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Abstract

Tight-Binding Hamiltonians for Modeling Light Harvesting Systems

by

Donghyun John Lee

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor K. Birgitta Whaley, Chair

This thesis is concerned with tractable methods for modeling the optical and elec-
tronic properties of photosynthetic light harvesting complexes. We begin by inves-
tigating the validity of the commonly used Frenkel Exciton Hamiltonian, and find
that it is inaccurate at the intermolecular distances commonly encountered in pho-
tosynthetic systems. We introduce semi-empirical tight-binding Hamiltonians and
dynamics models that are better able to simulate the electronic properties of these
chromophores at the proper distances and orientations. These models are validated
by comparisons of the predictions to experimental results.
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Chapter 1

Introduction

Photosynthesis is the quantum mechanical process that provides the energy for
nearly all life on earth. The light harvesting stage of photosynthesis begins with
the absorption of a photon by a chromophore, followed by the transport of this
electronic excitation energy to the reaction center (RC), and finally the separation of
charges at the RC [1]. While the overall steps in this process are known, there is still
much discussion regarding the underlying principles behind these photosynthetic
properties [2–5]. The work described in this thesis is primarily motivated by the
desire to understand the design principles that drives photosynthesis - in particular,
how the geometric structure and quantum mechanical properties of chromophore
aggregates affect their electronic and optical properties. In order to do so, it is
important to begin with a quantum mechanical model that balances efficiency and
accuracy.

1.1 Outline

Motivation

This dissertation is focused on theoretical approaches for predicting the electronic
and optical properties of chromophore aggregates. We evaluate the validity of these
approaches by comparing their predictions to the experimental results obtained from
artificial light-harvesting systems that have been synthesized in lab. In chapter 2,
we derive the Frenkel exciton model Hamiltonian from first principles, and note all
of the assumptions and approximations used throughout the derivation. In chapter
3 we assess the validity of the approximations made in the Frenkel exciton model by
examining the regimes in which the model starts to fail for a chromophore dimer. We
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introduce a new approach for constructing an improved tight-binding Hamiltonian
that works well at the prototypical intermolecular distances and orientations found
in photosynthetic chromophore aggregates. Chapter 4 describes and evaluates a
tight-binding Hamiltonian model that treats both electronic excitation transfer and
charge separation together. Chapter 5 introduces a methodology for quantifying
the geometric disorder in a system, and uses the model in Chapter 3 to simulate
linear absorption spectra. Ultimately, the collection of models presented in this
dissertation provide a framework of theoretical tools for evaluating the electronic
and optical properties of real experimental systems, which can be used to screen
synthetic candidates for artificial photosynthetic systems.

Chapter 2

The Frenkel exciton model is a tight-binding Hamiltonian that is commonly used
for modeling chromophore aggregates. Starting from the Born-Oppenheimer molec-
ular Hamiltonian, we derive this model while making note of the approximations and
assumptions that are used. We state the prerequisite conditions that justifies these
approximations, and comment on the implications of using these approximations.

Chapter 3

We present time-dependent density functional theory (TDDFT) calculations for
single and dimerized Coumarin-343 molecules in order to investigate the quantum
mechanical effects of chromophore aggregation in molecular aggregate systems de-
signed to function as artificial light-harvesting devices. Using the single-chromophore
results, we describe the construction of effective Hamiltonians to predict the excitonic
properties of aggregate systems. We compare the electronic coupling properties pre-
dicted by such effective Hamiltonians to those obtained from TDDFT calculations of
dimers, and to the coupling predicted by the transition density cube (TDC) method.
We determine the accuracy of the dipole-dipole approximation and TDC with respect
to the separation distance and orientation of the dimers. In particular, we investigate
the effects of including Coulomb coupling terms ignored in the Frenkel exciton tight-
binding Hamiltonian. We also examine effects of orbital relaxation which cannot be
captured by either of these models.

Chapter 4

We simulate sub-picosecond charge separation in two donor-acceptor molecular
dyads where it has previously been observed experimentally [6]. Charge separation
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dynamics is described using a quantum master equation, with parameters of the dyad
Hamiltonian obtained from density functional theory (DFT) and time-dependent
density functional theory (TDDFT) calculations, and the rate of energy dissipation
estimated from Ehrenfest-TDDFT molecular dynamics simulations. We find that
higher energy charge transfer states must be included in the dyad Hamiltonian in
order to obtain agreement of charge separation rates with the experimental values.
Golden rule rate constants are found to be inadequate. Our results show that efficient
and irreversible charge separation involves both coherent electron transfer from the
donor excited state to higher energy unoccupied states on the acceptor and incoherent
energy dissipation that relaxes the dyad to the lowest energy charge transfer state.
The role of coherence depends on the initial excited state, with electron delocalization
within Hamiltonian eigenstates found to be more important than coherence between
eigenstates. We conclude that ultrafast charge separation is most likely to occur in
donor-acceptor dyads possessing dense manifolds of charge transfer states at energies
close to those of Frenkel excitons on the donor, with strong couplings to these states
enabling partial delocalization of eigenstates over acceptor and donor.

Chapter 5

We present molecular mechanics calculations on a prototype artificial light har-
vesting system consisting of chromophores attached to a tobacco mosaic virus (TMV)
protein scaffold. These systems have been synthesized and characterized spectro-
scopically, but information about the microscopic configurations and geometry of
these TMV-templated chromophore assemblies is largely unknown. We use a Monte
Carlo conformational search algorithm to determine the preferred positions and ori-
entations of two chromophores, Coumarin 343 together with its linker, and Oregon
Green 488, when these are attached at two different sites (104 and 123) on the TMV
protein. The resulting geometric information shows that the extent of disorder and
aggregation properties, and therefore the optical properties of the TMV-templated
chromophore assembly, are highly dependent on the choice of chromophores and pro-
tein site to which they are bound. We used the results of the conformational search
as geometric parameters together with an improved tight-binding Hamiltonian to
simulate the linear absorption spectra and compare with experimental spectral mea-
surements. We found that using the geometries from the conformational search is
necessary to reproduce qualitative features of the experimental spectral peaks.
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Chapter 6

We summarize the techniques for modeling chromophore aggregates that have
been introduced in this thesis, and discuss some of the design principles for creating
artificial photosynthetic systems that have been elucidated by using these techniques.
We propose some topics of future research that would be interesting to investigate
as an extension to the work in this thesis.
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Chapter 2

Frenkel Exciton Hamiltonian

2.1 Molecular Hamiltonian

The most commonly used Hamiltonian for modeling an aggregate of chromophores
is the Frenkel exciton model. In order to arrive at this model, we begin with the
Born-Oppenheimer electronic Hamiltonian (in atomic units) [7]:

Ĥel(r,R) = T̂el(r) + V̂el−nuc(r,R) +
1

2
V̂el−el(r, r) +

1

2
V̂nuc−nuc(R,R) (2.1)

T̂el(r) = −1

2

∑
i∈r

∇2
i

V̂el−nuc(r,R) = −
∑
i∈r

∑
j∈R

Zj

|~ri − ~Rj|

V̂el−el(r, r) =
∑
i∈r

∑
j∈r
i 6=j

1

|~ri − ~rj|

V̂nuc−nuc(R,R) =
∑
i∈R

∑
j∈R
i 6=j

ZiZj

|~Ri − ~Rj|

where r is the set of electron indices, R is the set of nuclear indices, ~ri is the position
of the ith electron, ~Ri is the position of the ith nucleus, and Zi is the atomic number
of the ith nucleus. T̂el is the kinetic energy of the electrons, V̂el−nuc is the attractive
potential energy between electrons and nuclei, V̂el−el is the repulsive potential energy
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between electrons, and V̂nuc−nuc is the repulsive potential energy between nuclei. This
is the Hamiltonian over the electronic degrees of freedom, with respect to a fixed set
of nuclear coordinates.

2.2 Frenkel Exciton Model

We assume that our system is composed of N distinct chromophore molecules,
where the set of electron and nuclear indices for chromophore m are rm and Rm,
respectively. We define the union of all rm to be rtot, and the union of all Rm to be
Rtot. With this partitioning of indices, the electronic Hamiltonian for the full system
can be rewritten as:

Ĥtot =
N∑
m=1

Ĥm +
N∑
m=1

N∑
n=1

(V̂el−el(rm, rn) + V̂el−nuc(rm,Rn) + V̂nuc−nuc(Rm,Rn)) (2.2)

where Ĥtot = Ĥel(rtot,Rtot), and Ĥm = Ĥel(rm,Rm). Eq. 2.2 separates all of the
intramolecular interactions (first term) from the intermolecular interactions (second
term). Ĥm is the electronic Hamiltonian for the isolated mth chromophore, with elec-

tronic eigenstates φ
(m)
a ({~rm}) and site energies E

(m)
a that satisfy the time independent

electronic Schrödinger equation:

Ĥm|φ(m)
a 〉 = E(m)

a |φ(m)
a 〉 (2.3)

where the quantum number a enumerates the electronic states of chromophore m.
If we have the solutions (or approximate solutions) to Eq. 2.3, we can use these
monomer wavefunctions to construct a trial wavefunction to solve for the full Hamil-
tonian using the linear variational method.

The first approximation in the Frenkel exciton model is that the chromophores are
well separated enough such that they exhibit little to no wavefunction overlap. This
assumption implies that the electrons on different chromophores are distinguishable,
and therefore, no intermolecular electron exchange occurs. With this approximation,
we can use a Hartree-Product ansatz to construct the N -chromophore basis functions

|Φ~a〉 =
N∏
m=1

φ(m)
am ({~rm}) (2.4)

where ~a = (a1, a2...aN) is an N -dimensional tuple, and am indicates the electronic
state of the mth chromophore. Thus, we can build our trial wavefunction as:

|Ψtrial〉 =
∑
~a

c~a|Φ~a〉 (2.5)
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where the summation is over all possible quantum number permutations, and c~a are
their corresponding probability amplitudes.

The second approximation we make is what is referred to as the Frenkel exciton
model in the Heitler-London approximation, in which we only consider the inter-
actions among states where a single chromophore is in it’s first excited state (also
called the singly excited subspace). Therefore we can amend our trial wavefunction
to only include the singly excited subspace:

|Ψtrial〉 =
∑
~a∈H

c~a|Φ~a〉 H = {~a : sum(~a) = 1} (2.6)

The third approximation is to ignore the Vel−nuc(rm,Rn) and Vnuc−nuc(Rm,Rn)
terms in Eq. 2.2. This can be justified when the Frenkel exciton model Hamiltonian
is used within the framework of an open quantum system model, in which the system
of interest (chromophores) is treated separately from the surrounding environment
(often a protein) [8]. The approximation is justified by asserting that the nuclei of
neighboring chromophores are a part of the environment for a specific chromophore,
and that any intermolecular interactions that involve nuclei will be included in the
system-environment coupling term for that specific chromophore.

Ĥtot =
N∑
m=1

Ĥm +
N∑
m=1

N∑
n=1

V̂el−el(rm, rn) (2.7)

With these three approximations underlying the Frenkel exciton model, we can
now begin to construct the secular determinant (H −ES)c that arises from the trial
wavefunction in Eq. 2.6. Note that our assumption of non-overlapping monomer
wavefunctions implies that our basis functions are orthogonal, so the overlap matrix
S is the identity matrix.

The final step is to construct the matrix elements of Htot in the basis of our
Hartree-Product wavefunctions

〈Φ~a|Htot|Φ~b〉 =
N∑
m=1

〈Φ~a|Ĥm|Φ~b〉+
N∑
m=1

N∑
n=1

〈Φ~a|V̂el−el(rm, rn)|Φ~b〉 (2.8)

The first term is already diagonal in our basis:

〈Φ~a|Ĥm|Φ~b〉 = E(m)
am

N∏
l=1

δal,bl (2.9)
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Each summand within the double-summation of the second term is of the form:

〈Φ~a|V̂el−el(rm, rn)|Φ~b〉 =
∑
i∈rm

∑
j∈rn

〈Φ~a|
1

|~ri − ~rj|
|Φ~b〉 (2.10)

=

(∑
i∈rm

∑
j∈rn

〈φ(m)
am φ

(n)
an |

1

|~ri − ~rj|
|φ(m)
bm
φ

(n)
bn
〉

)
N∏

l 6=m,n

δal,bl (2.11)

where the indices i and j run over the electrons on chromophores m and n, respec-
tively. Since the electrons within a given molecule are identical and indistinguishable,
and the electrons on differing molecules are distinguishable, each summand within
the double-summation over all possible electron pairs in Eq. 2.11 will be identical.
Thus, the summation can be replaced with a single term:

melec
tot∑

i∈rm

nelec
tot∑

j∈rn

〈φ(m)
am φ

(n)
an |

1

|~ri − ~rj|
|φ(m)
bm
φ

(n)
bn
〉 = melec

tot n
elec
tot 〈φ(m)

am φ
(n)
an |

1

|~rm1 − ~rn1|
|φ(m)
bm
φ

(n)
bn
〉

(2.12)

where melec
tot and nelec

tot are the total number of electrons for the molecules m and n,
and rm1 and rn1 are the first electron coordinates for the molecules m and n. Eq. 2.12
can be further simplified by using electron densities [9]:

melec
tot n

elec
tot 〈φ(m)

am φ
(n)
an |

1

|~rm1 − ~rn1|
|φ(m)
bm
φ

(n)
bn
〉

= melec
tot n

elec
tot

∫
...

∫
φ
∗(m)
am ({~rm})φ(m)

bm
({~rm})φ∗(n)

an ({~rn})φ(n)
bn

({~rn})
|~rm1 − ~rn1|

d~rm1 ...d~rmtotd~rn1 ...d~rntot

(2.13)

=

∫ ∫
ρ

(m)
ambm

(~rm1)ρ
(n)
anbn

(~rn1)

|~rm1 − ~rn1|
d~rm1d~rn1 (2.14)

where the density of a single molecule is defined by:

ρ
(m)
ambm

(~rm1) = melec
tot

∫
...

∫
φ∗(m)
am ({~rm})φ(m)

bm
({~rm})d~rm2 ...d~rmelec

tot
(2.15)

Notice that the terms in Eq. 2.11 will appear for both the diagonal and off-diagonal
matrix elements.

The fourth approximation made for the Frenkel exciton model is to ignore the
perturbations that Eq. 2.11 makes to the diagonal site energies. This is made for



CHAPTER 2. FRENKEL EXCITON HAMILTONIAN 9

a similar reason as the third approximation - namely any perturbations to the site
energies will be captured by the system-environment coupling terms.

