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Modern urban areas are heavily dependent on transportation networks to sustain their eco-

nomic life. Hence, when vital components of a regional network are disrupted, economic

losses are inevitable. As evidenced by 1989, Loma Prieta, and 1994, Northridge earth-

quakes, the seismic damages experienced by bridges alone result in extensive traffic delays

and rerouting, not only hindering emergency response but also causing indirect economic

losses that far surpass the direct cost of damage to infrastructure. Nevertheless, in many

areas of the U.S., transportation networks lack the resilience required to sustain the potential

demands of natural hazards.

Traditional hazard assessment methods, in theory, provide the tools required for pre-

dicting the vulnerabilities associated with natural hazards. Nonetheless, due to their ab-

stractions of the complex infrastructure and the coupled regional behavior, they often fall

short of that expectation. This study proposes a semi-automated image-based model gen-

eration framework for producing structure-specific models and fragility functions of bridges.

The framework effectively fuses geometric and semantic information extracted from Google

Street View images with centerline curve geometry, surface topology, and various relevant

metadata to construct extremely accurate geometric representations of bridges. Then, us-

ing class statistics available in the literature for bridge structural properties, the framework
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generates structural models. Both the performance of the geometry extraction procedure

and the structural modeling method proposed here are validated by comparison against the

structural model of a real-life bridge developed based on as-built drawings.

In principle, these models can be utilized to assess physical damage for any type of

hazard, but in this study, the focus is limited to seismic applications. Thus to relate the

damage resulting from seismic demands from ground shaking, bridge-specific fragility func-

tions are developed for 100 bridge structures in the immediate surroundings of Ports of Los

Angeles and Long Beach. Using these fragility curves, the physical damage resulting from

a magnitude 7.3 scenario earthquake on Palos Verdes fault is predicted. Subsequently, the

effects of the bridge infrastructure damage to the transportation patterns in the Los Angeles

metropolitan area are investigated in terms of various resilience metrics.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 Post-Disaster Functionality of Engineering Systems

Quantifying the effects of natural hazards on engineering systems has long been the focus

of civil engineers. As a result of this continued attention, considerable research has been

performed in developing methods to simulate the engineering demands caused by natural

hazards, as well as establishing modeling techniques required for accurate representations of

the capacity of civil engineering systems.

In earthquake engineering, three developments have been crucial. Probabilistic seismic

hazard maps created an effective way of summarizing in detail the expected earthquake

shaking based on region-specific geologic and seismic information (e.g., United States Na-

tional Seismic Hazard Maps [69]). Comprehensive ground motion databases, such as NGA

West2 Database [4], provided earthquake engineers with extensive catalogs of recorded seis-

mic waveforms for use in simulating expected earthquake loading. Lastly, the performance-

based earthquake engineering (PBEE) methodology [60] created a way to incorporate seismic

hazard, system response, component-level damage, and system-level decision variables with

explicit consideration to their uncertainties.

For characterizing tsunami hazard, tsunami propagation procedures, such as the National

Oceanic and Atmospheric Administration (NOAA)’s Method of Splitting Tsunamis (MOST)

[91], have been widely instrumental. Tsunami propagation methods enabled calculation of

the hydrodynamic forces resulting from tsunami-induced inundation by determining the
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tsunami height and horizontal components of tsunami wave velocity. Then, to define the

tsunami demands, depending on the desired level of refinement, these hydrodynamic forces

are modeled as wave patterns in three dimensions or static lateral loads [5].

For identifying the wind-borne hurricane hazards, storm track simulation methods cou-

pled with wind field and gust factor models have been of critical importance. The hurricane

demands on individual elements of a structure are identified using the pressure fields calcu-

lated from these simulations for multiple return periods of interest.

One thing common to the procedures mentioned above is that they all offer means of

determining the demands anticipated on engineering systems for distinct hazard types. De-

mands, however, are just one of the two high-level inputs required for assessing the response

of structural or geotechnical systems to natural hazards. Assessing the ability of a system

to resist demands from relevant hazards requires comparing its capacity against the corre-

sponding demands. Based on the complexity of the hazard input, a system’s capacity is

quantified through models as simple as linear elastic or as intricate as complex nonlinear

representations. As long as accurate information on the system’s geometric and material

properties exists, appropriate models can be established, and the system capacity can be

calculated with minimal uncertainty.

This process is equally applicable to evaluating the performance of individual systems or

entire regions comprised of a large number of distinct systems. Nonetheless, traditionally,

at the level of detail specified earlier, it has been mainly utilized for single systems. On a

regional scale, only simplistic implementations of the discussed principles were performed.

Expectedly, as a consequence of their rather crude consideration of either the hazard, phys-

ical inventory, or both, they result in predictions far from reliable (see, for instance, the

study by Kircher et al. [46]). However, in reality, the post-disaster functionality of an

engineering system is remarkably dependent on the systems surrounding it. For instance,

in densely urbanized areas, the seismic demands on a building can be considerably altered

by the interactions of the neighboring structures with the free-field motion [41]—likewise,

the arrangement of structures surrounding a building can largely influence the wind load
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demands on that building [45].

Most of the preceding discussion assumes that the key determinant of a system’s func-

tionality is physical damage. If functionality is perceived from a broader perspective as a

system’s ability to perform as intended and any reductions to it are tied to macro-level met-

rics such as economic losses, then shifting from the individual- to regional-level assessments

becomes even more critical in evaluating post-disaster performance. After a natural hazard,

the capability of an engineering system to restore its operations in full is linked to the infras-

tructure serving it. In other words, if the objective is to determine the high-level impacts of

disasters, a greater extent of interconnectedness exists between engineering systems, and this

dependence can be hardly ignored. Modern-day examples supporting this understanding are

countless. The annual direct cost of damage to power lines, utility poles, and transmission

towers due to hurricanes or other extreme weather events is estimated at around tens to

hundreds of millions of dollars [104]. However, according to Campbell [16], the annual cost

of power outages resulting from these physical damages is estimated somewhere between 25

to 70 billion USD. Electrical grids consist of a large number of interdependent elements.

Even damage to a small fraction of their elements may result in notable reductions to func-

tionality at the network level. As a result, considerable downstream economic losses may be

incurred. A somewhat less obvious example is how the performance of port facilities is highly

reliant on the functionality of the infrastructure serving them. The property losses due to

the 1995 Hanshin-Awaji (Kobe), Japan earthquake is estimated at 100 billion USD [36]. The

earthquake devastated Kobe’s infrastructure in large, yet the damages to its container port

(then the world’s sixth-largest) were particularly critical. The business interruptions caused

by the facilities’ downtime and the decline in their accessibility is believed to result in total

losses on the order of 200 billion USD [20]. In the case of cargo ports, the number of goods

that can be conveyed through the facilities is affected by the functionality of connecting

infrastructure, and the port itself. Hence, in evaluating the effects of potential hazards to a

port, if assessments of damage are limited to individual elements alone, results would have a

minimal resemblance to the actual consequences. A similar situation was observed in 2005,
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in the aftermath of Hurricane Katrina, one of the costliest natural disasters in the history

of the United States. The total losses due to the hurricane are believed to be around 200

billion USD [23], while the associated property damage is approximately 96 billion USD

[105]. Katrina flooded most of New Orleans, incapacitated a remarkable portion of its in-

frastructure, and crippled almost the entire area. A direct result of the widespread decline

in infrastructure functionality was economic losses that far exceeded the costs required to

prevent these functionality decreases. For instance, after the hurricane, many of the high

rise buildings in Downtown New Orleans remained unscathed from wind and flood hazards

[26]. Still, they could not be used because the utility and transportation infrastructure that

they depended on were barely operational.

In short, the post-disaster functionality of an engineering system is highly dependent

on the infrastructure surrounding it. Consequently, in evaluating the potential impacts

of naturals hazards on a system regional-level interactions must be considered to attain

accurate results incorporating limited uncertainty. Implementations at regional-level, never-

theless, command an added level of complexity both from the computational and modeling

aspects. While the computational requirements of regional-level considerations are largely

satisfied with the wide availability of web-based high-performance computing platforms—

e.g., NSF’s Natural Hazards Engineering Research Infrastructure (NHERI) cyberinfrastruc-

ture [78], Google Cloud Platform, etc.—the modeling front mostly remains in its infancy.

There is a lack of dependable inventory data at the regional level. Hence, for representing

capacity, the existing methods heavily rely on abstractions of the archetype system clas-

sifications based on public-domain metadata (see, for instance, HAZUS [25], PAGER [99],

etc.).

1.1.2 Beyond Archtype Classifications: Existing 3-D Reconstruction Methods

Recent advancements in point cloud-based modeling offer a promising alternative to the

traditional archetype-based representations of engineering systems. Although these develop-

ments are mainly limited to geometry extraction, they still constitute a critical step towards
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collectively establishing the regional-scale inventories required for detailed modeling.

Point clouds obtained from Light Detection and Ranging (LIDAR) sensors and imagery,

via structure from motion (SfM) [94] or semiglobal matching (SGM) stereo methods [35],

are the two primary data sources for most 3-D reconstruction applications. Hence, for

brevity, here, the algorithms and systems for producing 3D models at the regional scale are

summarized for only these two input types.

At the highest level, 3D reconstruction using point clouds involves three principal steps:

1) preprocessing, 2) classification/segmentation, and 3) modeling. Preprocessing consists

of the removal of outliers (Figure 1.1a) and noise (Figure 1.1b) from data. In LIDAR

point clouds, the former of these two artifacts result from sensor imperfections, while the

latter is due to occlusions in the captured scene (e.g., Figure 1.1c). Segmentation refers

to the grouping of points into segments with shared characteristics (Figure 1.2b), whereas

classification is the process of determining the labels of each segment according to a range

of criteria (Figure 1.2c). In many 3D reconstruction applications, initial segmentation can

be as simple as separating ground points from the points that belong to the above-ground

objects using principal component analysis [37]. Similarly, the classification for such a setup

can merely comprise establishing the labels for ground and above-ground (other) points.

Lastly, modeling involves terrain generation by meshing of ground points, extraction of

infrastructure elements through processes such as boundary extraction, shape fitting, and

refinement (Figure 1.3).
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(a) Outliers (b) Noise (c) Occlusions

Figure 1.1: Point cloud data captured from a bridge bent. The outliers (a) and noise detected

after preprocessing (b) are marked in orange. Vegetation that produced the noise is shown

in (c) (Adapted from Walsh et al. [100]).Int J Comput Vis (2012) 99:69–85 71

Fig. 1 Overview of the proposed approach—our algorithm digests large amounts of 3D-points in order to provide a compact and semantized
representation of urban environments including atypical buildings, trees, and topologically complex grounds

in Sect. 3, consists in extracting geometric primitives such
as 3D-line segments, planes or cylinders from the point set
classified as building by a fast process. Section 4 consti-
tutes the key element of the system in which the geomet-
ric primitives and the other urban components are arranged
in a common planimetric map through a multi-label energy
minimization formulation. In the last stage, the various ur-
ban objects are represented in 3D using template fitting and
meshing procedures explained in Sect. 5. Experimental re-
sults on complex urban structures and various types of large
urban scenes are presented and commented in Sect. 6, as
well as a comparison from laser-based and MVS-based input
data. This paper extends the work presented in Lafarge and
Mallet (2011) by detailing the different steps of the method
and its implementation, by presenting new results and com-
parisons as well as analyzing the impact of parameters and
input types on the result quality.

2 Point Cloud Classification

Four classes of interest are defined: building, vegetation,
ground and clutter. The class vegetation represents the trees
which have a non negligible size at the city scale, i.e. with
a height of several meters, excluding the shrubs. The class
clutter corresponds to the outliers contained in the data,
to small urban components which temporarily perturb the
scene (e.g. cars, fences, wires, roof antennas, cranes), and
to the vertical structures such as facades because these have
a sparse and irregular point repartition penalizing the scene
understanding. This class also includes water correspond-
ing to river networks for which the point distribution is very
sparse. Note that, in the case of urban scenes containing non-
negligible sea areas, a fifth class is required to efficiently ex-
tract water since the point distribution is denser and needs

to be discriminated by additional attributes (Carlberg et al.
2009).

A neighboring relationship is defined to create spatial de-
pendencies between the 3D-points. Two points are neigh-
bors if their Euclidean distance is inferior to a certain value,
in practice 2 m (spherical neighborhood).

2.1 Discriminative Features

For each point, several geometric attributes are computed in
order to distinguish the four classes of interest.

• Local non-planarity fp represents the quadratic distance
between the point and the optimal 3D-plane computed
among its neighbors. Low values typically correspond to
ground and building roofs.

• Elevation fe allows the distinction between the ground
and the other classes. This feature corresponds to the
height difference between the point and its planimetric
projection on an elevation map of the ground estimated
by a standard algorithm based on Briese et al. (2002).

