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Abstract of the Dissertation

Local Indecomposability of Hilbert Modular

representations and Mumford-Tate conjecture

by

Bin Zhao

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Haruzo Hida, Chair

In this thesis, we use the Serre-Tate deformation theory for ordinary abelian varieties to

study its associated p-adic Galois representations. As applications, we study two types of

questions. The first is to determine the indecomposability of the Galois representations

restricted to the p-decomposition group attached to a non CM nearly ordinary weight two

Hilbert modular form over a totally real field. Then second is to study the Mumford-Tate

conjecture for absolutely simple abelian fourfolds with trivial endomorphism algebras.
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CHAPTER 1

Introduction

Let A/k be an abelian variety over an algebraically closed field k of characteristic p > 0.

A theorem of Serre and Tate states that the infinitesimal deformation of A/k is equivalent

to that of its p-divisible group. When A/k is ordinary, the formal moduli space M̂A/k has

a formal group structure. To be more precise, let M̂A/k be the set-valued functor on the

category of local artinian rings with residue field k such that:

M̂A/k(R) = { isomorphism classes of liftings of A/k to R}.

Then there is an isomorphism of functors:

M̂A/k
∼= HomZp(TpA(k)⊗Zp TpA

t(k), Ĝm).

This theorem of Serre and Tate has a lot of applications. It can be used to study the local

model of Shimura varieties of Hodge type at an ordinary closed point. It can also be used to

study the Galois representation attached to an abelian variety over a local field with good

ordinary reduction. In this thesis, we use the above ideas to study two types of questions in

number theory and arithmetic geometry, which will be sketched below.

1.1 Local Indecomposability of Hilbert Modular Galois Represen-

tations

Let F be a totally real field and f be a Hilbert modular form of level m over F . Assume

that f is a Hecke eigenform and let Kf be its Hecke field. For any prime λ of Kf over a

rational prime p, let Kf,λ be the completion of Kf at λ. It is well known that there is a
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Galois represention ρf : Gal(Q̄/F ) → GL2(Kf,λ) attached to f . Moreover if the eigenform f

is nearly p-ordinary, then up to equivalence the restriction of ρf to the decomposition group

Dp of Gal(Q̄/F ) at p is of the shape (see [52] Theorem 2 for the ordinary case and [19]

Proposition 2.3 for the nearly ordinary case):

ρf |Dp ∼

ε1 ∗

0 ε2


 .

R.Greenberg once asked when the local representation ρf |Dp splits. In the elliptic modular

case, it was studied by Ghate and Vatsal and they gave an answer in [14] under some

conditions. In a recent paper [2], joint with Balasubramanyam, they generalized their result

to the Hilbert modular case under some restrictive conditions.

In this thesis, we are mainly concerned with the case that f is parallel weight two. We

also need to put the following technical condition on f when the degree of F over Q is

even: there exists a finite place v of F such that πv is square integrable (i.e. special or

supercuspidal) where πf = ⊗vπv is the automorphic representation of GL2(FA) associated

to f (FA is the adele ring of F ). Then the first main result of this thesis is:

Theorem 1. If f does not have complex multiplication, then ρf |Dp is indecomposable.

We remark here that the above theorem can help us to study a problem raised by Coleman

on the existence of companion forms.

1.2 Mumford-Tate Conjecture for Abelian Fourfolds

Let A/F be an abelian variety defined over a number field F of dimension n. Fix an algebraic

closure F̄ of F and a complex embedding F̄ → C. Let V = H1(A/C,Q) be the first singular

homology group of A/C with coefficients in Q. Then we denote by MT (A)/Q (resp. Hg(A)/Q)

the Mumford-Tate group (resp. Hodge group) associated to the natural Hodge structure of

V .
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On the other hand, for any rational prime l, let TlA(F̄ ) be the l-adic Tate module of A

and set Vl = TlA(F̄ )⊗Zl
Ql. Then we have a Galois representation

ρl : Gal(F̄ /F ) → AutQl
(Vl).

We define an algebraic group Gl/Ql
as the Zariski closure of the image of ρl inside the algebraic

group AutQl
(Vl), and let G◦

l/Ql
be its identity component. By comparison theorem, we have

an isomorphism V ⊗QQl
∼= Vl. Under this isomorphism, the Mumford-Tate conjecture states

that:

Conjecture 1.1. For any prime l, we have the equality G◦
l/Ql

= MT(A)×Q Ql.

In this thesis, we are interested in the case that A/F is an absolutely simple abelian

fourfolds (so in particular n = 4).

Let g/Q (resp. gl/Ql
) be the Lie algebra of the algebraic group MT (A)/Q (resp. Gl/Ql

).

Then let h/Q (resp. hl/Ql
) be the subalgebra of g/Q (resp. gl/Ql

) consisting of elements of

trace 0. So we have g = h ⊕ Q · Id (resp. gl = hl ⊕ Ql · Id). In [32], Moonen and Zarhin

computed the Lie algebras h/Q and hl/Ql
. From their result, the endomorphism End0(A/F̄ )

together with its action on the Lie algebra Lie(A/F̄ ) determines the Lie algebras h/Q and

hl/Ql
uniquely except in the case that End0(A/F̄ ) = Q. When End0(A/F̄ ) = Q, we have two

possibilities for h: either h = sp4 over Q̄ or h = sl2 × sl2 × sl2 over Q̄. And similarly we

have two possibilities for hl: either hl = sp4 over Q̄l or hl = sl2 × sl2 × sl2 over Q̄l. The first

case happens when A/F comes from a generic element in the Siegel moduli space while the

second happens when A/F comes from an analytic family of abelian varieties constructed by

Mumford in [34]. The second main result of this thesis is the following:

Theorem 2. If hl = sl2×sl2×sl2 over Q̄l, then A/F comes from a Shimura curve constructed

by Mumford in [34].

Since Deligne proved the inclusion hl ⊆ h ⊗Q Ql, combining Theorem 2 with previous

work of Moonen and Zarhin, the Mumford-Tate conjecture holds for all absolutely simple

abelian fourfolds.
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1.3 Organization of the Thesis

In chapter 2, we review the Serre-Tate deformation theory for abelian varieties and the

construction of Serre-Tate coordinates of ordinary abelian varieties. We also explain how to

get p-th power roots of the Serre-Tate coordinates from a splitting of the connected-étale

exact sequence of the p-divisible groups.

In chapter 3, we explain how the Serre-Tate coordinates of an abelian variety over a

local field with good ordinary reduction determine the Galois representation associated to

its p-adic Tate module.

In chapter 4, we give a brief review of Hilbert modular Shimura varieties and Siegel

modular Shimura varieties. We give the integral models of these Shimura varieties we want

to work with and list some properties which will be used in later argument.

In chapters 5 and 6, we give the proofs of Theorem 1 and Theorem 2 respectively. As

both proofs are quite technical, we postpone to chapters 5 and 6 for summaries of techniques

and tools employed in the proofs.
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CHAPTER 2

Serre-Tate deformation theory for abelian varieties

In this chapter, we review the deformation theory of abelian varieties. We do not present

the results in fully generality and refer the readers to [29] and [20] for more details.

2.1 Cartier duality theorem

In this section we recall the Cartier duality theorem for abelian schemes. For more details,

see [33] section 14, 15 when the base is the spectrum of an algebraically closed field and [37]

Chapter 1 for the general base.

Theorem 3. (See [37] Theorem 1.1) Let A and B be two abelian schemes over a scheme

S, and f : A → B be an S-isogeny. Let At (resp. Bt) be the dual of A (resp. B) and

f t : Bt → At be the dual of f . Then there is a pairing of finite flat group schemes over S:

〈·, ·〉f : ker(f)× ker(f t) → Gm/S,

which is non-degenerate, bilinear and compatible with arbitrary base change.

Now let S be an arbitrary scheme and A/S be an abelian scheme. For any integer N > 0,

the multiplication by N map [N ] : A→ A is an S-isogeny. In this case we denote the pairing

〈·, ·〉[N ] in Theorem 3 by

EA/S,N : A[N ]× At[N ] → Gm/S.

5



2.2 Serre-Tate Theorem on the deformation of abelian varieties

Let p be a prime number. For any ring R, we use A(R) to denote the category of abelian

schemes over R. We also use Rred to denote the quotient R/nil(R), where nil(R) is the

nilradical of R. Let I ⊆ R be an ideal and set R0 = R/I. We use Def(R,R0) to denote the

category of triples (A0, G, i) consisting of an abelian scheme A0 over R0, a p-divisible group

G over R, and an isomorphism of p-divisible groups i : G0 → A0[p
∞] over R0, where G0 is

the p-divisible group over R0 obtained from G under the base change R → R0, and A0[p
∞]

is the p-divisible group of A0. Later we also write G0 = G⊗R R0 to simplify the notation.

For any object A in A(R), we have a natural isomorphism of p-divisible groups over R0:

i : (A[p∞])0 = A[p∞]⊗R R0 → A0[p
∞],

where A0 = A⊗R R0 is the abelian scheme over R0 obtained by base change. So we have a

functor:

ϕ : A(R) → Def(R,R0)

A 7→ (A0, A[p∞], i).

The Serre-Tate theorem tells us that the above functor ϕ is an equivalence of categories

under certain conditions. More precisely, we have:

Theorem 4. If p is nilpotent in R and the ideal I is nilpotent in R, then the functor ϕ is

an equivalence of categories.

The proof of the above theorem is long so we divide it into several lemmas.

By the assumptions, there exist integers n and v, such that q = pn vanishes in R and

Iv+1 = (0) in R.

Lemma 2.1. Let G and H be two abelian sheaves on the f.p.p.f. cite of R, which satisfy the

following conditions:
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1. G is q-divisible, i.e. the multiplication by q homomorphism [q] : G → G is an epimor-

phism;

2. the subsheaf Ĥ of H defined by Ĥ(A) = ker(H(A) → H(Ared)) for any R-algebra A,

is locally represented by a formal Lie group;

3. H is formally smooth, i.e. for any R-algebra A and any nilpotent ideal J of A, the

map H(A) → H(A/J) is surjective.

Let G0 = G ⊗R R0 (resp. H0 = H ⊗R R0) be the inverse image of G (resp. H) under the

base change R → R0. Then the following statements hold:

1. the morphism ψ : Hom(G,H) → Hom(G0, H0) obtained by the base change R → R0 is

injective;

2. for any morphism f0 : G0 → H0, there exists a unique morphism F (v, f0) : G → H

which lifts qvf0;

3. a morphism f0 : G0 → H0 can be lifted to R if and only if the morphism F (v, f0)

defined above annihilate the subsheaf G[qv] = ker([qv] : G → G) of G.

Proof. We begin by making two remarks. The first remark is that the sheaves Hom(G,H)

and Hom(G0, H0) are q-torsion free. In fact, as G is q-divisible, we have the exact sequence:

0 → G[q] → G
[q]−→ G → 0.

As the functor Hom(−, H) is left exact, we see that Hom(G,H) is q-torsion free. Since G is

q-divisible, so is G0. We repeat the above argument to G0 and it follows that Hom(G0, H0)

is also q-torsion free.

The second remark is that the subsheaf HI of H defined by HI(A) = ker(H(A) →
H(A/IA)) for any R-algebra A is killed by qv. In fact, as I is nilpotent in R, HI is a

subsheaf of Ĥ. As the question is local, we can assume that Ĥ is represented by a formal

7



Lie group. After choosing suitable coordinates X1, . . . , Xr of Ĥ, the morphism [q] : Ĥ → Ĥ

can be expressed in terms of the coordinates:

([q](X))i = qXi + higher degree terms of X’s .

If x is a point of HI(A) for an R-algebra A, its coordinates lie in IA by definition. As q

vanishes in R, the coordinates of [q](x) lie in I2A and hence [q](HI) ⊆ HI2 . Since the above

argument is true for any nilpotent ideal I, we have the inclusion [q](HIk) ⊆ HI2k ⊆ HIk+1

for any integer k ≥ 1. In particular, [qv](HI) ⊆ HIv+1 = 0 as Iv+1 = (0).

Notice that kerψ ⊆ Hom(G,HI). From the first remark above, the sheaf Hom(G,HI)

is q-torsion free and hence qv-torsion free. From the second remark, the sheaf HI is killed

by qv, and so is Hom(G,HI). So Hom(G,HI) = 0 and ψ is injective. This proves the first

statement of the lemma.

For the second statement, the uniqueness of F (v, f0) follows directly from the injectivity

of ψ. For the existence, we give the explicit expression of the morphism F (v, f0). For any

R-algebra A, since the sheaf H is formally smooth, the reduction map H(A) → H(A/IA) is

surjective. We define a homomorphism:

j : H(A/IA) → H(A)

h 7→ qvh̃,

where h̃ ∈ H(A) is any lifting of h ∈ H(A/IA). Notice that any two liftings of h are different

by an element in HI(A), which is killed by qv by the second remark above. It follows that

the homomorphism j is well defined. Now we define a homomorphism F (v, f0)(A) : G(A) →
H(A) as the composite:

G(A)
reduction−−−−−→ G(A/IA)

f0−→ H0(A/IA) = H(A/IA)
j−→ H(A).

It is easy to check that the formation of F (v, f0)(A) is functorial in A and hence we get a

morphism F (v, f0) which lifts qvf0.

We remain to prove the last statement. First notice that if f0 ∈ Hom(G,H) is a lifting

8



of f0 ∈ Hom(G0, H0), then qvf = F (v, f0) due to the injectivity of the map ψ. This proves

the ’only if’ part. Now we prove the ’if’ part.

Applying the left exact functor Hom(−, H) to exact sequence

0 → G[q] → G
[q]−→ G → 0,

we get another exact sequence

0 → Hom(G,H)
[q]−→ Hom(G,H) → Hom(G[qv], H).

By assumption, the restriction of F (v, f0) to the subsheaf G[qv] is zero. So we can find

f ∈ Hom(G,H) such that qvf = F (v, f0). Since qvf lifts qvf0, and the sheaf Hom(G0, H0)

is q-torsion free, f is a lifting of f0.

Now we can prove the full-faithfulness in Theorem 4. We need to prove the following

statement: given two abelian schemes A,B over R, a homomorphism f [p∞] : A[p∞] → B[p∞]

of p-divisible groups over R, and a homomorphism f0 : A0 → B0 of abelian schemes over R0,

such that the induced homomorphism f0[p
∞] : A0[p

∞] → B0[p
∞] coincides with (f [p∞])0 =

f [p∞] ⊗R R0, then there exists a unique homorphism f : A → B which induces f [p∞] and

lifts f0.

We remark that if we regard abelian schemes and p-divisible groups over R as abelian

sheaves on the f.p.p.f site of R, then they satisfy all the assumptions in Lemma 2.1. So the

uniqueness of f follows from the injectivity of the morphism Hom(A,B) → Hom(A0, B0)

proved in the first part of Lemma 2.1.

We continue to prove the existence of f . By Lemma 2.1, we have a homomorphism

F (v, f0) : A → B which lifts the homomorphism qvf0. The induced homomorphism F (v, f0)[p
∞] :

A[p∞] → B[p∞] of p-divisible groups is a lifting of qvf0[p
∞] = qv(f [p∞])0 = (qvf [p∞])0.

From the injectivity of the morphism

Hom(A[p∞], B[p∞]) → Hom(A0[p
∞], B0[p

∞]),

9



we have the equality F (v, f0) = qvf [p∞]. It follows that F (v, f0) annihilates the group

A[qv]. From Lemma 2.1, the homomorphism f0 can be lifted uniquely to a homomorphism

F : A → B. Since F [p∞] and f [p∞] both lift f0[p
∞], we have F [p∞] = f [p∞].

To prove Theorem 4, it remains to prove that given an abelian scheme A0 over R0, a

p-divisible group G over R and an isomorphism i : A0[p
∞] → G0 = G⊗R R0, there exists an

abelian scheme A over R which induces the triple (A0, G, i).

As R is a nilpotent thickening of R0, we can always lift the abelian scheme A0 to an

abelian scheme B over R. Let i0 : B0 = B ⊗R R0 → A0 be the corresponding isomorphism

and i0[p
∞] : B0[p

∞] → A0[p
∞] be the induced isomorphism of p-divisible groups.

From Lemma 2.1, there exists a morphism F (v, i0[p
∞]) : B[p∞] → G (resp. F (v, (i0[p

∞])−1) :

G → B[p∞]) which lifts the morphism qvi0[p
∞] : B0[p

∞] → A0[p
∞] (resp. qv(i0[p

∞])−1 :

A0[p
∞] → B0[p

∞]). From the injectivity of ψ in Lemma 2.1, the composite of F (v, i0[p
∞])

and F (v, (i0[p
∞])−1) (in either order) is the endomorphism [q2v]. Hence we have an exact

sequence of f.p.p.f. sheaves over R:

0 → K → B[p∞]
F (v,i0[p∞])−−−−−−→ G → 0,

where K is a subgroup scheme of B[q2v].

As the morphism [qv](i0[p
∞]) : B0[p

∞] → A0[p
∞] is an isogeny and hence flat, and flatness

is an open property, the morphism F (v, i0[p
∞]) is flat and K is a finite flat subgroup scheme

of B[q2v]. So we can consider the quotient A = B/K, which is also an abelian scheme over

R. Since K lifts B0[q
v], A lifts B0/B0[q

v] ∼= B0
∼= A0, and the exact sequence

0 → K → B[p∞]
F (v,i0[p∞])−−−−−−→ G → 0

gives an isomorphism A[p∞] ∼= B[p∞]/K ∼= G,which is exactly what we wanted to prove.

2.3 Serre-Tate coordinates for ordinary abelian varieties

In this section we fix an algebraically closed field k of characteristic p > 0. Let A be

an abelian variety over k of dimension g ≥ 1. We have seen from Theorem 4 that the

10



infinitesimal deformation of the abelian variety A/k is equivalent to that of its p-divisible

group A[p∞]/k. In the rest of this section, we always make the assumption that the abelian

variety A/k is ordinary, i.e. its p-adic Tate module TpA(k) is a free Zp-module of rank g. It

turns out that under this assumption, the formal moduli space M̂A/k of A/k has a formal

group structure. To be more precise, we have the following:

Theorem 5. Let A be an ordinary abelian variety over k and R be an artinian local ring

with residue field k. Then the following statements hold:

1. there is a bijection:

{ isomorphism classes of liftings of A/k to R} → HomZp(TpA(k)⊗Zp TpA
t(k), Ĝm)

A/R 7→ q(A/R;−,−).

Moreover, the above bijection is functorial for various R’s and give an isomorphism of

functors:

M̂A/k → HomZp(TpA(k)⊗Zp TpA
t(k), Ĝm);

2. let A/R be a lifting of A/k and let At
/R be its dual. under the canonical isomorphism

A ∼= (At)t, we have the formula:

q(A/R; α, αt) = q(At
/R; αt, α),

for any α ∈ TpA(k) and αt ∈ TpA
t(k);

3. let B/k be another ordinary abelian variety over k and A/R (resp. B/R) be a lifting of

A/k (resp. B/k). Let f : A → B be a homomorphism and f t : Bt → At be its dual.

Then f can be lifted to a homomorphism f : A→ B if and only if

q(A/R; α, f t(βt)) = q(B/R; f(α), βt),

for any α ∈ TpA(k) and βt ∈ TpB
t(k).

11



Proof. 1. From Theorem 4, to get a lifting A/R of A/k is equivalent to getting a lifting

A[p∞]/R of its p-divisible group A[p∞]/k. Since A/k is ordinary and k is algebraically

closed, the p-divisible group A[p∞]/k is a product:

A[p∞] = Â× TpA(k)⊗Zp (Qp/Zp).

For any n ≥ 1, the paring EA/k,pn : A[pn] × At[pn] → µpn defines an isomorphism of

k-group schemes:

Â[pn] → Hom(At[pn](k), µpn).

Taking the inverse limit, we have an isomorphism of formal groups over k:

Â → HomZp(TpA
t(k), Ĝm),

and it induces a pairing:

EA/k
: Â× TpA

t(k) → Ĝm.

Since R is local artinian ring with residue field k, the p-divisible group A[p∞]/R of A/R

sits in the connected-étale exact sequence:

0 → Â→ A[p∞] → TpA(k)⊗Zp Qp/Zp → 0.

We remark here that if we regard A as an f.p.p.f. sheaf on R, then Â is defined in

the previous section as a subsheaf of A. In fact, Â is the unique formal subgroup

of A[p∞] which lifts Â. Since Â and Â[pn] are multiplicative, and R is local artinian

with residue field k, the isomorphisms of k-groups Â[pn] → Hom(At[pn](k), µpn) and

Â → HomZp(TpA
t(k), Ĝm) extends uniquely to isomorphisms of R-groups Â[pn] →

Hom(At[pn](k), µpn) and Â → HomZp(TpA
t(k), Ĝm), and hence we have the pairing

over R:

EA/R,pn : Â[pn]× At[pn](k) → µpn ,

and

EA/R : Â× TpA
t(k) → Ĝm.
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We want to construct a homomorphism ϕA/R : TpA(k) → Â(R) such that the connected-

étale exact sequence of A[p∞] is obtained by pushing out the exact sequence

0 → TpA(k) → TpA(k)⊗Zp Qp → TpA(k)⊗Zp (Qp/Zp) → 0

along the homomorphism ϕA/R. Let m be the maximal ideal of R. We can choose an

integer n such that mn+1 = (0). Since p ∈ m and Â is a formal Lie group over R, the

group Â(R) is annihilated by pn. So we can define a group homomorphism:

ϕn : A(k) → A(R)

x 7→ pnx̃,

where x̃ ∈ A(R) is any lifting of x ∈ A(k). (Notice that x̃ always exists as A/R is

smooth). The restriction of ϕn to A(k)[pn] gives a homomorphism ϕn : A(k)[pn] →
Â(R). These ϕn’s are compatible in the sense that ϕn◦[p] = ϕn+1 : A(k)[pn+1] → Â(R).

Hence we have a homomorphism ϕA/R : TpA(k) → Â(R) by taking the limit of ϕn’s.

Now we define the Serre-Tate coordinates q(A/R;−,−) ∈ HomZp(TpA(k)⊗ZpTpA
t(k), Ĝm),

such that q(A/R; α, αt) = EA/R(ϕA/R(α), αt), for any α ∈ TpA(k) and αt ∈ TpA
t(k).

From the above construction, we have a chain of isomorphisms of functors:

{ isomorphism classes of A/R lifting A/k} ∼= { isomorphism classes of A[p∞]/R lifting A[p∞]/k}
∼= ExtR(TpA(k)⊗Zp Qp/Zp, Â)

∼= Hom(TpA(k), Â)

∼= HomZp(TpA(k)⊗Zp TpA
t(k), Ĝm)

So the construction of q(A/R;−,−) is functorial and we get (1).

2. Recall that we fix an integer n, such that mn+1 = (0). Let αn (resp. αn,t) be the image

of α (resp. αt) under the projection TpA(k) → A(k)[pn] (resp. TpA
t(k) → At(k)[pn]).

By construction, we have:

q(A/R; α, αt) = EA/R,pn(ϕn(αn), αt,n),
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q(At
/R; αt, α) = EAt/R,pn(ϕn(αt,n), αn).

Now we need the following:

Lemma 2.2. Fix x ∈ Â(R)[pn] and y ∈ At(k)[pn]. There exists an artinian local ring

R′ which is finite flat over R, and a point Y ∈ At(R′)[pn] lifting y. For any such R′

and Y , we have the equality in Ĝm(R′):

EA/R′,pn(x, y) = EA/R′,pn(x, Y ).

We remark here that in the above equality, the element EA/R′,pn(x, y) is the image of

EA/R,pn(x, y) ∈ Ĝm(R) under the finite flat extension R → R′.

Proof. Since the abelian scheme At is smooth over R, we can find Y1 ∈ At(R) which lifts

y ∈ At(k)[pn]. Then Y2 = pnY1 lies in Ât(R). Since Ât is a formal Lie group and hence

p-divisible, and R is local artinian, we can find another local artinian ring R′ which is

finite flat over R and Y3 ∈ Ât(R′) such that pnY3 = Y2. Then Y = Y1 − Y3 belongs to

At(R′)[pn] and lifts y ∈ At(k)[pn]. Notice that EA/R′,pn(−, y), EA/R′,pn(−, Y ) : Â[pn] →
µpn both lifts the homomorphism EA/k,pn(−, y) : Â[pn] → µpn . Since both Â[pn] and

µpn are multiplicative, the lifting of EA/k,pn(−, y) to R′ is unique. So we get the desired

equality.

Now we choose An ∈ A(R) (resp. At,n ∈ At(R)) as a lifting of αn ∈ A(k)[pn] (resp.

αt,n ∈ At(k)[pn]). Since the group Â(R) and Ât(R) are killed by pn, we have An ∈
A(R)[p2n] and At,n ∈ At(R)[p2n].

Now we want to prove the following formula:

q(A/R; α, αt)

q(At
/R; αt, α)

= EA/R,p2n(An, At,n).

By Lemma 2.2, we can find a local artinian ring R′ which is finite flat over R, and

Bn ∈ A(R′)[pn] (resp. Bn,t ∈ At(R′)[pn]) lifting αn ∈ A(k)[pn] (resp. αt,n ∈ At(k)[pn]).

Define

En = An −Bn ∈ Â(R′)[p2n], Et,n = At,n −Bt,n ∈ Ât(R′)[p2n].
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Again by Lemma 2.2, we have:

q(A/R; α, αt) = EA/R,pn(ϕn(αn), αt,n)

= EA/R′,pn(ϕn(αn), Bt,n) = EA/R′,pn(pnAn, Bt,n)

= EA/R′,pn(pnEn, Bt,n) = EA/R′,p2n(En, Bt,n),

and similarly

q(At
/R; αt, α) = EAt/R′,p2n(Et,n, Bn) =

1

EA/R′,p2n(Bn, Et,n)
.

So to prove the above formula, it is enough to prove:

EA/R′,p2n(En, Bt,n) · EA/R′,p2n(Bn, Et,n) = EA/R′,p2n(An, At,n).

By direct calculation, we have:

EA/R′,p2n(An, At,n) = EA/R′,p2n(Bn + En, Bt,n + Et,n)

= EA/R′,p2n(Bn, Bt,n) · EA/R′,p2n(En, Et,n) · EA/R′,p2n(Bn, Et,n) · EA/R′,p2n(En, Bt,n).

Since Bn is killed by pn,

EA/R′,p2n(Bn, Bt,n) = EA/R′,pn(pnBn, Bt,n) = 1.

Since En ∈ Â(R′)[p2n], Et,n ∈ Ât(R′)[p2n], and both Â[p2n] and Ât[p2n] are multiplicative,

we have EA/R′,p2n(En, Et,n) = 1. So we get the desired formula.

Finally we choose liftings A2n ∈ A(R) (resp. At,2n ∈ At(R)) lifting α2n ∈ A(k)[p2n]

(resp. αt,2n ∈ At(k)[p2n]). Then pnA2n (resp. pnAt,2n) is a lifting of αn (resp. αt,n).

From the above formula, we have:

q(A/R; α, αt)

q(At
/R; αt, α)

= EA/R,p2n(pnA2n, p
nAt,2n) = (EA/R,p3n)(A2n, At,2n)pn ∈ (1 + m)pn

.

We can take n large enough so that (1 + m)pn
= (1). So we have the desired equality

q(A/R; α, αt) = q(At
/R; αt, α).
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3. By Theorem 4, the homomorphism f : A → B can be lifted to a homomorphism

f : A→ B over R if and only if f [p∞] lifts to an f[p∞] : A[p∞] → B[p∞]. Such an f[p∞]

must be compatible with the exact sequences:

0 → HomZp(TpA
t(k), Ĝm) → A[p∞] → TpA(k)⊗Zp Qp/Zp → 0,

0 → HomZp(TpB
t(k), Ĝm) → B[p∞] → TpB(k)⊗Zp Qp/Zp → 0,

and the homomorphisms HomZp(TpA
t(k), Ĝm) → HomZp(TpB

t(k), Ĝm) (induced from

f t) and TpA(k) → TpB(k) (induced from f).

