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Abstract

Memory-Hard Functions: When Theory Meets Practice

by

Binyi Chen

Memory-hard functions (MHFs) is a class of hash functions whose fast evaluation

requires the heavy use of memory, and an evaluation that spends less memory has to

incur a much larger time penalty. Memory-hardness is particularly useful in the setting

of password hashing and cryptocurrencies, as memory cost is platform-independent and

efficient special-purpose hardware for brute-forcing attacks becomes much harder to be

built. Since its first proposal by Colin Percival in 2009, many memory-hard hash heuris-

tics were proposed, and the notion/design of MHFs has received a considerable amount

of theoretical scrutiny as well. However, a large gap still exists when theory meets prac-

tice. On the one hand, most of the practical schemes are only heuristics without formal

analysis, and attacks do exist for some of them; on the other hand, theoretical analyses

are usually based on unrealistic assumptions: they consider MHFs as modes of opera-

tion of some underlying hash function H, modeled as a random oracle. Unfortunately,

in practice, this is never the case as H is usually a heuristic design built from simpler

primitives.

This dissertation makes progress in addressing both of the problems. Our main

contributions are threefold. First, we prove that a widely-used MHF candidate, called

scrypt, is provably and optimally memory-hard, thus shedding light on the confidence

of its wide application. Second, we model simple cryptographic tools (e.g. AES) as the

underlying ideal primitives and present a generic and provably-secure MHF construction

from hard-to-pebble graphs. The resulting scheme significantly decreases the efficiency
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gap between legitimate users and ASICs-equipped attackers. Finally, given the practice

demands for H to have large outputs (to increase memory hardness without changing the

description size of MHFs), we go back to the framework of constructing MHFs from H

(with large output). Different from previous work, we take finer-granularity of the hash

function H into account, and provide the first provably secure design of H from simpler

primitives (e.g. fixed-key AES).
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Chapter 1

Introduction

Outline of the Chapter. In this chapter, we introduce the background of memory-

hard functions and state our main results. In section 1.1, we take password hashing

as an example for motivating the use of memory-hard functions, that is, to harden the

special-purpose hardware attacks towards inverting hashes. Then in Section 1.2, we

briefly introduce the definition and the state-of-art schemes of MHFs. After introducing

the gap between theory and practice, we present our main contributions in Section 1.3.

The chapter ends with a thesis organization and associated publications in Section 1.4

and Section 1.5.

1.1 Password Hashing: Hardware Attacks

Password is one of the most important tools for authenticating online users because

of its simplicity and easy deployment. However, as the explosive development of ecom-

merce/online industry, the password information of users becomes a lucrative target for

attackers, and password-file breaches of giant organizations/companies [1, 2, 3, 4, 5] is no

longer rare news in recent years, making the protection of clients’ online secret an urgent
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Introduction Chapter 1

task.

To protect passwords, an authentication scheme called password hashing is widely

used: instead of storing clients’ passwords in the clear, the server stores the hashes of

passwords. The authentication is done by comparing the input hash with that in the

server storage. The hashing scheme significantly increases the cost of cracking passwords:

Even if a database was breached and the hash-file was stolen, to obtain passwords, the

attacker still needs to invert the hashes which was usually considered to be a hard task.

For example, the näıve idea of brute-forcing all possible inputs consumes huge amounts

of resources as long as the password input has large entropy.

Unfortunately, human beings are the weakest links of internet security and many users

tend to select low entropy passwords. This opens the door for attackers to mounting

offline dictionary attacks, where a table (that stores commonly used passwords and their

hashes) was precomputed, and after stealing the hash file, the attacker can obtain the

passwords by looking up the dictionary table. A countermeasure against offline dictionary

attacks is to use public salt to re-randomize hashes so that different users will have

different hashes even if they share the same password. Therefore, the attacking process

becomes much harder as the dictionary has to be computed on the fly after seeing the

salt. Nevertheless, even with salt, weak passwords are still susceptible to brute-force

attacks when the hashes are easy to compute.

Towards the end of mitigating offline/brute-force attacks, hash iteration schemes

(e.g., BCRYPT [6], PBKDF2 [7]) were introduced to make each hash evaluation more

expensive, thus reducing the number of passwords guesses an attacker can attempt. The

idea of iteration schemes is to take a basic hash function (e.g. SHA-1/2/3) and iterate it

for t times, where t is a tunable parameter that can be increased as hardware chips become

faster. However, such iteration technique suffers from two issues. First, by increasing

the number of iterations, the computational cost for authenticating a legitimate user is

2
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increased as well. Second, and more seriously, the fast development of special-purpose

hardware (e.g., GPU, FPGA, and ASICs) leads to a huge efficiency gap between legitimate

users and attackers. In particular, an attacker equipped with ASICs can evaluate the

hash function on large amounts of inputs with negligible energy cost. For example, as

noted by [8]: “the Antminer S9, an ASIC Bitcoin [9] miner, can compute SHA256 hashes

at a rate of 13.6 trillion hashes per second using just 1274 Joules of energy per second

(Watts). In contrast, the energy cost for evaluating the same amounts of hashes on a

general-purpose CPU is around six orders of magnitude higher.” Therefore, confronting

the challenge that special-purpose hardware has been rapidly developed (mostly because

of the popularity of mining cryptocurrencies), a new hash design that minimizes the

efficiency advantage of ASICs (over CPUs) is desired.

1.2 Memory-Hard Functions

With the goal of eliminating special-purpose hardware attacks, researchers observed

that i) memory access latency is similar across different platforms, and ii) chips (e.g.

energy-efficient DRAM chips) with large memory are relatively expensive in production

as that will require considerable amounts of silicon area. Moreover, the increased chip

area also makes the cost of accessing memory much higher.1

Therefore, a promising direction against ASIC-attacks is to design memory-hard func-

tions (MHFs). More specifically, MHFs is a type of hash functions whose efficient evalua-

tion requires the use of considerable amounts of memory. The memory-hardness property

makes it much harder to launch efficient password recovery attacks as the special-purpose

hardware is required to have huge amounts of chip space/RAM memory to speed-up the

computation (e.g., by exploiting parallelization/pipelining) on inputs a lot of guessing

1For example, let m2 be the area of a chip square, the memory access cost will be roughly linear to
m.
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passwords.

There has been a lot of interests in designing/analyzing memory-hard functions (cf.

e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]). The Password Hashing Competition

announced in 2013 has indicated memory hardness as a de-facto requirement, and there

are many hash candidates [21, 22, 23, 24, 25, 26, 27, 28, 29] that are meant to be memory

hard. However, most of the practical schemes are only heuristics without formal analysis,

and many attacks have been found [12, 30, 31, 16, 32]. Provably secure memory-hard

functions have been designed as well [10, 11, 13, 14, 15, 16, 17, 19, 20]. Unfortunately,

for most of the theoretically sound constructions, there exists a big concrete gap between

the achieved memory hardness and the default sequential evaluation cost, making the

theoretical results less useful in practice. Worse still, the provably secure constructions

are usually based on unrealistic assumptions that make the analysis less convincing in

the real world scenario. For example, the elegant work by Alwen and Serbinenko [10]

showed a generic approach for constructing memory-hard functions from hard-to-pebble

graphs. However, their construction makes use of a random oracle which is usually

instantiated with an ad-hoc construction based on some simpler objects (e.g., the hash

function underlying Scrypt resembles a permutation-based stream-cipher design). Thus

we have no guarantee on its security when the adversary can exploit the internal structure

of the hash function.

Given issues arised on MHFs when theory meets practice, we therefore ask the fol-

lowing question.

Can we design a memory-hard function that i) satisfies strong (if not

optimal) memory-hard hardness, and ii) enjoys a provable security guarantee

in a realistic computational model (e.g. based on a primitive that is highly

efficient on general-purpose CPUs)?

4
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We provide affirmative answers to above questions. Moreover, a few of our construc-

tions satisfy extra desired properties for password hashing, e.g., side-channel resilience

and small description complexity. We will give more details of our contributions in the

next section.

1.3 Our Contributions

Our main contributions are threefold. First, we prove that a widely-used MHF can-

didate, called scrypt, is provably and optimally memory-hard, thus substantiating its

usage. Second, given the observation that AES operations are already fast on general-

purpose CPUs (e.g., AES-NI instruction set is embedded in many modern chips), we

present a generic MHF construction from hard-to-pebble graphs and AES. The resulting

scheme significantly decreases the efficiency gap between legitimate users and ASICs-

equipped attackers. Third, we propose a hash primitive that has large output space

called wide-block labeling functions. The primitive can be built from AES and enables us

to increase the memory hardness of MHFs without changing the size of the function.

Scrypt is Optimally Memory Hard. Scrypt [33] is a popular MHF candidate pro-

posed by Colin Percival in 2009. It has gained a lot of research/industry interests af-

ter the proposal: It is used as a proof-of-work scheme within many cryptocurrencies

(most notably Litecoin [34], but also Tenebrix or Dogecoin), was published by IETF as

a key-derivation function (RFC 7914) [35], and has inspired the design of one of the

Password-hashing Competition’s [36] winners, Argon2d [37].

We show that Scrypt is optimally memory hard in a computational model proposed

by [10], called the parallel random oracle model (PROM). The result is also the first

unconditional memory hardness lower bound for Scrypt in the PROM. To appreciate the
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novelty of our results, along the road, we also obtain an optimal pebbling complexity

lower bound for a combinatorial game that is tightly related to the evaluation of Scrypt.

iMHFs from Simple Primitives. Data independent memory-hard function (iMHFs)

is a class of MHFs whose evaluation pattern is orthogonal to the data input. It satisfies a

property called side-channel resilience which is desirable for password hashing where the

data input is usually sensitive information (i.e. passwords). Alwen and Serbinenko [10]

proposed an elegant framework for constructing iMHFs from a DAG G and a hash func-

tion H modeled as a random oracle. However, the underlying hash H is usually instanti-

ated with an ad-hoc construction based on simpler building blocks (e.g. stream ciphers

or block ciphers). This leads to two issues: First, in practice, the hash function H is

far from an ideal random oracle, and highly efficient ASICs that exploits the internal

structure of H do exist; second, since the evaluation of H is slower on CPUs, the entire

computation of MHFs on general-purpose CPUs becomes less efficient as well, which

slows down the authentication speed.

To remedy the issues, we observe that AES operations are particularly fast on general-

purpose CPUs (e.g., AES-NI instruction set is widely embedded in CPU chips), and an

ASIC (for AES) that achieves high efficiency advantage over CPUs is much harder to be

built. From this observation, we propose a generic framework for constructing iMHFs

from (fixed-key) AES modeled as a random permutation. For completeness, we also

provide constructions based on other simple cryptographic primitives (e.g., compression

functions and keyed block ciphers). Towards the goal, we provide an efficient instantiation

of H that invokes the fast primitive only once. We will adapt previous lemmas based

on ex-post-facto arguments (dating back to [38]) to reduce the security of iMHFs to the

pebbling complexity of the underlying DAG.

6



Introduction Chapter 1

Bootstrapping Memory Hardness from Wide-Block Labeling Functions. The

construction above achieves high CMC (e.g. N2L/ logN = 260) in practice if we choose a

big graph parameter N . However, the program size (that is superlinear to N) will increase

as well. This posts obstacles for embedding the program into mobile devices/hardware.

A solution adopted by practitioners is to use a tailored-made hash function and

expand the block size from L = 128 to a larger value W (e.g., W = 8192), and hence

the CMC lower bound is now N2W/ logN . However, the previous analyses consider

the underlying hash function H as a random oracle where an adversary cannot exploit

the inner structure. We open the box of H and explore a step further. Specifically, we

provide a generic construction of the hash function H (with W -bit output) using a simple

primitive that has a shorter output. We call it as a wide-block labeling function. For the

graph-based iMHFs scheme proposed by [10], we replace the underlying hash function

H with our construction. As long as the graph G satisfies a widely-used property called

depth-robustness, the resulting scheme is memory-hard even if the adversary can exploit

the structure of H and make oracle queries to the underlying simpler primitive.

1.4 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 starts with the basic notation we will use in the following chapters. We

then formally define memory-hard functions in a computational model called parallel

ideal-primitive model where an adversary can adaptively query an ideal-oracle on many

inputs at a single step. This is followed by defining several combinatorial games on

directed acyclic graphs called pebbling games, which have tight relation to the evaluation

of MHFs. We then review a framework for constructing iMHFs from graphs and hash

primitives. The chapter ends with some related work of memory-hard functions.
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In Chapter 3 we show that a popular MHF candidate – Scrypt [33] – is optimally

memory-hard. We start off with a description of the Scrypt scheme and explain its

applications. We then provide an overview of our contributions: as a warm-up, we state

an optimal lower bound on the complexity of a pebbling game that is tightly related to

the evaluation of Scrypt; this is followed by our major contribution, an unconditional

optimal lower bound on Scrypt’s memory hardness in the parallel random oracle model.

To highlight our technical contribution, we also provide a general single-challenge time

lower bound in the parallel random oracle model. After the overview, we provide with

formal treatments of our main results. Finally, we end the chapter with some open

problems.

Chapter 4 presents a class of data-independent memory-hard functions (iMHFs)

built from fast symmetric cryptographic primitives (e.g. fixed-key blockciphers). The

construction follows the framework by Alwen and Serbinenko [10], which builds MHFs

from graphs and hash primitives. We start by defining and constructing a hash primitive

called small-block labeling functions. After proving that the labeling function satisfies a

property called pebbling reducibility, we show how to construct iMHFs from small-block

labeling functions.

Finally in Chapter 5 we construct succinct iMHFs from a primitive called wide-block

labeling functions. We start by motivating the use of wide-block labeling functions, then

we give a formal definition and a construction from simple cryptographic primitives used

in Chapter 4. After showing the pebbling reducibility of our construction, we finish by

giving a generic framework for constructing iMHFs from wide-block labeling functions.

8
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1.5 Associated Publications of the Thesis

The contents of Chapter 3 is the result of a paper co-authored with Joël Alwen,

Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. This paper merged the work of

Leonid Reyzin, Joël Alwen, and Krzysztof Pietrzak, and the author’s work with Stefano

Tessaro. Thus the paper was jointly written by all of the authors. The joint work [15] has

won the Best Paper Award in the proceedings of Eurocrypt 2017. Some of the contents

of Chapter 3 are taken from this joint write up (with permission of co-authors).

Chapters 4 and 5 are based on a joint work [39] with Stefano Tessaro, which was

published in the proceedings of Crypto 2019.

The copyright for the publications above is held by c© IACR 2017, 2019.

9



Chapter 2

Preliminaries

Outline of the Chapter. In this chapter, we introduce the basic definitions and no-

tation used in the thesis for constructing memory hard functions (MHFs). We start with

basic notational conventions in Section 2.1. Then in Section 2.2 we describe the definition

of memory hard functions in a computational model called the parallel ideal primitive

model [10, 39], and in Section 2.3 we review the classical compression arguments. Next

in Section 2.4, after introducing necessary graph notation, we describe a combinatorial

game called pebbling game [40, 41], which is tightly related to the computation of MHFs.

The rest of the chapter is then focused on the background of graph-based MHFs, whereas

we describe a general framework for constructing MHFs from graphs and hash functions.

Our treatment is based on [10], with notational changes borrowed from [39]. Finally, we

discuss some related work of memory-hard functions in Section 2.6.

2.1 Basic Notation

Following convention, we use N and R to denote the set of natural numbers and real

number. For any n ∈ N, [n] is used to denote the set { 1, . . . , n }. For any a, b ∈ R,

10
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(a, b] is used to denote the set of real numbers larger than a but no larger than b. For

binary strings x and y, |x| is the length of x and we use (x||y) or (x, y) to denote the

concatenation of x and y. For a set X, |X| is the number of elements in X, and x
$← X

is the process of assigning x as a uniformly chosen element from X. For a distribution

D, we use x← D to denote the sampling of x from distribution D. By log(·) we always

refer to binary logarithm.

2.2 Memory-Hard Functions in the Ideal Primitive

Model

2.2.1 Ideal Primitives

In practice, MHFs are built from symmetric cryptographic primitives, e.g., block

ciphers, compression functions, or variable-length hash functions. In this thesis, we model

these symmetric cryptographic primitives as ideal and analyze the security of MHFs in

the ideal model. Fix L = 2` and W = 2w (where W � L), we consider four types of

ideal primitives: (In the following context, we will omit L and W in the ideal-primitive

notation if there is no ambiguity.)

1. Ideal compression function: We use CF to denote the set of functions1 with domain

{0, 1}L ∪ {0, 1}2L and image {0, 1}L.

2. Ideal cipher: We use IC to denote the set of keyed permutations with domain K×

{0, 1}L and image {0, 1}L. For simplicity, the key space is set as K := {⊥}∪{0, 1}L

1Though most compression functions do not allow L-bit inputs by design, we could however easily
take L-bit inputs by reserving one input bit of the compression function to implement domain separation,
and then padding short inputs.

11



Preliminaries Chapter 2

in the following context2.

3. Random permutation: We use RP to denote the set of permutations with in-

put/output space {0, 1}L.

4. Random oracle: We use RO to denote the set of functions with input/output space

{0, 1}W .

2.2.2 Parallel Ideal Primitive Model

Alwen and Serbinenko [10] introduced the parallel Random Oracle Model (pROM) to

model the computation of memory hard functions. We generalize the pROM into a new

computational model called the parallel Ideal Primitive Model [39] where the random

oracle is replaced with any one out of four ideal primitives above. We note that the

model is the same as pROM when the ideal primitive is a random oracle.

Let IP = CF/IC/RP/RO be a type of ideal primitive set. For an oracle-aided al-

gorithm A, input x and random coins r, the execution A(x; r) works as follows. First,

a function ip is uniformly chosen from the set IP. The oracle-aided algorithm A can

make oracle query to ip as follows: If ip = ro is randomly sampled from the set RO,

the algorithm can make queries with form (“RO”, x) and receive value ro(x). If ip = cf

is a randomly sampled compression function, the algorithm can make queries with form

(“CF”, x) and receive value cf(x). If ip = ic is a randomly sampled ideal cipher, the al-

gorithm can make forward queries with form (“IC”,+, k, x) and receive value ic(k, x), or

make inverse queries with form (“IC”,−, k, y) and receive value ic−1(k, y). Similarly, if

ip = rp is a randomly sampled permutation, the algorithm can make forward queries with

form (“RP”,+, x) and receive value rp(x), or make inverse queries with form (“RP”,−, y)

2⊥ is a designated key separate from the L-bit strings, which is necessary to implement variable input
length.
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and receive value rp−1(y).

Denote as σ0 = (x, ∅) the initial input state. For each round i ∈ N, A(x; r) takes

input state σi−1, performs unbounded computation, and generates an output state σ̄i =

(δi,qi,outi), where δi is a binary string, qi is a vector of queries to the ideal primitive ip,

and outi is a vector of output labels. σi = (δi, ans(qi)) is defined as the input state for

round i+ 1, where ans(qi) is the vector of ideal primitive answers to qi. The execution

terminates after round T ∈ N if |qT | = 0. We use Aip(x; r) to indicate both the execution

output (i.e., the concatenation of output labels) and the execution trace (i.e., all of the

input and output states (σ0, σ̄1, σ1, . . . )). We call A a sequential algorithm if |qi| = 1 for

every 1 ≤ i < T , otherwise A is a parallel algorithm.

Complexity Measures. We measure the complexity of computation using ST-complexity

and cumulative memory complexity (CMC) [10, 14]. For a trace Aip(x; r) with respect

to input x, randomness r and ideal primitive ip, the time complexity Tm(Aip(x; r)) is the

number of rounds ran by A and the space complexity Spc(Aip(x; r)) is the bit-size of the

maximal input state. We define ST-complexity and cumulative memory complexity as

follows.

Definition 2.1 (Complexity Measures) Given a trace Aip(x; r), the ST-complexity of

Aip(x; r) is

ST(Aip(x; r)) := Spc(Aip(x; r)) · Tm(Aip(x; r)) ;

the cumulative memory complexity of Aip(x; r) is

CMC(Aip(x; r)) :=

Tm(Aip(x;r))∑
i=0

|σi| ,

where σi is the input state of round i. Note that ST(Aip(x; r)) ≥ CMC(Aip(x; r)).

13
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For any ε ∈ (0, 1], q ∈ N, and any functions family F = { f ip : X → Y }ip∈IP, we

define the (ε, q)-cumulative memory complexity of F to be

CMCε, q(F) := min
x∈X ,A∈A‖x,ε,q

E
[
CMC(Aip(x; r))

]
,

where the expectation is taken over the uniform choices of ip and r. A‖x,ε,q is the set of

parallel algorithms that make at most q queries and outputs f ip(x) with probability at least

ε (over the uniform choices of ip and r). We will sometimes omit the parameter q when

there is no ambiguity.

For any T ∈ N, we define the T -ST complexity of F to be

ST(F , T ) := min
A∈AT

(
max

x∈X , ip∈IP
ST(Aip(x))

)
,

where AT is the set of deterministic and sequential algorithms that takes at most T steps3

and outputs f ip(x) for any x ∈ X and ip ∈ IP.

ST-complexity works for measuring sequential efficiency, it is an upper bound on the

sequential complexity of F ; CMC works for measuring security, it is a lower bound on

the computational complexity of any parallel algorithm that evaluates F .

Assumption 2.1 In Chapter 4 and Chapter 5, we will implicitly assume an upper bound

on the number of queries being made when q is not explicitly stated, that is,
∑

i≥1 |qi|+

|outi| ≤ q. We will also omit q in notation for simplicity.

2.2.3 Memory-Hard Functions

We define memory hard functions in the parallel ideal primitive model. Intuitively,

there exists a relatively efficient sequential algorithm that computes the MHFs, and any

3Since the algorithm is sequential, it makes at most T queries as well.

14



Preliminaries Chapter 2

parallel algorithm that evaluates the functions incurs high CMC cost.

Definition 2.2 (Memory Hard Functions) For an ideal primitive IP = CF/IC/RP/

RO, a family of functions F = { f ip : X → Y }ip∈IP is (C
‖
F ,∆F , TF)-memory hard if and

only if the following properties hold.

Memory-hardness: For any ε ∈ (0, 1], we have CMCε(F) ≥ C
‖
F(ε).

Efficiency-gap: For any ε ∈ (0, 1], we have

ε · ST(F , TF)

CMCε(F)
≤ ∆F(ε) .

We stress that the parameter TF measures the sequential time cost for evaluating the

MHFs.

2.3 Compression Arguments

In this section, we review the classical result from [42, 43, 44] that random strings are

not compressible. After that, we extend the compression argument into the permutation

setting, that is, random permutations/ideal ciphers cannot be compressed either.

Lemma 2.1 ([42, 43, 44]) Fix an algorithm A, let B be a sequence of random bits. A

on input a hint h ∈ H adaptively queries specific bits of B and outputs p indices of B that

were not queried before, along with guesses for each of the bits. The probability (over the

choice of B and randomness of A) that there exists an h ∈ H where A(h) guesses all bits

correctly is at most |H|/2p.

Lemma 2.2 Fix L ∈ N and an algorithm A that can make no more than q = 2L−2 oracle

queries. Let ic be an ideal cipher uniformly chosen from the set IC with domain K×{0, 1}L

and image {0, 1}L.4 A on input a hint h ∈ H adaptively makes forward/inverse queries

4A random permutation can be viewed as an ideal cipher with a fixed key.
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to ic, and outputs p ≤ 2L−2 ideal primitive entries (as well as guesses for each of the

entry values) that were not queried before. The probability (over the choice of ic and

randomness of A) that there exists an h ∈ H where A(h) guesses all permutation entries

correctly is at most |H|/2p(L−1).

Proof: Without loss of generality we assume that A is deterministic. For every

h ∈ H, let goodh denote as the set of ideal ciphers ic where Aic(h) predicts all permutation

entries correctly. Hence the probability we want to bound is

∣∣⋃
h∈H goodh

∣∣
|IC|

.

Since |
⋃
h∈H goodh| ≤

∑
h∈H |goodh|, it is sufficient to bound |goodh|/|IC| for every h ∈

H. Equivalently, it is sufficient to prove that for every h ∈ H, the probability (over

the uniform choice of ic) that A(h) guesses all permutation entries correctly is at most

1/2p(L−1).

We consider a mental experiment where we simulate A(h) while lazily sampling the

entry values of ic. Upon receiving a forward call with input (k, x) where ic(k, x) is

undetermined yet, we uniformly sample ic(k, x) := y ∈ {0, 1}L from the image values

that have not been used before in the permutation ic(k, ·); upon receiving an inverse call

with input (k, y) where ic−1(k, y) is undetermined yet, we uniformly sample ic−1(k, y) :=

x ∈ {0, 1}L from the pre-image values that have not been used before in the permutation

ic(k, ·). At the end of the simulation, A outputs p tuples {(ki, xi, yi)}i∈[p], where for every

i ∈ [p], ic(ki, xi) and ic−1(ki, yi) were not queried before and thus are un-determined.