We have defined all the matrix elements necessary to solve the secular equation
under the stated approximations. After subtracting out the energy of the total
ground state, we can express the new effective Hamiltonian as [10]:

Ĥeff =
N∑
m=1

εmσ
†
mσm +

N,N∑
m6=n

Jmnσ
†
mσn (2.16)

εm = E
(m)
1 − E(m)

0 Jmn =

∫ ∫
ρ

(m)
01 (~u)ρ

(n)
10 (~v)

|~u− ~v|
d~ud~v (2.17)

where σ†m ≡ |φ
(m)
1 〉 〈φ

(m)
0 | is a Pauli creation operator for an excitation on chro-

mophore m, and σm ≡ |φ(m)
0 〉 〈φ

(m)
1 | is a Pauli annihilation operator for an excitation

on chromophore m. Eq. 2.16 is what is known as the Frenkel Hamiltonian (or Frenkel
exciton model) in the Heitler-London approximation [11].
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Chapter 3

Molecular aggregation effects
beyond the Frenkel Exciton
Hamiltonian

3.1 Introduction

The geometry of chromophore aggregates influences how they couple to one an-
other, which in turn determines the electronic properties of the extended system.
Deliberate control over the positions and orientations of chromophores can thereby
be used to achieve specific properties such as efficient energy transfer [12]. Light har-
vesting in photosynthesis is an example from nature of how chromophores embedded
in proteins have been optimized by evolution to capture light over a specific spec-
trum and to efficiently transfer the excitation energy to the photosynthetic reaction
center [1, 5, 13, 14]. In designing synthetic light harvesting antennae for organic sen-
sors or photovoltaics, it is critical to understand how the structural and orientational
properties of the chromophore arrays affects their coupling, and hence their excitonic
and optical properties [9, 15–19]. Importantly, recent work has suggested that quan-
tum mechanical effects play a key role in the high efficiency of biological excitation
energy transfer (EET) [3, 20–22]. Understanding the details of the quantum me-
chanical coupling between chromophores is an important step towards probing and
exploiting any beneficial effects of quantum mechanical coherence in energy transfer.

Due to its spectroscopic attributes and small size, coumarin-343 (see Figure 3.1)
is a molecule of particular interest for use in virus-templated synthetic light har-
vesting complexes, using e.g. the tobacco mosaic virus (TMV) protein scaffold [23].
The TMV protein monomers undergo self-assembly to form complex structures such
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as helices and stacked disks [24]. The assembled TMV can be made into a light
harvesting array by covalently attaching chromophores such as coumarin-343 onto
the protein [23, 25–27]. The stacked disks and helical arrays of chromophores act
as aggregate systems with optical properties (spectral width, peak absorption fre-
quency) that differ from those of the free chromophore. It is possible to exercise a
fine degree of control over these optical properties by changing the concentration of
chromophores and the positions at which they are attached [28].

Conventionally the interaction between excited states of nearby chromophores is
modeled using a tight-binding Hamiltonian of the form [14, 29],

H =
N∑
i=1

εiσ
†
iσi +

N,N∑
i 6=j

Ji,jσ
†
iσj, (3.1)

where εi is the transition energy of chromophore i, Ji,j is the coupling between chro-

mophores i and j, σ†i ≡ |ψi1〉 〈ψi0| is a Pauli creation operator for an excitation on
chromophore i, and σi ≡ |ψi0〉 〈ψi1| is a Pauli annihilation operator for an excita-
tion on chromophore i. In this approach each molecule is treated as a two-level
system and the number of excitations is conserved. This truncated description of
the intermolecular Hamiltonian is often referred to as the Frenkel Hamiltonian (or
Frenkel exciton model) in the Heitler-London approximation [11]. Such effective
Hamiltonian descriptions constitute the only feasible approach to study large molec-
ular aggregates, since ab-initio methods cannot be scaled to such large systems.
However, some of the parameters entering the effective Hamiltonian descriptions can
be calculated using ab-initio methods. For instance, the coupling between chro-
mophores (Ji,j), which is well-approximated by a Coulombic interaction between the
transition densities of chromophores i and j, can be calculated exactly using the
transition density cube (TDC) method [30]. The most common way to approximate
this coupling is by the ideal dipole approximation (IDA) [31] which treats the 1/r
interaction between the two densities as an interaction between the dipole moments
of the transition densities; several papers have compared the accuracy of the IDA
to the more complete TDC description in various molecules [32–34]. The effective
Hamiltonian in Eq. (3.1) relies on the approximation that the aggregate wavefunc-
tion can be reasonably constructed from the product of monomer wavefunctions (a
Heitler-London-type picture). However such effective Hamiltonian descriptions may
also neglect other potentially important aspects of the intermolecular interactions. In
particular, Eq. (3.1) does not include electron exchange between the chromophores,
nor does it allow for relaxation of the monomer wavefunctions. To go beyond this
approximate description requires making detailed electronic structure calculations
on the aggregate, and this is what we undertake in this study.
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In the following sections we present time-dependent density functional theory
(TDDFT) results for coumarin-343 and compare them to results from the IDA and
TDC. We also compare to an effective Hamiltonian that we obtain from expressing
the molecular Hamiltonian in a basis constructed from products of monomer wave-
functions. TDDFT provides a middle ground between accuracy and computational
expense, and we have performed some benchmarking calculations to determine the
quality of TDDFT for coumarin.

The results presented here are similar in spirit to a number of recent ab-initio
studies of excited states of molecular aggregates, and we briefly review some of
these studies here. Firstly, Ref. [35], which perhaps has the most overlap with the
results in this work, develops a method referred to as TrEsp for using ab-initio cal-
culations of charge and transition densities for monomers to determine energies of
excited states of coupled chromophores. Next, some recent papers, e.g., [36, 37],
have examined the various components of electronic coupling in condensed media
using ab-initio methods, separately characterized through-bond and through-space
contributions, and analyzed the effects of solvent properties on these. Finally, several
works have examined the aggregation mechanisms and subsequent excited states of
molecular aggregates of dimers and extended systems using ab-initio methods [38–
42]. These studies concentrate on aggregates common in molecular crystals (e.g.,
perylene bisimide (PBI) aggregates) and as a result focus on very densely packed
systems; typical inter-molecular separation distances studied in these works are in
the range 2-8Å. In such self-assembling aggregates the mechanisms that dictate aggre-
gation geometries and intermolecular potentials – e.g., dispersion forces – are critical
to understanding excited state energies. In contrast, in the papers cited above and
in this work the focus is on molecular aggregates found in biomimetic or biological
systems. In such systems the inter-molecular separation is typically larger, and crit-
ically, the forces that dictate aggregation are mostly due to external influences such
as protein scaffolds. Therefore in such systems the intermolecular potentials play a
smaller role although as we show below they cannot be ignored completely.

An outline of the remainder of this chapter follows. In section 3.3.1, we present
these benchmarking calculations and give the TDDFT transition energies and transi-
tion dipoles for a single coumarin-343 chromophore. These are the simplest parame-
ters which can be used in Eq. (3.1). Then, in section 3.3.2, we explore using TDDFT
the energetics resulting from coupling between two dyes at a number of separation
distances and orientations. We compare the TDDFT exciton splitting energies to
splittings calculated by approximate methods, and also examine the effects of ag-
gregation on exciton energies and wave functions, in particular, the role of orbital
relaxation and deviations from the solutions to the Heitler-London description of
monomer coupling.
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3.2 Methods

The geometries of all the monomers considered in this report have been minimized
using the B3LYP/6-31G* level of theory [43–46]. Single-point ground and excited-
state energy calculations were then performed using TDDFT [47, 48] with the M06-
HF [49], M11 [50], M11-L [51], and PBE [52, 53] functionals and the 6-31G* [44–46],
6-31+G* [44–46, 54], and 6-311G** [55, 56] basis sets. EOM-CCSD [57–59] calcula-
tions were performed to benchmark the density functionals, and multi-configurational
self-consistent-field (MCSCF) [60] calculations were used to examine the presence of
multireference character. The polarized continuum model (PCM) [61] was used to
model the effects of water solvation. Range-corrected TDDFT [62] was also used to
determine the energetic order of the charge-transfer states, which TDDFT predicts
to be too low in energy. All calculations were performed using the GAMESS elec-
tronic structure package [63, 64], except for the transition density cube files (the one
particle transition density projected onto a 3 dimensional cartesian grid) which were
obtained from Q-Chem [65].

The calculations in this chapter use a modified coumarin-343 molecule which has
an amide group that is necessary for attaching the dye on to the TMV substrate. For
simplicity, in this work we shall refer to this modified molecule as coumarin-343-MA
(coumarin-343-methylamide).

3.3 Results and Discussion

3.3.1 Single-chromophore benchmarking studies and
parameter determination

O ON

N
H

O

CH3

(a) Coumarin-343-MA

O O

(b) Coumarin

Figure 3.1: (a) Structure of coumarin-343-MA, modified for attachment to TMV substrate.
(b) The smaller coumarin molecule, on which we performed larger and more accurate
calculations to benchmark the density functionals we used.
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In order to choose an appropriate density functional and basis set for coumarin-
343-MA, we first ran benchmarking calculations on coumarin (see Figure 3.1). We
use the transition energy and the transition dipole moment to gauge accuracy, since
these are the key quantities relevant in many effective Hamiltonian approaches. Four
TDDFT functionals were compared with the more accurate EOM-CCSD method,
and the results are summarized in Table 3.1.

1st Excited State 2nd Excited State
Basis Set Functional Ground State Energy [Ha] Exc. Energy [eV] f Exc. Energy [eV] f
6-31G* M06-HF -496.8747 4.415 0.000 4.780 0.215

M11 -496.7467 4.606 0.180 4.809 0.000
M11-L -496.8800 4.152 0.052 4.407 0.000
PBE -496.4380 3.625 0.000 3.822 0.060

B3LYP -496.7418 4.182 0.111 4.396 0.000
EOM-CCSD -495.5607 4.563 0.089 5.126 0.000

6-31+G* M06-HF -496.8921 4.457 0.000 4.699 0.241
M11 -496.7619 4.548 0.197 4.848 0.000

M11-L -496.8908 4.078 0.055 4.414 0.000
PBE -496.4571 3.705 0.000 3.782 0.062

B3LYP -496.7612 4.129 0.119 4.453 0.000
EOM-CCSD -495.5870 4.497 0.098 5.121 0.000

6-311G** M06-HF -497.0182 4.481 0.000 4.707 0.239
M11 -496.8850 4.552 0.181 4.775 0.000

M11-L -497.0357 4.090 0.054 4.320 0.000
PBE -496.5658 3.618 0.000 3.781 0.060

B3LYP -496.8725 4.132 0.111 4.383 0.000
EOM-CCSD -495.7996 4.502 0.095 5.068 0.000

Table 3.1: Density functional benchmarking for coumarin in the gas phase. The TDDFT
excitation energies and oscillator strengths (f) for five functionals and three basis sets
were compared with the EOM-CCSD results. The B3LYP functional matched both the
excitation energy and the oscillator strength of EOM-CCSD within our tolerance. The
results show only a very weak dependency to the choice of basis set.

For each basis set, the EOM-CCSD method predicts a first excitation energy of
4.5-4.6 eV and an oscillator strength of 0.09-0.10. The M11 functional is able to
reproduce the excitation energy well, but it significantly overestimates the oscillator
strength and transition dipoles. Since the accuracy of the transition dipole directly
affects the accuracy of the chromophore couplings, the B3LYP functional offered a
better combination of accuracy in the energetics and the transition dipoles. There is
not a large basis set effect for the basis sets considered, and so we performed further
calculations at the B3LYP/6-31G* level of theory.

We also check for multireference character, which occurs when multiple Slater
determinants are needed to accurately express the zeroth-order wavefunction. This



CHAPTER 3. MOLECULAR AGGREGATION EFFECTS BEYOND THE
FRENKEL EXCITON HAMILTONIAN 15

is common for large or conjugated molecules. MCSCF calculations were run on
coumarin-343-MA using an active space of 7 electrons in 7 π-orbitals. The natural
orbital occupation numbers, which are the eigenvalues of the one-electron reduced
density operator [66],

γ(r1, r
′
1) = N

∫
· · ·
∫
ψ∗(r1, r2 . . . rN)ψ(r′1, r2 . . . rN)dr2 . . . drN , (3.2)

are useful for determining multireference character; occupation numbers that deviate
significantly from 0.0 or 2.0 indicate that a multireference wavefunction is needed.
We find that the occupation numbers of the occupied and unoccupied orbitals were
all greater than 1.9 or less than 0.12. This indicates that there is little multireference
character for this dye and so the benchmark calculations and TDDFT calculations
are both adequate.

M06-HF M11 M11-L B3LYP B3LYP (Water)
Ground State Energy [Ha] -993.5938 -993.3408 -993.5986 -993.2967 -993.3128
1st Excitation Energy [eV] 3.927 3.839 3.445 3.465 3.199

x 0.062 0.070 -0.014 0.000 -0.076
Transition Dipole [Debye] y -0.022 0.114 -0.018 0.000 0.034

z 7.228 7.029 6.101 6.706 7.611
Oscillator Strength 0.778 0.729 0.486 0.591 0.703

Table 3.2: TDDFT results for Coumarin-343. The ground-state and excitation energies,
transition dipoles, and oscillator strengths are given for each functional using the 6-31G*
basis set. The PBE functional is not included as it performed poorly in the benchmark
calculations on the coumarin molecule. The final column gives the B3LYP result using a
continuum model to describe solvation in water.

The B3LYP/6-31G* excitation energies and transition dipoles for coumarin-343-
MA are given in Table 3.2, together with results for the other functionals. At this
level of theory, the first excitation energy is 3.465 eV and the oscillator strength is
0.591. The transition dipole between the ground and first excited states of coumarin-
343-MA is pictured in Figure 3.2a. We see that the transition dipole lies flat along
the plane of the molecule, on the axis formed between the center of the molecule and
the nitrogen atom of the amide group.

3.3.2 Two-dye coupling calculations

Now we turn to assessing the magnitude of the coupling between excited states
of pairs of molecules, where these are denoted as A and B. Using the benchmarking
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(a) transition dipole moment (b) HOMO (c) LUMO

Figure 3.2: (a) The transition dipole of coumarin-343-MA calculated at the TD-B3LYP/6-
31G* level of theory. (b) The highest occupied molecular orbital (HOMO) of coumarin-
343-MA. (c) The lowest unoccupied molecular orbital (LUMO) of coumarin-343-MA.

studies described in the previous subsection, we calculated the energetics of two
coumarin-343-MA molecules at various separation distances and different relative
orientations, using the B3LYP/6-31G* functional and basis set.

In order to systematically sample the possible dimer orientations, we begin with
the molecules held at a fixed intermolecular separation along the x-axis. The transi-
tion dipole moment of each molecule is aligned along the z axis, with the plane of the
molecule flat on the y-z plane as shown in the Parallel-0◦ geometry in Figure 3.10.
The orientation of each molecule can be characterized by the three angles: the roll
angle (rotation of the molecule about the transition dipole moment axis), the polar
angle θ, and the azimuthal angle φ. These three angles correspond to the Euler
angles α, β, and γ, respectively. We have found that varying the roll angle does
not affect the magnitude of coupling very much, since the roll angle does not change
the direction of the transition dipole moment, therefore we do not sample over these
angles.

To create our dimer geometries, we first fix the azimuthal angle of molecule A
by constraining its transition dipole moment to lie on the x-z plane. We sample
over the remaining 3 angular degrees of freedom: the polar angles θA and θB, and
the azimuthal angle φB. These angles are defined in Figure 3.3a. Next, molecule A
is rotated about the y-axis by θA, and molecule B is rotated about the (ŷ cosφB −
x̂ sinφB) axis by θB. In Figure 3.3b, we show examples of the resulting relative
orientations possible for two chromophores.

In the following we will use Ei (Ẽi) to denote the monomer (dimer) energies
calculated using TDDFT.
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(a) Orientation angles for the chromophores. (b) Example of dimer configurations where
the polar angle of the first dye is held at 30◦,
while sweeping over the various relative orien-
tations of the second dye.

Figure 3.3: Definition and examples of the three angles used to sample the relative orien-
tations between two molecules.

