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Abstract

Phase Transitions of Random Constraints Satisfaction Problem

by

Yumeng Zhang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Allan M. Sly, Chair

Constraints satisfaction problem (CSP) is a family of computation problems that are gener-
ally hard to solve in the worst case, which motivates the study of average cases by looking
at random CSPs. This thesis studies problems related to random constraints satisfaction
problems, in particular its different phase transitions in the large system limit as the level
of constraints increases.

The first part of this thesis studies the number of solutions in a typical problem instance.
It has long been observed that shortly before the satisfiability phase transition where so-
lutions stop to exist, the number of solutions in a typical instance no longer concentrate
around its expectation. Guided by the 1-step replica symmetry breaking heuristics in sta-
tistical physics, we prove the correct formula for the typical number of the solutions up to
the exponent.

The second part focus on the clustering threshold around which algorithms have been
observed to slow down. Different opinions exist for the reason of this algorithmic barrier.
One is the shattering of solution space which is conjectured to happen at the clustering
threshold. The other is the onset of frozen variables happening at a nearby rigidity threshold.
Previous analysis on the clustering threshold was not strong enough to differentiate the two
phase transitions. Using a detailed analysis of certain distributional recursion, we show that
the reconstruction threshold on trees, which is conjectured to coincide with the clustering
threshold, is strictly smaller than the rigidity threshold, laying ground for further studies.

The last part of the thesis studied the Glauber dynamics of graph colorings on d-regular
trees. By comparing the Glauber dynamics to a variant of block dynamics, we show that
the mixing time, and hence the speed of the related MCMC algorithm, undergoes a phase
transition at the reconstruction threshold.
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Chapter 1

Introduction

A constraint satisfaction problem (CSP) consists of n variables, each taking value from
alphabet X, subject to m constraints; a solution to a CSP instance is an assignment of values
to the variables such that all constraints are satisfied. The framework of CSPs captures
many interesting problems, ranging from brain teasers such as crossword and Soduku, to
well-studied research problems such as the Four Coloring problem. These problems can
be extremely challenging—a priori, finding a valid assignment of 100 binary variables by
exhaustive search would require 2100 trials. Indeed, many models of CSPs are known to be
“NP-complete” [Kar72], the polynomially-time computability of which has been the central
open problem in theoretical computer science.

The fact that these problems are intractable in the worst case motivates people to study
the average scenario by considering typical properties of random problem instances. The
two most prominent questions are:

1. When does a CSP have solutions and how many solutions there are?

2. When does there exist an algorithm that finds solutions in polynomial times?

Since their introduction in theoretical computer science, random CSPs have also attracted
the interest of physicists and mathematicians, for the rich phenomenon predicted by the
theory of statistical physics and the mathematical challenges to prove them. In this thesis
we address some aspects of this beautiful and complex picture.

1.1 Definition and background

To introduce the problems formally, we first define two types of constraints satisfaction
problem we will be mainly working with in this thesis. Definition to more general models
can be found in Section 5.2.1 or [BCO16].

Definition 1.1.1 (k-coloring). Let G “ pV,Eq be a graph with vertex set V and edge set
E, and let rks ” t1, . . . , ku be the set of k colors. We say that a configuration σ P rksV is a
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k-coloring of graph G if for every edge e “ pu, vq P E, σu ‰ σv. Let SOLpGq P rksV be the
set of proper colorings on graph G and define ZpGq “ |SOLpGq| be the number of solutions,
a.k.a. partition function in physics terms. The Gibbs measure of random colourings on G is
given by the uniform measure

µpσq “
1

Z
1tσ P SOLpGqu “

1

Z

ź

e“pu,vqPE

1tσu ‰ σvu.

Definition 1.1.2 (k-nae-sat). Let G “ pV, F,Eq be a factor graph where V is the set of
variables, F the set of constraints, E the set of edges joining variables to clauses. For each
e P E, let vpeq P V and apeq P F be the two ends of edge e respectively. We further equip
each e P E with literal Le P t0, 1u and denote the labeled graph by G “ pG, Lq. For each
clause a P F , let δa ” te P E : apeq “ au be the set of edges containing a. We say that
σ P t0, 1uV is a solution to the not-all-equal -sat (nae-sat) problem on G if

for all a P F , pLe ‘ σvpeqqePδa is neither identically 0 nor identically 1.

We further say that the problem is a k-nae-sat problem, if for each a P F , |δa| “ k, in which
case m “ dn{k. We again denote the set of nae-sat solutions of G by SOLpG q Ď t0, 1uV

and define ZpG q ” |SOLpG q|.

As observed in the two examples above, constraints satisfaction problems can be encoded
by graphs or factor graphs. Thus the randomness of CSPs can be translated to the random-
ness of the underlying graph ensemble. Two common choices are the random d-regular
graphs and Erdos-Renyi graphs Gpn,m “ dn{2q, or its factor graph analogue in cases where
each constraint involves more than 2 variables. The aforementioned questions can be trans-
lated into the following: Given the model and the choice of graph ensemble, for what values
of d and k

1. Is Z strictly larger than zero with high probability? Under those values, what is the
typical value of Z?

2. Is there a polynomial-time algorithm that finds elements of SOL with high probability?

The answers to these questions are closely related to the geometric structure of the solu-
tion space SOL, defined by connecting pairs of solutions at Hamming distance one. Indeed,
the complicated structure of the solution space posts major obstacles to mathematical anal-
ysis. On this front, significant advances were achieved by statistical physicists applying the
theory of spin systems. Of particular interest is a systematic theory they developed—the so-
called 1-step Replica Symmetry Breaking (1RSB) framework—that applies to a broad family
of CSP models, including the ones studied in this thesis. The main conjectural picture is
that for those models the solution space SOL Ď Xn undergoes several phase transitions as
n Ñ 8 and the constraints level α “ m{n increases (See Figure 1.1.1) [ZK07; Krz+07;
MRS08]. Here we briefly summarize the phenomenon:
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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from the large k expansion.
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Figure 1.1.1: Phase diagram of random CSPs described by the 1RSB ansatz

For small values of α, SOL consists of a single well-connected cluster with possibly ex-
ponentially small exceptions. Upon the clustering threshold αclus, SOL shattered into ex-
ponentially many clusters each of which is exponentially small. Both the number and the
size of the clusters decrease as we increase α. At the condensation threshold αcond, the mass
condense to a bounded number of clusters. Finally, the SOL is with high probability empty
after the satisfiability threshold αsat.