Finally, we sample the entry values of ic(ki, xi) for every i ∈ [p], and sample the rest

entries of ic(·, ·). It is easy to see that ic is uniformly chosen from the set IC. Moreover,

for every i ∈ [p], when sampling ic(ki, xi), the number of used image values in ic(ki, ·)

is at most q + p ≤ 2 · 2L−2 = 2L−1 and there are still at least 2L − 2L−1 = 2L−1 values
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to choose. Therefore, the probability that all the guesses {yi}i∈[p] are correct is at most

( 1
2L−1 )p = 1

2p(L−1) .

2.4 Graphs and Pebbling Models

In this section, we review necessary graph notation, and describe two combinatorial

games called black pebbling game [40, 41] and challenge pebbling game, which are tightly

related to the computation of MHFs. Most of the notational treatments are based on

[11, 14, 39], and some passages were taken verbatim from [39].

Graph Notations. Denote as G = (V,E) a directed acyclic graph (DAG) with N = 2n

vertices where we implicitly assume V = { 1, . . . , N }). For each vertex v ∈ V, pred(v) :=

{u : (u, v) ∈ E } are the predecessor nodes of v, succ(v) := {w : (v, w) ∈ E } is the set of

v’s successors. we denote as src(G) ⊆ V the set of source vertices, that is, the vertices

which have no predecessors; and denote as sink(G) ⊆ V the set of sink vertices, that is,

the vertices which have no successors. The indegree of v is defined as indeg(v) := |pred(v)|

and the indegree of G is defined as indeg(G) := maxv∈V indeg(v). For a directed acyclic

path P , the length of P is the number of nodes it traverses. depth(G) is the length of

the longest path in G. For a nodes set S ⊆ V, G − S is the DAG obtained from G by

removing S and incident edges.

Black Pebbling Game. Consider a pebbling game played on a DAG (G = V,E) [40,

41, 10]. At each step, the player can put pebbles on a subset of vertices according to

some rules, and the goal is to put pebbles on sink vertices finally. We denote by a parallel

(black) pebbling on G as a sequence of pebbling configurations P = (P0, . . . ,Ptpeb
) where

P0 = ∅ and Pi ⊆ V (1 ≤ i ≤ tpeb). We define two properties for P.
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• Legality: We say P is legal if it satisfies follows: A pebble can be put on a node

v ∈ V only if v is a source node or v’s predecessors were all pebbled at the end of

the previous step, that is, for any i ∈ [tpeb] and any v ∈ Pi \ Pi−1, it holds that

pred(v) ⊆ Pi−1.
5

• Successfulness: We say P is successful if it satisfies follows: Every sink node has

been pebbled at least once, that is, for any v ∈ sink(G), there exists i ∈ [tpeb] such

that v ∈ Pi.

We say P is a sequential (black) pebbling if it further satisfies that |Pi \ Pi−1| = 1 for

every i ∈ [tpeb].

Challenge Pebbling Game. Let (G = V,E) be a single source/sink DAG and D

be an efficiently samplable distribution over vertex set V. For m ∈ N, consider an m-

round randomized pebbling game. Initially, the pebbling configuration P0 contains only

a pebble on the source vertex. At the beginning of each challenge phase i (1 ≤ i ≤ m), a

challenge node ci ← D is sampled. The player at each step can put pebbles on a subset

of vertices according to the same legality rule as in the black pebbling game, and the goal

of the player is to put a pebble on ci, which triggers the beginning of challenge phase

i + 1 at the next step. The game finishes after the last (i.e., the m-th) challenge node

was pebbled. We similarly define parallel (and sequential) pebbling strategies as in black

pebbling games. However, for simplicity of calculation in Section 3.3, we further assume

that the pebbling configurations of pebbling strategies are never empty, that is, for any

particular pebbling sequence P = (P0, . . . ,Pt), we have |Pi| ≥ 1 for every 1 ≤ i ≤ t.

Note that the pebbling strategies (i.e., the player) are adaptive on the choices of

challenge nodes. For a pebbling strategy P, and a challenge sequence c = (c1, . . . , cm),

5pred(v) = ∅ for v ∈ src(G).
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we use P(c) to denote the particular sequence of pebbling configurations given c. (We

assume that the pebbling sequence P(c) is deterministic for a fixed challenge sequence c.)

We emphasize that the decision of the strategy P (i.e. the choices of putting/removing

pebbles) in round i (1 ≤ i ≤ m) is independent of the choices of challenges ci+1, . . . , cm.

Complexity Measures. To measure the cost of pebbling, we define ST-complexity

and cumulative complexity for black/challenge pebbling games.

Definition 2.3 (Complexity Measures for Black Pebbling Game [10]) For a peb-

bling strategy P = (P0 = ∅, . . . ,Ptpeb
), we define the cumulative complexity (and ST-

complexity) of P to be

cc(P) :=

tpeb∑
i=0

|Pi| , st(P) := tpeb · max
i∈[tpeb]

(|Pi|) .

For a DAG G = (V,E), let P‖(G) be the set of parallel pebblings of G that are legal

and successful; for any t ∈ N, let Pt(G) be the set of sequential pebblings of G that are

legal and successful and takes at most t steps. We define the cumulative complexity (and

ST-complexity) of G as

cc(G) := min
P∈P‖(G)

cc(P) , st(G, t) := min
P∈Pt(G)

st(P) .

Definition 2.4 (Complexity Measures for Challenge Pebbling Game) For any

m ∈ N, DAG G = (V,E), and distribution D over V, let P‖(m,G,D) be the set of parallel

challenge pebblings w.r.t. m, G and D. (In the following context, we implicitly assume

that the challenge pebblings are legal and successful.) For any t ∈ N, let Pt(m,G,D) be

the set of sequential challenge pebbling strategies that takes at most t steps for any choice

of the challenge sequence. We define the cumulative complexity (and ST-complexity) of
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the (m,G,D)-challenge pebbling game as

cc(m,G,D) := min
P∈P‖(m,G,D)

(
E

c←Dm
[cc(P(c))]

)
,

and

st(m,G,D, t) := min
P∈Pt(m,G,D)

(
E

c←Dm
[st(P(c))]

)
,

where P(c) is the particular pebbling configuration sequence given the challenge nodes

vector c. We emphasize again that the strategy P knows the m challenges phase by

phase, instead of knowing all of them in a batch at the beginning (i.e., the prefix of P(c)

up to round i is independent of the choices of ci+1, . . . , cm).

Similar as in Section 2.2, we stress that ST-complexity measures sequential efficiency,

while cumulative complexity measures the memory hardness against parallel algorithms.

Depth Robustness. We review two useful graph-theoretic property called depth-robustness

and source-to-sink depth-robustness.

Definition 2.5 (Depth-Robustness [14]) A DAG G = (V,E) is (e, d)-depth-robust if

and only if for any S ⊆ V such that |S| ≤ e, it holds that depth(G− S) ≥ d .

Definition 2.6 (Source-to-Sink-Depth-Robustness [39]) A DAG G = (V,E) is

(e, d)-source-to-sink-depth-robust if and only if for any S ⊆ V with at most e elements,

G− S has a path (v1, . . . , vt) such that t ≥ d, v1 ∈ src(G), and vt ∈ sink(G).

There is a tight relation between depth-robustness and cumulative complexity.

Lemma 2.3 ([14]) For any (e, d)-depth-robust DAG G, we have cc(G) ≥ e · d.
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2.5 Graph-based iMHFs from Labeling Functions

In this section, we review a framework for constructing data-independent MHFs

(iMHFs) from graphs and labeling functions [10]. By data-independence we mean that

the memory access pattern of default evaluation algorithm is independent of the input.

The framework is widely used in Chapter 4 and Chapter 5. Most of the notational

treatments were taken verbatim from [39].

Let G = (V,E) be a DAG with N = 2n vertices. Without loss of generality we

assume that the vertex set V is sorted according to topological order, and for simplicity

we index V as {1, . . . , N}, where src(G) = {1, . . . , ns} is the set of source vertices and

sink(G) = {N − nt + 1, . . . , N} is the set of sink vertices. Let

H = Hδ,w = { labip
γ : {0, 1}γW → {0, 1}W }

γ∈[δ],ip∈IP

be a family of labeling functions built upon ideal primitive IP, where W = 2w is the

output length and δ is the maximal ratio between the lengths of input and output. The

family of graph-based iMHFs FG,H = {Fip
GH : {0, 1}nsW → {0, 1}ntW}ip∈IP is defined as

follows. Fix any ip ∈ IP and input x = (x1, . . . , xns) ∈ {0, 1}
nsW . Let `i := labip

1 (xi) be

the label of vertex i (1 ≤ i ≤ ns). For each v ∈ [N ], the label of v is recursively defined

as

`v := labip
γ (`u1 , . . . , `uγ ) ,

where (u1, . . . , uγ) is the list of v’s predecessor nodes. The function output is (`N−nt+1‖ . . . ‖`N),

where `i (N − nt < i ≤ N) is the label of sink vertex i.

Input Constraint. For the general case where ns = |src(G)| > 1, we implicitly con-

strain the blocks of the input vector x = (x1, . . . , xns) to be non-overlapping (and we
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call it a non-colliding input vector), that is, xi 6= xj for any i, j ∈ N where i 6= j. This

constraint is necessary for preventing the adversary from easily saving memory. For ex-

ample, if all of the blocks are identical, the adversary can compress the input by storing

only a single block. The constraint is also reasonable as we can re-randomize the original

input using a random oracle RO : {0, 1}nsW → {0, 1}nsW , and the output blocks will be

distinct with overwhelming probability as long as ns � 2W/2.

Graph Constraints. The graphs we are concerned within the thesis satisfy certain

properties (which already hold for most of the practical graph constructions). In partic-

ular, each 2-indegree DAG G = (V,E) considered in Chapter 4 is predecessors-distinct,

that is, for any two different vertices u, v ∈ V\src(G), we have pred(u) 6= pred(v). Looking

ahead, this constraint is used to prevent non-source nodes label collisions. On the other

hand, each δ-indegree DAG G = (V,E) considered in Chapter 5 satisfies first-predecessor-

distinctness, that is, there exists a way of choosing the first predecessor fpre(v) ∈ pred(v)

for every non-source vertex v ∈ V, such that for any two different vertices u, v ∈ V\src(G),

we have fpre(u) 6= fpre(v). Looking ahead, this constraint is used to guarantee that the 2-

indegree bootstrapped graph Extδ,W (G) built upon G is predecessors-distinct. We stress

that practical DAG constructions usually contain a subpath that traverses all of the

vertices, and thus are both first-predecessor-distinct and predecessors-distinct. More

specifically, first-predecessor-distinctness holds as each non-source node v can pick her

previous node in the subpath (that traverses all of the vertices) as their first predecessor;

predecessors-distinctness holds as otherwise a cycle would exist.
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2.6 Related Work

In this section, we give a discussion for the related work of memory-hard functions.

First, we discuss the applications of memory hard functions; next, we discuss the line

of theoretical/practical attacks towards memory hard functions candidates. Finally, we

review different notions of crypto-primitives and cost metrics that are highly related to

the memory hard functions we present in this thesis.

Applications. One of the most prominent applications of memory hard functions is

password hashing [45]. In this scenario, instead of storing user passwords in the clear,

the server stores hash digests of passwords, with the hope that it is hard to invert the

hash back to passwords even if attackers steal the hash file. Morris and Thompson [46]

presented the notion of salt and there are many designs of password hashing schemes

afterward, including a DES-based design called crypt, and a design (by Poul-Henning

Kamp) based on md5 hash called md5crypt. However, the rapid improvement of hard-

ware drive down the cost of dictionary attacks towards crypt/md5crypt significantly,

rendering old designs obsolete. To address the issue of ever-increasing hardware speeds,

a scheme with a tunable hardness parameter called Bcrypt [6] was introduced. Intuitively,

it iterates a hash function a certain number of times, which can increased accordingly

as hardware speed improves. The framework also leads to the standard of PBKDF2.

However, as recent development of special-purpose hardware (e.g. Appilication Specific

Integrated Circuits (ASICs)), the advantage of iterated hashing scheme was downgraded

as ASICs can exploit parallelism, pipelining and amortization to efficiently evaluate huge

amounts of hash instances. To increase the cost of special-purpose passward cracking

hardware, researchers observed that memory cost is relatively platform independent,

and introduced many memory hard functions candidates [29, 13, 21, 28, 27, 26] which
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enforce the use of huge amounts of memory when evaluating the function. Besides pass-

word hashing, memory hard functions also show wide applications in proofs-of-work [9],

proofs-of-space [47, 48], combatting spam emails [49, 50], resisting DDoS attacks, etc.

Attacks. For an ideal memory hard function with sequential time cost n, the optimal

CMC cost lower bound would be Θ(n2). However, for many practical memory hard

functions heuristics, there exist both theoretical/practical strategies that evaluates the

functions with far less cost. For example, Alwen and Blocki [12] presented a generic par-

allel attack strategy that evaluates any graph-based iMHFs with complexity O(n2/ log n).

Attacks towards practical MHFs candidates were introduced as well [12, 30, 31], includ-

ing Catena [21], Balloon hashing [13], and the winner of Password Hashing Competition

(PHC) – Argon2i [28]. Blocki and Zhou [16] improved the O(n1.8) attack towards ar-

gon2i [30] and presented an algorithm with complexity O(n1.768). Recently, Blocki et

al. [32] showed a simple sequential attack towards DRSample [17], and Alwen et al. [31]

presented attacks on five data-independent memory hard functions (iMHFs) submitted

to PHC, including Rig.v2 [25], TwoCats [24] and Gambit [23] (with attack complexity

O(n1.75)), Pomelo [22] (with attack complexity O(n1.83)) and Lyra2 [27] (with attack

complexity O(n1.67)).

Cost Metrics. There are various notions of egalitarian cost metrics with different

pros and cons. The CMC metric we consider in this thesis was proposed by [10] who

take into account the possibility of amortization and parallelism attacks. However, the

measure is not perfectly precise for measuring egalitarian hardware cost as it allows

space-time trade-off. In practice, this makes a huge difference as memory cost grows

superlinearly as opposed to scales linearly. Ren and Devadas [51] proposed a notion called

consistent memory hardness, which requires any sequential evaluation to uses space S ′ for
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at least T ′ steps, otherwise the algorithm must have run for a long time. Alwen, Blocki,

and Pietrzak [19] strengthened consistent memory hardness into the parallel setting and

introduced a new notion called Sustained Memory Complexity. Intuitively, it requires

any parallel evaluation to uses space S ′ for at least T ′ steps.

Besides memory cost, other notions of egalitarion cost (e.g., bandwidth, cache misses,

and energy cost) were also considered. Abadi et al.[52] observed that large number of

cache misses can slow down the computation and proposed the notion of memory bound

functions that incur many expensive cache misses. However, their construction requires

a large random string as input and is thus only of theoretic interests. Recently, Ren

and Devadas [53] refined the notion of memory bound functions to bandwidth hardness.

In contrast to memory bound functions which only considers cache misses, bandwidth

hardness also models the cost of computation as non-free, which leads to more practical

constructions.
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Scrypt is Maximally Memory Hard

Outline of the Chapter. In this chapter, we show that a popular MHF candidate –

Scrypt [33] – is optimally memory hard in the parallel random oracle model. We start

with an introduction in Section 3.1, explaining the design and background of Scrypt. In

Section 3.2, we highlight our main technical contribution, that is, the optimal memory

hardness proof of Scrypt in the PROM. Next, as a warmup, we introduce (in Section 3.3)

a multi-challenges pebbling game that is tightly related to the evaluation of Scrypt, and

provide an optimal proof for its CC lower bound. In Section 3.4, before showing the

full analysis in the parallel random oracle model (PROM), we provide a general single-

challenge time lower bound for better understanding. Finally, we present the full memory

hardness proof of Scrypt in Section 3.5.

The contents of this chapter is the result of a paper co-authored with Joël Alwen,

Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. The paper merged the results of

Leonid Reyzin, Joël Alwen, and Krzysztof Pietrzak, and the author’s work with Stefano

Tessaro. Thus the paper was jointly written by all of the authors. Some of the contents

of Chapter 3 are taken from this joint write up (with permission of co-authors). The full

version of this work is available on [15, 54].
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3.1 Introduction

In this section, we roughly review the design and background of Scrypt. We start

by describing a core component of Scrypt called ROMix function, and then show several

applications of Scrypt. At the end of the section, we explain at a high level the memory

hardness intuition/proof challenges of Scrypt, and survey the previous work.

The Scrypt MHF. We study a component of Scrypt function called ROMix (as de-

fined in [33]), which is the core that makes Scrypt memory hard. For simplicity of nota-

tion, we will call ROMix as scryptro function throughout the thesis. Let ro : {0, 1}W →

{0, 1}W denote as a hash primitive, scryptro on input x ∈ {0, 1}W and parameter N ∈ N

computes values X0, X1, . . . , XN−1, S0, . . . , SN and outputs SN , where

• X0 = x and for i = 1, . . . , N − 1 : Xi = ro(Xi−1)

• S0 = ro(XN−1) and for i = 1, . . . , n : Si = ro(Si−1 ⊕XSi−1 mod N)

For simplicity of explanation, we also define intermediate variables T0, . . . , TN with T0 =

XN−1 and Ti = Si−1 ⊕XSi−1 mod N for 1 ≤ i ≤ N , so that Si = ro(Ti). For simplicity, we

assume that the input string is always with length of W -bit. For the more general case

where x has arbitrary length, we can apply a hash function on x and let the hash output

be the input of scrypt.

The Näıve Algorithms. We illustrate two simple sequential algorithms for evaluating

scrypt. The first algorithm is fast but memory-intensive: In the first phase, the algo-

rithm on input X0 = x evaluates Xi = ro(Xi−1) (1 ≤ i ≤ N) iteratively and stores all

of the N values in memory. During the second phase, the algorithm computes Si values

(1 ≤ i ≤ N) step by step: It first extracts XSi−1 mod N from the memory and computes

Ti = Si−1 ⊕ XSi−1 mod N , then it evaluates Si by applying the hash function ro on Ti.
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After computing Si, it releases memory and forgets the value of Si−1. The space-time

complexity of the algorithm is 2N ×NW = 2N2W and the CMC is 1.5N2W .

The second algorithm is memory-less but takes much more time. For every i (1 ≤

i ≤ N), the algorithm recomputes the value XSi−1 mod N from the input, and evaluates

Si = ro(Si−1 ⊕ XSi−1 mod N). The algorithm uses approximately W bits of memory; the

expected time complexity is N2/2. Thus the space-time complexity (as well as the CMC)

is N2W/2.

Applications. One of the main reasons that we study Scrypt in this chapter is its

widespread popularity: it is used in several proofs-of-work schemes for cryptocurrencies

(most notably Litecoin [34], but also Tenebrix or Dogecoin), was published by IETF as

RFC 7914 [35], and has inspired the design of one of the Password-hashing Competi-

tion’s [36] winners, Argon2d [37].

Memory Hardness: Intuition and Proof Challenges. Intuitively, Scrypt is memory-

hard because of the following. Let X0, . . . , XN−1 be the X-labels computed in the first

phase. We can alternatively consider them as nodes labels for an N -vertices line graph.

In the second phase, to compute Si+1, an algorithm needs to extract the label XSi mod N ,

where (Si mod N) is a pseudorandom index that is unpredictable until Si is computed.

Suppose the algorithm stores p (out of N) nodes labels before knowing Si, in expectation,

it will take at least N/(2p) steps to compute a random node label from a node label that

has been stored. This leads to a total memory×time cost p ·N/(2p) = N/2. Since there

are N challenged value Si to be computed, the CMC of the strategy will have CMC of

W ·N ·N/2 = 1
2
N2W .

Transforming the above intuition into a formal proof, however, is much harder. There

are several main challenges. First, the memory state of an algorithm is not necessarily
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a collection of nodes labels, but can be arbitrary information. Surprisingly, approaches

that decreases CMC by storing information other than just labels have been constructed

in [11]. Second, the memory consumption of an algorithm can vary over time. In partic-

ular, an algorithm is not required to keep all p labels after knowing the index Si mod N ,

but might decrease CMC by deleting labels and recomputing afterward. In fact, [10]

showed that if one is given the indices Si mod N in advance, an algorithm exists which

evaluates scryptro with CMC only O(W · N1.5). Third, in the second phase of Scrypt,

the indices (Si mod N) are from the hash function ro, instead of uniformly and indepen-

dently generated. It is harder to argue that an algorithm cannot obtain more information

of future challenges by querying the hash function.

Previous Work. Percival’s original paper [33] proposed an analysis of scrypt targeting

the space-time complexity instead of CMC. As pointed out by [15], however, the analysis

is incorrect. Alwen, Chen et al. [11] initiated the study of proving CMC lower bound of

scrypt. They lower bound the CMC of scrypt by Ω(W ·N2/ log2N), but in a restricted

computational model.

3.2 Results Overview

In this section, we highlight our contributions for proving memory hardness of Scrypt.

Our main result [15] is the first unconditional lower bound on CMC for Scrypt in the

parallel random oracle model. The Ω(W ·N2) bound we obtain is optimal in the parallel

random oracle model as well. To appreciate the novelty of our results, along the road,

we also obtain a CC lower bound for a challenge pebbling game that is tightly related to

the evaluation of Scrypt.
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Optimal Lower Bound on the Pebbling Complexity. In Section 3.3, we prove

an optimal Ω(N2) lower bound on the parallel cumulative pebbling complexity for a

challenge game which abstracts the evaluation of scrypt: we consider a line graph with

N vertices. An adversary’s goal is to pebble N uniformly chosen challenge nodes on

this graph, where the ith challenge is only revealed once the node of challenge i − 1 is

pebbled. In [15, 54] we introduce a new technique for analyzing cumulative complexity:

Let ti be the time spent for answering the ith challenge. we lower bound the cumulative

pebbling cost of the (i − 1)-th challenge phase as a function of ti and ti−1, and prove

that the sum of the costs over N challenge phases is Ω(N2). Similar as in [11], our proof

relies on a generalization of the fact that given a configuration with p pebbles, and a

random challenge, an adversary needs at least (approximately) t = n/p steps to pebble

the challenge (with probability at least 1
2
).

Optimal Memory Hardness of Scrypt. For the setting of graph-based data inde-

pendent MHFs [10], there is an elegant ex-post-facto argument that transforms a lower

bound on the cumulative complexity for the parallel pebbling game into a lower bound

on CMC. However, scrypt is a data-dependent MHF and there is no result showing that

the pebbling lower bound for the challenge pebbling game can lead to a lower bound on

CMC for general adversaries.

Surprisingly, by extending our proof for the challenge pebbling game into the paral-

lel random oracle model, we prove an optimal memory hardness of scrypt function in

Section 3.5. More specifically, we have the following theorem.

Theorem 3.1 (Memory-hardness of Scrypt, main theorem) For any X ∈ {0, 1}W

and N ≥ 2, if Aro(X,n) outputs Sn = scryptro(X,n) with probability χ, where the prob-

ability is taken over the choice of the random oracle ro, then with probability (over the
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choice of ro) at least χ− .08N6 · 2−W − 2−N/20,

CMC(Aro(X)) >
1

25
·N2 · (W − 4 logN) .

As mentioned before in memory-hardness proof challenges, we solve three major issues

that i) memory state can be arbitrary; ii) memory consumption can vary; and iii) chal-

lenge indices are from the hash primitive instead of being independent and uniformly

random.

3.3 Optimal Cumulative Complexity in the Pebbling

Game

In this section, we prove a lower bound on the cumulative complexity of a challenge

pebbling game (see definition in Section 2.4) that is tightly related to the evaluation

of Scrypt. The pebbling game is played on a line graph with N vertices and takes m

challenge phases. In Section 3.3.1, we demonstrate a lower bound on the time-space

tradeoff for answering a single challenge. In Section 3.3.2, we exploit the single-round

time-space tradeoff and obtain a Ω(mN) CC lower bound for the pebbling game with

m challenges. The techniques in this section will be useful in the full proof of our main

result in Section 3.5.

The (m,N)-Challenge Pebbling Game. Let G be a line graph with N vertices,

indexed by1 {0, . . . , N − 1}. We consider a challenge pebbling game on G. Recall that in

the challenge pebbling game (Section 2.4), initially at time s1 = 0, the player receives a

challenge c1 sampled uniformly from the set {0, . . . , N−1}. After answering this challenge

1We slightly abuse the notation and use i ∈ {0, . . . , N − 1} to indicate the i-th vertex itself.

31



Scrypt is Maximally Memory Hard Chapter 3

at the earliest step s2 > s1 (where the pebbling configuration Ps2−1 contains the vertex

c1). The player will receive the next independent and uniformly random challenge c2,

and so on, for m challenges, until challenge cm is answered at time sm+1. Our goal is to

provide a lower bound on the (expected) cumulative complexity cc(P(c)) =
∑sm+1

t=0 |Pt|

where c = (c1, . . . , cm). Also note that in the challenge pebbling game, we assume that

|Pt| ≥ 1 for every step t.

