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Children’s self-regulation has long been considered a key component of child 

development. Over the past two decades, physiological indices of self-regulation, 

particularly the autonomic nervous system (ANS), have garnered increased attention as 

an informative level of analysis in regulation research. The ANS is comprised of 

excitatory sympathetic and inhibitory parasympathetic branches, which serve to control 

core adaptive systems. Cardiography supports the simultaneous examination of both ANS 

branches across periods of rest, reactivity, and recovery via measures of pre-ejection 

period (PEP) and respiratory sinus arrythmia (RSA) as indicators of sympathetic and 

parasympathetic activity, respectively. However, despite their heavily intertwined 

functions, research examining autonomic coordination across sympathetic and 

parasympathetic systems is scarce. Moreover, extant research has favored static, mean 

level reactivity analyses, despite the dynamic nature of ANS regulation and the 

availability of analytic tools that can model these processes in real-time.     
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This dissertation drew on a sample of 198 six-year-old children from a diverse 

community sample (49.5% female, 43.9% Latinx) to examine autonomic coordination by 

using bivariate latent change score modeling to evaluate bidirectional influences of 

sympathetic and parasympathetic activity over the course of a challenging puzzle 

completion task. Results indicated that children evidenced reciprocal sympathetic 

activation (i.e., PEP attenuation and RSA withdrawal) across the challenge task, and 

these regulatory responses were driven by the leading influence of PEP on lagging 

changes in RSA. The current findings advance our understanding of children’s 

sympathetic and parasympathetic autonomic coordination while illustrating a novel 

analytic technique to support ongoing efforts to understand the etiology and 

developmental significance of children’s physiological self-regulation.  
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A Latent Change Score Approach to Understanding Autonomic Coordination 

Whether it be preparing to take an important exam, completing a challenging 

puzzle, or evading an abusive caregiver, physiological responses support (or thwart) our 

capacity to navigate an ever-changing world. Patterns of physiological reactivity and 

recovery in response to life’s challenges comprise one pillar of broader self-regulatory 

capacities. Self-regulation entails the ability to modulate behavior, cognition, emotion, 

and biology in accordance with contextual demands (Montroy, Bowles, Skibbe, 

McClelland, & Morrison, 2016; Posner & Rothbart, 2000; Vohs & Baumeister, 2016). In 

turn, self-regulation is central to adaptive development and is heavily implicated in 

psychological adjustment (Beckmann & Kellmann, 2004; Gross & Jazaieri, 2014; 

Phillips & Shonkoff, 2000).  

Research on physiological regulation has examined multiple biological indices 

(e.g., heart rate, cortisol, skin conductance) to assess patterns of reactivity (Berry, Blair, 

Ursache, Willoughby, & Granger, 2014; Cipriano, Skowron, & Gatzke-Kopp, 2011; 

Hagan, Roubinov, Adler, Boyce, & Bush, 2016) and, to a lesser degree, recovery (Cui, 

Morris, Harrist, Larzelere, & Criss, 2015; Obradović & Finch, 2016; Rudd, Alkon, & 

Yates, 2017) in response to a challenging task or situation. Likewise, a robust body of 

research has shown that these varied indices are related to a wide range of adaptive 

outcomes, including behavior, secure attachment, and physical health (Bauer, Quas, & 

Boyce, 2002; Boyce et al., 2001; Diamond, Fagundes, & Cribbet, 2012). Although there 

are numerous biological systems involved in self-regulation, the autonomic nervous 

system (ANS) has piqued the interest of researchers because it permits time-sensitive, 
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dynamic analyses of physiological regulation, and, using cardiography, it supports studies 

of both sympathetic (i.e., fight/flight) and parasympathetic (i.e, rest/digest) influences on 

ANS regulation. That said, prior studies have primarily focused on one branch of the 

ANS using static, mean-level indicators of self-regulation during a single task (e.g., 

aggregating sympathetic or parasympathetic activity values across a 4-minute challenge 

task), rather than dynamic, multi-level indicators of self-regulation (e.g., patterns of 

change across a 4-minute challenge task). This dissertation addressed the need for dual 

and dynamic investigations of both sympathetic and parasympathetic ANS regulation 

using multi-level modeling to evaluate the dynamics within sympathetic and 

parasympathetic regulatory systems as they work in tandem to influence adaptive 

responses to stress (i.e., autonomic coordination). 

The Autonomic Nervous System 

The ANS controls several biological systems that are fundamental to mobilizing 

adaptive responses to stress, including internal organs, smooth muscles, pupillary 

dilation, respiration, and heart rate (McEwen, 2007). Autonomic processes are co-

regulated by two complementary inputs – the sympathetic excitatory system and the 

parasympathetic inhibitory system. In the ideal, these systems work in a coordinated 

manner to mobilize flexible ANS regulation and support the adaptive navigation of 

contextual demands. The sympathetic branch of the ANS subserves energy mobilization 

and action (i.e., ‘fight or flight’), including increases in heart rate, dilation of pupils, and 

catabolic metabolism processes to fuel vital organs. In contrast, the parasympathetic 

branch of the ANS subserves energy preservation and maintenance (i.e., ‘rest and digest’; 
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Porges, 2007), including a low and steady heart rate, digestive secretions, and dilated 

intestinal blood flow. 

In optimal regulation, activities of the sympathetic and parasympathetic branches 

of the ANS complement one another (Jänig & McLachlan, 1992). At rest, sympathetic 

activation should be low, which, in concert with the inhibitory influence of the 

parasympathetic nervous system, allows the body to retain a readiness for response 

mobilization (Esler & Kaye, 2000). In response to a challenge that warrants behavioral 

mobilization, such as a startling stimulus, the sympathetic system should increase in 

activation to support action, while the parasympathetic system should decrease in 

activation to release its inhibitory influence on the sympathetic system. Conversely, in 

response to a challenge that requires sustained attention, such as a challenging 

memorization task, the sympathetic system should decrease its activity as the 

parasympathetic system increases its inhibitory influence to further constrain the 

sympathetic nervous system and enhance the organism’s capacity to sustain a calm focus 

(Cipriano et al., 2011; Hastings et al., 2008). 

Although there are multiple measures that index sympathetic or parasympathetic 

activity (e.g., salivary alpha-amylase for sympathetic activity, pupil dilation for 

parasympathetic activity), the cardiac system affords the unique opportunity to examine 

both branches of ANS regulation as they operate in tandem to modulate heart rate. 

Impedance cardiography and electrocardiograms allow researchers to assess sympathetic 

and parasympathetic activity via pre-ejection period (PEP) and respiratory sinus 

arrhythmia (RSA), respectively. PEP is a systolic time interval representing the elapsed 
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duration from the beginning of electrical cardiac stimulation until the ejection of blood 

from the left ventricle (Berntson, Lozano, Chen, & Cacioppo, 2004). Thus, a shorter PEP 

time interval represents sympathetic activation, which is accompanied by increases in 

heart rate. RSA represents the naturally occurring variation in heart rate as a function of 

respiration (Porges, 2007). When RSA scores are relatively high, the parasympathetic 

system is activated and sympathetic activity is inhibited yielding longer PEP time 

intervals. Despite widespread recognition of the coordinated regulatory actions of the 

sympathetic and parasympathetic branches of the ANS broadly, and as indexed by PEP 

and RSA in particular, theoretical perspectives offer divergent opinions regarding the 

nature of autonomic coordination. Further, only a handful of studies have examined 

autonomic coordination, and all have employed static (rather than dynamic) analytic 

approaches. 

