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Abstract of the Dissertation

Distributed Adaptation over Networks with

Applications to Biological Networks

by

Sheng-Yuan Tu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Ali H. Sayed, Chair

Adaptive networks consist of a collection of nodes with adaptation and learning

abilities. The nodes interact with each other on a local level and diffuse informa-

tion across the network to solve estimation and inference tasks in real-time. In

this dissertation, we first examine and compare the mean-square performance of

two main strategies for distributed estimation over networks: consensus strategies

and diffusion strategies. The analysis confirms that diffusion networks converge

faster and reach lower mean-square deviation than consensus networks, and that

their mean-square stability is insensitive to the choice of the combination weights.

In contrast, and surprisingly, it is shown that consensus networks can become

unstable even if all individual nodes are stable and able to solve the estimation

task on their own. This finding motivates us to focus on the study of diffusion

networks. We incorporate node mobility into the design of the networks and

demonstrate that the resulting strategies are well suited to model various types

of self-organized behavior observed in biological networks.

We also examine the effect of heterogeneous sources of information on network

performance. In one scenario, we consider two types of agents: informed and
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uninformed. Informed agents receive new data regularly and perform consultation

and in-network processing tasks, while uninformed agents participate solely in

the consultation tasks. It is established that if the set of informed agents is

enlarged, the convergence rate of the network becomes faster albeit at the possible

expense of some deterioration in mean-square performance. The arguments reveal

an important interplay among three factors: the number and distribution of

informed agents in the network, the convergence rate of the adaptation process,

and the estimation accuracy in steady-state. In a second scenario, we study the

situation in which the data observed by the agents may arise from two different

distributions or models. We develop and study a procedure by which the entire

network can be made to follow one objective or the other through a distributed

and collaborative decision process. The results are useful to model situations

where the agents in biological networks need to decide between multiple options,

such as deciding between moving towards one food source or another or between

moving towards a new hive or another.

The results in this dissertation reveal some interesting phenomena that relate

to adaptation over networks: more information is not necessarily better and

the way by which information is processed and propagated through the network

matters: small variations can lead to catastrophic failures. The dissertation

also reveals the convenience of using diffusion strategies to model sophisticated

behavior exhibited by biological networks such as fish schooling and prey-predator

behavior.
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CHAPTER 1

Introduction

1.1 Insights from Biological Networks

Self-organization is a remarkable property in nature and has been observed in

several physical and biological networks [25, 45]. Examples include fish joining

together in schools, ants forming trails in foraging, and birds flying in formation.

In such networks, a global pattern of behavior emerges from limited and localized

interactions among the individual agents of the network. One interesting behavior

is collective motion [25, 45, 48, 120, 135, 161], where animals move together in

amazing synchrony such as fish schools swimming together in ball or band shaped

patterns [111], birds flying in V-formation [4], or bees swarming towards a hive

[70]. In fish schools, for example, the individual agents tend to have similar speeds

and to move in alignment while keeping a safe distance from their neighbors to

avoid collisions. Nevertheless, when predators appear, fish schools are able to

react almost instantly; they reconfigure their topology to evade the predator and

then regroup to continue with their schooling.

From a signal processing perspective, there are four properties exhibited by

biological networks that are particularly relevant to the development of adaptive

distributed strategies. First, in several of these networks, there is not gener-

ally any single agent taking central command and dictating the behavior of the

other agents. Instead, the agents tend to be homogeneous in that they have
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similar abilities. Second, due the lack of a central command unit, the agents in

these networks tend to base their actions and decisions on observations of their

neighbors’ actions. That is, the interactions among the agents are localized. In-

terestingly, even though the individual agents tend to have limited capabilities,

through localized collaboration, the network as a whole is able to exhibit sophis-

ticated behavior. This phenomenon serves as one manifestation of the power of

distributed processing. Third, agents in biological networks are constantly mon-

itoring their environment to avoid attacks by predators. Therefore, the agents

need to respond to the continuous streaming of data from their environment.

Finally, the agents need to respond to the information they collect in real-time.

These last two properties indicate that agents in biological networks are endowed

with adaptation and learning abilities. One of the main objectives of this disser-

tation is to design and examine adaptive networks for distributed inference and

to incorporate mobility into the operation of the agents in a manner that enables

the resulting adaptive networks to model various forms of sophisticated behavior

exhibited by biological networks.

There have been extensive prior studies on the collective motion of animal

groups in the sciences and engineering literature (see, e.g., [25,45,66,67,120,159,

161] and [11,13,63,96]). For example, collective patterns of behavior have been ex-

ploited in the design of robotic systems and distributed control mechanisms with

application to military and surveillance systems [24,56,68,100,106,107,118,171].

In these applications, it is generally assumed that the individual agents move

along the average direction of their neighbors and use repulsion and attraction

mechanisms to maintain safe distances from the neighbors. While such techniques

help generate coordinated motion behavior, they nevertheless do not generally

account for the adaptation and learning abilities of the agents. In nature, agents

are rarely interested in only aligning their motion with their neighbors. The net-
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work generally has more complex objectives, such as estimating the location of

food sources and evading predators. Moreover, since agents have individualized

assessment of their environment, it is unnatural to expect all agents to behave

in coordination. For example, a fish that is closer to a predator should react

differently from fish that are further away. For these reasons, it is important to

incorporate learning and adaptation abilities into collective motion so that net-

works are able to accomplish their estimation and inference tasks while, at the

same, they maintain the flexibility to adapt to the information they receive.

There are other issues that stand out in the behavior of biological networks,

besides collective motion and the ability of their agents to adapt and learn in

reaction to drifts in the environment. Agents also tend to have various degrees of

information: some agents are more informed than others. Actually, in biological

networks, the behavior of the network and its motion is often influenced heavily

by a small fraction of informed agents. The experiment performed in Figure 1

of [136] provides a good example. In that experiment, when a few fish agents

on the boundary of the perimeter are frightened, these agents rapidly change

their direction of motion and reverse their orientation. The behavior propagates

through the network very quickly. After a short period of time, the entire net-

work ends up moving in the opposite direction relative to the original motion.

Another example occurs in honeybees. It is observed in the home-site selection

procedure that only 3-5% of bees [130] in the swarm have been to the new site

(i.e., possess information). Interestingly, such small fraction of the swarm is still

able to lead the entire swarm towards the new site. These observations reveal

that although agents in a network can be homogeneous in their capabilities, they

can nevertheless be heterogeneous in their access to information: some agents are

more informed while others are less informed or uninformed.
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Furthermore, the data observed by the agents in a network may arise from dif-

ferent distributions or models. It is common for biological networks to encounter

situations where agents need to decide between multiple options [7, 12, 137, 138],

such as fish deciding between moving towards one food source or another [46],

and ants or bees deciding between moving towards a new hive or another [23,113].

In this situation, data arriving at any particular agent could have originated from

one model or the other, and the objective of the network becomes that of achieving

agreement among the agents about which model to pursue as a group. Therefore,

in addition to learning and adaptation abilities, agents should be endowed with

decision-making abilities to resolve conflicts of interest situations. The decision-

making process needs to be implemented in a fully distributed manner and in

real-time as well.

1.2 Contributions

The studies in this dissertation are motivated by the aforementioned remarkable

properties of biological networks. In particular, the contributions of this work

belong to three broad areas. First, we examine and compare distributed adap-

tation strategies over networks and analyze which strategies are more resilient

and stable in the face of changing topologies, and which strategies perform bet-

ter. It is not uncommon in the literature to find the term “distributed” used

to mean that the data are collected in a distributed manner by the agents and

transferred to a fusion center for processing [36, 79, 79, 114, 162]. In this case,

the qualification “distributed” is only meant to refer to the distributed nature

of information gathering. It is clear though that such centralized solutions do

not process data in a distributed manner; they are also prone to catastrophic

failure: if the fusion center collapses, then the solution is interrupted. This
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mode of operation is not characteristic of biological networks where processing

is dispersed among the spatially distributed agents. There are three general

approaches to enable distributed processing over networks: the incremental ap-

proach [18, 88, 93, 102, 115], the consensus approach [50, 73, 103, 144], and the

diffusion approach [34,37,39,95,124,127,142,143]. In the incremental solution, a

cyclic path is constructed over the agents and the data are processed in a cyclic

manner through the network. However, determining a cyclic path that covers

all agents is generally an NP-hard problem [75] and, in addition, cyclic trajec-

tories need to be reconstructed in case of link or agent failures. In contrast,

in the consensus and diffusion approaches, each agent shares information with

its immediate neighbors and data processing is performed locally at the agents.

Thus, even when any of the agents fails, the sharing of information will not be

interrupted and the distributed solution continues to operate. Nevertheless, this

dissertation reveals that there are some important differences in the dynamics

of the consensus and diffusion networks. Specifically, consensus networks can

become unstable even if all individual agents are stable and able to solve the

estimation and inference tasks on their own. In contrast, diffusion networks are

stable regardless of the network topology. They also deliver better mean-square

performance at faster convergence rate than consensus networks. These results

suggest that due to their inherent robustness to topology changes, diffusion net-

works are well suited to model sophisticated behavior in biological networks where

topologies are continuously evolving with time.

The second broad area we consider is to examine the effect of heterogeneous

sources of information on network performance. Specifically, we consider two

types of agents: informed and uninformed. Informed agents receive new data

regularly and perform consultation and in-network processing tasks, while unin-

formed agents participate solely in the consultation tasks. We establish that if
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the set of informed agents is enlarged, the convergence rate of the network be-

comes faster albeit at the possible expense of some deterioration in mean-square

performance. This implies that more information is not necessarily better. In

addition, there exists an important interplay among three factors: the number

and distribution of informed agents in the network, the convergence rate of the

adaptation process, and the estimation accuracy in steady-state.

The third broad problem we study relates to adaptation over networks when

agents have distinct objectives. We consider the situation in which the data

observed by the agents may arise from two different distributions or models, but

the objective of the network is still to agree and to converge to one of the models.

We develop a procedure by which the entire network can be made to converge

to a common model through a distributed and collaborative decision process.

We also examine the rate of information transfer over the network. We show

that the interactions among the agents in the network need to be information-

aware. It has often been suggested in the literature that the patterns of collective

motion observed in nature can be modeled by having each agent move along the

average direction of its neighbors. However, recent experiments on the behavioral

rules of fish schools appear to challenge this traditional uniform (or averaging)

combination rule [76]. We establish that the combination weights should be

information-aware: agents should assign larger weights to more informed agents.

We explain how this can be achieved. By doing so, quicker transfer of information

is attained through the network.

1.3 Organization

The organization of the dissertation is summarized as follows.
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• Chapter 2: We motivate and derive two classes of distributed adaptation

strategies: consensus and diffusion. It turns out that both families can

be derived as special cases of the same formalism by employing steepest-

descent and incremental techniques. We then carry out a detailed mean-

square performance analysis of the distributed solutions in a unified manner

in preparation for the following chapters.

• Chapter 3: In this chapter, we compare the mean-square performance

of consensus and diffusion strategies. The analysis confirms that diffusion

strategies allow information to diffuse more thoroughly through the network

and this property has a favorable effect on the evolution of the network:

diffusion networks are shown to converge faster and reach lower mean-square

deviation (MSD) than consensus networks, and their mean-square stability

is insensitive to the choice of the combination weights. In contrast, and

surprisingly, it is shown that consensus networks can become unstable even

if all the individual agents are stable and able to solve the estimation task

on their own. When this occurs, cooperation over consensus network leads

to a catastrophic failure.

• Chapter 4: One important issue in the design of adaptive networks is how

to combine the information collected from the neighbors, especially when

the links over which information is exchanged are subject to noise and

interference. In this chapter, we propose an optimal strategy for selecting

the combination weights for the diffusion implementation in order to counter

the effect of noise sources from measurement and information exchanges.

We also develop an effective strategy to adapt the combination weights over

time, which is particularly useful when the data moments are not available

and when networks are operating under non-stationary conditions. For
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example, in mobile networks where agents are continuously on the move and

where neighborhoods evolve over time, it is particularly critical to develop

adaptive combination strategies that are able to track the dynamics of the

noise profile and to perform estimation and inference successfully under

such demanding and varying conditions.

• Chapter 5: We examine the effect of heterogeneous sources of informa-

tion on network performance in this chapter. We consider two types of

agents: informed agents and uninformed agents. The former receive new

data regularly and perform consultation and in-network tasks, while the

latter do not collect data and only participate in the consultation tasks.

We examine the performance of diffusion strategies as a function of the

proportion of informed agents and their distribution in space. The results

reveal some interesting and surprising trade-offs between convergence rate

and mean-square deviation. In particular, among other results, it is shown

that the mean-square deviation of diffusion networks does not necessarily

improve with a larger proportion of informed agents. Instead, it is estab-

lished that if the set of informed agents is enlarged, the convergence rate

of the network becomes faster albeit at the expense of some deterioration

in mean-square performance. The results further establish that uninformed

agents play an important role in determining the steady-state performance

of the network, and that it is preferable to keep some of the highly noisy or

highly connected agents uninformed.

• Chapter 6: In distributed processing, agents generally collect data gen-

erated by the same underlying unknown distribution and then solve the

desired estimation and inference tasks cooperatively. In this chapter, we

consider the situation in which the data observed by the agents may arise
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from different distributions or models. Agents do not know beforehand

which model accounts for their data and the objective for the network

becomes that of guiding all agents towards the same common goal. In

these situations, where agents are subject to data from unknown different

sources, conventional distributed estimation strategies would lead to biased

solutions. We first show how to modify existing strategies to guarantee

unbiasedness. We then develop a classification scheme for the agents to

identify the models that generated the data, and propose a procedure by

which the entire network can be made to converge towards the same model

through a collaborative decision-making process. The probability of error

in the classification scheme is evaluated. We also examine the convergence

rates of the estimation and decision-making processes and characterize the

speed at which information diffuses through the network.

• Chapter 7: We add another dimension of complexity in this chapter. We

incorporate mobility into the design of adaptive networks and study what

we refer to as mobile adaptive networks. We develop control mechanisms

that enable the agents to move in a coordinated manner and to simultane-

ously solve the estimation or inference tasks of interest. The motion of the

agents is influenced by the quality of the adaptation process and vice versa,

such that the two issues of adaptation and mobility become intertwined.

Moreover, by combining motion coordination with adaptation in real-time,

this chapter extends previous studies on the motion of coordinated agents,

which generally assume that the individual agents move along the average

direction of their neighbors and maintain safe distances from the neighbors.

We apply the mobile adaptive networks to model sophisticated behavior ob-

served in biological networks, such as mobile networks in the presence of
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moving predators, mobile networks with two distinct targets, and mobile

networks with a small fraction of informed agents. The results help pro-

vide an explanation for the agile adjustment of network patterns in the

interaction between fish schools and predators, for decision-making pro-

cesses among animal groups, and for the quick information transfer from

informed agents to the entire network.
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CHAPTER 2

Distributed Estimation Strategies

In this chapter, we motivate and derive two well-studied distributed strategies,

namely, consensus and diffusion strategies, within a unified framework. The

consensus strategy has been originally proposed in the statistics literature [49]

and has since then been developed into an elegant procedure to enforce agree-

ment among cooperating agents. Average consensus and gossip algorithms have

also been studied extensively in recent years, especially in the control litera-

ture [8, 22, 69, 106, 109, 122, 166], and have been applied to the study of multi-

agent formations [56, 68, 107, 118], distributed optimization [103, 104, 144], and

distributed estimation problems [50, 73, 128, 129]. Original implementations of

the consensus strategy relied on the use of two time-scales [11,71,168]: one time-

scale for the collection of measurements across the agents and another time-scale

to iterate sufficiently enough over the collected data to attain agreement before

the process is repeated. Unfortunately, two time-scale implementations hinder

the ability to perform real-time recursive estimation and adaptation when mea-

surement data keep streaming in. For this reason, in this work, we focus instead

on consensus implementations that operate in a single time-scale. Such imple-

mentations appear in several recent works, including [50, 73, 104, 129], and are

largely motivated by the procedure developed earlier in [19, 144] for the solution

of distributed optimization problems.

The second class of algorithms that we consider deals with diffusion strategies,
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which were originally introduced for the solution of distributed estimation and

adaptation problems in [28,31,32,34,35,92,95,125,126]. The main motivation for

the introduction of diffusion strategies in these works has been the need to de-

velop distributed schemes that are able to respond in real-time to the continuous

streaming of data at the agents by operating over a single time-scale. A useful

overview of diffusion strategies appears in [124]. Since their inception, diffusion

strategies have been applied to model various forms of complex behavior encoun-

tered in nature [29,40,86,145,147,149,150]; they have also been adopted to solve

distributed optimization problems advantageously in [37, 39, 116, 133]; and have

been studied under varied conditions in [1, 41, 42, 87, 98, 140] as well. Diffusion

strategies are inherently single time-scale implementations and are therefore nat-

urally amenable to real-time and recursive implementations. It turns out that

the dynamics of the consensus and diffusion strategies differ in important ways,

which in turn impact the mean-square behavior of the respective networks in a

fundamental manner, as we will reveal in the next chapter.

2.1 Cooperative and Non-Cooperative Strategies

Consider a network consisting of N agents distributed over a spatial domain.

Agent l is said to be a neighbor of agent k if agent k can receive information from

agent l. The fact that agent l is a neighbor of agent k does not necessarily imply

that agent k is a neighbor of agent l. In other work, the network is assumed to

be directed. The neighborhood of agent k is denoted by Nk and the number of

neighbors (or the degree) of agent k is denoted by nk. The agents in the network

would like to estimate an unknown M × 1 vector, w◦. At every time instant, i,

each agent k is able to observe realizations {dk(i), uk,i} of a scalar random process

dk(i) and a 1×M vector random process uk,i with a positive-definite covariance
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matrix, Ru,k = Eu∗
k,iuk,i > 0, where E denotes the expectation operator. The

regressors {uk,i} are assumed to be temporally white and spatially independent,

i.e.,

EuT
k,iul,j = Ru,k · δkl · δij (2.1)

in terms of the Kronecker delta function, i.e.,

δkl =







1, if k = l

0, if k 6= l

(2.2)

All vectors in our treatment are column vectors with the exception of the regres-

sion vector, uk,i, which is taken to be a row vector for convenience of presentation.

It is common to assume that the random processes {dk(i),uk,i} are related to w◦

via the linear regression model [123]:

dk(i) = uk,iw
◦ + vk(i) (2.3)

where vk(i) is measurement noise with zero mean and variance σ2
v,k and assumed

to be temporally white and spatially independent. The noise vk(i) and the re-

gressors {ul,j} are assumed to be independent of each other for all {k, l, i, j}.
Note that we use boldface letters to denote random quantities and normal let-

ters to denote their realizations or deterministic quantities. Models of the form

(2.3) are useful in capturing many situations of interest, such as estimating the

parameters of some underlying physical phenomenon, estimating or equalizing a

communications channel, tracking a moving target by a collection of agents, or

estimating the location of a nutrient source or predator in biological networks

(see, e.g., [5, 6, 26, 29, 80, 81, 101, 123, 150, 164, 165]). For example, in biological

networks, the variable d can model the noisy distance to a target and the variable

u can model the noisy direction towards the target [150].
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The objective of the network is to estimate w◦ in a distributed manner through

an online learning process. The agents estimate w◦ by seeking to minimize the

following global cost function:

Jglob(w) ,

N∑

k=1

E|dk(i)− uk,iw|2. (2.4)

A completion-of-squares argument, followed by a stochastic approximation step

and an incremental approximation step, were used in [34,37] to derive a diffusion

algorithm for the optimization of (2.4) in a decentralized manner; the algorithm

is reviewed below in (2.29) and (2.32) in two of its prominent forms. It turns out

that we can derive and motivate the aforementioned single time-scale consensus

strategy in a similar manner, which will lead us to recursion (2.24) given further

ahead. The presentation in this chapter is therefore meant to show how diffusion

and consensus strategies can be derived as special cases of the same formalism.

In the next chapter, we will move on to show that diffusion networks outperform

consensus networks.

2.1.1 Non-Cooperative Strategy

We consider first the case in which each agent k operates individually and at-

tempts to determine w◦ by minimizing its individual cost function, which is de-

noted by

Jk(w) , E|dk(i)− uk,iw|2. (2.5)

The traditional steepest-descent solution for determining the solution of (2.5)

takes the following form [62, 123]:

wk,i = wk,i−1 − µk · [∇wJk(wk,i−1)]
∗ (2.6)

where µk > 0 is the step-size used by agent k, and ∇wJk(·) denotes the (row)

gradient vector of Jk(w) with respect to the variable w. Moreover, wk,i is the
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estimate of w◦ by agent k at time i. Using (2.5), the above recursion becomes

wk,i = wk,i−1 + µk · (rdu,k − Ru,kwk,i−1) (2.7)

where rdu,k = Edk(i)u
∗
k,i. An adaptive implementation can be obtained by re-

placing {rdu,k, Ru,k} by instantaneous approximations:

rdu,k ≈ dk(i)u
∗
k,i, Ru,k ≈ u∗k,iuk,i (2.8)

thus leading to the well-known LMS recursion [123]:

(non-cooperative strategy) wk,i = wk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (2.9)

Using (2.9), each agent k can update its estimate of w◦ over time using its local

data {dk(i), uk,i}. Note that for the underlying model where Ru,k > 0 for all k,

every individual agent can employ (2.9) to estimate w◦ independently if desired.

Studies allowing for other observability conditions for diffusion and consensus

strategies, including possibly singular covariance matrices, appear in [1, 73].

2.1.2 Cooperative Strategies

We now motivate cooperative strategies where agents are allowed to interact

with their neighbors. By doing so, it can be shown that performance (in terms of

convergence rate and mean-square-error) over the network will improve relative

to the non-cooperative mode of operation [34,154,155]. To begin with, we express

the global cost (2.4) as:

Jglob(w) =
N∑

k=1

Jk(w) (2.10)

where Jk(w) is given by (2.5). Our derivation of cooperative strategies to optimize

Jglob(w) in a distributed manner is based on two steps by extending the develop-

ment of [34,37] to cover both consensus and diffusion-type methods. First, using
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a completion-of-squares argument, we approximate the global cost function (2.10)

by an alternative cost that is amenable to distributed optimization. Then, each

agent will optimize the alternative cost via a combination of a steepest-descent

step and an incremental approximation step.

Thus, note that each individual cost Jk(w) given by (2.5) can be factored via

a completion-of-squares argument and written in the form:

Jk(w) = ‖w − w◦‖2Ru,k
+mmsek (2.11)

where the notation ‖x‖2Σ denotes the weighted square quantity x∗Σx for any

nonnegative-definite matrix Σ ≥ 0, and mmsek is independent of w. Using (2.11),

we can replace the cost function (2.10) by the equivalent global cost:

Jglob′(w) , Jk(w) +
∑

l 6=k

‖w − w◦‖2Ru,l
(2.12)

where we ignored the terms {mmsel} that do not depend on w. The second

term on the right-hand side of (2.12), which corresponds to a sum of quadratic

factors involving the minimizer w◦, tells us how the individual cost Jk(w) can be

corrected to the global cost Jglob′(w). Obviously, the minimizer w◦ that appears

in the correction term is not known since the agents wish to determine its value.

Likewise, not all weighting matrices Ru,l are available to agent k; only those

matrices that originate from its neighbors can be assumed to be available. Still,

expression (2.12) motivates us to introduce a new localized cost function at agent

k that is closer to the desired Jglob′(w) and which can be minimized through

local cooperation. We denote this localized cost at agent k by Jglob′

k (w) and it is

obtained from (2.12) by limiting the summation on the right-hand side of (2.12)

to the neighbors of agent k, namely,

Jglob′

k (w) , Jk(w) +
∑

l∈Nk\{k}

‖w − w◦‖2Ru,l
. (2.13)
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The cost functions Jk(w) and Jglob′

k (w) are both associated with agent k; the

difference between them is that the expression for the latter is closer to the

global cost function (2.12) that we want to optimize.

The second-order moments {Ru,l} that appear in (2.13) may or may not avail-

able. If they are known, then we can proceed with the analysis by assuming

knowledge of the {Ru,l}. However, the more interesting case is when these mo-

ments are not known. This is generally the case in practice, especially in the

context of recursive estimation and tracking problems. Usually, agents can only

observe realizations {ul,i} of regression data arising from distributions whose co-

variance matrices are the unknown {Ru,l}. One way to address this difficulty is

to replace each of the weighted norms ‖w − w◦‖2Ru,l
by a scaled multiple of the

form

‖w − w◦‖2Ru,l
≈ bl,k‖w − w◦‖2 (2.14)

where bl,k is some nonnegative coefficient; we are even allowing the value of this

coefficient to change with the agent index k. The above substitution amounts to

having each agent k approximate the {Ru,l} from its neighbors by multiples of

the identity matrix:

Ru,l ≈ bl,kIM . (2.15)

Approximation (2.14) is reasonable in view of the fact that all vector norms on

finite dimensional spaces are equivalent [64]; this norm property ensures that we

can always bound the weighted norm ‖w−w◦‖2Ru,l
by some constants multiplying

the unweighted norm ‖w − w◦‖2, say,

r1‖w − w◦‖2 ≤ ‖w − w◦‖2Ru,l
≤ r2‖w − w◦‖2 (2.16)

for some positive constants {r1, r2}. Actually, in view of the Rayleigh-Ritz char-
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acterization of eigenvalues [59, 64], we have

λmin(Ru,l) · ‖w − w◦‖2 ≤ ‖w − w◦‖2Ru,l
≤ λmax(Ru,l) · ‖w − w◦‖2 (2.17)

where λmin(·) and λmax(·) denote the minimum and the maximum eigenvalues of

its Hermitian matrix argument, respectively. As the derivation will show, we do

not need to worry at this stage about how the scalars {bl,k} in (2.14) are selected;

they will end up being embedded into another set of coefficients {al,k} that will

be selected by the designer — see (2.23) further ahead. We will also show later

(see Section 4.4 further ahead) that how to select these coefficients to obtain our

desired objective. In this way, we replace (2.13) by:

Jglob′′

k (w) , Jk(w) +
∑

l∈Nk\{k}

bl,k‖w − w◦‖2 (2.18)

With the exception of the variable w◦, this alternative cost at agent k relies solely

on information that is available to agent k from its neighborhood. We will soon

explain how to handle the fact that w◦ is not known to agent k.

Now, each agent k can apply a steepest-descent iteration to minimize its

localized cost Jglob′′

k (w). The iteration would be of the following form:

wk,i = wk,i−1 − µk ·
[

∇wJ
glob′′

k (wk,i−1)
]∗

= wk,i−1 + µk · (rdu,k − Ru,kwk,i−1)− µk ·
∑

l∈Nk\{k}

bl,k(wk,i−1 − w◦) (2.19)

The step-size parameters {µk} can be constant or time-variant. In this work,

we consider the case of constant step-sizes because we are particularly interested

in the adaptation and learning abilities of the distributed strategies. Constant

step-sizes allow the resulting strategies to learn and adapt continuously, while

time-variant step-sizes that decay to zero turn off the learning abilities of the

networks with time.
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Now, as was the case with the non-cooperative steepest-descent (2.7) and LMS

strategies (2.9), an adaptive implementation of (2.19) can be obtained by using

the same instantaneous approximations (2.8). Doing so leads to the following

recursion:

wk,i = wk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1]− µk ·
∑

l∈Nk\{k}

bl,k(wk,i−1 − w◦) (2.20)

Compared with the non-cooperative LMS strategy (2.9), recursion (2.20) indi-

cates that the update from wk,i−1 to wk,i now involves adding two correction

terms to wk,i−1. However, the last correction term still depends on the unknown

w◦. We can now use incremental-type arguments to replace w◦ in (2.20) by suit-

able approximations for it. It turns out that different replacements for w◦ lead

to different learning strategies (such as consensus and diffusion strategies) and

these replacements will affect the operation of the network in a fundamental way.

2.1.2.1 Consensus Strategy

The first substitution for w◦ that we consider will lead to the single time-scale

consensus strategy that we alluded to before; see (2.24) below. Specifically, note

that each of the agents in the network is performing steps similar to (2.20). As

such, each agent l will have a readily available approximation for w◦, which is its

local estimate wl,i−1. Therefore, one substitution for w◦ in (2.20) is to replace it

by wl,i−1. In that case, recursion (2.20) becomes

wk,i = wk,i−1 − µk ·
∑

l∈Nk\{k}

bl,k(wk,i−1 − wl,i−1) + µk · u∗k,i[dk(i)− uk,iwk,i−1].

(2.21)

Recursion (2.21) is in the form of the well-known consensus strategy (see, e.g.,

expression (19) in [50] and expression (9) in [73]). It should be noted that in

most other works on consensus implementations, especially in the context of
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distributed optimization problems [19, 50, 73, 104, 116], the step-sizes {µk} that

are used in (2.21) depend on the time-index i and are required to satisfy

∞∑

i=0

µk(i) = ∞ and
∞∑

i=0

µ2
k(i) <∞ (2.22)

In other words, for each agent k, the step-size sequence µk(i) is required to vanish

as i→ ∞. Under such conditions, it is known that consensus strategies allow the

agents to reach agreement. Here, instead, in the representations (2.21), we are

using constant step-sizes because we are interested in studying the adaptation

and learning abilities of the networks. Constant step-sizes are critical to endow

networks with continuous adaptation and tracking abilities; otherwise, under

(2.22), once the step-size has decayed to zero, the network stops adapting.

We can rewrite the recursion in a more compact and revealing form by com-

bining the first two terms on the right-hand side of (2.21) and by introducing the

following coefficients:

al,k =







1−
∑

j∈Nk\{k}

µk · bj,k, if l = k

µk · bl,k, if l ∈ Nk \ {k}

0, otherwise

(2.23)

In this way, recursion (2.21) can be rewritten equivalently as (see, e.g., expression

(7.10) in [19] and expression (1.20) in [104]):

(consensus strategy) wk,i =
∑

l∈Nk

al,kwl,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (2.24)

The entry al,k denotes the weight that agent k assigns to the estimate wl,i−1

received from its neighbor l (see Fig. 2.1); note that the weights {al,k} are

nonnegative for l 6= k and that ak,k is nonnegative for sufficiently small step-

sizes. If we collect the nonnegative weights {al,k} into an N × N matrix A,
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Figure 2.1: A connected network showing the neighborhood of agent k. The

weight al,k scales the data transmitted from agent l to agent k over the edge

linking them.

then it follows from (2.23) that the combination matrix A satisfies the following

properties:

al,k ≥ 0, AT
1N = 1N , and al,k = 0 if l /∈ Nk (2.25)

where 1N is a vector of size N with all entries equal to one. That is, the weights

on the links arriving at agent k add up to one, which is equivalent to saying that

the matrix A is left-stochastic. Moreover, if agent l is not a neighbor of agent

k, then the corresponding weight al,k is zero. We summarize useful properties of

the combination matrix in Appendix 2.A.

2.1.2.2 ATC Diffusion Strategy

The second substitution we consider for w◦ in (2.20) will lead to two forms of

diffusion strategies. Thus, note first that there are two correction terms on the

right-hand side of (2.20). These terms could be added one at a time. For example,

we can achieve (2.20) by splitting the update into the following two steps involving
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an intermediate estimate ψk,i:

ψk,i = wk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (2.26)

wk,i = ψk,i − µk ·
∑

l∈Nk\{k}

bl,k(wk,i−1 − w◦) (2.27)

Note that the first update (2.26) can be carried out by all agents independent of

knowledge of w◦. However, the unknown w◦ still appears in (2.27). Now, rather

than replace w◦ by wl,i−1, as was the case with the consensus strategy, it appears

to be more advantageous to replace w◦ by the “improved” estimate ψl,i obtained

via the update (2.26); and the analysis will confirm that this is indeed the case.

For each agent l, the intermediate value ψl,i is generally a better estimate for

w◦ than wl,i−1 since it is obtained by incorporating information from its recent

data {dl(i), ul,i} in (2.26). In the same spirit, we also replace wk,i−1 in (2.27) by

ψk,i. This second substitution is reminiscent of incremental-type approaches to

optimization, which have been widely studied in the literature [18, 102]. With

these replacements, recursion (2.27) becomes

wk,i = ψk,i − µk ·
∑

l∈Nk\{k}

bl,k(ψk,i − ψl,i) (2.28)

If we again introduce the same coefficients {al,k} from (2.23), we arrive at the

following alternative compact form, known as the adapt-then-combine (ATC)

diffusion strategy [34]:

(ATC diffusion strategy)

ψk,i = wk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1]

wk,i =
∑

l∈Nk

al,kψl,i

(2.29)

The ATC diffusion strategy consists of two steps. The first step of (2.29) involves

local adaptation, where agent k uses its own data {dk(i), uk,i} to update its weight
estimate from wk,i−1 to an intermediate value ψk,i. The second step of (2.29) is
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a consultation (combination) step where the intermediate estimates {ψl,i} from

the neighborhood of agent k are combined through the weights {al,k} to obtain

the updated weight estimate wk,i.

2.1.2.3 CTA Diffusion Strategy

Other variants of the diffusion strategies are possible. For example, if we reverse

the order of (2.26)-(2.27), recursion (2.20) can also be achieved as follows:

ψk,i−1 = wk,i−1 − µk ·
∑

l∈Nk\{k}

bl,k(wk,i−1 − w◦) (2.30)

wk,i = ψk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (2.31)

We now replace w◦ in (2.30) by wl,i−1 and replace wk,i−1 in (2.31) by ψk,i−1.

Furthermore, using the same coefficients {al,k} from (2.23), we arrive at the

following combine-then-adapt (CTA) diffusion strategy [34, 95]:

(CTA diffusion strategy)

ψk,i−1 =
∑

l∈Nk

al,kwl,i−1

wk,i = ψk,i−1 + µk · u∗k,i[dk(i)− uk,iψk,i−1]

(2.32)

The CTA diffusion strategy consists of two steps. The first step of (2.32) involves

a consultation (combination) step, where the existing estimates {wl,i−1} from the

neighbors of agent k are combined through the weights {al,k}. The second step of

(2.32) is a local adaptation step, where agent k uses its own data {dk(i), uk,i} to

update its weight estimate from the intermediate value ψk,i−1 to wk,i. Thus, com-

paring the ATC and CTA strategies, we note that the order of the consultation

and adaptation steps are reversed.
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2.1.2.4 Comparing Diffusion and Consensus Strategies

For ease of reference, we rewrite below the recursions that correspond to the

consensus (2.24), ATC diffusion (2.29), and CTA diffusion (2.32) strategies in a

single update:

(consensus) wk,i =
∑

l∈Nk

al,kwl,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (2.33)

(ATC diffusion) wk,i =
∑

l∈Nk

{
al,kwl,i−1 + µl · al,ku∗l,i[dl(i)− ul,iwl,i−1]

}
(2.34)

(CTA diffusion) wk,i =
∑

l∈Nk

al,kwl,i−1 + µk · u∗k,i

[

dk(i)− uk,i

(
∑

l∈Nk

al,kwl,i−1

)]

(2.35)

Note that the first terms on the right hand side of these recursions are all the

same. For the second terms, only variable wk,i−1 appears in the consensus strat-

egy (2.33), while the diffusion strategies (2.34)-(2.35) incorporate the estimates

{wl,i−1} from the neighborhood of agent k into the update of wk,i. Moreover, in

contrast to the consensus (2.33) and CTA diffusion (2.35) strategies, the ATC

diffusion strategy (2.34) further incorporates the influence of the data {dl(i), ul,i}
from the neighborhood of agent k into the update of wk,i. These facts have im-

portant implications on the evolution of the weight-error vectors across consensus

and diffusion networks. It is important to note that the diffusion strategies (2.34)-

(2.35) are able to incorporate additional information into their processing steps

without being more complex than the consensus strategy. All three strategies

have the same computational complexity and require sharing the same amount

of data (see Table 2.1), as can be ascertained by comparing the actual imple-

mentations (2.24), (2.29), and (2.32). The key fact to note is that the diffusion

implementations first generate an intermediate state, which is subsequently used

in the final update. This important ordering of the calculations has a critical
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Table 2.1: Comparison of the number of complex multiplications and additions

per iteration, as well as the number of vectors of size M × 1 that are exchanged

for each iteration of the algorithms at every agent k. Observe that all three

implementations have exactly the same computational complexity.

ATC diffusion (2.29) CTA diffusion (2.32) Consensus (2.24)

Multiplications (nk + 2)M (nk + 2)M (nk + 2)M

Additions (nk + 1)M (nk + 1)M (nk + 1)M

Vector exchanges nk nk nk

influence on the performance of the algorithms, as we will reveal in the next

chapter.

2.2 Mean-Square Performance Analysis

The mean-square performance of diffusion networks has been studied in de-

tail in [34]. Expressions for the network performance, and conditions for their

mean-square stability, were derived there by applying energy conservation argu-

ments [2,123]. Following [34], we will first show how to carry out the performance

analysis in a unified manner that can cover both diffusion and consensus strate-

gies (see Table 2.2 further ahead, which highlights how the parameters for both

strategies differ). Subsequently, we use the resulting performance expressions to

carry out detailed comparisons and to establish and highlight some surprising

and interesting differences in performance.
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2.2.1 Network Error Recursion

Let the error vector for an arbitrary agent k be denoted by:

w̃k,i , w◦ −wk,i (2.36)

We collect all error vectors and step-sizes across the network into a block vector

and block matrix:

w̃i , col {w̃1,i, w̃2,i, · · · , w̃N,i} (2.37)

M , diag{µ1IM , µ2IM , · · · , µNIM} (2.38)

where the notation col{·} denotes the vector that is obtained by stacking its argu-

ments on top of each other, and the notation diag{·} constructs a diagonal matrix

from its arguments. We further introduce the extended combination matrix:

A , A⊗ IM (2.39)

where the symbol ⊗ denotes the Kronecker product of two matrices [59,84]. This

construction replaces each entry al,k in A by the blockM×M matrix al,kIM in A.

Then, if we start from (2.33) and use model (2.3), some straightforward algebra

in [34,124] shows that the global error vector w̃i for the consensus strategy evolves

according to the following recursion:

(consensus) w̃i = (AT −MRi) · w̃i−1 −Msi (2.40)

where Ri is a block diagonal matrix and si is a block column vector:

Ri , diag{u∗
1,iu1,i,u

∗
2,iu2,i, · · · ,u∗

N,iuN,i} (2.41)

si , col{u∗
1,iv1,i,u

∗
2,iv2,i, · · · ,u∗

N,ivN,i} (2.42)

Likewise, starting from (2.34) or (2.35) and using model (2.3), the global error

vector w̃i for the diffusion strategies can be found to evolve according to the
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recursions:

(ATC diffusion) w̃i = AT (INM −MRi) · w̃i−1 −ATMsi (2.43)

(CTA diffusion) w̃i = (INM −MRi)AT · w̃i−1 −Msi (2.44)

Recursions (2.40), (2.43), and (2.44) can be seen to be special cases of a general

recursion of the form:

w̃i = Bi · w̃i−1 − yi (2.45)

where the quantities Bi and yi are listed in Table 2.2 for ease of reference. The

coefficient matrix Bi is an N ×N block matrix with blocks of size M ×M each.

Likewise, the driving vector yi is an N × 1 block vector with entries that are

M × 1 each. The matrix Bi controls the evolution dynamics of the network

error vector w̃i. It is obvious from Table 2.2 that this matrix is different for

each of the strategies under consideration. We shall verify in the next chapter

that the differences have critical ramifications when we compare consensus and

diffusion strategies. Note in passing that any of these three distributed strategies

degenerates to the non-cooperative strategy (2.9) when the combination matrix

is set to A = IN .

2.2.2 Mean Stability

We start our analysis by examining the stability in the mean of the networks,

i.e., the stability of the recursion for Ew̃i. Thus, note that the matrices {Bi} in

Table 2.2 are random matrices due to the randomness of the regressors {uk,i} in

Ri. In other words, the evolution of the networks is stochastic in nature. Now,

since the regressors {uk,i} are temporally white and spatially independent, then

the {Bi} are independent of w̃i−1 for any of the strategies. Moreover, since the

{uk,i, vk(i)} are independent of each other, then the {yi} are zero mean. Taking
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Table 2.2: The network weight error vector evolves according to the recursion

w̃i = Bi · w̃i−1 − yi, where the variables {Bi,yi}, and their respective means

or covariances, are listed below for three cooperative strategies and the non-

cooperative strategy.

ATC diffusion (2.29) CTA diffusion (2.32) Consensus (2.24)

Bi AT (INM −MRi) (INM −MRi)AT AT −MRi

B , EBi AT (INM −MR) (INM −MR)AT AT −MR

yi ATMsi Msi Msi

Y , Eyiy
∗
i ATMSMA MSM MSM

expectation of both sides of (2.45), we find that the mean of w̃i evolves in time

according to the recursion:

Ew̃i = B · Ew̃i−1 (2.46)

where

B , EBi (2.47)

is shown in Table 2.2 and

R , ERi = diag{Ru,1, Ru,2, · · · , Ru,N} (2.48)

The necessary and sufficient condition to ensure mean stability of the network

(namely, Ew̃i → 0 as i→ ∞) is therefore to select step-sizes {µk} that ensure [34]:

ρ(B) < 1 (2.49)

where ρ(·) denotes the spectral radius of its matrix argument. Note that the

coefficient matrices {B} that control the evolution of Ew̃i are different in the

cases listed in Table 2.2.
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2.2.3 Mean-Square Stability

We now examine the stability in the mean-square sense of the consensus and

diffusion strategies. Let Σ denote an arbitrary nonnegative-definite matrix that

we are free to choose, and let σ = vec(Σ) denote the vector that is obtained by

stacking the columns of Σ on top of each other. We shall interchangeably use the

notation ‖x‖2Σ and ‖x‖2σ to refer to the same weighted square quantity, i.e.,

‖x‖2σ = ‖x‖2Σ = x∗Σx. (2.50)

From (2.45), we get the following weighted variance relation:

E‖w̃i‖2Σ = E‖Biw̃i−1 − yi‖2Σ
= E

(
w̃∗

i−1B
∗
iΣBiw̃i−1

)
+ E (y∗

iΣyi)− E
(
w̃∗

i−1B
∗
iΣyi

)
− E (y∗

iΣBiw̃i−1)

(2.51)

Note that the last two terms in (2.51) are zero because the {uk,i, vk(i)} are

independent of each other and the {vk(i)} are zero mean. Let us evaluate the first

two terms on the right-hand side of (2.51). Since the {Bi, w̃i−1} are independent

of each other, the first term of (2.51) is given by

E
(
w̃∗

i−1B
∗
iΣBiw̃i−1

)
= E

[
w̃∗

i−1E (B∗
iΣBi) w̃i−1

]

= E‖w̃i−1‖2Σ′

(2.52)

where we introduced the nonnegative-definite matrix

Σ′ , EB
∗
iΣBi (2.53)

Moreover, using the property Tr(AB) = Tr(BA), we get

E (y∗
iΣyi) = Tr (ΣEyiy

∗
i )

= Tr (ΣY)
(2.54)
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where

Y , Eyiy
∗
i (2.55)

appears in Table 2.2 with the covariance matrix S defined by:

S , Esis
∗
i = diag{σ2

v,1Ru,1, σ
2
v,2Ru,2, . . . , σ

2
v,NRu,N} (2.56)

Then, using the following matrix identities for arbitrary matrices {U,W,Σ} of

compatible dimensions [123]:

vec(UΣW ) = (W T ⊗ U)σ and Tr(ΣW ) =
[
vec(W T )

]T
σ (2.57)

and from (2.52)-(2.54), we can rewrite relation (2.51) in the following equivalent

form:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ +
[
vec(YT )

]T
σ (2.58)

where F is the N2M2 ×N2M2 matrix defined by:

F , E
(
B

T
i ⊗B

∗
i

)
(2.59)

Note that relation (2.58) is not an actual recursion; this is because the weighting

matrices {σ,Fσ} on both sides of the equality are different. The relation can be

transformed into a true recursion by expanding it into a convenient state-space

model; this argument was pursued in [34, 123] and is briefly reviewed below to

arrive at conditions on the step-sizes for mean-square stability.

Let

L = N2M2 and y = vec(YT ) (2.60)

and introduce the characteristic polynomial of the matrix F , i.e.,

p(x) = det(xIL −F) = xL + pL−1x
L−1 + · · ·+ p0 (2.61)
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for some polynomial coefficients {pj}. By the Cayley-Hamilton Theorem [64,84],

we have that p(F) = 0 so that

FL = −p0 − p1F − · · · − pL−1FL−1 (2.62)

Applying (2.58) repeatedly and using (2.62) we arrive at the following state-space

recursion:













E‖w̃i‖2σ
E‖w̃i‖2Fσ

E‖w̃i‖2F2σ

...

E‖w̃i‖2FL−1σ














︸ ︷︷ ︸

Wi

=














0 1 0 · · · 0

0 0 1 · · · 0
...

. . .

0 0 0 · · · 1

−p0 −p1 −p2 · · · −pL−1














︸ ︷︷ ︸

H














E‖w̃i−1‖2σ
E‖w̃i−1‖2Fσ

E‖w̃i−1‖2F2σ

...

E‖w̃i−1‖2FL−1σ














︸ ︷︷ ︸

Wi−1

+














yTσ

yTFσ
yTF2σ

...

yTFL−1σ














︸ ︷︷ ︸

Z

(2.63)

We therefore arrive at a true recursion that describes the evolution of the state

of the adaptive network:

Wi = H ·Wi−1 + Z (2.64)

with Wi denoting the state vector at time i. The matrix H in (2.63) is in compan-

ion form, and it is known that its eigenvalues are the roots of p(x) from (2.61) [64],

which are also the eigenvalues of F . Therefore, a necessary and sufficient con-

dition for mean-square stability of the network (namely, E‖w̃i‖2σ → c < ∞ as

i → ∞) is to select the step-sizes {µk} such that H is a stable matrix, or equiv-

alently, that all the eigenvalues of F are inside the unit circle, i.e.,

ρ(F) < 1 (2.65)

where F is defined by (2.59). A simpler condition for mean-square stability can

be obtained by assuming sufficiently small step-sizes since in this case we can

verify that the matrix F in (2.59) can be approximated as follows:

F ≈ BT ⊗ B∗ (2.66)
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in terms of the mean matrix B that appears in Table 2.2. We justify approxi-

mation (2.66) for the ATC diffusion strategy (2.29); the same argument applies

to CTA diffusion (2.32) and consensus (2.24). From (2.59) and Table 2.2, the

matrix F for ATC diffusion takes the form:

F = E
[
(I −R

T
i M)A⊗ (I −RiM)A

]

=
[
I − (RTM)⊗ I − I ⊗ (RM) + E(RT

i M)⊗ (RiM)
]
(A⊗A) (2.67)

where we used the following Kronecker product property for matrices {A,B,C,D}
of compatible dimensions [123]:

(A⊗ B)(C ⊗D) = AC ⊗BD (2.68)

Note that the last term on the right-hand side of (2.67) depends on the fourth

order of the regressors, which is difficult to evaluate its expectation. To proceed,

we introduce the following condition on the step-sizes {µk}, which will be assumed

throughout this work. Such conditions are prevalent in the stochastic gradient

approximation literature [15, 62, 82, 83, 90, 91, 123]

Assumption 2.1. The step-sizes {µk} are sufficiently small such that terms that

depend on higher-order powers of the step-sizes can be ignored and, in particular,

0 < µk · ρ(Ru,k) ≪ 1 for all k (2.69)

Under Assumption 2.1, we can either ignore terms that depend on higher-order

powers of the step-sizes [124] or call upon a separation principle [123] to approx-

imate these terms. The last term on the right-hand side of (2.67) is one such

term since its entries depend on {µ2
k}. For small step-sizes, we approximate the

expectation of the product by the product of expectations and write:

E(RT
i M)⊗ (RiM) ≈ E(RT

i M)⊗ E(RiM)

= (RTM)⊗ (RM) (2.70)
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Then, expression (2.67) simplifies to:

F ≈
[
I − (RTM)⊗ I − I ⊗ (RM) + (RTM)⊗ (RM)

]
(A⊗A)

=
[
(I −RTM)⊗ (I −RM)

]
(A⊗A)

= BT ⊗ B∗ (2.71)

as desired. Now, using (2.66), we note that since

ρ(F) ≈ ρ(BT ) · ρ(B∗) = [ρ(B)]2 (2.72)

so that sufficiently small step-sizes that satisfy (2.49) will also ensure mean-square

stability.

2.2.4 Convergence Rate

Assume that the step-sizes are sufficiently small so that condition (2.49) holds and

the networks is stable in the mean and mean-square sense. Under this condition,

the network achieves steady-state operation. The convergence rate of the network

determines the rate at which the quantity E‖w̃i‖2 converge towards its steady-

state value. We denote the convergence rate by r so that the smaller the value

of r is, the faster the rate of convergence of E‖w̃i‖2 is. As indicated by (2.63),

the convergence rate is determined by the spectral radius of the matrix H, i.e.,

r = ρ(H) ≈ [ρ(B)]2 . (2.73)

2.2.5 Mean-Square Deviation

The mean-square deviation (MSD) measure can be used to assess how well the

agents in the network estimate the weight vector, w◦. The MSD at agent k is

defined as follows:

MSDk , lim
i→∞

E‖w̃k,i‖2 (2.74)
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where ‖ · ‖ denotes the Euclidean norm for vectors. The network MSD is defined

as the average MSD across the network, i.e.,

MSD ,
1

N

N∑

k=1

MSDk (2.75)

Now, assume the network is mean-square stable and let the time index i tend to

infinity in (2.58). Then, we obtain the steady-state relation:

lim
i→∞

E‖w̃i‖2(IL−F)σ =
[
vec(YT )

]T
σ (2.76)

Since ρ(F) < 1, the matrix (IL − F) is invertible. In order for the left-hand side

of (2.76) to match the definition of the MSD at agent k given by (2.74), we select

σ as

σ = (IL − F)−1 vec
[
(eke

T
k )⊗ IM

]
(2.77)

where ek denotes the kth column of the identity matrix IN . Substituting into

(2.76), we arrive at the following expression for the MSD of agent k:

MSDk =
[
vec(YT )

]T
(IL − F)−1 vec

[
(eke

T
k )⊗ IM

]
(2.78)

Then, the network MSD in (2.75) is given by:

MSD =
1

N

[
vec(YT )

]T
(IL −F)−1 vec(INM) (2.79)

Expressions (2.78)-(2.79) are in terms of the inverse matrix (IL − F). There are

alternative representations for these two results in terms of a series expansion that

will prove useful in our subsequent analysis. Recall that for any stable matrix F ,

it holds:

(IL − F)−1 =

∞∑

j=0

F j
(2.80)

Substituting into (2.78)-(2.79) and using (2.57), we obtain the alternative repre-

sentations:

MSDk =

∞∑

j=0

Tr
[
(eTk ⊗ IM) · BjYB∗j · (ek ⊗ IM)

]

(2.81)
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and

MSD =
1

N

∞∑

j=0

Tr[BjY(B∗)j ] (2.82)

Expressions (2.81)-(2.82) relate the MSDs directly to the quantities {B,Y} from

Table 2.2.