3.3.1 Time-Space Tradeoff for a Single Challenge

Given an initial pebbling configuration P0, we say that a player answers a challenge c

(0 ≤ c < N) in t steps if t > 0 is the earliest step such that c ∈ Pt−1. It is easy to see that t

is at least one plus the distance between c and the closest pebble (in P0) preceding it. For

any vertex v in P0, there are at most N/(2|P0|) challenges within distance N/(2|P0|)− 1

to v. Hence we have the following fact.

Fact 3.1

Pr
c

[
t >

N

2|P0|

]
≥ 1

2
.

3.3.2 CC of the (m,N)-Challenge Pebbling Game

In this section we show that the cumulative complexity for playing the (m,N)-

challenge pebbling game is Ω(mN) with high probability. Note that Fact 3.1 only ad-

dresses the number of pebbles used right before a challenge is revealed. However, the

player can adaptively vary the number of pebbles used throughout the game, and there

is no trivial space lower bound guarantee for other steps. Fortunately, we will still be

able to show the following.

Theorem 3.2 (Cumulative pebbling complexity of challenge pebbling game) Fix

any challenge pebbling strategy, the cumulative pebbling complexity of the (m,N)-challenge

32



Scrypt is Maximally Memory Hard Chapter 3

pebbling game is with high probability Ω(mN). More precisely, suppose the strategy has

at least one pebble at each step. Then for any ε > 0, with probability at least 1− e−2ε2m

over the choice of the m challenges c = (c1, . . . , cm),

cc(P(c)) ≥ 1 +
N

2
·m ·

(
1

2
− ε
)
· ln 2 ,

where P(c) is the pebbing sequence of the strategy given the challenges c.2

Alternatively speaking, denote as GN the line graph with N vertices and UN the uni-

form distribution over {0, . . . , N − 1}. For any ε > 0, we have

cc(m,GN ,UN) ≥
(

1− e−2ε2m
)
·
(

1 +
N

2
·m ·

(
1

2
− ε
)
· ln 2

)
,

where cc(m,GN ,UN) is the expectation of cumulative complexity. (See Definition 2.4.)

Proof: Recall time starts at 0, we denote as |Pt| the number of pebbles in pebbling

configuration Pt at time t. Let si be the time moment when the ith (1 ≤ i ≤ m) challenge

is issued, and ti is defined as the amount of time needed to answer the ith challenge. More

precisely, we have s1 = 0, si+1 = si + ti; and we let sm+1 = sm + tm. We use cc(t1, t2) to

denote
∑t2

t=t1
|Pt|.

Proof Intuition. Note that Fact 3.1 only enables us to argue that the number of

pebbles (immediately before the ith challenge) is inversely proportional to ti. However,

since a player can adaptively vary the number of pebbles used throughout the game, we

have no guarantee for the following steps in challenge phase i. Fortunately, we overcome

the difficulty by considering the number of pebbles at the step not only immediately

before the challenge, but also j steps earlier (for j = 1, 2, . . . ).

2The corresponding theorem in full version [15, 54] is more general in that it replaces ln 2 with a
function that depends on the number of pebbles in the initial/minimal pebbling configuration. However,
we stick with the simpler version of the theorem in this thesis for ease of explanation.

33



Scrypt is Maximally Memory Hard Chapter 3

Warm-up: Assuming Deterministic Time-space Tradeoff. For better under-

standing, we first assume a stronger time-space tradeoff (than in Fact 3.1). That is,

to answer the next challenge in time t, for the step right before the challenge is revealed,

the size of the memory state should be at least N/(2t). Moreover, we can apply this

assumption to every step before the challenge is issued, that is, suppose s is the step

when the challenge is issued, for every j ≥ 0, the number of pebbles at time s − j is at

least N ′/(j + t) (where N ′ = N/2). (This holds because the challenge was answered in

j + t steps starting from time s− j, and even if the challenge were issued earlier at time

s− j, N ′/(j + t) pebbles is still needed by time-space tradeoff assumption.)

Given the assumption above, for each challenge i ≥ 2, the cumulative complexity

during round i− 1 is at least

cc(si−1 + 1, si) ≥
ti−1−1∑
j=0

|Psi−j| ≥ N ′
(

1

ti
+

1

ti + 1
+ · · ·+ 1

ti + ti−1 − 1

)
≥ N ′

∫ ti−1+ti

ti

dx

x
= N ′(ln(ti−1 + ti)− ln ti) .

Hence by adding up the bound for each round i (2 ≤ i ≤ m), we obtain the cumulative

complexity

cc(1, sm+1) ≥ N ′
m∑
i=2

(ln(ti−1 + ti)− ln ti) .

The term reaches the minimum when all ti are equal (as we will show below), which

becomes N ′(m− 1) · ln 2.

Back to Fact 3.1. The actual proof is harder as the Fact 3.1 is probabilistic instead of

deterministic. Moreover, the time-space tradeoff does not provide a lower bound on the

number of pebbles in terms of running time, but the opposite direction (we cannot talk

probabilistically of the number of pebbles, which is already determined before revealing
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the challenge). We address the issue by checking the pebbling size for all steps before si,

and find the one that gives us the best lower bound on ti.

Hard Challenges. For each time moment t ≤ si, we can apply Fact 3.1 to the pebbling

size |Pt| (as the ith challenge is revealed after determining the pebbling configuration Pt).

Hence with probability at least 1/2 over the choice of challenge i, we have ti + (si− t) >

N ′/|Pt|, that is, we can have a lower bound on ti, which is ti > N ′/|Pt| − (si − t). We

define ri to be the moment that leads to the best lower bound on ti:

ri = argmax
0≤t≤si

(
N ′

|Pt|
− (si − t)

)
.

We call that the ith challenge is “hard” if ti > N ′/|Pri | − (si − ri). We claim that if

challenge i is hard, then for every step before the challenge, we can obtain a lower bound

on the number of pebbles just as in the the warm-up proof.

Claim 3.1 If challenge i is hard, then for any j, 0 ≤ j ≤ si, |Psi−j| > N ′/(ti + j).

Proof: For any j, let t = si − j. We have N ′/|Psi−j| − j = N ′/|Pt| − (si − t) ≤

N ′/|Pri | − (si − ri) by the choice of ri. This value is less than ti by definition of a hard

challenge. Hence N ′/|Psi−j| − j < ti and the claim holds.

Number of Hard Challenges. Next we claim that with high probability, the number

of hard challenges is high.

Claim 3.2 For any ε > 0, with probability at least 1 − e−2ε
2m (oveer the choices of

challenges), the number of hard challenges is at least H ≥ m(1/2− ε).

Proof: Intuitively, the idea is to apply Hoeffding’s inequality [55] as challenges

are independent. However, the hardness of challenges is not independent. Fortunately,
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we can argue that it can only be “worse than independent”. More precisely, for any

fixed choices of the first i − 1 challenges c1, . . . , ci−1, we can run the adversary up to

time si. At this moment, ri is well defined and we can apply Fact 3.1 to ri to obtain

that Pr[ci is hard | c1, . . . , ci−1] ≥ 1/2. This inequality allows us to apply a generalized

version of Hoeffiding’s inequality stated in Claim 3.3 (setting Vi = 1 if ci is hard and

Vi = 0 otherwise) to get the desired result.

Claim 3.3 (Generalized Hoeffding’s inequality) If V1, V2, . . . , Vm are binary ran-

dom variables such that for any i (0 ≤ i < m) and any values of v1, v2, . . . , vi, Pr[Vi+1 =

1 |V1 = v1, . . . , Vi = vi] ≥ ρ, then for any ε > 0, with probability at least 1 − e−2ε
2m,∑m

i=1 Vi ≥ m(ρ− ε).

Proof: For 0 ≤ i < m, define the binary random variable Fi+1 as follows: for any

fixing of v1, . . . , vi such that Pr[V1 = v1, . . . , Vi = vi] > 0, let Fi+1 = 1 with probability

ρ/Pr[Vi+1 = 1 |V1 = v1, . . . , Vi = vi] and 0 otherwise, independently of Vi+1, . . . , Vm. Let

Wi+1 = Vi+1 ·Fi+1. Note that Pr[Wi+1 = 1] = ρ regardless of the values of V1, . . . , Vi, and

thusWi+1 is independent of V1, . . . , Vi. Since F1, . . . , Fi are correlated only with V1, . . . , Vi,

we have that Wi+1 is independent of (V1, . . . , Vi, F1, . . . , Fi), and thus independent of

W1, . . . ,Wi. Therefore, W1, . . . ,Wm are mutually independent (this standard fact can be

shown by induction on the number of variables), and thus
∑m

i=1 Vi ≥
∑m

i=1Wi ≥ m(ρ−ε)

with probability at least 1− e−2ε2m by Hoeffding’s inequality.

Lower Bound on the Sum of |Pi|. Assume H challenges are hard (and thus satisfy

Claim 3.1), next we show a lower bound on the sum of |Pi|.

Claim 3.4 Fix real value N ′ and integers t1, . . . , tm. Define s1 = 0, and si = si−1 + ti−1

for i = 2, . . . ,m + 1. Denote as |P0| = 1, . . . , |Pm| a sequence of real values such that
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|Pt| ≥ 1 for every t ≥ 1. Suppose that there exist at least H distinct indices i (1 ≤ i ≤ m)

(called “hard indices”) such that for any 0 ≤ j ≤ si, |Psi−j| ≥ N ′/(ti + j). Then we have

sm+1∑
i=1

|Pi| ≥ N ′ ·H · ln 2 .

Proof: Let i1 < i2 < · · · < iH be the hard indices. Recall the notation cc(i, j) =∑j
t=i |Pt|. Then for k ≥ 2,

cc(sik−1
+ 1, sik) ≥ cc(sik − tik−1

+ 1, sik) =

tik−1
−1∑

j=0

|Psik−j|

≥
tik−1

−1∑
j=0

N ′

tik + j
≥ N ′ · (ln(tik−1

+ tik)− ln tik) ,

Similar as in the warm-up proof, we try to provide a lower bound on cc(1,m + 1) by

adding up the pebbling lower bound above for each k and find the minimum over all

choices of tik . However, the term will decrease if ti1 decreases and tiH increases, for which

we have no bounds. We address the issue by providing tailored lower bound for special

cases of k = 2 and k = H + 1.

For k = 2, by noticing that si2 ≥ ti1 + si1 ≥ N ′ (where the second step follows by

Claim 3.1 with j = si1), we can bound cc(1, si2) as follows.

cc(1, si2) ≥
si2−1∑
j=0

|Psi2−j| ≥ N ′
si2−1∑
j=0

1

ti2 + j
≥ N ′

∫ si2+ti2

ti2

dx

x

= N ′(ln(si2 + ti2)− ln ti2) ≥ N ′ · (ln(N ′ + ti2)− ln ti2) .
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For k = H + 1,

cc(siH + 1, sH+1) ≥ tiH ≥ N ′ ·
(

1

N ′
tiH

)
≥ N ′ ·

(
1

N ′
+ · · ·+ 1

N ′ + tiH − 1

)
≥ N ′ · (ln(tih +N ′)− lnN ′) .

Adding these up, we get

cc(0, si+1) = |P0|+ cc(1, si2) + cc(si2 + 1, si3) + · · ·+ cc(siH−1
+ 1, siH ) + cc(siH + 1, siH+1

)

≥ |P0|+ c ·
H∑
i=1

(ln(xi + xi+1)− lnxi+1) ,

where x1 = N ′, x2 = ti2 , x3 = ti3 , . . . , xH = tiH , and xH+1 = N ′. For each i, the

first derivative with respective to xi is 1
xi+xi−1

+ 1
xi+xi+1

− 1
xi

. Assumming all the xis

are positive, the function reaches its minimum when each xi (2 ≤ i ≤ H) is equal to

√
xi−1xi+1, or equivalently xi = N ′. This setting of xi thus gives us the desired result.

Plugging in m · (1/2− ε) for H, the Theorem 3.2 holds true.

3.4 Single-Challenge Time Lower Bound in the PROM

Before proving our main result, to highlight one of our technical contributions, in this

section, we extend the Fact 3.1 to the parallel random oracle model and provide a more

general single-challenge time lower bound.

Notation. Fix parameters N and W , input X ∈ {0, 1}W . For a function ro : {0, 1}W →

{0, 1}W , define Xi = roi(X). Let A be any oracle algorithm (in the parallel random oracle

model as defined in Section 2.2) that on any input and oracle makes at most q− 1 total

queries to its oracle. Suppose Aro(X, j) starts on input state σ0 with the goal of eventually
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querying Xj to ro. Let tj be the earliest round in which Aro(X, j) queries Xj to ro (with

tj =∞ if never).

We show that A (with anM -bit initial state) cannot do much better than the following

pebbling strategy: Initially placing p ≈ M/W equidistant pebbles. Given a random

challenge on the line graph, the strategy pebbles the challenge from the closest pebble

preceding it. This leads to the following theorem.

Theorem 3.3 (Single-Challenge Time Lower Bound) Assume the adversary A makes

no more than q − 1 RO queries. Fix any memory size M and let p = d(M + 1)/(W −

2 logN − log q) + 1e. With probability at least 1 − εbad = 1 − (q + 1)N22−W (over the

uniform choice of random oracles and A’s internal coins) the following holds: For every

input state σ0 of length at most M bits, we have

Pr
j←{0,...,N−1}

[
tj >

N

2p

]
≥ 1

2
, (3.1)

where the probability is taken over the challenge j.

First, without loss of generality, we can fix A to be deterministic, as otherwise we can fix

the coins r to be the optimal randomness that minimizes the probability (over ro) such

that the above property (i.e. Inequality 3.1) holds.

Before the formal proof, similar as in [10], we define a useful notion called ex-post-facto

initial pebbling.

Ex-post-facto initial pebbling. Fix input X, random oracle ro ∈ RO and initial

state σ0. For every challenge j ∈ {0, . . . , N − 1}, we consider the first tj rounds of

the execution A(X, j): At round k (1 ≤ k ≤ tj), A takes as an input state containing

oracle answers ro(qk−1) (except for k = 1, when A reads σ0). Then A performs arbitrary
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computation, and generates an output state containing oracle queries qk. We denote as

trace A(X, j) the sequence of input/output states in the execution.

Consider running A(X) on every challenge j (0 ≤ j ≤ N − 1) in parallel, one round

at a time. For every node index i ∈ {0, . . . , N − 1}, if the first appearance of Xi is

in some round of trace A(X, j) (0 ≤ j ≤ N − 1), we define bestchali = j as the best

challenge of i, and we define the best position βi as follows: if the first appearance of Xi

is a query to ro in round k, then we assign βi = k (meaning that Xi is revealed at round

k without recomputing first). If the first appearance of Xi is an oracle answer from ro to

query Xi−1 made at round k, then we assign βi = k + 1/2 (meaning that Xi is revealed

at round k by recomputing). In all other cases, we let βi = ∞. We define ex-post-facto

initial pebbling B ⊆ {0, . . . , N − 1} as the set of indices i where βi is a finite integer, that

means, when running A(X) on every challenge j (0 ≤ j ≤ N − 1) in parallel, Xi is used

without recomputing first. In the following proof, we will show that the size of B cannot

be much larger than the size of the initial state σ0.

Proof: [of Theorem 3.3] Fix input X = X0 and (deterministic) algorithm A, the

proof consists of the following steps.

Step 1: Time lower bound on challenge-answering. First we show that given

the ex-post-facto initial pebbling B, for any challenge j, the number of rounds needed to

answer the challenge is at least the distance from j to the closest pebble in B preceding

it.

Claim 3.5 Fix input X, algorithm A, initial state σ0 and random oracle ro ∈ RO. Let

B denote as the ex-post-facto initial pebbling. For every j, 0 ≤ j < N , let tj be the

earliest round in A(X, j) where the challenge j is answered. We have tj ≥ 1 + j − k,

where k = max{a ≤ j | a ∈ B}.
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Proof: For those j in the set B, the claims holds because tj ≥ 1 as we start from

round 1. Thus we only consider j not in B in the following context. We note that it

is sufficient to show that dβj − βke ≥ j − k, where βj is the first step that Xj appears

in some trace when running A(X) on all possible challenges in parallel. This is because

dβje ≥ j − k + 1 as βk ≥ 1. Hence we have tj ≥ dβje ≥ j − k + 1, which finishes the

proof.

Next we show that dβj − βke ≥ j − k. This holds true because βk+1 ≥ βk + 1/2 and

β` ≥ β`−1 + 1 for every ` between k + 2 and j. The first argument holds because Xk is

the query input when Xk+1 is revealed as an RO answer in A(X, bestchalj); the second

argument holds because X`−1 is the query input when X` is revealed as an RO answer

in A(X, bestchalj) (thus β` > β`−1), and because neither of β` or β`−1 are integers by

definition of k.

Step 2: Label collisions. Next, we show that the labels {Xi}i∈{0,...,N−1} are distinct

with high probability. This property is useful for identifying index i from a label Xi.

More importantly, looking ahead, it guarantees the existence of a predictor that (on

input a small hint including the initial state σ0) can extract (approximately) |B| random

oracle entries, where B is the ex-post-facto initial pebbling.

Claim 3.6 Fix input X = X0. With probability at least 1 − εcoll = 1 − N22−W−1 (over

the uniform choice of RO), the labels {Xi}i∈{0,...,N−1} are distinct.

Proof: Fix input X = X0, let Ecoll be the event where there is a X-label collision.

We show a predictor P that when Ecoll happens, there exists a small hint h = (u, v)

(where the size of the hint space is at most N2/2), such that P on input h predicts a

random oracle entry. Thus by Lemma 2.1, we have Pr[Ecoll] ≤ N22−W−1 and the claim

holds.
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The hint. If Ecoll happens, the hint is (u, v) (0 ≤ u < v < N) where Xu = Xv and v is

the minimal index i such that Xi collides with some labels in {X0, . . . , Xi−1}.

The predictor P . P ro (with hardwired X0) parses the input into (u, v), computes b =

rou(X0) and a = rov−1(X0), then P predicts (a, b) which satisfies b = ro(a). Moreover, P

nevery query ro(a): if v = 1, then P predicts ro(X0) = X0 without querying ro(X0); if

v > 1, P nevery query ro(a) because otherwise v − 1 would be the minimal index i such

that Xi collides with some labels in {X0, . . . , Xi−1}.

Step 3: Pebbling reduction. Next we build the connection between the initial state

size and the size of the ex-post-facto initial pebbling. In particular, we show that with

high probability, the size of pebbling |B| is at most ≈ M/W , where M is the length of

the initial input state and W is the length of labels.

Lemma 3.1 Fix input X and algorithm A (that is deterministic and makes at most q−1

RO queries). Fix any memory size M and let p = d(M + 1)/(W − 2 logN − log q) + 1e.

Define event EM
pred where the following conditions all hold:

1. The labels {X0, . . . , XN−1} are distinct.

2. There exists an input state σ0 of length at most M bits, where the ex-post-facto

initial pebbling B satisfies that |B| > p.

We show that

Pr
[
EM

pred

]
≤ εpred = qN22−W ,

where the probability is taken over the uniform choice of the random oracle.

Proof: We will show a predictor P (that has oracle access to random oracle ro), such

that if EM
pred happens, denote as |B| > p the size of the ex-post-facto initial pebbling B and
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let B′ = B \ {0}, there will be a hint h with no more than M + |B′| · (2 logN + log q) <

(|B′| − 1) · W + 2 logN + log q bits, where P (h) predicts |B′| random oracle entries

correctly. Thus by the compression argument that random oracles cannot be compressed

(i.e., Lemma 2.1 ), EM
pred happens with probability no more than εpred and the lemma

holds. Next we describe the hint h and the predictor P . (Without loss of generality we

assume |B′| − 1 = p, otherwise we can renew B′ as the first p elements of the original B′,

and the same argument below still holds.)

The hint. If EM
pred happens, the hint is the input state σ0 and the following helper

information. For each i ∈ B′ = B \ {0}, we add into hint the index i, the best challenge

bestchali and the log q-bit index qi that identifies the first RO query in A(X, bestchali)

where the query input is Xi. Note that the extra hint is with length at most |B′| ·

(2 logN + log q) bits where |B′| ≥ p.

The predictor. The predictor P hardwires the algorithm A, input X = X0, and has oracle

access to the random oracle. Given an input h, the predictor P parses h into a state σ0,

and a list of tuples {(i, bestchali, qi)} where i is in the set B′. Then P runs A(X) on every

challenge in parallel, one round at a time, and attempts to predict (Xi−1, Xi = ro(Xi−1))

for every i ∈ B′ without querying ro(Xi−1). Since X-labels are distinct, the predictor

attempts to predict exactly |B′| random oracle entries.

To achieve the goal, P builds a table that keeps track of the X-labels Xi for every

i ≥ 0 (initializing X0 = X). After each round k, P will obtain all the queries A makes for

all the challenges in round k. Then P will update the table and answer the RO queries

as input states for round k + 1 by performing the following steps:

1. Extracting labels: For every index i ∈ B′, given the hint (i, bestchali, qi), if the RO

query corresponding to index qi is in round k, then P updates Xi from the query

input. (Note that queries and their positions in the table can easily be recognized
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from the hint.)

2. Answering RO queries for i ∈ B′: For each RO query, if there exists i ∈ B′ such

that Xi and Xi−1 were updated, and Xi−1 matches the query input, P will answer

with value Xi without querying the random oracle.

3. Answering other RO queries: P sends remaining queries to ro, return the answers

to A, and update any new entries in the table that can be updated in (i.e., for

every query that matches Xi−1 in the table for some updated position i−1, update

position i with the answer to that query).

Once every Xi for i ∈ B′ is in the table, P queries ro to update the missing entries

in the table, and outputs the prediction that ro(Xi−1) = Xi for i ∈ B′.

Correctness of the predictor. We first prove that P simulates ro correctly. This is

achieved by showing that the table contains correct labels. We argue it by induction

on the time order of updating. Initially, only the correct input X0 is updated in the

table. Assume all the labels in the table are correct up to now. A new label Xi enters

the table either because it is in the set B′ (and thus correct by the hint) or is obtained

as an answer from ro to the query that P identified as Xi−1 using the table (which is

correct by inductive hypothesis). Note that this also implies that P will not output an

incorrect prediction.

Next we show that P will never query to ro the value Xi−1 for any i ∈ B′. We first

show that for every node index i ∈ B′, the label Xi will be updated to the table at the

beginning of round βi; and for every i ∈ {0, . . . , N − 1} \ B′, Xi will be updated to the

table at the end of round bβic. We prove this by induction on i. The base case where

i = 0 holds true as X0 will be updated initially. If i is in B′, this is also true because

βi is the first step where the label Xi appears in some trace, and P will update Xi at

this step using the hint. For i > 0 that is not in B′, on the one hand, Xi cannot be

44



Scrypt is Maximally Memory Hard Chapter 3

updated earlier than round bβic as there was no query input/output that matches Xi;

moreover, βi−1 < βi (because Xi−1 appears as a query at round bβic). Hence by inductive

hypothesis, before the end of round bβic, the table will already contain Xi−1, and thus

position i will get updated when Xi−1 gets queried to ro.

Therefore, for every i ∈ B′, when A queries Xi−1 to ro in a round k ≥ βi, before

sending the query to the random oracle, we argue that Xi and Xi−1 were already updated

and P can answer the query without asking the random oracle. In particular, the label Xi

was already updated at the beginning of round βi ≤ k; if i−1 ∈ B′, Xi−1 was updated at

the beginning of round βi−1 ≤ k (as Xi−1 is being queried in round k and thus βi−1 ≤ k);

if i − 1 /∈ B′, Xi−1 was updated before the end of round bβi−1c < k (as βi−1 is not an

integer and Xi−1 is being queried in round k, and thus βi−1 < k).

Remark 3.1 To simplify the explanation of the full proof in Section 3.5, we will denote

predictable as the set of random oracles where there exists a hint h with no more than

(p−1) ·W +2 logN+log q bits, such that P (h) predicts p random oracle entries correctly.

With the same argument above, we know that

Pr
ro

$←RO
[ro ∈ predictable] ≤ εpred .

Putting all things together. In summary, for every input state σ0 of length at most

M bits, by Lemma 3.1 and Claim 3.6, with probability at least 1 − (q + 1)N22−W , the

X-labels are distinct and the size of the ex-post-facto initial pebbling B is no more than

p. Then by Claim 3.5, we have Pr[tj >
N

2|B| ] ≥
1
2

and the theorem holds.

Remark 3.2 To simplify the explanation of the full proof in Section 3.5, we will denote

badro as the set predictable plus the random oracles where the X-labels collide. With the
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same argument above, we know that

Pr
ro

$←RO
[ro ∈ badro] ≤ εbad .

3.5 Main Result: Optimal Memory Hardness of scrypt

in the PROM

In this section, by extending the techniques from previous two sections, we prove the

optimal memory hardness of scrypt in the parallel random oracle model.