While the 1RSB framework gives precise predictions of the phase diagram and has lead
to significant algorithmic improvement in practice (e.g. [MZ02]), the theory itself is based
on several heuristic assumptions and is hence non-rigorous. Many efforts have been made
to verify these predictions and understand their algorithmic implications. In the next two
sections, we briefly summarize the current status and the contribution of this thesis along
the line.

1.2 Condensed phase and the number of solutions

The paper of Friedgut [Fri99] shows that for many CSP models, the satisfiability of a typical
problem instance undergoes a sharp phase transition: Let Pn,αpnq denote the uniform measure
over all problem instances with m “ αn constraints. There exists a sequence of thresholds
αsatpnq such that for any ε ą 0,

lim
nÑ8

Pn,αsatpnq´εpZpG q ą 0q “ lim
nÑ8

Pn,αsatpnq`εpZpG q “ 0q “ 1.

Similar results for several models on regular (factor) graphs are proved in [BGT13].
Friedgut’s result does not give the exact location of αsatpnq, neither does it rule out the

intuitively unlikely dependence of αsatpnq on the number of variables n. Until recently, the
exact location of satisfiability threshold has only been established for a few models: random
xor-sat [MRTZ03], random 2-sat [CR92; Goe96], random 1-in-k-sat [Ach+01], all of which
have a simpler phase diagram than the one in Figure 1.1.1. In the last couple of years, a
sequence of works determines the exact location of αsat or narrows it down for models that
fall under the 1RSB framework: k-nae-sat [CZ12; DSS16], independent set [DSS13], k-sat
[BC15; DSS15], k-coloring [COEH16].

The time gap between the two groups of results reflects the complex nature of models
following the 1RSB ansatz, which is largely due to the existence of a “condensed” phase
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immediately preceding the satisfiability threshold: in this regime, the solution space SOL is
dominated by a few large clusters and the expected number of solutions EZ is blown up by
“atypically-large” ones that are unlikely to be seen in a typical instance. As a result, the
typical number of solutions Z ! EZ with high probability [CZ12] and solving EZ “ 0 does
not yield the correct αsat. Non-trivial arguments are necessary to eliminate those effects, in
which the physics insight again plays a crucial role.

The satisfiability threshold threshold is only one facet of the rich theory physicists have
developed. There are deep conjectures for the behavior of these models inside the satisfiable
regime. In Chapter 2, we continue the quest and determine the total number of solutions
Z “ |SOL| for typical instances, in particular in the condensed regime where Z ! EZ with
high probability. We will work with the random k-nae-sat model and show that for k ě k0

and αcond ď α ă αsat, the typical value of Z is up to a sub-exponential factor given by the
largest cluster exists in SOL. We further give the explicit formula f1rsbpαq such that for a
typical random regular k-nae-sat problem as nÑ 8,

1

n
lnZ

p.
Ñ f1rsbpαq.

The appeal of nae-sat model is that it has certain symmetries making the analysis par-
ticularly tractable, yet it is expected to share most of the interesting qualitative phenomena
exhibited by other commonly studied problems, including random k-sat and random graph
colorings.

1.3 Clustering thresholds and sampling solutions

1.3.1 Algorithmic barrier

While solutions exist up to the satisfiability threshold αsat, as has been observed and partially
verified in many works, the actual barrier for finding and sampling solutions lies around the
clustering threshold αclus: simple greedy algorithms are known to find solutions for k-coloring
and k-sat instances up to p1 ´ εqαclus, and no algorithm is known to work significantly
better. In fact, the failure of certain families of algorithms has been proved for α ą p1 `
εqαclus [RV14], or a slightly smaller region [GS14; COHH16]. This motivate people to study
the clustering threshold and its algorithmic implication. Intuitively, it would be hard for
algorithms to traverse the solution space when it is dominated by exponentially many well-
separated clusters [ACO08; ACORT11].

Unlike the satisfiability threshold, the clustering phase transition are less well-understood.
Take the k-coloring model as an example. It is conjectured that at dclus (here d “ 2α) the
solution space SOL shatters into exponentially many small clusters. Meanwhile, a close
but different phase transition, the rigidity phase transition, is conjectured to happen at
drig « p1 ` op1qqdclus, beyond which most of the clusters become “frozen”, i.e. a linear
fraction of variables take the same value throughout the cluster [ZK07].
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The two closeby phase transitions play an important role in understanding the algorith-
mic barrier as different papers disagree on which one of them is more responsible for the
algorithmic slow down [MZ02; ZK07; ZM08], if any of them [Bra+16]. However, it is un-
known even at a heuristic level if the gap |dclus´drig| is indeed non-vanishing [Sly09; Mol12],
let alone analyzing their impact on algorithms.

One obstacle is that the conjectural clustering threshold d‹clus is characterized in physics
literature by the non-trivial fixed points of certain distributional recursion. The high dimen-
sion of the recursion makes it hard to analyze without restricting the domain to distributions
with large atoms—which amount to clusters with frozen variables. Thus it is hard to sepa-
rate the discussion of the clustering threshold with the rigidity threshold. The other obstacle
lies in proving the clustering phenomenon in the unfrozen regime, i.e. proving dclus “ d‹clus.
Unlike frozen clusters, which are disconnected components of the solution space, unfrozen
clusters may connect to each other as long as there are “bottlenecks” at the boundary. Thus
unfrozen clusters are much harder to characterize and analyze mathematically.

In Chapter 3 and Chapter 4, we address the first obstacle by analyzing the distributional
recursion used in the definition of d‹clus, which coincide with the reconstruction problem on
trees [MM09, Ch.19]. With the exact definitions postponed to Chapter 3, we show that
for both k-coloring model (Chapter 3) and k-nae-sat model (Chapter 4) with k ě k0,
the reconstruction threshold drec, which is also the conjectural clustering threshold d‹clus, is
strictly smaller than the rigidity threshold, and the gap is an increasing function of k.

Thus given the conjecture that dclus “ d‹clus, our results in Chapter 3 and Chapter 4
strongly suggest a non-vanishing phase where the solution space are clustered but non-frozen.
We believe that analyzing algorithms in this region will be very helpful in understanding the
nature of the algorithmic barrier.

1.3.2 Efficient sampling algorithms before dclus

In Chapter 5, we give an example of algorithms that actually slows down at the reconstruction
threshold. We consider the problem of uniformly sampling proper k-colorings on d-regular
trees with n-vertices. A widely-used sampling algorithm is Markov Chain Monte Carlo
(MCMC) based on the Glauber dynamics, which is a Markov chain that at each step updates
the value of an uniformly selected vertex randomly according to its surrounding vertices. The
central question is to bound the mixing time of the Markov chain, i.e. the time until the
Markov chain is “close” to its stationary distribution. More precisely, let P tpσ, ¨q be the
distribution of the Markov chain starting from σ after t steps, and π be the stationary
distribution, the mixing time is defined as

tmix ” mintt ě 0 : |P t
pσ,Aq ´ πpAq| ď 1{4, for all initial state σ and event Au,

If the mixing time grows polynomially in the number of variables, then the corresponding
MCMC algorithm samples solutions efficiently.