• Scatter fs measures the local height dispersion of the
points. It provides a high value in the case of trees and
also some undesirable urban components. This feature is
usually defined as the minimal principal curvature mean
of the considered point and its neighbors (Toshev et al.
2010). In the case of point sets generated from full wave-
form topographic Lidar systems, an alternative way to
compute the scatter attribute fs is considered using the
echo number information (Mallet and Bretar 2009). The
feature fs is then defined as the ratio between the number
of neighbors whose echo number is strictly superior to 1
and the total number of neighbors. This alternative allows
the improvement of the feature accuracy (see Sect. 6).

(a) Input
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Fig. 1 Overview of the proposed approach—our algorithm digests large amounts of 3D-points in order to provide a compact and semantized
representation of urban environments including atypical buildings, trees, and topologically complex grounds

in Sect. 3, consists in extracting geometric primitives such
as 3D-line segments, planes or cylinders from the point set
classified as building by a fast process. Section 4 consti-
tutes the key element of the system in which the geomet-
ric primitives and the other urban components are arranged
in a common planimetric map through a multi-label energy
minimization formulation. In the last stage, the various ur-
ban objects are represented in 3D using template fitting and
meshing procedures explained in Sect. 5. Experimental re-
sults on complex urban structures and various types of large
urban scenes are presented and commented in Sect. 6, as
well as a comparison from laser-based and MVS-based input
data. This paper extends the work presented in Lafarge and
Mallet (2011) by detailing the different steps of the method
and its implementation, by presenting new results and com-
parisons as well as analyzing the impact of parameters and
input types on the result quality.

2 Point Cloud Classification

Four classes of interest are defined: building, vegetation,
ground and clutter. The class vegetation represents the trees
which have a non negligible size at the city scale, i.e. with
a height of several meters, excluding the shrubs. The class
clutter corresponds to the outliers contained in the data,
to small urban components which temporarily perturb the
scene (e.g. cars, fences, wires, roof antennas, cranes), and
to the vertical structures such as facades because these have
a sparse and irregular point repartition penalizing the scene
understanding. This class also includes water correspond-
ing to river networks for which the point distribution is very
sparse. Note that, in the case of urban scenes containing non-
negligible sea areas, a fifth class is required to efficiently ex-
tract water since the point distribution is denser and needs

to be discriminated by additional attributes (Carlberg et al.
2009).

A neighboring relationship is defined to create spatial de-
pendencies between the 3D-points. Two points are neigh-
bors if their Euclidean distance is inferior to a certain value,
in practice 2 m (spherical neighborhood).

2.1 Discriminative Features

For each point, several geometric attributes are computed in
order to distinguish the four classes of interest.

• Local non-planarity fp represents the quadratic distance
between the point and the optimal 3D-plane computed
among its neighbors. Low values typically correspond to
ground and building roofs.

• Elevation fe allows the distinction between the ground
and the other classes. This feature corresponds to the
height difference between the point and its planimetric
projection on an elevation map of the ground estimated
by a standard algorithm based on Briese et al. (2002).

• Scatter fs measures the local height dispersion of the
points. It provides a high value in the case of trees and
also some undesirable urban components. This feature is
usually defined as the minimal principal curvature mean
of the considered point and its neighbors (Toshev et al.
2010). In the case of point sets generated from full wave-
form topographic Lidar systems, an alternative way to
compute the scatter attribute fs is considered using the
echo number information (Mallet and Bretar 2009). The
feature fs is then defined as the ratio between the number
of neighbors whose echo number is strictly superior to 1
and the total number of neighbors. This alternative allows
the improvement of the feature accuracy (see Sect. 6).

(b) Classification
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Fig. 1 Overview of the proposed approach—our algorithm digests large amounts of 3D-points in order to provide a compact and semantized
representation of urban environments including atypical buildings, trees, and topologically complex grounds

in Sect. 3, consists in extracting geometric primitives such
as 3D-line segments, planes or cylinders from the point set
classified as building by a fast process. Section 4 consti-
tutes the key element of the system in which the geomet-
ric primitives and the other urban components are arranged
in a common planimetric map through a multi-label energy
minimization formulation. In the last stage, the various ur-
ban objects are represented in 3D using template fitting and
meshing procedures explained in Sect. 5. Experimental re-
sults on complex urban structures and various types of large
urban scenes are presented and commented in Sect. 6, as
well as a comparison from laser-based and MVS-based input
data. This paper extends the work presented in Lafarge and
Mallet (2011) by detailing the different steps of the method
and its implementation, by presenting new results and com-
parisons as well as analyzing the impact of parameters and
input types on the result quality.

2 Point Cloud Classification

Four classes of interest are defined: building, vegetation,
ground and clutter. The class vegetation represents the trees
which have a non negligible size at the city scale, i.e. with
a height of several meters, excluding the shrubs. The class
clutter corresponds to the outliers contained in the data,
to small urban components which temporarily perturb the
scene (e.g. cars, fences, wires, roof antennas, cranes), and
to the vertical structures such as facades because these have
a sparse and irregular point repartition penalizing the scene
understanding. This class also includes water correspond-
ing to river networks for which the point distribution is very
sparse. Note that, in the case of urban scenes containing non-
negligible sea areas, a fifth class is required to efficiently ex-
tract water since the point distribution is denser and needs

to be discriminated by additional attributes (Carlberg et al.
2009).

A neighboring relationship is defined to create spatial de-
pendencies between the 3D-points. Two points are neigh-
bors if their Euclidean distance is inferior to a certain value,
in practice 2 m (spherical neighborhood).

2.1 Discriminative Features

For each point, several geometric attributes are computed in
order to distinguish the four classes of interest.

• Local non-planarity fp represents the quadratic distance
between the point and the optimal 3D-plane computed
among its neighbors. Low values typically correspond to
ground and building roofs.

• Elevation fe allows the distinction between the ground
and the other classes. This feature corresponds to the
height difference between the point and its planimetric
projection on an elevation map of the ground estimated
by a standard algorithm based on Briese et al. (2002).

• Scatter fs measures the local height dispersion of the
points. It provides a high value in the case of trees and
also some undesirable urban components. This feature is
usually defined as the minimal principal curvature mean
of the considered point and its neighbors (Toshev et al.
2010). In the case of point sets generated from full wave-
form topographic Lidar systems, an alternative way to
compute the scatter attribute fs is considered using the
echo number information (Mallet and Bretar 2009). The
feature fs is then defined as the ratio between the number
of neighbors whose echo number is strictly superior to 1
and the total number of neighbors. This alternative allows
the improvement of the feature accuracy (see Sect. 6).

(c) Segmentation

Figure 1.2: Point cloud data (a) after segmentation (b) and classification (c). In classification

results, yellow, blue, red, and white colors denote ground, building, vegetation, and other

points, respectively. (Adapted from Lafarge and Mallet [49]).
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is a viaduct at the bottom right of Scene II, which has the very good
planarity in terms of geometry. In the classification results
achieved by the method of Li et al. (2016), the points of the build-
ings with good planarity near the viaduct are mis-classified into
the viaduct, which was a little over fitting. In Fig. 9(b), the method
of Li et al. (2016) divides the objects similar to the viaduct in height
and planarity into the viaduct. The recall is very high, but the pre-
cision is very low, which is less than 37%. It can be seen from
Table 2 that our method is about 15% higher than the methods
reported in Zhang et al. (2016) and Li et al. (2016) in terms of
the precision of the viaduct, and about 13% higher in terms of
the MCC. As shown in Fig. 11, our method obtains better results
in the multi-class recognition. It is capable of recognizing the dif-
ferent objects with similar shapes. In Scene IV, our method can
accurately distinguish the poles from the bushes. Moreover, the
trees and bushes on the street are well separated from each other
as shown in Fig. 11(c). For the object point cloud with various point
densities in Scene III as shown in Fig. 10, such as the trees at the
upper left corner, our method performs well while the method of
Li et al. (2016) mis-classifies them into buildings. For some cate-
gories which are hard to distinguish like the hard scape, the classi-
fication accuracy obtained using our method is 21% higher than the
linear SVM classifier.

In Scene III, for the hard scape which contains rocks, fence, ste-
les, etc. as shown in Fig. 10, most of car and low vegetation points
are classified into the hard scape by the method of Li et al. (2016),
and the recall of the hard scape is low. The high vegetation and low
vegetation are also confusing. However, the natural terrain and
buildings are classified correctly. As listed in Table 3, it is observed
that our method outperforms other methods in terms of classifica-
tion accuracy of all classes More importantly our classification
accuracy of the hard scape is much higher than the results
obtained by the other methods.

In Fig. 11, it is noted that our method can well distinguish small
objects such as cars from the point cloud, although the cars points
are sparse and cluttered with trees.

As shown in Tables 2–4, it is noted that the proposed ReLu-NN
has achieved better classification results. Since the ReLu-NN is
combined with the features encoded by the sparse coder, some
neurons were randomly ignored by the dropout fraction during
the training process and the noise is removed by the ReLu activa-
tion function. When the unknown data is tested, it is more percep-
tual and the results are more consistent with the cognitive process.

5.3. Sensitivity of the parameters

In this sub-section, we analyze the sensitivity of the parameters
in our method to the classification results using the point cloud of
Scene I. The parameters include the learning rate and dropout frac-
tion, the number of the neurons in the first hidden layer and sec-
ond hidden layers.

As shown in Fig. 12, the learning rate and dropout fraction are
automatically adjusted during the classification process. The two

Fig. 9. The classification results of Scene II. Points on trees, ground, viaduct and
buildings are colored in green, gray, purple and orange, respectively. (a) Ground
truth. (b) The classification result obtained by Li et al. (2016). (c) The classification
result obtained by Zhang et al. (2016). (d) The classification result obtained by our
method. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. The training data, testing data and classification results of Scene I. (a) Training data. (b) Testing data. (c) Classification results. (d) Highlighted incorrectly classified
points. The navy blue points are on the roofs. The orange points are on the facades. The light blue points are on the low vegetation. The green points are on the shrubs and
trees. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(a) Classification results

Our method is implemented on the computer with the proces-
sor of Intel Core i7-4790K 3.60 GHz and 8G RAM. The feature
extraction takes most of the computational time, nearly 63% of
the whole classification and building reconstruction procedure.
Comparisons of the computational time are listed in Tables 6 and
7. Compared with other methods, the efficiency of our method is
much higher. In future work, we will use the GPU parallelization
scheme to further reduce computational time.

6. Discussions

The presented ReLu-NN still utilizes hand-crafted features for
each modality independently and combine them in a heuristic
manner. It often fails to consider the consistency and complemen-
tary information among features adequately. Currently, the fea-
tures learned by the deep learning approaches can obtain high-
quality image classification results. However, most of the state-
of-the-art deep learning-based methods like Qi et al. (2017) and

Liu et al. (2017) are hard to apply to parse large-scale outdoor
3D point clouds due to unorganized distribution and various point
density of data. With the help of the transfer learning techniques,
we may learn the feature representation from the remote sensing
images automatically and transfer the common features to the out-
door 3D data for the classification. The higher classification perfor-
mance of large-scale point clouds is thus obtained using such an
end-to end deep learning framework.

The presented building reconstruction approach has the ability
to generate high-quality building reconstruction results from the
segmented building data that often contain noise and missing data.
For example, the sharp structures of the buildings illustrated in the
third column of Fig. 15 are well preserved after the reconstruction.

Fig. 14. 3D urban models. (a) The reconstructed Vaihingen city from the original
data. The building number is 292. (b) The reconstructed Vaihingen city using the
repaired data. The number of buildings is 731. (c) The reconstructed Toronto city
using the original data. (d) The reconstructed Toronto city using the repaired data.

Fig. 13. The parameter sensitivity analysis to the classification results in Scene I
under different number of neurons in the hidden layers.

Fig. 12. The sensitivity analysis of the parameter learning rate and dropout fraction
to the classification results in Scene I.
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(b) 3-D urban model

Figure 1.3: Point cloud data for a section of Toronto, Canada after segmentation (a) and

the corresponding urban reconstruction (b). In classification results, green, gray, purple, and

orange colors signify vegetation, ground, bridge, and building points, respectively. (Adapted

from Zhang et al. [109]).

The traditional approach in outlier filtering is to define a local outlier parameter based

on statistics such as nearest-neighbor distance, local density [3], or eigenvalues of the local

covariance matrix [101]. Then, by thresholding or making an assumption about the statistical

distribution of this parameter, identifying and discarding the nonconforming points. With

the growing popularity of machine learning methods, data-driven solutions similar to the

deep learning model proposed by Rakotosaona et al. [75] are expected to become more

prevalent in outlier filtering. Noise removal approaches also investigate the neighbourhood

of each point at a local level, but the removal consists of a smoothing operation. Generally,

to prevent over-smoothing sharp local features such as corners, etc., anisotropic filtering is

preferred for noise removal. Filtering can be based on a number of parameters including

mean curvature [50] and the normals of the points [102, 38]. L0-minimization is another

method that is found to work particularly well in denoising point sets with sharp features

[89].

