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Abstract

First-principles studies of electron-phonon induced superconductivity and
beyond

by

Timur T. Bazhirov

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Marvin L. Cohen, Chair

The prospect of precisely predicting the behavior of solids entirely
by means of theory and computations is enticing. This dissertation
presents the results of the application of the first-principles physical
approaches to study superconductivity in a set of materials.

In the first chapter a brief overview of the key concepts used in this
manuscript in given. A description of the theoretical methodology
and the key computational techniques used in this work constitute
the subject of chapter 2. Studies of class-I/conventional and class-
II/non-conventional superconducting materials are contained in chap-
ters 3 and 4 respectively. In particular, precise calculations of the
electron-phonon interaction and superconducting parameters of ele-
mental lithium at ambient conditions and under pressure, and lithium-
intercalated borocarbide compounds are presented. In addition, the
application of first-principle techniques to study iron selenide in mul-
tiple configurations is given.

A discussion of superconductivity in complex oxides is presented in
chapter 5 with emphasis on the importance of oxygen octahedra tilts.
And, finally, concluding remarks from the author are given in the last
chapter.
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Chapter 1

Introduction

Superconductivity is a macroscopic physical phenomenon defined by the obser-
vance of zero electrical resistance in certain materials when cooled below a char-
acteristic critical temperature Tc. Ever since its discovery in 1911 by Kamerling-
Onnes [1], superconductivity attracted much attention from scholars, yet even
a century later there are still many unanswered questions about the nature of
this phenomenon. The purpose of this thesis is to give several examples of how
superconductivity can be studied theoretically on the basis of the first-principles
studies.

First-principles studies characterize a theoretical scientific field where conclusions
are made on the basis of established scientific facts directly, without any assump-
tions, empirical models or fitting parameters. Starting from Bloch’s pioneering
works on the electronic band theory [2] and Hartree’s attempts to describe the
wave mechanics of the atom [3], numerous techniques were developed to achieve
accurate physical descriptions of the electronic structure of materials from the
first principles.

Materials under consideration in this work include simple metals, borocarbides,
complex oxides, and iron compounds. The specific motivation for choosing these
materials is described later inside each corresponding chapter. One thing that
unites all studied cases: a complete theoretical description of superconductivity
has not yet been achieved for these materials. The materials chosen here are
simple enough for a fully first-principle study to be computationally feasible at
the time of this writing.

Much of the first-principles techniques applied in this work is based on the density
functional theory [4]. Discussion of this methodology in given chapter 2.
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Figure 1.1: Schematic plot of the temperature dependence of electrical resistance
for normal metals and superconductors. Tc denotes the critical temperature of a
superconducting transition.

The manuscript is organized as follows: the ”introduction” section gives a brief
overview of the key concepts considered in this work this work, a description of the
theoretical methodology, and the key computational techniques used in this work
are given in ”models and methods”, studies of class-I and class-II superconducting
materials are combined in chapters 3 and 4 respectively, the discussion of complex
oxides is presented separately in chapter 5, and concluding remarks from the
author are given in the last chapter.
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1.1 Superconductivity and electron-phonon interactions

1.1 Superconductivity and electron-phonon in-

teractions

Soon after its discovery, it was realized that superconductivity involves a forma-
tion of a new physical state in which conduction electrons behave collectively
and coherently. The microscopic nature of the driving force behind the forma-
tion of this new state was unclear until the pioneering works of Bardeen and
Pines in 1955 [5] and Bardeen, Cooper and Schrieffer in 1957 [6]. More than
half-a-century later, at the time of this writing, the only well-established cause
of superconductivity remains the same. It’s origin is related to the interactions
between electrons in conduction bands and the vibrations of atoms of the crystal
lattice: electron-phonon interaction.

1.1.1 Bardeen-Cooper-Schrieffer theory (BCS)

The two main concepts of the Bardeen-Cooper-Schrieffer theory are: the so called
”Cooper pair” - two electrons with opposite spins bound together, and the ”energy
gap” - a gap that forms in the electronic structure of the material when it becomes
superconducting. A third important concept is the nature of the interaction
responsible for pairing. A conduction band electron in a metal normally behaves
as a free particle. The electron is repelled from other electrons due to their
negative charge, but it also attracts the positive ions that make up the rigid
lattice of the metal. This attraction distorts the ion lattice, moving the ions
slightly toward the electron. This increases the positive charge density of the
lattice in the vicinity, and this positive charge can attract other electrons. At
long distances the attraction between electrons due to the displaced ions can
overcome the electrons’ repulsion arising from their negative charge, and cause
them to pair. The effect is due to electron-phonon interactions (see Fig. 1.2 for
illustration).

Without going into much detail, let us state below the main equations of the BCS
theory. The first one is the equation for a superconducting gap at T=0:

∆k = −1

2

∑
k′

Vk,k′∆k′

Ek′
. (1.1)

Here ∆k is the energy gap in momentum-space, Ek′ is the quasiparticle energy
and Vk,k′ is the pairing interaction between electrons at vectors k and k′.

A useful relationship can be obtained by solving (1.1)) at finite temperatures for
an isotropic Fermi surface average of the pairing interaction V and the density of

3



1.1 Superconductivity and electron-phonon interactions

Figure 1.2: A cartoon explanation of the electron-phonon interaction based
nature of the formation of Cooper pair.

states at the Fermi level N(0)

Tc = 1.13ωD exp{−1/N(0)V }, (1.2)

where ωD is used for the characteristic frequency of atomic vibrations, or the
Debye frequency. This is the BCS model solution.

The great power and the beauty of the BCS theory is partly in its ability to
quantitatively describe properties of the superconductors discovered before 1957
using effectively two parameters only: the Debye frequency and the electron-
phonon coupling λ = N(0)V .

1.1.2 Beyond the BCS model

Refinements in the BCS theory were made by Gorkov and Eliashberg in 1957-1960
[7, 8]. A full description of the results of their theory is beyond the scope of this
dissertation, we list some of the main concepts and implications. The reader can
consult the original papers or review articles for more information (e.g. [9]).

First, a central quantity in Eliashberg’s formalism is the spectral function α2F .
It has all the information about how individual scattering events for electronic
states scattering from k to k′ with an energy transfer of ω are coupled to the
crystal vibrations.

Second, equation (1.2) can be transformed into the following form (McMillan’s
equation [10]):

Tc =
ωlog

1.20
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (1.3)

4



1.1 Superconductivity and electron-phonon interactions

Here ωlog is the logarithmic frequency moment of the Eliashberg spectral function
α2F and µ∗ is a dimensionless parameter characterizing the screened Coulomb
interaction strength.

Eliashberg theory has proven very successful in describing superconducting prop-
erties of various compounds that the original BCS theory was unable to describe
because of its weak-coupling nature. We note that: even though originally Eliash-
berg theory was constructed to describe electron-phonon interactions for pairing,
it has been applied for other types of pairing interactions. In eq. (1.3) above,
for example, lambda can be considered to refer to other mechanisms of Cooper
pairing.

5



1.2 Non-conventional superconductivity

Figure 1.3: Superconducting phase diagram of copper oxides. AFM is the anti-
ferromagnetic phase.

1.2 Non-conventional superconductivity

In 1986 Bednorz and Muller discovered a set of copper-based compounds that
attracted much attention because of their high superconducting transition tem-
perature [11]. It was soon found that the copper oxides differ significantly from
the superconductors explained by the BCS theory. In particular, there are two
main differences that can be pointed out: the gap in electronic dispersion is
formed well before the system become superconducting (the ”pseudogap”) and
a characteristic feature of the BCS model called ”isotope effect” was absent for
some cases. A schematic representation of the phase diagram for copper oxides
is given in Fig. 1.3.

The isotope effect in the BCS theory characterizes the dependence of supercon-
ducting transition temperature Tc on the ionic mass of the superconducting iso-
tope, and this originally served as a key argument supporting the electron-phonon
picture. Since for copper oxides the isotope effect was not always observed,
many researchers suggested that a pairing interaction of some other nature is
present.

1.2.1 Spin-fluctuations induced pairing

Studies of the interplay of magnetic spin fluctuations and superconductivity be-
gan as a way to understand the suppression of Tc in some of the traditional

6



1.2 Non-conventional superconductivity

metals. Spin fluctuations which had provided a mechanism for pairing in 3He,
were later suggested as a pairing mechanism for some organic superconductors,
heavy-fermion systems, and possibly copper oxides [12]. The paramagnon ex-
change interaction VS(q) for 3He is repulsive, yet averaging this interaction over
the Fermi surface with a p-wave form factor for the gap gives a positive (at-
tractive) effective pairing interaction strength because VS(q) is peaked at small
momentum transfers. In 1986 it was suggested that short range spin fluctuations
can initiate pairing for copper oxides and the topology of the Fermi surface plays
an important role [13]. For an up to date overview of the subject, the reader may
consult Ref. [14].

1.2.2 Superconductivity in Fe-based compounds

An important discovery of a new system of superconducting materials was made
in 2008 when iron-base superconductors emerged as a high-Tc class of materials
[15]. The phase diagram for Fe-based compounds and their physical properties
are similar to those of copper oxides, except for the fact that Fe-based compounds
show no pseudogap (the current established picture) and the parent compounds
for Fe-superconductors are metallic [16]. Examples of the crystal structures of
these materials are given in Fig. 1.4

A theoretical description of the pairing mechanism for these systems was at-
tempted shortly after discovery [17]. It was proposed that an isotropic pairing
interaction symmetry with changing signs between different parts of the Fermi
surface (”s±-theory”) was present [17]. In other words, it was proposed that eq.
(1.1) could be solved for the interaction Vk,k′ that is repulsive, possesses s-wave
symmetry and changes signs for scattering involving states on different parts of
the Fermi surface. Further discoveries of FeSe based compounds with different
Fermi surface topologies posed new questions, which are still open at the time of
this writing [18].

7



1.2 Non-conventional superconductivity

Figure 1.4: The crystal structures known to support superconductivity for the
Fe-based compounds [16]. Fe atoms are colored red.

8



Chapter 2

Models and methods

This chapter has a brief description of the underlying theory for the first-principles
techniques utilized in the current work. We start with an overview of the den-
sity functional theory with a focus on its application to superconductivity. We
continue with a short description of the calculation of the electron-phonon in-
teraction and how inclusion of magnetic properties affects it. We then proceed
with a discussion of a particular technique called ”Wannier interpolation” that
is used to facilitate high precision results. And finally we present a calculational
approach for the quasiparticle properties of materials by discussing possible ways
to calculate spin susceptibility.

9



2.1 Density functional theory in application to superconductivity

2.1 Density functional theory in application to

superconductivity

Density functional theory (DFT) was established in 1964-65 by Hohenberg and
Kohn, and Kohn and Sham [4, 19]. It allowed studies of many materials based
solely on the fundamental first-principle input parameters: atomic numbers and
crystal structures. The theory reduced the problem of studying a system of N
electrons interacting with each other to the case of a system of N non-interacting
electrons in an external potential. This was done by introducing the electronic
density n(r) as the main variable instead of the full electronic wavefunction:

Ψ{r1, ...rN} → n(r) =
∑
i

|ϕi(r)|2 , (2.1)

so that the Schrodinger’s equation for the system takes the following form (Kohn-
Sham equation):

[
− ~2

2m
∇2 + V (r) +

∫
e2n(r′)

|r− r′|
d3r′ + µXC[n(r)]

]
ϕi(r) = εiϕi(r). (2.2)

The external potential is called the exchange and correlation potential and is
denoted above as µXC[n(r)]. The nature of this external potential defines the
physical properties of the system and thus is extremely important. Ground state
electronic energies εi and wavefunctions ϕi = |i,k〉 can be obtained as the result
of the DFT calculation.

In many cases very good agreement with experiment is achieved when the ex-
change and correlation potential is treated using the rather simple local density
approximation (LDA) [20, 21]. A large variety of important scientific results
have been and are still being obtained using LDA and the generalized gradient
approximations (GGA). Below we explain how to apply DFT to study vibrational
properties of crystals.

2.1.1 Density Functional Perturbation Theory formalism

Density functional perturbation theory (DFPT) is a perturbative approach to
obtaining physical properties of materials from first principles [22]. The basic
ansatz behind DFPT is that quantities such as the wavefunction, electron density,
or potential may be written as a perturbation series

10



2.1 Density functional theory in application to superconductivity

X(λ) = X(0) + λX(1) + λ2X(2) + . . . (2.3)

where X(λ) is a generic physical quantity that could, for example, be the Kohn-
Sham orbital ϕ(λ), the total energy E(λ), or the electronic density n(λ), and λ
is a perturbing parameter, assumed to be small. The expansion coefficients are
given by

X(n) =
1

n!

dnX

dλn

∣∣∣∣
λ=0

. (2.4)

It is convenient to express the energy of the crystal as

Etot(∆τ) = E
(0)
tot +

∑
aκα

∑
bκ′β

1

2

(
∂2Etot

∂τaκα∂τ
b
κ′β

)
∆τaκα∆τ bκ′β + . . . (2.5)

where the E
(1)
tot term has been ignored, as this term yields the force acting on the

atom, which is equal to zero at the minimum. Here ∆a
κα is the displacement of

atom κ from its equilibrium position τκ in the cell labeled a (with lattice vector
Ra) in the Cartesian direction α. In the harmonic approximation, this expansion
is truncated after the second term. The force on a given atom is then

F ab
κα = −

∑
κ′,β

Cκ′β(a, b)∆τ bκ′β (2.6)

where the matrix of force constants is defined through

Cκα,κ′β(a, b) =

(
∂2Etot

∂τaκα∂τ
b
κ′β

)
. (2.7)

The Fourier transform of this is then

C̃κα,κ′β(q) =
1

N

∑
ab

Cκα,κ′β(a, b)e−iq·(Ra−Rb) (2.8)

where N is the number of periodic cells in the crystal, and q is the wavevector of
the phonon perturbation. This is connected to the dynamical matrix D̃κα,κ′β(q)
through

11



2.1 Density functional theory in application to superconductivity

D̃κα,κ′β(q) = C̃κα,κ′β(q)/(MκMκ′)
1/2. (2.9)

This is a Hermitian matrix, as one would expect from Newton’s second law, and
its eigenvalues yield the phonon frequencies

∑
κ′,β

D̃κα,κ′β(q)emq(κ′, β) = ω2
mqemq(κα) (2.10)

where ωmq is the phonon frequency associated with mode m, and emq(κα) is the
phonon eigenvector for the same mode. It is easy to see that the connection
between the dynamical matrix and the second order energy term is then

C̃κα,κ′β(q) = 2E
τ?κατκ′β
tot,−qq (2.11)

where we have adopted the notation

E
τ?κατκ′β
tot,−qq =

1

2

∂2Etot,−qq
∂τ ?κα∂τκ′β

. (2.12)

The subscript q labels the phonon wavevector at which the second order energy
has been calculated.

Thus, having the energies of the electronic system from DFT calculation and
applying DFPT formalism described here, one can obtain phonon frequencies of
a crystal.

2.1.2 Electron-phonon interaction

When the electronic energies, the wavefunctions and the phonon dynamical ma-
trices of a crystal are obtained, one can proceed to calculate the parameters of the
electron-phonon interaction. For a complete overview of theoretical background
on this subject we refer the reader to Ref. [9] and Ref. [23]. Here we will cover
the basics relevant for the first principle calculations.

An electron on the Fermi level interacts with the vibrations of the atoms of
the crystal lattice. This process can be understood through an electron-phonon
scattering exchange. An example diagram is given in Fig. 2.1. The phonon
self-energy is responsible for many quantifiable physical effects in crystals. For
example, it’s contribution to the effective mass of an electron can be measured
in heat capacity experiments [24]. A key component of the self-energy diagram
is the matrix element for electron-phonon scattering:

12



2.1 Density functional theory in application to superconductivity

Figure 2.1: Diagrammatic representation of the electron self-energy arising from
phonon exchange.

M
[ν]
k,k+q = (

~
mωq,ν

)1/2〈k|δνV |k + q〉. (2.13)

Here ωq,ν is the phonon frequency, δνV is the phonon perturbation for a particular
mode ν and 〈k| is the Kohn-Sham (eq. 2.2) electronic eigenstate (phonon-related
quantities are color-coded).

Obtaining the matrix elements allows us to calculate the wavevector-specific cou-
pling parameter λq,ν within the isotropic Migdal approximation [9, 23, 25]:

λq,ν =
2

N(0)ωq,ν

1

N

∑
k

|M [ν]
k,k+q|

2δ(εk)δ(εk+q), (2.14)

where N(0) is the density of states at the Fermi level, and δ(εk) is the energy
conserving delta-function.

We can further divide eq. (2.14)) into three main components. The first one
being the Fermi surface nesting function ξ~q,

ξq =
1

N

∑
k

δ(εk)δ(εk+q). (2.15)

The nesting function is a geometrical property of the Fermi surface and is par-
ticularly large for wavevectors which connect parallel portions of the surface.
The second contribution arises from the phonon eigenfrequency ωQ,ν . The final
component, which contributes to the electron-phonon coupling strength, is the

matrix element M
[ν]
k,k+q, which accounts for the details of the interaction between

electronic eigenstates and lattice vibrations.

The Eliashberg spectral function can be obtained through a Brillouin zone integral
of λq,ν as

α2F (ω) =
1

2

∑
q

ωq,νλq,νδ(ω − ωq,ν). (2.16)
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2.1 Density functional theory in application to superconductivity

The frequency moments of the spectral function are related to the characteristic
phonon frequency (ωlog in eq. 1.3) and are calculated as [26]

ωn = 2

∫
ωn−1α2F (ω)dω, (2.17)

and

ωlog = exp

[
2

ω0

∫
dω

ω
α2F (ω) lnω

]
. (2.18)

The integrals are taken from 0 to infinity in the two last expressions. We then
use the frequency moments and the average coupling

λ = 2

∫
ω−1α2F (ω)dω = 1/N

∑
q,ν

λq,ν (2.19)

in the the McMillan equation (see eq. 1.3). [10, 26] to estimate the supercon-
ducting transition temperature Tc.

2.1.3 Magnetism

In this section we show the main differences between the spin-independent and
spin-resolved calculations. Magnetic interactions are treated within the local spin
density approximation (LSDA).

Fot the calculations without spin, the main parameters of the system are wave-
functions and electron density, i.e. ψk,n = |k, n〉 and n(r). There is no total
magnetization: m(r) = 0. Phonon frequencies are not calculated including in-
teraction between electronic spins: ω = ωq,ν . The matrix element for electron-
phonon coupling is spin-independent:

M
[ν]
k,k+q → 〈k|δνV |k + q〉.

For the spin-polarized case the electronic wavefunctions and electron density are
spin-dependent, hence

ψk,n,σ = |k, n, σ〉,
n(r) = n↑(r) + n↓(r).