Theories of Autonomic Coordination 

Bernston was among the first to conceptualize cardiac coordination in 

development, arguing that sympathetic and parasympathetic systems function along two 

dimensions that define the autonomic space and operate with varying degrees of 

coordination to regulate responses therein (Berntson & Cacioppo, 2004; Berntson, 

Cacioppo, & Quigley, 1991; Berntson, Cacioppo, Quigley, & Fabro, 1994). In this multi-

dimensional view of the autonomic space, sympathetic and parasympathetic systems are 

conceptualized as equal partners in self-regulation. Although Bernston posited that 

cardiac systems operate in either reciprocal/non-reciprocal (i.e., opposing activation 

versus coactivation/coinhibition) and coupled/un-coupled fashion (i.e., correlated versus 
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uncorrelated activity, such as when activation in one system is accompanied by no 

change in the other system), early models of autonomic coordination neither considered, 

nor posited one branch of the ANS as more or less likely to take the lead in this 

regulatory dance. Instead, Bernston and colleagues argued that supraordinate neural 

mechanisms, such as rostral brain areas, combined with the timing of neural signals (e.g., 

direct versus indirect afferent pathways) determine patterns of ANS regulation.  

Whereas Bernston’s theory of the autonomic space emphasizes the degree, rather 

than direction, of coordination between systems, Porges’ (2001, 2007, 2009) polyvagal 

theory places comparatively greater emphasis on the parasympathetic system as the 

driving force of ANS regulation and highlights the implications of parasympathetic 

determinants of cardiac regulation in the context of a dynamically changing social world 

(Porges & Furman, 2011). Indeed, polyvagal theory posits that there are two processes of 

regulation within the parasympathetic system, which are mediated by separate pathways 

of the vagus, or 10th cranial nerve. The first pathway is thought to mediate relatively 

primitive behavioral responses (e.g., immobilization, playing dead, behavioral shut 

down), whereas the second pathway is thought to mediate more recently evolved 

responses (e.g., social communication, self-soothing, self-regulation). Further, Porges 

(2007) positions RSA as a pure index of parasympathetically-mediated vagal tone and 

control, which supports sympathetic mobilization during challenge when withdrawn, and 

inhibits the excitatory activity of the sympathetic branch of the ANS and hold it in check 

when augmented (Porges, Doussard-Roosevelt, Portales, & Greenspan, 1996). Thus, 
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Porges suggests that the sympathetic nervous system functions akin to the gas in a motor 

vehicle, and the parasympathetic system operates as a so-called “vagal brake.” 

Although Porges’ polyvagal theory, and its attendant presumption of 

parasympathetic dominance in ANS regulation, has gained the most traction in the field, 

several researchers remain critical of its postulates (Berntson, Cacioppo, & Grossman, 

2007; Grossman & Taylor, 2007). First, ongoing debates about the differentiation of 

neural origins that represent functionally distinct parasympathetic responses (i.e., the 

primitive versus evolved responses described earlier) offered by polyvagal theory suggest 

that this premise may be unsupported (Grossman & Taylor, 2007). For example, the 

pathway that is proposed to mediate more evolved responses in this theory has since been 

shown in non-mammal invertebrates, which raises questions about Porges’ (2001, 2007) 

evolutionary foundation for emphasizing RSA and vagal dominance. Second, researchers 

have highlighted the potential for shifts in sympathetic activity to influence measures of 

RSA, which counters Porges’ (2007) assertion that RSA indexes direct or pure vagal 

control of the heart (Berntson et al., 2007). In this view, RSA is an important, but not 

necessarily dominant, piece of the autonomic puzzle; one that may be affected by 

multiple inputs, including the vagus, environmental/social context, and/or sympathetic 

activity. Together, these critiques highlight the need to assess the complex dynamics of 

autonomic coordination and evaluate both sympathetic and parasympathetic inputs to 

understand the multidetermined nature of ANS responses in challenging contexts.  

In all likelihood, rather than unilateral dominance, the leading and lagging 

influences of either PEP or RSA vary by contextual factors, such as task demands or 
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participant histories. For example, a challenge that entails high levels of attentional focus, 

such as reading a complex book in preparation for a comprehension test, may be largely 

driven by parasympathetic influences. However, a challenge that requires behavior 

mobilization, such as a buzzer signaling the start of a race, may be primarily driven by 

sympathetic influences. Still other challenges, particularly those that demand a mix of 

engagement and mobilization, may not feature a distinguishable lead-lag relation between 

PEP and RSA. In such cases, a third variable may drive these associations and/or 

fluctuations in whether PEP or RSA drives or leads ANS regulation. Importantly, 

additional task features, such as the relative social, cognitive, and emotional demands, 

have the potential to influence both the direction of the coordinated response and the 

dynamics of autonomic coordination. For example, in line with Porges’ polyvagal theory 

(2001, 2007, 2009), reactivity patterns during a dyadic task that is more socially engaging 

may be influenced most strongly by parasympathetic activity, whereas a task that is more 

cognitively engaging may be driven by sympathetic activity. Finally, a number of 

individual differences, such as early adversity exposure, biological vulnerability (e.g., 

cardiac illness), and/or gender, may contribute to the relative dominance or equality of 

ANS coordination processes. 

Studies of Autonomic Coordination 

Despite extant theory demonstrating the importance of the dynamics between and 

within regulatory systems (Cacioppo, Berntson, Sheridan, & McClintock, 2000; 

Cacioppo, Gardner, & Berntson, 1997; Flam & Powell, 2009; Gottlieb & Halpern, 2002), 

integrative investigations of sympathetic and parasympathetic influences on physiological 
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regulation are scarce. Moreover, the few studies that have examined both sympathetic 

and parasympathetic regulatory processes have typically measured each branch of the 

ANS in separate physiological systems (El-Sheikh, Erath, Buckhalt, Granger, & Mize, 

2008; El-Sheikh, Hinnant, & Erath, 2011; Erath & El-Sheikh, 2015; Gatzke‐Kopp & 

Ram, 2018; Gordis, Feres, Olezeski, Rabkin, & Trickett, 2010; Quas et al., 2014). For 

example, in a study examining skin conductance as an indicator of sympathetic activity 

and RSA as an indicator of parasympathetic activity, El Sheikh and colleagues (2009) 

found that a discoordinated resting pattern of coinhibition between sympathetic (i.e., low 

skin conductance) and parasympathetic (i.e., low RSA) systems was associated with 

higher levels of mother-reported delinquency among 8-year-olds. In contrast, a 

coordinated reactivity pattern of sympathetic inhibition (i.e., low skin conductance) and 

parasympathetic activation (i.e., high RSA) was associated with lower levels of 

delinquency. Interestingly, in a second study examining salivary alpha amylase (sAA) as 

an indicator of sympathetic activity and RSA as an indicator of parasympathetic activity, 

Keller and El Sheikh (2009) found that children who evidenced relatively low levels of 

ANS arousal (i.e., reciprocal parasympathetic activation characterized by low sAA and 

high RSA) in response to an audio-recorded verbal argument also evidenced higher 

mother-reports of externalizing problems concurrently, though this association did not 

hold over time. Together, these studies suggest that patterns of sympathetic and 

parasympathetic coordination, as well as their developmental significance, may vary 

across studies, perhaps as a function of the indices used to assess each facet of ANS 

regulation.  
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Relatively fewer studies have examined autonomic coordination within a single 

system, such as cardiac physiology (Bylsma et al., 2015; Clark, Skowron, Giuliano, & 