On the other hand, the first exact sequence gives an element in the group

Ext(TpA(k)⊗Zp Qp/Zp, HomZp(TpA
t(k), Ĝm)).

By pushing out along f t : TpB
t(k) → TpA

t(k), we get an element in

Ext(TpA(k)⊗Zp Qp/Zp, HomZp(TpB
t(k), Ĝm)) ∼= HomZp(TpA(k)⊗Zp TpB

t(k), Ĝm).

Under the above isomorphism, this element corresponds to the pairing

(α, βt) 7→ q(A/R; α, f t(βt)).

Similarly, the second exact sequence gives an element in

Ext(TpB(k)⊗Zp Qp/Zp, HomZp(TpB
t(k), Ĝm)).

When pulling back along f : TpA(k) → TpB(k), we get an element in

Ext(TpA(k)⊗Zp Qp/Zp, HomZp(TpB
t(k), Ĝm)) ∼= HomZp(TpA(k)⊗Zp TpB

t(k), Ĝm).

Under the above isomorphism, this element corresponds to the pairing

(α, βt) 7→ q(B/R; f(α), βt).

Hence f[p∞] exists if and only if the two pairings coincide, i.e.

q(A/R; α, f t(βt)) = q(B/R; f(α), βt),

for any α ∈ TpA(k), βt ∈ TpB
t(k). This finishes the proof of the theorem.
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Remark 2.3. We extract the following fact from the above proof. This fact will be frequently

used in the following calculation. For any α ∈ TpA(k) (resp. αt ∈ TpA
t(k)), let αn (resp.

αt,n) be the image of α (resp. αt) under the projection TpA → A(k)[pn] (resp. TpA
t →

At(k)[pn]). Let α̃n ∈ A(R) be an arbitrary lifting of αn ∈ A(k)[pn]. Then by definition

ϕA/R(α) = pnα̃n ∈ Â(R). Since the group Â(R) is killed by pn, we have α̃n ∈ A[p2n](R) and

q(A/R; α, αt) = EA/R,pn(pnα̃n, αt,n).

2.4 Section of the connected-étale sequence and p-th power roots

of the Serre-Tate coordinate

We keep the notations in the previous section. Let R be an artinian local ring with maximal

ideal m and residue field k. Assume that mn+1 = (0). Let A/R be a lifting of A/k. Then for

each integer m > 0, we have an exact sequence of finite group schemes over R:

0 → Â[pm] → A[pm] → A(k)[pm] → 0. (2.4)

By Cartier duality, we get an exact sequence:

0 → Ât[pm] → At[pm] → At(k)[pm] → 0 (2.5)

over R. The splitting of the above two exact sequences are equivalent.

The sequence (1.3) does not necessarily split over R in general. The splitting of (1.3) is

equivalent to the existence of an étale subgroup of At[pm] which lifts At(k)[pm]. Hence the

exact sequence (1.3) splits after an fppf extension of R. Now we fix some integer m ≥ n in

the following discussion. Then we can find an artinian local ring R′ finite flat over R such

that each αt,m ∈ At(k)[pm] is lifted to some α̃t,m ∈ At[pm](R′). From Lemma 2.2, we have

the following equality in Ĝm(R′):

q(A/R; α, αt) = EA/R,pm(ϕA/R(α), αt,m) = EA/R,pm(ϕA/R′(α), α̃t,m) = EA/R′ ,pm(pmα̃m, α̃t,m),

where α̃m ∈ A(R) is a lifting of αm ∈ A(k)[pm]. As α̃m ∈ A[p2m](R) by Remark 2.3, we have

q(A/R; α, αt) = EA/R′ ,pm(pmα̃m, α̃t,m) = EA/R′ ,p2m(α̃m, α̃t,m).
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For any s ≥ 0, we assume further that αt,m+s ∈ At(k)[pm+s] lifts to some α̃t,m+s ∈ At[pm+s](R′)

and psα̃t,m+s = α̃t,m. Then

q(A/R; α, αt) = EA/R′ ,p2m(α̃m, psα̃t,m+s) = EA/R′ ,p2m(α̃m, α̃t,m+s)
ps

.

In other words, EA/R′ ,p2m(α̃m, α̃t,m+s) is a ps-th root of the Serre-Tate coordinate q(A/R; α, αt).

The element EA/R′ ,p2m(α̃m, α̃t,m+s) definitely depends on the choice of α̃t,m+s. In the following

we want to determine how it depends on the choice of the integer m and the lifting α̃m.

First let α̃′m ∈ A(R) be another lifting of αm ∈ A(k)[pm], then β̃m = α̃m − α̃′m ∈ Â(R),

and hence β̃m is killed by pn. When s + n ≤ m, by Lemma 2.2 we have

EA/R′,p2m(β̃m, α̃t,s+m) = EA/R′,p2m(β̃m, αt,s+m) = EA/R′,p2m(β̃m, pnαt,s+m+n)

= EA/R′,p2m(pnβ̃m, αt,s+m+n) = 1.

Hence when 0 ≤ s ≤ m−n, the element EA/R′,p2m(α̃m, α̃t,s+m) does not depend on the choice

of α̃m.

Now let m′ ≥ m be another integer and assume that 0 ≤ s ≤ m− n. Let α̃′m be a lifting

of αm′ ∈ A(k)[pm′
]. Then we have

EA/R′,p2m′ (α̃m′ , α̃t,s+m′) = EA/R′,p2m(pm′−m(α̃m′), pm′−m(α̃t,s+m′)) = EA/R′,p2m(pm′−m(α̃m′), α̃t,s+m).

As pm′−m(α̃m′) is a lifting of pm′−m(αm′) = α ∈ A(k)[pm], from the previous argument, we

see that

EA/R′,p2m′ (α̃m′ , α̃t,s+m′) = EA/R′,p2m(α̃m, α̃t,s+m).

In other words, the element EA/R′,p2m(α̃m, α̃t,s+m) does not depend on the choice of m.

Since the integer m can be as an arbitrary integer greater than n, from the above dis-

cussion we see that for every integer s ≥ 1, there exists a ps-th root EA/R′,p2m(α̃m, α̃t,s+m) of

the Serre-Tate coordinate q(A/R; α, αt) as long as we choose a compatible lifting (α̃t,m)m of

(αt,m)m.
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2.5 Extension to more general bases

Let W = W (k) be the ring of Witt vectors with coefficients in k and CL/W be the category

of complete local W -algebras with residue field k. Fix an object R in CL/W with maximal

ideal m. For each n ≥ 0, set Rn = R/mn+1, which is an artinian local ring with residue

field k and R = lim←−Rn. As before we fix an ordinary abelian variety A/k. By passing to the

projective limit, we have a bijection:

{ isomorphism classes of liftings of A/k to R} → HomZp(TpA(k)⊗Zp TpA
t(k), Ĝm(R)),

A/R 7→ q(A/R;−,−)

such that for any α ∈ Tp(A)(k) and αt ∈ Tp(A
t)(k),

q(A/R; α, αt) = lim←− q(An/Rn ; α, αt),

where An = A⊗R Rn.

For any lifting A/R of A/k toR, we have the connect-étale exact sequence of Barsotti-Tate

groups over R:

0 → Â[p∞]
i−→ A[p∞]

π−→ TpA(k)⊗Zp Qp/Zp → 0.

Suppose that the above exact sequence splits after a faithfully flat extension of R , i.e. there

exist a W -algebra R′ finite and flat over R, and a morphism of Barsotti-Tate groups over R′

j : TpA(k)⊗ZpQp/Zp → A[p∞], such that π◦j = id : TpA(k)⊗ZpQp/Zp → TpA(k)⊗ZpQp/Zp.

For each n ≥ 1, set R′
n = R′ ⊗R Rn = R′/mn+1R′. Then we have a split exact sequence

of Barsotti-Tate groups over R′
n:

0 → Ân[p∞] → An[p∞] → TpA(k)⊗Zp Qp/Zp → 0.

By the discussion in the previous section, for any α ∈ Tp(A)(k), αt ∈ Tp(A
t)(k) and m ≥ 0,

we have a pm-th root of the Serre-Tate coordinate q(An/Rn ; α, αt) in R′
n, which is denoted by

tm,n ∈ Ĝm(R′
n). By taking projective limit, we have that tm = lim←− tm,n ∈ Ĝm(R′) is a pm-th

root of the Serre-Tate coordinate q(AR; α, αt) in R′.
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2.6 Frobenius action on the Serre-Tate coordinate

In this section we take k to be an algebraic closure of the prime field Fp. Recall that

W = W (k) is the ring of Witt vectors with coefficients in k and Kur is the quotient field of

W , which can be identified with the p-adic completion of the maximal unramified extension

Qur
p of Qp. Let σ (resp. Σ) be the absolute Frobenius automorphism of k (resp. W ).

As before we fix an ordinary abelian variety A/k. Consider the functor

DefA/k
: CL/W → Sets

R 7→ { isomorphism classes of liftings of A/k to R}.

The Serre-Tate deformation theorem tells us that the functor DefA/k
is represented by some

object Runiv in CL/W , and the Serre-Tate coordinate gives us an isomorphism of functors:

q(−;−,−) : DefA/k
→ Hom(TpA(k)⊗Zp TpA

t(k), Ĝm).

Set M̂A/k = Spf(Runiv) which is a formal W -torus. Define formal W -torus M̂
(Σ)
A/k by following

the Cartesian diagram:

M̂
(Σ)
A/k

²²

// M̂A/k

²²
Spec(W )

Spec(Σ)// Spec(W ),

and define the abelian variety A
(σ)
/k by the following Cartesian diagram:

A(σ)

²²

// A

²²
Spec(k)

Spec(σ)// Spec(k).

By [29] Lemma 4.1.1, we have

Lemma 2.6. There is a canonical isomorphism Σ of formal W -torus: M̂
(σ)
A/k → M̂A(σ)/k,

under which Σ(q(α, αt)) corresponds to q(σ(α), σ(αt)).

Since the abelian variety A/k is projective, it is defined over a finite field Fq inside k,

where q = pl for some integer l ≥ 1. Let σl (resp. Σl) be the l times composition of
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σ (resp. Σ) with itself. Then A
(σl)
/k

∼= A/k. Then Lemma 2.6 indicates that Σl induces

an automorphism of the deformation space m̂A/k which sends the Serre-Tate coordinate

q(A/W ; α, αt) to q(A(Σl)
/W ; σl(α), σl(αt)).

For later argument, we need the following result:

Lemma 2.7. Let K/Kur be a finite Galois representation inside Cp. Write OK for the

valuation ring of K. Let A/OK
be a lifting of an ordinary abelian variety A/k to OK. For

any σ ∈ Gal(K/Kur), define an abelian scheme A(σ)
/OK

by the following Cartesian diagram:

A(σ)

²²

// A

²²
Spec(OK)

Spec(σ)// Spec(OK).

Then A(σ)
/OK

is also a lifting of A/k and we have the equality:

σ(q(A/OK
; α, αt)) = q(A(σ)

/OK
; α, αt),

for any α ∈ TpA(k) and αt ∈ TpA
t(k).

The above lemma is nothing but the functorial property of Serre-Tate coordinates so we

omit the proof here.

In the end of this section, we give a discussion of CM liftings of the abelian variety A/k.

Recall that we assume that the abelian variety A/k is defined over a finite field Fq. Let

π : A → A be the Frobenius endomorphism of A/Fq . We are interested in characterization

of liftings of A/Fq with complex multiplication. When A/Fq is an arbitrary abelian variety,

this question can be quite difficult. However, under the assumption that A/Fq is ordinary,

we have the following:

Proposition 2.8. ([31] Lemma 2.8) Let R be a complete local noetherian W (Fq)-algebra

with residue field Fq and A/R be a lifting of A/Fq to R. Let R̄ = R⊗W (Fq) W .

1. The following conditions are equivalent:
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(a) A⊗R R̄ is the identity element in M̂A/k
(R̄);

(b) the reduction map End(A/R) → End(A/Fq) is an isomorphism;

(c) the homomorphism πm lifts to an endomorphism of A/R for some integer m ≥ 1.

2. The following conditions are equivalent:

(a) A⊗R R̄ is a torsion element in M̂A/k
(R̄);

(b) the reduction map End(A/R) → End(A/Fq) is an isomorphism after inverting p,

i.e. we have an isomorphism End(A/R)⊗ Z[1
p
] ∼= End(A/Fq)⊗ Z[1

p
];

(c) A⊗R R̄ is isogenous to the abelian scheme A1/R̄ where A1/R̄ is the identity element

in M̂A/k
(R̄);

(d) A/R has complex multiplication.

Definition 2.9. Under the notations and assumptions of Proposition 2.8, if A/R satisfies

the equivalent conditions in part (1), we say that A/R is the canonical lifting of A/Fq ; if A/R

satisfies the equivalent conditions in part (2), we say that A/R is a quasi-canonical lifting of

A/Fq .

2.7 Partial Serre-Tate coordinates

In this section we write R for a complete noetherian local ring with maximal ideal m and

residue field k and an abelian variety A/k which is not necessarily ordinary. Suppose that the

Barsotti-Tate group A[p∞]/k is not local-local, i.e. the slopes of A[p∞]/k contains 0 and 1 (see

[3] for the definition of slopes of Barsotti-Tate groups over an arbitrary field) or equivalently,

the Tate module Tp(A)(k) is nontrivial.

We say that a Barsotti-Tate group G/R is multiplicative if its dual Gt
/R is ind-étale. We

say that G/R is local-local if both G/R and Gt
/R are connected. As k is algebraically closed,

we can decompose the Barsotti-Tate group A[p∞]/k as A[p∞] = A[p∞]ord × A[p∞]ll, where

A[p∞]ord is a product of a multiplicative Barsotti-Tate group with an ind-étale Barsotti-Tate
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group, and A[p∞]ll is local-local.

Now we assume that R is artinian and mn+1 = (0) for some n ≥ 1. Let A/R be a lifting

of A/k to R. We assume further that we have a decomposition of Barsotti-Tate groups over

R:

A[p∞] = A[p∞]ord × A[p∞]ll,

where A[p∞]ord (resp. A[p∞]ll) lifts A[p∞]ord (resp. A[p∞]ll). This is equivalent to saying that

Â[p∞] can be decomposed as A[p∞]mult × A[p∞]ll over R, where A[p∞]mult is multiplicative

and A[p∞]ll is local-local. Then we have an exact sequence of Barsotti-Tate groups over R:

0 → A[p∞]mult → A[p∞]ord → Tp(A)(k)⊗Zp (Qp/Zp) → 0.

Similar with the ordinary case we define a homomorphism

pn : A[pn](k) → Â(R)

x 7→ pnx̃,

where x̃ is an arbitrary lifting of x in A(R). Write ϕA/R as the composition

Tp(A)(k) → A[pn](k)
pn−→ Â(R) → A[p∞]mult(R).

On the other hand we have a perfect pairing of k-group schemes Amult[pn] × At[pn] → µpn ,

which can be lifted uniquely to a perfect pairing of R-group schemes A[pn]mult×At(k)[pn] →
µpn . By taking limit, we have a perfect pairing

eA/R : A[p∞]mult × TpA
t(k) → Ĝm

over R. Then we can define the partial Serre-Tate coordinate by the formula:

q(A/R;−,−) : Tp(A)(k)⊗Zp Tp(A
t)(k) → Ĝm(R)

α⊗ αt 7→ eA/R(ϕA/R, αt),

for any α ∈ Tp(A)(k) and αt ∈ Tp(A
t)(k).
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As in the ordinary case, we assume that the exact sequence

0 → A[p∞]mult → A[p∞]ord → Tp(A)(k)⊗Zp (Qp/Zp) → 0

splits after some faithfully flat extension R′ of R. Then for any αt = (αt,n) ∈ TpA
t(k),

we choose a compatible lifting (α̃t,n) of (αt,n) in A[p∞]ord(R′), i.e. α̃t,n ∈ A[pn]ord(R′) and

p(α̃t,n+1) = αt,n. Then for any s > 0 and m ≥ n + s, the element EAR′ ,p2m(π(α̃m), α̃t,m+s) is

a ps-th root of the partial Serre-Tate coordinate q(A/R; α, αt), where π : Â → A[p∞]mult is

the natural projection and α̃m ∈ A(R) is an arbitrary lifting of αm ∈ A[pm](k).

Also similar to section 2.5 by taking projective limit, we can extend the above result to

R ∈ CL/W .
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CHAPTER 3

Galois representations attached to ordinary abelian

varieties

Let A/Fq be an ordinary abelian variety over a finite field Fq, where q is a power of a prime

p. We have seen in the previous chapter that the liftings of A/Fq to characteristic 0 are

determined by the Serre-Tate coordinates. On the other hand, if K is a finite extension of

Qq and A/K is a lifting of A/Fq , we can consider the Galois representation ρ of Gal(K̄/K)

associated to the p-adic Tate module of A/K . In this chapter, we explain how the Serre-Tate

coordinates of A/K determine the Galois representation ρ. For later argument, we want the

representation ρ valued in the symplectic group so we need to impose a polarization on the

abelian scheme A/K . So we divide our discussion into two cases: elliptic curves and polarized

abelian varieties.

3.1 The case of elliptic curves

Fix an algebraically closure k of the prime field Fp for a fixed prime p > 0 and an ordinary

elliptic curve E/k. Let K be a finite extension of Qur
p with valuation ring OK and recall that

Kur is the quotient field of the ring W = W (k). Let Ω be the algebraic closure of Kur inside

Cp. Then we have the isomorphism of Galois groups: Gal(Ω/Kur) ∼= Gal(Q̄p/Qur
p ). As K

and Kur are linearly disjoint over Qur
p , we take L to be the composite of K and Kur over

Qur
p , which is the p-adic completion of K inside Ω. Let OL be the valuation ring of L.

Suppose that E/OK
is a lifting of E/k to OK . Since E/k is an elliptic curve, it is naturally

isomorphic to its dual Et
/k, and hence we have a Serre-Tate coordinate q(E/OK

;−,−) :

25



TpE(k)⊗Zp TpE(k) → Ĝm(OK).

From the exact sequence of Barsotti-Tate groups over OK :

0 → Ê→ E[p∞] → TpE(k)⊗Zp (Qp/Zp) → 0,

we have an exact sequence of Tate modules:

0 → TpÊ(Q̄p)
i−→ TpE(Q̄p)

π−→ TpE(k) → 0.

We identify TpÊ(Q̄p) as a submodule of TpE(Q̄p) under i. Then we can choose a Zp-basis

{v◦ = (v◦n), vet = (vet
n )} of TpE(Q̄p) (with v◦n, v

et
n ∈ E[pn](Q̄p)) such that v◦ is a basis of the

Zp-module TpÊ(Q̄p) and vet is mapped to a basis u = (un) of TpE(k) under the map π (with

un ∈ E[pn](k)). Then set t = q(E/OK
; u, u).

Under the Zp-basis {v◦, vet} of TpE(Q̄p), we have a Galois representation attached to

TpE(Q̄p):

ρ : Gal(Q̄p/K) → GL2(Zp)

σ 7→

χ(σ) b(σ)

0 1


 ,

where χ : Gal(Q̄p/K) → Z×p is the p-adic cyclotomic character.

On the other hand, for each integer n ≥ 1, the element vet
n ∈ E[pn](Q̄p) generates an étale

subgroup of E[pn] which lifts the constant group scheme E[pn](k)/k. Thus we can find a

(possibly infinite) extension K̃ of K inside Q̄p, such that vet
n is defined over OK̃ for all n (OK̃

is the valuation ring of K̃). Replacing K̃ by its Galois closure inside Q̄p, we can assume that

K̃/K is Galois. Let L̃ be the composite of K̃ and Kur over Qur
p , and OL̃ be the valuation

ring of L̃. Under the above notations, the exact sequence of Barsotti-Tate groups:

0 → Ê→ E[p∞] → TpE(k)⊗Zp (Qp/Zp) → 0,

splits when base change to OL̃. By the discussion in Chapter 2, for any integer s ≥ 1, we

have a unique ps-th root ps√
t ∈ OL̃ of the Serre-Tate coordinate t which depends only on

vet = (vet
n ). Our main result is the following:
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Theorem 6. For any σ ∈ Gal(Q̄p/K) and integer s ≥ 1, under the isomorphism Gal(Q̄p/K) ∼=
Gal(Ω/L), we have the equality:

σ( ps√
t)

ps√
t

= EE/Q̄p,ps(vet
s , v◦s)

b(σ).

Proof. For any integer n ≥ 1, let Wn = OK/mn+1
K OK = OL/mn+1

L OL (mK (resp. mL) is

the maximal ideal of OK (resp. OL)) and W̃n = Wn ⊗OK
OK̃ , which is an artinian local

ring faithfully flat over Wn. Set E/Wn = E ×OK
Wn and tn = q(E/Wn ; u, u). Then we have

t = lim←− tn ∈ Ĝm(OL). From the discussion in Section 2.4, for each m ≥ n + s, we have a

unique ps-th root of tn, which is given by the formula:

ps√
tn = EE/fWn,p2m(α̃m,n, v̄

et
m+s) ∈ µp2m(W̃n),

where α̃m,n ∈ E(Wn) is an arbitrary lift of um ∈ E[pm](k), and v̄et
m+s is the reduction of vet

m+s

in E[pm+s](W̃n). From the discussion in Section 2.4, we have ps√
t = lim←− ps√

tn ∈ Ĝm(OL̃).

Now for any σ ∈ Gal(Q̄p/K), since K̃/K is Galois, σ induces an automorphism of K̃,

and hence induces an automorphism of W̃n for each n. We still denote this automorphism

by σ.

Since α̃m,n ∈ E(Wn) and σ fixes K, σ(α̃m,n) = α̃m,n. By our assumption on the expression

of the Galois representation ρ, we have σ(vet) = b(σ)v◦+vet, and hence σ(v̄et
m+s) = b(σ)v̄◦m+s+

v̄et
m+s.

As the pairing EE/fWn,p2m(−,−) is compatible with arbitrary base change, we have

σ( ps√
tn) = σ(EE/fWn,p2m(α̃m,n, v̄

et
m+s)) = EE/fWn,p2m(σ(α̃m,n), σ(v̄et

m+s))

= EE/fWn,p2m(α̃m,n, b(σ)v̄◦m+s + v̄et
m+s) = EE/fWn,p2m(α̃m,n, v̄

◦
m+s)

b(σ) · EE/fWn,p2m(α̃m,n, v̄
et
m+s)

= ps√
tnEE/fWn,p2m(α̃m,n, v̄

◦
m+s)

b(σ).

Now we analyze the term EE/fWn,p2m(α̃m,n, v̄
◦
m+s). As v̄◦m+s ∈ Ê(W̃n) and α̃m,n ∈ E[p2m](Wn)

lifts um ∈ E[pm](k) ⊆ E[p2m](k), from Lemma 2.2, we have

EE/fWn,p2m(α̃m,n, v̄
◦
m+s) = EE/fWn,p2m(um, v̄◦m+s) = EE/fWn,p2m(v̄et

m, v̄◦m+s)

= EE/fWn,p2m(psv̄et
m+s, v̄

◦
m+s) = EE/fWn,p2m+s(v̄

et
m+s, v̄

◦
m+s).
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The last term is the projection of EE/OK̃ ,p2m+s(vet
m+s, v

◦
m+s) under the base change OK̃ → W̃n,

which is denoted by EE/OK̃ ,ps(vet
s , v◦s).

By a direct computation, we have

EE/OK̃ ,p2m+s(vet
m+s, v

◦
m+s) = EE/OK̃ ,ps(pmvet

m+s, p
mv◦m+s) = EE/OK̃ ,ps(vet

s , v◦s).

Hence we have

σ( ps√
tn) = ps√

tn · (EE/OK̃ ,ps(vet
s , v◦s))

b(σ).

By taking projective limit for n, we have the desired equality:

σ(
ps√

t) =
ps√

t · EE/OK̃ ,ps(vet
s , v◦s)

b(σ) =
ps√

t · EE/Q̄p,ps(vet
s , v◦s)

b(σ).

3.2 Generalization to higher dimensions

We keep the same notations as in section 3.1. In this section we want to generalize the result

in the previous section to higher dimensions. Let K/Qur
p be a finite extension inside Q̄p with

valuation ring OK . The field L is defined to be the composite of K and Kur over Qur
p .

Fix an algebraic closure k of the prime field Fp. Let A/k be an abelian variety and A/OK

be a lifting of A/k to OK . Then we have a connected-étale exact sequence of Barsotti-Tate

groups over OL:

0 → Â→ A[p∞] → TpA(k)⊗Zp (Qp/Zp) → 0.

For every integer n ≥ 1,we have a perfect pairing:

epn : Â[pn]× At[pn](k) → Ĝm

over OL. Taking projective limits, we have a perfect pairing:

ep∞ : TpÂ(Cp)× TpA
t(k) → Tpµp∞(Cp)

over OL. For later argument, we fix a basis ζp∞ = (ζpn)n of the Zp-module Tpµp∞(Cp).
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Now suppose that we are given a polarization λ : A → At of A/OK
whose degree is

prime to p. This polarization induces isomorphisms of p-adic Tate modules TpA(Cp) →
TpAt(Cp) and TpA(k) → TpA

t(k), which are still denoted by λ. We can take a Zp-basis

{v◦1, . . . , v◦n, vet
1 , . . . , vet

n } of the p-adic Tate module TpA(Cp) such that:

1. {v◦1, . . . , v◦n} is a Zp-basis of TpÂ(Cp);

2. {vet
1 , . . . , vet

n } is a lifting of a basis {u1, . . . , un} of the Tate module TpA(k);

3. under the pairing ep∞ and the isomorphism λ : TpA(k) → TpA
t(k), we have ep∞(v◦i , λ(uj)) =

1 if i 6= j and ep∞(v◦i , λ(uj)) = ζp∞ if i = j.

Under the basis {v◦1, . . . , v◦n, vet
1 , . . . , vet

n }, the Galois representation attached to the Tate

module TpA(Cp) is of the shape:

ρ : Gal(Q̄p/K) → Gsp2n(Zp)

σ 7→

χp(σ) · In B(σ)

0 In


 ,

where χp : Gal(Q̄p/K) → Z×p is the p-adic cyclotomic character, In is the n × n identity

matrix and B = (bij)1≤i,j≤n : Gal(Q̄p/K) → Mn×n(Zp) is a map valued in the set of n × n

symmetric matrices.

Now we consider the Serre-Tate coordinates tij = q(AOL
; ui, λ(uj)). From the discus-

sion in section 2.4, the lifting vet
i of ui gives a compatible sequence of p-th power roots

{ ps√tij}s=1,2,... of the Serre-Tate coordinates tij, for 1 ≤ i, j ≤ n.

Under the above notations, we have:

Theorem 7. For any σ ∈ Gal(Q̄p/K) and integer s ≥ 1, under the isomorphism Gal(Q̄p/K) ∼=
Gal(Ω/L), we have the equality:

σ( ps√tij)
ps√tij

= ζ
bij(σ)
ps .
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3.3 Extension to the decomposition group

In this section we want to extend the previous results to the decomposition group, i.e. we

want to use the Serre-Tate coordinates to study the Galois representation of the decompo-

sition group. First we give a cohomological interpetation of Theorem 7.

Remark 3.1. Recall that we have a Galois representation

ρ : Gal(Q̄p/K) → Gsp2n(Zp)

σ 7→

χp(σ) · In B(σ)

0 In


 .

By direct calculation, for every pair 1 ≤ i, j ≤ n, the map bij : Gal(Q̄p/K) → Zp is a

1-cocycle if we define the action of Gal(Q̄p/K) on Zp by the p-adic cyclotomic character

χp. Hence we have an element in the cohomology group H1(Gal(Q̄p/K),Zp(χp)), which is

denoted by bij.

