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EPIGRAPH

If the axe is dull and he does not sharpen its edge,
then he must exert more strength.

Wisdom has the advantage of giving success.
— Ecclesiastes 10:10
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ABSTRACT OF THE DISSERTATION

Effective design and analysis of genetic association studies

by

Buhm Han
Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Professor Vineet Bafna, Chair

Genetic association studies are an effective means of discovering associations
between genetic variants and diseases. The procedure of association studies can
be summarized into four stages of design, sample collection, analysis, and follow-
up. There exist many statistical and computational challenges in the design and
analysis stages of these studies. These challenges are closely related to exploring the
correlation structure of genetic variations in the genome called linkage disequilibrium
(LD). In this dissertation, I address some of these challenges and propose solutions
which effectively leverage the information in LD patterns.

Multiple hypothesis testing correction is the major challenge in the analysis
stage. It is difficult to assess the statistical significance of associations in association
studies because a large number of correlated tests are simultaneously performed.
Previous approaches are either inaccurate or prohibitively inefficient. I propose a
novel multiple testing correction method which takes advantage of the local LD
patterns by using a sliding-window approach. My method is highly accurate and
efficient, effectively replacing the current approaches.
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Estimating statistical power of a study design is a necessary procedure in the
design stage to avoid under- or over-powered study. Current approaches are either
inefficient or too conservative because they ignore the correlation between tests. I
propose a method which takes into account the LD patterns to estimate statistical
power of a study design efficiently and accurately.

Tag SNP selection problem is a widely-known challenge in the design stage.
I propose a power-based tag SNP selection algorithm which greedily chooses SNPs
to maximize the study power. My method outperforms other correlation only-based
methods, because I take advantage of the relation between LD and power by ac-
counting for allele frequencies.

In the analysis stage, detecting spurious associations is a challenging problem.
I propose a novel method which detects spurious associations at the post-association
stage using the LD information. Moreover, I extend this framework to propose a new
study scheme which “rescues” associations at markers that are excluded by quality
controls. My method is applied to the WTCCC dataset to identify a novel association
which is recently replicated.
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Chapter 1

Introduction

Human genetic variations such as single nucleotide polymorphisms (SNP) are
considered to be the major sources of human phenotypic variations such as heights,
eye colors, and susceptibilities to genetic diseases [19, 61, 13]. For many diseases
having genetic risk factors, there have been a tremendous amount of efforts to iden-
tify the variations increasing the risk of being affected by the disease [74, 2]. A
successful identification will lead us to the knowledge of how the disease phenotypes
are developed and ultimately to the development of effective medicines.

The genetic association study is the the most recent and popular study frame-
work for finding these disease-causing variants. Compared to the previous linkage
study framework [61], genetic association studies have advantages such as the large
sample size allowing high statistical power and high resolution to locate the causal
variants. The significant price drop of high-throughput genotyping technology plat-
forms now allows more than hundreds of association studies to be performed a year
to report many candidate causal variants, which will be subsequently verified and
ultimately utilized to beneficial applications [74, 4, 72].

The advent of genetic association studies is closely related to the correlation
structure of genetic variations in human genome called linkage disequilibrium (LD)
[58]. Since genetic variations of ancestors are passed to descendants through a limited
number of recombination events, genetic markers which are proximal to each other
are often correlated in the population level (Figure 1.1). As a result, each of the
current human populations now shows a unique correlation structure of the genetic
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variations which can be estimated from the reference data such as the HapMap
[1, 35]. The idea behind genetic association studies is that we can virtually detect
causal variants at any place of the whole genome because uncollected variants are
correlated to the collected variants in the form of LD patterns.

I propose that many current computational and statistical challenges in ge-
netic association studies can be solved by fully utilizing this LD information. Among
the four major stages of association studies (Figure 1.2), which are design, sample
collection, analysis, and follow-up, I focus on the major problems in the design and
analysis stages. In particular, I address five different but related problems: the
multiple hypothesis testing correction, power estimation, tag SNP selection, spuri-
ous association detection, and rescuing associations discarded by quality controls. I
show that all these problems can be effectively solved by leveraging the full potential
of LD information.

One of the major challenges at the analysis stage is the multiple hypothesis
testing correction problem. The decision whether an observation is statistically sig-
nificant or not is made based on the probability that an equal or more significant
observation will be observed under the null hypothesis of no association [73] (called
p-value). For example, a p-value of 0.01 means that there is only 1% of chance to
observe this much significance under the null. However, assessing p-values is a hard
problem for association studies with a large number of correlated tests. If multi-
ple tests are simultaneously performed, the p-value obtained for each individual test
(called pointwise p-value) is no longer equal to the probability that we will observe
that much significance under the null (called corrected p-value) [67, 14]. Correcting
the pointwise p-values to the corrected p-values is the popular multiple testing prob-
lem. The traditional solutions for this problem are either too conservative (e.g. the
Bonferroni correction) or prohibitively time consuming (e.g. the permutation test)
[14].

In Chapter 2, I present a novel method called SLIDE (Sliding-window ap-
proach for Locally Inter-correlated markers with asymptotic Distribution Errors cor-
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rected), which efficiently and accurately solves the multiple hypothesis testing prob-
lem utilizing the LD information [30]. My method is based on two ideas. First, a
sliding-window approach can effectively take into account the correlation structure
between tests because LD patterns are localized, which considerably increases the
efficiency of the procedure. Second, for very significant p-values of genome-wide
association studies, the distribution of statistics are not well approximated by the
continuous asymptotic distributions such as the Gaussian or χ2 distribution. I tweak
the continuous asymptotic distributions by scaling them to fit to the true discontin-
uous distributions. This idea considerably increases the accuracy of the procedure.
As a result, my method is not only accurate but also very efficient taking only several
CPU hours for genome-wide datasets, thereby practically replacing the current gold
standard, permutation test.

Estimating power of a study design is an important challenge in the design
stage to avoid a under- or over-powered study. For example, if we know that the
design is under-powered, we can increase the sample size to meet the desired power.
De Bakker et al. [18] suggested a in silico sampling procedure for estimating power
based on the reference dataset [1, 35]. However, this procedure is prohibitively
inefficient if we want power estimates for a wide range of possible disease models.
On the other hand, the analytical power calculation ignoring the correlation structure
is efficient but too conservative, leading to an over-powered study [42, 37].

In Chapter 2, I introduce a novel power estimation method called SLIP
(Sliding-window approach with Locally Inter-correlated markers for Power estima-
tion) which takes advantage of the LD information [30]. SLIP is accurate because it
takes into account the local correlation structure using the sliding-window approach
similar to SLIDE. SLIP is very efficient that it can obtain accurate power estimates
of a study design for hundreds of different disease models in several CPU minutes.

Tag SNP selection is a widely-known challenge in the design stage. The
objective is to select a subset of the SNPs which will be genotyped so that the
statistical power can be maximized. Although the use of commercial genotyping
platforms using a fixed set of SNPs are prevalent, tag SNP selection is still of major
interest in the area of follow-up candidate gene studies and the design of genotyping
platforms. Previous approaches make use of the LD information [10, 60, 18], but does
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not fully utilize the information because they ignore the allele frequencies which also
affect the power.

In Chapter 3, I introduce a tag SNP selection method which greedily picks
SNPs to maximize the statistical power [29]. Since my method directly uses the
statistical power itself as a selection criterion, my method outperforms other corre-
lation only-based methods. My method can be thought of as utilizing the full LD
information because the information of statistical power is extracted from the LD by
taking into account the allele frequencies.

Spurious association detection is an important problem in the analysis stage.
Spurious associations can occur due to many causes such as genotyping errors. If we
fail to detect them, the overall false positive rate is no longer controlled as desired.
The current quality control (QC) approach removes potentially problematic markers
based on the genotype data to avoid spurious associations. However, spurious asso-
ciations can still occur because QC cannot detect a marker with a small number of
errors which can also cause a spurious association if the errors occur unequally be-
tween cases and controls. For this reason, quality refinement at the post-association
stage can provide an added protection against spurious associations. What is typi-
cally performed at the post-association stage is to detect spurious associations using
the LD information, based on the observation that the nearby markers in LD should
show comparably significant p-values if the association is caused by true genetic ef-
fect. However, this procedure is only performed manually and there is no existing
statistical framework for this procedure [74].

In Chapter 4, I propose a new approach which detects spurious associations
based on the LD information called RESQUE (REsults QUality Enhancement),
which is a formalization of what is typically performed in studies using intuition.
Given a statistically significant association, RESQUE computes likelihood of the
observations at nearby markers under the two models, say, true and spurious associ-
ation models. To the best of my knowledge, RESQUE is the first formal statistical
framework for quality refinement at the post-association stage. RESQUE is applied
to the Wellcome Trust Case Control Consortium (WTCCC) dataset [74] to find 6
putative spurious associations for type 1 diabetes in the MHC region of chromosome
6.
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Finally, I address a potential drawback of the current QC approach that QC
often can be too conservative. For example, markers with high missing rate (> 5%)
are typically removed by QC. However, if the missings occur independently of the
alleles or case/control status, this is just equivalent to having a smaller sample.
Therefore, removing these markers may take away the chance to detect true genetic
associations at these markers. Given that many genetic association studies find
only a handful of associations, the result of this conservative QC approach can be
devastating.

In Chapter 4, I propose a new study scheme which “rescues” the possible
true associations among the markers excluded by QC. The markers excluded by QC
are not removed but tested for associations, and “rescued” if the strong evidence
of true associations are detected based on the LD information. The evidence of
true associations can be found by extending the framework of RESQUE, because
RESQUE is based on the likelihood ratio between two models. To the best of my
knowledge, this is the first attempt to find meaningful results from the markers which
otherwise would be discarded. My method is applied to the WTCCC data and find
101 new associations among the markers excluded by the WTCCC QC. Interestingly,
one association for type 1 diabetes at PGM1 gene is recently found as significant by
a meta-analysis performed 2 years after the WTCCC analysis [4], showing that my
method can actually increase the study power.
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Figure 1.1: Example LD patterns of 10 SNPs. Red colors denote high correlations
(r2 close to 1) and white colors denote low correlations (r2 close to 0).
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1. Design

• Budget and study plan

• Sample design

• Choosing technologies

2. Data collection

• Sample collection

• Genotyping

• Quality controls

3. Analysis

• Statistical tests

• Significance assessment

• Multiple testing correction

4. follow-up

• Replication study

• Biological verification

• Applications

Figure 1.2: Four major stages of genetic association studies.



Chapter 2

Rapid and Accurate Multiple
Testing Correction and Power
Estimation for Millions of
Correlated Markers

2.1 Motivation

Association studies have emerged as a powerful tool for discovering the genetic
basis of human diseases [19, 61, 13]. With the development of sequencing and high-
throughput genotyping technologies, the number of single nucleotide polymorphism
(SNP) markers genotyped by current association studies is dramatically increasing.
The large number of correlated markers brings to the forefront the multiple hypoth-
esis testing correction problem and has motivated much recent activity to address it
[14, 22, 52].

There are two common versions of the multiple testing correction problem:
per-marker threshold estimation and p-value correction. In a typical study which
collects M markers, at each marker, we perform a statistical test and obtain a p-
value which we refer to as a pointwise p-value. We would like to know how significant
a pointwise p-value needs to be in order to obtain a significant result given that we
are observing M markers. The per-marker threshold can be defined as the threshold

8
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for pointwise p-values which controls the probability of one or more false positives
[52]. Similarly, we would like to quantitatively measure the significance of a pointwise
p-value taking into account that we are observing M markers. For each pointwise
p-value, the corrected p-value can be defined as the probability that, under the null
hypothesis, a p-value equal to or smaller than the pointwise p-value will be observed
at any marker [75]. For example, the Bonferroni correction corrects a pointwise p-
value p to pM , or estimates the per-marker threshold as α/M given a significance
threshold α.

While the Bonferroni (or Šidák) correction provides the simplest way to cor-
rect for multiple testing by assuming independence between markers, permutation
testing is widely considered the gold standard for accurately correcting for multi-
ple testing [75]. However, permutation is often computationally intensive for large
data sets [14]. For example, running 1 million permutations for a dataset of 500,000
SNPs over 5,000 samples takes up to 4 CPU years using widely used software such as
PLINK [59] (See Results). On the other hand, the Bonferroni (or Šidák) correction
ignores correlation between markers and leads to an overly conservative correction,
which is exacerbated as the marker density increases.

In this paper, we correct for multiple testing using the framework of the
multivariate normal distribution (MVN). For many widely used statistical tests, the
statistics over multiple markers asymptotically follow a MVN [67, 47]. Using this ob-
servation, several recent studies [67, 47, 14] proposed efficient alternative approaches
to the permutation test, and showed that they are as accurate as the permutation
test for small regions at the size of candidate gene studies (with < 1% average error
in corrected p-values) [14]. However, when applied to genome-wide datasets, they
are not as accurate. In our analysis of the Wellcome Trust Case Control Consor-
tium (WTCCC) data [74], these methods eliminate only two-thirds of the error in
the corrected p-values relative to the Bonferroni correction. There are two main
reasons why these methods do not eliminate all of the error. First, the previous
MVN-based methods can be extended to genome-wide analyses only by partitioning
the genome into small linkage disequilibrium (LD) blocks and assuming markers in
different blocks are independent, because they can handle only up to hundreds of
markers in practice [67, 14]. This block-wise strategy leads to conservative estimates
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Figure 2.1: Block-wise strategy and sliding-window approach. (A) Correlations
between 10 markers are depicted. (B) Correlations taken into account by a block-
wise strategy with a block size of 5. The ignored correlations are shown as black.
(C) Correlations taken into account by a sliding-window approach with a window
size of 5. The ignored correlations are shown as black.

because inter-block correlations are ignored (Figure 2.1B). Second, these methods do
not account for the previously unrecognized phenomenon that the true null distribu-
tion of a test statistic often fails to follow the asymptotic distribution at the extreme
tails of the distribution, even with thousands of samples.

We propose a method for multiple testing correction called SLIDE (a Sliding-
window approach for Locally Inter-correlated markers with asymptotic Distribution
Errors corrected), which differs from previous methods in two aspects. First, SLIDE
uses a sliding-window approach instead of the block-wise strategy. SLIDE approx-
imates the correlation matrix as a band matrix (a matrix with non-zero elements
along the diagonal band), which can effectively characterize the overall correlation
structure between markers given a sufficiently large bandwidth. Then SLIDE uses a
sliding-window Monte-Carlo approach which samples a statistic at each marker by
conditioning on the statistics at previous markers within the window, accounting for
entire correlation in the band matrix (Figure 2.1C).

Second, SLIDE takes into account the phenomenon that the true null distri-
bution of a test statistic often fails to follow the asymptotic distribution at the tails of
the distribution. It is well known that if the sample size is small, the true distribution
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and the asymptotic distribution show a discrepancy [79, 77]. However, to the best of
our knowledge, the effect of this discrepancy in the context of association studies has
not been recognized, since thousands of samples are typically not considered a small
sample. We observe that this discrepancy often appears in genome-wide association
studies, even with thousands of samples, because of the extremely small genome-wide
per-marker threshold (or pointwise p-value). The error caused by this discrepancy is
more serious for datasets with a large number of rare variants, highlighting the im-
portance of this problem for association studies based on next-generation sequencing
technologies (See Materials and Methods). SLIDE corrects for this error by scaling
the asymptotic distribution to fit to the true distribution.

With these two advances, SLIDE is as accurate as the permutation test. In
our simulation using the WTCCC dataset [74], the error rate of SLIDE’s corrected p-
values is more than 20 times smaller than the error rate of previous MVN-based meth-
ods’ corrected p-values, and 80 times smaller than the error rate of the Bonferroni-
corrected p-values. Our simulation using the 2.7 million HapMap SNPs [1] shows
that SLIDE is accurate for higher-density marker datasets as well. In contrast, the
error rates of previous MVN-based methods increase with the marker density, since
the dataset will include more rare variants. Computationally, our simulation shows
that SLIDE is orders of magnitude faster than the permutation test and faster than
other competing methods.

The MVN framework for multiple testing correction is very general, allowing
it to be applied to many different contexts such as quantitative trait mapping or
multiple disease models [14]. We show that the MVN framework can also correct
for multiple testing for the weighted haplotype test [80, 53] and the test for imputed
genotypes based on the posterior probabilities [51].

In addition to multiple testing correction, we extend the MVN framework to
solve the problem of estimating the statistical power of an association study with cor-
related markers. There are two traditional approaches to this problem: a simulation
approach constructing case/control panels from the reference dataset [14, 47, 18, 51],
which is widely considered the standard but is computationally intensive; and the
best-tag Bonferroni method [37, 42, 29], which is an efficient approximation but is
often inaccurate.
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The power estimation problem can be solved within the MVN framework be-
cause the test statistic under the alternative hypothesis follows a MVN centered at
the non-centrality parameters (NCP). The vector of the NCPs turns out to be approx-
imately proportional to the vector of correlation coefficients (r) between the causal
SNP and the markers. This is a multi-marker generalization of the Pritchard and
Preworzki [58] single-marker derivation of the NCP proportional to r. Our method
SLIP (Sliding-window approach for Locally Inter-correlated markers for Power esti-
mation) efficiently estimates a study’s power using the MVN framework.

Seaman and Müller-Myhsok [67] and Lin [47] pioneered the use of the MVN
for multiple testing correction. Seaman and Müller-Myhsok described the direct
simulation approach (DSA) method. Conneely and Boehnke [14] increased its ef-
ficiency by adapting an available software package called mvtnorm [25, 26]. Both
studies primarily focused on datasets used in candidate gene studies and suggested
the block-wise strategy as a possible approach for genome-wide studies.