Note that the expressions for the individual MSD in (2.81) and the network

MSD in (2.82) depend on B in a nontrivial manner. These expressions can be

further simplified if we know the eigen-structure of the matrix B. Assume that

B is diagonalizable and its eigen-decomposition is given by:

B =

N∑

l=1

M∑

m=1

λl,m(B) · rbl,msb∗l,m. (2.83)

Using (2.83), we can rewrite the MSD at agent k from (2.81) as:

MSDk =

∞∑

j=0

N∑

l1,l2=1

M∑

m1,m2=1

Tr
[
λjl1,m1

(B)λ∗jl2,m2
(B) · (eTk ⊗ IM)

× rbl1,m1
sb∗l1,m1

Ysbl2,m2
rb∗l2,m2

· (ek ⊗ IM)
]

(2.84)

Using Tr(AB) = Tr(BA) and the expression for the infinite sum of a geometric

series, we have:

MSDk =

N∑

l1,l2=1

M∑

m1,m2=1

(
rb∗l2,m2

(ek ⊗ IM)(eTk ⊗ IM)rbl1,m1

)
·
(
sb∗l1,m1

Ysbl2,m2

)

1− λl1,m1(B)λ∗l2,m2
(B) (2.85)

Moreover, from (2.75) and (2.85), and using the fact that

N∑

k=1

(ek ⊗ IM)(eTk ⊗ IM) = INM (2.86)

we obtain that

MSD =
1

N

N∑

l1,l2=1

M∑

m1,m2=1

(
rb∗l2,m2

rbl1,m1

)
·
(
sb∗l1,m1

Ysbl2,m2

)

1− λl1,m1(B)λ∗l2,m2
(B) (2.87)

35



2.3 Concluding Remarks

In this chapter, we derived the diffusion and consensus strategies using the same

formalism. We derived conditions for mean and mean-square stability and de-

rived expressions for the convergence rate and mean-square-error performance in

preparation for the future chapters.

2.A Properties of the Combination Matrix

From (2.25), the combination matrix A is left-stochastic. It follows that the

spectral radius of A is equal to one and one of its eigenvalue is also equal to

one [124]. We denote this eigenvalue by λ1(A). Then, we obtain that

ρ(A) = λ1(A) = 1 (2.88)

That is, the eigenvalues of A lie within the unit circle. However, it is possible

that there are multiple eigenvalues of A with magnitude equal to one. Usually,

we are interested in networks satisfying the following condition.

Assumption 2.2 (Strongly connected networks). The network topology is strongly

connected so that a path with nonzero weights exists between any two arbitrary

agents and at least one agent has self-loop (i.e., ak,k > 0 for some k)

Thus, in effect, Assumption 2.2 is requiring the network to be connected with

at least one self-loop (in which case, there is at least one agent in the network that

assigns a positive weight to its local information). This condition is satisfied for

most networks of interest since it is difficult to envision situations where all agents

in a network do not have some level of trust in their own data. Although the

analysis in this chapter holds for arbitrary network topologies, strongly connected
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networks exhibit interesting behavior as the analysis in the ensuing chapters will

show. In particular, among other results, we establish the following result.

Lemma 2.1. If a network is strongly connected, then the corresponding com-

bination matrix A is primitive, i.e., there exists an integer power j > 0 such

that

[Aj ]l,k > 0 for all l and k. (2.89)

Expression (2.89) is equivalent to the condition that for any two agents l and k,

there is a path from agent l to agent k in j steps [64].

Proof. Without loss of generality, we assume that agent m has a self-loop and

am,m > 0. For arbitrary k and l and for three nonnegative integers j1, j2, and j3

satisfying

j1 + j2 + j3 = j (2.90)

it holds that

[Aj ]l,k =

N∑

n1=1

N∑

n2=1

[Aj1]l,n1 [A
j2]n1,n2[A

j3]n2,k

≥ [Aj1]l,m[A
j2 ]m,m[A

j3]m,k

≥ [Aj1]l,m · aj2m,m · [Aj3 ]m,k (2.91)

Since the network is connected, there exist two finite nonnegative integers j1(l)

and j3(k) such that

[Aj1(l)]l,m > 0 and [Aj3(k)]m,k > 0 (2.92)

Let j◦1(l) and j
◦
3(k) be the minimum nonnegative integers such that relations in

(2.92) hold. Then, we set

j = max
l

{j◦1(l)}+max
k

{j◦3(k)} <∞ (2.93)

37



and we obtain that

[Aj ]l,k ≥ [Aj◦1 (l)]l,m · aj−j◦1(l)−j◦3 (k)
m,m · [Aj◦3 (k)]m,k (2.94)

Since am,m > 0 and j − j◦1(l)− j◦3(k) ≥ 0, it holds that

aj−j◦1 (l)−j◦3 (k)
m,m > 0 (2.95)

Therefore, relation (2.89) holds for any l and k and the matrix A is primitive.

From the Perron-Frobenius Theorem [17, 64, 112, 124], the eigen-structure of

any primitive A satisfies certain prominent properties, which will be useful in the

sequel, namely, that

1. A has an eigenvalue at λ1(A) = 1

2. The eigenvalue at λ1(A) = 1 has multiplicity one

3. All the entries of the right and left eigenvectors associated with λ1(A) = 1

can be scaled to be positive

4. ρ(A) = 1 so that all other eigenvalues of A have magnitude strictly less

than one

In order to simplify the MSD expressions, we sometimes require the combi-

nation matrix A to be diagonalizable, i.e., that there exists an invertible matrix

U and a diagonal matrix Λ such that

AT = UΛU−1 (2.96)

with

U =
[

r1 r2 · · · rN

]

, U−1 = col{s∗1, s∗2, . . . , s∗N} (2.97)

Λ = diag{λ1(A), λ2(A), . . . , λN(A)}. (2.98)
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The columns of U consist of the right eigenvectors ofAT , the rows of U−1 consist of

the left eigenvectors of AT , and the diagonal entries of Λ consist of the eigenvalues

of AT . That is,

AT · rl = λl(A) · rl and s∗l ·AT = λl(A) · s∗l . (2.99)

for l = 1, 2, . . . , N . We assume the vectors {rl} are scaled to satisfy:

‖rl‖ = 1 (2.100)

for all l. In addition, it follows that

s∗l2rl1 = δl1l2 (2.101)

since U−1U = IN . Under conditions (2.100)-(2.101) and from (2.25), it can be

verified that the right and left eigenvector pair {r1, s1} of A corresponding to the

eigenvalue λ1(A) = 1 satisfies:

r1 =
1N√
N

and
sT1 1N√
N

= 1. (2.102)

Note that any symmetric combination matrix A is diagonalizable and therefore

satisfies condition (2.96) automatically. Actually, when A is symmetric, more can

be said about its eigenvectors. In that case, the matrix U will be orthogonal so

that U−1 = U∗ and it will further hold that

r∗l2rl1 = δl1l2 (2.103)

Nevertheless, condition (2.96) allows the analysis to apply to important cases in

which A is not necessarily symmetric but is still diagonalizable (such as when

A is constructed according to the uniform combination rule by assigning to the

links of agent k weights that are equal to the inverse of its degree, nk).
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CHAPTER 3

Diffusion Strategies Outperform Consensus

Strategies

In this chapter, we compare the mean-square performance of the two main strate-

gies derived in Chapter 2 for distributed estimation over networks: consensus

strategies from (2.24) and diffusion strategies from (2.29) and (2.32). The analy-

sis in this chapter will confirm that under constant step-sizes, diffusion strategies

allow information to diffuse more thoroughly through networks and this property

has a favorable effect on the evolution of the network. It will be shown that

diffusion networks converge faster and reach lower mean-square deviation than

consensus networks, and their mean-square stability is insensitive to the choice

of the combination weights. In comparison, and surprisingly, it is shown that

consensus networks can become unstable even if all the individual agents are

stable and able to solve the estimation task on their own. In other words, the

learning curve of a cooperative consensus network can diverge even if the learning

curves for the non-cooperative individual agents converge. When this occurs, co-

operation over the network leads to a catastrophic failure of the estimation task.

This behavior does not occur for diffusion networks: we will show that stability

of the individual agents is sufficient to ensure stability of the diffusion network

regardless of the combination weights. The properties revealed in this chapter

indicate that there needs to be some care with the use of consensus strategies for
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adaptation because they can lead to network failure even if the individual agents

are stable and well-behaved. The analysis also suggests that diffusion strategies

provide a proper way to enforce cooperation over networks; their operation is such

that diffusion networks will always remain stable irrespective of the combination

topology.

3.1 Comparison of Mean and Mean-square Stability

As mentioned in Chapter 2, for sufficiently small step-sizes, the mean and mean-

square stability are governed by the spectral radius of the matrix B, which are

different in the cases listed in Table 2.2. These differences lead to interesting

conclusions. To begin with, the matrix B is block diagonal in the non-cooperative

case and equal to

Bncop = INM −MR. (3.1)

where M and R were defined in (2.38) and (2.48), respectively. Therefore, for

each of the individual agents to be stable in the mean, it is necessary and sufficient

that the step-sizes {µk} be selected to satisfy

ρ(Bncop) = max
1≤k≤N

ρ(IM − µkRu,k) < 1 (3.2)

since the matrices M and R are block diagonal. Condition (3.2) is equivalent to

(stability in the non-cooperative case) 0 < µk <
2

λmax(Ru,k)
(3.3)

for k = 1, 2, . . . , N . Sufficiently small step-sizes that meet condition (3.3) guaran-

tee that when each agent acts individually and applies the LMS recursion (2.9),

then all individual agents will be stable in the mean and mean-square sense.

Now consider the matrix B in the consensus case; it is equal to

Bcons = AT −MR (3.4)
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where A was introduced in (2.39). It is seen in this case that the stability of Bcons

depends on A. The fact that the stability of the consensus strategy is sensitive

to the choice of the combination matrix is known in the consensus literature

for the conventional implementation for computing averages and which does not

involve streaming data or gradient noise [16,49]. Here, we are studying the more

demanding case of the single time-scale consensus iteration (2.24) in the presence

of both noisy and streaming data. It is clear from (3.4) that the choice of A

can destroy the stability of the consensus network even when the step-sizes are

chosen according to (3.3) and all agents are stable on their own. This behavior

does not occur for diffusion networks where the matrices {B} for the ATC and

CTA diffusion strategies are instead given by

Batc = AT (INM −MR) and Bcta = (INM −MR)AT . (3.5)

The following result clarifies these statements.

Theorem 3.1 (Spectral properties of B). It holds that

ρ(Batc) = ρ(Bcta) ≤ ρ(Bncop) (3.6)

irrespective of the choice of the left-stochastic matrices A. Moreover, if the com-

bination matrix A is symmetric, then the eigenvalues of Bcons are less than or

equal to the corresponding eigenvalues of Bncop, i.e.,

λl(Bcons) ≤ λl(Bncop) (3.7)

for l = 1, 2, . . . , NM where the eigenvalues {λl(·)} are arranged in decreasing

order, i.e., λl1(·) ≥ λl2(·) if l1 ≤ l2.

Proof. See Appendix 3.A.
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Result (3.6) establishes the important conclusion that the coefficient matrix

B for the diffusion strategies is stable whenever Bncop (or, from (3.2), each of

the matrices {IM − µkRu,k}) is stable; this conclusion is independent of A. The

stability of the matrices {IM−µkRu,k} is ensured by any step-size satisfying (3.3).

Therefore, stability of the individual agents will always guarantee the stability

of B in the ATC and CTA diffusion cases, regardless of the choice of A. This is

not the case for the consensus strategy (2.24); even when the step-sizes {µk} are

selected to satisfy (3.3) so that all individual agents are mean stable, the matrix

Bcons can still be unstable depending on the choice of A (and, therefore, on the

network topology as well). Therefore, if we start from a collection of agents that

are behaving in a stable manner on their own, and if we connect them through a

topology and then apply consensus to solve the same estimation problem through

cooperation, then the network may end up being unstable and the estimation task

can fail drastically (see Fig. 3.1 further ahead). Moreover, it is further shown

in Appendix 3.A that when A is symmetric, the consensus strategy is stable for

step-sizes satisfying:

0 < µk <
1 + λmin(A)

λmax(Ru,k)
for k = 1, 2, . . . , N. (3.8)

Recall from Appendix 2.A that λ1(A) = ρ(A) = 1. This implies that the upper

bound in (3.8) is less than the upper bound in (3.3) so that diffusion networks

are stable over a wider range of step-sizes. Actually, the upper bound in (3.8)

can be much smaller than the one in (3.3) or even zero because λmin(A) can be

negative or equal to −1.

What if some of the agents are unstable in the mean to begin with? How

would the behavior of the diffusion and consensus strategies differ? Assume that

there is at least one individual unstable agent, i.e., λl(Bncop) ≤ −1 for some l

so that ρ(Bncop) ≥ 1. Then, we observe from (3.6) that the spectral radius of
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Batc can still be smaller than one even if ρ(Bncop) ≥ 1. It follows that even if

some individual agent is unstable, the diffusion strategies can still be stable if we

properly choose A. In other words, diffusion cooperation has a stabilizing effect

on the network. In contrast, if there is at least one individual unstable agent

and the combination matrix A is symmetric, then from (3.7), no matter how

we choose A, the ρ(Bcons) will be larger than or equal to one and the consensus

network will be unstable.

The above results suggest that fusing results from neighborhoods according

to the consensus strategy (2.24) is not necessarily the best thing to do because

it can lead to instability and catastrophic failure. On the other hand, fusing the

results from neighbors via diffusion ensures stability regardless of the topology.

3.1.1 Example: Two-Agent Networks

To illustrate these important observations, let us consider an example consisting

of two cooperating agents; in this case, it is possible to carry out the calculations

analytically in order to highlight the various patterns of behavior. Later, in the

simulations section, we illustrate the behavior for networks with multiple agents.

Thus, consider a network consisting of N = 2 agents. For simplicity, we assume

the weight vector w◦ is a scalar, and Ru,1 = σ2
u,1 and Ru,2 = σ2

u,2. Without loss of

generality, we assume µ1σ
2
u,1 ≤ µ2σ

2
u,2. The combination matrix for this example

is of the form (see Fig. 3.1 further ahead):

AT =




1− a a

b 1− b



 . (3.9)
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with a, b ∈ [0, 1]. When desired, a symmetric A can be selected by simply setting

a = b. Then, using (3.9), we get

Batc =




(1− µ1σ

2
u,1)(1− a) (1− µ2σ

2
u,2)a

(1− µ1σ
2
u,1)b (1− µ2σ

2
u,2)(1− b)



 (3.10)

Bcons =




1− a− µ1σ

2
u,1 a

b 1− b− µ2σ
2
u,2



 . (3.11)

We first assume that

0 < µ1σ
2
u,1 ≤ µ2σ

2
u,2 < 2 (3.12)

so that both individual agents are stable in the mean by virtue of (3.3). Then, by

Theorem 3.1, the ATC diffusion network will also be stable in the mean for any

choice of the parameters {a, b}. We now verify that there are choices for {a, b}
that will turn the consensus network unstable. Specifically, we verify below that

if a and b happen to satisfy

a + b ≥ 2− µ1σ
2
u,1 (3.13)

then consensus will lead to unstable network behavior even though both individ-

ual agents are stable. Indeed, note first that the eigenvalues of Bcons are given

by:

λ(Bcons) =
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)±

√
D

2
(3.14)

where

D , (−a + b− µ1σ
2
u,1 + µ2σ

2
u,2)

2 + 4ab

= (a + b+ µ1σ
2
u,1 − µ2σ

2
u,2)

2 + 4b(µ2σ
2
u,2 − µ1σ

2
u,1).

(3.15)

From the first equality of (3.15), we know that D ≥ 0. Hence, the eigenvalues of

Bcons are real and the minimum eigenvalue of Bcons is given by:

λmin(Bcons) =
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)−

√
D

2
(3.16)
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When (3.12)-(3.13) are satisfied, we have that

(a+ b+ µ1σ
2
u,1 − µ2σ

2
u,2) and 4b(µ2σ

2
u,2 − µ1σ

2
u,1) (3.17)

in the second equality of (3.15) are nonnegative. It follows that the consensus

network is unstable since

λmin(Bcons) ≤
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)− (a+ b+ µ1σ

2
u,1 − µ2σ

2
u,2)

2

≤ −1. (3.18)

In Fig. 3.1(a), we set µ1σ
2
u,1 = 0.4 and µ2σ

2
u,2 = 0.6 so that each individual agent

is stable. If we now set a = b = 0.85, then (3.13) is satisfied and the consensus

strategy becomes unstable.

Next, we consider an example satisfying

0 < µ1σ
2
u,1 < 2 ≤ µ2σ

2
u,2 (3.19)

so that agent 1 is still stable, whereas agent 2 becomes unstable. From the first

equality of (3.15), we again conclude that

λmin(Bcons) ≤
(2− a− b− µ1σ

2
u,1 − µ2σ

2
u,2)− | − a+ b− µ1σ

2
u,1 + µ2σ

2
u,2|

2

=







1− a− µ1σ
2
u,1, if a + µ1σ

2
u,1 ≥ b+ µ2σ

2
u,2

1− b− µ2σ
2
u,2, otherwise

≤ −1. (3.20)

That is, in this second case, no matter how we choose the parameters {a, b}, the
consensus network is always unstable. In contrast, the diffusion network is able

to stabilize the network. To see this, we set b = 1 − a so that the eigenvalues of

Batc in (3.10) are

{0, 1− µ1σ
2
u,1 − (µ2σ

2
u,2 − µ1σ

2
u,1)a}. (3.21)
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Figure 3.1: Transient network MSD over time with N = 2. (a) µ1σ
2
u,1 = 0.4,

µ2σ
2
u,2 = 0.6, and a = b = 0.85. As seen in the right plot, the consensus strategy

is unstable even when the individual agents are stable. (b) µ1σ
2
u,1 = 0.4, µ2σ

2
u,2 =

2.4, and a = 1 − b = 0.2 so that agent 2 is unstable. As seen in the right

plot, the diffusion strategies are able to stabilize the network even when the

non-cooperative and consensus strategies are unstable.
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Some algebra shows that the diffusion network is stable if a satisfies

0 ≤ a <
2− µ1σ

2
u,1

µ2σ2
u,2 − µ1σ2

u,1

. (3.22)

In Fig. 3.1(b), we set µ1σ
2
u,1 = 0.4 and µ1σ

2
u,1 = 2.4 so that agent 1 is stable, but

agent 2 is unstable. If we now set a = 1− b = 0.2, then (3.22) is satisfied and the

diffusion strategies become stable even when the non-cooperative and consensus

strategies are unstable.

3.2 Comparison of Mean-Square Performance

In the previous section, we compared the stability of the various estimation strate-

gies in the mean sense. In particular, we established that stability of the individ-

ual agents ensures stability of diffusion networks irrespective of the combination

topology. In the sequel, we shall assume that the step-sizes are sufficiently small

so that conditions (3.3) and (3.8) hold and the diffusion and consensus networks

are stable both in the mean and mean-square senses; as well as the individual

agents. Under these conditions, the networks achieve steady-state operation. We

now establish that ATC diffusion achieves lower (and, hence, better) MSD values

at faster rate than the consensus, CTA, and non-cooperative strategies. In this

way, diffusion strategies do not only ensure stability of the cooperative behavior

but they also lead to improved mean-square-error performance.

In order to quantify the differences in performance without biasing the re-

sults by differences in the adaptation mechanism (step-sizes) or in the covariance

matrices of the regression data at the agents, we make the following reasonable

condition, which assumes that all agents have similar processing abilities.

Assumption 3.1 (Homogeneous agents). All agents in the network use the same

step-size, µk = µ, and they observe data arising from the same covariance data

48



Table 3.1: Variables for cooperative and non-cooperative implementations when

µk = µ and Ru,k = Ru for all k.

ATC diffusion (2.29) CTA diffusion (2.32) Consensus (2.24)

B AT ⊗ IM −AT ⊗ µRu AT ⊗ IM −AT ⊗ µRu AT ⊗ IM − IN ⊗ µRu

λl,m(B) λl(A)(1 − µλm(Ru)) λl(A)(1 − µλm(Ru)) λl(A)− µλm(Ru)

Y µ2(ATΣvA)⊗Ru µ2Σv ⊗Ru µ2Σv ⊗Ru

sb∗l,mYsbl,m µ2λm(Ru)|λl(A)|2 · s∗lΣvsl µ2λm(Ru) · s∗lΣvsl µ2λm(Ru) · s∗lΣvsl

so that Ru,k = Ru for all k. In other words, we are dealing with a network of

homogeneous agents interacting with each other.

Under Assumption 3.1, the matrices M from (2.38) and R from (2.48) simplify

to

M = µINM and R = IN ⊗ Ru (3.23)

and thus the matrices B and Y in Table 2.2 reduce to the expressions shown in

Table 3.1, where we introduced the diagonal matrix

Σv , diag{σ2
v,1, σ

2
v,2, . . . , σ

2
v,N} > 0. (3.24)

Note that the ATC and CTA diffusion strategies now have the same coefficient

matrix B and all three distributed strategies degenerate to non-cooperative strat-

egy (2.9) when A = IN and λl(A) = 1 for all l. We explain in the sequel the

terms that appear in the last row of Table 3.1.
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3.2.1 Spectral Properties of B

As mentioned before, the stability and mean-square-error performance of the

various algorithms depend on the corresponding matrix B; therefore, we examine

more closely the eigen-structure of B. For the distributed strategies (diffusion and

consensus), the eigen-structure of B will depend on the combination matrix A and

the covariance matrix Ru. We introduce the eigen-structure of A in Appendix

2.A (see (2.99)). Moreover, we let zm (m = 1, 2, . . . ,M) denote the eigenvector

of the covariance matrix Ru that is associated with the eigenvalue λm(Ru). That

is,

Ru · zm = λm(Ru) · zm. (3.25)

Since Ru is Hermitian and positive-definite, the {zm} are orthonormal, i.e.,

z∗m2
zm1 = δm1m2 (3.26)

and the {λm(Ru)} are positive. The following result describes the eigen-structure

of the matrix B in terms of the eigen-structures of {AT , Ru} for the diffusion

and consensus algorithms of Table 3.1. Note that the results for any of these

distributed strategies collapse to the result for the non-cooperative strategy when

we set λl(A) = 1 for all l.

Lemma 3.1 (Eigen-structure of B under diffusion and consensus). The matrices

{B} appearing in Table 3.1 for the diffusion and consensus strategies have right

and left eigenvectors {rbl,m, sbl,m} given by:

rbl,m = rl ⊗ zm and sbl,m = sl ⊗ zm (3.27)

with the corresponding eigenvalues, λl,m(B), shown in Table 3.1 for l = 1, 2, . . . , N

and m = 1, 2, . . . ,M . Note that while the eigenvectors are the same for the

diffusion and consensuses strategies, the corresponding eigenvalues are different.

50



Proof. We only consider the diffusion case and denote its coefficient matrix by

Bdiff = AT ⊗IM −AT ⊗µRu; the same argument applies to the consensus strategy.

We multiply Bdiff by the rbl,m defined in (3.27) from the right and obtain

Bdiff · rbl,m = (AT ⊗ IM − AT ⊗ µRu) · (rl ⊗ zm)

= λl(A) · (rl ⊗ zm)− λl(A) · µλm(Ru) · (rl ⊗ zm)

= λl(A)(1− µλm(Ru)) · rbl,m

(3.28)

where we used the Kronecker product property in (2.68). In a similar manner,

we can verify that Bdiff has left eigenvector sbl,m defined in (3.27) with the corre-

sponding eigenvalue λl,m(B) from Table 3.1.

We then arrive at the following result in comparison of the convergence rate

for diffusion and consensus strategies.

Theorem 3.2 (Spectral radius of B under diffusion and consensus). It holds that

ρ(Bdiff) = ρ(Bncop) ≤ ρ(Bcons) (3.29)

where equality holds if A = IN or when the step-size satisfies:

0 < µ ≤ min
l 6=1

1− |λl(A)|
λmin(Ru) + λmax(Ru)

. (3.30)

Proof. See Appendix 3.B.

Note that the upper bound in (3.30) is even smaller than the one in (3.8)

and, therefore, can again be very small or even zero. It follows that there is

generally a wide range of step-sizes over which ρ(Bcons) is greater than ρ(Bdiff).

When this happens, the convergence rate of diffusion networks is superior to

the convergence rate of consensus networks; in particular, the quantities Ew̃i

and E‖w̃i‖2 will converge faster towards their steady-state values over diffusion

networks than over consensus networks.
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3.2.2 Network MSD Performance

We now compare the network MSD performance. With the knowledge of the

eigen-structure of the matrix B, we can use expressions (2.85) and (2.87) to arrive

at simple expressions for MSDs. To do so, we introduce the following assumption

on the combination matrix.

Assumption 3.2 (Diagonalizability of A). The combination matrix A is diago-

nalizable.

We can now simplify the MSD expressions by using the eigen-decomposition of

B from Lemma 3.1 and the eigen-decomposition of A from Appendix 2.A.

Lemma 3.2 (MSD expressions for homogeneous agents). Under Assumptions

2.1-3.2, the MSD at agent k from (2.85) can be expressed as:

MSDk =
N∑

l1=1

N∑

l2=1

M∑

m=1

(eTk rl1) · sb∗l1,mYsbl2,m · (r∗l2ek)
1− λl1,m(B)λ∗l2,m(B)

. (3.31)

Furthermore, if the right eigenvectors {rl} of AT are approximately orthonormal

(or, A is close-to-symmetric), i.e.,

r∗l2rl1 ≈ δl1l2 (3.32)

then the network MSD from (2.87) can be approximated by:

MSD ≈
N∑

l=1

M∑

m=1

sb∗l,mYsbl,m
N · (1− |λl,m(B)|2)

. (3.33)

Proof. Using (3.27), we have:

rb∗l2,m2
(ek ⊗ IM)(eTk ⊗ IM)rbl1,m1

= (r∗l2eke
T
k rl1)⊗ (z∗m2

zm1)

= (r∗l2eke
T
k rl1) · δm1m2 (3.34)
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since the eigenvectors {zm} are orthonormal. Substituting (3.34) into (2.85), we

arrive at (3.31). For the network MSD, we obtain from (3.27) and assumption

(3.32) that

rb∗l2,m2
rbl1,m1

= (r∗l2 ⊗ z∗m2
) · (rl1 ⊗ zm1)

= (r∗l2rl1) · (z∗m2
zm1)

≈ δl1l2 · δm1m2 (3.35)

Then, from (2.87) and (3.35), we can establish (3.33).

The term sb∗l,mYsbl,m in (3.33) is listed in Table 3.1 for the various strategies.

Note that, as indicated in (2.103), any symmetric combination matrix A satisfies

condition (3.32) with an exact equality.

Using the expressions for λl,m(B) and sb∗l,mYsbl,m from Table 3.1 and substi-

tuting into (3.33), we can obtain the network MSD expressions for the various

strategies. The following result shows how these MSD values compare to each

other.

Theorem 3.3 (Comparing network MSDs). If condition (3.32) is satisfied and

A 6= IN , then the ATC diffusion strategy achieves the lowest network MSD in com-

parison to the other strategies (CTA diffusion, consensus, and non-cooperative).

More specifically, it holds that

MSDatc < MSDcta < MSDncop (3.36)

MSDatc < MSDcons. (3.37)

Furthermore, if 1 ≤ µ · λmin(Ru) < 2, the consensus strategy is the worst even in

comparison to the non-cooperative strategy:

MSDatc < MSDcta < MSDncop < MSDcons. (3.38)
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Proof. See Appendix 3.C.

Therefore, the ATC diffusion strategy outperforms consensus, CTA diffusion,

and non-cooperative strategies when condition (3.32) is satisfied. However, the

relation among MSDcta, MSDcons, and MSDncop depends on the combination ma-

trix A. To illustrate this fact, we reconsider the two-agent network from Section

3.1.1 with σ2
u,1 = σ2

u,2 = σ2
u, µ1 = µ2 = µ, and 0 < µσ2

u < 1. Furthermore, to

ensure the stability of the consensus strategy and from (3.13), the parameters

{a, b} in (3.9) are now chosen to satisfy a+ b < 2− µσ2
u. In this case, the eigen-

values of the combination matrix A in (3.9) are {1, 1− a− b}. It can be verified

from (3.33) and Table 3.1 that the CTA diffusion strategy achieves lower network

MSD (better mean-square performance) than the consensus strategy if







MSDcons ≤ MSDcta, if 0 ≤ a + b ≤ 2(1−µσ2
u)

2−µσ2
u

MSDcons ≥ MSDcta, if 2(1−µσ2
u)

2−µσ2
u

≤ a + b < 2− µσ2
u

(3.39)

Similarly, the network MSDs of the consensus and non-cooperative strategies

have the following relation:







MSDcons ≤ MSDncop, if 0 ≤ a+ b ≤ 2(1− µσ2
u)

MSDcons ≥ MSDncop, if 2(1− µσ2
u) ≤ a + b < 2− µσ2

u

(3.40)

Combining (3.39)-(3.40), we can divide the a × b plane into three regions, as

shown in Fig. 3.2, where each region corresponds to one possible relation among

MSDcta, MSDcons, and MSDncop.

3.2.3 MSD of Individual Agents

In Theorem 3.3, we established that the ATC diffusion strategy performs the best

in terms of the average network MSD. It is still not clear how well the individual
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Figure 3.2: Network MSD comparison with N = 2 and µσ2
u = 0.4. The consensus

strategy is unstable when the parameters a and b lie above the dashed line in

region I.

agents perform under each strategy. It is generally more challenging to compare

diffusion and consensus strategies in terms of the MSDs of their individual agents

due to the structure of the matrix B for the consensus strategy. Nevertheless, this

can be accomplished as follows. We observe from (3.31) and Table 3.1 that the

{MSDk} for the CTA diffusion and consensus strategies differ only in the value

of λl,m(B). From Table 3.1, the difference between the values of λl,m(B) for these
two strategies is

λl,m(Bcta)− λl,m(Bcons) = µλm(Ru) · (1− λl(A)) = O(µ) (3.41)

where the term O(µ) denotes a factor that is of the order of the step-size µ.

It follows that for sufficiently small step-sizes (see Assumption 2.1), expression

(3.41) is close to zero and the CTA diffusion and consensus strategies will exhibit

similar MSDs at the individual agents, i.e., MSDcta,k ≈ MSDcons,k for all k. As a

result, in the following, we only compare MSDatc,k, MSDcta,k, and MSDncop,k. In

particular, we will show that under certain conditions on the combination matrix

A, the ATC diffusion strategy continues to perform the best in terms of the MSD
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at the individual agents in comparison to the other strategies. To do so, starting

from (3.31) and the expressions for {λl,k(B),Y} in Table 3.1, we can express the

MSD at agent k for the ATC diffusion strategy as:

MSDatc,k =

M∑

m=1

µ2λm(Ru)

N∑

l1,l2=1

λl1(A)λ
∗
l2
(A) · (eTk rl1s∗l1Σvsl2r

∗
l2
ek)

1− λl1(A)λ
∗
l2
(A) · (1− µλm(Ru))2

,

M∑

m=1

MSDatc,k(m) (3.42)

where we introduced the notation MSDatc,k(m) to denote the MSD component

at agent k that is contributed by the mth eigenvalue of Ru, i.e.,

MSDatc,k(m) = µ2λm(Ru)
N∑

l1,l2=1

λl1(A)λ
∗
l2
(A) · (eTk rl1s∗l1Σvsl2r

∗
l2
ek)

1− λl1(A)λ
∗
l2
(A) · (1− µλm(Ru))2

. (3.43)

In a similar vein, we can define the corresponding MSDk(m) terms for the other

strategies. We list these terms in Table 3.2 in two equivalent forms (we will use

the series form later). We first have the following useful preliminary result.

Lemma 3.3 (Useful comparisons). The following ratios are positive and inde-

pendent of the agent index k:

MSDncop,k(m)−MSDatc,k(m)

MSDncop,k(m)−MSDcta,k(m)
=

1

(1− µλm(Ru))2
> 0 (3.44)

MSDncop,k(m)−MSDatc,k(m)

MSDcta,k(m)−MSDatc,k(m)
=

1

1− (1− µλm(Ru))2
> 0. (3.45)

Proof. From the eigen-forms of {MSDk(m)} in Table 3.2, the differences between

MSDatc,k(m), MSDcta,k(m), and MSDncop,k(m) are given by:

MSDncop,k(m)−MSDatc,k(m) =
µ2λm(Ru)

1− (1− µλm(Ru))2
· ck(m) (3.46)

MSDncop,k(m)−MSDcta,k(m) =
µ2λm(Ru) · (1− µλm(Ru))

2

1− (1− µλm(Ru))2
· ck(m) (3.47)

MSDcta,k(m)−MSDatc,k(m) = µ2λm(Ru) · ck(m) (3.48)
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Table 3.2: Expressions for MSDk(m) in series form and eigen-form.

ATC

Diffusion

(2.29)

Series form µ2λm(Ru)
∑∞

j=0(1− µλm(Ru))
2j · eTkAT (j+1)ΣvA

j+1ek

Eigen-form µ2λm(Ru)
∑N

l1,l2=1

λl1
(A)λ∗

l2
(A)·(eT

k
rl1s

∗
l1
Σvsl2r

∗
l2
ek)

1−λl1
(A)λ∗

l2
(A)·(1−µλm(Ru))2

CTA

Diffusion

(2.32)

Series form µ2λm(Ru)
∑∞

j=0(1− µλm(Ru))
2j · eTkATjΣvA

jek

Eigen-form µ2λm(Ru)
∑N

l1,l2=1

eT
k
rl1s

∗
l1
Σvsl2r

∗
l2
ek

1−λl1
(A)λ∗

l2
(A)·(1−µλm(Ru))2

Non-

cooperative

(2.9)

Series form µ2λm(Ru)
∑∞

j=0(1− µλm(Ru))
2j · eTkΣvek

Eigen-form µ2λm(Ru)
∑N

l1,l2=1

eT
k
rl1s

∗
l1
Σvsl2r

∗
l2
ek

1−(1−µλm(Ru))2

where

ck(m) =

N∑

l1,l2=1

[
1− λl1(A)λ

∗
l2
(A)
]
· (eTk rl1s∗l1Σvsl2r

∗
l2
ek)

1− λl1(A)λ
∗
l2
(A) · (1− µλm(Ru))2

. (3.49)

Then, dividing (3.46) by (3.47) and (3.46) by (3.48), we arrive at (3.44)-(3.45).

Lemma 3.4 (Useful ordering). The relation among MSDatc,k(m), MSDcta,k(m),

and MSDncop,k(m) is either

MSDatc,k(m) ≤ MSDcta,k(m) ≤ MSDncop,k(m) (3.50)

or

MSDatc,k(m) ≥ MSDcta,k(m) ≥ MSDncop,k(m). (3.51)

Proof. Assume first that MSDatc,k(m) ≤ MSDncop,k(m). Then, using (3.44), we

get MSDncop,k(m)−MSDcta,k(m) ≥ 0. Similarly, from (3.45), we get MSDcta,k(m)−
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MSDatc,k(m) ≥ 0. We conclude that relation (3.50) holds in this case. Assume

instead that MSDatc,k(m) ≥ MSDncop,k(m). Then, a similar argument will show

that (3.51) should hold.

The above result is useful since it allows us to deduce the relation among

MSDatc,k(m), MSDcta,k(m), and MSDncop,k(m) by only knowing the relation be-

tween any two of them. To proceed, we note that we can alternatively express

the MSDk(m) terms in an equivalent series form. For example, expression (3.43)

can be written as:

MSDatc,k(m) = µ2λm(Ru)
∞∑

j=0

N∑

l1,l2=1

(1− µλm(Ru))
2j

× λj+1
l1

(A) · λ∗(j+1)
l2

(A) · (eTk rl1s∗l1Σvsl2r
∗
l2
ek)

= µ2λm(Ru)

∞∑

j=0

(1− µλm(Ru))
2j

× eTk

(
N∑

l1=1

λj+1
l1

(A)rl1s
∗
l1

)

Σv

(
N∑

l2=1

λ
∗(j+1)
l2

(A)sl2r
∗
l2

)

ek

= µ2λm(Ru)
∞∑

j=0

(1− µλm(Ru))
2j · eTkAT (j+1)ΣvA

j+1ek. (3.52)

In a similar manner, we can obtain the corresponding MSDk(m) series forms

for the other strategies and we list these in Table 3.2. In the following, we

provide conditions to guarantee that the individual agent performance in the

ATC diffusion strategy outperforms the other strategies.

Theorem 3.4 (Comparing individual MSDs). If the combination matrix A sat-

isfies

Σv −ATΣvA ≥ 0 (3.53)

where Σv is the noise variance (diagonal) matrix defined by (3.24), then:

MSDatc,k ≤ MSDcta,k ≤ MSDncop,k. (3.54)
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Proof. From the series forms of {MSDk(m)} in Table 3.2, the difference MSDcta,k(m)−
MSDatc,k(m) is given by:

MSDcta,k(m)−MSDatc,k(m)

= µ2λm(Ru)
∞∑

j=0

(1− µλm(Ru))
2jeTkA

Tj
(
Σv − ATΣvA

)
Ajek. (3.55)

Since Σv −ATΣvA ≥ 0, we conclude that MSDcta,k(m) ≥ MSDatc,k(m) for all m.

Then, applying Lemma 3.4, we obtain relation (3.54).

Condition (3.53) essentially means that the combination matrix A should

not magnify the noise effect across the network. However, in general, condition

(3.53) is restrictive in the sense that over the set of feasible diagonalizable left-

stochastic matrices A satisfying al,k = 0 if l /∈ Nk, the set of combination matrices

A satisfying (3.53) can be small. We illustrate this situation by reconsidering the

two-agent network (3.9) for which

Σv −ATΣvA =




2at− a2(1 + t) −(1 − a)bt− a(1− b)

−(1− a)bt− a(1− b) 2b− b2(1 + t)



 (3.56)

where t = σ2
v,1/σ

2
v,2 denotes the ratio of noise variances at agents 1 and 2. Note

from

det(Σv −ATΣvA) = −(a− bt)2 ≤ 0 (3.57)

that equality holds in (3.57) if, and only if,

a = tb. (3.58)

That is, when a 6= tb, the matrix (Σv−ATΣvA) has two eigenvalues with different

signs. Thus, the only way to ensure Σv −ATΣvA ≥ 0 in this case is to set a = tb

and, thus, the matrix (Σv−ATΣvA) will have at least one eigenvalue at zero since
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its determinant will be zero. To ensure Σv − ATΣvA ≥ 0, its other eigenvalue,

which is equal to

b(1 + t2)(2− b− bt) (3.59)

needs to be greater than or equal to zero. It follows that b must satisfy:

0 ≤ b ≤ 2

1 + t
. (3.60)

Moreover, since a and b must lie within the interval [0, 1], we conclude from (3.58)

that b must also satisfy:

0 ≤ b ≤ min{1, 1/t}. (3.61)

It can be verified that condition (3.61) implies condition (3.60) since min{1, 1/t} ≤
2/(1 + t). That is, for any left-stochastic matrix A from (3.9) satisfying a = tb

and (3.61), relation (3.54) holds and both agents improve their own MSDs by

employing the diffusion strategies. Note that condition (3.58) represents a line

segment in the unit square a, b ∈ [0, 1] (see Fig. 3.3). In the following, we relax

condition (3.53) with a mild constraint on the network topology.

In addition to Assumption 3.2, we further assume that the combination ma-

trix A is primitive (i.e., Assumption 2.2). It follows from the Perron-Frobenius

Theorem [64] that (AT )j converges to the rank-one matrix:

lim
j→∞

(AT )j = r1s
T
1 . (3.62)

where r1 and s1 satisfy (2.102). Then, we arrive at the following result.

Theorem 3.5 (Comparing individual MSDs for primitive A). Under Assump-

tions 3.2 and 2.2, if
sT1Σvs1
N

< σ2
v,k (3.63)
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Figure 3.3: Comparison of individual agent MSD using N = 2 and t = σ2
v,1/σ

2
v,2.

There exists a step-size region such that MSDatc,k < MSDcta,k < MSDncop,k for

k = 1, 2 when the parameters a and b lie in the shaded regions. The dashed lines

indicate condition (3.58).

for all k, then there exists µ◦ > 0 so that for any step-size µ satisfying 0 < µ ≤ µ◦,

it holds:

MSDatc,k < MSDcta,k < MSDncop,k. (3.64)

Proof. See Appendix 3.D.

We show in Appendix 3.E that for any primitive A, condition (3.53) implies

condition (3.63). To illustrate these two conditions, we consider again the two-

agent network. It can be verified that sT1 for AT in (3.9) has the form

sT1 =
[√

2b/(a+ b)
√
2a/(a+ b)

]

. (3.65)

Then, some algebra shows that condition (3.63) becomes

(t− 1)a+ 2bt > 0 and 2a+ (1− t)b > 0. (3.66)

Recall that t = σ2
v,1/σ

2
v,2. We illustrate condition (3.66), along with condition

(3.58), in Fig. 3.3. We observe that condition (3.58), shown as the dashed lines,
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Figure 3.4: Network topology and noise and data power profiles at the agents.

The number next to an agent denotes the agent index.

is contained in condition (3.66), shown as the shaded regions, and that compared

to condition (3.58), condition (3.66) enlarges the region of A for which the ATC

diffusion strategy performs the best in terms of the individual MSD performance.

3.3 Simulation Results

We consider a network with 20 homogeneous agents and random topology. The

regression covariance matrix Ru is diagonal with entries randomly generated from

[2, 4], and the noise variances {σ2
v,k} are randomly generated over [−30,−10] dB

(see Fig. 3.4). The network estimates a 10 × 1 (i.e., M = 10) unknown vector

w◦.

The transient network MSD over time is shown on the left hand side of Fig. 3.5

with three possible combination rules: relative-variance [124, 152, 174], uniform

from (4.64), and Metropolis [167] (see Table 3.3). Note that the matrix A for
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Table 3.3: Combination rules used in the simulations

Name Rule

Relative-variance [124, 152, 174] al,k =







σ−2
v,l /

∑

j∈Nk
σ−2
v,j , if l ∈ Nk

0, otherwise

Uniform [124] al,k =







1/nk, if l ∈ Nk

0, otherwise

Metropolis [167] al,k =







1−∑j 6=k ak,j , if l = k

1/max{nk, nl}, if l ∈ Nk \ {k}

0, otherwise

No-cooperation al,k = δkl

the Metropolis rule is symmetric. The step-size µ is set to µ = 0.02. We observe

that, as expected, the ATC diffusion strategy outperforms the other strategies,

especially for the relative-variance rule. It also suggests that some conventional

choices of combination weights, such as the Metropolis rule, may not be the

most suitable for adaptation in the presence of both noisy and streaming data

because such weights do not take into account the noise profile across the agents

(see, e.g., [124, 152, 174] for more details on this issue). We further show the

steady-state MSD at the individual agents on the right hand side of Fig. 3.5. We

observe that the ATC diffusion strategy achieves the lowest MSD at each agent

in comparison to the other strategies. These observations are in agreement with

the results predicted by the theoretical analysis. The theoretical expressions for

MSDs from (3.31) and (3.33) are also depicted in Fig. 3.5 for the ATC diffusion

strategy and match well with simulations.

We further compare the mean-square performance of the distributed strategies
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Figure 3.5: Transient network MSD over time (left, with peak values normalized

to 0dB) and steady-state MSD at the individual agents (right) for (a)-(b) the

relative-variance, (c)-(d) uniform, and (e)-(f) Metropolis rules. The dashed lines

on the left/right hand side indicate the theoretical network/individual MSD from

(3.33)/(3.31) for the ATC diffusion strategy.
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Figure 3.6: Transient network MSD over time (left) and steady-state MSD at

the individual agents (right) for the relative-variance combination rule using µ =

0.075.

for larger step-sizes. We set the step-size to µ = 0.075 and use the relative-

variance combination rule. The transient network MSD over time is shown on

the left hand side of Fig. 3.6. We observe that the ATC and CTA diffusion

strategies have the same convergence rate and converge faster than the consensus

strategy. Moreover, the diffusion strategies achieve lower network MSD than the

consensus strategy. We also show the steady-state MSD at the individual agents

on the right hand side of Fig. 3.6. We see again that ATC diffusion performs the

best in comparison to the other strategies at each individual agent.

3.4 Concluding Remarks

We compared analytically several cooperative estimation strategies, including

ATC diffusion, CTA diffusion, and consensus for distributed estimation over net-

works. The results show that diffusion networks are more stable than consensus

networks. Moreover, the stability of diffusion networks is independent of the
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combination weights, whereas consensus networks can become unstable even if

all individual agents are stable. Furthermore, in steady-state, the ATC diffusion

strategy performs the best not only in terms of the network MSD, but also in

terms of the MSDs at the individual agents.

3.A Proof of Theorem 3.1

First, note that the matrices {B} for the ATC and CTA diffusion strategies given

by (3.5) have the same eigenvalues (and, therefore, the same spectral radius)

because for any matrices X and Y of compatible dimensions, the matrix products

XY and Y X have the same eigenvalues [64]. So let us evaluate the spectral radius

of Batc. To do so, we introduce a convenient block matrix norm, and denote it

by ‖ · ‖b; it is defined as follows. Let X be an N ×N block matrix with blocks of

size M ×M each. Its block matrix norm is defined as:

‖X‖b , max
1≤k≤N

(
N∑

l=1

‖Xk,l‖2
)

(3.67)

where Xk,l denotes the (k, l)th block of X and ‖ · ‖2 denotes the 2-induced norm

(largest singular value) of its matrix argument. That is, we first compute the 2-

induced norm of each block Σk,l and then find the ∞-norm of the N ×N matrix

formed from the entries {‖Σk,l‖2}. It can be verified that (3.67) satisfies the four

conditions for a matrix norm [64]. Now, since {INM ,M,R} are block diagonal

matrices, the following property holds:

‖INM −MR‖b = max
1≤k≤N

‖IM − µkRu,k‖2

= max
1≤k≤N

ρ(IM − µkRu,k)

= ρ(Bncop) (3.68)
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where we used the fact that the 2-induced norm of any Hermitian matrix coincides

with its spectral radius. In addition, since A is a left-stochastic matrix, it holds

that

‖AT‖b = max
1≤k≤N

(
N∑

l=1

‖al,kIM‖2
)

= max
1≤k≤N

(
N∑

l=1

al,k

)

= 1. (3.69)

Accordingly, using the fact that the spectral radius of a matrix is upper bounded

by any norm of the matrix [64], we get:

ρ(Batc) ≤ ‖AT (INM −MR)‖b

≤ ‖AT‖b · ‖INM −MR‖b

= ρ(Bncop) (3.70)

which establishes (3.6).

Now, assume A is symmetric. Since it is also left-stochastic, it follows that its

eigenvalues are real and lie inside the interval [−1, 1]. Therefore, (INM −AT ) is

nonnegative-definite. Moreover, since M and R commute, i.e., RM = MR, it

can be verified that Bcons in (3.4) and Bncop in (3.1) are Hermitian. In addition,

the matrices Bcons and Bncop are related as follows:

Bncop = Bcons + (INM −AT ) (3.71)

with (INM −AT ) ≥ 0. Using Weyl’s Theorem1 [64], we arrive at (3.7). Following

1Let {D′, D,∆D} be M × M Hermitian matrices with ordered eigenvalues
{λm(D′), λm(D), λm(∆D)}, i.e., λ1(D) ≥ λ2(D) ≥ . . . ≥ λM (D), and likewise for the
eigenvalues of {D′,∆D}. Weyl’s Theorem states that if D′ = D +∆D, then

λm(D) + λM (∆D) ≤ λm(D′) ≤ λm(D) + λ1(∆D)

for 1 ≤ m ≤M . When ∆D ≥ 0, it holds that λm(D′) ≥ λm(D).

67



a similar argument, it holds for symmetric A that

λl {λmin(A) · INM −MR} ≤ λl(Bcons) for l = 1, 2, . . . , NM. (3.72)

Thus, the matrix Bcons is stable (namely, −1 < λl(Bcons) < 1 for l = 1, 2, . . . , NM)

if

λl (λmin(A) · INM −MR) > −1 (3.73)

λl(Bncop) < 1 (3.74)

for l = 1, 2, . . . , NM , or, equivalently,

λmin(A)− µkλm(Ru,k) > −1 (3.75)

1− µkλm(Ru,k) < 1 (3.76)

for k = 1, 2, . . . , N and m = 1, 2, . . . ,M . We then arrive at (3.8).