The total magnetization is non-zero

m(r) = n↑(r)− n↓(r),

and the phonon frequencies are calculated taking magnetic interaction between
spins into account, i.e. ω = ω

′
q,ν . The matrix element for electron-phonon cou-

pling is therefore spin-dependent:

M
[ν,σ]
k,k+q → 〈k, σ|δν,σV |k + q, σ〉.

14



2.2 Wannier interpolation and precise calculations of electron-phonon
parameters

2.2 Wannier interpolation and precise calcula-

tions of electron-phonon parameters

The nature of the electron-phonon interaction λ is such that the sums in eq. 2.14
converge very slow with respect to the sampling over the electronic states inside
the Brillouin zone. This fact makes a precise calculation of λ computationally
very expensive. An interpolation technique is required to make the calculation
efficient, robust and precise. Below we describe some of the basics underlying the
Wannier interpolation scheme for electronic states and electron-phonon matrix
elements.

2.2.1 Maximally localized Wannier functions

A Wannier function φm,R(r) is defined as the Fourier transform of the Bloch
function ψn,k(r) for electronic states generalized to include band mixing [27],

φm,R(r) =
∑
n,k

Unm,ke
−ik·Rψn,k(r). (2.20)

Whenever the mixing matrix Unm,k is unitary, the Wannier states turn out to
be orthonormal. The usefulness of the Wannier representation relies on the spa-
tial localization of the electronic states. Equation 2.20 indicates that there is
considerable freedom associated with the transformation from Bloch to Wannier
functions, since one has to choose both the manifold of the initial Bloch states
and the unitary rotation associated with such a manifold. When the system un-
der consideration presents a composite set of bands isolated from other bands
by finite energy gaps, the choice of the Bloch manifold is natural and all that
is required is the choice of the unitary transform Unm,k. The most convenient
choice for the purposes of the present work is the one leading to maximally lo-
calized Wannier functions [28]. In this case, the unitary transform is determined
by requiring that the resulting Wannier functions minimize the Berry-phase spa-
tial spread operator. Wannier functions determined according to this procedure
exhibit exponential localization is space [28–30].

2.2.2 Interpolation of electron-phonon matrix elements

Wannier functions can be used to interpolate the values of matrix elements from
(2.13). For this we first need to express the matrix element in the Wannier basis
(omitting the prefactor multiplier in braces from (2.13)):

15



2.2 Wannier interpolation and precise calculations of electron-phonon
parameters

U.C.

Figure 2.2: Cartoon illustrating how two electronic states centered on different
atoms interact via a phonon in real space. Both electronic states and the phonon
perturbation are localized in space within two unit cell (U.C.) distances. The
square lattice indicates the unit cells of the crystal, the red lines shows the electron
Wannier functions and the blue line shows the phonon perturbation in the Wannier
representation. Whenever two of these functions are centered on distant unit cells,
the e-ph matrix element in the Wannier representation vanishes.

M
[ν]
0,R = 〈0|δνV |R〉. (2.21)

Again, the phonon-related quantities are color-coded, and 〈0| and 〈R| are the
electronic Wannier states centered at the corresponding points in the real space,
δνV is the phonon perturbation (centered elsewhere in real space). The striking
feature of the matrix element in Wannier representation (2.21) is the localization
in both the electron and phonon variables. As illustrated in Fig. 2.2, the ma-
trix element in the Wannier representation vanishes whenever points 0,R or the
spatial location of the phonon perturbation corresponds to a unit cell sufficiently
distant from the origin of the reference frame. As a consequence, to accurately
describe the e-ph interaction in a given system, we only need to know a small
number of matrix elements in the Wannier representation. This elementary ob-
servation constitutes the core of this section.

Performing the following set of transforms illustrates the interpolation scheme.
First, a Fourier transform is performed from original Bloch to Wannier space
involving coarse k-vector sampling grid. Second, truncating the calculation su-
percell containing the matrix element localized in space at the distance when the
value of the matrix element in Wannier representation (2.21) is small, the ma-
trix elements are obtained everywhere in the Wannier space. Finally, the Fourier
transform back to reciprocal (Bloch) space to an arbitrary size final k-sampling
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parameters

grid is done. After the interpolation, the summation in 2.3 is performed to obtain
the electron-phonon coupling.

17



2.3 Electron-electron interaction mediated by
spin fluctuations

2.3 Electron-electron interaction mediated by

spin fluctuations

Quasiparticles are emergent physical phenomena that occur when a microscop-
ically complicated system, such as a solid, behaves as if it contained different
weakly interacting particles in free space. We have already discussed phonons
which represent collective excitations of the solid. Now let us briefly discuss
the physical nature of applying the quasiparticle formalism to studying spin-
fluctuations induced electron-electron interactions in crystals. As was mentioned
in the ”Introduction” part of this dissertation, spin-fluctuations may be respon-
sible for the superconducting pairing in class-II (or non-conventional) supercon-
ducting materials. Is this section we discuss the electronic states that interact
through exchange of spin fluctuations, and refer to these electronic states as
quasiparticles.

2.3.1 Magnetic response of a solid

Consider a system of N electrons in a solid with an external magnetic perturbation
originating from an external magnetization density δmext(r). System’s response
to this magnetization can be computed in a similar manner to how it is done
for the screened Coulomb interaction in the GW approximation [31, 32]. The
magnetization δmext(r) causes an external magnetic field δBext and an induced
magnetic field δBind to be present. The direct “external” field is given by

δBext
α (r) =

∑
β

∫
d3r′Iαβ(r, r′)δmext

β (r′). (2.22)

The induced magnetic field is similarly given by δBind = Iδmind with

δmind
α (r) =

∑
β

∫
d3r′χSαβ(r, r′)δBext

β (r′), (2.23)

where χS is the interacting spin susceptibility.

For a paramagnetic ground state the interaction is given by

Iαβ(r, r′) =
δBα

xc(r)

δmβ(r′)
= δ(r− r′)δαβ Ĩ(r) (2.24)

Ĩ(r) =
∂|m|[nεxc](r)

|m(r)|
=

2αc(n(r)) + 4
9
εx(n(r))

n(r)
. (2.25)

18



2.3 Electron-electron interaction mediated by
spin fluctuations

We evaluate the derivatives of the exchange-correlation energy using the LSDA
functional (as given in Ref. [33]). The total magnetic field is given by

δBtot = (I + IχSI)δmext. (2.26)

The quantity in parenthesis can be interpreted as a screened magnetic interaction
in analogy with the screened charge interaction used in the GW approximation
[31, 34]. The interacting spin susceptibility obeys a Dyson-type equation (in a
short-hand matrix notation)

χS = χ0 + χ0Iχ
S, (2.27)

with χ0 being the non-interacting Kohn-Sham response function given by (in a
paramagnetic system)

χ0
αβ = δαβ2

∑
nm

ϕn(r)ϕm(r)ϕn(r′)ϕm(r′)

εm − εn
. (2.28)

The factor of two above comes from having two spins.

2.3.2 Numerical implementation

Using a plane wave basis, i.e. we can calculate the non-interacting susceptibility
(2.28)) χ0

GG′(q, ω) in reciprocal space. Here G,G′ are the planewave vectors,
q - reciprocal lattice vector of electron scattering from k to k′, ω - frequency
at which it happens. To obtain the interaction we first calculate the dielectric
function (assuming a paramagnetic ground state)

ε(r, r′, ω) = δ(r− r′)−
∫
dr′′I(r, r′′)χ0(r′′, r′, ω) (2.29)

= δ(r− r′)− Ĩ(r)χ0(r, r′, ω), (2.30)

where we used (2.24). This expression contains a multiplication in real space that
leads to a convolution in Fourier space

εGG′(q, ω) = δGG′ −
∑
G′′

IG−G′′χ0
G′′G′(q, ω). (2.31)

Next, the induced magnetic interaction between two electrons is given by (follow-
ing a convention from Ref. [12, 35])

V = ε−1I, (2.32)

or with indices

VGG′(q, ω) =
∑
G′′

ε−1
G,G′′(q, ω)IG′′−G′ . (2.33)
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2.3 Electron-electron interaction mediated by
spin fluctuations

2.3.3 Interaction strength

The final step is to estimate the interaction strength. We follow the formalism
explained in Ref. [36]. Since we are working with a paramagnetic ground state,
we will omit spin indices further. The Fermi surface average of a spin-fluctuations
induced scattering matrix elements can be written as

µspin =
1

N(0)

∑
n,k

∑
n′,k+q

Vnk,n′k+qδ(εk − εF )δ(εk+q − εF ), (2.34)

where N(0) is the density of states at the Fermi level εF , and δ(εk − εF ) is the
energy conserving Dirac delta-function. The matrix element for scattering of a
Cooper pair can be expressed as:

Vnk,n′k+q = 〈nk, n−k| V (q) |n′k + q, n′−k〉, (2.35)

with wavevectors k and k′ = k + q, n and n′ denoting the band indices, and
V (q) = 3 VGG′(q, ω = 0) as defined in (2.33). The factor of 3 comes from
summing over spatial axes. After Fourier transformation this interaction has the
following form in momentum space:

Vnk,n′k′ =
∑
G,G′

f ∗nk,n′k′(G)VGG′(q)fnk,n′k′(G′). (2.36)

We omitted the frequency dependence in VGG′(q, ω) from (2.33) because we treat
the interaction within a static approximation in this work. Finally fnk,n′k′(G) in
(2.36) can be expressed as

fnk,n′k′(G) =
∑
G′

ϕn′k′(G + G′)ϕ∗nk(G′). (2.37)
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2.4 Summary of the computational details

2.4 Summary of the computational details

Here we summarize the computational setup for all the chapters that follow.
The details presented are describing the implementations of the pseudopotential
density functional approach [37] for each case studied.

2.4.1 Lithium

We use the local spin density approximation (LSDA) to the density functional
theory (DFT) [38, 39] within the planewave pseudopotential scheme [40–42] as
implemented in Quantum-ESPRESSO [43]. The norm-conserving Li pseudopoten-
tial included 2s and 2p states in the valence and a non-linear core correction. The
pseudopotential was generated according to the Troullier-Martins scheme [41]. A
30 Ry kinetic energy cutoff was enough to attain convergence for total energy
calculations. We did not include the 1s valence state as it introduced the need for
a much higher kinetic energy cutoff without significantly increasing the precision
of the calculations [44]. The pseudopotential cutoff radius of 2.5 a.u. was small
enough to avoid core overlap up to the pressures studied in this work.

Lattice dynamical properties were obtained through density-functional pertur-
bation theory (DFPT) [45] and the electron-phonon coupling matrix elements
and total coupling parameter were calculated using a first-principles interpola-
tion scheme [27] based on maximally-localized Wannier functions [27–29, 46]. An
8×8×8 initial sampling of the Brillouin zone was suitable to achieve an accept-
able real-space decay necessary for convergence of both the interpolated electronic
structure and lattice dynamics. The final sampling of the BZ was performed on
a momentum space grid containing as many as 8 million wavevectors.

2.4.2 FeSe, K-intercalated FeSe

The electronic properties are calculated using the generalized gradient approxima-
tion (GGA) to density functional theory (DFT) [20, 38] within a planewave pseu-
dopotential scheme [40, 41]. Phonon dispersions are calculated through density-
functional perturbation theory (DFPT) [45]. The electron-phonon coupling ma-
trix elements, total coupling parameter, and transition temperatures are obtained
using the standard McMillan-Eliashberg based approach.

Ultrasoft pseudopotentials are employed. A cutoff of 80 Ry is used for the wave
function expansion, and 560 Ry cutoff - for charge densities. Brillouin zone
sampling is performed on a 64×64×16 momentum k-space grid for electronic
integration and 8×8×8 q-space for dynamical matrices calculation.
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2.4 Summary of the computational details

2.4.3 FeSe-monolayer

We use a 40 Ry cutoff value for the kinetic energy of the planewave basis and
600 Ry cutoff - for the electronic density. Crystal structures are relaxed, so that
the forces on the atoms are less then 0.5 mRy/Å. For the non-magnetic and the
checkerboard spin-polarized configuration we use a 4-atom tetragonal unit cell.
In the stripe spin-polarized case, we choose a unit cell with 8 atoms, and the
relaxed structure possesses orthorhombic symmetry as the striped spin arrange-
ment introduces a lattice distortion. The non-magnetic, checkerboard and stripe
phases respectively show: 6.97, 7.10, 7.11 in atomic units (a.u) for the equilib-
rium lattice constants; 2.57, 2.70 and 2.72 in a.u. for the Se-atom heights; and 0,
2.28 and 2.62 bohr magnetons for the equilibrium magnetic moments. The total
energies of checkerboard and stripe phases are 13 and 20 mRy, respectively, lower
then the non-magnetic state, when related to the 4-atom cell. The background
charge is introduced using a uniform like-jellium approximation. No relaxation
is done for the charged configurations. The magnetization constraints are intro-
duced within LSDA through the energy penalty functional, as it is implemented
in Quantum-ESPRESSO package [43], so that a certain value of magnetization on
the individual atoms is preferred.

2.4.4 LiBC

We use norm-conserving pseudopotentials with a planewave basis up to 60 Ry.
For the Li pseudopotential, we find inclusion of the 1s state to be unnecessary.
The grids of 16×16×8 and 8×8×8 k-points are used for self consistent field calcu-
lations of Li2B3C and Li4B5C3, respectively, to achieve similar k-point densities
for both systems. For the densities of states calculations, three times denser
grids of 48×48×24 and 24×24×24 k-points respectively are sampled. A gaussian
smearing of 0.03 Ry is used.

Density-functional perturbation theory [45] is employed to compute phonon fre-
quencies and electron-phonon coupling parameters on a coarse mesh (4×4×4

for Li2B3C, 2×2×2 for Li4B5C3) of reciprocal vectors ~Q (ν is the phonon branch
index). Interpolation techniques [27] based on maximally-localized Wannier func-
tions [27–29] are then used to interpolate electron-phonon coupling parameters
on a fine grid (up to 24×24×24). For this interpolation, we use Wannier90 and
EPW packages [30, 46], and the XCrysDen code is used to visualize the structures
[47].
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2.4 Summary of the computational details

2.4.5 Ba0.5K0.5BiO

Scalar-relativistic norm-conserving pseudopotentials with a planewave basis up to
80 Ry are employed. For the valence states in the pseudopotential for Bi we use
5d, 6s and 6p states; for Ba - 5s, 5p, 6s; for O - 2s, 2p; for K - 3s, 3p, 4s. We find
that inclusion of semi-core states is important to correctly reproduce structural
distortions in Ba1−xKxBiO3.

Density-functional perturbation theory [45] is used to compute phonon frequen-
cies and electron-phonon coupling parameters on a coarse mesh (4×4×4 in the

20-atom cell case, 6×6×6 for the 5-atom cell) of reciprocal vectors ~Q (ν is the
phonon branch index). Next, interpolation techniques [27] based on maximally-
localized Wannier functions [27–29] are used to interpolate electron-phonon cou-
pling parameters on a fine grid (up to 30×30×30). For this interpolation, the
Wannier90 and EPW packages are employed [30, 46].

2.4.6 FeSe spin susceptibility

We used LDA ([20]) norm-conserving pseudopotentials with a planewave basis
up to 120 Ry obtained from Quantum-ESPRESSO pseudopotential library (Fe.pz-
hgh.UPF). For the Fe pseudopotential 3d,4s and 4p states are included in the
valence shell. The grid of 32×32×4 k-points are used for self consistent field
calculations and subsequent calculations as well. A gaussian smearing of 0.05 Ry
is employed. Experimental values of lattice constants a and c are utilized [48].
No structure relaxation is done.
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Chapter 3

Class-I superconductors

This chapter summarizes the results obtained for the conventional, or class-I su-
perconductors. For these materials the main mechanism responsible for the super-
conducting pairing is electron-phonon interactions. We use precise first-principle
techniques to calculate and analyze the electron-phonon coupling parameters and
superconducting transition temperatures.

We present below the underlying motivation for the research conducted, results,
discussion and a short summary of findings for every case studied. Full description
of each case can also be found in [49–51].
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3.1 BCC Li at ambient conditions

The electron-phonon coupling in bcc lithium was studied using a first-principles
pseudopotential approach. Wannier interpolation based technique that allows
for ultradense sampling of electron-phonon parameters throughout the Brillouin
zone was employed. The coupling strength was calculated precisely resolving
many of the fine features of its distribution over the zone. The contributions to
coupling arising from the Fermi surface topology and electron-phonon matrix ele-
ments were separately analyzed. The value of the coupling found for pressures in
the 0-5 GPa range is 0.36-0.43 correspondingly. The structure in the wavevector
dependent coupling is suggested to be due to the Fermi surface topology. The
Eliashberg spectral function α2F (ω) shows some increase of spectral weight in
the low-frequency region with the application of pressure. We estimate the su-
perconducting transition temperature and find that the obtained values are in
accord with experiment for a big, but still reasonable value of Coulomb repulsion
µ∗ = 0.21.

3.1.1 Motivation

Having only one valence electron, lithium and other alkalis are expected to be sim-
ple metals. At room temperature and atmospheric pressure lithium, in the bcc
structure, has a Fermi surface that shows little deviations from a free-electron
sphere, and many features related to its electronic properties can be very well
described within the nearly-free-electron model. Nevertheless lithium still ex-
hibits features that are challenging to explain. One of them is the strength of
the electron-phonon coupling at ambient conditions. Many previous estimates
predict the electron-phonon and the electron-electron interactions to be signifi-
cant [37, 49, 52–60]. However superconductivity in zero-pressure samples is not
easily-achievable despite the large coupling values predicted.

In addition, the phase diagram of lithium is rather complicated, and lithium is
found in several structures. For bcc lithium the superconducting phase transition
occurs at temperatures below the millikelvin range at atmospheric pressure [61].
The bcc structure is experimentally seen to be present for all temperatures, al-
though there are evidence of a transition to the 9R phase occurs near 80 K [62–65].
With the application of pressure, bcc Li transforms to the fcc phase near 8 GPa
and becomes a superconductor with a Tc of 14 K at 20 GPa. Continued increase
in pressure causes Li to undergo several structural transitions, and to eventually
exhibit a metal-to-insulator transition at 70 GPa [44, 66–71]. Understanding the
electron-phonon interactions in Li may be a guide to explaining some of these
features.
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3.1 BCC Li at ambient conditions

The experimental value of the electron-phonon coupling strength λ for the bcc
structure obtained from heat capacity measurements is about 0.4 [55]. One of the
first theoretical estimates for the electron-phonon coupling was calculated using
the empirical pseudopotential method, giving values around 0.5±0.1 depending on
which pseudopotential was used [37]. Another estimate based upon bandstructure
calculations yielded 0.36 [56]. Use of the fully first-principle pseudopotential
approach based methods then produced coupling values ranging from 0.38 to 0.45
[52–54]. The latter of these calculations utilized a frozen phonon approach for
the treatment of lattice vibrations. A superconducting transition at significantly
higher temperatures than experimentally observed has been predicted using the
total electron-phonon coupling strengths for multiple structures of Li [57]. It has
also been shown that the Fermi surface topology plays a crucial role in the onset of
superconductivity in the fcc phase of Li [58, 59]. In these studies the results of the
zone integral were shown to be sensitive to the Brillouin zone (BZ) sampling and
the need for finer sampling to calculate coupling precisely was emphasized.