Theorem 3.4 Fix positive integers N ≥ 2 and W , and X ∈ {0, 1}W . Let A be any

oracle algorithm (in the parallel random oracle model as defined in Section 2.2) with input

X. Assume Aro(X) outputs Sro
N = scryptro(X) correctly with probability χ, where the

probability is taken over the uniform choice of the random oracle ro.3 Then for any ε > 0

and q ≥ 2, with probability (over the uniform choice ro) at least χ− 2qN4 · 2−W − e−2ε2N

one of the following two statements holds: either Aro(X) makes more than q queries (and

thus CMC(AroN ) > qW by definition) or

CMC(Aro(X)) ≥ ln 2

6
·
(

1

2
− ε
)
·N2 · (W − 2 logN − log q− 1) .

The rest of this section is devoted to the proof of this theorem.

3.5.1 Proof Outline

Before the formal proof, we highlight some challenges for extending Theorem 3.3 and

Theorem 3.2 into the setting of computing scrypt in the parallel random oracle model.

3We assume that the adversary A is deterministic without loss of generality.
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Technical obstacle: challenges are from the oracle. In the proof of Theorem 3.3,

we are dealing with a fixed oracle ro and a uniformly random challenge. Moreover, the

proof essentially relies on the ability to run every challenge for a given oracle, and the

fact that each challenge is independent and uniformly random until being issued after

answering the previous challenge. However, in the actual computation of scrypt, those

pseudorandom challenge indices {Si−1 mod N} were from the fixed random oracle. Even

if we consider the oracle being lazily sampled, the challenges obtained from the random

oracle ro are not independent once we condition that ro falls outside the bad set badro

(which is needed in Theorem 3.3.)

Working with multiple random oracles. We solve the above issues by working with

multiple carefully chosen random oracles. Fix input X, let Aro denote as an algorithm

running with oracle ro, we denote as X ro
i = ro(i)(X) (0 ≤ i < N); T ro

0 = X ro
N−1, S

ro
0 =

ro(T0), and for i = 1, . . . , N , T ro
i = Sro

i−1 ⊕X ro
Sro
i−1 mod N and Sro

i = ro(T ro
i ). (For notational

simplicity, we will omit the superscript when the notation is clear in the context.)

Let changeModn(S, i) be the function that keeps the quotient bS/Nc but changes the

remainder of S modulo N to i. We consider the following process of sampling random

oracles. A uniformly random oracle ro0 is chosen initially. Then uniformly random

challenges c1, . . . , cN ∈ {0, . . . , N − 1} were sampled. We denote as ro1 the oracle that

is equal to ro0 at every point, except that ro1(T
ro0
0 ) = changeModn(Sro0

0 , c1). Similarly,

we let ro2 be identical to ro1 except that ro2(T
ro1
1 ) = changeModn(Sro1

1 , c2), and so on,

until we sampled the last oracle roN . This process of sampling random oracles enables

us to explicity embeds uniformly random challenges. Moreover, the distributions of the

random oracles are close to uniform. By the same argument as in Theorem 3.3, unless

some “bad” random oracles have been chosen, we can show that with high probability,

it takes a long time to answer each challenge. Since the (embedded) challenges are
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independently sampled, we can bound the cumulative complexity as in Theorem 3.2.

Bounding bad behaviors. It remains to define “bad” choices of random oracles and

bound their probabilities without affecting the independence of the (embedded) chal-

lenges. More details will be given in the following full proof.

3.5.2 The Formal Proof

Recall that we assume that the adversary A is deterministic without loss of generality.

In particular, the randomness of the execution is only over the random oracle A is given

access to.

Sampling Random Oracles. Following the proof outline above, we make a precise

definition of rok. Before illustrating the sampling process of random oracles, we introduce

the following definitions. Let changeModn(S, i) be a function that keeps the quotient

bS/Nc but changes the remainder of S modulo N to i if possible: it views S as an

integer in [0, 2W − 1], computes S ′ = bS/Nc · N + i, and outputs S ′ if S ′ < 2W , and S

otherwise.

Definition 3.1 Define roundingProblemk as the set of all random oracles ro such that

the value of at least one of Sro
0 , . . . , S

ro
k is greater than b2W/Nc · N − 1 (i.e., those for

which changeModn does not work on some S value up to Sk).

Definition 3.2 Define colliding∗k as the set of all ro where there is at least one collision

among the values {X0, X
ro
1 , X

ro
2 , . . . , X

ro
N−2, T

ro
0 , T

ro
1 , . . . , T

ro
k }. Let

collidingk = roundingProblemmin(k,N−1) ∪ colliding∗k .
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Let ro0 be a uniformly chosen random oracle. We define the sampling process of

random oracles as follows.

Definition 3.3 For every k (0 ≤ k < N), let rok+1 = rok if rok ∈ collidingk; else, choose

ck+1 uniformly at random between 0 and N−1, let rok+1(T
rok
k ) = changeModn(Srok

k , ck+1),

and let rok+1(x) = rok(x) for every x 6= T rok
k . (Recall that ro0 is chosen uniformly.)

Remark 3.3 Note that this particular way of choosing rok+1 is designed to ensure that

it is uniform, as we will argue in Claim A.1. Besides, another reason that we define

collidingk for every k (instead of only colliding0) is to enable embedding (independent)

challenges without changing the values of previous labels (i.e., Xi, Ti, and Si).

Extending Theorem 3.3: Single Challenge Space-time Tradeoff. In the argu-

ment of Theorem 3.3 (including the definition of ex-post-facto initial pebbling, as well as

the proof of Lemma 3.1), the predictor simulates A with different challenges to A. Here,

the predictor will run A with different oracles. Specifically, for every k (1 ≤ k ≤ N) and

every oracle rok−1 6∈ collidingk−1, we consider the N oracles rok,j for each 0 ≤ j < N ,

defined to be the same as rok−1, except rok,j(T
rok−1

k−1 ) = changeModn(S
rok−1

k−1 , j) (instead of

S
rok−1

k−1 ).

Since rok−1 6∈ collidingk−1, T
rok−1

k−1 is distinct to every element in {X rok−1

i }i∈{0,...,N−1}

and {T rok−1

i }i∈{0,...,k−1}. Therefore (since rok−1 and rok,j differ only at the point T
rok−1

k−1 ),

we have X
rok−1

i = X
rok,j
i for every 0 ≤ i ≤ n−1 and T

rok−1

i = T
rok,j
i for every 0 ≤ i ≤ k−1.

In particular, the execution of A with oracle rok,j (for any j) will all be identical to the

execution of Arok−1 up to the step when the query Tk−1 is first made. For notational

simplicity, we omit the superscript on Tk−1 for the remainder of this argument.

We observe that at the moment when Tk−1 is queried, we can have a predictor which

substitute different answers to this query and run A on these different answers in parallel,
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hence obtain a similar compression argument as in Lemma 3.1, and finally obtain a

time/space tradeoff lower bound as in Theorem 3.3. In fact, we will prove a stronger

result for any step before Tk−1 is queried.

Next, for oracle rok−1 /∈ collidingk−1, and any round r before Tk−1 is queried, we will

specify the ex-post-facto initial pebbling, the hint given to the predictor, as well as the

predictor description.

Ex-post-facto initial pebbling. Consider the execution Arok−1 . Let sk > 0 be the round in

which Tk−1 is first queried, that is, Tk−1 appears in qsk as a query input. For any integer

r ≤ sk, denote as σ̄r the output state of Arok−1 from round r. From σ̄r, we consider n

different subsequent execution. In particular, for each j (0 ≤ j < N), we replace rok−1

with rok,j, and let r + tj > sk be the first step such that the query T
rok,j
k is contained in

qr+tj . (Note that if the query is later than the q-th query in the execution starting from

σ̄r, we will define tj =∞.) We can thus define βi, bestchali, ex-post-facto initial pebbling

B, and the set B′ = B \ {0} the same way as in Theorem 3.3. The slight differences are

as follows: First, we will count the number of rounds after round r (instead of from 0).

Second, we will substitute “challenge j” with oracle rok,j and “query Xj” with “query

Xj or T
rok,j
k ”. Finally, we will stop the execution of Arok,j(σ̄r) after q number of queries.

Time lower bound on challenge-answering. Similar as in Claim 3.5, we show that given

ex-post-facto initial pebbling B, for any challenge j, the number of rounds needed to

answer the challenge is at least the distance from j to the closest pebble in B preceding

it.

Claim 3.7 Fix any rok−1 /∈ collidingk−1, and any round r before Tk−1 is queried. Let B

denote as the ex-post-facto initial pebbling. For every j, 0 ≤ j < N , let tj > 0 be the

smallest value such that such r + tj > sk and the query T
rok,j
k is contained in qr+tj (if

ever before query number q + 1). We have tj ≥ 1 + j−k, where k = max{a ≤ j | a ∈ B}.
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Proof: The proof is the same as in Claim 3.5.

The hint. Fix any rok−1 /∈ collidingk−1 and any round r ≤ sk, consider the execution of

Arok−1 starting from round r, which determines βi, bestchali, and the ex-post-facto initial

pebbling B mentioned before. We index all the oracle queries that A makes across all

rounds sequentially, and only consider the first q oracle queries that A makes, where q is

a tunable parameter. We construct the hint as follows.

• The input state σr of Arok−1 for round r + 1.

• The indices for all vertices in B′ = B \ {0}, where B is the newly defined ex-post-

facto initial pebbling.

• For every i ∈ B′, we also store the previously defined βi and the best challenge

bestchali.

• The index (between 1 and q) for the first query where Tk−1 appears in the input

(across the execution starting from round r). This index is used for knowing when

to reply with S
rok,j
k−1 = changeModn(S

rok−1

k−1 , j) instead of S
rok−1

k−1 itself.

• If sk = r, we need to slightly modify the input state σr. In particular, we need to

replace the label S
rok−1

k−1 in σsk with Tk−1.

• Finally, if bestchalj = j for some j ∈ B′, we need one additional bit of hint,

indicating whether Xj is first queried by itself or as part of the query T
rok,j
k =

S
rok,j
k−1 ⊕Xj.

We thus need to give (in addition to σr) log q + |B′|(1 + 2 logN + log q) bits of hint to P .

The predictor. We now show that, similarly to Lemma 3.1, given oracle access to rok−1,

we can design a predictor algorithm P that predicts X
rok−1

i for every i in B′ without

querying rok−1 at input X
rok−1

i−1 . The difference is that instead of running Arok−1 on σ0
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and giving A different challenges j, P will run A with initial input state σr (which is

given in the hint), and simulate different oracles rok,j (which differ from rok−1 on only

the input Tk−1).

One of the further tricks is that the predictor needs to recognize Tk−1 everytime to

ensure subsequent queries to Tk−1 are answered consistently. If sk > r, this is easy as

P (given the hint that indicates the first time when Tk−1 appears in a query), will see

the query Tk−1 itself, and thus be able to answer subsequent queries to Tk−1. However,

if sk = r, then we need to give Tk−1 (which is included into the hint) to P . Note that we

do so without increasing the length of the hint, as we have replaced S
rok−1

k−1 in σr (which

can be obtained by querying rok−1(Tk−1)) with Tk−1.

Finally, there is one more small trick: if bestchalj = j for some j ∈ B′, then in order

to correctly predict Xj itself, P will need to know (from the hint) whether Xj is first

queried by itself, or as part of the query T
rok,j
k = S

rok,j
k−1 ⊕Xj. In the latter case, P will xor

the query input with S
rok,j
k−1 (which has been computed when answering the query Tk−1)

to obtain Xj.

Correctness of the predictor. With similar argument as in Lemma 3.1, P is guaranteed

to be correct as long as rok−1 /∈ collidingk−1.

Suppose σr has mr bits. We modify Lemma 3.1 as follows. We replace p with a

function pr of the memory size mr, defined as

pr = d(mr + 1 + log q)/(W − 2 logN − log q− 1) + 1e (3.2)

We now define predictable according to our new definition of P , pr, and hint length.

Definition 3.4 Define predictable as the set of all random oracles ro /∈ colliding0 for

which there exists an input state σr of size mr (such that 1 ≤ pr ≤ N − 1) and a hint of

length log q +pr(1+2 logN +log q), given which P (described above) can correctly output
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pr distinct X-labels without querying them.

Finally, we replace badro (in Theorem 3.3) with badk−1ro = collidingk−1 ∪ predictable.

As long as rok−1 /∈ badk−1ro = collidingk−1 ∪ predictable, with easy argument just as in

Theorem 3.3, we are guaranteed that Prj[tj > N/(2pr)] ≥ 1/2, like in Theorem 3.3.

The arguments above lead to the following lemma (analogous to Theorem 3.3).

Lemma 3.2 Fix any k (1 ≤ k ≤ N). Assume rok−1 /∈ badk−1ro = collidingk−1∪ predictable

and consider execution Arok−1. Define sk as the first round such that T
rok−1

k−1 ∈ qsk . For

any r < sk, let mr be the bit-length of the input state σr of Arok−1 in round r + 1. Let

tk,j,r > 0 be such that the first time T
rok,j
k is queried by Arok,j after round sk is in round

r + tk,j,r (tk,j,r = ∞ if no such query exists among the first q queries after round sk).

We say j is “hard” for time r if tk,j,r > N/(2pr), where pr = d(mr + 1 + log q)/(W −

2 logN − log q− 1) + 1e. We have

Pr
j

[j is hard for time r] ≥ 1

2
.

Extending Theorem 3.2: Lower Bound on the Sum of pr. For now, we have

proved Lemma 3.2, and build the relation between state size mr and pebbling configura-

tion size pr. Next, we use the techniques in Section 3.3.2 to lower bound the sum of pr,

and thus obtain a lower bound on the sum of mr, that is, the CMC lower bound.

Hardness of challenge ck. From Lemma 3.2, in order to obtain a space lower bound for

each step (as in Claim 3.1), we need to similarly define hardness for challenges.

Consider the execution of Arok . Denote as tk > 0 the value such that round sk + tk

is the first round where T rok
k is queried (we define tk = ∞ if such round does not exist

among the first q queries). Define rk = argmax0≤r≤sk(N/(2pr) − (sk − r)), where mr is

the size of the state σr at the end of round r, and pr is the function of mr defined by
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Equation 3.2. We say challenge ck is “hard” if it satisfies follows.

Definition 3.5 A challenge ck is hard if for rk = argmax0≤r≤sk(N/(2pr)− (sk − r)) we

have tk,ck,rk > N/(2pr), where sk, tk,j,r and pr are as defined in Lemma 3.2.

The multiple challenges argument. Next we will argue that the actual execution of A on

oracle roN is identical to that with the oracle rok (0 ≤ k < N) until the moment when

T rok
k is queried.

Definition 3.6 wrongOrderk consists of all ro for which there exist i1 and i2 such that

0 ≤ i1 < i2 ≤ k and, in the run of Aro, query T ro
i2

occurs, while query T ro
i1

does not occur

before query T ro
i2

occurs.

We show the following claim.

Claim 3.8 If for every j (0 ≤ j ≤ N), roj /∈ collidingj ∪ wrongOrderj, then for every k

and i ≤ k, T roN
i = T rok

i , and the execution of AroN is identical to the execution of Arok

until the query Tk is first made, which (for 1 ≤ k ≤ N) happens later than the moment

when query T roN
k−1 = T rok

k−1 is first made.

Proof: The proof is deferred to Appendix A.1.

From Claim 3.8 and by definition of wrongOrderk, we obtain the following analogue

of Claim 3.1, that is, if a challenge is hard, then the pebbling configurations before the

challenge has size inversely proportional to the time for answering the challenge. (The

proof is the same as in Claim 3.1.)

Claim 3.9 Given adversary A, assume for every k (0 ≤ k ≤ N), rok /∈ collidingk ∪

wrongOrderk. Let N ′ = N/2. If challenge i is hard (i.e., ti + (si − ri) > N ′/pri), then

during the execution of AroN , for any 0 ≤ j ≤ si, we have psi−j ≥ N ′/(ti + j).
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Next, we show that if {T0, T1, . . . , TN} are queried in the correct order and the number

of hard challenges is large, the sum of pr will be large as well.

Definition 3.7 Let Ehard be the event that there are at least H ≥ N(1
2
−ε) hard challenges

(as defined in Definition 3.5). Let Ecorr be the event that rok /∈ collidingk ∪ wrongOrderk

(see Definitions 3.6) for every k, and AroN queries T roN
N . Let Eq be the event that AroN

makes no more than q total queries.

Claim 3.10 If Ehard ∩ Ecorr ∩ Eq, then

sN+1∑
r=1

pr ≥ ln 2 ·
(

1

2
− ε
)
· 1

2
·N2 .

Proof: Since Ecorr holds, T0, . . . , TN are queried in the correct order. Since Eq holds,

all these queries happen no later than the q-th query, hence Claim 3.9 applies and each

tk is finite. Moreover, by definition of pr in Equation 3.2, pr ≥ 1 and p0 = 1. Therefore,

we can apply Claim 3.4 to the execution of AroN , and finish the proof.

Converting from
∑
pr to CMC. Now we need to convert from

∑
pr to

∑
mr.

Claim 3.11 For every r > 0,

mr ≥ pr · (W − 2 logN − log q− 1)/3 .

Proof: By definition of pr, we have that

pr =

⌈
mr + 1 + log q

W − 2 logN − log q− 1
+ 1

⌉
≤ mr + 1 + log q

W − 2 logN − log q− 1
+ 2,

because the ceiling adds at most 1. Therefore,

(pr − 2) · (W − 2 logN − log q− 1) ≤ mr + 1 + log q,
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(because we can assume (W − 2 logN − log q − 1) > 0 — otherwise, Theorem 3.4 is

trivially true) and thus

mr ≥ (pr − 2) · (W − 2 logN − log q− 1)− log q− 1 (3.3)

= pr · (W − 2 logN − log q− 1)− 2 · (W − 2 logN − log q− 1)− log q− 1

= pr · (W − 2 logN − log q− 1)− 2 · (W − 2 logN − 0.5 log q− 0.5). (3.4)

Since mr ≥ W (see our complexity measure definition in Section 2.2), mr ≥ W−2 logN−

0.5 log q−0.5 and therefore we can increase the left-hand side by 2·mr and the right-hand

side by 2 · (W − 2 logN − 0.5 log q − 0.5) and the inequality still holds; and therefore

3mr ≥ pr · (W − 2 logN − log q− 1) .

Lemma 3.3 Assuming Ehard ∩ Ecorr (see Definition 3.7), for any integer q, either AroN

makes more than q queries (and thus CMC(AroN ) > qW by definition) or

CMC(AroN (X)) ≥ ln 2

6
·
(

1

2
− ε
)
·N2 · (W − 2 logN − log q− 1) .

Proof: We observe that if AroN makes no more than q queries, then Ehard∩Ecorr∩Eq

hold, and we can combine Claims 3.10 and 3.11 to get

CMC(AroN (X)) =

sN+1∑
r=1

mr ≥
1

3
·
sN+1∑
r=1

pr · (W − 2 logN − log q− 1)

≥ ln 2

3
·
(

1

2
− ε
)
· 1

2
·N2 · (W − 2 logN − log q− 1) .

This concludes the proof of Lemma 3.3.

All that remains is to show a lower bound on the probability of (Ehard ∩ Ecorr ∩

Eq) ∪ Eq (over the uniform choice of roN), and to argue that roN is indeed uniform. We

defer the proof of oracle uniformity and the probability analysis to Appendix A.2 and
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Appendix A.3.

3.6 Conclusions and Open Problems

In this chapter, we have provided an optimal CMC lower bound for the single eval-

uation of Scrypt in the parallel random oracle model. There are still several promising

research directions worth exploring.

1. Our work shows a CMC lower bound for a single evaluation. Intuitively it extends

to the setting where the adversary can evaluate the function on multiple inputs, and

the average CMC lower bound seems still hold. However, it is harder to provide a

formal proof as we do not know whether an adversary can cleverly choose inputs so

that different instances share similar computation patterns which helps to amortize

the computation. Finding such a proof would be valuable as in practice the brute

force attackers do evaluate the hash functions on huge amounts of inputs.

2. Our memory hardness proof is with respect to Cumulative Memory Complexity

(CMC) which measures the hardware costs of attackers. However, as pointed out

by [19] and [53], CMC is not always an accurate metric as it allows for time-

memory trade-off and the memory cost (i.e. storage and access cost) is not linear

to the memory size; moreover, it ignores the energy cost of adversaries which can

be significant in some scenarios. Given this, many new cost metrics have been

introduced. For example, sustatined memory complexity [19] was proposed to

enforce the consistent use of large memory; bandwidth hardness [53] was proposed

to measure energy cost. It would be nice if we can have similar proofs for the above

new metrics.

3. Our lower bound still suffers from a constant factor loss. Since the hardness pa-
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rameter N is relatively small in practice, optimizing the constant factor loss is

meaningful to obtain a better concrete security.

4. Our result relies on the assumption that the underlying hash function H is modeled

as a random oracle. However, in practice, given the demands for H to have large

outputs (to increase memory hardness without changing the description size of

MHFs), the hash function is usually instantiated with an ad-hoc design built upon

simple primitives, and attacks which exploit the design of H might be possible.

Therefore a promising future direction would be to provide a proof in a more fine-

grained model, where we take the structure of H into consideration.
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Chapter 4

Data Independent MHFs from

Simple Primitives

Outline of the Chapter. In this chapter, we construct a class of data independent

memory-hard functions that are resilient to side-channel attacks. We highlight that our

scheme is highly efficient on general-purpose CPUs, and thus more ASIC-resistant than

previous provably secure constructions. The scheme is built from a primitive called small-

block labeling functions that can be instantiated from fast symmetric schemes (e.g. fixed-

key AES). (Note that this notion is introduced for modularity reason – we could define

our designs directly as depending on a primitive.) After introducing the background and

our contributions in Section 4.1, we define and construct small-block labeling functions

in Section 4.2. Followed by the construction, in Section 4.3, we show that the scheme

satisfies an essential property for building iMHFs – pebbling reducibility. Finally in

Section 4.4, we show a generic approach for constructing iMHFs from small-block labeling

functions, whereas the MHFs are efficiently computable on general-purpose CPUs. The

full version of this work is available on [39].
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4.1 Introduction

Alwen and Serbinenko [10] proposed an elegant framework for constructing graph-

based MHFs from a directed acyclic graph (DAG) and a hash function modeled as a

random oracle. The construction is generic and enjoys a favorable property called side-

channel resilience — namely, an adversary cannot gain information of the sensitive input

by monitoring the function execution. However, in practice, the hash function H is

usually an ad-hoc construction based on simpler building blocks (e.g., Scrypts resembles

a permutation-based stream-cipher design), and highly efficient ASICs for H do exist. A

possible approach for slowing-down adversary and hardening ASICs design is to use higher

memory hardness parameter (e.g., use big graphs), however, this solution is unsatisfiable

as it further slows down the authentication speed. In summary, the heuristic design of

H renders the memory hardness proof of [10] less useful in the real world setting.

Our goal is thus to design a graph-based MHF scheme that is ASIC-resistant in prac-

tice. For example, it is desirable that the underlying hash function is relatively efficient

on general-purpose CPUs, so that ASICs that achieve significant efficiency advantage

(over CPUs) cannot be easily built. Moreover, another advantage of fast hashing on

CPUs is that it enables fast authentication for legitimate users (in the password hashing

setting) and efficient proof verifications (in the proof-of-work setting), without sacrificing

too much of memory hardness (i.e. there is no need for the graph size N to be too small).1

We observe that AES operations are particularly fast on general-purpose CPUs, as

AES-NI instruction set is widely embedded in CPU chips. Inspired by the observation,

we propose a generic framework for constructing graph-based MHFs from (fixed-key)

AES modeled as a random permutation. Note that for completeness, we also provide

constructions based on other simple cryptographic primitives (e.g., compression functions

1For example, in Litecoin, to achieve fast verification, the hardness parameter is chosen as a relatively
small value, which makes ASICs easier to be built.
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and keyed block ciphers).

We remark that the underlying hash function H we use in this chapter has small

output space (i.e. {0, 1}128). If we want to use a wide-block labeling function as in

practice (to increasing memory hardness without changing function description size), we

have to study MHFs at a finer level of granularity that considers the inner structure of

H, and we would like to understand how such an H is meant to be built in a sound way.

This is exactly the main contribution of Chapter 5.

Our Contributions. We initiates the study of provably-secure MHFs built from basic

symmetric primitives, which we model as ideal - we consider block ciphers, permutations

and compression functions. We build graph-based MHFs based on them in a model where

the primitives can be queried by the adversary on many inputs in parallel. Towards the

goal, we provide one-call efficient instantiations of the hash function H from the basic

primitives above. We will adapt previous lemmas based on ex-post-facto arguments (dat-

ing back to [38]) to reduce the security of graph-based MHFs to the pebbling complexity

of the underlying DAG.

Before going to the detail, we provide some intuition for the small-block labeling

function.

Small-Block Labeling Function: Constructions and Intuition. The small-block

labeling functions Hfix takes an input2 x ∈ {0, 1}L ∪ {0, 1}2L and outputs an L-bit label.