In Chapter 5, we show that the mixing time is Opn lnnq for k ě k0, d ď drec « p1 `
op1qqk ln k (cf. (3.1.3)), improving the previous results of d ď k ` 2 [MSW07; Bha+11]. In
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particular combining our result with [Tet+12] implies a sharp transition of the mixing time
at the exact reconstruction threshold d “ drec.

1.4 Note on prior publication and collaboration

The results presented in this dissertation are obtained in collaboration with other researchers
and some have already been published elsewhere. Chapter 2 is based on a joint work with
Allan Sly and Nike Sun [SSZ16]. The remaining chapters are based on joint works with Allan
Sly: Chapter 3 is based on [SZ16], Chapter 4 is based on unpublished note, and Chapter 5
is based on [SZ14]. All three papers mentioned are available on ArXiv. I express my sincere
thanks towards my co-authors for allowing the inclusion of joints works with them in this
dissertation.
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Chapter 2

The number of solutions for random
regular NAE-SAT

2.1 Introduction

2.1.1 Main result

In this chapter, we study the number of solutions to a random k-nae-sat problem. (The
formal definition is given in Section 2.2.) More specifically, we work on d-regular instances
where each variable appears in exactly d clauses. See [AM06] for important early work on
the closely related model of random (Erdős–Rényi) nae-sat.

Following convention, we fix k and then parametrize the model by its clause-to-variable
ratio, α “ d{k. The partition function of the model, denoted Z ” Zn, is simply the number
of valid nae-sat assignments for an instance on n variables. It is conjectured that for each
k ě 3, the model has an exact satisfiability threshold αsatpkq: for α ă αsat it is satisfiable
(Z ą 0) with high probability, but for α ą αsat it is unsatisfiable (Z “ 0) with high
probability (as n Ñ 8, with k fixed). This has been proved [DSS16] for all k exceeding an
absolute constant k0, together with an explicit formula for αsat which matches the physics
prediction. The exact formula is rather intricate so we omit it here, and note only its
approximate value

αsat “

ˆ

2k´1
´

1

2
´

1

4 ln 2

˙

ln 2` εk (2.1.1)

where εk denotes an error tending to zero as k Ñ 8.
We say the model has free energy fpαq if Z1{n converges to fpαq in probability as nÑ 8.

A priori, the limit may not be well-defined. If it exists, however, Markov’s inequality and
Jensen’s inequality imply that it must be upper bounded by the replica symmetric free energy

frspαq ” pEZq1{n “ 2p1´ 2{2kqα. (2.1.2)

One of the intriguing predictions from the physics analysis [ZK07; MRS08] is that there
is a critical value αcond strictly below αsat, such that fpαq and frspαq agree up to α “
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αcond and diverge thereafter. Since frs is analytic, f must be non-analytic at αcond. This
is the condensation or Kauzmann transition, and will be further described below. For α P
pαcond, αsatq it is conjectured that fpαq takes a value f1rsbpαq strictly below frspαq. The
function f1rsbpαq is explicit, although not extremely simple: it is derived via the heuristic of
one-step replica symmetry breaking (1rsb), and is presented below in Definition 2.1.3. Our
main result is to prove this prediction for large k.

Theorem 1. In random regular k-nae-sat with k ě k0, for all α ă αsatpkq the free energy
fpαq exists and equals the predicted value f1rsbpαq.

Remark 2.1.1. We allow for k0 to be adjusted as long as it remains an absolute constant (so
it need not equal the k0 from [DSS16]). The result of Theorem 1 is already proved [DSS16]
for α ď αlbd ” p2

k´1´ 2q ln 2, so we restrict our attention to α P pαlbd, αsatq, which is a strict
superset of the condensation regime pαcond, αsatq. Of course, for α ą αsat, we already know
fpαq “ 0. The case α “ αsat can arise only if dsatpkq ” kαsatpkq is integer-valued for some
k. We have no reason to believe that this ever occurs; if however it does miraculously occur
then the probability for Z ą 0 is bounded away from both zero and one. In this case, our
methods would show that Z1{n does not concentrate around a single value but rather on two
values, zero and limαÒαsat f

1rsb
pαq.

The condensation transition has been actively studied in recent work. The existence
of a condensation phenomenon was first established for random nae-sat [CP12], and has
since been found in random regular nae-sat and independent set [DSS16; DSS13]. It
has been demonstrated to occur even at positive temperature in the problem of hypergraph
bicoloring (which is very similar to nae-sat) [BCORm16]. However, determining the precise
location of αcond is challenging, and was first achieved for the random graph coloring model
[Bap+16] by an impressive and technically challenging analysis. Subsequent work pinpoints
αcond for random regular k-sat (which again is very similar to nae-sat) [BC15]. The main
contribution of this paper is to determine for the first time the free energy throughout the
condensation regime pαcond, αsatq.

2.1.2 Statistical physics predictions

As mentioned in the introduction chapter, the random regular nae-sat model has a single
level of replica symmetry breaking (1RSB) and undergoes similar phase transitions as pic-
tured in Figure 1.1.1. We now summarize the key predictions leading to the condensation
phase transition and refer the details to [MM09, Ch. 19]. While part of the following discus-
sion remains conjectural, much of it is rigorously established by the present paper. For this
discussion we focus on the leading exponential terms and ignore exptopnqu corrections.

Fix k and set α “ d{k. Recall that for α well above αclus (which is true for αcond

when k is large), the solution space breaks up into well-separated clusters. It is predicted
that the number of clusters of size exptnsu has mean value exptnΣps;αqu, and further is
concentrated about this mean; Σ is the “cluster complexity function.” It is common to
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abbreviate Σpsq ” Σps;αq. Summing this prediction over cluster sizes s gives that the total
number Z of nae-sat solutions has mean

EZ .
“
ÿ

s

exptnrs` Σpsqsu
.
“ exptnrs1 ` Σps1qsu,

where s1 “ arg maxrs` Σpsqs, and we write
.
“ to indicate equality up to exptopnqu factors.