In the current work we study the electron-phonon coupling for the monatomic
bcc phase of Li in the 0-5 GPa pressure range. Utilizing a method based on
first-principles calculations and subsequent Wannier interpolation techniques, we
can obtain a very fine sampling of the total coupling strength λ throughout the
BZ. We analyze this strength in terms of the effective contributions from Fermi
surface nesting, phonon frequencies and electron-phonon matrix elements. The
Eliashberg spectral function α2F (ω) is analyzed and the superconducting transi-
tion temperature is estimated through the McMillan equation [26].

3.1.2 Results

We present the results at zero pressure in bcc Li as well as those at 2.5 and
5 GPa for reference. Relative compressions, the ratio of compressed to ambient
volume, corresponding to these pressures are 0.86 and 0.78 respectively. Using the
generated pseudopotential, a 2 GPa shift is necessary to reach good agreement
with the room temperature experimental equation of state [66]. We give the
unshifted LDA values for pressure.

We start by analyzing the shape of the Fermi surface nesting function ξ ~Q. It shows
little variation with pressure. This is consistent with little change in the structure
of the Fermi surface with the application of pressure to bcc Li. From Figure 3.1(a)
it can be seen that there is some structure in ξ ~Q. The main structure is reflected
in the step-like discontinuities arising from the near-spherical shape of the Fermi
surface. It can be shown that for a spherical Fermi surface ξ ~Q ∝

1

| ~Q|
θ(2kF − Q).

In the bcc structure, this general feature is also found.
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Figure 3.1: Physical properties of bcc Li along a path inside Brillouin Zone: (a)
The Fermi surface nesting function ξQ, (b) an example of the phonon dispersions
ωQ for 3 modes at 5 GPa, (c) the total electron-phonon coupling λQ, (d) the Fermi
surface average of the electron-phonon matrix element squared |MQ|2 (solid line)
and the overlap integral of the electronic states |ρQ|2 (dashed line) given for 5 GPa.
In (c) the coupling value is a sum over all phonon modes. In (a) and (c) solid line
corresponds to 0 GPa, dot-dashed - to 2.5 GPa, dashed - to 5 GPa.
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3.1 BCC Li at ambient conditions

The phonon dispersions for 5 GPa are plotted on Fig. 3.1(b). For other pressures
they look similar. The ”dip” in ω ~Q between H and P can be associated with

the Kohn anomaly situated there. Unlike the fcc phase [49], most of the coupling
strength in bcc Li comes from the longitudinal phonons for the cases studied. The
wavevector dependent electron-phonon coupling summed over phonon modes is
shown on Fig. 3.1(c). We can see a well-defined structure in the plot, where
there are a few distinct peaks that show sharp increase with pressure at certain
points. Some decrease for the remaining background is present, and this is possi-
bly related to the decrease in nesting function values. The positions of the peaks
coincide with the nesting function discontinuities on Fig. 3.1(a). The average

squared matrix element for a particular ~Q is given in Fig. 3.1(d) together with

the average value of the overlap between the electronic states separated by ~Q.
More discussion of this plot follows.

In Figure 3.2, the Eliashberg spectral function and phonon density of states are
presented. For comparison α2F (ω) for the 8 GPa fcc phase is also given [49]. We
see that the changes of both α2F (ω) and F (ω) with pressure are similar. Both
the higher frequency LA peak and the lower frequency TA peak are shifted due
to the phonon stiffening. In the plot of F (ω), the low frequency peak magnitude
decreases slightly with pressure, while the peak magnitude increases in the spec-
tral function. Thus the magnitude of the coupling, α2 = α2F/F is amplified as
the pressure is applied. Increased spectral weight in the low-frequency region is
primarily responsible for the higher values of total coupling λ.

The frequency moments of the Eliashberg spectral function and the resulting
estimated values of the superconducting transition temperature are given in Table
3.1. The superconducting transition temperature corresponding to the calculated
electron-phonon coupling parameter is obtained using the modified McMillan
equation [26]. Because of the ultra-fine sampling implemented, our results are
well converged with respect to the BZ sum. The features that would otherwise
be obscured by numerical broadening have been resolved. They have a significant
effect on the average coupling and other frequency moments. Thus we may expect
the Tc estimates to be precise as well within the chosen model.

The logarithmic averaged frequency increases slightly as a result of the phonon
stiffening, and the square frequency decreases slightly with pressure, arising from
the shift of spectral weight to lower frequencies. The total coupling strength
λ increases from 0.36 at zero pressure to 0.43 at 5 GPa giving a considerable
increase in Tc. In order to achieve consistency with the experimentally measured
superconducting transition of 0.4 mK, the value of µ∗ = 0.21 is necessary. Fig. 3.3
displays the colormap of Tc for different values of µ∗ and λ within the estimated
accuracy limitations of our approach. We see, that the lowest possible predicted
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Figure 3.2: Eliashberg function α2F (ω) for different values of pressure. Effective
sampling of 50x50x50 k and q-points inside the BZ was utilized. (inset) Phonon
densities of states F (ω) for the same pressures. (*) The 8 GPa α2F (ω) function
corresponds to the fcc structure and is given for comparison.
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3.1 BCC Li at ambient conditions

P (GPa) ωlog 〈ω2〉1/2 λ Tc(µ
∗ = 0.13) Tc(µ

∗ = 0.21)

0 313 240 0.36 180 0.26
2.5 330 237 0.37 230 0.62
5 330 225 0.43 740 25
8* 308 378 0.39 500 10

Table 3.1: Pressure evolution of frequency moments of spectral function α2F (ω).
We show the total coupling strength λ, as well as the logarithmic and square
average frequencies (in K). The superconducting transition temperature (Tc, in
mK) is estimated using the Allen-Dynes formula [26] with a Coulomb parameter
µ∗ given above. (*) The 8 GPa α2F (ω) values corresponds to fcc structure and are
given for comparison.

magnitude of the Coulomb pseudopotential is about 0.18, which is similar to what
was found for aluminum from first-principles calculations [72].

3.1.3 Discussion

The shape of the Fermi surface seems to have a profound effect on the electron-
phonon properties of lithium. In the fcc phase, for example, Fermi surface topol-
ogy forms the necessary conditions for superconductivity to appear [49, 58]. In
the bcc structure we see that the nesting function does not have sharp peaks
that denote regions with extremely strong coupling, but nesting does show other
interesting features. The Fermi surface in the bcc structure is almost perfectly
spherical. This is why the bcc Li nesting function closely resembles the theta-
function-based form given in part III. We notice that this form predicts step-like
discontinuities to appear when

| ~Q| = |2~kF ± ~G|, (3.1)

or at the points where scattering onto 2kF and | ~2kF ± ~G| occurs. Here ~G is
any of the reciprocal lattice vectors. This is indeed what can be seen from Fig.
3.1(a).

Kohn anomalies are also expected to be present wherever the condition (3.1) is
satisfied. One Kohn anomaly is seen between H and P on Fig. 3.1(b). The
other ones are not present, possibly because of screening. On the other hand the
positions of the peaks in electron-phonon coupling of Fig. 3.1(c) coincide with the
nesting function discontinuities. So we see that the coupling increases wherever
the equality condition (3.1) is satisfied. To explain this increase, it is natural to
look at the electron-phonon matrix elements behavior. Fig. 3.1(d) shows that

30



3.1 BCC Li at ambient conditions

0.33 0.34 0.35 0.36 0.37 0.38 0.39

λ

0.18

0.19

0.2

0.21

0.22

0.23

0.24
µ
*

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

Figure 3.3: The color map of the superconducting transition temperature Tc

estimated according to McMillan’s equation for a range of electron-phonon coupling
λ and Coulomb repulsion parameter µ∗. Only Tc values within 0.1÷1 millikelvin
are shown (scale is given in K).

the increased coupling areas coincide with areas with increased matrix elements.
Here we conclude that the structure in electron-phonon coupling is induced by
the matrix elements distribution over the zone.

First we suggest that, since the shapes of the electronic states |~k〉 and |~k + ~2kF 〉,
for example, are similar, the amplification at the particular k-points could be due
to the increased overlap integral between initial and final scattering states. This
latter hypothesis can be justified by looking at the average overlap plot in Fig.
3.1(d). The overlap |ρ ~Q|2 plot shows some increase where λ ~Q peaks. However,

this increase is small. After looking at the expression (2.13), we note that the
parameter which can be responsible for the structure in electron-phonon matrix
elements, and thus also for the structure in the coupling itself, is the phonon
perturbation operator δνV .

We conclude that there is a well pronounced effect of Kohn anomalies on the
electron-phonon matrix elements, which is reflected in highly non-uniform dis-
tribution of the phonon perturbation operator over the BZ. This leads to an
increase in the electron-phonon matrix elements at particular points in the BZ.
This increase becomes more evident with pressure. Sharp structure in electron-
phonon coupling explains the need for fine sampling and the previous difficulties
associated with precise calculation of the total electron-phonon coupling in bcc
Li.
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3.1 BCC Li at ambient conditions

The Electron-phonon interactions are increased when pressure is applied. It is
seen from the Eliashberg spectral function evolution as mentioned in Part III.
This increase may affect the phase diagram, and, in particular, play an impor-
tant role in the bcc-to-fcc transition that experimentally occurs at about 8 GPa.
Another effect of pressure could be to make the electron-electron interactions less
important. The latter conclusion can be based on the fact that unlike the fcc
phase, where µ∗ = 0.13 results in good agreement with experimental values, in
the bcc phase µ∗ = 0.21 must be used to find Tc in the millikelvin range, where the
experimental transition was observed. Small values of Tc bring another level of
uncertainty, since minor changes in λ and µ∗ have a large effect on the transition
temperature.

Several points can be made to justify the large magnitude of Coulomb repulsion.
First, µ∗ = 0.21 is not an unphysical value. Within the framework we utilize,
this indicates that the electron-electron interactions are expected to be quite
strong. We are not aware of any direct first-principle calculation of the Coulomb
parameter for Li. Calculations for other metals which exist in the literature
provide values which seem to be consistent with the commonly employed µ∗ =
0.13 [72, 73]. On the other hand, a value of Coulomb pseudopotential which is
similar to what is inferred in this work has been suggested previously for lithium
at ambient conditions [74]. A possibility for significantly larger than commonly
used value is discussed in the above paper based on the renormalization of the
effective electron-electron repulsion with the density of states at the Fermi level.
Secondly, we suggest that with the application of pressure, lithium becomes less
free-electron-like. Within the Fermi-Thomas model, for instance, the electron-
electron interactions should become less strong with pressure. This may explain
why the effective value of the Coulomb pseudopotential for fcc is in the commonly
accepted range [49]. Finally, if we take into account the limits of the precision of
our calculations (see Fig. 3.3), the possibility of µ∗ being as low as 0.18 emerges,
and this value already is within the previously predicted range for the repulsion
[72].

According to available experimental knowledge, the low temperature phase of
lithium at zero pressure seems to be a complicated mixture of several structures
including bcc and 9R [64]. We can note on the basis of our study and previous
calculations for the 9R phase [52] that the usual electron-phonon based model of
superconductivity together with the increased electron-electron interactions de-
rived from the free-electron-model should, in principle, explain the experimental
observations. It is hoped that more explanation can be provided by experimental
studies of the isotope effect on Tc or careful first-principle studies of the Coulomb
pseudopotential µ∗.
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3.1 BCC Li at ambient conditions

3.1.4 Summary

We investigated the electron-phonon interactions in bcc lithium from first-principles
by considering the pressure evolution of the wavevector dependent electron-phonon
coupling parameter and its constituent elements. We found that the electron-
phonon interaction is highly affected by the topological features of the Fermi
surface. We explain the particular mechanism by which the electron-phonon
matrix elements are enhanced at certain points of the BZ. Our calculated super-
conducting transition temperature for zero-pressure phase is in agreement with
experiment for µ∗ = 0.21. It shows that the electron-electron interactions in
Li are strong and it is the competition between the latter and electron-phonon
interactions that leads to a very small transition temperature.
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3.2 FCC Li at high pressures

Using a first-principles pseudopotential approach we study the origin of supercon-
ductivity in lithium under pressure. The Wannier interpolation based technique
that allows for ultradense sampling of electron-phonon parameters throughout the
Brillouin zone was employed. The electron-phonon coupling strength as a func-
tion of pressure was calculated, precisely resolving many of the fine features of its
distribution. The contributions to coupling arising from the Fermi surface topol-
ogy, phonon dispersions and electron-phonon matrix elements were separately
analyzed. It is found that of the constituent components, the electron-phonon
matrix elements are the most sensitive to pressure changes, and a particular
phonon is responsible for high values of coupling. Additionally, the distribution
of matrix elements over the Fermi surface is seen to be non-uniform and possesses
a two-peak structure. Analysis of the Eliashberg spectral function α2F (ω) shows
a considerable increase of spectral weight in the low-frequency region with the
application of pressure. We estimate the superconducting transition temperature
and find that the obtained values are in good accord with experiment.

3.2.1 Motivation

Lithium has attracted particular attention because it is a simple metal that ex-
hibits a complex phase diagram. At ambient conditions it is a very nearly free-
electron bcc metal [75] and its Fermi surface shows little deviation from a sphere.
It may be expected that lithium would become more free-electron like with pres-
sure increase. Experiments show, however, that when temperature is decreased
or pressure is applied, Li undergoes several structural transitions and becomes
superconducting [61, 62, 66–69].

In the bcc structure at atmospheric pressure, it has been found that the super-
conducting phase transition occurs at temperatures below the millikelvin range
[61]. For non-zero pressures, Li begins to show superconductivity at pressures
near 20 GPa in the fcc phase and exhibits a maximum transition temperature
of 14 K at 30 GPa [67–69], making it among the highest Tc elemental supercon-
ductors. Further pressure increases beyond 30 GPa lead to structural transitions
which lower Tc [70]. Additionally it was recently shown that at around 70 GPa,
Li undergoes a metal-to-insulator transition [71] while resistivity increases with
pressure have also been observed for shock-wave experiments [76].

Previous theoretical studies indicate that the electron-phonon coupling strength
in lithium is substantial [37, 52, 57–60]. A large electron-phonon coupling strength
for the bcc structure was first calculated from the empirical pseudopotential
method and then in a first-principles pseudopotential approach [37, 52], while the

34



3.2 FCC Li at high pressures

total electron-phonon couplings in both bcc and fcc phases has been previously
analyzed. Significantly higher superconducting transition temperatures than ex-
perimentally observed have been predicted using the calculated coupling strengths
for multiple structures of Li [57]. It was found that the Fermi surface topology
plays a crucial role in the onset of superconductivity. Unlike the case of bcc Li,
Fermi surface nesting appears to be important in the fcc phase. Several features
which include phonon softening with pressure, a peak in the nesting function
near the Brillouin zone (BZ) edge, and strong coupling to specific phonons have
been suggested as the origin of superconductivity in Li under pressure [58, 59].
In previous electron-phonon reports it has been suggested that a very fine BZ
sampling is necessary to calculate the total coupling parameters in pressurized
Li with high precision [58–60, 77]. Interestingly, studies under extreme pressures
indicate that the electronic structure of Li evolves into a paired insulating state
which gives an upper limit to the pressure at which superconductivity may be
observed [44, 71].

In this work we study the pressure evolution of the total electron-phonon coupling
for the monatomic fcc phase of Li in the 8-36 GPa range. Applying a method
based on first-principles calculations and subsequent Wannier interpolation tech-
niques, we have resolved the fine features of the coupling strength λ throughout
the BZ. We analyze λ in terms of the effective contributions from three different
terms: Fermi surface nesting, phonon frequencies and electron-phonon matrix
elements. The Eliashberg spectral function α2F (ω) is obtained and the super-
conducting transition temperature is calculated through the modified McMillan
equation [26]. We also discuss the possibility of routes to higher Tc.

3.2.2 Results

The results presented here are for fcc Li at five pressures: 8, 14, 20, 30 and 36
GPa. The relative compressions corresponding to these pressures are 0.73, 0.64,
0.57, 0.51, 0.48 respectively. Using the generated pseudopotential, we find good
agreement with the room temperature experimental equation of state [66], and
slope δP

δV
. It is well known that LDA slightly underestimates equilibrium bond

lengths and for a given value of atomic volume the experimental pressure is about
2 GPa higher than our LDA value. The pressures listed here are those from LDA
calculation.

There exists a widely accepted consensus that Li is an electron-phonon super-
conductor, so one should expect that the experimental rise in superconducting
transition temperature would arise from an increase in electron-phonon coupling.
Following the decomposition of λ ~Q,ν into the three primary contributions, we start
by analyzing how pressure affects the Fermi surface nesting function ξ ~Q. From
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Figure 3.4: (a) The Fermi surface nesting function ξ ~Q, (b) phonon dispersions

ω ~Q, (c) average matrix element squared M2
Q and (d) electron-phonon coupling λ ~Q

for fcc Li along the path inside the Brillouin zone. (b), (c), (d) are given for lower
transverse mode T1. In (c) the dimensions of matrix elements are meV 2 × 103.
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Figure 3.4(a) it can be seen that although pressure does affect ξ ~Q, the nesting
function is in general suppressed as pressure increases. This is true for nearly all
Q-vectors inside the BZ with the exception of a small region around the K-point
which shows a definite increase in the Fermi surface nesting function. This in-
crease alone is clearly not enough to account for the experimental rise in Tc seen
with the application of pressure. Therefore, we conclude that the nesting function
which does not vary strongly with pressure does not contribute significantly to
the increase in λ ~Q,ν .

We have calculated that most of the electron-phonon coupling strength in Li
comes from the lower transversal mode T1. Therefore, we concentrate our anal-
ysis on this particular phonon mode. From Figure 3.4(b) we see that a softening
of phonon frequencies is present around the L point of the BZ, and a more signif-
icant softening occurs along the Γ-K direction. From Eq. (2.14) the coupling is
expected to increase as phonon frequencies are softened. Indeed, this is visible on
Figure 3.4(d). An examination of the softening of ω ~Q near the symmetry point K
leads to the conclusion that a simple scaling of lambda by the frequency cannot
completely account for the large increase in coupling found in this part of the
BZ. On the other hand, the response of the average matrix elements to pressure
in Figure 3.4(c) is very similar to that of the wavevector dependent coupling in
Figure 3.4(d). Both shows sharp increase with pressure near K.