For a compression function cf, the resulting output is cf(x); for an ideal cipher ic, we split

the input into a key part k ∈ {0, 1}L ∪ {⊥} (where ⊥ is a designated key separate from

the L-bit strings, which as with compression functions, will be necessary to implement

2We assume the compression function allows both L- and 2L-bit inputs, though most compression
functions do not allow this by design. This could however be easily achieved by reserving one bit of the
input to implement domain separation, and then padding short inputs.
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variable input length) and an input part x ∈ {0, 1}L, the resulting output is ic(k, x)⊕ x;

for a random permutation rp, we denote as x∗ the exlusive-or sum of L-bit input blocks

and the output is rp(x∗)⊕ x∗.

For any graph G = (V,E), the memory hardness of the graph function FG,Hfix
(See

Section 2.5) is argued similarly as in previous work [10]. The high level idea is to transform

the execution of any algorithm A that computes the MHF into an ex-post-facto pebbling

for the graph G, and argue that the cumulative memory complexity of A is proportional

to the cumulative complexity of the pebbling. Here we generalize the technique of [10] –

which relies on a compression argument – so that it works even if:

1. The ideal-primitive input contains no explicit information of the node v. (This was

not the case in prior work.)

2. The adversary can make inverse queries to the ideal primitive (as we also consider

block ciphers now).

3. The input length of the primitive is fixed, and usually shorter than the actual input

length of the labeling function.

4.2 Small-Block Labeling Functions

In this section, we define and construct small-block labeling functions.

Definition 4.1 (Small-Block Labeling Functions) For an ideal primitive IP = CF/IC/RP

with block length L = 2`, we say

Hfix = { flabip : { {0, 1}L ∪ {0, 1}2L } → {0, 1}L }ip∈IP

is a family of β-small-block labeling functions if it has the following property.
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β(·, ·)-pebbling reducibility: For any ε ∈ (0, 1] and 2-indegree (predecessors-distinct)

DAG G = (V,E),3 let FG,Hfix
be the graph function built upon G and Hfix. We have

CMCε(FG,Hfix
) ≥ β(ε, log |V|) · cc(G) ,

where cc(G) is the cumulative complexity of G (Definition 2.3).

Construction. Next we show how to construct small-block labeling functions from

ideal primitives. Our major contribution is the construction from random permutations,

which can instantiated from fixed-key AES. For completeness, we also present the con-

structions from ideal ciphers and compression functions. We fix the input domain to be

{0, 1}L ∪ {0, 1}2L and the output space to be {0, 1}L, and denote as RP, IC, CF the

random permutations, ideal ciphers, and compression functions, respectively.

1. Given any rp ∈ RP, we define the labeling function flabrp(·) as follows: For any input

x ∈ {0, 1}L, the output is flabrp(x) := rp(x) ⊕ x; for any input (x1, x2) ∈ {0, 1}2L,

denote as x∗ := x1 ⊕ x2 ∈ {0, 1}L, the output is flabrp(x1, x2) := rp(x∗)⊕ x∗.

2. Given any ic ∈ IC, we define the labeling function flabic(·) as follows: For any input

x ∈ {0, 1}L, the output is flabic(x) := ic(⊥, x) ⊕ x; for any input (k, x) ∈ {0, 1}2L,

the output is flabic(k, x) := ic(k, x)⊕ x.

3. Given any cf ∈ CF, we define the labeling function flabcf(·) as follows: For any

input x ∈ {0, 1}L ∪ {0, 1}2L, the output is flabcf(x) := cf(x).

Note that all of the above constructions are highly efficient as they call the ideal-

primitive only once. Next we show that the constructions are pebbling reducible.

3G can have multiple source/sink nodes.

63



Data Independent MHFs from Simple Primitives Chapter 4

4.3 Small-Block Labeling Functions: Pebbling Re-

ducibility

In this section, we show that the labeling functions constructed in Section 4.2 satisfy

pebbling reducibility.

Theorem 4.1 Assume an adversary can make no more than q1 oracle calls and q2 output

calls such that q1 + q2 = q = 2L/4. Hfix = {flabcf}cf∈CF built upon compression function

CF is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/8 and N ≤ 2L/8, it holds that

β(ε, logN) ≥ εL
8

.

Theorem 4.2 Assume an adversary can make no more than q1 oracle calls and q2 output

calls such that q1 + q2 = q = 2L/4. Hfix = {flabic}ic∈IC built upon ideal cipher IC is β(·, ·)-

pebbling reducible, where for all ε ≥ 3 ·2−L/8 and N ≤ 2L/8, it holds that β(ε, logN) ≥ εL
8

.

Theorem 4.3 Assume an adversary can make no more than q1 oracle calls and q2 output

calls such that q1 + q2 = q = 2L/8. Hfix = {flabrp}rp∈RP built upon random permutation

RP is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/10 and N ≤ 2L/10, it holds that

β(ε, logN) ≥ εL
40

.

Remark 4.1 (Instantiation from fixed-key AES) From a practical perspective, our

main result is the construction from random permutations. This can be instantiated from

fixed-key AES, thus eliminating the expensive re-keying costs when evaluating AES. On

the other hand, we think that the construction from ideal ciphers is still of theoretical

interest as it leads to a better provable bound.

Remark 4.2 The proof for compression functions addresses the fact that prior work

included the node identity into the hash-function input, thus effectively requiring 2L +

logN-bit inputs, and we get away with 2L.
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Next we present the proofs for Theorem 4.1, Theorem 4.2 and Theorem 4.3. First,

we introduce some notation for graph labeling, then we highlight the proof techniques

and introduce the notion of ex-post-facto pebbling in the ideal primitive model. Finally,

we provide the formal proof.

Graph Label Notations. Fix ideal primitive IP = CF/IC/RP,4 input vector x and

any graph G = (V,E). For a primitive ip ∈ IP and any node v ∈ V, we denote as `v the

graph label of v. If v is a source, prelab(v) is the corresponding input label xv. If v is a

non-source node, we define prelab(v) based on the type of the ideal primitive:

• If IP = RP, we define prelab(v) as the exclusive-or sum of v’s parents’ `-labels.

• If IP = IC/CF, we define prelab(v) as the concatenation of v’s parents’ `-labels.

Similarly, for every node v ∈ V, we define aftlab(v) based on the type of the ideal

primitive:

• If IP = RP/CF, we define aftlab(v) = ip(prelab(v)).

• If IP = IC and v has only one parent, we define aftlab(v) = ip(⊥, prelab(v)). Oth-

erwise if v has two parents, denote as prelab(v) = (y1, y2) (where y1, y2 ∈ {0, 1}L

are `-labels of v’s parents), we define aftlab(v) as (y1, ip(y1, y2)).

In the following context, we abuse the notation a bit in that if prelab(v) (or aftlab(v))

is an L-bit string and ip is an ideal cipher, we use ip(prelab(v)) (or ip−1(aftlab(v))) to

denote ip(⊥, prelab(v)) (or ip−1(⊥, aftlab(v))). Moreover, for an ideal cipher query with

input xc = (⊥, x), we say xc = prelab(v) (or xc = aftlab(v)) if and only if x = prelab(v)

(or x = aftlab(v)), respectively.

4CF denotes the compression function, IC denotes the ideal cipher, and RP denotes the random
permutation.
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We remark that prelab(v) (and aftlab(v)) are more than just single labels, they are

used to identify the node from a query input to the ideal primitive.

Proof Highlight. Similar as in [10], the proof idea is to transform any algorithm execu-

tion A into an ex-post-facto pebbling, and argue that the cumulative memory complexity

of A is proportional to the cumulative complexity of the pebbling. This is proved by

mapping each node v ∈ V to an ideal-primitive entry (prelab(v), ip(prelab(v))), and argue

that for each round i ∈ N, the input state σi should have large size as it is an encoding

for many ideal-primitive entries. In particular, for every node v in the ith pebbling con-

figuration, ip(prelab(v)) (and `v) can be decoded from an oracle-call input in the partial

execution A(σi). Here we generalize the technique of [10] so that it works even if:

1. The ideal-primitive input prelab(v) contains no explicit information of the node

index v. (Note that in previous work [10], prelab(v) has v as a prefix.)

2. The adversary can make inverse queries to the ideal primitive.

3. The input length of the primitive is much shorter than the actual input length of

the labeling function.

Ex-post-facto Pebbling. Similar as in [10], we define a notion called ex-post-facto

pebbling in the ideal primitive model. Fix ideal primitive IP = CF/IC/RP, input vector

x, DAG G = (V,E). For any ip ∈ IP, randomness r, and the execution trace Aip(x; r)

(that runs for tpeb + 1 rounds), we turn the trace into an ex-post-facto pebbling

P(Aip(x, r)) = (P0 = ∅, . . . ,Ptpeb
) .

For each oracle call/query that asks for the ideal-primitive value on input xc, we say

that the call is a correct call for a node v ∈ V if and only if xc matches prelab(v) and
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the call is forward, or xc matches aftlab(v) and the call is an inverse call. We define the

ex-post-facto pebbling configurations in reverse order. For i from tpeb to 1, denote as σi

the input state of round i + 1 and A(σi) the partial execution of Aip(x; r) after round i,

the pebbling configuration Pi is defined as follows. (In the following context, by round

γ, we always mean the γ-th round in the execution Aip(x, r).)

1. Critical Calls: We sort the output/ideal primitive calls of A(σi) in chronological

order5 and determine whether they are critical calls.

• An output call (in round γ > i) with label (v, `v) is a critical call for v ∈ V

if and only if v is a sink and in the trace A(σi), no correct call for v appeared

before round γ.

• An ideal-primitive call (in round γ > i) is a critical call for a node u ∈ V if

and only if the following conditions both hold: i) the ideal-primitive call is a

correct call for a successor node v ∈ succ(u) and in the trace A(σi), no correct

call for u appeared before round γ; ii) v is in Pγ.

2. Pebbling Configuration: A node v ∈ V is included into the pebbling configuration

Pi if and only if both of the following conditions hold:

• There is at least one critical call for v in the trace A(σi).

• There is at least one correct call for v between round 1 and round i (inclu-

sively).6

In a critical call, the algorithm provides the information of a graph label without recom-

puting, hence the call is useful in extracting ideal-primitive entries. On a side note, by

definition of critical call and ex-post-facto pebbling, for any round i, we might possibly

5We assume an implicit order for the calls in the same round.
6Note that the existence of a correct call for v in round i does not imply v ∈ Pi, because v may not

have a critical call in the future.
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put a node u into Pi only if u is a sink or one of its successor v ∈ succ(u) is in Pγ for

some γ > i. Looking ahead, this property significantly simplifies the proof of pebbling

reduction in our new computational model.

Proof: [of Theorem 4.1, Theorem 4.2 and Theorem 4.3] Fix ideal primitive type

IP = CF/IC/RP, (non-colliding) input vector x, adversary A, and any graph G = (V,E),

the proof consists of the following four steps.

Label Collisions. First, we show that with probability at least 1− εcoll(IP) (over the

uniform choice of the ideal primitive), the pre-labels {prelab(v)}v∈V are all distinct.7

Lemma 4.1 Fix ideal primive IP = CF/IC/RP (with block length L), predecessors-

distinct DAG G = (V,E) (with ns source nodes), non-colliding input vector x ∈ {0, 1}nsL,8

and Hfix = {flabip}ip∈IP constructed in Section 4.2. With probability at least 1 − εcoll(IP)

(over the uniformly random choice of ip), the graph labeling satisfies that the pre-labels

{prelab(v)}v∈V are all distinct. Here εcoll(CF) = |V|2/2L+1 and εcoll(IC) = εcoll(RP) =

|V|2/2L.

Proof: The proof is deferred to Appendix B.1.

The property in Lemma 4.1 is useful in determining the node index v when one sees an

ideal-primitive query related to v. Moreover, it guarantees that each node v maps to a

unique ideal-primitive input entry prelab(v).

Pebbling Legality. Next, we show that with high probability (over the uniform choices

of the ideal primitive ip and random coins r), the ex-post-facto pebbling P(Aip(x, r))

7If IP = IC/RP, this also implies that {aftlab(v)}v∈V are distinct.
8By non-colliding, we mean x = (x1, . . . , xns

) where xi 6= xj for every i 6= j.
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= (P0 = ∅, . . . ,Ptpeb
) for Aip(x; r) is legal, and thus

tpeb∑
i=0

|Pi| ≥ cc(G)

as long as the pebbling is successful.

Before presenting the lemma, we prove a claim that will be useful in many places.

Claim 4.1 Fix any execution Aip(x; r) (with input states σ0, σ1, . . . ) whose ex-post-facto

pebbling is P(A) = (P0, . . . ,Ptpeb
). For any i ∈ [tpeb] and any vertex v ∈ Pi \ Pi−1, it

holds that there is a correct call for v in round i.

Proof: Since v ∈ Pi, there is a correct call for v between round 1 and round i, and

there is a critical call for v in A(σi). Suppose for contradiction that there is no correct

call for v in round i, then there is a correct call for v between round 1 and round i− 1,

and there is a critical call for v in A(σi−1), hence v ∈ Pi−1, contradiction.

Lemma 4.2 Fix IP = CF/IC/RP (with block length L), predecessors-distinct DAG G =

(V,E) (with ns source nodes), non-colliding input vector x ∈ {0, 1}nsL, algorithm A, and

Hfix = {flabip}ip∈IP constructed in Section 4.2. With probability at least 1 − εcoll(IP) −

εlegal(IP) (over the uniformly random choices of ip and A’s internal coins r), the pre-

labels are distinct and the ex-post-facto pebbling for Aip(x; r) is legal. Here εcoll(IP) is the

same as in Lemma 4.1 and εlegal(CF) = q · |V|/2L−1, εlegal(IC) = εlegal(RP) = q · |V|/2L−2,

where q is an upper bound on the number of calls made by A.

Proof: The proof is deferred to Appendix B.2.

Pebbling Reduction. Next, we build the connection between the state size and the

size of the pebbling configuration. In particular, we show that with high probability, the

input state size |σi| is proportional to |Pi| for all i ∈ N.
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Lemma 4.3 Fix L = 2`, predecessors-distinct DAG G = (V,E) (with ns source nodes),

non-colliding input vector x ∈ {0, 1}nsL, algorithm A (that makes at most q−1 calls), and

Hfix = {flabip}ip∈IP constructed in Section 4.2. Set values βCF := bL− 2 log q− log |V| −

log 3c, βIC := bL−1−2 log q−log |V|−log 3c, and βRP := bL
2
−1−2 log q−log |V|−log 3c.

For any IP = CF/IC/RP and λ ∈ N, define Eλ,IP
pred as the event where the following three

conditions all hold:

1. The pre-labels are distinct from each other.

2. The ex-post-facto pebbling (P0,P1, . . . ,Ptpeb
) for Aip(x; r) is legal.

3. There exists i ∈ N such that |σi| < |Pi| · βIP − λ, where σi denotes the input state

for round i+ 1 and Pi denotes the pebbling configuration in round i.

It holds that Pr
[
Eλ,IP

pred

]
≤ 2−λ for all λ ∈ N, where the probability is taken over the choice

of ip
$← IP and random coins of A.

Proof:

Without loss of generality we fix r to be the optimal random coins of A that maximizes

Pr[Eλ,IP
pred]. We will show a predictor P (that hardwires r and has oracle access to ip), such

that if Eλ,IP
pred happens (which implies |σi| < |Pi| · βIP − λ for some i ∈ N), there will be

a hint h with no more than |Pi| · L − λ (and |Pi| · (L − 1) − λ when IP = IC/RP) bits,

where P (h) can predict |Pi| ideal primitive entries correctly. Thus by the compression

arguments that ideal primitives cannot be compressed (i.e., Lemma 2.1 and Lemma 2.2),

Eλ,IP
pred happens with probability no more than 2−λ and the lemma holds. Next we describe

the hint h and the predictor P .

The hint. For any choice of ip ∈ IP, if event Eλ,IP
pred happens, there exists a round i ∈ N such

that |σi| < |Pi|·βIP−λ, where σi is the input state of round i+1 and Pi = (v1, v2, . . . , v|Pi|)

is the ex-post-facto pebbling configuration. The hint consists of the state σi and the
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following helper information. (In the following context, if not describe explicitly, by

critical call, we always mean a critical call in the trace A(σi).)

• A sequence Qi = (id1, id2, . . . , id|Pi|) ∈ [q − 1]|Pi|, where idj (1 ≤ j ≤ |Pi|) is the

index of the first critical call for vj ∈ Pi in the trace A(σi). (Recall that we sort the

calls in chronological order, and assume an implicit order for the calls in the same

round.)

• A nodes sequence Wi = (w1, w2, . . . , w|Pi|), where wj = vj (1 ≤ j ≤ |Pi|) if the

idj-th call is an output call; otherwise, if the idj-th call is a correct call for some

successor of vj, then wj is assigned as the corresponding successor node.

• A sequence Bi = (b1, b2, . . . , b|Pi|), where bj ∈ {0, 1, 2} is used to indicate the

relation between wj and vj. In particular, wj = vj if bj = 0, otherwise vj is the

bj-th predecessor of wj.

• A sequence Ci = (cid1, cid2, . . . , cid|Pi|), where cidj = 0 (1 ≤ j ≤ |Pi|) if there is no

correct call for vj ∈ Pi in the trace A(σi), otherwise cidj is the query index of the

first correct call for vj.

• If IP = RP, the hint includes an extra sequence Hi = (h1, h2, . . . , h|Pi|), where hj

(1 ≤ j ≤ |Pi|) is the label `vj if there exists some k > j such that idj = idk (i.e.,

another node vk ∈ Pi has the same first critical call), otherwise hj is set as empty9.

We see that there are at most b|Pi|/2c non-empty values in the sequence, as any

ideal-primitive call can be a critical call for at most two vertices.

Note that we can easily recover the configuration Pi from the hint Wi and Bi. The size

of the hint is no more than lenIP := |Pi| · L − λ (and lenIP := |Pi| · (L − 1) − λ when

IP = IC/RP) bits given the setting of βIP.

9Note that we don’t need an indicator (e.g., hj = ⊥) to tell if hj is empty or not, as we can know it
from the sequence Qi. This enables us to have a shorter Hi.
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The predictor P . Given any input the predictor P parses the input into σi, Qi, Wi, Bi, Ci

and Hi as mentioned before10, and recovers the pebbling configuration Pi. Then P runs

the partial execution A(σi) and attempts to predict (prelab(v), ip(prelab(v))) for every

v ∈ Pi without querying ip(prelab(v)). In the following context, if not describe explicitly,

by critical call, we always mean a critical call in the trace A(σi).

When simulating A(σi), the predictor uses the following approach to determine if an

ideal-primitive call is a correct call for a node v: The predictor keeps track of the labels

prelab(v), aftlab(v) and `v for every v ∈ V. Moreover, after knowing the labels of v’s

predecessors, the predictor updates prelab(v) accordingly. Given an ideal-primitive call

from A, P determines call correctness by checking the following cases sequentially:

• If P knows from hint Qi that the call is the first critical call for some node v ∈ Pi,

then the predictor knows that it is also a correct call for some node w, where w

can be extracted from the hint Wi.

• If the call is the first correct call11 for some node v ∈ Pi, then P will know it from

the hint Ci.

• The call is a forward call. Then the predictor checks if there exists a node v ∈ V

where prelab(v) was updated and prelab(v) matches the call input xc. If so, P

asserts that it is a correct call for v.

• IP = IC/RP and the call is an inverse call. Then the predictor first checks if there

is a node v ∈ V where aftlab(v) was updated and aftlab(v) matches the call input

xc. If no such v exists, P queries the oracle, and checks if the answer is consistent

with some updated prelab(v) (v ∈ V).

10We assume that the encoding of the hint is unambiguous.
11Recall that there is an implicit chronological order for the calls.
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• If one of the above checks succeed, then after recognizing the correct call for v, P

updates prelab(v), aftlab(v) and `v accordingly.

Claim 4.2 Fix execution Aip(x; r) and round i, suppose the pre-labels are distinct, and

the ex-post-facto pebbling (P0, . . . ,Ptpeb
) is legal. For any round γ > i, assume the pre-

dictor successfully extracted `-labels for all (first) critical calls (in A(σi)) between round

i and round γ. Then for any vertex v ∈ Pi ∪ · · · ∪ Pγ, and any correct call for v in

round γ (denote the call as C(v)), the predictor will correctly recognize the call C(v)

when simulating A(σi).

Proof: The proof is deferred to Appendix B.3.

Next we show how to simulate A(σi) and predict ideal-primitive entries.

The predictor simulates A(σi) (which corresponds to the partial execution of A after

round i) and keeps track of the labels prelab(v), aftlab(v) and `v for every v ∈ V. For each

round γ > i, after receiving the calls from A, the predictor P does follows sequentially.

1. Handling critical calls: P first enumerates node vj ∈ Pi according to reverse topo-

logical order 12 and checks the following: If the idj-th call (i.e. vj’s first critical call)

is in round γ and `vj is unknown yet, the predictor uses the hint to extract the

label `vj . The extraction from a critical output call is trivial, thus we assume that

the call is an ideal-primitive call. From the hint, the predictor knows that it is a

correct ideal primitive call for a node wj ∈ succ(vj) where wj can be extracted from

the hint Wi. (Note that wj ∈ Pγ by definition of critical calls.) The predictor first

extracts prelab(wj) from the call input/output:

• If the call is forward, prelab(wj) can be identified from the call input.

12v|Pi| is picked first, then v|Pi|−1,..., and finally v1.
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• If wj ∈ Pi and the call is an inverse call, since P chooses nodes in Pi according

to reverse topological order, and in A(σi) the first critical call for wj appears

no later than any correct call for wj, P must have already extracted `wj , and

thus the predictor can extract prelab(wj) from `wj and the call input without

querying the oracle.

• If wj /∈ Pi and the call is an inverse call, P can query the oracle and extract

the information of prelab(wj) from the oracle answer.

Given wj and prelab(wj), if IP = CF or IP = IC, P can directly extract the

label `vj from prelab(wj) and bj; if IP = RP and vj is the only predecessor of wj,

P can extract `vj = prelab(wj); if IP = RP and wj has another predecessor u,

we argue that `u was already known and thus the predictor can obtain the label

`vj = prelab(wj)⊕ `u.

• If u /∈ Pi, since the ex-post-facto pebbling is legal and wj ∈ Pγ
13, there exists

a round γ′ (i < γ′ < r) such that u ∈ Pγ′ \ Pγ′−1. By Claim 4.1, there is a

correct call C(u) for u in round γ′. Then by Claim 4.2, P will recognize the

call C(u) and update the label `u.

• If u is in Pi but the first critical call for u is before round γ (but after round

i), then `u was already known before round γ.

• If u equals some node vk ∈ Pi such that vk and vj have the same first critical

call, since `vj was unknown, it must be the case that k < j and hk = `vk ,

hence the predictors knew `u initially from the hint Hi.

2. Handling correct calls for Pi: For each node vj ∈ Pi and each correct ideal-primitive

call for vj (note that by Claim 4.2, P correctly recognizes the call, as the `-labels

13Here is the place where the second condition of the critical call definition becomes useful.

74



Data Independent MHFs from Simple Primitives Chapter 4

of (first) critical calls upto round γ were correctly extracted), since the predictor

already knew `vj after handling the first critical call for vj,
14 she can answer the

call without quering the ideal primitive:

• If IP = CF, then `vj is the query answer.

• If IP = IC and the call input has the value (k, x) where k ∈ {0, 1}L∪{⊥} and

x ∈ {0, 1}L, the answer is `vj ⊕ x because `vj = x⊕ ip(k, x) for a forward call

and `vj = x⊕ ip−1(k, x) for an inverse call.

• If IP = RP and the call input has the value x, the answer is `vj ⊕ x because

`vj = x⊕ ip(x) for a forward call and `vj = x⊕ ip−1(x) for an inverse call.

For each round γ > i, after checking correct/critical calls for all nodes in Pi, the

predictor answers the other unanswered calls by making queries to the ideal primitive.

Note that in round γ, for every node v ∈ Pi∪ · · · ∪Pγ, if there is a correct ideal-primitive

call for v, since P already extracted `-labels for all (first) critical calls upto round γ, by

Claim 4.2, P will recognize the call, get the call answer, then update the labels prelab(v),

aftlab(v), `v and the pre-labels of v’s successors.

After executing A(σi), the predictor will compute prelab(v) for every v ∈ V according

to topological order, and predict ip(prelab(v)) for every v ∈ Pi. In particular, if IP =

CF, ip(prelab(v)) = `v; if IP = IC, let x be the last L-bit string of prelab(v), then

ip(prelab(v)) = x⊕ `v; if IP = RP, then ip(prelab(v)) = prelab(v)⊕ `v. Note that if Eλ,IP
pred

happens and the input is the hint h mentioned above, the predictor does not need to

query ip(prelab(v)) for any v ∈ Pi as the answer can be computed from prelab(v) and the

extracted label `v.