3.B Proof of Theorem 3.2

For the diffusion strategies, from Table 3.1 and since ρ(A) = 1, we have

ρ(Bdiff) = ρ[AT ⊗ (IM − µRu)]

= ρ(A) · ρ(IM − µRu)

= ρ(IM − µRu)

= ρ(Bncop). (3.77)

Moreover, since 1 ∈ {λl(A)}, we have

ρ(Bncop) = max
1≤m≤M

|1− µλm(Ru)|

≤ max
1≤l≤N

max
1≤m≤M

|λl(A)− µλm(Ru)|

= ρ(Bcons) (3.78)
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and we arrive at (3.29). It is obvious that when A = IN , then equality in (3.78)

holds and ρ(Bncop) = ρ(Bcons). We now consider the case when A 6= IN . Note

that the spectral radius of Bncop is given by

ρ(Bncop) = max{1− µλmin(Ru),−1 + µλmax(Ru)}. (3.79)

We first verify that equality in (3.78) holds only when ρ(Bncop) = 1− µλmin(Ru).

Indeed, if

ρ(Bncop) = −1 + µλmax(Ru) ≥ 0 (3.80)

we have that µλmax(Ru) ≥ 1 and we get from (3.78) that

ρ(Bcons) = max
1≤l≤N

max
1≤m≤M

|λl(A)− µλm(Ru)|

≥ |λl(A)− µλmax(Ru)|

≥ |Re{λl(A)} − µλmax(Ru)|

= −Re{λl(A)}+ µλmax(Ru) (3.81)

since Re{λl(A)} ≤ 1 where Re{·} denotes the real part of its argument. Since

A 6= IN , there exists some l such that Re{λl(A)} < 1 and then

ρ(Bcons) > −1 + µλmax(Ru) = ρ(Bncop). (3.82)

Now, assume that

ρ(Bncop) = 1− µλmin(Ru). (3.83)

Then, equality in (3.78) holds if

|λl(A)− µλm(Ru)| ≤ ρ(Bncop) (3.84)

for all l and m. It is obvious that relation (3.84) holds for l = 1 since λ1(A) = 1

and

ρ(Bncop) = max
1≤m≤M

|1− µλm(Ru)|

≥ |λ1(A)− µλm(Ru)|. (3.85)
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For l = 2, 3, . . . , N , by the triangular inequality of norms, we have that

|λl(A)− µλm(Ru)| ≤ |λl(A)|+ µλmax(Ru). (3.86)

Hence, the inequality in (3.84) holds if

|λl(A)|+ µλmax(Ru) ≤ 1− µλmin(Ru) (3.87)

for l = 2, 3, . . . , N and we arrive at (3.30).

3.C Proof of Theorem 3.3

We first verify that MSDatc < MSDcta, MSDcta < MSDncop, and MSDatc <

MSDcons. We show the result by verifying that the individual terms on the right

hand side of (3.33) for the various strategies have the same ordering. That is,

from (3.33) and Table 3.1, we verify that the following ratios, which correspond

to MSDatc < MSDcta, MSDcta < MSDncop, and MSDatc < MSDcons, respectively,

are upper bounded by one:

|λl(A)|2 ≤ 1 (3.88)

1− (1− µλm(Ru))
2

1− |λl(A)|2 · (1− µλm(Ru))2
≤ 1 (3.89)

|λl(A)|2 (1− |λl(A)− µλm(Ru)|2)
1− |λl(A)|2 · (1− µλm(Ru))2

≤ 1 (3.90)

for all l and m. Note that relations (3.88)-(3.89) hold since |λl(A)| ≤ 1 for all l

in view of the fact that A is left-stochastic and, hence, ρ(A) = 1. On the other

hand, relation (3.90) would hold if, and only if,

|λl(A)|2
[
1 + (1− µλm(Ru))

2 − |λl(A)− µλm(Ru)|2
]
≤ 1. (3.91)

To establish that (3.91) is true for all l and m, we introduce the compact notation

λ = λl(A) and δ = µλm(Ru) (3.92)

70



and consider the following function of two variables:

f(λ, δ) , |λ|2
[
1 + (1− δ)2 − |λ− δ|2

]

with |λ| ≤ 1, δ ∈ (0, 2), and |λ− δ| < 1.
(3.93)

The range for δ ensures condition (3.3) and the stability of the diffusion network,

while the range for |λ − δ| ensures that the consensus network is stable, i.e.,

|λl,m(Bcons)| < 1 for all l and m. Then, we would like to show that f(λ, δ) ≤ 1.

Since λ is generally complex-valued, we denote the real part of λ by λr. Then,

the term |λ− δ|2 in (3.93) is given by

|λ− δ|2 = |λ|2 + δ2 − 2λrδ (3.94)

and f(λ, δ) from (3.93) becomes

f(λ, δ) = −|λ|4 + 2(1− δ + λrδ)|λ|2. (3.95)

Since f(λ, δ) is linear in δ, the maximum value of f(λ, δ) in (3.95) over δ occurs

at the end points of δ. Since δ ∈ (0, 2) and |λr − δ| ≤ |λ − δ| < 1, we conclude

that

0 < δ < 1 + λr. (3.96)

Substituting the end points of δ into (3.95), we have

f(λ, 0) = −(|λ|2 − 1)2 + 1 ≤ 1 (3.97)

f(λ, 1 + λr) = −|λ|4 + 2λ2r|λ|2 ≤ |λ|4 ≤ 1 (3.98)

where we used the fact that λ2r ≤ |λ|2 and |λ| ≤ 1. Note that when A 6= IN , there

is at least one eigenvalue of A (say, λl) such that

|λl(A)| < 1 (3.99)

Therefore, strict inequality in (3.88)-(3.90) holds. We therefore established (3.36)

and (3.37).
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Let us now examine what happens when the step-size is such that 1 ≤
µλmin(Ru) < 2. Again, from (3.33) and Table 3.1, we establish that MSDncop <

MSDcons this conclusion by showing that the ratio of the individual terms ap-

pearing in the sums (3.33) is upper bounded by one:

1− |λl(A)− µλm(Ru)|2
1− (1− µλm(Ru))2

≤ 1 (3.100)

for all l and m. Condition (3.100) is equivalent to showing that

|λl(A)− µλm(Ru)|2 − (1− µλm(Ru))
2 = |λ|2 − 2λrδ − (1− 2δ) ≥ 0 (3.101)

where we used the notation from (3.93). Relation (3.101) holds since

δ ≥ µλmin(Ru) ≥ 1 ≥ |λ| ≥ |λr| (3.102)

and then

|λ|2 − 2λrδ − (1− 2δ) ≥ λ2r − 2λrδ − (1− 2δ) (3.103)

= (1− λr)(2δ − 1− λr) (3.104)

≥ 0. (3.105)

Again, when A 6= IN , strict inequality in (3.100) holds for some l.

3.D Proof of Theorem 3.5

From the series forms of {MSDk(m)} in Table 3.2, the difference between MSDcta,k(m)

and MSDncop,k(m) can be expressed as:

MSDncop,k(m)−MSDcta,k(m)

= µ2λm(Ru)
∞∑

j=0

(1− µλm(Ru))
2jeTk

(
Σv −ATjΣvA

j
)
ek. (3.106)
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From (3.62), we have

lim
j→∞

eTk
(
Σv −ATjΣvA

j
)
ek = σ2

v,k − eTk r1s
T
1Σvs1r

T
1 ek. (3.107)

Therefore, there exists an integer Jm such that for any ε > 0,

eTk
(
Σv −ATjΣvA

j
)
ek ≥ σ2

v,k − eTk r1s
T
1Σvs1r

T
1 ek − ε , ∆ (3.108)

for all j ≥ Jm. From (2.102), ∆ in (3.108) becomes

∆ = σ2
v,k − sT1Σvs1/N − ε. (3.109)

From condition (3.63), we are able to choose ε small enough such that ∆ is strictly

greater than zero. Therefore, expression (3.106) is lower bounded by:

MSDncop,k(m)−MSDcta,k(m) ≥ µ2λm(Ru)

[

−z +∆ ·
∞∑

j=Jm

(1− µλm(Ru))
2j

]

(3.110)

where the term z ≥ 0 is an upper bound for the first Jm terms of the summation

in (3.106), i.e.,
∣
∣
∣
∣
∣

Jm−1∑

j=0

(1− µλm(Ru))
2jeTk

(
Σv − ATjΣvA

j
)
ek

∣
∣
∣
∣
∣
≤ z <∞. (3.111)

It can be verified that the series inside the brackets of (3.110) is strictly decreasing

in µ ∈ (0, 1/λm(Ru)). In addition,

lim
µ→0

(
∞∑

j=Jm

(1− µλm(Ru))
2j

)

= ∞. (3.112)

Thus, there exists a µ◦
m > 0 such that the sum inside the bracket of (3.110)

becomes positive and, hence,

MSDncop,k(m)−MSDcta,k(m) > 0 (3.113)

for all 0 < µ ≤ µ◦
m. Repeating the above argument, we will obtain a collection

of step-size bounds {µ◦
1, µ

◦
2, . . . , µ

◦
M}. We then choose µ◦ = min{µ◦

1, µ
◦
2, . . . , µ

◦
M}

so that relation (3.113) holds for all m. Then, applying Lemma 3.4, we arrive at

(3.64) for any µ satisfying 0 < µ ≤ µ◦.
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3.E Condition (3.53) Implies (3.63) when A is Primitive

It follows from (3.53) that ATjΣvA
j − AT (j+1)ΣvA

j+1 ≥ 0 for any nonnegative

integer j and then

J∑

j=0

(
ATjΣvA

j −AT (j+1)ΣvA
j+1
)
= Σv − AT (J+1)ΣvA

J+1 ≥ 0. (3.114)

Since A is primitive, as J tends to infinity, we get from (3.62) that

lim
J→∞

(
Σv − AT (J+1)ΣvA

J+1
)
= Σv − r1s

T
1Σvs1r

T
1 ≥ 0. (3.115)

Using (2.102), we conclude that

det(Σv − r1s
T
1Σvs1r

T
1 ) = det(Σv) · det

(

IN − Σ−1
v 1N · s

T
1Σvs1
N

1
T
N

)

≥ 0. (3.116)

Since for any column vectors {x, y} of size N , it holds that

det(IN − x · yT ) = 1− yT · x (3.117)

relation (3.116) implies that the following must hold:

(

1− sT1Σvs1
N

1
T
N · Σ−1

v 1N

)

≥ 0. (3.118)

However, by the Cauchy-Schwarz inequality [64] and using the fact that sT1 1N/
√
N =

1 from (2.102), we have

sT1Σvs1
N

1
T
N · Σ−1

v 1N =

(
N∑

l=1

σ2
v,l

s21,l
N

)

·
(

N∑

l=1

σ−2
v,l

)

≥
(

N∑

l=1

s1,l√
N

)2

=

(
sT1 1N√
N

)2

= 1 (3.119)
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where s1,l denotes the lth entry of s1. Therefore, relation (3.118) can hold only

with equality in (3.119). In turn, equality in (3.119) holds if, and only if, there

exists a constant c such that s1,l/
√
N = c · σ−2

v,l for all l. By the fact that

sT1 1N/
√
N = 1, we get:

sl,1√
N

=
σ−2
v,l

∑N
m=1 σ

−2
v,m

(3.120)

and arrive at (3.63) since

σ2
v,k −

sT1Σvs1
N

= σ2
v,k −

1
∑N

l=1 σ
−2
v,l

> σ2
v,k −

1

σ−2
v,k

= 0. (3.121)
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CHAPTER 4

Design of Combination Rules

Although the stability of diffusion networks is insensitive to the topology, their

mean-square performance is still dependent on the combination weights that are

used by the agents to run the adaptation process. This motivates us to design

combination rules that are able to mitigate the effect of measurement noise. Sev-

eral combination rules have been proposed in the literature to fuse the data,

especially in the context of consensus-based iterations [69, 166, 167], such as the

Metropolis rule and the maximum-degree rule. However, these schemes ignore the

noise profile that exists at the agents and usually result in performance degrada-

tion [141]. This is because the signal-to-noise ratio (SNR) generally varies across

the agents, and some agents may have considerably lower SNR than other agents.

Therefore, designing optimal combination rules that are aware of the variation

in noise profile across the network is an important task. Moreover, in mobile

networks such as those studied in Chapter 7 where agents are continuously on

the move and where neighborhoods evolve over time, it is particularly critical to

develop adaptive combination strategies that are able to track the dynamics of

the noise profile and to perform estimation and inference successfully under such

demanding and varying conditions.

In addition to measurement noise at the individual agents, we further con-

sider the effect of noise over the links over which information is shared among

neighbors [148, 174]. Noise over the communications links is due to various fac-
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tors, including thermal noise, imperfect channel information, or inference and

estimation errors. We shall refer to the noise over the communication links as

information exchange noise to distinguish it from the measurement noise at the in-

dividual agents. There have been a couple of useful studies on the influence of link

noise on the performance of distributed adaptation strategies [61,72,77,133,134].

However, these studies focused on assessing the degradation in performance that

results from exchanging information over noisy links. In comparison, we are in-

stead interested in addressing a more critical problem, namely, how to design

the combination weights used by the network in order to counter the effect of

noise over the communication links. Interestingly, the analysis will establish the

revealing fact that nodes may need to trust their local data more heavily than

the data collected from their neighbors over the noisy communication channels

even when the quality of the node’s own measurement is worse than that of its

neighbors’ data.

Some earlier works (such as [30, 34, 69]) have considered the problem of op-

timizing combination weights to minimize the MSD of a network under the as-

sumption of noise-free exchange links. The optimization problems in these works

turn out to be generally non-convex (see (4.22) further ahead) and it is not pos-

sible to determine closed-form expressions for the optimal combination weights

in terms of the data and network parameters. In this work, we address this diffi-

culty. Under some reasonable assumptions, we show how to formulate a convex

optimization problem and determine closed-form expressions for the combination

weights. Nevertheless, the solution requires knowledge of the second-order statis-

tics of the regression and noise sources. This observation leads us to develop

an adaptive procedure for adjusting these weights on the fly. Doing so helps

resolve two issues. First, there is no need to know beforehand the second-order

moments of the data; these are replaced by useful instantaneous approximations.
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And, second, we end up with an adaptive rule for adjusting the weights them-

selves. As such, the network is able to continue to deliver performance even when

the data and noise statistical profile changes with time as happens under non-

stationary environments. In this way, besides the standard adaptation step to

solve the desired estimation or inference problem, each agent also runs an adap-

tation step to adjust its combination weights on the fly. We thus end up with a

multi-level adaptive solution, where agents react to the dynamics in their environ-

ment in real-time. We may remark that an earlier adaptive construction for the

combination weights was proposed in [33, 141]; however, that solution relied on

approximating a certain covariance matrix and results in higher computational

complexity. We compare further with this solution in the simulation section (see

Figs. 4.6 and 4.8).

4.1 Diffusion Strategies with Information Exchange Noise

From Theorem 3.2, diffusion networks ensure stability and converge faster than

consensus networks, regardless of the network topology. Nevertheless, the MSD

expression (see Theorems 3.3-3.5) depends on the selection of the combination

matrix A. In the following, we show how to select the combination weights. We

focus only on diffusion networks due to their performance over consensus net-

works. We further consider the situation when the links over which information

is exchanged are subject to noise and interference. The objective of this chapter

is to design the combination matrix to minimize the network MSD for diffusion

networks in the presence of information exchange noise.

To model noisy links and in a manner similar to [61,72,77,133,134], we modify
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the ATC diffusion strategy (2.29) as follows:







ψk,i = wk,i−1 + µk · u∗k,i[dk(i)− uk,iwk,i−1] (4.1a)

φl,k,i = ψl,i + nl,k,i (4.1b)

wk,i = ak,kψk,i +
∑

l∈Nk\{k}

al,kφl,k,i (4.1c)

where nl,k,i models the exchange noise over the communications link connecting

agent l to agent k. The term nl,k,i refers to a realization of a stationary random

process, nl,k,i, with zero mean and covariance matrix Rn,l,k; we assume it is

spatially and temporally independent and is independent of all other random

variables. Note that in the combination step (4.1c), agent k is able to use its

own noise-free intermediate estimate ψk,i, while the other estimates {φl,k,i} from

the neighbors are affected by information exchange noise. Other variants of the

algorithm are possible, for example, by reversing the order of steps (4.1a) and

(4.1c), we obtain the CTA diffusion solution [34, 95]:







φl,k,i−1 = wl,i−1 + nl,k,i (4.2a)

ψk,i−1 = ak,kwk,i−1 +
∑

l∈Nk\{k}

al,kφl,k,i−1 (4.2b)

wk,i = ψk,i−1 + µk · u∗k,i[dk(i)− uk,iψk,i−1] (4.2c)

The main question that we wish to study is to examine how the combination

weights {al,k} should be selected in order to counter the effect of the measure-

ment noise vk(i) and the information exchange noise nl,k,i. Moreover, the opti-

mal weights should be computable locally, so that each agent can evaluate what

weights it should use based only on its interactions with its neighbors. Before

we study this problem, we derive an expression for the network MSD in the

presence of information exchange noise — see expression (4.11) further ahead.

Subsequently, we motivate an optimization problem that will allow each agent to
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select the optimal combination weights and, more importantly, to adjust them in

real-time.

4.1.1 Mean-Square Performance

Expressions for the network performance, and conditions for its mean and mean-

square stability, in the absence of information exchange noise, were derived in

Chapter 2. The results can be readily extended to ATC and CTA networks

with noisy links in a straightforward manner, as was already done in Chapter

20 of [123] for adaptive filters operating under random walk models. We carry

out the performance analysis in this brief section (see Tables 2.2 and 4.1 further

ahead and the analysis that goes with it) in preparation for our study of optimal

combination weights.

From (4.1a)-(4.1c) and model (2.3), some algebra will show that the global

error vector w̃i for the ATC diffusion strategy evolves according to the relation:

w̃i = AT (INM −MRi)w̃i−1 −ATMsi − ni (4.3)

where M, A, Ri, and si were defined in (2.38), (2.39), (2.41), and (2.42), re-

spectively, and

ni , col

{
∑

l 6=1

al,1nl,1,i,
∑

l 6=2

al,2nl,2,i, · · · ,
∑

l 6=N

al,Nnl,N,i

}

(4.4)

Note that the error recursion (4.3) is the same as the one in (2.43) except for the

last term ni, which is contributed by the information exchange noise. Similarly,

for the CTA diffusion strategy, starting from (4.2a)-(4.2c) and using model (2.3),

we obtain the following recursion for w̃i:

w̃i = (INM −MRi)AT w̃i−1 −Msi − (INM −MRi)ni (4.5)
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Table 4.1: Variables that control the dynamics of ATC and CTA networks.

ATC diffusion (4.1) CTA diffusion (4.2)

zi ni (INM −MRi)ni

Z , Eziz
∗
i G (INM −MR)G(INM −MR)

We observe from recursions (4.3) and (4.5) that the recursions evolve in a similar

manner. We therefore introduce the following general form:

w̃i = Bi · w̃i−1 − yi − zi (4.6)

The ATC and CTA diffusion strategies can be obtained by choosing the matrix

Bi and the vectors {yi, zi} appropriately, as indicated in Tables 2.2 and 4.1.

Since the matrix Bi is independent of w̃i−1, and the vectors {yi, zi} are inde-

pendent of other variables and have zero mean, by following the same arguments

from Chapter 2, we can derive the following mean and variance relations for Ew̃i:

Ew̃i = B · Ew̃i−1 (4.7)

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ +
[
vec(YT )

]T
σ +

[
vec(ZT )

]T
σ (4.8)

where B, Y and

Z , Eziz
∗
i (4.9)

are defined in Tables 2.2 and 4.1. Moreover, the matrices R, S, and F are defined

in (2.48), (2.56), and (2.59), respectively, and

G , Enin
∗
i = diag

{
∑

l 6=1

a2l,1Rn,l,1,
∑

l 6=2

a2l,2Rn,l,2, · · · ,
∑

l 6=N

a2l,NRn,l,N

}

(4.10)

Relations (4.7)-(4.8) are identical to the mean and variance relations of the tradi-

tional ATC and CTA diffusion strategies in the noiseless link case (see (2.46) and
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(2.58)), except for the last term of (4.8) with Z, which results from the presence

of information exchange noise. Note that, as argued in Chapter 2, the mean and

mean-square stability only depend on the matrices {B,F}. For sufficiently small

step-sizes, the ATC and CTA diffusion strategies in the presence of information

exchange noise are likewise mean and mean-square stable.

Moreover, from starting (4.8), we find that the network MSD is now given by

MSD =
1

N

∞∑

j=0

Tr
[
Bj(Y + Z)B∗j

]

(4.11)

By substituting the corresponding matrices {B,Y ,Z} in Tables 2.2 and 4.1, we

can arrive at the MSD expressions for the ATC and CTA diffusion strategies.

Note that these expressions depend on the step-sizes {µk}, the regression covari-

ance matrices {Ru,k}, and the noise profiles {σ2
v,k, Rn,l,k}. It is useful to relate

these two MSD expression. First, note that

MSDcta =
1

N
Tr(Ycta) +

1

N

∞∑

j=0

Tr
[

Bj+1
cta YctaB∗(j+1)

cta + Bj
ctaZctaB∗j

cta

]

(4.12)

Moreover, it holds that

Bj+1
cta YctaB∗(j+1)

cta = (INM −MR)Bj
atcYatcB∗j

atc(INM −MR) (4.13)

Bj
ctaZctaB∗j

cta = (INM −MR)Bj
atcZatcB∗j

atc(INM −MR) (4.14)

Therefore, we obtain that

MSDcta =
1

N
Tr(MSM)

+
1

N
Tr

[

(INM −MR)

(
∞∑

j=0

Bj
atc(Yatc + Zatc)B∗j

atc

)

(INM −MR)

]

(4.15)

That is, we can rewrite the network MSD for the CTA diffusion strategy in terms

of the matrices {B,Y ,Z} for the ATC diffusion strategy. Relation (4.15) helps

82



us relate the optimal combination weights of these two strategies. It turns out

that the optimal combination weights that we derive apply to both strategies.

4.2 Influence of Link Noise on Performance

Expression (4.11) reveals in an interesting way how the noise sources originating

from any particular agent end up influencing the overall network performance.

To see this, we start from (4.6) and expand the recursion. Then, we arrive at

w̃i =

(
i∏

m=1

Bm

)

w̃0 −
i−1∑

j=0

θj (4.16)

where θj denotes the aggregate effect of noise sources j steps ahead in time and

is defined as:

θj ,

(
i∏

m=i−j+1

Bm

)

(yi−j + zi−j) (4.17)

where the symbol
∏

denotes the product of a sequence of matrices:

i∏

m=j

Bm ,







BiBi−1 · · ·Bj , if i ≥ j

INM , otherwise

(4.18)

From (4.16), the mean-square of w̃i is given by

E‖w̃i‖2 = Tr

[

E

(
i∏

m=1

Bm

)

w̃0w̃
∗
0

(
i∏

m=1

Bm

)∗]

+

i−1∑

j=0

E‖θj‖2

≈ Tr
(
Bi
E‖w̃0‖2B∗i

)
+

i−1∑

j=0

E‖θj‖2
(4.19)

where we used the fact that the noise sources {θj}, for j = 0, . . . , i − 1, are

independent of each other and have zero mean, and where we applied approxi-

mation (2.66) for sufficiently small step-sizes. Now, let the time index i tend to

infinity. Since the matrix B is stable, the first term in (4.19) converges to zero,
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and expression (4.19) leads to

lim
i→∞

E‖w̃i‖2 =
∞∑

j=0

E‖θj‖2 (4.20)

Next, we verify that E‖θj‖2 is equal to the jth term of the summation in (4.11).

Using approximation (2.66) and from (4.17), we obtain that

E‖θj‖2 = Tr

[

E

(
i∏

m=i−j+1

Bm

)

(yi−j + zi−j)(yi−j + zi−j)
∗

(
i∏

m=i−j+1

Bm

)∗]

= Tr

[

E

(
i∏

m=i−j+1

Bm

)

(Y + Z)

(
i∏

m=i−j+1

Bm

)∗]

≈ Tr
[
Bj(Y + Z)B∗j

]

(4.21)

Therefore, the jth term of the summation in (4.11) can be interpreted as captur-

ing the contribution of the noise sources j steps ahead in time. We also observe

from (4.11) that at each time step, the spread of the noise sources is dictated by

the choice of the combination matrix A. We now discuss how to select the com-

bination matrix A in order to minimize the effect of these noises on the network

MSD.

4.3 Optimal Combination Matrix: Special Case

The selection of the optimal combination weights is formulated as the following

optimization problem:

min
A

MSD (4.11)

subject to (2.25)

(4.22)

As already indicated in [30,34], the network MSD is not convex inA, and therefore

the solution to the above optimization problem is generally intractable. There-

fore, we start our discussions by considering some initial special cases in order
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to shed some light on the behavior of the diffusion strategies in the presence

of noisy links. Later, we consider more general scenarios. We therefore start

by replacing (4.22) by the problem of minimizing an upper bound on the MSD;

this formulation leads to closed-form expressions that are shown to perform well.

The solution will further suggest an adaptive construction for the combination

weights. We start with the following special case.

Theorem 4.1. Suppose that INM − MR = αINM for some constant α (this

means that Ru,k has the form Ru,k = σ2
u,kIM and 1−µkσ

2
u,k = α for all k). Then,

the optimal combination weights for the ATC and CTA diffusion strategies are

the same.

Proof. Since INM −MR = αINM , relation (4.15) can be simplified to

MSDatc =
1

N
Tr(MSM) + α2MSDcta (4.23)

Note that the first term in (4.23) is independent of A. Therefore, the matrix A

that minimizes MSDatc also minimizes MSDcta.

Thus, assume that the covariance matrices of the regressors {uk,i} have the

form Ru,k = σ2
uIM for all k. Assume further that the covariance matrix of the

information exchange noise nl,k,i has a similar form, namely, Rn,l,k = σ2
n,l,kIM .

We also assume that all nodes use the same step-size (i.e., µk = µ for all k).

From Theorem 4.1, the ATC and CTA strategies will have the same optimal

combination weights and we therefore focus on the CTA strategy in this section.

The aforementioned assumptions lead to the following expressions:

Bcta = (1− µσ2
u) · AT ⊗ IM (4.24)

Ycta = µ2σ2
u · Σv ⊗ IM (4.25)

Zcta = (1− µσ2
u)

2 · Σn ⊗ IM (4.26)
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where Σv is defined in (3.24) and

Σn = diag

{
∑

l 6=1

a2l,1σ
2
n,l,1,

∑

l 6=2

a2l,2σ
2
n,l,2, · · · ,

∑

l 6=N

a2l,Nσ
2
n,l,N

}

(4.27)

Thus, from (4.11), the MSD of the CTA strategy can be expressed as

MSDcta =
M

N

∞∑

j=0

(1− µσ2
u)

2j · Tr
[
µ2σ2

u · (AT )jΣvA
j + (1− µσ2

u)
2 · (AT )jΣnA

j
]

(4.28)

where we used the equalities (A ⊗ B)(C ⊗ D) = AC ⊗ BD and Tr(A ⊗ B) =

Tr(A) · Tr(B).

Even though the MSD of the CTA strategy is simplified to (4.28), the MSD is

still not convex in A. In the following, we focus on the case of two nodes (N = 2)

to highlight some interesting patterns of behavior. Let the combination matrix

A be

A =




1− a b

a 1− b



 (4.29)

In addition, we let

Σv = σ2
v




r 0

0 1



 and Σn = σ2
n




a2 0

0 sb2



 (4.30)

where r and s represent the ratios of the noise variances at nodes 1 and 2, respec-

tively (r for the measurement noise and s for the information exchange noise).

Moreover, for notational simplicity, we introduce the two variables:

η , (1− µσ2
u)

2 ≈ 1− 2µσ2
u and t , σ2

n/σ
2
v (4.31)

Note that t is the ratio between the variances of the two noise sources at node 2. In

this case, the eigenvalue decomposition for the combination matrix is A = UΛU−1

where

U =




b 1

a −1



 and Λ =




1 0

0 1− a− b
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In addition, Ycta in (4.25) and Zcta in (4.26) become

Ycta ≈
σ2
v

2
µ(1− η)




r 0

0 1



⊗ IM and Zcta = σ2
vtη




a2 0

0 sb2



⊗ IM (4.32)

where we approximated µ2σ2
u to µ(1− η)/2 by (4.31). Some algebra shows that

(4.28) becomes

MSDcta =
Mσ2

v

2(a+ b)2
(4.33)

×
{
1

2
µ(1− η)

[
2(rb2 + a2)λ1 + (a2 + b2)(r + 1)λ3 + 2(a− b)(rb− a)λ2

]

+ tη
[
2a2b2(s+ 1)λ1 + (a2 + b2)(a2 + sb2)λ3 + 2ab(a− b)(a− sb)λ2

]
}

where

λ1 =
1

1− η
, λ2 =

1

1− η(1− a− b)
, λ3 =

1

1− η(1− a− b)2
(4.34)

Note that the first term inside the brackets of (4.33) is contributed by the mea-

surement noise, while the second term originates from the information exchange

noise. For a = b, the MSD in (4.33) simplifies to

MSDcta =
Mσ2

v

4
[µ(1− η) + 2tηa2]×

(
1

1− η
+

1

1− η(1− 2a)2

)

(4.35)

To determine a set of weights {a, b} such that the network MSD given by

(4.33) is minimized, we set the partial derivatives of the MSD with respect to a

and b to zero, i.e.,
∂MSDcta

∂a
=
∂MSDcta

∂b
= 0 (4.36)

From the first equality in (4.36), we obtain that the optimal values for {a, b}
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should satisfy the relation:

h(a, b) , µ(1− η) [2(a− rb)(λ1 − λ2) + (r + 1)(a− b)(λ3 − λ2)]

+ 2tη(a+ b)2(a− sb)λ2 + 4tη(s+ 1)ab(b− a)(λ1 − λ2)

+ 2tη
[
(s+ 1)ab(b− a) + 2(a3 − sb3)

]
(λ3 − λ2)

= 0

(4.37)

The function h(a, b) in (4.37) is nonlinear in the parameters {a, b}. However, if

we are considering noise-free links (i.e., t = 0), then weights {a, b} satisfying the

relations

a+ b = 1 and a− rb = 0 (4.38)

would satisfy relation (4.37). Thus, we have

a =
r

r + 1
=

σ−2
v,2

σ−2
v,1 + σ−2

v,2

and b =
1

r + 1
=

σ−2
v,1

σ−2
v,1 + σ−2

v,2

(4.39)

Note that we arrive at the same result from [173]. In this way, node k combines

the information from its neighbors in proportion to the inverse of the variances of

the measurement noise. The result is physically meaningful. Nodes with smaller

noise variance will be given larger weights.

To further examine the influence of the information exchange noise, we con-

sider the example corresponding to the case r = s = 1 (i.e., equal noise levels at

both nodes for both measurement noise and information exchange noise). Rela-

tion (4.37) between {a, b} simplifies to

a = b (4.40)

This result is expected since both nodes have the same noise levels. In this case,

setting the derivative of the MSD in (4.35) with respect to a to zero, we find that
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the optimal value for a should satisfy the following fifth-order equation:

f(a) , 16η2ta5 − 32η2ta4 + 8η(3η − 1)ta3 + 10η(1− η)ta2

+ 2(1− η)2(t + µ)a− µ(1− η)2

= 0

(4.41)

In the following, we are going to show that there is a single value of a that

minimizes the MSD (4.35) and that this value for a lies between (0, 0.5]. We first

establish some useful properties as follows.

Lemma 4.1. Suppose that r = s = 1 and a = b. For 0 < η < 1, t ≥ 0 and

a ∈ [0, 1], the network MSD in (4.35) and the function f(a) in (4.41) satisfy the

following properties

1. ∂MSDcta

∂a

∣
∣
a=0

< 0 and ∂MSDcta

∂a

∣
∣
a=1

> 0.

2. f(0) < 0 and f(0.5) ≥ 0 with equality to zero if, and only if, t = 0.

3. f(a) > 0 if 0.5 < a ≤ 1.

4. f ′(a) > 0 if 0 ≤ a ≤ 0.5.

Proof. See Appendix 4.A.

With these properties, we arrive at the following result.

Theorem 4.2. In case of r = s = 1, the optimal combination weights {a, b} that

minimize the network MSD in (4.33) satisfy a = b and that the weight a (= b)

lies in (0, 0.5] and is unique.

Proof. When r = s = 1, we have shown in (4.40) that a = b and then the MSD

expression simplifies to (4.35). Since the MSD in (4.35) is a bounded function of

a when a ∈ [0, 1], there exists a value for a that minimizes the MSD. From the
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first property in the previous lemma, we see that the optimal a cannot be at the

end points, 0 or 1, and has to satisfy equation (4.41). From the second and third

properties, we conclude that there exists at least one value of a ∈ (0, 0.5] satisfying

(4.41) and for any value of a greater than 0.5, equation (4.41) does not hold. To

establish the uniqueness of the minimizing a, from the fourth property, we know

that f(a) is a strictly increasing function of a when 0 ≤ a ≤ 0.5. Therefore, there

is only one value of a ∈ (0, 0.5] satisfying (4.41) and that minimizes the MSD.

The above result implies that when both nodes have the same noise levels,

the averaging strategy (i.e., a = b = 1/2) is the optimal strategy if, and only if,

there are noisy links. If there is noise from information exchange, the nodes have

to lower the value of the combination weight, a. That is, a node has to place

more weight on its own estimate.

In this section, we considered a very specific case (µk = µ, Ru,k = σ2
uIM , and

Rn,l,k = σ2
n,l,kIM) corresponding to N = 2 to highlight the above interesting fact.

Even in the N = 2 case, there is no closed-form expression for the optimal com-

bination weights. Nevertheless, conditions (4.37) and (4.41) for the combination

weights for two-node networks serve as a benchmark when we proceed to approx-

imate optimal solutions for the networks with an arbitrary number of nodes and

help us examine quantitatively the effectiveness of the approximations.

4.4 Optimal Combination Matrix: General Case

We observe from (4.21) that minimizing the network MSD is equivalent to reduc-

ing the effect of the noise sources across the network. We first have the following

preliminary result.
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Lemma 4.2. Assume the spectral radius of the matrix B∗B satisfies

ρ(B∗B) ≤ r (4.42)

for some positive constant r. Then, for any nonnegative-definite matrix Y,

Tr(BYB∗) ≤ r · Tr(Y) (4.43)

Proof. Since B∗B is Hermitian and nonnegative-definite, there exists a unitary

matrix U and a diagonal matrix Λ with entries in the range [0, r] such that

B∗B = UBΛBU
∗
B (4.44)

Then, using the fact that Y is nonnegative-definite, we have:

Tr(BYB∗) = Tr(YB∗B)

= Tr(YUBΛBU
∗
B)

= Tr(ΛU∗
BYUB)

≤ r · Tr(U∗
BYUB)

= r · Tr(Y) (4.45)

We now examine the network MSD (4.11) for the ATC diffusion strategy. The

following result provides an upper bound on the effect of the noise sources j steps

ahead in time, i.e, E‖θj‖2 in (4.21).

Theorem 4.3. It holds for nonnegative integer j that:

Tr
[
Bj
atc(Yatc + Zatc)Bj∗

atc

]
≤ N · [ρ(INM −MR)]2j · Tr(Yatc + Zatc) (4.46)

Proof. See Appendix 4.B.

91



Therefore, from (4.11) and using Theorem 4.3, the network MSD of the ATC

diffusion strategy is upper bounded by

MSDatc ≤
1

N

∞∑

j=0

N · [ρ(INM −MR)]2j · Tr(Yatc + Zatc)

=
Tr(Yatc + Zatc)

1− [ρ(INM −MR)]2
(4.47)

Note from the above result that the upper bound depends on the combination

matrix A only through the term Tr(Yatc + Zatc). Motivated by this result, we

consider the problem of minimizing this term, namely,

min
A

g(A) = Tr(Yatc + Zatc) = Tr(ATMSMA+ G)

subject to (2.25)

(4.48)

For the network MSD of the CTA diffusion strategy, we use expression (4.15) and

obtain from Lemma 4.2 and Theorem 4.3 that

MSDcta ≤
1

N
Tr(MSM) +

[ρ(INM −MR)]2

N
Tr

(
∞∑

j=0

Bj
atc(Yatc + Zatc)B∗j

atc

)

≤ 1

N
Tr(MSM) +

∞∑

j=0

[ρ(INM −MR)]2+2j Tr (Yatc + Zatc)

=
1

N
Tr(MSM) +

[ρ(INM −MR)]2

1− [ρ(INM −MR)]2
Tr(Yatc + Zatc) (4.49)

Again, the upper bound depends on A only through the term Tr(Yatc + Zatc).

Therefore, we arrive at the same optimization problem for the ATC diffusion

strategy as problem (4.48).

To solve problem (4.48), we expand the objective function g(A) and obtain

g(A) =
N∑

k=1

{

µ2
kσ

2
v,kTr(Ru,k)a

2
k,k +

∑

j 6=k

[µ2
jσ

2
v,jTr(Ru,j) + Tr(Rn,j,k)]a

2
j,k

}

(4.50)

Note that the objective function can be written as the sum of local functions with

each function depending on the combination weights at one agent. That is, let
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us introduce the functions:

gk(al,k, l = 1, . . . , N) = µ2
kσ

2
v,kTr(Ru,k)a

2
k,k +

∑

j 6=k

[µ2
jσ

2
v,jTr(Ru,j) + Tr(Rn,j,k)]a

2
j,k

(4.51)

Then,

g(A) =

N∑

k=1

gk(al,k, l = 1, . . . , N) (4.52)

Therefore, the original optimization problem can be decoupled into N optimiza-

tion problems and each problem is used to find the optimal combination weights

at a particular agent. Thus, we introduce the following optimization problem:

min
al,k,l=1,...,N

µ2
kσ

2
v,kTr(Ru,k)a

2
k,k +

∑

j 6=k

[µ2
jσ

2
v,jTr(Ru,j) + Tr(Rn,j,k)]a

2
j,k

subject to (2.25)

(4.53)

The problem can be solved using a Lagrangian multiplier, λk. Introduce the

Lagrangian function

L(al,k, l ∈ Nk, λk) = µ2
kσ

2
v,kTr(Ru,k)a

2
k,k +

∑

j∈Nk\{k}

[µ2
jσ

2
v,jTr(Ru,j) + Tr(Rn,j,k)]a

2
j,k

− λk

(
∑

j∈Nk

aj,k − 1

)

(4.54)

Setting the derivation of L(al,k, l ∈ Nk, λk) with respect to al,k to zero, we obtain

an analytical solution for {al,k} as follows:

al,k =







γ−2
l,k /

∑

j∈Nk
γ−2
j,k , if l ∈ Nk

0, otherwise

(relative-product-variance rule) (4.55)

where γ2l,k denotes product variance measure and is defined as:

γ2l,k =







µ2
kσ

2
v,kTr(Ru,k), if l = k

µ2
l σ

2
v,lTr(Ru,l) + Tr(Rn,l,k), otherwise

(4.56)
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We also to the combination rule (4.55) as the relative-product-variance rule. We

observe that for agent k, the weights {al,k} depend on the step-sizes {µl}, the
traces of the covariance matrices {Tr(Ru,l),Tr(Rn,l,k)}, and the variances of the

measurement noise {σ2
v,l} in the neighborhood Nk. The result has a similar form

to (4.57) but is more general. Note from (4.56) that the network MSD will be

sensitive to the information exchange noise for small step-sizes. In the case of

homogeneous agents (see Assumption 3.1) without information exchange noise,

the combination weights {al,k} from (4.55) simplify to

al,k =







σ−2
v,l /

∑

j∈Nk
σ−2
v,j , if l ∈ Nk

0, otherwise

(relative-variance rule) (4.57)

We refer to this combination rule as the relative-variance rule [152,174]. Note that

the combination rule in (4.57) extends the result in (4.39) to general networks.

Consider again the two-node case from the last section to see how well the

approximate solution in (4.55) matches the optimal solution (4.37). In this case,

the combination weights {a, b} given by (4.55) simplify to

a ≈ (µ(1− η) + 2t)−1

(µ(1− η)r)−1 + (µ(1− η) + 2t)−1
(4.58)

b ≈ (µ(1− η)r + 2st)−1

(µ(1− η)r + 2st)−1 + (µ(1− η))−1
(4.59)

where the parameters {r, s, t, η} are introduced in (4.30)-(4.31). The weights

converge to relative-variance rule in (4.39) when the parameter t converges to

zero (i.e., noise-free links). In addition, the combination weights {a, b} in (4.58)-

(4.59) satisfy the properties we derived in the previous section. For example,

when two nodes have the same noise levels (r = s = 1), we have a = b and

a ≤ 0.5 with equality if, and only if, t = 0. To see how well the approximate

solution matches with the optimal solution, we illustrate how much the weights

in (4.58)-(4.59) deviate from equation (4.37) in Fig. 4.1 by showing |h(a, b)|2 over
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Figure 4.1: Deviation of the approximate solutions from the optimal solution, as

a function of t.

different values of t. We set µ = 0.05, σ2
u = 1, r = 2, and s = 1. We also show the

curve with the weights in (4.39) where we ignored the noisy links. We observe

that the weights in (4.58)-(4.59) match equation (4.37), whereas the equation

with the weights in (4.39) increases rapidly after some value of t.

4.5 Adaptive Combination Policy

To evaluate the relative-product-variance rule (4.55), every agent needs to have in-

formation about the step-sizes {µl} and the second-order statistics {σ2
v,l, Ru,l, Rn,l,k}

in its neighborhood. However, the latter quantities are usually not available and

may be even varying over time. Therefore, an adaptive solution, where every

agent is able to learn its combination weights using available instantaneous data,

is desirable. One adaptive solution for the combination weights was proposed ear-
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lier in [33,141], albeit for the case of noise-free exchange links. Before presenting

the new solution, we summarize the solution of [141] for comparison purposes.

Let nk denote the number of neighbors of agent k. Introduce the M ×N matrix

∆Φk,i, formed by the differences of the intermediate estimates available at agent

k, i.e., the lth column of ∆Φk,i has the form

[∆Φk,i]l =







ψk,i − ψk,i−1, if l = k

φl,k,i − φl,k,i−1, if l ∈ Nk \ {k}

0, otherwise

(4.60)

Then, the combination weights {al,k(i)} are updated according to the rule

al,k(i) =







al,k(i− 1)− βk(i)gl,k(i), if l ∈ Nk

0, otherwise

(4.61)

where βk(i) is used to guarantee the non-negativeness of {al,k(i)} and has the

form

βk(i) = νk ·
min{al,k(i− 1), l ∈ Nk}
max{gl,k(i), l ∈ Nk}+ ε

(4.62)

with a positive step-size νk for agent k and a small positive constant ε to prevent

singularity. Moreover, the quantity gl,k(i) in (4.61) is the lth entry of the vector

gk,i, which is evaluated by the relation

gk,i =

(

IN − 1N1
T
N

nk

)

Re {(∆Φk,i)
∗∆Φk,i} ak,i (4.63)

where ak,i denotes the kth column of the matrix A. In addition, to guarantee

that the entries of ak,i add up to one, the initial values, {ak,−1}, should be chosen

such that aTk,−11N = 1 for all k. One simple way to do this is to use the uniform

combination rule, which has the form

al,k(−1) =







1/nk, if l ∈ Nk

0, otherwise

(4.64)
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That is, agent k simply averages the intermediate estimates from its neighbors.

Here, motivated by the relative-product-variance rule from (4.55), we pro-

pose an alternative and effective adaptive solution for adjusting the combination

weights; this solution takes into account the presence of information exchange

noise over the communication links [174]. Recalling the ATC diffusion strat-

egy (4.1) and the data model (2.3), we can write the intermediate estimates

{ψk,i,φl,k,i} at agent k as:

ψk,i = wk,i−1 + µku
∗
k,i[uk,iw̃k,i−1 + vk(i)] (4.65)

φl,k,i = wl,i−1 + µlu
∗
l,i[ul,iw̃l,i−1 + vl(i)] + nl,k,i (4.66)

In view of the independence assumptions on the regression data and noise sources,

we obtain

lim
i→∞

E‖ψk,i −wk,i−1‖2 = µ2
kσ

2
v,kTr(Ru,k) + µ2

k ·
(

lim
i→∞

E‖w̃k,i−1‖2E(u∗
k,i

‖uk,i‖2uk,i)

)

(4.67)

lim
i→∞

E‖φl,k,i −wl,i−1‖2 = µ2
l σ

2
v,lTr(Ru,l) + Tr(Rn,l,k)

+ µ2
l ·
(

lim
i→∞

E‖w̃l,i−1‖2E(u∗
l,i
‖ul,i‖2ul,i)

)

(4.68)

We can evaluate the limits on the right-hand side of (4.67)-(4.68) by using the

steady-state result from (4.8):

lim
i→∞

E‖w̃i‖2σ = lim
i→∞

E‖w̃i−1‖2Fσ +
[
vec(YT )

]T
σ +

[
vec(ZT )

]T
σ (4.69)

and by setting the vector σ in (4.69) satisfying:

(I −F)σ = vec
[
Jl ⊗ E(u∗

l,i‖ul,i‖2ul,i)
]

(4.70)

where Jl is an N × N diagonal matrix with all diagonal entries equal to zero
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except the lth diagonal entry, which is equal to one. Then, from (4.69),

lim
i→∞

E‖w̃l,i−1‖2E(u∗
l,i
‖ul,i‖2ul,i)

=
[
vec(YT

atc + ZT
atc)
]T

(I − F)−1vec
[
Jl ⊗ E(u∗

l,i‖ul,i‖2ul,i)
]

(4.71)

From the terms Yatc and Zatc in Tables 2.2 and 4.1, the limit in (4.71) is of the or-

der of µ2
l σ

2
v,lTr(Ru,l)+Tr(Rn,l,k). We first assume that µ2

l σ
2
v,lTr(Ru,l) and Tr(Rn,l,k)

have the same order or that µ2
l σ

2
v,lTr(Ru,l) ≫ Tr(Rn,l,k) so that Tr(Rn,l,k) is ignor-

able (e.g., noise-free links). Then, the limits on the right hand side of (4.67)-(4.68)

can be ignored because of the factors µ2
k and µ2

l in front of them. It follows that

expressions (4.67)-(4.68) can be approximated to:

lim
i→∞

E‖ψk,i −wk,i−1‖2 ≈ µ2
kσ

2
v,kTr(Ru,k) = γ2k,k (4.72)

lim
i→∞

E‖φl,k,i −wl,i−1‖2 ≈ µ2
l σ

2
v,lTr(Ru,l) + Tr(Rn,l,k) = γ2l,k (4.73)

Using the following instantaneous approximation at agent k:

E‖ψk,i −wk,i−1‖2 ≈ ‖ψk,i − wk,i−1‖2 (4.74)

E‖φl,k,i −wl,i−1‖2 ≈ ‖φl,k,i − wk,i−1‖2 (4.75)

where wl,i−1 is replaced by wk,i−1 in (4.75), we can motivate an algorithm that

enables agent k to estimate the variance product measure γ2l,k of its neighbor l.

Thus, let γ2l,k(i) denote an estimate for γ2l,k that is computed by agent k at time

i. Then, one way to evaluate γ2l,k(i) is through the following recursion:

γ2l,k(i) =







(1− νk) · γ2k,k(i− 1) + νk · ‖ψk,i − wk,i−1‖2, if l = k

(1− νl) · γ2l,k(i− 1) + νl · ‖φl,k,i − wk,i−1‖2, if l ∈ Nk \ {k}
(4.76)

Note that under expectation, expression (4.76) becomes

Eγ2
l,k(i) =







(1− νk) · Eγ2
k,k(i− 1) + νk · E‖ψk,i −wk,i−1‖2, if l = k

(1− νl) · Eγ2
l,k(i− 1) + νl · E‖φl,k,i −wk,i−1‖2, if l ∈ Nk \ {k}

(4.77)
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so that in steady-state (as i→ ∞):

lim
i→∞

Eγ2
l,k(i) ≈ (1− νl) · lim

i→∞
Eγ2

l,k(i− 1) + νl · γ2l,k (4.78)

Hence, we obtain

lim
i→∞

Eγ2
l,k(i) ≈ γ2l,k (4.79)

That is, the estimate γ2l,k(i) converges on average to the desired variance product

γ2l,k. In this way, we can replace the combination rule in (4.55) by the adaptive

implementation:

al,k(i) =







γ−2
l,k (i)/

∑

j∈Nk
γ−2
j,k (i), if l ∈ Nk

0, otherwise

(4.80)

Equations (4.76) and (4.80) provide an adaptive implementation for the combi-

nation weights {al,k}. We now examine the case when the information exchange

noise dominates the noise sources, i.e., µ2
l σ

2
v,lTr(Ru,l) ≪ Tr(Rn,l,k). From (4.67)-

(4.68), we observe that in this case, we have

lim
i→∞

E‖ψk,i −wk,i−1‖2 ≪ lim
i→∞

E‖φl,k,i −wl,i−1‖2 (4.81)

so that al,k ≈ δlk. That is, when the information exchange noise dominates

the noise sources, the ATC diffusion strategy degenerates to the non-cooperative

operation. Note that the same degeneration is observed for the relative-product-

variance rule (4.55) when µ2
l σ

2
v,lTr(Ru,l) ≪ Tr(Rn,l,k).

We remark that the proposed adaptive solution in (4.76) and (4.80) applies to

the CTA diffusion strategy with the terms ψk,i−wk,i−1 and φl,k,i−wk,i−1 replaced

by wk,i − ψk,i−1 and wk,i − φl,k,i−1, respectively. Moreover, the proposed adap-

tive solution has simpler structure than (4.61). For example, expression (4.76)

requires nk vector multiplications at agent k to compute the {γ2l,k(i)}, rather

than at least n2
k vector multiplications to obtain gk,i in (4.63). Moreover, the
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Table 4.2: Combination rules used in the simulations

Name Rule

Relative-product-variance (4.55)

Proposed adaptive (4.76) and (4.80)

Relative-variance [124, 152, 174] (4.57)

Adaptive solution of [141] (4.61)

Uniform [124] (4.64)

Metropolis [167] al,k =







1−∑j 6=k ak,j , if l = k

1/max{nk, nl}, if l ∈ Nk \ {k}

0, otherwise

No-cooperation al,k = δkl

solution in (4.76) and (4.80) only needs the estimate wk,i−1 at the previous time

instant and does not require ψk,i−1 and {φl,k,i−1} to establish ∆Φk,i in (4.60). In

the next section, we further illustrate by simulations that the proposed adaptive

combination rule achieves lower MSD than the solution of [141].