An analysis of M
[ν]
~k,~k+ ~Q

can be performed by looking at the distribution of the

magnitudes of the matrix elements over the BZ. Since the matrix elements depend

on both ~Q and ~k, we examine ~Q0 = (0.6 0.6 0.0), which is close to the peak of

the λ ~Q with pressure. We calculate M = M
[T1]
~k,~k+ ~Q0

on a 200x200x200 k-point

mesh in the BZ and filter only k-states with energy close to the Fermi level. The
distribution of the matrix elements shown in Figure 3.5 has a two peak structure
where a small portion of the matrix elements have values more than an order of
magnitude larger than the rest. This structure persists at all pressures but the
size of the matrix elements is affected strongly as pressure is increased. For higher
pressures the fraction of elevated electron-phonon matrix elements is smaller but
the magnitudes of these matrix elements are increased. The regions of Fermi
surface where M2 have the highest values are a small fraction of the BZ. As the
pressure increases, these regions become more concentrated.

The Eliashberg spectral function obtained according to Eq. (2.16) is shown on
Figure 3.6. For comparison, the phonon density of states is also presented. We
see that though the higher frequency LA peak is stiffened with pressure for both
α2F (ω) and F (ω) as expected, the behavior of the lower frequency TA peak dif-
fers qualitatively between these two graphs. In the F (ω) graph, the low frequency
peak position varies slightly with pressure, while the peak positions coincide in the
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Figure 3.5: Magnitude density distribution of the electron-phonon matrix ele-
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Figure 3.6: Eliashberg function α2F (ω) for different values of pressure. Effective
sampling of 50x50x50 k and q-points inside the BZ was utilized. (inset) Phonon
densities of states F (ω) for the same pressures.

spectral function, the magnitude of the coupling, α2 = α2F/F is significantly am-
plified as pressure is applied. This increased spectral weight in the low-frequency
region is primarily responsible for the higher values of average coupling λ. Once
again, this observation emphasizes the importance of the coupling matrix ele-
ments on the increased transition temperature in Li under pressure.

An enumeration of certain frequency moments of the Eliashberg spectral function
and the resulting estimated values of the superconducting transition temperature
are given in Table 3.2. The superconducting transition temperature correspond-
ing to the calculated electron-phonon coupling parameter has been obtained us-
ing the modified McMillan equation [26]. The total electron-phonon coupling
strength λ, logarithmic and average square frequencies [9] ωlog and 〈ω2〉1/2 are
consistent with previous calculations in [58–60, 77]. Because of the ultra-fine
sampling of the BZ our results are well converged with respect to the summa-
tion over the BZ. Small features that were previously difficult to study have been
resolved. We see that both logarithmic and square average frequencies decrease
monotonically with pressure, arising from the shift of spectral weight to lower
frequencies. On the other hand, the average coupling strength λ increases from
0.39 at 8 GPa to 1.10 at 36 GPa, resulting in a dramatic increase in Tc.
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P (GPa) ωlog 〈ω2〉1/2 λ Tc(µ
∗ = 0.13) Tc(µ

∗ = 0.2)

8 308 378 0.39 0.5 0.01
14 293 376 0.49 2.0 0.3
20 288 373 0.66 6.8 2.7
30 274 360 0.83 12.2 6.8
36 255 341 1.10 20.0 14.2

Table 3.2: Pressure evolution of different order frequency moments of spectral
function α2F (ω). We show the total coupling strength λ, as well as the logarithmic
and square average frequencies (in K). The superconducting transition tempera-
ture (Tc, in K) is estimated using the Allen-Dynes formula [26] with a Coulomb
parameter µ∗ given above.

The superconducting equation of state for Li is plotted in Figure 3.7 where theo-
retical results from this work are given together with experimental results [67–69].
Good agreement is observed in the region from 20 to 30 GPa where the differ-
ent experimental results are consistent with each other. Outside of this pressure
region, there are some discrepancies among experimental results.

3.2.3 Discussion

It has been suggested that Fermi surface nesting plays crucial role in the onset
of superconductivity in fcc lithium [58]. In this work we observe the nesting to
be important and indicative of increases in coupling λ ~Q. However, the change in
the nesting function with pressure is seen to be much less than what is necessary
to account for the increase in electron-phonon coupling strength evidenced by
the increase in the superconducting transition temperature. This suggests that
the pressure affects phonons more strongly than it does affect the Fermi surface
topology of Li. In other words, it can be said that the Fermi surface topology
in the fcc phase creates necessary conditions for superconductivity to appear,
whereas applying pressure adds coupling strength, thereby driving the transition
temperature up.

The origin of increasing electron-phonon interactions can be seen by a large de-
formation potential caused by particular phonons as shown in our calculations.
To understand this, it is worthwhile to consider what happens when Li atoms
are pushed close together by pressure. It has been suggested that the high pres-
sure pairing in lithium results from a redistribution of the charge density [44].
As pressure is applied, the 2s orbitals eventually begin to overlap and at some
point the mutual repulsion causes the electrons to occupy more favorable inter-
stitial regions between Li dimers. This is similar to a Peierls’-type transition
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and could account for the theoretically predicted s − p transition [58, 78] where
p-type orbitals lower the total energy resulting in the appearance of paired-type
structures (cI16). The paired structures are favorable as they tend to maximize
the interstitial volume of the unit cell. If we assume that the described process
is smooth, it is natural to suggest that the change in elecronic structure with
pressure also strongly affects the lattice dynamics. These affected dynamics may
be the cause of higher electron-phonon coupling and eventually the structural
transition associated with the T1 phonon softening. Experimental measurements
of the pressure dependence of resistivity show a monotonic continuous trend in
the region below 40 GPa [71]. This is consistent with the above assumption of
continuous transformation of electronic structure under pressure.

The two peak structure of the electron-phonon matrix elements indicates that
there are areas of BZ which have much stronger coupling matrix elements, differ-
ing by an order of magnitude or more. We have studied the magnitude density
distribution of λ ~Q and observe a structure consistent with the two peak graph of
Figure 3.5. The latter distribution has one peak in the low λ ~Q region and a sec-
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3.2 FCC Li at high pressures

ond, softer peak in the higher coupling region arising from these stronger matrix
elements. Conversely, the same analysis of ξ ~Q shows no interesting structure; the
nesting function ξ ~Q appears to be normally distributed. One possible explanation
of the nature of the non-uniform distribution of matrix elements may be that the
separate couplings come from the different nature of the electrons near the Fermi

level. The shapes of the electronic eigenstates 〈~k| and 〈~k + ~Q| and the overlap

integral between them were analyzed for ~k-s belonging to the stronger-coupling
peak and show little variance with pressure. Therefore the increase in matrix
element strength appears to result from the complex interaction of the electronic
states with the particular T1 phonon perturbation.

It is of interest to discuss the value of Coulomb pseudopotential we have used in
Table 3.2. Previously it has been suggested that higher values for µ∗ are necessary
to correctly describe Li [59, 74]. The estimate of µ∗ ≈ 0.22 was proposed based
on the comparison of Migdal-Eliashberg theory calculations of λ with McMil-
lan equation based results for the superconducting transition temperature [59].
Before the superconductivity in Li was experimentally found, it had been pro-
posed that the value of Coulomb pseudopotential for Li at ambient conditions
should be greater that 0.1 [74]. Additionally, it follows from the logic of [74] that
pressure increases would decrease µ∗. However, we are not aware of any direct
first-principle calculation of Coulomb parameter for Li, and specifically Li under
pressure. Previous calculations on metals which exist in the literature provide
values which are consistent with µ∗ = 0.13 we employ [36, 73]. Using this value
a good agreement with the experimentally measured Tc is found. We have also
included estimated Tc for µ∗ = 0.20 for comparison in Table 3.2.

The trend of the superconducting transition temperature increase of 1 K/GPa
in the fcc phase in the 20-30 GPa region is promising for a higher temperature
superconductor. Unfortunately, as the pressure is increased past 30 GPa, a com-
plete softening of the T1 phonon branch along the Γ−K direction occurs. At this
point the fcc crystal becomes unstable and likely transforms to the hR1 phase [70]
preventing Li from reaching a higher Tc. We therefore offer a suggestion that by
applying uniaxial stress along the same direction as the soft phonon eigenvector
it may be possible to suppress the structural phase transition allowing for higher
transition temperatures.

3.2.4 Summary

We investigated the origin of superconductivity in fcc lithium from first-principles
by considering the pressure evolution of the electron-phonon coupling parameter
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3.2 FCC Li at high pressures

and its constituent elements. We found that superconductivity arises from pres-
sure increased electron-phonon interaction and is highly affected by the topolog-
ical features of the Fermi surface. We confirm that the lower transversal mode is
responsible for over half of the coupling and specifically the phonon modes along
Γ-K direction play the biggest role. We found that the electron-phonon matrix
elements were the most sensitive to pressure of any contribution we examined.
The matrix elements whose magnitudes depend strongly on the location in the BZ
indicate a possibility of electron-phonon coupling arising from two distinct types
of interactions having significantly different strengths. Our calculated supercon-
ducting transition temperatures as function of pressure are in good agreement
with the available experimental data.
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3.3 Li-intercalated borocarbides

3.3 Li-intercalated borocarbides

We explore the electron-phonon coupling and possible superconductivity in Li-
intercalated borocarbide materials using a precise Wannier interpolation-based
first-principle technique. We find a Tc of 36.8 K for previously suggested su-
perconductor Li2B3C, however we also propose a new material Li4B5C3 with an
estimated Tc of 16.8 K. Replacing BC layers with BC3 in Li2B3C allows the
π electronic states to be dominant at the Fermi level for Li4B5C3. We ana-
lyze wavevector-resolved electron-phonon coupling parameters and suggest that
Li4B5C3 may be more suitable for experimental fabrication than Li2B3C.

3.3.1 Motivation

Graphite-like layered materials intercalated with alkali- or alkali-earth metals are
well known superconductors. Since the discovery of KC8 [79], superconducting
graphite intercalation compounds with various transition temperatures Tc up to
15.1 K were reported [80–88]. Another well known superconducting material with
a similar crystal structure is MgB2. It is known to posses the highest transition
temperature (Tc = 39 K) among conventional electron-phonon superconductors
[89]. This high value of Tc originates from strong coupling between electrons in
σ states and B–B in-plane stretching vibrational modes [90–93].

First principles calculations suggested hole-doped lithium borocarbide (LiBC) as
a possible candidate for a high temperature (∼100 K for Li0.5BC) superconduc-
tor [94]. The same study pointed out a similarity between the superconducting
mechanisms in MgB2 and LiBC. The latter is an insulator [95], but it is predicted
that hole-doping by removing lithium atoms induces electrons into the σ bands
of the BC layer and makes the resulting material metallic. The σ-band electrons
strongly couple with the in-plane phonons which produce a high Tc [94]. The in-
troduction of lithium vacancies through doping causes structural instabilities and
considerable changes in the electronic properties [96]. These effects may explain
why superconducting LiBC has not been found in experiments [96–99]. Recently,
however, the possibility of hole-doping of LiBC by replacing carbon atoms with
boron atoms was suggested [100, 101].

In this work we study the electron-phonon coupling in LixByCz compounds within
the pseudopotential density functional theory approach. First we compute the
electron-phonon coupling constants of Li2B3C on a dense grid inside the Brillouin
zone. An interpolation technique utilizing maximally localized Wannier functions
is used [102]. We obtain an average electron-phonon coupling constant λ value of
1.18 and estimate the superconducting transition temperature Tc = 36.8 K using
Mcmillan’s equation.[26]. In addition, we replace the BC layers with the BC3
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3.3 Li-intercalated borocarbides

Table 3.3: Structural parameters of Li2B3C and Li4B5C3. The lattice constants
a and c, and the height of lithium atoms are listed. The lithium height is 0.25/0.75
when the covalent bonded layers and the lithium atoms are equidistantly aligned
along the direction perpendicular to the layers. The distance between the lithium
layer and the nearest-neighbor BC layer is shorter than the distance between the
lithium layer and the nearest-neighbor boron layer both for Li2B3C and Li4B5C3.

a c Li positions
(Å) (Å)

Li2B3C 2.826 7.234 0.254/0.746
Li4B5C3 5.519 7.384 0.271/0.729

layers in Li2B3C and suggest a new possible superconducting material Li4B5C3

with λ = 0.62 and Tc = 16.8 K. The physical properties of bulk BC3 have been
studied extensively [103–106] since it was first synthesized in 1986 [107]. We
suggest, therefore, that the fabrication of Li4B5C3 may be easier to achieve than
Li2B3C.

3.3.2 Results and Discussion

3.3.2.1 Structural properties

Optimized crystal structures of Li2B3C and Li4B5C3 are shown in Fig. 3.8. The
Li2B3C is constructed by replacing every other BC layer in pure LiBC by a layer
of hexagonal boron atoms, whereas the Li4B5C3 is made by further replacing the
remaining BC layers by BC3. The layer-by-layer structure of the latter material
consists of a layer of BC3, a layer of Li-intercalants and a layer of hexagonal
boron atoms. There are 6 and 24 atoms in the unit cells of Li2B3C and Li4B5C3,
respectively.

The structural parameters a, c, and lithium positions in the crystal coordinates
are listed in Table 3.3. The introduction of the BC3 layer shortens the in-plane
lattice constant a compared with Li2B3C by 2.4 % since a C–C bond tends to be
shorter than a B–C bond in sp2-bonded systems. The distance between a lithium
layer and the nearest-neighbor boron layer in Li4B5C3 (1.69 Å) is shorter than
the distance in Li2B3C (1.78 Å).
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3.3 Li-intercalated borocarbides

Figure 3.8: Crystal structures of Li2B3C (top panels (a),(b)) and Li4B5C3 (bot-
tom panels (c),(d)). Lithium, boron, and carbon atoms are represented by purple,
gray, and peach color spheres, respectively. The arrows show displacement vectors
of the vibrational modes which strongly couple with electrons: (a) the E′ mode at
the Γ point in the first Brillouin zone, (b) the B2 mode at the M point, (c) the
E2g B–B stretching mode at the Γ point, and (d) the E2g B–C and C–C stretching
mode at the Γ point.
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3.3.2.2 Electronic structure

The band structures and the electronic densities of states of Li2B3C and Li4B5C3

are shown in Fig. 3.9. For Li2B3C our results are in agreement with those of
the previous work [100]. In particular, we confirm that the σ-states of the boron
layer provide the largest contribution to the density of states near the Fermi
energy.

The band structure of Li4B5C3 in Fig. 3.9 has a multitude of states at the Fermi
energy and is complicated because of the large size of the calculation cell. The
main contribution to the total density of states of Li4B5C3 near the Fermi energy is
coming from the π-states of the BC3 layers, in contrast to Li2B3C. This difference
in the dominant contribution to the total densities of states is consistent with the
difference in the electron-phonon coupling as will be discussed later.

3.3.2.3 Phonons

The phonon densities of states are presented in Fig. 3.10. For Li2B3C our cal-
culations show that the spectral weight is concentrated in two main regions: a
low-energy region at 20-60 meV and a high-energy region at 100-130 meV. The
high-energy peaks correspond to the in-plane B–B bond-stretching modes (see
Fig. 3.8(a)). The lower energy peak has contributions from out-of plane mo-
tions of boron and carbon atoms, as well as the Li displacements (see example in
Fig. 3.8(b)).

In Li4B5C3, the phonon density of states behaves rather similarly: a low-energy
region at 20-60 meV and a higher-energy region at 100-130 meV contain the
accumulated spectral weight. The high-energy peaks now correspond to B–B,
B–C and C–C in-plane bond-stretching modes (see Fig. 3.8 lower panel).

3.3.2.4 Electron-phonon coupling

Our results for the Eliashberg spectral functions α2F (Eq. 2.16) are shown in
the Fig. 3.10. The spectral function for Li2B3C has peaks at ∼30, ∼50, ∼100
and ∼120 meV. These findings are consistent with previously obtained theoret-
ical estimates [100]. The two peaks at low frequencies originate from the out-of
plane boron-layer and lithium-layer vibrations and have large contribution to the
average coupling (because of the ω−1 part in Eq. 2.19). The two peaks at high fre-
quencies arise from the B–C and B–B in-plane vibrations and are less important
for the average coupling λ.
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Figure 3.9: Band structures and partial density of states of Li2B3C (top panels)
and Li4B5C3 (bottom panels) near the Fermi energy (the Fermi energy is set to
0 eV). The high symmetry points are marked on the horizontal axis of the band
structure plots by different length scales corresponding to the different a and c
lattice constants. The black thick solid lines in the right panels show the total
densities of states. The green chain, red solid, blue dotted, and magenta dashed
lines represent the contributions from the σ-state in the BC layer, the π-state in the
BC layer, σ-state in the boron layer, and π-state in the boron layer, respectively.
The contributions from lithium atoms are small near the Fermi energy.
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We argue that the enhancement of the spectral weight in α2F for the low-
frequency region in Li2B3C is likely to complicate the fabrication of the material
in experiment. This is because of the tendency of strongly-coupled low-frequency
acoustic modes to get soft and drive a structural transition [49].

Fine sampling of the Brillouin zone is essential for a precise calculation of α2F .
Therefore we explain the fact that the previous study in Ref. [100] found less
enhancement in the low-frequency region of the spectral function by a relatively
coarse sampling compared to the one utilized in this work.

The spectral function for Li4B5C3 has peaks in the 30-60 and the 110-130 meV
regions. The nature of the vibrations forming these peaks is the same as for
Li2B3C. The main differences include much lower spectral weight in the 0-60 meV
region for Li4B5C3 and a slightly increased weight in the 110-130 meV area. These
differences account for a smaller average coupling λ in Li4B5C3.

3.3.2.5 Nesting function

In the Figure 3.11 the wavevector-resolved electron-phonon coupling λ ~Q =
∑

ν λ ~Q,ν
and the nesting function along a path inside the phonon Brillouin zone are plot-
ted. The nesting function reflects the probability of an electron at the Fermi level
to be scattered by a wavevector ~Q [58],

ξ ~Q =
1

Nk

∑
~k

δ(ε~k)δ(ε~k+ ~Q). (3.2)

Where Nk is the total number of ~k-vectors included in the sum, and δ(ε~k) is the
energy conserving Dirac delta-function.

For Li2B3C, as seen from the figure, λ ~Q has peaks at M and L, where no increase in
nesting is present. This can be explained by the increase in the λ ~Q,ν arising from
the acoustic phonon frequency softening at these high symmetry points.

In all of our calculations for Li4B5C3 the nesting function ξ ~Q is nearly proportional
to the electron-phonon coupling λ ~Q, as can be seen from the figure. Therefore
we conclude that the material is far from the phonon-softening which can induce
a structural instability, and the electron-phonon matrix elements are relatively
constant throughout the Brillouin zone.