For a homo-dimer, the tight-binding effective Hamiltonian of Eq. (3.1) reduces to

Ĥ =

|10〉 |01〉( )
〈10| ε0 J
〈01| J ε0

(3.3)

in a basis of excitations on the left (|10〉) and right (|01〉) chromophores, where
ε0 = E1 − E0 is the first excitation energy of the monomer and J is the coulombic
coupling between monomers. As mentioned in the Introduction, in the absence of
exchange this coupling can be captured as the Coulomb interaction between tran-
sition densities (e.g. in the TDC method), and this can be further approximated
as a dipole-dipole interaction (as in the IDA). Diagonalizing the matrix in Eq. (3.3)
results in delocalized exciton states with symmetrically split energies, also known as
Davydov splitting [67],

|ψ±〉 =
|10〉 ± |01〉√

2
ε± = ε0 ± J. (3.4)

W emphasize that this theory predicts a symmetric splitting of the exciton energies
according to Eq. (3.4). In this section we will assess the degree to which TDDFT
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calculations agree with the tight-binding effective Hamiltonian description of the
excited states of the coumarin-343-MA homo-dimer. In particular, we will examine
three specific aspects, for various chromophore separation distances and chromophore
orientations: (i) we will compare the TDDFT description of the Coulombic coupling
magnitude J to the magnitudes provided by IDA and TDC, (ii) we will assess the
validity of the form of the symmetric eigenstates given in Eq. (3.4), and (iii) we will
assess the validity of the symmetric splitting of eigenenergies given in Eq. (3.4).

Coulomb coupling energy

Figure 3.7 shows the splitting of the excited state energies ( Ẽ2−Ẽ1

2
) for TDDFT

as a function of the inter-chromophore separation distance for three different relative
orientations. For comparison, we have also plotted the energetic splitting predicted
by Eq. (3.4) when the Coulomb coupling J is calculated using the IDA and TDC
methods. Comparison of this predicted energetic splitting is the most consistent
methods for comparing the three methods.

From Figure 3.7 we see that the numerically integrated TDC method agrees
very well with the TDDFT calculations, while the IDA over-predicts for the 0◦ rel-
ative orientation (parallel and anti-parallel) and under-predicts for the 30◦ relative
orientation. As the intermolecular separation increases, the IDA values begin to
qualitatively match the TDDFT/TDC values after 12Å separation, however the con-
vergence of the percent error is still quite slow. The percent error of the IDA splitting
decreases to 10% only after 30Å separation (averaged over the three orientations).
This shows that the IDA can be a poor description of Coulombic coupling for inter-
chromophoric distances that are less than 30Å. More sophisticated methods such
as TDC should be used in such cases. This conclusion is in agreement with Refs.
[32–34].

Calculations where the relative orientation between dimers is explored while keep-
ing the distance separation fixed were also done. In Figures 3.4 – Figure 3.6, we hold
θA fixed and plot the coupling as a function of different relative orientations of the
second dye. Our sampling scheme leads to 42 possible relative orientations of the
second dye. Only half the sphere is shown because the reverse side was found to be
quite symmetric due to the high symmetry of charge density across the plane of the
page.

The results confirm that the TDC can reliably predict the energetic splittings.
TDC systematically outperforms IDA, and is also able to predict the correct splitting
in geometries where the molecules are nearly in contact with one another. In general,
IDA overestimates for configurations that resemble H-aggregates (when θA is 0◦) and
underestimates for the configurations that resemble J-aggregates (when θA is 180◦).
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θA JTDDFT JTDDFT − JIDA JTDDFT − JTDC
Energy [eV]

0.060

0.045

0.030

0.015

0.000

0.015

0.030

0.045

0.060

Energy [eV]

0.024

0.018

0.012

0.006

0.000

0.006

0.012

0.018

0.024

Energy [eV]

0.024

0.018

0.012

0.006

0.000

0.006

0.012

0.018

0.024

Figure 3.4: Dimer relative orientational dependence of electronic coupling at 9 Å separa-
tion. The first column depicts the polar orientation of the first molecule while the position
on the polar plots on the right represents the orientation of the second molecule relative to
the first (see Figure 3.3b). Columns 2-4 show the magnitude of JTDDFT, the value of the
coupling given by TDDFT (column 2), the error resulting from the IDA approximation to
this (column 3) and the error resulting from the TDC estimate (column 4), as a function
of the relative orientation.
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Figure 3.5: Dimer relative orientational dependence of electronic coupling at 12 Å separa-
tion. The first column depicts the polar orientation of the first molecule while the position
on the polar plots on the right represents the orientation of the second molecule relative to
the first (see Figure 3.3b). Columns 2-4 show the magnitude of JTDDFT, the value of the
coupling given by TDDFT (column 2), the error resulting from the IDA approximation to
this (column 3) and the error resulting from the TDC estimate (column 4), as a function
of the relative orientation.
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Figure 3.6: Dimer relative orientational dependence of electronic coupling at 18 Å separa-
tion. The first column depicts the polar orientation of the first molecule while the position
on the polar plots on the right represents the orientation of the second molecule relative to
the first (see Figure 3.3b). Columns 2-4 show the magnitude of JTDDFT, the value of the
coupling given by TDDFT (column 2), the error resulting from the IDA approximation to
this (column 3) and the error resulting from the TDC estimate (column 4), as a function
of the relative orientation.
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Since the IDA is by definition an approximation to the TDC coupling, the over
and underestimation of IDA is due to the approximation of using a point dipole to
approximate a charge density. The TDC coupling itself seems to perform well over
most configurations, giving good agreement with the TDDFT results. There are a
few data points for which TDC matches poorly to TDDFT; in these configurations,
the spatial extent of the molecules overlaps enough to allow significant interaction
between the two molecules.

Exciton energies and site energy shifts

Figure 3.8 shows TDDFT excitation energies as a function of inter-chromophore
distance at three different orientations. The most striking feature of these plots is
that the excitation energies split asymmetrically from the energy of the monomer
excited state (indicated by the dashed line). This is in disagreement with the tight-
binding effective Hamiltonian which predicts a symmetric splitting of the energies
around the monomer energy (see Eq. (3.4)).

To explain this discrepancy we must re-examine the full molecular Hamiltonian
of the coupled chromophore system. In a basis of single-chromophore ground states
and single excitations,

|00〉 = |ψA0 〉 ⊗ |ψB0 〉 |10〉 = |ψA1 〉 ⊗ |ψB0 〉
|11〉 = |ψA1 〉 ⊗ |ψB1 〉 |01〉 = |ψA0 〉 ⊗ |ψB1 〉

where |ψAi 〉 ⊗ |ψBj 〉 indicates a direct product wavefunction between molecule A in
state i and molecule B in state j, the Born-Oppenheimer molecular Hamiltonian is
written as [10]

Ĥ =

|00〉 |10〉 |01〉 |11〉


〈00| 2E0 + Jgs
gs Jgs

trans J trans
gs J trans

trans

〈10| Jgs
trans E0 + E1 + cJgs

es J trans
trans J trans

es

〈01| J trans
gs J trans

trans E0 + E1 + cJes
gs Jes

trans

〈11| J trans
trans J trans

es Jes
trans 2E1 + Jes

es

(3.5)

where Ei are the relevant monomer energies. Ignoring the effects of quantum me-
chanical exchange, which we have determined from the TDDFT calculations to be
small at these distances, the coupling terms J ji indicate coulomb integrals between
either a charge or transition density on molecule A and either a charge or transition
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Figure 3.7: The energy splittings between the dimer excited states are shown for TDDFT,

TDC and IDA calculations. The TDDFT points show Ẽ2−Ẽ1
2 , while the TDC and IDA

lines show ε+−ε−
2 with the J coupling calculated using the respective approximation. The

TDC and TDDFT predictions mostly overlap.
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Figure 3.8: TDDFT excitation energies (Ẽ1 − Ẽ0 and Ẽ2 − Ẽ0) for the coupled excited
states of the coumarin-343-MA dimer. Orientation of the dimer is shown to the right.
Erroneous charge transfer states are not shown, since they do not mix into the optical
states (explained in Figure 3.12).
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density on molecule B, i.e.

J j
i =

∫
ρAi (r1)

1

|r1 − r2|
ρBj (r2)dr1dr2. (3.6)

with i, j equal to either gs (ground state charge density), es (excited state charge
density), or trans (transition density). The charge densities and transition densities
are defined for molecule A as

ρAgs(r1) = N

∫
· · ·
∫
ψA∗0 (r1, r2 . . . rN)ψA0 (r1, r2 . . . rN)dr2 . . . drN ×

∑
n∈A

Znδ(Rn − r1) (3.7)

ρAes(r1) = N

∫
· · ·
∫
ψB∗1 (r1, r2 . . . rN)ψB1 (r1, r2 . . . rN)dr2 . . . drN ×

∑
n∈B

Znδ(Rn − r1) (3.8)

ρAtrans(r1) =

∫
· · ·
∫
ψA∗0 (r1, r2 . . . rN)ψA1 (r1, r2 . . . rN)dr2 . . . drN , (3.9)

and similarly for molecule B, where Zn and Rn correspond to the charge and positions
of the nuclei in their respective molecules, and N is the total number of electrons
in a molecule. The coefficient c is a parameter used to scale the magnitude of the
ground-state/excited-state Coulomb integral (see discussion below).

In order to reduce this Hamiltonian into the tight-binding effective Hamiltonian in
Eq. (3.3) a number of approximations must be made. Firstly, the Coulomb integrals
are assumed to be much smaller than the energetic differences and therefore the
matrix in Eq. (3.5) is approximated as block diagonal, with each block labeled by
the number of excited states. Explicitly, J ji � E1 −E0 but Jgs

es ≈ Jes
gs , and therefore

we can ignore all off-diagonal terms except for those coupling |10〉 and |01〉. This
approximation is sometimes referred to as the Heitler-London approximation in the
literature [68]. Typically, the intermolecular Coulomb interaction terms are ignored
i.e., one assumes that Jgs

gs ≈ Jgs
es ≈ Jes

gs ≈ 0, and then the only Coulomb interaction
terms that remain are the J trans

trans terms. Under this approximation the in the single
excitation subspace (after a shift of the diagonal energies by 2E0) is the one given in
Eq. (3.3),

Ĥ − 2E0 =

|10〉 |01〉( )
〈10| ε0 J trans

trans

〈01| J trans
trans ε0

(3.10)

with ε0 = E1 − E0.
We assess the validity of these approximations by evaluating the expanded 4× 4

effective Eq. (3.5). In order to calculate the matrix elements of this larger we use
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Mulliken partial atomic charges [69] for the ground state and excited state densi-
ties instead of density cubes. This is because density cube calculations are not con-
strained to reproduce the correct multipole expansion of the electron densities. These
errors can be corrected for the transition density, as shown by Kreuger et al. [30],
however the errors are more pronounced in the ground state and excited state densi-
ties, making them sensitive to the choice of grid resolution. In Figure 3.10, we show
the results of using this expanded effective . It is evident from Figure 3.10 that we
are able to reproduce the asymmetric shifts in excitonic energies using Eq. (3.5).

The primary effects that invalidate the approximations leading to Eq. (3.10) are
electrostatic in nature. The neglect of the Jes

trans, J
gs
trans, J

trans
es , J trans

es and the J trans
trans

terms coupling the ground state |00〉 to the two-exciton state |11〉 (Heitler-London
approximation) is valid since these are much less than E1 − E0 at all the inter-
chromophore distance scales we examined. However, the electrostatic corrections to
the diagonal elements of Eq. (3.5), Jgs

gs , J
gs
es , J

es
gs , J

es
es , are significant and cannot be

neglected. These are shifts to monomer energies due to the presence of the charges
on the other chromophore. These electrostatic shifts are dependent on the inter-
chromophoric distance and the exact orientation of the chromophores. Using the
Mulliken partial atomic charge approach we are able to capture these electrostatic
shifts and thereby get very good agreement with the TDDFT energies. The static
dipole for the ground state and excited state both lie nearly parallel to the transition
dipole moment. Consequently, the direction of the shifts is consistent with what is
expected from the interaction of two electronic dipoles - the parallel dimers have a
repulsive electrostatic effect while the anti-parallel dimers have an attractive effect.

While the asymmetric splitting is immediately captured by including these elec-
trostatic distance-dependent shifts, scaling the ground-state/excited-state coulomb
integrals by c = 0.66 is necessary in order to achieve quantitative agreement with the
TDDFT energies. The value of this scaling factor is specific to a chromophore pair,
but once determined for a particular orientation and distance separation, it holds for
nearly all inter-chromophore separations and orientations. We have confirmed this
by explicit calculation of energies at additional orientations and distances not pre-
sented in Figure 3.10. We interpret this parameter as the screening of the Coulomb
integral by the other electrons in the molecular dimer.

We remark here that similar electrostatic shifts of proximal chromophores were
identified in Ref. [70]. Such electrostatic shifts to monomer energies can be a signifi-
cant source of disorder in multi-chromophoric assemblies. It is widely accepted that
protein residues cause energetic shifts that are important for providing a favorable
energetic landscape for energy transfer [71]. Our results indicate that in addition
to the effect of the proteins, the electrostatic environment provided by neighboring
chromophores should also be taken into account when calculating energetic shifts
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and disorder in multi-chromophoric arrays. From a design perspective, this implies
that the exact orientation and placement of chromophores are important not only
for the precise engineering of the excitonic coupling between chromophores but also
for engineering the energetic landscape.
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Figure 3.9: TDDFT excitation energies (Ẽ1 − Ẽ0 and Ẽ2 − Ẽ0) for the coupled ex-
cited states of the coumarin-343-MA dimer in various solvent environments (modeled using
PCM). Only results for the parallel oriented dimer are shown.

We note that the electrostatic shifts identified here can be strongly affected by
the polarity of the solvent [36]. In particular, charge screening by a polar solvent can
reduce the value of electrostatic integrals such as Jes

gs . These integrals are likely to be
more suppressed than the transition density integrals, e.g. J trans

trans , and therefore the
energy shifts can be suppressed even though the excitonic coupling (which is largely
determined by J trans

trans ) may be only marginally effected by solvent screening [37].
To demonstrate this we calculated the excitations energies of the coumarin-343-MA
homo-dimer in various solvent environments modeled using a polarizable continuum
model (PCM). The results are shown in Figure 3.9 for the parallel oriented dimer.
Clearly, as the polarity of the solvent increases the asymmetry of the excitation
energy splitting around the monomer energy decreases. This demonstrates that it
is important to integrate information about the solvent environment when modeling
excitonic properties of molecular aggregates; solvent polarity will dictate the amount
of influence electrostatic effects have on excitonic energies.
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Figure 3.10: The energy levels calculated using TDDFT are together with the excited
states of the 4x4 in Eq. (3.5). For the latter, the excited states are plotted as λ1 − λ0 and
λ2 − λ0 where λi is the ith eigenvalue.
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Exciton wave functions

We now investigate the character of the TDDFT excited states to examine whether
they are well described by products of monomer wavefunctions, as predicted by
Eq. (3.4). The tight-binding effective description of the excited states can break
down if either the dimer orbitals change with respect to the monomer orbitals, or
the nature of the excited state changes significantly as a function of distance. The
TDDFT excited states are written as linear combinations of basis functions which
represent single-particle excitations from the DFT ground state. If the coefficients
of this linear expansion are distance-dependent, the predictions of the effective in
Eq. (3.3) are invalid. This is because the exciton wave functions in Eq. (3.4) are con-
structed from symmetric and anti-symmetric combinations of the monomer states
(i.e. Eq. (3.4)), and are therefore independent of the magnitude of the coupling en-
ergy J and hence of the inter-chromophoric separation. Figure 3.11 shows these
coefficients for the bright state of the parallel orientation of the monomers as a func-
tion of distance. We see from this figure that the nature of the TDDFT excited state
is relatively constant as a function of distance, until we get to small separation dis-
tances (below 8 Å). In particular, the dominant single-particle excitation, that from
the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO) on each monomer, begins to change at intermolecular distances less
than 8 Å. However, some of the other minor excitations which contribute to the
TDDFT excited state begin to change gradually as a function of distance already at
12 Å.