On the other hand, under the basis ζp∞ of Tpµp∞(Cp), we have an isomorphism of

Gal(Q̄p/K)-modules Zp(χp) → Tpµp∞(Cp) which sends 1 to ζp∞ . So we have an isomor-

phism of cohomology groups:

H1(Gal(Q̄p/K),Zp(χp)) → H1(Gal(Q̄p/K), Tpµp∞(Cp)).

Now by Kummer theory, we have an isomorphism:

H1(Gal(Q̄p/K), Tpµp∞(Cp)) → K̂×,

where K̂× is the pro-p-completion of the multiplicative group K×. As Ĝm(OL) = 1 + mL,

we can regard Ĝm(OL) as a subgroup of K̂×. Then Theorem 7 tells us that under the

isomorphism

H1(Gal(Q̄p/K),Zp(χp)) → K̂×,

the element bij coming from the Galois representation ρ corresponds to the Serre-Tate coor-

dinate tij ∈ Ĝm(OL) ⊆ K̂×.
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We start from the case of elliptic curves. Let K/Qp be a finite extension with valuation

ring OK and residue field Fq (q = pr for some integer r ≥ 1) and let E/OK
be an elliptic

curve whose special fiber E/Fq is ordinary. Recall that we fix an algebraic closure Q̄p (resp.

k) of Qp (resp. Fq). Under the ordinary assumption, we have an exact sequence of the p-adic

Tate modules:

0 → TpÊ(Q̄p)
i−→ TpE(Q̄p)

π−→ TpE(k) → 0.

As in section 3.1, we choose a Zp-basis {v◦, vet} of TpE(Q̄p) such that v◦ is a basis of TpÊ(Q̄p)

and vet is mapped to a basis u of TpE(k) under the reduction map. Under this basis, we

have a Galois representation attached to TpE(Q̄p):

ρ : Gal(Q̄p/K) → GL2(Zp)

σ 7→

χp(σ) · η−1(σ) b(σ)

0 η(σ)


 ,

where χp : Gal(Q̄p/K) → Z×p is the p-adic cyclotomic character and η : Gal(Q̄p/K) → Z×p
is an unramified character. Now we define a map c : Gal(Q̄p/K) → Zp by setting c(σ) =

η−1(σ)b(σ) for all σ ∈ Gal(Q̄p/K). As ρ is a representation, a direct calculation shows

that c : Gal(Q̄p/K) → Zp is a 1-cocycle valued in Zp(χpη
−2). If we choose a different

lifting vet ∈ TpE(Q̄p) of u ∈ TpE(k), the 1-cocycle c : Gal(Q̄p/K) → Zp is changed by a

1-coboundary valued in Zp(χpη
−2). Hence to determine the Galois representation ρ (up to

isomorphism), it is enough to determine the corresponding element of c : Gal(Q̄p/K) → Zp

in the cohomology group H1(Gal(Q̄p/K),Zp(χpη
−2)). In fact, we have the following relation:

Theorem 8. For any σ ∈ Gal(Q̄p/K) and integer s > 0, we have the equality:

σ( ps√
t)η(σ)−2

ps√
t

= EE/Q̄p,ps(vet
s , v◦s)

c(σ).

Proof. The proof is quite similar with that of Theorem 6, so we do not give all the details

here.

We assume that there is a Galois extension K̃/L such that the exact sequence

0 → Ê→ E[p∞] → TpE(k)⊗Zp (Qp/Zp) → 0
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splits over OK̃ . As in the proof of Theorem 6, we can define Wn, W̃n, tn. Then for m ≥ s+n,

ps√
tn = EE/fWn,p2m(α̃m,n, v̄

et
m+s).

For σ ∈ Gal(Q̄p/K), we have

σ( ps√
tn) = EE/fWn,p2m(σ(α̃m,n), σ(v̄et

m+s)) = EE/fWn,p2m(σ(α̃m,n), b(σ)v̄◦m+s + η(σ)v̄et
m+s).

As α̃m,n ∈ E(Wn) is a lifting of um ∈ E[pm](k), the element σ(α̃m,n) ∈ E(Wn) is a lifting

of σ(um) = η(σ) · um ∈ E[pm](k). From the argument in section 2.4, the element ps√
tn is

independent of the choice of the lifting of um. Thus we have

σ( ps√
tn) = EE/fWn,p2m(η(σ)α̃m,n, b(σ)v̄◦m+s + η(σ)v̄et

m+s)

= EE/fWn,p2m(α̃m,n, v̄
◦
m+s)

b(σ)η(σ) · EE/fWn,p2m(α̃m,n, v̄
et
m+s)

η(σ)2

= ( ps√
tn)η(σ)2 · EE/fWn,p2m(α̃m,n, v̄

◦
m+s)

b(σ)η(σ).

By the same analysis on the term EE/fWn,p2m(α̃m,n, v̄
◦
m+s) as in the proof of Theorem 6, and

taking limit for various n, we have the desired equality:

σ(
ps√

t) = (
ps√

t)η(σ)2 · EE/OK̃ ,ps(vet
s , v◦s)

b(σ)η(σ) = (
ps√

t)η(σ)2 · EE/Q̄p,ps(vet
s , v◦s)

b(σ)η(σ).

Taking the η−2(σ)-th power on both sides, we get the desired equality.

Remark 3.2. As in Remark 3.1, we can give a cohomological intepretation of Theorem

8. Let Kur be the maximal unramified extension of K in Q̄p and let I = Gal(Q̄p/K
ur) ⊆

Gal(Q̄p/K) = G be the inertia group. Then we have the inflation-restriction exact sequence:

0 → H1(G/I,Zp(χpη
−2)I) → H1(G,Zp(χpη

−2)) → H1(I,Zp(χpη
−2))G/I → H2(G/I,Zp(χpη

−2)I).

As the character η is unramified, the inertia group I acts on Zp(χpη
−2) by the p-adic cyclo-

tomic character. Hence Zp(χpη
−2)I = 0. Se the restriction map induces an isomorphism:

H1(G,Zp(χpη
−2)) → H1(I,Zp(χp))

G/I .
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From Remark 3.1, under the isomorphism of I-modules Zp(χp) → Tpµp∞(Cp) which sends 1

to lim EE/Q̄p,ps(vet
s , v◦s) and the isomorphism H1(I, Tpµp∞(Cp)) ∼= ̂(Kur)×, the image of c in

H1(I,Zp(χp)) corresponds to the Serre-Tate coordinate t ∈ ̂(Kur)×.

On the other hand, it is easy to check that the map

Gal(Q̄p/K) → Tpµp∞(Cp)

σ 7→ lim←−
σ( ps√

t)η−2(σ)

ps√
t

,

is a 1-cocycle valued in H1(G, Tpµp∞(Cp)(χpη
−2)) whose restriction to the inertia group

corresponds to the Serre-Tate coordinate t under the above isomorphism. Using this coho-

mological interpretation, we get another proof of Theorem 8.

Moreover, from the restriction map, we see that the image of c in H1(I,Zp(χp)) is in-

variant under the action of G. Let f : I → Tpµp∞(Cp), σ 7→ lim←−
σ( ps√

t)
ps√

t
be the 1-cocycle

corresponding to the Serre-Tate coordinate t. For any g ∈ G, the action of g on the cocycle

f is given by the formula:

f g(σ) = g · f(g−1σg).

Hence

f g(σ) = (lim←−
σ( ps√

t)
ps√

t
)χp(g)η−2(g) = (g(lim←−

σ( ps√
t)

ps√
t

))η−2(g) = (lim←−
σ · g( ps√

t)

g( ps√
t)

)η−2(g).

As { ps√
t} is a compatible p-th power roots of t, {g( ps√

t)} is a compatible p-th power

roots of g(t). Under the isomorphism induced by Kummer theory, the 1-cocycle σ 7→
(lim←−

σ·g( ps√
t)

g( ps√
t)

)η−2(g) corresponds to g(t)η−2(g). So we have the equality g(t) = tη
2(g). The

cohomological interpretation gives another proof of Lemma 2.6.

The case of higher dimensions is more complicated. Let A/OK
be an abelian scheme

of relative dimension n whose special fiber A/Fq is ordinary. As in section 3.2, we can

choose a Zp-basis of the p-adic Tate module TpA(Q̄p) = TpA(Cp) under which the Galois
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representation attached to TpA(Q̄p) is of the shape:

ρ : Gal(Q̄p/K) → GSp2n(Zp)

σ 7→

χp(σ) · T (σ) B(σ)

0 (T (σ)−1)t


 ,

here again χp : Gal(Q̄p/K) → Z×p is the p-adic cyclotomic character, B = (bij)1≤i,j≤n :

Gal(Q̄p/K) → Mn×n(Zp) is a map, and T (·) : Gal(Q̄p/K) → GLn(Zp) is the unramified ho-

momorphism which sends (any) Frobenius element in Gal(Q̄p/K) to a matrix X ∈ GLn(Zp).

Under the above setting, we define a map C : Gal(Q̄p/K) → Zp by requiring that C(σ) =

B(σ) · T (σ)t for any σ ∈ Gal(Q̄p/K). A direct calculation shows that C : Gal(Q̄p/K) →
Mn×n(Zp) is a 1-cocycle if we define the Gal(Q̄p/K)-action on Mn×n(Zp) by the formula:

σ · M = χp(σ)T (σ) · M · T (σ)t. Let I ⊆ Gal(Q̄p/K) be the inertia group. Again the

inflation-restriction exact sequence tells us that the restriction map induces an isomorphism:

H1(Gal(Q̄p/K),Mn×n(Zp)) → H1(I, Mn×n(Zp)(χp))
Gal(Q̄p/K)/I .

For 1 ≤ i, j ≤ n, the restriction of the map bij : Gal(Q̄p/K) → Zp to the inertia group I is a

1-cocycle valued in Zp(χp). From Theorem 7 and Remark 3.1, under the isomorphism

H1(I,Zp(χp)) ∼= H1(I, Tpµp∞(Cp)) ∼= ̂(Kur)×,

the images of bij’s correspond to the Serre-Tate coordinates tij’s. Hence the Serre-Tate co-

ordinates tij’s determine the images of the 1-cocycle C in the cohomological group

H1(Gal(Q̄p/K),Mn×n(Zp)) and hence determine the Galois representation ρ (up to isomor-

phism).

Since we know little about the matrix A, we cannot expect to get an explicit expression

of the 1-cocycle C as in Theorem 8. For later argument, we consider a special case: suppose

that there exists a finite extension L/Qp with valuation ring OL and a matrix W ∈ GLn(OL)

such that WXW−1 = D = diag{d1, . . . , dn} is a diagonal matrix in GLn(OL). Hence
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(Wt)
−1X t−1

W t = D−1. Now we consider a conjugation of the Galois representation ρ:

ρ′ =


W 0

0 (W t)−1


 ρ


W−1 0

0 W t


 : Gal(Q̄p/K) → GSp2n(OL)

σ 7→

χp(σ) · T ′(σ) B′(σ)

0 (T ′(σ)−1)t


 ,

where T ′ : Gal(Q̄p/K) → GLn(OL) is the unramified homomorphism sending (any) Frobe-

nius element to the matrix D ∈ GLn(OL). By direct calculation, B′(σ) = WB(σ)W t. So

for any 1 ≤ i, j ≤ n, the map b′ij : Gal(Q̄p/K) → OL is an OL-linear combination of bkl’s.

From our previous discussion, the Serre-Tate coordinates tkl’s of AOK
determine the im-

ages of bkl’s in H1(I,Zp(χp)), and hence determine the images of b′ij’s in H1(I,OL(χp)) =

H1(I,Zp(χp)) ⊗Zp OL. On the other hand, if we define ηj : Gal(Q̄p/K) → O×
L as the

unramified character which sends (any) Frobenius element to dj ∈ OL, then the map

c′ij = ηj · b′ij : Gal(Q̄p/K) → OL is a 1-cocycle valued in OL(χpηiηj). Again the restric-

tion map gives us an isomorphism

H1(Gal(Q̄p/K),OL(χpηiηj)) → H1(I,OL(χp))
Gal(Q̄p/K)/I .

So in this way, the Serre-Tate coordinates determine the images of c′ij in H1(Gal(Q̄p/K),OL(χpηiηj)).
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CHAPTER 4

Shimura varieties

In this chapter, we give a review on the Hilbert modular Shimura varieties and Siegel modular

Shimura varieties. We give the construction of the integral models of these Shimura varieties

and study the local model of these Shimura varieties at closed ordinary points.

Throughout this chapter we always fix a totally real field F with integer ring OF . The

degree of F over Q is denoted by d.

4.1 Abelian varieties with real multiplication

In this section we introduce the notion of abelian varieties with real multiplication (AVRM

for short).

Fix an invertible OF -module L, with a notion of positivity L+ on it: for each real embed-

ding τ : F → R, we give an orientation on the line L⊗OF ,τ R. First we recall the following

definition in [7]:

Definition 4.1. An L-polarized abelian scheme with real multiplication by OF is the triple

(A/S, ι, ϕ) consisting of

1. A/S is an abelian scheme of relative dimension d;

2. ι : OF → End(A/S) is an algebra homomorphism which gives A/S an OF -module

structure;

3. ϕ : L → HomSym
OF

(A/S, At
/S) is an OF -linear morphism of sheaves of OF -modules on

the étale site (Sch/S)ét of the category of S-schemes, such that ϕ sends totally positive

36



elements of L into polarizations of A/S, and the natural morphism α : A⊗OF
L → At

is an isomorphism. Here At is the dual abelian scheme of A, and L is the constant

sheaf valued in L, and the sheaf HomSym
OF

(A/S, At
/S) is defined by :

(Sch/S)ét 3 T 7→ HomSym
OF ,T (AT/T

, At
T/T

) = {λ : AT/T
→ At

T/T
|λ is OF -linear and

symmetric}

When L = c is a fractional ideal of OF with the natural notion of positivity, we call the

isomorphism α : A⊗OF
c → At a c-polarization of A (see [28]1.0 for more discussion). We

also make the convention that for c ∈ c, the morphism λ(c) : A → At is the corresponding

symmetric OF -linear homomorphism.

Remark 4.2. The f.p.p.f. abelian sheaf A⊗OF
L is the sheafication of the functor

(Sch/S)f.p.p.f. 3 T 7→ A(T )⊗OF
L.

This sheaf is represented by an abelian scheme over S, which is denoted by A ⊗OF
L.

Hence the isomorphism α in (3) can be regarded as an isomorphism of abelian schemes over

S.

Definition 4.3. Let A/S be an abelian scheme over a scheme S of relative dimension d, and

ι : OF → End(A/S) be an algebra homomorphism. We say that the pair (A/S, ι) satisfies

the condition (DP) if the natural morphism α : A ⊗OF
HomSym

OF
(A/S, At

/S) → At is an iso-

morphism. We say that the pair (A/S, ι) satisfies the condition (RA) if Zariski locally on S,

Lie(A/S) is a free OS ⊗Z OF -module of rank 1.

We remark here that the two conditions (DP) and (RA) in Definition 4.3 can be checked

at each geometric point of the base scheme S. When the pair (A/S, ι) satisfies the condition

(RA), we come to the notion of abelian schemes with real multiplication (by OF ) defined

in [41]. As explained in [7]2.9, when dF is invertible on S, condition (DP) in Definition

4.3 implies (RA). For later use, we explain that condition (RA) implies (DP) under some

assumption on S and by a suitable choice of the pair (L,L+), we can make A/S be an

L-polarized abelian scheme with real multiplication by OF . First we need the following:
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Proposition 4.4. ([41]1.17,1.18) Let A/S be an abelian scheme of relative dimension d,and

ι : OF → End(A/S) be an algebra homomorphism. Then the étale sheaf HomSym
OF

(A/S, At
/S)

defined above is locally constant with values in a projective OF -module of rank 1, endowed

with a notion of positivity corresponding to polarizations of A/S. In particular, when S is

normal and connected, this sheaf is constant.

Here we remark that in [41], the abelian scheme A/S is assumed to satisfy condition (RA).

But this condition is not necessary in the proof of the above proposition.

Now assume that S is normal and connected (e.g. S is the spectrum of the integer ring of

a number field). Then from Proposition 4.4 we can find a projective OF -module M of rank 1

with a notion of positivity M+ and an OF -linear isomorphism ϕ : M→ HomSym
OF

(A/S, At
/S).

To check this ϕ satisfies condition (3) in Definition 4.1, we still need to check that the

morphism α : A⊗OF
M→ At is an isomorphism.

We can assume that S = Spec(k), where k is an separably closed field and we want to

prove that α is an isomorphism of abelian varieties over k. Then it suffices to show that for

any rational prime l, there exists 0 6= λ ∈M, such that deg(ϕ(λ)) is prime to l. In fact, for

any α ∈M, we have a natural morphism A → A⊗OF
M whose effect on R-valued points is

given by the formula (R is an k-algebra):

A(R) 3 a 7→ a⊗OF
λ ∈ A(R)⊗OF

M.

The composition of this morphism with α is ϕ(λ). Hence deg(α)| deg(ϕ(λ)). In particular,

deg(α) is prime to l. As l is arbitrary, deg(α) = 1 and hence α is an isomorphism.

To prove the existence of λ, we apply an argument in [15] Chapter 3 Section 5: when

char(k) > 0, by [41]1.13, we can always lift the pair (A/k, ι) to an abelian scheme with

real multiplication (Ã/W (k), ι̃) satisfying (RA). Here W (k) is the ring of Witt vectors of k.

Hence we can assume that char(k) = 0. By Lefschetz principle, we can assume that k is the

complex filed. Then the existence of λ follows from the complex uniformization [15]Chapter

2 Section 2.2.
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The following proposition tells us that when S is a scheme of characteristic 0, condition

(RA) and hence (DP) is automatically satisfied.

Proposition 4.5. Let k be a field of characteristic 0, A/k be an abelian variety of dimension

d, and ι : OF → End(A/k) be an algebra homomorphism. Then Lie(A/k) is a free OF ⊗Z k-

module of rank 1.

Proof. By Lefschetz principle we can again work over the complex field. Then the result

follows from [15] Chapter 2, Corollary 2.6.

4.2 Hilbert modular Shimura varieties

In this section we introduce the integral model of Hilbert modular Shimura varieties we will

work with.

Fix a finite set of primes Ξ. Set

Z(Ξ) = {m

n
∈ Q|m,n ∈ Z, (n, p) = 1,∀p ∈ Ξ}.

Then define O(Ξ) = OF ⊗Z Z(Ξ), and O×
(Ξ),+ as the set of totally positive units in O(Ξ). Also

we define:

Ẑ = lim←−Z/nZ, Ẑ(Ξ) = lim←−Z/nZ, ZΞ =
∏

l∈Ξ

Zl,

where in the first inverse limit, n ranges over all positive numbers, and in the second inverse

limit, n ranges over all positive integers prime to Ξ. Let A be the adele ring of Q. Then set

A(Ξ∞) = {x ∈ A|xl = x∞ = 0,∀l ∈ Ξ},

and FA(Ξ∞) = F ⊗Q A(Ξ∞).

Define the algebraic group G = ResOF /Z(GL(2)) and let Z be its center. K is an open

compact subgroup of G(Ẑ) which is maximal at Ξ, in the sense that K = G(ZΞ) × K(Ξ),

where

K(Ξ) = {x ∈ K|xp = 1 for all p ∈ Ξ}.
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Definition 4.6. Define the functor E′(Ξ)
K : Sch/Z(Ξ)

→ Set, such that for each Z(Ξ)-scheme

S, E′(Ξ)
K (S) = [(A/S, ι, λ̄, η̄(Ξ))]. Here [(A/S, ι, λ̄, η̄(Ξ))] is the set of isomorphism classes of

quadruples (A/S, ι, λ̄, η̄(Ξ)) consisting of:

1. an abelian scheme A/S of relative dimension d;

2. an algebra homomorphism ι : OF → End(A/S) such that the pair (A/S, ι) satisfies the

condition (DP) (see Definition 4.3);

3. a subset {λ ◦ ι(b) : b ∈ O×
(Ξ),+} of Hom(A/S, At

/S) ⊗Z Q, where λ : A/S → At
/S is an

OF -linear polarization of A, whose degree is prime to Ξ;

4. η̄(Ξ) is a rational K-level structure of the abelian scheme A/S (see Remark 4.8 below).

An isomorphism from one quadruple (A/S, ι, λ̄, η̄(Ξ)) to another (A′
/S, ι′, λ̄′, η̄′(Ξ)) is an element

f ∈ Hom(A/S, A′
/S)⊗Z Z(Ξ) whose degree is prime to Ξ such that:

1. f ◦ ι(b) = ι′(b) ◦ f for all b ∈ OF ;

2. f t ◦ λ̄′ ◦ f = λ̄ as subsets of Hom(A/S, At
/S)⊗Z Q;

3. we have the equality of level stuctures: V (Ξ)(f)(η̄(Ξ)) = η̄′(Ξ) .

Now we choose a representative I = {c} of fractional ideals in the finite class group

Cl(K) = (FA(Ξ∞))×/O×
(Ξ),+ det(K).

For each c, fix an OF -lattice Lc ⊆ V = F 2 such that ∧(Lc∧Lc) = c∗. Here ∧ : V ∧V → F

is the alternating form given by ((a1, a2), (b1, b2)) 7→ a1b2 − a2b1.

Definition 4.7. Define the functor E
(Ξ)
K,c : Sch/Z(Ξ)

→ Set,such that for each Z(Ξ)-scheme S,

E
(Ξ)
K,c(S) = {(A/S, ι, φ, ᾱ(Ξ))}/∼=, where {(A/S, ι, φ, ᾱ(Ξ))}/∼= is the set of isomorphic classes of

quadruples (A/S, ι, φ, ᾱ(Ξ)) consisting of

1. an abelian scheme A/S of relative dimension d;
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2. an algebra homomorphism ι : OF → End(A/S) such that the pair (A/S, ι) satisfies the

condition (DP) (see Definition 4.3);

3. a c-polarization φ : A⊗OF
c → At of A/S (see Definition 4.1);

4. ᾱ(Ξ) is an integral K-level structure of the abelian scheme A/S (see Remark 4.8 below).

An isomorphism from one quadruple (A/S, ι, φ, ᾱ(Ξ)) to another (A′
/S, ι′, φ′, ᾱ′(Ξ)) is an iso-

morphism f : A → A′ of abelian schemes over S such that

1. f ◦ ι(b) = ι′(b) ◦ f for all b ∈ OF ;

2. f t ◦ φ′ ◦ (f ⊗OF
Idc) = φ : A⊗OF

c → At;

3. we have an equality of integral level structures: T (Ξ)(f)(ᾱ(Ξ)) = ᾱ′(Ξ).

Remark 4.8. Here we briefly recall the notion of level structures on an abelian scheme

with real multiplication. As in Definition 4.6 and 4.7, we fix an abelian scheme A/S and a

homomorphism ι : OF → End(A/S). Take a point s ∈ S and let s̄ : Spec(k(s̄)) → S be a

geometric point of S over s, where k(s̄) is a separably closed field extension of the residue

field k(s) of S at the point s. Consider the prime-to-Ξ Tate module

TΞ(As̄) = lim
←−N

A[N ](k(s̄)),

where N runs through all positive integers prime to Ξ, and set V Ξ(As̄) = TΞ(As̄) ⊗Z ZΞ,

which is a free FA(Ξ∞)-module of rank 2. When N is invertible on S, the finite scheme A[N ]

is étale over S. The algebraic fundamental group π(S, s̄) acts on A[N ](k(s̄)), and hence on

TΞ(As̄) and V Ξ(As̄). This action is compatible with the action of G(Ẑ(Ξ)) (resp. G(FA(Ξ∞)))

on TΞ(As̄) ( resp. V Ξ(As̄)).

We define a sheaf of sets ILV (Ξ) : (Sch/S)ét → Set on the étale site of the category of

S-schemes such that for any connected S-scheme S ′, we have:

ILV (Ξ)(S ′) = H0(π(S ′, s̄′), IsomOF
(Lc ⊗OF

Ẑ(Ξ), TΞ(As̄′))),
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where s̄′ is a geometric point of S ′ over a point s′ of S ′. The étale sheaf ILV (Ξ) is independent

of the choice of s′ (see [20] Section 6.4.1). The group G(Ẑ(Ξ)) acts on the sheaf ILV (Ξ) through

its action on the Tate module TΞ(As̄′), and we denote by ILV (Ξ)/K the quotient sheaf of

ILV (Ξ) under the group action of K(Ξ). An integral K-level structure of A/S is a section

ᾱ(Ξ) ∈ ILV (Ξ)/K(S). Similarly we define another sheaf RLV (Ξ) : (Sch/S)ét → Set such that

for any connected S-scheme S ′, we have:

RLV (Ξ)(S ′) = H0(π(S ′, s̄′), IsomOF
(V ⊗Z A(Ξ∞), V Ξ(As̄′))),

and define the quotient sheaf RLV (Ξ)/K in the same way. Then a rational K-level structure

of A/S is a section η̄(Ξ) ∈ RLV (Ξ)/K(S).

Suppose that we have another abelian scheme A′
/S and a homomorphism ι′ : OF →

End(A′
/S). We can similarly define two étale sheaves ILV ′(Ξ) and RLV ′(Ξ) replacing A/S

by A′
/S in the above construction. If f : A → A′ is an OF -linear isomorphism of abelian

schemes, the isomorphism f induces an isomorphism of Tate modules T (Ξ)(As̄) ∼= T (Ξ)(A′
s̄)

for any geometric point s̄ of S. Hence f induces an isomorphism of étale sheaves T (Ξ)(f) :

ILV (Ξ) → ILV ′(Ξ) which is compatible with the G(Ẑ(Ξ))-action. Thus f also induces an

isomorphism T (Ξ)(f) : ILV (Ξ)/K → ILV ′(Ξ)/K for all subgroup K of G(Ẑ). For any integral

K-level structure ᾱ(Ξ) ∈ ILV (Ξ)/K(S), we use T (Ξ)(f)(ᾱ(Ξ)) to denote its image under the

isomorphism T (Ξ)(f). Similarly if f : A → A′ is an OF -linear prime-to-Ξ isogeny of abelian

schemes, then f induces an isomorphism V (Ξ)(As̄) ∼= V (Ξ)(A′
s̄) and hence isomorphisms of

étale sheaves V (Ξ)(f) : RLV (Ξ) → RLV ′(Ξ) and V (Ξ)(f) : RLV (Ξ)/K → RLV ′(Ξ)/K. For

any rational K-level structure η̄(Ξ) ∈ RLV (Ξ)/K(S), we use V (Ξ)(f)(η̄(Ξ)) to denote its image

under the isomorphism V (Ξ)(f). We refer to [21] Section 4.3.1 for more discussion on this

topic.

Theorem 9. When K is small enough (e.g. det(K(Ξ)) ∩ O×
+ ⊆ (K(Ξ) ∩ Z(Z))2), then we

have a natural isomorphism of functors:

i :
∐
c∈I

E
(Ξ)
K,c → E′(Ξ)

K .
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The proof is essentially given in [20] Section 4.2.1 so we omit the proof here. The

only thing we want to remark here is that for any quadruple (A/S, ι, λ̄, η̄(Ξ)) considered in

Definition 4.6, we can find an abelian scheme A′
/S with real multiplication ι′,and an OF -linear

prime-to-Ξ isogeny f : A → A′ of abelian schemes over S such that A′
/S admits an integral

level structure. Since S is a Z(Ξ)-scheme, the isogeny f is étale. From Lemma 5.9, the pair

(A′
/S, ι′) also satisfies the condition (DP). Then we can follow the argument in [20] Section

4.2.1 to conclude this theorem.