Fisher, 2016). In a series of studies that examined profile-based conceptualizations of 

autonomic coordination, Alkon and colleagues found that the proportion of children with 

discoordinated profiles of PEP and RSA co-activation (i.e., short PEP, high RSA) or co-

inhibition (i.e., long PEP, low RSA) gradually declined, and the proportion of children 

with coordinated patterns of reciprocal activation increased across the first five years of 

life (Alkon, Boyce, Davis, & Eskenazi, 2011; Alkon et al., 2014). Moreover, preliminary 

findings suggest that, in a sample of children who had experienced relatively high rates of 

stressful life events, reciprocal parasympathetic activation was associated with increased 

sleep problems one year later (Alkon, Boyce, Neilands, & Eskenazi, 2017; Salomon, 

Matthews, & Allen, 2000). A recent study using a continuous interactive analytic 

approach found that infants with discoordinated ANS profiles of cardiac regulation (i.e., 

sympathetic and parasympathetic co-activation or co-inhibition) in response to an audio-

recorded adult conflict challenge were more likely to display heightened physical 

aggression two years later than were infants who exhibited coordinated ANS responses 

characterized by reciprocal sympathetic activation (i.e., short PEP, low RSA) or 

reciprocal parasympathetic activation (i.e., long PEP, high RSA; Suurland, Van der 

Heijden, Huijbregts, Van Goozen, & Swaab, 2017). Further, in one of the first studies to 

assess autonomic coordination across reactivity and recovery periods, coordinated 

regulation of PEP activation and RSA withdrawal (i.e., reciprocal sympathetic reactivity), 

followed by RSA augmentation and PEP withdrawal (i.e., reciprocal parasympathetic 
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recovery) in response to a startling challenge predicted children’s increased adaptability 

and decreased behavior problems two years later (Rudd & Yates, 2018). 

Consistent with broader tenets of dynamic systems theory (Thelen, 2005), extant 

studies of autonomic coordination suggest that reciprocal activation patterns across 

sympathetic and parasympathetic systems may be more informative for understanding 

child adaptation than examining either system alone. Although prior studies have 

advanced the desired effort to understand ANS regulation as a totality of both 

sympathetic and parasympathetic influences, the field remains limited by primarily cross-

system investigations using static person- or variable-centered approaches to the study of 

autonomic coordination. This dissertation addressed these limitations by utilizing 

advanced statistical procedures to assess sympathetic and parasympathetic regulatory 

dynamics within the cardiac system. 

Analytic Strategies to Study Autonomic Coordination 

 As with the broader literature on ANS regulation, static statistical approaches 

dominate extant efforts to examine autonomic coordination. These analytic options 

involve calculating the average value of sympathetic and parasympathetic activation 

during a single task (e.g., Rudd & Yates, 2018), or across multiple tasks (e.g., Alkon et 

al., 2017), and then comparing these average values in various ways. 

First, adopting a person-centered analytic strategy, categorical profile analyses 

allocate participants to groups that are characterized by coactivation, coinhibition, 

reciprocal sympathetic activation, or reciprocal parasympathetic activation based on 

mean splits. As reviewed previously (Alkon et al., 2011; Alkon et al., 2017; Salomon et 
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al., 2000), this technique yields sample-specific distinctions based on relative levels of 

activation or inhibition across sympathetic and parasympathetic systems. In turn, these 

categorical designations provide easy-to-visualize depictions of adaptive outcomes 

among participants who evidence coordinated/reciprocal versus discoordinated/non-

reciprocal autonomic coordination patterns.  

Second, adopting a variable-centered analytic strategy, interactive analyses rely 

on linear regression techniques to examine sympathetic and parasympathetic regulatory 

dynamics across the continuum of activity. Although these analyses can be more difficult 

to interpret than profile-based approaches because they involve continuous variables, 

they provide more detail about potentially ‘uncoupled’ responses (e.g., activation in one 

system, but no change in the other system) that is otherwise lost when using categorical 

analyses. Despite recent data suggesting that profile approaches may yield superior 

estimates of autonomic coordination in social contexts (Rudd, Alkon, & Yates, 2019), 

neither profile, nor interactive analytic approaches can fully capture the dynamic nature 

of ANS regulation.   

Over the past five years, a handful of researchers have begun to employ a variety 

of dynamic analytic strategies to capture real-time regulatory processes more fully, albeit 

within a single branch of the ANS (Fisher, Reeves, & Chi, 2016; Gates, Gatzke‐Kopp, 

Sandsten, & Blandon, 2015; Helm, Sbarra, & Ferrer, 2014). In 2014, Helm and 

colleagues were among the first to adopt a dynamic analytic lens using a cross-lagged 

panel analysis to evaluate dyadic co-regulation of RSA between adult romantic partners 

across six 30-second epochs within a three-minute conversation task. Building on this 
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study, Gates and colleagues (2015) utilized similar autoregressive cross-lag analyses to 

explore dyadic co-regulation of RSA between adult romantic partners during 20 30-

epochs within a 10-minute conversation task. To our knowledge, cross-lagged panel 

studies have not yet assessed PEP between partners, nor have they documented intra-

individual patterns of autonomic coordination between PEP and RSA. Although cross-

lagged panel analyses have numerous strengths, including the ability to assess reciprocal 

and directional influences on changes between two constructs while controlling for 

autoregressive effects, they necessarily ignore actual growth over time since only 

covariance, but not mean structures, are modeled. 

Addressing the need for analytic models that can evaluate the direct impact of 

growth factors for child adjustment, researchers have used growth modeling techniques to 

examine single-system ANS regulation over multiple assessments across time (El-Sheikh, 

Keiley, & Hinnant, 2010; Patriquin, Lorenzi, Scarpa, & Bell, 2014; Porges & Furman, 

2011), as well as single-system changes across one task within time (Cui et al., 2015; 

Miller et al., 2013; Obradović & Finch, 2016). In one of the few studies to examine 

dynamic patterns of sympathetic regulation, researchers utilized piecewise growth curves 

to assess PEP among 3.5-year-old children (Kahle, Miller, Lopez, & Hastings, 2016). The 

researchers utilized a variable epoch length over an anger-induction task (i.e., attempting 

to draw a ‘perfect circle’ while receiving negative feedback from examiners), which was 

defined based on the length of time the child participated in the task (e.g., two 30-second 

epochs if the child quit the task after 1-minute). This approach ensured that the challenge 

immediately preceded the two 30-second epochs used to represent the recovery period. 
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On average, children evidenced significant sympathetic activation across the anger-

induction task (i.e., negative PEP slope connoting attenuation of the PEP interval). 

Although children did not display a significant mean level recovery pattern following the 

task, there was significant inter-individual variability in recovery trajectories, which 

predicted concurrent emotion regulation. Specifically, children who evidenced greater 

sympathetic recovery (i.e., positive PEP slope connoting a lengthening of the PEP 

interval) were also rated as having better emotion regulation capacities by their mothers. 