Some of the single-particle excitations which contribute below 7 Å represent
charge-transfer excitations from molecule A to molecule B. The existence of charge
transfer, especially between 6 and 7 Å, is a feature present also for range-corrected
TDDFT functionals (Figure 3.12). It is well known that TD-B3LYP is poor at
predicting the energetics of charge transfer states, as are other functionals without
100% Hartree-Fock exchange [72, 73]. Figure 3.12 shows that TD-B3LYP predicts
low-lying charge transfer states for the coumarin-343-MA dimer. However, the range-
corrected DFT calculations show that the charge transfer states are much higher in
energy. The splitting between the exciton states is consistent between B3LYP and
the range corrected calculations. This suggests that the low lying charge transfer
states predicted by B3LYP do not affect the character of the exciton states. There-
fore, we may safely disregard these charge transfer states and use only the exciton
states in our analysis.

In Figure 3.13, we show the overlap integral of the monomer molecular orbitals
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Figure 3.11: The expansion coefficients of the parallel-oriented bright state shown as a
function of distance. Dashed lines represent the corresponding coefficients in the monomer
TDDFT excited states. The top panel shows the dominant single-particle excitation, which
corresponds to the excitation of an electron in the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMO) of each monomer. The
bottom panel shows other single-particle excitations which make up the TDDFT excited
state. Molecular orbitals are labeled with respect to their energetic position below the
HOMO (H − n) or above the LUMO (L+ n). The excitations that are doubly degenerate
(e.g. ψLA

HA
and ψLB

HB
) have been averaged and plotted without their molecule index.

and the corresponding dimer orbitals,∫
φdimer
n (r)φmonomer

n (r)dr. (3.11)

In the limit of infinite separation between the two dyes, each dimer molecular orbital
is doubly degenerate, possessing unit overlap with a corresponding monomer molec-
ular orbital. For the HOMO and LUMO, which are the most important orbitals in
the bright state (Figure 3.11), the correspondence between monomer and dimer MOs
is almost perfect for distances greater than 7 Å. Between 6 and 7 Å, these orbitals
change by about 8% . Some orbitals change already at larger distances, such as the
LUMO+1 and the LUMO+2 orbitals, which begin to deform as the intermolecular
distance is decreased below 8 Å. Finally, the HOMO-3, which with the LUMO+1
forms the next most dominant excitation in the bright state, changes continuously
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Figure 3.12: Coumarin-343 energy levels predicted by B3LYP and range-corrected BLYP.
The coupled exciton states (solid lines) for B3LYP and the range corrected calculations
are shown overlapped, while the energies of the charge transfer states (dashed lines) varies
based on the functional. The range corrected BLYP energies have been shifted such that
the first excited state energies of the monomer calculations are all aligned to that of B3LYP.
This is done to compare the energies of the charge transfer states relative to the coupled
exciton states.

at distances less than 18 Å; however, it changes by only 2% and furthermore it does
not form the majority of the excited state, so this effect is diminished in the excited
state energies and couplings.

To summarize this investigation of excited state wave functions, we find that for
coumarin-343-MA, it is reasonable to describe the dimer wavefunctions in a basis
of monomer wavefunctions for separation distances greater than 8 Å. For smaller
distances the B3LYP calculations indicate possible mixing in of charge transfer char-
acter into the excited state wavefunction, although the extent of this mixing is not
conclusive from this level of calculation.

3.4 Conclusions

In this work we have made a critical assessment of the conventional effective
approach of modeling the excitonic properties of molecular aggregates, using the
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Figure 3.13: Overlaps of the bright state dimer molecular orbitals with their corresponding
monomer molecular orbitals (See Eq. (3.11))

coumarin-343-MA dye as a case study. Results from ab-initio electronic structure
calculations using TDDFT were compared with predictions from the conventional
tight-binding effective for a homo-dimer (the Heitler-London approximation). Most
interestingly, we found that the conventional effective for a homo-dimer does not
reproduce the asymmetric energy splittings calculated using TDDFT. In particular,
the ideal dipole approximation of the excited state coupling was found to give a very
inaccurate representation of the TDDFT energy splittings. While the TDC method
was found to perform much better, both the IDA and the TDC descriptions were
found to be unable to reproduce the asymmetric nature of the splitting between
bright and dark state energy levels that is predicted from TDDFT. We showed that
this is a result of ignoring non-negligible electrostatic energy shifts resulting from
the proximity of the two chromophores. We outlined a method for reincorporat-
ing these electrostatic shifts using a simple approach that only requires calculating
Coulomb integrals based on Mulliken partial atomic charges. This approach is an
efficient method for forming more complete effective descriptions that capture all
the relevant physical effects; it only requires TDDFT calculations of dimers of chro-
mophores (of each dimer combination of species present in the aggregate) and the
remaining elements are accurately captured by Coulomb integrals. We find that the
combination of a TDC description of the transition density coupling together with
proper incorporation of electrostatic shifts produces an excellent effective descrip-
tion of excitonics in molecular aggregates. We also demonstrated the importance of
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incorporating details of solvent polarity into the molecular aggregate model, since
this also determines the degree of influence the electrostatic effects have on excitonic
energies.

Additionally, we scrutinized the assumptions of the conventional Heitler-London
tight-binding picture of excitonic coupling, by examining changes in the character of
the excited state and the coupled molecular orbitals as a function of intermolecular
distance. These effects were determined to be small but nonzero for intermolecular
distances greater than 7-8 Å, while TDDFT predicts a significant departure from the
Heitler-London picture at smaller distances. It also predicts some charge-transfer
character at these smaller distances. In the future it would be useful to develop
more reliable estimates of this charge-transfer character [15] in order to analyze the
interplay between excitonic and charge transfer states in chromophore arrays relevant
to natural photosynthesis, such as, e.g., the bacterial reaction center [74].

We expect that our investigation and refinement of effective Hamiltonian descrip-
tions of molecular aggregates will inform the modeling of large molecular aggregates
formed by direct aggregation or aggregation by protein templated assembly. Such
aggregates show promise as the basis for next-generation light harvesting or sensing
devices with tailored properties, and efficient modeling of their excitonic properties
through effective Hamiltonians will be important for rational design and engineering
of such devices.
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Chapter 4

Unified description of excitation
energy transfer and charge
separation

4.1 Introduction

Organic photovoltaic (OPV) cells can be low-cost, light-weight, and flexible, mak-
ing them a promising alternative to silicon based photovoltaic cells.[75, 76] The power
conversion efficiencies of the best OPV cells has recently exceeded 10% [77, 78], yet
this is still far from the theoretical limit of efficiency (20-24%) for single-junction OPV
cells.[79] Typical organic semiconductors have low dielectric constants,[80] usually in
the range 2–5 vs. 11.7 for bulk monocrystalline silicon.[81] Consequently, electrostatic
interactions between charges in organic materials are not effectively screened, and in-
teraction with light predominantly produces excitons (Coulomb-bound electron-hole
pairs), rather than free charge carriers.[82] To generate a current in an OPV cell,
the electron and the hole that form an exciton must move in opposite directions.
However, the exciton binding energy often exceeds the available thermal energy by
an order of magnitude or more.[83] The energy needed for spatially separating the
electron and the hole is therefore typically supplied by the local electric field at an
interface between a domain of electron-donating and electron-accepting molecules
(D-A interface).

One factor limiting the efficiency of OPV cells is the bimolecular recombination of
excitons before they reach a D-A interface.[84] To minimize recombination, typical
OPV cells rely on bulk heterojunctions: purposely disordered blends of electron-
donor and electron-acceptor materials with linear dimensions of donor and acceptor
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domains smaller than the exciton diffusion length.[85] However, the morphology of
such structures is difficult to control precisely. Furthermore, small donor and accep-
tor domains are often thermodynamically unfavorable, and phase segregation of the
donor and the acceptor molecules may lead to a decrease in the efficiency of OPV
cells over time.[86] It is possible to avoid these problems by using covalently bound
donor-acceptor dyads (as well as triads or higher polyads that offer more control
over charge separation and could also find applications in molecular electronics).[4,
6, 87–89]

Recent experiments have shown that charge separation on ultrafast timescales
below 100 fs occurs in a variety of donor-acceptor dyads and of blends where the
donor and acceptor species are not covalently bound.[6, 87, 88, 90–94]. It has been
suggested that the rate of charge separation in such donor-acceptor blends is limited
by diffusion of excitons to the D-A interface, and that excitons that are formed close
to the D-A interface are responsible for ultrafast charge separation.[95] However,
even in the case of donor-acceptor dyads, where all excitons are necessarily formed
directly at the D-A interface, the rate of charge separation can vary significantly
and depends on the strength of coupling between orbitals that are occupied by the
electron and the hole in the initial excited state and in the charge separated state.[87]
Based on spectroscopic studies and calculated magnitudes of electronic couplings, it
has been suggested that in blends of organic molecules and fullerene derivatives
the rate of electron transfer from the excited states on the donor to higher energy
unoccupied states on the acceptor is higher than the rate of electron transfer to
the acceptor LUMO. [94, 96] However, such studies do not address the details of
electron dynamics at D-A interfaces in ultrafast charge separation processes. A
better theoretical understanding of the dynamics of excited state evolution during
charge separation would provide a basis for the rational design of more efficient
photovoltaic materials.

In this chapter, we model the dynamics of ultrafast charge separation in two
donor-acceptor dyads (Figure 4.1) that have been synthesized and characterized ex-
perimentally by Pillai, et. al.[6] The electron donor is a carotenoid for both dyads;
the electron acceptor is a Zn-porphyrin derivative for dyad 1 and a fullerene deriva-
tive for dyad 2. Although in both dyads charge separation occurs on timescales below
1 ps, transient absorption spectroscopy measurements have shown that the rate of
this is 1.2-3 times faster for dyad 2 than for dyad 1.[6] Investigation of the reason
for this difference in charge separation rates using calculations based on a quan-
tum master equation model shows that charge separation in these donor-acceptor
dyads occurs via multiple higher-energy charge transfer states. We also analyze the
significance of coherence for electron transfer from the donor to the acceptor, and
characterize its dependence on the nature of the initial excitation. Our results show
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Figure 4.1: Molecular structures of dyads 1 and 2. The donor fragment (shown in blue)
is a carotenoid for both dyads, and the acceptor fragment (red) is a porphyrin for dyad 1
and fullerene for dyad 2.

that higher energy acceptor states must be included in simulations in order to ob-
tain accurate charge separation rates and reveal key design principles for optimizing
ultrafast charge separation.

4.2 Methods

We simulated charge transfer in two molecular dyads (Figure 4.1) that have been
synthesized and spectroscopically studied by Pillai et al.[6] The geometries of both
dyads were optimized using the Q-Chem electronic structure package’s implementa-
tion of density functional theory (DFT), with the B3LYP hybrid exchange-correlation
functional and the 6-31G* basis set.[97] Each dyad was partitioned into a donor
and an acceptor fragment. The donor fragment (shown in blue in Figure 4.1) is a
carotenoid for both dyads, and the acceptor fragment (shown in red in Figure 4.1) is
a porphyrin derivative for dyad 1 and a fullerene derivative for dyad 2. The boundary
between the donor and acceptor fragments was chosen so that the donor fragment
has similar electronic properties in both dyads.

Transient absorption spectroscopy has been used to track the electron and ex-
citon dynamics in both dyads after an initial excitation to the (bright) second ex-
cited state of the carotenoid (donor).[6] For carotenoids, the lowest energy excited
state is typically a (dark) double excitation state that is not captured by standard
time-dependent density functional theory (TDDFT) calculations[98]. Experimental
results suggest that the initial excitation can undergo efficient internal conversion,
on a timescale of the order of 100 fs, to the lowest-energy carotenoid excited state.
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However, charge separation from this state has a timescale of about 11 ps for dyad
1 and is also on the order of several picoseconds for dyad 2.[6] This state acts as
a trap state and decreases the yield of subpicosecond charge separation that is the
focus of our study, but does not significantly affect its dynamics. Therefore, we do
not include this state in the simulations presented in this chapter.

The carotenoid’s orbitals are well separated in energy, therefore higher excited
states on the donor fragment are not significantly populated during the charge sep-
aration process. Only the lowest two single-excitation states on the carotenoid con-
tribute to ultrafast charge separation and thus need to be included in the simulations.

For dyad 1, transient absorption spectroscopy suggests that exciton transfer from
the donor to the acceptor fragment is negligible.[6] This is likely due to the low
transition dipole strength of the Q-band in porphyrins, which is an order of magni-
tude smaller than in structurally similar materials that are known for efficient energy
transfer, such as chlorophylls, pyropheophorbides, and phthalocyanines.[99] There-
fore, excitons localized on the acceptor need not be included in simulations of charge
separation in dyad 1.

For dyad 2, the rate of resonant energy transfer between the donor and the
acceptor fragments is comparable to the rate of valence electron transfer, but the rate
of hole transfer from the acceptor to the donor is an order of magnitude smaller.[6]
Consequently, excitons localized on the acceptor have a negligible direct contribution
to charge separation in dyad 2: rather, they can undergo efficient energy transfer back
to the donor, followed by efficient electron transfer to the acceptor. Because energy
transfer between the acceptor and the donor is not a rate-limiting step, excitons
localized on the acceptor have little effect on the rate of charge separation. Therefore,
these states do not need to be included in simulations of charge separation in dyad
2.

The two Frenkel exciton states on the carotenoid that are populated within the
first 100 fs of excitation can transfer the excited electron to a number of unoccu-
pied acceptor orbitals. In our simulations, we include as many lowest-energy charge
transfer (CT) states with the hole on the donor and the electron on the acceptor as
are necessary for convergence of the charge separation rates: 20 CT states for dyad
1 and 28 CT states for dyad 2. The complete basis set for our charge separation
simulations consists then of two Frenkel excitons localized on the donor fragment,
and charge transfer states with the electron on the acceptor and the hole on the
donor. We will henceforth refer to the Frenkel exciton states with the electron in
the donor LUMO or LUMO+1 as Exc1 and Exc2, respectively, and to the charge
transfer states, enumerated by increasing energy, as CT3, CT4, ..., CTN (N = 22 for
dyad 1 and N = 30 for dyad 2).
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Using this basis set, we construct a tight binding Hamiltonian for the dyad:

Ĥ =
N∑
i=1

εiâ
†
i âi +

N∑
i=1

i−1∑
j=1

Jij

(
â†i âj + âiâ

†
j

)
, (4.1)

where â†i and âi are creation and annihilation operators, respectively, for basis state
i, εi is the energy of state i, and Jij is the coupling between states i and j.

For excitonic states, Exci (i = 1, 2), εi are given by the TDDFT excitation
energies that correspond to the HOMO-LUMO and HOMO-LUMO+1 excitations,
respectively. These energies account for the difference in orbital energies, as well as
the binding energy of the exciton.

The energies of charge transfer states, CTi (i = 3, N), are given by:

εi = EA
i − ED − e2

4πε0

∫
dr1dr2

∣∣φA
i (r1)

∣∣2 ∣∣φD (r2)
∣∣2

|r1 − r2|
, (4.2)

where φD(r) and ED are the HOMO of the donor fragment and its energy, φA
i (r)

and EA
i are the ith unoccupied orbital of the acceptor fragment and its energy, ε0 is

the vacuum permittivity, and the integration is over all space. This expression ap-
proximates the donor cation and acceptor anion energies using Koopman’s theorem,
and the binding energy as the Coulomb attraction between the electron and hole
probability densities.