3.3.2.6 Superconducting parameters

Table 3.4 shows the parameters used in our estimate of the superconducting tran-
sition temperature Tc. We estimate the superconducting transition temperature
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Figure 3.10: Phonon densities of states F (ω) (black solid line and the gray-
shaded area below) and the Eliashberg spectral functions α2F (ω) (blue line) for
Li2B3C and Li4B5C3 calculated in this work. The F (ω) is given in arbitrary units.
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Figure 3.11: Wavevector-resolved electron-phonon coupling λ ~Q (solid black) and

the Fermi surface nesting (red) function (as explained in Ref. [9, 58], for instance)
for a path inside the corresponding Brillouin zone for Li2B3C and Li4B5C3. The
nesting is given in arbitrary units.
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Table 3.4: Theoretical estimate of the superconducting transition temperature Tc
obtained using the modified McMillan formula [26] for two values of the Coulomb
parameter µ∗ given. We also show the square and logarithmic frequency moments
of the Eliashberg spectral function [9] (

√
< ω2 > and ωlog respectively), are given

along with the the average electron-phonon coupling strength λ. The error-bars on
λ are ±0.05

√
< ω2 > ωlog λ Tc (K)
(K) (K) µ∗=0.1 µ∗=0.0

Li2B3C 613 380 1.18 36.8 55.5
Li4B5C3 897 638 0.62 16.8 37.6

(Tc, in K) using the modified McMillan formula [26]. In the table we show the
estimated Tc using a Coulomb parameter µ∗=0.0 and 0.1.

For Li2B3C we obtain λ=1.18, which is slightly smaller than what was found in
Ref. [100]. The difference is likely to be due to an enhanced level of the Brillouin
zone sampling we use. We find a Tc of 36.8 K for µ∗ = 0.1 (55.5 K for the upper
limit of µ∗ = 0). The logarithmic and square average frequencies are 380 and
613 K respectively.

For Li4B5C3 we obtain λ=0.62. This yields a Tc of 16.8 K for µ∗ = 0.1 (37.6 K
for the upper limit of µ∗ = 0). The logarithmic and square average frequencies
are 638 and 807 K respectively. Li4B5C3 has larger frequency moments because
the spectral weight for α2F is small in the low-frequency regions. For the same
reason we argue here again that Li4B5C3 is likely to be more stable than Li2B3C
as the acoustic low-frequency modes do not have large coupling. The small value
of the coupling for the low-frequency modes suggests that this material is far from
a phonon-softening-induced structural transition.

3.3.3 Summary

We have analyzed the electronic, vibrational and electron-phonon coupling prop-
erties of the Li-intercalated borocarbide compounds Li2B3C and Li4B5C3. Pre-
viously suggested large value of electron-phonon coupling is consistent with our
more precise approach for Li2B3C (λ=1.18, Tc=36.8 K) and we predict that for
Li4B5C3 λ=0.62, Tc=16.8 K. We find a decrease in spectral weight in the lower-
frequency region (20-60 meV) for the Eliashberg spectral function in Li4B5C3

compared to Li2B3C. Based on that finding we propose that Li4B5C3 is less likely
to be dynamically unstable and thus may be more suitable for experimental fab-
rication. Finally, for Li4B5C3 we find the Fermi surface nesting function to be
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nearly proportional to the electron-phonon coupling throughout the Brillouin
zone, which also supports the suggestion concerning the stability of this mate-
rial.
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Chapter 4

Class-II superconductors

This chapter contains a discussion of the results obtained for a the non-conventional,
or class-II superconductors. For these materials the mechanism responsible for
the superconducting pairing is still unknown at the time of this writing. We
use precise first-principle techniques based on the pseudopotential density func-
tional theory and Wannier approximation in the way described in chapter 2 to
calculate the electron-phonon coupling and associated superconducting transition
temperature, to analyze the sensitivity of the electronic structure to the changes
in induced magnetization and to study the spin-fluctuations-induced interaction.
We present the motivation, the results and their discussion, and a short summary
of findings for each case studied. A complete description of each case can also be
found in [108, 109].
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Figure 4.1: Crystal structure of FeSe (right) and antiferromagnetic spin patterns
of the Fe-layer (left). Illustration adopted from [16].

4.1 Bulk FeSe and KFe2Se2

The effect of the static magnetic moments of iron on electron-phonon interac-
tions in layered FeSe and KFe2Se2 is studied. First principle techniques based on
the pseudopotential density functional approach and the local spin density ap-
proximation are utilized to calculate the bandstructures, phonon dispersions, and
electron-phonon coupling properties. Our results indicate that introducing iron
magnetic moments leads to significant changes in electronic structure induced
by Fe-3d states near the Fermi level, to phonon frequency softening for several
vibrational modes, and a dramatic increase in electron-phonon coupling for spe-
cific modes. The increase in Brillouin zone averaged coupling is about two-fold.
Our estimates of superconducting transition temperatures based on the McMil-
lan equation yield values closer to experimental results for the spin-resolved case.
However, these values are not large enough to explain the observed transition
temperature.

4.1.1 Motivation

One of the simplest iron-based superconducting compounds, FeSe has many char-
acteristic properties of this group and thus can potentially be considered as a
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4.1 Bulk FeSe and KFe2Se2

model system for studying the electron pairing mechanism for iron-based super-
conductors. At ambient conditions, FeSe has a transition temperature Tc of 8
K for slightly Se-deficient samples, and the presence of superconductivity is ex-
tremely sensitive to sample stoichiometry [48, 110]. When pressure is applied the
Tc grows to 27 K at 1.5 GPa and to 37 K at 9 GPa [111, 112], perhaps suggest-
ing that lattice vibrations are playing an important role for superconductivity.
Antiferromagnetic spin fluctuations are reported to be strong, although no static
long-range magnetic order was found for the superconducting phase [113]. Re-
cent reports also suggest the presence of a nodal gap [114] and an unconventional
value for the isotope effect parameter [115]. Studies of FeSe monolayer systems
on different substrates show significant sensitivity to interface effects and also
give some signs of the presence of superconductivity above 77 K [116, 117].

A number of intercalated FeSe compounds were experimentally prepared using
alkali, alkali-earth or rare-earth metals as intercalants [118, 119]. The resulting
Tc is raised to above 30 K at ambient pressure. Of particular interest is the simul-
taneous presence of superconductivity and antiferromagnetism in these systems
and its relation to the iron vacancy ordering [120, 121]. NMR experiments sug-
gest spin fluctuations to be weak [122]. Raman spectra exhibit phonon anomalies
indicative of a rather specific type of electron-phonon coupling [123]. In addition,
high pressure measurements are indicative of extreme sensitivity to the nature
of defects [124]. All the above give evidence for the importance of taking the
effects of lattice vibrations into account when studying the possible mechanism
for superconductivity in selenides.

Theoretical findings, alongside ARPES and dHVA experiments help to determine
the most probable nature of the Fermi surface geometry [125, 126], even though
the availability of good quality crystalline samples limits these studies. Theoret-
ical predictions suggest that for FeSe, the Fermi surface has pockets at points
Γ and M of the Brillouin zone (BZ). The intercalated compounds tend not to
have the zone-centered pockets, according to both theoretical and experimental
findings [127, 128]. The latter fact does not support the widely accepted s± super-
conducting gap structure model [18, 129]. Electron-phonon coupling calculations
without including spin-polarization effects yield values too low to account for the
experimentally observable transition temperature within the standard McMillan-
Eliashberg approach [127]. When iron magnetic moments are included into the
calculation, a significant increase is seen for the 122 and 111 systems [130]. Sig-
nificant phonon softening was also reported for FeSe [131]. Finally, it is worth
mentioning here that the many-body dynamical mean-field theory results have
proposed the presence of rather strong electronic correlation [132].

In this work we study the influence of static magnetic moments of iron on
electronic structure, vibrational, and electron-phonon properties of layered iron-
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chalcogenide systems including bulk FeSe and K-intercalated FeSe. For the spin-
resolved study we choose the checkerboard and the striped antiferromagnetic con-
figurations (vibrational properties have been studied for FeSe only in the striped
case). The latter is seen experimentally for many iron superconductors in the
ordered state, while the former can be relatively simply approached from a calcu-
lation perspective. We utilize a first principle pseudopotential density functional
theory and local spin density approximation based approach. Our results show
significant changes in the electronic structure and clear evidence of phonon soft-
ening when spin is considered. Both of these effects lead to a doubling of the
electron-phonon coupling for checkerboard spin-resolved configurations. Electron-
phonon matrix elements for a particular phonon mode of A1g symmetry show a
dramatic increase as well. Superconducting Tc estimates were made based on the
Eliashberg spectral function analysis and the McMillan’s equation [26]. The Tc

for the checkerboard spin-resolved case are much higher then the case when spin
is not included, but the values are still one order of magnitude lower then the
experimental results.

4.1.2 Results

Results given in this section are for for relaxed configurations, where the lattice
constants were optimized to minimize the forces on the atoms. The reason for this
approach is to study phonon properties more precisely by using a near-equilibrium
configuration. Otherwise negative phonon frequencies emerge as artifacts. For
FeSe, in the non-magnetic and checkerboard spin-resolved configurations, we use
a 4-atom unit cell. For the striped spin-resolved configuration a unit cell twice
as large with 8 atoms is used. For KFe2Se2 we use a 10-atom unit cell for all
calculations. For FeSe we find the striped spin arrangement to be 24 mRy lower
in energy then the non-magnetic one, and 6 mRy lower then the checkerboard
spin-pattern. The KFe2Se2 unit cell in checkerboard configuration is 42 mRy
lower in total energy than the non-magnetic one, and 9 mRy lower than the
striped configuration.

First, we analyze the effect of iron magnetic moments on the electronic structure
of FeSe. It can be seen from Figs. 4.2 and 4.3 that the non-magnetic bandstructure
for bulk FeSe is similar to what was originally obtained in ref. [127]. The spin-
resolved bandstructure has two main differences: there are only two bands instead
of five that cross the Fermi level, and one of the two has a very small energy
bandwidth. These two differences can also be clearly seen in the density of states
plots in the figures mentioned. The total DOS has a peak right at the Fermi
level for the spin-polarized case, whereas the width of the peak is smaller and
its position is not correlated with EF for the non-polarized configuration. The
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Figure 4.2: TOP(a): Electronic bandstructure of FeSe for the non-spin-polarized
case. Brighter colored bands are those crossing the Fermi level. To the right
the corresponding projected densities of states (in states/eV, from 0 to 12) are
plotted for all atoms (black solid), Fe-3d states (red solid) and Se (blue dashed).
BOTTOM(b): the corresponding Fermi Surface. The high symmetry points are
given and correspond to the points along the bandstructure plot on the top.
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Figure 4.3: TOP(a): Electronic bandstructure of FeSe for the checkerboard
spin-polarized case. Brighter colored bands are those crossing the Fermi level. To
the right the corresponding projected densities of states (in states/eV, from 0 to
11) are plotted for all atoms (black solid), Fe-3d-up states (red solid), Fe-3d-down
states (green dashed) and Se (blue dot-dashed). BOTTOM(b): the corresponding
Fermi Surface.
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Figure 4.4: TOP(a): Electronic bandstructure of FeSe for the striped spin-
polarized case. Brighter colored bands are those crossing the Fermi level. To the
right the corresponding projected densities of states (in states/eV, from 0 to 15)
are plotted for all atoms (black solid), Fe-3d-up states (red solid), Fe-3d-down
states (green dashed) and Se (blue dot-dashed). BOTTOM(b): the corresponding
Fermi Surface. NOTE: even though the striped spin-configuration has different BZ
(rotated by π/2 and scaled by

√
2 in kx and ky-directions), we use the conventional

cell, so the symmetry points on the wavevector path along the x-axis have the
same coordinates when expressed in reciprocal lattice vectors terms as for for the
non-magnetic and checkerboard BZ. Stripe direction is toward the given X point.
Y point corresponding to a perpendicular to the stripe direction is not shown.
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4.1 Bulk FeSe and KFe2Se2

partial density of states around the Fermi level is dominated by Fe-3d states in
both cases. These changes in electronic structure significantly affect the shape
of the Fermi surface. The overall shape with electron pockets centered at M and
hole pockets at Γ is modified. Pockets at M are still present, whereas hole pockets
are now centered at Z.

The electronic properties of the striped antiferromagnetic spin-resolved configu-
ration are summarized in Fig. 4.4. Calculation of the striped spin arrangement
requires twice as many atoms in a unit cell, so the Fermi surface is a fraction of the
one examined in the non-magnetic and checkerboard antiferromagnetic configu-
rations. The Fermi surface is formed by two bands. The peak in the total density
of states is located somewhat below the Fermi level and thus does not play a large
role for the electron-phonon interaction. The general shape of the Fermi surface
has one cylindrical pocket at the gamma point and two smaller satellite pockets
next to it. The satellite pockets are aligned with the stripe direction. The pocket
at Γ for the striped configuration’s reduced BZ would produce pockets at both Γ
and M for the BZ for non-spin-resolved and checkerboard spin systems.

Secondly, we analyze the effect of iron magnetic moments on the electronic struc-
ture of KFe2Se2. In Fig. 4.5 and Fig. 4.6 the non-magnetic and checkerboard
spin-resolved bandstructures for KFe2Se2 are given. Again, the spin-resolved
bandstructure has a fewer number of energy bands crossing the Fermi level and
their energy bandwidths are narrowed. The same two differences can be seen
when comparing the partial density of states plots. As in the case of FeSe, the
total DOS has a Fe-3d states induced peak very close to the Fermi level for the
spin-polarized case. Generally, we can state that the Fe-3d states are becoming
more localized in energy when the spins are included. The way the shape of
the Fermi surface evolves can also be seen from the above figures. Overall, the
Fermi surface of KFe2Se2 for the spin-resolved case does not have pockets at Γ
and is much better nested (has regions that amplify scattering possibilities for a
particular wavevector, see [49], for example, for more explanation of the nesting
function). Further discussion follows.

The electronic properties of the striped antiferromagnetic spin-resolved configu-
ration for KFe2Se2 are given in Fig. 4.7. We used a unit cell containing 10 atoms
to study striped spin arrangement, however the shape of the BZ is different then
for the configurations mentioned in the prevous paragraph. As can be seen in the
figure, the striped spin arrangement has a bandstructure similar to a hole-doped
semiconductor with a rather small gap of a few hundreds of meV. The Fermi
surface has two regions formed by two bands, one of which a shows significant
degree of nesting. No pockets are present at the center of the BZ at Γ. On the
DOS plot a sharp peak induced by Fe-3d states can be seen at about 0.7 eV below
the Fermi level.
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Figure 4.5: TOP(a): Electronic bandstructure of KFe2Se2 for the non spin-
polarized case. To the right the corresponding projected densities of states (in
states/eV, from 0 to 30) are plotted for all atoms (black solid), Fe-3d states (red
solid) and Se (blue dashed). BOTTOM(b): the corresponding Fermi Surface.
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Figure 4.6: TOP(a): Electronic bandstructure of KFe2Se2 for the checkerboard
spin-polarized case. To the right the corresponding projected densities of states (in
states/eV, from 0 to 15) are plotted for all atoms (black solid), Fe-3d-up states (red
solid), Fe-3d-down states (green dashed) and Se (blue dot-dashed). BOTTOM(b):
the corresponding Fermi Surface. Positions of high symmetry points inside the BZ
are same as for Fig. 4.2.
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Figure 4.7: TOP(a): Electronic bandstructure of KFe2Se2 for the striped spin-
polarized case. Brighter colored bands are those crossing the Fermi level. To the
right the corresponding projected densities of states (in states/eV, from 0 to 12)
are plotted for all atoms (black solid), Fe-3d-up states (red solid), Fe-3d-down
states (green dashed), Se (blue dot-dashed) and K (purple dot-dashed). BOT-
TOM(b): the corresponding Fermi Surface. NOTE: the striped spin-configuration
has monoclinic BZ due to stripe-induced lattice distortion. We use the correspond-
ing symmetry points on the wavevector path along the x-axis, that have the same
coordinates when expressed in reciprocal lattice vectors terms as for for the non-
magnetic and checkerboard BZ. Stripe direction is toward the given X point.
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Third, the phonon dispersions are given on Figs. 4.8, 4.9 and 4.10. For FeSe it
can be clearly seen that when we compare non-spin and spin-resolved cases; there
is a significant degree of softening present for the particular phonon mode having
A1g symmetry. This phonon branch has frequencies around 250-260 cm−1 for ~q
between Γ − Z and Γ − X when no spin is considered. These frequencies move
to below 200 cm−1 when iron magnetic moments are included in the calculation.
Other phonon modes are affected in a similar way exhibiting overall softening,
although significantly smaller in magnitude. The phonon density of states plots
illustrate increased weight in the lower-frequency region, the same conclusion is
true for the electron-phonon spectral function. The A1g phonons yield the largest
electron-phonon coupling values as well.

The phonon dispersions for FeSe in the striped spin configuration show some
signs of softening, as can be seen from the density of states plot. However, the
degree of this softening is not large. A peak in the Eliashberg function at about
200 cm−1 arises from electron-phonon coupling to the B3g mode, which seems to
account for about 40% of total coupling.