Point cloud segmentation is typically performed using model fitting-, region growing-, or

clustering-based techniques. Most model fitting algorithms are powered by the basic princi-

ples of Hough Transform (HT) [29] or Random Sample Consensus (RANSAC) [9] methods.
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HT is an effective way to extract planes [98], spheres, and cylinders [74] from point cloud

data. RANSAC offers more possibilities for the extraction of parametrized geometric shapes,

i.e., cylinders, spheres, cones, torus, planes, and cubes. Some popular modifications of

RANSAC in the Point Cloud Library (PCL) [79] are the Progressive Sample and Consensus

(PROSAC) [19], Maximum Likelihood Estimation Sample and Consensus (MLESAC), and

M-estimator Sample and Consensus (MSAC) [92] methods. One of the primary advantages

of model-fitting methods is that their segmentation quality is not significantly affected by

the presence of outliers. Notwithstanding, model fitting algorithms are computationally de-

manding, and their performance is sensitive to data characteristics. Region-based algorithms

are an alternative to model-based segmentation. The central idea of region-growing segmen-

tation is identifying seed points in point cloud regions with distinct characteristics (such as

point curvature and area of the local plane) and growing regions from those seeds based

on various criteria (e.g., surface planarity and inter-point distances) [12]. The two-step seg-

mentation procedure suggested by Ning et al. [64] and the voxel-based procedures by Wang

and Tseng [103] and Ahn-Vu et al. [97] are some examples of the procedures that were suc-

cessfully applied to urban environments. The main benefit of region-growing segmentation

routines is that they are only nominally affected by noise. Nonetheless, their segmentation

quality is dependent on the initial seeds (at the moment, no universally accepted standards

exist for selection of seeds) and the accuracy of computed normals and curvatures of points

(particularly complicated to correctly calculate near region boundaries.) Another segmen-

tation approach is the clustering of point clouds based on their features using hierarchical

or partitioning clustering. The hierarchical algorithms can be bottom-up (agglomerative)

or top-down (divisive). The bottom-up algorithms assume that every individual data point

in feature space is a separate cluster, then recursively joins data points within a certain

distance threshold to the same clusters until the distance between clusters is higher than

a prescribed threshold level. The top-down algorithms, on the other hand, start with the

entire feature space, then successively splits the space into individual clusters until a certain

number of clusters is attained. Partitioning methods do not involve aggregation or division

of clusters; they iteratively move data points among a number of distinct clusters until the
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greatest separation between the clusters is reached (e.g., k-means, mean-shift, spectral clus-

tering). Many different attributes, including planarity [106], kernel density [21], eigenvalues,

and eigenvectors of the graph Laplacian [48], height difference relative to neighboring points,

unit normal vector [13], are used to define the feature space in clustering. Depending on the

quality of the attributes included that make up the feature space, clustering methods can be

quite robust and flexible. The primary limitation to clustering-based segmentation is that

their computational performance is highly dependent on the point cloud density, generally

requiring long computational times for dense sets.

Classification, also known as semantic segmentation, of point clouds is performed either

through a model trained using a large annotated dataset (supervised approach), or auto-

matically partitioned into segments obtained using an unsupervised approach, without the

need for labeled datasets. Supervised classification techniques use a variety of procedures

ranging from random field-based frameworks [84, 82, 63] to deep learning methods, with the

latter approach generally yielding better accuracies. The first deep learning approach for

point cloud classification, PointNet [73], is a fully-connected deep learning network that is

capable of classification (as well as segmentation) of point clouds by operating on just the

3-D point coordinates. PointNet, by design, cannot capture local structures in the space of

points, thus it extracts patterns with limited success. An improvement to PointNet, a deep

learning procedure based on a hierarchical neural network called PointNet++ [72], rectifies

this problem. Even after preprocessing, point clouds may include outliers and noise. These

artifacts render the application of spatial convolutions particularly complicated. To address

this issue, Hermosilla et al. [33] proposed a hierarchical deep learning approach that first

represents the convolution kernel as a multilayer perceptron, then expresses the convolu-

tion as a Monte Carlo integration problem and subsequently uses Poisson disk sampling

for hierarchical feature learning. PointCNN [51] applies convolutions on raw point cloud

data by first utilizing a k-nearest neighbors procedure to find the local point neighborhoods.

Then using a multilayer perceptron on the spatially local points, PointCNN constructs a

transformation to weight and permute the input features. If trained with a sufficiently large
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dataset, all of these deep learning methods are very effective in the classification of point

cloud datasets. Currently, a vital impediment to their practical implementation is the lack of

adequate, publicly available, high-quality training sets, and manual labeling of point clouds

is both technically challenging and laborious. Current unsupervised classification techniques

exclusively consist of end-to-end autoencoder neural networks. The basic premise of these

procedures is that, while reconstructing point clouds whose parts have been randomly re-

arranged, they learn from representations of the data that capture the semantic properties

of the point set. The studies by Achlioptas et al. [2], Zamorski et al. [108], and Sauder

and Sievers [81] are some examples of the autoencoder networks proposed for point cloud

classification.

Once the point cloud is segmented and classified, 3-D models can be generated. Ground

modeling for point clouds involves a rather standardized procedure. First, a smooth uniform

grid is matched onto the ground points. Then, a height value is assigned to each cell based

on the z values of the points within cell boundaries. With this approach, some cells in the

uniform grid will be empty since, typically, the point cloud sampling for uneven objects is

non-uniform. The height values for the empty cells are determined by performing membrane

interpolation according to Laplace’s equation, ∇2z = 0, where the boundary conditions

for an empty cell are defined using the nearest-neighbor non-empty cells. The boundaries

of the ground points generally are not straight lines. Hence, as the last step in ground

modeling, the uniform grid used for membrane interpolation is partitioned into a mesh of

triangles via Delauney triangulation such that the boundary cells align with the desired

bounds. In generating building models, the 2.5-D dual contouring method [111] is a widely

accepted method, especially for point clouds generated from aerial surveys. The pipeline

for 2.5-D dual contouring consists of a three-step tree structure process. First, the point

cloud is overlaid with a uniform 2-D grid to form the lowest level of the auxiliary quadtree,

and Hermite data samples are generated/estimated at grid points and edges. Second, in

each quadtree, a hyperpoint that minimizes a 2.5-D quadratic error function is computed,

and by adaptive geometry simplification, subtrees are collapsed and quadratic error for

10



each associated leaf cell is added. Subsequently, a watertight mesh model is obtained by

connecting hyperpoints with surface and boundary polygons. Another group of techniques

perform reconstruction based on segmentation results. The method by Sampath and Shan

[80] intersects segmented patches and identifies the connectivity among the planar segments

through an adjacency matrix to model buildings. Zhou and Neumann [110] carry out building

modeling by first snapping the edges of segmented planes to principal directions, then joining

the neighboring segments according to their spatial relationships. Yi et al. [107] determine

the upward direction of each building, block-partitions point data aligned with it into a

series of consecutive blocks, extract contours of each block, and trough operations, including

extrusion, lofting, and sweeping combines these blocks to generate a model.

The focus of the processes discussed so far was on 3-D reconstruction from point cloud

data, without making a distinction between the source of the input (i.e., LIDAR or imagery).

Given most existing photogrammetric reconstruction techniques for modeling engineering

systems first generate point clouds from collections of images then apply the techniques

summarized above, such an approach is appropriate. These two data types are handled

identically for modeling purposes. The primary difference between the reconstruction proce-

dures for LIDAR and image data as a whole is that obtaining point cloud data from images

requires an additional step of processing (point clouds are a direct output of LIDAR sur-

veys). Structure from motion (SfM) [94] and semiglobal matching (SGM) stereo methods

[35] are the two methods that were found to be reliable tools for generating point cloud data

from image sets. The more popular of the two, SfM, consists of a four-step procedure. The

first step of SfM involves extracting keypoints in each image using Scale Invariant Feature

Transform (SIFT) object recognition algorithm [52]. In the second step, individual camera

positions, orientations, focal lengths, and the links between keypoints detected in each image

are established. Camera parameter detection step is performed using Bundle Adjustment

[93], while feature matching is established using RANSAC. At the end of the second step, a

sparse point cloud is obtained. Next, a denser point cloud and corresponding 3-D surfaces are

produced using a Multiview Stereo Matching (MVS) algorithm. The point clouds obtained
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subsequent to this step are defined in a metric coordinate system of arbitrary scale. These

point clouds are registered to world coordinates by a series of rigid body transformations

and linear scaling using the location information from image geotags.

The methods described above enable automated or semi-automated geometric reconstruc-

tion of engineering systems, opening up exciting new avenues for regional-level inventory

development. Nonetheless, they share a standard limitation; they all require the manual col-

lection of LIDAR or image data. Currently, performing LIDAR surveys is a time-consuming

and costly task. Photogrammetric surveys are a low-cost alternative to LIDAR surveys,

yet with the restrictions placed on flying unmanned aerial vehicles in dense urban areas,

collecting image data at the regional scale is challenging. In short, scaling these methods

to regional scales is problematic unless required datasets are already established, which is

rarely the case aside from a few exceptions [24].

Several publicly available datasets that can satisfy the data need for regional studies

exist. The author believes that the largest and the most extensive of these sets, Google

Street View images, in particular, is a strong candidate for satisfying the data needs for

regional studies. The existing literature on geometry reconstruction from Google Street

View is scarce and so far concentrated on building modeling only. The seminal work on

geometry extraction from Google Street View images by Micusik and Kosecka [59] made an

attempt at recovering the building facades on a few building blocks by exclusively utilizing

SfM methodology. The distinctive aspects of their study are the modeling of the camera

setup as an omnidirectional camera, the execution of feature detection/matching step using

the speeded up robust features (SURF) algorithm [10] and the use of superpixels for the MVS

stage. Although the results were promising, the use of superpixels for dense matching was

recognized to be a limitation at places that are not well described by local planar patches.

In another study, Diaz and Arguello [22] proposed an algorithm to estimate building heights

from Street View images. Using a central projection camera model, they developed height

estimations based on camera height and vanishing points identified for each image. Their

algorithm produced fairly accurate results whenever the ground line and crown line for a
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building could be accurately identified. However, whenever their algorithm failed to detect

one of these lines correctly, the height measurements were also highly affected. Lastly, Bruno

and Roncella [15] applied SfM to Google Street View images converted to pinhole projection

by using a spherical camera model and compared their results to ground truth measurements

and found that Street View images yield reasonably accurate results.

1.2 Objectives and Scope

The objective of this study is to establish a comprehensive image-based method for semi-

automated modeling of bridge structures. The proposed approach uses Google Street View

images as well as several relevant metadata to generate geometric models of bridges. Then,

by assigning structural properties based on class statistics available in the literature, the

method converts geometric objects into structural models. Here, all of the critical steps

of this process are defined in detail. Furthermore, the developed methodology is verified

through geometric and structural performance comparisons to a real-life bridge.

Although the models generated through this approach can be employed for various ap-

plications (for instance, if coupled with video-based vibration data, system identification of

bridges is possible) and different hazard types (e.g., tsunami and flood), the focus of this

study will be the role of the developed models in regional-scale seismic assessments and re-

silience. To this end, image-based models of bridges in the immediate surroundings of the

Ports of Los Angeles and Long Beach are modeled, and their fragility functions were devel-

oped for the five damage states defined in the PBEE methodology. These fragility curves

were then coupled with the ground shaking intensities resulting from a Mw 7.3 scenario

earthquake on the Palos Verdes fault to assess the physical damage to the transportation

network surrounding the port complex. Next, the physical damage results were combined

with a regional scale transportation network analysis to test the resilience of the Los An-

geles metropolitan area. The intermediate and final results of the performed analyses are

presented.
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1.3 Organization of This Document

Chapter 2 explains the structural modeling procedures utilized to compute bridge fragility

functions. Chapter 3 provides an in-depth discussion of the seismic assessment and resilience

framework proposed in this study. Chapter 4 describes in detail the case study performed for

the Ports of Los Angeles and Long Beach. Chapter 5 draws conclusions from the performed

investigation and offers a summary of the future directions for this work.
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CHAPTER 2

Structural Modeling of Bridges for Fragility

Calculations

2.1 Overview

The algorithms described in the previous chapter form the backbone of the image-based geo-

metric modeling procedures. However, these models alone are not useful for civil engineering

applications; they need to be populated with appropriate structural information to obtain

structural models. This chapter first describes the material and component models, as well

as the mass and damping calculation procedures utilized to establish the bridge structural

models. The ability of these modeling procedures to satisfactorily capture bridge response is

dependent on the quality of the modeling properties used in defining the structural models.

In determining appropriate modeling parameters, the author strongly benefited from the

existing literature, in specific [55]; hence these findings are briefly discussed. Particularly

when modeling uncertainties are explicitly considered, defining the connection between seis-

mic demands and structural damage is most easily established through fragility functions.

Hence, lastly, the procedure utilized for calculating fragility curves at an individual bridge

level is discussed.

The bridges considered consist of reinforced concrete structures with prestressed con-

crete decks supported by seat, diaphragm, or cantilever abutments. Most long-span bridges

also incorporate in-span hinges. All of these details are explicitly considered in obtaining

structural models from image-based geometric models.

The primary motivation behind this research is to develop a set of tools that can be
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easily applied to regional studies. For this purpose, a program that automatically generates

structural models from the geometric information was devised. The program exclusively uses

OpenSees [57]. Although the details of the program are not discussed here, when appropriate,

reference is made to OpenSees commands specific to the performed implementation.