From [7], the functor E
(Ξ)
K,c is representable. By Theorem 9, when K is small enough, we

can assume that the functor E′(Ξ)
K is represented by a Z(Ξ)-scheme Sh

(Ξ)
K . From [7] Theorem

2.2, the scheme Sh
(Ξ)
K is flat of complete intersection over Z(Ξ), and smooth over Z(Ξ)[

1
dF

].

Now we take the projective limit of Sh
(Ξ)
K for varying K, and get a Z(Ξ)-scheme Sh(Ξ).

It is clear that Sh
(Ξ)
/Z(Ξ)

represents the moduli problem E′(Ξ) : Sch/Z(Ξ)
→ Set, such that

for each Z(Ξ)-scheme S, E′(Ξ)
K (S) = [(A/S, ι, λ̄, η(Ξ))]. where [(A/S, ι, λ̄, η̄(Ξ))] is the set of

isomorphism classes of quadruples (A/S, ι, λ̄, η(Ξ)) considered in Definition 4.6, except that

η(Ξ) ∈ RLA(Ξ)(S) is a rational level structure instead of a rational K-level structure for

some open compact subgroup K. An isomorphism from one quadruple (A/S, ι, λ̄, η(Ξ)) to

another (A′
/S, ι′, λ̄′, η′(Ξ)) is an element f ∈ Hom(A/S, A′

/S)⊗Z Z(Ξ) whose degree is prime to

Ξ such that it satisfies the first two conditions in Definition 4.6, and also V (Ξ)(f)(η(Ξ)) = η′(Ξ)

instead of that last condition there.

For any g ∈ G(FA(Ξ∞)), the map sending each quadruple (A/S, ι, λ̄, η(Ξ)) to another

quadruple

(A/S, ι, λ̄, g(η(Ξ))) induces an automorphism of the functor E′(Ξ), and hence an automorphism

of the Shimura variety Sh
(Ξ)
/Z(Ξ)

by universality. We still denote this action by g.

For simplicity we denote the Shimua variety Sh
(Ξ)
/Z(Ξ)

by X/Z(Ξ)
in the following discussion.

Pick a closed point xp ∈ X(F̄p). Let K be a neat subgroup of G(FA(Ξ∞)). Then the natural

morphism X → XK = X/K is étale. Let OX,xp and OXK ,xp be the stalk of X and XK

at xp, respectively. The completion of OX,xp is canonically isomorphic to the completion

of OXK ,xp , and we denote this completion by Ôxp . Suppose that xp is represented by a
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quadruple (A0/F̄p
, ι0, φ0, ᾱ0

(Ξ)) ∈ E
(Ξ)
K,c(F̄p).

Let CL/Wp be the category of complete local Wp-algebras with residue field F̄p. Consider

the local deformation functor D̂p : CL/Wp → Set, given by

D̂p(R) = {(A/R, ιR, φR)|(A/R, ιR, φR)×R F̄p
∼= (A0/F̄p

, ι0, φ0)}/∼=,

here the triple (A/R, ιR, φR) consists of an abelian A schemes over R, an algebra homomor-

phism ιR : OF → End(A/R) and a c-polarization φR of A/R. An isomorphism from a triple

(A/R, ιR, φR) to another (A′
/R, ι′R, φ′R) is an isomorphism f : A → A′ of abelian schemes over

R such that

1. for all a ∈ OF , we have f ◦ ιR(a) = ι′R(a) ◦ f : A → A′;

2. f t ◦ φ′R ◦ (f ⊗ Idc) = φR : A⊗OF
c → At.

Define a functor DEFp : CL/Wp → Set by the formula:

DEFp(R) = {(D/R, ΛR, εR)}/∼=,

where D/R is a Barsotti-Tate OF -module over R, ΛR : D ⊗OF
c → Dt is an OF -linear

isomorphism of Barsotti-Tate OF -modules over R (Dt is the Cartier dual of D), and εR :

D0 = D ⊗R F̄p → A0[p
∞] is an isomorphism of Barsotti-Tate OF -modules over the special

fiber Spec(F̄p) of Spec(R).

For any triple (A/R, ιR, φR) in D̂p(R), let A[p∞]/R be its p-divisible Barsotti-Tate OF -

module over R. The c-polarization φR of A/R gives an isomorphism ΛR : A[p∞] ⊗OF
c →

At[p∞] ∼= (A[p∞])t. The isomorphism (A/R, ιR, φR) ×R F̄p
∼= (A0/F̄p

, ι0, φ0) gives an isomor-

phism εR : A[p∞]⊗R F̄p → A0[p
∞]. By the Serre-Tate deformation theory, we have:

Proposition 4.9. The above association (A/R, ιR, φR) 7→ (A[p∞]/R, ΛR, εR) induces an equiv-

alence of functors D̂p → DEFp.

We define two more functors DEF ?
p : CL/Wp → Set,? = ord, ll, by:

DEF ?
p (R) = {(D?, φ?, ε?)}/∼=,

44



here in the triple (D?, φ?, ε?), D? is a Barsotti-Tate OF -module over R,φ? : D?⊗OF
c → (D?)t

is an isomorphism of Barsotti-Tate OF -modules over R, and ε? : D? ⊗R F̄p → A0[p
∞]? is an

isomorphism over F̄p.

Since A0/F̄p
admits an actoin of OF , we have the decomposition of Barsotti-Tate OF -

modules:

A0[p
∞] =

⊕

p|p
A0[p

∞].

Here p ranges over the primes ideals of OF over p and for each p, let

A0[p
∞] = lim

→
A0[p

n]

be the p-divisible Barsotti-Tate group of A0. We also define

Tp(A0) = lim
←

A0[p
n](F̄p)

as the p-divisible Tate module of A0.

Similar with [24] Proposition 1.2, we have the following facts:

1. the functor DEFp is represented by the formal scheme Ŝp/Wp associated to Ôxp ;

2. there is a natural equivalence of functors: DEFp
∼= DEF ord

p × DEF ll
p ,and hence the

formal Ŝp/Wp is a product of two formal schemes Ŝord
p/Wp

and Ŝll
p/Wp

such that DEF ?
p is

represented by Ŝ?
p/Wp

for ? = ord, ll;

3. For each p ∈ Σord
p , fix an isomorphism Op

∼= Tp(A0). Since c is prime to p, by the

c-polarization φ0, we also have an isomorphism Op
∼= Tp(A

t
0). Then Ŝord

p/Wp
is a smooth

formal scheme over Wp which is isomorphic to

∏

p∈Σord

Hom(Tp(A0)⊗Op Tp(A
t
0), Ĝm) ∼=

∏

p∈Σord

Hom(Op, Ĝm) =
∏

p∈Σord

Ĝm ⊗Zp O∗
p,

here O∗
p = HomZp(Op,Zp).
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In fact, for any triple (A/R, ιR, φR) in D̂p(R), the level structure ᾱ0
(Ξ) on A0 can be

extended uniquely to a level structure on A/R. Then the functor D̂p, and hence the functor

DEFp by Proposition 4.9, is represented by the the formal scheme Ŝp/Wp = Spf(Ôxp).

For a triple (D/R, ΛR, εR) ∈ DEFp(R), we have a canonical decomposition the Barsotti-

Tate OF -module D = Dord × Dll, where Dord is the maximal ordinary Barsotti-Tate OF -

submodule of D, and Dll is its local-local complement. From this we have a morphism

DEFp(R) 3 (D/R, ΛR, εR) 7→ {(Dord
/R , ΛR|Dord , εR|Dord), (Dll

/R, ΛR|Dll , εR|Dll)} ∈ DEF ord
p (R)×DEF ll

p (R),

from which we get a equivalence of functors between DEFp and DEF ord
p × DEF ll

p . Hence

the formal scheme Ŝp/Wp is a product of two formal schemes Ŝord
p/Wp

× Ŝll
p/Wp

.

In contrast with [24] Proposition 1.2, the formal scheme Ŝp/Wp may not be smooth when

p divides the discriminant dF of F since the Shimura variety Sh
(p)
/Z(p)

we consider here is not

smooth. But from the Serre-Tate deformation theory, the formal scheme Ŝord
p/Wp

is always

smooth, and this is the part we are interested in.

4.3 Siegel modular Shimura varieties

In this section we recall basic results on Siegel modular Shimura varieties. Our main reference

is [20].

Fix a positive integer d and a prime p. Let Z(p) be the localization of Z at (p). Let

G/Q = GSp(2d)/Q be the symplectic similitude group over Q, i.e. for any Q-algebra R, we

have

G(R) = {X ∈ GL2d(R)|X tJdX = ν(X)Jd, for some ν(A) ∈ R×},

where Jd =


 0 −1d

1d 0


. Define the Siegle upper half space

Hd = {Z = X + iY ∈ Md×d(C)|Z = Zt, Y > 0}.

Set X = Hd t H̄d. For any integer N > 0, define

Γ̂(N) = {α ∈ GSp2d(Ẑ)|α ≡ 1 mod N}.
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Let W = Q2d with the alternating form ψ(x, y) = xtJdy. For each Q-algebra R, G(R) =

GSp2d(R) acts on W ⊗QR in the natural way, preserving the alternating form ψ up to scalar

multiplication. Set L̂ = L ⊗Z Ẑ and Lp = L ⊗Z Zp,Wp = W ⊗Q Qp for each rational prime

p. Let {e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , e2d = (0, 0, . . . , 1)} be the standard Zp-basis

of Lp.

For N ≥ 3, consider the following moduli problem:

EN : Sch/Z[ 1
N

] → Sets,

S 7→ EN(S) = {(A, λ, ηN)}/∼=,

such that for each Z[ 1
N

]-scheme S, EN(S) is the set of isomorphism classes of the triples

(A, λ, ηN) consisting of:

1. an abelian scheme A/S of relative dimension d;

2. a principal polarization λ : A → At of A;

3. a level N structure ηN : (Z/NZ)2d = L/NL ∼= A[N ](k(s)), under which the symplectic

pairing < ·, · > on L/NL is sent to the Weil pairing on A[N ] induced by the polarization

λ, and s : Spec(k(s)) → S is a geometric point of S.

It is well known that the moduli problem EN is represented by a scheme A1,N/Z[ 1
N

].

Moreover, the C-valued point of A1,N is given by

A1,N(C) = G(Q)\(X×G(Af ))/Γ̂(N).

Then we define two pro-schemes:

Sh/Q = lim←−NA1,N/Z[ 1
N

], Sh
(p)
Z(p)

= lim←−(p,N)=1A1,N/Z[ 1
N

]

Take a closed point xp = (A0, λ̄0, η
(p)
0 )/F̄p

∈ Sh(p)(F̄p) such that the abelian variety A0/F̄p

is ordinary. Under this assumption, the endomorphism algebra D = End◦(A0/F̄p
) is a matrix

algebra over a CM algebra (i.e. a finite product of CM fields) M . The CM algebra M
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is generated by the Frobenius endomporphism of A0/F̄p
over Q. Let R be the order of M

generated by the Frobenius map of A0/F̄p
over Z. Let R(p) = R⊗Z Z(p). Define a torus T/Z(p)

by setting

T (Z(p)) = {a ∈ R×
(p)|x · x̄ ∈ Z×(p)}.

For each g ∈ G(A(p,∞)), it acts on the moduli problem E (p) by sending a triple (A, λ̄, η(p))/S ∈
E (p)(S) to the triple (A, λ̄, η(p) ◦ g)/S. By universal property, g induces an automorphism of

the Shimura variety Sh
(p)
/Z(p)

, which is still denoted by g.

Define a homomorphism ρ̂ : T (Z(p)) → G(A(p,∞)) by the formula a ◦ η
(p)
0 = η

(p)
0 ◦ ρ̂(a), for

a ∈ T (Z(p)). The image of T (Z(p)) under ρ̂ stabilizes the closed point xp under the action of

G(A(p,∞)) on Sh
(p)
/Z(p)

explained as above.

Let Ŝp/Wp be the formal completion of the Shimura variety Sh
(p)
/Z(p)

along the closed point

xp, where Wp = W (F̄p) is the ring of Witt vectors with coefficients in F̄p. As the abelian

variety A0/F̄p
is ordinary, by Serre-Tate deformation theory, we have an isomorphism:

Ŝp
∼= HomZp(Sym(TpA0(F̄p)⊗Zp TpA0(F̄p)), Ĝm).

Each a ∈ T (Z(p)) gives an automorphism on the Serre-Tate deformation space Ŝp. In terms

of the Serre-Tate coordinates, this action is give by the formula:

a ◦ t = (t ◦ (a⊗ a)−1)a·ā, for t ∈ HomZp(Sym(TpA0(F̄p)⊗Zp TpA0(F̄p)), Ĝm).

For simplicity, we assume that the abelian variety A0/F̄p
is simple. But the following results

can be generalized to non-simple cases without any difficulty. Under this assumption, M is a

CM field and if A0/F̄p
is defined over a finite field Fq (q is a power of p), then M is generated

by Fq over Q. Let F be the maximal totally real subfield of M . We make another assumption

that the degree of M over Q is 2d. We choose embeddings ϕ1, . . . , ϕd : M → Q̄, such that

all the embeddings of M into Q̄ are given by the set {ϕ1, . . . , ϕd, ϕ̄1, . . . , ϕ̄d}, where ·̄ means

a complex conjugation in Q̄, and M acts on the rational Tate module TpA0(F̄p)⊗ZQ by the

character Πd
i=1ϕ̄i. Then we have chosen the embeddings ϕ1, . . . , ϕd so that the deformation

space Ŝp has canonical coordinates ti,j on which the group T (Z(p)) acts through the character

ϕi · ϕ̄j,1 ≤ i, j ≤ d.
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CHAPTER 5

Local Indecomposability of Hilbert Modular Galois

Representations

In this chapter, we fix F to be a totally real field with degree d over Q and use OF to

denote its integer ring. Let D = DF/Q be the different of F/Q and dF = NormF/Q(D) be its

discriminant. For any prime p of OF , let Op (resp. Fp) be the completion of OF (resp. F )

with respect to p. We use A to denote the adele ring of Q, and use FA (resp. FAf
) to denote

the adele ring (resp. finite adele ring) of F .

Let f be a parallel weight two Hilbert modularo form of level m over F . Assume that f is

a Hecke eigenform and let Kf be its Hecke field. For any prime λ of Kf over a rational prime

p, let Kf,λ be the completion of Kf at λ. It is well known that there is a Galois represention

ρf : Gal(Q̄/F ) → GL2(Kf,λ) attached to f . Moreover if the eigenform f is nearly p-ordinary,

then up to equivalence the restriction of ρf to the decomposition group Dp of Gal(Q̄/F ) at

p is of the shape (see [52] Theorem 2 for the ordinary case and [19] Proposition 2.3 for the

nearly ordinary case):

ρf |Dp ∼

ε1 ∗

0 ε2


 .

Recall that we put the following technical condition on f when the degree of F over Q

is even: there exists a finite place v of F such that πv is square integrable (i.e. special or

supercuspidal) where πf = ⊗vπv is the automorphic representation of GL2(FA) associated

to f (FA is the adele ring of F ). In this chapter, we prove the first main result in this thesis,

i.e. the following:

Theorem 10. If f does not have complex multiplication, then ρf |Dp is indecomposable.
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Before starting the argument, we want to give a sketch of our argument. Under the

assumption on f , there exist an abelian variety Af/F and a homomorphism L → End0(Af/F )

where L/Kf is a finite extension and the degree of L over Q equals to the dimension of Af ,

such that the Galois representation ρf comes from the λ-adic Tate module of Af (at least upto

a twist of a character). Hence the theorem is reduced to prove: if the abelian variety Af/F

does not have complex multiplication, then its λ-adic Tate module Tλ(Af ) is indecomposable

as an Ip-module, where Ip is the inertia group of Gal(Q̄/F ) at a prime p of F over p. By an

analysis of the endomorphism algebra of an abelian variety of GL(2)-type in section 5.1, we

can always take L to be a totally real field (see Proposition 5.4). Moreover, we can assume

that Af is absolutely simple and has good reduction at p. Then the key argument can be

divided into two steps:

First, under the assumption that Af/F does not have complex multiplication, we can find

two distinct primes Q and L of F not lying over p with the following property: the abelian

variety Af/F has good reduction at Q and L, and if we use AQ (resp. AL) to denote the

reduction of Af at Q (resp. L), then End0
L(AQ/F̄q

) and End0
L(AL/F̄l

) are non-isomorphic CM

quadratic extension of L (see Lemma 5.13). Here q (resp. l) is the residue characteristic

of the prime Q (resp. L). The proof is a slight modification of the argument given in [24]

using Faltings’s isogeny theorem, a Serre-type open image theorem due to Ribet, and some

standard results on the density of primes. As is clear from the argument given in the proof

of Lemma 5.13, when the prime p is ramified in the field L, we need to construct an extra

auxiliary prime in our argument.

Second, we prove that if the λ-adic representation of Ip attached to the Tate module of

Af is decomposable, it is impossible to find the primes Q and L with the property in the

first step. The idea is that by putting polarization and level structure on Af/F , the abelian

variety Af/F gives rise to a point on the Hilbert modular Shimura variety we defined in

section 4.2. In section 5.2 we prove that each L-linear isogeny of AQ/F̄q
with degree prime

to q induces an automorphism of the Shimura variety, and hence an automorphism of the

ordinary deformation space of the mod q reduction of Af sitting in the special fiber of x
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at q. Using the rigid analytic logarithms of the Serre-Tate coordinates on the ordinary

deformation space (see section 5.2 below), we can prove that this automorphism must also

fixes the special fiber of x at l. Then we can conclude that End0
L(AQ/F̄q

) and End0
L(AL/F̄l

)

must be isomorphic as L-algebras.

We prove the main result in Section 5.3, and we give an Λ-adic version of our result by

applying an argument in [14]. At the end we explain how our result can be applied to study

a problem of Coleman on determining which classical elliptic modular forms lie in the image

of the operator defined in [5].

5.1 Abelian Varieties of GL(2)-type

Let E be a number field with degree d over Q, and A/Q be an abelian variety of dimension d.

Set End0(A/Q) = End(A/Q) ⊗Z Q, which is a finite dimensional semisimple algebra over Q.

Suppose that we have an algebra homomorphism E → End0(A/Q), which identifies E with

a subfield of End0(A/Q). Recall that the abelian variety A/Q has complex multiplication if

End0(A/Q) contains a commutative semisimple subalgebra of dimension 2d over Q. Then

from [23] Section 5.3.1, we have the following two results:

Proposition 5.1. If A/Q does not have complex multiplication, then A/Q is isotypic (i.e.

there exists a simple abelian variety B/Q such that A/Q is isogeneous to (B/Q)e for some

e ≥ 1), and End0
E(A/Q) = E.

Proposition 5.2. Under the conditions of Proposition 5.1, if we assume further that A/Q

is simple, then one of the following four possibilities holds for D = End0(A/Q):

1. E is a quadratic extension of a totally real field Z and D is a totally indefinite division

quaternion algebra over Z;

2. E is a quadratic extension of a totally real field Z and D is a totally definite division

quaternion algebra over Z;
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3. E is a quadratic extension of a CM field Z and D is a division quaternion algebra over

Z;

4. E = D and E is totally real.

Remark 5.3. 1. A quaternion algebra D over a totally real field Z is called totally in-

definite if for any real embedding τ : Z → R, the R-algebra D ⊗Z,τ R is isomorphic to

the matrix algebra M2(R); the quaternion algebra D/Z is called totally definite if for

any real embedding τ : Z → R, the R-algebra D⊗Z,τ R is isomorphic to the Hamilton

quaternion algebra H.

2. From Proposition 5.1, we see that End0(A/Q) is always a central simple algebra and E

is a maximal commutative subfield of End0(A/Q);

3. As remarked in [23], case 2 in Proposition 5.2 cannot happen by [47], Theorem 5(a)

and Proposition 15.

Proposition 5.4. Under the notations and assumptions in Proposition 5.1, assume further

that there exists a totally real field k such that the abelian variety A/Q is defined over k, and

the homomorphism E → End0(A/Q) factors through End0(A/k). Then we can find a totally

real field F with degree d over Q, which can be embedded into D = End0(A/Q) as a unital

subalgebra of D.

Proof. By Propositon 5.1, we can find a simple abelian variety B/Q and an integer e such that

A/Q is isogeneous to (B/Q)e. Hence we have an isomorphism of simple algebras End0(A/Q) ∼=
Me(End0(B/Q)),and d = e · d1, where d1 is the dimension of B/Q. Since any maximal

commutative subfield of End0(A/Q) has degree d over Q, any maximal commutative subfield

of D1 = End0(B/Q) should have dimension d/e = d1. In other words, we can find number

field E1 of degree d1 over Q, which can be embedded into End0(B/Q) as a subalgebra. Since

A/Q does not have complex multiplication, neither does B/Q. In summary, B/Q satisfies all

the assumptions in Proposition 5.2. Assume that End0(B/Q) is of type 3 as in Proposition

5.2, i.e. End0(B/Q) is a division quaternion algebra over a CM field Z and [E1 : Z] = 2.
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Since d1 = [E1 : Q] = 2[Z : Q], the degree s of Z over Q equals to d1

2
. Since Z is a

CM field, we can find s′ = s
2

different embeddings τi : Z → Q, i = 1, ..., s′, such that

HomQ(Z,Q) = {τ1, ..., τs′ , τ̄1, ..., τ̄s′}, where τ̄i is the complex conjugation of τi for i = 1, ..., s′.

Then we have an isomorphism

θ : D1 ⊗Q R ∼=
∏

τi,i=1,...,s′
M2(C).

Let πi be the composition

D1 ↪→ D1 ⊗Q R θ−→
∏

τi,i=1,...,s′
M2(C)

πi−→ M2(C),

where the map πi is the i-th projection, for i = 1, ..., s′. Let π̄i be the complex conjugation of

πi. Then {π1, ..., πs′ , π̄1, ..., π̄s′} are all the absolutely irreducible (complex) representations

of D1 (up to isomorphism).

On the other hand, we have a representation of D1 by ρ1 : D1 → EndC(Lie(B) ⊗Q̄ C).

Let ri (resp. si) be the multiplicity of πi (resp π̄i) in ρ1. Then for any z ∈ Z, the trace of

ρ1(z) is given by the formula:

Tr(ρ1(z)) = 2
s′∑

i=1

(riτi(z) + siτ̄i(z)).

Since Lie(A/Q̄) ∼= (Lie(B/Q̄))e, we have the representation ρ : D → EndC(Lie(A)⊗Q̄C), such

that for any z ∈ Z,

Tr(ρ(z)) = eTr(ρ1(z)) = 2e
s′∑

i=1

(riτi(z) + siτ̄i(z)).

Since Z ⊆ E and the homomorphism E → End0(A/Q̄) factors through End0(A/k), we have

Tr(ρ(z)) ∈ k, for any z ∈ Z. From [47] Section 4, we have ri + si = 2, for all i = 1, ..., s′.

Thus for each i, either ri = si = 1 or ri · si = 0. If ri · si = 0 for at least one i, then Tr(ρ(z))

cannot lie in the totally real field k for all z ∈ Z as Z is assumed to be a CM field. Hence

ri = si = 1 for all i. Then by [47] Theorem 5(e) and Proposition 19, this case cannot happen.

Combined with Remark 5.3(3), we see that End0(B/Q) is either a totally real field or a

totally indefinite division algebra over a totally real field. Then the existence of F results

from:
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Lemma 5.5. Let D be a central simple algebra over a totally real field Z with [D : Z] = d2.

If for all real embeddings τ : Z → R, the R-algebra D ⊗Z,τ R is isomorphic to the matrix

algebra Md(R), then we can find a field extension F/Z with degree d such that F is totally

real and can be embedded into D as an Z-subalgebra.

Proof of the lemma: We use an argument similar with the proof of Lemma 1.3.8 in [3].

It is enough to find a field extension F/Z with degree d such that F is totally real and splits

D(i.e D ⊗Z F ∼= Md(F )).

Let Σ be a non empty set of non-archimedean places of Z containing all the finite places

where D does not split, and Σ∞ be the set of archimedean places of Z. By the weak

approximation theorem, the natural map:

Z →
∏
v∈Σ

Zv ×
∏

v∈Σ∞

Zv

has dense image. Hence we can find a monic polynomial f(X) ∈ Z[X] of degree d, such that

it is sufficiently close to a monic irreducible polynomial of degree d over Zv for all v ∈ Σ,

and it is sufficiently close to a totally split polynomial of degree d over R for all v ∈ Σ∞. Set

F = Z[X]/(f(X)). Then F/Z is a degree d field extension such that F is totally real and

for any v ∈ Σ, there is exactly one place w of F lying over v and hence Fw/Zv is a degree d

extension of local fields.

We still need to check that F splits D. Since D ⊗Z F is a central simple algebra over F

and F is a global field, it is enough to prove that for any place w of F (archimedean and

non-archimedean), we have an isomorphism D ⊗Z Fw
∼= Md(Fw). Let v be the place of Z

over which w lies.

If w is archimedean, then Zv
∼= Fw

∼= R, and hence

D ⊗Z Fw
∼= (D ⊗Z Zv)⊗Zv Fw

∼= Md(R), (5.6)

by our assumption on D.

If w is non-archimedean and v is not in Σ,then D ⊗Z Zv is already isomorphic to the

matrix algebra over Zv, so we are safe in this case.
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Finally, assume that w is non-archimedean and v ∈ Σ. As Fw/Zv is a degree d extension

of local field, the base change from Zv to Fw induces a homomorphism of Brauer groups

Br(Zv) → Br(Fw), which under the isomorphism Br(Zv) ∼= Br(Fw) ∼= Q/Z by local class

field theory, is nothing but multiplication by d. As [D : Z] = d2, the order of D ⊗Z Zv

in Br(Zv) is divisible by d. This implies that D ⊗Z Fw represents the identity element in

Br(Fw); i.e.D ⊗Z Fw
∼= Md(Fw). Hence F/Z is the desired extension.

Hereafter we always work with the pair (A/Q, ι : F → End0(A/Q)), where F is a totally

real field with degree d over Q. Since the abelian variety A/Q is projective, we can find a

number field k such that A is defined over k, and End(A/Q)) = End(A/k). Let Ok be the

integer ring of k, and for all prime ideals P of Ok over some rational prime p, let O(P) be

localization of Ok at the prime P and FP = Ok/P be its residue field. As in [24], we make

the following assumption:

(NLL) the abelian variety A/k has good reduction at P and the reduction A0 = A⊗OP
FP

has nontrivial p-torsion F̄p-points.

Change the abelian variety A/k if necessary, we can assume that ι gives a homomorphism

ι : OF → End(A/k). Let F̄p be an algebraic closure of FP. Wp = W (F̄p) is the ring of Witt

vectors of F̄p. We have the decomposition of Barsotti-Tate OF -modules:

A0[p
∞] =

⊕

p|p
A0[p

∞].

Here p ranges over the primes ideals of OF over p and for each p, let

A0[p
∞] = lim

→
A0[p

n]

be the p-divisible Barsotti-Tate group of A0. We also define

Tp(A0) = lim
←

A0[p
n](F̄p)

as the p-divisible Tate module of A0.
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We say that a prime p of OF over p is ordinary if A0[p] has nontrivial F̄p-points, otherwise

we say that p is local-local. When p is ordinary and p is unramified in k, we have an exact

sequence of Barsotti-Tate Op-modules over Wp:

0 → µp∞ ⊗Zp O∗
p → A[p∞]/Wp → Fp/Op → 0.

Here O∗
p = HomZp(Op,Zp) is the Zp-dual of Op.

Let Σord
p be the set of all ordinary primes of OF over p, and Σll

p be the set of all local-local

primes. Then the condition (NLL) is equivalent to the fact that Σord
p is not empty. Also we

define:

A0[p
∞]ord =

⊕

p∈Σord
p

A0[p
∞], A0[p

∞]ll =
⊕

p∈Σll
p

A0[p
∞].