The phonon dispersion relations for KFe2Se2 exhibit similar behavior. A com-
parison between spin-resolved and non-spin cases shows a general softening, that
most evidently can be seen for ~q between Γ − Z and Γ − X. Vibrational states
in the 100-150 cm−1 region are lowered to below 100 cm−1. The latter can be
derived from the comparison between the phonon density of states plots provid-
ing evidence for increasing number of phonons in the low-frequency region when
spins are included. The spectral weight shift to lower frequencies is also present
in the electron-phonon spectral function plots

Electron-phonon coupling values, averaged over the Brillouin zone, estimated val-
ues of the superconducting transition temperature, density of states at the Fermi
level, average electron-phonon matrix element value and logarithmic averaged
frequency are summarized in Table 4.1. The Tc corresponding to the calculated
electron-phonon coupling parameter is obtained using the modified McMillan
equation [26]. The degree of BZ sampling used suggests that the average cou-
pling value λ is precise to within an error of 10-15%. On the other hand, precise
calculation of the Eliashberg spectral function needs better sampling, so the given
values of the spectral function frequency moment - ωlog - are rough estimates. As
we see, λ increases from 0.15 for non-spin-resolved FeSe to 0.39 for checkerboard
spin resolved configuration, and correspondingly from 0.19 to 0.34 for KFe2Se2.
This leads to a Tc of 1.1 K and 0.2 when iron moments are included in the
calculation, and for practically zero values in the opposite case. The striped spin-
resolved FeSe case has a coupling value of 0.16 and thus zero Tc. We show that
using the commonly used value of Coulomb repulsion parameter µ∗ = 0.1 even
for the checkerboard spin-resolved case we do not achieve consistency with the
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Figure 4.8: Phonon dispersions of FeSe for non the spin-polarized (TOP(a)) and
the checkerboard spin-polarized (BOTTOM(b)) configuration. Phonon density of
states (solid) and Eliashberg spectral function (dashed) are given to the right (in
states/cm−1, from 0 to 0.2 - non-magnetic, in states/cm−1*(2) - spin-resolved, from
0 to 0.4). Bands showing the largest degree of softening are shown in red (brighter)
color to guide the eye.
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Figure 4.9: Phonon dispersions of FeSe for the striped spin-polarized configu-
ration. Phonon density of states (solid) and Eliashberg spectral function (dashed)
are given to the right (in states/cm−1*(1.5) for PDOS, from 0 to 0.3). NOTE: even
though the striped spin-configuration has a different BZ, the symmetry points on
the wavevector path along the x-axis have the same coordinates when expressed in
reciprocal lattice vectors terms as for for the non-magnetic and checkerboard BZ,
so the symbols left the same.
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Figure 4.10: Phonon dispersions of KFe2Se2 for the non spin-polarized (TOP(a))
and the checkerboard spin-polarized (BOTTOM(b)) configuration. Phonon density
of states (solid) and Eliashberg spectral function (dashed) are given to the right (in
states/cm−1*(1.5) - non-magnetic, in states/cm−1 - spin-resolved, from 0 to 0.5).
Bands showing the largest degree of softening are shown in red (brighter) color to
guide the eye.
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experimentally measured superconducting transition of 8 K for FeSe [48]. The Tc

estimates for spin-resolved KFe2Se2 are also far away from experimental value of
32 K [118].

4.1.3 Discussion

Currently for both iron-based and copper oxide superconductors there is no con-
sensus regarding the mechanism of electron pairing. In the iron-based compounds,
a widely accepted picture is that the itinerant electronic system has a weak but
substantial interaction with the significantly localized magnetic moments and
charges of the Fe atoms [16, 132–134]. Thus the degree of electronic correla-
tion may be strong enough to be beyond the limits of applicability of the bare
local-density (LDA) and generalized-gradient (GGA) approximations. In addi-
tion, the fact that no long-range magnetic order is usually seen in these systems
experimentally implies that the spin-resolved LDA and GGA may not model the
experimental state accurately either [16, 113]. The cases of non-spin resolved
and spin-resolved LSDA and GGA calculations can thus be treated as the ex-
tremes, and the real experimental situation may be somewhere between the two.
Electronic structure properties of iron superconductors are widely believed to be
predicted well by LDA without the treatment of spins. This appears to be jus-
tified by substantial agreement with experimental results on the Fermi surface
shapes at least for 1111 and 122 compounds [16, 133, 135–138]. On the other
hand, properties such as equilibrium lattice constants, for example, are better
described within the spin-resolved approximation [128]. Therefore in this work
we present a detailed comparison of the two approaches considering both elec-
tronic and vibrational characteristics. The question about the destruction of
magnetic order in the superconducting phase and the presence of the phase sepa-
ration onto a non-magnetic superconducting phase and magnetic semiconducting
phase is still open for KFe2Se2 [139]. Also the presence of strong spin fluctuations
has been experimentally reported for FeSe [113]. Thus knowing the difference be-
tween magnetic and non-magnetic electronic and vibrational properties for both
of these compounds is necessary. It would also be interesting to study the effect
of non-stoichiometry on electronic and vibrational properties of FeSe compounds,
but doing so is rather complicated since the experimental shift in stoichiometry
is rather small.

We compare the bandstructures and Fermi surfaces (FS) first. Here and below
we refer to the non-spin resolved calculations as LDA and to spin-resolved ones as
LSDA for brevity, even though the actual exchange-correlation functionals used
are GGA-based. As was mentioned earlier, the 3d states of iron are more local-
ized in energy at the Fermi level for LSDA case. This leads to the differences in
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the FS shapes. Since there are no experimental data available for direct compar-
ison for pure FeSe, no conclusion can be made about which method works best.
Nevertheless, some features of the LSDA FS can still be expected to be present
in experiment. In particular, the fact that FS is better nested could be impor-
tant. For KFe2Se2, experimental findings [126] show no pockets at Γ, which is
in agreement with the Fermi surface we find for the spin-resolved case. The fact
that our LDA Fermi surface is different from what was obtained in [128] might
arise from the necessity to use a relaxed configuration to obtain a dynamically
stable structure in this work. In general, we note here that the spin-resolved cal-
culations give better results for equilibrium lattice constants for both compounds
(about 1% less then experimental value for FeSe, and 3% less for KFe2Se2) and
are in agreement with currently available experimental data for the Fermi sur-
faces. It is also worth mentioning, that if the Fermi level is moved slightly, the
Fermi surface shape for FeSe can undergo significant changes because of the high
degree of Fe-3d states localization in energy in the spin-resolved case.

To test the importance of the change introduced to the nesting, we calculate the
electron-phonon matrix elements averaged over Qz (z-axis projection of the vector
~Q)

M =
1

NQz

∑
Qz

M
[ν]
~k,~k+ ~Q

, (4.1)

and then analyze the difference between the spin-resolved squared matrix ele-
ments and non-spin-resolved ones

∆M2 = M2
SP −M2

NS. (4.2)

Colormaps of the differences in checkerboard spin-resolved and non-spin-resolved
qz-averaged matrix elements squared - ∆M2(qx, qy), are plotted in Fig. 4.11. It
can be seen that for FeSe at |Q(x, y)| = (0.5 0.5), and for KFe2Se2 at |Q(x, y)|
= (0.0 0.5), the ∆M2 are significantly amplified for spin-resolved configuration.
A closer look at the corresponding Fermi surface shapes confirms that nesting
opportunities do increase for those two wavevectors when the spin treatment is
included. Thus, we can conclude that nesting does play a significant role in the
overall increase of the electron-phonon coupling.

Phonon softening serves as another important factor affecting the electron-phonon
coupling. We again emphasize the fact that there are specific phonon modes of A1g

symmetry that are affected the most. This means that, when the spin treatment
is turned on, the spatial structure of electronic states is affected in such a way that
it favors the A1g phonons softening. Visual analysis of the shapes of electronic
states at the Fermi level tend to confirm that observation. It is also worthwhile
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4.1 Bulk FeSe and KFe2Se2

Figure 4.11: Color map of the differences in matrix elements δM2 between the
checkerboard spin resolved and the non-spin-resolved cases (according to (4.2))
given for FeSe (TOP(a)) and KFe2Se2 (BOTTOM(b)). The units on x an y-axis
are 2π/a, z-axis - arbitrary units. Points (0.0 0.5) and (0.5 0.5) are shown using
dashed circles.
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Material |µ| N(EF ) ωlog λ < M2 > Tc(µ
∗ = 0.1)

FeSe - 10.5 250 0.15 0.4 0.0
FeSe(check-brd) 2.2 13.5 280 0.39 0.7 1.1

FeSe(striped) 2.6 6.5 280 0.16 0.4 0.0
KFe2Se2 - 16.5 240 0.18 0.9 0.0

KFe2Se2(ch) 2.6 18.2 180 0.34 1.1 0.2
KFe2Se2(str) 2.8 9.5 - - - -

Table 4.1: Summary of the electronic and electron-phonon interaction related
parameters obtained in this work. We show the total coupling strength λ, as
well as the Fe magnetic moment |µ| (in Bohr magnetons), the density of states
at the Fermi level N(EF ) (in states/Ry divided by the number of iron atoms
in unit cell), the logarithmic average frequency (in K) and the average electron-
phonon matrix element squared < M2 > (arbitrary units). The superconducting
transition temperature (Tc, in K) is estimated using the Allen-Dynes formula [26]
with a Coulomb parameter µ∗ given above.

to notice that for the spin-resolved case, 90% of the total coupling at Γ comes
from the A1g mode, whereas the latter is only responsible for 20% for the non-
spin-resolved case. This dramatic increase suggests that the phonon perturbation
operator also undergoes significant changes in its shape that strongly favor the
above mentioned symmetry.

The chalcogen/pnictogen height is an important parameter reflecting the super-
conducting properties of iron-based compounds, as has been previously noted
[133]. The relative behaviors of FeSe and KFe2Se2 in our calculations can be ana-
lyzed utilizing this picture. For checkerboard LSDA, which gives better agreement
with experiment for the structural parameters, the relaxed chalcogen height is
1.41 and 1.38 angstroms for FeSe and KFe2Se2 respectively. Since the latter com-
pound has smaller average coupling values and experiments show a rapid increase
of Tc with pressure [111, 112], we argue that the optimal chalcogen height could
be somewhere within the two values stated above, at least for the electron-phonon
interaction based contribution to the pairing mechanism.

To sum up how the results of this work can contribute to the overall understand-
ing of the mechanism of superconductivity in iron-based superconductors, we
state the following. There exists a widely accepted belief that the nature of su-
perconducting pairing is not entirely electron-phonon. Our findings confirm this
picture. Nevertheless, we show that for the extreme case when static magnetic
moments of iron can coexist with superconductivity, the Migdal-Eliashberg the-
ory would predict much higher coupling and transition temperatures closer to the
experimental values then were previously found for non-magnetic systems.
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4.1.4 Summary

We investigated the electron-phonon interactions in layered FeSe and KFe2Se2

from first-principles by considering the effects of inclusion of static magnetic mo-
ments of Fe atoms on electronic, vibrational and wavevector-dependent electron-
phonon coupling parameter. We find that the 3d-states of iron are localized more
in energy space for the spin-resolved case. The latter leads to important changes
in the bandstructures and Fermi surfaces. Phonon frequencies and electron-
phonon coupling constants are seen to be significantly affected by the changes
in electronic structure as well. The shape of the Fermi surface is shown to play
an important role. We explain the mechanism by which the electronic structure
change induces an enhancement in the electron-phonon coupling and show that it
is mainly due to the nesting-related amplification of the electron-phonon matrix
elements at specific regions of the BZ.

Our calculation of electron-phonon coupling for spin-resolved configurations in
this work provide another way to estimate superconducting transition temper-
atures. The total electron-phonon coupling values exhibit approximately a to
two-fold increase (from 0.15 to 0.39 for FeSe, and from 0.19 to 0.34 for KFe2Se2)
when a checkerboard spin pattern is introduced. We find spin-resolved coupling
values based estimates of Tc to be in better agreement with experiment than
estimates for non-spin-resolved configurations, however these are still not large
enough to solely explain the superconductivity on the basis of electron-phonon
interactions.

73



4.2 Magnetic excitations in Monolayer FeSe

4.2 Magnetic excitations in Monolayer FeSe

The electronic structural properties in the presence of constrained magnetization
and a charged background are studied for a monolayer of FeSe in non-magnetic,
checkerboard-, and striped-antiferromagnetic (AFM) spin configurations. First
principles techniques based on the pseudopotential density functional approach
and the local spin density approximation are utilized. Our findings show that
the experimentally observed shape of the Fermi surface is best described by the
checkerboard AFM spin pattern. To explore the underlying pairing mechanism,
we study the evolution of the non-magnetic to the AFM-ordered structures under
constrained magnetization. We estimate the strength of electronic coupling to
magnetic excitations involving an increase in local moment and, separately, a
partial moment transfer from one Fe atom to another. We also show that the
charge doping in the FeSe can lead to an increase in the density of states at the
Fermi level.

4.2.1 Motivation

Recent experimental advances in molecular beam epitaxy and scanning tunneling
microscopy have made it possible to study superconducting monolayer systems,
such as FeSe, which is the simplest iron-based superconductor. Studies of FeSe
monolayer systems on different substrates show significant sensitivity to interface
effects and give signs of the presence of superconductivity above 77 K [117, 140].
The latter fact is especially interesting because bulk samples only show super-
conducting transition temperatures Tc of about 8 K, or 37 K with the applica-
tion of pressure [48, 111]. When double-layer graphene is used as a substrate,
the superconducting gap seems to increase with the FeSe film thickness, and a
monolayer-thick film was found to be non-superconducting [117]. At the same
time, when FeSe films are studied on SrTiO3, scanning tunneling microscopy re-
veals the presence of a 20 meV gap for single unit cell thick films, whereas thicker
films show no presence of superconductivity [140].

Another difference between the bulk and monolayer FeSe is the Fermi surface
topology. ARPES measurements show distinctive shape where only pockets at
the Brillouin zone (BZ) boundaries are present, and no pockets are seen at the
center point Γ [141]. The same study shows the presence of large and nearly
isotropic superconducting gaps without nodes. Another very recent report by
the same research group [142] describes the presence of two phases with different
Fermi surface topology, where a superconducting phase can be obtained from
a non-superconducting one through annealing. Both reports give evidence for
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substantial interface-induced changes in electronic structure. Suppression of su-
perconductivity by twin boundaries interconnected with the Se-atom height with
respect to the Fe layer was also found [143].

Several theoretical efforts were made to study thin films of FeSe [144, 145]. First-
principles study of atomic and electronic structures of one- and two-monolayer
thick films on SrTiO3 found semiconductor-like behavior and collinear antifer-
romagnetic order to be present [144]. No strong hybridization of the electronic
states between the substrate and the film was found. Effects of the interaction
between the electronic system and soft phonons of SrTiO3 on FeSe/SrTiO3 inter-
face was studied using functional renormalization group calculations [145]. The
possibility for the soft phonons at the interface to significantly affect the pairing
mechanism and increase Tc with respect to the bulk sample was proposed.

In the current work we study the electronic structure of an isolated FeSe mono-
layer in the non-spin-resolved (NM) phase, and for the checkerboard (CH) and
the striped (STR) antiferromagnetic (AFM) spin configurations. We utilize a
first principle pseudopotential density functional theory and local spin density
approximation (LSDA) based approach. Our results show that the shape of the
Fermi surface for the doped CH AFM spin configuration is consistent with the
experimentally observed one. We study the evolution of the electronic structure
from the NM to the AFM cases under magnetization constraints on Fe-atoms.
Constrained magnetization-based estimates show that the transfer of magnetic
moment between Fe atoms induces a larger bandstructure shift than the case
when magnetic moments are increased. The strength of the magnon-induced en-
ergy shifts is up to one order of magnitude larger then a typical value for an
energy shift caused by phonons. We also study the effect of the introduction
of a charge background, and find that it can significantly change the density of
electronic states at the Fermi level.

4.2.2 Results

First, we consider the differences in electronic structure between the bulk and
monolayer cases. As can be seen from Fig. 4.12(a), the NM Fermi surface for
FeSe is very similar to that of the bulk crystal [127]. There are three hole pockets
at the zone center Γ and two electron pockets centered at the corners. Fig. 4.12(c)
shows the Fermi surface for the STR AFM case, that is similar to the bulk case
(for bulk FeSe electronic structure see [146], for example). There are two pockets
that form the Fermi surface: the hole-pocket is centered at Γ, and the electron-
pocket forms satellites located nearby Γ towards the Y direction. The BZ for the
STR case is a fraction of those for NM and CH, so we note that the pocket at Γ for
the STR configuration’s reduced BZ would produce pockets at both Γ and M for
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the other two configuration’s. The CH case does exhibit a different Fermi surface
in the monolayer configuration. Fig. 4.12(b) shows only one electronic pocket at
M and small hole-like pockets around Γ towards X. The bandstructure analysis
shows that this difference comes mainly from the change in the shape of a ”flat”
band formed close to the Fermi level EF , below it. In contrast to the bulk case,
this band shows a significant reduction in energy width. Analysis of the spatially
resolved integrated local density of states in the region of 200 meV below the
Fermi level clearly shows the concentration of charge on iron atoms due to the
formation of the above-mentioned ”flat” band.

Secondly, since the experimentally observed value of the Fe magnetic moment
for the iron-based superconductors is usually smaller then the first-principle
calculations-based theoretical predictions [16, 133], we introduce constraints on
the value of the atomic magnetization to effectively lower the resulting local mo-
ment. We then study how the electronic structure evolves from the non-magnetic
to spin-ordered case. Fig. 4.13 shows the resulting evolution for the CH AFM
case. It can be seen that when we introduce magnetization, the energy states
split around M , and as the magnetization increases, a ”flat” band starts form-
ing as a composition of the bands both initially present in non-magnetic states
around the Fermi level and the lower-lying ones. Similar behavior is seen at the Γ
point: a state initially at about -0.5 eV below the Fermi level rises to form the flat
band, and the hole-like bands lower their positions in energy until they fall below
EF . As a result, a sharp peak in the density of states is formed right below the
Fermi level. Overall, the bandstructure undergoes significant changes including
both band rearrangements and shifts. We point out here that a similar-looking
electronic structure transformation is observed in experiment [142] via anneal-
ing.

Since one of the possible effects of the interface could be a charge exchange,
it is interesting to analyze how the electronic structure is affected by doping.
To do this, we introduce a uniform jellium charge background. Fig. 4.14 shows
the results for the CH AFM case (with 2.28 µB and no constraints), where two
particularly interesting things can be noted: first, the width of the ”flat” band
formed below EF is very sensitive to positive doping, and hole-like states appear
at the Fermi level at various point of the BZ; secondly, an electron-like state falls
below the Fermi level at Γ point for negative doping, forming a second electron-
like pocket of the Fermi surface. The latter configuration has a Fermi surface
that is similar to what was obtained for a bulk intercalated FeSe-compound in
[147]. The density of states plots given in Fig. 4.14 exhibit a shape, that favors
an increase at EF for both positive and negative doping. In the former case the
increase is induced by moving the Fermi level into the flat-band-originated peak,
in the latter case the increase is due to the appearance of the above-mentioned
electron-like band at Γ. For the NM and the STR phases our calculations show
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Figure 4.12: (a)-(c) Fermi surfaces of an FeSe monolayer for the non-spin-
polarized, checkerboard AFM and striped AFM cases respectively. The non-zero
length in z-direction is due to the finite size of the unit cell. NOTE: the striped
spin-configuration has a different BZ (rotated by π/2 and scaled by

√
2 in kx and

ky-directions). The stripe direction is toward the given X point. (d) - the unit
cell with two Fe and two Se atoms, used in our calculations for non-magnetic and
checkerboard cases. (e) - the unit cell for the striped iron spin arrangements; the
neighboring atoms are also shown. The Fe atoms are red and grey for spin up and
down, and Se atoms are shown in green (above and below the Fe-plane).
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Figure 4.13: The evolution of the electronic bandstructure of an FeSe mono-
layer under constrained magnetization for the checkerboard antiferromagnetic spin-
polarized case. From top to bottom the resulting value of the magnetic moment
on iron atoms is changing from zero (NM - non-magnetic) to 2.28 µB. The units
on y-axis are electron-volts, and the Fermi level is at zero. To the right the cor-
responding projected densities of states (in states/eV) are plotted for all atoms
(black solid), Fe-3d-up states (red solid), Fe-3d-down states (green dashed) and Se
(blue dot-dashed).