Another approach for multiple testing correction is to estimate the effective
number of tests from eigenvalues of the correlation matrix [54, 12, 46]. Recently,
Moskvina and Schmidt [52] and Pe’er et al. [57] showed that the effective number of
tests varies by the p-value levels, demonstrating that a method estimating a constant
effective number can be inaccurate. Moskvina and Schmidt [52] proposed a pairwise
correlation-based method called Keffective, which estimates the effective number tak-
ing into account the significance level. Keffective is a sliding-window approach similar
to SLIDE, but it differs because within each window it uses the pairwise correlation
to the most correlated marker, while SLIDE uses the conditional distribution given
all markers. Fitting the minimum p-value distribution by a beta distribution [21]
has been shown often to be inaccurate [52]. Kimmel and Shamir [41] developed an
importance sampling procedure called rapid association test (RAT). RAT is efficient
for correcting very significant p-values, but requires phased haplotype data.

Connecting the multiple testing correction and power estimation problems
leads to the insight that the per-marker threshold estimated from the reference
dataset for estimating power can be used as a precomputed approximation to the true
per-marker threshold for the collected samples. In simulations using the WTCCC
control data, we show that the per-marker threshold estimated from the HapMap
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CEU population data approximately controls the false positive rate.
Our methods SLIP and SLIDE require only summary statistics such as the

correlation between markers within the window size, allele frequencies, and the num-
ber of individuals. Therefore unlike the permutation test, our method can still be
applied even if the actual genotype data is not accessible. Our methods are available
at http://slide.cs.ucla.edu.

2.2 Materials and Methods

2.2.1 Multiple testing correction

Multivariate normal approximation

For many widely used statistical tests, the vector of statistics over multiple
markers asymptotically follows a MVN [47, 67]. The covariance matrix of the MVN
can be derived for many popular statistical tests such as Armitage’s trend test in the
context of the general score test [14, 67]. We perform this derivation at the haplotype
level using the properties of the hypergeometric distribution in the context of the
χ2 test in order to highlight the connection between the multiple testing correction
and the power estimation problems. In Text S1 of Han et al. [30], we also derive the
covariance for the weighted haplotype test [80, 53] and the test for imputed genotypes
[51, 64, 49]. All of the results presented here for balanced case/control studies can be
extended to unbalanced studies. We will interchangeably use the terms ‘covariance
matrix’ and ‘correlation matrix’, because the variances are 1.

Assume we permute N case haplotypes and N control haplotypes. Let pi be
the minor allele frequency (MAF) at marker mi estimated from the sample. Let
p̂+
i and p̂−i be the observed MAFs in the permuted case and control haplotypes.

Although pi itself is an observed value from the sample, we will consider it as a
constant because it is invariant over random permutations. The minor allele count
in the permuted case haplotypes, Np̂+

i , follows a hypergeometric distribution. If N
is large, the test statistic at mi

Si =
√

2N − 1
4

p̂+
i − p̂−i√
pi(1− pi)

∼ N (0, 1) .
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The squared statistic differs from the Pearson’s χ2 statistic by a constant 2N−1
2N .

Let Si and Sj be the statistics at marker mi and mj. Let pij, pIj, piJ , pIJ be
the sample frequencies of the four haplotypes with minor and major alleles at mi and
mj respectively. A random permutation is equivalent to selecting N case haplotypes
from 4 bins of different haplotypes. Thus, the haplotype count in the permuted case
haplotypes, (Np̂+

ij, Np̂
+
Ij, Np̂

+
iJ , Np̂

+
IJ), follows a multivariate hypergeometric distri-

bution. By the properties of the hypergeometric distribution,

Cov
(
p̂+
i , p̂

+
j

)
= Cov

(
p̂+
ij + p̂+

iJ , p̂
+
ij + p̂+

Ij

)
= 1

2N − 1

(
pij(1− pij)− piJpij − pijpIj − piJpIj

)
= 1

2N − 1(pij − pipj) (2.1)

Cov
(
p̂+
i − p̂−i , p̂+

j − p̂−j
)

= Cov
(
p̂+
i − (2pi − p̂+

i ), p̂+
j − (2pi − p̂+

j )
)

= 4Cov
(
p̂+
i , p̂

+
j

)
(2.2)

Cov (Si, Sj) =
pij − pipj√

pi(1− pi)pj(1− pj)
= rij (2.3)

where rij is the correlation coefficient between mi and mj measured in the sample.
Let Σ = {rij} be the M × M covariance matrix between M markers. By

the multivariate central limit theorem [73], if N is large, the vector of statistics
S = (S1, ..., SM) asymptotically follows a MVN with mean zero and variance Σ.
Given a pointwise p-value u, let R(u) be the M -dimensional rectangle with corners
Φ−1(u/2)1M and Φ−1(1−u/2)1M where Φ is the cumulative density function (c.d.f.)
of the standard normal distribution and 1M is the vector of M ones. The corrected
p-value u′ is approximated as the outside-rectangle probability,

u′ = 1− 1
(2π)M2 |Σ| 12

∫
R(u)

e−
1
2X
TΣ−1XdX , (2.4)

as shown in Figure 2.2A. Similarly, given a significance threshold α, the per-marker
threshold αm is approximated by searching for a pointwise p-value whose corrected
p-value is α.
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Figure 2.2: Probability density function of a bivariate MVN at two markers. The
area outside the rectangle is the critical region. (A) Under the null hypothesis, the
MVN is centered at zero. The outside-rectangle probability is the corrected p-value
(or the significance level). (B) Under the alternative hypothesis, the MVN is shifted
by the non-centrality parameter. The outside-rectangle probability is power.
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Discrepancy between asymptotic and true distributions

If the asymptotic MVN closely approximates the true distribution of the
statistic, then Formula (2.4) will provide an accurate multiple testing correction;
this has been shown to be true for small regions such as those tested in candidate
gene studies [14]. One may expect that the discrepancy between the asymptotic
and true distributions would be negligible in current association studies, given their
thousands of samples.

However, we observe that this discrepancy can appear in genome-wide as-
sociation studies, in spite of the large sample size, because of the extremely small
per-marker threshold (or pointwise p-value) caused by the large number of tests.
At its extreme tails, the asymptotic distribution is typically thicker than the true
distribution.

This phenomenon can be illustrated with a single-SNP experiment using the
χ2 test. For a threshold t, the asymptotically approximated p-value (asymptotic p-
value) is pasym = 2Φ(−

√
t). Assume 1,000 case and 1,000 control haplotypes. Given

a fixed number of minor alleles, we can list every possible 2 × 2 table. The true
p-value ptrue is the sum of the probabilities of the tables whose statistic is ≥ t. If
the asymptotic approximation is accurate, then pasym = ptrue. We compare these two
p-values for many different thresholds and plot the ratio in Figure 2.3. We repeat
the experiments for various MAFs and sample sizes.

Figure 2.3 shows that even with thousands of samples, at the genome-wide
significance level, the asymptotic p-value is highly inflated compared to the true p-
value. The inflation is more dramatic for SNPs with small MAFs. We observe the
similar phenomenon using genotypes and the trend test (data not shown).

One may argue that this phenomenon is not important because it mostly
occurs at rare SNPs (MAF ≤ 5%) where current studies already have low power to
detect associations. However, an incorrect approximation of the distributions at some
SNPs affects the corrected p-values of all SNPs. This is because the corrected p-value
depends on the distributions of the statistics at all of the SNPs, as it is defined as
the probability observing significant results at any marker. For example, suppose we
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Figure 2.3: Discrepancy between asymptotic p-value and true p-value in a single
SNP experiment. Given a χ2 threshold t, the asymptotic p-value is 2Φ(−

√
t). The

true p-value is obtained by listing all possible contingency tables. The number of
individuals (N) denotes the number of haplotypes, half control and half case.

approximate 10 independent normal distributions at 10 independent SNPs. Assume
that we correctly approximate 9 distributions, but for one distribution we think that
the tails are thicker than the true distribution by a factor of 100. For any given
pointwise p-value p, the true corrected p-value is 1 − (1 − p)10 ≈ 10p by the Šidák
correction. However, we will estimate the corrected p-value as 1−(1−p)9(1−100p) ≈
101p by integrating over the MVN. This shows that incorrectly approximating the
distributions at rare SNPs can adversely affect the corrected p-values of all SNPs,
including common SNPs.

One can avoid this type of error in corrected p-values by using a method
not dependent on the asymptotic approximation, such as the permutation test, or
by eliminating rare SNPs in the analysis. It may be sensible to remove rare SNPs
with a few or tens of minor allele counts, if the power is very low or if the SNPs
are error-prone in their calling. However, Figure 2.3 shows that the error caused by
using the asymptotic approximation happens even at SNPs with minor allele counts
in the hundreds. Therefore removing all of them will decrease our power to detect
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associations.

SLIDE

SLIDE corrects for multiple testing by using a sliding-window approach to
approximate the MVN and then scaling the MVN to approximate the true distribu-
tion of the statistic. There are two underlying intuitions. First, a sliding window
approach takes into account most of the correlations in the data due to the local
LD structure. Second, even though the asymptotic MVN shows a departure from
the true distribution at the tail, the scaled MVN will closely approximate the true
distribution because the covariance between the statistics is identical in both the true
distribution and the MVN. (The covariance derivation does not involve the central
limit theorem.)

Step 1 SLIDE first approximates the MVN by using a sliding-window
Monte-Carlo approach. GivenM markers, let (S1, · · · , SM) be the vector of statistics
which asymptotically follows a MVN under the null hypothesis. Let f(S1, S2, · · · , SM)
be the joint probability density function (p.d.f.) of the statistics. Our goal is to gen-
erate a large number of samples, (Ŝ1, Ŝ2, · · · , ŜM), to approximate the MVN. If M is
very large, the standard sampling approach using the Cholesky decomposition [27]
is impractical unless we split the region into small blocks.

Under the local LD assumption, the statistics at distant markers are un-
correlated. Thus, given a window size w, we can assume that Si is conditionally
independent of S1, S2, · · · , Si−w−1 given Si−w, Si−w+1, · · · , Si−1. Then by the chain
rule,

f(S1, S2, · · · , SM) = f(S1)f(S2|S1)f(S3|S1, S2) · · · f(SM |SM−w, · · · , SM−1) .

Thus, Ŝi can be sampled given Ŝi−w, · · · , Ŝi−1, based on the conditional distribution
f(Si|Si−w, · · · , Si−1). The conditional distributions are given by the standard formula
for the MVN. Thus we can efficiently generate a large number of samples. The
procedure is described in detail in Text S2 of Han et al. [30].

Step 2 We scale the approximated MVN to fit to the true distribution
of the statistic (Figure 2.4). The rationale for this step is that, if we only consider
the marginal distribution at each marker, it is possible to analytically compute the
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true distribution by listing all possible 2 × 2 or 2 × 3 contingency tables [76]. This
allows us to directly compare the asymptotic distribution and the true distribution,
and to compute how much we should scale the asymptotic distribution to fit to the
true distribution.

The level of discrepancy between the asymptotic and true distributions is
large at the tails of the distribution compared to the center. Thus, in order to scale
the asymptotic distribution to fit to the true distribution, we cannot multiply the
entire distribution by a single scaling factor, but must instead compute the scaling
factor for each different threshold.

Given a χ2 threshold t, we compute the scaling factor as follows. The asymp-
totic p-value is 2

(
1− Φ(

√
t)
)
. LetX be a random variable following the true discrete

distribution of the χ2 statistic. The exact true p-value is ptrue = Pr(X ≥ t). The
scaling factor is computed as

√
t/Φ−1(1− ptrue/2), because if we scale the standard

normal distribution by this factor, the asymptotic p-value for the scaled distribution
becomes exactly ptrue at the threshold t. In practice, we find that using the so-called
mid p-value pmid = Pr(X > t) + 1

2 Pr(X = t) [76] instead of ptrue provides a better
approximation to the true distribution.

Note that, for unbalanced case/control studies, the level of discrepancy is not
symmetric at the upper and lower tails of the normal distribution. Thus, we should
compute the scaling factor for each tail of the normal distribution separately.

Step 3 Given the scaled MVN, p-values are corrected by integrating over
the outside of the rectangle as in Formula (2.4).

2.2.2 Power estimation

Assumptions

A discussion of association study power depends on many arbitrary assump-
tions. Though our framework can be extended to other assumptions, in this paper,
we adopt those used in De Bakker et al. [18]: (1) The disease status is affected by a
single SNP. (2) The allele effect is multiplicative. (3) The relative risk is known. (4)
The phased reference dataset represents the population. (5) All marker SNPs are in
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Figure 2.4: SLIDE’s scaling procedure. The probability density function of the
asymptotic bivariate MVN is depicted as a grid. The probability mass function of
the true distribution is depicted as a histogram. (A) The asymptotic distribution
often shows a discrepancy from the true distribution. (The discrepancy is
exaggerated in this figure.) (B) After scaling down the asymptotic distribution,
the discrepancy is removed.
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the reference dataset. (6) All possible causal SNPs are in the reference dataset. (7)
Each possible causal SNP is equally likely to be causal.

For complex diseases, assumption (1) can still be applied if each causal SNP
marginally contributes to the risk. Assumptions (4) and (5) can lead to an overesti-
mation of power, especially if the markers are chosen using the reference dataset [6].
Instead of assumption (7), a non-uniform distribution can also be used [24].

Finally, we assume that the investigator has determined the number of indi-
viduals in the study and the significance threshold.

Multivariate normal approximation

We extend the MVN framework to the power estimation problem. Consider
a study design which defines markers and plans to collect N/2 case and N/2 control
diploid individuals. Let phi be the population MAF at marker mi estimated from the
reference dataset (‘h’ denoting the HapMap [1]). Let p+

i and p−i be the MAFs in the
case and control populations.

Single marker If marker mi is causal for a disease of prevalence F with
relative risk γ, under the multiplicative model,

p+
i = γphi /((γ − 1)phi + 1) and p−i = (phi − Fp+

i )/(1− F ) . (2.5)

The case/control study can be thought of as a procedure which draws N chro-
mosomes from the case population and N chromosomes from the control population.
Let p̂+

i and p̂−i be random variables denoting the observed MAFs in the collected
cases and controls. Let p̂i = (p̂+

i + p̂−i )/2 and pi = (p+
i + p−i )/2. Then, since each

of Np̂+
i and Np̂−i follows a binomial distribution, if N is large, the test statistic at

marker mi

Si = p̂+
i − p̂−i√

2/N
√
p̂i(1− p̂i)

∼ N (λi
√
N, 1) ,

where
λi
√
N = p+

i − p−i√
2pi(1− pi)

√
N

is the non-centrality parameter.
If the marker and the causal SNP are distinct (a condition called indirect

association), the NCP derivation changes. Suppose a SNP sc is causal but we collect
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marker mi. If we put an imaginary marker mc at SNP sc, we can compute the NCP
at marker mc (λc

√
N), and compute the correlation coefficient between mi and mc

from the reference dataset (rhic). Pritchard and Preworzki [58] show that the NCP
at marker i is approximately rhicλc

√
N .

Multiple markers We examine the covariance between the statistic Si
at marker mi and Sj at marker mj given that SNP sc is causal. Let phij, phIj, phiJ , phIJ
be the haplotype frequencies with minor and major alleles at mi and mj respectively,
in the overall population. Let p+

ij, p
+
Ij, p

+
iJ , p

+
IJ and p−ij, p−Ij, p−iJ , p−IJ be the frequencies

in the case and control populations.
Collecting cases (or controls) is equivalent to drawing N chromosomes from

four possible haplotypes. Thus, the haplotype count in cases,

(Np̂+
ij, Np̂

+
Ij, Np̂

+
iJ , Np̂

+
IJ) ,

follows a multinomial distribution. By the properties of the multinomial distribution,

Cov
(
p̂+
i , p̂

+
j

)
= Cov

(
p̂+
ij + p̂+

iJ , p̂
+
ij + p̂+

Ij

)
= 1
N

(
p+
ij(1− p+

ij)− p+
iJp

+
ij − p+

ijp
+
Ij − p+

iJp
+
Ij

)
= 1
N

(p+
ij − p+

i p
+
j )

Cov
(
p̂+
i − p̂−i , p̂+

j − p̂−j
)

= Cov
(
p̂+
i , p̂

+
j

)
+ Cov

(
p̂−i , p̂

−
j

)
= 1
N

(p+
ij − p+

i p
+
j ) + 1

N
(p−ij − p−i p−j )

Cov (Si, Sj) =
(p+
ij − p+

i p
+
j ) + (p−ij − p−i p−j )

2
√
pi(1− pi)pj(1− pj)

(2.6)

≈
phij − phi phj√

phi (1− phi )phj (1− phj )
= rhij , (2.7)

where rhij is the correlation coefficient between mi and mj estimated from the refer-
ence dataset.

In practice, approximation in Formula (2.7) usually leads to an accurate power
estimate. However, if the relative risk is very large, the Formula (2.6) can be com-
puted exactly and used as follows. By Formula (2.5), we can calculate p+

c and p−c ,
the MAFs of the causal SNP sc in the case and control populations. We can then
estimate pi|c or pi|C , the conditional probability that we will observe the minor allele
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at mi given we observe the minor or major allele at sc. Note that these conditional
probabilities are exactly, not approximately, invariant between cases and controls
(See Text S3 of Han et al. [30]). Therefore p+

i = pi|cp
+
c + pi|C(1 − p+

c ). We can
similarly estimate p−i and the haplotype frequencies (p+

ij and p−ij), which allows us to
compute Formula (2.6).