In a second study, Miller and colleagues utilized growth models to map 4.5-year-olds’ 

parasympathetic responses over four 15-second epochs of a 1-minute anger induction 

video. On average, children evidenced RSA suppression during the first epochs of 

exposure, followed by RSA rebound toward initial levels as the video played on, which 

the researchers identified as their RSA recovery period (Miller et al., 2013). Growth 

modeling procedures provide information about the dynamic nature of ANS regulation 

within a task that are washed out in traditional static approaches that use the arithmetic 

mean of an ANS response across an entire task (or set of tasks). Further, in contrast to 

cross-lagged panel models, these techniques explicitly model covariances and means to 

support the direct evaluation of growth factors. To our knowledge, researchers have not 

yet employed parallel growth curve modeling to assess autonomic coordination between 

PEP and RSA over time. Despite the strengths of growth modeling procedures 

(particularly if and when these approaches are used in parallel), these models cannot 

account for the influence of previous states in the growth parameters (i.e., autoregressive 

effects) on subsequent growth within or across systems. 
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 This dissertation employed bivariate latent change score models as a novel 

dynamic approach to evaluate autonomic coordination between children’s PEP and RSA 

across a single problem-solving task, while accounting for relations between moment-to-

moment changes in one autonomic branch and changes in the opposing branch. These 

models combine the strengths of autoregressive cross-lagged panel analyses with growth 

models to support the investigation of directional dynamics between constructs over time 

(Ferrer & McArdle, 2010; McArdle & Grimm, 2010). By assessing within- and between-

person differences in change, dynamic relations within a latent change model can be 

characterized as ‘leading’ or ‘lagging’, such that values of the ‘leading’ indicator 

significantly predict changes in the ‘lagging’ indicator. Coupling parameters determine 

whether performance on one indicator accounts for subsequent change in performance on 

a second indicator to represent these ‘leading’ or ‘lagging’ dynamics. These coupling 

indicators also provide an important window into possible underlying causal influences 

between indicators over time by controlling for autoregressive effects.  

Although this dissertation provides the first application of a bivariate latent 

change score model to the study of autonomic coordination, studies of other 

psychological constructs using this approach supported the feasibility of this analytic 

approach and informed the current model-fitting procedures (Ferrer & McArdle, 2010; 

Malone et al., 2004; Quinn, Wagner, Petscher, & Lopez, 2015; Toth, Sturge-Apple, 

Rogosch, & Cicchetti, 2015). For example, in a study examining the dynamics between 

vocabulary knowledge and reading comprehension from first to fourth grade, Quinn and 

colleagues (2015) utilized bivariate latent change score models to evaluate competing 
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models of unidirectional (i.e., vocabulary knowledge influencing reading comprehension 

versus reading comprehension influencing vocabulary knowledge) and bidirectional 

coupling (i.e., both indicators having a leading influence on one another). Results 

supported a unidirectional model with a leading influence of vocabulary knowledge on 

growth in reading comprehension from first to fourth grade. Extending to the ANS, prior 

studies of ANS regulation and coordination suggest meaningful patterns of within-system 

regulation across a single task (Kahle et al., 2016; Miller et al., 2013) and support the 

likely utility of utilizing latent change score models to elucidate patterns of autonomic 

coordination.  

Current Study 

This dissertation sought to advance and integrate two growing edges of 

contemporary research efforts in the field of ANS regulation. First, although the ANS has 

long been described as a system of complementary sympathetic and parasympathetic 

inputs that work together to modulate responses to stress, the vast majority of research in 

this area has examined each system in isolation. Second, prior studies that have looked at 

autonomic coordination have focused on mean-level changes across tasks, or across time 

within a task, which limits our capacity to understand the dynamic interplay between PEP 

and RSA during a stress response. To address these gaps, this dissertation implemented 

bivariate latent change score modeling as a novel and dynamic statistical approach to 

evaluate bidirectional influences of sympathetic and parasympathetic activity over the 

course of a challenging puzzle completion task in a large sample of six-year-old children.  
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Early childhood has long been considered an important time period for 

physiological development. Research on the development of ANS regulation across 

infancy and early childhood has documented high levels of variability throughout the first 

year of life (Patriquin et al., 2014), with increasing stability through age 5 (Calkins & 

Keane, 2004). Given this variability in early development, the current effort to examine 

autonomic coordination among 6-year-old children was expected to yield more reliable 

and generalizable information than studies in earlier development.  

I hypothesized that, on average, children would evidence coordinated ANS 

regulation in response to the challenging puzzle task. However, based on previous 

literature suggesting task-specific patterns of ANS regulation across arousing versus 

engaging challenges (Davis, Quiñones-Camacho, & Buss, 2016; Skowron, Cipriano-

Essel, Gatzke-Kopp, Teti, & Ammerman, 2014), as well as across tasks entailing varying 

levels of social, cognitive, and emotional demands (Davis, Brooker, & Kahle, 2019; Roos 

et al., 2017), I remained agnostic as to whether the coordinated regulatory pattern would 

be characterized by reciprocal sympathetic or parasympathetic activation. Although 

solving a challenging puzzle does warrant attentional engagement, which would be 

supported by PEP elongation and RSA augmentation (i.e., reciprocal parasympathetic 

activation), the inclusion of a short and clear time limit for puzzle completion, as well as 

the placement of this challenge at the start of the current ANS protocol may increase 

children’s anticipation and arousal to press for a mobilizing regulatory response, which 

would be supported by PEP attenuation and RSA withdrawal (i.e., reciprocal sympathetic 

activation). Beyond a pattern of coordinated ANS regulation, I expected to find 
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significant coupling between PEP and RSA across the challenge task (i.e., correlated 

patterns across both systems). Given conflicting theories and the paucity of research on 

autonomic coordination, I evaluated three potential coupling patterns between PEP and 

RSA in this study. First, PEP may lead autonomic coordination such that preceding levels 

of PEP would influence change in RSA across time, supporting suppositions of the 

multidetermined nature of RSA (Berntson et al., 2007). Second, RSA may lead PEP 

change over time as suggested by Porges’ (2001, 2007, 2009) Polyvagal theory, such that 

the direction of coupling responses may be influenced by the social or non-social nature 

of the task. For example, the presence of the caregiver in the current challenge paradigm 

increased the social component of the task, which may yield a parasympathetically 

mediated response. However, the challenging nature of the puzzle task also increased 

cognitive demands, which may elicit driving forces from the sympathetic system (i.e., 

PEP leading changes in RSA). Third, there may be full-coupling such that both PEP and 

RSA influence each other in unique ways.  

Methods 

Participants 

 Participants were 198 children (49.5% female; Mage = 6 years and 1 month, SD = 

2.51 months) who completed a laboratory assessment of self-regulation and stress 

physiology as part of an ongoing longitudinal study of child development. The current 

sample was ethnically/racially diverse (43.9% Latinx, 25.3% multiracial, 18.7% African 

American/Black, 12.1% European American/White), and representative of the 

surrounding community from which it was drawn (U.S. Census Bureau, 2011). All 
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participating caregivers were female (91.9% biological mothers, 3.0% foster/adoptive 

mothers, and 5.0% grandmothers or other female kin caregivers). The majority of 

caregivers were married (61.6%) or in a committed relationship (18.8%), and just over 

half were employed (55.6%). Education levels were variable (e.g., 12.4% of caregivers 

did not finish high school, 10.0% had a high school diploma or GED; 19.6% earned 2-

year or technical degree; 8.4% had earned a 4-year-degree; 5.6% had an advanced 

degree). The average family SES score using the Hollingshead (1975) Four-Factor Index 

of Social Status was 33.41 (SD = 12.31), which corresponds to semi-skilled employment 

(e.g., sales clerk). 