78



4.2 Magnetic excitations in Monolayer FeSe

a rigid band shift of EF for the positive charge doping. The hole-like bands at Γ
exhibit higher sensitivity in their relative position with respect to the Fermi level,
shifting upward in energy. For the negative charge doping we see new electron-
like states appear at the Fermi level around Γ for -0.25e in the non-magnetic
case, and for -0.75e doping in the striped case. The density of states at the Fermi
level shows a relative increase for both doping directions in both NM and STR
phases.

4.2.3 Discussion

There appears to be a general belief that the non-spin-resolved structure studies
using the local-density approximation provide Fermi surface shapes that are in
agreement with experiment at least for 1111 and 122 compounds [16, 133]. Nev-
ertheless, some properties, such as equilibrium lattice constants, for example, are
better described within LSDA [128, 148]. On the basis of our findings we suggest
here that a specific AFM spin orientation might be induced in the FeSe layer
by the substrate. There have been previous studies that reported that SrTiO3

substrate can induce AFM order at the interface in thin films [149, 150]. The
existence of only one M -point centered Fermi surface pocket was addressed with
respect to the superconducting pairing in [151] and might also mean that the
currently widely accepted s± model [18, 129] needs to be adjusted. The presence
of the small pockets in our calculation for zero doping should not mislead the
reader, since the behavior of the electronic structure with doping (as seen in Fig.
4.13) shows that a small excess of negative charge shifts the Fermi level above
the hole-like band and the pockets will disappear from the Fermi surface. In Ref.
[142] it is explicitly mentioned that annealing does introduce charge doping. On
the basis of our model we argue that the doping is negative.

We compare our results to the results of Ref. [144], where similar first-principle
studies were made for a monolayer and bilayer FeSe films on SrTiO3 substrate.
First, since the presence of antiferromagnetic order and no strong hybridization
between substrate and film electronic states were found in [144], we focus our
studies on the FeSe monolayer without explicitly treating a substrate. Secondly,
in this work we plot the Fermi surfaces for the FeSe monolayer in different spin
configurations and compare them with the experimental findings of [141], which
has not been done before. Finally, we use the jellium approximation to study
substrate-induced doping in the current paper, which is a rather simple, but
nevertheless physically reasonable and well-established approximation. To sum it
up, we believe that the results of the current work and Ref. [144] should be treated
as complimentary to each other. We also have modeled the effects of strain on
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Figure 4.14: The electronic bandstructures of the FeSe monolayer with different
levels of charge doping in the checkerboard antiferromagnetic spin-polarized case
(with 2.28 µB and no constraints). From top to bottom the value of excessive
background charge is changing from -0.5e to +0.5e, as shown. The units on the y-
axis are electron-volts, and the Fermi level is at zero. To the right the corresponding
projected densities of states (in states/eV) are plotted for all atoms (black solid),
Fe-3d-up states (red solid), Fe-3d-down states (green dashed) and Se (blue dot-
dashed). Red-colored (brighter-colored) bands are the ones crossing the Fermi
level.
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4.2 Magnetic excitations in Monolayer FeSe

the electronic structure of the monolayer by varying the lattice constant within
5% from the equilibrium values and did not find any significant differences.

To explore the possible pairing mechanisms, we have studied the bandstructure
evolution with magnetization constraints, and analyze the bandshifts introduced
by particular magnetic excitations. This approach is analogous to a frozen phonon
approach to evaluate electron-phonon coupling. For example, from Fig. 4.13 we
extract the information for the relative position of the bottom of the electron-like
band at M with respect to EF as a function of the Fe magnetic moment. In the
unfolded non-magnetic BZ of iron lattice only (similar to used in [151]) the intro-
duction of the CH spin orientation corresponds to the magnon q-vector of (π,π).
Similarly for the evolution of the NM to the STR configuration we analyze the
relative position of the hole-like band maxima at Γ. This excitation corresponds
to a (π, 0) magnon in the unfolded BZ. Both (π,π) and (π, 0) magnons involve an
increase of local Fe moments in a corresponding spin arrangements with respect to
the non-magnetic configuration. We also apply a small-magnitude magnetization
shift from (µ0, −µ0) to (µ0 + δµ, −µ0 + δµ), corresponding to an effective trans-
fer of local moment between the Fe atoms. Our analysis shows that the energy
shifts for all three cases do not strongly depend on the value of the iron-magnetic
moment. The relative strengths of the shifts are estimated as follows:

(
∂EM
∂µ

)(π,π) : (
∂EΓ

∂µ
)(π,0) : (

∂E

∂µ
)(trans) = 1 : 1.5 : 6 (4.3)

In addition, we analyze the (∂µ/∂a) derivative, where a is the in-plane lattice
constant, to calculate (∂E/∂a)mag = (∂E/∂µ)(∂µ/∂a). To accomplish this we
obtain the relaxed structures for each magnetization value considered. The esti-
mates give (∂E/∂V )(π,π) ≈ 1 eV/Å, which is of the same order as a characteristic

value for a frozen phonon, if we consider (∂E)ph ≈ 15 meV, a ≈ 3.75Å, which
are typical for FeSe, and a (∂a/a)ph ≈ 0.005. So we can conclude that the local
moment transfer-involving magnetic excitation are coupled to electronic states
stronger than the excitations that involve magnetization increase only. The rel-
ative coupling value for the latter is of the same order as for the phonons.

As seen in the current work, the increase in the superconducting gap value and
Tc for the monolayer FeSe and intercalated FeSe compounds, for example, may
originate from the charge-transfer-induced increase in the density of states at
the Fermi level for the FeSe-layer, and the charge transfer itself can originate
from the interaction with the SrTiO3 substrate, or from chemical doping in the
case of alkali doped FeSe materials. Such an increase would mean that there
are more electronic states that can take part in the scattering process forming
Cooper pairs, thus increasing the gap between the superconducting and normal
states. For the checkerboard AFM configuration of FeSe monolayer (and for
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4.2 Magnetic excitations in Monolayer FeSe

the other two configurations as well) a positive charge doping produces a large
increase in the density of states, but also introduces hole pockets to the Fermi
surface, which are not seen experimentally. Negative doping induces less change
in the density of states (this is true for the striped AFM state as well), but
seems to be more consistent with the shape of the Fermi surface seen by ARPES
measurements. Controlling the charge carriers density in thin films by gating has
long been an actively researched field for graphene. The results here suggest that
similar approaches can be beneficial for studying superconductivity in FeSe and
possibly in other iron-based superconductors. Our results also suggest that the
superconducting gap in an FeSe monolayer can be enhanced with gating.

4.2.4 Summary

In conclusion, we have studied the electronic properties of an FeSe monolayer
in different spin configurations. Our results show that the checkerboard antifer-
romagnetic spin pattern yields a Fermi surface that resembles the experimental
results for FeSe on STiO3. This suggests that a similar antiferromagnetic spin
pattern is induced in the monolayer under experimental conditions. A study of
the evolution of the non-magnetic electronic structure into the checkerboard and
the striped antiferromagnetic configurations under constrained magnetization re-
veals that the magnetic excitations involving local moment transfer are coupled
to electronic states stronger then the ones involving an equal change in magne-
tization. By simulating the substrate-induced interface effects we show that the
presence of a uniform positive background charge in the FeSe-layer can lead to
an increase in the density of states at the Fermi level. Our findings propose that
gated devices similar to the ones used now for graphene may be able to reveal
new interesting results in FeSe and other two-dimensional superconductors.
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4.3 Spin-fluctuations-induced electron-electron interaction in FeSe

4.3 Spin-fluctuations-induced electron-electron

interaction in FeSe

We analyze the spin-fluctuations-induced interaction in FeSe using a first-principles
approach based on pseudopotential density functional theory and local density
approximation. We find the gross isotropic average of the interaction through-
out the Fermi surface to increase when selenium atom height is decreased. We
also find the anisotropic interaction to have structure consistent with the s±
symmetry.

4.3.1 Motivation

There exist many attempts to understand unconventional high-temperature su-
perconductivity on the basis of spin fluctuations [152–155]. Cuprates [152–154]
and recently iron pnictide and chalcogenide materials [17, 156, 157] can be listed
among the study cases. The effect of spin fluctuations on electronic states is
often calculated utilizing model Hamiltonian approach. Pioneering works were
based on the homogeneous electron gas and tight-binding approximation [158–
160]. Recent studies, aimed to investigate superconductivity in the cuprates and
pnictides, used experimental neutron scattering and nuclear magnetic resonance
data to parametrize the spin susceptibility [152, 154, 161]. Alternatively, other
works combined first-principles techniques with fitting the interaction parameters
to reproduce experimental findings [156, 157].

The results of model Hamiltonian-based approaches further justified the need for
a fully first-principles approach. Several attempts to implement one were made.
Spin susceptibility and the electron self energy were evaluated on the basis of
the density-functional theory (DFT) for palladium and vanadium [162, 163]. The
T-matrix approach was employed to calculate satellites in the photoemission spec-
trum and quasiparticle lifetimes in nickel and other metals [164–166]. Recently,
the interacting spin susceptibility was calculated for iron selenide for various Se
height values [167]. Another study discussed Fermi surface nesting and the static
susceptibility of FeSe under pressure and found indirect evidence for strong cou-
pling [168].

In this work, we analyze the interaction between the electronic states arising from
spin fluctuations solely on the basis of the pseudopotential density functional
theory. We apply our approach to study bulk FeSe. An isotropic average of
the interaction for the states on the Fermi surface is found to be sensitive to
the selenium atom height inside the unit cell. About a two-fold increase in the
isotropic average is seen when the selenium height is decreased to 40% of it’s
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4.3 Spin-fluctuations-induced electron-electron interaction in FeSe

experimental value. We associate the increase with the changes in the electronic
structure at the Fermi level. In addition, we confirm that the spatial shape of the
anisotropic interaction is consistent with the s± symmetry.

4.3.2 Results and Discussion

4.3.2.1 Electronic structure

The electronic bandstructures and the corresponding densities of states of FeSe
for three different values of selenium heights zSe are shown in Fig. 4.15. The
bandstructure undergoes significant changes when zSe is changed. For the exper-
imental value of 0.25 there are four bands crossing the Fermi level: two hole-like
bands at Γ and two electron-like bands at M . This is consistent with previous
calculations [127, 146]. For zSe=0.20 the hole-like Fermi surface shrinks in size
and one of the hole bands falls below the Fermi level, and the effective masses
of the electron bands decreases. For zSe=0.15 the bandstructure looks rather
different with both electron- and hole-like states at the center of the Brillouin
zone.

The total density of states increases with the application of pressure (decrease in
zSe from 0.25 to 0.20) as the top of the hole-like band crosses the Fermi level EF .
A further decrease of zSe changes the value of the density of states at EF to be
slightly lower (see Table 4.2).

4.3.2.2 Spin susceptibility

The non-interacting spin susceptibility plots are presented in Fig. 4.16. For
zSe=0.25 there are peaks at M (0.5 0.5 0.0) and at X (0.5 0.0 0.0), which is
consistent with the previous findings [167, 168]. When zSe is decreased, spectral
weight at the zone center around Γ starts to increase as the hole-like band crosses
the Fermi level for zSe=0.2. This leads to an overall increase in χ0 everywhere in
the zone. A further decrease in zSe leads to a rearrangement of spectral weight
so that χ0 peaks at Γ and the [110] direction is amplified. This change reflects
the fact that a state with electron-like dispersion is at EF for zSe=0.15.

4.3.2.3 Isotropic average of the scattering matrix element

An isotropic average of the matrix element for scattering from Eq. 2.35 over
the Fermi surface V (q) = 1/Nk

∑
q V (k,k + q) is shown in the right panel of

Fig. 4.16. For zSe=0.25, V (q) peaks for |q| ≈ 0.25. The spectral weight around
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Figure 4.15: Electronic bandstructures of FeSe for different values of Se atom
height zSe: 0.25, 0.20 and 0.15 as measured in units of the lattice parameter c. On
the right panel the corresponding total densities of states are plotted.
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Figure 4.16: The non-interacting spin susceptibility χ0 (on the left) and
the isotropic average of the spin-fluctuations induced interaction V (q) =
1/Nk

∑
q V (k,k + q) for qz=0. Results for three different values of selenium heights

zSe=0.25, 0.20 and 0.15 are given. The surfaces are colored such that red areas
correspond to larger values and blue - to smaller values. Brillouin zone center Γ is
at (0,0). qx and qy are given in units of 2π/a. The units on z-axis are arbitrary.
High symmetry points M and X are at (0.5 0.5) and (0.5 0.0) respectively (and the
points related by symmetry).
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Table 4.2: Summary of the parameters calculated in this work. Shown below
are: the density of states at the Fermi level N(0) (in atomic units, per unit cell, per
spin), the spin-fluctuations-induced pairing interaction averaged over the Brillouin
zone V , and their product N(0)V .

zSe N(0) V N(0)V
(in units of c) (a.u.) (arb. units) (arb. units)

0.150 0.175 1.02 0.18
0.200 0.194 0.79 0.15
0.250 0.138 0.50 0.07

q = 0 is relatively small. Under pressure (zSe=0.20) spectral weight for zero q
increases and a peak at Γ is formed. It is natural to associate this increase, again,
with the holelike band crossing the Fermi level. The shape of V (q) becomes more
anisotropic for the smallest selenuim height (0.15); peaks are formed at around
(0.4 0.0 0.0) and (0.5 0.1 0.0) and at the points related by crystal symmetry.
Some increase at the zone center is also seen.

4.3.2.4 Interaction strength

Based on the above results we analyze how the isotropic average of the electronic
interaction via spin-fluctuations changes with zSe. For this we track changes in
N(0)V - the product of the density of states at the Fermi level and the isotropic
average of V (q). Results can be seen in Table 4.2. The density of states at EF
has maximum for zSe=0.20, and V monotonically grows as the selenium height
is decreased. The product of the two experience a 2.5 times increase when zSe is
varied from 0.25 to 0.15.

4.3.2.5 Anisotropic interaction

Finally we present the anisotropic interaction V (k0,k
′) for k0=(0.4 0.4 0.0) and

zSe=0.25 in Fig. 4.17. It is clearly seen that the matrix elements for scattering
changes sign depending of whether the scattering occurs within the electron-like
band or from electron-like to hole-like band. This is consistent with the s±
model for pairing [17]. The absolute value of scattering matrix element V (k0,k

′)
is about two times larger for electron-electron scattering than for electron-hole
channel.
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4.3.3 Summary

In conclusion, we have calculated the fully anisotropic spin-fluctuations-induced
interaction for FeSe from first principles for different values of the atomic height
of Se within the calculation cell. We found that an isotropic average value of the
interaction is sensitive to selenium height. There is an increase of about two-fold
when selenium height is decreased from 0.25 to 0.15. We associate this increase
with the changes in the electronic structure at the Fermi level. We confirm that
the shape of the anisotropic interaction in reciprocal space is consistent with the
s± symmetry.
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Chapter 5

Complex oxides

Superconductivity in complex oxides is discussed next in this chapter. The su-
perconducting pairing in these materials is largely believed to be induced by
electron-phonon interactions. Nevertheless, at the time of this writing no the-
oretical description based on the electron-phonon mechanism is consistent with
all the experimental results. To further test this, we use precise first-principle
techniques as described in chapter 2 to calculate the electron-phonon coupling
in K-doped BaBiO3. We examine many of the possible structural distortions in
this compound and calculate the superconducting transition temperature. More
details are given is Ref. [169].
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5.1 K-intercalated BaBiO3

Despite considerable research efforts, a clear understanding of superconductivity
in Ba0.5K0.5BiO3 has been elusive. Recent studies showed that although electron-
correlation effects in this compound can significantly increase the electron-phonon
coupling, they do not reproduce the measured Eliashberg spectral function (α2F ).
We show that the oxygen octahedra tilts in Ba0.5K0.5BiO3 increase α2F in the
range of frequencies near 30 meV, even on the level of the generalized gradient
approximation. This increase in α2F changes its spectral shape and provides a
better agreement with experiment. This effect results in a 50-60% increase of the
average electron-phonon coupling strength λ. We use the Wannier interpolation
technique to determine the electron-phonon coupling with high precision.

5.1.1 Motivation

More than two decades ago it was found [170, 171] that the superconducting tran-
sition temperature Tc of Ba1−xKxBiO3 was close to 30 K (for x=0.4), one of the
highest among materials without copper or iron. Unlike copper and iron-based
superconductors, Ba1−xKxBiO3 is non-magnetic [171, 172], and its electrons are
likely paired by a more conventional electron-phonon coupling mechanism. A
large value of electron-phonon coupling parameter λ (about 1.0–1.2) was con-
firmed by the tunneling measurements [173, 174], as well as by specific heat
experiments [175]. It has been suggested that this large electron-phonon cou-
pling originates from the proximity of a charge-density-wave phase [176–181] in
the parent compound (BaBiO3) and the accompanied Bi–O breathing structural
distortion [182].

There are several theoretical attempt to study of the origin of superconductivity
in Ba1−xKxBiO3. An early study of the Bi–O breathing mode on the basis of the
frozen-phonon approximation estimated λ to be about 0.3 based on this mode
[183], much smaller than the experimental value (1.0–1.2). A more detailed cal-
culation, using the virtual crystal approximation (VCA) and including all phonon
branches sampled over the Brillouin zone, gave nearly the same value of λ = 0.3
[184]. Even the inclusion of anharmonic effects did not account for the discrep-
ancy between theory and experiment. The additional anharmonic contribution
[184] to λ is estimated to be 0.04. Earlier study [185] estimated anharmonic λ to
be equal to 0.2.

To account for the differences between experiment and theory, recent studies
[186, 187] emphasized shortcomings of the local-density approximation (LDA)
to describe electron correlation. A study based on the GW approximation and
hybrid functionals in Ref. [187] found the shift of the electronic bands due to a
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Bi–O breathing mode to be ∼
√

3 times larger than for LDA. The authors then
performed ad hoc rescaling of the Brillouin zone average LDA electron-phonon
coupling parameter, obtained in VCA case, (λ ≈ 0.3) by a factor of ∼3 which
yielded λ = 1.

Approaching from a different perspective, we found in the current work that a
careful treatment of structural distortions increases the spectral weight in the low-
and mid- frequency zone of the Eliashberg spectral function α2F . This increase
leads to a better correspondence between theory and experiment and does not
require an ad hoc rescaling. A sketch of how the hybrid functional approach from
Ref. [187] and the structural distortions considered in this work adjust the VCA
result for α2F is given in Figure 5.1. In this study we have not attempted to use
the hybrid functionals approach as it would make an extensive study of phonon
and electron-phonon coupling properties not feasible computationally within our
model which includes the structural distortions and doping explicitly.