Let Σh = {Cov (Si, Sj)} be theM×M covariance matrix betweenM markers.
Let

Λc

√
N = (λ1, λ2, ..., λM)

√
N = λc

√
N
(
rhc1, r

h
c2, ..., r

h
cM

)
(2.8)

be the vector of NCPs induced by the causal SNP sc. By the multivariate central
limit theorem [73], if N is large, the vector of statistics (S1, ..., SM) asymptotically
follows a MVN with mean Λc

√
N and variance Σh.

Power depends on the per-marker threshold αhm. Given a significance thresh-
old α, αhm is set to a level which controls the outside-rectangle probability of the null
MVN at α such that

α = 1− 1
(2π)M2 |Σh| 12

∫
R(αhm)

e−
1
2X
T (Σh)−1XdX . (2.9)

Given αhm, the per-causal-SNP power with respect to a causal SNP sc is the
outside-rectangle probability of the alternative MVN,

Power(sc) = 1− 1
(2π)M2 |Σh| 12

∫
R(αhm)

e−
1
2 (X−Λc

√
N)T (Σh)−1(X−Λc

√
N)dX , (2.10)

as shown in Figure 2.2B. The average power is obtained by averaging per-causal-SNP
powers over all putative causal SNPs.

SLIP

Our method SLIP estimates the power of a study design using the MVN
framework. First, like SLIDE, SLIP estimates the per-marker threshold in Formula
(2.9) using a sliding window approach. Then SLIP samples causal SNPs, approx-
imates the alternative MVN to estimate the per-causal-SNP power, and averages
per-causal-SNP powers over sampled causal SNPs.

Since power is typically larger (e.g. 80%) than a p-value (e.g. .01), a small
error in the per-marker threshold barely affects the estimate. Thus, the error caused
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by using the asymptotic approximation is negligible. Also, given a causal SNP, we
can assume that nearby markers (e.g. those within ±1Mb) can capture most of
the statistical power due to local LD. Thus, we can set a window size and only use
the markers within that window to estimate the alternative MVN, which will be a
n-dimensional marginal MVN if we use n markers.

The computation becomes very efficient if we use approximation (2.7). Since
approximation (2.7) states that the covariance is the same for the null and alterna-
tive MVNs, we can re-use the null MVN constructed for estimating the per-marker
threshold, by shifting it by the NCP to get the alternative MVN. If we re-use the
random samples this way, the constructed random samples will be not completely
random, as they depend on each other. However, we observe that the inaccuracy
caused by this dependency is negligible if we generate a large number of samples for
the null MVN. If we re-use the samples, then with almost no additional computa-
tional cost, SLIP can generate power estimates for multiple relative risks or study
sample sizes, since these only change the NCP.

2.2.3 Multiple testing correction using reference dataset

Multiple testing correction is generally performed using the collected data and
not the reference data. Recall that the difference between the per-marker threshold
for multiple testing correction (αm) and the per-marker threshold for power estima-
tion (αhm) is that the former is estimated from the collected data, the latter from
the reference data. We suggest that multiple testing can be approximately corrected
using the reference data, by using αhm as a substitute of αm. The advantage is that we
can obtain an idea of the per-marker threshold even before the samples are collected.
In Results, we show the accuracy of this approximation using the HapMap data and
the WTCCC data.

2.2.4 Genotype data

We downloaded the HapMap genotype data (release 23a, NCBI build 36)
from the HapMap project web site [35, 1] and phased the data into haplotypes using
HAP [81], which can handle the trio information. We downloaded the case/control
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genotype data from the Wellcome Trust Case Control Consortium web site [74] and
phased it into haplotypes using Beagle [8].

2.2.5 Web Resources

The URL for methods presented herein is as follows:
http://slide.cs.ucla.edu

2.3 Results

2.3.1 Multiple testing correction

P-value correction in Chromosome 22 of WTCCC data

In order to compare how accurately and efficiently different methods correct
multiple testing, we simulate a study using the WTCCC data [74]. We use the chro-
mosome 22 data (5,563 SNPs) of the Type 2 diabetes (T2D) case/control study (4,862
individuals). Since not every method can be applied to unphased genotype data, we
use haplotype data using the allelic χ2 test and permutation by chromosomes. We
first remove any existing associations by randomly dividing the chromosomes into
half cases and half controls. Removing associations is necessary because to correct a
pointwise p-value, RAT currently requires an actual SNP with that pointwise p-value
to be implanted in the dataset as the most significant SNP.

First, we perform 10M permutations to correct ten different pointwise p-values
from 10−4 to 10−7, whose corrected p-values are from .04 to .0004. We will consider
the corrected p-values by the permutation test as the gold standard, and call them
permutation p-values. We will assume a method is accurate if its corrected p-values
are close to the permutation p-values.

We use SLIDE, DSA, mvtnorm, RAT, and Keffective to correct p-values.
DSA and mvtnorm are MVN-based methods using the block-wise strategy. We use
a constant block size (window size) of 100 markers for all methods. Since RAT
defines the window size in terms of physical distance, we use 600kb, the average
distance of 100 markers in the dataset. We use -X -e2 option for RAT for an
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exact computation of the importance sampling procedure as suggested by Kimmel
and Shamir [41]. For every method, we use a large number (>1M) of sampling
iterations, which allows 95% confidence interval within ±.01p for p = .04 and ±.1p
for p = .0004. Keffective corrects p-values by estimating the effective number of tests
for a significance threshold and dividing the pointwise p-values by that number. We
use α = .05 and window size of 100 for Keffective.

Figure 2.5 shows the ratios between the ten corrected p-values and the per-
mutation p-values. An accurate method will yield a ratio of 1 for all ten different
thresholds. The dashed lines denote the area where an accurate method’s estimate
will be found more than 95% of the time. As expected, the Bonferroni correction is
very conservative, overestimating the p-values by 64% on average.

DSA is conservative with an average error of 19%. This is equivalent to
reducing the error by only about two thirds relative to the Bonferroni correction. The
reasons for the errors include the block-wise strategy ignoring inter-block correlations,
and not correcting for the error caused by using the asymptotic approximation. In
addition to these errors, mvtnorm suffers from an anti-conservative bias which grows
as the p-value becomes more significant. This is because the p-value in each block
is too small for mvtnorm to accurately estimate. Our simulation shows that this
anti-conservative bias increases with the number of sampling iterations (data not
shown).

Keffective is more accurate and faster than DSA and mvtnorm. The average
error of Keffective is 10.6%. Note that Keffective is optimized to provide an effi-
cient approximation for the effective number of tests within ∼10% of error. Thus,
Keffective is achieving its goal.

Both RAT and SLIDE show accurate estimates with the same average error
of 0.8%. Thus, the error rate of SLIDE’s corrected p-values is more than 10 times
smaller than the error rate of Keffective’s corrected p-values, more than 20 times
smaller than the the error rate of DSA’s corrected p-values, and 80 times smaller
than the error rate of the Bonferroni-corrected p-values.

We now explore how each source of error in MVN-based methods – the block-
wise strategy and the use of the asymptotic approximation without correction –
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assuming 100K permutations. The dashed lines denote the interval where an accurate
methods’ estimate will be found more than 95% of the time.
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affects the error rate. We remove 1,048 rare SNPs (MAF < .05) and perform mul-
tiple testing correction with respect to the remaining 4,515 common SNPs. When
considering only common SNPs, the error caused by using the asymptotic approx-
imation will be much smaller (See Materials and Methods). Figure S1 of Han et
al. [30] shows that the average error of DSA is reduced from 19% to 3.5%, showing
that a considerable amount of the error is due to using the asymptotic approxi-
mation without correction. The error of Keffective is also reduced from 10.6% to
6.5%. The error of mvtnorm is increased from 9.4% to 12.9% because the conserva-
tive error caused by using the asymptotic approximation no longer compensates for
its anti-conservative bias. SLIDE and RAT are consistently accurate regardless of
the exclusion of rare SNPs. Although many methods look relatively accurate when
considering only common SNPs, they are inaccurate when considering all SNPs.

Table 2.1 shows the extrapolated running time of each method for correcting
p-values with 500K SNPs tested over 5,000 individuals. The running times of RAT,
DSA, and mvtnorm increases linearly with the number of p-values we correct, since
they are currently implemented to correct one p-value at a time (though this may
change in future versions). Since Keffective is not a sampling approach, its running
time is independent of the number of samples. Given a window size of 100, our time
estimate for Keffective (19 h) is similar to the estimate (∼20 h) in Moskvina and
Schmidt [52].

In many settings, SLIDE is 500 times faster than the permutation test and
considerably faster than the other methods. The running time of SLIDE, Keffective,
DSA, and mvtnorm is approximately independent of the study sample size, whereas
the time of the permutation test is linearly dependent on it. Thus, the efficiency
gain of these methods relative to the permutation test will increase as the study size
increases. We summarize the accuracy and efficiency of the tested methods in Figure
2.6.

Here we describe a few details of our running time measurements. We used
our own C implementation for the permutation test. However, we expect that the
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Figure 2.6: SLIDE’s accuracy and efficiency compared to other methods. We use the
WTCCC T2D case/control chromosome 22 data. The vertical axis is the average
error in corrected p-values relative to the Bonferroni correction. The horizontal axis
is the approximated time for correcting 10 genome-wide p-values for 500K SNPs
assuming 100K permutations.

measured time will be similar to that for commonly used software such as PLINK
[59], based on the claimed running time of PLINK on its website (1 CPU-day for 50k
permutations over 100K SNPs of 350 samples). Note that PLINK’s default “adaptive
permutation” is a single SNP permutation to estimate the pointwise p-value, thus its
max(T) permutation is required for multiple testing correction. Measuring the run-
ning time of mvtnorm has some subtleties since it has two parameters, the number of
samples (maxpts) and the absolute error (abseps). The procedure is terminated if
either the maximum number of samples is reached or the specified error is obtained.
Therefore, we set abseps to a very small level (10−20) so that the specified number
of samples will always be sampled. RAT also has some subtleties involving accuracy
and efficiency. If we drop the -X -e2 parameters for an approximated importance
sampling, RAT becomes much faster, but the resulting p-values are underestimated
by a factor of up to 5 (data not shown). We assumed a corrected p-value of 10−4 to
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calculate the number of iterations for RAT using the formula presented in Kimmel
and Shamir [41]. Since the formula is conservative, the running time of RAT may
be overestimated. The constant window size of 100 may be too large for Keffective,
since its purpose is to efficiently approximate the estimate. With a window size of
10, Keffective takes only 2 hours for 500K SNPs. However, if we reduce the window
size, the time for other methods including SLIDE will also be reduced.

Using the same WTCCC chromosome 22 dataset, we perform an additional
experiment for the unphased genotype data using the trend test, assuming unbal-
anced case/controls. We find SLIDE achieves similar accuracy (See Text S4 and
Figure S2 of Han et al. [30]).

Per-marker threshold estimation using all SNPs in HapMap

In this experiment, we assume that a single threshold is being estimated to
decide which findings to follow up, instead of correcting each pointwise p-value. We
estimate the per-marker threshold corresponding to a significance threshold of .05.
We use the 2.7 million polymorphic SNPs in the HapMap CEU data over the whole
genome, instead of a single chromosome.

We generate a simulated dataset using the phased haplotype data of 60
HapMap CEU parental individuals. Specifically, we create a new haplotype by ran-
domly shuffling the 120 chromosomes so that the average length of a haplotype
segment is approximately 1Mb. We mutate (flip) each SNP with probability 10−5.
We create 2,000 cases and 2,000 controls by randomly pairing 8,000 such haplotypes.
Although this model is arbitrary, it suffices to compare different methods. The re-
sults of the relative comparison between methods do not greatly vary using different
parameters, such as a different average haplotype segment length (data not shown).

We compare the permutation test, Keffective, and SLIDE. RAT is not efficient
for this setting because it is optimized for very significant p-values, much smaller than
.05. We expect that the results of DSA or mvtnorm will be similar to or worse than
those of Keffective, as in the previous experiment.

We perform 10K permutations for this experiment. We run SLIDE with
10K samplings and window size 100. We run Keffective with window sizes 100 and
10. Figure 2.7 shows the “effective number of tests” estimated by each method,
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which is simply the significance threshold (.05) divided by the estimated per-marker
threshold. The permutation test estimates the effective number of tests as 1,068,746
out of 2,721,223 tests. Thus, the Bonferroni correction is conservative by 155%. Note
that in the previous experiment with a less-dense SNP set, the Bonferroni correction
was conservative by 64%. The Bonferroni correction’s error will continue to increase
with the marker density.

The dashed lines denote the interval where an accurate methods’ estimate
will be found more than 95% of the time. SLIDE estimates the effective number as
1,038,888 (2.8% error), which is within the 95% interval. This small anti-conservative
error is only due to the stochastic error and not an inherent bias, since the result
becomes highly accurate as 1,068,445 (0.03% error) if we increase the number of
samples to 100K.

Keffective estimates the effective number as 1,409,811 (32% error) with win-
dow size 10 and as 1,252,986 (17% error) with window size 100. Unlike the previous
experiment, for this higher-density marker dataset, Keffective no longer keeps the
error within 10%. We do not expect that a larger window size will increase the ac-
curacy of Keffective, because the error does not seem to be due to the missing long
range correlations, since SLIDE is accurate with the same window size of 100.

The running time is 260 hours for permutation, 10 hours for SLIDE, 10 hours
for Keffective with window size 10, and 90 hours for Keffective with window size 100.

Window size

Since SLIDE takes into account only correlations within the window size, here
we investigate the effect of window size on performance. A reasonable choice for the
window size will be the number of markers whose average distance is the average or
maximum LD distance in the data. For our experiments, we use the WTCCC T2D
case/control chromosome 22 dataset. A large number (10M) of permutations allows
us to find that a pointwise p-value 1.53× 10−5 corresponds to the corrected p-value
.05. We correct this pointwise p-value using SLIDE with various window sizes, and
see if the corrected p-values are close to .05.

Figure 2.8 shows the ratio between the corrected p-value and the permutation
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p-value (.05) for various window sizes. Window size zero denotes the Bonferroni
correction. The estimate is within the 95% interval for window sizes greater than 20,
showing that this is the minimum choice of the window size for this dataset. In this
dataset, the average distance between 20, 50, and 100 markers are approximately
100Kb, 300Kb, and 600Kb.

Multiple testing correction using reference dataset

We now examine whether the per-marker threshold estimated from the refer-
ence dataset can approximate the true per-marker threshold for a study which may
have a different sample correlation structure from the reference dataset. The marker
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set we use is the SNPs in the Affymetrix 500K chip over the whole genome.
First, we apply SLIDE to the HapMap data using window size 100, to obtain

the per-marker threshold 2.19×10−7 corresponding to the significance threshold .05.
Then, we permute the WTCCC data to estimate the false positive rate given this
per-marker threshold. We use the WTCCC 1958 British birth cohort control data,
which consists of 1,504 individuals. We randomly permute the dataset 100K times.
We estimate the false positive rate, as the proportion of permutations showing sig-
nificance given the per-marker threshold, to be .0508. Thus, in this experiment, the
per-marker threshold estimated from the reference data controls the false positive
rate with only 1.6% relative error. This result shows that, even if the reference pop-
ulation and the target population are slightly different (one from the Utah, U.S.A.,
and the other from the Great Britain), the per-marker threshold estimated from the
reference data is a reasonable approximation.

2.3.2 Power estimation

We compare four different methods for estimating genome-wide power: stan-
dard simulation, null/alternative panel construction, best-tag Bonferroni, and SLIP.
We assume a multiplicative disease model with a relative risk of 1.2 and a disease
prevalence of .01, and a significance threshold of .05. We use the CEU population
data in the HapMap as the reference dataset. We use the genome-wide markers in
the Affymetrix 500K chip and assume a uniform distribution of causal SNPs over all
common SNPs (MAF ≥ .05) in the HapMap.

We first perform the standard simulation, which we will consider as the gold
standard. We construct a number of genome-wide ‘alternative’ panels from the
HapMap data by randomly assigning a causal SNP for each panel. We permute each
panel 1,000 times to estimate the panel-specific per-marker threshold. The power
is estimated as the proportion of panels showing significance given its per-marker
threshold. Conneely and Boehnke [14] used this procedure for power estimation.

Another panel construction-based approach is the null/alternative panel con-
struction method. Instead of permuting each of alternative panels, this method
constructs another set of ‘null’ panels under the null hypothesis. The null panel
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gives us a ‘global’ per-marker threshold that can be applied to all alternative panels.
Since this method is as accurate as the standard simulation but is more efficient, it
is widely used [18, 51, 29].

We apply SLIP and re-use the samples for the null MVN for estimating
the alternative MVNs. Lastly, we apply the analytical best-tag Bonferroni method
[37, 42, 29] which uses the Bonferroni correction for the per-marker threshold and
estimates power for each causal SNP by using the most correlated marker (best tag
SNP). This method can also be accelerated by sampling the causal SNPs and setting
a window size.

For the standard simulation, we use 10K alternative panels. For the null/
alternative panel construction method, we use 10K alternative panels and 10k null
panels. For SLIP, we use 10K sampling points. For the best-tag Bonferroni method,
we use 10K samples for causal SNPs. For SLIP, we use a window size of 100 markers.
For all other methods, we use a window size of 1Mb.

Figure 2.9 shows that both SLIP and the null/alternative panel construction
method are as accurate as the standard simulation. The best-tag Bonferroni method
is inaccurate, underestimating power by up to 5%.

Table 2.2 shows the running time of each method for estimating genome-wide
power. As shown, SLIP is very efficient. Since SLIP uses the correlation structure,
the running time is approximately independent of the study sample size, whereas the
running time of the standard simulation or the null/alternative panel construction
method is linearly dependent on the sample size.