At the end of this section, we explain how the pair (A/k, ι : F → End0(A/k)) can give

a point in the Hilbert modular Shimura variety defined in section 4.2. More precisely, we

want to prove that there is a c-polarized abelian variety A′
/Ok

with real multiplication by OF

which is isogenous to A/k.

We can find an order O in F which is mapped into End(A) under ι. By Serre’s Tensor

construction ([3]1.7.4.), we can find an isogeny f : A → A′ over k, and the induced isomor-

phism End0(A/k) → End0(A′
/k) carries OF ⊆ End0(A/k) into End(A′

/k). Hence we have an

algebra homomorphism ι′ : OF → End(A′
/k). By our assumption, A/k has good reduction at

the prime P of Ok. By the criterion of Néron-Ogg-Shafarevich ([48] Section 1 Corollary 1),

A′
/k also has good reduction at P, and hence can be extended to an abelian scheme A′

/O(P)

(recall that O(P) is the localization of Ok at the prime P). Since O(P) is a normal domain,

by a lemma of Faltings (see [11] Lemma 1), the restriction to the generic fiber induces a

bijection

End(A′
/O(P)

) → End(A′
/k).

So we have an algebra homomorphism OF → End(A′
/O(P)

), which is again denoted by ι′.
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From Proposition 4.4, the étale sheaf HomSym
OF

(A′
/O(P)

, A′t
/O(P)

) is a constant sheaf c for

some fractional ideal c, with the natural notion of positivity c+. Thus we have a natural

isomorphism ϕ : c → HomSym
OF

(A′
/O(P)

, A′t
/O(P)

) which sends totally positive elements of c to

polarizations of A′
/O(P)

. We still need to check that the natural morphism α : A′⊗OF
c → A′t

is an isomorphism over O(P). As char(k) = 0, by Proposition 4.5, α is an isomorphism at

the generic fiber of O(P). Hence α is an isomorphism again by Faltings lemma.

In summary, we have:

Proposition 5.7. Let A/k be an abelian variety of dimension d satisfying the condition

(NLL) above, and ι : F → End0(A/k) be an algebra homomorphism. Then we can find a

fractional ideal c and an c-polarized abelian scheme (A′
/O(P)

, ι′, ϕ) with real multiplication by

OF such that A/k is k-isogenous to A′
/k.

Remark 5.8. Let A/S be an abelian scheme of relative dimension d and ι : OF → End(A/S)

be an algebra homomorphism. By a similar argument as above, we see that if S is an integral

normal scheme and the generic fiber of S is of characteristic 0, then the pair (A/S, ι) must

satisfy the condition (DP).

For later discussion, we need the following:

Lemma 5.9. Let A/S, A′
/S be two abelian schemes of relative dimension d, and ι : OF →

End(A/S), ι′ : OF → End(A′
/S) be two algebra homomorphisms. Suppose that there exists an

OF -linear étale homomorphism of abelian schemes f : A → A′. If the pair (A/S, ι) satisfies

the condition (DP), so does (A′
/S, ι′).

Proof. Without loss of generality, we can assume that S = Spec(k) for some separably closed

field k. If char(k) = 0, then (A′
/S, ι′) satisfies (DP) automatically by Proposition 4.5. So

we can assume that char(k) = p > 0. From the discussion of [15] Page 100 − 101, the pair

(A/k, ι) can be lifted to characteristic 0; i.e., there exist:

1. a normal local domain W with maximal ideal m and residue field k such that the

quotient field of W is of characteristic 0;
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2. an abelian scheme Ã/W with an OF -action ι̃ : OF → End(Ã/W ) such that (A/k, ι)

is isomorphic the the pull back of (Ã/W , ι̃) under the natural morphism Spec(k) →
Spec(W ).

Replacing W by its m-adic completion if necessary, we can assume that W is complete.

Since f : A → A′ is étale and OF -linear, C = ker(f) is a finite étale OF -submodule of

A/k. Then we can lift C to an étale OF -submodule C̃/W of Ã/W . Let Ã′
/W be the quotient

of Ã/W by C̃/W , with the natural homomorphism ι̃′ : OF → End(Ã′
/W ) induced from Ã/W .

By the above construction it is easy to see that (Ã′
/W , ι̃′) lifts (A′

/k, ι
′). Then from Remark

5.8, (A′
/k, ι

′) satisfies (DP).

5.2 Eigen coordinates

At the beginning of this section we set up some notations. Let k ⊆ Q̄ be a number field and

Ξ be a finite set of primes. For each p ∈ Ξ, choose a finite extension L̃p of Lp in Cp such

that:

1. k ⊆ i−1
p (L̃p);

2. i−1
p (L̃p) contains the Galois closure of F in Q̄.

Denote by W̃p the valuation ring of L̃p. Then define:

W̃Ξ =
⋂
p∈Ξ

i−1
p (W̃p) ⊆ Q̄, W̃k = W̃Ξ ∩ k.

The ring W̃Ξ is a semilocal ring, and for each l ∈ Ξ, there is a unique maximal ideal ml with

residue characteristic l. Let L̃Ξ be the quotient field of W̃Ξ.

Given the totally real field F , let Sh
(Ξ)
/Z(Ξ)

be the Hilbert modular Shimura variety con-

structed in section 4.2. Suppose that the quadruple (A/fWΞ
, ι, λ̄, η(Ξ)) represents a point

x ∈ Sh(Ξ)(W̃Ξ) such that the image of x lies in Sh(Ξ)(W̃k). For each p ∈ Ξ, x induces an
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F̄p-valued point xp ∈ Sh(Ξ)(F̄p). Then the quadruple (AP/F̄p
, ιP, λ̄P, η

(Ξ)
P ) obtained by mod

p reduction represents the point xp.

This section consists of the key arguments and ideas used in the proof of the local inde-

composability result. We give a sketch of what we want to do in this section before we start

the down to earth arguments.

First we construct a torus R×
(Ξ) acting on the Hilbert modular Shimura variety which fixes

the closed point xp. Hence this action induces an automorphism on the formal completion

Ŝp of the Shimura variety Sh(Ξ) at the closed point xp. From the previous section, we

have a decomposition Ŝp/Wp = Ŝord
p/Wp

× Ŝll
p/Wp

. Then we recall the construction of ρ̂-eigen σ-

coordinates in [24] and give the explicit expression of the action of R×
(Ξ) on these coordinates.

When the ind-étale exact sequence of the Barsotti-Tate Op-module A[p∞] splits over W̃p, we

calculate its Serre-Tate coordinates in Lemma 5.12. It turns out that when p is ramified in

the base field (so Wp 6= W̃p) this Serre-Tate coordinate is a p-th power root of unity and the

abelian variety A/fWp
is isogenous to an abelian variety whose Serre-Tate coordinate at p is

1. From the construction of the eigencoordinates, the ρ̂-eigen σ-coordinates of these abelian

varieties are all 0 for any embedding σ : F → Q̄p which induces the prime p in F . Since we

can change our abelian variety by an isogenous abelian variety, the eigen coordinates should

be the right object to study.

The above calculation is local at p. We want to transit the action of R×
(Ξ) on Ŝp/Wp to the

deformation space Ŝl/Wl
for some other prime l with the property that there exists a prime

L of k over l and A/fWΞ
has partially ordinary reduction at L. Let π : A → Spec(W̃Ξ) be

the structure morphism and set ω = π∗(ΩA/fWΞ
) which is an OF ⊗Z W̃Ξ-module and define

ω⊗2 = ω⊗OF⊗ZfWΞ
ω. This is the global object which allows us to compare the action of R×

(Ξ)

at different local deformation space. The sheaf ω⊗2 is related with the Serre-Tate coordinates

(or the eigen coordinates) through the Kodaira-Spencer map. The Kodaira-Spencer map is

not an isomorphism in general if the reduction of A/fWΞ
at P is not ordinary. We want to have

decomposition of ω⊗2 by its OF ⊗Z W̃Ξ-module structure as in [29]. Recall I = Hom(F, Q̄).
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The natural homomorphism

OF ⊗Z W̃Ξ → W̃I
Ξ, a⊗ b 7→ (σ(a) · b)σ∈I

is not an isomorphism when the prime p ∈ Ξ is ramified in OF . It becomes an isomorphism

when base change to the quotient field L̃Ξ of W̃Ξ. On the other hand, the formation of

the sheaf ω/fWΞ
is compatible with arbitrary base change. So we can decompose the sheaf

ω⊗2⊗fWΞ
L̃Ξ as a direct sum ⊕σ∈I ω̃

⊗2σ such that on ω̃⊗2σ, the ring OF acts by the embedding

σ : F → Q̄. Under this decomposition and the Kodaira-Spencer map, we can compare the

endomorphism algebras of the reductions of A/fWΞ
at different primes and get our main result

Theorem 11 at the end of this section.

5.2.1 Construction and properties of eigen coordinates

By [24] Lemma 2.2, we have

Lemma 5.10. If AP/F̄p
is not supersingular (i.e. Σord

p 6= ∅), then there exists a CM quadratic

extension M of F , and an isomorphism of F -algebras θP : M ∼= End0
F (AP/F̄p

). Set R =

M ∩ θ−1
P (EndOF

(AP/F̄p
)), which is an order in M . If a prime ideal p in OF belongs to Σord

p ;

i.e. AP[p] has nontrivial F̄p-rational points, then p splits into two primes PP̄ in R with

P 6= P̄.

As in [24], we make the convention that we choose P such that AP[P ] is connected and

AP[P̄ ] is étale.

By the above lemma, we have an isomorphism M ⊗F Fp
∼= Fp × Fp, such that the first

factor corresponds to P and the second factor corresponds to P̄ . As M can be naturally

embedded into M ⊗F Fp, we have two embeddings from M to Fp, which correspond to the

two factors of Fp×Fp. We always regard M as a subfield of Fp by the first embedding, while

the second embedding is denoted by c : M ↪→ Fp.

Let R(Ξ) = R ⊗Z Z(Ξ). For α ∈ R×
(Ξ), θP(α) is a prime-to-Ξ isogeny of AP/F̄p

, and hence

induces an endomorphism of V (Ξ)(AP). We still denote this endomorphism by θP(α). Define
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a map ρ̂ : R×
(Ξ) → G(FA(Ξ∞)) such that for each α ∈ R×

(Ξ), ρ̂(α) is given by the formula:

η
(Ξ)
P ◦ ρ̂(α) = θP(α) ◦ η

(Ξ)
P .

Fix a prime-to-Ξ polarization λP of AP as a representative of λ̄P. Under the isomorphism

θP, the Rosati involution associated to λP on End0
F (AP/F̄p

) induces a positive involution on

field M . As M is CM, this involution must be the complex conjugation on M . Hence for any

α ∈ R×
(Ξ), λ−1

P ◦ θP(α)t ◦ λP = θP(ᾱ). Then θP(α)t ◦ λP ◦ θP(α) = λP ◦ θP(ᾱ) ◦ θP(α) = λP ◦
θP(αᾱ). Since αᾱ ∈ O×

(Ξ),+, we have θP(α)t◦λ̄P◦θP(α) = λ̄P. So θP(α) is an isogeny from the

quadruple (AP/F̄p
, ιP, λ̄P, η

(Ξ)
P ) to (AP/F̄p

, ιP, λ̄P, θP(α)(η
(Ξ)
P )) = (AP/F̄p

, ιP, λ̄P, ρ̂(α)(η
(Ξ)
P )) in

the sense of Definition 4.6; in other words, the automorphism g = ρ̂(α) of the Shimura

variety Sh
(Ξ)
/WΞ

= Sh
(Ξ)
/Z(Ξ)

×Z(Ξ)
WΞ fixes the closed point xp.

Denote the formal scheme Ŝp/Wp as the completion of the Shimura variety Sh
(Ξ)
/WΞ

along

the closed point xp, and νp : Ŝp/Wp → Sh
(Ξ)
/Wp

is the natural morphism. As explained in

Section 4.2, Ŝp/Wp is the product of two formal schemes Ŝord
p/Wp

and Ŝll
p/Wp

, and if we fix an

isomorphism Op
∼= Tp(AP) for each p ∈ Σord, then Ŝord

p/Wp
is isomorphic to Πp∈ΣordĜm⊗Zp O∗

p.

By deformation theory, we have a Serre-Tate coordinate tp ∈ Ĝm ⊗Zp O∗
p for each p ∈ Σord.

Then for each object R in the category CL/Wp , and an R-valued point x ∈ Ŝp(R), the

Serre-Tate coordinate gives us an element tp(x) ∈ Ĝm(R) ⊗Zp O∗
p = (1 + mR) ⊗Zp O∗

p, here

mR is the maximal ideal of R. In particular, when R is a subring of Cp, we can consider the

p-adic logarithm logp : R→ Cp. Consider the following map:

logp ⊗ Id : (1 + mR)⊗Zp O∗
p → Cp ⊗Zp O∗

p
∼= Hom(Op,Cp) ∼=

∏

σ:F→Q̄,σ∼p

Cp.

Here the notation σ ∼ p means that the composite map ip ◦ σ : F → Q̄p induces the prime

p of F . For such σ, let πσ be the projection of Πσ:F→Q̄,σ∼pCp to its σ-factor. Then we get an

element τσ(x) = πσ ◦ (logp⊗ Id)(tp(x)) ∈ Cp. The association x ∈ Ŝp(R) 7→ τσ(x) ∈ Cp gives

p-adic rigid analytic functions on the rigid analytic space (Ŝord
p )p−an associated to Ŝord

p .

Remark 5.11. From the above construction, we can see that actually the eigen coordinates

take values in the valuation ring of the field Cp. But in later argument, we need to invert

the prime p when comparing the eigen coordinates and the invariant differential sheaf of
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AfWΞ
by the Kodaira-Spencer map. Hence we always regard the coordinates τσ as Cp-valued

functions on the formal scheme Ŝord
p or Cp-valued rigid analytic functions on (Ŝord

p )p−an.

Since the action of g = ρ̂(α) on the Shimura variety Sh
(Ξ)
/WΞ

fixes the closed point xp, this

action also preserves the formal schemes Ŝord
p and Ŝll

p , and hence g = ρ̂(α) acts on the function

τσ for each σ ∼ p, p ∈ Σord. By [22] Lemma 3.3, the action of g = ρ̂(α) on the Serre-Tate

coordinate tp is given by the formula g(tp) = tα
1−c

p . (See the explanation after Lemma 5.10

for the two embeddings of M to Fp). Then by the construction of τσ, we see that the action

of g = ρ̂(α) on the function τσ is given by the formula: g(τσ) = τσ ◦ ρ̂(α) = ip ◦ σ(α1−c) · τσ.

We remark here that ip ◦ σ : F → Q̄p naturally extends to an embedding ip ◦ σ : Fp → Q̄p,

and hence the expression ip ◦ σ(α1−c) is well defined. As in [24], the function τσ is called a

ρ̂-eigen σ-coordinate.

Now consider the original point x ∈ Sh(Ξ)(W̃Ξ), which is represented by the quadruple

(A/fWΞ
, ι,λ̄, η(Ξ)).

Lemma 5.12. Assume that we have a prime p ∈ Σord, such that the exact sequence of

Barsotti-Tate Op-modules :

0 → µp∞ ⊗Zp O∗
p → A[p∞] → Fp/Op → 0

splits over over W̃p. In this case, the Serre-Tate coordinate tp(x) for the prime p at the

point x must be a p-th power root of unity. In particular, for the ρ̂-eigen coordinate we have

τσ(x) = 1 for all σ ∼ p.

This fact is proved in [1] Section 7 or [25] Section 6.3.4 in the case of elliptic curves. The

higher dimensional case is considered in [6] when the abelian variety has ordinary reduction

at P. Since the discussion in the partially ordinary case may not exist in the references, for

the sake of completeness we give a proof here.

Proof. First we assume that the ring R = M ∩ θ−1
P (EndOF

(AP/F̄p
)) in Lemma 5.10 is the

integer ring OM of M . From Lemma 5.10 , the prime p in OF splits into two primes P and
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P̄ in OM such that the finite group scheme AP[P ]/F̄p
(resp. AP[P̄ ]/F̄p

) is connected (resp.

étale).

From the splitting of the exact sequence

0 → µp∞ ⊗Zp O∗
p → A[p∞] → Fp/Op → 0

over W̃p, for each integer n, there exists a finite subgroup scheme A[P̄n]/fWp
of A[pn]/fWp

which

projects isomorphically to AP[P̄ ]/F̄p
under the reduction map. Denote the quotient abelian

scheme (A/A[P̄n])/fWp
by A′

n/fWp
and let πn : A → A′

n be the natural projection defined over

W̃p.

As M is a number field, there exists a positive integer N and an element a ∈ OM such

that P̄N = (a) in OM . Under the isomorphism θP : M ∼= End0
F (AP/F̄p

), the element a ∈ OM

gives an isogeny of AP/F̄p
whose kernel is AP[P̄N ]/F̄p

, which is still denoted by a.

From the above construction, the projection πN : A → A′
N is a lifting of the isogeny

a : AP → AP to W̃p. From [29] Theorem 2.1(4) or [6] Formula 3.7.2, we have the following

equation:

tp(A
′
N/fWp

; a(α), α′) = tp(A/fWp
; α, ā(α′)),

for α, α′ ∈ TpAP(F̄p). Here ā is the complex conjugate of a in M . From our choice of the

element a ∈ OM , the action of a (resp. ā) on TpAP(F̄p) is divisible by p (resp. invertible).

Hence the above equation tells us that the Serre-Tate coordinate tp(A/fWp
; α, α′) is a p-th

power. Now we replace a by arbitrary power of a, and repeat the above argument. It follows

that tp(A/fWp
; α, α′) is a pn-th power for all n ≥ 1. As tp(A/fWp

; α, α′) ∈ Ĝm(W̃p), we have

tp(A/fWp
; α, α′) = 1 for all α, α′ ∈ TpAP(F̄p). So we have tp(x) = 1.

In the general case, as the ring R is an order in M , we can find a positive integer m

such that ma ∈ R. We replace a by ma in the above argument, and it is easy to see that

tp(x)m = 1 in this setting. As the Serre-Tate coordinate tp(x) belongs to Ĝm(W̃p), we can

take m as a power of p, as desired.

63



5.2.2 Comparison of endomorphism algebras at different special fibers

In this section we want to compare the endomorphism algebras of the special fibers of the

abelian scheme A/fWΞ
. The key ingredient is the Kodaira-Spencer map, which we will recall

below.

As we can regard x ∈ Sh(Ξ)(W̃Ξ) as a W̃p-rational point the point x actually sits in the

formal scheme Ŝp/Wp , in other words, if we regard x as a morphism Spec(W̃Ξ) → Sh(Ξ), then

this morphism factors through νp : Ŝp → Sh(Ξ).

Let (Auniv
p , ιuniv

p , φuniv
p ) be the universal object over Ŝp. Let πp : Auniv

p → Ŝp be the

structure morphism and ep : Ŝp → Auniv
p be the morphism corresponding to the identity

element. Consider the sheaf ωuniv
p = (πp)∗(ΩAuniv

p /bSp
) = e∗p(ΩAuniv

p /bSp
) over Ŝp/Wp , which has

a natural ObSp
⊗Z OF -module structure, and compatible with arbitrary base change. Set

(ωuniv
p )⊗2 = ωuniv

p ⊗(ObSp
⊗ZOF ) ωuniv

p . Then we have the Kodaira-Spencer map:

KS : (ωuniv
p )⊗2 → ΩbSp/Wp

.

We remark here that the Kodaira-Spencer map is ObSp
⊗ZOF -linear and compatible with the

g = ρ̂(α)-action on both sides.

By the isomorphism Ŝp
∼= Ŝord

p × Ŝll
p over Wp, we have the decomposition: ΩbSp/Wp

=

(πord)∗ΩbSord
p /Wp

⊕ (πll)∗ΩbSll
p /Wp

, where πord : Ŝp → Ŝord
p and πll : Ŝp → Ŝll

p are the natural

projection. Since Ŝord
p

∼= Πp∈ΣordĜm ⊗Zp O∗
p, if we set Ŝp = Ĝm ⊗Zp O∗

p, then we have

ΩbSord
p /Wp

= ⊕p∈Σord(πp)
∗ΩbSp/Wp

, where πp : Ŝord
p → Ŝp is the natural projection. To express

the g-action on ΩbSord
p /Wp

in a simple way, we base change this module to L̃p, i.e. we consider

ΩbSord
p /Wp

⊗Wp L̃p = ΩbSord
p /eLp

= ⊕p∈ΣordΩbSp/eLp
, which is free of finite rank over (Ŝord

p )/eLp
.

Moreover, for each p ∈ Σord, the set {dτσ|τ ∼ p} forms a basis of the module ΩbSp/eLp
over Ŝp,

here τσ’s are the ρ̂-eigen coordinates constructed above.

On the other hand, we consider the cotangent bundle (ωuniv
p )⊗2 ⊗Wp L̃p = (ω̃univ

p )⊗2,

which has a natural OF ⊗Z L̃p-module structure. By our construction of L̃p, for any em-

bedding σ : F → Q̄, σ(OF ) is contained in i−1
p (L̃p). Hence we have the isomorphism

OF ⊗Z L̃p
∼= Πσ:F→Q̄L̃p. By this isomorphism we can decompose the OF ⊗Z L̃p-module
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(ω̃univ
p )⊗2 as (ω̃univ

p )⊗2 = ⊕σ:F→Q̄(ω̃univ
p )⊗2σ such that on the bundle (ω̃univ

p )⊗2σ, OF acts

through the embedding σ.

Then by [29] section 1.0, for each p ∈ Σord, the Kodaira-Spencer map induces an isomor-

phism
⊕

σ:F→Q̄,σ∼p

(ω̃univ
p )⊗2σ → (πp ◦ πord)∗ΩbSp/eLp

,

under which the bundle (ω̃univ
p )⊗2σ corresponds to the sub-bundle generated by dτσ. Hence

the action of g = ρ̂(α) preserves each (ω̃univ
p )⊗2σ and acts it by multiplying the scalar ip ◦

σ(α1−c). Moreover, as we assume that τσ(x) = 0 for all σ ∼ p, g also preserves (ω̃univ
p )⊗2σ(x).

Now we can state the main result in this section:

Theorem 11. Fix an embedding σ1 : F → Q̄, such that ip ◦ σ1 induces p. If there exists

some prime l 6= p in Ξ, such that the prime l induced from il ◦ σ1 belongs to Σord
l , then we

have an isomorphism of F -algebras: End0
F (AP/F̄p

) ∼= End0
F (AL/F̄l

). Here AL/F̄l
sits in the

quadruple (AL/F̄l
, ιL, λ̄L, η

(Ξ)
L ) obtained by mod l reduction of the point x ∈ Sh(Ξ)(W̃Ξ).

Proof. Set ω = π∗(Ω1
A/fWΞ

), which is naturally an OF ⊗Z W̃Ξ-module. Again we set ω⊗2 =

ω ⊗(OF⊗ZfWΞ) ω. The base change ω⊗2 ⊗fWΞ
L̃Ξ is an OF ⊗Z L̃Ξ-module. By our construction

of L̃Ξ, we have an isomorphism:

OF ⊗Z L̃Ξ
∼=

⊕

σ:F→Q̄
L̃Ξ.

From this we have the decomposition: ω⊗2 ⊗fWΞ
L̃Ξ = ⊕σ:F→Q̄ω̃⊗2σ.

Since the formation of the cotangent sheaf ωuniv
p over Ŝp is compatible with arbitrary

base change, by the Cartesian diagram:

A

²²

// Auniv
p

²²

Spec(L̃p)
x // Ŝp,
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we see that ω̃⊗2σ ⊗ eLΞ
L̃p = (ωuniv

p )⊗2σ(x). As g = ρ̂(α) acts on the Shimura variety Sh
(Ξ)

/fWΞ
,

g sends the bundle ω⊗2 ⊗fWΞ
L̃Ξ and hence each factor ω̃⊗2σ to the corresponding bundles

over g(x). As g preserves (ωuniv
p )⊗2σ(x) for all σ ∼ p, it also preserves ω̃⊗2σ. In particular, g

preserves ω̃⊗2σ1 .

As ω̃⊗2σ1 ⊗ eLΞ
L̃l = (ω̃univ

l )⊗2σ1(x), g also preserves the fiber (ω̃univ
l )⊗2σ1(x) of the bundle

(ω̃univ
l )⊗2σ1 at the point xl and acts on it by multiplication by il ◦ σ1(α). Hence g must

act on the eigen coordinate τσ1,l(x) by multiplying il ◦ σ1(α), and g preserves the sub-

bundle of ΩbSl/Wl
(x) generated by dτσ1,l(x). If g sends xl ∈ Sh(Ξ)(F̄l) to another point

x′l 6= xl, the action of g has to move the deformation space Ŝl over xl to the deformation

space Ŝ ′l over x′l, where Ŝ ′l is the completion of Sh
(Ξ)

/fWΞ
along the closed point x′l. Then

g induces an isomorphism of cotangent bundles g : ΩbSl/Wl
(x) → ΩbS′l/Wl

(g(x)) and hence

g cannot preserve any sub-bundle of Ŝord
l/Wl

(x), which is a contradiction. So g fixes the

point xl, i.e. there exists a prime-to-Ξ isogney θ̃L(α) of AL,such that θ̃L(α) ◦ η
(Ξ)
L = η

(Ξ)
L ◦

ρ̂(α), and hence establishes an isomorphism from the quadruple (AL/F̄l
, ιL, λ̄L, η

(Ξ)
L ) to the

quadruple (AL/F̄l
, ιL, λ̄L, η

(Ξ)
L ◦ ρ̂(α)). The association α 7→ θ̃L(α) gives us an embedding

M ↪→ End0
F (AL/F̄l

). Since End0
F (AL/F̄l

) is also a CM quadratic extension of F by Lemma

5.10, this embedding must be an isomorphism. Hence we get the desired isomorphism of

F -algebras.

5.3 Main result on local indecomposability and applications

Let k be a number field. Suppose that we are given an abelian variety A/k and an algebra

homomorphism ι : OF → End(A/k) (recall that F is a totally real field of degree d over Q

and OF is its integer ring). Assume that there is a prime ideal P of k over a rational prime p,

such that A/k satisfies the condition (NLL) in section 5.1. From Proposition 5.1, the abelian

variety A/Q̄ = A/k ×k Q̄ is isotypic. Without loss of generality, we can assume that A/k is

absolutely simple. Let IP be the inertia group of Gal(Q̄/k) at the prime P.
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Before we give the main result, we need the following:

Lemma 5.13. If the abelian variety A/Q̄ = A/k ×k Q̄ does not have complex multiplication,

we can find two primes L and Q of k lying over l and q respectively (p, l, q are distinct

primes), such that A/k has good reduction at L and Q, and F -algebras End0
F (AL/F̄l

) and

End0
F (AQ/F̄q

) are non-isomorphic CM quadratic extension of F , here AL/F̄l
(resp. AQ/F̄q

) is

the reduction of A/k at L (resp. Q).

Proof. Fix an embedding σ : F → Q̄ such that the composition il ◦ σ induces the prime p.

From [24] Proposition 7.1, the set

{L|L is a prime of k over a rational prime l 6= p such that A/k has good reduction at L, and Σord
l 6= ∅}

has Dirichlet density 1. On the other hand, the primes l in F which splits completely over

Q also has Dirichlet density 1, we can find a prime L of k over a rational prime l such that:

1. l is unramified in F ;

2. A/k has good reduction at L and Σord
l contains the prime l induced by il ◦σ and l splits

over Q.

Let AL/F̄l
be the reduction of A/k at L, and set ML = End0

F (AL/F̄l
). By Lemma 5.10, ML is

a quadratic CM extension of the field F .