Correctness of the predictor. If Eλ,IP
pred happens and P ’s input is the hint mentioned above,

the predictor will correctly predict (prelab(v), ip(prelab(v))) for every v ∈ Pi without

14Recall that in A(σi), there was no correct call for v before the round of the first critical call for v.
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querying ip(prelab(v)). Recall that {prelab(v)} are distinct so that P also predicts |Pi|

ideal-primitive entries.

First, we note that the labels being updated (including prelab(v), aftlab(v) and `v

for v ∈ V) are correct by induction on the time order of updating. Initially, only the

pre-labels of source vertices were updated which are correct. Assume all the labels being

updated are correct up to now. A new label prelab(v) (or aftlab(v)) will be updated

because one of the following possibilities:

1. P recognizes the first correct call for v ∈ Pi from the hint Ci (and thus correct by

the hint).

2. P recognizes a correct call for v by finding out that the call input/output matches

the previously updated aftlab(v) (or prelab(v)) which is correct by inductive hy-

pothesis.

3. P computes the label according to topological order (at the end).

4. prelab(v) is updated because the `-labels of v’s predecessors were all updated pre-

viously (which are correct by inductive hypothesis).

Similarly, a new label `v will be updated either because the possibility 2 as above, or

because P extracts `v from the first critical call for v (and thus correct by the hint). Note

that the argumet above also implies that P will not output an incorrect prediction.

It remains to prove that P will never query ip(prelab(v)) for any v ∈ Pi. First, when

simulating A(σσi), P will recognize the first correct call of v from the hint Ci and answer

the call using the extracted label `v. Then prelab(v), aftlab(v) and `v will all be updated.

For the following correct calls, since prelab(v), aftlab(v) and `v have been updated, P will

recognize and answer the call without querying ip. Lastly, when computing prelab(v) for
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v ∈ V according to topological order, P will not query ip(prelab(v)) for any v ∈ Pi as the

answer will be computed from prelab(v) and the extracted label `v.

In summary, with probability at least Pr[Eλ,IP
pred], there exists a short hint h where P (h)

correctly guesses |Pi| ideal-primitive entries, thus by Lemma 2.1 and Lemma 2.2, we have

Pr[Eλ,IP
pred] ≤ 2−λ and the lemma holds.

Putting All Things Together. For an execution Aip(x, r), we say Aip(x, r) is correct

if the algorithm generates the correct graph function output at the end; we say Aip(x, r)

is lucky if it is correct but there is a vertex v ∈ sink where A did not make any correct call

for v before outputting the label `v. Note that if Aip(x, r) is correct but not lucky, the

ex-post-facto pebbling will be successful. Moreover, with similar compression argument

as in Lemma 4.1 and Lemma 4.2, the probability (over the uniform choice of ip and A’s

internal coins) that A is lucky is no more than εluck(IP), where εluck(CF) = |V|/2L and

εluck(IC) = εluck(RP) = |V|/2L−1.

In summary, for any algorithm A that correctly computes the graph function with

probability εA > 2 · (εcoll(IP) + εlegal(IP) + εluck(IP)), we set λ ∈ N as the minimal integer

such that ε(λ) = εcoll(IP)+εlegal(IP)+εluck(IP)+2−λ ≤ εA/2. Then the following conditions

hold with probability more than εA − ε(λ) ≥ εA/2:

1. The pre-labels are distinct from each other.

2. The ex-post-facto pebbling is legal and successful, hence

tpeb∑
i=1

|Pi| ≥ cc(G) .

3. For every i ∈ [tpeb], it holds that |σi| ≥ |Pi| · βIP − λ . Here Aip(x; r) terminates
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at round tpeb + 1, σi is the input state for round i + 1, and Pi is the pebbling

configuration in round i.

Thus we have

CMC(Aip(x; r)) ≥
tpeb∑
i=1

|σi| ≥
tpeb∑
i=1

(|Pi| · βIP − λ)

≥

(
tpeb∑
i=1

|Pi|

)
· βIP − tpeb · λ

≥ cc(G) · βIP − tpeb · λ ≥ cc(G) · βIP,λ ,

where βIP,λ = βIP − λ as cc(G) ≥ tpeb.

Therefore we have

E
[
CMC(Aip(x; r))

]
≥ εA

2
· βIP,λ · cc(G) .

By plugging in the corresponding εcoll(IP), εlegal(IP), εluck(IP) and βIP for the ideal prim-

itive IP, we can find the optimal parameter λIP, and compute

β(εA, log |V|) =
εA

2
· (βIP − λIP) ,

which leads to Theorem 4.1, Theorem 4.2 and Theorem 4.3.

4.4 iMHFs from Small-Block Labeling Functions

In this section, from any graph, we construct graph-based iMHFs from the small-block

labeling functions built in Section 4.2.

Proposition 4.1 Fix L = 2` and let Hfix be the β-small-block labeling function built

in Section 4.2. For any 2-indegree (predecessors-distinct) DAG G = (V,E) with N =
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2n vertices and single source/sink, the graph labeling functions FG,Hfix
is (C

‖
F ,∆F , N)-

memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F(ε) ≥ Ω (ε · cc(G) · L) , ∆F(ε) ≤ O

(
st(G, N)

cc(G)

)
.

Proof: The lower bound on C
‖
F(ε) is derived from Theorem 4.1, Theorem 4.2 and

Theorem 4.3. The upper bound on ∆F(ε) is obtained by showing a sequential algorithm

that evaluates FG,Hfix
using t steps and s · L-bits of memory where s · t = st(G, N). The

algorithm evaluates FG,Hδ,w according to a sequential pebbling strategy P (of G) that

has ST-complexity st(G, N): Whenever P stores pebbles on a set Pi ⊆ V, the algorithm

stores the graph labels for Pi (which takes no more than s ·L bits of memory); whenever

P puts a pebble on a vertex v ∈ V, the algorithm invokes Hfix and computes the graph

label for vertex v.

The graph G in [14] has pebbling complexities cc(G) = Ω(N2/ logN) and st(G, N) =

O(N2/ logN), thus we obtain the following corollary.

Corollary 4.1 Fix L = 2` and let Hfix be the β-small-block labeling function built in Sec-

tion 4.2. Let G = (V,E) be the 2-indegree (predecessors-distinct) DAG in [14] (with

N = 2n vertices). The graph labeling functions FG,Hfix
is (C

‖
F ,∆F , N)-memory hard,

where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F(ε) ≥ Ω

(
ε ·N2 · L

logN

)
, ∆F(ε) ≤ O(1) .

4.5 Instantiation

We provide an instantiation of iMHFs from small-block labeling functions in Ap-

pendix C.
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4.6 Conclusions and Open Problems

In this chapter, we initiate the study of developing data-independent MHFs from fast

symmetric cryptographic primitives (e.g. AES). There are many open problems for future

directions of research. For example, as mentioned in Chapter 3, can we provide memory

hardness proof with respect to new metrics? (E.g., sustatined memory complexity [19]

and bandwidth hardness [53].) Moreover, our proof framework only holds for graph-based

iMHFs, and finding a similar framework for data-dependent functions (e.g. Scrypt) would

be an interesting problem.
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Chapter 5

Data Independent MHFs from

Wide-Block Labeling Functions

Outline of the Chapter. In this chapter, we construct a family of graph-based iMHFs

based on a primitive called wide-block labeling functions. The scheme enables us to obtain

stronger memory hardness without increasing the description complexity of MHFs. We

start by motivating the use of wide-block labeling functions in Section 5.1. Then in

Section 5.2, we define and construct a family of wide-block labeling functions from small-

block labeling functions. Next in Section 5.3, we prove that the construction satisfies

pebbling reducibility with respect to depth-robust graphs. Finally in Section 5.4, we

construct iMHFs from wide-block labeling functions. The full version of this work is

available on [39].

5.1 Introduction

The MHFs construction in Chapter 4 already gives us iMHFs from fast primitives

(e.g., AES), where the CMC lower bound is Ω(N2L/ logN) for an N -vertices graph and
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L = 128. Ideally, we target a CMC which is as high as possible, while keeping the

evaluation of the function within a feasible margin for the legitimate users. An option

is to use a bigger graph with high CC and small-block labeling functions. However, this

can lead to large description size. A way out here is to choose a graph family that has

succinct description. Unfortunately, as far as we know, practical hard-to-pebble graphs

are randomly sampled and do not have a succinct description of the actual graph, only

of the sampling process. To reduce description complexity of MHFs, a better option

(adopted by practitioners) is to keep the same graph, but operate on larger blocks of size

W � L, to ensure the time-memory product is now N2W/ logN . To do this, we will

provide a generic construction of a hash function with W -bit output using an underlying

primitive with a shorter output. We refer to it as a wide-block labeling function. (Our

design will have the added benefit of allowing for a variable W .) The resulting graph-

based MHF scheme is memory hard as long as the graph G is sufficiently depth-robust.

We stress that all practical constructions implicitly design wide-block labeling func-

tions, for which existing analyses provide no formal security guarantees, as they abstract

them away as random oracles, which they are not. While we failed to provide either proofs

or attacks on practical designs, initiating the study of provably secure constructions in

the more realistic primitive-based setting is an important step.

5.2 Wide-Block Labeling Functions

In this section, we start by defining wide-block labeling functions. Then we present a

generic approach that constructs wide-block labeling functions from small-block labeling

functions.

Definition 5.1 (Wide-Block Labeling Functions) For any ideal primitive IP = CF/IC/
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RP, δ ∈ N and W = 2w, we say

Hδ,w = { vlabip
γ,w : {0, 1}γW → {0, 1}W }

ip∈IP,1≤γ≤δ

is a family of βδ,w-wide-block labeling functions if it satisfies the following property.

βδ,w-pebbling reducibility w.r.t. depth-robust graphs: For any ε ∈ (0, 1] and

any δ-indegree (e, d)-depth robust (first-predecessor-distinct) DAG G = (V,E)1, the

graph functions FG,Hδ,w satisfies

CMCε(FG,Hδ,w) ≥ e · (d− 1) · βδ,w(ε, log |V|) ,

where CMCε(·) is ε-cumulative-memory-complexity (Definition 2.1).

5.2.1 Construction of Wide-Block Labeling Functions

Next we show how to construct wide-block labeling functions from small-block la-

beling functions. The construction is the composition of two graph functions MIX and

SSDR, which can be built from any small-block labeling functions.

Remark 5.1 There are tailored-made variable-length hash functions available in the real-

world, for example within Scrypt [33, 56] and Argon2 [37]. However, even by modeling

the underlying block/stream cipher as an ideal primitive, we do not know how to prove

the pebbling-reducibility of the hash functions. Hence we seek another construction of

labeling functions.

In the following context, we fix the indegree parameter δ ∈ N, ideal primitive length

L = 2`, output length W = 2w of the wide-block labeling functions, and denote as

1G has a single source/sink vertex.
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K = 2k := W/L the ratio between W and L. We will omit these variables in notation

when it is clear in the context.

We show how to construct the family of labeling functions Hδ,w. For any 1 ≤ γ ≤ δ,

and any ideal primitive ip ∈ IP, we define the labeling function vlabip
γ,w : {0, 1}γW →

{0, 1}W as the composition of two functions, namely, mixip
γ : {0, 1}γW → {0, 1}W and

ssdrip
δ : {0, 1}W → {0, 1}W . More precisely, for an input vector x ∈ {0, 1}γW , we define

the W -bit function output as

vlabip
γ,w(x) := ssdrip

δ (mixip
γ (x)) .

Next, we specify the functions mixip
γ and ssdrip

δ .

Component: MIX Functions. Denote as flabip : {0, 1}L ∪ {0, 1}2L → {0, 1}L a small-

block labeling function (Definition 4.1), and let K := W/L be the ratio between W and

L. We define

mixip
γ := Fip

Gγ,Kmix

: {0, 1}γW → {0, 1}W=KL

as the graph function (Section 2.5) built upon a DAG Gγ,K
mix and the labeling function

flabip. (Note that we can use flabip as the labeling function since the maximal indegree

of Gγ,K
mix is 2.) The graph Gγ,K

mix = (Vγ,K
mix ,E

γ,K
mix ) is defined as follows.

Nodes set: The set Vγ,K
mix has γK source nodes (which represent the γK input blocks),

and we use 〈0, j〉 (1 ≤ j ≤ γK) to denote the jth source node. Besides, there are

γK columns each with K nodes. We use 〈i, j〉 (1 ≤ i ≤ γK, 1 ≤ j ≤ K) to denote

the node at the ith column and jth row. The K nodes at the last column are the

sink nodes (which represent the K output blocks).

Edges set: The set Eγ,Kmix has γK2 + γ(K − 1)K + K − 1 edges. Each source node
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〈0, 1〉 〈0, γK〉

〈1, 1〉 〈γK, 1〉

〈1, K〉 〈γK,K〉

Figure 5.1: The graph Gγ,K
mix for K = 4. We omitted the edges from 〈0, j〉 to 〈1, j〉

(2 ≤ j ≤ K) for clarity of the figure.

〈0, i〉 (1 ≤ i ≤ γK) has K outgoing edges to the K nodes of column i, namely,

{〈i, j〉}j∈[K]. For each column i (1 ≤ i < γK) and each row j (1 ≤ j ≤ K), the

node 〈i, j〉 has an outgoing edge to 〈i+ 1, j〉 at the next column. Finally, each

source node 〈0, j〉 (2 ≤ j ≤ K) has an outgoing edge to 〈1, j〉. (The last K − 1

edges make sure that the K nodes at column 1 have distinct sets of predecessors

(Section 2.5).)

Component: SSDR Functions. Denote as flabip : {0, 1}L∪{0, 1}2L → {0, 1}L a small-

block labeling function (Definition 4.1), and let K := W/L be the ratio between W and

L. Fix δ ∈ N, we define

ssdrip
δ := Fip

Gδ,Kssdr

: {0, 1}W → {0, 1}W

as the graph function built upon the labeling function flabip and a DAG Gδ,K
ssdr. (Note

that we can use flabip as the labeling function since the maximal indegree of Gδ,K
ssdr is

2.) Gδ,K
ssdr = (Vδ,K

ssdr,E
δ,K
ssdr) is a source-to-sink-depth-robust graph (Definition 2.6) defined as

follows.
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〈0, 1〉

〈0, K〉

〈1, 1〉

〈1, K〉

〈δK, 1〉

〈δK,K〉

Figure 5.2: The graph Gδ,K
ssdr for K = 4

Nodes set: The set Vδ,K
ssdr has K(1 + δK) vertices distributing across 1 + δK columns

and K rows. For every i ∈ {0, . . . , δK} and every j ∈ {1, . . . , K}, we use 〈i, j〉 to

denote the node at column i and row j. The K nodes at column 0 are the source

nodes and the K nodes at column δK are the sink nodes.

Edges set: The set Eδ,Kssdr consists of 3 types of edges. The first type is called horizontal

edges: For every i (0 ≤ i < δK) and every j (1 ≤ j ≤ K), there is an edge

from node 〈i, j〉 to node 〈i+ 1, j〉. The second type is called vertical edges: For

every i (2 ≤ i ≤ δK) and every j (1 ≤ j < K), there is an edge from node

〈i, j〉 to node 〈i, j + 1〉. The third type is called backward edges: For every j

(1 ≤ j < K), there is an edge from node 〈δK, j〉 to node 〈1, j + 1〉. In total, there

are δK2 + δK · (K − 1) < 2δK2 edges.

We prove a useful lemma showing that Gδ,K
ssdr is source-to-sink-depth-robust.

Lemma 5.1 Fix any K = 2k ≥ 4 and δ ∈ N, the graph Gδ,K
ssdr is (K

4
, δK

2

2
)-source-to-sink-

depth-robust.

Proof: Fix any nodes set Sssdr in the graph Gδ,K
ssdr where |Sssdr| ≤ K

4
. Denote as

[`1, r1] ∪ [`2, r2] ∪ · · · ∪ [`t, rt]
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the set of rows that have no intersection with Sssdr, where

1 ≤ `1 ≤ r1 < `2 ≤ r2 < · · · < `t ≤ rt ≤ K .

Let i∗ ∈ {2, . . . , δK} be the first column in Gδ,K
ssdr that has no intersection with Sssdr.

(Since |Sssdr| ≤ K/4 < δK − 1, such column must exist.) We construct a source-to-sink

path Pssdr in the graph Gδ,K
ssdr − Sssdr:

• For the first interval [`1, r1], we construct a subpath (starting from the source node

〈0, `1〉)

(〈0, `1〉, . . . , 〈δK, `1〉, 〈1, `1 + 1〉, . . . , 〈δK, `1 + 1〉, . . . , 〈1, r1〉, . . . , 〈i∗, r1〉) ,

where 〈i, j〉 is the node at column i and row j. The length of the subpath is at

least (r1 − `1) · δK + i∗.

• For each interval [`j, rj] (2 ≤ j ≤ t−1), we connect 〈i∗, rj−1〉 to 〈i∗, `j〉 through the

column i∗, and construct a subpath

(〈i∗, `j〉, . . . , 〈δK, `j〉, 〈1, `j + 1〉, . . . , 〈δK, `j + 1〉, . . . , 〈1, rj〉, . . . , 〈i∗, rj〉) .

The length of the subpath is at least (rj − `j) · δK.

• For the last interval [`t, rt], we connect 〈i∗, rt−1〉 to 〈i∗, `t〉 through the column i∗,

and construct a subpath (ending at the sink node 〈δK, rt〉)

(〈i∗, `t〉, . . . , 〈δK, `t〉, 〈1, `t + 1〉, . . . , 〈δK, `t + 1〉, . . . , 〈1, rt〉, . . . , 〈δK, rt〉) .

The length of the subpath is at least (rt − `t) · δK + δK − i∗.
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Next we show that the length of Pssdr is at least δK2

2
. Since |Sssdr| ≤ K

4
, the number of

intervals t is no more than K/4+1 (as we can split the rows into at most K/4+1 intervals

by removing K/4 rows). Moreover, the number of rows that have no intersection with

Sssdr is at least K −K/4 = 3K/4, that is,

t∑
i=1

(ri − `i + 1) ≥ 3

4
·K.

Therefore the length of Pssdr is at least

|Pssdr| ≥ [(r1 − `1) · δK + i∗] +
t−1∑
i=2

(ri − `i) · δK + [(rt − `t) · δK + δK − i∗]

= (r1 − `1 + 1) · δK +
t∑
i=2

(ri − `i) · δK

=

[
t∑
i=1

(ri − `i + 1)− t+ 1

]
· δK

≥
(

3

4
·K − 1

4
·K
)
· δK =

δK2

2
.

5.3 Wide-Block Labeling Functions: Pebbling Re-

ducibility

In this section, we show that the labeling functions constructed in Section 5.2 satisfy

pebbling reducibility with respect to depth-robust graphs. We will make use of the

following notation.
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Graph Composition: Given a graph G1 (with n1 source nodes and n2 sink nodes),

and a graph G2 (with n2 source nodes and n3 sink nodes), we define G1 ◦ G2 as the

composition of G1 and G2, namely, we merge the ith sink node of G1 with the ith source

node of G2 for each i ∈ [n2]
2, and take the union of the rest parts of the graphs.

Theorem 5.1 Fix L = 2`, W = 2w ≥ L, and set K := W/L. Let Hfix be any βfix-

small-block labeling functions. For any δ ∈ N, the labeling functions Hδ,w constructed

in Section 5.2 is βδ,w-pebbling-reducible w.r.t. (first-predecessor-distinct3) depth-robust

graphs where

βδ,w(ε, log |V|) ≥ δK3

8
· βfix(ε, log |V|) .

Here ε is in interval (0, 1] and |V| is the number of vertices in the graph.

Remark 5.2 (Generalization) For the wide-block labeling functions constructed in Sec-

tion 5.2, we make use of a specific graph Gδ,K
ssdr that is source-to-sink depth robust. We

emphasize, however, that any source-to-sink depth robust graphs suffice. In particular, by

replacing Gδ,K
ssdr with any 2-indegree DAG G∗ where i) G∗ has K source/sink nodes and ii)

G∗ is (e∗, d∗)-source-to-sink depth robust, the corresponding wide-block labeling functions

is still β-pebbling-reducible, where

β(ε, log |V|) ≥ e∗ · d∗ · βfix(ε, log |V|) .

We leave finding new source-to-sink depth-robust graphs as an interesting direction for

future work.

Remark 5.3 Note that in Theorem 5.1, the pebbling reducibility only holds for depth-

robust graphs. It is hard to directly link CMC and cc(G). The hardness lies in linking

2We assume an implicit order for nodes in G1 and G2.
3See Section 2.5 for definition of first-predecessor-distinctness.
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cc(Extδ,W (G)) and cc(G). In particular, even if the gadget graph Gδ,W has high CC, we

do not know how to prove that cc(Extδ,W (G)) ≥ cc(G) · cc(Gδ,W ). This is because we do

not know how to transform a pebbling P1 (of Extδ,W (G)) into a legal pebbling P2 (of G),

and argue that cc(P1) is at least cc(P2) times cc(Gδ,W ).

Proof: [of Theorem 5.1] Let G = (V,E) be any (first-predecessor-distinct) (e, d)-

depth-robust DAG with δ-indegree and single source/sink, let FG,Hδ,w be the graph func-

tions built upon G and Hδ,w. It is sufficient to show that for every ε ∈ (0, 1],

CMCε(FG,Hδ,w) ≥ βfix(ε, log |V|) · δK
3

8
· e · (d− 1) .

By opening the underlying graph structure of Hδ,w, we see that FG,Hδ,w is also a

graph function built upon functions Hfix and an extension graph Extδ,K(G) that has the

following properties.

• Nodes Expansion: Every node v ∈ V in the original graph G = (V,E) is ex-

panded into K nodes, that is,

copy(v) :=
(
v(1), . . . , v(K)

)
.

• Neighborhood Connection: For every non-source node v ∈ V− src(G), denote

as pred(v) := (u1, . . . , uγ) the predecessors of v in G. In Extδ,K(G), there is a

subgraph Gγ,K
mix (v) ◦Gδ,K

ssdr(v) that connects

neighbor(v) := {copy(u1), . . . , copy(uγ)}

to the set copy(v), where neighbor(v) (and copy(v)) are the source nodes (and the

sink nodes) of Gγ,K
mix (v) ◦ Gδ,K

ssdr(v), respectively. Note Gγ,K
mix (v) ◦ Gδ,K

ssdr(v) has the
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identical graph structure with the composition of Gγ,K
mix and Gδ,K

ssdr.

By first-predecessor-distinctness of G and by the graph structure of the MIX graph,

it holds that Extδ,K(G) is a predecessors-distinct graph with 2-indegree. Next, we will

show that the extension graph Extδ,K(G) is (e, (d− 1) · δK)-depth-robust for K ∈ {1, 2}

and (eK/4, (d−1) ·δK2/2)-depth-robust for K ≥ 4. By Lemma 2.3, for any K = 2k ≥ 1,

we have

cc(Extδ,K(G)) ≥ δK3

8
· e · (d− 1) .

Thus by βfix-pebbling reducibility of Hfix
4, we obtain Theorem 5.1.

Before proving the depth-robustness of the extension graph, we introduce a useful

notation called meta-node. Intuitively, nodes set maps each vertex of the original graph

G to a set of vertices in Extδ,K(G).

Meta-Node: We define meta-node nodes(v) for every node v ∈ V: For every non-

source node v ∈ V − src(G), we define nodes(v) as the set of vertices in the graph

Gγ,K
mix (v) ◦Gδ,K

ssdr(v)− neighbor(v); for every source node v ∈ src(G), we define nodes(v) :=

copy(v). Note that for any u, v ∈ V such that u 6= v, the sets nodes(u) and nodes(v) are

disjoint.

Depth-robustness of the Extension Graph: Next we show the depth robustness

of the extension graph. We first consider the simpler case where K ∈ {1, 2}. (In the

following context, for a graph G = (V,E), we sometimes think G = V ∪ E as the union

of set V and E if there is no ambiguity.)

Lemma 5.2 For any K = 2k ∈ {1, 2} and (e, d)-depth robust DAG G = (V,E) that has

maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G) is (e, (d− 1) · δK)-

depth-robust.

4Note that βfix-pebbling reducibility holds for multi-sources graphs.

91



Data Independent MHFs from Wide-Block Labeling Functions Chapter 5

Proof: For any nodes subset Sext ⊆ Extδ,K(G) such that |Sext| ≤ e, we show that

depth(Extδ,K(G)− Sext) ≥ (d− 1) · δK, which finishes the proof.

First, we define a set

S := { v ∈ V : | nodes(v) ∩ Sext| ≥ 1 } .

Since {nodes(v)}v∈V are disjoint and |Sext| ≤ e, we have |S| ≤ e. Then by (e, d)-depth

robustness of G, there exists a path P = (v1, . . . , vd) in the graph G− S.

Next, given the path P = (v1, . . . , vd) ⊆ G− S, we show a path (with length at least

δK ·(d−1)) in the graph Extδ,K(G)−Sext. For every i ∈ [d−1], since vi /∈ S and vi+1 /∈ S,

by definition of S, we have (nodes(vi+1)∪ copy(vi))∩ Sext = ∅. Hence there exists a path

(with length at least δK) from the node v
(1)
i ∈ copy(vi) to the node v

(1)
i+1 ∈ copy(vi+1).