2.4 Discussion

SLIDE and SLIP provide efficient and accurate multiple testing correction
and power estimation in the MVN framework. SLIDE shows a near identical ac-
curacy to the permutation test by using a sliding-window approach to account for
local correlations, and by correcting for the error caused by using the asymptotic
approximation. SLIDE can be applied to datasets of millions of markers with many
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Figure 2.9: Genome-wide power of the Affymetrix 500k chip estimated by different
methods. We use the HapMap CEU reference data. We assume a multiplicative
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of causal SNPs over common SNPs (MAF ≥ .05). We use the significance threshold
of .05.

rare SNPs, while other MVN-based methods become inaccurate as more rare SNPs
are included. To the best of our knowledge, SLIP is the first MVN-based power
estimation method.

Throughout this paper, we considered the classical multiple testing correction
controlling family-wise error rate (FWER) [75], the probability of observing one or
more false positives. SLIDE can be extended to control false discovery rate [5, 69] as
well, using a similar approach to Lin [47]. In Text S1 of Han et al. [30], we show that
the MVN framework can be extended to the weighted haplotype test [80, 53] and the
test for imputed genotypes [51]. SLIDE can be use for any multiple testing correction
problem with a local correlation structure, as long as the covariance between statistics
can be derived.
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We considered the permutation test as the gold standard for multiple test-
ing correction. The permutation test can be performed in two different ways: at
each permutation, we can either assess the maximum statistics among the markers
(max-T permutation), or assess the minimum pointwise p-value among the markers
by performing another permutation for each marker (min-P permutation) [75, 69].
We used the former approach because the latter approach is computationally very
intensive.

In Text S5 and Figure S3 of Han et al. [30], we describe some additional
insights obtained through the study. When marker frequencies do not follow the
Hardy-Weinberg proportions (HWP), the use of an allelic test (e.g. allelic χ2 test) for
unphased genotype data is not recommended due to the possible bias [63]. However,
widely used software [59] often allows the use of an allelic test for genotype data
under the reasoning that, as long as the permutation or an exact test is performed,
the pointwise p-value will be the same as if we use a genotypic test (e.g. Armitage’s
trend test). Theoretically, this is due to the fact that the allelic and genotypic
test statistics differ only by their variance [20]. However, for assessing corrected
p-values, the permutation test does not provide this kind of “protection”. Even
after a quality control process that excludes SNPs which significantly deviate from
the Hardy-Weinberg equilibrium (HWE), still many SNPs may not follow HWP.
Therefore, using an allelic test for genotype data for multiple testing correction can
result in inaccurate estimates.

Recently, a different view of multiple testing correction has been introduced
[57, 22], which suggest that we should correct for the uncollected or unknown markers
as well as the collected markers, in order to take into account additional testing
burdens such as the possible testings in a follow-up study. Pe’er et al. [57] estimates
the per-marker threshold by extrapolating from the resequenced ENCODE regions,
and Dudbridge et al. [22] estimates the per-marker threshold by subsampling the
SNPs at an increasing SNP density. Although we employed the classical point of
view that corrects for multiple testing only over observed SNPs, our method can also
be applied to this alternative view. Our method can be used to estimate the effective
number of tests for a representative resequenced region or for the set of subsampled
SNPs. Since the SNP density of genotyping technology is dramatically increasing,
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we assume that the number of unknown and uncollected SNPs will decrease, causing
the two different views to converge.

In our experiments, we used a constant block size for the block-wise strategy.
In practice, it will be more reasonable to split the region according to the LD blocks.
However, this is not always possible because LD blocks are often ambiguous and some
blocks can be larger than the maximum block size of the method. For example, if
we collect 10 million SNPs, a block size of 1,000 is required to cover 300kb LD.
However, the maximum block size of mvtnorm that allows an accurate estimate is
currently 300 [14], and DSA with window size 1,000 often requires a prohibitively
large memory in our simulations (data not shown). By contrast, SLIDE with window
size 1,000 for the WTCCC chromosome 22 data requires ∼150 Mb memory and thus
is feasible. Nevertheless, it should be noted that the block-wise strategy can always
be implemented to have the same block size as SLIDE.

Recently, a method called PRESTO [7] was introduced, which increases the
efficiency of the permutation test by applying several optimization techniques. Based
on the claimed running time, SLIDE is∼10 times faster than PRESTO, but PRESTO
has an advantage that it does not depend on the asymptotic approximation but
provides exactly the same result as the permutation test.

We considered the pairwise correlation between SNPs. There can also be so-
called higher-order correlations, such as the correlation between a haplotype and a
SNP. For example, even though three SNPs are pairwisely independent, the combi-
nation of the first two SNPs can be a perfect proxy to the third SNP. However, the
multivariate central limit theorem proves that the joint distribution of the test statis-
tics is fully characterized by the matrix of the pairwise correlations. Thus, the effect
of the other correlation terms on the joint distribution is asymptotically negligible.
Nevertheless, our method is not limited to the SNP test. If our method is applied
to the weighted haplotype test [80, 53] as shown in Text S1 of Han et al. [30], the
pairwise correlation in the correlation matrix can be interpreted as the higher-order
correlations between a haplotype and a SNP or between haplotypes.

In summary, SLIP and SLIDE are two useful methods for genome-wide as-
sociation studies which provide accurate power estimation at the design step and
accurate multiple testing correction at the analysis step. The software is available
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as a resource for the research community.

Chapter 2 was published in PLoS Genetics, 5(4):e1000456, 2009, Buhm Han,
Hyun Min Kang, and Eleazar Eskin. “Rapid and accurate multiple testing correction
and power estimation for millions of correlated markers”. The dissertation author
was the primary investigator and author of this paper.
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Chapter 3

Efficient Association Study Design
Via Power-Optimized Tag SNP
Selection

3.1 Motivation

Discovering statistical correlation between causal genetic variation and clin-
ical traits through association studies is an important method for identifying the
genetic basis of human disease [61, 2]. Typically, a genetic association study gathers
case/control individuals, collects genetic variation information such as genotypes at
single nucleotide polymorphisms (SNPs), and tests the significance of association for
each SNP using a statistical test such as a χ2 test. Since fully resequencing a cohort
is prohibitively costly, a set of representative SNPs (called tags or tag SNPs) are
chosen as proxies for nearby SNPs, utilizing the local correlation structure of SNPs
(or linkage disequilibrium) to find associations [58]. While many current associa-
tion studies are performed using commercially available high-throughput genotyping
products that define a set of tag SNPs, selection of these SNPs remains an important
problem for both custom follow-up studies as well as designing the high-throughput
genotyping products themselves [70, 71, 18, 15, 16, 28, 48, 55, 60, 62, 10].

In the context of association studies, maximizing statistical power is the most
relevant goal of tag SNP selection. Since the actual causal SNP is not known, the
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statistical power of an association study is defined as the average power over all
possible causal SNPs. Recent availability of reference data sets such as the HapMap
[32, 31, 1] allows us to empirically measure power of an association study design
[18, 56, 43]. A standard method for picking tags is greedily choosing the smallest
number of SNPs with a minimum cut-off of correlation (r2) between tag SNPs and
uncollected SNPs [18, 10, 31, 1]. However, choosing tag SNPs based on r2 alone does
not necessarily maximize power, because r2 does not take into account minor allele
frequency (MAF) which also influences power.

In this paper, we present a flexible study design framework that chooses tag
SNPs to maximize the statistical power of an association study.

The underlying intuition is that we quickly find the “key tag SNPs” that con-
tribute a considerable amount of power. The power a tag SNP contributes depends
on (1) the coverage of a tag SNP (the number of putative causal SNPs a tag SNP
can cover), (2) the correlation (the r2 between a tag SNP and each causal SNP it
covers), and (3) the MAF of each causal SNP. We observe that r2-based methods
do not consider (3) and maximize (1) by setting (2) to a fixed threshold. Instead,
we use a greedy procedure that evaluates each candidate tag SNP’s possible average
power increase, and selects the best SNP as a tag SNP at each step. By evaluating
the average power increase, we take into account all three aspects of a tag SNP. By
not fixing a minimum value of r2, we allow more flexibility in selecting a tag SNP of
maximum power. For example, if a tag SNP has a low r2 to causal SNPs but covers
many common SNPs (bad at (2) but good at (1) and (3)), we can select the SNP
based on the power increase unlike the r2-based methods.

Empirical simulations based on the HapMap ENCODE regions show that
our power-optimized method requires 21% fewer tag SNPs on average than widely
used r2-based methods, to achieve equivalent power. When applied to whole genome
association mapping, our power-optimized tag sets consistently outperform the r2-
based tag sets across all populations. We compare our designs to the commercial
products as well. Our 100k tag set provides equivalent power to the Affymetrix 500k
chip for European and Asian populations. In addition, our 300k tag set outperforms
the Illumina 550k chip across all three HapMap populations. We apply our method
to the custom follow-up study design problem where the goal is to select tag SNPs in
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addition to those already present on a commercial product to maximize the statistical
power within a region of interest. Our method provides up to twice the power increase
using the same number of additional tag SNPs compared to the widely used r2-based
methods.

Since study parameters such as relative risk are generally unknown, a possible
pitfall of using statistical power instead of a study-independent measure such as r2 is
“fitting” the design to an incorrect parameter. We show that when the parameters are
correct our method performs optimally, and when the parameters are incorrect our
method still outperforms or performs similarly to the widely used r2-based methods,
within a wide range of parameters.

During the course of design, our procedure requires us to evaluate the power of
candidate tag sets numerous times, thus the use of empirical simulation for measuring
power [18] is computationally impractical. We combine the use of an analytical
approximation for the power in our tag selection method with an efficient empirical
simulation that can accurately measure the power of a tag set. The efficiency of our
method allows us to design an association study in one ENCODE region in 3 seconds
and a genome wide study in 1.5 CPU hours. The empirical simulation for accurately
measuring power is based on a standard technique described in de Bakker et al.
[18]. To the best of our knowledge, no one has analyzed this standard simulation
procedure with respect to its accuracy. We improve the efficiency of this simulation
and scale it to the whole genome using a sampling procedure, for which we derive
the corresponding confidence intervals. This allows us to determine the number of
sampling iterations required for a given level of accuracy. The key insight in this
sampling procedure is that the variance of the estimate of the power is independent
of the shape of the distribution of the true power over the causal SNPs.

Previous works in tag SNP selection include haplotype-based methods [36,
70, 71, 48, 28], correlation-based methods [10, 60, 1, 18], and power-based methods
[9, 55, 15, 16, 62]. The correlation-based methods are power-based methods in that r2

is closely related to power [58], but here we group power-based methods separately
based on whether MAF is taken into account. Among the power-based methods,
Byng et al. [9] and Pardi et al. [55] use the generalized linear model to test the
association between the region of interest and the disease. Their approach is different
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from ours which considers single SNP association for each SNP in order to detect
and locate the association. Cousin et al. (2003, 2006) maximizes average power
over all possible parameters, specifically over a relative penetrance from 0 to 1 which
corresponds to the relative risk from 1 to∞. Since such a high relative risk is often of
little interest in the current association studies, and since sometimes the relative risk
can be approximated from the previous studies, our method can be more suitable
for those cases by allowing a flexible choice of parameter values or ranges. Saccone
et al. [62] focus on the observation that the power is affected by the phase of the
correlation, whether a tag SNP and the causal SNP are correlated positively or
negatively. However, if we use r2 as a correlation measure instead of D′ they use
[19], the power is approximately independent of the phase of correlation [58]. Thus,
selecting tag SNPs based on the phase may not maximize power.

The implementation of our method is publicly available via web server at
http://design.cs.ucla.edu. On this web site, we provide power analysis for
all popular commercial products as well as candidate gene study designs for every
gene in the human genome.

3.2 Results

3.2.1 Performance

We evaluate the performance of our power-optimized method by comparing
it to those of widely used r2-based methods. Pairwise r2 tagging [10, 18, 1] is the
most common r2-based method. It greedily selects tags until every SNP is covered
with a given minimum r2 threshold. Best-N r2 is another r2-based method [18]. It
greedily selects a fixed number of tags to cover as many SNPs as possible with a
given minimum r2 threshold. We use the HapMap ENCODE regions which consist
of ten 500kb regions that have been widely used to evaluate design methodologies
due to their complete ascertainment of common SNPs (MAF ≥ 5%).

In this experiment and throughout this paper, we assume a multiplicative
disease model with fixed relative risk of 1.2 and disease prevalence of 0.01. We
assume a uniform distribution of causal SNPs over all common SNPs defined by a
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5% MAF threshold, and use a 5% region-wide significance level (α) for statistical
tests. We note that other studies often assume a varying relative risk depending on
MAF. For example, Marchini et al. [51] and de Bakker et al. [18] set a relative risk so
that a single SNP can have a 95% of nominal power at a nominal significance level
of 1% (ignoring multiple hypothesis testing). This corresponds to a relative risk of
1.21 for a SNP of 50% MAF and a relative risk of 1.48 for a SNP of 5% MAF when
4,000 cases and 4,000 controls are used. In this paper, we assume a uniform relative
risk of 1.2, to evaluate the worst case power over all disease models with relative
risk of 1.2 or above. This model is often more realistic than the varying relative
risk model for the case that the relative risk is estimated from previous studies.
These assumptions are used in both analytically designing tag sets and empirically
measuring their power.

First, we consider the ENr232 ENCODE region containing 533 (CEU), 596
(CHB), 573 (JPT), and 740 (YRI) common SNPs. The full set of common SNPs
achieves the maximum possible power. We will call this the full-SNP-set power.
For each population, assuming 4,000 cases and 4,000 controls (= 8,000/8,000 chro-
mosomes), we use our power-optimized method to construct 100 different tag sets
of increasing size. The number of tags in each tag set is increased by 1% of total
common SNPs.

For comparison, we construct another 100 tag sets of similar size using pair-
wise r2 tagging. Since we can only vary the r2 threshold in pairwise r2 tagging, we
use binary-search over the r2 threshold with a precision of 0.001, to find a tag set
having the desired size as closely as possible. Then we construct another 100 tag
sets using best-N r2. We use a widely used threshold of r2 = 0.8 for best-N r2. We
will use this threshold for every experiment using best-N r2.

For each tag set, we use the standard empirical simulation for estimating
power [18]. We create 100,000 null panels for multiple hypothesis correction and
100,000 alternate panels for estimating power, which gives a 95% confidence interval
for a <0.6% error in power. We will use the same number of panels whenever we
measure the power of a tag set through the paper.

Figure 3.1 shows the results of the CEU population. The results of the other
populations are shown in Supplementary Figure of Han et al. [29]. The power-
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optimized method reaches the full-SNP-set power (dashed horizontal line) faster than
both r2-based methods. The range of the number of tag SNPs (x-axis) is shown from
zero up to the required number of tag SNPs for best-N r2 to cover every SNP. Thus,
at the end of the graph, pairwise r2 tagging and best-N r2 become an equivalent
procedure, where the threshold of pairwise r2 tagging happens to be 0.8, and best-N
r2 happens to cover every SNP with r2 = 0.8. To achieve 95% of full-SNP-set power,
our power-optimized method requires 37, 71, 57, and 207 SNPs while pairwise r2

tagging requires 85, 124, 120, and 259 SNPs and best-N r2 requires 37, 89, 80, and
310 SNPs in the CEU, CHB, JPT, and YRI populations respectively. Pairwise r2

tagging shows low power with a small number of tags since the r2 has to be very low
to cover every SNP. It has reported that overly lowering r2 threshold of pairwise r2

tagging may result in a performance not better than a random tags [18]. Best-N r2

shows a good performance with a small number of tags, although not better than
our power-optimized method, and often shows a worse performance than pairwise r2

tagging with a large number of tags, as shown in Figure 3.1.
Next, we consider all ten ENCODE regions and obtain similar results (Sup-

plementary Figure of Han et al. [29]). We report the fraction of SNPs required to
achieve 95% of full-SNP-set power in each region (Supplementary Figure of Han et
al. [29]). The power-optimized method reduces the required number of tag SNPs by
60.0% compared to pairwise r2 tagging and 20.9% compared to best-N r2 on average
over all populations and regions.

3.2.2 r2 and power distribution

We examine the underlying reasons why our power-optimized method achieves
equivalent power using fewer tag SNPs than the r2-based methods. From the previous
experiment in the ENr232 ENCODE region of the CEU population, we select three
tag sets designed by each of power-optimized method, pairwise r2 tagging, and best-
N r2. For each method, we select the smallest tag set which achieves the same 99% of
the full-SNP-set power. These are 85 tag SNPs designed by power-optimized method,
123 tag SNPs designed by pairwise r2 tagging, and 138 tag SNPs designed by best-
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Figure 3.1: Power comparison between our power-optimized tag SNP selection
method and a widely used r2-based methods, pairwise r2 tagging and best-N r2,
in the ENr232 ENCODE region of the CEU population. We use a 5% region-wide
significance level, a 5% MAF threshold for causal SNPs, and assume relative risk of
1.2, disease prevalence of 0.01, and 4,000 cases and 4,000 controls. We use the r2

threshold of 0.8 for best-N r2. The x-axis ranges up to the number of tags obtained
by best-N r2 to cover every SNP with r2 = 0.8. The purple horizontal dashed line
indicates the full-SNP-set power achievable by genotyping the full set of SNPs.
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N r2. They have almost the same power of 86.2%, 86.3%, and 86.4% respectively.
Pairwise r2 tagging is designed with r2 = 0.703.