The fragment molecular orbital energies and probability densities in Eq. (4.2) are
obtained from Kohn-Sham density functional theory using the Amsterdam Density
Functional package (ADF) [100] with the B3LYP hybrid exchange-correlation func-
tional using a double-zeta polarized basis set, DZP. In order to obtain the couplings
Jij, the fragment orbitals can be used as a basis set in a subsequent DFT calcula-
tion on the entire dyad.[101–103] In this basis, the coupling between two fragment
orbitals is the generalized charge transfer integral[104]:

Jij =
HKS
ij − 1

2
Sij
(
HKS
ii +HKS

jj

)
1− S2

ij

, (4.3)

where HKS is the dyad Kohn-Sham Hamiltonian and S is the overlap matrix.
Although perturbative Markovian master equations are known to underestimate

coherence lifetimes for charge and energy transfer processes [105], they nevertheless
do describe the overall rate of population transfer rather well [106]. Therefore, as
in an earlier paper that examines exciton and charge transfer dynamics in systems
consisting of multiple interacting chromophores,[107] we describe the dynamics of
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electron transfer in the dyad after the initial excitation using a Lindblad master
equation: [108]

dρ

dt
= − i

h̄
[Ĥ, ρ] +

∑
k,l

λkl

(
L̂klρL̂†kl −

1

2
{L̂†klL̂kl, ρ}

)
, (4.4)

where k and l index the system Hamiltonian eigenstates, the Lindblad operators are
transfer operators of the form L̂kl = |k〉 〈l| = L̂†lk, Ĥ |k〉 = Ek |k〉, and the decoherence
parameters λkl are defined as

λkl =


νf(Rkl)

Z
, El > Ek,

νf(Rkl)
Z

exp
(
El−Ek

kBT

)
, El < Ek,

0, l = k,

(4.5)

where

f(Rkl) = 1− 1

2

∣∣∣∣∣∑
i=1,2

c∗ikcik − c∗ilcil

∣∣∣∣∣− 1

2

∣∣∣∣∣∑
i≥3

c∗ikcik − c∗ilcil

∣∣∣∣∣ (4.6)

T = 300 K, cik is the ith probability amplitude for the kth Hamiltonian eigenstate in
the basis that consists of Exci, i = 1, 2 and CTi, i = 3, N .

The function f(Rkl) given by Eq. (4.6) describes the spatial overlap of Hamil-
tonian eigenstates |k〉 and |l〉. Most perturbations of the dyad Hamiltonian that
promote charge transfer between its eigenstates are expected to be local. Thus, inco-
herent charge transfer is more likely to occur between eigenstates with similar charge
distributions.[107] The overlap function given by Eq. (4.6) treats any two states with
electrons localized on the same molecule as having unity overlap, suppressing direct
incoherent transfer between Frenkel exciton states and charge transfer states. The
first summation in Eq. (4.6) is over the two Frenkel exciton states, and the second
summation is over all the charge transfer states.

The energy dissipation rates in Eq. (4.5) are of Miller-Abrahams form.[109] We
have previously fit the parameter ν in similar rate expressions to reproduce in-
verse coherence lifetimes for typical chromophoric systems.[107] In this study, we
take the more predictive microscopic route of approximating the parameter ν from
an Ehrenfest-TDDFT molecular dynamics simulation, a quantum-classical approach
that combines TDDFT with classical Ehrenfest dynamics [4]. These calculations are
performed using the octopus electronic structure package [110].

The Ehrenfest dynamics simulation begins with the molecule in its ground state
equilibrium geometry. A TDDFT calculation is carried out using the Local Density
Approximation with the modified Perdew-Zunger exchange correlation functional,
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Figure 4.2: The nuclear kinetic energy in units of the initial excitation energy for dyad 2,
obtained from Ehrenfest-TDDFT molecular dynamics.

with a grid spacing of 0.16 Å [111]. The enforced time-reversal symmetry algorithm
is used to propagate the system with a timestep of 1.2 as. The initial electronic
state is prepared by promoting an electron from the HOMO (that is mostly localized
on the donor fragment) into the lowest unoccupied molecular orbital that is mostly
localized on the same fragment. The resulting state thus approximates the lowest
energy Frenkel exciton localized on the donor, with excitation energy ε1. At the start
of the simulation, the total energy of the system is equal to ε1; it is confined to the
electronic degrees of freedom and the nuclei are frozen in place. As the simulation
progresses, the excitation energy redistributes between the electronic and nuclear
degrees of freedom. The total energy of the system is conserved:

Tnuc(t) + EKS(t) = ε1, (4.7)

where Tnuc is the nuclear kinetic energy and EKS is the Kohn-Sham energy, with the
initial conditions: Tnuc(0) = 0 and EKS(0) = ε1. The fraction of the total energy
that is in the nuclear subsystem is shown as a function of time in Figure 4.2.

At short times (1-10 fs, the timescale of the fastest vibrations), energy transfer
from the electronic to the nuclear subsystem occurs (Figure 4.2). During this time,
the increase in the nuclear kinetic energy can be approximated by a linear function:

Tnuc(t) ≈ ε1νt. (4.8)

We approximate the characteristic rate ν of energy dissipation in Eq. (4.5) by the
rate of this energy redistribution; ν = 0.0267 fs−1, corresponding to a lifetime ν−1 =
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37.5 fs. The ν value found in this way is the upper bound for the dissipation rate
because it assumes that all energy transferred to the nuclear degrees of freedom is
irreversibly lost.

4.3 Results and Discussion

The energies of Frenkel exciton states Exci, i = 1, 2 and charge transfer states
CTi, i = 3, N , as well as the coupling strengths between Exci and CTi states for dyads
1 and 2 are shown in Figure 4.3. Because the Frenkel exciton states and the charge
transfer states are not eigenstates of the dyad Hamiltonian, the couplings between
Exc1 and Exc2, and between CTi and CTj, i 6= j, are also non-zero. However, these
couplings are relatively small and not represented in Figure 4.3.
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Figure 4.3: Energies of Frenkel excitons localized on the donor fragment (blue lines) and
of charge transfer states (red lines). The intensity of the gray/black lines connecting states
in these two groups indicates the magnitude of the couplings between the Frenkel exciton
and charge transfer states.

Figure 4.3 shows that the states Exc1 and Exc2 couple strongly to a select few
higher energy charge transfer states. This strong coupling is due to the large orbital
overlap between Frenkel exciton and charge transfer states for states with signifi-
cant electron density on atoms near the interface between the donor and the ac-
ceptor fragments. Consequently, Hamiltonian eigenstates contain contributions from
both Frenkel exciton and higher-lying charge transfer states. Thus, the electrons
in Hamiltonian eigenstates can be significantly delocalized over both the donor and
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the acceptor. For eigenstates that have some charge transfer character, the overlap
with CT3 given by Eq. (4.6) is non-zero. Thus, these eigenstates can incoherently
relax to CT3. Most of their population eventually transfers to CT3 as energy dissipa-
tion brings the system to thermal equilibrium. When using our Lindblad quantum
master equation, we find that including the higher energy charge transfer states is
a prerequisite for observing charge transfer in dyads 1 and 2 on timescales that are
consistent with experiments. Indeed, we found that a rather large number of higher
energy charge transfer states need to be included before the rate of electron transfer
from the donor to the acceptor fragment converges and no longer changes upon inclu-
sion of further states in the Hamiltonian. For dyad 1, convergence was achieved with
20, and for dyad 2 with 28 charge transfer states; all of these states were included
for all simulations presented in this chapter.
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Figure 4.4: The absolute value of the Hamiltonian eigenstate expansion coefficients in the
basis that consists of Exci, i = 1, 2 and CTi, i = 3, N . Eigenstates are enumerated from
left to right, in order of increasing energy. The localized initial state Exc1 (ICexc) is shown
enclosed by the red box. The eigenstate with the highest contribution of Exc1 (ICeig) is
enclosed by the blue box.

Figure 4.4 shows the absolute values of the Hamiltonian eigenstate expansion
coefficients in the basis that consists of Exci, i = 1, 2 and CTi, i = 3, N . For
both dyads, it is evident that the lowest energy charge transfer states do not couple
strongly to any other states. Therefore, the lowest energy Hamiltonian eigenstates
are the localized charge transfer states. If the initial excitation is primarily localized
on the donor fragment (in other words, is dominated by the contributions of Frenkel
exciton states), then there is virtually no coherent electron transfer to CT3. From
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Eqs. (4.5) and (4.6), it follows that there is also little incoherent relaxation of the
initial excitation to state CT3. If no charge transfer states beyond CT3 are included
in the system Hamiltonian, then no significant electron transfer is observed in our
simulations over a timescale of several picoseconds. However, experimental results
suggest that charge separation on femtosecond timescales occurs in both dyads 1 and
2.[6]
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Figure 4.5: Populations of the Frenkel exciton states Exc1 (blue line) and Exc2 (green
line), of all charge transfer states (red line), and of the lowest energy charge transfer state
(yellow line) for dyad 1 (a,c) and dyad 2 (b,d). Simulations (a,b) are initialized into ICexc,
and (c,d) into ICeig. The calculated charge transfer rates are 215.4 fs (a), 92.1 fs (b),
210.5 fs (c), and 94.1 fs (d).

Figure 4.5 shows the population dynamics in dyads 1 and 2 calculated using
our Lindblad model with the full basis of Frenkel exciton and charge transfer states
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(N = 22 states for dyad 1, N = 30 states for dyad 2). For each dyad, we simulate
dynamics using two different initial conditions: the lowest energy Frenkel exciton
localized on the donor fragment, Exc1, and the eigenstate of the Hamiltonian given
by Eq. (4.1) that has the largest contribution of Exc1. We will refer to these two
initial conditions as ICexc and ICeig, respectively. They are shown in Figure 4.4 by
the red and blue boxes, respectively.

When the initial state of the dyad is ICexc (Figures 4.5a and 4.5b), both coherent
and incoherent dynamics clearly play a role in electron transfer. The oscillations
indicate that the electron on the donor fragment can coherently transfer to higher-
energy excited states on the acceptor fragment, from which it can irreversibly relax to
CT3. In contrast, coherent evolution does not lead to population transfer between the
Hamiltonian eigenstates of the dyad. Consequently simulations starting from ICeig

(Figures 4.5c and 4.5d) do not exhibit coherent oscillations in state populations.[107]
In this case, charge separation is driven exclusively by the energy dissipation terms in
Eq. (4.4) that bring the populations of the spatially extended Hamiltonian eigenstates
into thermal equilibrium. For both choices of the initial condition, we find that the
overall charge separation timescales are similar.
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Figure 4.6: The populations of individual Frenkel exciton states (solid lines) and charge
transfer states (dashed lines) during the first 120 fs of the simulations shown in Figures 4.5a
and 4.5b. Only basis states that acquire significant populations during the charge transfer
process are included.

Figure 4.6 shows the time dependence of the populations for basis states that
acquire significant populations in the process of charge separation, when both dyads
are initialized in ICexc. For dyad 1, Exc1 couples most strongly to the charge transfer
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state CT6, as seen in Figure 4.3a. In Figure 4.6a, it is evident that the populations
of Exc1 and CT6 coherently oscillate in counterphase. The magnitudes of these
oscillations decay as energy dissipation redistributes the population from CT6 to
the three lower-energy charge transfer states, CT3, CT4, and CT5. At long times,
the populations of all states are given by the Boltzmann distribution, with most
of the population in the lowest charge transfer state, CT3. There is also a second
pathway for charge separation: through the higher-energy Frenkel exciton state,
Exc2. Because Frenkel exciton states of the donor are not eigenstates of the dyad
Hamiltonian, Eq. (4.1), Exc1 has a non-zero coupling to Exc2. Consequently, some
population can transfer coherently to this state, and to higher energy charge transfer
states that couple strongly to Exc2. For dyad 1, the states most strongly coupled to
Exc2 are CT17 and CT20. Figure 4.6a shows that these states oscillate in phase with
Exc2.

The Frenkel exciton states in dyad 2 couple strongly to multiple charge transfer
states, resulting in a less straightforward behavior of the coherent oscillations of state
populations (Figure 4.6b).

We have previously shown in [107] that charge separation is sensitive to the
relative timescales of coherent and incoherent dynamics that is determined by the
energy dissipation parameter ν. Using the value of the energy dissipation parameter
ν = 0.0267 fs, estimated from Ehrenfest-TDDFT simulations, the timescale of charge
transfer is estimated to be 215 fs for dyad 1 and 95 fs for dyad 2. However, regardless
of the value of ν, we find that dyad 2 always exhibits faster charge transfer than
dyad 1. This is consistent with the results of transient absorption spectroscopy
measurements of Pillai et al. that found the fastest charge separation on a timescale
of 600 fs for dyad 1, and on a timescale of 200-500 fs for dyad 2.[6]

The difference in relative charge separation timescales for dyads 1 and 2 can
be understood by examining the energy levels and couplings shown in Figure 4.3.
The fullerene acceptor in dyad 2 has a denser manifold of charge transfer states at
energies similar to or lower than the initial exciton states; the couplings between
electronic and charge transfer states also tend to be larger. Consequently, coherent
transfer between Frenkel exciton states on the donor fragment and higher-energy
charge transfer states that, in turn, incoherently transfer population to CT3 is more
efficient in dyad 2 than in dyad 1.

We compare the timescales of charge separation dynamics in dyads 1 and 2 cal-
culated using our model to the timescales estimated by using Fermi’s golden rule[7]:

τ−1
ij ≈

2π

h̄
|Jij|2

1

|εj − εi|
. (4.9)

Here, τ−1
ij is the rate of charge transfer between the LUMOs of the donor and the
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acceptor.

Table 4.1: Charge transfer timescales and associated Hamiltonian parameters using
Fermi’s golden rule [7] with i = Exc1 and j = CT3

|Jij| [eV] |εj − εi| [eV] τij [ps]
dyad 1 0.00048 2.61 1170
dyad 2 0.024 3.88 0.718

Fermi’s golden rule is often used to estimate the rate of charge separation, with
an implicit assumption that this process occurs directly between the initial excitation
and the lowest charge transfer state. Applying Eq. (4.9) with the states Exc1 and
CT3 results in timescales (τij) of 1170 ps and 0.718 ps for dyad 1 and 2, respectively.
The timescale for dyad 2 is comparable to experimental results and to the results
of simulations using our model. However, the timescale for dyad 1 calculated using
Fermi’s golden rule is too large by 3 to 4 orders of magnitude, i.e., the golden rule
rate is far too slow to account for the charge separation. The difference between the
timescales of dyad 1 and dyad 2 can be attributed to the difference in the direct
electronic coupling between Exc1 and CT3 (Table 4.1). Any other dynamical de-
scription that ignores couplings to higher energy unoccupied orbitals on the acceptor
will similarly underestimate the charge separation rate.

