and 1/6.25% = 16. And the experiment results show

that the pruned modified Alexnet generated by Adaptive-Surgery can achieve deter-

mined speedup. But for pruned Cifar10-quick, when the ratio of the other structure

rather than convolutional structure and fully-connected structure can not by ignored,

it will influence the actual speedup for pruned models, which explains why speedup

of Cifar10-quick is lower than the determined speedup.

3. For the accuracy performance, when both models reach the 43.75% compression ratio,

the accuracy of the pruned models are better than that of original models. This is

mainly because we use least weight prune and SVD-based dropout prune the less

important parameters of the original models, and train the pruned models which have

all the significant survival parameters of the original DNN models, this solves the

overfitting problems of the original DNN models by pruning the redundant parameters.

27

Table 4.3: Adaptive-Surgery model Accuracy (%) and Initial random value model Accuracy
(%) for modified Alexnet

Model Compression Ratio = 0% Compression Ratio = 43.75% Compression Ratio = 75% Compression Ratio = 93.75%

Adaptive-Surgery model 90.64% 92.44% 90.02% 55.24%

Initial random value model 90.64% 87.95% 82.65% 57.33%

Table 4.4: Adaptive-Surgery model Accuracy (%) and Initial random value model Accuracy
(%) for Cifar10-quick

Model Compression Ratio = 0% Compression Ratio = 43.75% Compression Ratio = 75% Compression Ratio = 93.75%

Adaptive-Surgery model 71.56% 73.60% 70.17% 64.35%

Initial random value model 71.56% 70.64% 68.51% 61.62%

Then we evaluate the accuracy performance of the models that generated by

Adaptive-Surgery and of that whose initial parameters are randomly chosen while having

exactly same structure as the pruned DNN models.

Then we can tell from the last two tables that: For most of the situations, the

trained models that generated in Adaptive-Surgery have better accuracy performance than

trained model whose initial parameters for DNN models are randomly chosen. This means

that applying least weight prune for convolutional structure and SVD-based dropout for

fully-connected structure can lower the accuracy penalty for compression a DNN model. The

accuracy of modified Alexnet with compression ratio to be 93.75% is messed up, mainly

because in the compressing process of Adaptive-Surgery, there are too many parameters are

pruned to guarantee the accuracy.

28

Chapter 5

Conclusions

Prior works applied singular value decomposition and dropout compression meth-

ods for fully-connected structure, or pruned the feature map by magnitude of kernel weights

for convolutional structure. They only focused on one specific DNN structure. Other than

that, prior framework needed numerous time in the compressing process to ensure the least

accuracy penalty and they could not take a compression ratio as an input. However, this

thesis proposes an idea about combining the different compression methods to generate a

unified approach that compresses the whole DNN model. Moreover, we successfully combine

singular value decomposition and dropout to be a new method called SVD-based dropout

which turns out to be a efficient method for compressing fully-connected structure. Plus, we

create a framework called Adaptive-Surgery that can take user input compression ratio and

automatically decide the compression parameter β for each convolutional layer and fully-

connected layer and compresses them based on β. The compressed models that generated

by Adaptive-Surgery can be directly implemented on the Raspberry Pi 3 Model B, which

29

has constrained processing resource. The experiment results show that target two DNN

models (Alexnet and Cifar10-quick) can be compressed by Adaptive Surgery to three input

compression ratios (43.75%, 75% and 93.75%) with soft accuracy penalty. The experiment

results also prove that compared with the models whose initial parameters are randomly

chosen, those models that generated by Adaptive-Surgery have less accuracy penalty. More

importantly, we can manually set the compression ratio for Adaptive-Surgery, which means

in order to implement DNN models on resource constrained devices with specific require-

ments for real-time correctness, Adaptive-Surgery can compress the DNN models to meet

the requirements.

For the future work, Adaptive-Surgery could be evaluated on more than two DNN

models to prove its performance. Although our SVD-based dropout have a great perfor-

mance on compressing the fully-connected structure, it can be improved by having a better

way to represent the bias matrices in the pruned model rather than ignore the influence

of bias matrices. Also, if we can combine two different compression methods to generate

a unified compression framework, researchers can try more combinations of different com-

pression methods for compressing the DNN to achieve a unified approach. Last but not the

least, in the evaluation of this thesis, we do the experiments to test for three compression

ratios. However, since out framework can support arbitrary ratios, it will be interesting to

try with more diverse set of compression ratios and analyze their results.

30

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
Xin Zhang, Jake Zhao and Karol Zieba, End to End Learning for Self-Driving Cars,
arXiv:1604.07316, 2016.

[3] Sourav Bhattacharya and Nicholas D. Lane, Sparsification and Separation of Deep
Learning Layers for Constrained Resource Inference on Wearables, in proceedings of
14th ACM Conference on Embedded Network Sensor Systems CD-ROM. Pages 176-189

[4] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan
Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
JMLR 2014.

[5] Raspberry Pi 3 Model B,
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[6] Deep Neutral Networks,
https://www.techopedia.com/definition/32902/deep-neural-network.

[7] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su and Tarek Abdelzaher, DeepIoT:
Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-
Critic Framework, arXiv:1706.01215, 2017.

[8] Caffe,
http://caffe.berkeleyvision.org/.

[9] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao, Joint Face Detection and
Alignment using Multi-task Cascaded Convolutional Networks. arXiv:1604.02878, 2016.

[10] Akhil Mathur , Nicholas D. Lane, et al. DeepEye: Resource Efficient Local Execution
of Multiple Deep Vision Models using Wearable Commodity Hardware, in proceeding
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services. 2017.

31

[11] Nicholas D. Lane, Petko Georgiev, Lorena Qendro, DeepEar: Robust Smartphone Au-
dio Sensing in Unconstrained Acoustic Environments using Deep Learning, in proceed-
ings of the ACM International Joint Conference on Pervasive and Ubiquitous Comput-
ing. 2015.

[12] A Practical Introduction to Deep Learning with Caffe and Python,
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python

-caffe/.

[13] The CIFAR-10 dataset,
https://www.cs.toronto.edu/ kriz/cifar.html.

[14] Hao Li, Asim Kadav et al. Pruning Filters For Efficient ConvNets, ICLR, 2017.

[15] G. H. GOLUB and C. REINSCH. Singular Value Decomposition and Least Squares
Slutions., Linear Algebra, 1971.

[16] Understanding Dimension Reduction with Principal Component Analysis (PCA),
https://blog.paperspace.com/dimension-reduction-with-principal-component

-analysis/.

[17] Dogs vs. Cats dataset. https://www.kaggle.com/c/dogs-vs-cats/data

[18] Cifar10 dataset. http://www.cs.toronto.edu/ kriz/cifar.html

32