In order to analyze the performance of each tag set, we measure the tag
set’s maximum r2 to each putative causal SNP and the tag set’s power to detect
each putative causal SNP (per-causal-SNP power). We group the causal SNPs into
three groups based on their MAF: infrequent (5-10%), semi-frequent (10-25%), fre-
quent (25-50%), which contain 74, 150, 299 SNPs respectively. We plot the r2 and
per-causal-SNP power distribution in Figure 3.2. In the infrequent group, the r2

distribution of our power-optimized method is not very concentrated on the high
level compared to the r2-based methods. In this group, the average r2 of our power-
optimized method is 0.75 while those of pairwise r2 tagging and best-N r2 are very
high at 0.98 and 0.99 respectively. However, compared to the r2 difference, the av-
erage power of our method is 36% which is not much lower than the 40% of the two
r2-based methods. In the semi-frequent group, the average r2 of power-optimized
method is 0.94 which is slightly lower than 0.95 of the two r2-based methods, but
the average power is 88% which is slightly higher than 87% of the r2-based methods.
In the frequent group, the average r2 of our method, pairwise r2 tagging, and best-N
r2 are 0.93, 0.91, and 0.94, and the average power estimates are 98%, 97%, and 98%
respectively.

The reason that in the infrequent or semi-frequent group our method achieves
comparable or higher power with lower average r2 is because our method takes into
account MAF in selecting tag SNPs. If a causal SNP has a high MAF, the SNP is
worth covering with high r2 because the power will significantly increase. If a causal
SNP has a low MAF, the SNP might not be worth covering with high r2 because
the power will still be low. In that case, we can allow the SNP to be covered with
low r2 without much power loss. Within a MAF group, our method strategically
covers the SNPs of relatively high MAF with high r2, thus having high power with
low average r2. This strategy is applied across MAF groups as well. Often, it can be
possible to gain more power by spending a tag SNP to cover the SNPs in the frequent
group than the SNPs in the infrequent group. Although our method has lower power
than r2-based methods in the infrequent group, our method successfully covers SNPs
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Figure 3.2: Maximum r2 and per-causal-SNP power distribution over all 533 causal
SNPs in the ENr232 ENCODE region of the CEU population. We divide the causal
SNPs into three groups by their MAF: infrequent (5%-10%), semi-frequent
(10%-25%), frequent (25%-50%), which contain 74, 150, 299 SNPs respectively. Each
bar of different colors represents the power-optimized tagging method (85 tag SNPs),
pairwise r2 tagging method (123 tag SNPs), and best-N r2 tagging method (138
tag SNPs). The three tag sets achieve the same 99% of full-SNP-set power.
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in the semi-frequent and frequent groups with high r2. Consequently, our method
achieves the same average power with much fewer tag SNPs than pairwise r2 tagging
and best-N r2, reducing the tag set size by 31% and 38% compared to those methods
respectively.

We note that covering SNPs of high MAF with high r2 is not the only be-
haviour of our method. If the per-causal-SNP power is saturated to 100%, then it
can be possible to cover the causal SNP with moderate r2 and still have 100% or very
high power. In that case, our method strategically loosens the r2 for that SNP so
that it can spend the tag SNP for other SNPs which would increase power with high
r2. All these decisions are automatically made based on the average power increase.

3.2.3 Robustness

Our power-optimized tag SNP sets depend on the choice of study parameters
such as relative risk and number of individuals. One concern with this approach is
the potential for a performance drop due to using incorrect parameters. If the true
relative risk is higher than expected, then some tag SNPs are wasted on common
SNPs that already have very high power. If the true relative risk is lower than ex-
pected, then some tag SNPs are wasted on rare SNPs that are too difficult to capture
even with higher r2. We evaluate this performance drop with two experiments, and
show that our method still performs better than or similarly to the r2-based methods
in most cases. Both experiments are performed in the ENr232 ENCODE region of
the CEU population.

In the first experiment, we design three different tag sets assuming relative
risks of 1.1, 1.2, 1.4, and measure their power based on the assumption of a relative
risk of 1.2. For each relative risk, we select 100 tag SNPs assuming 4,000 cases and
4,000 controls. For comparison, we design tag sets of the same size using pairwise
r2 tagging and best-N r2. As shown in Figure 3.1, the two r2-based methods have
similar power at this number of tag SNPs. Figure 3.3 shows the results. As expected,
the tag set based on a correct relative risk (1.2) works better than the tag sets based
on incorrect relative risks (1.1 and 1.4) at the number of individuals assumed in the
design (4,000 cases and 4,000 controls). As the number of individuals decreases, the
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tag set based on a lower relative risk (1.1) shows the highest power amongst the tag
sets. This is because lowering the number of individuals has the same effect on the
test statistic as lowering the relative risk. For the same reason, as the number of
individuals increases, the tag set based on a higher relative risk (1.4) obtains the
highest power amongst the tag sets.

At the number of individuals assumed in the design, even though r2 is incor-
rectly assumed in the design, our method works similarly to the r2-based methods.
If r2 is correctly assumed in the design (line with diamond), even though the num-
ber of individuals varies, our method works similarly to the r2-based methods. Our
method works comparably to the r2-based methods for a wide range of parameters,
except for the extreme case that the bias of two parameters affect the statistic in the
same direction, for example a smaller relative risk (1.1) is assumed in the design and
a large number of individuals (8,000 cases and 8,000 controls) are used.

In the second experiment, we use the tag set based on a relative risk of 1.2
and the tag sets designed by r2-based methods from the previous experiment. We
measure the power of the tag sets assuming 20 different relative risks from 1.0 to
1.5, and 160 different study sizes from 0 cases and 0 controls to 8,000 cases and
8,000 controls. Figure 3.4 shows the power difference between our method and r2-
based methods over the two-dimensional parameter space (total 3,200 points). As
expected, an optimal power gain is obtained when the parameters that the design
is based on (γ=1.2 and 4,000 cases and 4,000 controls) or equivalent designs are
applied (diagonal red curve). In this experiment, our method performs better than
pairwise r2 tagging when the actual effect size is smaller than assumed (lower left
plane), and better than best-N r2 when the actual effect size is larger than assumed
(upper right plane). For both comparisons, our design works better than or similarly
to the r2-based methods within a wide range of parameters.

Varying study parameters such as relative risk, sample size, disease preva-
lence, and significance level can all be interpreted as varying the effect size, which
can be thought of intuitively as the difference in the test statistic between the null
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Figure 3.3: Robustness of our power-optimized method to errors of parameter
selection. We use our power-optimized method to design three different tag sets of
size 100 assuming different relative risks of 1.1, 1.2, 1.4 in the ENr232 ENCODE
region of the CEU population. We also design two more tag sets of the same size
using pairwise r2 tagging and best-N r2. We then measure the power of each tag
set based on the assumption of a true relative risk of 1.2. We use a 5% region-
wide significance level, a 5% MAF threshold for causal SNPs, and assume a disease
prevalence of 0.01 and 4,000 cases and 4,000 controls when designing the tag sets.
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Figure 3.4: Distribution of power gain of our power-optimized method compared to
r2-based methods over a parameter space. We design a tag set of size 100 assuming
relative risk of 1.2 and 4,000 cases and 4,000 controls in the ENr232 ENCODE region
of the CEU population. We also design tag sets of the same size using pairwise r2

tagging and best-N r2. We measure the three tag sets assuming many different
parameters, varying the relative risk from 1.0 to 1.5 and the sample size from 0 case
and 0 control to 8,000 cases and 8,000 controls. Then we plot the power difference
(a) between our power-optimized method and pairwise r2 tagging and (b) between
our power-optimized method and best-N r2, over the space of these various
parameters. We use a 5% region-wide significance level, a 5% MAF threshold for
causal SNPs, and assume disease prevalence of 0.01.
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and alternative hypothesis. Thus, the results of our experiments on varying the two
major factors affecting the effect size (relative risk and sample size) can be straight-
forwardly generalized to the other parameters as well. Since the performance drop
by using incorrect parameters exists, a study-independent method such as r2-based
methods can be an appropriate design choice if the study parameters are completely
unknown. But even when only the expected ranges of parameters are known, which
we believe to be the case in current association studies, our method can provides
robust performance.

3.2.4 Custom follow-up study design

After finding a putative association, a follow-up study verifies the association
by replicating the result with independent samples. In many cases in follow-up
studies, the samples are already in hand and have already been processed with a
commercial product. A practical way to increase power is adding more tag SNPs to
a commercial product by designing a custom SNP set.

We simulate a custom follow-up study by adding tag SNPs to the Affymetrix
500k chip in the ten ENCODE regions. For each region, assuming 4,000 cases and
4,000 controls, we incrementally add 5 tag SNPs to the tag set, and construct 100
different tag sets of increasing size. For comparison, we construct another 100 tag
sets of similar size using pairwise r2 tagging and best-N r2.

Figure 3.5 shows the power increase as we add more SNPs to the Affymetrix
500k chip in the ENr232 region of the YRI population. Adding tag SNPs in this
region increases substantial power because the large number of SNPs (1,075) are not
relatively well captured by the tag SNPs in the Affymetrix 500k chip (52 tag SNPs).
Among the three methods, our method increases the most power. The results of
the other populations and regions are similar and shown in Supplementary Figure
of Han et al. [29]. In the ENr232 region, by adding 1 SNP per 25kb (20 SNPs),
our method improves power 6%, 10%, 10%, and 9% in the CEU, CHB, JPT, and
YRI populations respectively, while pairwise r2 tagging improves power 2%, 4%, 4%,
and 3% and best-N r2 tagging improves power 5%, 8%, 5%, and 6% in the same
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Figure 3.5: Power comparison between our power-optimized method and r2-based
methods with respect to the number of tag SNPs added to a commercial chip. To
simulate a custom follow-up study, we use each of our power-optimized method,
pairwise r2 tagging, and best-N r2, to add tag SNPs to the tag set defined by the
Affymetrix 500k chip in the ENr232 ENCODE region of the YRI population. We
use a 5% region-wide significance level, a 5% MAF threshold for causal SNPs, and
assume relative risk of 1.2, disease prevalence of 0.01, and 4,000 cases and 4,000
controls.
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populations.
The power gain by adding more tag SNPs varies between the regions depend-

ing on the coverage of the chip. For example, by adding 50 SNPs in the same YRI
population, we get a 6% and 7% power increase in the ENm013 and ENm014 regions,
while we get a 17% and 15% power increase in the ENm010 and ENr232 regions.
Therefore, it is important to examine the coverage of the commercial chip for the
region of interest, to see if we will get sufficient power by adding more SNPs. Since
our design framework provides efficient empirical simulation for measuring power
as well as an efficient tag SNP selection method, we can accurately evaluate power
before and after adding tag SNPs, and decide which SNPs to add. Our method can
provide optimal performance in custom follow-up study designs because the value of
the relative risk can be estimated from the result of the original study.

3.2.5 High-throughput genotyping product design

Since our power-optimized tagging method can scale to the whole genome,
we can apply the method to design a whole genome high throughput genotyping
product. For each of the HapMap populations, we design 500k, 300k, 100k whole
genome tag sets using our power-optimized method assuming 8,000 cases and 8,000
controls. We also design the same size of tag sets using pairwise r2 tagging and best-
N r2. Figure 3.6 (CEU) and Supplementary Figure of Han et al. [29] (all populations)
show that our tag sets outperform the r2-based tag sets.

We also compare our tag sets to commercial products. Figure 3.7 (CEU) and
Supplementary Figure of Han et al. [29] (all populations) show that our tag sets work
better than the commercial products of the same size. Our 100k tag set performs
similarly to the Affymetrix 500k chip in the CEU and JPT+CHB populations, but
performs worse in the YRI population, because 100k tag set is not large enough
to capture the variations in the YRI population. Our 100k tag set also performs
similarly to the Illumina 300k chip, except in the CEU population for which the
Illumina 300k chip seems to be optimized. Our 300k tag set performs better than or
comparable to any commercial product evaluated including the Illumina 550k chip,
and our 500k tag set outperforms all products in all populations. For the same
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80% genome-wide power level, our 500k tag set requires 26%, 29%, and 33% fewer
individuals than the Affymetrix 500k chip and 7%, 11%, and 23% fewer individuals
than the Illumina 550k chip in each of the CEU, JPT+CHB, YRI populations.

3.2.6 Efficient power estimation

The analytical approximation for power that we use in design is efficient
enough to estimate the whole genome power of a 500k tag set in 3 minutes. This
efficiency allows us to design on one ENCODE region in 3 seconds and on the whole
genome in 1.5 CPU hours using the adjusted greedy algorithm (See Methods). An
underlying reason why we use an analytical approximation instead of a more accurate
empirical simulation, other than the computational feasibility, is that we only need
a rough estimate of the power to select tag SNPs. The analytical approximation
always underestimates power yet in the vast majority of cases preserves the relative
ordering of candidate tag sets with respect to their power.

However, an analytical approximation is overly inaccurate for the final es-
timate of the power of a design, because it applies two assumptions which ignore
the correlation structure between SNPs. The Bonferroni assumption ignores the
correlation structure between tags by assuming they are independent for multiple-
hypothesis correction. The best-tag assumption ignores the correlation structure
between a causal SNP and multiple tags by assuming a causal SNP is detected only
by its best tags, disregarding the possibility that other tags can also detect the
causal SNP. We measure the effects of these assumptions on power. Given a fixed
tag set defined as the common SNPs in the Illumina 550k chip, we perform empirical
simulations for measuring power with all four combinations of the two assumptions
(Bonferroni and best-tag) and compare the results to the analytical approximation.
Details of how we incorporate these assumptions into the simulations are described
in Methods.

Figure 3.8 (ENr232, CEU) and Supplementary Figure of Han et al. [29] (other
regions) show that we can underestimate the power by up to 15% using both assump-
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tions. The effect of the best-tag assumption is shown to be more critical than the
effect of the Bonferroni assumption in our results. The difference between the effects
of the two assumptions is most significant in the YRI population. The small effect of
the Bonferroni assumption implies that the tag SNPs are nearly independent due to
the short LD in the YRI population. The significant effect of the best-tag assump-
tion implies that there are many ungenotyped SNPs which are correlated to multiple
tag SNPs with moderate r2. (If a SNP is directly genotyped or highly correlated
to a tag SNP, then the effect of the best-tag assumption is small.) From the same
reasoning, we can expect that as we collect more and more tag SNPs, the effect of the
Bonferroni assumption will increase and the effect of the best-tag assumption will
decrease (but not disappear entirely). The empirical simulation with both assump-
tions (red circles) is almost equivalent to the analytical approximation (black small
diamonds) showing that the significant difference in power between the empirical
simulation and the analytical approximation is directly due to the assumptions and
not the stochastic nature of simulation.

After design, we run empirical simulations for measuring power to avoid the
inaccuracy of the analytical approximation. This resampling approach using a ref-
erence data set is originally described by de Bakker et al. [18]. We improve the
efficiency of this procedure and scale it to the whole genome using a random sam-
pling procedure. If we directly apply the standard simulation to the whole genome
to measure the power of the Affymetrix 500k chip for 4,000 cases and 4,000 controls
in the CEU population, it takes 4,000 CPU hours to construct null and alternate
panels. Using our improved simulation procedure, it takes less than 10 CPU hours
for the same construction.

3.3 Discussion

We introduced a design framework which provides an efficient tag SNP selec-
tion method based on power and a quick empirical simulation procedure that can
accurately measure the power of a tag set. The tag SNP selection and the empirical
simulation can efficiently scale to the whole genome. Our framework efficiently finds
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causal SNPs, and assume relative risk of 1.2 and disease prevalence of 0.01.
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the “key” tag SNPs contributing to power thus providing superior performance to
the widely used r2-based methods in both custom follow-up study design and whole
genome tag set design.

We assumed a fixed relative risk of 1.2 for all causal SNPs, since the fixed
relative risk assumption is often more realistic than the varying relative risk when we
can approximate the relative risk before the study. Our method can maximize power
under the varying relative risk assumption as well. We assumed a multiplicative
disease model, but the same tag SNP selection technique based on other disease
inheritance models can be straightforwardly developed. Furthermore, our method
can be optimized over multiple parameters. For example, if we want to design a
study optimized for both relative risks of 1.2 and 1.4, we can select tags to maximize
the average power over these two disease models. This approach will expand the
robustness of our method over a wider range of parameters, at the expense of the
peak performance at the single disease model and parameters used in the design. If
the study parameters are completely unknown, a study-independent measure such
as r2 can be a suitable choice. However, since many current association studies
have at least an expectation of the ranges of parameters, in that case, our method
can provide superior performance over the r2-based methods. A good example is a
custom follow-up study, where the relative risk is estimated from the original study.

The results show that our whole genome tag set works significantly better
than the commercial products. This comparison is unfair because we designed a
tag set for each population while the commercial products are designed for multiple
populations. Howie et al.[34] propose an r2-based tag SNP selection method for
multiple populations. Our method can also select tag SNPs for multiple populations,
by maximizing the sum of the power over multiple populations (∑ pi where pi is the
power for population i). However, this might bias against populations that have low
power such as the YRI population. We can avoid this problem by heuristically adding
second-order terms to penalize the bias toward a specific population (∑ pi +

∑
pipj).

We found that tag sets designed for multiple populations in this way have similar
power in each of the populations to a tag set designed for a single population (data
not shown).

The computational core of our tagging method is an efficient procedure for
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selecting tag SNPs given a fixed number of individuals and a fixed number of tags.
Since this core procedure is very efficient we can answer many design questions by
repeatedly searching with this core procedure and by using our efficient empirical
simulation for accurately measuring power. For example, our method can answer
questions such as “How many additional tags do we need to achieve 80% power given
a sample size in addition to the Affymetrix 500k chip for a candidate region?”, “If we
use the individual genotyping for a small region of interest, what is the optimal cost
point between the number of individuals and number of tags given a desired power of
80%?” [55] or “How many individuals should we collect for 70% genome-wide power
when using the Illumina 550k chip?”.