We also investigate the role of coherence in charge separation dynamics. It is im-
portant to recognize that coherence is dependent on the choice of basis. We quantify
coherence using the L1-norm of the off-diagonal terms of the density matrix[112]:

CL1 [ρ] =
∑
k 6=l

|ρkl|. (4.10)

where we take ρ to be in the basis of Hamiltonian eigenstates. In this basis, any
individual eigenstate has zero coherence, CL1 [ρ], even if that state is spatially delo-
calized. Therefore, CL1 [ρ] is a measure of coherence between eigenstates, rather than
within an eigenstate. It is independent of charge delocalization within individual
eigenstates. Under unitary time evolution, only the phases of ρkl change and not
their magnitudes. Therefore, the L1-norm coherence does not change under unitary
dynamics, and decays monotonically under dissipative dynamics.[112]

Note that if a Hamiltonian eigenstate is a superposition of several Frenkel excitons
and/or charge transfer states, then it will have non-zero coherence in the basis that
consists of Exci, i = 1, 2 and CTi, i = 3, N . However for the remainder of this
chapter, we only discuss coherence in the basis of Hamiltonian eigenstates.
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Figure 4.7: Total coherence between Hamiltonian eigenstates, quantified by the L1 norm
of the off-diagonal terms of the density matrix in the basis of Hamiltonian eigenstates
as a function of time (Eq. (4.10)). The green and purple lines correspond to dynamics
initialized in ICexc, for dyad 1, and dyad 2, respectively. The dashed black line corresponds
to dynamics initialized in ICeig, and is zero at all times for both dyads.

Figure 4.7 shows CL1 [ρ] as a function of time. For ICexc, initially dyad 2 has
more coherence than dyad 1, because more eigenstates contribute to the initial state
(compare the red rectangles in Figures 4.4a and 4.4b). However, the coherence also
decays faster for dyad 2 than for dyad 1 because irreversible charge separation is more
efficient: in other words, dyad 2 exhibits faster transfer to the fully incoherent state
CT3. ICeig is an eigenstate, and therefore has no coherence in the basis of Hamiltonian
eigenstates. With this initial condition all subsequent dynamics is purely incoherent,
as evident from Figures 4.5c and 4.5d.

In both dyads 1 and 2 the rates of charge separation are similar for ICexc and
ICeig. Thus, it is clear that the amount of coherence in the system does not directly
determine the efficiency of charge separation. However, in order for charge separation
to occur, the electron in the excited state must be able to reach the acceptor side
of the dyad. For ICexc, the initial state that is completely localized on the donor,
coherence enables the electron to delocalize onto the acceptor. This coherent transfer
is more efficient in dyad 2, where the initial Frenkel exciton state is strongly coupled
to a large number of charge transfer states. For ICeig, the initial state that is already
partially delocalized between the donor and the acceptor, charge separation can
occur by means of purely incoherent population transfer to lower energy Hamiltonian
eigenstates. Therefore, the role that coherence plays in charge separation is largely
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Figure 4.8: The amount of charge transfer as a function of time, quantified using Voronoi
analysis on the charge densities found from Ehrenfest-TDDFT, for dyad 1 (green line) and
dyad 2 (purple line).

determined by the initial state of the system.
We also estimated charge transfer timescales in dyads 1 and 2 from fully atom-

istic Ehrenfest-TDDFT simulations. These simulations result in trajectories of the
charge density. The redistribution of charge density is quantified using a Voronoi
analysis that allows mapping each charge density voxel to a specific atom.[113] The
initial state of the Ehrenfest-TDDFT simulations is an excitation into an unoccupied
Kohn-Sham orbital that is localized on the donor fragment. This state is similar to
state ICeig (the initial condition used in our Lindblad dynamics simulations in Fig-
ures 4.5c and 4.5d). Figure 4.8 shows the time-dependence of the total population
of all charge transfer states for Ehrenfest-TDDFT dynamics. These simulations are
not directly comparable to Lindblad dynamics, because in Ehrenfest-TDDFT simu-
lations energy is never removed from the dyad, and is only transferred between its
electronic and nuclear degrees of freedom. In contrast, the Lindblad master equa-
tion includes irreversible energy dissipation to an infinitely extensive thermal bath.
However, it is evident from Figure 4.8 that charge transfer between the donor and
acceptor fragments occurs on a faster timescale for dyad 2 than for dyad 1. This
is consistent with both the Lindblad dynamics simulations and transient absorption
experiments.[6]
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4.4 Conclusions

We have simulated the charge separation that follows the optical excitation of
typical donor-acceptor dyads using a perturbative Markovian master equation in
Lindblad form. The Hamiltonian of the donor-acceptor dyad was constructed using
a basis of Frenkel exciton states on the donor and charge transfer states with the
electron on the acceptor and the hole on the donor, similarly to Ref.[107]. Hamil-
tonian parameters were obtained from DFT and TDDFT calculations. The energy
dissipation parameters in the Lindblad equation were selected to achieve a thermal
distribution of state populations at long times. Additionally, we set the rates of
incoherent population transfer between each pair of states to be proportional to the
degree of spatial overlap between the states involved. This requirement effectively
assumes that most perturbations of the system that cause incoherent repopulation of
its electronic states occur locally. The rate of energy dissipation was estimated from
Ehrenfest-TDDFT molecular dynamics simulations and found to be of the order of
tens of femtoseconds.

Because both the electronic coupling and the spatial overlap between an initial
excitation that is primarily localized on the donor and the lowest-energy charge
transfer state are negligible, direct transfer between these states contributes little to
the overall charge separation dynamics. Irreversible charge separation is a process
that involves both coherent and incoherent electron transfer. Within the framework
of our model, if population is initially excited into the Frenkel exciton state localized
on the donor, it can coherently transfer to higher energy charge transfer states.
Concurrently, relaxation from higher to lower-energy charge transfer states occurs.
However, for population initially excited into a Hamiltonian eigenstate that is already
partially delocalized onto the acceptor, coherent transfer between this and other
Hamiltonian eigenstates is not required to achieve charge separation. We found
that the rate of charge separation is similar for both initial conditions, implying
that the extent of spatial delocalization of the Hamiltonian eigenstates rather than
the amount of coherence between eigenstates primarily determines the efficiency of
charge separation Thus, the importance of coherence in the Hamiltonian eigenstates
for efficient charge separation depends on the initial state of the system. Note that
spatial delocalization of eigenstates will give rise to coherence in any non-eigenstate
basis, such as the basis consisting of Exci, i = 1, 2 and CTi, i = 3, N .

We have shown that for typical donor-acceptor dyads a large number of charge
transfer states (20 for dyad 1 and 28 for dyad 2) affect the rate of charge separation.
Since the higher lying states facilitate charge separation, approximations that neglect
these states will tend to underestimate the rate, sometimes by several orders of
magnitude. All of these states must be included in the simulation of charge separation
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dynamics to obtain reasonable agreement with both atomistic Ehrenfest-TDDFT
molecular dynamics simulations and charge separation rates obtained from transient
absorption experiments.[6]

In agreement with the experimental results of Pillai et al. [6], in our simulations
the dyad with a fullerene-based electron acceptor shows higher charge separation
rates than the dyad with a porphyrin-based acceptor. We attribute this to the
former acceptor having a larger number of charge transfer states that are close in
energy and are strongly coupled to the lowest two Frenkel exciton states localized on
the donor.

The theoretical analysis presented in this chapter reveals key design criteria that
enable rational selection of donor acceptor pairs for the synthesis of molecular dyads
that exhibit ultrafast charge separation. First, the donor and acceptor constituents
of the dyad should be chosen to ensure a dense manifold of charge transfer states at
energies close to that of the donor Frenkel exciton. Second, the constituents should
be chosen to ensure strong coupling between the donor Frenkel exciton state and
the higher-lying charge transfer states, allowing some extent of delocalization of the
Hamiltonian eigenstate over both the donor and the acceptor.
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Chapter 5

Simulations of a prototypical
synthetic light harvesting system

5.1 Introduction

Light harvesting antennae of photosynthetic organisms are exquisitely organized
biomolecular structures [114, 115]. Although nearly every photosynthetic species
on the planet has evolved a light harvesting antenna that is customized to its en-
vironment, all these antennae are actually composed of relatively few types of pig-
ment molecules, e.g., chlorophylls, bacteriochlorophylls, carotenoids, phycobilipro-
teins. Two additional factors beyond the choice of pigment are critical in the cus-
tomization of the antennae to very different environments. These are the tailored
structural organization of the pigments, and the tuning of pigment spectral prop-
erties by their in-vivo protein environment. In essence, all LHCs are composed of
densely packed pigments that are usually encased in structure-preserving proteins
and bound to membranes. The dense packing of pigments leads to strong electronic
coupling between chromophores. Some LHCs also have a high degree of organization
that aligns neighboring dipoles to further enhance electronic coupling. An example
of this is the LH2 system found in purple bacteria, which consists of pigment-protein
complexes in which the proteins form helical subunits enclosing rings of 18 and 9
pigments [116]. This strong coupling, along with screening from solvent effects af-
forded by the binding to photosynthetic membranes, is believed to be the structural
basis for the long-lived quantum coherent effects recently observed in a number of
light harvesting complexes [2].

Quantum mechanics also plays an important role in the performance of LHCs
as antennae for light, both in determining their effective absorption cross-section
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and the excitation energy transfer subsequent to photon absorption. As mentioned
above, the quantum mechanical coupling of several pigments can alter the oscillator
strength of electronic transitions in pigment-protein complexes. It is believed that
this is used to advantage to increase the efficiency of light absorption in several LHCs.
The most striking example of this comes from green sulfur bacterium, a primitive
photosynthetic organism that lives in extremely low light conditions and possesses a
highly effective antenna structure, the chlorosome, that has recently been identified
as large concentric nanotubes of tightly packed bacteriochlorophyll molecules [117].
This particular structure leads to very strong inter-pigment coupling and greatly en-
hanced electronic transition oscillator strengths for efficient light capture and energy
transfer. Much of the drive for construction of artificial light harvesting complexes
is to design and construct synthetic molecular complexes that mimic these features
of the chlorosome.

The key to producing synthetic mimics of natural light harvesting systems is the
establishment of the necessary distance relationships between multiple chromophores.
Although this could, in principle, be achieved using elaborately designed synthetic
molecules, this approach is typically quite laborious, is difficult to scale, and leads to
highly aromatic systems with poor solubility and limited processing possibilities. A
number of studies have instead used polymers and dendrimers as scaffold materials
that establish an upper limit to the distance between chromophores [118, 119], but
these systems generally lack the rigidity needed to control transition dipole orienta-
tion and to prevent excimer-based quenching pathways. As an alternative, several
groups have developed ways to self-assembly of the chromophores themselves, gen-
erating large bundles of porphyrins that show energy transfer behavior [120, 121].
While these provide interesting chlorosome mimics, it is quite difficult to optimize
the performance of these systems to meet specific applications, since the use of new
chromophores with different optical properties can lead to unpredictable assembly
outcomes. As an alternative, one can employ self-assembling protein coats of viruses
as rigid scaffolds that can template the formation of synthetic light harvesting sys-
tems [27]. In particular, architectures based on the capsid protein monomer of the
tobacco mosaic virus (TMV), can be conveniently produced and employed for the
assembly of chromophore arrays by introducing cysteine residues at specific positions
that allow the covalent attachment of a wide variety of commercially-available chro-
mophores with varied optical characteristics. One particularly interesting aspect of
rod-like light harvesting arrays is the fact that they are inherently three-dimensional,
and thus could possess redundant energy transfer pathways that could circumvent
defect sites better than linear or ring-like systems. An additional advantage of the
synthetic system is that the electronic properties of the aggregate complex can be
chemically controlled by changing the type of chromophore, the type of linker used to
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covalently attach the chromophore to the protein, and the position where it attaches
to the protein.

In this work we investigate features of the quantum design of synthetic pigment-
protein structures for light harvesting that are based on TMV-templated chromophore
assemblies. The close proximity of the chromophores in the TMV assemblies suggests
that their excited electronic states will be closely coupled. To motivate the design and
synthesis of new systems with enhanced electronic coupling, we analyze here several
potential synthetic structures using theoretical modeling and spectroscopic charac-
terization. We employ molecular mechanics simulations of the chromophore-protein
systems to provide insight about the geometry and disorder. This is important given
that these are systems for which crystal structures are hard to obtain, and thus direct
experimental information about the geometry is lacking. A key focus of the present
study is to understand both the geometry and the mobility of the chromophores,
and the extent to which these factors are determined by microscopic details of the
surface of the protein, which typically forces the chromophores to fit into a solvent-
accessible pocket. Different chromophores will be oriented differently and can have
varying degrees of mobility depending on their point of linkage and the nature of the
link to the protein. Such geometric and mobility information provides a systematic
way to compare and screen for optimal chromophore-protein candidates for synthesis
of artificial light-harvesting complexes. The geometry of the chromophores is also
critical to understanding the optical properties of these aggregate systems, since the
electronic coupling between chromophores is primarily determined by the relative
orientations of their transition dipole moments (TDMs) [5]. In the present work, the
geometries of the conformers found from the molecular mechanics simulations are
used in a tight-binding model to simulate the optical properties of the system, with
comparison to experimental spectra.

The remainder of the chapter is constructed as follows. Section 5.2 describes
the TMV and chromophore structures employed here and summarizes the compu-
tational methods used for the molecular mechanics structural studies with ground
state chromophores, as well as the ab initio calculations for electronically excited
chromophores and construction of the tight-binding model for simulation of the op-
tical spectra. Section 5.3 presents the structural results with analysis of geometry,
orientation and ordering of the chromophores, followed by analysis of the linear ab-
sorption spectra. Section 5.4 concludes with an assessment of the implications for
quantum informed molecular design of artificial light harvesting systems.
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Figure 5.1: Molecular structures of modified Coumarin 343 (i.e. Coumarin 343 with a
linker molecule, ethyl-maledimide) and Oregon Green 488.

5.2 Computational Details

5.2.1 The TMV Protein and Chromophores

The chromophore-protein complexes studied in this work have all been exper-
imentally synthesized. Two of us (D.T.F. and M.B.F.) have successfully attached
chromophores to the TMV protein and the theoretical study of this complex is the
focus of this chapter. The details of the self-assembly of TMV are available in ref.
[27] and the details of attaching chromophores to the TMV protein are presented in
ref. [122] .

The TMV systems are self-assembled into a double-disk with 17-fold radial sym-
metry. We have then studied the chromophores, Coumarin 343 and Oregon Green
488 (OG), which are attached to the TMV protein at either the 104 (inner ring)
or 123 (outer ring) residue positions. OG can be attached directly to the residues
without modification while Coumarin 343 requires a linker molecule. Coumarin 343
has been attached to both the 104 and 123 positions with a linker, ethyl-maledimide.
We refer this complex of Coumarin 343 and the linker molecule as CE. The molecu-
lar structures of CE and OG are available in Figure 5.1. The 104 and 123 positions
differ in the distance from the center of the disk, thereby controlling the distance
between neighboring chromophores as illustrated in Figure 5.2. These systems will
henceforth be referred to as CE-104, CE-123, OG-104, and OG-123.
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(a) 104 position (b) 123 position

Figure 5.2: TMV-chromophore double-disk system. Protein colored grey, and chro-
mophore colored orange. (a) Chromophore attached at the 104-residue position (inner
ring) (b) Chromophore attached at the 123-residue position (outer ring)

5.2.2 Conformational search using Monte Carlo Multiple
Minimum

This TMV-chromophore system is rather complex and nearly impossible to treat
fully quantum-mechanically. Therefore, we tried to explore the complex configura-
tional space of the system using the Monte Carlo Multiple Minimum (MCMM) algo-
rithm with the force field of OPLS2005 [123]. All molecular mechanics simulations
presented here were run with the Schrodinger’s MacroModel software suite.[124] The
double disk system has 34 monomers arranged with 17 monomers per layer, which
includes roughly 200 rotatable bonds. For the simulations presented before, we focus
on only one layer. An MC search over the full parameter space is computationally
intractable as the required time scales exponentially with the number of rotatable
bonds.