(The path starts from v
(1)
i , then comes to the first row of Gγ,K

mix (vi+1) ◦ Gδ,K
ssdr(vi+1), and

goes through the first row until it reaches v
(1)
i+1.) By concatenating the (d− 1) paths, we

obtain a path (with length at least (d− 1) · δK) in the graph Extδ,K(G)− Sext.

Next, we consider the more general case where K ≥ 4.

Lemma 5.3 For any K = 2k ≥ 4 and any (e, d)-depth robust DAG G = (V,E) with

maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G) is (K
4
· e, δK2

2
· (d−

1))-depth-robust.

Proof: For any nodes subset Sext ⊆ Extδ,K(G) such that |Sext| ≤ K
4
· e, we show that

depth(Extδ,K(G)− Sext) ≥ δK2

2
· (d− 1), which finishes the proof.

Step 1: From Sext, we first derive a set of nodes S ⊆ V in the graph G, and find a long

path in G− S.
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Claim 5.1 Define a set

S := { v ∈ V : | nodes(v) ∩ Sext| ≥
K

4
} ,

there exists a d-path5 P = (v1, . . . , vd) in the graph G− S.

Proof: We first show that |S| ≤ e: Since |Sext| ≤ K
4
· e and {nodes(v)}v∈V are

disjoint, we have

K

4
· e ≥ |Sext| ≥

∑
v∈S

|nodes(v) ∩ Sext| ≥ |S| ·
K

4
,

where the last inequality is from the definition of S. By dividing the terms by K
4

, we

have that |S| ≤ e. Since the graph G is (e, d)-depth robust, we conclude that there is a

d-path P = (v1, . . . , vd) in the graph G− S.

Step 2: Given the path P = (v1, . . . , vd) ⊆ G − S, next in Lemma 5.4 we show that

for every i ∈ [d − 1], there exists a long path from copy(vi) to copy(vi+1) in the graph

Extδ,K(G)−Sext, then by connecting the d−1 paths, we obtain a path with length at least

δK2

2
· (d − 1), hence finish the proof of Lemma 5.3. Note that the path extraction from

copy(vi) to copy(vi+1) consists of two steps: First we exploit the structure of SSDR graphs

and obtain a long path ending at a node in copy(vi+1), then we exploit the structure of

MIX graphs and connect copy(vi) to the source node of the obtained path.

Lemma 5.4 Given the path P = (v1, . . . , vd) ⊆ G − S (obtained in Claim 5.1) and the

graph Extδ,K(G)−Sext, there exists a nodes sequence (u1, . . . , ud) (where ui ∈ copy(vi)−Sext

for every i ∈ [d]), such that for every i ∈ [d−1], there is a path (with length at least δK2

2
)

that connects ui and ui+1 in Extδ,K(G)− Sext.

5A d-path is a path with d vertices.

93



Data Independent MHFs from Wide-Block Labeling Functions Chapter 5

Proof: We first show that there exists a path (with length at least δK2

2
) from some

node u1 ∈ copy(v1)−Sext to some node u2 ∈ copy(v2)−Sext. (The arguments for u2, . . . , ud

will be similar.) The idea consists of two steps: First, we find a long source-to-sink path

in Gδ,K
ssdr(v2); second, we connect u1 to the starting node of the source-to-sink path. We

also require that the path does not intersect with Sext.

Finding the Source-to-Sink Path: We first define a set Sssdr and find a source-to-sink

path in Gδ,K
ssdr(v2)− Sssdr.

Claim 5.2 Define row ⊆ [K] as the set of row indices where j is in row if and only if

the jth row of Gγ,K
mix (v2)− neighbor(v2) has intersection with Sext. Define a set

Sssdr := { 〈0, j〉ssdr }j∈row ∪
(
Sext ∩Gδ,K

ssdr(v2)
)
,

where 〈0, j〉ssdr is the source node of Gδ,K
ssdr(v2) at row j. The graph Gδ,K

ssdr(v2)− Sssdr has a

source-to-sink path of Gδ,K
ssdr(v2) with length at least δK2

2
.

Proof: Since Gδ,K
ssdr(v2) is (K

4
, δK

2

2
)-source-sink-depth-robust for K ≥ 4 (Lemma 5.1),

it is sufficient to prove that |Sssdr| ≤ K
4

. In particular, we have

|Sssdr| ≤ |Sext ∩
(
Gγ,K

mix (v2) ◦Gδ,K
ssdr(v2)− neighbor(v2)

)
| = |Sext ∩ nodes(v2)| <

K

4
.

The first equality holds as nodes(v2) = Gγ,K
mix (v2) ◦ Gδ,K

ssdr(v2) − neighbor(v2) for v2 ∈ V −

src(G); the last inequality holds because v2 /∈ S. The first inequality holds because

|Sssdr| ≤ |row|+ |Sext ∩ (Gδ,K
ssdr(v2)− src(Gδ,K

ssdr(v2))|

≤ |Sext ∩ (Gγ,K
mix (v2)− neighbor(v2))|+ |Sext ∩ (Gδ,K

ssdr(v2)− src(Gδ,K
ssdr(v2))|

= |Sext ∩
(
Gγ,K

mix (v2) ◦Gδ,K
ssdr(v2)− neighbor(v2)

)
| .
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The first inequality is by definition of Sssdr; the second inequality is by definition of row;

the last equality holds because Gδ,K
ssdr(v2)− src(Gδ,K

ssdr(v2)) and Gγ,K
mix (v2)− neighbor(v2) are

disjoint.

Paths Connection: Next, we show how to connect an arbitrary node in copy(v1) − Sext

to the starting node of the source-to-sink path. Here we exploit the structure of MIX

graphs.

Claim 5.3 Denote as u1 an arbitrary node in the non-empty set copy(v1) − Sext
6 and

Pssdr(v2) the source-to-sink path obtained in Claim 5.2. The graph Gγ,K
mix (v2)− Sext has a

path from u1 to the starting node of Pssdr(v2).

Proof: Denote as 〈0, j∗〉ssdr ∈ Gδ,K
ssdr(v2) the starting node of Pssdr(v2). The index j∗

is not in the set row (defined in Claim 5.2) as the path Pssdr(v2) has no intersection with

Sssdr but { 〈0, j〉ssdr }j∈row ⊆ Sssdr . Hence the j∗th row of Gγ,K
mix (v2) − neighbor(v2) has no

intersection with Sext by definition of row. Thus given any node u1 ∈ copy(v1)− Sext, we

can write u1 as 〈0, i∗〉mix ∈ Gγ,K
mix (v2) for some i∗ ∈ [γK], and the path

(〈0, i∗〉mix, 〈i
∗, j∗〉mix, 〈i

∗ + 1, j∗〉mix . . . 〈γK, j
∗〉mix) ⊆ Gγ,K

mix (v2)

connects u1 (through row j∗) to the starting node of Pssdr(v2) (as 〈γK, j∗〉mix = 〈0, j∗〉ssdr).

Finally, using identical arguments, we can show that for every i ∈ {2, . . . , d − 1},

there exists a path (with length at least δK2

2
) from the node ui ∈ copy(vi)− Sext to some

node ui+1 ∈ copy(vi+1)− Sext. Hence we finish the proof of Lemma 5.4.

From Lemma 5.4, we obtain Lemma 5.3.

From Lemma 5.2 and Lemma 5.3, we obtain Theorem 5.1.

6Note that copy(v1) − Sext is non-empty because |copy(v1) ∩ Sext| ≤ |nodes(v1) ∩ Sext| < K
4 < K =

|copy(v1)| . The first inequality holds as copy(v1) ⊆ nodes(v1), the second inequality holds because v1 /∈ S.
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5.4 iMHFs from Wide-Block Labeling Functions

In this section, from any depth-robust graph, we construct graph-based iMHFs based

on the wide-block labeling functions built in Section 5.2.

Theorem 5.2 Fix L = 2`, W = 2w and set K := W/L. Let Hδ,w be the wide-block

labeling functions built in Section 5.2. For any (first-predecessor-distinct7) (e, d)-depth-

robust DAG G = (V,E) with δ-indegree and N = 2n vertices, the graph-based iMHFs

family FG,Hδ,w is (C
‖
F ,∆F , 2δNK

2)-memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds

that

C
‖
F(ε) ≥ Ω

(
ε · e · d · δ ·K2 ·W

)
, ∆F(ε) ≤ O

(
st(G, N)

e · d

)
.

The graph G in [14] is a first-predecessor-distinct graph with (Ω(N/ logN),Ω(N))-

depth-robustness and ST-complexity st(G, N) = O(N2/ logN), thus we obtain the fol-

lowing corollary.

Corollary 5.1 Fix L = 2`, W = 2w and set K := W/L. Let H2,w be the labeling

functions built in Section 5.2 and G = (V,E) be the 2-indegree DAG in [14] (with N = 2n

vertices). The graph labeling functions FG,H2,w is (C
‖
F ,∆F , O(NK2))-memory hard, where

for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F(ε) ≥ Ω

(
ε ·N2 ·K2 ·W

logN

)
, ∆F(ε) ≤ O(1) .

Proof: [of Theorem 5.2] By applying Theorem 4.1, Theorem 4.2, Theorem 4.3 and

Theorem 5.1, we obtain that Hδ,w is Ω(εδK2W )-pebbling reducible w.r.t. depth-robust

graphs and thus

C
‖
F(ε) ≥ Ω

(
ε · e · d · δ ·K2 ·W

)
.

7See Section 2.5 for definition of first-predecessor-distinctness.
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Since the 2-degree graph G in [14] is (Ω(N/ logN),Ω(N))-depth-robust, we obtained the

desired lower bound on C
‖
F(ε).

To argue efficiency gap, we show that FG,Hδ,w can be evaluated by a sequential al-

gorithm with space-time complexity O(st(G, N) · δK2W ) (for any ip and input x), thus

∆F(ε) ≤ O(st(G, N)/(ed)).

We present the sequential algorithm for evaluating FG,Hδ,w in two steps. First, in Sec-

tion 5.4.1, we show a simple sequential algorithm Aδ,w for evaluating the labeling function

Hδ,w. Second, in Section 5.4.2, we present a sequential algorithm for evaluating FG,Hδ,w

by exploiting Aδ,w and a sequential pebbling of G in a generic fashion.

5.4.1 Sequential Evaluation of Hδ,w.

We show a sequential algorithm that efficiently evaluates Hδ,w.

Lemma 5.5 Fix δ ∈ N, L = 2`, W = 2w and set K := W/L. Hδ,w can be evaluated by

a sequential algorithm in time complexity TH(δ, w) and space complexity SH(δ, w), where

TH(δ, w) = 2δK2 , SH(δ, w) = (δ + 1) ·W .

Proof: For any γ ∈ [δ] and ip ∈ IP, we show that there is a sequential algorithm8

Aip
γ that evaluates the labeling function vlabip

γ,w : {0, 1}γW → {0, 1}W constructed in

Section 5.2, where the time and space complexity are

Tm(Aip
γ ) ≤ (γ + δ) ·K2 , Spc(Aip

γ ) ≤ (δ + 1) ·W .

Nodes Notations: To remove ambiguity, we use 〈i, j〉mix to denote the node in Vγ,K
mix ,

and use 〈i, j〉ssdr to denote the node in Vδ,K
ssdr at column i and row j.

8The algorithm’s memory access pattern is independent of the input and the ideal primitive ip ∈ IP.
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The Sequential Algorithm Aip
γ : Let x = (x1, . . . , xγK) ∈ {0, 1}γKL be any input

vector. The algorithm first sets xj ∈ {0, 1}L as the label of node 〈0, j〉mix ∈ Vγ,K
mix (1 ≤

j ≤ γK) and computes the MIX function mixip
γ (x) as follows.

Computing mixip
γ (x). The algorithm computes mixip

γ (x) through γK stages, where the

ith stage (that takes K sequential steps) computes the labels for column i (1 ≤ i ≤ γK).

We use `i,j to denote the label of node 〈i, j〉mix ∈ Vγ,K
mix .

• Stage 1: At the first step, the algorithm computes and stores the label `1,1 :=

flabip(`0,1). At step j ∈ {2, . . . , K}, the algorithm computes and stores the label

`1,j := flabip(`0,1, `0,j).

• Stage i (2 ≤ i ≤ γK): At step j ∈ [K], the algorithm computes and stores the

label `i,j := flabip(`0,i, `i−1,j) and then forget the label `i−1,j.

• Output Phase: The algorithm outputs (`γK,1, . . . , `γK,K).

The sequential time complexity is tmix(γ) = γK2. The memory size is smix(γ) = (γ + 1) ·

K · L = (γ + 1) ·W as the algorithm only stores the input vector plus at most K labels

at each step.

Let y = (y1, . . . , yK) be the output vector of mixip
γ (x). The algorithm then sets

yj ∈ {0, 1}L as the label of node 〈0, j〉ssdr ∈ Vδ,K
ssdr (1 ≤ j ≤ K) and computes the SSDR

function ssdrip
δ (y) as follows.

Computing ssdrip
δ (y). The algorithm computes ssdrip

δ (y) through K stages, where the

jth (1 ≤ j ≤ K) stage takes δK sequential steps and computes the labels of row j. We

use `i,j to denote the label of node 〈i, j〉ssdr ∈ Vδ,K
ssdr.

• Stage 1: At step i (1 ≤ i ≤ δK), the algorithm computes and stores `i,1 :=

flabip(`i−1,1). At the end of the stage, the algorithm forget the label `0,1.
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• Stage j (2 ≤ j ≤ K): At step 1, the algorithm computes and stores `1,j :=

flabip(`0,j, `δK,j−1) and then forget the label `0,j. At step i (2 ≤ i < δK), the

algorithm computes and stores `i,j := flabip(`i−1,j, `i,j−1) and forget the label `i,j−1

at row j − 1. Finally, it computes and stores `δK,j := flabip(`δK−1,j, `δK,j−1).

• Output Phase: The algorithm outputs (`δK,1, . . . , `δK,K).

The sequential time complexity is tssdr(δ) = δK2. The memory size is sssdr(δ) =

(δ+1) ·K ·L = (δ+1) ·W : When computing `i,j (where 1 ≤ i ≤ δK and 1 ≤ j ≤ K), the

algorithm stores the first j − 1 labels of column δK, the last K − j + 1 labels of column

0, the first i − 1 labels of row j, and the last δK − i + 1 labels of row j − 1. In total,

there are at most (δ + 1) ·K labels.

5.4.2 Sequential Evaluation of FG,Hδ,w

Next we show the algorithm for evaluating FG,Hδ,w .

Lemma 5.6 Fix δ ∈ N, L = 2`, W = 2w and set K := W/L. Let G = (V,E) be

any DAG with N vertices and maximal indegree δ. The graph functions FG,Hδ,w can be

evaluated by a sequential algorithm with space-time complexity O(st(G, N) · δK2W ).

Proof: Let P be a sequential pebbling strategy of G that uses tpeb steps and speb

pebbles such that tpeb · speb = st(G, N). There is a straight-forward sequential algorithm

for evaluating FG,Hδ,w : Whenever P stores pebbles on a set Pi ⊆ V, the algorithm stores

the graph labels for Pi (which takes no more than speb ·W bits of memory); whenever

P puts a pebble on a vertex v ∈ V, the algorithm invokes the labeling function Hδ,w

and computes the graph label for vertex v. By Lemma 5.5, the computation takes at

most O(δK2) sequential steps and (speb + δ) ·W = O(speb ·W ) bits of memory. (Note

that speb is at least δ because there exists a vertex v with indegree δ, and pebbling v
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requires the pebbling of v’s predecessor vertices at the previous step.) In summary, the

time complexity is O(tpeb · δK2) and the space complexity is O(speb ·W ), and thus the

ST-complexity is O(st(G, N) · δK2W ).

5.5 Instantiation

We provide an instantiation of iMHFs from wide-block labeling functions in Ap-

pendix C.

5.6 Conclusions and Open Problems

Our result takes the first step for developing provably-secure MHFs from wide-block

labeling functions. However, this is not the end of the story and there are still many open

problems waiting to be answered.

1. Can we provide security analyses for practical constructions, e.g., the wide-block

labeling functions underlying SCRYPT/Argon2 schemes?

2. Can we give memory hardness proof for new metrics? For example, sustatined

memory complexity [19] or bandwidth hardness [53].

3. Can we optimize the CMC for a given budget of evaluation time? If the sequential

evaluation makes N · t calls to a primitive with output length L (where N is the

number of graph nodes and t is the number of calls needed to evaluate the wide-

block labeling function), the theoretical optimal CMC lower bound that one may

achieve is CMC = Ω((Nt)2L/ logN)).

Note that we have already made progress in maximizing CMC and achieved CMC =

Ω(N2t1.5L/ logN). This is already much better than Ω(N2W/ logN) given by prior
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work in the random oracle model even if we assume i) the random oracle (with

output length W ) is instantiated from a construction with rate one, i.e., t = W/L,

and ii) the attacker cannot improve CMC by exploiting higher level of granularity.

However, there still exists a large gap between our scheme and the best-possible

bound, and we think that one possible direction for a further breakthrough is to

find a stronger source-to-sink depth-robust graph.

4. Can we construct a more robust wide-block labeling function? In particular, the

pebbling reducibility of our wide-block labeling functions holds only for depth-robust

graphs, thus generalizing this and linking CMC and CC directly is an interesting

open problem.
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Appendix A

Missing Proofs for the Analysis of

scrypt

A.1 Proof of Claim 3.8

Proof: To prove this claim, we will show, by induction, that for every j ≥ k and

i ≤ k, T rok
i = T

roj
i , and the execution of Aroj is identical to the execution of Arok until

the query Tk is first made.

The base of induction (j = k) holds trivially.

The inductive step is as follows. Suppose the statement is true for some j ≥ k. We

will show it for j + 1. We already established that if roj 6∈ collidingj, then T
roj
i = T

roj+1

i

for every i ≤ j, and is therefore equal to T rok
i by the inductive hypothesis. Since roj and

roj+1 differ only in their answer to the query T
roj
j = T

roj+1

j , the execution of Aroj+1 is

identical to the execution of Aroj until this query is first made. Since roj 6∈ wrongOrderj,

this moment is no earlier than when the query Tk is made; therefore, until the point the

query Tk is first made, the execution of Aroj+1 is identical to the execution of Aroj and

thus (by the inductive hypothesis) identically to the execution of Arok .
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The last part of the claim holds because roN 6∈ wrongOrderN .

A.2 The Uniformity of Oracles {rok}

Instead of proving roN is uniform, we prove a stronger result that rok is uniform for

every k, which we will need later.

Remark A.1 We stress that the deliberate design of the oracle sampling algorithm en-

sures that the random oracles are uniform. We do not know any other sampling algo-

rithms that satisfy all of our needs for proving the theorem.

Claim A.1 For every k (0 ≤ k ≤ N), rok is uniform.

Proof: We will prove this claim by induction. ro0 is uniform by definition. Assume

roj is uniform. Note that roj+1 = roj ∈ collidingj (by Definition 3.3) when roj ∈ collidingj,

hence it suffices to show that if roj is uniform over the complement of collidingj, then so is

roj+1. We consider a mental experiment where roj is lazily sampled, one output at a time,

from X0 to inputs X
roj
1 , . . . , X

roj
N−1, T

roj
1 , . . . , T

roj
j−1, with outputs sampled uniformly from

the set that do not cause roj to fall into collidingj. Since T
roj
j is distinct from all of these

inputs (because roj /∈ collidingj), the value of roj(T
roj
j ) does not affect whether roj is in

collidingj, hence the output S
roj
j of roj on T

roj
j is uniform in {0, 1, . . . , b2W/Nc·N−1} and

independent of the rest of T
roj
j . Finally, since we generate roj+1 by replacing S

roj
j with

changeModn(S
roj
j , cj+1) for a uniformly random cj+1, the distribution does not change.

A.3 Probability Analysis

We show an lower bound on the probability of (Ehard ∩ Ecorr ∩ Eq) ∪ Eq. The key

idea would be to prove upper bounds for the probability of events Ehard and Ecorr ∩ Eq.
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However, It turns out to be hard to directly prove an upper bound on Pr[Ehard], that

is, to show with high probability there are many hard challenges. Thus we define the

following events instead.

Definition A.1 Define every challenge ck (0 ≤ ck < n) to be “bad” if rok−1 ∈ badk−1ro =

collidingk−1 ∪ predictable (see Definitions 3.2 and 3.4). We denote by E∗hard the event that

the number of challenges that are hard or bad is at least N(1
2
− ε). Let Econv be the event

that for every k (0 ≤ k < n), rok /∈ predictable (see Definition 3.4).

Fortunately, we observe that Ecorr ∩Econv (Definition A.1 and Definition 3.7) implies

that no challenge is bad, and therefore Ecorr ∩ E∗hard ∩ Econv ⇒ Ehard: i.e., if there are

more than N(1
2
− ε) bad or hard challenges, and no challenge is bad, then there are more

than N(1
2
− ε) hard challenges. Thus, Ecorr ∩ E∗hard ∩ Econv ⇒ Ehard ∩ Ecorr. Therefore, it

is now sufficient for us to argue that (with high probability) either there are many hard

challenges, or there are many bad challenges. In particular, we will give a lower bound

on Pr[Ecorr ∩Eq ∩E∗hard ∩Econv], and thus obtain a lower bound for Pr[Ehard ∩Ecorr ∩Eq].

To achieve this, we provide upper bounds on the probability of events E∗hard, Econv, and

Ecorr ∩ Eq, and then obtain the lower bound

Pr[Ecorr ∩ Eq ∩ E∗hard ∩ Econv] ≥ Pr[Eq]− Pr[Ecorr ∩ Eq]− Pr[E∗hard]− Pr[Econv] .

Remark A.2 Note that Ecorr, E
∗
hard, Eq, and Econv depend on the oracles rok, and we

will bound their probability assuming rok is sampled uniformly random. Indeed, as we

have proved before in Claim A.1, oracle rok is uniform for every k (0 ≤ k ≤ N).

The upper bound on Pr[E∗hard]. Recall that according to Definition A.1, E∗hard is the

event that the number of challenges that are hard or bad is at least N(1
2
− ε).
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Claim A.2 Pr[E∗hard] ≤ e−2ε
2N .

Proof: Recall that a challenge ck (0 ≤ ck < n) is “bad” if rok−1 ∈ badk−1ro =

collidingk−1 ∪ predictable. Define random variable Vk = 0 if challenge ck is hard or

bad, and Vk = 1 otherwise. We know that for any (particular fixing of the values of)

ro0, c1, . . . , ck−1, which defines a particular fixing choices of (V1, . . . , Vk−1) = (v1, . . . , vk−1),

we have

Pr
ck

[Vk = 1|(V1, . . . , Vk−1) = (v1, . . . , vk−1)] ≥
1

2
,

because if rok−1 /∈ badk−1ro = collidingk−1 ∪ predictable, then Lemma 3.2 applies, and

otherwise ck is always bad. Hence we can now apply Claim 3.3.

The upper bound on Pr[Econv]. Recall from Definition A.1 that Econv is the event

that for every 0 ≤ k < N , rok /∈ predictable. Hence Econv means that there exists a k

(0 ≤ k < N), where rok ∈ predictable.1 Using the same technique explained in the proof of

Lemma 3.1, and by plugging in the ex-post-facto initial pebbling, the time lower bound on

challenge-answering, the hint, and the predictor described above Definition A.1, we argue

that with high probability (over rok), the predictor P described right above Definition 3.4

successfully predicts the output of rok on pr distinct inputs given the mr-bit input state

and an additional (pr(2 logN + log q + 1) + log q)-bit hint. Note now that here

pr = d(mr + 1 + log q)/(W − 2 logN − log q− 1) + 1e .

More specifically, by following the same argument as in Lemma 3.1, we get a new bound

that for each rok,

Pr[rok ∈ predictable] ≤ 2(N − 1)N2q · 2−W ,

1Note by definition of predictable (Definition 3.4), this also implies that rok /∈ colliding0.
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where the probability is over the uniform choice of rok.

Finally, by the union bound over the N oracles {rok} (each uniformly distributed),

we get Pr[Econv] ≤ 2q(N − 1)N3 · 2−W .

The upper bound on Ecorr ∩Eq. Ecorr is the event that rok /∈ collidingk ∪wrongOrderk

(see Definitions 3.2 and 3.6) for every k, and T roN
N is queried by AroN . Intuitively, it

means that labels are distinct, the challenge queries are in the correct order and the

correct function output is generated.

We will finally show that Pr[Ecorr ∩ Eq] is upper bounded by

Pr[Eq]−χq+(1.5N3+N(N−1)+1+qN2)·2−W ≤ Pr[Eq]−χq+((q+1)N2+1.5N3)·2−W ,

where χq is the probability (for a uniform ro) that Aro is successful and makes no more

than q queries. For completeness, we provide the proof as follows. (Some of the contents

are taken from the full version [54].)