4.6 Simulation Results

In this section, we present simulation results and compare several combination

rules with the network MSD as a measure. The combination rules are summarized

in Table 4.2. The network wants to estimate a 10 × 1 unknown vector w◦ (i.e.,

M = 10) using the ATC diffusion strategy (4.1). The covariance matrices for

the information exchange noise have the form Rn,l,k = σ2
n,lI10. In addition, the

step-sizes are the same for all agents (µk = 0.05 and νk = 0.3 for all k).

We first consider the two-node case with regression covariance matrix Ru,k =
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Figure 4.2: Transient network MSD over time. The dashed line indicates the

theoretical steady-state MSD (4.11).
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I10 and the variances of the noise sources set to σ2
v = 0.01 and σ2

n = 4 × 10−4

(namely, t = −14 dB from (4.31)). In Fig. 4.2, we show the transient network

MSD over time. We observe that in the presence of the noisy links, the network

without cooperation can possibly outperform the network with cooperation if

the nodes ignore the information exchange noise (i.e., using the relative-variance

rule from (4.57)). We also see that the relative-variance rule from (4.55) and the

proposed adaptive combination rule have similar performance and perform the

best in comparison to the other choices. The theoretical steady-state network

MSD from (4.11) for the relative-variance rule from (4.55) is also shown in Fig.

4.2 and matches well with simulations.

To examine how the information exchange noise affects the combination weights

and the network MSD, we show the optimal combination weights {a, b} and the

corresponding MSD as a function of t in the two-node case in Fig. 4.3. We first

set r = s = 1 and compare two values of step-sizes: µ = 0.01 and µ = 0.05.

In this case, we have a = b and the values of a can be evaluated by solving the

fifth-order function in (4.41). We observe that the nodes are sensitive to the infor-

mation exchange noise, especially for a small step-size, and a drops significantly

when t is small. Using (4.41), we can find the value of t when a = 0.25, where a

drops to half of its initial optimal value, and obtain t = −48.6 dB for µ = 0.01

and t = −28.2 dB for µ = 0.05. In the right plot of Fig. 4.3, the optimal MSD is

compared to the MSD with the relative-variance rule from (4.57) (a = b = 1/2),

which are the optimal solution when there are no link errors. The figure shows

bifurcation. When the ratio t is small, these two networks have similar perfor-

mance. However, after some critical value of t, the MSD of the network using the

relative-variance rule increases linearly in t, whereas the optimal MSD increases

slightly and saturates (converges to the network without cooperation). We also

see that the critical value of t is smaller for a smaller step-size. The results point
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Figure 4.3: Optimal combination weight a (left) and steady-state network MSD

(right) as a function of t.

to a trade-off in choosing the step-size parameter: smaller step-sizes achieve lower

MSD but are more sensitive to link errors. We also show the relative-variance

rule from (4.55) and its corresponding MSD (see again Fig. 4.3). The network

MSD is close to the optimal MSD. The results reveals that the relative-variance

rule from (4.55) is a good approximation for the optimal combination weights.

Similar curves are observed in Fig. 4.4, where we examine the situation when

r = 2 and s = 1. That is, node 2 has better quality of measurement than node 1

while the noise levels due to information exchange are the same for both nodes.

The optimal MSD is compared to the MSD with relative-variance rule from (4.57),

i.e., (a, b) = (2/3, 1/3). It is interesting to note from the left plot of Fig. 4.4 that

node 1 places more weight on its own estimate (i.e., a < 0.5) when t is about -30

dB. The results indicate that a node should place more weight on its estimate in

the combination step (4.1c) even if the node has worse quality of measurement

than its neighbors. We further examine two adaptive combination rules. Fig. 4.5

shows the transient behavior of one of the combination weights, a. We also show
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Figure 4.4: Optimal combination weights {a, b} (left) and steady-state network

MSD (right) over t.

the relative-variance rule from (4.55) and optimal weight (a = 0.143 from Fig.

4.4) for reference. We observe that the proposed adaptive solution converges,

and the steady-state value is closer to the optimal value of a, compared to the

adaptive solution in (4.61).

Next, we consider a network with 20 nodes in Fig. 3.4. The covariance

matrices for the regressors are diagonal matrices with diagonal entries randomly

generated from [0.5, 2.5], and the noise profiles are randomly generated with σ2
v,k

and σ2
n,k uniformly distributed over [−30,−10] and [−40,−25] dB, respectively.

We show the transient network MSD over time in Fig. 4.6 and observe that the

proposed combination rules perform the best in comparison to the other choices in

the presence of the information exchange noise. We further show the steady-state

MSD at each node in Fig. 4.7. We observe that the proposed combination rules

improve the MSD at each node, compared to the non-cooperative combination

rule. However, the adaptive solution in (4.61) may degrade performance at some

nodes (see nodes 18 and 20 in Fig. 4.7) since the nodes may fail to adjust their
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Figure 4.5: Transient combination weight a over time. The dashed line indicates

the optimal combination weight.

Figure 4.6: Transient network MSD over time with information exchange noise.

The dashed line indicates the theoretical steady-state MSD (4.11).
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Figure 4.7: Steady-state MSD at the nodes of the network.

combination weights correctly in the presence of the noisy links.

In practice, the regressors {uk,i} may not be independent over time. We

introduce the time-correlation of uk,i by means of the first-order auto-regressive

model. That is, the uk,i is generated by the following rule:

uk,i = α · uk,i−1 +
√
1− α2 · rk,i (4.82)

where α ∈ (0, 1) is a constant and rk,i is a random vector of size M . Moreover,

rk,i is assumed to be independent of uk,i−1 and has zero mean and covariance

matrix Ru,k. It can be verified that uk,i given by (4.82) is zero mean and has

covariance matrix Ru,k. The transient network MSD over time is shown in Fig.

4.8 with α = 0.7. We observe that the proposed combination rules perform the

best and that the analytical results for the network MSD (4.11) still holds when

the regressors are time-dependent.
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Figure 4.8: Transient network MSD over time with information exchange noise.

The dashed line indicates the theoretical steady-state MSD (4.11).

4.7 Concluding Remarks

In this chapter, we studied adaptive networks with noisy information exchange.

The results show that, with noise from information exchange, a node may need to

place more weight on its own estimate during the aggregation and consultation

step, even if the quality of the data from the node is worse than that of its neigh-

bors. We derived optimal constructions for the combination weights and showed

how these weights can be adapted as well, in order to counter the degradation

caused by noisy links. Simulation results show that the proposed rules not only

improve the network MSD, but they also improve the MSD at all nodes in the

network, compared to the non-cooperation combination rule.
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4.A Proof of Lemma 4.1

1. Taking the derivative of (4.35) with respect to a, we obtain

∂MSDcta

∂a
=Mσ2

vη

{

ta

(
1

1− η
+

1

1− η(1− 2a)2

)

− [µ(1− η) + 2tηa2]
1− 2a

[1− η(1− 2a)2]2

}

(4.83)

Then,

∂MSDcta

∂a

∣
∣
∣
∣
a=0

=Mσ2
vη

−µ
1− η

< 0 (4.84)

∂MSDcta

∂a

∣
∣
∣
∣
a=1

=Mσ2
vη[µ(1− η) + 2t]

1

(1− η)2
> 0 (4.85)

2. From the expression (4.41) for f(a) we get:

f(0) = −µ(1− η)2 < 0 (4.86)

f(0.5) =
1

2
(2− η)t ≥ 0 (4.87)

Note that since 0 < η < 1, we would obtain f(0.5) = 0 if, and only if, t = 0.

3. Some algebra shows that the function f(a) can be rewritten as

f(a) =2η(1− η)ta(1− a)(2a− 1)
[
(2a− 1)2 + 2a

]

+ 16ηta3(1− a)2 + 2(1− η)ta + µ(1− η)2(2a− 1) (4.88)

Therefore, for 0.5 < a ≤ 1, f(a) > 0.

4. Taking the derivative of f(a) and rearranging the result, we obtain

f ′(a) = 4η(1− η)ta
[
(1− 2a)2(3− 5a) + 2− a

]

+ 16ηta2(1− a)(3− 5a) + 2(1− η)2(t+ µ) (4.89)

It is clear that f ′(a) > 0 if 0 ≤ a ≤ 0.5.
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4.B Proof of Theorem 4.3

From Lemma 4.2, it suffices to verify that

ρ
(
B∗j
atcBj

atc

)
≤ N · [ρ(INM −MR)]2j (4.90)

Let

B , Batc = AT (INM −MR) (4.91)

C , r · AT (4.92)

where r is defined as:

r , ρ(INM −MR) = max
1≤k≤N

ρ(IM − µkRu,k) (4.93)

We first show the following inequality holds for any integer j:

∥
∥Bj

∥
∥
b
≤
∥
∥Cj
∥
∥
b
= rj · ‖(AT )j‖∞ (4.94)

By definition of the block matrix norm in (3.67), it suffices to show that

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤
∥
∥
∥

[
Cj
]

k,l

∥
∥
∥
2

(4.95)

where [Bj ]k,l denotes the (k, l)th block (of size M ×M) of the matrix Bj . By the

rules of matrix multiplication, [Bj ]k,l is given by:

[
Bj
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

Bk,m1Bm1,m2 · · · Bmj−1,l (4.96)

where Bk,l is the (k, l)th block (of size M ×M) of the matrix B from (4.91) and

is given by

Bk,l = al,k · (IM − µlRu,l) (4.97)

Then, by the triangular inequality and submultiplicative property of norms, the

2-induced norm of [Bj ]k,l in (4.96) is bounded by:

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

‖Bk,m1‖2 · ‖Bm1,m2‖2 · · · ‖Bmj−1,l‖2 (4.98)
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Note from (4.97) that

‖Bk,l‖2 = ‖al,k · (IM − µlRu,l)‖2

= al,k · ρ(IM − µlRu,l)

≤ al,k · r (4.99)

Then, combining (4.98) with (4.99), we have

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤ rj ·

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1 · · · al,mj−1

=
∥
∥
∥

[
Cj
]

k,l

∥
∥
∥
2

(4.100)

and arrive at inequality (4.94). Likewise, it can be verified that

∥
∥B∗j

∥
∥
b
≤
∥
∥C∗j

∥
∥
b
= rj · ‖Aj‖∞ (4.101)

Then, from (4.94) and (4.101), we have

ρ
(
B∗jBj

)
≤
∥
∥Bj

atc

∥
∥
b
·
∥
∥B∗j

atc

∥
∥
b

≤
∥
∥Cj
∥
∥
b
·
∥
∥C∗j

∥
∥
b

= r2j ·
∥
∥(AT )j

∥
∥
∞
·
∥
∥Aj

∥
∥
∞

(4.102)

Since
∥
∥(AT )j

∥
∥
∞

= 1 and

∥
∥Aj

∥
∥
∞

=
∥
∥(AT )j

∥
∥
1

≤ N ·
∥
∥(AT )j

∥
∥
∞

= N (4.103)

then we arrive at (4.90).
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CHAPTER 5

Role of Informed Agents

In previous works on distributed estimation over adaptive networks [34, 50, 73,

95, 124, 127, 129, 134, 140], and in other related studies on distributed algorithms

[6,11,42,65,78,94,96,114], on consensus/gossip strategies [8,22,68,109,122,170],

and on distributed optimization [37, 104, 133], the agents are usually assumed

to be homogeneous in that they all have similar processing capabilities and are

able to have continuous access to information and measurements. However, it is

generally observed in nature that the behavior of a biological network is often

driven more heavily by a small fraction of the agents as happens, for example,

with bees and fish [7,117,130]. This phenomenon motivates us to study adaptive

networks where only a fraction of the agents are assumed to be informed, while

the remaining agents are uninformed [151, 157]. Informed agents collect data

regularly and perform in-network processing tasks, while uninformed agents only

participate in consultation tasks in the manner explained in the sequel.

Specifically, we examine the performance of diffusion strategies for distributed

estimation and adaptation over networks. We examine how the transient and

steady-state behavior of the network are dependent on its topology and on the

proportion of the informed agents and their distribution in space. The results

reveal some interesting and surprising trade-offs between convergence rate and

mean-square performance. In particular, among other results, the analysis will

show that the mean-square performance of adaptive networks does not necessar-
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ily improve with a larger proportion of informed agents. Instead, it is discovered

that if the set of informed agents is enlarged, the convergence rate of the net-

work becomes faster albeit at the expense of some deterioration in mean-square

performance. The results also establish that uninformed agents play an impor-

tant role in determining the steady-state performance of the network, and that

it is preferable to maintain some of the highly noisy or highly connected agents

uninformed. The analysis in the chapter reveals the important interplay that

exists among three factors: the number of informed agents in a network, the

convergence rate of the learning process, and the estimation accuracy. We illus-

trate the findings by considering two topology models from the complex network

literature [20, 105], namely, the Erdos-Renyi and scale-free models.

To arrive at the aforementioned results, a detailed mean-square-error analysis

of the network behavior is pursued. However, the difficulty of the analysis is

compounded by the fact that agents interact with each other and, therefore, they

influence each other’s learning process and performance. Nevertheless, for suffi-

ciently small step-sizes and for combination matrices that are either symmetric or

close-to-symmetric, we will be able to derive an expression for the network MSD.

By examining this expression, we will establish that the MSD is influenced by

the eigen-structure of two matrices: the covariance matrix representing the data

statistical profile and the combination matrix representing the network topology.

We then study the eigen-structure of these matrices and derive useful approx-

imate expressions for their eigenvalues and eigenvectors. The expressions end

up revealing that the network MSD can be decomposed into two components.

We study the behavior of each component as a function of the proportion of

informed agents; both components show important differences in their behavior.

When the components are added together, a picture emerges that shows how

the performance of the network depends on the proportion of informed agents
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in an manner that supports analytically the popular wisdom that more informa-

tion is not necessarily better [139]. We further explain that the deterioration in

mean-square-error performance is mainly caused by the inappropriate selection

of combination weights by the agents. Therefore, the results highlight the im-

portance of the manner in which the agents in the network fuse the information

from their neighbors; otherwise, the mean-square-error performance will suffer

from additional information.

5.1 Uninformed Agents

To model uninformed agents over the network, we set µk = 0 if agent k is un-

informed in the ATC diffusion strategy (2.29). We assume that the network

contains at least one informed agent. In this model, uninformed agents do not

collect data {dk(i), uk,i} (or simply set data to zero all the time) and, therefore, do

not perform the adaptation step (the first step in (2.29)); they, however, continue

to perform the combination or consultation step (the second step in (2.29)). In

this way, informed agents have access to data and participate in the adaptation

and consultation steps, whereas uninformed agents play an auxiliary role through

their participation in the consultation step only. This participation is neverthe-

less important because it helps diffuse information across the network. One of

the main results of this chapter is to examine how the proportion of informed

agents, and how the spatial distribution of these informed agents, influence the

learning and adaptation abilities of the network in terms of its convergence rate

and mean-square performance. It will follow from the analysis that uninformed

agents also play an important role in determining the network performance.
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Figure 5.1: A connected network with informed and uninformed agents. The

weight al,k scales the data transmitted from agent l to agent k over the edge

linking them.

5.1.1 Conditions for Mean and Mean-Square Stability

The mean-square performance of diffusion networks has been studied in detail

in Chapters 2 for the case where all agents are informed. Expressions for the

convergence rate (2.73) and the network mean-square deviation (2.82) can directly

apply to the case with uninformed agents. However, the condition for mean-

square stability will need to be properly adjusted as explained below in (5.2) and

(5.3).

As argued in Chapter 2, for sufficiently small step-sizes, the mean and mean-

square stability are guaranteed if the spectral radius of the matrix B is less than

one. For the ATC diffusion strategy, the matrix B is given by:

B = AT (INM −MR) (5.1)

where M, A, and R are defined in (2.38), (2.39), and (2.48), respectively. In

the following statement, we provide conditions to ensure mean and mean-square

stability of the network even in the presence of uninformed agents.
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Theorem 5.1 (Stability). The ATC diffusion network (2.29) with at least one

informed agent converges in the mean and mean-square senses if the step-sizes

{µk} and the combination matrix A satisfy the following two conditions:

1. For every informed agent l, its step-size µl satisfies:

0 < µl <
2

λmax(Ru,l)
(5.2)

2. There exists a finite integer j such that for every agent k, there exists an

informed agent l satisfying:

[
Aj
]

l,k
> 0 (5.3)

That is, the (l, k)th entry of Aj is positive.

Proof. See Appendix 5.A.

Note that condition (5.3) is automatically satisfied if the network is strongly

connected (see Assumption 2.2). As such, the ATC diffusion strategy (2.29)

will converge in the mean and mean-square whenever there exists at least one

informed agent with its step-size satisfying condition (5.2).

5.2 Mean-Square Performance

We are now ready to examine in some detail the effect of network topology and

agent distribution on the convergence rate given by (2.73) and the network MSD

given by (2.87). The analysis is carried out under Assumptions 3.1 and 2.2, i.e.,

agents are homogeneous so that

µk = µ if agent k is informed and Ru,k = Ru for all k (5.4)
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and the network is strongly connected so that the ATC diffusion strategy (2.29)

is mean and mean-square stable. In order to reflect clearly how the network per-

formance varies as a function of the proportion of informed agents, in the sequel,

we use the eigen-decompositions of the combination matrix A (see Appendix 2.A)

and the covariance matrix Ru (see Section 3.2.1) to arrive at the alternative ex-

pressions (5.37)-(5.38). To derive these alternative expressions from (2.73) and

(2.87), we need two assumptions that run across our arguments, both of which

are common in the literature on adaptation [62, 82, 83, 123] and distributed con-

sensus strategies [8,22,109]. First, we rely on the sufficiently small step-size (see

Assumption 2.1) and use it to ignore terms that depend on higher-order powers

of the step-sizes. Second, we need the combination matrix A to be diagonalizable

(see Assumption 3.2); this is automatically satisfied for any symmetric A (which

is common, for example, in studies on consensus-type algorithms [8, 22, 109]).

However, there are important non-symmetric choices for the combination matri-

ces that are also diagonalizable that fit into our analysis, such as when uniform

combination weights are used. For this reason, our analysis will not be limited

to symmetric combination matrices.

5.2.1 Eigen-structure of B

To start our expansion of expressions (2.73) and (2.87), we first examine the

eigen-structure of B. To begin with, we observe from (2.73) and (2.87) that the

convergence rate and network MSD depend on the matrix B from (5.1) in a non-

trivial manner. To gain insight into the network performance, we therefore need

to examine closely the eigen-structure of B, which is related to the combination

matrix A and the covariance matrix Ru. The eigen-structure of A is summarized

in Appendix 2.A. Without loss of generality, we order the eigenvalues of AT in
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decreasing order and assume

1 = λ1(A) > |λ2(A)| ≥ · · · ≥ |λN(A)| (5.5)

where the strict inequality is from Assumption 2.2 (see Appendix 2.A). To facil-

itate the analysis, we assume that A is close-to-symmetric, i.e., the right eigen-

vectors of AT satisfy:

r∗l2rl1 ≈ δl1l2 . (5.6)

Condition (5.6) is actually automatically satisfied with an exact equality (and is

not an assumption) for any symmetric A (see (2.103)). We could simplify our

analysis and assume A to be symmetric throughout. However, there are impor-

tant non-symmetric choices for A that are diagonalizable (such as the uniform

combination matrix). This choice would be excluded from the analysis if we re-

strict A to being symmetric. Condition (5.6) covers all symmetric choices for

A and, additionally, some useful non-symmetric choices for which the eigenvec-

tors are closely orthogonal. The eigen-structure of the covariance matrix Ru was

introduced in Section 3.2.1. Again, we arrange {λm(Ru)} in decreasing order

with

λmax(Ru) = λ1(Ru) ≥ λ2(Ru) ≥ · · · ≥ λM(Ru) = λmin(Ru) > 0. (5.7)

In the sequel, for any vector x, we use the notation xk:l to denote a sub-

vector of x formed from the kth up to the lth entries of x. In addition, we let

NI denote the set of informed agents, i.e., k ∈ NI if agent k is informed and

let NI denote the number of informed agents in the network. Without loss of

generality, we label the network agents such that the first NI agents are informed,

i.e., NI = {1, 2, . . . , NI}. The next result establishes a useful approximation for

the eigen-structure of the matrix B defined in (5.1); it shows how the eigenvectors
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and eigenvalues of B can be constructed from the eigenvalues and eigenvectors

for {AT , Ru}.

Lemma 5.1 (Eigen-structure of B). For a ATC diffusion network (2.29) with

at least one informed agent, the matrix B = AT (I − MR) has the eigenvalue

λl,m(B) given by:

λl,m(B) = λl(A) ·
[
1− µλm(Ru) · s∗l,1:NI

rl,1:NI

]
+O(µ2) (5.8)

for l = 1, . . . , N and m = 1, . . . ,M . In addition, the corresponding right and left

eigenvectors {rbl,m, sbl,m} are given by:

rbl,m = rl ⊗ zm + µ · r̃bl,m +O(µ2) (5.9)

sbl,m = sl ⊗ zm + µ · s̃bl,m +O(µ2) (5.10)

where r̃bl,m and s̃bl,m satisfy:

(λl(A)INM −AT )r̃bl,m = [(rl ⊗ zm)(sl ⊗ zm)
∗ − INM ]ATDR(rl ⊗ zm) (5.11)

s̃b∗l,m(λk(A)INM −AT ) = (sl ⊗ zm)
∗ATDR [(rl ⊗ zm)(sl ⊗ zm)

∗ − INM ] (5.12)

The matrix D in (5.11)-(5.12) is defined as D , M/µ and is independent of µ.

Proof. See Appendix 5.C.

5.2.2 Convergence Rate

From the eigen-structure of the matrix B in Lemma 5.1, we have the following

useful result for the convergence rate.

Lemma 5.2 (Faster convergence rate). Consider two configurations of the same

network: one with NI,1 informed agents and another with NI,2 informed agents.

Let r1 and r2 denote the corresponding convergence rates for these two informed

configurations. If NI,2 ⊇ NI,1, then r2 ≤ r1.
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Proof. See Appendix 5.B.

The above result shows that if we enlarge the set of informed agents, the con-

vergence rate decreases and convergence becomes faster (one important question

that we consider in the next section is whether this faster convergence is occur-

ring towards a better or worse MSD value). The following result provides bounds

for the convergence rate.

Lemma 5.3 (Bound on convergence rate). The convergence rate is bounded by

[1− µ · λmin(Ru)]
2 ≤ r < 1 (5.13)

Moreover, when all agents are informed, the convergence rate is independent of

the combination matrix A and equal to the lower bound in (5.13).

Proof. Since the diffusion network is mean-square stable, i.e., ρ(B) < 1, the

upper bound is obvious. On the other hand, from Lemma 5.2, the value of ρ(B)
achieves its minimum value when all agents are informed, i.e., the matrix M in

(2.38) becomes M = µINM . In this case, the matrix B in (5.1) can be written

as:

B◦ = AT ⊗ (IM − µRu) (5.14)

where the superscript is used to denote the matrix B when all agents are informed.

Then,

ρ(B) ≥ ρ(B◦) = ρ(AT ) · ρ(IM − µRu) (5.15)

We already know that ρ(AT ) = 1. In addition, because (IM − µRu) > 0 in view

of Assumption 2.1, we have that

ρ(IM − µRu) = 1− µ · λmin(Ru) (5.16)

and we arrive at the lower bound in (5.13). We also observe that the spectral

radius of B◦ is independent of A and equal to 1− µ · λmin(Ru).
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Now we are in a position to simplify the convergence rate expression (2.73)

in order to highlight its dependence on the network topology more prominently.

From (5.8), |λl,m(B)| can be expressed as:

|λl,m(B)| ≈ |λl(A)| · |1− µλm(Ru) · s∗k,1:NI
rk,1:NI

| (5.17)

where we ignored the term O(µ2) for sufficiently small step-sizes. Since |λl(A)| <
λ1(A) = 1 for l > 1, and for sufficiently small step-sizes, the maximum value

of |λl,m(B)| (namely, ρ(B)) occurs when l = 1. Recall from Appendix 2.A that,

under Assumption 2.2, all entries of r1 and s1 are positive, it holds that

0 < sT1,1:NI
r1,1:NI

≤ sT1 r1 = 1 (5.18)

which implies that |λ1,m(B)| increases asm increases (i.e. smaller λm(Ru)). Then,

we arrive at the following expression for ρ(B):

ρ(B) = |λ1,M(B)| ≈ 1− µλmin(Ru) · sT1,1:NI
r1,1:NI

. (5.19)

The square of this expression determines the rate of convergence of the diffusion

strategy (2.29). Note that expression (5.19) satisfies Lemmas 5.2 and 5.3. Also,

since all entries of r1 and s1 are positive, we conclude that ρ(B) < 1 and the

network is mean-square stable.

5.2.3 Simplifying the MSD Expression (2.87)

Expression (2.87) relates the network MSD to the eigen-structure of B from

Lemma 5.1 and the matrix Y , which is given by

Y = ATMSMA (5.20)

where S is defined in (2.56). These quantities contain information about the data

statistical profile, the spatial distribution of informed agents, and the network
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topology through their dependence on {R,M,A}. From (5.9) and assumption

(5.6), we have that

rb∗l,nr
b
k,m = [(rl ⊗ zn) +O(µ)]∗[(rk ⊗ zm) +O(µ)]

= (r∗l rk)⊗ (z∗nzm) +O(µ)

≈ δkl · δmn (5.21)

where we ignored the terms depending on µ under sufficiently small step-sizes.

Then, expression (2.87) simplifies to:

MSD ≈
N∑

l=1

M∑

m=1

sb∗l,mYsbl,m
N · [1− |λl,m(B)|2]

. (5.22)

Expression (5.22) can be simplified further once we evaluate the term in the

numerator. Since the agents are homogeneous from (5.4), we can express the

matrix Y from (5.20) as:

Y = ZΩ−1Z∗ (5.23)

where

Z = ATMR (5.24)

Ω = diag{σ−2
v,1Ru, σ

−2
v,2Ru, . . . , σ

−2
v,NRu}

= Σ−1
v ⊗ Ru (5.25)

with Σv defined in (3.24). Then, we get

sb∗l,mYsbl,m = ‖sb∗l,mZΩ−1/2‖2. (5.26)

Note that the matrix Z in (5.24) can be written as:

Z =

N∑

k=1

λk(A)(rk ⊗ IM)(s∗k ⊗ IM)diag{INI
⊗ µRu, IN−NI

⊗ 0M}

=

N∑

k=1

λl(A)(rk ⊗ IM)
[

s∗k,1:NI
⊗ µRu s∗k,NI+1:N ⊗ 0M

]

. (5.27)
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We then obtain from the approximate expression for sb∗l,m in (5.10) and relations

(5.24) and (5.27) that:

sb∗l,mZΩ−1/2 =
N∑

k=1

λk(A) · [(sl ⊗ zm) +O(µ)]∗(rk ⊗ IM)

×
[

s∗k,1:NI
⊗ µRu s∗k,NI+1:N ⊗ 0M

]

Ω−1/2

= λl(A) · (1⊗ z∗m)
[

s∗l,1:NI
Σ

1/2
v,1:NI

⊗ µR
1/2
u 01×(N−NI )M

]

+O(µ2)

≈ λl(A) ·
[

s∗l,1:NI
Σ

1/2
v,1:NI

⊗ µλ
1/2
m (Ru)z

∗
m 01×(N−NI)M

]

(5.28)

where we used the fact that s∗l2rl1 = δl1l2 from (2.101) and ignored the terms

depending on µ2 under sufficiently small step-sizes. Therefore, the term sb∗l,mYsbl,m
in (5.26) becomes

sb∗l,mYsbl,m =
(
sb∗l,mZΩ−1/2

) (
sb∗l,mZΩ−1/2

)∗

≈ µ2λm(Ru)|λl(A)|2 · s∗l,1:NI
Σv,1:NI

sl,1:NI
(5.29)

where we used that ‖zm‖2 = 1. Then, substituting (5.8) and (5.29) into (5.22),

we arrive at the following expression for the MSD in terms of the eigenvalues and

eigenvectors of AT and the eigenvalues of Ru.

Theorem 5.2 (Network MSD). The network MSD of the ATC diffusion strategy

(2.29) can be approximately expressed as

MSD ≈
N∑

l=1

M∑

m=1

µ2λm(Ru)|λl(A)|2 · s∗l,1:NI
Σv,1:NI

sl,1:NI

N
[

1− |λl(A)|2 ·
∣
∣1− µλm(Ru) · s∗l,1:NI

rl,1:NI

∣
∣2
] (5.30)

Since the matrix A has a single eigenvalue at λ1(A) = 1, and its value is greater

than the remaining eigenvalues, we can decompose the MSD in (5.30) into two

components. The first component is determined by λ1(A), i.e., l = 1 in (5.30),

and is denoted by MSDℓ=1. The second component is due to the contribution

from the remaining eigenvalues of A, i.e., l > 1 in (5.30), and is denoted by
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MSDℓ>1. Since λ1(A) = 1, and for sufficiently small step-sizes, we introduce the

approximation for the denominator in (5.30):

|λ1(A)|2 ·
∣
∣1− µλm(Ru) · s∗1,1:NI

r1,1:NI

∣
∣2

≈ 1− 2µλm(Ru) · sT1,1:NI
r1,1:NI

.
(5.31)

Then, the term MSDℓ=1 becomes

MSDℓ=1 ≈
Mµ

2N
·
∑NI

k=1 σ
2
v,ks

2
1,k

∑NI

k=1 r1,ks1,k
(5.32)

where {rl,k, sl,k} denote the kth entries of {rl, sl}. Expression (5.32) reveals sev-

eral interesting properties. First, we observe that the term MSDℓ=1 does not

depend on the matrix Ru, which is also a property of the MSD expression for

stand-alone adaptive filters [123]. Second, if the number of informed agents in-

creases by one, the value of MSDℓ=1 may increase or decrease (i.e., it does not

necessarily decrease). This can be seen as follows. From (5.32) we see that

MSDℓ=1 will decrease (and, hence, improve) only if

∑NI

k=1 σ
2
v,ks

2
1,k + σ2

v,NI+1s
2
1,NI+1

∑NI

k=1 r1,ks1,k + r1,NI+1s1,NI+1

<

∑NI

k=1 σ
2
v,ks

2
1,k

∑NI

k=1 r1,ks1,k
(5.33)

or, if the noise variance of the added agent satisfies:

σ2
v,NI+1s1,NI+1 <

∑NI

k=1 σ
2
v,ks

2
1,k

∑NI

k=1 s1,k
(5.34)

where we used the fact that r1 = 1N/
√
N from (2.102).

For the second part, MSDℓ>1, since |λl(A)| < 1 for l > 1, and for sufficiently

small step-sizes, the denominator in (5.30) can be approximated by:

1− |λl(A)|2 ·
∣
∣1− µλm(Ru) · s∗l,1:NI

rl,1:NI

∣
∣
2 ≈ 1− |λl(A)|2. (5.35)

Comparing to (5.31), we further ignore the term 2µλm(Ru)|λl(A)|2 · s∗l,1:NI
rl,1:NI

in (5.35) since this term is generally much less than 1 − |λl(A)|2 due to small

123



step-size. Then, MSDℓ>1 becomes

MSDℓ>1 ≈
µ2Tr(Ru)

N

N∑

l=2

[

|λl(A)|2
1− |λl(A)|2

·
NI∑

k=1

σ2
v,k|sl,k|2

]

(5.36)

It is important to note that, in contrast to MSDℓ=1 in (5.32), MSDℓ>1 in (5.36)

always increases (i.e., worse mean-square performance) when the number of in-

formed agents increases.

5.2.4 Behavior of the Network

Combining expressions (5.19), (5.32), and (5.36), we arrive at the following result

for diffusion networks.

Theorem 5.3 (Diffusion networks). The ATC diffusion network (2.29) has ap-

proximate convergence rate:

r ≈
(

1− µλmin(Ru) ·
∑

k∈NI

s1,kr1,k

)2

(5.37)

and approximate network MSD:

MSD ≈ Mµ

2N
·
∑

k∈NI
σ2
v,ks

2
1,k

∑

k∈NI
r1,ks1,k

︸ ︷︷ ︸

MSDℓ=1

+
µ2Tr(Ru)

N

N∑

l=2

[

|λl(A)|2
1− |λl(A)|2

·
∑

k∈NI

σ2
v,k|sl,k|2

]

︸ ︷︷ ︸

MSDℓ>1

.

(5.38)

Note that the summations in (5.37) and (5.38) are over the set of informed

agents, NI . Expressions (5.37) and (5.38) reveal important information about

the behavior of the network. As the set of informed agents, NI , increases, we ob-

serve from (5.37) that the rate of convergence becomes faster (a desirable effect).

However, as we will illustrate in simulations, the behavior of the terms MSDℓ=1

and MSDℓ>1 ends up causing the network MSD given by (5.38) to increase (an
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Figure 5.2: Sketch of the behavior of the network MSD as a function of the

number of informed agents, NI , depending on whether relation (5.34) is satisfied

(left) or not (right).

undesirable effect) as NI increases. Figure 5.2 illustrates the two possible trends

in the behavior of the network MSD and its components, MSDℓ=1 and MSDℓ>1.

Two scenarios are shown in the figure corresponding to the case whether the

added informed agents satisfy (5.34) or not. The figure shows that depending on

condition (5.34), the curve for MSDℓ=1 can increase or decrease with NI . Never-

theless, the overall network MSD generally increases (i.e., becomes worse) with

increasing NI . These facts reveal an important trade-off between the convergence

rate and the network MSD in relation to the proportion of informed agents. We

summarize the behavior of the diffusion network in Table 5.1 and show how the

rate of convergence and the MSD respond when the parameters {NI ,Tr(Ru)} in-

crease. We remark that slower convergence rate and worse estimation correspond

to increasing values of r and MSD (an undesirable effect).

The fact that the network MSD ends up increasing as the set of informed

agents is enlarged is an interesting phenomenon. In the following, we show that

the deterioration of the network MSD can be controlled through proper selection
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Table 5.1: Behavior of the diffusion network in response to increases in any of

the parameters {NI ,Tr(Ru)}.

NI ↑ Tr(Ru) ↑

convergence rate r (5.76) faster faster

MSD (5.77) worse in general worse

MSDℓ=1 (5.55) may be better or worse (see (5.34)) independent of Tr(Ru)

MSDℓ>1 (5.54) worse worse

of the combination weights. To see this, we assume the step-size is small enough

so that the term MSDℓ>1 in (5.38), which is of the order of µ2, can be ignored and

that the network MSD from (5.38) is close to MSDℓ=1. In addition, we assume

the agents select the combination weights to satisfy

s1,k =

√
N · σ−2

v,k
∑N

j=1 σ
−2
v,j

(5.39)

That is, the kth entry of the left eigenvector s1 of AT associated with the eigen-

value one is inversely proportional to the noise variance at agent k. One possible

selection of combination rules that satisfy this property is the so-called Hastings

rule [173]:

al,k =







σ2
v,k

/
max{nkσ

2
v,k, nlσ

2
v,l} , l ∈ Nk \ {k}

1−∑l∈Nk\{k}
al,k, l = k

(5.40)

In this case and by the fact that r1 = 1N/
√
N , the convergence rate and network
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MSD from (5.37)-(5.38) will be given by:

r ≈
(

1− µλmin(Ru) ·
∑

k∈NI
σ−2
v,k

∑N
k=1 σ

−2
v,k

)2

(5.41)

MSD ≈ Mµ

2
· 1
∑N

k=1 σ
−2
v,k

. (5.42)

We see that when the agents employ the Hastings combination rule, the network

MSD remains constant, while the convergence rate decreases (becomes faster),

as the set of informed agents is enlarged. The result highlights the importance

of selecting combination weights; otherwise, the mean-square performance may

suffer from additional information.

5.3 Network Behavior under Uniform Combinations

As shown by (5.37)-(5.38), the convergence rate and network MSD depend strongly

on the eigenvalues and eigenvectors of the combination matrix A. In this sec-

tion, we examine more closely the eigen-structure of A when it is chosen as the

following uniform combination matrix:

al,k =







1/nk, if l ∈ Nk

0, otherwise

(5.43)

The uniform combination matrix is generally non-symmetric; nevertheless, it is

diagonalizable under certain assumption on the network topology. In addition to

Assumption 2.2, we further introduce the following assumption.

Assumption 5.1 (Undirected networks). The network topology undirected (where

if agent l is a neighbor of agent k, then agent k is also a neighbor of agent l).

Assumption 5.1 does not imply that the combination matrix A is symmetric;

although agents (k, l) are neighbors of each other, they can still assign different
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weights to the information shared over their links, i.e., al,k can be different from

ak,l. In this case, agent k would assign a different weight to the information

received from agent l, than the weight assigned by agent l to the information

received from agent k. We first verify the following result.

Lemma 5.4 (Diagonalization of uniform combination matrix). Under Assump-

tions 5.1, the matrix A defined by (5.43) is diagonalizable and has real eigen-

values. Moreover, condition (5.6) is satisfied by the eigenvectors of A when all

agents have approximately similar degrees, i.e., when nk ≈ η where η denotes the

degree of the network and is defined as

η ,
1

N

N∑

k=1

nk. (5.44)

Proof. We introduce the degree matrix, D, and the adjacency matrix, C, of the

network graph, whose entries are defined as follows:

D = diag{n1, . . . , nN} and [C]k,l =







1, if l ∈ Nk

0, otherwise

. (5.45)

Then, it is straightforward to verify that the matrix AT in (5.43) can be written

as:

AT = D−1C (5.46)

which shows that AT is similar to the real-valued matrix As defined by:

As , D1/2ATD−1/2

= D−1/2CD−1/2 (5.47)

where D1/2 = diag{√n1, . . . ,
√
nN}. Since the topology is assumed to be undi-

rected, the matrix C is symmetric, and so is As. Therefore, there exists an
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orthogonal matrix, Us, and a diagonal matrix with real diagonal entries, Λ, such

that

As = UsΛU
T
s . (5.48)

From (5.47), we let

U = D−1/2Us and U−1 = UT
s D

1/2 (5.49)

and we obtain (2.96).

Note that since the matrices Us and D1/2 in (5.49) are real-valued, so are

the eigenvectors of the uniform combination matrix, {rl, sl}. Furthermore, from

(5.49), we can express {rl, sl} in terms of the eigenvectors of As defined in (5.47).

Let rsl denote the lth eigenvector of As and let rsl,k denote the kth entry of rsl .

Then, we have

rl,k =
rsl,k

cl ·
√
nk

and sl,k = cl ·
√
nk · rsl,k (5.50)

where cl is used to normalize the norm of rl so that condition (2.100) is satisfied.

Then, when nk ≈ η, the right eigenvectors {rl} of the uniform combination matrix

defined by (5.43) satisfy condition (5.6) since

rTl2rl1 =
N∑

k=1

rsl2,kr
s
l1,k

cl2 · cl1 · nk

≈ 1

cl1 · cl2 · η
N∑

k=1

rsl2,kr
s
l1,k

=
1

c2l1 · η
δl1l2 . (5.51)

To normalize the norms of {rl}, we select

cl =
1√
η
for all l. (5.52)
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5.3.1 Convergence Rate Expression

For the uniform combination matrix A in (5.43), it can be verified that the right

eigenvector for As defined in (5.47) corresponding to the eigenvalue one has the

following form:

rs1 =
1√
Nη

col{√n1,
√
n2, . . . ,

√
nN} (5.53)

we obtain from (5.19), (5.50), and (5.53) that

ρ(B) = 1− µλmin(Ru) ·
∑NI

k=1 nk

Nη
. (5.54)

Expression (5.54) can be motivated intuitively by noting that the decay of ρ(B)
will be larger as informed agents have higher degrees. Simulations further ahead

show that expression (5.54) matches well with simulated results.

5.3.2 Expression for MSDℓ = 1

From (5.32), MSDℓ=1 depends on the eigenvectors {r1, s1}. From (5.50), (5.52),

and (5.53), expression (5.32) becomes

MSDℓ=1 ≈
Mµ

2N
·
∑NI

k=1 σ
2
v,kn

2
k

η
∑NI

k=1 nk

. (5.55)

Note that expression (5.55) is inversely proportional to the degree of the network,

η. That is, when the network is more connected (i.e. higher network degree),

the network will have lower MSDℓ=1. Moreover, expression (5.55) depends on the

distribution of informed agents through its dependence on the degree and noise

profile of the informed agents.

5.3.3 Eigenvalues of Uniform Combinations

Before we proceed to the expression for MSDℓ>1, we examine the eigenvalues of

the uniform combination matrix A from (5.43). There are useful results in the
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literature on the spectral properties of complex networks [43, 44, 51, 54, 58], such

as networks corresponding to the Erdos-Renyi and scale free models. We shall

use these results to infer properties about the spectral distribution of the uniform

combination matrix. First, we note from (2.25) that one is an eigenvalue of A,

i.e., ρ(A) = λ1(A) = 1. In the following, we use the results of [44] to characterize

the remaining eigenvalues (namely, λl(A) for l > 1) of the uniform combination

matrix.

Theorem 5.4 (Eigenvalue distribution of uniform combination matrix). Let n̄k

denote the average degree of agent k in a random graph. Let

η̄ ,
1

N

N∑

k=1

n̄k (5.56)

denote the average degree of the graph. Then, for random graphs with expected

degrees satisfying

n̄min , min
1≤k≤N

{n̄k} ≫ √
η̄ (5.57)

the density function, f(λ), of the eigenvalues of A converges in probability, as

N → ∞, to the semicircle law (see Fig. 5.3), i.e.,

f(λ) =







2
πR

√

1−
(
λ
R

)2
, if λ ∈ [−R,R]

0, otherwise

(5.58)

where

R =
2√
η̄
. (5.59)

Moreover, if n̄min ≫ √
η̄ log3(N), the second largest eigenvalue of A converges

almost surely to

|λ2(A)| = R. (5.60)

Proof. See Thms. 5 and 6 in [44].
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Figure 5.3: Density function (left) for the eigenvalues of A as given by (5.58)

for N → ∞, and the eigenvalues (right) of the combination matrix A defined by

(5.43) with N = 400 and η = 7. The dashed line on the right represents theory

from (5.62) and the dash-dot line represents linear approximation given further

ahead by (5.70).
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Simulations in Fig. 5.3 show that expressions (5.58) and (5.60) provide ac-

curate approximations for the Erdos-Renyi and scale-free network models. In

addition, for ergodic distributions, the value of η̄ in (5.56) will be close to its

realization η for large N . In the following, we determine an expression for |λl(A)|
by using (5.58). To do so, we let l denote the number of eigenvalues of A that

are greater than some value y in magnitude for 0 ≤ y ≤ R. Then, the value of l

is given by:

l = N ·
[

1−
∫ y

−y

f(λ)dλ

]

, N · g(y) (5.61)

where we denote the expression inside the brackets by g(y). Note that the integral
∫ y

−y
f(λ)dλ in (5.61) computes the proportion of eigenvalues of A within the region

[−y, y]. Then, the lth eigenvalue of A can be approximated by evaluating the

value of y in (5.61), i.e.,

|λl(A)| ≈ g−1

(
l

N

)

. (5.62)

From (5.58) and using the change of variables λ/R = sin θ, we obtain that g(y)

in (5.61) has the form:

g(y) = 1− 2

π
sin−1

( y

R

)

− 2

π

y

R

√

1−
( y

R

)2

. (5.63)

In Fig. 5.3, we show the eigenvalue distribution of |λl(A)| for Erdos-Renyi and

scale-free models. We observe that for both network models, the theoretical

results in (5.60) and (5.62) match well with simulations.
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5.3.4 Expression for MSDℓ > 1

For MSDℓ>1, we apply relations (5.50) and (5.52). Then, expression (5.36) can

be approximated by:

MSDℓ>1 ≈
µ2Tr(Ru)

Nη

N∑

l=2

[

λ2l (A)

1− λ2l (A)
·
(

NI∑

k=1

σ2
v,knk · (rsl,k)2

)]

. (5.64)

Expression (5.64) requires knowledge of the eigenvectors {rsl } of As in (5.47).

Note that for l = 1 and from (5.53), we have

(rs1,k)
2 =

nk

Nη
≈ 1

N
(5.65)

since, by assumption, nk ≈ η. We are therefore motivated to introduce the

following approximation:

(rsl,k)
2 ≈ 1

N
(5.66)

for all l. Observe that expression (5.66) is independent of l, and we find that

expression (5.64) simplifies to:

MSDℓ>1 ≈
µ2Tr(Ru)

Nη
·
(

NI∑

k=1

σ2
v,knk

)

· 1

N

N∑

l=2

λ2l (A)

1− λ2l (A)
. (5.67)

Furthermore, from (5.62), we can approximate the summation over l in (5.67) by

the following integral:

1

N

N∑

l=2

λ2l (A)

1− λ2l (A)
≈
∫ 1

0

[g−1(x)]
2

1− [g−1(x)]2
dx (5.68)

where we replaced l/N by x. However, evaluating the integral in (5.68) is gener-

ally intractable. We observe though from the right plot in Fig. 5.3 that |λl(A)|
(and also g−1(l/N)) decreases in a rather linear fashion for l > 1. Note that

the function g(y) in (5.63) has values 1 at y = 0 and 0 at y = R ≈ 2/
√
η. We

therefore approximate g(y) by the linear function

g(y) ≈ 1−
√
η

2
y. (5.69)
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Figure 5.4: The function h(α) (left) from (5.72) and the derivative of α2h(α)/4

with respect to α (right).

Then,

g−1(x) ≈ 2√
η
(1− x) (5.70)

and expression (5.68) becomes

1

N

N∑

l=2

λ2l (A)

1− λ2l (A)
≈
∫ 1

0

4/η · (1− x)2

1− 4/η · (1− x)2
dx

= h

(
2√
η

)

(5.71)

where the function h(α) is defined as

h(α) ,

∫ 1

0

α2x2

1− α2x2
dx =

[
1

2α
log

(
1 + α

1− α

)

− 1

]

(5.72)

for α ∈ (0, 1). Substituting expression (5.71) into (5.67), we find that the MSD

contributed by the remaining terms (l > 1) has the following form:

MSDℓ>1 ≈
µ2Tr(Ru)

Nη
·
(

NI∑

k=1

σ2
v,knk

)

· h
(

2√
η

)

. (5.73)

Note that the function h(α), shown in Fig. 5.4, has the following property.
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Lemma 5.5. The function h(α) defined in (5.72) is strictly increasing and convex

in α ∈ (0, 1).

Proof. Taking the derivative of h(α) in (5.72) with respect to α, we obtain:

dh(α)

dα
=

∫ 1

0

2αx2

(1− α2x2)2
dx > 0 (5.74)

for α ∈ (0, 1). To show convexity, we take the second derivative of h(α) for

α ∈ (0, 1) and find that

d2h(α)

dα2
=

∫ 1

0

2x2 + 6α2x4

(1− α2x2)3
dx > 0. (5.75)

The result of Lemma 5.5 implies that when η increases, MSDℓ>1 in (5.73)

decreases. That is, in a manner similar to MSDℓ=1 in (5.55), the value of MSDℓ>1

is lower if the network is more connected. In addition, we observe that when η is

too low (or, α is too large in Fig. 5.4), the value of h(2/
√
η) will increase rapidly

and so does the value of MSDℓ>1. Note from (5.73) that MSDℓ>1 depends on

η through the function h(2/
√
η)/η, or equivalently, α2h(α)/4 by replacing 2/

√
η

with α. We show the derivative of α2h(α)/4 with respect to α in the right plot of

Fig. 5.4. It is seen that the derivative function increases rapidly beyond α = 0.8.

To maintain acceptable levels of accuracy, it is preferable for the derivative to be

bounded by a relative small value, say, 0.5. Then, the value of α should be less

than 0.8, or η ≥ 6.25. That is, the average neighborhood sizes should be kept

around 6-7 or larger.

5.3.5 Behavior of the Network

Combining expressions (5.54), (5.55), and (5.73), we arrive at the following result

for diffusion networks using the uniform combination matrix.
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Theorem 5.5 (Diffusion networks under uniform combination weights). The

ATC diffusion network (2.29) with the uniform combination matrix A in (5.43)

has approximate convergence rate:

r ≈
(

1− µλmin(Ru) ·
∑

k∈NI
nk

Nη

)2

(5.76)

and approximate network MSD:

MSD ≈ Mµ

2Nη
·
∑

k∈NI
σ2
v,kn

2
k

∑

k∈NI
nk

︸ ︷︷ ︸

MSDℓ=1

+
µ2Tr(Ru)

Nη
· h
(

2√
η

)

·
∑

k∈NI

σ2
v,knk

︸ ︷︷ ︸

MSDℓ>1

(5.77)

where η and h(·) are defined in (5.44) and (5.72), respectively.

Note that expressions (5.76)-(5.77) for the convergence rate and network MSD

depend on the network topology only through the agent degrees, {nk}, and the

network degree, η. In general, the higher values of η are, the slower the con-

vergence rate is (an undesirable effect) and the lower the network MSD is (a

desirable effect). This reveals again a trade-off between convergence rate and

network MSD.