It is predicted that Σ is continuous and strictly concave in s, and also that s ` Σpsq has a
unique maximizer s1 with Σ1ps1q “ ´1. Note that we have the dependence s1 “ s1pαq, and
Σps1q “ Σps1pαq;αq.

Under the 1RSB framework, physicists propose an explicit (conjectural) formula for Σ.
For nae-sat and related models, this explicit calculation reveals another critical value αcond P

pαclus, αsatq, characterized as

αcond “ inftα ě αclus : Σps1pαq;αq ă 0u.

For α ą αcond, EZ is dominated by clusters of size exptns1u, whose mean number exptnΣps1qu

is exponentially small, meaning they are highly unlikely to appear in a typical realization.
Instead, a typical realization is dominated by clusters of size smax where

smax ” smaxpαq ” arg maxts` Σpsq : Σpsq ě 0u.

Since Σpsmaxq “ 0, it follows that with high probability

Z
.
“ exptnrsmax ` Σpsmaxqsu “ exptnsmaxu.

According to this picture, we will have (with high probability) Z
.
“ EZ for α ď αcond, and

Z ! EZ for α ą αcond. Thus, for α ą αcond, the first moment EZ fails to capture the typical
behavior of Z. This difficulty persists up to and beyond the satisfiability threshold

αsat “ inftα ě αcond : max
s

Σps;αq ă 0u

— indeed, it is well known that there is a non-trivial interval pαsat, α1q in which EZ " 1
even though Z “ 0 with high probability.

2.1.3 The tilted cluster partition function

Once the function Σps;αq is determined, it becomes straightforward to derive αcond, αsat, and
fpαq. However, prior works have not taken the approach of actually computing Σ. Indeed,
αsat was determined [DSS16] by an analysis involving only maxs Σps;αq, which contains less
information than the full curve Σ. In related models, the determination of αcond [Bap+16;
BC15] also avoids Σ, going instead through the so-called “planted model.” In order to obtain
Σ, consider the λ-tilted partition function

Zλ ”
ÿ

γ

|γ|λ (2.1.3)



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 10

where the sum is taken over all clusters γ. According to the physics heuristic as described
above, EZλ

.
“ exptnFpλqu where F is the Legendre dual of ´Σ:

Fpλq ” p´Σq‹pλq ” max
s
rλs` Σpsqs.

The physics approach to computing Σ is to first compute F, and then set Σ “ ´F‹. Note
that by differentiating Fpλq “ n´1 lnEZλ we find that F is convex in λ, so the resulting Σ
will indeed be concave.

The computation of Fpλq may seem at first glance quite intractable. Indeed, the reason
for nae-sat solutions to occur in clusters is that a typical solution has a positive density of
variables which are free, meaning their value can be changed without violating any clause.
Each cluster (connected component of nae-sat solutions) may be a complicated subset of
t0, 1un — changing the value at one free variable may affect whether its neighbors are free,
so a cluster need not be a simple subcube of t0, 1un. We then wish to sum over the cluster
sizes raised to non-integer powers.

However, in the regime of interest α ě αlbd (see Remark 2.1.1), the analysis of nae-sat
solution clusters is greatly simplified by the fact that in a typical satisfying assignment the
vast majority of variables are frozen rather than free. The result of this, roughly speaking, is
that a cluster can be encoded by a configuration x P t0, 1, fun (representing its circumscribed
subcube, so xv “ f indicates a free variable) with no essential loss of information. We call x
the frozen configuration representing the cluster. It turns out that the frozen configurations
can be regarded as the solutions of a certain CSP lifted from the original nae-sat problem
— so the physics heuristics can be applied again to the new CSP. Variations on this idea
appear in several places in the physics literature; in the specific context of random CSPs we
refer to [Par02; BMZ05; MMW07].

Analyzing the number of frozen configurations — corresponding to (2.1.3) with λ “ 0
— leads to the sharp satisfiability threshold for this model [DSS16]. To analyze (2.1.3) for
general λ requires a deeper investigation of the arrangement of free and frozen variables in
the frozen configurations x. In fact, the majority of free variables are simply isolated vertices.
A smaller fraction occur in linked pairs, and a yet smaller fraction occur in components of
size three or more. Each free component T is surrounded by frozen variables, and we let
zpT q count the number of nae-sat assignments on T which are consistent with the frozen
boundary. Then the total size of the cluster represented by x is simply the product of zpT q
over all the free components T of x.

The random nae-sat graph has few short cycles, so almost all of the free components
are trees, and so their weights zpT q can be evaluated recursively by the method of belief
propagation (bp). To implement this, we must replace variable spins by “messages,” which
are indexed by the directed edges of the graph and so are more natural for tree recursions.
The message mvÑa from variable v to clause a represents the state of v “in absence of a.”
It is also necessary to introduce a richer alphabet of symbols for these messages, replacing
t0, 1, fu with probability measures on t0, 1u (where any non-degenerate measure will project
to f). Thus the message mvÑa represents the distribution at v (within the cluster) in absence
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of clause a. The messages are related to one another via local consistency equations, which
are precisely the bp equations. The configuration m encodes the same cluster as x, with
the key advantage that the cluster size can be readily deduced from m, as a certain product
of local functions. For the cluster size raised to power λ, simply raise each local function
to power λ. Thus the configurations m with λ-tilted weights form a spin system (Markov
random field), whose partition function is the quantity of interest (2.1.3). The new spin
system is sometimes termed the “auxiliary model” [MM09, Ch. 19].

2.1.4 One-step replica symmetry breaking

Above, we asserted informally that each bp solution m encodes a cluster of nae-sat solu-
tions. An important caveat is that this is only rigorous if the free variables in m occur in
trees, separated by frozen regions where we must have messages mvÑa that are degenerate
(supported on either on 0 or on 1). Otherwise, one always has the trivial “replica symmet-
ric” bp solution where every mvÑa is unifpt0, 1uq, and this is not a “meaningful” solution for
large α. One way to understand this is via the physics calculation of frspαq, which we now
describe by way of motivating the more complicated expression for f1rsbpαq.