We show here that the presence of oxygen octahedra tilts [188] in Ba0.5K0.5BiO3

increases λ from 0.3 to 0.45, even on the level of a conventional generalized gra-
dient approximation. We also explicitly include dopant atoms (K) in our calcula-
tion, without relying on the virtual crystal approximation. In addition, we use the
Wannier interpolation techniques [27] to integrate the electron-phonon coupling
on a very fine mesh in the Brillouin zone (mesh size is up to 30×30×30).

5.1.2 Results

5.1.2.1 Atomic structure

In this work we use the fully relaxed structure of Ba0.5K0.5BiO3 in the enlarged
primitive unit cell containing 20 atoms (

√
2×
√

2×2 reconstruction of the primitive
cubic 5 atom cell). In addition, we explicitly take into account dopant atoms (K)
and do not rely on the virtual crystal approximation. We consider all three
possible arrangements of the dopant atoms (K) in the 20 atom primitive unit cell
of Ba0.5K0.5BiO3. These configurations, labeled I, II, III, consist of alternating
planes of K and Ba atoms along [111], [110] and [001] directions respectively (see
Fig. 5.2). The three doping arrangements are within 50 meV (per formula unit)
from each other in energy with total energies decreasing from I to III.

For an easier comparison with previous theoretical work, we also treat Ba0.5K0.5BiO3

using the virtual crystal approximation (VCA), in a simple-cubic 5-atom unit cell.
In addition, we fully relax the structure of the parent compound (BaBiO3) in the
same enlarged unit cell (

√
2×
√

2× 2) as for the doped compound.
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Figure 5.1: A comparison of the available results for the Eliashberg spectral
function α2F (ω). Results for the virtual crystal approximation (VCA) and the
supercell approach of this work are given together with the experimental data.
The scale is the same for all panels on the plot. Hybrid functionals [187] give an
overall three-fold increase of the VCA spectral function (α2F (ω)). Our work shows
that the octahedral rotations, even on the GGA level, transfer spectral weight
towards lower frequencies (from ∼55 meV to ∼30 meV). The experimental results
are taken from Ref. [173].
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Figure 5.2: Three possible arrangements of the dopant atoms (K) in the 20 atom
primitive unit cell of Ba0.5K0.5BiO3. Atomic colors are: O - red, K - purple, Ba -
green. Bi atoms are inside blue octahedra. All projections are along 110-direction
(same as dominant octahedral tilt).

Table 5.1: Structural parameters of BaBiO3 and Ba0.5K0.5BiO3. For
Ba0.5K0.5BiO3 we show results for three different configurations of dopant (K)
atoms (configurations I, II, and III), as well as for the virtual crystal approximation
(VCA). Experimental data are shown in parentheses [172, 188]. This table shows
the equilibrium unit cell volume V (in Å3 per formula unit of Ba0.5K0.5BiO3), the
maximum and minimum Bi-O bond lengths (in Bohr) and octahedral tilt angles
along [110] and [001] directions (in deg).

Bi–O bond length Octahedral tilt
V Min. Max. [110] [001]

(Å3) (Bohr) (Bohr) (deg) (deg)
BaBiO3

87.02 4.19 4.39 13.4 6.5
(82.21) (4.01) (4.19) (12) (6)

Ba0.5K0.5BiO3

Config. I 82.74 4.16 4.18 10.7 1.4
Config. II 83.02 4.16 4.18 8.8 2.6
Config. III 83.09 4.11 4.23 9.0 1.1

VCA 84.65 4.15 4.15 - -
(77.41) (4.03) (4.03) (4.5)1
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The summary of the structural parameters for all systems studied in this work
is given in Table 5.1. In the case of the undoped parent compound (BaBiO3) we
find that the fully relaxed structure has two kinds of structural distortions. First,
there is a breathing distortion which reduces the Bi–O bond length for half of
Bi atoms (4.19 Bohr), and increases it for the other half (4.39 Bohr). Second,
there is a tilt of oxygen octahedra around both [110] and [001] directions (13.4◦

and 6.5◦). Our calculation is in a good agreement with the experimental data
for both Bi–O breathing and octahedral tilts. The unit cell volume is overesti-
mated by 6% as compared to the experiment, as is commonly found in the GGA
approximation.

The fully relaxed doped structure (Ba0.5K0.5BiO3) has an almost negligible amount
of Bi–O breathing distortion, unlike the parent compound. However, the doped
compound still has a significant amount of octahedral tilts, especially around
the [110] axis (between 8.8 and 10.8◦). The amount of the tilt along the [001]
axis is small: about 1-2◦. The bond lengths and tilts obtained for the undoped
compound are in a good agreement with the results of previous calculations
[176, 177, 186, 189] and experimental data. Our calculations show that the unit
cell volume of the doped structure is 5% lower than the volume of the parent
compound. This is, again, in good agreement with experimental observation (6%
lower).

5.1.2.2 Electronic structure

The electronic bandstructures and the densities of states (DOS) for all studied
configurations are given in Fig. 5.3. The parent compound (BaBiO3) is experi-
mentally found to be have a semiconducting gap of 0.2 eV [190]. However in our
GGA calculations, as well as in the previous theoretical studies [177, 183, 186]
the parent compound is slightly semi-metallic (conduction band minimum is 0.3
eV below the Fermi level). The absence of the semiconducting gap in GGA
calculations is not unusual for oxide systems. The width of the valence band
is 0.9 eV and it has mostly oxygen 2p character (see right panels in Fig. 5.3).
More extensive treatments of electronic correlation effects are able to reproduce
semiconducting behavior of the parent compound [186].

The K-doped compound (Ba0.5K0.5BiO3) is metallic in our calculation. The over-
all shape of the valence band is similar to that in the parent compound. However,
the Fermi level (relative to the valence band maximum) is downshifted by 0.5-
0.7 eV, and the width of the band is increased from 0.9 to 1.6 eV. Additionally,
there is a series of band splittings on the order of 0.1-0.2 eV at the A and X points
of the Brillouin zone. These splittings are present only for configurations II and
III of the dopant atoms, while they nearly disappear in the configuration I during
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Figure 5.3: The electron band structure for a parent compound (BaBiO3) and
a doped compound (Ba0.5K0.5BiO3) with different configurations of dopant atoms
(I, II, and III, see Sec. 5.1.2.1). For comparison we also show the band structure
using the virtual crystal approximation (VCA) in the folded Brillouin zone. Total
densities of states (black) and the oxygen 2p partial density of states (red) are
given in the small panel on the right.
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Figure 5.4: The phonon densities of states F (ω) (black, upper panel) and the
Eliashberg spectral functions α2F (ω) (blue and red, lower panel). The experimen-
tal phonon density of states is from Ref. [173] and corresponds to Ba1−xKxBiO3

with x=0.4. Two measured Eliashberg spectral functions (red and blue) are from
the same Ref. [173] and they correspond to x=0.375. We also show calculated F (ω)
and α2F (ω) from this work (x=0.5) for the configuration of dopant atoms I and
II (see Sec. 5.1.2.1), as well as the calculation using virtual crystal approximation.
The F (ω) is given in arbitrary units so that area under the curve is the same in
each panel.

the structural relaxation. The band character of the valence band in the doped
compound is oxygen-2p, same as in the case of the parent compound. The total
density of states at the Fermi level varies within 5-10 % between configurations
I, II, and III.

For comparison with earlier studies, we also calculate the bandstructure using
the VCA. Overall, we find that the band structure of Ba0.5K0.5BiO3 in the VCA
has a similar (within 10%) bandwidth and density of states at the Fermi level as
in our full 20-atom calculation. We find good agreement with previous similar
studies regarding the bandstructures and partial densities of states [171, 177, 183,
186].

5.1.2.3 Phonons

The experimental and theoretical phonon densities of states for the doped com-
pound are shown in the top four panels of Fig. 5.4. Our theoretical calculation
shows that the intensity of the phonon density of states is concentrated in a
broad low-energy region (10-40 meV) and in a narrower higher-energy region
(55-60 meV). Small differences with respect to experiment may arise from the
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Figure 5.5: The Fermi surface nesting function [9, 58] (green, above) and the
electron-phonon coupling λ ~Q (black, below) along a path in the phonon Brillouin

zone. We show results for Ba0.5K0.5BiO3 both in the configurations I and II (see
Sec. 5.1.2.1) and for the virtual crystal approximation (VCA). The nesting function
is given in arbitrary units. In the plot we impose λ ~Q,ν to be equal zero for small ~Q
and ων .

equilibrium volume overestimation of our GGA calculation. In our calculations,
the low-energy region consists of the movement of the heavier atoms (Ba, K, Bi)
with an admixture of oxygen displacement. The high-energy region is dominated
by the oxygen modes.

For a comparison with earlier studies, we also calculated the phonon density of
states using the virtual crystal approximation (VCA). We find a strong peak
in the phonon density of states near 10 meV that is not present in our fully
relaxed 20-atom unit cell calculation, or in experiment. In addition, the VCA
overestimates the gap in the phonon density of states (near 45 meV). The gap
separates the phonon modes involving the O-octahedra breathing at 55 meV from
the rest.

We also studied the phonons of the undoped parent compound (not shown in
Fig. 5.4) and find that it does not have a gap in the phonon density of states in
agreement with experimental finding [178, 179].

5.1.2.4 Electron-phonon coupling

The experimental and theoretical Eliashberg spectral functions α2F (Eq. 2.16) are
shown in the bottom panels of Fig. 5.4. The experimental spectral function has a
peak at ∼10–20, ∼30, and ∼55 meV. The 30 and 55 meV peaks are present in our
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fully-relaxed 20-atom cell calculation, but with different magnitudes. In addition,
α2F is nearly zero at frequencies below 20 meV, unlike in the experiment.

The virtual crystal approximation (VCA) calculation of α2F disagrees even more
with the experiment. The middle peak (at 30 meV) is lower than in our fully-
relaxed calculation while the high-energy peak (at 55 meV) is higher. The low-
ering of the spectral function near 30 meV is also responsible for a lower average
electron-phonon coupling λ (Eq. 2.14) in VCA.

Figure 5.5 shows the electron-phonon coupling λ ~Q =
∑

ν λ ~Q,ν and the nesting
function along a path inside the phonon Brillouin zone. The nesting function
serves as a measure of how many potential electron scattering states are present
at a particular wavevector ~Q [58],

ξ ~Q =
1

Nk

∑
~k

δ(ε~k)δ(ε~k+ ~Q), (5.1)

Where Nk is the total number of ~k-vectors included in the sum and δ(ε~k) is the
Dirac delta-function.

In all of our calculations, the nesting function is nearly proportional to the
electron-phonon coupling λ ~Q. Therefore, the strength of the electron-phonon
interaction varies slowly throughout the phonon Brillouin zone.

5.1.2.5 Superconducting parameters

Table 5.2 gives the parameters used in our estimate of the superconducting tran-
sition temperature Tc. Shown are the square (

√
< ω2 >) and the logarithmic

average (ωlog) frequency moments of the Eliashberg spectral function, and the
average electron-phonon coupling strength λ. We estimate the superconducting
transition temperature using the McMillan formula [26] (Eq. 1.3). In the table
we show the estimated Tc using a Coulomb parameter µ∗=0.0 and 0.1.

Using a fully relaxed 20-atom-cell we obtain λ=0.45 in configuration I and λ=0.48
in configuration II. These values produce Tc estimates of 4.2 and 3.2 K for µ∗ =
0.1 (14 and 12 K for µ∗ = 0). For the 20-atom case the logarithmic average
frequency is 384 K in configuration I and 393 K in configuration II.

In the virtual crystal approximation we obtain λ = 0.30. This leads to a Tc of
only 0.5 K for µ∗ = 0.1 (and 6.5 K for µ∗ = 0.0). The value of the logarithmic
average frequency in the VCA is 575 K.

99



5.1 K-intercalated BaBiO3

Table 5.2: Theoretical estimate of the superconducting transition temperature Tc
obtained using the McMillan formula [26] (Eq. 1.3) with a Coulomb parameter µ∗

given. We also show the square and logarithmic average frequencies [9] (
√
< ω2 >

and ωlog), average electron-phonon coupling strength λ. The results for the doped
configuration III (not shown here) were obtained only on a coarse grid 4×4×4 and
are within 3-5% of the results for a configuration I and II.

√
< ω2 > ωlog λ Tc (K)
(K) (K) µ∗=0.1 µ∗=0.0

Ba0.5K0.5BiO3

Config. I 480 393 0.48 4.2 14.0
Config. II 479 384 0.45 3.2 12.0

VCA 575 522 0.30 0.5 6.5

5.1.3 Discussion

The most striking disagreement between the theoretical and experimental Eliash-
berg spectral function α2F is coming from the low frequency region between
10 and 40 meV (see Fig 5.4). The phonon spectrum in this region consists of
movement of heavier atoms (Ba, Bi, K) with some admixture of the oxygen
movement. The higher region of frequencies (above 40 meV) consists mostly of
oxygen-breathing modes, and computed α2F in that region is larger than in the
experiment.

The only first-principle theoretical study with a λ and Tc close to the experimental
values, is the hybrid-functional calculation from Ref. [187]. However, this agree-
ment with experiment is achieved by an ad hoc rescaling of the electron-phonon
coupling of the high-frequency (55 meV) oxygen-breathing phonon. Therefore
this increase is in an opposite direction to what is required to have α2F in better
agreement with experiment. What is needed is that low-freqency (10-40 meV)
α2F increases, and high-frequency α2F decreases.

Our work shows that the proper treatment of the atomic structure, especially
the oxygen octahedra tilts can increase the electron-phonon coupling parameter
λ by 50-60%. In addition, this increase comes mostly from an enhancement of
the spectral weight for α2F in the low frequency regime near 30 meV. Therefore,
we propose that a more elaborate electron-correlation study (such as hybrid-
functional from Ref. 17 or GW method) together with the proper treatment of
the atomic structure may give α2F in a better agreement with experiment. The
combined effect of including electron-correlation and a complete treatment of the
atomic structure need not be simply additive. We also speculate that disorder,
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present in the spatial arrangement of K atoms, might further increase α2F in the
10-40 meV range.

5.1.4 Summary

We studied the electronic, vibrational, and electron-phonon properties of the
Ba0.5K0.5BiO3 superconductor. Unlike the previous studies, we perform calcula-
tions in the fully-relaxed 20-atom unit cell. We find that the presence of oxy-
gen octahedra tilts increases the average electron-phonon coupling λ by 50-60%
(from 0.3 to 0.48) as compared to the more conventionally used virtual crystal
approximation (VCA) without tilts. This increase in λ originates from enhanced
electron-phonon coupling at intermediate phonon frequencies (near 30 meV), but
it is still not large enough to explain the experimentally obtained superconduct-
ing transition temperature. We suggest that the agreement may be improved
further by an electron-correlation study going beyond the GGA (as in Ref. [187])
in combination with the inclusion of the oxygen octahedra tilts.
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Chapter 6

Concluding remarks

Previous chapters of this manuscript came as a result of author’s exciting journey
through theoretical and computational studies of condensed matter. This journey
allowed me to accumulate certain knowledge and hands-on experience that cannot
be classified within only one, but rather includes partly all of of the following
fields: physics, materials science, chemistry and computer science. The diversity
of the materials studied in this work also shows how powerful and universal the
first-principles techniques are. It this last chapter I (T.B.) would like to take
an opportunity to share a personal view on the challenges that researchers are
facing.
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6.1 Current limitations and strong points

Current limitations of the first principles studies of superconductivity can be
classified into two main categories: predictive power of the existing theoretical
frameworks and the computational complexity of obtaining high precision re-
sults.

Both these aspects are heavily entangled. More predictive power often requires
higher computational complexity. As an example, one can think about the GW
method [32, 34] or the dynamical meanfield theory (DMFT) [191]. Both allow
for a better treatment of electronic correlations (see eq. 2.2) than conventional
DFT. At the same time, both GW and DMFT add another layer of computational
complexity (since they use the DFT Kohn-Sham electronic states as input). As
a rule of thumb: conventional DFT calculations for the same system are about
one order of magnitude less expensive that both GW calculations of quasipar-
ticle band structure or linear response calculations of the phonon spectra. It
becomes apparent then why combining GW and phonon dispersions calculations,
for example, is a challenging task [192].

6.1.1 Conventional/Class-I superconductors

In silico implementations of the Eliashberg theory give an example of a strong
point of the first principles approaches. Superconductivity in MgB2 [193, 194] was
explained soon after it’s discovery through computational application of Eliash-
berg formalism. These advances allow researchers to suggest new superconducting
materials solely on the basis of the computational findings [100].

The complexity of the computational implementation, on the other hand, serves
as a limitation for Eliashberg-based approaches. At this point in time, it prevents
direct studies of complex systems with large crystal unit cells, as of now.

6.1.2 Unconventional/Class-II superconductors

Class-II materials are generally hard to study computationally because of their
complex chemical composition that in many cases involves dopants and crystal
disorder. In addition, electronic correlations beyond conventional DFT in class-
II superconductors tend to be very important for a precise description of the
electronic structure. Therefore an extensive treatment of electronic correlations
is often required. When there is no clear understanding of the mechanisms of
superconducting pairing, very little can be done about predicting new class-II
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superconductors computationally. Nevertheless, first-principles approaches are
proven very successful in providing explanation to many experimental findings
[129].
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6.2 Future prospects

Here is a summary of the author’s vision of the field in the next few years.

6.2.1 Computational condensed matter physics

As many more areas of human activity become increasingly computerized, it is
evident that more computational power is needed for solving problems in physics.
Therefore rapid development of new and efficient application of the computational
algorithms can be seen as a crucial factor in opening new frontiers of science.
Advances in theoretical approaches and new experimental results will continue
to generate demand for new computing capabilities. The constantly improving
computer technologies in turn make it possible to obtain new scientific results
by applying ”old” analytical theory using faster computers, or to a newly dis-
covered set of materials, or to materials that were previously too complicated to
study.

Several initiatives on accumulating and documenting results of computations in
condensed matter physics and materials science exist in the scientific community
at the time of this writing (see Ref. [195] for example). The data they accumulate
should make it possible for the future generations of researchers to coordinate
efforts in studying complex materials.

6.2.2 Superconductivity

Advances in the research on superconductivity were largely driven by the dis-
coveries of new materials with high transition temperature in the past: copper
oxides in 1986 and iron compounds in 2008 [11, 15]. It is very likely that this
trend will continue in the future, at least until a clear understanding of the un-
derlying theory will make unconventional high-Tc superconductivity more open
for theoretical predictions.

Extensive treatment of the electronic correlations and structural complexity will
be reachable computationally when adequate computing support becomes avail-
able. The author expects the accuracy and predictive power of first-principles
studies of superconductivity to improve significantly at that point, and then many
new exciting results will emerge.
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