2.2 Material Models

2.2.1 Column Concrete

In defining the stress-strain behavior of core and cover concrete, the concrete model pro-

posed by Mander et al. [54] is used. The confined and unconfined concrete is defined

in OpenSees using Popovics concrete with degraded linear unloading/reloading stiffness

[70],[42], Concrete04, and linear tension softening concrete material, Concrete02. Fol-

lowing Caltrans Seismic Design Criteria (SDC) [65], for the unconfined (cover) concrete, the

ultimate stress f ′co, corresponding compressive strain ε′co, and the ultimate strain ε′sp values

are defined as equal to the expected compressive strength of unconfined concrete f ′ce, 0.002,

and 0.005, respectively, where

f ′ce = max (1.3f ′c, 5000psi) (2.1)

given f ′c denotes the specified compressive strength of unconfined concrete.

The ultimate stress of the confined concrete is determined using the relationship

f ′cc = f ′co

(
−1.254 + 2.254

√
1 +

7.94f ′l
f ′co

− 2
f ′l
f ′co

)
(2.2)

The equation that defines the effective lateral confining pressure on concrete f ′l is determined

by the shape of the cross section. For circular sections with hoop- or spiral-type transverse

reinforcement,

f ′l =
1

2
keρsfyh (2.3)

where ρs signifies the ratio of volume of transverse confining steel to volume of confined

(core) concrete, fyh denotes the yield strength of transverse reinforcement, and ke is the
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confinement effectiveness coefficient. ρs is defined in terms of transverse reinforcement area

Asp, transverse reinforcement diameter db, and center-to-center spacing (pitch) of transverse

reinforcement s as ρs = 4Asp/dss. The confinement effectiveness for circular sections confined

by circular hoops is determined as

ke =

(
1− s′

2ds

)2

1− ρcc
(2.4)

Similarly, the confinement effectiveness for sections confined by circular spirals is defined as

ke =
1− s′

2ds

1− ρcc
(2.5)

where s′, ds, and ρcc denote clear spacing between hoops (or spiral), diameter of hoops (or

spiral), and ratio of total longitudinal steel area to area of concrete core, respectively. Figure

2.1 outlines the geometric paramaters required for specifying the behavior of confined core

in circular sections.𝑓𝑓𝑐𝑐 =
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Figure 2.1: Geometric paramaters used in defining confined behavior for circular sections

For rectangular sections, due to potential differences in geometric configuration along

the length (x-direction) and width (y-direction) of the section, a distinction is made in
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calculating for calculating f ′l in x- and y-directions as

f ′lx = keρxfyh (2.6)

f ′ly = keρyfyh (2.7)

where ρ represents the total area of transverse bars running in the x- and y-directions,

calculated as in terms of total areas of transverse reinforcement parallel to x- and y-axis

Asx, Asy; center-to-center spacing of transverse reinforcement s; concrete core dimensions to

center line of perimeter hoop in x- and y-directions bc, dc as

ρx =
Asx
sdc

(2.8)

ρx =
Asy
sbc

(2.9)

Note that bc ≥ dc. The confinement effectiveness for rectangular sections is calculated using

the relationship

ke =

(
1−

∑n
i=1

w′2
i

6bcdc

)(
1− s′

2bc

)(
1− s′

2dc

)
1− ρcc

(2.10)

where wi is the ith clear transverse spacing between adjacent longitudinal bars, s′ is the

clear spacing between hoop bars and n is the number of transverse bars. Figure 2.2 displays

the geometric paramaters defined in determining the confined concrete core behavior in

rectangular sections.
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Figure 2.2: Geometric paramaters used in defining confined behavior for rectangular sections

The compressive strain at f ′cc is calculated using the relationship

εcc = εco

[
1 + 5

(
f ′cc
f ′co
− 1

)]
(2.11)

The compressive strain value where strain energy equilibrium between the concrete and the

confinement steel is reached, i.e., εcu, is defined as 0.025.

Lastly,the modulus of elasticity for concrete is defined using the relationship

Ec = 33w1.5
√
f ′ce (2.12)

where w denotes the unit weight of concrete in lb/ft3, and Ec and f ′ce are as previously

defined, in units of psi. Furthermore, the shear modulus of concrete is calculated as

Gc =
Ec

2(1 + vc)
(2.13)

where vc = 0.2. Figure 2.3 provides a summary of the characteristics specified for simulating

concrete behavior.
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Figure 2.3: Material used in defining the concrete behavior

2.2.2 Steel Reinforcement

ASTM A706 Grade 60 steel reinforcement is used in modeling the reinforcement. The stress-

strain behavior of Grade 60 steel is displayed in Figure 2.4. In OpenSees, this material is im-

plemented using the Chang and Mander [18] uniaxial steel model, i.e., the ReinforcingSteel

object.
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Unconfined concrete Confined concrete

Figure 2.4: Stress-strain curve for the reinforcement steel

Table 2.1 shows the material properties for ASTM A706 Grade 60 steel. Other than the

expected tensile strength fue, all material traits of the reinforcing steel are defined according

to Caltrans SDC requirements. fue is randomly sampled from existing class statistics for

California bridges as described in Model Properties.

2.3 Component Modeling

2.3.1 Columns

Columns are critical to the load-carrying capacity of bridge structures after an earthquake.

Hence, carefully quantifying their performance is essential for accurate simulations of bridge

behavior under earthquake excitations. Column seismic response is an aggregate of axial-

flexural, shear, and torsional behavior; thus, considering each of these effects in detail is vital

to estimate post-earthquake damage susceptibility of columns.

The axial-flexural behavior of columns is largely inelastic, where the levels of transverse

reinforcement determine the extent of inelasticity. In this study, the inelastic column behav-

ior due to flexural loading, spreading of plasticity across the column cross-section and length

are computed using fiber sections where moment-curvature and axial force-deformation char-

acteristics and their interaction are explicitly considered. For this purpose, each column is
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Table 2.1: Material properties of the reinforcing steel adopted in bridge models

Property Value

Modulus of Elasticity, Es 29,000 ksi

Expected yield strength, fye Discussed in detail in Model Properties

Expected tensile strength, fue 95 ksi

Expected yield strain, εye 0.0023

Ultimate tensile strain,εsu
0.120 for #10 bars and smaller

0.090 for #11 bars and larger

Reduced ultimate tensile strain, εRsu
0.090 for #10 bars and smaller

0.060 for #11 bars and larger

Strain at onset of strain hardening, εsh

0.0150 for #8 bars

0.0125 for #9 bars

0.0115 for #10 & 11 bars

0.0075 for #14 bars

0.0050 for #18 bars

22



Rigid Element
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Figure 2.5: Fiber discretization of rectangular (left) and circular (right) reinforced concrete

column sections

modeled using a beam-column element based on force-based formulation. As discussed by

Neuenhofer and Filippou [62], force-based elements utilize exact force interpolation func-

tions, hence their solution is only susceptible to a numerical integration error. This error is

minimized for a column by increasing the number of elements, or integration points used to

define that column. Consequently, given reducing the number of elements results in a more

computationally efficient implementation, here, each column is represented with a single el-

ement with ten integration points. In OpenSees fiber section definitions are performed using

the fiberSec object and patch commands. The cover concrete and core concrete are as-

signed unconfined and confined concrete properties defined in Section 2.2.1, respectively, as

shown in Figure 2.5. The force-based beam-column elements are implemented in OpenSees

via forceBeamColumn object with Gauss-Radau plastic hinge integration method [34].

The column shear deformations are considered in the analyses using an elastic material

with shear stiffness of kGcAc, where Ac is the cross-sectional area of the column, and k

denotes the shear correction factor determined based on the cross-sectional shape. The

torsional column deformations are also incorporated using an elastic material. The torsional

stiffness of the material is calculated using the relationship 0.2GcJc, suggested by Aviram

et al. [7], where Jc is the second moment of area of the column section, and 0.2 is the
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Figure 2.6: Beam-column/rigid link assemblies used in modeling single-column (left) and

multi-column (right) bridge bents

stiffness reduction factor that takes into account section cracking. Lastly, to compute the

combined column force-deformation behavior, the individual force-deformation responses of

the defined fiber, shear, and torsional materials are aggregated. In OpenSees this aggregation

is performed using the Aggregator construct.

The parts of columns embedded in the superstructure are modeled by defining a weightless

rigid element from the top of the nonlinear beam-column element to the geometric centroid

level of the superstructure. In the case of multi-column bridges, the rigid elements between

the top node of columns to the centroid level of the superstructure are also connected using

weightless rigid links. This horizontal connection between columns is fully restrained to the

superstructure using diaphragm constraint and facilitates the transfer of force and moment

between the column elements. Figure 2.6 shows typical beam-column/rigid link assemblies

for single column and multi-column bridges.

Column foundations are modeled using linear translational and rotational springs—with

stiffnesses Kt and Kr, respectively—aligned with the directions longitudinal and transverse

to the bridge deck. Figure 2.7 shows the geometric representation of a foundation spring

assembly for a bridge segment containing a single-column bridge bent. In OpenSees, foun-

dation springs are generated using a zeroLength element containing all four springs in the
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Figure 2.7: Spring idealization of soil-foundation interaction at the base of bridge columns

foundation assembly.

2.3.2 Superstructure

According to AASHTO specifications [66], superstructures of non-seismically isolated rein-

forced concrete bridges are designed as capacity protected members. Hence, their seismic

response is essentially elastic. Consequently, for computational efficiency, reinforced con-

crete decks can be idealized as a linear assembly of elastic beam-columns elements running

through the geometric centroid of the deck, as previously shown in Figure 2.7. In modeling

regular reinforced concrete deck sections, to correctly determine the vibration periods and

the seismic demands, cracked (effective) section moment of inertia Ieff of 0.75Ig is utilized

[43]. For prestressed superstructure constructions, stiffness reduction is not performed, as

per Caltrans SDC [65] recommendations.
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2.3.3 In-Span Hinges

In long and continuous RC box-girder bridges, potential stresses due to temperature varia-

tions, creep, and shrinkage are reduced by the use of in-span hinges. In-span hinges effec-

tively divide a structure into shorter frames by permitting relative displacements between

adjacent deck segments in longitudinal and transverse directions. In an in-span hinge, the

vertical forces between adjacent deck segments are transferred by supporting the long can-

tilever segment of the span on the short cantilever through a number of bearings. Under

operational conditions, in-span hinges are expected to develop a minimal amount of stress

in transverse and longitudinal directions. However, during severe earthquakes, out-of-phase

vibrations may be induced in adjoining frames; consequently, large relative displacements

may occur. Internal shear keys and elastomeric bearings provided in in-span hinges limit

these large displacements in the transverse direction. In the longitudinal direction, relative

movement is restrained by the lateral resistance of the bearings and shear keys, as well as

the resistance of the hinge back wall. Figure 2.8a shows the side view of a typical in-span

hinge connection. From a modeling perspective, the interactions between adjacent frame

segments due to in-span hinge behavior can be simulated by coupling the end nodes of each

deck segment to the respective nodes of a zero-length element (zeroLength in OpenSees)

assembly, as shown in Figure 2.8a. Figure 2.8b provides a schematic view of the principal

load-resisting components of an in-span hinge.
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Figure 2.8: (a) Elevation and (b) schematic views of a bridge in-span hinge
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2.3.3.1 Longitudinal Resistance of In-Span Hinge Connections

Three components determine the longitudinal behavior of in-span hinges, namely elastomeric

bearings, internal shear keys, and the hinge back wall. Lateral resistance of the bearing pads

is assumed to follow the elastic-perfectly plastic behavior shown in Figure 2.9. The shear

capacity of the bearings is controlled by the friction coefficient µ between the pads and the

bearing seat, and the vertical force supported by each bearing Nb. For a single bearing,

the yielding deformation is determined by dividing the yielding force Vyb for the bearing

by its elastic stiffness kb. According to Caltrans SDC [65], the maximum shear strain a

bearing can sustain before failure ∆mb is 1.5 in both tension and compression. In OpenSees,

the force-deformation behavior of elastomeric pads is defined using the uniaxial bilinear

material object Steel01.

∆"#=
𝑉"#
𝑘#

Force

𝑉"# = 𝜇𝑉#

∆"#

𝑉"#

∆(#

Deformation ∆(#= 1.5

Figure 2.9: Lateral force-deformation behavior of elastomeric bearings

The behavior of shear keys is defined through a strain-softening gap material that follows

the force-deformation relationship shown in 2.10, as suggested by Mangalathu [55]. The

shear key capacity is determined as the product of the superstructure dead load at the in-
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span hinge seat Pdl and the acceleration levels the shear key is designed to withstand β. The

shear key lateral resistance is assumed to reach zero subsequent to plastic deformation of

3.5 inches. Note that plastic deformation is calculated as the difference between maximum

permitted deformation ∆mk, and the gap between the superstructure and shear key ∆gk. In

OpenSees, the force-deformation relationship for in-span hinge shear keys is defined using

the elastic-perfectly plastic gap uniaxial material object ElasticPPGap.