Procedures  

 Children and their primary caregivers were recruited to participate in “a study of 

children’s learning and development” via flyers posted in community-based child 

development centers and preschool programs in Southern California. Potential 

participants were screened by phone to ensure that the child was 1) between 3.9 and 4.6 

years of age at the time of the wave 1 assessment (Mage_W1 = 4 years and 1 month, SD = 

2.82 months), 2) proficient in English, and 3) not diagnosed with a developmental 

disability or delay. Dyads completed a 3-hour laboratory assessment, which consisted of 

measures with the child, the caregiver, and the caregiver and child interacting. 

Physiological regulation during challenge tasks was first assessed when the children were 

6-years-old, which is the sample used in this study. Caregivers were compensated with 

$25/hour for their participation, and each child received a small gift. Written informed 
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consent was obtained from the legal guardian at the beginning of each laboratory visit. 

All procedures were approved by the University’s Human Research Review Board. 

Measures 

Autonomic Nervous System Regulation was assessed using measures of the child’s 

PEP and RSA during a resting baseline task and during a challenging puzzle task. Four 

spot electrodes were placed on the child’s neck and torso to collect impedance and 

respiratory measures, and three spot electrodes were placed on the right clavicle, left 

lower rib, and right abdomen to obtain electrocardiogram (ECG) measures. The ANS 

protocol included a 5-minute calibration period after initial placement of the electrodes to 

allow time for the child to adjust to the equipment. Following the calibration period, the 

child and caregiver were asked to complete a three-minute, non-challenging sorting 

exercise (i.e., sorting foam pieces by color) while seated at a table; this provided a resting 

measure to serve as a baseline for the challenge task, which involved dyadic vocalization 

and hand movements. Immediately following the resting measure, dyads completed a 

problem-solving challenge in which the child was presented with the tree and dog puzzles 

from the Wechsler Intelligence Scale for Children - III object assembly task (Wechsler, 

2002), and instructed to try their best to complete both puzzles before the examiner 

returned in four minutes. Caregivers were instructed to let the child complete as much of 

the puzzles as they could on their own, but to provide guidance if and when they thought 

their child needed assistance.  

ANS data were collected using Mindware MW1000A ambulatory cardiography 

via Kendall Medi-Trace #133 spot electrodes. PEP data were extracted and scored using 
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the IMP 3.0.3 analysis program (www.mindware.com) where the dZ/dt waveforms were 

used to obtain impedance-derived PEP measures quantified as the time interval in 

milliseconds from the onset of the ECG Q-wave to the B point of the dZ/dt wave 

(Berntson et al., 2004). RSA data were filtered, extracted, and scored using Mindware’s 

HRV 3.0.10 analysis program. This technique utilizes the Mindware software algorithms 

to calculate the variance in R-R wave intervals. RSA scores were calculated using the 

interbeat intervals on the ECG reading, respiratory rates derived from the impedance (i.e., 

dZ/dt) signal, and a specified RSA bandwidth range for 6-year-olds of 0.15 to 0.80 Hz 

(Bar-Haim, Marshall, & Fox, 2000). Consistent with prior studies (Alkon et al., 2011; 

Boyce et al., 2001), data were extracted in 30-second epochs across the four-minute 

challenge yielding a total of eight PEP and eight RSA values for each child. Further data 

cleaning procedures for PEP and RSA included screening for outliers (i.e., > 3SD) epoch-

by-epoch in relation to each child’s data pattern and deleting a child’s data if more than 

25% of their epochs were missing due to computer malfunction, electrode conduction 

problems, or outliers. 

Analytic Plan 

 All analyses were completed in Mplus version 7.1 (Muthén & Muthén, 2013). 

Data were examined for outliers, as well as univariate and multivariate normality. Only 

participants who completed the physiological assessment at age 6 were included in these 

analyses (N = 198). Physiological data were considered missing in instances where there 

was a computer malfunction (n = 11), electrode conduction problems (n = 2), PEP 

outliers (n = 3), RSA outliers (n = 1), or task administration errors (n = 2). Full 
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information maximum likelihood estimation (FIML; McArdle, 1994) was used to address 

missing data. 

Model fit parameters were assessed sequentially as described by Grimm (2006). 

Growth models for both PEP and RSA were modeled separately to compare fit across 

four possible models of change. The first model was a no change model, followed by a 

second constant change model that posited linear growth within the regulatory system  

being modeled (i.e., PEP or RSA). The third model was a proportional change model 

where growth was positioned as a function of previous levels of regulation. Finally, the 

fourth model was a dual-change model that incorporated both linear and proportional 

change components.  

Following the evaluation of separate growth parameters for PEP and RSA, a 

bivariate model evaluated coupling effects in the coordination of PEP and RSA across the 

challenging puzzle task. First, a no coupling model fixed both regulatory parameters to 

zero and served as a baseline that posits no cross-variable or time-sequential associations. 

Next, two separate unidirectional models were fit, such that change in PEP predicted 

change in RSA (i.e., sympathetic lead model) or change in RSA predicted change in PEP 

(i.e., parasympathetic lead model). Finally, a full coupling model jointly estimated PEP 

and RSA to evaluate whether PEP and RSA each influenced change in the other 

autonomic branch.  

 Chi-square difference tests evaluated comparative fit across each pair of nested 

models (Satorra, 2000). However, given that the likelihood ratio test is influenced by 

large sample size (Browne & Cudeck, 1993), additional practical fit indices were 
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examined, including the Tucker Lewis Index (TLI; Tucker & Lewis, 1973), Comparative 

Fit Index (CFI; Bentler, 1990), and Root Mean Square Error of Approximation (RMSEA; 

MacCallum, Browne, & Sugawara, 1996). Good model fit was indicated by TLI and CFI 

values > .95, and RMSEA < .08 (Hu & Bentler, 1999). In addition, the Akaike 

Information Criterion (AIC; Shibata, 1977) and the Bayesian Information Criterion (BIC; 

Schwarz, 1978) were used to assess fit across non-nested models, such that lower values 

indicated better fit (Grimm et al., 2006).  

Results 

Means and standard deviations for the eight 30-second epochs of PEP and RSA 

across the challenge task and bivariate correlations are presented in Table 1. PEP and 

RSA evidenced strong within-system correlations, and generally moderate and positive 

cross-system correlations across the challenge task. Within-system correlations were 

significant for both PEP and RSA between the resting and challenge episodes, with 

similarly positive, but moderate, cross-system correlations.   

Univariate Models 

Competing models were fit separately for PEP and RSA to assess individual 

growth parameters. Model fit was evaluated across multiple indices in line with 

suggestions that assessing agreement across practical fit indices may yield a more 

balanced evaluation of model fit than any singular criterion (Chen, Curran, Bollen, Kirby, 

& Paxton, 2008; Lai & Green, 2016).  

Haystack plots modeling trajectories of PEP are displayed in Figure 1 and fit 

statistics for univariate PEP models are presented in Table 2. A review of the practical fit 
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indices indicated that the constant change model of PEP fit the data better than the no 

change and proportional change models such that change across the task was better 

described with linear rather than proportional change terms. A subsequent comparison of 

nested models revealed that the univariate dual change model fit significantly better than 

both the constant change model, which removed the proportional change component from 

the dual change model, ∆χ2(1) = 9.698, p < .001, and the proportional change model, 

which removed the constant change component from the dual change model; ∆χ2(3) = 

39.394, p < .001. Together, these analyses converged to support dual change as the best 

univariate model for PEP, as both constant change and proportional change parameters 

were required to model PEP change across the challenge task appropriately. 