In the simulations of all but CE-104, we considered five monomers on each layer
in the TMV due to limited computational resources under the assumption that chro-
mophores that are separated by two monomers are non-interacting. We took only
the middle three on the top layer for later analyses. We validated this assumption by
comparing CE-104 simulations that included the full 17 ring monomer and found that
the the average parameters (position and orientation) do not change significantly by
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using the truncated system.
During the conformational search, the chromophore and linkers were freely mov-

able atoms. In order to reduce the parameter space further in a 5-monomer subset,
all atoms within 14 residues of the chromophore are constrained to their initial po-

sition using a harmonic potential with a force constant of 200 kJ mol−1Å
−2

, and all
atoms between 15 and 29 residues are frozen in place. All other atoms were ignored
as they are too far away for any significant interaction with the free atoms. The re-
sulting conformations are collected and minimized using the Polak-Ribiere Conjugate
Gradient (PRCG) method [125].

5.2.3 Ab-initio calculations of excited states

For the spectral simulations shown later, we needed transition dipole moments
(TDMs) and this was achieved by performing time-dependent density functional
theory (TDDFT) with B3LYP[126]/6-31G(d)[127, 128]. We truncated the linker
molecule of CE and replaced the linker with a methyl group for simplicity. TDDFT
calculations employed 75 radial grid points and 302 Lebedev angular grid points. We
also employed equation-of-motion coupled-cluster singles and doubles (EOM-CCSD)
to further verify excitation energies and TDMs within the same basis set. These
calculations were run with the development version of Q-Chem. [129]

B3LYP EOM-CCSD
first excitation energy (eV) 3.4742 3.7753
transition dipole (au)* x 2.6354 2.7087

y 0.0057 0.1280
z 0.0060 -0.0231

oscillator strength 0.5912 0.7609

Table 5.1: Electronic structure results for Coumarin-343. The ground-state and excita-
tion energies, transition dipoles, and oscillator strengths are given for TDDFT-B3LYP,
and EOM-CCSD. *EOM-CCSD transition dipole is for the ground state → excited state
transition.

EOM-CCSD and TDDFT both yield similar wavefunctions in terms of dominant
configurations, excitation energies, and TDMs as shown in Table 5.1. As the first
excited states in both systems are of singly-excited open-shell singlet character, the
excitation energies from them are expected to be very accurate. The largest source
of error is likely the limited size of basis set employed here, but in chapter 3 it was
shown that employing a larger basis such as 6-311G* does not significantly affect the
excitation energies (i.e. change is 0.5 eV for EOM-CCSD and 0.1 eV for TDDFT).
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For the spectral simulation, we used the TDDFT TDMs due to the following
reasons. First, TDDFT calculation is expected to be closer to its complete basis
set (CBS) limit as EOM-CCSD calculation is more sensitive to increasing the basis
set size. Second, it was pointed by Koch et al. that EOM-CC does not yield size-
intensive TDMs, and thus EOM-CC may become a less reliable way to obtain TDMs
for large systems [130]. For these reasons, the analyses requiring TDMs were carried
out based on TDDFT.

5.2.4 Spectral Simulations

Hamiltonian Parametrization

A tight-binding Hamiltonian of the chromophores using the Frenkel Exciton
model is often used to describe the electronic and optical properties of chromophore-
protein systems[14, 29] and we have employed a similar model as well:

Ĥ =
N∑
i=1

εiâ
†
i âi +

N∑
i=1

N∑
j=1

Jij â
†
i âj (5.1)

where εi is the on-site energy and Jij is the coupling parameter between the site i
and the site j. The coupling Jij is a function of the positions of chromophores i
and j, and the relative orientations of each of their transition dipole moments. This
is the same model as described in 3.1. The close proximity between some of the
chromophores in our system means that we cannot expect that the commonly used
ideal dipole-dipole approximation (IDA) for Jij couplings to hold.

We define ∆Edimer
n to be the nth electronic excitation energy of the dimer and

∆Emonomer
n to be the nth electronic excitation energy of the monomer. In the case

of a well-separated dimer, both ∆Edimer
1 and ∆Edimer

2 approach to ∆Emonomer
1 and

therefore the average of ∆Edimer
1 and ∆Edimer

2 is identical to ∆Emonomer
1 . However,

our previous work shows that at close distances (< 12 Å), the average will begin
to deviate from the monomer excitation energy (∆Emonomer

1 ). The extent of the
deviation will depend on the distance and relative orientations of the two interacting
chromophores [131].

In order to account for the geometry-dependent effect, we obtain more accurate
Hamiltonian parameters based on pairwise TDDFT calculations, which are defined
as follows:

εi = ∆Emonomer
1 +

∑
i 6=j

V TDDFT(~Ri, ~µi, ~Rj, ~µj) (5.2)

V TDDFT(~Ri, ~µi, ~Rj, ~µj) =
∆Edimer

2 + ∆Edimer
1

2
−∆Emonomer

1 (5.3)
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Jij = JTDDFT(~Ri, ~µi, ~Rj, ~µj) =
Edimer

2 − Edimer
1

2
(5.4)

where ~Ri denotes the position of the ith chromophore and ~µi denotes the orientation
of the ith chromophore.

Among all of our molecular mechanics configurations, there are about 107 pairwise
interactions. Running a TDDFT calculation for each pairwise interaction in every
configuration instance is computationally intractable and also redundant since many
of the pairs will have similar geometries. Our approach is to run a TDDFT calculation
at selected distances and orientations and interpolate to predict ab-initio values for
other geometries. The precise procedure is as follows:

1. We parametrize the relative orientation of two interacting monomers: r, θA, θB, φB
as defined in 3.3b.

2. We then discretize the space along those variables and calculate the TDDFT
energies at the geometries defined by the following grid points: r = [5 Å, 5.25
Å, 5.75 Å, 6 Å, 6.25 Å, 6.5 Å, 6.75 Å, 7 Å, 7.5 Å, 8 Å, 8.5 Å, 9 Å, 10 Å, 12 Å, 14
Å], θA = [-90◦, 90◦] with a 15◦ increment, θB = [0◦, 180◦] with a 15◦ increment,
and φB= [0, 180] with 30◦ increment. Out of the possible 18928 geometries, we
discard the points that yield unphysical geometries, which result in a training
set of 4456 energies.

3. We employ a model function (see below) with three free parameters each for Jij
and Vij, and fit these parameters by using linear regression to match JTDDFT

and V TDDFT, respectively, at each of the grid points.

The model functions used to describe V and J are

Jmodel
ij (r, θi, θj, φj) = CJ(r)J IDA

ij (r, θi, θj, φj) (5.5)

V model
ij (r, θi, θj, φj) = CV (r)V IDA

ij (r, θi, θj, φj) (5.6)

Ck(r) =
ck1

(ck2 − exp(r/ck3))
(5.7)

where J IDAij and V IDA
ij are the couplings obtained from IDA, and Ck is a logistic

function, with three free parameters. If CJ and CV deviate significantly from 1,
then that is precisely when IDA breaks down. The fitted parameters are found to
be: cV1 = 0.10388804, cV2 = 0.21424357, cV3 = 2.2014798 cJ1 = 0.2889955, cJ2 =
1.50871422, cJ3 = 3.14407206.
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Linear Absorption Spectra

In order to simulate the linear absorbance of the full double disk TMV system,
we first sample small slices (i.e. 5 monomers) from the MCMM configurations and
concatenate the middle three chromophores to generate the full system. Since 17 is
a prime number, we need to take 5 samples of three chromophores, and 1 sample
of two chromophores, all of which are sampled randomly. This is repeated for both
the upper and lower disks. For each geometry sample, we extract the center of mass
positions and the transition dipole moments (R and µ) of each chromophore. Next,
the tight binding Hamiltonian in Eq. (5.1) is constructed using the parameters εi and
Jij described in Eq. (5.5). The Hamiltonian is diagonalized to yield exciton states
and energies:

Ĥ|ψk〉 = Ek|ψk〉 (5.8)

|ψk〉 =
N∑
i

cik|φi〉. (5.9)

The linear absorption spectra for a given Hamiltonian is calculated using

~µk =
N∑
i

cik~µi (5.10)

Abs(E) ∝
N∑
k

‖~µk‖2 exp

[
−(E − Ek)2

2σ2

]
. (5.11)

where ~µk is the kth exciton’s transition dipole moment, and is defined as a linear
combination over the molecular transition dipole moments [7]. The summation in
Eq. 5.11 describes a discrete convolution between a gaussian function, and the Hamil-
tonian’s eigenvalue stick spectrum, weighted by the 2-norm squared of the exciton
transition dipole moment. The variance of the gaussian function (σ) is the line broad-
ening parameter for our simulated linear absorption spectrum. In the limit where
σ → 0, we obtain the eigenvalue stick spectrum. Eq. 5.11 yields the spectra for a sin-
gle geometry instance. This process is repeated 5000 times (large enough to obtain
converged spectra) to average over the different possible geometry configurations,
then normalized by the maximum absorbance.
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5.3 Results and Discussion

5.3.1 Geometric Distributions of Chromophores

We analyze the MCMM conformations based on the center of mass (CM) positions
of the chromophores and the orientations of TDMs of the chromophores. Those two
collective variables are particularly useful in understanding the geometric distribution
as we shall see below.

(a) (b)

(c) (d)

Figure 5.3: Normalized histograms of the center-of-mass distances between nearest-
neighboring chromophores in (a) CE-104, (b) CE-123, (c) OG-104, and (d) OG-123. The
blue dotted line indicates the “ideal” nearest-neighbor distance, and the red dotted line
indicates the mean distance, which are defined in the main text. The number of samples
used in each histogram is 3607, 5499, 5918, and 5810, respectively.



CHAPTER 5. SIMULATIONS OF A PROTOTYPICAL SYNTHETIC LIGHT
HARVESTING SYSTEM 61

Figure 5.3 shows a histogram of distances between the CM positions of nearest-
neighboring chromophores. We first note that both CE-104 and CE-123 exhibit
significant multimodal behaviors while bimodal and monomodal behaviors are ob-
served for OG-104 and OG-123, respectively. The qualitative difference between CE
and OG can be explained simply: the linker molecule in CE allows Coumarin to move
easily its CM position whereas OG has no linker molecule in our study. We further
computed the “ideal” nearest-neighbor distance, rideal, which assumes an equilateral
17-polygon, and the mean of nearest-neighbor distances, r̄. Those two values are not
meaningful in the case of highly multimodal histograms as in the CE cases. In the
case of OG-123, two values are almost identical whereas each of two peaks in OG-104
roughly corresponds to rideal and r̄.

The significance of Figure 5.3 is that some chromophores (in particular CE-104
and OG-104) in the TMV systems are not far enough; the distance between nearest
neighbors is often less than 12 Å. Based on our previous study of Coumarin 343 in
chapter 3, when two chromophores are closer than 12 Å, it is likely that the usual
dipole approximation to the Hamiltonian starts to fail quite catastrophically. This
was indeed our motivation to go beyond the dipole approximation, and this will be
discussed further later in this chapter. We note that in the previous study, Coumarin
was considered without a linker molecule. However, we expect the failure of dipole
approximations to behave similarly. We also expect qualitatively the same conclusion
for OG.

(a) (b)

Figure 5.4: (a) Schematic description of the monomer frame embedded into the entire
TMV represented by a disk. The monomer is represented by the wedge. (b) Schematic
description that represents the polar angle θ and the Azimuthal angle φ in the monomer
frame.
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For the purpose of analysis, we introduce the monomer frame illustrated in Fig-
ure 5.4. We define the monomer frame as follows: for every chromophore, the x-axis
points towards the center of TMV disk, the z-axis is parallel to the axis of rotational
symmetry, and the y-axis is defined in the conventional way for given those x- and
z-axes (i.e. ŷ = ẑ × x̂). The radial axis of the polar plot ranges from 0◦ to 180◦, and
corresponds to the polar angle of the monomer frame. The angular axis of the polar
plot ranges from 0◦ to 360◦, and corresponds to the azimuthal angle of the monomer
frame.

Figure 5.5 shows a histogram of the orientation of TDMs measured in the monomer
frame. It shows that the CE systems are more spread than are those in the OG sys-
tems. In other words, OG systems are far more confined than CEs. This does
not necessarily mean that OG systems are more ordered and the quantification of
order-disorder will be discussed later in the chapter. The wider distribution in the
CE systems can be understood by considering the effect of the presence of a linker
molecule. We see similar trends in both chromophores when attached to the 104 or
123 position. The 104 position exhibits a wider vertical spread compared to the 123
position whereas the 123 position shows a wider horizontal spread compared to the
104 one. The broad distribution of the CE systems is somewhat surprising given that
the chromophore molecules are surrounded by the TMV protein environment. The
linker molecule gives enough flexibility to the Coumarin chromophore which results
into a broad geometric distribution. This is one of the reasons that make atomistic
simulations of the system intractable.

5.3.2 Order, Disorder, and Correlation Among
Chromophores

We discuss one-body and two-body observables of this system to further quantify
the order and disorder present in the system. There is a simple analogy between
our system and one-dimensional classical Heisenberg model of 17 sites with periodic
boundary conditions. In other words, a TMV disk can be reduced down to a lattice
with 17 sites and the chromophore of each monomer can be considered a classical
spin on each site. This analogy allows us to utilize one-body and two-body measures
that are widely used to quantify order in spin systems. In passing we note that all
the orientation vectors of TDMs used in the following analyses are all normalized
and measured in the monomer frame. As we analyze only five monomers per sample,
the periodic boundary condition was not applied throughout the analysis.

The one-body measure considered here is the average of the magnetization of
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(a) (b)

(c) (d)

Figure 5.5: Normalized distributions of the transition dipole moments orientation for (a)
CE-104, (b) CE-123, (c) OG-104, and (d) OG-123. The radial distance indicates θ and
the angular orientation indicates φ. θ and φ are defined in Figure 5.4. We fitted the TDM
vectors to a bivariate gaussian kernel density estimator with a 0.2 bandwidth to obtain
this figure.

spins, which in our case is the average of the orientation vector of TDMs, defined as

〈~µ〉 =
1

NsamplesNspins

Nsamples∑
i

Nspins∑
α

~µα(i). (5.12)

〈~µ〉 is a normalized vector and each cartesian component ranges from 0 to 1. In
the case of ferromagnets, this measure is enough to conclude whether the system is
ordered. A small value of ~µ indicates a disordered phase and a large value indicates
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CE-104 CE-123 OG-104 OG-123
〈µx〉 0.336 0.179 0.587 0.069
〈µy〉 -0.253 0.220 -0.058 -0.194
〈µz〉 0.410 0.458 0.148 0.145

Table 5.2: The average of the TDM vector orientation (a.u.) along each cartesian
axis in the monomer frame.

CE-104 CE-123 OG-104 OG-123
〈|µx|〉 0.558 0.389 0.824 0.159
〈|µy|〉 0.408 0.464 0.284 0.821
〈|µz|〉 0.538 0.609 0.293 0.429

Table 5.3: The average of the absolute value of the TDM vector (a.u.) along each
cartesian axis in the monomer frame.

an ordered phase. However, in the case of antiferromagnets, a small value of ~µ is
not enough to conclude that it is a disordered phase. This is because a perfect
antiferromagnet would exhibit negligible average magnetizations.