Given a random regular nae-sat instance G on n variables, choose k uniformly random
variables v1, . . . , vk, and assume for simplicity that no two of these share a clause. Then
(1) remove the k variables along with their kd incident clauses, producing an instance G 2,
and (2) add dpk ´ 1q new clauses to G 2, producing G 1. Then G 1 is distributed as a random
regular nae-sat instance on n´ k variables. If the free energy exists, then

fpαqn
.
“ Z

.
“ rZpG q{ZpG 1

qs
n{k. (2.1.4)

Suppose u is a variable in G 1 of degree d´ 1, meaning it was a neighbor of a clause a which
was deleted from G . The interpretation of m is that in G 2, the spin at u has law muÑa, and
the different u1s are independent. If every muÑa is unifpt0, 1uq, then

ˆ

ZpG q

ZpG 2q

˙1{k

“ 2p1´ 2{2kqd,

ˆ

ZpG 1q

ZpG 2q

˙1{k

“ p1´ 2{2kqαpk´1q, (2.1.5)

Taking the ratio of these and substituting into (2.1.4) gives the prediction fpαq
.
“ frspαq,

which we know to be false for large α. Thus the replica symmetric m gives the incorrect
prediction. The reason for this failure is that in reality the u’s are not independent in G 2,
but rather are significantly correlated even though they are typically far apart in G 2. This
phenomenon of long-range dependence may be taken as a definition of replica symmetry
breaking, and it is expected to occur precisely for α ą αcond.

The idea of 1RSB is that, in passing from the original nae-sat model to the (seemingly
far more complicated) “auxiliary model” of weighted bp solutions, we in fact return to replica
symmetry, provided

Σpsλq ą 0 for sλ ” arg maxstλs` Σpsqu. (2.1.6)



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 12

That is, for such λ, the auxiliary model is predicted to have correlation decay, in contrast
with the long-range correlations of the original model. The implication is that in this context,
the above heuristic ((2.1.4) and (2.1.5)) is expected to yield the correct answer. The replica
symmetric bp solution for the auxiliary model will be a certain measure 9qλ over messages m.
Taking 9qvÑa ” 9qλ is the precise analogue, in the auxiliary model, of taking mvÑa ” unifpt0, 1uq
on every v Ñ a in the original model. Under the assumption that the auxiliary model has
strong correlation decay, (2.1.4) and (2.1.5) give an expression for Fpλq in terms of 9qλ.

2.1.5 The 1RSB free energy prediction

Having described the heuristic reasoning, we now proceed to formally state the 1RSB free
energy prediction. We first describe 9qλ is a certain discrete probability measure over m. Since
m is a probability measure over t0, 1u, we encode it by x ” mp1q P r0, 1s. A measure q on m

can thus be encoded by an element µ P P where P denotes the set of discrete probability
measures on r0, 1s. For measurable B Ď r0, 1s, define

R̂λµpBq ” Ẑ pµq´1

ż
ˆ

2´
k´1
ź

i“1

xi ´
k´1
ź

i“1

p1´ xiq

˙λ

1

"

1´
śk´1

i“1 xi

2´
śk´1

i“1 xi ´
śk´1

i“1 p1´ xiq
P B

* k´1
ź

i“1

µpdxiq,

9RλµpBq ” 9Z pµq´1

ż
ˆ d´1
ź

i“1

yi `
d´1
ź

i“1

p1´ yiq

˙λ

1

" śd´1
i“1 yi

śd´1
i“1 yi `

śd´1
i“1 p1´ yiq

P B

* d´1
ź

i“1

µpdyiq,

(2.1.7)

where Ẑ pµq and 9Z pµq are the normalizing constants such that R̂λµ and 9Rλµ are also
probability measures on r0, 1s. (In the context of λ “ 0 we take the convention that 00 “ 0.)

Denote Rλ ”
9Rλ ˝ R̂λ. The map Rλ : P Ñ P represents the bp recursion for the auxiliary

model. The following presents a solution in the regime

p2k´1
´ 2q ln 2 ” αlbd ď α ď αubd ” 2k´1 ln 2,

which we recall is a superset of pαcond, αsatq.

Proposition 2.1.2. For any λ P r0, 1s, let 9µλ,l P P be the sequence of probability measures
defined by 9µλ,0 ”

1
2
δ0 `

1
2
δ1 and 9µλ,l`1 “ Rλ 9µλ,l for all l ě 1. Let

Sl ” psupp 9µλ,lqzpsuppp 9µλ,0 ` . . .` 9µλ,l´1qq,

so Sl is a finite subset of r0, 1s. Regard 9µλ,l as an infinite sequence indexed by the elements
of S1 in increasing order, followed by the elements of S2 in increasing order, and so on. For
k ě k0 and αlbd ď α ď αubd, in the limit l Ñ 8, 9µλ,l converges in the `1 sequence space to a
limit 9µλ P P satisfying 9µλ “ Rλ 9µλ and

9µλpp0, 1qq ď 7{2k, 9µλpdxq “ 9µλpdp1´ xqq.
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The limit 9µλ of Proposition 2.1.2 encodes the desired replica symmetric solution 9qλ for
the auxiliary model. We can then express Fpλq in terms of 9µλ as follows. Writing µ̂λ ” Rλ 9µλ,
let 9wλ, ŵλ, w̄λ P P be defined by

9wλpBq “ p 9Zλq
´1

ż
ˆ d
ź

i“1

yi `
d
ź

i“1

p1´ yiq

˙λ

1

" d
ź

i“1

yi `
d
ź

i“1

p1´ yiq P B

* d
ź

i“1

µ̂λpdyiq,

ŵλpBq “ pẐλq
´1

ż
ˆ

1´
k
ź

i“1

xi ´
k
ź

i“1

p1´ xiq

˙λ

1

"

1´
k
ź

i“1

xi ´
k
ź

i“1

p1´ xiq P B

* k
ź

i“1

9µλpdxiq,

w̄λpBq “ pZ̄λq
´1

ĳ
ˆ

xy ` p1´ xqp1´ yq

˙λ

1
!

xy ` p1´ xqp1´ yq P B
)

9µλpdxqµ̂λpdyq,

(2.1.8)

with 9Zλ, Ẑλ, Z̄λ the normalizing constants. The analogue of (2.1.5) for this model is

ˆ

ZλpG q

ZλpG 2q

˙1{k

“ 9ZλpẐλ{Z̄λq
d,

ˆ

ZλpG 1q

ZλpG 2q

˙1{k

“ pẐλq
αpk´1q,

and substituting into (2.1.4) gives the 1RSB prediction Zλ
.
“ exptFpλqu where

Fpλq ” Fpλ;αq ” ln 9Zλ ` α ln Ẑλ ´ kα ln Z̄λ. (2.1.9)

Further, the maximizer of (2.1.6) is predicted to be given by

sλ ” sλpαq ”

ż

lnpxq 9wλpdxq ` α

ż

lnpxqŵλpdxq ´ kα

ż

lnpxqw̄λpdxq. (2.1.10)

If s “ sλ for λ P r0, 1s we define

Σpsq ” Σps;αq ” Fpλ;αq ´ λsλpαq.