5.3.6 Mean-Square Performance under Fixed Convergence Rate

For a proper evaluation of how the proportion of informed agents influences net-

work behavior, we shall adjust the step-size parameter such that the convergence

rate remains fixed as the set of informed agents is enlarged and then compare

the resulting network MSDs. To do so, we set the step-size to the following

normalized value:

µ =
µ0

∑

k∈NI
nk

(5.78)
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for some µ0 > 0. Note that this choice normalizes µ0 by the sum of the degrees of

the informed agents. In this way, the convergence rate given by (5.76) becomes

r ≈
(

1− µ0λmin(Ru)

Nη

)2

(5.79)

which is independent of the set of informed agents. Moreover, the network MSD

in (5.77) becomes

MSD ≈ Mµ0

2Nη
·
∑

k∈NI
σ2
v,kn

2
k

(∑

k∈NI
nk

)2 +
µ2
0Tr(Ru)

Nη
· h
(

2√
η

)

·
∑

k∈NI
σ2
v,knk

(∑

k∈NI
nk

)2 . (5.80)

Using the same argument we used before in (5.33), if we increase the number of

informed agents by one, the first term in (5.80) (namely, MSDℓ=1) will increase

if the degree of the added agent satisfies:

nNI+1 ≥ 2

[

σ2
v,NI+1

(∑

k∈NI
nk

)2

∑

k∈NI
σ2
v,kn

2
k

− 1

]−1

︸ ︷︷ ︸

c1

∑

k∈NI

nk (5.81)

and the second term in (5.80) (namely, MSDℓ>1) will increase if the degree of the

added agent satisfies:

nNI+1 ≤
(

σ2
v,NI+1

∑

k∈NI
nk

∑

k∈NI
σ2
v,knk

− 2

)

︸ ︷︷ ︸

c2

∑

k∈NI

nk.
(5.82)

In the following, we show that there exist conditions under which both require-

ments (5.81) and (5.82) are satisfied. That is, when this happens and interest-

ingly, the network MSD ends up increasing (an undesirable effect) when we add

one more informed agent in the network. In the first example, we assume that

the degrees of all agents are the same, i.e., set nk = n for all k. Then, c1 and c2

in (5.81)-(5.82) become

c1 = 2(NIβ − 1)−1, c2 = β − 2 (5.83)
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where

β =
σ2
v,NI+1

∑

k∈NI
σ2
v,k/NI

. (5.84)

It can be verified that if

β ≥ 2 +
1

NI
(5.85)

(or, if the noise variance at the added agent is large enough), both (5.81) and

(5.82) are satisfied and then the MSD will increase (i.e., become worse). A

second example is obtained by setting the noise variances to a constant level, i.e.,

σ2
v,k = σ2

v for all k. Then, c1 and c2 in (5.81)-(5.82) become

c1 = 2

[(∑

k∈NI
nk

)2

∑

k∈NI
n2
k

− 1

]−1

, c2 = −1. (5.86)

In this case, the second term in (5.80) always decreases, whereas the first term

in (5.80) will increase if the degree of the added informed agent is high enough.

However, as the number of informed agents increases, the step-size in (5.78) will

become smaller and the first term in (5.80) becomes dominant. As a result, the

network MSD worsens if (5.81) is satisfied, i.e., when the added agent has large

degree. These results suggest that it is beneficial to let few highly noisy or highly

connected agents remain uninformed and participate only in the consultation step

(the second step in (2.29)).

5.4 Simulation Results

We consider networks with 400 agents. The weight vector, w◦, is a randomly

generated 5 × 1 vector (i.e., M = 5). The regressor covariance matrix Ru is a

diagonal matrix with each diagonal entry uniformly generated from [0.8, 1.8], and

noise variances are set to σ2
v,k = 0.01 for all k. The step-size for informed agents is

set to µ = 0.02. Without loss of generality, we assume that the agents are indexed
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Figure 5.5: Transient network MSD over the Erdos-Renyi (left) and scale-free

(right) networks with 400 agents. The dashed lines represent the theoretical

results (2.73) and (2.87).

in decreasing order of degree, i.e., n1 ≥ n2 ≥ · · · ≥ nN . In the simulations, we

consider two network models as follows.

1. Erdos-Renyi model [20,52]: The Erdos-Renyi model has been studied widely

in random graph theory [20]. In the Erdos-Renyi model, there is a single

parameter called edge probability and is denoted by p ∈ [0, 1]. Each edge is

connected with probability p independent from every other edge.

2. Scale-free model [3,9,10,105]: The scale-free model captures several promi-

nent features of real networks (e.g., the Internet) such as the small-world

phenomenon and the power-low degree distribution [3, 105]. The model

starts with a small connected network with N0 agents. At every iteration,

we add a new agent, which will connect to m ≤ N0 distinct agents be-

sides itself. The probability of connecting to an agent is proportional to its
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degree. As time evolves, agents with higher degree are more likely to be

connected to new agents.

We first verify theoretical expressions (2.73) and (2.87) for the convergence

rate and network MSD. Figure 5.5 shows the MSD over time for two network

models with parameters p = 0.015, m = 3, and N0 = 10 so that both models

have network degree around η = 7. For each network model, we consider two

cases: 400 or 100 (agents 1 to 100) informed agents. We observe that when the

number of informed agents decreases, the convergence rate increases, as expected,

but interestingly, the MSD decreases. The theoretical results are also depicted

in Fig. 5.5. The MSD decays at rate r in (2.73) during the transient stage.

When the MSD is lower than the steady-state MSD value from (2.82), the MSD

stays constant at (2.87). We observe that the theoretical results match well with

simulations. The theoretical results (2.73) and (2.87) will be used to verify the

effectiveness of the approximate expressions (5.76) and (5.77).

5.4.1 MSD and Convergence Rate with Fixed Step-Size

We examine the effect of the proportion and distribution of informed agents on the

convergence rate and MSD of the network. We increase the number of informed

agents from the agent with the highest degree, i.e., from agent 1 to agent N , so

that condition (5.34) is satisfied for every iteration. The convergence rate and

MSD are shown in Fig. 5.6. As expected, the convergence rates decrease when

we add more informed agents and expression (5.76) matches well with expression

(2.73). In addition, the convergence rates in the scale-free model are lower in the

beginning because there are some agents with very high degrees.

Interesting patterns are seen in the MSD behavior. We further illustrate

MSDℓ=1 from (5.55) and MSDℓ>1 from (5.73) in Fig. 5.7. We observe from Fig.
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5.7 that MSDℓ=1 decreases since condition (5.34) is satisfied, whereas MSDℓ>1 in-

creases with NI . Additionally, the scale-free model has higher values of MSDℓ=1

and MSDℓ>1 than the Erdos-Renyi model, and therefore higher values of MSD.

This is because the scale-free model has higher values of nl. Since MSDℓ=1 de-

creases and MSDℓ>1 increases, the resulting MSD in (5.77) can either increase or

decrease. The curve of MSD depends on the values of MSDℓ=1 and MSDℓ>1. We

observe from Fig. 5.6 that as we expected in Fig. 5.2, the MSD decreases when

NI is small, and then increases with NI . As in the case of a stand-alone adaptive

filter, there exists a trade-off between the convergence rate and the MSD. We also

see that the approximation for the MSD in (5.77) matches well with expression

(2.87). The gap between approximation (5.77) and expression (2.87) is caused

by approximations (5.51) and (5.66) and is about 0.5 dB (≈ 12% deviation).

Therefore, even though the approximations are not generally valid, simulations

indicate that the approximations still lead to good match between theory and

practice.

5.4.2 MSD with Fixed Convergence Rate

We vary the value of step-size as in (5.78) with µ0 = 0.1 and show the network

MSD over the number of informed agents in Fig. 5.8. To show the MSD possibly

increases with NI , we reverse the order in adding informed agents, i.e., from agent

N to agent 1. It is interesting to note that for the scale-free model, the MSD

increases when the number of informed agents is large. This is because in the

scale-free model, there are few agents connected to most agents in the network

and condition (5.81) is satisfied. The results suggest that in the scale-free model,

we should let few highly connected agents remain uninformed and perform only

the consultation step.
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Figure 5.6: Convergence rate (left) and steady-state MSD (right) for Erdos-Renyi

and scale-free models with the addition of informed agents in decreasing order of

degree. The dashed lines represent approximate expressions (5.76) and (5.77).

Figure 5.7: MSDl=1 (left) and MSDℓ>1 (right) for Erdos-Renyi and scale-free

models with the addition of informed agents in decreasing order of degree. The

dashed lines represent approximate expressions (5.55) and (5.73).
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Figure 5.8: Steady-state MSD with the deployment for agent N to agent 1 for

Erdos-Renyi and scale-free models. The dashed lines represent approximate ex-

pression (5.80).
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Figure 5.9: Convergence rate (left) and steady-state MSD (right) for Erdos-Renyi

and scale-free models with general form of step-sizes and regression covariance

matrices.

5.4.3 Nonuniform Step-Sizes and Regression Covariance Matrices

The results in Section 5.2 are derived under the assumption that the agents are

homogeneous (namely, uniform step-sizes and regression covariance matrices).

In this part, we allow the step-sizes and covariance matrices to vary across the

agents in the network. The step-sizes are generated uniformly and independently

from [0.01, 0.04]. The regression covariance matrices are diagonal with each di-

agonal entry uniformly generated from [0.8, 1.8]. The theoretical expressions for

convergence rate (2.73) and network MSD (2.87) in terms of the number of in-

formed agents are shown in Fig. 5.9. The number of informed agents is increased

from agent 1 to agent N . We observe that the convergence rate decreases as NI

increases. The network MSD exhibits similar behavior in the right plot of Fig.

5.6, i.e., it decreases in the beginning and increases thereafter. The results show

that the trade-off between the convergence rate and network MSD in terms of

the number of informed agents also occurs in this scenario.
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5.5 Concluding Remarks

In this chapter, we derived useful expressions for the convergence rate and mean-

square performance of the ATC diffusion strategies in the presence of uninformed

agents. The analysis examines analytically how the convergence rate and mean-

square performance of the network vary with the network topology and with the

proportion of informed agents. The results reveal interesting and surprising pat-

terns of behavior. The analysis shows that there exists a trade-off between con-

vergence rate and mean-square deviation in terms of the proportion of informed

agents. It is not always the case that increasing the proportion of informed agents

is beneficial.

5.A Proof of Theorem 5.1

To prove mean stability of the diffusion network (2.29), we need to show that

conditions (5.2)-(5.3) guarantee ρ(B) < 1, or equivalently, ρ(Bj) < 1 for some

integer j. Now, note that

ρ(Bj) ≤ ‖Bj‖b = max
1≤k≤N

(
N∑

l=1

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2

)

. (5.87)

By the rules of matrix multiplication, the (k, l)th block (of size M ×M) of the

matrix Bj is given by:

[
Bj
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

Bk,m1Bm1,m2 · · · Bmj−1,l (5.88)

where Bk,l is the (k, l)th block (of size M ×M) of the matrix B from (5.1) and is

given by

Bk,l = al,k · (IM − µlRu,l). (5.89)
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Then, using the triangle inequality and the submultiplicative property of norms

[64], the 2-induced norm of [Bj ]k,l in (5.88) is bounded by:

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

‖Bk,m1‖2 × ‖Bm1,m2‖2 · · · ‖Bmj−1,l‖2. (5.90)

Note that in the case where l ∈ Nm, we obtain from condition (5.2) and expression

(5.89) that

‖Bm,l‖2 = al,m · ρ (IM − µlRu,l)






< al,m, if agent l is informed

= al,m, if agent l is uninformed

(5.91)

where we replaced the 2-induced norm with the spectral radius because covariance

matrices are Hermitian. Relation (5.91) implies that

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1 · · · al,mj−1
. (5.92)

From condition (2.25), strict inequality holds in (5.92) if, and only if, the sequence

(l, mj−1, . . . , m1, k) forms a path from agent l to agent k using j edges and there

exists at least one informed agent along the path. Since we know from condition

(5.3) that there is an informed agent, say, agent l◦, such that a path with j edges

exists from agent l◦ to agent k, we then get from (5.87) and (5.92) that

ρ(Bj) ≤ max
1≤k≤N

(
∥
∥
∥

[
Bj
]

k,l◦

∥
∥
∥
2
+
∑

l 6=l◦

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2

)

< max
1≤k≤N

N∑

l=1

( N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,kam2,m1 · · · al,mj−1

)

= max
1≤k≤N

N∑

l=1

[
Aj
]

l,k

= 1 (5.93)
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where the last equality is from condition (2.25) because (AT )j1N = 1N if AT
1N =

1N .

5.B Proof of Lemma 5.2

Since the agents are homogeneous from (5.4), we have that

IM − µlRu,l =







IM − µRu, if agent l is informed

IM , if agent l is uninformed

(5.94)

Then, the matrix [Bj ]k,l in (5.88) can be written as:

[
Bj
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1 · · · al,mj−1
· (IM − µRu)

ql,k (5.95)

where the exponent ql,k denotes the number of informed agents along the path

(l, mj−1, . . . , m1, k). Note that [Bj ]k,l is a nonnegative-definite matrix because

(IM − µRu) > 0 in view of sufficiently small step-sizes. In fact, all eigenvalues of

(IM − µRu) lie within the line segment (0, 1). Moreover, since NI,1 ⊆ NI,2, we

have that q
(1)
l,k ≤ q

(2)
l,k and, therefore, the matrix difference

[
B(1)j

]

k,l
−
[
B(2)j

]

k,l

=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1 · · · al,mj−1
·
[

(I − µRu)
q
(1)
l,k − (I − µRu)

q
(2)
l,k

]

(5.96)

is a nonnegative-definite matrix, where the superscripts denote the indices of the

informed configurations, NI,1 or NI,2. Since [B(1)j ]k,l, [B(2)j ]k,l, and [B(1)j ]k,l −
[B(2)j ]k,l are all nonnegative-definite, then it must hold that

∥
∥
∥

[
B(1)j

]

k,l

∥
∥
∥
2
≥
∥
∥
∥

[
B(2)j

]

k,l

∥
∥
∥
2
. (5.97)
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Relation (5.97) can be established by contradiction. Suppose that (5.97) does

not hold, i.e., ρ([B(1)j ]k,l) < ρ([B(2)j ]k,l) as [B(1)j ]k,l and [B(2)j ]k,l are Hermitian

from (5.95). In addition, let x denote the eigenvector that is associated with the

largest eigenvalue of [B(2)j ]k,l, i.e., ([B(2)j ]k,l)x = ρ([B(2)j ]k,l)x. Then, we obtain

the following contradiction to the nonnegative-definiteness of [B(1)j ]k,l− [B(2)j ]k,l:

x∗
([

B(1)j
]

k,l
−
[
B(2)j

]

k,l

)

x = x∗
([

B(1)j
]

k,l

)

x− ρ
([

B(2)j
]

k,l

)

x∗x < 0 (5.98)

by the Rayleigh-Ritz Theorem [64]. By the definition of the block matrix norm

in (3.67), we arrive at

(∥
∥
[
B(1)j

]∥
∥
b

)1/j ≥
(∥
∥
[
B(2)j

]∥
∥
b

)1/j
(5.99)

for all j. Let j tend to infinity and we obtain that

ρ
(
B(1)

)
≥ ρ

(
B(2)

)
(5.100)

where we used the fact that ρ(B) = limj→∞(‖Bj‖)1/j for any matrix norm [64].

5.C Proof of Lemma 5.1

We first note that the matrix B = AT (INM −MR) can be written as a function

of the step-size µ:

B(µ) = AT − µATDR (5.101)

where D = M/µ. Therefore, the derivative of B(µ) with respect to µ becomes

B′(µ) = −ATDR. (5.102)

Then, according to the perturbation theory of eigenvalues [160], the derivative of

the eigenvalues of B(µ) with respect to µ can be expressed as:

λ′l,m(B(µ)) = sb∗l,m(0)B′(µ)rbl,m(0) (5.103)
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where rbl,m(0) and s
b
l,m(0) are the right and left eigenvectors of B(0). Note from

(5.101) that B(0) = AT and we have that rbl,m(0) = rl ⊗ zm and sbl,m(0) =

sl ⊗ zm corresponding to the eigenvalue λl,m(B(0)) = λl(A). Then, from (5.102),

expression (5.103) becomes

λ′l,m(B(µ)) = −(sl ⊗ zm)
∗ATDR(rl ⊗ zm)

= −λl(A)λm(Ru) · s∗l,1:NI
rl,1:NI

. (5.104)

Therefore, the Taylor series expansion for the eigenvalues of B(µ) around µ = 0

is given by:

λl,m(B(µ)) = λl,m(B(0)) + µ · λ′l,m(B(µ)) +O(µ2)

= λl(A)− µλl(A)λm(Ru) · s∗l,1:NI
rl,1:NI

+O(µ2)

= λl(A) ·
[
1− µλm(Ru) · s∗l,1:NI

rl,1:NI

]
+O(µ2) (5.105)

and then we arrive at (5.8).

To verify that the right and left eigenvectors of B have the form (5.9)-(5.10),

we need to show that Brbl,m = λl,m(B)rbl,m and sb∗l,mB = λl,m(B)sb∗l,m. We show the

former in the following and the latter can be deduced in a similar manner. From

(5.9) and (5.101), we have that

B · rbl,m = (AT − µATDR)[(rl ⊗ zm) + µ · r̃bl,m +O(µ2)]

= AT (rl ⊗ zm) + µ ·
[
−ATDR(rl ⊗ zm) +AT r̃bl,m

]
+O(µ2) (5.106)

On the other hand, we obtain from (5.9), (5.104), and (5.105) that

λl,m(B)rbl,m

= [λl(A)− µ · (sl ⊗ zm)
∗ATDR(rl ⊗ zm) +O(µ2)]

× [(rl ⊗ zm) + µ · r̃bl,m +O(µ2)]

= λl(A)(rl ⊗ zm)

+ µ ·
[
− (sl ⊗ zm)

∗ATDR(rl ⊗ zm)(rl ⊗ zm) + λl(A)r̃
b
l,m

]
+O(µ2) (5.107)
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Note that

AT (rl ⊗ zm) = λl(A)(rl ⊗ zm). (5.108)

Therefore, expressions (5.106)-(5.107) equate if r̃bl,m satisfies

−ATDR(rl ⊗ zm) +AT r̃bl,m (5.109)

= −(sl ⊗ zm)
∗ATDR(rl ⊗ zm)(rl ⊗ zm) + λl(A)r̃

b
l,m

and then we arrive at (5.11).
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CHAPTER 6

Distributed Decision-Making

Self-organized behavior is a remarkable property of biological networks [25, 45],

where various forms of complex and sophisticated behavior are evident and result

from decentralized interactions among agents with limited capabilities. One ex-

ample of sophisticated behavior is the group decision-making process by animal

groups [138]. For example, it is common for biological networks to encounter situ-

ations where agents need to decide between multiple options, such as fish deciding

between following one food source or another [46] and bees or ants deciding be-

tween moving towards a new hive or another [23,113]. Although multiple options

may be available, the agents are still able to achieve agreement in a decentralized

manner and move towards a common destination (e.g., [7, 12, 137]).

In previous chapters, we described several useful diffusion strategies [34, 37,

95, 124] that allow agents to adapt and learn through a process of in-network

collaboration [41, 42, 87, 97, 164]. Diffusion networks consist of a collection of

agents that are able to respond to excitations in real-time. As shown in Chapter

3 and compared with the class of consensus strategies [50,73,74,78,103,144,170],

adaptive diffusion networks have been shown to remain stable regardless of the

network topology, while adaptive consensus networks can become unstable even

when all individual agents are stable [154, 155]. This fact is a serious hindrance

to the study of biological networks where the network topology is in continuous

flux. Diffusion strategies are particularly well-suited to model such networks
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(see Chapter 7 and [29, 127, 150]) because of their robustness to changes in the

network topology. Diffusion strategies have also been shown in Chapter 3 to

lead to improved convergence rate and superior mean-square-error performance

[127, 154, 155]. For these reasons, we focus on the use of diffusion strategies for

decentralized decision-making.

Motivated by the behavior of biological networks, we study in this chapter

distributed decision-making over networks where agents may have distinct ob-

jectives [153]. In distributed processing, agents generally collect data generated

by the same underlying unknown distribution or model and then solve the es-

timation and inference tasks cooperatively. We consider the situation in which

the data observed by the agents may arise from different distributions or models.

Agents do not know beforehand which model accounts for their data and the

objective of the network becomes that of guiding all agents towards a common

goal. In these situations, where agents are subject to data from unknown differ-

ent sources, conventional distributed (consensus and diffusion) strategies would

lead to biased solutions in that the agents will end up converging towards a linear

combination of the underlying models (see (6.17) and (6.18) further ahead). For

example, in the context of fish schools, such outcome would mean that the school

will fail to reach any of the food sources.

The task of encouraging agreement over a network of agents with varied back-

grounds (i.e., models) is more challenging than earlier works on inference under

uniform data models. The difficulty is due to various reasons. First, as we are

going to show in Lemma 6.2, traditional distributed strategies will converge to

a linear combination of the underlying models, and therefore, the estimates will

be biased. We then need to compensate for the bias in the adaptive learning

process in real-time. Second, each agent now needs to distinguish between which
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model each of its neighbors is collecting data from (this is called the observed

model) and which model the network is evolving to (this is called the desired

model). In other words, in addition to the learning and adaptation process, the

agents should be equipped with a classification scheme to distinguish between

the observed and desired models. Finally, in order for the network to converge

to a common objective, the agents should be endowed with a decision-making

process that would enable them to reach agreement on the desired model. More-

over, the classification scheme and the decision-making process will need to be

implemented in a fully distributed manner and in real-time.

We analyze the performance of the proposed algorithms and examine the

probability of errors in the classification scheme. We show that with high prob-

ability, the agents are able to correctly identify the observed models of their

neighbors in the proposed solution. We also examine the rate of convergence of

the modified diffusion strategy and propose rules to improve convergence. This

is especially important in biological networks. For example, in a fish school, the

convergence rate determines how quickly the fish arrive at a food source when

they have disagreement on food locations. In addition, when there is a preda-

tor that is observable to a small fraction of the fish school, the convergence rate

determines how quickly the fish react to danger and reverse direction.

6.1 Diffusion Strategy

In a manner that is different from the data model (2.3) used in Section 2.1, the

data {dk(i),uk,i} collected at agent k are now assumed to originate from one of

two unknown column vectors {w◦
0, w

◦
1} of size M (see Fig. 6.1). Agent k does not

know beforehand which model is responsible for its data. We denote the generic

model by z◦k ∈ {w◦
0, w

◦
1}. The data at agent k are related to its observed model
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Figure 6.1: A connected network where data collected by the agents are influenced

by one of two models. The weight al,k scales the data transmitted from agent l

to agent k over the edge linking them.

z◦k via a linear regression model of the form:

dk(i) = uk,iz
◦
k + vk(i) (6.1)

Although the agents are subjected to data arising from different models, the

objective of the network is still to have all agents converge to an estimate for

one of the models. For example, if the models happen to represent the location

of food sources [150], then this agreement will make all agents move towards

one particular food source in lieu of the other sources. More specifically, let wk,i

denote the estimate for z◦k at agent k at time i. The network would like to achieve

wk,i → w◦
q for q = 0 or q = 1 and for all k as i→ ∞ (6.2)

where convergence is in some desirable sense (such as the mean-square-error

sense).

When the data arriving at the agents could have risen from one model or

another, as is the case under study, the ATC diffusion strategy (2.29) will not be
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able to achieve agreement among the agents and the resulting weight estimates

will tend towards a biased value. We first explain how this degradation arises and

subsequently explain how it can be remedied. In order to achieve agreement, it

is reasonable to assume that the network is strongly connected (see Assumption

2.2). From the Perron-Frobenius Theorem [17, 64, 112, 124], the matrix A will

have a unique eigenvalue at one while all other eigenvalues will be strictly less

than one in magnitude. Moreover, if we let c denote the right-eigenvector of A

that is associated with the eigenvalue at one and normalize the entries of c to

add up to one, i.e.,

Ac = c and 1
T
Nc = 1 (6.3)

then all individual entries of c lie within (0, 1), i.e.,

0 < ck < 1 and c = col{ck} (6.4)

6.1.1 Biased Estimators

Let us assume for the time being that the agents in the network have agreed on

converging towards one of the models (but they do not know beforehand which

model it will be). We denote the desired model generically by w◦
q . In Section

6.3, we explain how this agreement process can be attained. Here we explain

that even when agreement is present, the diffusion strategy (2.29) leads to biased

estimates unless it is modified in a proper way. To see this, we introduce the

following error vectors for any agent k:

w̃k,i , w◦
q −wk,i and z̃◦k , w◦

q − z◦k. (6.5)

Observe that these quantities measure the error relative to the desired objective,

w◦
q . Moreover, this desired model may or may not be the model that is influencing

the data received by agent k. Then, using model (6.1), we obtain that the update
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vector in (2.29) becomes

hk,i , u
T
k,i[dk(i)− uk,iwk,i−1]

= uT
k,i[uk,iz

◦
k + vk(i)− uk,iwk,i−1]

= uT
k,iuk,i(z

◦
k − w◦

q + w◦
q −wk,i−1) + u

T
k,ivk(i)

= uT
k,iuk,iw̃k,i−1 − uT

k,iuk,iz̃
◦
k + u

T
k,ivk(i) (6.6)

We collect all error vectors across the network into block vectors:

w̃i , col {w̃1,i, w̃2,i, · · · , w̃N,i} (6.7)

z̃◦ , col {z̃◦1 , z̃◦2 , · · · , z̃◦N} (6.8)

Then, starting from (2.29) and using relation (6.6), we can verify that the global

error vector w̃i of the network evolves over time according to the recursion:

w̃i = AT (INM −MRi)w̃i−1 +ATMRiz̃
◦ −ATMsi (6.9)

where Ri and si are defined in (2.41) and (2.42), respectively. We can rewrite

recursion (6.9) in the compact form:

w̃i = Bi · w̃i−1 + yi (6.10)

where the matrix Bi and the vector yi are defined in Table 6.1.

Since the matrix Bi is independent of w̃i−1 and the vector si in yi has zero

mean, taking expectation of both sides of (6.9), we find that the mean of w̃i

evolves over time according to the recursion:

Ew̃i = B · Ew̃i−1 + y (6.11)

where B , EBi and y , Eyi are defined in Table 6.1 with R defined in (2.48).

The following result provides conditions to ensure the convergence of (6.11).
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Table 6.1: The network weight error vector evolves according to the recursion

w̃i = Bi · w̃i−1+yi, where the variables {Bi,yi} and their respective means are

listed below for the conventional and modified diffusion strategies.

Diffusion (2.29) Modified diffusion (6.23)-(6.24)

Bi AT (INM −MRi) AT
1 (INM −MRi) +AT

2

B , EBi AT (INM −MR) AT
1 (INM −MR) +AT

2

yi ATMRiz̃
◦ −ATMsi AT

1 MRiz̃
◦ −AT

1 Msi

y , Eyi ATMRz̃◦ AT
1 MRz̃◦

Lemma 6.1. Recursion (6.11) for Ew̃i converges to zero if, and only if,

ρ(B) < 1 and y = 0 (6.12)

where ρ(·) denotes the spectral radius of its argument.

Proof. If (6.12) holds, then it is straightforward to verify that mean convergence

holds. Conversely, it is clear that Ew̃i will not converge if ρ(B) ≥ 1. Thus assume

ρ(B) < 1. Then Ew̃i converges to the steady-state value

lim
i→∞

Ew̃i = (INM − B)−1 · y (6.13)

and it follows that y must be the zero vector to enforce convergence in the mean.

Therefore, to guarantee (unbiased) mean convergence, the agents need to

select the step-sizes {µk} and the combination matrix A so that condition (6.12)

is satisfied. It was verified in Section 3.1 that a sufficient condition to ensure
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ρ(B) < 1 is to select

0 < µk <
2

ρ(Ru,k)
for all k. (6.14)

This conclusion is independent of A. However, for the second condition in (6.12),

we note that in general, the vector y = ATMRz̃◦ cannot be zero no matter

how the agents select the combination matrix A. When this happens, the weight

estimate will be biased in the mean. Let us consider an example with three agents

in Fig. 6.2 where agent 1 observes data from model w◦
0, while agents 2 and 3

observe data from another model w◦
1. The combination matrix in this case is

given by

AT =








1− a a 0

b 1− b− c c

0 d 1− d








(6.15)

with the parameters {a, b, c, d} lying in the interval [0, 1] and b + c ≤ 1. For

simplicity, we assume that the step-sizes and regression covariance matrices are

the same, i.e., µk = µ and Ru,k = Ru for all k. If the desired model of the network

is w◦
q = w◦

0, then the vector y becomes

y = µ ·








a

1− b

1







⊗ Ru(w

◦
0 − w◦

1) (6.16)

We observe that no matter how we select the parameters {a, b, c, d}, the third

entry of y can never become zero for different models. More generally, using

results on the limiting behavior of diffusion estimation errors {w̃i} from [38], we

can characterize the limiting point of the current distributed strategy as follows.

Lemma 6.2. For the diffusion strategy from (2.29) and for sufficiently small

step-sizes, all weight estimates {wk,i} converge to a limit point w◦ in the mean-

square sense, i.e., E‖w◦−wk,i‖2 is bounded and of the order of µmax = max{µk},
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Figure 6.2: A three-agent network. Agent 1 observes data from w◦
0 while agents

2 and 3 observe data from w◦
1.

where w◦ is given by

w◦ =

(
N∑

k=1

ckµkRu,k

)−1( N∑

k=1

ckµkRu,kz
◦
k

)

(6.17)

where the vector c was defined in (6.3)-(6.4). Moreover, when the agents are

homogeneous so that µk = µ and Ru,k = Ru for all k, w◦ is given by

w◦ =
N∑

k=1

ckz
◦
k (6.18)

Proof. The main theorem in [38] asserts that, for sufficiently small step-sizes, the

limit point w◦ of the network is the unique solution of the following equation:

N∑

k=1

ckµk∇wJk(w
◦) = 0 (6.19)

where ∇wJk(w
◦) is defined as the expectation of the update vector hk,i from (6.6)

evaluated at wk,i−1 = w◦, i.e.,

∇wJk(w) = Ru,k(z
◦
k − w◦) (6.20)

Substituting (6.20) into (6.19), we have that

N∑

k=1

ckµkRu,k(z
◦
k − w◦) = 0 (6.21)
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which leads to (6.17). When the agents are homogeneous, expression (6.17)

simplifies to (6.18).

The above result shows that when the agents collect data from different mod-

els, the estimates using the diffusion strategy (2.29) converge to a linear combi-

nation of these models, as in (6.17) or (6.18). This linear combination is different

from any of the individual models. For example, in the case of (6.18), if the

matrix A happens to be doubly-stochastic (i.e., AT
1N = 1N and A1N = 1N),

then ck = 1/N and expression (6.18) shows that the network in that case will

approach the average model,

w◦ ,
1

N

N∑

k=1

z◦k (6.22)

which is not the intended objective.

6.2 Modified Diffusion Strategy

To deal with the problem of bias, we now show how to modify the diffusion

strategy (2.29). We observe from (6.16) that the vector y cannot be zero because

of agent 3 whose neighbors (agent 2 and itself in Fig. 6.2) observe data arising

from a model that is different from the desired model. In addition, note from

(6.6) that the bias term arises from the gradient direction used in computing the

intermediate estimates in (2.29). These observations suggest that to ensure mean

convergence, an agent should not combine intermediate estimates from neighbors

whose observed model is different from the desired model. For this reason, we

shall replace the intermediate estimates from these neighbors by their previous

estimates {wl,i−1} in the combination step in (2.29). Specifically, we shall adjust
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the diffusion strategy (2.29) in the following manner:

ψk,i = wk,i−1 + µk · uTk,i[dk(i)− uk,iwk,i−1] (6.23)

wk,i =
∑

l∈Nk

(

a
(1)
l,kψl,i + a

(2)
l,kwl,i−1

)

(6.24)

where we are now using two sets of nonnegative entries {a(1)l,k } and {a(2)l,k }. Their
respective combination matrices A1 and A2 must satisfy

A1 + A2 = A (6.25)

with A being the original left-stochastic matrix in (2.25). In other words, starting

from the same combination matrix A used in (2.29), we are going to split its

entries into two sets: some entries will be assigned to the matrix A1 and the

remaining entries will be assigned to the matrix A2. The choice of which entries

of A go into A1 or A2 will depend on which of the neighbors of agent k are

observing data arising from a model that agrees with the desired objective for

agent k (in the procedure to be developed in the sequel, each agent will be

continuously updating two pieces of information related to what the agent thinks

its own model is and to what the agent thinks the network’s desired model is;

these two models could be the same or different). Note that step (6.23) is the same

as the first step in (2.29). However, in the second step (6.24), agents aggregate

the {ψl,i, wl,i−1} from their neighborhood. With such adjustment, we will verify

that by properly selecting {a(1)l,k , a
(2)
l,k }, mean convergence can be guaranteed for

any connected network even in the presence of multiple source models.

6.2.1 Selection of Combination Matrices A1 and A2

To construct the matrices {A1, A2} we associate two vectors with the network, f

and gi. Both vectors are of size N . The vector f is fixed and its kth entry, f(k),
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is set to f(k) = 0 when the observed model for agent k is w◦
0; otherwise, it is set

to f(k) = 1. In other words, the vector f reflects the models that are influencing

the various agents in the network. On the other hand, the vector gi is evolving

with time; its kth entry is set to gi(k) = 0 when the desired model for agent k

is w◦
0; otherwise, it is set equal to gi(k) = 1. The decision by each agent about

what the desired model should be is an evolving decision that changes with time

and that is why we are indexing g with a time subscript. We will be describing

a procedure for updating the vector gi in a distributed manner so that all agents

in the network will ultimately converge to an agreement about which model they

want to converge to. This procedure runs in parallel with the diffusion strategy.

Let us assume for the time being that the agents have achieved agreement on the

desired model, which we are denoting by w◦
q , so that

gi(1) = gi(2) = · · · = gi(N) = q, for all i. (6.26)

Obviously, the vectors {f, gi} still need to be determined. Nevertheless, assuming

they are known, then we shall set the entries of A1 and A2 according to the

following rules:

a
(1)
l,k =







al,k, if l ∈ Nk and f(l) = gi(k)

0, otherwise

(6.27)

a
(2)
l,k =







al,k, if l ∈ Nk and f(l) 6= gi(k)

0, otherwise

(6.28)

That is, agents that observe data arising from the same model that agent k wishes

to converge to will be reinforced and their intermediate estimates {ψl,i} will be

used (and, hence, their combination weights are collected into matrix A1). On

the other hand, agents that observe data arising from a different model than the

objective for agent k will be de-emphasized and their prior estimates {wl,i−1} will
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be used in the combination step (6.24) (their combination weights are collected

into matrix A2).

6.2.2 Mean-Error Analysis

Now, we are ready to examine how the above construction helps remove the bias

in the mean weight-error vector. Using relation (6.6) and the modified diffusion

strategy (6.23)-(6.24), the recursion for the global error vector w̃i is now given

by:

w̃i =
[
AT

1 (INM −MRi) +AT
2

]

︸ ︷︷ ︸

Bi

·w̃i−1 +AT
1MRiz̃

◦ −AT
1Msi

︸ ︷︷ ︸

yi

(6.29)

where A1 and A2 are defined in a manner similar to A in (2.39). Taking the

expectation of both sides of (6.29), we get the same recursion as (6.11) with the

matrix B and the vector y defined in Table 6.1, i.e.,

Ew̃i =
[
AT

1 (INM − µR) +AT
2

]
· Ew̃i−1 + µAT

1Rz̃◦ (6.30)

The following result states that by constructing the combination weights accord-

ing to (6.27)-(6.28), the modified diffusion strategy (6.23)-(6.24) converges in the

mean.

Theorem 6.1. Under Assumption 2.2, the mean recursion in (6.30) converges

to zero if the matrices A1 and A2 are chosen according to (6.27)-(6.28) and the

step-sizes {µk} satisfy condition (6.14) for those agents that observe data arising

from the same model as the desired model w◦
q for the network.

Proof. See Appendix 6.A.

We conclude from the arguments in the proof in Appendix 6.A that the net

effect of the construction (6.27)-(6.28) is the following. Let w◦
q denote the desired
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model that the network wishes to converge to. We denote by Nq the subset

of agents that receive data arising from the same model; these are the agents

labeled {1, 2, . . . , N0} in Appendix 6.A; here, we are designating the set more

generically by Nq. The remaining agents belong to the set N c
q , N \ Nq; these

agents observe data arising from the other model. Agents that belong to the set

Nq run the traditional diffusion strategy (2.29) using the combination matrix A

and their step-sizes; these step-sizes are required to satisfy

µk <
2

ρ(Ru,k)
, for all k ∈ Nq (6.31)

The remaining agents set their step-sizes to zero and run only combination step

of the diffusion strategy (2.29). These agents do not perform the adaptive update

and therefore their estimates satisfy ψk,i = wk,i−1 for all k ∈ N c
q .

6.3 Distributed Decision-Making

Theorem 6.1 establishes that it is possible for strongly connected networks to

converge on average to a common desired model by using (6.23)-(6.24). However,

the analysis so far has been based on the assumption that the agents know what

are the observed models influencing their neighbors (i.e., they know f(l) for

their neighbors); they also need to know how to update their objective in gi(k)

so that the {gi(k)} converge to the same value. This information is needed in

(6.27)-(6.28) to construct the combination weights. In this section, we describe

a distributed decision-making procedure by which the agents are able to achieve

agreement on {gi(k)}. In the next section, we develop a classification scheme to

estimate {f(l)} using available data.

The decision-making procedure is motivated by the process used by animal

groups to reach agreement, and which is known as quorum sensing [23,113,138].
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Figure 6.3: Decision-making process (a) agent k receives the desired models from

its neighbors (b) agent k updates its desired model using (6.33)-(6.34).

The process is illustrated in Fig. 6.3 and described as follows. At time i, every

agent k has its previous desired model gi−1(k). Agent k exchanges gi−1(k) with

its neighbors and constructs the set

N g
k,i−1 = {l | l ∈ Nk, gi−1(l) = gi−1(k)} (6.32)

That is, the set N g
k,i−1 contains the subset of agents that are in the neighborhood

of k and have the same desired model at time i− 1 as agent k. This set changes

over time. Let ng
k(i − 1) denote the number of agents in N g

k,i−1. Since at least

one agent (agent k) belongs to N g
k,i−1, we have that n

g
k(i−1) ≥ 1. Then, one way

for agent k to participate in the quorum sensing process is to update its target

model in gi(k) according to the following rule:

gi(k) =







gi−1(k), with probability qk,i−1

1− gi−1(k), with probability 1− qk,i−1

(6.33)

where the probability measure is computed as:

qk,i−1 =
[ng

k(i− 1)]K

[ng
k(i− 1)]K + [nk − ng

k(i− 1)]K
> 0 (6.34)
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Figure 6.4: Illustration of the probability function qk,i in (6.34) for nk = 20. The

curves correspond to K = 1 and K = 4.

and the exponent K is a positive constant (e.g., K = 4). That is, agent k

determines its desired model in a probabilistic manner, and the probability that

agent k maintains its desired target is proportional to the Kth power of the

number of neighbors having the same desired model. Figure 6.4 illustrates the

sigmoidal shape of the probability function (6.34), which is similar to the form

used by animal groups in their quorum response mechanisms (specifically, animals

tend to follow a particular pattern of behavior when more of their neighbors

switch to this same pattern [23, 113, 138]). We show later in Theorem 6.4 that

choosing larger values for K speeds the rate at which the agents reach agreement

on pursuing the same model. Using the above stochastic formulation, we are able

to establish agreement on the desired model among the agents.

Theorem 6.2. For a connected network starting from an arbitrary initial selec-

tion for the desired models vector gi at time i = −1, and applying the update rule

(6.33), then all agents in the network will eventually achieve agreement on the
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desired model, i.e.,

gi(1) = gi(2) = . . . = gi(N), as i→ ∞ (6.35)

Proof. See Appendix 6.B.

Although rule (6.32)-(6.34) ensures agreement on the decision vector, this

construction is still not a distributed solution for one subtle but critical reason:

agents need to agree on which index (0 or 1) to use to refer to either model

{w◦
0, w

◦
1}. This task would in principle require the agents to share some global

information. We circumvent this difficulty and develop a distributed solution to

the problem as follows. We associate with each agent k two local vectors {fk, gk,i};
these vectors will play the role of local estimates for the network vectors {f, gi}.
Each agent will then assign the index value of one to its observed model, i.e., each

agent k sets fk(k) = 1. Then, for every l ∈ Nk, the entries fk(l) and gk,i−1(l)

are set to one if they represent the same model as the one observed by agent k;

otherwise, fk(l) and gk,i−1(l) are set to zero. The question still remains about how

agent k knows whether its neighbors have the same observed and desired models

as its observed model. To begin with, agent k knows its desired model value

gk,i−1(k) from time i − 1. To assign the remaining neighborhood entries in the

vector gk,i−1, the agents in the neighborhood of agent k first exchange their desired

model indices with agent k, that is, they send the information {gl,i−1(l), l ∈ Nk}
to agent k. However, since gl,i−1(l) from agent l is set relative to its fl(l), agent

k needs to set gk,i−1(l) based on the value of fk(l). Specifically, agent k will set

gk,i−1(l) according to the rule:

gk,i−1(l) =







gl,i−1(l), if fk(l) = fk(k)

1− gl,i−1(l), otherwise

(6.36)
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That is, if agent l has the same observed model as agent k, then agent k simply

assigns the value of gl,i−1(l) to gk,i−1(l).

In this way, computations that depend on the network vectors {f, gi} will be

replaced by computations using the local vectors {fk, gk,i}. Note that since the

operation of the network depends on the vectors {f, gi} through (6.27)-(6.28) and

(6.32)-(6.33), these rules are now replaced by:

N g
k,i−1 = {l | l ∈ Nk, gk,i−1(l) = gk,i−1(k)} (6.37)

gk,i(k) =







gk,i−1(k), with probability qk,i−1

1− gk,i−1(k), with probability 1− qk,i−1

(6.38)

a
(1)
l,k =







al,k, if l ∈ Nk and fk(l) = gk,i(k)

0, otherwise

(6.39)

a
(2)
l,k =







al,k, if l ∈ Nk and fk(l) 6= gk,i(k)

0, otherwise

(6.40)

In the following statement, we verify that using the network vectors {f, gi} is

equivalent to using the local vectors {fk, gk,i}. From (6.37)-(6.40), it suffices to

verify the following result.

Lemma 6.3. It holds that

f(l)⊕ gi(k) = fk(l)⊕ gk,i(k) (6.41)

gi(l)⊕ gi(k) = gk,i(l)⊕ gk,i(k) (6.42)

where the symbol ⊕ denotes the exclusive-OR operation.

Proof. Since the values of {fk(l), gl,i(l), gk,i(l)} are set relative to fk(k), it holds
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that

f(k)⊕ f(l) = fk(k)⊕ fk(l) (6.43)

f(k)⊕ gi(k) = fk(k)⊕ gk,i(k) (6.44)

f(k)⊕ gi(l) = fk(k)⊕ gk,i(l) (6.45)

Then relations (6.41) and (6.42) hold in view of the fact:

(a⊕ b)⊕ (a⊕ c) = b⊕ c (6.46)

for any a, b, and c ∈ {0, 1}.

To implement (6.36), (6.39), and (6.40), agent k still needs to set the entries

{fk(l)} that correspond to its neighbors, i.e., it needs to differentiate between

their underlying models and whether their data arise from the same model as

agent k or not. We propose next a procedure to determine fk at agent k using

the available estimates {wl,i−1, ψl,i} for l ∈ Nk.

6.4 Model Classification Scheme

To determine the vector fk, we introduce the belief vector bk,i, whose lth entry,

bk,i(l), will be a measure of the belief by agent k that agent l has the same observed

model. The value of bk,i(l) lies in the range [0, 1]. The higher the value of bk,i(l)

is, the more confidence agent k has that agent l is subject to the same model as

its own model. In the proposed construction, the vector bk,i will be changing over

time according to the estimates {wl,i−1, ψl,i}. Agent k will be adjusting bk,i(l)

according to the rule:

bk,i(l) =







αbk,i−1(l) + (1− α), to increase belief

αbk,i−1(l), to decrease belief

(6.47)
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for some positive scalar α ∈ (0, 1); for example, α = 0.95. That is, agent k

increases the belief by linearly combining the belief from the previous time instant

with one. Agent k then estimates fk(l) according to the rule:

f̂k,i(l) =







1, if bk,i(l) ≥ 0.5

0, otherwise

(6.48)

where f̂k,i(l) denotes the estimate of fk(l) at time i. Note that the value of

f̂k,i(l) may change over time due to the variations of bk,i(l). Since all agents have

similar processing abilities, we introduce the assumption of homogeneous agents

(see Assumption 3.1). We now develop a procedure that allows us to estimate

the vectors {fk} by focusing on the behavior of the agents in the far-field regime

when their weight estimates are far from their observed models. The far-field

regime generally occurs during the initial stages of adaptation and, therefore,

the vectors {fk} can be determined quickly during these initial iterations. We

shall establish later in Eq. (6.97) in Theorem 6.3 that the agents are able to

classify correctly the observed models of their neighbors with high probability

approaching the value one by following the construction explained below.

To begin with, in order to determine whether the belief should be increased

or decreased to implement (6.47), we refer to the update vector from (6.6), which

can be written as follows for agent l:

hl,i = µ−1(ψl,i −wl,i−1)

= uT
l,iul,i(z

◦
l −wl,i−1) + u

T
l,ivl(i) (6.49)

Taking expectation of both sides conditioned on wl,i−1 = wl,i−1, we have that

h̄l,i , E[hl,i | wl,i−1 = wl,i−1] = Ru(z
◦
l − wl,i−1) (6.50)

That is, the expected update direction given the previous estimate, wl,i−1, is a

scaled vector pointing from wl,i−1 towards z◦l with scaling matrix Ru (see Fig.
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6.5). Note that since Ru is positive-definite, then the term h̄l,i lies in the same

half plane of the vector z◦l − wl,i−1. Therefore, the update vector provides useful

information about the observed model, z◦l , at agent l. In addition, this term

tells us how close the estimate at agent l is to its observed model. When the

magnitude of h̄l,i is large, or the estimate at agent l is far from z◦l , then we say

that agent l is in a far-field regime (it is far from its observed model). On the

other hand, when the magnitude of h̄l,i is small, then the estimate wl,i−1 is close

to z◦l and we say that the agent is operating in a near-field regime (close to its

observed model). The vector h̄l,i can be estimated by the first-order recursion:

ĥl,i = (1− ν)ĥl,i−1 + νµ−1(ψl,i − wl,i−1) (6.51)

where we are denoting the estimate for h̄l,i by ĥl,i and ν is a positive step-size

much smaller than one. Note that since the value of h̄l,i varies with wl,i−1, which

is updated using the step-size µ, then, the value of ν should be set large enough

compared to µ (i.e., ν ≫ µ) so that recursion (6.51) can track variations in

h̄l,i over time. Note that since agents exchange {ψl,i, wl,i−1} in the combination

step (6.24), agent k can compute ĥl,i using (6.51) on its own if agent l is in its

neighborhood. In the following, we describe how agent k updates the belief bk,i(l)

for l ∈ Nk.

During the initial stages adaptation, the agents k and l are away from their

respective observed models and both agents are in the far-field. This state is

characterized by the conditions ‖ĥk,i‖ > η and ‖ĥl,i‖ > η for some threshold η.

If both agents have the same observed model, then the estimates ĥk,i and ĥl,i are

expected to have similar direction towards the observed model (see Fig. 6.6(a)).

Agent k will increase the belief value bk,i(l) using (6.47) if

ĥTk,iĥl,i > 0 (6.52)
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Figure 6.5: Illustration of the expected update vector h̄l,i in (6.50).

Otherwise, agent k will decrease the belief bk,i(l). That is, when both agents

are in the far-field, then agent k increases its belief that agent l shares the same

observed model when the vectors ĥk,i and ĥl,i lie in the same quadrant. Note

that, as shown in Fig. 6.6 (b), it is possible for agent k to increase bk,i(l) even

when agents k and l have distinct models. This is because it is difficult to

differentiate between the models during the initial stages of adaptation. This

situation is handled by the evolving network dynamics as follows. If agent k

considers that the data from agent l originate from the same model, then agent

k will use the intermediate estimate ψl,i from agent l in (6.24). Eventually, from

Lemma 6.2, the estimates at these agents get close to a linear combination of

the underlying models, which would then enable agent k to distinguish between

the two models and to decrease the value of bk,i(l). Therefore, the belief bk,i(l) is

updated according to the following rule:

bk,i(l) =







αbk,i−1(l) + (1− α), if E1

αbk,i−1(l), if Ec
1

(6.53)
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Figure 6.6: Illustration of the vectors ĥk,i and ĥl,i when both agents are in far-field

and have (a) the same observed model or (b) different observed models.

where E1 and Ec
1 are two events of the form:

E1 : ‖ĥk,i‖ > η, ‖ĥl,i‖ > η, and ĥTk,iĥl,i > 0 (6.54)

Ec
1 : ‖ĥk,i‖ > η, ‖ĥl,i‖ > η, and ĥTk,iĥl,i ≤ 0 (6.55)

Note that agent k updates the belief bk,i(l) only when both agents k and l are in

the far-field.

6.5 Diffusion Strategy with Decision-making

Combining the modified diffusion strategy (6.23)-(6.24) and (6.39)-(6.40) with

the decision-making process (6.34) and (6.37)-(6.38) and the classification scheme

(6.48) and (6.53), we arrive at the listing in Algorithm. It is seen from the algo-

rithm that the adaptation and combination steps of diffusion, which correspond

to steps 1) and 8), are now separated by several steps. The purpose of these

intermediate steps is to select the combination weights properly to carry out the
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aggregation required by step 8). To implement the algorithm, agents need to

exchange the quantities {wk,i−1, ψk,i, gk,i−1(k)} with their neighbors. Note that if

the agents can afford to extra information exchange, instead of every agent con-

nected to agent l computing the term ĥl,i in step 2), this term can be computed

locally by agent l and shared with its neighbors.

Note that the combination weights are now time-varying because the agents

are also updating the estimates {f̂k,i(l), gk,i} in steps 4) and 6). These updates

run in parallel with the diffusion strategy, and their presence makes the analysis

of the behavior of the algorithm more challenging due to the dependency among

the steps. However, by examining the various steps closely, some useful facts

stand out and help us address these challenges reasonably well. Specifically, it is

observed that the convergence of the algorithm occurs in three phases as follows:

1. Convergence of the classification scheme: The first phase of convergence

happens during the initial stages of adaptation. It is generally assumed that

in this stage, all weight estimates are away from their respective models and

the agents are operating in the far-field regime. Then, the agents use steps

2)-5) to determine the observed models {f̂k,i(l)} of their neighbors. We

establish later in Eq. (6.97) in Theorem 6.3 that this construction is able

to identify the observed models correctly with probability approaching the

value one. In other words, the classification scheme is able to converge well

and fast during the initial stages of adaptation.