Table 5.2 shows the average of the orientation vector of TDMs along each carte-
sian axis in the monomer frame. CE and OG present a qualitative difference as OG
has at least one direction that has very small values. Therefore, the small values
along y-axis in OG-104 and x-axis in OG-123 are particularly interesting as they
may indicate an antiferromagnetic ordering along those axes. To further investigate
this, we computed 〈|~µ|〉 which is similarly defined as Eq. (5.12). Those numbers
are presented in Table 5.3. If there is no difference between 〈|~µ|〉 and 〈~µ〉 then the
system is a perfect magnet while a significant difference between them indicates a
antiferromagnetic system. The y-component of OG-104 and the x-component of OG-
123 show a significant difference and this indicates antiferromagnetism along those
axes. On the other hand, other values all indicate spontaneous magnetism to certain
degree.

We have investigated a two-body correlation function (or a two-point correlators).
The spin-spin correlation function, Cspin, reads

Cspin =
∑
〈αβ〉

〈~µα · ~µβ〉 =
1

NsamplesNneighbors

Nsamples∑
i

∑
〈αβ〉

~µ i
α · ~µ i

β

 . (5.13)

We note that Cspin involves only nearest neighbor correlations even though the un-
derlying interaction between spins in our case is long-ranged. This was done on
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purpose as the interaction is still dominated by nearest neighbor interactions and
it is easier to interpret the physical meaning of Cspin this way. This measure has
a range between -1 and 1, where the limit of 1 is a perfect ferromagnetic order, -1
means a perfect antiferromagnetic order, and 0 means no order or a perfect disorder.
We also define Ci

spin where i ∈ {x, y, z} to quantify the same types of orders along
each cartesian axis which can be trivially defined similarly to Eq. (5.13).

CE-104 CE-123 OG-104 OG-123
Cspin 0.433 0.390 0.386 0.035
Cx

spin 0.108 0.078 0.376 0.006

Cy
spin 0.101 0.026 -0.007 0.018

Cz
spin 0.224 0.286 0.017 0.011

Table 5.4: Spin-spin correlation functions for each system

Using this measure, in Table 5.4 we see that CE-104, CE-123 and OG-104 are
all much more ordered than OG-123. CE-104 exhibits isotropic ferromagnetic order-
ing. However, CE-123 exhibits ferromagnetic ordering mostly along z-axis. Given
the results in Table 5.3, CE-123 exhibits non-negligible orientations along x, y-axis.
Therefore, Table 5.4 suggests that CE-123 is disordered along x, y-axis but ferromag-
netically ordered along z-axis. OG-104 exhibits ferromagnetic ordering along x-axis
and disorders along y, z-axis. As illustrated in Figure 5.5, OG-104 is confined along
positive x-axis. Therefore, OG-104 is confined and at the same time well-ordered.
OG-123 is interesting in the sense that it is disordered along every axis. As suggested
in Figure 5.5, it is however confined in space. Although OG-123 is spatially confined
by the TMV protein environment, its orientation from one another is almost com-
pletely random. In passing we note that OG-104 would be a good future candidate
for further theoretical studies as it is spatially well confined and chromophores are
ordered so that we would not need to explore the entire phase space.

5.3.3 Linear Absorption Spectrum

In Figure 5.6(a), we show simulated linear absorption spectra averaged over the
MCMM geometries, using the TDDFT-derived Hamiltonian parameters in Eq. 5.5 for
the CE-104 and CE-123 system as described in the Spectral Simulations section. For
these simulations, we set ∆Emonomer

1 = 2.8 eV (442.8 nm) for all of the Coumarin 343
spectral simulations, which is different from the vacuum TDDFT excitation energy
reported in Table 5.1. This results in a global energy shift and was done to shift the
simulated spectra to better coincide with the experimental spectra. The choice of
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Figure 5.6: Simulations of linear absorption spectra using the TDDFT-improved Hamilto-
nian parameters in Eq. 5.5. (a) Spectra averaged over the MCMM-geometries (b) spectra
of a single idealized, 17-fold symmetric geometry. Dotted lines are the absorption spectra
obtained from experiment, and the vertical black line is the monomer excitation energy
∆Emonomer. The line broadening parameter σ is set to 0.12 eV. Below these simulated
spectra, we show simulations of the same system using σ = 0.01 eV.

∆Emonomer
1 does not affect our results since our conclusions are all based on relative

energy differences. The line broadening parameter σ is set to 0.12 eV for all simulated
spectra. At the bottom of these plots, we also show the same spectral simulations
with σ set to 0.001 eV. Since this broadening value is lower than the resolution of
the x-axis, this plot can be interpreted as a histogram of the unbroadened eigenvalue
stick spectrum.

The distribution of the sticks in the stick spectrum for the CE-123 system is
narrower than that of CE-104, which is due to the fact that the CE-123 geometries
have chromophores further apart, and therefore smaller offdiagonal couplings and
smaller range in eigenvalues. In the limit of infinite separation, these eigenvalues
become degenerate and would yield a delta function. The CE-104 system has a
much wider stick spectrum, with non-zero absorption between 400-475 nm. This wide
distribution of spectral lines validates our use of using only a gaussian broadening
parameter in our simulations, since the coupling between chromophores is much
greater than individual chromophores coupling to an environment. The features in
the spectra for CE-104 will be dominated by static disorder, leading to significant
inhomogeneous broadening.

To see the effect of the chromophore geometries, in Figure 5.6(b) we compute the
spectra for an ideal C17h symmetric geometry where the positions and orientations of
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Figure 5.7: Idealized C17h symmetric geometry where the positions and orientations of the
chromophores are obtained from the average over all the MCMM configurations. Arrows
indicate the orientation of the transition dipole moment. The blue arrows describe the
CE-104 system, while the red arrows describe the CE-123 system.

the chromophores are obtained from the average over all the MCMM configurations.
The geometry for the top half of the disk is shown for both the CE-104 and CE-123
systems in Figure 5.7. The symmetry of these geometries implies that every nearest-
neighbor pair of chromophores has an identical geometry relative to each other, so
no pair couples more strongly than any of the others. For the symmetric geometry,
the resulting Hamiltonian will yield eigenvalues with a smaller spread, therefore, we
see a tighter spectrum for CE-104 in Figure 5.6(b) than in Figure 5.6(a). We find
that the simulation using the MCMM-derived geometries is better able to reproduce
the blue shift that occurs when going from the CE-123 system to the CE-104 system.

In Table 5.5, we show the Hamiltonian matrix elements for each system, averaged
over all 34 sites. For the systems derived from the MCMM geometries, the average is
also over all of the geometry configurations. From this table, we see that the average
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〈εi〉 [nm] 〈Jij〉 [nm] 〈|Jij|〉 [nm]
CE-104 MCMM 2.842 2.00× 10−3 6.82× 10−3

CE-123 MCMM 2.806 3.44× 10−4 1.28× 10−3

CE-104 symmetric 2.812 9.58× 10−4 9.58× 10−4

CE-123 symmetric 2.800 4.53× 10−6 4.83× 10−5

Table 5.5: Hamiltonian parameters, averaged over all sites and all geometry configu-
rations. εi are the diagonal Hamiltonian matrix elements, and Jij are the offdiagonal
Hamiltonian matrix elements. These are obtained from the same systems used to
generate spectra in Figure. 5.6

off-diagonal coupling values for both CE-104 and CE-123 are positive. A positive
coupling value is characteristic of H-aggregates, which occur when transition dipoles
are perpendicular to the intermolecular axis, and aligned parallel to each other[132].
This geometric property is consistent with the orientation distribution histogram
in Figure 5.5 - while both CE-104 and CE-123 tend to be disordered, the average
orientation is one where the dipole is aligned with the z-axis. H-aggregates also
tend to exhibit blue-shifted absorption spectra. This phenomena occurs because
the geometric symmetry of H-aggregates renders the energetically favorable exciton
states to be optically dark, leaving only the higher energy excitons free to absorb
light. While there is still a large amount of static disorder in the system, we find
that on average, the CE-104 pigment-protein systems resembles an H-aggregate,
while the chromophores of the CE-123 system are situated too far apart to exhibit
spectral shifts.

However, it is not just the positive-valued off-diagonal couplings that cause the
blue shift. The average site energies (εi) for the CE-104 position are also shifted
0.04 eV above the monomer transition energy that we chose (2.842 vs 2.8 eV). While
the conventional Frenkel Exciton Hamiltonian does not include any perturbative
corrections to the site energies [13], the Hamiltonian parameters we use defined in
Eq. 5.2 include corrections to account for the classical Coulomb couplings between
chromophores. The distance and orientation dependence of this correction has been
throughouly studied in Chapter 3, and Figure 3.10 shows that for H-aggregates, the
site energy for Coumarin 343 dimers tends to increase at closer distances.

In Figure 5.8, we plot the same MCMM-derived systems as in Figure 5.6(a), but
setting εi = ∆Emonomer

1 , and dipole-dipole coupling to calculate all of the offdiago-
nal matrix elements. We find that the CE-104 simulated spectrum is exhibits much
more spectral broadening than the spectra in Figure 5.6. This result is explained in
Chapter 3, Figure 3.7, which compares the coupling obtained from the ideal dipole
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Figure 5.8: The simulated linear absorption spectrum for the MCMM-geometries, using
∆Emonomer

1 for all the diagonal energies, and dipole-dipole coupling for the off-diagonal
energies of the Hamiltonian. Refer to Figure 5.6 for an explanation of the other lines.

λavg
CE-104 [nm] λavg

CE-123 [nm] ∆avg [nm]
Experiment [122] 429.28 435.14 5.86
MCMM 438.32 442.78 4.46
Idealized 442.42 443.60 1.18

Table 5.6: Average Absorbance. ∆avg is the difference between CE-104 and CE-123
average absorbances (λavg

CE-123 − λ
avg
CE-104).

approximation to one derived from TDDFT. For Coumarin 343 dimers that resemble
H-aggregates, the dipole approximation overestimates couplings at close intermolec-
ular separation distances. At 6 Å separation, the dipole approximation overestimates
the value by factor of 2.5. Figure 5.3 shows that the closest interchromophore dis-
tances in the MCMM geometries can be as close as 5 Å, so it is necessary to use an
appropriate Hamiltonian model that can account for the deviations at these close
distances. Therefore, we find using the ideal dipole approximation to be unsuitable
for modeling our system.

In Table 5.6, we quantify the differences between the spectra in Figure 5.6 by
calculating the average absorbance for each spectra:

λavg =

∑
λ Abs(λ) ∗ λ∑
λ Abs(λ)

. (5.14)

We compare the average absorbance for each of the simulations and compare these
to the values obtained from experimental spectra [122]. To summarize our results,



CHAPTER 5. SIMULATIONS OF A PROTOTYPICAL SYNTHETIC LIGHT
HARVESTING SYSTEM 70

the experimental spectrum exhibits a blue shift when going from the CE-123 system
to the CE-104 system. While both the simulations using the MCMM geometries
and the idealized geometries exhibit a blue shift, the simulation that incorporates
disorder is able to match this trend much better. We conclude that the disorder in
the geometry of the CE-104 and CE-123 systems is an important feature of these
systems, and it is important to account for this disorder in order to model optical
properties accurately.

5.4 Conclusions

In this work, we present a protocol that generates conformations using a Monte
Carlo multiple minima (MCMM) conformation search algorithm, parametrizes a
semiempirical tight-binding Hamiltonian based on ab-initio TDDFT calculations and
combines those to generate a linear absorption spectrum that can be directly com-
pared to experiments.

In particular, we applied this protocol to study a recently synthesized artificial
light harvesting system consisting of chromophores attached to a tobacco mosaic
virus (TMV) protein. We studied Coumarin 343 (along with a linker) and Oregon
Green 488 attached to the 104 and 123 sites on the TMV protein. The resulting four
systems, CE-104, CE-123, OG-104, and OG-123, were studied with MCMM and we
obtained a wide array of local minima. We characterized those conformers using the
orientation of the transition dipole moment and center-of-mass of dyes attached to
the TMV protein. Such a characterization led to a better understanding of structural
order and disorder associated with the dyes. CE-104 and CE-123 both exhibit a very
broad geometric distribution, which makes any types of theoretical study more or
less intractable. OG-104 and OG-123 are relatively spatially well confined, but OG-
123 is more disordered than is OG-104 in terms of the spin-spin correlation function
discussed in the main text. For future studies, we believe that OG-104 will be likely
the easiest system to exhaustively study using theoretical methods.

Lastly, we combine the wide array of conformations found through MCMM with
a semiempirical tight-binding Hamiltonian to produce a linear absorption spectrum
of CE-104 and CE-123. We observed that it is necessary to account for the proper
geometric distribution to properly reproduce the blue shift when going from the
CE-123 system to the CE-104 system. Despite the high levels of static disorder in
the CE-104 system, our simulations reveal that it exhibits geometric and optical
properties that resemble an H-aggregate. We find that the typical Frenkel Exciton
Hamiltonian with static site energies and dipole-dipole coupling for the offdiagonal
elements is insufficient for modeling the optical properties for this system. The
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methods described in this chapter for obtaining more accurate Hamiltonian matrix
elements can be used to create a model that better captures the geometric and
orientation dependence of these matrix elements, especially at closer intermolecular
distances. While this model is more difficult to use than the dipole approximation,
once the model is properly fit, it can efficiently generate tight-binding Hamiltonians
for arbitrary geometries.
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Chapter 6

Conclusion

The work presented in this dissertation both evaluates existing models and pro-
poses new theoretical models that can be used to simulate the electronic and optical
properties of chromophore aggregates. The Frenkel exciton model Hamiltonian was
found to be inadequte in its original formulation when used for the intermolecu-
lar distances and orientations found in a prototypical light-harvesting system. We
proposed a modified tight-binding Hamiltonian which performs much better at the
closer intermolecular distances encountered in these photosynthetic systems. We
also quantified the rate and efficiency of charge separation for a chromophore donor-
acceptor system using a Lindblad master equation and a tight-binding model that
treats electronic excitation transfer and charge separation at the same level of theory.
The predictions from this model were able to match the trends found in experimental
characterizations of the charge separation rate, and we found that it is important to
include higher energy charge-transfer and exciton states to properly model this sys-
tem. We also studied an artificial photosynthetic system that had been synthesized
by attaching chromophores onto the TMV protein. We found that the amount of
static disorder in the system is highly dependent on the synthetic choices (choice of
chromophore, protein attachment site). It was necessary to account for this disorder
in our model, in addition to using a more accurate tight-binding Hamiltonian, in
order to properly simulate the linear absorbtion spectra for these systems.

6.1 Future Directions

One focus of the work presented in this dissertation was to create models that
work well for real experimental systems, while balancing efficiency and accuracy.
The Frenkel exciton model is often used to model molecular aggregates due to its
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simplicity and ease of use. The approaches that we have presented have an overhead
of requiring numerous TDDFT calculations, but once the model is trained on this
data, the resulting effective Hamiltonian can be created just as efficiently as the
Frenkel exciton model Hamiltonian, for arbitrary starting geometries. We suggest
that theoretical studies of photosynthetic systems should consider the assumptions
made in the Frenkel exciton model, and evaluate whether their system warrents using
a more microscopic treatment of the Hamiltonian.

One future extension of this work would be to combine the techniques for simu-
lating charge separation rates and linear absorption presented in ch. 4 and 5 into a
single model. The ability to predict both linear absorption and charge separation in
a unified model would be a useful theoretical tool to study artifical photosynthetic
systems that include both a light harvesting component and a charge separation com-
ponent. Such a study would be able to screen potential donor acceptor geometries,
and discover the tradeoffs between light absorption and charge separation efficencies.
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