∆YZ

Force

𝑉XZ = 𝛽𝑃]^

𝑉XZ

Deformation ∆XZ

∆YZ∆XZ

∆XZ − ∆YZ= 3.5 in

Figure 2.10: Force-deformation relationship for in-span hinge shear key elements

Longitudinal resistance of the seat back wall is modeled using the simplified impact model

proposed by Muthukumar [61]. Force-deformation response of the back wall is characterized

by the parameters: initial gap ∆gbw, yield deformation ∆ybw, maximum deformation ∆mbw,

initial stiffness k1bw, and strain hardening stiffness k2bw, as shown in 2.11. For the bridge

models developed for this study, ∆ybw, ∆mbw, k1bw, and k2bw are assumed 0.1 in, 1 in, 1022.3

kip/ft, and 351.76 kip/ft, respectively. Back wall response is defined in OpenSees via the

ImpactMaterial object.
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Figure 2.11: Force-deformation response of an in-span hinge back wall

2.3.3.2 Transverse Resistance of In-Span Hinge Connections

In-span hinge behavior in the transverse direction is controlled by the lateral resistance shear

key and elastomeric bearing elements. The force-deformation behaviors of these elements

are identical in longitudinal and transverse directions; hence they are not restated.

2.3.3.3 Vertical Resistance of In-Span Hinge Connections

The vertical resistance of an in-span hinge is defined by the seat total shear resistance,

calculated by combining the contributions of reinforcing steel and concrete. Figure 2.12

shows the geometric parameters significant to the seat behavior.
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Figure 2.12: Typical in-span hinge seat reinforcement detailing

The force-deformation relationship for the reinforcing steel is determined by the reinforce-

ment shear capacity Vss and the initial deformation at which the shear capacity is reached

∆1s, as shown in Figure 2.13. According to Hube and Mosalam [39],

Vss = As1fye + As2fye (2.14)

where As1 and As2 are the total steel areas for the tension tie (denoted as purple in Figure

2.12) and the first row of reinforcement crossing the back wall/seat interface (denoted as

red in Figure 2.12), respectively. Megally et al. [58] recommend the use of the following

expression to calculate the deformation value ∆1s.

∆1s =
√

2εye (Ld + La)
h+ d√
h2 + d2

(2.15)

where, as defined in Figure 2.12, h and d denote seat height and back wall length, respectively.

Experimental results indicate that the extent of the crack region is approximately equal to

the seat width [58], i.e., La = b. On the other hand, the reinforcement development length

Ld is given by Priestley at al. [71] as

Ld =
dbfye

25
√
f ′ce

(2.16)
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where db is the nominal bar diameter in inches. In Eq. 2.16, both fye and f ′ce are defined in

psi.

Force
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∆%"Deformation

𝑉""

∆%"= 2𝜀'( 𝐿/ + 𝐿0
ℎ + 𝑑
ℎ* + 𝑑*

𝐿/ =
𝑑3𝑓'(
25 𝑓5(6

𝐿0 = 𝑏

Figure 2.13: Force-deformation relationship for the contribution of steel reinforcement to the

vertical resistance of an in-span hinge seat

The force-deformation relationship for the concrete is defined in terms of three param-

eters: concrete shear strength Vcs, the corresponding concrete deformation ∆2s, and the

deformation at which the shear capacity of concrete is reduced to zero ∆3s, as shown in

Figure 2.14. Concrete shear contribution Vcs is calculated as [1]

Vcs = 2.4
√
f ′cebd (2.17)

where f ′ce is defined in psi, and b and d denote the seat width and back wall length, respec-

tively (see Figure 2.12). As reported by Megally et al. [58], ∆2s is given by

∆2s =
√

2εye (Ld + La)
h+ d

s
(2.18)

Lastly, according to Silva et al. [85],∆3s is determined through the relationship

∆3s =
√

2ε3 (Ld + La)
h+ d

s
(2.19)
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In Eq. 2.18 and 2.19, s is the spacing for the reinforcement within the seat, ε3 = 0.005. The

remaining parameters are as defined before.
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ℎ + 𝑑
𝑠

Figure 2.14: Force-deformation relationship for the contribution of concrete to the vertical

resistance of an in-span hinge

By combining the contributions of the steel reinforcement and concrete in parallel, the

force-deformation curve shown in Figure 2.15 is obtained for the vertical resistance of the

in-span hinge seat. In OpenSees, the contribution to the vertical seat resistance by the re-

inforcing steel, shown in Figure 2.13, is defined using the uniaxial Bilin material object.

The concrete contribution displayed in Figure 2.14 is defined using the uniaxial zero ten-

sile strength concrete material object Concrete01. The force-deformation relationships for

the steel reinforcement and concrete are combined in parallel using the Parallel uniaxial

material object in OpenSees.
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Figure 2.15: Force-deformation relationship for the vertical resistance of an in-span hinge

2.3.3.4 Zero-Length Element Assembly for Simulating In-Span Hinge Behavior

Figure 2.16 shows the final zero-length element assembly used to define nonlinear in-span

hinge behavior. Note that weightless rigid elements (denoted as purple in Figure 2.16) are

attached to the end nodes of each deck segment to consider the rotational response ap-

propriately. Force-deformation characteristics of the in-span hinge back wall and seat are

calculated as in Figures 2.11 and 2.15, and the determined resistances are equally divided

among the respective spring elements. In order to define the elastomeric bearing and shear

key resistances in the transverse direction, the total contribution of each component is cal-

culated via scaling the relationships in 2.9 and 2.10 by the number of components, then the

obtained resistances evenly distributed among the respective springs.

2.3.4 Abutments

At each end of a bridge, the superstructure is supported by abutments. The primary purpose

of abutments is to transfer the vertical and horizontal loads from the superstructure to the
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Figure 2.16: Zero-length element assembly for an in-span hinge connection

abutment foundations and retain the lateral loads from roadway embankment under both

operational and extreme loading conditions. In terms of the rigidity of the connection to

the superstructure, abutments are classified as integral and non-integral. Diaphragm and

seat-type abutments are the most common examples of integral and non-integral abutments,

respectively. Figure 2.17 shows the side views of these two abutment types. Figure 2.18

shows the components of a typical seat-type abutment.

The diaphragm abutment is built monolithic to the bridge superstructure. The abutment

is connected straight to abutment foundations, and its diaphragm is in direct contact with

the embankment. As a result of this simpler construction, diaphragm abutment induces

lower initial construction costs. Its application, however, is limited to short-length bridges,

since it is less amenable to large superstructure movements due to temperature variations,

creep and shrinkage, and post-tensioning compared to non-integral abutment types.

The seat-type abutment is not integral to the superstructure and acts as an independent

structural component of the bridge. In a seat abutment, the superstructure is supported by

the bearings on the abutment seat. The lateral soil pressure is mostly resisted by the stem
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Figure 2.17: A side view of diaphragm (a) and seat-type (b) abutments. Note that, for

clarity, abutment shear key is omitted in (b)
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Figure 2.18: Components of a seat-type abutment
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wall, with just the portion of the backfill above the seat level retained by the back wall. Su-

perstructure movements in longitudinal and transverse directions are restrained by the back

wall and the shear keys, respectively. Unlike in diaphragm abutments, the gap between the

superstructure and back wall/shear keys provides added stress relief for temperature, creep

and shrinkage, or post-tensioning induced deformations. That renders seat-type abutments

more suitable to long, highly skewed, or curved bridges than diaphragm abutments. Unseat-

ing of the superstructure is a critical mode of failure for seat-type abutments, resulting in

the collapse of the end span. Thus, to eliminate unseating, modern-day seat-type abutments

are designed with large seat widths.

2.3.4.1 Abutment Behavior in Longitudinal Direction

The longitudinal behavior of a diaphragm abutment is characterized by the lateral resistance

of abutment piles and the passive resistance of the abutment backfill. Following the approach

presented by Mangalathu [55], lateral resistance of abutment piles is modeled using the tri-

linear force-deformation relationship displayed in Figure 2.19. The initial yield deformation

∆1p and plastic yield deformation ∆2p are set to 6 mm and 25 mm, respectively. The yield

force V1p is set equal to half the plastic yielding force V2p. In OpenSees, the force-deformation

behavior of abutment piles is captured using the uniaxial bilinear hysteretic material object

Hysteretic with pinching factors during reloading for strain and stress set to 0.75 and 0.5,

respectively, according to Ramanathan et al. [77].

Passive longitudinal resistance of abutment backfill is defined using the Generalized Hy-

perbolic Force–Displacement (GHFD) backbone curve proposed by Khalili-Tehrani et al.

[44]. Figure 2.20 shows the force-deformation response of homogeneous backfill material as

defined by GHFD. The change in lateral resistance of the backfill material Vbw(∆) is defined

in terms of lateral displacement ∆ as

Vbw = fδ
ar∆

Ĥ + br∆
Ĥnbw (2.20)
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Figure 2.19: Force-deformation relationship for abutment piles

for

Ĥ =
Hbw

Hr

(2.21)

ar =
1

βbw
(η − 1)α (2.22)

br =
1

βbw
(η − 2) (2.23)

where Hbw is the back wall height, Hr is the reference back wall height of 3.2808 ft, the wall

friction adjustment factor fδ = 1, and

βbw =
[
670.47− 269.05 (tanφ)1.23] ε50 (2.24)

α =
[
60.49 (tanφ)2 + 5.74

]
γ +

[
34.71 (tanφ)1.79 + 9.37

]
c (2.25)

nbw =
0.13 (tanφ)1.2 + 0.22√

c
+ 0.9 (2.26)

η = 18.10− 9.38
√
tanφ (2.27)

Recognizing that silty sand is the most common abutment backfill material [40], in the

generated bridge models, unit weight γ, internal friction angle φ, cohesion c, and strain
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Figure 2.20: Force-deformation relationship for abutment backfill

at 50% ultimate strength ε50 are respectively set to 0.125 kcf, 40◦, 0.3 ksf, and 0.5% after

Stewart et al. [88].

In OpenSees, the backfill material is defined using the HyperbolicGapMaterial object

with zero gap. The initial stiffness kmax and unloading/reloading stiffness kur of the hyper-

bolic material is determined using the relationship

kmax = kur = fδarĤ
nbw−1 (2.28)

The ultimate strength Vultbw of the material is calculated by setting ∆ equal to the maximum

deformation ∆mbw. According to Shamsabadi et al. [83] ∆mbw for silty sand backfill materials

is determined as

∆mbw = 0.05H (2.29)

In seat-type abutments, lateral resistances of the abutment back wall and elastomeric

bearings are also critical in resembling the longitudinal abutment behavior. Contributions

of back wall and bearings are defined according to the force-displacement relationships de-

scribed in Section 2.3.3.1.
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2.3.4.2 Abutment Behavior in Transverse Direction

The transverse behavior of a diaphragm abutment is determined by the lateral resistance of

abutment piles alone. Lateral abutment pile response is assumed identical in both longitudi-

nal and transverse directions, hence it is modeled according to the force-deformation curve

defined in Section 2.3.4.1.

In a seat-type abutment, however, elastomeric bearings and shear keys also contribute

to the abutment resistance in the transverse direction. Bearings follow the elastic-perfectly

plastic force-deformation behavior illustrated in Section 2.3.3.1. The transverse resistance

of each shear key is defined as the combined shear resistance from the shear key reinforcing

steel and concrete. The geometric parameters critical to shear key behavior are displayed in

Figure 2.21.

hk

dk

sk

bk

ak

Figure 2.21: Typical abutment shear key reinforcement detailing

According to Silva et al. [85], the force-deformation relationship for the reinforcing

steel is defined in terms of reinforcement shear capacity Vsk, initial deformation at which

the shear capacity is reached ∆1k, deformation corresponding to initial softening ∆4k, and

ultimate shear deformation ∆5k as shown in Figure 2.22. The reinforcement shear capacity
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is calculated as

Vsk =
fye

hk + ak

[
(Ak1 + Ak2)hk +

Aks
2sk

(
nvh

2
k + nhd

2
k

)]
(2.30)

where Ak1, Ak2, Aks are the total steel areas for the tension tie (denoted as purple in Figure

2.21), the first row of reinforcement crossing the abutment seat/shear key interface (denoted

as red in Figure 2.21), and the side reinforcement (denoted as green in Figure 2.21), re-

spectively. nh and nv signify the numbers of side faces with horizontal and vertical side

reinforcement, respectively. hk, ak, and sk are as defined in Figure 2.21.

The following equations are utilized to calculate ∆1k, ∆4k, and ∆5k.

∆1k =
√

2εye (Ld + La)
hk + dk√
h2
k + d2

k

(2.31)

∆4k =
√

2ε4 (Ld + La)
hk + dk
sk

(2.32)

∆5k =
√

2ε5 (Ld + La)
hk + dk
sk

(2.33)

where, La = b, Ld is as defined in Eq. 2.16, ε4 = 0.007, and ε5 = 0.01.