2. Convergence of the decision-making process: The second phase of conver-

gence happens right after the convergence of the classification scheme, once

the {f̂k,i(l)} have converged. Because the agents now have correct infor-

mation about their neighbor’s observed models, they use steps 5)-6) to
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Algorithm 6.1 Diffusion strategy with decision-making

For each agent k, initialize wk,−1 = 0, ĥk,−1 = 0, bk,−1(l) = 0.5, and gk,−1(k) = 1.

for i ≥ 0 and k = 1 to N do

1) Perform an adaptation step using the local data {dk(i), uk,i}:

ψk,i = wk,i−1 + µuTk,i[dk(i)− uk,iwk,i−1]

2) Update the average update vectors {ĥl,i} for l ∈ Nk:

ĥl,i = (1− ν)ĥl,i−1 + νµ−1(ψl,i − wl,i−1)

3) Update the beliefs {bk,i(l)} for l ∈ Nk \ {k}:

bk,i(l) =







αbk,i−1(l) + (1− α), if E1

αbk,i−1(l), if Ec
1

where E1 and Ec
1 are defined in (6.54)-(6.55).

4) Identify the observed models {f̂k,i(l)} for l ∈ Nk \ {k}:

f̂k,i(l) =







1, if bk,i(l) ≥ 0.5

0, otherwise

5) Collect the desired models {gk,i−1(l)} for l ∈ Nk \ {k} and construct the set N g
k,i−1 as

follows:

gk,i−1(l) =







gl,i−1(l), if f̂k,i(l) = 1

1− gl,i−1(l), otherwise

N g
k,i−1 = {l | l ∈ Nk, gk,i−1(l) = gk,i−1(k)}

6) Update the desired model gk,i(k):

gk,i(k) =







gk,i−1(k), w.p. qk,i−1

1− gk,i−1(k), w.p. 1− qk,i−1

where the probability qk,i−1 is defined in (6.34).
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Algorithm 6.1 Diffusion strategy with decision-making (continued)

7) Adjust the combination weights {a(1)l,k } and {a(2)l,k }:

a
(1)
l,k,i =







al,k, if l ∈ Nk and f̂k,i(l) = gk,i(k)

0, otherwise

a
(2)
l,k,i =







al,k, if l ∈ Nk and f̂k,i(l) 6= gk,i(k)

0, otherwise

8) Perform the combination step:

wk,i =
∑

l∈Nk

(

a
(1)
l,k,iψl,i + a

(2)
l,k,iwl,i−1

)

end for

determine their own desired models {gk,i(k)}. The convergence of this step

is ensured by Eq. (6.35) in Theorem 6.2 and also by expression (6.114) in

Theorem 6.4, which establishes that the convergence of this stage can be

further improved by using larger values of the parameter K in the sigmoidal

function of Figure 6.4.

3. Convergence of the diffusion strategy: After the classification and decision-

making processes converge, the estimates {f̂k,i(l), gk,i(l)} do not change

and the combination weights in step 7) remain fixed. Then, the diffusion

strategy becomes unbiased and converges in the mean according to Theorem

6.1. Moreover, when the estimates are close to steady-state, those agents

whose observed models are the same as the desired model enter the near-

field regime and they stop updating their belief vectors (this will be justified

by (6.93)).

177



6.6 Performance of Classification Procedure

It is clear that the success of the decision-making process depends on the reliabil-

ity of the classification scheme (6.48). Therefore, it is important to examine the

performance of model classification. In this section, we evaluate the probability

of error for the classification step. There are two types of error. Specifically,

when agents k and l are subject to the same observed model (i.e., z◦k = z◦l and

fk(l) = 1), then one probability of error is defined as:

Pe,1 = Pr
(

f̂ k,i(l) = 0 | fk(l) = 1
)

= Pr (bk,i(l) < 0.5 | z◦k = z◦l ) (6.56)

where we used rule (6.48); note that we are denoting the variables f̂ k,i(l) and

bk,i(l) in boldface to highlight the fact that they are now treated as random

variables for the evaluation of the error probabilities. The second type of proba-

bility of error occurs when both agents have different observed models (i.e., when

z◦k 6= z◦l and fk(l) = 0) and refers to the case:

Pe,0 = Pr
(

f̂ k,i(l) = 1 | fk(l) = 0
)

= Pr (bk,i(l) > 0.5 | z◦k 6= z◦l ) (6.57)

To evaluate the error probabilities in (6.56)-(6.57), we need to examine the prob-

ability distribution of the belief variable bk,i. Note from (6.53) that the belief

variable (6.53) can be expressed as:

bk,i(l) = αbk,i−1(l) + (1− α)ξk,i(l) (6.58)

where ξk,i(l) is a Bernoulli random variable with

ξk,i(l) =







1, with probability p

0, with probability 1− p

(6.59)
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The value of p depends on whether the agents have the same observed models or

not. First, when both agents have the same observed model (i.e., when z◦k = z◦l ),

the belief bk,i(l) is supposed to be increased. The probability of detection, Pd,

characterizes the probability that the belief bk,i(l) is increased when z◦k = z◦l , i.e.,

Pd = Pr(ξk,i(l) = 1 | z◦k = z◦l ) (6.60)

In this case, the probability p will be replaced by Pd. On the other hand, when the

observed models for the agents are distinct (i.e., when z◦k = z◦l ), the probability

of false alarm, Pf , characterizes the probability that the belief bk,i(l) is increased

when the belief is supposed to be decreased, i.e.,

Pf = Pr(ξk,i(l) = 1 | z◦k 6= z◦l ) (6.61)

and we replace the probability p by Pf . We will show later (see Lemma 6.5)

how to evaluate the two probabilities Pd and Pf . In the sequel we denote them

generically by p.

Now, expanding (6.58), we obtain

bk,i(l) = αi+1bk,−1(l) + (1− α)
i∑

j=0

αjξk,i−j(l) (6.62)

We assume that the {ξk,i(l)} are independent and identical distributed (i.i.d.)

random variables with distribution (6.59). As i is large enough, the distribution of

bk,i(l) can be approximated by the distribution of the following random variable,

which takes the form of a random geometric series:

ζk(l) , (1− α)
∞∑

j=0

αjξk,j(l) (6.63)

where we replaced the index i − j in (6.62) by j because the {ξk,i(l)} are i.i.d.

There have been several useful works on the distribution function of random
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geometric series [21, 53, 132]. However, it is generally untractable to express

the distribution function in close form. We instead resort to the following two

inequalities to establish bounds for the error probabilities (6.56)-(6.57). First, for

any two generic events E1 and E2, if E1 implies E2, then the probability of event

E1 is less than the probability of event E2 [110], i.e.,

Pr(E1) ≤ Pr(E2) if E1 ⊆ E2. (6.64)

The second inequality is the Markov inequality [110], i.e., for any nonnegative

random variable x and positive scalar δ, it holds that

Pr(x ≥ δ) = Pr(x2 ≥ δ2) ≤ Ex2

δ2
(6.65)

Note that to apply the Markov inequality (6.65), we need the second-order mo-

ment of ζk(l) in (6.63). However, since the {ξk,j(l)} are not zero mean, it is

difficult to evaluate the moment. To circumvent this difficulty, let us introduce

the change of variable:

ξ◦k,j(l) ,
ξk,j(l)− p
√

p(1− p)
(6.66)

It can be verified that the {ξ◦k,j(l)} are i.i.d. Bernoulli random variables with

zero mean and unit variance. Then, we can write

ξk,j(l) = p+
√

p(1− p)ξ◦k,j(l) (6.67)

so that

ζk(l) = (1− α)
∞∑

j=0

αj[p+
√

p(1− p)εk,j(l)]

= p+
√

p(1− p)ζ◦k(l) (6.68)

where

ζ◦k(l) , (1− α)

∞∑

j=0

αjξ◦k,j(l) (6.69)
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Since the {ξ◦k,j(l)} are i.i.d. Bernoulli random variables with zero mean and unit

variance, the mean and variance of ζ◦k are given by

Eζ◦k(l) = (1− α)

∞∑

j=0

αj
Eξ◦k,j(l) = 0 (6.70)

E(ζ◦k(l))
2 = (1− α)2

∞∑

j=0

α2j
E(ξ◦k,j(l))

2 =
1− α

1 + α
(6.71)

Then, from (6.56) and (6.68) and replacing the probability p by Pd, we obtain

that

Pe,1 ≈ Pr(ζk(l) < 0.5 | z◦k = z◦l )

= Pr

(

ζ◦k(l) <
−(Pd − 0.5)
√

Pd(1− Pd)
| z◦k = z◦l

)

≤ Pr

(

|ζ◦k(l)| >
|Pd − 0.5|
√

Pd(1− Pd)
| z◦k = z◦l

)

≤ 1− α

1 + α
· Pd(1− Pd)

(Pd − 0.5)2
(6.72)

where we used (6.64) and the Markov inequality (6.65) in the last two inequalities.

Note that in (6.72), we assume the value of Pd is greater than 0.5. Indeed, we

will show in Lemma 6.5 that the value of Pd is close to one. Similarly, replacing

the probability p by Pf and assuming that Pf < 0.5, we have from (6.57) and

(6.68) that

Pe,0 ≈ Pr(ζk(l) > 0.5 | z◦k 6= z◦l )

≤ Pr

(

|ζ◦k(l)| >
|0.5− Pf |
√

Pf(1− Pf)
| z◦k 6= z◦l

)

≤ 1− α

1 + α
· Pf(1− Pf)

(0.5− Pf)2
(6.73)

To evaluate the upper bounds in (6.72)-(6.73), we need the probabilities of detec-

tion and false alarm in (6.60)-(6.61). Since the update of bk,i(l) in (6.53) depends
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on {ĥk,i, ĥl,i}, we need to rely on the statistical properties of these latter quan-

tities. In the following, we first examine the statistics of ĥk,i constructed via

(6.51). We then evaluate the probability of detection and the probability of false

alarm defined by (6.60)-(6.61), which will be subsequently used in determining

the upper bounds for the probabilities of error (6.72)-(6.73).

6.6.1 Statistics of Update Direction

We first summarize the assumptions that are required in modeling ĥk,i. As we

mentioned following (6.51), since the step-sizes {µ, ν} satisfy µ ≪ ν, the variation

of wk,i−1 can be assumed to be much slower than the variation of ĥk,i. Therefore,

the estimate wk,i−1 can be assumed to remain approximately constant during

repeated updates of ĥk,i. For this reason, the analysis in this section will be

conditioned onwk,i−1 = wk,i−1, as we did in (6.50), and we introduce the following

assumption.

Assumption 6.1 (Small step-size). The step-sizes {µ, ν} are sufficiently small,

i.e.,

0 < µ≪ ν ≪ 1 (6.74)

so that

wk,i ≈ wk,i−1 for all k (6.75)

In addition, since the update vector from (6.50) depends on the covariance matrix

Ru, we assume Ru is well-conditioned so that the following is justified.

Assumption 6.2 (Regression model). The regression covariance matrix Ru is

well-conditioned such that it holds that

If ‖z◦k − wk,i−1‖ ≫ 1, then ‖h̄k,i‖ ≫ η (6.76)

If ‖z◦k − wk,i−1‖ ≪ 1, then ‖h̄k,i‖ ≪ η (6.77)
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Moreover, the fourth-order moment of the regression data {uk,i} is assumed to be

bounded such that

ντ ≪ 1 (6.78)

where the scalar τ is a bound for

E‖uT
k,iuk,i(z

◦
k − wk,i−1)− h̄k,i‖2
‖h̄k,i‖2

≤ τ (6.79)

and its value measures the randomness in variables involving fourth-order prod-

ucts of entries of uk,i.

Combining conditions (6.74) and (6.78), we obtain the following constraint on

the step-sizes {µ, ν}:
0 ≪ µ ≪ ν ≪ min{1, 1/τ} (6.80)

To explain more clearly what conditions (6.76)-(6.77) entail, we obtain from (6.50)

that ‖h̄k,i‖2 can be written as the weighted square Euclidean norm:

‖h̄k,i‖2 = ‖z◦k − wk,i−1‖2R2
u

(6.81)

We apply the Rayleigh-Ritz characterization of eigenvalues [64] to conclude that

λmin(Ru) · ‖z◦k − wk,i−1‖ ≤ ‖h̄k,i‖ ≤ λmax(Ru) · ‖z◦k − wk,i−1‖ (6.82)

where λmin(Ru) and λmax(Ru) denote the minimum and maximum eigenvalues of

Ru. Then, conditions (6.76)-(6.77) indicate that whenever agent k is operating

in the far-field regime, i.e., whenever ‖z◦k − wk,i−1‖ ≫ 1, then we would like to

have

λmin(Ru) · ‖z◦k − wk,i−1‖ ≫ η (6.83)

Likewise, whenever agent k is operating in the near-field regime, i.e., whenever

‖z◦k − wk,i−1‖ ≪ 1, then we would like to have

λmax(Ru) · ‖z◦k − wk,i−1‖ ≪ η (6.84)
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Therefore, the scalars λmin(Ru)/η and λmax(Ru)/η cannot be too small or too

large, i.e., the matrix Ru needs to be well-conditioned.

We are now ready to model the average update vector ĥk,i. From (6.49) and

(6.51), we have that

ĥk,i = (1− ν)ĥk,i−1 + νuT
k,iuk,i(z

◦
k − wk,i−1) + νuT

k,ivk(i) (6.85)

According to Assumption 6.1, the estimate wk,i−1 remains approximately constant

over a certain period of time. To model ĥk,i, we first remove the time index in

wk,i−1 and examine the statistics of ĥk,i under the condition wk,i−1 = wk. From

(6.85), the expected value of ĥk,i given wk,i−1 = wk converges to

lim
i→∞

Eĥk,i = Ru(z
◦
k − wk) , h̄k (6.86)

We can also obtain from (6.49) and (6.51) that the limiting second-order moment

of ĥk,i, which is denoted by σ2
ĥ,k

, satisfies:

σ2
ĥ,k

, lim
i→∞

E‖ĥk,i − h̄k‖2

= (1− ν)2σ2
ĥ,k

+ ν2σ2
h,k (6.87)

where

σ2
h,k , E‖hk,i − h̄k‖2

= E‖uT
k,iuk,i(z

◦
k − wk)− h̄k‖2 + σ2

v,kTr(Ru) (6.88)

Note that the cross term on the right-hand side of (6.87) is zero because the terms

ĥk,i−1 − h̄k and hk,i − h̄k are independent and hk,i − h̄k has zero mean. Then,

from (6.87) and Assumption 6.1, the matrix Rĥ,k is given by

Rĥ,k =
ν

2− ν
Rh,k ≈

ν

2
Rh,k (6.89)
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Since wk,i−1 remains approximately constant, the average update vector ĥk,i

has mean and covariance matrix close to expressions (6.86) and (6.89) with wk

replaced by wk,i−1. We then arrive at the following approximate model for ĥk,i.

Assumption 6.3 (Model for ĥk,i). The estimate ĥk,i is modeled as:

ĥk,i = h̄k,i + nk,i (6.90)

where nk,i is a random perturbation process with zero mean and

E‖nk,i‖2 ≤
ν[τ‖h̄k,i‖2 + σ2

v,kTr(Ru)]

2
(6.91)

with the scalar τ defined by (6.78).

Note that since the perturbation nk,i is from the randomness of the regressor and

noise processes {uk,i, vk(i)}, then the {nk,i} are independent of each other.

Before we proceed to the probability of detection and the probability of false

alarm (6.60)-(6.61), we note that the update of the belief bk,i(l) happens only

when both agents k and l are in the far-field regime, which is determined by the

magnitude of ĥk,i and ĥk,i being greater than the threshold η. The following

result evaluates the probability that an agent is correctly classified to be in the

far-field or near-field.

Lemma 6.4. Under Assumptions 6.1-6.3, it holds that

Pr(‖ĥk,i‖ > η | ‖z◦k − wk,i−1‖ ≫ 1) ≥ 1− ντ

2
(6.92)

Pr(‖ĥk,i‖ > η | ‖z◦k − wk,i−1‖ ≪ 1) ≤
νσ2

v,kTr(Ru)

2η2
(6.93)

Proof. See Appendix 6.C.

Under Assumptions 6.1 and 6.2, the probability in (6.92) is close to one and

the probability in (6.93) is close to zero. Therefore, during the initial stage of
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adaptation, the magnitude of {‖ĥk,i‖} successfully determines that the agents

are in the far-field state and they update the belief using rule (6.53). When the

estimates approach to steady-state, the agents whose observed models are the

same as the desired model satisfy condition ‖z◦k−wk,i−1‖ ≪ 1 and, therefore, they

stop updating their belief vectors in view of (6.93). On the other hand, when both

agents k and l have observed models that are different from the desired model

(and, therefore, their estimates are away from their observed models), they will

continue to update their beliefs. For this reason, we examine the probabilities of

detection and false alarm in (6.60)-(6.61) and error probabilities in (6.56)-(6.57)

under the following assumption.

Assumption 6.4 (Far-field regime). The estimates {wk,i−1} are far away from

their corresponding observed models so that

‖z◦k − wk,i−1‖ ≫ 1 for all k (6.94)

The proof in Appendix 6.D then establishes the following bounds on Pd and Pf .

Lemma 6.5. Under Assumptions 6.1-6.4, the probabilities of detection and false

alarm defined by (6.60)-(6.61) are bounded by

Pd ≥ 1− 16ντ

π2
(6.95)

Pf ≤ 16ντ

π2
(6.96)

The above result establishes that the probability of detection is close to one and

the probability of false alarm is close to zero in view of ντ ≪ 1. That is, with

high probability, agent k will correctly adjust the value of bk,i(l). We then arrive

at the following bound for error probabilities.
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Theorem 6.3. Under Assumptions 6.1-6.4, the error probabilities {Pe,1, Pe,0} are

upper bounded by

Pu =
1− α

1 + α
· 16ντ
π2

· 1− 16ντ/π2

(1/2− 16ντ/π2)2
= O(ν) (6.97)

Proof. Let the function f(p) be defined as

f(p) =
p(1− p)

(p− 0.5)2
(6.98)

It can be verified that the function f(p) is strictly increasing when p ∈ [0, 0.5)

and strictly decreasing when p ∈ (0.5, 1]. From Lemma 6.5, we conclude that

Pd > 0.5 and Pf < 0.5. Therefore, an upper bound for Pe,1 can be obtained by

replacing Pd in (6.72) by the lower bound in (6.95). Similarly, an upper bound

for Pe,0 can be obtained by replacing Pf in (6.73) by the upper bound in (6.96).

With these replacements, we obtain the upper bound Pu in (6.97).

This result reveals that the error probabilities {Pe,1, Pe,0} are upper bounded by

the order of ν. In addition, the upper bound Pu also depends on the value of

α used to update the belief in (6.53). We observe that the larger the value of

α, the smaller the values of the error probabilities. In simulations, we choose

ν = 0.05 and α = 0.95, which will give the upper bound in (6.97) the value

Pu ≈ 0.008τ < ντ . This implies that the classification scheme (6.48) identifies

the observed models with high probability.

6.7 Rate of Convergence

The rate of convergence characterizes how fast information is transferred over

the network [156]. It also characterizes the adaptation ability of the network.

There are two rates of convergence to consider for adaptive networks running a
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decision-making process of the form described in the earlier sections. First, we

need to analyze the rate at which the agents arrive at agreement on a desired

model (which corresponds to the speed of the decision-making process). Second,

we analyze the rate at which the estimates by the agents converge to the desired

model (which corresponds to the speed of the learning process). For both situ-

ations, we first evaluate the expressions for the convergence rates, as in (6.105)

and (6.119), and then study how to improve the rates.

6.7.1 Convergence Rate of Decision-Making Process

From the proof of Theorem 6.2 (see Appendix 6.B), the decision-making pro-

cess can be modeled as a Markov chain with N + 1 states {χi} corresponding

to the number of agents whose desired vectors are w◦
1. The Markov chain has

two absorbing states {0, N} and its transition probability matrix P is shown in

(6.148). The convergence rate of the decision-making process is then determined

by the rate at which, starting at any arbitrary transient state, the Markov chain

converges to one of the absorbing states. The argument that follows is meant

to show that the rate of convergence of the decision making process improves

with the parameter K used in (6.34); the larger the value of K the faster the

convergence.

To arrive at this conclusion, we first remark that to assess the rate of conver-

gence, we need to compute the jth power of P from (6.148) to find that

P j =








1 0 0

b̄ Qj c̄

0 0 1








(6.99)

where {b̄, c̄} are two N×1 vectors. Let the Markov chain start from any arbitrary
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initial state distribution, y, of the form

yT =
[

0 yTQ 0
]

(6.100)

where yQ is a vector of size N − 1 and its entries add up to one, i.e.,

yTQ1N−1 = 1 (6.101)

We shall select yQ in a manner that enables us to determine how the convergence

rate depends on K. Thus, note that the state distribution after j transitions

becomes

yTP j =
[

yTQb̄ yTQQ
j yTQc̄

]

(6.102)

Therefore, the convergence rate is measured by the rate at which the matrix Qj

converges to zero, which is determined by the spectral radius of Q. Since Q is the

sub-matrix of the transition probability matrix, all entries of Q are nonnegative,

then by the Perron-Frobenius Theorem [64], the vector yQ can be selected to be

the left eigenvector of Q corresponding to the eigenvalue ρ(Q), i.e.,

yTQQ = ρ(Q)yTQ (6.103)

Moreover, from (6.145)-(6.146), the matrix Q is primitive and, therefore, all en-

tries of yQ are positive. Furthermore, since the matrix P is right-stochastic (i.e.,

P1N+1 = 1N+1), from (6.148) it holds that

b+ c +Q1N−1 = 1N−1 (6.104)

Pre-multiplying the vector yQ on both sides of (6.104) and using (6.101) and

(6.103), we obtain that the convergence rate of the decision-making process can

be determined by

ρ(Q) = yTQQ1N−1

= 1− yTQ(b+ c) (6.105)
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We now determine the value of the vector sum b+c. We note from (6.143)-(6.144)

that the transition probability matrix P and its sub-matrix Q are determined by

the probability qk,i−1 from (6.34), so is the spectral radius of Q. We further

note from (6.34) that there is a single parameter K dictating the value of qk,i−1.

In the following, we examine the dependence of the convergence rate ρ(Q) on

the parameter K. It is generally challenging to develop the relation because the

transition probability pn,m needs to be computed in a compounded way where we

need to evaluate the summation of the products of {qk,i−1}. Nevertheless, suppose
that there are χi−1 = n out of N agents with desired model w◦

1, then, on average,

agent k with nk neighbors will have nkn/N neighbors whose desired model is w◦
1

and have nk(1 − n/N) neighbors whose desired model is w◦
0. Then, from rule

(6.33)-(6.34), every agent k chooses w◦
1 as its desired model with probability

qn ,
(nkn/N)K

(nkn/N)K + (nk(N − n)/N)K

=
nK

nK + (N − n)K
(6.106)

Note that the probability in (6.106) is independent of the agent index k and we

denote this probability by qn. Then, the probability in (6.144) can be evaluated

in a way that there are m out of N agents choosing w◦
1 as their desired model

and the remaining N −m agents choosing w◦
0, i.e., the probability in (6.144) is

given by:

Pr

(
N∑

l=1

gi(l) = m | gi−1

)

=

(
N

m

)

qmn (1− qn)
N−m (6.107)

Note that the probability in (6.107) depends on gi−1 only through its sum, which

is equal to n. Therefore, the transition probability pn,m in (6.143) has the same

form as (6.107), i.e.,

pn,m =

(
N

m

)

qmn (1− qn)
N−m (6.108)
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To evaluate the spectral radius of Q from (6.105), we are interested in the value

of pn,0 + pn,N (i.e., the nth entry of b+ c), which is given by:

pn,0 + pn,N =
nNK + (N − n)NK

(nK + (N − n)K)N
(6.109)

The following result establishes a monotonicity property of the sum in (6.109).

Lemma 6.6. Let f(x) be the function of the form

f(x) =
aNx + bNx

(ax + bx)N
(6.110)

for some positive scalars {a, b, N} with N > 1. Then, f(x) is a non-decreasing

function, i.e.,

f ′(x) ≥ 0 (6.111)

with equality if, and only if, a = b.

Proof. Using
dax

dx
= ax ln(a) (6.112)

we obtain that

f ′(x) =
aNxbx

(ax + bx)N+1

[(
b

a

)(N−1)x

− 1

]

ln

(
b

a

)

(6.113)

If a > b, then b/a < 1 and ln(b/a) < 0. Therefore, f ′(x) > 0. Conversely, if

a < b, we still have that f ′(x) > 0. Finally, if a = b, then ln(b/a) = 0 and

f ′(x) = 0.

Since the spectral radius of Q depends on the value of K in (6.33), we will

index the quantities with the parameter K. For example, we denote the spectral

radius of Q by ρ[Q(K)]. The following result relates the convergence rate of the

decision-making process to the parameter K.
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Theorem 6.4. The spectral radius ρ[Q(K)] is a strictly decreasing function of

K for N > 2, i.e.,

ρ[Q(K + 1)] < ρ[Q(K)] (6.114)

Proof. From (6.105), the spectral radius ρ[Q(K)] is given by:

ρ[Q(K)] = 1−
N−1∑

n=1

yQ,n[pn,0(K) + pn,N(K)] (6.115)

where yQ,n is the nth entry of the vector yQ and the sum inside the brackets is

shown in (6.109). From Lemma 6.6, we have that

pn,0(K + 1) + pn,N(K + 1) ≥ pn,0(K) + pn,N(K) (6.116)

with equality if, and only if, n = N/2. Therefore, if N > 2, there exists n ∈
1, 2, · · · , N − 1 such that strict inequality holds in (6.116). Moreover, since the

matrix Q is primitive, the {yQ,n} are positive and we arrive at (6.114).

We therefore conclude that to improve the convergence rate of the decision-

making process, the agents should use large K. When the value of K tends

to infinity, the decision rule (6.33) converges to the majority rule, i.e.,

gi(k) =







gi−1(k), if ng
k(i) > nk/2

1− gi−1(k), if ng
k(i) < nk/2

(6.117)

and gi(k) is set to 0 or 1 with equal probability if ng
k(i) = nk/2. Nevertheless, it

may not be beneficial for the network to seek fast convergence during the decision

making process because the network (e.g., a fish school) may converge to a bad

model (e.g., a food source of poor quality). There exists a trade-off between

exploration and exploitation, as in the case of multi-armed bandit problem [57,

89,172]. Such trade-off can be taken into account by introducing some weighting

scalar βk(i−1) that measures the quality of the desired model of agent k at time
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i − 1 relative to the other model. The higher values of βk(i − 1), the better the

quality of the model and the higher probability that agent k will maintain its

desired model. Therefore, agent k adjusts the probability qk,i−1 from (6.34) to

qk,i−1 =
[βk(i− 1)ng

k(i− 1)]K

[βk(i− 1)ng
k(i− 1)]

K
+ [nk − ng

k(i− 1)]K
(6.118)

6.7.2 Convergence Rate of Learning Process

We showed in Section 6.6 that with high probability, the agents are able to identify

their neighbors’ observed models during the initial stage of adaptation. Then,

by the decision-making process in Section 6.3, the agents achieve agreement on

a desired model. Therefore, in the following, we assume that the agents have

achieved agreement on the desired model, say, w◦
q as in (6.26). We know from the

proof of Theorem 6.1 (see Appendix 6.A) that the evolution of the error recursion

from (6.29) is equivalent to the error recursion of a network with a mixture of

informed and uninformed agents, as studied in Chapter 5. That is, agents whose

observed model is identical to its desired model (f(l) = q) are informed; otherwise

they are uninformed. The convergence rate of the learning process specifies the

rate at which the mean-square error converges to steady-state. In the context

of networks with informed and uninformed agents, the convergence rate serves

as a measure of how fast information is transferred (from informed agents to

uninformed ones) over the networks. Using the results of Chapter 5, we can

deduce that the convergence rate, denoted by r, of the modified diffusion strategy

(6.23)-(6.24) is given by:

r = [ρ(B)]2 (6.119)

where B is defined in Table 6.1 and has the form

B = AT (INM −MeR) (6.120)
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with Me defined in (6.140). The smaller the value of r is, the faster the rate of

convergence is. Note that the value of r depends on the combination matrix A

and on the spatial distribution of the informed agents through the matrix Me.

Under Assumptions 3.1 and 6.1, it can be shown that the convergence rate is

bounded by [157]:

(1− µλmin(Ru))
2 ≤ r < 1 (6.121)

To improve the efficiency of information transfer, it is desirable for the agents to

select their combination weights so that the network has lower value of r. We will

show that by appropriately selecting the combination matrix A in any connected

network, the convergence rate (6.119) can achieve the lower bound provided by

(6.121), that is, the network is able to converge to steady-state at the fastest rate.

Let NI denote the set of informed agents, i.e.,

NI = {l | f(l) = q} (6.122)

and let NI denote the number of informed agents in the network. Without loss

of generality, we assume the first NI agents are informed, i.e., NI = {1, . . . , NI}.
The combination matrix A can be partitioned in the following manner:

A =




AII AIU

AUI AUU



 (6.123)

where the sub-matrices AII and AUU have size NI ×NI and (N−NI)×(N−NI),

respectively. Thus, the matrix AII collects the weights among the informed agents

and AUI collects the weights from uninformed to informed agents; likewise for

{AUU , AIU}. Then under Assumption 3.1, the matrix B from (6.120) can then

be written as:

B =




AT

II ⊗ (IM − µRu) AT
UI ⊗ IM

AT
IU ⊗ (IM − µRu) AT

UU ⊗ IM



 (6.124)
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The following result provides a condition on A so that the convergence rate

achieves its lower bound.

Lemma 6.7. Under Assumptions 3.1 and 6.1, if the sub-matrices {AUI , AUU} of

the combination matrix A in (6.123) satisfy:

AUI = 0 and ρ(AUU) ≤ 1− µλmin(Ru) (6.125)

then the convergence rate r (6.119) of the modified diffusion strategy (6.23)-(6.24)

achieves its lower bound, i.e., r = (1− µλmin(Ru))
2.

Proof. Since AUI = 0, the matrix B from (6.124) becomes lower block triangular,

and its spectral radius is the maximum of ρ(AT
II ⊗ (IM −µRu)) and ρ(A

T
UU ⊗IM ).

Moreover, since AUI = 0 and using (2.25), we conclude that AII becomes left-

stochastic. Hence, ρ(AII) = 1 and it follows that

ρ(AT
II ⊗ (IM − µRu)) = ρ(AT

II) · ρ(IM − µRu)

= 1− µλmin(Ru) (6.126)

where we used Assumption 6.1. Moreover, since ρ(AUU) ≤ 1−µλmin(Ru), we get

ρ(AT
UU ⊗ IM) = ρ(AT

UU ) · ρ(IM) ≤ 1− µλmin(Ru) (6.127)

Then, ρ(B) = 1− µλmin(Ru).

The following result shows that the lower bound of the convergence rate is

achievable for any connected networks.

Theorem 6.5. Under Assumptions 3.1 and 6.1 and for any connected network,

there exists a combination matrix A such that the modified diffusion strategy

(6.23)-(6.24) achieves the fastest convergence rate.
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Figure 6.7: An illustration of a connected network with three informed agents

(left) and one way to achieve the fastest convergence rate (right).

Proof. From Lemma 6.7, it suffices to show that we are able to construct a

combination matrix A satisfying (6.125). First, we index the agents such that the

smaller the distance (number of hops) from an agent to the set NI is, the smaller

the index of the agent is. This can be done by first indexing informed agents

in any order, and then indexing the uninformed agents next to the informed

agents in any order, and so on (see the middle plot of Fig. 6.7). Second, besides

condition (2.25), we further require the weights {al,k} to satisfy the following

rules: 





∑

l∈NI∩Nk

al,k = 1, if NI ∩ Nk 6= ∅

∑

l<k

al,k = 1, otherwise

(6.128)

That is, if there are informed agents in the neighborhood of agent k, then it will

assign positive combination weights to those agents only; otherwise, agent k will

assign positive combination weights to neighbors with lower indices than k (i.e.,

those closer to informed agents). The example in Fig. 6.7 leads to a matrix AT

of the form below, where the directions of the arrows in the right plot of Fig. 6.7

indicate the allowed direction of information flow, i.e., the combination weights
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in the reverse directions are zero:

AT =
























1 0 0

0 a 1− a

0 b 1− b

1 0 0 0

c 1− c 0 0 0

0 d 1− d 0 0 0

0 e 1− e 0 0 0 0

0 0 0 f 0 1− f 0 0
























(6.129)

with a, b, c, d, e, f ∈ [0, 1]. Since the weight at an informed agent assigned to an

uninformed agent is always zero, AUI = 0. In addition, for an uninformed agent k,

the weight al,k is equal to zero if l ≥ k. Then, the matrix AT
UU in (6.123) is a lower

triangular matrix with zero diagonal entries and ρ(AUU) = 0 < 1−µλmin(Ru).

The proof of Theorem 6.5 suggests a way to construct the combination ma-

trix so that the convergence rate achieves the minimum value (i.e., fastest conver-

gence). However, there are two issues in such construction. First, the construction

rules in (6.128) is difficult to be implemented in a distributed manner because the

second rule in (6.128) requires spatial distribution of informed agents. The situ-

ation is more severe when the agents are able to move and the network topology

evolves as well. Second, the constructed combination matrix is not primitive (i.e.,

Assumption 2.2 does not hold) because there are no links from uninformed agents

to informed agents. Therefore, Theorem 6.1 does not apply here. In the follow-

ing, we first propose a way to select combination weights that approximate rule

(6.128) and then show that the approximate weights ensure mean convergence.

Let N f
k denote the set of agents that are in the neighborhood of k and whose

observed model is the same as the desired model w◦
q (or, informed neighbors),
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i.e.,

N f
k = {l | l ∈ Nk, l ∈ NI} (6.130)

Also, let nf
k denote the number of agents in the set N f

k . The selection of com-

bination weights is specified based on three types of agents: informed agents

(f(k) = q), uninformed agents with informed neighbors (f(k) 6= q and nf
k 6= 0),

and uninformed agents without informed neighbors (f(k) 6= q and nf
k = 0). The

first two types correspond to the first case in (6.128) and their weights can satisfy

rule (6.128) by setting

al,k =







1/nf
k , if l ∈ N f

k

0, otherwise

(6.131)

That is, agent k places uniform weights on the informed neighbors and zero

weights on the others. The last type of agents corresponds to the second case

in (6.128). Since these agents do not know the distribution of informed agents,

a convenient choice for the approximate weights they can select is for them to

place zero weights on themselves and uniform weights on the others, i.e.,

al,k =







1/(nk − 1), if l ∈ Nk and l 6= k

0, otherwise

(6.132)

Note that the weights from (6.131)-(6.132) can be set in a fully distributed manner

and in real-time. To show the mean convergence of the modified diffusion strategy

using the combination matrix A constructed from (6.131)-(6.132), we resort to

Theorem 5.1. It states that the strategy converges in the mean for sufficiently

small step-sizes if for any agent k, there exists an informed agent l and an integer

power j such that

[Aj ]l,k > 0 (6.133)

That is, for any agent, there exists a path with nonzero weight from an informed

agent to itself. Condition (6.133) is clearly satisfied for the first two types of
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agents. For any agent belonging to the last type, since the network is connected

and from (6.132), there exists a path with nonzero weight from an agent of the

second type (uninformed with informed neighbors) to itself. In addition, there

exist direct links from informed agents to the agents of the second type, condition

(6.133) is also satisfied. This implies that the modified diffusion strategy using

the combination weights from (6.131)-(6.132) converges in the mean.

6.8 Simulation Results

We consider a network with 40 agents randomly connected. The model vectors

are set to w◦
0 = [5;−5; 5; 5] and w◦

1 = [5; 5;−5; 5] (i.e. M = 4). Assume that

the first 20 agents (agents 1 through 20) observe data originating from model

w◦
0, while the remaining agents observe data originating from model w◦

1. The

step-sizes are set to µ = 0.005, ν = 0.05, and α = 0.95. The network employs

the uniform combination rule: al,k = 1/nk if l ∈ Nk.

In Fig. 6.8, we illustrate the network mean-square deviation (MSD) with

respect to the two model vectors over time, i.e.,

MSDq(i) =
1

N

N∑

k=1

E‖w◦
q −wk,i‖2 (6.134)

for q = 0 and q = 1. We compare the conventional ATC diffusion strategy (2.29)

and the modified ATC diffusion strategy (6.23)-(6.24) with decision-making. We

observe the bifurcation in MSD curves of the modified ATC diffusion strategy.

Specifically, the MSD curve relative to the model w◦
0 converges to 23 dB, while

the MSD relative to w◦
1 converges to -50 dB. This illustrates that the agents

using the modified ATC diffusion are able to agree on a model and to converge

to steady-state (to model w◦
1 in this case). We also show in Fig. 6.9 the evolution

of the beliefs {bk,i(l)} for a particular agent using the update rule (6.53). The
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Figure 6.8: Transient network MSD over a network using the conventional diffu-

sion strategy (2.29) and using the modified diffusion strategy (6.23)-(6.24). The

network with decision-making converges to the model w◦
1 while the network with-

out decision making converges to a vector that is not identical to either of the

model vectors.
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Figure 6.9: Evolution of beliefs using (6.53) at a particular agent. The agent has

four neighbors; two of them collect data from the same model while the other

two collect data from a different model.

agent has two neighbors observing data that originate from the same model and

two neighbors observing data from a different model. We observe that, at the

initial stage of adaptation, all beliefs increase. Nevertheless, as time evolves, the

agent is able to differentiate between the two models and the beliefs for the latter

two neighbors decrease. Note that the belief converges to one if an agent has the

same observed model; otherwise, it converges to zero. This indicates that the

classification scheme successfully identifies the observed models of neighboring

agents. On the other hand, for the conventional diffusion strategy, the agents

also converge because the MSD curves in Fig. 6.8 remain flat. However, the

MSD values are large (about 18 dB). This implies that the agents converge to a

common vector that does not coincide with either of the model vectors.
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We also show the dependence of the convergence rate on the parameter K

and the combination weights {al,k}. We first consider two modified diffusion

strategies using decision-making with K = 1 and K = 4 in (6.34). The network

MSD curves for these two strategies are shown in Fig. 6.10. We observe that the

MSD curves relative to the model w◦
1 decrease at the same rate and converge to

the same steady-state value. However, there is a shift in time domain between

these curves: the MSD1,i withK = 4 is 75 time steps ahead of the MSD curve with

K = 1. As the analytical results revealed, the decision-making processes with

larger values of K achieve agreement at faster rate. We also consider the effect

of the combination weights on the convergence rate of the adaptation strategies.

Figure 6.11 illustrates the modified diffusion strategies with different combination

weights: one with the uniform combination rule and the other one with the

combination rule in (6.131)-(6.132). We observe that the diffusion strategy using

the proposed rule converges at faster rate with some degradation in steady-state

MSD. Note that the trade-off between convergence rate and MSD is also indicated

in Chapter 5.

6.9 Concluding Remarks

In the presence of distinct objectives among the agents in a network, conventional

distributed estimation strategies would lead to biased solutions. In this chapter,

we proposed a modified strategy to address this issue. To do so, we allow the

agents to exchange not only intermediate estimates, but also previous estimates.

We also developed a classification scheme and a decision-making process for the

agents to identify the underlying models that generate data and to achieve agree-

ment among the agents on the desired objective. The proposed algorithms help

model the mechanisms behind decision-making among biological networks.
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Figure 6.10: Transient network MSD over the modified diffusion strategies (6.23)-

(6.24) with decision-making process for K = 1 and K = 4 in (6.34).

Figure 6.11: Transient network MSD over the modified diffusion strategy (6.23)-

(6.24) using the uniform combination rule and the proposed rule (6.131)-(6.132).
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6.A Proof of Theorem 6.1

From Lemma 6.1, it suffices to show that the vector y = AT
1MRz̃◦ is zero and

the matrix B = AT
1 (INM −MR) +AT

2 has spectral radius strictly less than one.

Without loss of generality, let w◦
0 be the desired model for the network (i.e., q = 0

in (6.26)) and assume there are N0 agents with indices {1, 2, . . . , N0} observing

data arising from the model w◦
0, while the remaining N −N0 agents observe data

arising from the model w◦
1. Then, we obtain from (6.5), (6.27), and (6.28) that

z̃◦k =







0, if k ≤ N0

w◦
0 − w◦

1, if k > N0

(6.135)

a
(1)
l,k = 0 if l > N0 (6.136)

a
(2)
l,k = 0 if l ≤ N0 (6.137)

Since the matrix MR is block diagonal, we conclude that the vector y is zero.

Moreover, we can write the (k, l)th block of B as

Bk,l = a
(1)
l,k (IM − µlRu,l) + a

(2)
l,k IM

=







al,k(IM − µlRu,l), if l ∈ Nk and l ≤ N0

al,kIM , if l ∈ Nk and l > N0

0, otherwise

(6.138)

Therefore, we can rewrite B as

B = AT (INM −MeR) (6.139)

where Me is an N ×N block diagonal matrix of the form

Me , diag{µ1IM , · · · , µN0IM , 0, · · · , 0} (6.140)
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That is, recursion (6.30) is equivalent to the mean recursion (6.11) of a network

running the traditional diffusion strategy (2.29) with N0 agents (agents 1 to N0)

using positive step-sizes and N − N0 agents (agents N0 + 1 to N) having zero

step-sizes. Using the terminology from Chapter 5, we say that agents 1 to N0 are

informed while agents N0+1 to N are uninformed. Then, according to Theorem

5.1 and under the assumption that the matrix A is primitive, if the step-sizes

{µ1, µ2, · · · , µN0} are set to satisfy (6.14), then the spectral radius of B will be

strictly less than one.

6.B Proof of Theorem 6.2

For a given vector gi−1, we denote by χi−1 the number of agents whose desired

model is w◦
1 at time i− 1, i.e.,

χi−1 =
N∑

k=1

gi−1(k) (6.141)

From (6.32)-(6.34), the vector gi depends only on gi−1. Thus, the value of χi

depends only on χi−1. Therefore, the evolution of χi forms a Markov chain

with N + 1 states corresponding to the values {0, 1, 2, . . . , N} for χi and with

the transition probability matrix P . The (n,m)th entry of P , denoted by pn,m,

represents the probability of transition from state χi−1 = n to state χi = m. To

compute the transition probability pn,m, let us denote by Gn the set of gi satisfying

χi = n, i.e.,

Gn =

{

gi |
N∑

k=1

gi(k) = n

}

(6.142)
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Then, the pn,m can be written as:

pn,m = Pr(χi = m | χi−1 = n)

=
∑

gi−1∈Gn

Pr(gi−1) Pr

(
N∑

l=1

gi(l) = m | gi−1

)

(6.143)

where Pr(gi−1) is a priori probability and where

Pr

(
N∑

l=1

gi(l) = m | gi−1

)

=
∑

gi∈Gm

Pr(gi | gi−1)

=
∑

gi∈Gm

N∏

l=1

Pr(gi(l) | gi−1(l)) (6.144)

with the probability Pr(gi(l) | gi−1(l)) determined by (6.34). Note that for a

fixed network topology, the transition probability pn,m is independent of the time

index i, i.e., the Markov chain is homogeneous [85].

Now we assume that χi−1 = n 6= 0, 1 and gi−1 ∈ Gn. Since the network

is connected, at least one agent, say, agent k, has desired model w◦
1 and has a

neighbor with distinct desired model w◦
0 so that ng

k(i− 1) < nk and 1− qk,i−1 > 0

from (6.34). In addition, since ng
l (i − 1) > 0 for all l, we have from (6.34) that

ql,i−1 > 0 for all l. Then, we obtain from (6.143)-(6.144) that

pn,n−1 =
∑

gi−1∈Gn

Pr(gi−1) Pr

(
N∑

l=1

gi(l) = n− 1 | gi−1

)

≥
∑

gi−1∈Gn

Pr(gi−1) Pr(gi(k) = 0 | gi−1)
∏

l 6=k

Pr(gi(l) = gi−1(l) | gi−1)

=
∑

gi−1∈Gn

Pr(gi−1)(1− qk,i−1)
∏

l 6=k

ql,i−1

> 0 (6.145)

Similarly, it can be verified that

pn,n > 0 and pn,n+1 > 0 (6.146)
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for n 6= 0, N . On the other hand, for n = 0 or n = N , we have that

p0,0 = pN,N = 1 (6.147)

This indicates that the Markov chain has two absorbing states: χi = 0 (or,

gi(1) = gi(2) = · · · = gi(N) = 0) and χi = N (or, gi(1) = gi(2) = · · · = gi(N) =

1), and for any state χi different from 0 and N , there is a nonzero probability

traveling from an arbitrary state χi to state 0 and state N . That is, the transition

probability matrix P can be written as:

P =








1 0 0

b Q c

0 0 1








(6.148)

where the matrix Q of size (N − 1) × (N − 1) is the transition matrix among

the transient states {1, 2, · · · , N − 1} and the vectors {b, c} of size N − 1 are

the transition probabilities from the transient states to the absorbing states.

This implies that no matter which state the Markov chain starts from, the state

converges to state 0 or state N [85, p.26], i.e., all agents reach agreement on the

desired model.

6.C Proof of Lemma 6.4

Let C1 denote the following far-field condition:

C1 : ‖z◦k − wk,i−1‖ ≫ 1 (6.149)
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We obtain from (6.90) that

Pr(‖ĥk,i‖ > η | C1) = Pr(‖h̄k,i + nk,i‖ > η | C1)

(a)

≥ Pr(‖h̄k,i‖ − ‖nk,i‖ > η | C1)

= Pr(‖nk,i‖ < ‖h̄k,i‖ − η | C1)

= 1− Pr(‖nk,i‖ ≥ ‖h̄k,i‖ − η | C1)

(b)

≥ 1− E‖nk,i‖2
(‖h̄k,i‖ − η)2

(c)
= 1−

ν[τ‖h̄k,i‖2 + σ2
v,kTr(Ru)]

2(‖h̄k,i‖ − η)2
(6.150)

where step (a) follows from the triangle inequality of norm that ‖h̄k,i + nk,i‖ ≥
‖h̄k,i‖ − ‖nk,i‖ and (6.64), step (b) is by the Markov inequality (6.65) and As-

sumption 6.2, and step (c) is by (6.91). Moreover, under Assumption 6.4 and

condition C1, we can ignore the term η in the denominator of (6.150). In addi-

tion, from condition C1 and (6.81), and since the variance σ2
v,k is generally small,

we may ignore the term νσ2
v,kTr(Ru) in (6.150) and obtain (6.92).

On the other hand, we consider the alternative near-field condition

C2 : ‖z◦k − wk,i−1‖ ≪ 1 (6.151)

Using similar arguments that led to (6.150), we obtain that

Pr(‖ĥk,i‖ > η | C2) = Pr(‖h̄k,i + nk,i‖ > η | C2)

≤ Pr(‖h̄k,i‖+ ‖nk,i‖ > η | C2)

= Pr(‖nk,i‖ > η − ‖h̄k,i‖ | C2)

≤ E‖nk,i‖2
(η − ‖h̄k,i‖)2

=
ν[τ‖h̄k,i‖2 + σ2

v,kTr(Ru)]

2(η − ‖h̄k,i‖)2
(6.152)
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Figure 6.12: Illustration of the angle θk,i between h̄k,i and ĥk,i due to the noise

nk,i.

Under Assumption 6.4, we can ignore the term ‖h̄k,i‖2 in the denominator of

(6.152). Moreover, when agent k is in near-field, the square error ‖z◦k − wk,i−1‖2

is of the order of µσ2
v,k [157]. Then, using the sub-multiplicative property of

norms [64], we obtain from (6.81) that

‖h̄k,i‖2 ≤ ‖Ru‖2 · ‖z◦k − wk,i−1‖2

= O(µσ2
v,kρ

2(Ru)) (6.153)

Therefore, under the small step-size assumption on µ, we can also ignore the term

τ‖h̄k,i‖ in (6.152) and obtain (6.93).

6.D Proof of Lemma 6.5

6.D.1 Probability of detection when z◦k = z◦l

Under Assumption 6.4 and from (6.53), the probability Pd in (6.60) becomes

Pd = Pr(‖ĥk,i‖ > η, ‖ĥl,i‖ > η, ĥ
T

k,iĥl,i > 0 | z◦k = z◦l )

≈ Pr(ĥ
T

k,iĥl,i > 0 | z◦k = z◦l ) (6.154)
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where we used Lemma 6.4 and the fact that ĥk,i and ĥl,i are independent. Note

that the event ĥ
T

k,iĥl,i > 0 is equivalent to the fact that the angle between these

two vectors is less than π/2. Let θk,i denote the angle between the vectors h̄k,i

and ĥk,i due to the noise nk,i (see Fig. 6.12). The value of θk,i is positive if

the vector ĥk,i rotates counter-clockwise relative to h̄k,i; otherwise, its value is

negative. Then, we have that the angle θk,i is upper bounded by:

|θk,i| ≤ sin−1

(‖nl,i‖
‖h̄k,i‖

)

(6.155)

That is, the maximum value of θk,i occurs when the vectors ĥk,i and nk,i are

perpendicular (see Fig. 6.12). Under Assumption 6.4 and from (6.91), it holds

that
E‖nk,i‖2
‖h̄k,i‖2

≤
ν[τ‖h̄k,i‖2 + σ2

v,kTr(Ru)]

2‖h̄k,i‖2
≈ ντ

2
(6.156)

and, therefore, the right-hand side of (6.155) can be approximated by

sin−1

(‖nk,i‖
‖h̄k,i‖

)

≈ ‖nk,i‖
‖h̄k,i‖

(6.157)

Moreover, since all agents start from the same initial estimate (i.e., wk,−1 = 0 for

all k), the estimates {wk,i−1} are close to each other during the initial stages of

adaptation and it is reasonable to assume that

‖wk,i−1 − wl,i−1‖ ≪ ‖z◦k − wk,i−1‖ (6.158)

Therefore, we arrive at the following approximation (note that z◦k = z◦l ) for

computing Pd:

h̄l,i = Ru(z
◦
l − wl,i−1)

= Ru(z
◦
k − wk,i−1 + wk,i−1 − wl,i−1)

≈ Ru(z
◦
k − wk,i−1)

= h̄k,i (6.159)
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This implies that the vectors ĥk,i and ĥl,i can be modeled as starting at the

same location wk,i−1 but having deviated by angles θk,i and θl,i, respectively.