Parameter estimates from the univariate dual change model of PEP are presented 

in Figure 2. The average initial PEP score during the first epoch was significantly 

different from zero (MPEP = 99.830, p < .001) and there was significant variation in initial 

mean values indicating individual differences in starting values for PEP. There was 

significant and negative linear growth in PEP (GPEP = -2.947, p = .018) across the 

duration of the puzzle task, but there was no significant variation in growth over the task 

(σPEP = 1.689, p = .216). In other words, children evidenced a progressive attenuation of 

PEP over the task (i.e., sympathetic activation) in similar ways. The proportional change 

component was significant and positive (βPEP = 0.512, p = .018), reflecting an 

accelerating effect of PEP on growth across the duration of the puzzle challenge (i.e., 

high PEP values, which were modeled at one standard deviation above the group mean, 

contributed to increases in sympathetic activation, which was indicated by attenuation of 
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the PEP interval, .512 standard deviations faster across the duration of the puzzle 

challenge).  

Haystack plots modeling trajectories of RSA are displayed in Figure 3 and fit 

statistics for univariate RSA models are presented in Table 3. A review of the practical fit 

indices indicated that the constant change model of RSA fit the data better than the no 

change and the proportional change models. Next, a comparison of nested models 

indicated that the dual change model of RSA fit significantly better than the constant 

change model, which removed the proportional change component from the dual change 

model; ∆χ2(1) = 9.693, p < .001. Similarly, the proportional change model of RSA, 

which removed the constant change component from the dual change model, fit 

significantly worse than the dual change model; ∆χ2(3) = 39.394, p < .001. Consistent 

with the PEP univariate models, these analyses indicated that both constant change and 

proportional change parameters were required for appropriate modeling of RSA change 

across the challenge task (i.e., a dual change model of RSA). 

Parameter estimates from the univariate dual change score model of RSA are 

presented in Figure 4. The average initial RSA score during the first epoch was 

significantly different from zero (MRSA = 6.492 p < .001), and there was significant 

variation in initial mean values indicating individual differences in starting values of 

RSA. There was significant decline in RSA (GRSA = -0.219, p < .001) across the duration 

of the puzzle task, as well as significant variation in these patterns (σRSA = 0.003, p = 

.005). In other words, on average, children exhibited a pattern of declining RSA (i.e., 

parasympathetic withdrawal) across the task, but there were significant individual 
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differences in these patterns across individuals. The proportional change component was 

negative and significant (βRSA = -0.036, p < .001), reflecting a decelerating effect of RSA 

on growth across the duration of the puzzle challenge (i.e., high RSA values, which were 

modeled at one standard deviation above the group mean, contributed to decreases in 

parasympathetic activation, which was indicated by a reduction of RSA, 0.036 standard 

deviations slower across the duration of the puzzle challenge). 

Bivariate Models 

Competing models of bivariate interactions between PEP and RSA were fit to 

explore the dynamics of autonomic coordination by modeling both indicators 

simultaneously. These models included coupling parameters to evaluate the extent to 

which activation in one autonomic branch accounted for individual differences in 

subsequent changes in the other branch. Covariances were also estimated between PEP 

and RSA slopes and intercepts. Bivariate model fit comparisons are presented in Table 4. 

Difference tests revealed a significant increase in fit from the uncoupled to the 

unidirectional coupled PEP model; ∆χ2(2) = 10.171, p = .006. However, comparison of 

the uncoupled model to the unidirectional coupled RSA model did not reveal a significant 

increase in fit; ∆χ2(1) = 0.393, p = .530. Moreover, a comparison of the fit indices across 

the two non-nested unidirectional coupling models indicated that the unidirectional 

coupled PEP model evidenced better fit than the unidirectional coupled RSA model. 

Finally, a nested comparison of a fully-coupled bidirectional model and the unidirectional 

coupled PEP model did not demonstrate a significant increase in fit; ∆χ2(1) = 1.008, p = 
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.315. Thus, the more parsimonious unidirectional coupled PEP model wherein PEP was 

positioned to lead changes in RSA was selected as the final best-fitting model. 

Parameter estimates for the unidirectional coupling model of PEP to RSA are 

displayed in Figure 5. The negative correlation between the slope and intercept of PEP (r 

= -0.336, p = .003), and the positive correlation between the slope and intercept of RSA 

(r = 0.545, p = .043) was consistent with the reciprocal sympathetic activation that was 

evident in the univariate dual change models (i.e., progressive attenuation of PEP and 

reduction in RSA). A positive correlation between the intercept of PEP and the intercept 

of RSA (r = 0.227, p = .006) indicated that higher initial RSA values (i.e., greater 

parasympathetic activation) were associated with longer initial PEP intervals (i.e., lower 

sympathetic activation). The negative correlation between the intercept of PEP and the 

slope of RSA (r = -0.468, p < .001) indicated that a higher initial value in PEP, which 

connotes a longer PEP interval and lower sympathetic activation, was associated with 

decreases in RSA (i.e., parasympathetic withdrawal) across the task. The correlation 

between initial RSA values and PEP slope was not significant. The significant and 

positive coupling parameter from PEP to RSA of .009 standardized units indicated that 

negative growth in RSA was accounted for, in part, by the preceding level of PEP. 

Specifically, a child whose PEP interval was one standard deviation higher than the group 

mean would evidence declines in RSA that were .009 standard deviations faster across 

the challenging puzzle task. 
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Discussion 

This dissertation examined the dynamic autonomic coordination of PEP and RSA 

regulation across a challenging puzzle task using bivariate latent change score models. 

The results of univariate models examining separate, within-system influences 

demonstrated that both PEP and RSA were adequately described by dual-change models. 

For PEP, growth was reflected by a negative constant change and a positive proportional 

change, such that attenuation of the PEP interval (i.e., sympathetic activation) occurred 

over each epoch and this rate of attenuation accelerated across the task. For RSA, growth 

was reflected by a negative constant change and a negative proportional change, such that 

decreases in RSA (i.e., parasympathetic withdrawal) occurred over each epoch, but the 

rate of RSA withdrawal diminished across the task. Dynamic assessments of PEP and 

RSA coordination supported a unidirectional coupling model wherein PEP was the 

leading influence on lagging changes in RSA across the task. Thus, the current findings 

suggest that children evidenced reciprocal sympathetic activation across the challenging 

puzzle completion task in this study, and this activation reflected coordinated exchanges 

between the two branches of the ANS characterized by PEP leading patterns of 

regulation. 

Dynamic modeling techniques elucidated directional influences of PEP and RSA 

across the challenging puzzle task. Although further replication is needed to generalize 

beyond the directional coupling effects observed here, the current investigation illustrates 

how bivariate latent change score modeling can be used to test theories about the 

coordinated regulation of sympathetic and parasympathetic systems (Berntson et al., 
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2007; Obrist, 2012; Porges, 2007). The current results suggest that sympathetic activity 

can drive ANS regulation in some contexts (Berntson et al., 2007; Obrist, 2012), and 

RSA may not always index “pure” parasympathetic activity (Berntson et al., 2007; 

Grossman & Taylor, 2007). Despite the preliminary nature of these findings, this 

investigation clearly illustrates the importance of understanding the ANS as an 

intertwined regulatory process, and of adequately modeling this process by attending to 

varying degrees of reciprocal and coupled actions (Berntson et al., 1994).  