This yields the predicted thresholds

αcond ” suptα : Σps1;αq ą 0u,
αsat ” suptα : Σps0;αq ą 0u,

and we can now formally state the predicted free energy of the original nae-sat model:

Definition 2.1.3. For α P k´1Z, 1RSB free energy prediction f1rsbpαq is defined as

f1rsbpαq “

$

&

%

frspαq “ 2p1´ 2{2kqα α ď αcond,
exprsupts : Σpsq ě 0us αcond ď α ă αsat,
0 α ą αsat.

(2.1.11)

(In regular k-nae-sat we must have integer d “ kα, so we need not consider α R k´1Z.)

Proposition 2.1.4. Consider α P A ” rαlbd, αubds X pk
´1Zq. For k ě k0 and α P A, the

function Σpsq ” Σps;αq is well-defined, continuous, and strictly decreasing in s, so that
frspαq is well-defined.
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Proposition 2.1.5. For k ě k0 and λ P r0, 1s, Σpsλ;αq ” Fpλq ´ λsλ is strictly decreasing
as a function of α P A. There is a unique αλ P A such that Σpsλ;αq is non-negative for all
α ď αλ, and is negative for all α ą αλ. In particular

αcond “ α1 “ p2
k´1

´ 1q ln 2` err, αsat “ α0 “

´

2k´1
´

1

2
´

1

4 ln 2

¯

ln 2` err.

We remark that the asymptotic expansion of αsat matches the previously mentioned result
(2.1.1) from [DSS16]. The asymptotic expansion of αcond matches an earlier result of [CZ12],
which was obtained for a slightly different but closely related model.

2.1.6 Proof approach

Since f “ fpαq is a priori not well-defined, the statement f ď g means formally that for all
ε ą 0,

lim
nÑ8

PpZ1{n
ě g` εq “ 0.

With this notation in mind, we will prove separately the upper bound fpαq ď f1rsbpαq and
the matching lower bound fpαq ě f1rsbpαq. This implies the main result Theorem 1: the free
energy fpαq is indeed well-defined, and equals f1rsbpαq.

The upper bound is proved in Section 2.8 by an interpolation argument. This builds on
similar bounds for spin glasses on Erdős–Rényi graphs [FL03; PT04], together with ideas from
[BGT13] for interpolation in random regular models. Write Znpβq for the partition function
of nae-sat at inverse temperature β ą 0. The interpolation method yields an upper bound
on E lnZnpβq which is expressed as the infimum of a certain function Ppµ; βq, with µ ranging
over probability measures on r0, 1s. We then choose µ according to Proposition 2.1.2, and
take β Ñ 8 to obtain the desired bound fpαq ď f1rsbpαq.

Most of the paper is devoted to establishing the matching lower bound. The proof is
inspired by the physics picture described above, and at a high level proceeds as follows.
Take any λ for which the (predicted) value of Σpsλq is non-negative, and let Yλ be the
number of clusters of size

.
“ exptnsλu. The informal statement of what we show is that

Yλ
.
“ exptnrλsλ ` Σpsλqsu. (2.1.12)

Adjusting λ as indicated by (2.1.11) then proves the desired bound fpαq ě f1rsbpαq.
Proving a formalized version of (2.1.12) occupies a significant part of the present paper.

We introduce a slightly modified version of the messages m which record the topologies of
the free trees T . We then restrict to free trees with fewer than T variables, which limits
the distance that information can propagate between free variables. We prove a version
of (2.1.12) for every fixed T , and show that this yields the sharp lower bound in the limit
T Ñ 8. The proof of (2.1.12) for fixed T is via the moment method for the auxiliary model,
which boils down to a complicated optimization problem over many dimensions. It is known
(see e.g. [DSS16, Lem. 3.6]) that stationary points of the optimization problem correspond
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to “generalized” bp fixed points — these are measures QvÑapmvÑa, maÑvq, rather than the
simpler “one-sided” measures qvÑapmvÑaq considered in the 1RSB heuristic.

The one-sided property is a crucial simplification, but is challenging to prove in general.
One contribution of this work that we wish to highlight is a novel resampling argument which
yields a reduction to one-sided messages, and allows us to solve the moment optimization
problem. (We are helped here by the truncation on the sizes of free trees.) Furthermore,
the approach allows us to bring in methods from large deviations theory. With these we
can show that the objective function has negative-definite Hessian at the optimizer, which
is necessary for the second moment method. This resampling approach is quite general and
should apply in a broad range of models.

2.1.7 Open problems

Beyond the free energy, it remains a challenge to establish the full picture predicted by
statistical physicists for α ď αsat. Several recent works targeted at a broad class of models in
the regime α ď αcond [BCO16; CPS15; CP16b]. In the condensation regime pαcond, αsatq, an
initial step would be to show that most solutions lie within a bounded number of clusters.
A much more refined prediction is that the mass distribution among the largest clusters
forms a Poisson–Dirichlet process. Another question is to show that on a typical problem
instance over n variables, if x1,x2 are sampled independently and uniformly at random
from the solutions of that instance, then the normalized overlap R1,2 ” n´1tv : x1

v “ x2
vu

concentrates on two values (corresponding roughly to the two cases that x1,x2 come from
the same cluster, or from different clusters). This criterion is sometimes taken as the precise
definition of 1RSB, and so would be interesting to prove for models in the condensation
regime.

Beyond the immediate context of random CSPs, understanding the condensation tran-
sition may deepen our understanding of the stochastic block model, a model for random
networks with underlying community structure. Here again ideas from statistical physics
have played an important role [Dec+11]. A great deal is now known rigorously for the case
of two blocks [Mas14; MNS15], where there is no condensation regime. For models with
more than two blocks, however, it is predicted that the condensation can occur, and may
define a regime where detection is information-theoretically possible but computationally
intractable. Part of this conjecture is verified in [CO+16].

2.2 Combinatorial model

Here we give the formal definition of the model. A not-all-equal-sat (nae-sat) problem
instance is naturally encoded by a bipartite graph G , as follows. The vertex set of G is
divided into a set V “ tv1, . . . , vnu of variables and a set F “ ta1, . . . , amu of clauses. All
vertices are labelled, and the edge set E joins variables to clauses. For each e P E we let vpeq
denote the incident variable, and apeq the incident clause. The edge e comes with a literal
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Le P t0, 1u, indicating that vpeq participates affirmatively (Le “ 0) or negatively (Le “ 1)
in apeq. We permit G to have multi-edges; in particular it is possible that a is joined to
v by two edges e1, e2 P E, whose literals may or may not agree. We assume the graph is
pd, kq-regular: each variable has d incident edges, and each clause has k incident edges, so
|E| “ nd “ mk. Formally, we regard the edge set E as a permutation m of rnds, as follows.
The i-th variable vi has d incident half-edges, labelled

9edpi´1q`1, . . . , 9edi.