Therefore, as shown in Fig. 6.13(a), the angle between ĥk,i and ĥl,i is equal to

|θk,i − θl,i|. From (6.154), we obtain that

Pd ≈ Pr
(

|θk,i − θl,i| <
π

2
| z◦k = z◦l

)

(a)

≥ Pr
(

|θk,i|+ |θl,i| <
π

2
| z◦k = z◦l

)

(b)

≥ Pr

(‖nk,i‖
‖h̄k,i‖

+
‖nl,i‖
‖h̄k,i‖

<
π

2

)

= Pr(‖nk,i‖+ ‖nl,i‖ < π‖h̄k,i‖/2)

= 1− Pr(‖nk,i‖+ ‖nl,i‖ ≥ π‖h̄k,i‖/2) (6.160)

where step (a) is by the triangle inequality of norms and (6.64) and step (b) is

by (6.155) and (6.157). To evaluate the probability in (6.160), we resort to the

following fact. For any two random variables x and y and for any constant η, it

holds from (6.64) that

Pr(x+ y > η) ≤ Pr(x > η/2 or y > η/2)

≤ Pr(x > η/2) + Pr(y > η/2) (6.161)

where in the last inequality, we used the union bound of probabilities [110].

Therefore, we arrive at (6.95) because

Pd ≥ 1− Pr(‖nk,i‖ > π‖h̄k,i‖/4)− Pr(‖nl,i‖ > π‖h̄k,i‖/4)

≥ 1− 16(E‖nk,i‖2 + E‖nl,i‖2)
π2‖h̄k,i‖2

≥ 1− 16ντ

π2
(6.162)

where we used the Markov inequality (6.65) and expressions (6.156) and (6.159).
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Figure 6.13: Illustration of the angle between ĥk,i and ĥl,i when both agents have

(a) the same observed model (z◦k = z◦l ) or (b) different observed models (z◦k 6= z◦l ).

6.D.2 Probability of false alarm when z◦k 6= z◦l

Similarly, the probability of false alarm from (6.61) is upper bounded by:

Pf = Pr(‖ĥk,i‖ > η, ‖ĥl,i‖ > η, ĥ
T

k,iĥl,i > 0 | z◦k 6= z◦l )

≤ Pr(ĥ
T

k,iĥl,i > 0 | z◦k 6= z◦l ) (6.163)

where we used (6.64). We again convert to the angular domain. First, under

Assumption 6.4 and since agents k and l have similar estimates during the initial

stages of adaptation, we approximate h̄l,i to

h̄l,i = Ru(z
◦
l − wk,i−1 + wk,i−1 − wl,i−1)

≈ Ru(z
◦
l − wk,i−1) (6.164)

That is, the vectors h̄k,i and h̄l,i can again be modeled as starting at the same

location wk,i−1, but pointing towards different directions: h̄k,i towards zk and h̄l,i

towards zl. Let θk,l,i denote the angle between the vectors h̄k,i and h̄l,i. Then, the

angle between ĥk,i and ĥl,i is greater than θk,l,i − |θk,i| − |θl,i| (see Fig. 6.13(b)).

Thus, following the arguments that led to (6.160) and using (6.161), the proba-
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bility Pf is bounded by

Pf ≤ Pr
(

θk,l,i − |θk,i| − |θl,i| <
π

2
| z◦k 6= z◦l

)

= Pr
(

|θk,i|+ |θl,i| > θk,l,i −
π

2
| z◦k 6= z◦l

)

≤ Pr

(‖nk,i‖
‖h̄k,i‖

+
‖nl,i‖
‖h̄l,i‖

> θk,l,i −
π

2

)

≤ Pr

(

‖nk,i‖ >
‖h̄k,i‖
2

(

θk,l,i −
π

2

))

+ Pr

(

‖nl,i‖ >
‖h̄l,i‖
2

(

θk,l,i −
π

2

))

≤ 4E‖nk,i‖2
‖h̄k,i‖2(θk,l,i − π/2)2

+
4E‖nl,i‖2

‖h̄l,i‖2(θk,l,i − π/2)2

≤ 4ντ

(θk,l,i − π/2)2
(6.165)

We observe that the probability in (6.96) depends on the angle θk,l,i. As we

mentioned in Section 6.4, it is possible for agent k to increase bk,i(l) even when

z◦k 6= z◦l . Nevertheless, as time evolves, the estimates of agents k and l move

close to a linear combination of the underlying models and from Lemma 6.2 it is

reasonable to assume that

wk,i−1 ≈
N∑

m=1

cmz
◦
m (6.166)

for all k. Since z◦m ∈ {w◦
0, w

◦
1} and z◦k 6= z◦l , we can rewrite (6.166) as:

wk,i−1 ≈ bz◦k + (1− b)z◦l (6.167)

for all k with the scalar b ∈ (0, 1) in view of (6.3)-(6.4). Then, the angle between

z◦k − wk,i−1 and z◦l − wl,i−1 assumes a value close to π because

z◦k − wk,i−1 ≈ (1− b)(z◦k − z◦l )

≈ −1− b

b
(z◦l − wl,i−1) (6.168)
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This implies that

h̄k,i = Ru(z
◦
k − wk,i−1)

≈ −1− b

b
Ru(z

◦
l − wl,i−1)

= −1 − b

b
h̄l,i (6.169)

and that the angle θk,l,i is close to π. We then obtain (6.96).
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CHAPTER 7

Mobile Adaptive Networks

In this chapter, we add another dimension of complexity to the diffusion strate-

gies [31, 34, 35, 88, 95, 124, 141] and incorporate agent mobility into the design

of adaptive networks. Our objective is to develop and study what we refer to

as mobile adaptive networks. These are networks that possess distributed adap-

tation abilities in addition to collective patterns of motion. The motion of the

agents is influenced by the quality of the estimation process and vice versa, such

that the two issues of adaptation and mobility become intertwined. For exam-

ple, mobility enables agents to move to locations that improve the quality of

their local measurements (e.g., by moving to locations with better signal-to-noise

ratio (SNR) conditions). Mobility also enables agents to move towards the de-

sired location when the network is working on tracking a target. We incorporate

control mechanisms that enable the agents to move in a coordinated manner

while at the same time solving the estimation or tracking problem of interest.

The control mechanisms are implemented in a fully distributed manner, just like

the diffusion mechanism that we use for the processing of information at the

agents. In this way, our work extends previous studies on the motion of co-

ordinated agents [56, 68, 106, 107, 118] by combining motion coordination with

adaptation, learning and tracking in real-time. One example that we shall use to

illustrate the application of mobile adaptive networks is the foraging behavior of

fish schools [127, 145–147, 149, 150, 156]. Fish form schools and move together in
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remarkable harmony. Using mobile adaptive networks, we will be able to emulate

how the fish move together while at the same time tracking the location of a food

source.

7.1 Measurement Model

For presentation purposes, the vector w◦ will denote in the following sections the

location of a target (relative to some global coordinate system) that the network

wishes to estimate and track (such as the location of a food source or a predator).

However, the resulting algorithm is more widely applicable and w◦ could be used

to represent other parameters of interest in more general optimization problems.

To begin with, we first explain how data {dk(i), uk,i} satisfying model (2.3)

can be motivated in the context of mobile networks so that the network can

employ the ATC diffusion strategy (2.29) to estimate w◦. As Fig. 7.1 shows, the

distance between a target located at w◦ and a agent k located at xk,i at time i

can be expressed as the inner product

d◦k(i) = u◦k,i(w
◦ − xk,i) (7.1)

where u◦k,i denotes the unit direction vector pointing to w◦ from xk,i; this vector

is defined in terms of the azimuth angle, θk(i), and the elevation angle, ϕk(i), i.e.,

u◦k,i =
[

cos θk(i) cosϕk(i) sin θk(i) cosϕk(i) sinϕk(i)
]

(7.2)

In R
2, we would only need to consider the azimuth angle in which case u◦k,i

becomes

u◦k,i =
[

cos θk(i) sin θk(i)
]

(7.3)

Expressing the distance in the inner product form (7.1), instead of using a

quadratic Euclidean distance formula, allows us to relate the data {d◦k(i), u◦k,i}
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Figure 7.1: Distance and direction of the target w◦ from agent k at location xk.

The unit direction vector u◦k points towards w◦.

in the desired linear model form (2.3). Note from the definitions of (7.1) and

(7.2) in this example that ‖u◦k,i‖ = 1 and d◦k(i) ≥ 0. These conditions on the data

are not necessary for the operation of diffusion adaptation and mobile adaptive

networks; they are simply properties that result when the variables u◦k,i and d
◦
k(i)

are taken to represent the unit direction vector and the distance to the target in

the current example. In more general scenarios, where dk(i) need not correspond

to distances, we simply expect the data to satisfy model (2.3).

Continuing with (7.1)-(7.2), the superscript ◦ is used to indicate true values.

However, agents observe noisy measurements of the direction u◦k,i and the distance

d◦k(i) to the target, say,

uk,i = u◦k,i + vuk,i and dk(i) = d◦k(i) + vdk(i) (7.4)

where vuk,i and vdk(i) denote additive noise terms of sizes M and 1, respectively.
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Introduce

d̂k(i) , dk(i) + uk,ixk,i

= uk,iw
◦ + vk(i)

(7.5)

where the scalar noise term vk(i) is given by

vk(i) , −vuk,i(w◦ − xk,i) + vdk(i) (7.6)

Relation (7.5) represents a linear model of the same form (2.3) between the

variables {d̂k(i), uk,i}; having such a linear relation facilitates the application

of the results of [34, 95, 124] to the adaptive diffusion algorithms of this chapter.

In addition, the noisy location of the target is denoted by pk,i and is related to

the variables {dk(i), uk,i, xk,i} as follows:

pk,i = xk,i + dk(i)u
T
k,i

= w◦ + ηk,i

(7.7)

where the vector noise term is given by

ηk,i = vdk(i)u
◦T
k,i + d◦k(i)v

uT
k,i + vdk(i)v

uT
k,i (7.8)

In the sequel, we assume that ηk,i is a zero mean white random process with

covariance matrix Rη,k,i and let σ2
k(i) = Tr(Rη,k,i) denote the trace of Rη,k,i.

7.2 Motion Control Mechanism

In a mobile network, every agent k will update its location vector from xk,i to

xk,i+1 according to the rule:

xk,i+1 = xk,i +△t · qk,i+1 (7.9)

where △t represents the time step and qk,i+1 is the velocity vector of the agent.

Several factors influence the determination of the velocity vector qk,i+1 of agent
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k such as the desire to move to locations with better SNR conditions, the desire

to move towards the target w◦, the desire to move in coordination with the other

agents, and the desire to avoid collisions. We now explain the mechanism by

which qk,i+1 can be set by agent k to achieve these goals.

To begin with, agents would like to move towards regions that have better

SNR conditions to improve their estimation accuracy of w◦. Suppose that at

time i, the agents are able to assess (or estimate) the noise variances, σ2
k, at their

locations (we are omitting the time index for simplicity and writing σ2
k instead of

σ2
k(i)). To improve performance, the network may consider moving in a direction

that reduces
∑N

k=1 σ
2
k. One way to achieve this objective is for each agent to set

its motion direction towards the neighbors with lowest noise variance by setting

the velocity vector as follows (we are omitting the time subscript i+1 from v for

simplicity):

qk = −
∑

l∈Nk\{k}

(σ2
l − σ2

k)
xl − xk

‖xl − xk‖
(7.10)

For example, if the noise variance at agent l is larger than the noise variance at

agent k, then (7.10) indicates that the velocity vector qk will tend to point in the

opposite direction moving away from xl; the same observation holds for the other

terms appearing in (7.10).

The agents in the network would also like to move towards the target w◦. This

objective will help ensure that the center of mass of the network will approach

w◦ as time progresses. The location of the center of mass at time i is defined as

the average location of all agents:

xgi ,
1

N

N∑

k=1

xk,i (7.11)

It is sufficient for our purposes for the convergence of xgi towards w◦ to occur

in some mean-square error sense (as we discuss in Appendix 7.B). One way by
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which agents can move towards w◦ is by having each agent set its velocity vector

to point along the direction w◦ − xk, say,

qk = h(w◦ − xk) =







w◦ − xk, if ‖w◦ − xk‖ ≤ s

s · w◦−xk

‖w◦−xk‖
, otherwise

(7.12)

for some positive scaling factor s used to bound the speed in pursuing the tar-

get. Naturally, agents cannot use (7.12) directly to adjust their velocity vectors

because they do not know w◦. Instead, agents will replace w◦ in (7.12) by local

estimates wk,i computed via a diffusion adaptation step, as shown further ahead

in (7.18). Replacing w◦ in (7.12) by local estimates wk,i adds a new layer of com-

plexity to the operation of the network in comparison, for example, to flocking

models that assume beforehand that w◦ is known to the agents [107]. The use

of wk,i adds estimation errors, in addition to measurement noise, into the opera-

tion of each agent and into the operation of the network. These errors influence

the behavior of the agents. This is because velocities determine future locations,

which in turn determine the quality of the SNR conditions at these locations and

how well the network moves together towards the desired target w◦. Studying

how the network is able to adjust in the presence of estimation errors and noisy

data, and how agents are able to process the information adaptively to achieve

their desired objective, is one of the objectives of this chapter.

The agents in the network do not only want to move in the direction of w◦

or away from noisy regions, they also want their movements to be done in an

organized manner. The agents would like to move in coherence and would like to

avoid collisions while maintaining a certain safe distance r from their neighbors.

Thus, consider the following cost function at agent k at time i:

Jk(qk) =
N∑

l=1

‖qk − ql‖2 +
∑

l∈Nk\{k}

[‖(xk +△t · qk)− (xl +△t · ql)‖ − r]2 (7.13)
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Figure 7.2: Location of agent l relative to agent k before and after the displace-

ment update.

where the term xk + △t · qk represents the updated location of agent k and

the terms {xl + △t · ql} represent the updated locations of its neighbors. The

minimization of (7.13) over vk is meant to ensure that the difference between

the velocities is minimized and the distance between the updated locations stays

close to r. To determine the optimal vk, we differentiate (7.13) with respect to

vk and get

dJk(qk)

dqk
= 2

N∑

l=1

(qk − ql) (7.14)

+ 2
∑

l∈Nk\{k}

[

△t(qk − ql)− (xl − xk) + r
xl − xk +△t · (ql − qk)

‖xl − xk +△t · (ql − qk)‖

]

Note that xl−xk denotes the location of agent l relative to agent k. To determine

qk from (7.14) we first investigate the last term in (7.14). Figure 7.2 depicts

the current locations of agents k and l and their updated locations. The term

△t · (ql − qk) is a measure of how misaligned the displacement of agents l and

k are after the update relative to their displacement before the update. It is
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reasonable to assume that this misalignment is sufficiently small relative to the

distance ‖xl − xk‖ because, in general, the velocity of agent k is close to the

velocities of its neighbors (or the time step △t is small enough). Thus, we may

introduce the approximation:

xl − xk +△t(ql − qk)

‖xl − xk +△t(ql − qk)‖
≈ xl − xk

‖xl − xk‖
(7.15)

The result is a normalized direction vector (a unit vector) along the direction

connecting agents l and k. Moreover, since the time step is small, the term

△t · (qk − ql), compared to the first term in (7.14), can be ignored. By setting

the derivative in (7.14) to zero, the velocity vector is found to be

qk =
1

N

N∑

l=1

ql +
1

N

∑

l∈Nk\{k}

(

1− r

‖xl − xk‖

)

(xl − xk) (7.16)

Expression (7.16) consists of two terms. The first term represents the velocity of

the center of mass of the network, qg, i.e.,

qg =
1

N

N∑

l=1

ql (7.17)

This term suggests that, in addition to moving towards w◦, as required by (7.12),

agent k should also attempt to adjust its velocity vector to be consistent with the

average velocity of the network. Doing so results in a pattern of collective motion.

Obviously agents cannot use this term directly to adjust their velocity vectors

because they do not have access to all velocities {ql} across the network. Instead,

the agents replace qg by local estimates qgk,i (see (7.18) ahead) defined later in

(7.28). The second term in (7.16) is a linear combination of the displacement

vectors {xl−xk}; the magnitudes of these vectors are scaled by subtracting from

them unit vectors of size r. This term suggests that agents should adjust their

velocities to be consistent with the average displacement vector in the neighbor-

hood while maintaining a distance r from their neighbors. A structure similar
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to (7.16) was suggested before to induce harmonic motion and repulsion and at-

traction behavior among agents in a network (see [70, 107]). Here, we motivated

(7.16) by starting from the optimization problem (7.13) and by appealing to the

geometric approximation of Fig. 7.2.

Motivated by the previous discussions, the final structure that we adopt for

updating the velocity vector appears in (7.18) below is more general than (7.16)

in two respects. First, expression (7.18) incorporates the term wk,i − xk,i, which

relates to the ultimate objective of having the network move towards the unknown

target w◦. Second, expression (7.18) involves the term gk,i (defined in (7.19)),

which relates to moving towards regions of lower noise level to improve estima-

tion performance. These two terms couple the adaptation problem to mobility.

Therefore, based on (7.10), (7.12), and (7.16), we assume that agents adjust their

velocity vectors according to four criteria as follows:

qk,i+1 = λ · h(wk,i − xk,i) + α
gk,i

‖gk,i‖
+ βqgk,i + γδk,i (7.18)

where {λ, α, β, γ} are non-negative weighting factors and

gk,i = −
∑

l∈Nk\{k}

[σ2
l (i)− σ2

k(i)]
xl,i − xk,i

‖xl,i − xk,i‖
(7.19)

δk,i =
∑

l∈Nk\{k}

(‖xl,i − xk,i‖ − r)
xl,i − xk,i

‖xl,i − xk,i‖
(7.20)

Note that to prevent singularity, we define x/‖x‖ , 0 whenever x = 0. Moving

forward, we assume that every agent in the network is adjusting its velocity

vector according to the general rule (7.18). Special cases can be obtained by

setting some of the scalars {λ, α, β, γ} to zero. For example, if the agents do

not have access to information about the noise level, then the term involving gk,i

in (7.18) can be dropped by setting α = 0. Also, in M dimensions, the vector

w◦ need not denote location but may denote some state of the system that the
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agents are interested in estimating rather than moving towards it. The objective

of the network becomes moving towards a location with the lowest noise level. In

this case, the first term in (7.18) can be removed by setting λ = 0.

As mentioned earlier, one difference in (7.18) relative to previous flocking

models is the reliance on local estimates wk,i and qgk,i. Due to local estimation

errors and measurement noise, these estimates influence the dynamics of the

network and its learning and tracking performance. Another difference is the use

of diffusion adaptation schemes to estimate both wk,i and qgk,i sequentially and

in real-time. We move on to describe the diffusion mechanisms that allow the

agents to obtain the local estimates wk,i and q
g
k,i in a distributed manner.

7.3 Distributed Estimation of Global Variables

Since the ATC diffusion strategy (2.29) has been shown to perform the best

among the other distributed strategies, we employ the ATC diffusion strategy to

solve the estimation tasks.

7.3.1 Estimating Location of the Target

At every time instant i, every agent k has access to the local measurements

{d̂k(i), uk,i} related by (7.5). Using these local data, as well as data shared with

their neighbors, the agents would like to estimate in a distributed manner the

global parameter w◦ that minimizes the following cost function (similar to (2.4)):

Jglob(w) =

N∑

k=1

E|d̂k(i)− uk,iw|2 (7.21)
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Applying the ATC diffusion strategy (2.29), we have

ψk,i = wk,i−1 + µk · uTk,i[d̂k(i)− uk,iwk,i−1]

wk,i =
∑

l∈Nk

al,kψl,i

(7.22)

where the coefficients {al,k} satisfy property (2.25).

Though unnecessary, since model (7.5) is geometry-bearing (see (7.1)), we

can exploit this fact to simplify (7.22) under reasonable approximations. We use

(7.5) and (7.7) to rewrite the update vector from (7.22) as:

uTk,i[d̂k(i)− uk,iwk,i−1] = (pk,i − xk,i)− uTk,iuk,i(wk,i−1 − xk,i) (7.23)

The first term, pk,i−xk,i, represents the measurement of w◦ by agent k while the

second term, uTk,iuk,i(wk,i−1 − xk,i), represents the projection of the estimate of

w◦ by agent k onto the direction, uk,i. That is, the second term only considers

the difference along the measured direction by agent k. Now, if the direction of

the vector wk,i−1 − xk,i is close to uk,i, we can use the approximation:

wk,i−1 − xk,i ≈ ‖wk,i−1 − xk,i‖uTk,i (7.24)

That is, we assume wk,i−1 − xk,i aligns with uk,i. Under this approximation, the

update vector becomes

uTk,i[d̂k(i)− uk,iwk,i−1] ≈ pk,i − wk,i−1 (7.25)

i.e., the difference between of the measurement of w◦ and the estimate of w◦ by

agent k, and we rewrite (7.22) as

ψk,i = wk,i−1 + µk · (qk,i − wk,i−1)

wk,i =
∑

l∈Nk

al,kψl,i

(7.26)

We will use this form in the algorithm and performance analysis.
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7.3.2 Estimating Velocity of the Center of the Network

The velocity of the center of gravity, qg, should be also estimated in a distributed

way to enable (7.18). By definition, qg is the average velocity of all agents in

the network. However, since the velocities of the agents are changing and so is

qg, we need to keep track of qg over time. Motivated by diffusion techniques, we

introduce the cost function

Jglob(qg) =
N∑

k=1

‖qk,i − qg‖2 (7.27)

Using the similar diffusion structure (2.29) and the arguments in [34], we can

derive the following diffusion algorithm for computing qgk,i:

φk,i = qgk,i−1 + νk
∑

l∈Nk

cl,k(ql,i − qgk,i−1)

qgk,i =
∑

l∈Nk

aql,kφl,i

(7.28)

where {cl,k} and {aql,k} are two sets of non-negative real coefficients satisfying

(2.25). Note that we are allowing agent k to use the velocity vectors {ql,i} in its

neighborhood because it is able to observe these vectors. We see that the structure

of (7.28) is the same as the structure in (7.26) and that the update vector, ql,i −
qgk,i−1, contributed by agent l is simply the difference of the velocity of agent l

and the estimate of agent k. Note that by selecting νk = 1, aql,k = δlk in terms

of the Kronecker delta function, and cl,k = 1/nk if l ∈ Nk, the algorithm (7.28)

reduces to determining qgk,i by simply averaging the velocities of the neighbors

of agent k, which is usually applied in previous studies [70, 107, 161]. As we will

show by simulation (see Appendix 7.B), the diffusion algorithm achieves better

coherent motion.

We therefore end up with two diffusion mechanisms. Equation (7.26) describes

the diffusion mechanism for estimating the unknown parameter, w◦, while equa-
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tion (7.28) describes the diffusion mechanism for tracking the velocity of the

center of mass of the network.

7.4 Diffusion Strategy with Self-Organization

Combining the diffusion steps (7.26) and (7.28) with the velocity adjustment

(7.18), we arrive at the following ATC diffusion algorithm to coordinate the

adaptation and motion activities of a mobile adaptive network.

Note that the neighborhood of agent k is now denoted by Nk,i to emphasize

that the network topology may change with time due to movement. The block

diagrams of the above algorithm is illustrated in Fig. 7.3. The analysis of the

algorithm is provided in Appendix 7.B. We also survey the previous works [56,

68, 100, 107, 109] on multi-agent formation control in 7.A.

7.4.1 Simulation Results

7.4.1.1 Mobile Adaptive Networks with Single Target

We simulate the motion of mobile networks with 50 agents in pursuing a target.

The simulation parameters are set as follows. The unit length is the body length

of an agent (e.g., body length of a fish). The step sizes for diffusion strategies

(7.26) and (7.28) are set to µk = νk = 0.5 for all k. The combination weights are

set to al,k = aql,k = 1/nk if l ∈ Nk and cl,k = δlk. That is, the agents in the network

only combine intermediate estimates using the uniform combination rule. The

measurement pk,i is generated from the model (7.7) and noise covariance matrix

Rη,k,i is assumed to satisfy a model of the form

Rη,k,i = κ · ‖w◦ − xk,i‖2IM (7.29)
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Figure 7.3: ATC diffusion strategy for mobile adaptive networks. The imple-

mentation consists of two diffusion mechanisms: one for estimating the target w◦

and another for tracking the velocity of the center of mass of the network qg. In

addition, a control mechanism controls the motion of the agents (their velocities

and locations).
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Algorithm 7.1 ATC Diffusion Strategy for Mobile Networks

For each node k, initialize wk,−1 = 0 and qgk,−1 = 0.

for i ≥ 0 and k = 1 to N do

1) The agent knows the location and velocity vectors {xl,i, ql,i} for l ∈ Nk,i and has access

to the local data {dk(i), uk,i, σ2
k(i)}.

2) Find pk,i = xk,i + dk(i)u
T
k,i.

3) Perform two local adaptation steps, one for the weight vector, w◦, and the other for

the velocity of the center of mass, qg:

ψk,i = wk,i−1 + µk · (qk,i − wk,i−1)

φk,i = qgk,i−1 + νk ·
∑

l∈Nk,i

cl,k(ql,i − qgk,i−1)

4) Perform two local combination steps: one combines weight estimates for w◦ and the

other combines velocity estimates for qg:

wk,i =
∑

l∈Nk,i

al,kψl,i

qgk,i =
∑

l∈Nk,i

aql,kφl,i

5) Update the agent velocity and its location:

qk,i+1 = λ · h(wk,i − xk,i) + α
gk,i

‖gk,i‖
+ βqgk,i + γδk,i

xk,i+1 = xk,i +△t · qk,i+1

where gk,i and δk,i are defined by (7.19)-(7.20) and {λ, α, β, γ} are non-negative

parameters.

end for
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for some small constant κ. We set κ = 0.01. The model is reasonable since

the signal power usually decreases proportionally to the square of the propaga-

tion distance, which increases the noise variance accordingly. For motion control

mechanism in (7.9) and (7.18), the parameters are (λ, α, β) = (0.5, 0.5, 0.5) and

γk = 1/(nk − 1) and the time duration and speed bound are △t = 0.1 sec and

s = 1, respectively. In addition, the optimal distance between two neighbors

is r = 3. Due to computational and communication limitation, the number of

neighbors will be constrained, say to NB. An agent chooses NB = 6 nearest

neighbors from agents within the radius R = 5.

Figure 7.4 illustrates the maneuver of a mobile network in R
2 over time.

The symbol, “�”, denotes the target of interest. In addition, “•” and “−”

indicate the locations and moving directions of the agents, respectively. We also

place a region with high noise variance along the way to the target. The noise

variance distribution is illustrated in Fig. 7.5 over the plane. As Fig. 7.4 shows,

the network exhibits harmonious movement. When the network approaches the

region with high noise, the agents bypass the region to get better signal reception.

Note that it is possible for the network to spread out and then regroup to continue

their schooling. This depends on the location and the area of the high noise

region. Finally, the network successfully gets to the target. In addition, due

to the effects of attraction and repulsion, the agents maintain a rather uniform

distance from their neighbors.

Now let w◦ be a general unknown vector. The motion of the agents is con-

trolled by (7.18) with α = 0 and {λ, β, γ} set the same as before. Assume that

there is a base station located at (25, 25). Fig. 7.6 shows initial and final locations

of the agents and we compare the network MSD of a mobile network with that

of a static network in Fig. 7.7. It is clear that the mobile network successfully
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Figure 7.4: Maneuvers of mobile networks in R
2 over time: (a) t = 15 sec, (b)

t = 30 sec, (c) t = 75 sec, and (d) t = 90 sec. The lines are the contour curves of

noise variance in dB.
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Figure 7.5: Noise variance over the plane. There is a spike at (25, 25)

Figure 7.6: Locations of mobile agents in R
2 at (a) t = 0 sec, (b) t = 100 sec.

The lines are the contour curves of noise variance in dB.
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Figure 7.7: Transient network MSD for estimating a weight vector w◦.

finds a region with good signal reception and achieves lower MSD.

7.4.1.2 Mobile Adaptive Networks with Two Targets

We consider the case when there are two possible targets located at w◦
0 = [40,−40]

and w◦
1 = [40, 40]. We illustrate the motion of the agents in Fig. 7.8, where agents

that would like to move towards w◦
0 are shown in blue dot and agents that would

like to move towards w◦
1 are shown in red circle. Initially, there are 100 agents

uniformly distributed in a 20×20 square area around the origin; 50 of them collect

data that originate from target w◦
0 and the other 50 agents collect data arising

from the other target w◦
1. The agents would like to move towards a common

target by applying the diffusion strategy with decision-making in Algorithm 6.1.

The step sizes for diffusion strategies (7.26) and (7.28) are set to µk = νk = 0.05

for all k. The combination weighs {al,k, aql,k} are set according to (6.131)-(6.132)
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Figure 7.8: Maneuver of fish schools with two food sources over time (a) t = 0

(b) t = 2 (c) t = 6 sec. The networks employ decision-making with K = 4 and

K = 1 in (6.34).

and cl,k = δlk. The parameters in the motion control mechanism (7.9) and (7.18)

are set to (λ, α, β) = (0.3, 0, 0.7) with the other parameter fixed. We compare the

decision-making process in (6.32)-(6.34) using two different parameters: K = 4

and K = 1. We observe that the network with higher value of K achieves

agreement on a desired target at faster rate.
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7.5 Adaptive Mobile Network with Predators

In this section, we introduce predators into mobile adaptive networks. It is ob-

served in nature that fish schools spread out to escape from predators and re-

group to continue with their schooling. There are several biological hypotheses to

explain how fish take advantage of schooling to avoid the presence of their preda-

tors. Fish schooling confuses predators [99]; leading to a phenomenon known

as the dilution effect [60] [158]. Another advantage of schooling is the many-

eyes effect [121]. Fish within a school collaboratively detect predators such that

the probability of detection increases appreciably. The school as a group can

react and take action earlier than what would be possible by a single fish. In

this section, we apply the ATC diffusion strategy (2.29) to explain how fish co-

operatively pursue a food source while at the same time avoiding attack from

predators [147, 149].

7.5.1 Motion Control Mechanism for Mobile Agents

We apply the same measurement model (7.5) in 2-dimensions. In the application

we are studying here, the agents wish to track two separate targets: the location

of a food source and the location of a predator. To distinguish between them,

we shall write wf for the actual location of the food source and xp for the actual

location of the predator. In addition, variables without superscript p will denote

quantities that are related to the agents of the adaptive network. There are four

factors influence the velocity vector of agent k such as (a) the desire to move away

from a predator at location xp, (b) the desire to move towards a food source at

wf , (c) the desire to move in coordination with the other agents, and (d) the

desire to avoid collisions. We assume the predator is moving as well, so that its

actual location should be denoted by xpi . The agents in the network are therefore
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interested in estimating the fixed quantity wf and in tracking the time-variant

quantity xpi . Since the agents do not have access to the actual locations of the

food and the predator, we will use wf
k,i and wp

k,i to denote the local estimates

at agent k at time i via the ATC diffusion strategy (7.26). We now explain the

mechanism by which the velocity vector qk,i+1 can be set by agent k.

Before we proceed, we introduce two operators on 2× 1 vectors. Let

q =




q1

q2



 (7.30)

be a 2× 1 vector. Then we define

u(q) ,
q

‖q‖ and q⊥ ,




−q2
q1



 (7.31)

That is, u(q) normalizes the vector and the notation ⊥ finds a vector perpendic-

ular to q.

7.5.1.1 Pursuing Food and Avoiding Predators

To begin with, the agents in the network would like to get to the food source

and avoid the predator. The action of each agent depends on the location of the

predator. Figure 7.9 shows three regions around the predator. There are two

concentric circles with their centers origin at the predator and with radii r1 and

2r1. The three regions represent the areas outside the circle of radius 2r1, inside

the circle of radius r1, and within the disc r1 < r < 2r1. If the predator is far

away (i.e., if the distance from agent k to the predator, dpk(i), is larger than 2r1,

meaning dpk(i) > 2r1), the fish stays in region I and focuses on exploring the food

location. In this case, the velocity vector is set along the direction of the food,

i.e.,

qak,i+1 = u(wf
k,i − xk,i) (region I) (7.32)

236



Figure 7.9: Four regions around the predator.

On the other hand, if the predator is close, (i.e., if dpk(i) < r1 so that the agent is

in region III), then the agent focuses on escaping the attack by the predator by

moving away from it. In this case, the velocity vector is chosen as

qak,i+1 =
(
2r1 − ‖xk,i − wp

k,i‖
)
u(xk,i − wp

k,i) (region III) (7.33)

In (7.33), the speed of the agent depends on the distance to the predator. The

agent will move faster if the predator is closer to it. The final situation we need

to consider is when the predator is located at a distance between r1 and 2r1 from

the agent. The velocity vector in this case becomes

qak,i+1 = c1 · u[(xk,i − wp
k,i)

⊥] (region II) (7.34)

where c1 is a scalar with

c1 =







1, if (xk,i − wp
k,i)

T (wq
k,i)

⊥ ≥ 0

−1, otherwise

(7.35)
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That is, as shown in Fig. 7.9, the agent will move clockwise (when c1 = −1)

or counter-clockwise (when c1 = 1) depending on the location and velocity of

the predator, and if the agent is above the motion of the predator (e.g., agent

2 in Fig. 7.9), it moves counter-clockwise. Moreover, in (7.34), wq
k,i is the local

estimate of the predator’s velocity by agent k at time i, which can be estimated

as

wq
k,i =

1

△t(w
p
k,i − wp

k,i−1) (7.36)

For multiple predators, each agent in the fish school tracks the location of the

nearest predator. This allows the agents to have the flexibility to adapt to their

local situation.

7.5.1.2 Reunion

Following an attack by a predator, a network becomes fragmented with some

agents lying at the outer edges of the new smaller groups that resulted from the

fragmentation (see Fig. 7.10). To reunite, agents on the outer boundaries have

to estimate the location of the other groups and move towards them. To do so,

an agent first needs to detect whether it is on the edge of the fragmented groups.

We consider three kinds of edges - frontal edge, left edge and right edge. The

agent computes the number of its neighbors in each direction according to the

coordinate of agent l with respect to agent k:

x
(k)
l,i = W T (qk,i)(xl,i − xk,i) (7.37)

where

W (q) =




q1/‖q‖ −q2/‖q‖
q2/‖q‖ q1/‖q‖



 (7.38)

is an orthonormal matrix for a local coordinate system centered at a agent that is

moving with velocity vector q = (q1, q2). If the first coordinate of x
(k)
l,i is greater

238



than zero, agent l lies in front of agent k. Similarly, if the second coordinate

of x
(k)
l,i is greater than zero, agent l lies to the left of agent k; otherwise, it lies

to the right side of agent k. We say agent k belongs to the frontal edge of

the fragmented groups if the number of neighbors in the front is less than one.

Likewise for the left and right edges. Agents on the edge then search for other

groups. For example, agents in the front edge will find the nearest frontal agent

outside its neighborhood and move towards that agent. That is, agent k would

perform the following operation:

l̂ = argmin
l
{‖x(k)l,i ‖ | l ∈ N F

k , l /∈ Nk} (7.39)

qbk,i+1 =







0, if l̂ = φ

x
l̂,i
−xk,i

‖x
l̂,i
−xk,i‖

, otherwise

(7.40)

where N F
k is the set of indexes of agents that lie in the front of agent k and

φ denotes the empty set. Agents in the left and right edges conduct the same

procedure.

7.5.1.3 Coherent motion

The agents do not only want to approach to the food source and avoid the preda-

tor, they also want to move in harmony to confuse the predator and would like to

avoid collisions by maintaining a safe distance r from their neighbors. According

to expression (7.16), this can be achieved if the agent updates its velocity vector

as follows:

qck,i+1 = qgk,i + γδk,i (7.41)

where γ is a nonnegative scalar and the term δk,i is defined in (7.19). Expression

(7.41) also incorporates the local estimate for the velocity of the center of mass

of the network, qgk,i, at agent k, which can be implemented using (7.28).
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Figure 7.10: Two fragmental groups. Connections among the fish are indicated

by lines. One fish at the frontal edge (left group) and one fish on the left edge

(right group) are highlighted. They will move along the arrow directions to cause

regrouping.

7.5.1.4 Control Mechanism

Based on the preceding criteria, we assume that agents adjust their velocity

vectors as follows:

qk,i+1 = λ(α1q
a
k,i+1 + α2q

b
k,i+1) + βqgk,i + γδk,i (7.42)

where {λ, α1, α2, β, γ} are non-negative weighting factors. In addition, we bound

the maximum speed of agents by s. That is, the magnitude of qk,i+1 will be

scaled to s if it is larger than s. Compared to (7.18), the last two terms in (7.42)

are the same as (7.18). However, expression (7.42) has more complicated control

mechanism in the first term. When there are predators, the agents not only

pursue the target but also escape from predators. They also have to reform the

group after the fragmentation.
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7.5.2 Motion Control Mechanism for Predators

Cooperative behavior can be observed among predators as well. For example,

dolphins encircle their prey [14] and killer whales cooperatively herd herring into a

tight ball close to the surface [131]. Cooperative hunting plays a role in increasing

foraging efficiency. In this section, we use the ATC diffusion strategy to explain

how predators cooperate with each other to surround a fish school and trap the

school while attacking.

We first consider a single predator. The predator tracks the location of one

agent at a time. We assume that the predator keeps tracking the nearest agent.

At each time instant i, the predator measures the distance, d(i), and direction,

ui, of the nearest agent. The predator then updates the location of the agent

according to

wi = wi−1 + µp · uTi [d(i)− ui(wi−1 − xpi )] (7.43)

where µp is a positive step-size for the predator. After estimating the location,

the predator moves towards the agent. That is, the velocity vector of the predator

are updated as:

qpi+1 = sp · u(wi − xpi ) (7.44)

for some positive scalar sp.

Now, consider Np predators that would like to hunt the fish agents in the net-

work cooperatively. The location of predator l at time i is denoted by xpl,i. The

motion of the predators is influenced by two quantities related to the network:

the location of the center gravity of the network and the location of an agent of

interest. Let xgl,i and wl,i denote the estimated locations of the network center

and the agent of interest by predator l at time i. Predators cooperatively esti-

mate xgl,i by using (7.26). However, since predators spread around the network,
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Figure 7.11: State transition diagram of the motion model of predators.

they have different agents of interest. Therefore, each predator has to track wl,i

independently by (7.43).

We model the behavior of predators as a finite-state machine with four possible

states, S0 to S3. The state transition diagram is depicted in Fig. 7.11. Predator

l initially enters state S0 and moves towards the network (i.e., fish school) until

it is close to the network, say, ‖xpl,i − xgl,i‖ < r2. Then the predator moves to

state S1 and tries to encircle the network by moving around it. The predator

monitors the agent that is within a distance rs and is the farthest from the

network center. If the agent is far away from the network center (i.e., an outlier),

say, ‖wl,i−xgl,i‖ > re, the predator enters state S2 and drives the agent back until

it is within the distance re from the network center. After that, the predator

may go back to state S1 or S0 depending on the distance to the network center.

If the distance is greater than 1.5r2, the predator moves to state S0; otherwise it

moves to state S1. Similarly, the predator in state S1 may transit to state S0 if it

is far away from the center, i.e., ‖xpl,i−xgl,i‖ > 1.5r2. Finally, after predators have

encircled the network, predators take turns to attack the network. We assume

that only one predator, say predator 1, will launch an attack to focus on the agile

242



adjustment of network patterns in the network and predators.

7.5.2.1 State S0: Chase

Chasing happens when the distance to the network center is large. To get closer

to the network, the predator sets the velocity vector towards the network center,

i.e.,

qdl,i+1 = u(xgl,i − xpl,i) (7.45)

7.5.2.2 State S1: Encircle

In S1, predators would like to encircle the network within a disc with the origin

at the network center and radius re by moving around the network center. In

addition, predators would like to distribute evenly around the network in order

to make it difficult for the agents in the network to escape. To avoid staying

together, predator l first checks if there are other predators within distance rs.

If yes, say predator j, predator l then determines the direction of predator j by

the inner product

(xpj,i − xgl,i)
T (xpl,i − xgl,i)

⊥ (7.46)

We say predator j lies in the right semicircle of predator l if the inner product is

greater than zero (see Fig. 7.12). Predator l sets the velocity vector towards the

empty semicircle; otherwise, predator l randomly chooses a direction, i.e.,

qdl,i+1 = c2 · u[(xpl,i − xgl,i)
⊥] (7.47)
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Figure 7.12: Location relations between the network and predators in states S0

and S1.

where c2 determines the direction and is equal to 1 or −1 (i.e., counter-clockwise

or clockwise) and

c2 =







1, if (xpj,i − xgl,i)
T (xpl,i − xgl,i)

⊥ < 0

−1, if (xpj,i − xgl,i)
T (xpl,i − xgl,i)

⊥ ≥ 0

−1 or 1 equally likely, if j = φ

(7.48)

That is, if the right semicircle is empty, the predator moves counter-clockwise

(c2 = 1). Similarly, the predator moves clockwise (c2 = −1) if the left semicircle

is empty. Otherwise, the predator moves towards either direction with equal

probability.
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Figure 7.13: Location relations between the network and predators in states S2

and S3.

7.5.2.3 State S2: Trap

Outliers occur when they try to escape from an attack. To push the outlier

back, the predator moves to the front of the outlier and blocks it. However, if

the predator directly approaches the outlier, it may move further away to escape

from the predator. To avoid this situation, the predator keeps a certain distance

to the outlier and moves around the outlier until it blocks the way out (see Fig.

7.13). To do so, the predator sets the velocity vector as follows:

qdl,i+1 =







u(wl,i − xpl,i) if ‖wl,i − xpl,i‖ > 1.5r3

−u(wl,i − xpl,i) if ‖wl,i − xpl,i‖ < r3

c3 · u[(wl,i − xpl,i)
⊥] otherwise

(7.49)

where

c3 =







1, if (wl,i − xgl,i)
T (xpl,i − wl,i)

⊥ ≥ 0

−1, otherwise

(7.50)
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7.5.2.4 State S3: Attack

When attacking, the predator tracks the location and velocity of the nearest

agent and moves towards the predicted location of that agent. That is, the

velocity vector of the predator is updated as:

qdl,i+1 = u(wl,i +△t · ql,i − xpk,i) (7.51)

where ql,i is the estimated velocity of the agent by predator l at time i and is

estimated in the same way as (7.36).

7.5.2.5 Control Mechanism

Predators also avoid collisions and will move apart when they are too close. The

final adjustment of the velocity and location vectors by predator l is as follows:

qpl,i+1 = spqdl,i+1 + γpδpl,i

xpl,i+1 = xpl,i +△t · vpl,i+1

(7.52)

where {sp, γp} are non-negative weighting scalars and

δpl,i =
1

|N p
l | − 1

∑

j∈N p
l
\{l}

(
rp − ‖xpl,i − xpj,i‖

)
u(xpl,i − xpj,i) (7.53)

In (7.53), N p
l is a set of predators within distance rp, i.e.,

N p
l = {j : ‖xpl,i − xpj,i‖ < rp} (7.54)

7.5.3 Simulation Results

For velocity control in (7.42) and (7.52), the parameters are (α1, α2) = (1, 2) and

(sp, γp) = (2.4, 1); the other coefficients remain the same as Section 7.4.1.1. In

addition, the distance parameters are set to r = 3, rp = 5, rs = 30, re = 15 and
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Figure 7.14: Maneuvers of mobile networks in R
2 over time: (a) 0 sec, (b) 15 sec,

(c) 30 sec, (d) 45 sec, (e) 105 sec, and (e) 120 sec.
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Figure 7.15: A simulation showing how predators coordinate their behavior to

encircle a fish school. The behavior of the fish school and the predators are

modeled using diffusion adaptation over networks.
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Figure 7.16: Attacking behavior of predators over time.

(r1, r2, r3) = (10, 20, 15). Figure 7.14 illustrates the maneuver of a mobile network

with single predator over time. The red symbol with bigger size represents a

predator. We observe that the agents in the network move harmoniously and

approach the food source. When the predator tries to attack them, the agents

spread out and regroup after the attack. The simulation results regenerate the

behavior of fish schools in nature.

We also show the maneuver of a mobile network with multiple predators over

time in Fig. 7.15 and 7.16. Figure 7.15 shows that predators encircle the network

in the beginning and then one predator launches an attack. In Fig. 7.16, we
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observe the predators trapping the network while one predator is attacking. The

simulation results emulate the interactions between fish schools and predators in

nature.

7.6 Information Transfer over Adaptive Networks

In this section, we examine the flow of information through a mobile network

when only a small fraction of the agents possess information (e.g., location of a

food source or a predator) and know the desired direction of motion. Here, we

have a restriction that the agents do not exchange information (e.g., intermediate

estimates) so that they do not know whether their neighbors are informed or not.

Nevertheless, at time i, each agent k is able to collect the location and velocity

vectors {xl,i, ql,i} in its neighborhood through observation. The objective of the

mobile network in such context becomes how to identify informed agents and how

to select the combination weights so that the entire network moves towards the

desired direction quickly. In the following, we first reformulate the motion control

mechanism (7.18) under this restricted condition. We then develop a procedure

for agents to quantify the information their neighbors possess and to select the

combination weights so that effective information transfer is attained.

7.6.1 Motion Control Mechanism

We modify rule (7.18) so that the update of the velocity vector at agent k de-

pends only on its available data: {xl,i, ql,i} for l ∈ Nk. The first term in (7.18)

represents the desired direction of motion (e.g., direction towards a desired target

or direction away from danger) at agent k. For simplicity, we assume this desired
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motion is the same for every agent and denote it by

h(wk,i − xk,i) = qd (7.55)

Also, for simplicity, we do not consider noisy regions, so we set α = 0 to eliminate

the effect of the second term in (7.18). The third term in (7.18) denotes the local

estimate of the average velocity of the network. Since agents are not allowed to

exchange information, one way to approximate qgk,i is by linearly combining the

velocity vectors in the neighborhood, i.e.,

qgk,i =
∑

l∈Nk

al,kql,i (7.56)

where the {al,k} are nonnegative combination weights satisfying (2.25). We also

set the parameter β to 1 − λ. Finally, the fourth term in (7.18) relates to the

repulsion and attraction mechanisms. As we will show in Appendix 7.B, this term

converges to zero in the mean. Therefore, we denote this term by a realization

of a random process nk,i, i.e.,

nk,i = γδk,i (7.57)

to account for the perturbation/noise due to repulsion and attraction and assume

that the random process nk,i has zero mean. Based on the above reformulation,

we arrive at the following CTA diffusion strategy for agent k to adjust its velocity

vector:

qgk,i =
∑

l∈Nk

al,kql,i

qk,i+1 = qgk,i + λ(qd − qgk,i) + nk,i

(7.58)

Note that the parameter λ serves as the step-size µk in the CTA diffusion strategy

(2.32). As we showed in Chapter 5, when agent k is uninformed, the parameter

λ is set to zero so that its velocity vector simply becomes a linear combination of

the velocity vectors in its neighborhood along with the repulsion and attraction
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mechanisms. That is, we have that

µk =







λ, if agent k is informed

0, if agent k is uninformed

(7.59)

In the next section, we will derive a combination rule to select the weights

{al,k} to attain effective information transfer, i.e., to converge to the desired

velocity vd as quickly as possible. Before proceeding, we examine the dependence

of convergence of motion control mechanism (7.58) on the combination weights.

We introduce the following error vectors

q̃k,i = qd − qk,i (7.60)

for all k and collect them into the network error vector

q̃i = col{q̃1,i, q̃2,i, · · · , q̃N,i} (7.61)

Then, from (7.58), we arrive at the following recursion for the network error

vector:

q̃i+1 = (INM −M)AT q̃i − ñi (7.62)

where

ñi = col{ñ1,i, ñ2,i, · · · , ñN,i} (7.63)

As indicated in Section 2.2.4, the convergence rate of the error recursion (7.62)

is determined by

r = [ρ((INM −M)AT )]2 (7.64)

Moreover, following the arguments in Lemma 5.3, the convergence rate in (7.64)

is bounded by

(1− λ)2 ≤ r < 1 (7.65)
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As suggested in Section 6.7.2, in order to attain the fastest convergence rate (i.e.,

r = (1− λ)2), agents can employ rules (6.131) and (6.132). However, in general,

agents do not know whether their neighbors are informed or not due to lack of

information exchange. We resolve this issue in the next section by noting that

the speed of an agent usually reflects the quality of its private information. For

example, fish tend to move faster when they sense food or feel danger.