The current findings demonstrate that 6-year-old children responded to the 

challenge of completing a difficult puzzle ‘before the examiner returned’ with reciprocal 

sympathetic activation (i.e., PEP attenuation and RSA withdrawal). Moreover, these 

regulatory responses were driven by the leading influence of PEP on lagging changes in 

RSA. As noted earlier, although a puzzle task does necessitate a degree of attentional 

engagement, the difficulty of the task in conjunction with the time limit and its placement 

as the first task in this ANS protocol likely increased the degree and salience of 

children’s arousal and anticipation, which would be mobilized by reciprocal sympathetic 

activation, over their need for calm and sustained attentional focus, which would be 

supported by reciprocal parasympathetic activation. Indeed, the positive proportional 

change parameter for PEP is consistent with an increase in children’s arousal as they 

began to sense that time was running out and the probability of task failure increased.  

Although the current study suggests that sympathetic activation patterns may 

drive or ‘lead’ parasympathetic regulation, ANS regulation (and likely autonomic 

coordination) is known to vary by the social, cognitive, and emotion demands of the task 
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(Burt & Obradović, 2013). Given the unique context of the current puzzle challenge as a 

dyadic, time-limited task, the generalizability of the obtained regulation and coupling 

patterns awaits further evaluation. For example, a task that requires sympathetic 

mobilization (e.g., a startle or a challenging puzzle task) may elicit a driving force from 

PEP as it activates and directs the necessary responses. However, a task that requires 

parasympathetic activation (e.g., a test of reading comprehension) may evidence a driving 

force from RSA to influence subsequent changes in PEP. In this view, the activated 

branch of the ANS takes on the ‘leading’ role to guide the responses of its ‘lagging’ 

counterpart. Similarly, a task that demands high levels of social engagement may require 

parasympathetic dominance, but if cognitive or motivational demands take precedence, 

the sympathetic system may drive regulation. Alternately, rather than being driven by 

which system needs to mobilize, shifts in ‘lead’ and ‘lag’ roles across autonomic 

coordination may reflect varying degrees to which RSA represents pure vagal control 

versus mixed sympathetic and parasympathetic influences. For example, when RSA 

represents a more direct measure of vagal control of the heart (e.g., when sympathetic 

influences are minimal and/or physical movement is limited), RSA may take on this 

leading role. However, in situations that preclude this parasympathetic clarity (e.g., when 

there are quick and dramatic shifts in sympathetic responses), the sympathetic system 

may take on relatively more influence in autonomic coordination. Of course, there may 

be a third, unknown variable that drives these relations, and shifts therein, across contexts 

and time. Clarifying patterns of autonomic coordination within and across task contexts 
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will be necessary to inform meaningful guidelines for efforts to interpret the development 

and adaptive significance of autonomic coordination patterns. 

In addition to task contexts, patterns of autonomic coordination may vary across 

regulation phases (e.g., rest versus recovery). Of note, the current findings evaluated 

ANS regulation during a challenge without consideration of baseline levels. Thus, these 

findings captured regulation, rather than ANS reactivity per se. As can be seen in 

Appendix A, follow-up analyses controlling for baseline levels of PEP and RSA 

evidenced similar results as the regulation models presented earlier. However, although 

comparisons of nested reactivity models demonstrated that the unidirectional PEP model 

fit the data best (see Table 5), adding these resting covariates reduced some practical 

indices of reactivity model fit below acceptable levels (e.g., CFI <.950; Hu & Bentler, 

1999).  

Although the current study evaluated autonomic coordination across a single task, 

bivariate latent change score models can be employed to advance our understanding of 

coordinated processes across development. For example, these models can be applied to 

similar tasks across successive assessments to determine if and how coupling patterns 

change over time. Further, by evaluating the effect size of each coupling parameter, we 

can assess the strength of autonomic coupling within and across time.  

Strengths and Limitations  

 The current dissertation provides new information about the dynamics underlying 

6-year-olds’ sympathetic and parasympathetic autonomic coordination across a 

challenging puzzle task. Notable strengths of this investigation include the use of a large 
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and diverse sample of children, cardiac measurements of both PEP and RSA, and the 

implementation of dynamic statistical methods. Bivariate latent change score models 

afforded a unique opportunity to investigate directional dynamics between PEP and RSA 

over time. However, despite these strengths, a number of limitations should be 

considered when interpreting the implications of the current findings.  

First, trajectories of change were limited to linear examinations in the current 

study, such that evaluated changes were exponential with either positive or negative 

variations due to coupling effects. A limitation of extant bivariate latent change models is 

that non-linear trajectories, such as quadratic effects, are difficult to model because they 

would require many measurement occasions to produce reliable parameter estimates 

(Grimm, An, McArdle, Zonderman, & Resnick, 2012). This limitation is especially 

concerning in the study of autonomic coordination because prior research suggests that 

trajectories of PEP and RSA across development may be best characterized with non-

linear models (Kogan et al., 2014; Miller, Kahle, & Hastings, 2017). Just as longitudinal 

studies illustrate the likely complexity of regulatory development across time (e.g., 

Roubinov, Boyce, Lee, & Bush, 2019), a handful of studies suggest that non-linear 

models may characterize ANS regulation within shorter time spans. For example, a study 

using growth modeling across an anger-induction task with 3.5-year-olds found that, on 

average, children evidenced RSA suppression during the first moments of exposure, 

followed by RSA rebound toward initial levels as the video continued (Miller et al., 

2013). It is possible that non-linear dynamics will be relevant for understanding patterns 

of autonomic coordination in future research.  
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Second, although bivariate dual change models yield indices of proportional 

change and coupling, both estimates reflect a combination of within- and between-person 

effects. A central advantage of longitudinal modeling is the ability to disaggregate 

within- and between-person effects (Curran & Bauer, 2011), however, the complex 

nature of the bivariate dual change score model, as well as its implementation within a 

single challenge task, precluded the ability to separate these effects. Failing to examine 

within- and between-person differences can lead to the misspecification and/or 

misinterpretation of parameter estimates. For example, in cross-lagged panel analyses, 

conflating these distinct sources of influence can yield biased and difficult-to-interpret 

coefficients, as well as erroneous conclusions about causal patterns (Berry & 

Willoughby, 2017; Hamaker, Kuiper, & Grasman, 2015). Recent advances in cross-

lagged panel analyses have sought to disaggregate within- and between-person 

differences by creating a global trait factor, and multiple state factors to differentiate 

time-varying differences (e.g., within-person effects) from trait-invariant differences 

(e.g., between-person effects; Kenny & Zautra, 2001; Tyrell, Yates, Reynolds, Fabricius, 

& Braver, 2018). Developing similar techniques to differentiate these influences within 

bivariate latent change score models would greatly benefit future studies of ANS 

regulatory dynamics. 