Our experiments for custom follow-up study design are performed in the con-
text of replication analysis of a genomic region of interest without prior knowledge.
In addition, our method can leverage the results from previous studies by either
explicitly including prioritized tag SNPs or by applying a weighted prior of causal
SNPs obtained from previous studies [78, 24]. Our method can also be extended to
maximize the power of joint analysis combining the original and the replicated data
sets [68]. Furthermore, our method can be easily modified to maximize the minimum
power over all causal SNPs instead of the average power.

A recent methodological development in statistical genetics allows us to esti-
mate the probability distribution of ungenotyped SNPs given a tag set and directly
compute the test statistic from the distribution. This is called imputation or multi-
marker analysis [80, 51]. Since the test statistic is based on estimated information
which also has an uncertainty (variance), the multiple hypothesis correction is more
subtle. To the best of our knowledge, there is no established tag SNP selection
method for this analysis. Our method can be applied to this multi-marker analysis
in two different ways. First, we can select tag SNPs to maximize the imputed power
at each step. The computational cost of this procedure will be very high. Second, we
can design a tag set assuming a single marker analysis, and then apply multi-marker
analysis to the resulting tag set. We assume that this latter approach will work
reasonably well, since we expect that if a tag set has a good power in a single marker
analysis, in most cases it will also have a good power in a multi-marker analysis.
We expect that tag SNP selection for imputation analysis will be an active area of
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research in the future.
In summary, we present an efficient and accurate power-optimized design

framework which also provides flexibility and robustness. The utility of our method
ranges from custom follow-up study designs to whole genome high-throughput prod-
uct design. Our method is publicly available for research purposes via web server at
http://design.cs.ucla.edu.

3.4 Materials and Methods

3.4.1 Power-optimized tag SNP selection

Our power-optimized tag SNP selection method is a stepwise greedy procedure
to maximize power. We assume that we can estimate the relative risk (γ). We
determine the MAF threshold and the significance level α. Then, we fix at least
one degree among the three degrees of freedom in design which are (1) the number
of individuals, (2) number of tags, and (3) desired power. If we fix two of them,
our method will give one design. If we fix one of them, our method will iterate and
give many designs to choose among. The computational core of this procedure is
selecting tags to maximize power given the fixed numbers of individuals and tags.
Since this core procedure is very efficient, our method can quickly iterate to find the
solution for any choice of fixed parameters. For example, if we fix the desired power,
our method will use binary-search over the number of individuals by repeating the
core procedure until the resulting tag set meets the desired power. It will iterate this
whole process for every number of tags.

For simplicity, we will only consider the core tagging procedure where both
the numbers of individuals (N) and the number of tags (nt) are fixed. Let S be the
set of all SNPs in the region. Let C ⊆ S be the set of (common) putative causal
SNPs defined by the MAF threshold. Let I ⊆ S and E ⊆ S be the sets of SNPs that
we want to include into or exclude from the tag set. Then our tagging procedure is
as follows.

1. Initialize the tag set as T ← I
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2. For every candidate tag SNP x ∈ S−(T ∪E), analytically estimate per-causal-
SNP power for every causal SNP c ∈ C using the tag set T ∪ {x}, to get the
average power P (T ∪ {x}).

3. Select the best candidate tag SNP x′ which maximizes P (T ∪ {x′}).

4. T ← T ∪ {x}

5. Repeat from step 2 while |T | < nt

A more detailed pseudo-code is shown in Supplementary Figure of Han et al. [29].
How we analytically estimate the per-causal-SNP power given a tag set at step 2
will be described below. During the procedure, we measure the average power of a
tag set for O(ncnt) times where nc and nt are the number of causal SNPs and tag
SNPs respectively. Since empirically measuring power through simulation for this
number of times is computationally impractical, we use an analytical approximation
for power.

For genome-wide design, we assume the maximum distance of LD to be 250kb
and use the adjusted greedy algorithm (Supplementary Figure of Han et al. [29])
to reduce the computational burden. 250kb is not long enough to capture long
range LDs, but enough for selecting tag SNPs based on power. We will assume a
longer range of maximum LD (10Mb) when we estimate the power of a design using
empirical simulation. The adjusted greedy algorithm picks k “independent” SNPs
at each round, from the top of the candidate tag SNP list sorted by their power
increase. We define two SNPs to be independent if the distance between them is
greater than the twice the length of maximum distance of LD. We set k to be 1% of
the total number of SNPs. We consider the power between a tag SNP and a causal
SNP only if the r2 between them is ≥ 0.1.

We now describe how to analytically estimate the per-causal-SNP power of a
tag set at step 2 of the tagging procedure. We use the framework of Pritchard et al.
[58], Jorgenson et al. [37], Klein et al. [42], and Eskin [24]. Given an association study
which collects genotypes in N+/2 case and N−/2 control individuals (equivalently
N+ and N− chromosomes), we assume that a marker A with population minor allele
frequency pA affects the disease with relative risk γ. Let F be the disease prevalence.
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The case and control allele frequencies are then

p+
A = γpA

(γ − 1)pA + 1 and p−A = pA − Fp+
A

1− F (or, p−A ≈ pA if F is very small)

respectively. We denote the observed case and control frequencies in the collected
sample as p̂+

A and p̂−A. The association statistic at marker A,

SA = p̂+
A − p̂−A√

p̂±A(1− p̂±A)

√
N+N−

N+ +N−
(where p̂±A = (p̂+

A + p̂−A)/2)

approximately follows a normal distribution with variance 1 and mean (non-centrality
parameter)

λA = p+
A − p−A√

p±A(1− p±A)

√
N+N−

N+ +N−
. (where p±A = (p+

A + p−A)/2)

If we genotype a marker B correlated with A with a correlation coefficient of rAB, the
power that the marker B will be detected as significant is analytically approximated
as

PB = 1− 1√
2π

∫ Φ−1(1−α/2)+λA
√
r2
AB

Φ−1(α/2)+λA
√
r2
AB

e−
1
2x

2
dx

with respect to the significance threshold α, where Φ(x) is the c.d.f. of the standard
normal distribution.

Now we can estimate the single marker power between the causal SNP A
and the tag SNP B. To extend this single marker power to multiple markers, we
apply two simplifying assumptions. A best-tag assumption assumes that each causal
SNP is only detected by its best tag, that is, the most correlated tag SNP with
the highest r2. A Bonferroni assumption assumes that every SNP is independent
allowing us to use α/nt as a significance level for a single test where α is the region-
wide significance level and nt is the number of tags (the Bonferroni correction). With
these two assumptions, the per-causal-SNP power for each causal SNP is efficiently
computed as the single marker power at the best tag SNP. Thus, the average power
can be analytically estimated by averaging the per-causal-SNP power over every
causal SNP.

3.4.2 r2-based tag SNP selection

Pairwise r2 tagging [18, 10, 31, 1] is a widely used r2-based tag SNP selection
method that greedily chooses the smallest number of tag SNPs with a minimum r2



68

threshold between tag SNPs and uncollected SNPs. The procedure starts with a
SNP pool containing every SNP of interest, which is defined by MAF ≥ 5% in our
experiments. At each step, the procedure selects a tag SNP which covers the most
SNPs in the pool with the r2 threshold, and removes the tag SNP and the SNPs it
covers from the pool. Then the procedure is repeated until the pool becomes empty.

Since the only parameter we can vary in pairwise r2 tagging is the r2 thresh-
old, we use binary-search over the threshold when we want to design a specific tag
set size, with the precision of 0.001. For the follow-up study design which adds SNPs
to a pre-defined tag set, we first remove from the pool the pre-defined tag SNPs and
the SNPs they cover, and then resume the normal procedure. For the genome-wide
study design, as in our power-optimized method, we assume 250kb as the maximum
distance of LD and use the adjusted greedy algorithm. The algorithm picks k “in-
dependent” SNPs at each round, from the top of the candidate tag SNP list sorted
by the number of SNPs they cover. We define two SNPs to be independent if the
distance between them is greater than the twice the length of maximum distance of
LD. We set k to be 1% of the total number of SNPs.

Best-N r2 [18] is another r2-based method. The procedure is the same as
pairwise r2 tagging except that the tag SNPs are selected until the desired tag set
size is obtained, not until the SNP pool becomes empty. Thus, the tag set size can
be controlled without varying the r2 threshold. We use a fixed r2 threshold of 0.8 in
our experiments. For genome-wide design, we use the same assumption of maximum
distance of LD and the adjusted greedy algorithm as for pairwise r2 tagging.

3.4.3 Empirical simulation for power

We empirically measure the final estimate of the power of a tag set after
design. Our empirical simulation is based on the standard simulation procedure
described by de Bakker et al. [18]. This procedure resembles the “bootstrapping”
statistical procedure which samples from the data set with replacement to estimate
the sampling distribution of an estimator [73, 23]. The major difference is that a
typical bootstrapping procedure draws the same number of samples as the data set,
while the de Bakker [18] simulation amplifies the number of samples based on a small
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reference data set, which is the HapMap. This procedure assumes that although the
currently available reference data set is small, the correlation structure between SNPs
will be mostly conserved independent of the size of the data set. Since this procedure
does not require the conservative assumptions used in the analytical approximation,
it is a standard method for measuring power [18, 51].

The procedure consists of creating null panels and alternate panels. Random
chromosomes are drawn from the reference data set to create many case/control
panels without any causal association (null panels). For each null panel, the best χ2

statistic among all tag SNPs is obtained. Given a region-wide significance level α, the
maximum χ2 value exceeded in α of null panels is chosen as the threshold to declare
a positive result. Next, based on the assumption of a causal SNP which defines the
expected allele frequencies in cases and controls, random chromosomes are drawn
from the reference data set to create many case/control panels (alternate panel). For
each alternate panel, a positive result is recorded if the best χ2 statistic among all tag
SNPs exceeds the χ2 threshold obtained in the null panels. The power is estimated
as the proportion of the positive findings among alternate panels. Previous studies
[18, 56, 80] assume a uniform distribution for the causal SNP, and construct an even
number of panels per every putative causal SNP.

This standard simulation is not based on the best-tag or Bonferroni assump-
tion, but we can incorporate these assumptions into the simulation for the purpose
of comparison (Figure 3.8 and Supplementary Figure of Han et al. [29]). The Bon-
ferroni assumption is incorporated by using the Bonferroni correction instead of null
panels to assess the per-marker threshold. The best-tag assumption is incorporated
by declaring a positive result in an alternate panel only when the causal SNP’s most
correlated tag shows significance, regardless of other tags.

The computation cost of empirical simulation is a major bottleneck of optimal
design of association studies. We improved the efficiency of empirical simulations
by taking advantage of having small reference samples. Instead of drawing each
simulated case and control from the reference samples, we count how many times each
chromosome in reference samples are drawn in cases and controls. Since the number
of reference samples are typically much smaller than the number of individuals in
the simulation, such an implementation improves the efficiency of simulation studies
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by orders of magnitude compared to the straightforward implementation. With r

simulation panels, N individuals and t tags, the computational complexity is reduced
from O(rNt) to O(r(N+t)) assuming the number of reference panels is a constant
smaller than N .

To the best of our knowledge, no one has applied this standard simulation
to the whole genome. We introduce two ideas to efficiently scale it to the whole
genome. First, we observe that the SNPs very far away from the causal SNP have
the same distribution as null panels. Thus, positive results found on those SNPs
are likely to be false positives. We use this insight to set a maximum distance L
between a casual SNP and a tag SNP, to avoid having to generate alternate panels
consisting of an entire chromosome. We conservatively choose L=10Mb not to miss
any long range correlation. This idea reduces the computational load of alternate
panel construction by more than 5-fold.

Second, we introduce a sampling procedure. The standard strategy of creating
an even number (k) of panels per every putative causal SNP (even-k strategy) is
impractical for the whole genome even when k = 1. Instead, we sample the causal
SNP from the uniform distribution, and create a number of panels per each sampled
causal SNP (sample-k strategy). We analyze the variance of the power estimate in
this strategy to determine the number of sampling iterations. Using the sampling
strategy, the variance of the average power estimate is approximately given as 3p(1−
p)/m where p is the true average power and m is the number of samplings (See
Supplementary Materials of Han et al. [29]). Thus, the number of samplings can be
estimated given a desired accuracy. The idea of sampling reduces the computational
load by more than 20-fold compared to a naive even-k strategy which constructs one
panel per causal SNP.

These two ideas for efficient genome-wide simulation increase the efficiency
of alternate panel construction but do not help the null panel construction where a
causal SNP is not defined. We can reduce the computational load in the null panel
construction by adjusting the number of individuals to an appropriate level, based on
the fact that the adjusted χ2 threshold is independent of the number of individuals
when the number of individuals is large [14]. This fact allows us to construct null
panels once and use each for many different numbers of individuals. We construct



71

null panels of 1,000 cases and 1,000 controls when we measure the power of designs
in our experiments.

3.4.4 Genotype data

We downloaded the HapMap genotype data (build 36) for the whole genome
and ENCODE regions from the HapMap project web site [1]. The project collected
SNP information from 30 trios in each of the African (YRI) and the European (CEU)
populations, and 45 unrelated individuals in each of the Japanese (JPT) and Chinese
(CHB) populations. The data includes 2,605,595, 2,471,887, and 2,926,893 polymor-
phic SNPs in each of the CEU, JPT+CHB, and YRI populations. We phased the
data into haplotypes using the HAP software [81].

3.5 Web Resources

The URL for the method presented herein is as follows:
http://design.cs.ucla.edu.

Chapter 3 was published in Annals of Human Genetics, 72(Pt 6):834-847, Nov
2008, Buhm Han, Hyun Min Kang, Myeong Seong Seo, Noah Zaitlen, and Eleazar
Eskin. “Efficient association study design via power-optimized tag SNP selection”.
The dissertation author was the primary investigator and author of this paper.



Chapter 4

Finding New Associations and
Detecting Spurious Associations at
Post-Association Stage

4.1 Motivation

Genome-wide association studies using high-throughput genotyping technolo-
gies are an effective means of discovering associations between genetic variants and
diseases [61, 74]. Considerable efforts in these studies are spent to avoid spurious
associations in the results. Typically, quality control (QC) approaches are taken to
remove potentially problematic markers before the markers are tested for statisti-
cal associations. The filters applied in QC step include testing for Hardy-Weinberg
equilibrium (HWE) [33, 44], filtering based on the rate of missing genotypes, and
filtering based on the ambiguity of genotype clustering plot [74]. Recently, filtering
based on the error probability estimated from the hidden Markov model has also
been proposed [40, 66].

Even after applying QC filters, systematic bias and errors can still occur
causing spurious associations. One of the reasons is that the amount that a marker
deviates from the “normal” status such as HWE does not necessarily provide a mea-
sure of how much the errors will affect the statistical significance. This is because
the statistical significance is a function of the phenotypes (case/control status) as
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well as the genotypes. For example, a marker with small number of errors may not
significantly deviate from HWE in both cases and controls. However, if one allele
is slightly excessive in cases by errors and the other allele is in controls, even small
errors turn out to be the cause of spurious association once we take into account
case/control status to compute a statistic. For this reason, it is beneficial to perform
additional quality refinement based on the association results (e.g. p-values) after
taking into account phenotypes, in addition to the pre-association QC.

Recent availability of the reference datasets such as the HapMap [1, 35] pro-
vides the linkage disequilibrium (LD) information between markers [3]. With this
LD information, the post-association results can provide clues to identify spurious
associations. Given a statistically significant association, p-values at nearby mark-
ers under LD are expected to be comparably significant and decay with LD (Figure
4.1A). However, if the association shows a singular peak of the statistical significance
in the region under LD, it is highly probable that the association is caused by errors
(Figure 4.1B). Since examining p-values at nearby markers is so intuitive, it is widely
performed in many studies at least implicitly. For example, it is widely accepted for
studies to report that k out of m associations were excluded from the report because
the nearby markers under LD did not show comparably significant p-values [74].

However, somewhat surprisingly, no statistical framework exist for this pro-
cedure to the best of our knowledge. It should be noted that if an investigator
manually examines the p-values at nearby markers, the investigator is applying a
decision making procedure whether or not a formal statistical framework is used.
Without a formal statistical framework, these decisions are based on an individual’s
intuitions and will be inconsistent from person to person and from study to study.
The inconsistencies will be exacerbated if the LD pattern is complicated.

In this paper, we propose a formal statistical framework called post-association
RESults QUality Enhancement (RESQUE) which quantitatively measures the evi-
dence of spurious association using the LD information. The idea is to look at the
association results at nearby markers and compute the likelihood under the two mod-
els, say, true and spurious association models. We use z-scores instead of p-values
in order to take into account the positive/negative correlations between statistics
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Figure 4.1: Underlying intuition of RESQUE. (A) If an association is a true
genetic association, nearby markers in LD will show comparably significant p-values,
forming a p-value plot which looks like a mountain. (B) If an association is a
spurious association caused by marker-specific errors, nearby markers in LD will
not have comparably significant p-values. In LD plot, red color denotes high r2

between corresponding SNPs and white color denotes low r2, similarly to the output
of Haploview [3].
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as well as the strength of the statistical significance. By using z-scores, we can use
the well-established results that multiple z-scores asymptotically follow multivariate
normal distribution (MVN) of which covariance can be estimated from the genotype
correlation structure in the reference dataset [64, 67, 14, 30]. The only complication
is that we do not know the effect size which is necessary to compute the likelihood.
This is not of major concern at the post-association stage because the effect size can
be estimated from the observed association we would like to test.