Now by an argument in [24] Proposition 5.1 we can find a prime Q of k over a rational

prime q 6= p, l, such that

1. A/k has good reduction at Q;

2. Σord
q contains the prime induced by iq ◦ σ;

3. MQ = End0
F (AQ/F̄q

) is a CM quadratic extension of F which is non-isomorphic to ML.

For completeness, we give a sketch of the construction of Q and refer to [24] Proposition

5.1 for more details. We use D to denote the division algebra End0(A/k) and let Z be the
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center of D. From Proposition 5.2, Z is totally real and either Z = F = D or D is a

quaternion division algebra over Z and [F : Z] = 2.

For any prime q of F , we fix an isomorphism Tq(A) ∼= (OF,q)
2, and denote by rq :

Gal(Q̄/k) → GL2(OF,q) as the induced Galois representation on Tq(A). Define the algebra

Cq = Zq[rq(Gal(Q̄/k))] as the subalgebra of End0
Zq

(Tq(A)) = EndOZ,q
(Tq(A)) ⊗OZ,q

Zq, of

rq generated over Zq by the image of rq. Then by Faltings’ isogeny theorem, Cq is either

isomorphic to a quaternion division algebra over Zq or isomorphic to M2(Zq). In the case

q = l, Cl is isomorphic to M2(Fl) = M2(Zl). Under this assumption,we can apply an

argument in [42] Chapter 4 to prove that the image Im(rl) contains an open subgroup of

SL2(Zl) ⊆ C×
l .

Choose a quadratic ramified extension K/Ql. Since Fl/Ql is unramified, K and Fl are

linearly disjoint over Ql. Let L be the compositum field of K and Fl. Define the torus T/OF,l

of GL2/OF,l
as the norm 1 subgroup of ResOL/OF,l

(Gm); i.e.

T (OF,l) = {x ∈ O×
L |NormL/Fl

(x) = 1}.

Hence T/OF,l
is a maximal anisotropic torus of GL2/OF,l

, and T (OF,l)∩SL2(Zl) is a maximal

anisotropic torus of GL2/Zl
.

Choose α ∈ T (OF,l) ∩ Im(r) ∩ SL2(Zl), such that α has two different eigenvalues in

Q̄l. Then T (OF,l) is the centralizer Tα of α in GL2(OF,l). Since the isomorphism classes of

maximal torus in GL2/OF,l
is finite, the isomorphism class of the centralizer of α is determined

by α mod pj, for some integer j large enough. In other word, if β ∈ SL2(Zl), such that α ≡ β

mod pj, then the centralizer Tβ of β is isomorphic to Tα = T . By Chebotarev density, we

can find a prime Q of k over a rational prime q 6= p, l, such that A/k has good reduction

at Q and r(FrobQ) ≡ α mod pj. Hence the commutator Tr(FrobQ) of r(FrobQ) is isomrphic

to T . Let MQ be the field generated over F by the eigenvalues of r(FrobQ). By the above

construction, l does not split in MQ, and hence MQ is not isomorphic to ML. Further by

[24] Proposition 7.1, we can assume that Σord
q contains the prime induce from iq ◦ σ.

Then it is clear from the above construction that the primes Q and L satisfy the desired

68



property.

Now we can state and prove the main theorem in this section:

Theorem 12. Under the above notations and assumptions, suppose further that A/Q̄ =

A/k ×k Q̄ does not have complex multiplication, then for any p ∈ Σord
p , the p-adic Tate

module Tp(A) of A is indecomposable as an IP-module.

Proof. Let the prime Q and L be the primes of k in the previous lemma. Define a finite

set of primes Ξ = {p, q, l}. For this set Ξ, we define the semilocal ring W̃k as in section

5.2. Hence the abelian variety A/k can be extended to an abelian scheme A/fWk
. From

Proposition 5.7, replacing A/k by an isogenous abelian variety if necessary, we can assume

that the abelian scheme A/fWk
admits an OF -action ι : OF → End(A/fWk

) and a c-polarization

φ for some fractional ideal c of F . Then by choosing a integral level structure αΞ of A, we get

a quadruple (A/fWk
, ι, φ, αΞ), which represents a point in the Shimura variety x ∈ Sh(Ξ)(W̃k).

Now assume that the Tate module Tp(A) is decomposable as an IP-module. Then the

exact sequence of Barsotti-Tate Op-modules over W̃p:

0 → µp∞ ⊗Zp Op → A[p∞] → Fp/Op → 0

splits. Then by Theorem 11, we must have isomorphisms of F -algebras: MQ
∼= End0

F (AQ/F̄p
)

and ML
∼= End0

F (AL/F̄p
). But this contradicts with our construction MQ �ML. Hence Tp(A)

must be indecomposable as an IP-module.

5.3.0.1 Application to Hilbert modular Galois represenations

As the first application of Theorem 12, we study the Galois representation attached to

certain Hilbert modular forms. First we recall the notions of Hilbert modular forms and

Hecke operators.

Let I = HomQ(F, Q̄), and let Z[I] be the set of formal Z-linear combinations of elements in

I. Then Z[I] can be identified with the character group X(T ) of the torus T . Take k = (kσ)σ∈I
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such that kσ ≥ 2 for all σ ∈ I and all the kσ’s have the same parity. Set t = (1, . . . , 1) ∈ Z[I]

and n = k − 2t. Choose v = (vσ)σ∈I such that vσ ≥ 0, for all σ, vσ = 0 for at least one σ,

and there exists µ ∈ Z such that n + 2v = µt ∈ Z[I]. Then define w = v + k − t.

Recall that in Section 4.2 we define the algebraic group G = ResOF /Z(GL2) and T =

ResOF /Z(Gm). Denote by ν : G → T the reduced norm morphism. Fix an open subgroup

U of G(Ẑ) = GL2(ÔF ) where ÔF = OF ⊗Z Ẑ = ΠpOF,p. In the last product, p ranges over

all the prime ideals of OF and OF,p is the completion of OF at p. Let FA = F ⊗Z A be the

adele ring of F . We can decompose the group G(FA) as the product G∞ × Gf , where G∞

(resp. Gf ) is the infinite (resp. finite) part of G(FA), and for each u ∈ G(FA), we have the

corresponding decomposition u = u∞uf .

Let h be the complex upper half plane and i =
√−1 ∈ h. Let hI be the product of d copies

of h indexed by elements in I and z0 = (i, . . . , i) ∈ hI. Define a function j : G∞ × hI → CI

by the formula: 



aτ bτ

cτ dτ


 , zτ




τ∈I

7→ (cτzτ + dτ )τ∈I.

Definition 5.14. Define the space of Hilbert modular cusp forms Sk,w(U ;C) as the set of

functions f : G(FA) → C satisfying the following conditions:

1. f |k,wu = f , for all u ∈ UC∞+ where C∞+ = (R× · SO2(R))I ⊆ G∞, and

f |k,wu(x) = j(u∞, z0)
−kv(u∞)wf(xu−1);

2. f(ax) = f(x) for all a ∈ G(Q) = GL2(F );

3. For any x ∈ Gf , the function fx : hI → C defined by u∞(z0) 7→ j(u∞, z0)
kv(u∞)−wf(xu∞)

for u∞ ∈ G∞ is holomorphic;

4.
∫

FA/F
f





1 a

0 1


 x


 da = 0 for all x ∈ G(FA) and additive Haar measure da on

FA/F .
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When F = Q, we also add the following condition: the function |Im(z)k/2fx(z)| is uniformly

bounded on h for all x ∈ Gf = GL2(Af ).

Fix an integral ideal m of F , we define three open subgroups of GL2(ÔF ):

U0(m) =






a b

c d


 ∈ GL2(ÔF )|c ∈ mÔF



 ,

U1(m) =






a b

c d


 ∈ GL2(ÔF )|c ∈ mÔF , a ≡ 1 mod mÔF



 ,

U(m) =






a b

c d


 ∈ GL2(ÔF )|c ∈ mÔF , a ≡ d ≡ 1 mod mÔF



 ,

and set Sk,w(m,C) = Sk,w(U1(m),C).

Let U,U ′ be two open compact subgroups of Gf and fix x ∈ Gf . Define a Hecke operator

[UxU ′] : Sk,w(U ;C) → Sk,w(U ′;C), f 7→
∑

i

f |k,wxi,

where {xi} is a set of representatives of the left cosets U\UxU ′; i.e., we have UxU ′ =
∐

Uxi

and when we consider the action f |k,wxi, we regard xi ∈ Gf as an element in G(FA) such

that its infinite part consists of d copies of identity matrices. For all prime ideal q of F , fix

a uniformizer πq of Fq, and define the Hecke operator

T (q) =


U


1 0

0 βq


 U


 : Sk,w(U ;C) → Sk,w(U ;C),

where βq ∈ F×
Af

is the finite idele whose q-component is πq and all the other components are

1. For each fractional ideal n of F , set α = Πqπ
vq(n)
q ∈ F×

Af
, and define the Hecke operator

〈n〉 =


U


α 0

0 α


 U


 : Sk,w(U ;C) → Sk,w(U ;C).

Let f ∈ Sk,w(m,C) be a normalized Hilbert modular eigenform in the sense that for any

prime ideal q of F , there exists c(q, f) ∈ Q̄ and d(q, f) ∈ Q̄ such that T (q)(f) = c(q, f) · f
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and 〈q〉(f) = d(q, f)·f . Let Kf be the field generated over Q by all the c(a, f)’s and d(a, f)’s.

Shimura proved that Kf is a number field which is either totally real or CM. Denote by Of

the integer ring of Kf .

For such an f , let πf = ⊗πv be the automorphic representation of GL2(FA) on the linear

span of all the right translations of f by elements of GL2(FA), here FA is the adele ring of

F ,and πv is a representation of GL2(Fv) for each finite place v of F . We assume that one of

the following two statements holds:

1. [F : Q] is odd;

2. there exists some finite place v of F such that πv is square integrable.

For such an eigenform f , the following result is known (see [21] Theorem 2.43 for details and

historical remarks). For each prime λ of Of over a rational prime p, there is a continuous

representation ρf,λ : Gal(Q̄/F ) → GL2(Of,λ), which is unramified outside primes dividing

mp such that for any primes q - mp, we have:

trace(ρf,λ(Frobq)) = c(q, f), and det(ρf,λ(Frobq)) = d(q, f)Nq.

Here Of,λ is the completion of Of at λ, Frobq is the Frobenius of Gal(Q̄/F ) at q,and for any

ideal b of OF , Nb is the cardinality number of the ring OF /b.

Fix a prime p of OF over a rational prime p, let Dp(resp. Ip) be the decomposition group

(resp. inertia group) of Gal(Q̄/F ) at p. Let λ be a prime of Of over p. From [52] Lemma

2.1.5, if c(p, f) is a unit mod λ, then the restriction of ρf,λ to Dp is upper triangular, i.e.

there exist two characters ε1, ε2 of Dp, such that

ρf,λ|Dp ∼

ε1 ∗

0 ε2


 .

Lemma 5.15. Suppose that k = 2t and f is nearly p-ordinary in the sense that c(p, f) is

a unit mod λ. Then there exists an abelian variety Af/F , a finite extension L/Kf and an

homomorphism L → End0(Af/F ) such that degree of L over Q equals to the dimension of

Af and up to a character the λ-adic representation ρf,λ comes from the Tate module of Af .
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Proof. As the Hecke operator T (p) acts nontrivially on f , from [19] Corollary 2.2, the local

representation πp of GL2(Fp) is either a principal representation π(ξp, ηp) or a special rep-

resentation σ(ξp, ηp). From the argument in [19] Section 2, we can find a finite character

χ : F×
A /F× → Q̄× (FA is the adele ring of F ) such that the p-component of χ satisfies χp = ξp

on O×
F,p and unramified at every infinite place of F . Then the argument in [19] Section 2

implies that the automorphic representation χ ⊗ π corresponds to a primitive p-ordinary

newform f0. If we regard the representations ρf,λ and ρf0,λ as representations in GL2(Q̄p),

then they are related by the formula ρf,λ ⊗ χ−1 = ρf0,λ. It is enough to prove the statement

for the newform f0 and henceforth we assume that the Hilbert modular form f is a primitive

p-ordinary newform with character ψ for some idele class character ψ of F with finite order.

From [16] Theorem 4.4 or [51] Theorem 2.1, there exists an abelian variety Af defined over

F , a finite extension L/Kf whose degree equals to the dimension of Af and an embedding

θ : L → End(Af/F ) such that the λ-adic representation associated to the Tate module of

Af is isomorphic to ρf,λ. Moreover the number field L is either totally real or CM. To be

more precise, there exists an integer e such that dim(Af/F ) = e[Kf : Q]. When [F : Q] is

odd, e = 1 and there is nothing to explain in this situation. When [F : Q] is even, e can

be bigger than 1, and a priori the p-adic Tate module of Af/F gives us a representation of

Gal(Q̄/F ) in GL2(Lλ),where Lλ is a finite extension of Kf,λ. Since this representation is

odd, by choosing suitable eigenvectors of a complex conjugation c ∈ Gal(Q̄/F ) as basis for

Tp(Af ), we can realize this representation in GL2(Kf,λ). (See [52] Section 2.1 for details.)

Remark 5.16. As c(p, λ) is a unit mod λ, the abelian variety Af has potentially semistable

reduction at p by the lemma in [51] Section 2. More precisely, if we denote by Fψ the

number field corresponding to the character ψ by class field theory, then Af has semistable

reduction over Fψ. In fact, choose a prime λ′ of Of over a rational prime l 6= p and consider

the λ′-adic representation ρf,λ′ . When p does not divide the level m, the abelian variety Af

has good reduction at p because the representation ρf,λ′ is unramified at p. If p divides m,

one can consider the complex representation σp of the local Weil-Deligne group W ′
Fp

of F
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at p associated to ρf,λ′ (see [50]). Then by a result of Carayol [4], we have an isomorphism

π(σp) ∼= πp, where π(σp) is the representation of GL2(Fp) associated to σp under the local

Langlands correspondence. In particular, the Euler factor L(πp, s) of the L-series at p is given

by (1 − c(p, f)Np−s)−1. As c(p, f) 6= 0 by assumption, L(πp, s) is nontrivial. Hence πp is

either a special representation σ(αp, βp) or a principal series representation π(αp, βp), where

αp, βp are two quasi-characters of F×
p . In the first case, from [51] Theorem 2.2, the reduction

of Af at p is purely multiplicative. From the uniformization result in [36], ρf,λ|Ip∩Gal(Q̄/Fψ) is

indecomposable. As Ip∩Gal(Q̄/Fψ) is a subgroup of Ip with finite index, and char(Kf ) = 0,

the representation ρf,λ|Ip is also indecomposable. In the second case, as the Euler factor

L(πp, s) 6= 1, one of the quasi-characters αp, βp is unramified. By comparing the determinant

of the two representations πp and σp, we see that the product ψ−1
p αpβp is unramified, where

ψp is the p-component of the idele class character ψ. Hence over Fψ, both quasi-characters

αp and βp are unramified. Then from the criterion of Néron-Ogg-Shafarevich, the abelian

variety Af has good reduction over Fψ at p.

Now we would like to prove the following:

Theorem 13. Under the above notations and assumptions in lemma 5.15, if f does not

have complex multiplication, then the representation ρf,λ|Ip is indecomposable.

Proof. From Lemma 5.15 and Remark 5.16 we can assume that Af has good reduction over

Fψ. From Proposition 5.2, we see that Af/Q̄ is isotypic; i.e. there exists a simple abelian

variety B/Q̄ such that there exists an isogeny ϕ : Af → Be for some integer e ≥ 1. This

isogeny induces an isomorphism of simple algebras i : End0(Af/Q̄) → End0((B/Q̄)e). Hence

we have an embedding θB = i ◦ θ : L → End0((B/Q̄)e).

From Proposition 5.4, we can find a totally real field FB and a homomorphism ιB :

FB → End0(B/Q̄), such that [FB : Q] = dim(B/Q̄). Let Z be the center of the division

algebra End0(B/Q̄). From the proof of Proposition 5.4, if we identify FB as a subalgebra of

End0(B/Q̄) by ιB, then Z ⊆ FB and [FB : Z] ≤ 2.
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If [FB : Z] = 1, we have FB = Z and hence FB ⊆ θB(L). Since both Af and B are

projective varieties, we can find a finite extension M of Fψ such that

1. the abelian variety B is defined over M ;

2. we have the equalities of endomorphism algebras: End(Af/Q̄) = End(Af/M) and

End(B/Q̄) = End(B/M).

3. the isogeny ϕ is defined over M .

Under the above notations, the isogeny ϕ gives an isomorphism of p-adic Tate modules

Tp(B)⊗FB
L ∼= Tp(A), which is equivariant under the action of the Galois group Gal(Q̄/M).

If [FB : Z] = 2, FB may not contained in the image θB(L). In this case, we can find

a quadratic extension K/L such that FB can be embedded into K. As the homomorphism

θ : L → End0(Af/Q̄) identifies L with a maximal commutative subfield of the simple algebra

End0(Af/Q̄), we can extend this homomorphism to a homomorphism θ′ : K → End0(A2
f/Q̄),

which identifies K with a maximal commutative subfield of End0(A2
f/Q̄). Similarly we can

extend the homomorphism θB to a homomorphism θ′B : K → End0(B2e
/Q̄). Since A2

f/Q̄ is

isogeneous to B2e
/Q̄, the simple algebras End0(A2

f/Q̄) and End0(B2e
/Q̄) are isomorphic. Since all

automorphisms of a simple algebra are inner, by choosing a suitable isogeny from A2
f/Q̄ to

B2e
/Q̄, we have an isomorphism i′ : End0(A2

f/Q̄) ∼= End0(B2e
/Q̄), such that i′ ◦ θ′ = θ′B : K ∼=

End0(B2e
/Q̄). By the same argument as above, we can find a finite extension M/Fψ such that

we have an isomorphism of p-adic Tate modules: Tp(B) ⊗FB
K ∼= Tp(Af ) ⊗L K, which is

equivariant under the action of Gal(Q̄/M).

As Be
/M is isogenous to Af/M , B/M has good reduction at a prime p′ of M over the

prime p of F . By Theorem 12, for any place λB of FB such that the λB-divisible Barsotti-

Tate module of B/M is ordinary, the corresponding λB-adic Tate module is indecomposable

as a Gal(Q̄/M) ∩ Ip-module. By the above isomorphism of Tate modules, we see that

ρf,λ|Gal(Q̄/M)∩Ip
is indecomposable. Since Gal(Q̄/M)∩Ip is a subgroup of Ip with finite index,

and char(Kf ) = 0, the representation ρf,λ|Ip must be also indecomposable.
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From Theorem 13, we can prove a result on local indecomposability of Λ-adic Galois

representations. First we briefly recall the definition of ordinary Hecke algebras defined in

[17] Section 3.

Let Φ be the Galois closure of F in Q̄. The embedding ip : Q̄ → Q̄p induces a p-adic

valuation on Φ and we denote by OΦ the valuation ring. Let K be a finite extension of the

p-adic closure of Φ in Q̄p, and OK be the valuation ring of K. Let F∞/F be the maximal

abelian extension of F unramified outside p and ∞, and Z be its Galois group. Let Z1

be the torsion free part of Z. Let Λ = OK [[Z1]] be the continuous group algebra of Z1

over OK . Then Λ is (noncanonically) isomorphic to the formal power series ring of 1 + δ

variables over OK , where δ is the defect in Leopoldt’s conjecture. Let χ : Gal(Q̄/F ) → Z×p
be the cyclotomic character. The restriction of χ to Z1 gives a character of Z1, which is still

denoted by χ. For any integer k ≥ 2 and a finite order character ε : Z1 → Q̄p. The character

εχk−1 : Z1 → Q̄p gives a homomorphism κk,ε : Λ → Q̄p.

For any two open compact subgroups U,U ′ of Gf and x ∈ Gf , we have the modified

Hecke operator defined in [17] Section 3:

(UxU ′) : Sk,w(U ;C) → Sk,w(U ′;C).

For each prime ideal q of F , set

T0(q) =


U


1 0

0 βq


 U


 : Sk,w(U ;C) → Sk,w(U ;C),

where βq is the same as in the definition of T (q).

Fix an integral ideal n of F which is prime to p, and for each integer α ≥ 1, set

Sk,w(npα;C) = Sk,w(U1(n ∩ U(pα));C). Define the Hecke algebra hk,w(npα;OΦ) as the OΦ-

subalgebra of EndC(Sk,w(npα;C)) generated by all the T0(q)’s overOΦ and define hk,w(npα;OK) =

hk,w(npα;OΦ) ⊗OΦ
OK . Inside hk,w(npα;OK) we have the p-adic ordinary projector eα =

limn→∞ T0(p)n! and we have the ordinary Hecke algebra hord
k,w(npα;OK) = eαhk,w(npα;OK).

For β ≥ α ≥ 0, we have a natural surjective OK-algebra homomorphism hord
k,w(npβ;OK) →
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hord
k,w(npα;OK), and we define

hord
k,w(np∞;OK) = lim

←−α

hord
k,w(npα;OK).

From [17] Theorem 3.3, the ordinary Hecke algebra hord
k,w(np∞;OK) is a torsion free Λ-module

of finite type, and the isomorphism class of hord
k,w(np∞;OK) as an OK-algebra only depends

on the class of v in Z[I]/Zt, and hence we denote this algebra by hord
v (np∞;OK).

Now set h = hord
0 (np∞;OK). Fix Spec(ΛL) → Spec(h) a (reduced) irreducible component

of h and let F : h → ΛL be the corresponding homomorphism. Then ΛL is finite free over

Λ, and the quotient field L of ΛL is a finite extension of the quotient field of Λ. Let P be

a Q̄p-valued point of ΛL, and let ϕP : ΛL → Q̄p be the corresponding homomorphism. The

point P is called an arithmetic point if ϕP is an extension of κk,ε for some k and ε. If P is

an arithmetic point, then the composition ϕP ◦ F : h → Q̄p gives the Hecke eigenvalues of a

classical Hilbert modular form f of weight k and tame level n. We also say that the Hilbert

modular form f corresponds to P , and f belongs to the family F . We say that F has complex

multiplication if there exists an arithmetic point P in F , such that the corresponding Hilbert

modular form has complex multiplication. Once this is the case, then for all arithmetic point

in F , the corresponding Hilbert modular form also has complex multiplication.

It’s well known that there is a 2-dimensional Galois representation ρF : Gal(Q̄/F ) →
GL2(L) attached to F such that for each prime p of F over p, the restriction of ρF to the

decomposition Dp is upper triangula;i.e. ρF |Dp is of the shape:

ρF |Dp ∼

δp up

0 εp


 ,

here δp, εp : Dp → ΛL are two characters of Dp.

Theorem 14. Suppose that F does not have complex multiplication, and F has an arithmetic

point P which corresponds to a weight 2 Hilbert modular form satisfying the condition required

in Theorem 13. Then there exists a proper closed subscheme S of Spec(ΛL) such that for

all arithmetic points P of Spec(ΛL) outside S which corresponds to a classical form f , the
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representation ρf |Dp is indecomposable, where ρf is the Galois representation attached to f .

In particular, when Leopoldt conjecture holds for F and p, then for all but finitely many

classical forms f belonging to F , the representation ρf |Dp is indecomposable.

The proof follows essentially from the argument in [14] Theorem 18. For the sake of

completeness, we give a proof here.

Proof. By the assumption and Theorem 13, the representation ϕP ◦ρF |Dp is indecomposable.

Hence ρF |Dp is indecomposable either. Define cp = ε−1
p · up : Dp → ΛL. Then it’s easy to

check that cF satisfies the cocycle condition and ρF |Dp is indecomposable if and only if the

class [cp] of cp in H1(Dp, ΛL(δpε
−1
p )) is nontrivial. Since ΛL is finite over Λ, the residue

field of ΛL is finite and let q be its order. Let E1 be the compositum of the finitely many

tamely ramified abelian extension of Fp whose order divides q − 1, and E2 be the maximal

abelian pro-p-extension of Fp. Denote by E the compositum field of E1 and E2 and set

H = Gal(Q̄p/E) ⊆ Dp. Then the characters δp and εp are trivial when restricted to H.

Hence the restriction of ρF to H is of the shape:

ρF |H ∼

1 λ

0 1


 ,

for some (additive) homomorphism λ : H → ΛL. From [14] Lemma 19, the restriction

H1(Dp, ΛL(δpε
−1
p )) → H1(H, ΛL(δpε

−1
p ))

is injective. Since [cp] is nontrivial in H1(Dp, ΛL(δpε
−1
p )), the homomorphism λ : H → ΛL

is nontrivial. Let I be the ideal of ΛL generated by λ(H). Then I is nonzero and I defines

a proper closed subscheme S of Spec(ΛL). If f is a classical Hilbert modular form in F ,

then ρf |H is decomposable if and only if f corresponds an arithmetic point in S. Hence

for any arithmetic point P of F outside S, which corresponds to the modular form f , the

representation ρf |H , and hence ρf |Dp is indecomposable.
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Now we consider the nearly ordinary case. Let

OF,p = lim
←
OF /pnOF

be the p-adic completion of OF at p, and UF be the torsion free part of O×
F,p. Then set

Γ = Z1×UF and let Λ′ = OK [[Γ]] be the continuous group algebra. For any finite character

ε : Γ → Q̄×p , we have another character

Γ = Z1 × UF → Q̄×p , (a, d) 7→ χ(a)µdvε((a, d)),

which induces a homomorphism κn,v,ε : Λ′ → Q̄p.

We briefly recall the definition of nearly ordinary Hecke algebras defined in [18] Section

1. For any α ≥ 1, set Uα = U1(n) ∩ U(pα), and let hk,w(npα;OΦ) be the OΦ-subalgebra

of EndC(Sk,w(npα;C)) generated by all the Hecke operators (UαxUα) for x ∈ U0(npα) over

OΦ. Set hk,w(npα;OK) = hk,w(npα;OΦ) ⊗OΦ
OK . Applying the ordinary projector eα we

get the nearly ordinary Hecke algebra hn.ord
k,w (npα;OK), and by taking limit, we have the

Hecke algebra hn.ord
k,w (np∞;OK). From [18] Theorem 2.3, the Hecke algebra hn.ord

k,w (np∞;OK)

are all isomorphic to each other for all pair (k, w) as OK-algebras and denote this algebra

by hn.ord(np∞;OK), which is a torsion free Λ′-module of finite type. Let Spec(Λ′L) be an

irreducible component of Spec(hn.ord(np∞;OK)) and let F : hn.ord(np∞;OK) → Λ′L be the

corresponding homomorphism. We know that Λ′L is free of finite rank over Λ′. A Q̄p-rational

point P ∈ Spec(Λ′L)(Q̄p) is called an arithmetic point if the corresponding homomorphism

ϕP extends κn,v,ε for some n, v. For such an arithmetic point, the composition ϕP ◦ (F) gives

the eigenvalues of a Hilbert modular form of weight (k, w) and tame level m.

For such an F , we have a two dimensional Galois representation ρF : Gal(Q̄/Q) →
GL2(Λ

′
L) such that for any prime p of F over p, the restriction ρF |Dp is upper triangular.

Similarly to Theorem 14, we have the following result:

Theorem 15. Suppose that F does not have complex multiplication, and F has an arith-

metic point P which corresponds to a (parallel) weight 2 Hilbert modular form satisfying the

condition required in Theorem 13. Then there exists a proper closed subscheme S of Spec(Λ′L)
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such that for all arithmetic points P of Spec(Λ′L) outside S which corresponds to a classical

form f , the representation ρf |Dp is indecomposable, where ρf is the Galois representation

associated to f .

5.3.0.2 Application to a question of Coleman

In the rest of this chapter, we work with elliptic modular forms. Let p > 3 be a prime

number and N be a positive number prime to p. For each integer k we use M †
k(Γ1(N)) (resp.