Third, although the puzzle task yielded sufficient epochs to conduct a bivariate 

latent change score model, the current design may have limited the generalizability of our 

findings in a number of ways. First, the puzzle task was the first challenge introduced to 

the children following the resting baseline period. This temporal precedence may have 
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contributed to the reciprocal sympathetic activation that was evident in this task. Future 

work will need to examine ANS regulation patterns during this task at different points in 

an ANS protocol and in varied samples to ascertain whether or not there is a uniform 

activation of sympathetic responses to challenging puzzle completion tasks. Likewise, 

research using different kinds of challenge tasks is needed to ascertain whether or not a 

sympathetic lead model characterizes autonomic coordination dynamics generally, or 

only in response to specific kinds of challenge. Second, a unique feature of the current 

task was that the caregiver was present during the entire protocol. Recent evidence 

suggests that the presence of others may influence patterns of physiological regulation, as 

well as their adaptive implications (Skowron et al., 2014). Thus, the presence of the 

caregiver in this study may have limited the generalizability of the observed findings. In 

particular, the quality of the parent-child relationship may have influenced the obtained 

regulation and coupling patterns. In future research, it will be important to differentiate 

social and cognitive task demands (e.g., a counterbalanced administration of the same 

task with and without a caregiver present) in ways that were not possible here. Finally, 

the current design did not support the evaluation of autonomic coordination across a 

recovery episode. Although rarely examined in the extant literature, recent findings 

suggest that the capacity to restore homeostasis, or recover from challenge, is an equally 

and uniquely informative dimension of self-regulation (Beckmann & Kellmann, 2004), 

particularly with regard to the ANS (Obradović & Finch, 2016; Rudd et al., 2017; Rudd 

& Yates, 2018). In future research, it will be important to ascertain whether autonomic 

coordination during reactivity and recovery episodes evidence a similar pattern to the 
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ANS regulation findings presented in this dissertation. As discussed previously, when 

controlling for baseline levels of PEP and RSA in this study, autonomic coordination 

demonstrated similar patterns of leading and lagging influences, but model fit indices fit 

the data worse than models with no covariates (see Appendix A). 

Finally, the current study revealed a snapshot of autonomic coordination among 

6-year-old children during a challenging puzzle task. Patterns of autonomic coordination 

across developmental time have rarely been examined, and never with the dynamic 

modeling approaches used here. Although a few studies have documented stability in 

patterns of ANS regulation by age 5 (Alkon et al., 2014; Feldman, 2009; Patriquin et al., 

2014), only one study has assessed autonomic coordination across early childhood to 

examine coordination profiles from infancy through age 5 (Alkon et al., 2011). In this 

study, children tended to move from discoordinated profiles of either coactivation or 

coinhibition to coordinated profiles of either reciprocal sympathetic or parasympathetic 

activation across time. Additional research is needed to ascertain whether or not the 

leading and lagging patterns of PEP and RSA regulation in this study will hold across 

developmental time, as well as if and when these patterns stabilize within or across 

childhood.  

Implications and Future Directions 

 The current study illustrated that sympathetic and parasympathetic ANS 

regulatory processes evidence coordinated dynamics across a challenging puzzle task. 

Specifically, the findings documented leading influences of sympathetic input on ANS 

coordination during this sympathetically activating challenge. My analyses supported 
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contemporary theorists who conceptualize RSA as a multiply determined, rather than 

pure, measure of parasympathetic vagal activity and highlight the special significance of 

sympathetic processes (i.e., PEP) as a driving force underlying the coordinated actions of 

the ANS. As one of the first studies to apply bivariate latent change score models to 

physiological data, this dissertation illuminates new directions for future research.  

Current efforts to understand ANS regulation have favored studies of RSA, likely 

due to its relative ease of collection and interpretation as compared with PEP. However, 

this investigation demonstrates the importance of understanding sympathetic ANS 

regulatory processes as well. Moreover, the current analytic paradigm revealed 

significant and coordinated coupling between sympathetic and parasympathetic systems. 

Thus, this study illustrates the need for ongoing efforts to elucidate the development and 

adaptive significance of ANS regulation using both single- and multi-system lenses of 

analysis.   

Importantly, the exploratory nature of this dissertation warrants relatively greater 

caution when interpreting the current findings, but also introduces exciting opportunities 

for future research. Further studies examining similar and varied challenge paradigms 

(particularly ones that may elicit reciprocal parasympathetic responses) are needed to 

further elucidate the exact nature of task influences on autonomic coordination, and to 

replicate the identified bivariate model of sympathetic leading PEP influences on 

parasympathetic lagging RSA effects. Through ongoing research, we will be able to 

understand if and how autonomic leading and lagging influences may shift over 

individual tasks, samples, and/or developmental time.  
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Following further clarification of the exact nature of ANS regulatory coupling 

influences, researchers should work to identify factors that contribute to individual 

differences in the dynamic coordination of PEP and RSA, as well as the adaptive 

implications of such differences for children’s multi-domain adaptation. For example, 

single-system studies of physiological regulation have identified early adversity exposure 

as an important factor in the development and regulation of sympathetic and 

parasympathetic systems separately (McLaughlin, Alves, & Sheridan, 2014; Obradović, 

2012). Expanding this knowledge to evaluate how early (and chronic) adversity exposure 

may influence ANS regulatory dynamics is an important step toward fully understanding 

the meaning and implications of autonomic coordination. With regard to the 

developmental significance of such dynamics, prior research has documented the 

importance of single-system measures of ANS regulation (e.g., PEP or RSA alone; 

Gatzke-Kopp & Ram, 2018), and, to a lesser degree, of aggregated assessments of 

coordination (Alkon et al., 2017; El-Sheikh & Erath, 2011; Rudd & Yates, 2018) for 

children’s adaptation in both psychosocial and physical health domains. However, recent 

studies using dynamic modeling approaches demonstrate that, though broad patterns of 

association between ANS regulation and adaptation can be seen in static, mean-based 

studies, dynamic modeling procedures provide more detailed information with which to 

evaluate these hypothesized relations (Blair, Raver, & Berry, 2014; Brooker & Buss, 

2010).  

This dissertation illustrates the application of bivariate latent change models to 

support much needed dual and dynamic evaluations of autonomic coordination. Using the 
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procedures described herein, researchers can begin to investigate the unique development 

and adaptive contributions of autonomic coordination patterns to child adaptation. Future 

work utilizing these dynamic models to understand the process of coordination may 

highlight meaningful pathways to positive child adjustment via physiological self-

regulation. 
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ppendix A

 

Table 5. A
lternate Bivariate M

odel Fit Com
parisons w

ith Covariates 

 
�

2 
df 

RM
SEA

 
CFI 

TLI 
A

IC 
BIC 

1. N
o Coupling 

629.265 
165 

.000 
.844 

.855 
14634.255 

14713.173 

2. U
nidirectional PEP Influence 

615.265 
163 

.000 
.848 

.857 
14624.255 

14709.750 

3. U
nidirectional RSA

 Influence 
628.091 

164 
.000 

.844 
.854 

14635.081 
14717.288 

4. Bidirectional Coupling 
614.797 

162 
.000 

.847 
.856 

14625.787 
14714.571 

 

N
ested Com

parisons 
∆�

2 
df 

p 

N
o coupling to U

nidirectional PEP 
14.000 

2 
.0009 

N
o coupling to U

nidirectional RSA
 

1.174 
1 

.278 

U
nidirectional PEP to Bidirectional 

0.468 
1 

.493 

U
nidirectional RSA

 to Bidirectional 
13.294 

2 
.001 

Note: RM
SEA

 = Root M
ean Square Error of A

pproxim
ation, CFI = Com

parative Fit Index, TLI = Tucker Lew
is Index,  

A
IC =  A

kaike Inform
ation Criterion, BIC = Bayesian Inform

ation Criterion 
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Figure 5. A
lternate Bivariate D

ual Change M
odel 

 

N
ote. Linear change coefficients, variances, and covariances are not presented for clarity. * p < .05, **p < .01 ***p < .001. 