First, we would like to consider event Ecorr not for every oracle ro0 . . . roN , but only

for roN (to save a factor of N in the union bound). Hence we prove the following claim.

Claim A.3 Given adversary A, if rok ∈ collidingk∪wrongOrderk for some k (0 ≤ k < N),

then rok+1 ∈ collidingk+1 ∪ wrongOrderk+1, and therefore roN ∈ collidingN ∪ wrongOrderN .

Proof: If rok ∈ collidingk, then rok+1 = rok and we finish the proof. Otherwise, let

T rok
i2

for 0 < i2 ≤ k be a violation of the correct order: the query T rok
i1

does not occur

before the first appearance of T rok
i2

(for some i1 < i2) when Arok is run; moreover, if

there are multiple violations of the correct order, pick the one that occurs earliest. Note

that T rok
k is first queried by Arok no earlier than T rok

i2
is: if i2 = k, this statement holds

trivially, and if i2 < k, this statement is true because otherwise the query of T rok
k would

be an earlier violation. Since rok /∈ collidingk and i1, i2 ≤ k, we have T rok
i1

= T
rok+1

i1
and
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T rok
i2

= T
rok+1

i2
. Moreover, since T rok

k is first queried by Arok no earlier than T rok
i2

, and the

computation of Arok and Arok+1 proceeds identically until Tk is first queried, the same

violation of the correct order occurs in the computation of Arok+1 : the value of T
rok+1

i1
is

not queried before T
rok+1

i2
is.

Thus, to upper bound Pr[Ecorr], it is enough to bound the probability that a uniformly

chosen random oracle (roN) is in collidingN ∪ wrongOrderN , or AroN
N does not query T ro

N .

Recall from Definition 3.2 that the set collidingN = colliding∗N ∪ roundingProblemN−1.

We first bound the size of |colliding∗N |.

Claim A.4 |colliding∗N | ≤ |RO| · 1.5N32−W , where RO is the set of oracles with in-

put/output space {0, 1}W .

Proof: To obtain an upper bound of |colliding∗N |, we consider three possible cases:

• There is a colliding pair of X values. Let i be the smallest, and j the smallest given

i, such that X ro
i = X ro

j and 0 ≤ i < j < N . By our choice of i and j, if i > 0, then

X ro
i−1 6= X ro

j−1 and

ro
(
X ro
j−1
)

= ro
(
X ro
i−1
)
,

and if i = 0, then

ro
(
X ro
j−1
)

= X0 .

For each i, j and distinct X1, . . . , Xj−1, we can partition all the oracles for which

X ro
1 = X1, . . . , X

ro
j−1 = Xj−1 into 2W equal-size subsets according to X ro

j , and

only one of the subsets will contain oracles that have a collision between Xi and

Xj. Thus, there are at most |RO|2−W such oracles; and there are at most N2/2

possible pairs (i, j).

• There is no collision among the X values, but there is a collision between and X

and a T value. Let i be the smallest, and j be the smallest given i, such that
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X ro
i = T ro

j and 0 ≤ i < N and 0 < j ≤ N . This means Xi = ro(Tj−1)⊕XSj−1 mod N ;

thus ro(Tj−1) has to be in the set {(Xi ⊕ X`)}0≤`<N . We can thus use the same

partitioning argument as before, except now oracles with a collision can be in up

to N of the subsets (one for each value of `). Thus, for each i and j, there are at

most |RO|N2−W oracles that have a collision between Xi and Tj, and there are N2

pairs (i, j).

• There are no collisions among the X values nor a collision between an X and a T

value, but there is a collision between two T values. Let i be the smallest, and j

be the smallest given i, such that T ro
i = T ro

j and 0 < i < j ≤ N . This means

Si−1 ⊕XSi−1 mod N = Sj−1 ⊕XSj−1 mod N ,

i.e.,

ro(T ro
i−1)⊕XSi−1 mod N = ro(T ro

j−1)⊕XSj−1 mod N ,

and thus ro(T ro
j−1) should be in the set {(ro(T ro

i−1)⊕XSi−1 mod N⊕X`)}0≤`<N in order

to satisfy the equality. Using the same argument as in the previous paragraph, we

know that for each pair (i, j), there are at most |RO|N2−W oracles ro with such a

collision. And there can be at most N(N − 1)/2 such pairs (i, j).

Adding up the three cases, |colliding∗N | ≤ |RO|(.5N2 + N3 + .5N2(N − 1))2−W =

|RO| · 1.5N32−W .

Second, we bound the number of oracles ro ∈ roundingProblemN−1 \ colliding∗N (Defi-

nition 3.1), which is enough (together with the previous bound on the size of colliding∗N),

to bound the size of collidingN .

Claim A.5 |roundingProblemN−1 \ colliding∗N | ≤ |RO|N(N − 1)2−W .
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Proof: For each i, 0 ≤ i ≤ N − 1, we will bound the size of roundingProblemi \

roundingProblemi−1 \ colliding∗N . The intuitive idea is that ro(Ti) can take only N − 1

out of equiprobable 2W values in order for ro to get into this set. However, to make

this idea precise, we need to first fix Ti that does not collide with anything (otherwise,

it is not true that all values are equiprobable). To do so, fix any sequence of W -bit

strings X1, . . . , XN−1, S0, . . . Si−1 and let Ti = Si−1 ⊕ XSro
i−1 mod N . Partition the set of

all oracles into subsets H(X1, . . . , XN−1, S0, . . . Si−1) = {ro s. t. X ro
1 = X1, . . . , X

ro
N−1 =

XN−1, S
ro
0 = S0, . . . S

ro
i−1 = Si−1}. If Ti is equal to one of X0, . . . , XN−1, T1, . . . , Ti−1, then

every element of this subset is in colliding∗N . Otherwise, this subset can further partitioned

into 2W equally sized subsets depending on ro(Ti), and only elements of (at most N − 1)

subsets for which ro(Ti) > b2W/Nc·N−1 can be in roundingProblemi\roundingProblemi−1.

By the union bound over all i, the claim holds.

After bounding the size of collidingN , we need to provide an upper bound on the num-

ber of oracles ro /∈ collidingN , such that AroN
N does not query T ro

N , or ro is in wrongOrderN .

We first provide an upper bound for the former case. More precisely, we prove the

following.

Claim A.6 Given adversary A, the number of oracles ro 6∈ colliding∗N such that Eq (see

Definition 3.7) holds and AroN does not query T ro
N is no more than |RO|(Pr[Eq] − χq +

2−W ), where χq is the probability (for a uniform ro) that Aro is successful and makes no

more than q queries.

Proof: First, we will bound the number of oracles outside of colliding∗N for which

A successfully outputs SN without querying Tn. We use a similar approach to the proof

of Claim A.5 to make sure Tn is well-defined and can take any of 2W equally likely

values. Define the subset H(X1, . . . , XN−1, S0, . . . SN−1) the same way as in Claim A.5.

If Tn collides with one of X1, . . . , XN−1, T1, . . . TN−1, then every element in the subset is
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colliding∗N . Otherwise, we partition this subset further into subsets Hα according to the

answers α given to queries of A. What A does, including whether A queries Tn, depends

only α, and if A does not query Tn, then Hα can be partitioned into 2W equal-size parts

according to the value of ro(Tn). Since the output of A is determined by α, A can be

successful for only one of those parts. Thus, there are at most |RO| · 2−W oracles outside

of colliding∗N for which A is successful but does not query Tn.

On the other hand, there are |RO| · (Pr[Eq]−χq) oracles for which Aro makes no more

than q queries but fails. By combining the two parts above, the claim holds.

Finally, we proivde an upper bound on the number of oracles ro such that ro ∈

wrongOrderN \ colliding∗N
2 (Definitions 3.6, 3.2) and Eq holds (i.e., A makes no more than

q queries).

Claim A.7 Given adversary A, the number of oracles ro such that Eq holds and ro ∈

wrongOrderN \ colliding∗N is no more than |RO|qN22−W .

Proof: Let j, 0 < j ≤ N be the smallest value for which there exists some 0 ≤ i < j

such that T ro
i has not been queried by Aro by the time T ro

j is. Note that then T ro
j−1 has also

not been queried by the time of the T ro
j query (because either j = 1 or otherwise j would

not be the smallest, since j− 1 also satisfies the condition). In order for any given query

t to be equal to T ro
j , the value Sro

j−1 = ro(T ro
j−1) needs to at least satisfy Sro

j−1 = t ⊕ Xc

for some c. However, t is independent of the value Sro
j−1 as long as query T ro

j−1 has not

been made by the time of query t. Thus, for every one of q possible queries, there are

at most N values Sro
j−1 (out of 2W possible ones) that will make this query equal to T ro

j .

(To formalize this argument, we need to make sure T ro
j is well-defined and can take 2W

possible values, which we do in exactly the same way as in Claim A.6, using the fact that

ro 6∈ colliding∗N . We omit this formalization to avoid repetition.)

2Actually bounding |wrongOrderN \ collidingN | is enough, but we prove a slightly stronger bound.
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By the union bound over all q queries and N possible values of j, the claim holds.

From all above, Pr[Ecorr ∩ Eq] is upper bounded by

Pr[Eq]−χq+(1.5N3+N(N−1)+1+qN2)·2−W ≤ Pr[Eq]−χq+((q+1)N2+1.5N3)·2−W ,

where χq is the probability (for a uniform ro) that Aro is successful and makes no more

than q queries.

Final wrap-up. Recall that χ is the probability that Aro succeeds and χq is the prob-

ability that Aro succeeds and makes at most q queries. From all above, we have

Pr[Ecorr ∩ Eq ∩ E∗hard∩Econv] ≥ Pr[Eq]− Pr[Ecorr ∩ Eq]− Pr[E∗hard]− Pr[Econv]

≥ χq − ((q + 1)N2 + 1.5N3 + 2q(N − 1)N3) · 2−W − e−2ε2N

≥ χq − 2qN4 · 2−W + (2q− q

N
− 1

N
− 1.5)N3 · 2−W − e−2ε2N

≥ χq − 2qN4 · 2−W − e−2ε2N ,

because if N ≥ 2 and q ≥ 2, then 1/N + 1.5 ≤ 2 ≤ q.

Note that χq + Pr[Eq] ≥ χ. Therefore, Pr[(Ecorr ∩ Eq ∩ E∗hard ∩ Econv) ∪ Eq] ≥ χ −

2qN4 · 2−W − e−2ε2N . Combining this statement with the result of Lemma 3.3 and the

discussion following Definition A.1, we get the result of Theorem 3.4.
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Missing Proofs in Section 4.3

B.1 Proof of Lemma 4.1

Proof: Suppose without loss of generality that the nodes {1, . . . , |V|} are in topo-

logical order. Let x = (x1, . . . , xns) be the non-colliding input vector (where xi 6= xj for

every i 6= j). For every source node i ∈ [ns], we define a virtual node (with index −i and

label `−i := xi) as node i’s predecessor, that is, pred(i) := −i and prelab(i) := xi. Let

Ecoll be the event that at least two pre-labels collide. We show a predictor that whenever

Ecoll happens, there exists a hint (with hint space [|V|2/2]) such that the predictor can

correctly guess an ideal primitive entry and thus by Lemma 2.1 and Lemma 2.2, the

lemma holds.

The Hint. If Ecoll happens, the hint is defined to be two node indices u, v ∈ [|V|] (u < v)

such that i) prelab(u) = prelab(v) and ii) v is the minimal index i ∈ [|V|] such that

prelab(i) is in the set {prelab(1), . . . , prelab(i− 1)}.

The Predictor. Given hint u, v, the predictor works as follows. Define set S1 := pred(u)∩

pred(v) and S2 := pred(u)∪ pred(v)− S1. Let w ∈ [|V|] be the node in S2
1 with maximal

1S2 is non-empty as pred(u) 6= pred(v).
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index. (w > 0 because at least one of u and v is a non-source node.) The predictor

first computes labels (by topological order) for the set {−ns, . . . ,−1, 1, . . . , w−1}, which

determine the value of prelab(w). (Note that ip(prelab(w)) was not queried during the

computation, as otherwise there exists a vertex u′ < w where prelab(u′) = prelab(w),

contradicting with the fact that v > w is the minimal index i ∈ [|V|] such that prelab(i)

is in the set {prelab(1), . . . , prelab(i− 1)}.)

Next the predictor extracts the label `w: If IP = CF/IC, since prelab(u) = prelab(v),

the predictor obtains `w from the label of the other node w′ < w in S2 (e.g., if w is the

b-th (b ∈ {1, 2}) predecessor of v (or u), then w′ < w is the b-th predecessor of u (or v

respectively)). If IP = RP, the predictor computes values

Xu :=
⊕

z∈pred(u)−(S1∪{w})

`z

and

Xv :=
⊕

z∈pred(v)−(S1∪{w})

`z .

Since prelab(u) = prelab(v) and w ∈ S2 is the predecessor of only one node out of u, v,

we have Xu ⊕Xv ⊕ `w = 0, thus w’s label is `w = Xu ⊕Xv.

Finally, given `w and prelab(w), the predictor can predict the value ip(prelab(w)). In

particular, cf(prelab(w)) = `w, rp(prelab(w)) = prelab(w)⊕ `w, and if IP = IC, we define

x as the last L-bit string of prelab(w), then we have ic(prelab(w)) = x⊕ `w.

In summary, we showed a predictor that whenever pre-label collision exists, there

exists a small hint where the predictor (on input the hint) can correctly predict an ideal

primitive entry. Thus by Lemma 2.1 and Lemma 2.2, the lemma holds.
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B.2 Proof of Lemma 4.2

Proof: Suppose without loss of generality that the nodes {1, . . . , |V|} are in topo-

logical order. Define E∗ as the event that the following two conditions both hold:

1. The pre-labels are distinct from each other.

2. The ex-post-facto pebbling is illegal.

By Lemma 4.1 it is sufficient to prove that Pr[E∗] ≤ εlegal(IP) (where the randomness is

over the uniform choices of ip and A’s coins r). Without loss of generality we fix r to

be the optimal randomness that maximizes Pr[E∗]. We show a predictor that whenever

E∗ happens, there exists a hint (with hint space [2q|V|]) such that the predictor (on

input the hint) can correctly predict an ideal primitive entry and thus by Lemma 2.1 and

Lemma 2.2, we have Pr[E∗] ≤ εlegal(IP).

The Hint. For the fixed random coins r, and any choice of ip, denote as P = (P0, . . . ,Ptpeb
)

the ex-post-facto pebbling. If E∗ happens, then there exists a round i ∈ [tpeb], and a

node v ∈ Pi \ Pi−1, such that a node u ∈ pred(v) is not in Pi−1. Moreover, by Claim 4.1,

there is a correct call for v in round i. For simpler reference, we use C(v) to denote the

corresponding correct call.2 We choose the minimal round i if there are multiple rounds

that satisfy the property. If v has two predecessors which are all outside Pi−1, we pick

u as the predecessor that has larger index. The hint is defined to be the query index of

C(v) (denote as q(v)), node index v, and an indicator b ∈ {1, 2} showing that u is the

b-th predecessor of v.

The Predictor. Given hint (q(v), v, b) (which determines the predecessor node u), the

predictor simulates Aip(x; r) until A makes the call C(v) (i.e. the q(v)-th oracle query by

A) in round i, and works as follows:

2We can think C(v) as an encoding of the call which captures the order index of the call in the trace,
as well as the type and input/output of the call.
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• If IP = CF/IC, or IP = RP and u is the only predecessor of v, then after simulating

Aip(x; r) until round i, P will predict (prelab(u), ip(prelab(u))) as follows: P will

first obtain prelab(v) from the call input (or output) if the call C(v) is forward (or

backward), respectively. Then P will extract `u from prelab(v) and bit b.

Next P will compute the labels of nodes from 1 to u − 1 according to topological

order, until the `-labels of u’s parents are updated, which also determines the value

of prelab(u).

Finally, if IP = CF, the predictor outputs (prelab(u), ip(prelab(u)) = `u); if IP =

IC/RP, let x be the last L-bit string of prelab(u), the predictor outputs (prelab(u),

ip(prelab(u)) = x⊕ `u).

• If IP = RP and v has two predecessors, let w ∈ pred(v) be the other predecessor (be-

sides u). After simulating Aip(x; r) until round i, P will predict (prelab(u), ip(prelab(u)))

as follows: P will first compute the labels of nodes from 1 to u−1 according to topo-

logical order, until the `-labels of u’s parents are updated, which also determines

the value of prelab(u).

Next, P will updated the labels for all ancestors of node w according to topological

order until `w is updated. Followed by that, P will obtain prelab(v) from the call

input (or output) if the call C(v) is forward (or backward), respectively. Finally, P

extracts `u = `w⊕ prelab(v), and outputs (prelab(u), ip(prelab(u)) = `u⊕ prelab(u)).

Correctness of the Predictor. To argue that the predictor will correctly predict (prelab(u),

ip(prelab(u)) without querying ip(prelab(u)), we need to prove two facts.

1. In the simulation of Aip(x; r), there was no correct call for u before the start of

round i. (Recall that the call C(v) is in round i.)
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2. If IP = RP and v has two predecessors u and w, it holds that there is no path

from u to w. (Otherwise P will query ip(prelab(u)) when computing `w according

to topological order.)

3. When P computes the labels of nodes from 1 to u − 1 according to topological

order, the predictor will never query ip(prelab(u)).

The last fact easily holds true because pre-labels are distinct. The first fact is proved

as follows: Assume for contradiction that a correct call for u exists before the start of

round i. Since C(v) is a critical call for u in trace A(σi−1) (as C(v) is a correct call for

v ∈ succ(u) in round i and v is in Pi), by definition of ex-post-facto pebbling, we have

u ∈ Pi−1, contradicting with the fact that u /∈ Pi−1.

The second fact is proved as follows: If w < u, the fact trivially holds as the nodes are

in topological order. If w > u, then w was already pebbled before round i, as otherwise

our choice of u would be w because w is not in Pi−1 and has larger index than u. Moreover,

by the first fact, there was no correct call for u (and thus u was never pebbled) before

round i. Assume for contradiction that u has a path to w, since u was never pebbled

before round i but w was pebbled before round i, there must exist a round i∗ < i and a

node v∗ in the path from u to w, such that v∗ is in Pi∗ \Pi∗−1 while a node u∗ ∈ pred(v∗)3

is not in Pi∗−1, contradicting with the fact that the round index i is minimal.

In summary, we showed a predictor that whenever E∗ happens, there exists a small

hint h ∈ H (where |H| ≤ 2q|V|), such that the predictor (on input h) correctly predicts

an ideal primitive entry. Thus by Lemma 2.1 and Lemma 2.2, the lemma holds.

3u∗ is in the path from u to w.
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B.3 Proof of Claim 4.2

Proof: When pre-labels are distinct and the ex-post-facto pebbling is legal, we

prove by induction that in any round γ ≥ i of A(x, r) (which is the (γ − i)-th round of

A(σi)), P recognizes all correct calls for nodes in Pi ∪ · · · ∪ Pγ when simulating A(σi).

The induction is in the increasing order of rounds.

For a value γ ≥ i, suppose the claim holds for every round k (i ≤ k ≤ γ), that is, in

round k (which is the (k − i)-th round of A(σi)), P recognizes all correct calls for nodes

in Pi ∪ · · · ∪ Pk when simulating A(σi). (The induction basis where γ = i holds trivially

because P does not need to check calls for round i when simulating A(σi).)

We now prove that the claim holds for k = γ + 1. For any vertex v ∈ Pi ∪ · · · ∪ Pγ+1,

let C(v) denote any correct call for v in round γ+ 1 (which is the (γ+ 1− i)-th round of

A(σi)). (Note that the call C(v) cannot be a correct call for another node u 6= v because

pre-labels are distinct.) We consider following cases:

1. v is in Pi. If the call C(v) is the first correct call for v in A(σi), P will recognize it

via the hint Ci, then prelab(v), aftlab(v) and `v would be updated. If C(v) is not

the first correct call, P can recognize the correct call by checking the consistency

between the query input and prelab(v) if the call is forward, or between the query

input and aftlab(v) if the call is backward.

2. If v /∈ Pi but v ∈ Pi+1 ∪ · · · ∪ Pγ, let j be the minimal index in [i+ 1, γ] such that

v is in Pj. Hence we have v ∈ Pj \ Pj−1 and by Claim 4.1, there is a correct call

for v in round j. Then by inductive hypothesis, in round j (i < j ≤ γ), P already

recognized the correct call for v ∈ Pj and updated prelab(v) and aftlab(v). Thus

the predictor will recognize the call C(v) by checking the consistency between call

input and prelab(v) (or aftlab(v)) if the call is forward (or backward), respectively.

117



Missing Proofs in Section 4.3 Chapter B

3. If v /∈ Pi ∪ · · · ∪ Pγ but v ∈ Pγ+1, then we argue that prelab(v) was updated

previously since the `-labels of v’s predecessors have been updated:

• For each predecessor vertex u ∈ pred(v) ∩ Pi, by assumption of the claim

statement, `u was updated after the first critical call for u (which happened

no later than checking the call C(v) where v ∈ succ(u) and v ∈ Pγ+1).

• For each predecessor vertex u ∈ pred(v) \ Pi, since the ex-post-facto pebbling

is legal and v ∈ Pγ+1, there must exists a round γ′ (i < γ′ ≤ γ) such that u is

in Pγ′ \ Pγ′−1. By Claim 4.1, there is a correct call C(u) for u ∈ Pγ′ in round

γ′. By inductive hypothesis, P has recognized the call C(u) and updated the

label `u.

In summary, since prelab(v) was updated previously, P will recognize the call by

checking the consistency between prelab(v) and the call input if C(v) is forward;

or querying the oracle and checking the consistency between prelab(v) and the call

output if C(v) is backward.

In summary, in round γ + 1 (which is the (γ + 1− i)-th round of A(σi)), P correctly

recognized all correct calls for nodes in Pi ∪ · · · ∪ Pγ+1. By induction on γ, the claim

holds.
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Appendix C

Instantiations of Graph-based

iMHFs

In this chapter, we instantiate the small/wide-block labeling functions (constructed in

Section 4 and Section 5) with fixed-key AES and construct a graph-based iMHF using

DRSample graph [17]. We choose DRSample graph as the underlying depth-robust graph

because it is relatively practical and has near-optimal depth-robustness guarantee [17].

The goal of an MHF is to enforce the use of large amounts of memory for any strategy

that efficiently computes the function. Moreover, the description size of the function

should be as small as possible. To evaluate the effectiveness of our construction, we tune

the parameters so that the best attack so far still requires a large memory buffer (i.e.

256MB), and we measure the sequential time cost and the description size of the MHF.

Note that the best attack is a simple sequential algorithm, thus we can use it as our

default sequential algorithm and there is no efficiency gap between the default algorithm

and the best attack so far.

Next, we describe the best attack and measure the performance of our iMHFs con-

structions.
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The Best Attack. The best attack towards DRSample graph was proposed by Blocki

et al. [32]. They used a greedy pebbling strategy proposed by Boneh et al. [13]. For a DAG

G with N vertices (where the vertices are sorted in topological order), the greedy pebbling

strategy GP(G) works as follows: At step i (1 ≤ i ≤ N), after pebbling vertex i, the

strategy only keeps pebbles on vertices which have edges to the vertex set [i+ 1, . . . , N ].

Blocki et al. [32] showed that the greedy pebbling strategy can pebble the DRSample

graph with N sequential steps and O(N/ logN) pebbles.

Lemma C.1 (Theorem 2 in [32]) For a randomly sampled DRSample graph G with

N = 2n vertices, for all δ > 0, we have

Pr

[
st(GP(G), N) > (1 + δ)

(
2N2

n

)]
≤ exp

(
−2δ2N

3n
+ n ln 2

)
.

Note that the performance of the attack scales with the graph parameterN , and 2.6N/ logN

is a reasonable estimation on the attack’s space complexity in practice.

Performance. We tune the parameters so that the best attack so far (i.e. the greedy

pebbling attack [32, 13]) still requires a large memory buffer (i.e. 256MB). For the graph-

based iMHFs built from small-block labeling functions, the graph parameter is N = 228,

the MHF description size is N logN ≈ 940MB,1 and the default sequential algorithm

makes N = 228 AES calls (which takes ≈ 0.01s on an Intel i7-6700 CPU [57]).

For the graph-based iMHFs built from wide-block labeling functions, we set message

block size as W = 64L = 8192 bits. The graph parameter is N = 221, the MHF

description size is N logN ≈ 5.5MB, and the default sequential algorithm makes at most

4NW 2/L2 = 235 AES calls (which takes ≈ 1.5s on an Intel i7-6700 CPU [57]).

1The MHF description stores the information of N random edges in the DRSample graph, where the
ith (1 ≤ i ≤ N) edge points to node i, and we require logN bits to store the start node of the edge.
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In summary, the iMHFs built from small-block labeling functions is faster, while the

iMHFs built from wide-block labeling functions has smaller description size.
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