S†k(Γ1(N))) to denote the space of overconvergent p-adic modular forms (resp. cuspforms)

of level N over Cp (see [27] for the definitions). In [5] Proposition 6.3, Coleman proved

that there is a linear map θk−1 : M †
2−k(Γ1(N)) → M †

k(Γ1(N)) such that the effect of θk−1

on the q-expansions is given by the differential operator (q d
dq

)k−1. Also there is an operator

U on M †
k(Γ1(N)) such that if F (q) = Σn≥0anq

n is an overconvergent modular form, then

U(F )(q) = Σn≥0apnq
n. Recall that if F is a generalized eigenvector for U with eigenvalue λ in

the sense that there exists some n ≥ 1 such that (U − λ)n(F ) = 0, then the p-adic valuation

of λ is called the slope of F . From [5] Lemma 6.3, if f ∈ S†k(Γ1(N)) is a normalized classical

eigenform of slope strictly smaller than k − 1, then f cannot be in the image of θk−1. On

the other hand, a classical eigenform cannot have slope larger than k − 1. Then it remains

to consider the remaining boundary case; i.e. overconvergent modular forms of slope one

less than the weight. In [5] Proposition 7.1, Coleman proved that for k ≥ 2, every classical

CM cuspidal eigenform of weight k and slope k − 1 is in the image of θk−1. Then he asked

whether there is non-CM classical cusp forms in the image of θk−1. Since the only possible

slope for new forms of weight k is k
2
−1 (see [12] Section 4), it’s enough to consider old forms.

Let g = Σn≥1anq
n be a classical normalized eigenform of level N and weight k ≥ 2. Denote

by Kg = Q(an|n = 1, 2, . . .) the Hecke field of g, which is known to be a number field. For

each prime p of Kg over the rational prime p, it induces an embedding ip : Kg → Q̄p and

let vp be the corresponding valuation on Kg. Then we can regard g as a modular form over

Q̄p by ip. As explained in [12] Section 4, one can attach to g two oldforms on Γ1(N)∩ Γ0(p)

whose slopes add up to k − 1. When the eigenform g is p-ordinary; i.e. vp(ap) = 1, one of
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the associated oldforms has slope 0 and the other has slope k − 1 . We denote the latter

oldform by f . What we can prove is the following:

Proposition 5.17. Let g be a weight two normalized classical cusp eigenform on Γ1(N) with

the Hecke field Kg. Suppose that there exists a prime p of Kg over the rational prime p such

that g is p-ordinary, and the associated slope one oldform f is in the image of the operator

θ. Then g is a CM eigenform.

Proof. Let ρg,p : Gal(Q̄/Q) → GL2(Kg,p) be the p-adic Galois representation attached to g.

As explained in [10] Proposition 1.2 or [13] Proposition 11, when f is in the image of θ, the

restriction of ρg,p to an inertia group Ip of Gal(Q̄/Q) at p splits as the direct sum of the

trivial character and the character χp, where χp is the p-adic cyclotomic character. Then

from Theorem 13, the eigenform g must have complex multiplication.

Remark 5.18. In [10] Theorem 1.3, Emerton proved that if the assumption in the above

proposition is true for all primes p of Kg over p, then g is a CM eigenform. Hence the above

proposition can be regarded as an improvement of his theorem. Also in [13] Section 6, Ghate

discussed the case when p divides the level N . In this case he explained that one can also

attach to the eigenform g a primitive form f with the same weight and level as g. Then he

proved that f is in the image of θ if and only if the restriction of ρg,p to the inertia group

Ip splits (we need to emphasize here that Ghate’s argument works for all weights, but we

restrict ourselves to the weight two case where Theorem 13 is applicable). Hence the result

in Theorem 13 also applies and the above proposition still holds in this case.
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CHAPTER 6

Mumford-Tate conjecture for abelian fourfolds

6.1 Background about the Mumford-Tate conjecture

First we summarize the known results towards the Mumford-Tate conjecture.

Let A be an abelian variety of dimension d over a number field F . Fix an embedding

F ↪→ C and an algebraic closure F̄ of F .

The singular homology group V = H1(A(C),Q) is a 2d-dimensional vector space over

Q. Then we have the Hodge decomposition VC = V ⊗Q C = V −1,0 ⊕ V 0,−1, such that

V −1,0 = V 0,−1. We define a cocharacter µ∞ : Gm,C → AutC(VC) such that any z ∈ C× acts

on V −1,0 by multiplication by z−1 and acts trivially on V 0,−1.

Definition 6.1. The Mumford-Tate group of the abelian variety A/F is the smallest algebraic

subgroup MT(A) ⊂ AutQ(V ) defined over Q such that the cocharacter µ∞ factors through

MT(A)×Q C.

For any rational prime l, let TlA(F̄ ) be the l-adic Tate module of A and set Vl =

TlA(F̄ ) ⊗Zl
Ql, which is a 2d-dimensional vector space over Ql. Then we have a Galois

representation:

ρl : Gal(F̄ /F ) → AutQl
(Vl).

We define Gl/Ql
as the Zariski closure of the image of ρl inside AutQl

(Vl) and let G◦
l/Ql

be its

identity component. From Faltings’ theorem, the group G◦
l/Ql

is reductive.

The Mumford-Tate conjecture predicts that

Conjecture 6.2. For any prime l, we have the equality G◦
l/Ql

= MT(A)×Q Ql.
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Deligne proved the following:

Theorem 16. For any prime l, we have the inclusion G◦
l/Ql

⊆ MT(A)×Q Ql.

The Mumford-Tate conjecture for abelian varieties with trivial endomorphism algebras

was first studied by Serre. In [43],[45] and [46], he proved the Mumford-Tate conjecture for

such abelian varieties whose dimensions satisfy certain numerical conditions. In this thesis

we assume that d = 4 and the abelian variety A/F is absolutely simple. Then the absolute

endomorphism algebra End◦(A/F̄ ) is a division algebra. In [32], Moonen and Zarhin proved

that in almost all cases, the endomorphism algebra End◦(A/F̄ ) together with its action on

the Lie algebra Lie(A/F̄ ) uniquely determines the Lie algebras of the Mumford-Tate group

MT(A)/Q and the reductive group G◦
l/Ql

. Then only exception happens when End◦(A/F̄ ) = Q.

In this case, there are two possibilities for the Lie algebra of MT(A)/Q together with its action

on V ( resp. the Lie algebra of G◦
l/Ql

together with its action on Vl):

1. c⊕ sp4 with the standard representation, where c is the 1-dimensional center c of the

Lie algebra;

2. c⊕sl2⊕sl2⊕sl2, with the 1-dimensional center c, and the representation of sl2⊕sl2⊕sl2

is the tensor product of the standard representation of sl2.

Together with Theorem 16, to prove the Mumford-Tate conjecture for simple 4-dimensional

abelian varieties, it is enough to prove the following:

Theorem 17. Let A/F be an abelian variety of dimension 4 over a number field F . Suppose

that End(A/F̄ ) = Z. If for some prime l, the group G◦
l/Ql

together with its action on Vl

belongs to the second case listed above, then the same is true for the the group MT(A)/Q

together with its action on V , i.e. the Mumford-Tate conjecture holds for A/F .

Theorem 17 is the second main result in this thesis. We give a sketch of proof before we

proceed to the serious proof.
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Suppose that the abelian variety A/F satisfies hl = sl2 × sl2 × sl2 over Q̄l. By a theorem

of Pink, there exists a set V of finite places of F of density 1 at which the abelian variety

A/F has good ordinary reduction. For v ∈ V , let kv be the residue field of F at v with

characteristic p = pv and we use Av/kv to denote the reduction of A/F at v. If the abelian

variety A/F comes from a Shimura curve Z ↪→ A4,1,n where A4,1,n is the Siegel moduli space

of principally polarized 4-dimensional abelian varieties with a suitable level structure, then

Av/k̄v
gives a closed ordinary point xv of Z. As Z is a Shimura variety of Hodge type, from a

result of Noot ([31]Theorem 4.2), it is formally linear at xv, i.e. the formal completion of Z

at xv is a formal torus of rank 1. Since the abelian variety A/F gives a non-torsion point on

this formal torus, this torus can be determined by the Serre-Tate coordinates of the abelian

variety A/F .

Conversely, we start with an abelian variety whose Galois representation is of type (2) and

we try to prove that it comes from a Shimura curve. Let Dv (resp. Iv) be the decomposition

(resp. inertia) group of Gal(F̄ /F ) at v. After choosing a suitable symplectic Zp-basis of the

p-adic Tate module TpA(F̄ ), the local Galois representation is of the shape:

ρp : Iv → GSp8(Zp)

σ 7→

χp(σ) · In B(σ)

0 In


 ,

where I4 is the 4 × 4 identity matrix, B(σ) = (bij(σ))1≤i,j≤4 is a symmetric 4 × 4 matrix

depending on σ and χp : Iv → Z×p is the p-adic cyclotomic character.

In [40], Noot gave a detailed analysis of the isogeny types of the abelian variety Av/k̄v

and the local Galois representation ρp : Iv → GSp8(Zp). He proved that for any Frobenius

element Frobv ∈ Dv, the element ρp(Frobv) ∈ Gp(Qp) generates a maximal torus of Gp/Qp .

Also he got a control on the image ρp(Iv). This information imposes restrictive conditions on

the 1-cocycles bij’s. Recall that we have studied the relationship of the Serre-Tate coordinates

of A/F and the local representation ρp. Based the results in chapter 3, we get an explicit

description on the Serre-Tate coordinates of A/F . In particular, we show that A/F sits in a

rank 1 formal subtorus of the local deformation moduli space of the abelian variety of Av/k̄v
.
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Finally we consider the torsion points on the formal torus we get in the previous step.

These points correspond to the quasi-canonical CM liftings of the abelian variety Av/k̄v
in

the sense of [31] Definition 2.9. Given the analysis of the Serre-Tate coordinates explained as

above, we can use the Mumford-Tate groups of these abelian varieties to generate a candidate

of the Mumford-Tate group of A/F and then construct a Shimura curve which contains all

these quasi-canonical liftings of Av/k̄v
. Then by formal linearity of Shimura varieties of Hodge

type, we see that A/F comes from this Shimura curve and then we conclude.

6.2 Reductions of abelian varieties with Galois representations of

Mumford’s type

Definition 6.3. Let K be a field of characteristic 0 and fix an algebraic closure K̄ of K. Let

G/K be an algebraic group and let V be a finite dimensional K-vector space with a faithful

representation of G. We say that the pair (G, V ) is of Mumford’s type if the following three

conditions are satisfied:

1. Lie(G) has one dimensional center c;

2. Lie(G)K̄
∼= cK̄ ⊕ sl32,K̄;

3. Lie(G)K̄ acts on VK̄ by the tensor product of the standard representations of sl2,K̄.

For any semisimple group G/K , there exist (up to isomorphism) a simply connected group

G̃ (resp. adjoint group Gad) such that there exists central isogenies G̃ → G (resp. G → Gad)

over K.

Let F be a number field and A/F be a four dimensional abelian variety. Let GF =

Gal(F̄ /F ) be the Galois group of F and we use v to indicate a finite place of F and use

pv to denote its residue characteristic. Let Fv be the completion of F at v and GFv ⊆ GF

be the decomposition group at v. Let kv be the residue field whose cardinality is qv. Fix

a Frobenius element Frobv at v. Let l be any prime number. Recall that we have the
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Galois representation ρl : GF → AutQl
(Vl) and Gl is the Zariski closure of the image of ρl

in AutQl
(Vl). From a result of Serre ([38] Theorem 3.6), replacing F by a finite extension if

necessary, we can assume that the algebraic group Gl,Ql
is connected for every prime l and

it is a reductive group by a result of Faltings ([38] Corollary 5.8).

From [40] Lemma 1.3, we know that if the pair (Gl, Vl) is of Mumford’s type for one

prime l, then the same is true for all primes, and we have End(A/F̄ ) = Z.

Definition 6.4. If the abelian variety A/F has the property that the pair (Gl, Vl) is of Mum-

ford’s type for some prime l, we say that A/F is an abelian variety with Galois representation

of Mumford’s type.

From [40] Corollary 2.2, if A/F is an abelian variety with Galois representation of Mum-

ford’s type, it has potentially good reduction at all places of F . Hence replacing F by a

finite extension, we can assume that A/F has good reduction everywhere.

For any finite place v of F , we choose a semisimple element tv ∈ GL8(Q) such that its

characteristic polynomial is equal to the characteristic polynomial of the element ρl(Frobv).

By Weil’s theorem, the conjugacy class of element tv in GL8(Q) exists and does not depend

on l. Let Tv ⊆ GL8,Q be the Zariski closure of the subgroup generated by tv, which is unique

up to conjugation in GL8,Q. From [38] Theorem 3.7, we have:

Theorem 18. There exists a set Vmax of finite places of F of Dirichlet density 1, such that

for all v ∈ Vmax, we have:

1. the group Tv,Ql
is connected and hence a torus;

2. for any l 6= pv, the torus Tv,Ql
is conjugate to a maximal torus of Gl/Ql

under GL8(Ql).

As A/F is an abelian variety with Galois representation of Mumford’s type, for each

prime l, the root system of the simple factors of Gl,Q̄l
has type A1. In particular, the abelian

variety A/F satisfies the hypothesis in [38] Theorem 7.1 and it follows that there exists a

subset Vgood ⊆ Vmax of finite places of F with Dirichlet density 1 such that A/F has ordinary

reduction at v for all v ∈ Vgood.
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Fix a place v ∈ Vgood. First we want to study the isogeny type of the reduction Av/kv of

A/F at v. From [40] Lemma 1.3, there exist infinitely many primes l’s such that the derived

group Gder
l of Gl is Ql-simple. We fix such a prime l 6= pv. Then we have:

Proposition 6.5. Let k̄v be an algebraic closure of kv. Then the reduction Av/k̄v
is either

simple or isogenous to a product of an elliptic curve and a simple abelian threefold. In

particular, the eigenvalues of the Frobenius Frobv on Vl are all distinct.

The above proposition is an immediate consequence of [40] Proposition 4.1. But to

establish notations used in our later argument, we give a sketchy proof here.

Proof. Let ρv,l : GFv → Gl(Ql) be the local l-adic Galois representation attached to Vl. From

the proof of [40] Proposition 4.1, replacing F by a finite extension if necessary, we can assume

the following conditions:

1. the cardinality qv of the residue field kv is a perfect square;

2. for any σ ∈ GFv , we have the congruence ρv,l(σ) ≡ I8 (mod l2) in Gl(Zl);

3. all the simple factors of Av/k̄v
are defined over kv.

Recall that G̃l/Ql
is the simply connected group with a central isogeny G̃l → Gl. From

the second assumption above, the representation ρv,l : GFv → Gl(Zl) lifts uniquely to a

representation ρ̃v,l : GFv → G̃l(Zl).

Now set π = ρ̃v,l(Frobv) ∈ G̃(Ql), and let T̃ be the Zariski closure of the subgroup of

G̃(Ql) generated by π, which is a connected torus. We can assume that the residue field

kv has even degree over its prime field and hence its cardinality qv is a perfect square. Set

α = π√
qv
∈ G̃(Ql) and let T̃ ′ be the Zariski closure of the subgroup of G̃(Ql) generated by

α. Then T̃ ∼= Gm,Ql
× T̃ ′ for some torus T̃ ′ of the derived subgroup G̃der of G̃. Let T̄Ql

be a

maximal torus of G̃der containing T̃ ′.

As the pair (Gl, Vl) is of Mumford’s type, from the above construction, the torus T̄/Ql
has

rank 3 and we have an isomorphism X(T̄ ) ∼= Z3 such that the weights of the representation of
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T̄/Ql
on Vl correspond to (±1,±1,±1) ∈ Z3. The evaluation at the element α ∈ T̄ (Ql) gives

an additive map ev : X(T̄ ) → (Q̄l)
∗. As T̃ ′ is a subtorus of T̄ , the restriction gives a natural

surjection X(T̄ ) → X(T̃ ′), whose kernel is the same as the kernel of the map ev. Hence we

have an injective map ev′ : X(T̃ ′) → (Q̄l)
∗. By construction, the values ev((±1,±1,±1)) are

exactly the eigenvalues of α on Vl, and hence they are all in Q̄ and have absolute value 1. The

injection X(T̃ ′) → (Q̄)∗ gives an action of Gal(Q̄/Q) which extends the Gal(Q̄l/Ql)-action.

It follows that actually the torus T̃ ′ is defined over Q and the map ev′ : X(T̃ ′) → (Q̄l)
∗

takes values in (Q̄)∗ and is Gal(Q̄/Q)-equivariant. The decomposition group GQl
acts on the

character group X(T̄ ) ∼= Z3 through the group {±1}3 o S3 and similarly the Galois group

GQ acts on the character group X(T̃ ′) in a similar way.

We fix an embedding ipv : Q̄→ Q̄pv which induces a pv-adic valuation vpv on Q̄, normal-

ized by vpv(qv) = 1 and define ϕv = vpv ◦ ev′ : X(T̃ ′) → Q, which is Z-linear.

When the reduction Av/kv is ordinary, from the argument in [40] Proposition 4.1, we see

that ker(ev) is trivial, i.e. X(T̄ ) = X(T̃ ′) and hence T̄ = T̃ ′. Under the isomorphism X(T̄ ) =

X(T̃ ′) ∼= Z3, the Galois action of Gal(Q̄/Q) on X(T̃ ′) permutes the set {(±1,±1,±1)} and

induces a group homomorphism

hv : Gal(Q̄/Q) → {±1}3 o S3 = Aut(X(T̃ ′)).

As the derived group Gder
l/Ql

is assumed to be Ql-simple, the image of the Galois group

Gal(Q̄l/Ql) under hv contains a cycle in S3 of length 3. Hence the Galois group Gal(Q̄/Q)

acts transitively on the set {(1, 1,−1), (1,−1, 1), (−1, 1, 1)} ⊂ X(T̃ ′). On the other hand,

any complex conjugation in Gal(Q̄/Q) acts on X(T̃ ′) by multiplication by −1. So we have

the following possibilities:

1. the action of Gal(Q̄/Q) on the set {ev((±1,±1,±1))} ⊂ Q̄ is transitive. In this case,

the abelian variety Av/k̄v
is simple and ev((1, 1, 1)) ∈ Q̄ generates a CM field of degree

8 over Q;

2. the action of Gal(Q̄/Q) on the set {ev((±1,±1,±1))} ⊂ Q̄ has two orbits:

{ev((1, 1, 1), ev((−1,−1,−1))} and
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{ev((1, 1,−1)), ev((1,−1, 1)), ev((−1, 1, 1)), ev((1,−1,−1)), ev((−1, 1,−1)), ev((−1,−1, 1))}.
In this case the abelian variety Av/k̄v

is isogenous to a product of an elliptic curve and

a simple abelian threefold. The element ev((1, 1, 1)) ∈ Q̄ generates a quadratic field

over Q and ev((1, 1,−1)) ∈ Q̄ generates a CM field of degree 6 over Q.

We keep the notation as in the above proof. Since the abelian variety Av/kv is ordinary, its

slopes are 0 and 1, each of which has multiplicity 4. On the other hand, the slopes of Av/kv

are given by the values {vpv(
√

qv) · ϕv((±1,±1,±1))}. Hence the set {ϕv((±1,±1,±1))}
takes values in the set {±1

2
}. Then we can choose an isomorphism X(T̄ ) ∼= Z3 such that

ϕv((1, 1, 1)) = 1
2
. As the map ϕv : T̄ = X(T̃ ′) is additive, we have

ϕv((1, 1,−1)) + ϕv((1,−1, 1)) + ϕv((−1, 1, 1)) =
1

2
.

It follows that one of the three numbers ϕv((1, 1,−1)), ϕv((1,−1, 1)), ϕv((−1, 1, 1)) is −1
2

and

the other two are 1
2
. Without loss of generality, we can assume that ϕv((1, 1,−1)) = −1

2
.

Then ϕv((1, 0, 0)) = 1
2

and ϕv((0, 1, 0)) = ϕv((0, 0, 1)) = 0.

Now consider the composition:

h̄v : Gal(Q̄/Q)
hv−→ {±1}3 o S3 → S3,

where the second map the the natural projection. Define a number field K(v) in Q̄ as the

fixed field of the group Hv = h̄−1
v ({id, (23)}) ⊆ Gal(Q̄/Q) (Hv is the subgroup of Gal(Q̄/Q)

which fixes the first component of X(T̄ ) ∼= Z3). As the image of h̄v contains a cycle of length

3 in S3, K(v) is a cubic field. Since the image of any complex conjugation in Gal(Q̄/Q)

under hv is ((−1,−1,−1), id) ∈ {±1}3 o S3, the field K(v) is necessarily totally real.

If we consider another place v′ ∈ Vgood, we can get another totally real cubic field K(v′)

by the same construction as above. The fields K(v) and K(v′) are isomorphic. In fact,

from the proof of 6.5, we see that T̃/Ql
⊂ G̃l/Ql

is a maximal torus and we can consider

the associated reduced root system Ψ. As the torus T̃ can be defined over Q, we have the
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continuous group homomorphism hv : Gal(Q̄/Q) → Aut(Ψ) ∼= {±1}3 o S3. If we consider

another place v′ ∈ Vgood, we have another maximal torus T̃ ′
/Ql

⊂ G̃l/Ql
which can be defined

over Q. As the tori T̃ and T̃ ′ are conjugate over Q̄l inside G̃l(Q̄l), it induces an isomorphism

between the root data associated to these two tori. Such an isomorphism is unique up

to conjugation by elements in the Weyl group W (Ψ) of Ψ. Let Out(Ψ) = Aut(Ψ)/W (Ψ)

be the outer automorphism group of Ψ, which is isomorphic to S3. Then the composite

h̄v : Gal(Q̄/Q) → Out(Ψ) does not depend on the choice of the maximal torus T̃ . Hence h̄v

is independent of v and so is the cubic field K(v). In the following, we just denote this field

by K.

Set H ′(v) = h−1
v ({1,±1,±1} o {id, (23)}) ⊂ Gal(Q̄/Q), and let L(v) be the fixed field

of H ′(v) inside Q̄. Then L(v)/K is necessarily a quadratic extension. Moreover, as any

complex conjugation in Gal(Q̄/Q) acts on X(T̄ ) ∼= Z3 by inversion, one can check that L(v)

is a CM field by direct calculation.

As the torus T̃ = Gm × T̃ ′ = Gm × T̄ is generated by π = ρ̃v,l(Frobv), from the above

construction, we see that T̄/Ql
= T̃ ′

/Ql
= T ′

L(v)/Ql
and T̃/Ql

= Gm,Ql
× T ′

L(v)/Ql
. Here T ′

L(v)/Q is

a torus defined over Q such that T ′
L(v)(Q) = {x ∈ L×|NormL(v)/K(x) = 1}.

Since the subset Vgood of finite places has Dirichlet density 1, we can find a place v ∈ Vgood

over a rational prime p = pv such that p splits completely in the cubic totally real field K

and for simplicity we write L = L(v). So there are three different places v = v1, v2, v3 of

K lying over p. Since we fix an embedding ip = ipv : Q̄ → Q̄p, we have three embeddings

ϕ1, ϕ2, ϕ3 : K → Q̄ such that ϕi induces the place vi for i = 1, 2, 3. As L/K is a totally

imaginary quadratic extension, we can denote the embeddings of L to Q̄ by ψi, ψ̄i : L →
Q̄, i = 1, 2, 3 such that ψi, ψ̄i extend the embedding ϕi for i = 1, 2, 3.

Now recall that in the proof of Proposition 6.5 we considered the element α = π√
qv
∈

T̃ ′(Q) = T ′
L(Q) ⊆ L×, which satisfies:

vp(ψ1(α)) =
1

2
, vp(ψ̄1(α)) = −1

2
,
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and

vp(ψi(α)) = vp(ψ̄i(α)) = 0

for i = 2, 3. This implies that the place v = v1 of K splits into two different places w1, w̄1 of

L. Since p splits in K, we see that the w1-adic (resp. w̄1-adic) completion of L is isomorphic

to Qp. We keep the choice of the place v and the above property will be used in later

argument.

6.3 Linear relations of the Serre-Tate coordinates

Fix the place v as in the preceding section and set p = pv. We then have the Galois

representation attached to the p-adic Tate module of A/F :

ρp : Gal(F̄ /F ) → Gp ↪→ AutQp(Vp).

In this section we want to study the local Galois representation

ρv,p : Dv = Gal(F̄v/Fv) → Gp ↪→ AutQp(Vp)

and its restriction to the inertia group Iv ⊂ Dv. As the abelian variety A/F has good

reduction at v, the representation ρv,p is crystalline with Hodge-Tate weight 0 and 1.

6.3.0.3 Filtered modules and Newton cocharacters

First we recall the notions of filtered modules and Newton cocharacters.

Let RepDv
be the tannakian category of all finite dimensional continuous representation

of the decomposition group Dv over Qp and let ((Vp)) be the full tannakian subcategory of

RepDv
generated by Vp. Let VecQp be the category of finite dimensional Qp-vector spaces,

and we have the forgetful functor ωVp : ((Vp)) → VecQp , which is a fiber functor of the

tannakian categories. The automorphism group HVp = Aut⊗(ωVp) of the fiber functor ωVp

can be identified with the Zariski closure of the image of the local Galois representation ρv,p.

Let σ : Fv → Fv be the Frobenius automorphism. By p-adic Hodge theory, one can
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associate a filtered module Mp to the crystalline representation Vp. The filtered module Mp

is a finite dimensional Fv-vector space with a σ-linear automorphism FrMp : Mp → Mp.

Let MFFv be the tannakian category of weakly admissible filtered modules over Fv, and let

((Mp)) be the full tannakian subcategory of MFFv generated by Mp. Then we have the

forgetful functor ωMp : ((Mp)) → VecFv , which is a fiber functor of the tannakian categories.

Let HMp = Aut⊗(ωMp) ⊂ AutFv(Mv) be the automorphism group of the fiber functor ωMv

defined over Fv. Then from [8] Theorem 3.2, the algebraic group HMp is an inner form of

HVp ×Qp Fv. Hence we can identify (HMp)Q̄p
with (HVp)Q̄p

.

Let mv = [Fv : Qp]. Then the morphism Frmv
Mp

: Mp → Mp is Fv-linear, and it gives a

Q-grading

Mp =
⊕

i∈Q
Mp,i,

such that the eigenvalues of Frmv
Mp

on Mp,i has valuation mvi (the valuation on Q̄p is nor-

malized so that the valuation of p is 1). Then we can define the Newton cocharacter of

Mp:

µMp,Fv : Gm,Fv → HMp,Fv ,

such that Gm,Fv acts on Mp,i by (·)mvi.

6.3.0.4 Application to the study of local Galois representations

As mentioned above, the algebraic group HMp,Fv is an inner form of HVp ×Qp Fv, the cochar-

acter µMp,Q̄p
= µMp,Fv ×Fv Q̄p gives a cocharacter

µ : Gm,Q̄p
→ HVp,Q̄p

↪→ Gp,Q̄p
.

As we have the central isogenies G̃p,Q̄p
∼= Gm,Q̄p

× (SL2,Q̄p
)3 → Gp,Q̄p

, there exists a positive

integer k such that µk : Gm,Q̄p
→ Gp,Q̄p

can be lifted to a homomorphism:

µ̃ = (µ̃0, µ̃1, µ̃2, µ̃3) : Gm,Q̄p
→ G̃p,Q̄p

,

where µ̃0 : Gm,Q̄p
→ Gm,Q̄p

and µ̃i : Gm,Q̄p
→ SL2,Q̄p

, i = 1, 2, 3 are homomorphism of

algebraic groups.
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Hence there exists n0, n1, n2, n3 ∈ Q, such that the slopes of Mp are given by the numbers

n0±n1±n2±n3. From the argument in the proof of Proposition 3.2 in [40], we have n0 = 1
2
.