In addition to detecting spurious associations, RESQUE can also function as
a method to rescue candidate associations among the markers which are excluded
by QC. Since RESQUE is based on the likelihood ratio, it can detect the significant
evidence of the “true” association as well as the spurious association. The underlying
intuition is that, assuming that a systematic bias such as population structure does
not exist, it is highly unlikely that nearby markers show comparably significant p-
values decaying with LD unless they are caused by a genetic effect. This approach
can be useful if the QC is too harsh and removes true genetic associations. For
example, even if the rate of missing genotypes is high, it may have little effect
on the statistical significance if the missing rate is independent of the alleles and
phenotypes. Then, removing these markers may take away the chance to detect true
genetic associations at these markers. We suggest a new workflow of treating the
markers excluded by QC (Figure 4.2). We keep these markers in the dataset and
test for statistical associations. We apply RESQUE to significant associations, and
if a strong evidence of true association is found, the association is considered as a
supplemental candidate association.

It should be noted that the associations rescued in this way are more likely
to be false positives than the associations at “normal” markers. To minimize false
positives, we use a conservative approach. First, we use a stringent likelihood ratio
threshold of 1,000, which is in spirit similar to the LOD score of 3 in linkage studies.
We analytically show that if there are no combined effects of genetic effect and errors,
using this large threshold approximately controls the false positive rate of the study.
Second, since combined effects can occur, we correct for the effect of the errors by
using a similar procedure to genomic control [20]. If an association is rescued in spite
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of this conservative approach, it can be an indication of an interesting candidate
region which may have genetic effect. We believe that similar to associations at
“normal” markers rescued associations should also be followed up for verification
such as through replication studies.

We apply RESQUE to the Wellcome Trust Case Control Consortium data
(WTCCC) [74]. Among the reported associations byWTCCC, RESQUE finds strong
evidence of spurious associations at 6 SNPs for type 1 diabetes. Since these are all
in the MHC region where a large number of associated SNPs exist, whether they
are spurious or not does not make a difference in the analysis. However, it will be
useful if the statistical significance are subsequently used for fine-mapping causal
variants in this large region. Among the unreported associations excluded by QC,
RESQUE finds strong evidence of true genetic effects at 101 SNPs: 1 for coronary
artery disease, 3 for CrohnâĂŹs disease, 31 for rheumatoid arthritis, and 65 for type
1 diabetes. One of the associations for type 1 diabetes is located at PGM1 gene
(1p31.3) where only a moderate significance (p < 10−4) was reported by WTCCC.
Interestingly, this gene is one of the 18 regions recently identified and replicated by
a meta-analysis performed 2 years after the WTCCC analysis [4]. This shows that
RESQUE can help studies identify novel candidate regions and increase the study
power. Other associations overlap with the reported regions by WTCCC, suggesting
that the rescued associations are likely to indicate true genetic effects.

Our method is very different from the quality control methods based on the
hidden Markov model [40, 66]. These methods can be thought of as an extension
of imputation methods [51, 80, 38, 65]. The advantage of these methods is that
the error probability of each individual genotype can be estimated and subsequently
used for error corrections [66]. On the other hand, our method can be thought of
as a formalization of what is typically performed at the post-association stage using
intuition. Our method is different from the pre-association QC methods including
the imputation-based methods, because our method uses the post-association results
obtained after taking into account case/control status in order to capture spurious
associations not captured at the pre-association stage. Moreover, our method can
indicate the evidence of “true” associations, thereby providing a procedure treating
the QC-excluded markers which may increase the study power (Figure 4.2). We
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expect that both the pre-association QC methods including imputation-based meth-
ods and our post-association method can complement each other to provide a higher
standard of the quality of association results in future studies.

4.2 Materials and Methods

4.2.1 Definitions

We call the associations with true genetic effect true genetic associations.
There are two kinds of false positives. We call the false positives caused purely by
the stochastic nature of the sampling procedure stochastic false positives. This type
of false positives are usually unavoidable and controlled to a desired level in terms of
false positive rate such as family-wise error rate (FWER) [30, 69]. We call the false
positives caused by other unexpected bias and errors spurious associations. If spuri-
ous associations occur, the false positive rate is no longer controlled. Our goal is to
detect spurious associations from the remainder, candidate true associations, which
will be the union of true genetic associations and stochastic false positives. Since the
discrimination between true genetic associations and stochastic false positives can
be done by replication and functional studies but is not the focus of our paper, we
will often refer to the candidate true associations as true associations in short.

4.2.2 RESQUE

RESQUE is a likelihood ratio test. Given a statistically significant association,
the likelihood of the z-scores at nearby markers are computed for both the “true” and
“spurious” association models. RESQUE utilizes the known results that z-scores at
multiple markers asymptotically follows a multivariate normal distribution (MVN)
[64, 67, 14, 30]. In this paper, we use the allelic χ2 test under the multiplicative
disease model, but extensions to other tests and models are possible in the MVN
framework as shown in Han et al. [30].
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Multivariate normal approximations

Consider we collect N+/2 cases and N−/2 controls. (N+ case haplotypes and
N− control haplotypes). Let pi be the population MAF at SNP i estimated from the
reference dataset. Let p+

i and p−i be the case and control population MAFs. For the
causal SNP c, given the disease prevalence F and relative risk γ,

p+
c = γpc

(γ − 1)pc + 1 and p−c = pc − Fp+
c

1− F .

If we directly collect the causal SNP c, the test statistic at c

Sc =
√
N

p̂+
c − p̂−c√

2p̂sc(1− p̂sc)

asymptotically follows Sc ∼ N (λc
√
N, 1), where

λc
√
N = p+

c − p−c√
2psc(1− psc)

√
N

is the non-centrality parameter (NCP), N = 2N+N−

N++N− is the so-called effective sample
size, psc = N+p+

c +N−p−c
N++N− is the expected sample MAF, where hats (̂·) denote observed

values [29]. S2
c equals to the popular χ2 test statistic.

Let rij be the correlation coefficient between SNPs i and j estimated from the
reference dataset. It is known that if we collect a non-causal SNP i that has the corre-
lation coefficient ric to the causal SNP c, the NCP of the statistic Si is approximately
ricλc
√
N [58]. Also, given two SNPs i and j, if γ is small, the covariance between Si

and Sj is approximately rij [67, 14, 30]. Therefore, by the multivariate central limit
theorem [73], the vector of statistics (S1, S2, ..., Sn) at n nearby markers asymptoti-
cally follows approximately Nn(Λ

√
N,Σ) where Nn denotes a n-dimensional MVN,

Λ = λc(r1c, r2c, ..., rnc) ,

and Σ is the n × n matrix of correlation coefficients between n markers. If there is
no true genetic association (i.e. γ = 1), the MVN is centered at zero (i.e. Λ = 0).

It should be noted that the use of Σ is a valid approximation only if γ is small.
The exact covariance matrix given any γ can also be computed using the procedure
in Han et al. [30]. However, if the association shows genome-wide significance, Ŝs
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will be large and NCP (Λ) will be far from zero. Thus, NCP will be the major factor
affecting the likelihood and a small difference in covariance will not make a difference
in results.

Likelihood ratio

Using the MVN framework, we make a decision of true and spurious associa-
tion based on the likelihood ratio. Suppose that we observe a significant association
at SNP s. Let Ss be the statistic at s. Let 1, ..., n be the index of n nearby SNPs
and S1, ..., Sn be the corresponding statistics. We assume that errors only affect a
single SNP in a region. Therefore, even if the association at s is caused by errors,
S1, ..., Sn are not affected. We compare likelihoods of observed statistics (Ŝ1, ..., Ŝn)
under two models.

• True association model (MT ): The association is a candidate true associa-
tion. If the association is a true genetic association, there exists a causal SNP
and (S1, ..., Sn) will follow Nn(Λ

√
N,Σ). We assume that s is causal and then

estimate the effect size based on the observation at s. This is algebraically
equivalent to using

Λ̂
√
N = Ŝs(r1s, r2s, ..., rns) .

If the association is a stochastic false positive, (S1, ..., Sn) will follow a con-
ditional distribution given Ŝs. The conditional mean turns out to be exactly
Λ̂
√
N . Therefore, for both cases, (S1, ..., Sn) approximately followsNn(Λ̂

√
N,Σ).

• Spurious association model (MS): The association is a spurious association
caused by errors. (S1, ..., Sn) follows Nn(0,Σ).

Under true association model, it is possible to use the conditional variance
given the observation Ŝs, which is Σ−xxT where x = (r1s, r2s, ..., rns). We find that
using the conditional variance is more powerful but often less stable because a small
error in Ŝs considerably affects the results. We use the marginal variance Σ.

Let fT and fS be the probability densities for two models. Given the obser-
vation (Ŝ1, ..., Ŝn), the likelihood ratio (LR) statistic is

LRRESQUE = fT (Ŝ1, ..., Ŝn)
fS(Ŝ1, ..., Ŝn)

.
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We do not include Ŝs in the likelihood computation to avoid the complication of
determining a probability model for errors under spurious association model.

LR has the following interpretations. A large LR (e.g. 1,000) is the evidence
that the association is a true association. A small LR (e.g. 1/1,000) is the evidence
that the association is spurious. LR close to 1 shows that it is ambiguous which
model is true.

An interesting property of our method is that if we add a uncorrelated SNP
to the nearby SNP set, the likelihood ratio does not change. Given the nearby
SNPs 1, ..., n, suppose we add a SNP j that is uncorrelated to 1, ..., n. Since they are
uncorrelated, the new n+1-dimensional density function f ∗T or f ∗S can be decomposed
into f ∗T (Ŝ1, ..., Ŝn, Ŝj) = fT (Ŝ1, ..., Ŝn)fj(Ŝj) where fj is the marginal distribution of
Sj. Thus, the new likelihood ratio is

LR∗RESQUE = f ∗T (Ŝ1, ..., Ŝn, Ŝj)
f ∗S(Ŝ1, ..., Ŝn, Ŝj)

= fT (Ŝ1, ..., Ŝn)fj(Ŝj)
fS(Ŝ1, ..., Ŝn)fj(Ŝj)

= LRRESQUE .

This property allows us to generously choose nearby SNPs without worrying much
about the adverse effect of including uninformative SNPs.

With similar derivation, we can show that if a marker is in LD with no other
SNPs, all density functions cancel out and LR turns out to be exactly 1.

Decision making

Once the likelihood ratio is computed, we make a decision of true and spuri-
ous associations. The simple and intuitive approach we adapt is the decision making
directly based on the likelihood ratio, which categorizes the results into three cate-
gories: true, spurious, and ambiguous. Given a threshold C (e.g. 1,000), if LR ≥ C,
we predict a true association. If LR ≤ 1/C, we predict a spurious association. If
the evidence is moderate (1/C < LR < C), we make an ambiguous prediction. This
approach resembles Bayesian model selection based on a Bayes factor.

A less preferable approach is the decision making based on a p-value. If we
want to detect true associations, we put MS as the null hypothesis and MT as the
alternative. We measure the p-value toward MT as

pT =
∫
LRRESQUE(x1,...,xn)≥LRRESQUE(Ŝ1,...,Ŝn)

fS dx1...dxn . (4.1)
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If the p-value is smaller than a threshold, we reject the null hypothesis of MT . If we
want to detect spurious associations, we put MT as the null hypothesis and MS as
the alternative. The p-value toward MS is

pS =
∫
LRRESQUE(x1,...,xn)≤LRRESQUE(Ŝ1,...,Ŝn)

fT dx1...dxn .

If the p-value is smaller than a threshold, we reject the null hypothesis of MS. This
approach is less preferable because the rejection of null hypothesis is not necessarily
the evidence of alternative model. For example, if the means of null and alternative
densities are far apart, which is often the case of our situation, the p-value can be
extremely small even though the observation is closer to the null mean than to the
alternative mean. Another reason is simplicity, because dealing with two types of
p-values can be confusing.

In this paper, we use the decision making based on the likelihood ratio. How-
ever, the decision making based on a p-value has an advantage that the theoretical
analysis of false positive rate is straightforward as shown below. Thus, for a more
strict control of false positives, one can use a combined approach that predicts a true
association only when LR ≥ C and pT is small. Nevertheless, our simulations show
that if we use a large C such as 1,000, pT is almost always very small. Therefore,
the combined approach will be nearly equivalent to the decision making based only
on the likelihood ratio.

False positive rate control

We describe some analyses of false positive rate, how our method can help
to control it and what conditions have to be met for the control. We assume the
control of FWER, but similar analyses for different error measures [69] are possible.
We first make a simplifying assumption that a statistically significant association is
either solely caused by errors or unaffected by errors. Thus, we ignore the case that
both the genetic effect and the errors result in a combined effect.

Let M be the set of m markers which pass QC and K be the set of k markers
which do not pass QC. Applying only the QC is equivalent to assuming that asso-
ciations in M and K are true and spurious respectively. RESQUE can be thought
of as refining the results of QC if the strong evidence of the opposing decision is
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seen. Thus, the refinement is a two-part procedure; (1) detects spurious associations
among M and (2) detects true associations among K. In part (1), let qSPU be the
power to detect spurious associations and eSPU be the probability to falsely predict
“spurious” for actual true associations. In part (2), let qTRU be the power to detect
true associations and eTRU be the probability to falsely predict “true” for actual spu-
rious associations. Using a large LR threshold C in the decision making procedure
will ensure small eSPU and eTRU, while qSPU and qTRU may not be maximized.

We first consider the effect of part (1) on FWER considering only the markers
in M . Since part (1) only removes associations, FWER will always decrease. Given
the desired FWER level α, assume that the Bonferroni correction is used to use the
significance threshold of α/m. Although stochastic false positives will be controlled
by using this threshold, there can be spurious associations. Let β be the probability
that errors will induce spurious associations among M . The probability of one or
more spurious associations is 1 − (1 − β)m ≈ mβ. Therefore, if we only apply QC,
FWER will not be controlled at α but at αQC = 1 − (1 − α)(1 − mβ) ≈ α + mβ.
If we apply RESQUE to remove spurious associations, FWER is now controlled at
α(1− eSPU) +mβ(1− qSPU), which is strictly smaller than αQC and close to α if qSPU

is large. Let qSTA be the statistical power of the study. By applying our method, the
power drops to qSTA(1 − eSPU), but the drop will be small if eSPU is kept small by
using a large LR threshold.

Now we consider the joint effect of part (1) and (2) on FWER considering all
markers in M and K. Let β′ be the probability of spurious associations among K.
In many cases, β′ > β. If one uses the Bonferroni correction to use the significance
threshold of α/(m+k), FWER will be controlled at mα

m+k+mβ amongM and kα
m+k+kβ′

among K. Thus, the overall FWER will be approximately α+mβ + kβ′, which can
be very large if β′ is large. If we apply RESQUE, FWER is now controlled at

αRESQUE = mα

m+ k
(1− eSPU) + kα

m+ k
qTRU +mβ(1− qSPU) + kβ′eTRU .

Since αRESQUE ≤ αQC + kβ′eTRU, as long as we keep eTRU very small, we can control
FWER approximately at least at αQC, the level that we would obtain with only
applying QC, and possibly even lower because spurious associations will be removed.

Now we provide a practical example. Suppose n = 480, 000 and m = 20, 000.
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We usually do not know β′, but the number of significant associations among K, say
l, can be an estimate of kβ′. This will usually be a conservative over-estimate because
they will contain true genetic associations as well. If we want to keep kβ′eTRU as
small as .05α, we need to control eTRU at .05α/l, which is 10−5 if α = .05 and l = 250.
This can be achieved by using the aforementioned decision making procedure based
on both the LR and p-value, so that true associations can be predicted only when
pT < 10−5.

However, stochastically estimating pT for each association can be a time con-
suming procedure. Since pT is often extremely small, the standard sampling pro-
cedure requires a very large number of samples. We can overcome this problem by
using importance sampling [73]. Since we make decisions based on both LR and
p-value, we need to estimate pT only if LR ≥ C. Since this large LR already shows
that the observation is close to the mean of fT , we have a suitable sampling distri-
bution for importance sampling, fT . Let x1, ..., xB be the samples from fT . Then,
the p-value formula (4.1) can be estimated by

B∑
i=1

I
(
LRRESQUE(xi) ≥ LRRESQUE(Ŝ1, ..., Ŝn)

)
(fS(xi)/fT (xi))

B
,

where I(·) is an indicator function. This estimate will have a much smaller variance
compared to directly sampling from fS.

If there are t true genetic associations among M and t′ among K, if we only
apply the standard QC, the expected number of true positives is tqSTA. Now if we
apply our method, it is tqSTA(1 − ε)(1 − eSPU) + t′qSTAqTRU, where ε is the power
loss due to the increased multiple testing burden, induced by using the significance
threshold of α/(m+k) instead of α/m. If t′ > 0 and eSPU is kept small, this quantity
can be larger than tqSTA. Thus, the study power can increase.

Now we consider the case that the aforementioned simplifying assumption
does not hold. If the major cause of an association is genetic effect, RESQUE will
rescue the association among QC-excluded markers, but there can also be the effect
of errors. To alleviate this problem, we apply a similar idea to genomic control
[20]. We estimate the standard deviation of the statistics among the QC-passed
associations, σ, and the standard deviation of the statistics among the QC-excluded
associations, σ′. Usually, σ′ ≥ σ ≈ 1. Then we can adjust the statistics at the QC-
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excluded associations by a factor of σ/σ′ to compensate the increased variance. We
call the resulting association p-values after this adjustment penalized p-values. If a
large number of associations are predicted as true among QC-excluded associations,
σ′ can be estimated from the associations that are only predicted true instead. In
WTCCC data, we find that σ ≈ 1.04 and σ′ ≈ 1.17 resulting in σ′/σ ≈ 1.13. If we
only consider the associations that are predicted true, σ′ ≈ 1.16.