The contribution of concrete to abutment shear key capacity is determined as defined

in 2.3.3.3. The force-deformation relationship for the concrete contribution is as shown in

Figure 2.14. Peak concrete contribution Vck, ∆2k, and ∆3k are calculated using Eq. 2.17,

2.18, and 2.19, respectively.

Combining the contributions of the steel reinforcement and concrete in parallel, and con-

necting this material in series to an elastic no-tension material to account for the gap between

the deck and shear keys, the force-deformation curve shown in Figure 2.23 is obtained for

the lateral resistance of an abutment shear key. In OpenSees, the contribution of reinforcing

steel, shown in Figure 2.22, is prescribed using the uniaxial Bilin material object. The force-

deformation curve for concrete displayed in Figure 2.14 is implemented using the uniaxial

zero tensile strength concrete material object Concrete01. Compression-only gap element

was defined using the elastic-perfectly plastic gap uniaxial material object ElasticPPGap

where tangent stiffness is set to a very high value. The force-deformation relationships for

the steel reinforcement and concrete are combined in parallel using the Parallel uniaxial
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Figure 2.22: Force-deformation relationship for the contribution of steel reinforcement to the

lateral resistance of an abutment shear key

material object. Combined concrete and steel material is connected in series with the gap

element using the Series uniaxial material object in OpenSees.
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Figure 2.23: Force-deformation relationship for an abutment shear key
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2.3.4.3 Zero-Length Element Assembly for Simulating Abutment Behavior

Figure 2.24 shows the final zero-length element assembly used to define nonlinear abutment

behavior for diaphragm and seat-type abutments. Force-deformation characteristics of the

abutment piles are calculated as in Figures 2.19 and multiplied by the deck width to de-

termine the longitudinal and transverse resistances of pile spring elements. Longitudinal

resistance of the backfill springs is calculated by multiplying the force-deformation relation-

ship in Figure 2.20 by the width of the backwall. As in the case of in-span hinges, to define

the elastomeric bearing and shear key spring resistances in the transverse direction, the to-

tal contribution of each component is calculated via scaling the relationships in Figures 2.9

and 2.23 by the number of components, then the calculated resistances are split among the

respective springs.

Deck

Elastomeric bearings

Back wall

Abutment shear key

Backfill

Abutment piles

Wall node

Fixed node

𝑥

𝑦

Figure 2.24: Zero-length element assembly for diaphragm (a) and seat-type abutments (b)

The translational and torsional masses for column elements were calculated as

Mxc = Myc = Mzc = ρcAcLtrib (2.34)

Mzz =
1

8
ρcAcLtribDc (2.35)

where Ltrib and Dc are as defined in Figure 2.25, and ρc and Ac are concrete density and

column cross-sectional area, respectively.
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The translational and torsional masses for deck segments were computed following the

relationships

Mxd = Myd = Mzd = ρcAwLtrib (2.36)

Mcc =
1

12
ρcAwLtribdw (2.37)

where Ltrib and dw are as defined in Figure 2.25, and Aw is the deck cross-sectional area,

respectively.

To simulate structural damping, constant viscous damping ratios were sampled from a

normal distribution with a mean of 4.5% and a standard deviation of 1.25% after Padgett

citepadgett2007. Lower and upper bound damping ratios were set to 2% and 7%, respectively.

𝑥

𝐿trib

𝑥

𝑦

𝑧
𝐿trib

dc

𝑑w

Figure 2.25: Zero-length element assembly for diaphragm (a) and seat-type abutments (b)

2.4 Model Properties

Model properties were assigned according to the class statistics suggested by Mangalathu

[55]. Column properties were defined as in Table 2.2. Colum foundation properties were

defined according to Table 2.3. Properties of elastomeric bearing were prescribed following

Table 2.4. Abutment pile capacities were defined using 2.5. The gap between deck and shear
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key elements was assumed to follow a uniform distribution with a mean of 0.75 in and a

standard deviation of 0.19 in (Lower bound: 0, Upper bound: 1.590).

Table 2.2: Statistical distributions for column material and reinforcement paramaters

Statistical Distribution

Design Era Parameter Units Type Mean SD Lower Bound Upper Bound

All Longitudinal steel reinforcement ratio N/A U 2.00 0.33 1.0 3.0

Concrete compressive strength ksi N 3.90 0.48 2.94 5.19

Pre-1971 Steel yield strength ksi N 57.3 4.5 49.0 67.0

Transverse steel reinforcement ratio N/A 4 at 12 in. irrespective of the cross-section

Concrete compressive strength ksi N 4.55 0.56 3.43 5.67

Post-1971 Steel yield strength ksi N 69.0 5.5 58.0 80.0

Transverse steel reinforcement ratio N/A U 0.85 0.07 0.4 1.3

Table 2.3: Statistical distributions for column foundation spring parameters

Transverse Direction Transverse/Longitudinal Direction

Design Era Bent Type Foundation Fixity Type Mean SD Lower Bound Upper Bound Type Mean SD Lower Bound Upper Bound

Translational stiffness (kip/in)

Single Fixed LN 1250.0 2.5 500.0 3125.0 LN 1.0 1.0 1.0 1.0

Pre-1971 Multiple Pinned LN 625.0 2.5 250.0 1562.5 LN 1.0 1.0 1.0 1.0

Multiple Fixed LN 625.0 2.5 250.0 1562.5 LN 1.0 1.0 1.0 1.0

Single Fixed LN 2000.0 2.5 800.0 5000.0 LN 1.0 1.0 1.0 1.0

1971-1990 Multiple Pinned LN 1000.0 2.5 400.0 2500.0 LN 1.0 1.0 1.0 1.0

Multiple Fixed LN 1000.0 2.5 400.0 2500.0 LN 1.0 1.0 1.0 1.0

Single Fixed LN 2500.0 2.5 1000.0 6250.0 LN 1.0 1.0 1.0 1.0

Post-1990 Multiple Pinned LN 1000.0 2.5 400.0 2500.0 LN 1.0 1.0 1.0 1.0

Multiple Fixed LN 1000.0 2.5 400.0 2500.0 LN 1.0 1.0 1.0 1.0

Rotational stiffness (×106kip-in/rad)

Single Fixed LN 25.0 2.5 10 62.5 LN 1.5 1.5 1.0 2.25

Pre-1971 Multiple Pinned LN 2.5 2.5 1.0 6.3 LN 1.0 1.5 0.67 1.50

Multiple Fixed LN 4.0 2.5 1.6 10.0 LN 1.0 1.5 0.67 1.50

Single Fixed LN 80.0 2.5 32.0 200.0 LN 1.5 1.5 1.0 2.25

1971-1990 Multiple Pinned LN 12.0 2.5 4.8 30.0 LN 1.0 1.5 0.67 1.50

Multiple Fixed LN 18.0 2.5 7.2 15.0 LN 1.0 1.5 0.67 1.50

Single Fixed LN 190.0 2.5 76.0 475.0 LN 1.15 1.15 1.00 1.32

Post-1990 Multiple Pinned LN 20.0 2.5 8.0 50.0 LN 1.20 1.25 0.96 1.50

Multiple Fixed LN 30.0 2.5 12.0 75.0 LN 1.20 1.25 0.96 1.50
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Table 2.4: Statistical distributions for elastomeric bearing parameters

Statistical Distribution

Design Era Parameter Units Type Mean SD Lower Bound Upper Bound

Pre-1971 Stiffness/deck width kip/in/ft LN 0.40 0.35 0.70 3.0

Coefficient of friction N/A N 0.30 0.10 0.10 0.50

1971-1990 Stiffness/deck width kip/in/ft LN 0.77 0.52 0.7 6.0

Coefficient of friction N/A N 0.30 0.10 0.10 0.50

Post–1990 Stiffness/deck width kip/in/ft LN 0.00 0.45 0.4 2.5

Coefficient of friction N/A N 0.30 0.10 0.10 0.50

Table 2.5: Statistical distributions for lateral abutment pile capacity per deck width for all

construction eras

Statistical Distribution

Abutment type Units Type Mean SD Lower Bound Upper Bound

Diaphragm kip/ft LN 1.79 0.35 2.5 12.0

Seat kip/ft LN 2.08 0.35 4.0 16.0

2.5 Bridge-Specific Fragility Functions

Component demand thresholds required to compute the fragility function for each damage

class is defined according to Ramanathan et al. [77]. Dispersion value for all components

and CDT levels are assumed 0.35. For abutment seat classification method please refer to

the referenced paper.
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Table 2.6: Component demand threshold (CDT) values used in computing fragility functions

Component EDP Units MCDT-0 MCDT-1 MCDT-2 MCDT-3

Columns

Pre-1971 Curvature ductility N/A 0.8 0.9 1.0 1.2

1971-1990 Curvature ductility N/A 1.0 2.0 3.5 5.0

Post-1990 Curvature ductility N/A 1.0 4.0 8.0 12.0

Abutment Seat

AS1-S Displacement Inches 0.5 1.0 2.0 3.0

AS2-S Displacement Inches 1.0 3.0 6.0 9.0

AS3-S Displacement Inches 1.0 3.0 10.0 15.0

AS3-L Displacement Inches 2.0 6.0 10.0 15.0

AS4-S Displacement Inches 1.0 3.0 14.0 21.0

AS4-L Displacement Inches 2.0 6.0 14.0 21.0

Abutment Deformation

Passive Displacement Inches 3.00 10.00 N/A N/A

Active Displacement Inches 1.50 4.00 N/A N/A

Transverse Displacement Inches 1.00 4.00 N/A N/A

Joint Seal

Type A Displacement Inches 0.5 N/A N/A N/A

Type B Displacement Inches 1.0 N/A N/A N/A

Strip Displacement Inches 2.0 5.0 N/A N/A

Modular Displacement Inches 4.0 10.0 N/A N/A

Bearings Displacement Inches 1.0 4.0 N/A N/A

Restrainers Displacement Inches 1.5 4.0 N/A N/A

Shear keys Displacement Inches 1.5 5.0 N/A N/A

Deck Displacement Inches 4.0 12.0 N/A N/A

Bent Foundation

Translation Displacement Inches 1.00 4.00 N/A N/A

Rotation Rotation Radian 1.50 6.00 N/A N/A
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CHAPTER 3

Framework for Image-Based Modeling of Bridge

Structures

3.1 Overview

At the highest level, the image-based modeling framework consists of five steps:

1. Automated identification of bridge location

2. Semi-automated development of bridge wireframe model

3. Semi-automated determination of deck properties

4. Automated extraction of column geometries

5. Semi-automated determination of in-span hinge properties

These key steps are described in further detail in the following sections, followed by a case

study comparing the performance of a model generated through the framework against a

structural model of the same bridge established using as-built drawings.

3.2 Identification of Bridge Location and Centerline Curve

The framework is capable of automatically identifying bridge locations based on the approx-

imate coordinate information available in the National Bridge Inventory (NBI) [28]. The

program first sends a query through OpenStreetMap’s Overpass API [67] and searches for

all the bridges fully or partially covered within a circle of a mile-radius centered at the NBI
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coordinates of the considered bridge. It then reads the route information of all the bridges

selected through the query and keeps the one(s) that match this information. Then, the

program randomly samples two points along the centerline curves of each of the selected

bridges and cross-checks both the route and direction information of the selected bridges.

At this step, the results are narrowed down to a single match, and the centerline informa-

tion necessary for wireframe model construction is established. Figure 3.1 summarizes the

described bridge location and centerline identification procedure.

B. John Garrick Institute for the Risk Sciences

Image-Based Bridge Modeling

Detection of Bridge Locations

Read 
approximate 

bridge coordinate 
from NBI

Query all bridge 
structures within 
1-mile radius of 

the NBI 
coordinate using 

Select the bridge 
that matches 

inventory route 
information from 

NBI

Cross-check the 
route information by 
randomly sampling 
two points along the 

bridge centerline 
and requesting 

direction 
information in 

between them via

If cross-checks, 
keep the 
centerline 
geometry

Figure 3.1: Bridge location and centerline identification

3.3 Developing the Bridge Wireframe Model

Developing the bridge wireframe model requires identification of ground surface level, pier

locations, and the distance from the ground surface to the top of the deck. The framework

captures ground elevations by automatically creating a minimum of 1000 sampling points

along the bridge centerline curve, then querying ground elevations at those points via Google

Maps Elevation API. Determining pier locations and the normal between the ground surface

and deck top surface is somewhat more involved. First, two lines (curves rather) of virtual
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cameras are created offset from the bridge centerline by a distance proportional to the length

of the bridge, and all Google Street View images along this line are harvested. Then images

are semantically segmented so that all areas belonging to column and deck elements are

clearly marked. Next, based on their order of occurrence along the centerline, each column

element is assigned a number. Then images including each column element are placed in

separate batches, and by performing auto-calibration, camera parameters for the images

are determined. Next, column bottom edges and deck’s top edges are detected and the

length of the normal line that links these two edges is measured for each column. Last, a

camera image fully aligned with the bridge is selected, its principal vertical plane is marked

on the image, and the shortest distance between the plane and the columns in the image

are measured to obtain the column locations. This last step is repeated until all column

locations are determined. Even if this process requires minimal user interruption, it is not

fully automated due to occasional inaccuracies in semantic segmentation and edge detection

procedures. Figure 3.2 summarizes the wireframe model development procedure.