The i-th clause ai has k incident half-edges, labelled

êkpi´1q`1, . . . , êki.

An edge then consists of a pair of half-edges p 9e, êq, and we take E “ tp 9ei, 9empiqq : i P rndsu.
For v P V we write δv for the ordered d-tuple of edges incident to v:

δvi “ pp 9edpi´1q`1, êmpdpi´1q`1qq, . . . , p 9edi, êmpdiqqq.

For a P F we write δa for the ordered k-tuple of edges incident to a:

δai “ pp 9em´1pkpi´1q`1q, êkpi´1q`1q, . . . , p 9em´1pkiq, êkiqq.

Throughout this paper we denote G “ pV, F,Eq where it is understood that E corresponds
to a permutation m of rnds, and includes the literals L. We also write

G ” pG, Lq (2.2.1)

where G denotes the graph forgetting the edge labels L. We define all edges to have length
1
2
, so two variables v ‰ v1 lie at unit distance if and only if they appear in the same clause.

Definition 2.2.1. An nae-sat solution for G “ pV, F,Eq is any x P t0, 1uV such that

for all a P F , pLe ‘ xvpeqqePδa is neither identically 0 nor identically 1.

Let SOLpG q Ď t0, 1uV denote the set of all nae-sat solutions of G , and define a graph
on SOLpG q by connecting any pair of solutions at Hamming distance one. The connected
components of this graph are the clusters of nae-sat solutions.

2.2.1 Frozen and warning configurations

We begin by reviewing two standard encodings (see [Par02; BMZ05; MMW07; MM09;
DSS16]) of nae-sat solution clusters, via frozen configurations and warning configurations.

Definition 2.2.2. On G “ pV, F,Eq, we say that x P t0, 1, fuV is a valid frozen configuration
if (with the convention 1‘ f “ 0‘ f “ f)
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1. For all a P F , pLe ‘ xvpeqqePδa is neither identically 0 nor identically 1; and

2. For all v P V , xv P t0, 1u if and only if there exists some e P δv such that

pLe1 ‘ xvpe1qqe1Pδapeqze is identically equal to Le ‘ xv ‘ 1. (2.2.2)

If no such e P δv exists then xv “ f.

It is well known that on any given problem instance G “ pV, F,Eq, every nae-sat solu-
tion x can be mapped to a frozen configuration x “ xpxq via a “coarsening” or “whitening”
procedure [Par02], as follows. Start by setting x “ x. Then, whenever xv P t0, 1u but there
exists no e P δv such that (2.2.2) holds, update xv to f. Iterate until no further updates can
be made; the result is then a valid frozen configuration. Two nae-sat solutions x, x1 map to
the same frozen configuration x if and only if they lie in the same cluster (Definition 2.2.1).

We say that an nae-sat solution x extends a frozen configuration x if xv “ xv whenever
xv P t0, 1u. Let sizepxq count the number of such extensions. The purpose of this section is
to define (under a certain restriction) an alternative combinatorial representation σ of x —
which we call a coloring — from which sizepxq can be easily calculated. We will explain the
correspondence between x and σ in a few stages:

frozen configurations x
Ø warning configurations y
Ø message configurations τ
Ø colorings σ.

(2.2.3)

The first step x Ø y is quite standard: y takes values in ME where M “ t0, 1, fu2. Each
e P E has a pair of warnings ye ” p 9ye, ŷeq where 9ye represents the variable-to-clause warning
along e, and ŷe represents the clause-to-variable warning along e. The warnings must satisfy
some local equations, as follows:

Definition 2.2.3. On G “ pV, F,Eq, y P ME is a valid warning configuration if for all
e P E,

9ye “ 9Yppŷe1qe1Pδvpeqzeq and
ŷe “ Le ‘ ŶppLe1 ‘ 9ye1qe1Pδapeqzeq

where 9Y : t0, 1, fud´1 Ñ t0, 1, f,∅u and Ŷ : t0, 1, fuk´1 Ñ t0, 1, fu are defined by

9Ypŷq “

$

’

’

&

’

’

%

0 0 P tŷiu Ď t0, fu;
1 1 P tŷiu Ď t1, fu;
f tŷiu “ f;
∅ otherwise.

Ŷp 9yq “

$

&

%

0 t 9yiu “ t1u;
1 t 9yiu “ t0u;
f otherwise.

(For y to be valid, we require that no edge e has 9ye “ ∅.)
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It is well known that there is a bijection

"

frozen configurations
x P t0, 1, fuV

*

Ø

"

warning configurations
y PME

*

.

The mapping from x to y is as follows: for any v and any e P δv such that (2.2.2) holds, set
ŷe “ xv P t0, 1u. In all other cases set ŷe “ f. If any entry of pŷe1qe1Pδvpeqze is not f, then it
must equal xvpeq, and in this case set 9ye “ xvpeq. Otherwise, set 9ye “ f.

2.2.2 Message configurations

We shall now restrict consideration to frozen configurations without “free cycles” (defined
below), and decompose f into a more refined set of “messages.”

Definition 2.2.4. Let x P t0, 1, fuV be a valid frozen configuration on G “ pV, F,Eq. We
say that a clause a P F is separating (with respect to x) if there exist e1, e2 P δa such that

Le1 ‘ xvpe1q “ Le2 ‘ xvpe2q ‘ 1 ‰ f.

In particular, a forcing clause is also separating. A cycle is a sequence of edges

e1e2 . . . e2`´1e2`e1,

where, taking indices modulo 2`, it holds for each integer i that e2i´1 and e2i are distinct
but share a clause, while e2i and e2i`1 are distinct but share a variable. (In particular, if v
is joined to a by two edges e1 ‰ e2, then e1e2 forms a cycle.) We say the cycle is free if all its
variables are free and all its clauses are non-separating.

Definition 2.2.5. Let x be a frozen configuration on G “ pV, F,Eq. Let H be the subgraph
of G induced by the free variables and non-separating clauses of x. If x has no free cycles,
then H is a disjoint union of tree components t, which we term the free trees of x. For
each t, let T be the subgraph of G induced by the depth-one neighborhood of t, which may
contain cycles. The subgraphs T will be termed the free pieces of x. Each free variable is
covered by exactly one free piece. In the simplest case, a free piece consists of a single free
variable surrounded by d separating clauses.