4.2.3 Genotype data

We downloaded the HapMap genotype data (release 23a, NCBI build 36)
from the HapMap project web site [35, 1] and phased the data into haplotypes using
HAP [81], which can handle the trio information. We downloaded the genotype data
from the Wellcome Trust Case Control Consortium web site [74]. We downloaded
the control data and the case data for bipolar disorder (BD), coronary artery disease
(CAD), CrohnâĂŹs disease (CD), hypertension (HT), rheumatoid arthritis (RA),
type 1 diabetes (T1D), and type 2 diabetes (T2D).

4.3 Results

4.3.1 Simulations in HapMap ENCODE regions

We test the performance of RESQUE using the HapMap ENCODE regions
of the CEU population consisting of 120 parental haplotypes. The ten ENCODE
regions contain 10,710 SNPs. We assume that the 1,464 SNPs in the Affymetrix
Human SNP Array 6.0 are genotyped, which we will call tag SNPs.

First we generate 1,000 studies with true associations. Given one ENCODE
region, we randomly select a causal SNP among all SNPs and pick a relative risk
from Uniform(1.1,1.4). We assume that the minor allele is causal and the disease
prevalence is .01. Then we sample 2,000 cases and 2,000 controls (total 8,000 hap-
lotypes) based on the relative risk. In practice, there exists a difference in MAF
and LD between the collected sample and the reference dataset. Since our simulated
study is directly generated from the reference dataset, in order to simulate more
realistically, for every SNP of each haplotype, we mutate (change the value of the
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allele) with probability .01. If the most significant p-value among all tag SNPs is
between 10−6 and 10−10 (roughly the genome-wide significance level), we accept this
study. Otherwise, the dataset is not used. We repeat this to construct 100 studies
per each of 10 regions.

Second, we generate 1,000 studies with spurious associations. Given a region,
we randomly select an error SNP among all tag SNPs and pick a case mutation rate
µ1 and a control mutation rate µ0 each from Uniform(0,.5). We randomly sample
2,000 cases and 2,000 controls and change the allele at the error SNP with probability
µ1 in the cases and µ0 in the controls, to induce a systematic bias. For all other SNPs,
we apply the mutation probability of .01. We start over until the p-value at the error
SNP is between 10−6 and 10−10. We repeat this to construct 100 studies per each of
10 regions.

Then we apply RESQUE to all 2,000 studies to examine if RESQUE can
correctly discriminate 1,000 studies with true associations and 1,000 studies with
spurious associations. For each association-showing SNP, we use the nearby SNPs
with r2 > .3. If there is no nearby SNP with r2 > .3, we use the most correlated
SNP. We threshold the LR with various levels and the results are shown in Table
4.1.

Table 4.1 shows the predictions made by RESQUE depending on the threshold
levels. Using a low threshold means that we make less ambiguous predictions with
the cost of less accurate predictions. Using a high threshold means that we make
more accurate predictions with the cost of more ambiguous predictions. For all
threshold levels tested, RESQUE makes correct predictions on >95% of the true
associations and >84% of the spurious associations. Surprisingly, at any threshold,
RESQUE makes at most only 1 incorrect prediction on true and spurious associations
respectively, showing a very high discriminative power.

The source of this high power turns out to be the genome-wide significance
threshold. To show this, we similarly construct another set of 2,000 studies with
true and spurious associations so that the most significant p-value in each study
can be between 10−2 and 10−6. Then we construct another set so that the p-value
can be 10−10 and 10−14. Thus, we have a study set of 10−2 < p < 10−6, a set
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of 10−6 < p < 10−10, and a set of 10−10 < p < 10−14. We plot the histogram
of log10(LR) for each of three sets. Figure 4.3 shows that the LR distributions are
more drastically separated between true and spurious associations for study sets with
more significant p-values. The more the LR distributions are separated, our method
obtains higher power. Therefore, the high power of our method can be thought of as
the beneficial side-effect of the efforts to achieve genome-wide significance level.

In Methods, we have shown that our method has a theoretical property that
the performance is not greatly affected by the choice of nearby SNPs. Instead of
choosing nearby SNPs with r2 > .3, we choose SNPs with r2 > .5 and repeat the
analysis. Table 4.2 shows that the results are similar to the results in Table 4.1, with
power differing only by a maximum of 2% between two experiments.

One drawback of our approach is that we do not have any discriminative
power for a marker that does not have any markers in LD. However, the proportion
of these markers is small because even if a marker is covered with a low r2 by nearby
markers, our method has a reasonable amount of power. To show this, we take the
study set of genome-wide significance level (10−6 < p < 10−10). For each study, we
look at the maximum r2 that the signal-showing SNP is covered by nearby SNPs. We
split the studies according to the range of maximum r2, and plot the LR distributions
for each r2 range. Figure 4.4 shows that at the low r2 range of 0.3 < r2 ≤ 0.5, the LR
distributions are already separated by a considerable amount. Thus, our method is
likely to have a reasonable power if the marker is covered with r2 as low as between
0.3 and 0.5.

When we estimate the likelihood under the true association model, we assume
that the signal-showing SNP is causal and estimate the effect size based on the
observation of the signal-showing SNP. However, both the assumption and estimation
can be incorrect. Since we know the actual causal SNP and the effect size for these
simulations, we examine whether the LR distribution changes if we use the actual
causal SNP and the effect size. Results show that, if we use the true values, the LR
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Figure 4.3: Relation between RESQUE’s discriminative power and the p-value level.
As the p-value becomes more significant, the LR distributions between true and
spurious associations become highly separated, giving our method high discriminative
power. LR is the likelihood under the true model divided by the likelihood under
the spurious model. The dashed vertical lines denote the decision boundaries if the
LR threshold C = 1, 000 is used. RESQUE predicts true associations for observations
in the right region, predicts spurious associations for observations in the left region,
and makes ambiguous predictions for observations in the middle region.
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Figure 4.4: LR distributions of true and spurious associations, separated into r2

bins. As we expect, the higher the maximum r2 to nearby markers is, the two LR
distributions are more highly separated giving QRC high power. At a r2 level as low
as 0.3-0.5, two distributions are already separated by a considerable amount.
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distribution of the true associations moves slightly to the right (data not shown).
That is, our method obtains slightly more power. However, the amount of power
increase is very small, showing that our assumption and estimation are not a critical
factor affecting the performance. Note that the LR distribution of the spurious
associations is not affected by these assumptions, because there is no true causal
SNP or effect size.

In our simulations, the discriminative power of our method is high enough
that we can use a low LR threshold of C = 10 without making many incorrect
predictions. However, in practice, there can be other causes that can degrade the
accuracy of predictions. Therefore, we suggest a conservative threshold of 1,000 so
that the predictions are made only if the evidence is strong.

4.3.2 Application to WTCCC data

We apply RESQUE to the WTCCC data using the HapMap CEU data as
a reference dataset. Among 500,568 SNPs in the WTCCC data, we remove 63,550
SNPs that are non-polymorphic in the HapMap CEU data, 8,013 SNPs that did not
have rs-ids, and 6,626 SNPs that were not in the version of the HapMap data we
used. We use the remaining 422,379 SNPs in the following analysis. Although it
will be possible to re-do the analysis with the current version of the HapMap, we
assume that it will make little difference because our method is only applied to the
significant associations of which the vast majority are in the remaining SNPs. We
exclude all problematic individuals specified by WTCCC.

The QC filters that WTCCC applied are as follows. They first remove SNPs
that have (1) a high rate of missing genotypes, (2) deviation from HWE, or (3)
a significant difference between the two control groups. QC (1)-(3) exclude 20,794
SNPs among the SNPs we analyze. They apply the association tests to the remaining
SNPs. Given significant associations, they additionally exclude SNPs that have (4)
a bad genotype clustering plot or (5) a bad p-value plot. Examining the p-value plot
is the same idea as RESQUE; nearby SNPs should show comparable p-values. QC
(4) and (5) are manually performed in their analysis.

WTCCC reports tens of associated regions over 7 diseases based on the SNPs
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that both pass QC and show genome-wide significance (p < 5.7 × 10−7) in either
the trend test or the 2-degrees of freedom genotypic test. We will not consider their
advanced analysis such as the combined cases or multi-locus analysis. A total of 740
associations are shown to be significant in these regions.

In order to examine if there are any spurious associations among the 740
reported associations, we apply RESQUE to these associations. we look at 50 neigh-
boring SNPs in each direction and choose nearby SNPs with r2 > .3. This is roughly
equivalent to looking at 300kb to each direction. We apply a conservative LR thresh-
old of C = 1, 000 so that we make a prediction only when the evidence is strong. We
make an ambiguous prediction if the evidence is not strong or fewer than 3 nearby
SNPs are used in LR computation.

The results show that RESQUE finds strong evidence of true associations
in 660 (89%) out of 740 reported associations (left column of Table 4.3). Thus,
based on the LD information, RESQUE is confirming that the majority of reported
associations are true associations. RESQUE makes ambiguous predictions for 134
associations and detects possibly spurious associations for 6 associations. Al these
6 associations are for type 1 diabetes and in MHC region where a huge number of
associations exist 4.4. Thus, whether they are spurious does not make a difference
in the analysis. However, this at least shows that RESQUE can strongly confirm
the true associations and there can be spurious associations not captured by the
standard QC.

Next, we examine if there are any associations RESQUE rescues among the
markers excluded by QC. We put back the 20,794 SNPs excluded by QC (1)-(3)
in the dataset and perform association test. We apply the χ2 test with the same
genome-wide threshold (p < 5.7 × 10−7) to obtain additional associations. We also
put back the associations that passed QC (1)-(3) but did not pass QC (4)-(5). As a
result, we obtain 1,822 new associations in the autosomes.

We apply RESQUE to these 1,822 new unreported associations using the same
protocol as above. The results show that RESQUE finds strong evidence of spurious
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associations in 745 (41%) out of 1,822 unreported associations (right column of Table
4.3). Thus, based on the LD information, RESQUE is confirming that about a half
of new associations are spurious associations with high confidence. RESQUE makes
ambiguous predictions for 976 associations. RESQUE finds that 101 associations
show strong evidence of true associations based on the LD information and remains
genome-wide significant after correcting for the increased variance with the factor of
1.12, which is the estimated standard deviation increase of the statistic.

Among these 101 possibly rescued true associations, 1 SNP is for CAD, 3 are
for CD, 31 are for RA, and 66 are for T1D (Table 4.5). Except for 1 association
at 1p31.3 for type 1 diabetes, all these new candidate associations overlap with the
reported regions by WTCCC. Thus, effectively, RESQUE rescues only 1 association
for all 7 diseases. This association is located at PGM1 gene where only a moderate
(p < 10−4) significance was reported by WTCCC 4.6. Interestingly, this gene is one
of the 18 regions recently identified and replicated by a meta-analysis performed 2
years after the WTCCC analysis [4]. This shows that RESQUE may help studies to
identify supplemental candidate regions.

We plot the LR distributions for all of 740 reported and 1,822 unreported
associations in Figure 4.5. Two highly separated bimodal distributions show that
there is plenty of information in the LD that we can take advantage of to discriminate
true and spurious associations. Although two bimodal distributions do not look
symmetric, it should be noted that it is not a systematic bias which moves the two
distributions to the positive direction. The high peak around 0 (LR of 1) is expected
because it contains markers which do not have nearby markers in LD. The reason
we did not see this peak in simulations using the ENCODE regions can be that the
marker set we use (1M chip) covers the majority of markers in the ENCODE regions
in LD.

In this analysis, we made decisions based only on the LR. However, as de-
scribed in Methods, it is possible to make decisions based on both the LR and the
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Figure 4.5: Likelihood ratio distribution of WTCCC associations. Reported
associations denote the associations reported by WTCCC as genome-wide
significant. Unreported associations denote the associations that achieve
genome-wide significance but did not pass QC. The dashed vertical lines denote
the decision boundaries of RESQUE given the LR threshold C = 1, 000. LR is
the likelihood under the true model divided by the likelihood under the spurious
model. RESQUE predicts true associations for observations in the right region,
predicts spurious associations for observations in the left region, and makes
ambiguous predictions for observations in the middle region. The peak around
0 includes markers which do not have nearby markers in LD. Ambiguous predictions
are made for these markers because they have no LD information.
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p-value pT , so that the false positive rate can be approximately controlled. If we
want to control FWER to .05 per each disease, this can be approximately achieved
by predicting true associations among QC-excluded markers only when LR ≥ C and
pT < 10−5. After applying this decision procedure, the results are almost unchanged.
The only difference from the results in Table 4.3 is that 1 out of 660 associations that
were predicted as true among reported associations is now predicted as ambiguous.
Thus, applying the decision procedure based on both the LR and p-value is nearly
equivalent to the decision procedure based only on the LR in this analysis.

4.4 Discussion

We propose an approach which quantitatively measures the evidence of spu-
rious associations at post-association stage using the LD information. Our approach
can be thought of as a formalization of what is typically done in studies by intuition.
Since our approach can indicate the evidence of “true” associations as well, the study
power can increase by rescuing the associations at the QC-excluded markers.

To the best of our knowledge, our method is the first formal approach for qual-
ity refinement at the post-association stage based on the post-association results. We
expect that more ideas can be developed for the post-association quality refinement
area, so that they can interplay with existing pre-association stage QC to provide a
strong protection against spurious associations. Our method is also the first attempt
to find meaningful results from the markers which are typically discarded.

Since we use z-scores and the MVN framework in likelihood computation,
obtaining the correct covariance matrix is important. It will be necessary to select
appropriate reference population which closely resembles the LD structure of the
target population. Also, if there are allele labeling inconsistencies or strand errors
between the sample and reference dataset (e.g. A/T are erroneously considered as
T/A), it will adversely affect the performance because maintaining the correct sign
of correlation is important to compute accurate likelihood. These errors can also
be problematic in imputation methods and meta-analysis [17]. There are known
methods based on MAF or LD for detecting strand errors between two datasets [59],
which can be used for our method to check strand errors between the sample and
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reference dataset.
The application of our approach is limited to the case where systematic bias

does not exist such as the population structure. Therefore, it is important to examine
the evidence of such bias before applying our procedure. A similar method modeling
the systematic bias or an extension to the next-generation sequencing will be an
interesting area for further investigation.

4.5 Web Resources

The URL for methods presented herein is as follows:
http://resque.cs.ucla.edu

Chapter 4 is currently in submission for publication of the material. Buhm
Han, Brian M. Hackel, and Eleazar Eskin, “Finding new associations and detect-
ing spurious associations at post-association stage”. The dissertation author is the
primary investigator and author of this paper.
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Table 4.5: 101 associations rescued among markers excluded by QC in WTCCC
data. All 101 associations show strong evidence of true associations based on the
LD information (LR > 1, 000) and genome-wide significant (p < 5.7× 10−7) after
correcting for the increased variance. Unreported regions are the regions where no
SNPs were reported as genome-wide significant by WTCCC.

Overlap with
reported regions

In unreported
regions

BD 0 0
CAD 1 0
CD 3 0
HT 0 0
RA 31 0
T1D 64 1
T2D 0 0
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Chapter 5

Conclusion and remarks

5.1 Summary and Conclusion

In this dissertation, I propose that major challenges in genetic association
studies can be solved by effectively utilizing the LD information. For the multiple
hypothesis testing correction problem, I take advantage of the characteristic of LD
patterns that LD is localized by using an efficient sliding-window approach. For
the power estimation problem, unlike the previous approaches which assumes the
markers are independent, I take into account the LD patterns to estimate accurate
power. For the tag SNP selection problem, instead of using only the correlations, I
extract power information from LD by accounting for allele frequencies. By using
the power itself as a SNP selection criterion, my method outperforms others. For the
spurious association detection problem, I formalize the idea that the markers in LD
should show similar p-values if the association is not caused by errors. I also extend
this framework to “rescue” associations at the markers which are typically excluded
by QC.

I expect that these method will help the future association studies to design
and analyze better, so that more true genetic variations responsible for the diseases
can be identified without incurring excessive false positives. The identified true
genetic associations will improve our knowledge about the disease and hopefully and
ultimately contribute to human health.

102
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5.2 Future works

There are still many statistical and computational challenges for genetic asso-
ciation studies. An interesting challenge is the statistical framework which maximizes
the statistical power for sequenced data. Since sequenced data include many rare
variants, the current approach applying tests to each individual variant has poor sta-
tistical power. The underlying idea is that we can collapse the information within a
meaningful genomic region such as a gene, so that the association between the region
and the phenotypes can be detected. There are previously proposed frameworks such
as the collapsing method [45] or weighted groupwise association test [50]. However,
it is not clear whether there exists an optimal method, and for which situation and
disease model each proposed method is suitable. For example, if the relative risk
for each variant is known, the statistic based on the exact likelihood ratio will be
different from the previous methods.

Genetic association studies based on model organisms such as the mouse are
also a promising area because experiments can be done on these organisms which are
not possible for humans, such as making genetic crosses or controlling the environ-
ment. Since the phenomenon of population structures is severe in model organisms,
methods for controlling population structure are typically applied to assess the cor-
rect statistical significance of associations in the presence of population structure
[39]. However, it is not clear if these methods are applied, how we should estimate
the power and how much the multiple testing burden will be. It will be interesting to
develop a power estimation procedure and a multiple hypothesis testing correction
procedure for model organisms.

Finally, systems genetics is also an interesting area integrating multiple layers
of data, such as the genotypes, intermediate phenotypes, and disease phenotypes.
Since the gene expression data are now extensively gathered by the microarray tech-
nology, it will be interesting how these data integrate and provide useful information
about the causality, such as which genes’ expression levels affect the disease and are
affected by the disease [11]. If we can infer the causal relationships between interme-
diate phenotypes and disease phenotypes, it will help us understand the underlying
pathways how the disease phenotypes are developed.
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