Moreover, when A/F has good ordinary reduction at v, i.e. the Newton polygon of Mp is

4 × 0, 4 × 1, we have that one of the three numbers n1, n2, n3 is 1
2

and the other two are 0.

Without loss of generality, we can assume that n1 = 1
2

and n2 = n3 = 0.

On the other hand, by a theorem of Katz-Messing ([26] 1.3.5) we have the following:

Theorem 19. The characteristic polynomial of Fr
mp

Mp
on Mp is equal to the characteristic

polynomial of ρl(Frobv) for any l 6= p.

First we assume that all the eigenvalues of ρl(Frobv) are in Zp. In this case we have an

explicit expression for the Serre-Tate coordinates of A/F . By this assumption and our choice

of the place v together with the above theorem, we see that the 8 eigenvalues of Fr
mp

Mp
on

Mp are all distinct and lie in Zp. As the reduction of A/F at v is ordinary, we can choose

a symplectic basis {v◦1, v◦2, v◦3, v◦4, vet
1 , vet

2 , vet
3 , vet

4 } of the p-adic Tate module TpA(Q̄), under

which the local Galois represenation is of the shape:

ρv,p : Dv = Gal(F̄v/Fv) → GSp8(Zp),

Dv 3 σ 7→

T1(σ) B(σ)

0 T2(σ)


 ,

where B(σ) = (bij(σ))1≤i,j≤4 is a matrix in M4×4(Zp) depending on σ, and T1(σ), T2(σ) are

diagonal matrices of the shapes:

T1(σ) =




(χpψ
−1
(−1,1,1))(σ) 0 0 0

0 (χpψ
−1
(−1,1,−1))(σ) 0 0

0 0 (χpψ
−1
(−1,−1,1))(σ) 0

0 0 0 (χpψ
−1
(−1,−1,−1))(σ)




,
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and

T2(σ) =




ψ(−1,1,1)(σ) 0 0 0

0 ψ(−1,1,−1)(σ) 0 0

0 0 ψ(−1,−1,1)(σ) 0

0 0 0 ψ(−1,−1,−1)(σ)




.

Here χp : Dv → Z×p is the p-adic cyclotomic character and ψ(i,j,k) : Dv → Z×p is the unramified

character which sends Frobv to the element
√

q
v
·ev(i, j, k) for (i, j, k) ∈ {±1,±1,±1} defined

in section 6.2.

Now we consider the Hodge cocharacter µHT : Gm,Cp → Gp,Cp associated to the Galois

representation Vp. From Sen’s theory ([44] Theorem 2), the Zariski closure of the image of

µHT in Gp over Qp is equal to the Zariski closure of ρv,p(Iv) inside G/Qp , which is denoted

by H ′
Vp/Qp

.

Consider the representation

ρad
v,p : Iv

ρv,p−−→ Gp(Qp) → Gad
p (Qp).

From [40] Proposition 3.5, the representation ρad
v,p projects Iv nontrivially to exactly one of

the Qp-simple factor of Gad
p/Qp

, which is denoted by Gad
p,1/Qp

. From [40] Proposition 3.6, when

A/F has good ordinary reduction at v, we have an isomorphism (Gad
p,1)Q̄p

∼= PSL2,Q̄p
. Hence

the root system of H ′
Vp/Qp

is (±2, 0, 0) ∈ X(T̄ ) under the isomorphism X(T̄ ) ∼= Z3 defined

in the previous section.

Fix a Frobenius element Frobv in Dv. As we explain above, the eigenvalues of the

matrix ρv,p(Frobv) are all distinct and lie in Z×p . So we can modify the basis of TpA(Q̄)

if necessary and assume that the matrix ρv,p(Frobv) is diagonal. As ρv,p(Frobv) generates

a maximal torus in Gp/Qp , by the explicit calculation of the conjugation on ρv,p(Iv) by the

matrix ρv,p(Frobv), we see that the entries bi,5−i : Iv → Zp, i = 1, 2, 3, 4 of B give the weight

(2, 0, 0) ∈ X(T̄ ), and no entry of B gives the weight (−2, 0, 0). Hence bij = 0 : Iv → Zp if

i+ j 6= 5 ,and the set {(b14(σ), b23(σ), b32(σ), b41(σ))|σ ∈ Iv} spans a 1-dimensional Qp vector

space inside Q4
p.
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Now from the discussion in chapter 3, we see that the Serre-Tate coordinates q(A/Fv ;−) :

Sym(TpAv(k) ⊗Zp TpAv(k)) → Ĝm(W (k)) satisfies the following properties: there exists

(λ1, λ2) ∈ Z2
p \ {(0, 0)}, such that

q(u1 ⊗ u4)
λ1 = q(u4 ⊗ u1)

λ1 = q(u2 ⊗ u3)
λ2 = q(u3 ⊗ u2)

λ2 ,

and

q(ui ⊗ uj) = 0 for i + j 6= 5.

Let U/W (k) be the formal torus HomZp(Sym2(TpAv(k)), Ĝm). The Zp-basis {u1, u2, u3, u4}
of TpAv(k), we get a Zp-basis {ui ⊗ uj|1 ≤ i ≤ j ≤ 4} of Sym2(TpAv(k)). Under this basis,

we have ten coordinates tij, 1 ≤ i ≤ j ≤ 4 on UW (k). Set Tij = tij − 1, for 1 ≤ i ≤ j ≤ 4,

and then we have an isomorphism of formal tori over W (k):

U → Spf(W (k)[[Tij]]1≤i≤j≤4).

Now we define a rank one formal subtorus Z/W (k) of U/W (k), such that Z corresponds to

the formal torus Spf(W (k))[[Tij]]1≤i≤j≤4/(T11, T22, T33, T44, T12, T13, T24, T34, (1+T14)
λ1− (1+

T23)
λ2) under the above isomorphism. From the discussion in this section, we see that the

abelian variety A/F sits on the subtorus Z/W (k) of U/W (k).

In general, we do not assume that all the eigenvalues of ρl(Frobv) are in Zp. Then we can

choose a symplectic basis {v◦1, v◦2, v◦3, v◦4, vet
1 , vet

2 , vet
3 , vet

4 } of the p-adic Tate module TpA(Q̄)

such that the local Galois representation is of the shape:

ρv,p : Dv = Gal(F̄v/Fv) → GSp8(Zp),

Dv 3 σ 7→

T1(σ) B(σ)

0 T2(σ)


 ,

where χp is again the p-adic cyclotomic character, B : Dv → M4×4(Zp) is a map valued

in 4 × 4 symmetric matrices, and A(·) (resp. A−1(·)): Dv → GL4(Zp) is an unramified

homomorphism which send any Frobenius Frobv ∈ Dv to a matrix A ∈ GL4(Zp) (resp.

A−1 ∈ GL4(Zp)). From the discussion in section 6.2, there exists a Galois extension M/Qp
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with degree at most 4, such that all the eigenvalues of ρl(Frobv) are in M . Then we can find

a matrix W ∈ GL4(OM) such that

WAW−1 =




ψ(−1,1,1)(Frobv) 0 0 0

0 ψ(−1,1,−1)(Frobv) 0 0

0 0 ψ(−1,−1,1)(Frobv) 0

0 0 0 ψ(−1,−1,−1)(Frobv)




.

Then we consider the conjugation of the Galois representation

ρ′v,p =


W 0

0 (W t)−1


 ρv,p


W−1 0

0 W t


 : Dv → GSp8(OM),

Dv 3 σ 7→

T ′

1(σ) B′(σ)

0 T ′
2(σ)


 ,

where T ′
2 : Dv → GL4(OM) is an unramified homomorphism sending (any) Frobenius element

to the matrix WAW−1, and T ′
1 = χp · (T ′

2)
−1, and B′ = (b′ij)1≤i,j≤4 : Dv → M4×4(OM) is a

map.

Take another conjugation if necessary, we can assume that ρ′v,p(Frobv) is diagonal for

some Frobenius element Frobv ∈ Dv. As ρ′v,p(Frobv) generates a maximal torus of Gp/M ,

we can again apply Noot’s results to conclude that b′ij = 0 if i + j 6= 5 and the set

{b′14(σ), b′23(σ), b′32(σ), b′41(σ)|σ ∈ Iv} spans a 1-dimensional M -vector space inside M4. For

each pair 1 ≤ i, j ≤ 4, the map b′ij : Iv → OM is an OM -linear combination of the maps

bkl : Iv → Zp, 1 ≤ k, l ≤ 4. From Theorem 8 and Remark 3.2, the entries bkl’s determines

the Serre-Tate coordinates of A/W (k). Hence the above restrictive conditions on the entries

b′kl’s can be translated to the restrictive conditions on the Serre-Tate coordinates of A/W (k).

It may not be obvious from this observation that we get a rank 1 formal subtorus of U/W (k),

but we will use this observation in next section.

To see that the above restrictive conditions define a rank 1 formal subtorus of U/W (k), we

use our special choice of the finite place v at the end of section 6.2. Replacing the number
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field by a finite extension if necessary, we can assume that the representation ρv,p : Dv →
Gp(Qp) can be lifted to the semisimple group ρ̃v,p : Dv → G̃p(Qp). Consider the element

ρ̃v,p(Frobv) ∈ G̃p(Qp) ⊆ G̃p(Q̄p). By our assumption on the algebraic group Gp, we know

that over Q̄p, we have an isomorphism:

G̃p/Q̄p
∼= Gm/Q̄p

× (SL2,Q̄p
)3.

By our choice of the place v, the projection of ρ̃v,p(Frobv) to the first factor of (SL2,Q̄p
)3

actually sits inside SL2(Qp) and hence generates a torus over Qp. On the other hand, from

the previous discussion, the conjugation action of the maximal torus T̄/Qp generated by

ρv,p(Frobv) on the group ρ(Iv) can only gives the root (2, 0, 0) ∈ X(T̄ ). From the general

theory of reduction groups (see [49]), the Lie algebra of Gp on which the maximal torus

T̄ acts through the root (2, 0, 0) ∈ X(T̄ ) has dimension 1 over Qp. This mean that the

set {bij(σ)|1 ≤ i, j ≤ 4, σ ∈ Iv} lies in a 1-dimensional Qp vector space of Q16
p . Again from

Theorem 8 and Remark 3.2, we see that the above conditions define a rank 1 formal subtorus

Z of U/W (k).

6.4 Conclusion

In this section, we prove the main result Theorem 17 in this chapter. It is enough to prove

the following:

Theorem 20. Let F be a numbe field. If A/F is an abelian variety with Galois representation

of Mumford’s type, then A/F come from a Shimura curve constructed by Mumford in [34].

In particular, the Mumford-Tate conjecture holds for A/F .

Replacing F by a finite extension if necessary, we can assume that A/F has a principal

polarization λ : A → At and the algebraic groups Gl/Ql
are connected for all primes l. For

each integer N ≥ 3, we choose a symplectic level N structure ηN of A/F . Then the triple

(A/F , λ, ηN) gives an F -valued point x on the Siegel moduli space A1,N .

Now recall that we choose a finite place v of F in section 6.2 at which the abelian variety
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A/F has good ordinary reduction. Let kv be the residue field of F at v with characteristic

p = pv and fix an algebraic closure k of kv. The reduction Av/k of A/F at v gives a closed

point xv ∈ A1,N(k). As explained in section 4.3, the formal completion U/W (k) of A1,N along

the closed point xv has a formal group structure and is isomorphic to

HomZp(Sym(TpAv(k))⊗Zp TpAv(k), Ĝm)/W (k).

In the previous section, we determine a rank 1 formal subtorus Z of U/W (k) on which the

point x lies.

In section 6.3, we fix a basis {v◦1, . . . , v◦4, vet
1 , . . . , vet

4 } of TpA(Q̄p) such that {v◦1, . . . , v◦4} is

a basis of TpÂ(Q̄p), and {vet
1 , . . . , vet

4 } corresponds to a basis {u1, . . . , u4} of TpAv(k) under

the reduction map. Moreover, this basis is symplectic in the sense that under the Weil

pairing Ep∞ : TpA(Q̄p) × TpA(Q̄p) → Tpµp∞(Q̄p) induced from the polarization λ, we have

Ep∞(v◦i , v
et
j ) = ζp∞ if i = j and Ep∞(v◦i , v

et
j ) = 1 if i 6= j, where ζp∞ is a fixed basis of

Tpµp∞(Q̄p).

The basis {v◦1, . . . , v◦4, vet
1 , . . . , vet

4 } gives a full level structure at p of the abelian variety A/F

ηp∞ : Lp → TpA(Q̄p) such that ηp∞(ei) = v◦i , for 1 ≤ i ≤ 4, and ηp∞(ei) = vet
i , for 5 ≤ i ≤ 8.

The level structure ηp∞ induces an isomorphism Wp = Lp ⊗Zp Qp → TpA(Q̄p)⊗Zp Qp = Vp,

which gives an isomorphism of algebraic groups: AutQp(Wp) → AutQp(Vp). As Gp/Qp is an

algebraic subgroup of AutQp(Vp), we can regard Gp/Qp as a subgroup of AutQp(Wp) under

the above isomorphism.

Now let (Acan/W (k), λcan, ηN,can) be the canonical lifting of xv, which corresponds to the

identity element in the group U(W (k)). From [31] Lemma 2.8, the abelian variety Acan has

complex multiplication and hence is defined over some number field F1.

Fix a complex embedding ι : F1 ↪→ C and set Acan/C = A ×F1,ι C. Let H1(Acan/C,Q) =

Vcan be the first rational homology group of Acan/C and let MT(Acan)/Q ↪→ AutQ(Vcan) be

the Mumford-Tate group of Acan. On the other hand, fix an algebraic closure F̄1 of F1.

Let TpAcan(F̄1) be the p-adic Tate module of Acan and set Vcan,p = TpAcan(F̄1) ⊗Zp Qp.

By comparison theorem, we have an isomorphism Vcan ⊗Q Qp → Vcan,p, which induces an
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isomorphism of algebraic groups: AutQ(Vcan)×Q Qp → AutQp(Vcan,p).

Now we give a full level structure at p of Acan/F1 . Recall that Acan/W (k) is the canonical

lifting of the ordinary abelian variety Av/k. Then connected-étale exact sequence of Barsotti-

Tate groups

0 → Âcan → Acan[p∞] → TpAv(k)×Zp (Qp/Zp) → 0

splits over W (k). As we have an inclusion from F1 to the fractional field of W (k), it induces

a finite place v1 of F1 over p. Let I ⊂ Gal(F̄1/F1) be the inertia group at v1. The above

splitting exact sequence of Barsotti-Tate groups gives a splitting of the exact sequence of the

p-adic Tate modules as I-modules:

0 → TpÂcan(Q̄p) → TpAcan(Q̄p) → TpAv(k) → 0.

Under the Weil pairing on TpAcan(Q̄p) induced from the polarization λcan of Acan, we

can choose a symplectic basis {v◦1,can, . . . , v◦4,can, vet
1,can, . . . , vet

4,can} of TpAcan(Q̄p) such that

{v◦1,can, . . . , v◦4,can} is a basis of TpÂcan(Q̄p), and {vet
1,can, . . . , vet

4,can} corresponds to the basis

{u1, . . . , u4} of TpAv(k) under the splitting of the above exact sequence. This symplectic basis

allows us to endow Acan/F1 with a full level structure at p ηcan,p∞ : Lp → TpAcan(Q̄p) such that

ηcan,p∞(ei) = v◦i,can, for 1 ≤ i ≤ 4, and ηcan,p∞(ei) = vet
i,can, for 5 ≤ i ≤ 8. By inverting p, the

level structure ηcan,p∞ gives an isomorphism Wp = Lp⊗Zp Qp → TpAcan(Q̄p)⊗Zp Qp = Vp,can.

Then we define an embedding of algebraic groups over Qp:

ican : MT(Acan)×Q Qp → AutQ(Vcan)×Q Qp → AutQp(Vp,can) → AutQp(Wp).

Similarly, for each p-th power root of unity ζ ∈ Q̄p, let xζ = (Aζ/R, λζ , ηN,ζ) ∈ Z(ζ) be any

nontrivial torsion point on the rank 1 formal torus Z where R is a finite flat W (k)-algebra.

From [31] Lemma 2.8 and Definition 2.9, the abelian scheme Aζ/R is a quasi-canonical lifting

of Av/k and has complex multiplication. In particular Aζ is defined over some number field

F ′
1.

As before, let Vζ = H1(Aζ/C,Q) be the first rational homology group of Aζ and let

MT(Aζ)/Q ↪→ AutQ(Vζ) be its Mumford-Tate group. As Aζ/R is a lifting of the ordinary
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abelian variety Av/k, we can choose a symplectic basis {v◦1,ζ , . . . , v
◦
4,ζ , v

et
1,ζ , . . . , v

et
4,ζ} with re-

spect to the Weil pairing induced from the polarization λζ such that {vet
1,ζ , . . . , v

et
4,ζ} corre-

sponds to the basis {u1, . . . , u4} of TpAv(k) under the reduction map. This basis gives a full

level structure at p of Aζ which induces an isomorphism Wp → TpAζ(Q̄p) ⊗Zp Qp = Vp,ζ .

Similarly, we define an embedding of algebraic groups over Qp:

iζ : MT(Aζ)×Q Qp → AutQ(Vζ)×Q Qp → AutQp(Vp,ζ) → AutQp(Wp).

From the above construction we have:

Lemma 6.6. The embeddings ican and iζ’s factor through Gp/Qp.

Proof. As the canonical lifting can also be regarded as a quasi-canonical lifting, we only

prove that iζ factors through Gp/Qp . Recall that the quasi-canonical lifting Aζ/R has complex

multiplication and hence is defined over some number field F ′. Fix an algebraic closure F̄ ′ of

F ′. Under the symplectic basis {v◦1,ζ , . . . , v
◦
4,ζ , v

et
1,ζ , . . . , v

et
4,ζ} of TpAζ(F̄

′), we can consider the

Galois representation ρζ : Gal(F̄ ′/F ′) → GSp8(Zp). Let Gζ/Qp be the Zariski closure of the

image of ρζ inside GSp8/Qp
. As the Mumford-Tate conjecture is known to be true for abelian

varieties with complex multiplication, from the construction of the embedding iζ , the image

of iζ is nothing but Gζ(Qp).

As we have an embedding from F ′ to the quotient field of R, it induces a p-adic place

v′ of F ′. Let Dv′ ⊆ Gal(F̄ ′/F ′) (resp. Iv′ ⊆ Gal(F̄ ′/F ′)) be the decomposition group (resp.

inertia group) at v′. The local Galois representation ρζ,v′ = ρζ |Dv′ is of the shape:

ρζ,v′ : Dv′ → GSp8(Zp),

Dv′ 3 σ 7→

T1(σ) Bζ(σ)

0 T2(σ)


 ,

where T1, T2 have the same meaning as the previous section, and Bζ(σ) ∈ M4×4(Zp) is a

matrix depending on σ. Since the quasi-canonical lifting Aζ comes from the rank 1 formal
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subtorus Z/W (k), we see that if we consider the conjugation of ρζ,v′ :

ρ′ζ,v′ =


W 0

0 (W t)−1


 ρζ,v′


W−1 0

0 W t


 : Dv → GSp8(OM),

Dv 3 σ 7→

T ′

1(σ) B′
ζ(σ)

0 T ′
2(σ)


 ,

then we have b′ζ,ij = 0 if i+j 6= 5 and the set {b′ζ,14(σ), b′ζ,23(σ), b′ζ,32(σ), b′ζ,41(σ)|σ ∈ Iv} lies in

the same 1-dimensional vector space in M4 as in the previous section. Here B′
ζ = (b′ζ,ij)1≤i,j≤4

are the entries of the matrix B′
ζ . In particular,we see that the local Galois representation

ρζ,v′ factors through Gp(Qp).

On the other hand, from the analysis in Section 6.2, the special fiber Av/k is either a

product of an elliptic curve and a simple abelian threefold, or s simple abelian fourfold.

From the analysis of the isogeny type of Av/k in section 6.2, the Mumford-Tate group of

Aζ is contained in the torus Gm/Q × T ′
L/Q, which is a rank 4 torus (here recall that T ′

L/Q is

a torus such that T ′
L(Q) = {x ∈ L×|NormL/K(x) = 1}). But from the calculation in [32]

Section 7, the Mumford-Tate group of Aζ is either a rank 4 torus or a rank 5 torus. Hence

we must have the equality MT(Aζ) = Gm/Q × T ′
L/Q. On the Galois side, we see that the

algebraic group Gζ(Qp) is the Zariski closure of the image of the local representation ρζ,v′

and is generated by ρζ,v′(Frobv′) for any Frobenius element in Dv′ .

Combining the above facts together, we see that the embedding iζ factors through Gp(Qp).

We fix a compatible sequence (ζn)n≥1 of p-th power roots of unity in the sense that ζn is

a primitive pn-th root of unity and ζp
n = ζn−1 for each n.

As the above construction is valid for any integer N prime to p, we have Q̄-valued point

xcan = lim←−(p,N)=1(Acan, λcan, ηN,can, ηcan,p∞) ∈ Sh(Q̄) (corresponding to the canonical lifting

of xv) and xζn = lim←−(p,N)=1(Aζn , λζn , ηN,ζn , ηζn,p∞) ∈ Sh(Q̄) (corresponding to the quasi-

canonical liftings of xv). As the abelian variety Acan/Q̄ is the canonical lifting of the ordinary

abelian variety Av/k, it has complex multiplication by a CM-algebra M = End◦(Av/k) =
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End(Av/k) ⊗Z Q. From the reciprocity law at special points ([20] section 7.2.2), we have

an embedding of groups: TM = ResM/QGm(Q) → GSp8(A(∞)) which acts on the Shimura

variety Sh/Q̄ which stabilizes the point xcan and acts transitively on the set {xζn|n ≥ 1}.

As TM is a Q-torus, the closure of {xζn|n ≥ 1} in Sh(C) under the complex topology is

contained in a set Ω homeomorphic to (S1)n for some n ≥ 1, where S1 = {z ∈ C||z| = 1}
is the unit circle in the complex place. As the set {xζn|n ≥ 1} is countable, we can find a

simply connected open subset Ω′ ⊆ Ω containing {xζn|n ≥ 1}.

Now let f : A → ShC be the universal abelian scheme, the restriction of the local system

R1f∗Q to Ω′ is constant. Hence we can identify all the cohomology groups H1(Aζn ,Q)’s with

the 8-dimensional Q-vector space W .

Definition 6.7. Define an algebraic group G/Q to be the smallest algebraic subgroup of

AutQ(W ) with the property that the embeddings iζn’s factor through G(Qp) for all n ≥ 1.

From the above definition, the algebraic group G/Q is an algebraic subgroup of GSp(W,ψ).

As the algebraic group is defined over Q, for any field automorphism τ : Qp → Qp (which

of course fix Q pointwise), we have the inclusions τ(ican(MT(Acan)(Qp))) ⊆ Gp(Qp) and

τ(iζ(MT(Aζ)(Qp))) ⊆ Gp(Qp). From our construction, the algebraic group MT(Acan) ×Q
Qp gives a maximal torus of Gp/Qp under the embedding ican. On the other hand, the

group generated by iζ(MT(Aζ)) ×Q Qp and ican(MT(Acan) ×Q Qp) contains a unipotent

such that the action of ican(MT(Acan)×Q Qp) on this unipotent by conjugation corresponds

to the root (2, 0, 0) ∈ X(T ′
L) (X(T ′

L) is the character group of the torus T ′
L). From the

analysis in Section 6.2, the absolute Galois group Gal(Q̄/Q) acts transitively on the set

{(±2, 0, 0), (0,±2, 0), (0, 0,±2)} ⊆ X(T ′
L). It follows that the groups τ(ican(MT(Acan)(Qp))) ⊆

Gp(Qp) and τ(iζ(MT(Aζ)(Qp))) ⊆ Gp(Qp) for all τ generate the group Gp(Qp) and hence we

have:

Lemma 6.8. We have the equality

G×Q Qp = Gp
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over Qp. In other words, G/Q is a Q-form of the algebraic group Gp/Qp.

Now we can give a proof of Theorem 20:

Proof. Replacing the algebraic group G/Q by the semisimple group G̃/Q if necessary, we can

assume that G/Q is semisimple. Since the Lie algebra of Gp is isomorphic to c ⊕ sl32 (where

c is the one dimensional center) over an algebraic closure of Qp, we have an isomorphism:

G/R ∼= Gm/R × SLi
2/R × SO3−i

2/R.

On the other hand, the morphism G/Q ↪→ GSp8/Q gives faithful symplectic representation of

G/Q, hence i = 1 or i = 3.

Now consider the homomorphism hcan : S = ResC/R → GSp8(R) (resp. hζ : S = ResC/R →
GSp8(R)) which defines the complex structure of the abelian variety Acan (resp. Aζ). These

homomorphisms factor through G(R) by our construction. Let X be the G(R)-conjugacy

class of hcan. Then the pair (G/Q, X) is a Shimura datum. From [39] Lemma 3.3, for the

fixed prime p,we can find a integer n prime to p, and a Shimura variety ShG coming from

the Shimura datum (G/Q, X) by adding a sufficient deep level structure, such that there is

a closed immersion ShG ↪→ A1,n. The abelian varieties Acan and Aζ ’s certainly lie on the

Shimura variety ShG by our construction. Their special fiber Av/k gives a closed ordinary

point xv of ShG. From [39] Theorem 3.7 or [31] Theorem 4.2, the formal completion of ShG

along the closed point xv is a union of formal tori. As the canonical lifting Acan and the quasi-

canonical liftings Aζ ’s are dense in the rank 1 formal torus Z/W (k), Z/W (k) is contained in the

formal completion of ShG along the point xv. As the abelian variety A/F sits on the formal

torus Z/W (k), it is a point of the Shimura variety ShG. Since the absolute endomorphism

algebra of A/F is Z, we see that i = 1 and thus

G/R ∼= Gm/R × SL2/R × SO2
2/R.

This shows that A/F arises from a Shimura curve constructed by Mumford in [34], which is

exactly what we want to prove.
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Remark 6.9. From the above proof, we see that after constructing the reductive group

G/Q, the quasi-canonical lifting Aζ ’s give points on the Shimura variety ShG after choosing a

suitable level structure. In particular, we have an embedding iζ : MT(Aζ) ↪→ G/Q for each ζ,

such that iζ(MT(Aζ)) is a maximal torus of G/Q, and G/Q is the smallest algebraic subgroup

of GSp8/Q containing all these tori.

However, before we construct the group G/Q, it might be difficult to find an appropriate

embeddings iζ : MT(Aζ) ↪→ GSp8/Q which factors through G/Q. In fact, if we add a suitable

level structure ηN,ζ : L/NL → Aζ [N ](C) on Aζ , the triple (Aζ/C, λζ , ηN,ζ) gives a point on the

Siegel moduli space A1,N(C) = H4/Γ(N), where Γ(N) = Γ̂(N)∩GSp8(Q). In this setting the

embedding MT(Aζ) ↪→ GSp8/Q is determined up to conjugation in Γ(N) as the isomorphism

H1(Aζ/C,Z) → L is so. Of course not all of these conjugations factor through the group G/Q,

but it is difficult to tell which embeddings have this property as we have not constructed

the group G/Q yet. So we consider a base change. After giving a full level structure ηp∞,ζ

at p on Aζ , it allows us to give an embedding iζ : MT(Aζ)×Q Qp ↪→ Gp. To satisfy the last

condition, we cannot chosse an arbitrary level structure. In fact, if ηp∞,ζ : Lp → TpAζ(Q̄p) is

such a level structure constructed in the proof of 6.6, all the other level structures satisfying

the last condition are η ◦ g, where g ∈ Gp(Qp) ∩ GSp8(Zp). As we see in the proof of 6.6,

the determination of the Serre-Tate coordinates of A/F and the rank 1 formal torus Z/W (k)

is crucial to find a desired level structure ηp∞,ζ .
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