B. John Garrick Institute for the Risk Sciences
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Figure 3.2: Developing the bridge wireframe model
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3.4 Determination of Deck Properties

The primary assumption in defining the deck is that it remains elastic under earthquake

shaking. Hence, as long as a valid estimation of the gross area of the deck can be made,

the geometric properties extracted from Street View images shall be sufficient. Deck re-

construction starts with reading the deck metadata fields from NBI. One of the NBI fields

gives the top width of the bridge deck. The bottom width of the deck is extracted from

auto-calibrated images from the previous step. Then the horizontal alignment of the deck is

extracted by automatic lookup of AASHTO code for the design year of the bridge and back-

calculated based on the posted speed limit for the bridge (obtained from Google Directions

API). Figures 3.3 and 3.4 summarize the deck reconstruction process.Identifying Deck Properties
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elastic deck 
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Figure 3.3: Determination of deck properties: general procedure
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Image-Based Bridge Modeling
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Figure 3.4: Determination of deck properties: closeup

3.5 Extraction of Column Properties

The automated extraction of column geometries consists of three primary steps. First, an

edge detection algorithm is executed on segmented column patches, and the number of

edges is counted (e.g., two edges if circular, three edges if rectangular). Then column heights

and widths are sampled at numerous intervals to determine the column dimensions. Then

using class statistics for bridge columns [55], longitudinal and transverse rebar locations are

calculated. Figure 3.5 summarizes the process for extracting column shape and dimensions.Developing Wireframe Bridge Models
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edges
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density and material 
properties based on 
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Establish 
column 
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Figure 3.5: Automated extraction of column properties
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3.6 Determination of in-span hinge properties

The determination of in-span hinge locations is performed identically to column location

determination. The main difference is the difficulty in determining the location and gap

size. Segmented patches for the deck are evaluated with a gradient change detector for

location identification. However, the filter is not flawless, so seldom user interruption is

required.

3.7 Case Study: Interstate-10E/Interstate-210N Interchange Bridge

A structural model of the Interstate-10E/Interstate-210N interchange bridge was developed

based on the bridge’s as-built drawings, and several geometric and structural characteris-

tics were compared against its image-based model. Figures 3.6 through 3.11 display the

intermediate steps of image-based modeling process as well as the final model.
Initial Processing of Centerline Geometry

*Using UCLA automated image-based structural 
model development program through utilization 

of 

Calculation of bridge centerline 
curve

*Using UCLA automated image-based 
structural model development program 

through utilization of

Determination of ground elevations

*Using UCLA automated image-based 
structural model development program

Determination of road elevations

27

Figure 3.6: I-10E/I-210N Interchange: determination of centerline, ground and deck eleva-

tion
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Image processing to identify bent locations and developing 
the wireframe model

Identification of bent locations

*Using UCLA automated image-based structural 
model development program via Image 

Analyzer Module

*Using UCLA automated image-based structural 
model development program via Wireframe 

Model Builder Module

Establishing of wireframe model

B. John Garrick Institute for the Risk Sciences

Modeling: Developing the Geometric Model

Figure 3.7: I-10E/I-210N Interchange: identification of column locations, and the resulting

wireframe model
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Detection of column edges

*Using UCLA automated image-based 
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Pixel Counter Module
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B. John Garrick Institute for the Risk Sciences

Modeling: Developing the Geometric Model

Figure 3.8: I-10E/I-210N Interchange: column edge detection and dimension extraction
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Image processing to identify in-span hinge locations

Identification of in-span hinge locations
*Using UCLA automated image-based structural model development program via Image Analyzer Module

B. John Garrick Institute for the Risk Sciences

Modeling: Developing the Geometric Model

Figure 3.9: I-10E/I-210N Interchange: identification of in-span hinge locations

Figure 3.10: I-10E/I-210N Interchange: Full 3-D Model
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Resulting model

B. John Garrick Institute for the Risk Sciences

Validation study

Figure 3.11: I-10E/I-210N Interchange: Full 3-D Model visual comparison against Street

View imageHarvested vs As-built: Bridge Deck Elevation
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Figure 3.12: I-10E/I-210N Interchange: image-based vs. as-built deck elevation

Figures 3.12 through 3.14 compare the geometric features of the image-based model vs.

the as-built model. Table 3.1 makes a comparison between the modal periods and Figure

3.15 compares collapse fragilities of the image-based model vs. the as-built model. As

evident from the results, image-based results almost perfectly match the as-built geometry

and closely approximates the as-built structural behavior.
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Harvested vs As-built: Column Diameters
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Figure 3.13: I-10E/I-210N Interchange: image-based vs. as-built column diametersHarvested vs As-Built: Column Heights
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Figure 3.14: I-10E/I-210N Interchange: image-based vs. as-built column heights
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Table 3.1: Image-based versus as-built: Modal Periods

Timage-based Tas-built

Mode 1 1.36 1.53

Mode 2 1.18 1.29

Mode 3 1.03 1.09

Mode 4 0.95 1.02

Mode 5 0.89 0.94

Mode 6 0.84 0.88

Mode 7 0.78 0.80

Mode 8 0.75 0.79Harvested vs As-Built: Collapse Fragilities

37

Figure 3.15: I-10E/I-210N Interchange: image-based vs. as-built collapse fragility functions
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CHAPTER 4

An Investigation of Seismic Resilience of the

Transportation Network Serving Los Angeles

Metropolitan Area

This chapter rephrases the findings of a study performed by the author for a paper in

consideration for publication [17]. At the time this document was published, the mentioned

paper was under review.

4.1 Seismic Loss Assessment

Converting seismic hazards to direct physical damage comprise three main steps: (i) quan-

tifying scenario hazard controlling the studied region, (ii) combining the ground motion

intensity measures (IMs) due to the scenario event with component fragility functions to cal-

culate the damage state probabilities for each component, and (iii) coupling the probabilities

for each damage state with the corresponding recovery functions to estimate the downtime

for each network component.

Computing the scenario hazard at a site requires first identifying all the events that

contribute to the seismic hazard at the studied region—a process termed probabilistic seismic

hazard analysis (PSHA) [56]. Subsequently, the probabilistic seismic hazard (PSH) results

can be deaggregated to obtain the relative contributions of all seismic sources to that hazard

for all possible magnitude and distance measures [11]. Scenario hazard is identified as the

event with the highest contribution. The last step in quantifying the scenario hazard is to

compute the IMs due to the determined earthquake event. This process is typically carried
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out by use of ground motion prediction equations (GMPEs), such as the ones developed

through the NGA-West 2 [87], and NGA East [32] projects. In general, GMPEs define the

natural logarithm of a IM (lnY ) in terms of a convolution of a source function (FE), path

function, (FP ), site function (FS), and a residual term εnσ(.) as

lnY = FE(M,mech) + FP (R,M, region) + FS(VS30, R,M, region, Zx)

+ εnσ(M, R, VS30) (4.1)

where M is the earthquake moment magnitude, R is the rupture distance in km, VS30 is the

time-averaged shear-wave velocity in the top 30 m of the site in m/sec, Zx is the basin depth

in km, mech is the fault mechanism parameter, and region denotes the regional correction

parameter.

The main outputs of GMPEs are the IMs peak ground acceleration (PGA), peak ground

velocity (PGV), and 5%-damped elastic pseudo-absolute spectral acceleration (PSA). Com-

bining PGA with information such as liquefaction susceptibility, the ground displacement

demand expected at a site can also be calculated. Each of these IMs correlate with a particu-

lar type of seismic demand and the corresponding damage to individual network components.

During an earthquake, the primary factors that contribute to bridge losses are ground and

structural failures, which are typically well-correlated with PGA and PSA [53], [68], respec-

tively. Damages to tunnels, on the other hand, are caused by ground shaking, ground failure

due to liquefaction, fault displacement, or slope instabilities. As such, tunnel seismic damage

levels are well correlated to (and thus can be described as a function of) PGA and PGD [6].

The relationship between network components and IMs are defined using fragility func-

tions. Fragility functions are log normally-distributed functions that give the probability of

reaching or exceeding different damage states for a given IM. In performance-based earth-

quake engineering (PBEE) practice, damage to a network component is categorized into five

damage states: no damage (ds1), slight (ds2), moderate (ds3), extensive (ds4), and complete

(ds5)[47]. Each fragility function corresponds to one of these damage states and is character-

ized by a median value IM (M), and a log-normal standard deviation value (β). The generic
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form of a fragility function is given by

Pr(Dk ≥ dsj) = 1− Φk
j

(
ln(xk/M)

β

)
(4.2)

where k is the index for IMs, j is the index for PBEE damage states, Dk is the damage state

of network component due to IM k, Φ is the normal cumulative distribution function, and

xk is the IM k at the site of the network component. Note that the probability of a system

being in or exceeding the no damage, ds1, state is always 1 (Pr(Dk ≥ ds1) = 1).

An essential input for resilience assessment is the downtime estimates. Thus, for resilience

studies, damage probabilities computed using fragility functions are converted into this met-

ric. Translating bridge fragilities to downtime requires calculating the probability of network

components being in one of the five damage states, and aggregating these probability mea-

sures to restoration functions that correspond to individual damage states. Open literature

on restoration functions is particularly limited, and the restoration functions published by

FEMA [27] are the main tool used for tying component damage information to downtime

estimates. For a set of IMs, the probability of a network component being in a damage state

(Pk
j ) is calculated as

Pk
j =


Pr(Dk ≥ dsj)− Pr(Dk ≥ dsj+1) j = 1, 2, 3, 4

Pr(Dk ≥ ds5) j = 5

(4.3)

For a set of IMs, expected downtime (E[Dk]) is defined with respect to Pk
j as in

E[Dk] =
5∑
j=1

Pk
j ·RCj (4.4)

where RCj is the recovery function corresponding to the damage state denoted by index j.

One of the novel contributions of this study is its use of detailed bridge fragility functions

generated using the image-based modeling approach. The method establishes structural

models of bridges via a fusion of geotagged street-level and satellite imagery, OpenStreetMaps

centerline curves [67], 2018 version of National Bridge Inventory (NBI) metadata [28], Shuttle

Radar Topography Mission (SRTM) 1 Arc-Second Global data [95], and class statistics for
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bridge structural properties available in the literature [55]. The central premise of the method

is that through auto-calibration from multiple uncalibrated street-level images, the camera

matrix can be determined. Also, by semantic segmentation, individual components of a

bridge can be identified in images. Subsequently, by measuring the distance between the

back-projection of image origin and the image locations of components, world coordinates of

the components can be computed and superimposed on the bridge centerline. Furthermore,

object dimensions and deck height can be extracted, and a geometric model of the bridge

can be computed. The geometric model can then be laid over the SRTM digital elevation

model and populated with class statistics to attain a comprehensive structural model of the

bridge.

The process of obtaining fragility functions for a bridge structure for ground shaking

involves performing incremental dynamic analysis (IDE) [96] of the bridge model. By calcu-

lating the seismic response of the bridge for multiple ground motions at a range of PSA1.0

levels and comparing the demands determined for each realization against the corresponding

damage thresholds for each damage, IDE computes the Pr(Dk ≥ dsj). The choice of ground

motion records and the damage thresholds for each damage state depends on a variety of fac-

tors. In selecting ground motions, it is crucial to use a dataset consisting of waveforms from

earthquakes with magnitude and distance measures compatible with the scenario earthquake

and covering a broad band of frequencies.

The key aspect of determining damage thresholds, on the other hand, is to ascertain

that they are applicable to the structural systems that comprise the bridge. In this study

the ground motion dataset suggested by Baker [8] and the threshold values employed by

Ramanathan et al. [76] are utilized. Figure 4.1 shows several Google Street View images,

3D geometric model, and the fragility curves obtained for one of the many bridges modeled

for this study.
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(a) Google Street View images (b) Bridge fragility functions

(c) 3-D geometric model

Figure 4.1: Sample Google Street View images (a), fragility functions (b), and geometric

model (c) obtained for a bridge considered in this study

4.2 Network Disruptions due to Physical Damage and Its Impacts

on Resilience

By using the physical damage estimates, the analysis of the transportation network dis-

ruption is realized with a multi-county scale 4-step travel demand model. Specifically, the
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operational suitability of damaged system components is evaluated with respect to a thresh-

old functionality level to simulate the post-disaster decisions made by local authorities. If

the functionality level of a bridge drops beyond the specified threshold, the link correspond-

ing to that bridge in the network model is fully closed for traffic. Physical damage data

is time-dependent and explicitly considers the component-level recovery. With this infor-

mation, several network topologies can be modeled to capture a timeline of the network

conditions throughout the disruptions. Initial skim matrices are computed to find the OD

costs for Traffic Analysis Zone (TAZ) pairs. These costs, coupled with trip production and

trip attraction models, enable estimation of the number of trips generated into and from all

TAZs. These trips are then balanced and distributed throughout the region among different

travel modes. The calculated travel demand is then binned into individual time windows

and used to assign loads into the network to solve for the traffic assignment problem.