7.6.2 Combination Rules

The choice of the combination weights {al,k} in (7.58) influences the way the

agents interact with each other. Different choices for the weights not only lead

to different patterns of behavior, but they also influence the flow of information

through the network, as revealed by (7.64). In earlier works [48,68], the uniform

combination rule (or averaging strategy) has been employed to regenerate the

collective motion exhibited by fish schooling or bird flocking. That is, the weights

were set to

al,k







1/(nk − 1), if l ∈ Nk \ {k}

0, otherwise

(7.66)

if agent k is uninformed. On the other hand, if agent k is informed, the weights

{al,k} change to the rule employed in [46, 47]:

al,k =







a/(a+ nk − 1), if l = k

1/(a+ nk − 1), if l ∈ Nk \ {k}

0, otherwise

(7.67)

where a is a positive weighting factor. That is, agent k places higher weight

on itself if it is informed. However, we will show in simulations that the uni-

form combination rule fails to transfer information throughout the network in

demanding situations.
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In the following, we develop a combination rule that is suggested in Section

6.7.2 to improve the convergence rate in (7.64). Even though agents do not know

whether their neighbors are informed or not, they may use the speed of their

neighbors to infer how informed they are. To explain this idea, we drop the time

index, denote the velocity for agent k in the 2D−plane by qk = (q1,k, q2,k), and

let sk denote its speed:

sk = ‖qk‖ =
√

q21,k + q22,k (7.68)

In addition, let Ik be an indicator function for agent k whose value is equal to 1

if agent k is informed; otherwise the value is equal to 0. Then, the combination

weights {al,k} can be selected in proportion to the probability that agent l is

informed given its speed sl:

al,k ∝ Pr(Il = 1 | sl) (7.69)

Note that rule (7.69) simplifies to rules (6.131) and (6.132) if agents know whether

their neighbors are informed or not (i.e., Pr(Il = 1 | sl) = 1 or 0). Since agent k

knows whether it possesses information or not, the probability Pr(Ik = 1 | sk) is
simply zero or one. In the following, we give a model for the velocity vector qk

and evaluate the probability Pr(Il = 1 | sl).

To begin with, in the absence of neighbors, we assume that the speed of any

agent k is set as follows:

s◦ =







c0, if Ik = 0

c1, if Ik = 1

(7.70)

with c1 > c0. In this way, when neighbors are not present, agent k moves at speed

c0 when it is uninformed; otherwise, it moves faster at speed c1 = ‖qd‖ towards

a food source or away from danger. However, when neighbors are present, the

motion of agent k will be affected by its neighbors according to (7.58); in this
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case, agent k will not move at a constant speed (c0 or c1). To take this effect into

account, we introduce the following model:

q1,k = s◦ cos θk + n1,k (7.71)

q2,k = s◦ sin θk + n2,k (7.72)

where θk is the moving direction of agent k, and n1,k and n2,k are Gaussian

random variables with zero mean and variance σ2
n. Moreover, θk, n1,k, and

n2,k are assumed to be independent of each other. Expressions (7.71)-(7.72)

model the perturbation caused by the neighbors of agent k. Therefore, the ve-

locity vector qk, given θk = θk, becomes a Gaussian random vector with mean
[

s◦ cos θk s◦ sin θk

]T

and covariance matrix σ2
nI2. Thus, the speed sk in (7.68)

is a Rician random variable with parameters {s◦, σ2
n} [110] and the probability

density function (pdf) of sk, given θk = θk, can be written as:

f(sk | s◦, σ2
n, θk = θk) =

sk
σ2
n

exp

[−(s2k + s◦2)

2σ2
n

]

I0

(
sks

◦

σ2
n

)

(7.73)

where I0(z) is the modified Bessel function of the first kind with order zero, or

I0(z) =

∞∑

m=0

[
(z/2)m

m!

]2

(7.74)

Note that expression (7.73) is independent of θk. Then, the pdf f(sk | s◦, σ2
n) is

identical to (7.73), i.e.,

f(sk | s◦, σ2
n) =

sk
σ2
n

exp

[−(s2k + s◦2)

2σ2
n

]

I0

(
sks

◦

σ2
n

)

(7.75)

Using Bayes’ rule, the probability Pr(Il = 1 | sl) can be evaluated by

Pr(Il = 1 | sl) =
Pr(Il = 1)f(sl | Il = 1)

∑1
m=0 Pr(Il = m)f(sl | Il = m)

(7.76)

where

f(sl | Il = m) = f(sl | s◦ = cm, σ
2
n) (7.77)
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Since agents do not have prior information about whether other agents are in-

formed or not, they simply set the prior probabilities, Pr(Il = 1) and Pr(Il = 0),

to equal values (namely, 1/2). Substituting the pdf from (7.73) into (7.76), we

arrive at

Pr(Il = 1 | sl) =



1 + exp

(
c21 − c20
2σ2

n

) I0

(
slc0
σ2
n

)

I0

(
slc1
σ2
n

)





−1

(7.78)

However, the Bessel function (7.74) is difficult to compute. We can use the

following approximation

I0

(
slc0
σ2
n

)

I0

(
slc1
σ2
n

) ≈ exp

[−sl(c1 − c0)

σ2
n

]

(7.79)

and expression (7.78) simplifies to

Pr(Il = 1 | sl) ≈
{

1 + exp

[
c1 − c0
σ2
n

(
c1 + c0

2
− sl

)]}−1

(7.80)

Expressions (7.78) and (7.80) are depicted in Fig. 7.17 with parameters (c1, c0, σ
2
n) =

(4, 1, 1). We observe that the two curves are close to each other. Note that ex-

pression (7.80) admits a physical interpretation. The probability (7.80) attains

the value of 0.5 when sl = (c1+c0)/2, which is the middle point of c0 and c1. That

is, when the speed of one agent passes the middle point, it has higher probability

of being informed. In addition, the slope of the curve near the middle point is

determined by (c1 − c0)/σ
2
n. If the difference between the speed of informed and

uninformed agents is large, agents have better ability of distinguishing whether

other agents are informed or not. We assume that every agent knows the values

of the parameters (c1, c0, σ
2
n).

We conclude from (7.69) and Fig. 7.17 that the resulting combination rule

exhibits a sigmoidal shape so that a agent places higher weights on faster-moving

agents. In this way, when a fast-moving agent takes a sharp turn, for example,
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Figure 7.17: Sigmoidal combination rules: the larger the speed of a agent, the

larger the weight assigned to it.

the effect of this behavior will ripple through the network at a faster rate and the

remaining agents will follow suit. The choice of the combination rule (7.80) is

similar to the decision-making process in animal groups, as we studied in Chapter

6. Motivated by the quorum response in [138], another way (recall (6.34)) to

determine the probability Pr(Il = 1 | sl) is

Pr(Il = 1 | sl) =
sKl

sKl + cK
(7.81)

Expression (7.81) is also shown in Fig. 7.17 for (c,K) = (2.5, 4). Similar to (7.80),

expression (7.81) attains the value of 0.5 when sl = c and the slope of the curve

near the middle point is determined by K. We also compare the performance of

the two sigmoidal rules (7.80) and (7.81) in simulations.
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Figure 7.18: Maneuver of fish schools with the two sigmoidal (top (7.80) and

middle (7.81) ) and uniform (bottom (7.66)-(7.67)) combination rules over time

(a) t = 0 (b) t = 0.4 (c) t = 1.2 sec.
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7.6.3 Simulation Results

We model the information propagation in fish schools in [136] and compare three

combination rules: two sigmoidal rules from (7.80) with (c1, c0, σ
2
n) = (4, 1, 1)

and from (7.81) with (c,K) = (2.5, 4), and the uniform rule (7.66) and (7.67)

with a = 5. The step-sizes are set to λ = 0.6 for informed agents. Figure

7.18 shows simulation results for a network with N = 100 agents. Initially, the

velocities of the agents are set to qk = (1, 0) for all k. To choose NI threatened

(informed) agents, we first pick up the agent with the largest x-coordinate and

then choose NI − 1 agents that are closest to the chosen agent. In simulations,

we set NI = 2. The desired velocities of the informed agents are set to qd =

(−4, 0) for 5 time steps with △t = 0.1 sec. The resulting maneuver of the

networks using the sigmoidal and uniform combination rules are shown in Fig.

7.18. The agents moving towards the positive (negative) x-direction are shown in

red (blue). We observe that the motion of the informed agents propagates rapidly

through the entire network if the network employs the sigmoidal combination

rules (7.80) or (7.81), while the network using the uniform combination rule (7.66)

fails to transfer the motion through the entire network. To compare these three

combination rules quantitatively, we measure the magnitude and orientation of

the velocity of the center of mass of the network, qgi in (7.17), relative to the

desired velocity, qd. That is, we introduce

△s(i) = (‖qgi ‖ − ‖qd‖)2 (7.82)

△o(i) = [∠(qgi )− ∠(qd)]2 (7.83)

These two quantities are averaged over 100 experiments and shown in Fig. 7.19.

We observe that the desired velocity of the informed agents is successfully trans-

ferred through the network if the network adopts the sigmoidal combination rules.

Moreover, comparing the two sigmoidal rules, we observe that rule (7.80) out-
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Figure 7.19: Magnitude, △s(i), and orientation, △o(i), of the velocity of the

center of mass relative the the trigger velocity.

performs rule (7.81). The results indicate that if the information of the agents

is modulated according to their speed, this mechanism improves the efficiency of

information transfer over the network.

7.7 Concluding Remarks

In this chapter, we developed diffusion strategies for mobile networks. The strate-

gies involve two diffusion steps: one for estimating the location a target and an-

other for tracking the center of mass of the network. The strategies also include

velocity and location control mechanisms to dictate the motion of the agents.

The resulting motion mechanism is able to bypass regions of bad signal condi-

tions and help the network move toward the desired target. We illustrated via

simulations how the algorithms can emulate the coherent motion of fish schools

and bypass obstacles (described as high noise regions). The adaptation and mo-

tion control mechanisms are further used to emulate the interactive behavior

260



between fish schools and predators. The algorithm helps explain how fish schools

avoid attacks from predators and how predators cooperatively hunt prey. We

also examined mobile networks with small fraction of informed agents to model

the effective information transfer among fish. We showed how the speed informa-

tion can be exploited and incorporated into the design of the combination rules

for mobile networks. The analysis leads to a sigmoidal function construction,

the simulation show that the proposed combination rule leads to more effective

information flow over networks of mobile agents.

7.A Formation Control Using Averaging Consensus

Collective motion with localized interactions has been extensively studied in the

literature [25, 27, 45, 48, 135, 161, 169]. One useful model for generating collective

motion over multi-agent networks has been proposed by [120] and is based on the

agents applying three rules of behavior:

1. Velocity matching: agents attempt to match the velocity of their neighbor-

ing agents.

2. Flock centering: agents attempt to stay close to neighboring agents.

3. Collision avoidance: agents avoid collision with neighboring agents.

These motion control mechanisms were initially verified by means of computer

simulations until more formal studies appeared in the control literature [55, 56,

68, 100, 107, 109, 118]. References [108, 119] provide useful overviews

In this appendix, we examine the motion control mechanism from [107] and

compare it with the proposed mechanism in this Chapter (see Algorithm 7.1).

The mechanism in [107] is described in continuous-time where we denote by
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{xk(t), qk(t)} the location and velocity vectors of node k at time t. In order to

achieve the three rules proposed by [120], every node k adjusts its location and

velocity vectors according to the following rule:

ẋk = qk (7.84)

q̇k = −∇xk
U(x)−∇xk

V (x)−∇qkW (q) (7.85)

where the vectors {x, q} collect the {xk, qk} into block vectors, i.e.,

x = col{xk} and q = col{qk}. (7.86)

There are three components in updating the velocity of node k in (7.85). The

first component in (7.85), −∇xk
U(x), helps the agents move towards a direction

of interest. For example, when the agents would like to move towards a target

located at w◦, we then set the function U(x) to

U(x) =
1

2

N∑

k=1

‖w◦ − xk‖2 (7.87)

and the vector −∇xk
U(x) becomes the vector pointing to w◦ from xk, i.e.,

−∇xk
U(x) = w◦ − xk (7.88)

The second component in (7.85), −∇xk
V (x), enforces attraction and repulsion

between two agents and the function V (x) is constructed as [56]:

V (x) =
1

2

N∑

k=1

∑

l 6=k

J(‖xl − xk‖) (7.89)

with the function J(‖xl−xk‖) representing the attraction and repulsion between

agents k and l, and its value depending on the distance between these two agents.

Then, the term −∇xk
V (x) becomes

−∇xk
V (x) = −

∑

l 6=k

∇xk
J(‖xl − xk‖)

=
∑

l 6=k

δ(xl − xk) (7.90)
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where we denoted the function −∇xk
J(‖xl − xk‖) by δ(xl − xk). In [109], the

function J(‖xl − xk‖) has a global minimum at ‖xl − xk‖ = r. Note that even

though the summation in (7.90) is over all agent indices (except index k), the

function δ(y) shall be selected to satisfy

δ(y) = 0 for ‖y‖ ≥ R (7.91)

so that the interaction between any two agents k and l vanishes to zero if the

distance between them is greater than a certain distance R. The third component

in (7.85), W (q), enforces alignment by setting

W (q) =
1

2

N∑

k=1

∑

l∈Nk

‖ql − qk‖2 (7.92)

so that

−∇qkW (q) =
∑

l∈Nk

(ql − qk) (7.93)

That is, the function −∇qkW (q) is a continuous-time averaging consensus step

studied in [109]; a discrete-time counterpart is studied in [68, 100, 118]. As a

result, agent k updates its velocity vector according to the rule:

q̇k = (w◦ − xk) +
∑

l 6=k

δ(xl − xk) +
∑

l∈Nk

(ql − qk) (7.94)

The following result is established in [107].

Theorem 7.1. If every agent k employs the motion control mechanism in (7.84)

and (7.94), then it holds that

1. The location vectors {xk} converge to a local minimum of U(x) + V (x).

2. The velocity vectors {qk} converge to the zero vector.

Proof. See Theorem 3 in [107].
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The first statement in Theorem 7.1 implies that the location vectors {xk} converge
to the vectors {x◦k} satisfying

(w◦ − x◦k) +
∑

l 6=k

δ(x◦l − x◦k) = 0 (7.95)

for all k. That is, in steady-state, all agents achieve balance between two forces:

the force to move towards the target and the force to keep a safe distance to each

other. Moreover, in steady-state, all agents stop moving.

For ease of comparison, we rewrite the motion control mechanism from the

body of the chapter as (we set α = 0 in (7.18)):

qk,i+1 = λh(wk,i − xk,i) + γ
∑

l 6=k

δ(xl − xk) + βqgk,i (7.96)

xk,i+1 = xk,i +∆t · qk,i+1 (7.97)

where from (7.18) and (7.20), the function δ(y) in (7.96) is defined as

δ(y) =







(‖y‖ − r) y
‖y‖ , if ‖y‖ ≤ R

0, otherwise

(7.98)

Comparing (7.96) with (7.94), we observe that there are three differences. First,

in this chapter, we studied motion control in discrete-time with constant pa-

rameters {λ, β, γ,∆t}. To ensure the convergence of (7.96)-(7.97), we needed to

examine conditions on the parameters {λ, β, γ,∆t}. Second, in the first term

in (7.96), we replace the location of the desired target w◦ in (7.94) by the local

estimate wk,i and we also constrain the speed at agent k using the function h(·)
in (7.12). Therefore, the agents using (7.96)-(7.97) are endowed with learning

and adaptation abilities to estimate the location of the target on the fly. In this

way, the agents do not simply perform collective motion, they have an objec-

tive and they attain the objective through distributed learning strategies. Such
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generalization enables us to model sophisticated behavior in nature, such as the

prey-predator behavior. Finally, in the third term in (7.96), we replace the aver-

aging consensus step for velocity by the local estimate qgk,i of the velocity of the

center of mass of the network. It is shown in Appendix 7.B that agents move

more coherently by using the term qgk,i. In sum, the analysis in Appendix 7.B

extends Theorem 7.1 to the motion control mechanism in discrete-time and with

stochastic approximations (see Theorems 7.2 and 7.3). These extensions com-

pound the complexity of the analysis. This is because the data observed by the

agents are noisy and the estimates at the agents are random. In other words,

relation (7.96) is inherently stochastic, rather than deterministic, as in (7.94).

In addition, the learning process and motion control mechanism are intertwined

with each other. One of the main contributions in this chapter is that we are

able to study both processes under reasonable conditions.

7.B Performance Analysis of Mobile Diffusion Networks

Studying the performance of the mobile adaptive network is challenging for a cou-

ple of reasons: (a) the control of the velocity vector (7.18) depends generally in a

nonlinear manner on the target estimate, wk,i, and on the agent locations, {xk,i};
(b) the adaptive updates for the estimates wk,i and q

g
k,i represent stochastic up-

dates with nonlinear dependencies on the regression and measurement data; (c)

the local estimation errors and measurement noise propagate through the net-

work during the cooperation process; and (d) the agents influence each other

through the network topology. For these reasons, some simplifying assumptions

are necessary to help reveal the essence of the network dynamics to first-order

and for sufficiently small step-sizes. Simplifying assumptions are common even in

the literature of stand-alone adaptive filters (such as LMS) because, by their very
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nature, adaptive filters are nonlinear, stochastic, and time-varying systems [123].

When a multitude of adaptive agents are connected through a topology and al-

lowed to influence each other’s behavior, then the difficulty of the performance

analysis is compounded relative to stand-alone filters. For this reason, we mo-

tivate and introduce some approximations to facilitate the analysis. Later, the

simulations reveal that there is good match between the theoretical results ob-

tained under the assumptions and the simulated behavior of the network.

There are several error quantities of interest to us which are defined below:

w̃k,i = w◦ −wk,i (error by agent k in estimating w◦)

q̃
g
k,i = q

g
i − qgk,i (error by agent k in tracking qgi )

q̃k,i = q
g
i − qk,i (velocity of agent k relative to qgi )

x̃k,i = x
g
i − xk,i ( location of agent k relative to xg

i )

x̃
g
i = w◦ − xg

i (location of the center of mass relative to w◦)

Note that we are now using boldface letters to represent random quantities. The

first two error quantities are related to estimation problems (estimation of w◦

and tracking of qg) and they measure how far the estimates at the agents are

away from the true values. The remaining error quantities pertain to the motion

of the network. The third quantity measure the coherence of the motion by the

mismatch towards the velocity of the center of mass while the last two quantities

measure the locations of the agents relative to the center of mass and the loca-

tion of the center of mass relative to w◦. Among other factors, we are initially

interested in deriving conditions that help ensure that Ewk,i → wo, Exg
i → wo

E[qgk,i − qgi ] → 0, and E[qk,i − qgi ] → 0. Under small step-size conditions, these

results would mean that, on average, the agents in the network are able to es-

timate and approach w◦ (global objective) and are able to estimate and align

their motion with the center of mass (synchronized motion). Note that we do
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not expect the error quantity x̃k,i to converge to zero in the mean because of

the assumed repulsion between the agents. We are also interested in deriving

expressions for the mean-square errors E‖w̃k,i‖2, E‖q̃gk,i‖2, and E‖q̃k,i‖2 in order

to assess closely how well the agents approach w◦ and qgi .

As is evident from equations (7.19)-(7.20) and Algorithm 7.1, the evolution of

the above error quantities influence each other. For example, the velocity update

(7.18) depends on the velocity estimate, qgk,i, which in turn relies on the current

velocity vector. For this reason, we find it useful to derive a state-space model

that relates the evolution of several quantities of interest. Subsequently, we de-

rive conditions on the parameters {µk, νk, λ, α, β, γ} to ensure the stability of the

model. Since we need to keep track of several error quantities, it is understand-

able that the notation can quickly become cumbersome. Nevertheless, the main

objective is clear: we are deriving recursions for the error quantities in order to

capture their inter-dependencies through a state-space model. We can interpret

the various error quantities across all agents as entries in a state vector for the

network. By studying the evolution of the state vector, we can gain insights into

the operation of the network.

7.B.1 Recursions for Estimation Errors

We begin by evaluating recursions for the estimation errors w̃k,i and q̃
g
k,i. The

recursion for w̃k,i can be obtained from the results of Section 2.2.1. Some algebra

shows that the network error vector w̃i evolves according to the relation:

w̃i = AT (INM −M)w̃i−1 −ATMsi (7.99)

where

si = col
{
η1,i,η2,i, . . . ,ηN,i

}
(7.100)
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The recursion for q̃gk,i can be derived in the similar manner. We introduce the

diagonal matrix of step-sizes across the network:

Mq = diag{ν1IM , ν2IM , . . . , νNIM} (7.101)

as well as the extended matrices of the combination matrices {C,Aq} (containing

the combination weights {cl,k} and {aql,k}, respectively):

C = C ⊗ IM and Aq = Aq ⊗ IM (7.102)

We also introduce the network error vectors:

q̃
g
i = col

{
q̃
g
1,i, q̃

g
2,i, . . . , q̃

g
N,i

}
(7.103)

q̃i = col
{
q̃1,i, q̃2,i, . . . , q̃N,i

}
(7.104)

Then, using (7.28) and applying the slow-variation approximation qgi ≈ q
g
i−1

(this approximation is justified in the next section), we can verify that q̃gi evolves

according to the recursion:

q̃
g
i = Aq

T (I −Mq)q̃
g
i−1 +Aq

TMqCT q̃i (7.105)

Note that in contrast to the recursion for w̃i, the recursion for q̃gi in (7.105)

depends on the motion of the agents.

7.B.2 Recursions for Motion Behavior

7.B.2.1 Far-Field Approximation

By far field, we mean that the agents are far from the target so that ‖w◦−xk,i‖ ≫
s. In addition, we assume that the network satisfies ‖x̃g

i ‖ ≫ ‖x̃k,i‖ for all k. This

means that the agents are close to each other compared to the distance of the

target to the center of mass. Note that this assumption imposes a constraint
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on the safe distance r in (7.20) that an agent keeps from its neighbors. This is

because r influences the size of the network, which is defined as the maximum

‖x̃k,i‖ over all k. Therefore, the distance r should be small enough such that the

assumption ‖x̃g
i ‖ ≫ ‖x̃k,i‖ holds in the far field. Another assumption we will

use in the analysis is that ‖x̃g
i ‖ ≫ ‖w̃k,i‖. This assumption imposes a constraint

on how the noise level varies over the spatial region and it can be motivated as

follows. Consider the measurement pk,i from model (7.7). The noise covariance

matrix is expected to vary in proportion to the distance between the target and

the agent since measurements tend to be noisier at farther distances. We assume

that Rη,k,i satisfies a model of the form (7.29). In this case, as the agent gets

closer to the target, i.e., as ‖w◦ − xk,i‖ becomes smaller, the noise term ηk,i in

(7.7) will become smaller. Since through filtering and processing, agent k obtains

an estimate wk,i for w◦ that is expected to be an improvement over the raw

measurement, pk,i, then the variance of w◦ −wk,i is expected to be smaller than

the variance of w◦ − pk,i, especially as i→ ∞. That is, we expect

E‖w̃k,i‖2 ≤ E‖ηk,i‖2 = Tr(Rη,k,i) (7.106)

Dividing both sides by ‖w◦ − xk,i‖2, we find that the following relation should

hold
E‖w̃k,i‖2

‖w◦ − xk,i‖2
≤ E‖ηk,i‖2

‖w◦ − xk,i‖2
= κM (7.107)

If κ is small enough (we choose κ = 0.01 in the simulation), then it follows that

the variance E‖w̃k,i‖2 is small in relation to ‖w◦ − xk,i‖2. Using the fact that

E‖w̃k,i‖2 ≥ (E‖w̃k,i‖)2 and

w◦ − xk,i = x̃
g
i + x̃k,i ≈ x̃g

i (7.108)

we see that it is reasonable to assume that ‖x̃g
i ‖ ≫ E‖w̃k,i‖.
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To examine the motion behavior we simplify (7.18) by setting α ≈ 0. That is,

we ignore the influence of the SNR levels in (7.18) (this assumption reduces the

influence of the time variations in the noise levels and facilitates our first-order

analysis). Referring to the velocity adjustment rule (7.18) in the far field, i.e.,

when ‖w◦ − xk,i‖ ≫ s, we rewrite it as:

qk,i+1 = λ · s wk,i − xk,i

‖wk,i − xk,i‖
+ βqgk,i + γδk,i

≈ λ · s x̃
g
i

‖x̃g
i ‖

+ βqgi − βq̃gk,i + γδk,i

(7.109)

where we used

wk,i − xk,i = x̃
g
i + x̃k,i − w̃k,i (7.110)

and the assumptions ‖x̃g
i ‖ ≫ ‖x̃k,i‖ and ‖x̃g

i ‖ ≫ ‖w̃k,i‖. The first two terms in

(7.109) represent the motion of the center of mass, which helps the agents move

coherently, while the last two terms in (7.109) refer to the disturbance due to the

estimation error q̃gk,i and the attraction and repulsion effect δk,i. Using

N∑

k=1

δk,i = 0 (7.111)

and the approximation

1

N

N∑

k=1

q̃
g
k,i ≈ 0 (7.112)

for large number of agents, we obtain from (7.109) a recursion for qgi (defined in

(7.17)) as follows:

q
g
i+1 ≈ λ · s x̃

g
i

‖x̃g
i ‖

+ βqgi (7.113)

Moreover, since the speed of the agents is constrained and △t is small, it is

reasonable to assume that x̃g
i ≈ x̃

g
i−1 and then the approximation qgi+1 ≈ q

g
i .

Thus, qgi can be simplified to

q
g
i+1 ≈

λ · s
1− β

x̃
g
i

‖x̃g
i ‖

(7.114)
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That is, qgi converges to the direction of the target from the center of mass.

Note that to make the network move towards the target we require at least that

λ · s/(1 − β) > 0. To obtain a recursion for q̃i in the far field, we introduce the

network vectors:

x̃i = col {x̃1,i, x̃2,i, . . . , x̃N,i} (7.115)

δi = col {δ1,i, δ2,i, . . . , δN,i} (7.116)

From relations (7.109) and (7.114), we obtain

q̃i+1 = −γδi + βq̃gi (7.117)

It remains to figure out a recursion for δi. To do this, we note that

xk,i − xl,i = −x̃k,i + x̃l,i (7.118)

and that we can write

δi = ∇x̃i
f(x̃i) (7.119)

in terms of the gradient vector of the function:

f(x̃i) =
1

4

N∑

k=1

∑

l∈Nk\{k}

(‖x̃k,i − x̃l,i‖ − r)2 (7.120)

In addition, from (7.9) and the definitions of the error quantities, {x̃i, ṽi}, we
have

x̃i+1 = x̃i +△t · q̃i+1 (7.121)

Using a first-order Taylor series approximation and (7.121), we obtain a recursion

for δi:

δi+1 ≈ δi +D · (△t · q̃i+1)

= (I −△t · γD) δi +△t · βDq̃gi
(7.122)

where D = ∇2
x̃i
f(x̃i).
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7.B.2.2 Near-Field Approximation

Under the assumptions we used to establish the recursions (7.117) and (7.122) in

the far field, we conclude that, under certain conditions (see (7.136) and (7.139)

further ahead), the agents of the network will move coherently along the direction

to the target relative to the center of mass in both the mean and mean-square

sense. Therefore, the agents eventually enter the near field of the target, where

‖w◦ − xk,i‖ < s. In this case, we can simplify (7.12) by setting h(wk,i − xk,i) ≈
wk,i − xk,i. We also ignore the influence of the SNR levels by setting α = 0.

Then, the velocity update (7.18) simplifies to

qk,i+1 ≈ λ · (wk,i − xk,i) + βqgk,i + γδk,i

= λx̃g
i + βqgi

︸ ︷︷ ︸

Center of mass

+ λx̃k,i + γδk,i
︸ ︷︷ ︸

Internal disturbances

− (λw̃k,i + βq̃gk,i)
︸ ︷︷ ︸

Estimation errors

(7.123)

It is seen that the velocity vector consists of three components. The first com-

ponent relates to the motion of the center of mass (its velocity and its location

relative to the target). This factor helps the center of mass approach the target.

The second component in (7.123) refers to internal disturbances in the position-

ing of the agents (their locations relative to each other and relative to the center

of mass). These sums reflect a competing trend. The term λx̃k,i represents the

desire by agent k to get to the center of mass, which can also be interpreted as

the desire to approach the target when the center of mass is close to the target,

while the second term γδk,i reflects the desire by this same agent to maintain a

safe distance from its neighbors. For notation simplicity, we introduce

δ̃k,i = λx̃k,i + γδk,i (7.124)

and its corresponding network vector

δ̃i = λx̃i + γδi. (7.125)
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Finally, the third term in (7.123) is caused by the errors in estimating w◦ and

tracking qgi . Using
N∑

k=1

δ̃k,i = 0 (7.126)

and approximations (7.112) and

1

N

N∑

k=1

w̃k,i ≈ 0 (7.127)

we can obtain from (7.123) a recursion for qgi in near field as follows:

q
g
i+1 ≈ βqgi + λx̃g

i (7.128)

Note that since the center of mass is close to the target, under certain conditions

(see (7.168)), both x̃g
i and q

g
i will be close to zero vector in the mean. Therefore,

it is also reasonable to apply the approximation qgi+1 ≈ q
g
i in the near field. To

obtain a recursion for q̃i, from relations (7.123) and (7.128), we obtain

q̃i+1 = −δ̃i + λw̃i + βq̃gi (7.129)

That is, under the assumed approximations, the velocity of agent k relative to

the center of mass is totally determined by its own internal disturbance and

estimation errors. Moreover, a recursion for δ̃i can be obtained from (7.121) and

(7.122) as follows:

δ̃i+1 = δ̃i +△t (λI + γD) q̃i+1 (7.130)

7.B.3 State-Space Model in the Far Field

7.B.3.1 Mean Stability

We are now able to collect the results into a state-space model for the far field.

Introduce the state vector:

ỹi , col{q̃gi , δi}

273



Using (7.105), (7.117), and (7.122), we find that ỹi satisfies the state-space model:

ỹi = Ay · ỹi−1 + vy,i (7.131)

where

Ay =




G −γ · H

△t · βD I −△t · γD



 (7.132)

G , Aq
T (I −Mq) + βAq

TMqCT (7.133)

H , Aq
TMqCT (7.134)

and the noise term vy,i is used to capture the error introduced by the approxima-

tions and is assumed to be zero mean. Note from the last row that the coefficient

matrix Ay depends on the data through the dependence of the entries in this

row on x̃i (through the Hessian matrix D). Nevertheless, the factor D appears

multiplied by △t and γ or β. For sufficiently small parameters, the influence

of this data dependence can be neglected. Therefore, we shall assume that the

matrix Ay is independent of the error vector ỹi−1; this condition is reminiscent of

the independence assumption in the adaptive filtering literature, which has been

shown to match well with practical results for sufficiently small step-sizes in the

adaptation process for stand-alone filters [123]. Under this condition, we take

expectations of both sides of (7.131) and get:

E[ỹi] = E[Ay] · E[ỹi−1] (7.135)

We conclude that, under the aforementioned independence assumption, the net-

work is stable in the mean (i.e., Eq̃gk,i and Eδk,i converge to zero) if the parameters

{νk, β, γ} satisfy

ρ (E[Ay]) < 1 (7.136)
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in terms of the spectral radius of E[Ay]. Although the evolutions of the state

variables in ỹi are intertwined, an approximate way to set the adaptation param-

eters to satisfy (7.136) is to choose {νk, β, γ} such that the diagonal components

of the matrix Ay have spectral radii less than one, i.e.,

ρ (G) < 1 and ρ (I −△t · γD) < 1 (7.137)

The rationale is that the off-diagonal submatrix −γ · H in Ay may be ignored

when νk and γ are small. Then, the matrix Ay becomes approximately lower

block triangular. Now, recall that the norm ‖A‖∞ denotes the maximum absolute

row sum of a matrix and that it holds that ρ(A) ≤ ‖A‖∞ for any A. Using the

triangular inequality of norms and the sub-multiplicative property of the∞-norm,

we have

ρ (G) ≤ ‖Aq
T (I −Mq) + βAq

TMqCT ‖∞

≤ ‖Aq
T (I −Mq)‖∞ + ‖βAq

TMqCT‖∞

≤ ‖Aq
T‖∞

(
‖(I −Mq)‖∞ + |β|‖Mq‖∞‖CT‖∞

)

= ‖(I −Mq)‖∞ + |β|‖Mq‖∞ (7.138)

where we used property ‖Aq
T‖∞ = ‖CT‖∞ = 1 in the last equality. Therefore,

condition (7.137) is satisfied if

|1− νmin|+ |βνmax| < 1 (7.139)

where νmin = min{νk} and νmin = max{νk}. To derive an approximate condition

on γ that ensures the convergence of δi to zero we argue as follows. Observe that

under the assumptions ‖x̃g
i ‖ ≫ ‖x̃k,i‖ and ‖x̃g

i ‖ ≫ ‖w̃k,i‖, the noise term vy,i

in (7.131) is close to zero, and so is q̃gi in steady state. Thus, we can ignore the

term q̃
g
i in (7.117) and expression (7.121) can be approximately written as

x̃i+1 ≈ x̃i −△t · γδi (7.140)
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Now consider the function f(x̃i) in (7.120). By Taylor series expansion, we have

f(x̃i+1) ≈ f(x̃i) +∇x̃i
f(x̃i)

T (x̃i+1 − x̃i) +
1

2
(x̃i+1 − x̃i)

TD(x̃i+1 − x̃i) (7.141)

Using the fact that D ≤ NI from Appendix 7.C and (7.119), we obtain the

following inequality

f(x̃i+1)− f(x̃i) ≤ △t · γ
(

−1 +
1

2
△t · γN

)

‖δi‖2 (7.142)

If the parameter γ is chosen such that

0 < △t · γN < 2 (7.143)

then f(x̃i) is a decreasing sequence. But since f(x̃i) ≥ 0, we conclude that f(x̃i)

is a convergent sequence and δi will be close to zero in steady state.

From the previous discussion, we find that the state vector ỹi converge to zero

in the mean. From (7.117), we conclude that the velocity vector for each agent

converge to qgi in the mean as well. We then arrive at the following result.

Theorem 7.2 (Far-field convergence). Assume the agents are in the far-field so

that

‖w◦ − xk,i‖ ≫ s and ‖w◦ − xg
i ‖ ≫ ‖xg

i − xk,i‖ (7.144)

for all k. If the parameters {νk, β, γ} are selected to satisfy

1. |1− νmin|+ |βνmax| < 1

2. 0 < ∆t · γN < 2

then it holds that

E[qgi − qgk,i] → 0 and E[qgi − qk,i] → 0 (7.145)

for all k where qgi has the form

q
g
i+1 ≈

λs

1− β

w◦ − xg
i

‖w◦ − xg
i ‖

(7.146)
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The above result verifies that in the far-field, the agents achieve coherent motion

and they moves along the direction to the target relative to the center of mass.

In the following, we proceed to evaluate the mean-square performance for error

quantities in order to assess how close to zero the errors get.

7.B.3.2 Mean-Square Performance for q̃gi and q̃i

To examine the mean-square performance of the algorithm, we rely on the deriva-

tions in Section 2.2.3. In the following, we argue that qgk,i and qk,i converge to the

direction of the target from the center of mass of the network in the mean-square

sense and derive expressions for the resulting mean-square errors. From (7.105)

and (7.117), we rewrite the recursion for q̃gi as:

q̃
g
i ≈ Gq̃gi−1 − γHδi−1 (7.147)

Now, we start from (7.147) and verify that the following relation holds under

expectation (see also [34]):

E‖q̃gi ‖2σ = E‖q̃gi−1‖2Fqσ + [vec(−2γGΓi−1HT + γ2HΠi−1HT )]Tσ (7.148)

where Γi = Eq̃gi δ
T
i , Πi = Eδiδ

T
i and

Fq = GT ⊗ GT (7.149)

Note that we are considering the cross covariance matrix Γi because q̃
g
i and δi are

intertwined. We examine the steady-state velocity mean-square-error (MSE) for

large time î. Then it is reasonable to assume that the matrices Γî and Πî converge

to constant matrices Γ and Π, respectively, and so does E‖q̃g
î
‖2σ. Moreover,

assume the step sizes {νk, β} are chosen such that ρ(G) < 1 (see (7.139)), then the

network MSE for tracking qgi can be obtained by setting σ = (I−Fq)
−1 ·vec(INM)

277



in (7.148), i.e.,

MSEq ,
1

N

N∑

k=1

E‖qg
î
− qg

k,̂i
‖2

=
1

N
[vec(−2γGΓHT + γ2HΠHT )]T (I − Fq)

−1 · vec(INM)

(7.150)

We proceed to evaluate the mean-square performance for q̃i, which measures

the coherence of collective motion of the network. We start from (7.117) and

consider the error quantity, q̃k,i, of agent k. The following relation holds under

expectation

E‖q̃k,i‖2 = β2
E‖q̃gk,i‖2 + γ2E‖δk,i‖2 − 2βγE[δTk,iq̃

g
k,i] (7.151)

We introduce the network mean-square disagreement, Dq, on velocity:

Dq ,
1

N

N∑

k=1

E‖qg
î
− qk,̂i‖2

= β2MSEq +
1

N

[
γ2Tr(Π)− 2βγTr(Γ)

]

(7.152)

Expressions (7.150) and (7.152) measure how well the network performs in track-

ing and moving coherently with the velocity of the center of mass, qgi . These

expressions capture the influence of various components on network performance.

7.B.4 State-Space Model in the Near Field

7.B.4.1 Mean Stability

The state-space model in the near field can be derived in a similar manner.

Introduce the state vector:

z̃i , col{w̃i, q̃
g
i , δ̃i} (7.153)

Using (7.99), (7.105), (7.129), and (7.130), we find that z̃i satisfies the state-space

model:

z̃i = Az · z̃i−1 + vz,i (7.154)
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where

Az =








AT (I −M) 0 0

λH G −H
△t · Dλ △t · βDλ I −△t · Dλ








and vz,i =








−ATMsi

0

0








(7.155)

and Dλ = λI+γD. Using the same argument and for sufficiently small step-sizes,

we assume that the matrix Az is independent of the error vector z̃i−1. We then

take expectations of both sides of (7.154) and get:

E[z̃i] = E[Az] · E[z̃i−1] (7.156)

We conclude that the network is stable in the mean (i.e., Ew̃k,i, Eq̃
g
k,i, and Eδ̃k,i

converge to zero) if the parameters {µk, νk, λ, β, γ} satisfy

ρ (E[Az]) < 1 (7.157)

If we examine (7.99), we observe that the recursion for Ew̃i does not depend

on the other error quantities that appear in the state-vector z̃i. Therefore, Ew̃i

converges to zero if

ρ
(
AT (I −M)

)
< 1 (7.158)

which is satisfied by setting

0 < µk < 2 (7.159)

for all k [34]. Again, to deal with the dependence between the other two state

variables in z̃i, we approximate the matrix Az to a block lower triangular matrix

since H in (7.134) can be ignored for small step-sizes. An approximate way to

satisfy (7.156) is to choose {νk, λ, β, γ} such that

ρ (G) < 1 and ρ (I −△t(λI + γD)) < 1 (7.160)

279



The first condition has been discussed before. For the second condition in (7.160),

we use the same technique in the far field. Since the agents are close to the target

in the near field, according to the noise model in (7.29), the noise term vz,i in

(7.154) will become small. Therefore, the error quantities {w̃i, q̃
g
i } will be closer

to zero in steady state. From (7.129), expression (7.121) can be approximately

written as

x̃i+1 ≈ x̃i −△t · δ̃i (7.161)

Now we introduce the function

h(x̃i) ,
λ

2
‖x̃i‖2 + γf(x̃i) (7.162)

and note that

∇x̃i
h(x̃i) = δ̃i. (7.163)

By Taylor series expansion and the fact that D ≤ NI, we obtain

h(x̃i+1)− h(x̃i) ≤
[

−1 +
1

2
(λ+ γN)

]

‖δ̃i‖2 (7.164)

Then, based on same argument in (7.142) in the far field, δ̃i is close to zero in

steady state if the parameters {λ, γ} are chosen such that

△t(λ+ γN) < 2 (7.165)

The previous analysis focused on error quantities at each agent. We now

investigate how the velocity and location of the center of mass evolve over time.

Relation (7.128) shows the evolution of the velocity of the center of mass. This

recursion depends on the error vector x̃g
i , whose recursion can be derived as

follows:

x̃
g
i+1 = x̃

g
i −△t · qgi+1

= (1−△t · λ)x̃g
i −△t · βqgi

(7.166)
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We then can write down a state-space model for qgi and x̃g
i :




q
g
i+1

x̃
g
i+1



 =




βI λI

−△t · βI (1−△t · λ)I








q
g
i

x̃
g
i



+ vg,i (7.167)

where vg,i is an error term to compensate the approximation error and is assumed

to be zero mean. Suppose that the parameters {µk, νk, λ, β, γ} satisfy condition

(7.157) in addition to the following condition:

ρ








β λ

−△t · β 1−△t · λ







 < 1 (7.168)

Then, qgi and x̃g
i will converge to zero in the mean.

We summary the above results as follows.

Theorem 7.3 (Near-field convergence). Assume the agents are in the near-field

so that

‖w◦ − xk,i‖ < s (7.169)

for all k. If the parameters {µk, νk, λ, β, γ} are selected to satisfy

1. 0 < νk < 2 for all k

2. |1− νmin|+ |βνmax| < 1

3. 0 < ∆t(λ+ γN) < 2

4. ρ








β λ

−△t · β 1−△t · λ







 < 1

then it holds that

E[wk,i] → w◦, E[xg
i ] → w◦, E[qgk,i] → 0, and E[qk,i] → 0 (7.170)

for all k.
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Note that the result E[qk,i] → 0 establishes the second statement of Theorem 7.1

in discrete-time and with stochastic approximations. To obtain the first statement

of Theorem 7.1, we further examine the internal disturbance δ̃k,i in (7.124). Since

E[δ̃k,i] → 0 and E[xg
i ] → w◦, we obtain from (7.124) that

E[δ̃k,i] = λE[w◦ − xk,i] + γ
∑

l∈Nk\{k}

Eδ(xl,i − xk,i) → 0 (7.171)

where the function δ(·) is defined by (7.98). That is, we arrive at the discrete-time

and stochastic version of (7.95).

7.B.4.2 Mean-Square Performance for Estimating w◦

We can start from (7.99) and obtain the following relation:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + [vec(ATMST
i MA)]Tσ (7.172)

where the matrices F and Si are given by

F = [(I −M)A]⊗ [(I −M)A] (7.173)

Si = diag {Rη,1,i, Rη,2,i, . . . , Rη,N,i} (7.174)

In general, the noise covariance matrices, {Rη,k,i}, vary over time due to the

motion of the network. However, since the state vector z̃i will be close to zero in

steady state, we see that the approximations in (7.112) and (7.127) are reasonably

accurate and therefore the noise term vg,i in (7.167) will also be small. Thus, the

vectors {qgi , x̃g
i } will be close to zero in steady state. Recall the recursion for qk,i

in (7.123). Since each term determining qk,i is close zero in steady state, so will

qk,i. Therefore, we can assume that all agents almost stop and that the noise

variances converge to some constant value, i.e., Rη,k,i → Rη,k as i → ∞. Then

we can assume that Si → S, a constant matrix:

S = diag {Rη,1, Rη,2, . . . , Rη,N} (7.175)
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If condition (7.158) is satisfied (e.g., 0 < µk < 2 for all k), we obtain that the

steady-state network MSD is given by

MSD =
1

N
[vec(ATMSTMA)]T (I − F)−1 · vec(INM) (7.176)

We observe that the noise variances in (7.175) affect the MSD in a linear way.

That is, the MSD decreases if the noise variances decrease. In the noise model

(7.29), this is equivalent to saying that the MSD decreases if the distances from

the agents to the target decrease. Therefore, as we argued before, if the network

uses larger λ, the network size becomes smaller and the agents stay closer to the

target compared to a network with smaller λ. We can conclude that the network

with larger λ will achieve lower MSD.

7.B.5 Simulation Results

We compare the performance of the ATC different algorithm and the algorithm

where the agents estimate w◦ individually without cooperation among them. The

simulation parameters are set according to Section 7.4.1.1. For the no cooperation

case we simply set al,k = cl,k = δlk and

qgk,i =
1

nk

∑

l∈Nk

ql,i. (7.177)

That is, the velocity of the center mass is estimated by the average velocity in

the neighborhood, as proposed in [161]. We also evaluate the ATC diffusion

algorithm for different values of λ.

We illustrate the transient behavior of estimating qg. The results are averaged

over 100 independent experiments. We ignore the effect of noise variances by

setting α = 0. The network transient MSE for qg is shown in Fig. 7.20. As

the results show, the ATC network, except for low values of λ, has better MSE
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Figure 7.20: Transient network MSE for estimating the velocity of the center of

mass vg in the far field.

Figure 7.21: Transient network mean-square disagreement of the velocities in the

far field.
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Figure 7.22: Transient network MSD for estimating the target location, w◦.

than non-cooperative networks. We also see that for the ATC network, higher

values of λ achieve lower MSE because approximation (7.114) is more accurate for

higher values of λ. Figure 7.21 shows the network mean-square disagreement, Dv.

We observe that the ATC diffusion strategy with high values of λ improves the

steady-state performance (achieves better coherence) compared to the average

strategy (no cooperation). That is, the ATC diffusion strategy helps the network

form coherent movement.

Figure 7.22 shows the network transient MSD for estimating w◦. There are

three phases. The first phase is transient and the MSD decreases dramatically.

In the second phase, the network moves towards the target and the noise variance

decreases. Therefore, the MSD decreases accordingly. It is interesting to observe

how the motion of the network affects the mean-square performance. In the third

phase, the network arrives at the target and achieves steady state. As has been

shown in [34], the ATC diffusion scheme has better performance. In steady state,
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Table 7.1: Theoretical and simulation results of the network mean-square perfor-

mance in steady state.

MSEq (7.150) Dq (7.152) MSD (7.176)

Theory (dB) -32.94 -29.78 -23.22

Simulation (dB) -32.86 -30.20 -22.93

when the network arrives at the target, the agents with higher values of λ stay

closer due to more weight on approaching the target and the MSD is lower than

the other cases as we expect.

We also show simulations to illustrate the theoretical results in Figs. 7.23

and 7.24 for the ATC diffusion algorithm with λ = 0.5. In Fig. 7.23, the error

quantities q̃gk,i and q̃k,i evolve according to expressions (7.147) and (7.117), re-

spectively, while w̃k,i evolves according to (7.99). The theoretical results match

simulations rather well. Moreover, we compare these results in steady state in

table 7.1. The network mean-square errors MSEq, Dq, and MSD are evaluated

using (7.150), (7.152), and (7.176), respectively. We observe that in steady state

theoretical results cohere with simulations.

7.C Bound on D

Introduce the M ×M matrix:

[D(y)]kl =







1− r
∑

l 6=k y2
l

‖y‖3 , if k = l

r ykyl
‖y‖3 , otherwise

(7.178)

where y is aM×1 vector. It is easy to verify thatD(y) has two distinct eigenvalues

at 1 and 1 − r/‖y‖ with multiplicity 1 and M − 1, respectively. Moreover, the
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Figure 7.23: Transient network mean-square performance in the far field, com-

paring simulation and theory.

Figure 7.24: Transient network MSD for estimating the target location, w◦, com-

paring simulation and theory.
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eigenvector corresponding to eigenvalue 1 is the vector y and the eigenvectors

associated with 1− r/‖y‖ are
[

yi 0 · · · 0 −y1 0 · · · 0
]T

for i = 2, . . . ,M

and −y1 in the ith element.

The (k, l)th block of the Hessian D can be expressed as follows:

Dkl =







−D(x̃k − x̃l) if l ∈ Nk \ {k}
∑

l∈Nk\{k}
D(x̃k − x̃l) if l = k

0M×M otherwise

(7.179)

Introduce the Laplacian matrix of a network:

Lkl =







nk − 1 if l = k

−1 if l ∈ Nk \ {k}

0 otherwise

(7.180)

It is well-known that L ≤ NI. In the following we show that D ≤ L⊗ IM , which

results in D ≤ NI. Let π =
[

π1 · · · πN

]T

with πk ∈ R
M . We have

πT (L⊗ IM −D)π =

N∑

k=1



πT
k

∑

l∈Nk\{k}

(I +Dkl)πk − πT
k

∑

l∈Nk\{k}

(I +Dkl)πl





= −1

2

N∑

k=1

N∑

l=1

Lkl(πk − πl)
T (I +Dkl)(πk − πl)

(7.181)

For k 6= l, we have I + Dkl = I − D(x̃k − x̃l) ≥ 0 since the eigenvalues of the

matrix D are less than or equal to one.
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CHAPTER 8

Future Issues

In this dissertation, we addressed several important issues in the design of dis-

tributed adaptation strategies. In particular, we verified that more information

is not necessarily better and the way by which information is processed and prop-

agated through the network matters: small variations can lead to catastrophic

failures. These results suggest that cooperation through diffusion strategies is

the proper way to process data. This is an important conclusion, especially in

relation to the modeling of biological networks. For example, in fish schools,

the network topology and the combination weights evolve over time due to the

motion of the fish and the interaction between the fish school and predators. In

the following, we list several potential topics for future exploration:

• One of the assumptions throughout this work is that the regression covari-

ance matrices are positive definite so that each individual node is able to

solve the problem on its own. However, there are cases, such as [1, 73],

where nodes only have access to partial information about the unknown.

In this situation, nodes need to cooperate and exchange information to

arrive at the full estimate. An important issue would be to study the con-

ditions on network topology and observability so that nodes are able to

solve estimation tasks collaboratively under these conditions.

• Cooperation among nodes relies on the fact that the nodes are willing to
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cooperate. In many situations, this is not the case. For example, when

nodes are selfish or competing with each other, they need to be enticed to

cooperate for the common good. It is important to develop strategies that

allow selfish agents to work together for the social benefit for the network.

• In this work, we mainly considered mean-square error cost functions. How-

ever, the cost of information sharing and the cost for data access may be

be demanding in some cases involving sensor nodes with limited capabili-

ties. Therefore, it is desired for the nodes to equipped with energy-aware

adaptation strategies. In this situation, the nodes may only share partial

information or only maintain a fraction of connections that can provide

reasonable performance.

• There have been extensive works on social networks [27,169] and epidemio-

logical networks [163]. These networks involve distributed signal processing

as well. Examples include how a crowd of people forms opinion and how dis-

ease spreads over networks. It will be useful to apply adaptation strategies

to model these networks and to study their behavior.

• Adaptation of the network topology is a critical element in mobile networks.

It adds one more degree of freedom. It is important to develop techniques

that examine the co-evolution of the learning process and the changing

topology. Examples from biological networks abound.
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