4.2.1 Defining Network Resilience

In evaluating network-level system resilience, the following mathematical definition by Fran-

gopol and Bocchini [30] is adopted.

R =
1

h

∫ h

0

Q(t)dt (4.5)

In Eq. 4.5, t denotes time in days, h is the investigated time horizon in days, and Q(t)

is system’s functionality level at time t with respect to the baseline, i.e., pre-event network

configuration. Integrating functionality over time in this manner yields the network resilience

metric, R. Here, Q(t) is defined in terms of percent functionality of baseline network Γ(0)

as

Q(t) = 1− |Γ(t)− Γ(0)|
Γ(0)

; Q(t)ε[0, 1] (4.6)

A number of functionality indicators, Γ, based on the total travel time spent or total travel

distance covered in the system by all users are proposed in literature. In this study VHT

(Vehicle-Hours-Traveled) and VHD (Vehicle-Hours-Delayed) are utilized. For each of these
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indicators, Γi(t) can be calculated as

Γ(t) =

# of links∑
k=1

γk(t); γk(t)εIR
+ (4.7)

4.2.2 SCAG Regional Travel Demand Model

The transportation system analyses were performed using the regional travel demand model

(RTDM) developed by the Southern California Association of Governments (SCAG) [86].

The peer-reviewed model is validated with a number of independent sources of travel data

including automobile and truck traffic counts, transit boarding counts, Vehicle Miles of

Travel (VMT) from Highway Performance Monitoring System (HPMS), and speed data from

Freeway Performance Measurement System (PeMS). Figure 4.2 provides a sample of the high

resolution in SCAG RTDM. It encompasses an vehicle ownership model, advanced mode

and destination choice models, a highly granular 2-tier TAZ system containing the 11,000

TAZs in the 6-county SCAG study region, trip market strata defined by car sufficiency, and

household income groups used throughout the entire demand models for 10 trip purposes.

It is calibrated with respect to the California Household Travel surveys and other major

data sources. It provides a Heavy Duty Truck model and contains a high-occupancy-vehicle

(HOV) diversion model splitting carpool trips from vehicles on the general purpose lanes.

For detailed discussions regarding the data sources and the modeling efforts related to SCAG

RTDM, readers are referred to the model validation report published by SCAG [86].

4.3 Case Study: Magnitude 7.3 Earthquake on Palos Verdes Fault

4.3.1 Hazard Characterization

Without losing generality, a scenario earthquake that poses a significant seismic risk to the

Ports of Los Angeles and Long Beach (also known as San Pedro Bay port complex) is con-

sidered. The port complex forms one of the world’s busiest seaport handling more containers

per ship call than any other port complex in the world. The complex comprises 32% of the
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Figure 4.2: High resolution, multi-modal network model underlying the SCAG RTDM

total national market; hence, potential interruptions to its operations bear significance to

more than just the City of Los Angeles. In order to quantify the scenario hazard controlling

the area where the port facilities are located, the PSH results from the 2014 version of U.S.

Conterminous Seismic Hazard Maps [69] are deaggregated. Based on the deaggregation of

the PSH for a 975-year return period (Figure 4.3b, the Palos Verdes fault was found to gov-

ern the seismic hazard for the complex. Palos Verdes fault is a predominantly right-lateral

strike-slip fault system extending in northwest-southeast direction for more than 100 km

[14]. According to the deaggregated hazard results, the moment magnitude with the highest

contribution to the overall hazard is determined as 7.3. As such, throughout the scenario

hazard calculations conducted for this study, a magnitude 7.3 earthquake generated by a
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portion of the Palos Verdes fault line is used. Figure 4.3(a) displays the PSHA results for

the epicentral location of the defined scenario event.

In order to simplify that calculation of damages resulting from the scenario event, the

effect of earthquakes are limited to ground shaking only. Thus, the IMs required for direct

damage analyses consisted of 0.3 sec and 1.0 sec spectral accelerations (SA0.3 and PSA1.0

respectively) for HAZUS predictions and PSA1.0 and for image-based model predictions for

the physical damage. The weighted average of the median SA values computed from 2013

GMPEs by Abrahamson et al., Boore et al., Campbell and Bozorgnia, Chiou and Youngs,

and Idriss with weights for the first four equations set to 0.22 and the last one set 0.12. Site

effects are taken into account using the slope-based VS30 proxy method suggested by Wald,

whereas the basin effects were neglected for all site locations. Given the VS30 map computed

by Thompson et al. [90], and the position of the study region on the Los Angeles basin,

both of these assumptions are warranted. Figures 4.4a and 4.4b show maps of the PSA1.0

resulting from the scenario event.

4.3.2 Damage Assessment

For the assessment of physical damage, 98 bridges in the immediate periphery of the port

complex were modeled using the image-based modeling procedure mentioned above (Figure

4.5). For all other bridges in the area, HAZUS fragility functions [27], created using the 2018

NBI data [28], are utilized. Damage state probabilities for each bridge in the study region

are computed using Eq. (4.3) for ds1 through ds5. Subsequently, HAZUS bridge restoration

functions [27] and Eq. (4.4) are utilized to calculate the downtime associated with the defined

scenario event. Figures 4.6a and 4.6d show maps of the computed downtimes. It is observed

that the bridge downtimes are highest around the rupture port facilities due to the proximity

of the scenario event to the complex. However, it is possible to observe bridge closures as far

as the Marina Del Rey area. Authors believe that the reason for such damage occurrences is

because of the coupled effect of increased ground shaking levels due to the presence of softer

soil deposits and pre-1971 construction of the structures.
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(a)

(b)

Figure 4.3: (a) PSHA results for the Ports of Los Angeles and Long Beach, and (b) their

deaggregation
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Figure 4.4: Scenario-based hazard results for 1.0 sec spectral accelerations at the general

study region level (a), and 1.0 sec spectral acceleration results around the rupture length (b)

4.3.3 Transportation Network Analysis

Based on the functionality levels determined from the scenario hazard for each bridge, base-

line network topology was modified to reflect the damages expected for Days 1, 7, 30, 90,

and 104 after the earthquake. In other words, in each of the five network versions, any link

with the functionality less than 75% was considered closed for traffic, as defined in Gordon

et al. [31], and the remaining links were preserved as-is. Based on this criterion, the num-

ber of bridge closures at each time instant is determined as summarized in Table 4.1. On

Day 105, full recovery of network components is achieved and baseline network functionality

re-established.

Table 4.1: Number of bridges closed at evaluated time instants

Instant After Earthquake Number of Bridges Closed

Day 1 137

Day 7 62

Day 30 58

Day 90 45

Day 104 19
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Figure 4.5: Modeled bridge closures on Day 1. Region-of-Interest contains bridges modeled

with the image-to-model methodology discussed in Chapters 2 and 3

In order to compute the changes in system functionality, including the baseline network,

six distinct complete traffic distribution and assignment problems are solved. In this study,

system functionality is only quantified in terms of travel time indicators VHT and VHD.

Figures 4.7 and 4.8 display system functionality, Q(t), based on VHT and VHD, respec-

tively. Functionality levels are presented for all six counties within the SCAG study region

as well as the entire Los Angeles metro area. Evidently, counties located far away from the

epicenter of the scenario earthquakes experience far less significant disruptions. In terms of

VHT, performed analyses estimate a total of 850, 000 hours/day additional travel time for

morning commuters, corresponding to a 6.52% decrease in network functionality. As exhib-

ited in Figure 4.8, Los Angeles County bears most of this functionality loss with a 37.89%

peak loss in functionality.

Figures 4.9 and 4.10 illustrate the reconfiguration of vehicle flow during the peak morning
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Figure 4.6: The location of damaged bridges within the general study region (a), and along

the rupture length color-coded in terms of downtimes (b)

traffic on Days 1 and 7 after the event, in comparison to the baseline network conditions.

It is observed that detours resulting from bridge closures on high volume corridors (e.g.,

Interstate highways 110, 710, and 405) around the ports shift the flow to the surface streets,

thereby forcing high volume traffic to drive through neighbourhoods surrounding the ports.
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Figure 4.9: Changes in morning peak vehicle flow with respect to baseline traffic conditions

on the day after the event
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Figure 4.10: Changes in morning peak vehicle flow with respect to baseline traffic conditions

seven days after the event
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CHAPTER 5

Conclusions and Future Directions

In this study, a framework for developing image-based models of bridge structures was es-

tablished, and its potential use for regional hazard assessment applications was presented.

Based on the verification study performed to test the accuracy of the models generated using

the framework, it was concluded that the framework is capable of generating extremely ac-

curate bridge models, both from geometric and structural standpoint. Furthermore, a case

study for Ports of Los Angeles and Long beach was presented to demonstrate a practical use

for the bridge inventory data that can be developed through the proposed framework. For

the case study, infrastructure damage determined using image-based methodology was cou-

pled with the highly granular regional travel demand model developed by SCAG for the Los

Angeles Metropolitan Area. As expected, the impact of the port traffic was mostly observed

in the City of Los Angeles. Nonetheless, although not as significant, the repercussions of the

disruptions around the port to other counties were also successfully captured.

The procedures and results presented here form the groundwork of a framework for

improving the accuracy of regional-level hazard assessment studies. At the time this study

was presented, the framework was not capable of generating models in a fully automated

way. Thus a critical advancement to the methodology could be to enhance the utilized

segmentation procedures. Although not directly related to the model generation process,

translating fragility information to physical damage and functionality is another aspect of

the framework that requires improvements. At its current state, seismic soil behavior is

represented using lumped elements. Given the framework is able to capture surface topology

in detail, developing finite elements coupled with the structural bridge models is another

future aspiration for the framework. Finally, the author believes that the bridge capacity
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can be better modeled in developing fragility functions using a stress-based approach (as

opposed to using damage threshold values to compute damage state probabilities).

77



BIBLIOGRAPHY

[1] ACI-ASCE Committee 426. The Shear Strength of Reinforced Concrete Members.
Journal of the Structural Division, 99(6):1091–1187, 1973.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning
Representations and Generative Models for 3D Point Clouds, jul 2017.

[3] Charu C. Aggarwal. Outlier Analysis. Springer International Publishing, Cham,
Switzerland, 2017.

[4] Timothy D. Ancheta, Robert B. Darragh, Jonathan P. Stewart, Emel Seyhan, Walter J.
Silva, Brian S. J. Chiou, Katie E. Wooddell, Robert W. Graves, Albert R. Kottke,
David M. Boore, Tadahiro Kishida, and Jennifer L. Donahue. PEER NGA-West2
Database. Technical Report 2013/03, Pacific Earthquake Engineering Research Center,
Berkeley, CA, 2013.

[5] Applied Technology Council. FEMA P-646: Guidelines for Design of Structures for
Vertical Evacuation from Tsunamis. Technical report, FEMA, Washington D.C., 2019.

[6] SA Argyroudis and KD Pitilakis. Seismic fragility curves of shallow tunnels in alluvial
deposits. Soil Dynamics and Earthquake Engineering, 35:1–12, 2012.

[7] Ady Aviram, Kevin R. Mackie, and Bozidar Stojadinovic. Guidelines of Nonlinear
Analysis of Bridge Structures in California. Technical Report 2008/03, Pacific Earth-
quake Engineering Research Center, Berkeley, CA, 2008.

[8] Jack W. Baker, Ting Lin, Shrey K Shahi, and Nirmal Jayaram. New Ground Motion
Selection Procedures and Selected Motions for the PEER Transportation Research
Program. Technical Report 2011/03, Pacific Earthquake Engineering Research Center,
Berkeley, CA, 2011.

[9] D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111–122, 1981.

[10] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding, 110(3):346–359, jun
2008.

[11] Paolo Bazzurro and C. Allin Cornell. Disaggregation of seismic hazard. Bulletin of the
Seismological Society of America, 89(2):501–520, 1999.

[12] Paul J. Besl and Ramesh C. Jain. Segmentation Through Variable-Order Surface
Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2):167–
192, 1988.

78
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[53] Kevin Mackie and Božidar Stojadinović. Probabilistic seismic demand model for cali-
fornia highway bridges. Journal of Bridge Engineering, 6(6):468–481, 2001.

[54] John B. Mander, Michael John Nigel Priestley, and Ro Park. Theoretical Stress-Strain
Model for Confined Concrete. Journal of Structural Engineering, 114(8):1804–1826,
sep 1988.

[55] Sujith Mangalathu. Performance based grouping and fragility analysis of box-girder
bridges in California. PhD thesis, Georgia Institute of Technology, 2017.

[56] Robin K McGuire. Probabilistic seismic hazard analysis and design earthquakes: clos-
ing the loop. Bulletin of the Seismological Society of America, 85(5):1275–1284, 1995.

[57] Frank McKenna. OpenSees: A framework for earthquake engineering simulation. Com-
puting in Science Engineering, 13(4):58–66, July 2011.

[58] Sami Megally, Pedro F. Silva, and Frieder Seible. Seismic Response of Sacrificial Shear
Keys in Bridge Abutments. Technical Report SSRP–2001/23, University of California,
San Diego, San Diego, CA, 2001.
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