In the message configuration τ P M E, each edge e P E has a pair of messages τe ” p 9τe, τ̂eq,
where each message is a rooted tree. To motivate the formal definition, consider the situation
that e belongs to a free piece T which is a tree. We define one-sided versions 9Te and T̂e: delete
from T the edges δapeqze, and let 9Te denote the component containing e in what remains.
Likewise, delete from T the edges δvpeqze, and let T̂e denote the component containing e in
what remains. We regard 9Te and T̂e as being rooted at apeq and vpeq respectively. Informally,
9τe encodes the isomorphism class of 9Te while τ̂e encodes the isomorphism class of T̂e. However
the situation is more subtle if the edge has warning f in one direction but 0{1 in the reverse
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direction; minor complications also arise relating to the edge literals and the presence of
cycles. We now make a formal definition which takes these issues into account.

It will be convenient to let E indicate a directed edge, pointing from tail vertex tpEq to
head vertex hpEq. If e is the undirected version of E, then we let

pyE, τEq “

"

p 9ye, 9τeq if tpEq is a variable;
pŷe, τ̂eq if tpEq is a clause.

We will make a definition such that either τE is a bipartite factor tree, or τE “ ‹. The tree is
unlabelled except that one vertex is distinguished as the root, and some edges are assigned
0 or 1 values as explained below. The root vertex of the tree is required to have degree one,
and should be thought of as corresponding to hpEq.

In the context of message configurations τ , we use “0” or “1” to stand for the tree
consisting of a single edge which is labelled 0 or 1 and rooted at one of its endpoints — the
root is the incident clause in the case of 9τ , the incident variable in the case of τ̂ . We use ˝

to stand for the tree consisting of a single unlabelled edge, rooted at the incident variable.
Given a collection of rooted trees t1, . . . , t` whose roots o1, . . . , o` are all of the same type
(either all variable or all clauses), we define t “ joinpt1, . . . , t`q by identifying all the oi as a
single vertex o, then adding an edge which joins o to a new vertex o1. The vertex o has the
same type as the oi, and o1 is given the opposite type, so the resulting tree t is a bipartite
factor graph rooted at a vertex of degree one. Let 9M and M̂ denote the possible values of
9τe and τ̂e respectively. Write

9Ωf ”
9M zt0, 1, ‹u, Ω̂f ” M̂ zt0, 1, ‹u.

In particular, ˝ P Ω̂f. We will see below what other elements belong to 9Ωf and Ω̂f.

Definition 2.2.6. On G “ pV, F,Eq, τ P M E is a valid message configuration if for all
e P E,

9τe “ 9Tppτ̂e1qe1Pδvpeqzeq and
τ̂e “ Le ‘ T̂ppLe1 ‘ 9τe1qe1Pδapeqzeq

where 9T : M̂ d´1 Ñ 9M and T̂ : 9M k´1 Ñ M̂ are defined by

9Tpτ̂q “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 0 P tτ̂iu Ď 9M zt1u;

1 1 P tτ̂iu Ď 9M zt0u;

jointτ̂iu tτ̂iu Ď Ω̂f;

‹ ‹ P tτ̂iu Ď t‹u Y Ω̂f;
∅ otherwise;

T̂p 9τq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 t 9τiu “ t1u;
1 t 9τiu “ t0u;
˝ t0, 1u Ď t 9τiu;

joint 9τiu t0u ‰ t 9τiu Ď t0u Y 9Ωf

or t1u ‰ t 9τiu Ď t1u Y 9Ωf;
‹ otherwise.

For τ to be valid, we require for all e P E that 9τe ‰ ∅, and further if one of 9τe, τ̂e equals ‹
then the other must be in t0, 1u.
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Given a frozen configuration x we define the message configuration τ in a recursive
manner. If yE P t0, 1u then set τE “ yE. If

t0, 1u Ď tLe1 ‘ 9ye1ue1Pδapeqze

then set τ̂e “ ˝. Let F denote the reversal of E, and let δE denote the set of directed edges E
1

pointing towards tpEq (including F). Then, whenever τE is undefined but τE1 is defined for all
E
1 P δEzF, set

τE ”

"

9Tppτ̂e1qe1Pδvpeqzeq if tpEq is a variable;
Le ‘ T̂ppLe1 ‘ 9τe1qe1Pδapeqzeq if tpEq is a clause;

Repeat until no further updates are possible. At the end of this procedure, if any τE remains
undefined then set it to ‹.

Lemma 2.2.7. Let x P t0, 1, fuV be a valid frozen configuration on G “ pV, F,Eq which has
no free cycles. Then x maps under the above procedure to a valid message configuration τ .

Proof. Suppose τE “ ‹, and let F denote the reversal of E. From the above construction, it
must be that yE “ f and τE1 “ ‹ for some E

1 P δEzF. Consequently E must belong to a cycle of
directed edges

E1E2 . . . E2kE1

with all the τEi equal to ‹. Whenever E points from a separating clause a to free variable
v, we must have τE “ ˝. As a result, if all the variables along the cycle are free, then none
of the clauses can be separating, contradicting the assumption that x has no free cycles.
Therefore some variable v on the cycle must take value xv P t0, 1u, and by relabelling we
may assume v “ tpE1q. Let Fi denote the reversal of Ei: since xv ‰ f but yE1 “ f, it must be
that yF1 “ xv. This means that the clause a “ hpE1q “ tpF1q is forcing to v, so in particular
yF2 P t0, 1u. Continuing in this way we see that yFi P t0, 1u for all i, and it follows that τ is
a valid message configuration.

Lemma 2.2.8. There is a bijection

"

frozen configurations x P t0, 1, fuV

without free cycles

*

Ø

"

message configurations
τ P M E

*

.

Proof. Given x, let y and τ be the corresponding warning and message configurations. The
mapping from y to τ is clearly injective. Since x Ø y, the mapping from x to τ is also
injective. To see that it is surjective, let τ be any message configuration. Projecting t‹u Y
9Ωf ÞÑ f and t‹u Y Ω̂f ÞÑ f yields a valid warning configuration y, which in turn maps to a
valid frozen configuration x. It remains then to check that x has no free cycles. Suppose for
the sake of contradiction that there exists a cycle of directed edges

E1E2 . . . E2kE1
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where all the variables are free and all the clauses are non-separating. Writing Fi for the
reversal of Ei, we see that all the messages τEi , τFi must lie in t‹u Y 9Ωf Y Ω̂f. In fact, none of
the messages can be ‹, since in that case we require the message in the reverse direction to
be in t0, 1u. Therefore all the messages are in 9ΩfY Ω̂f. By definition of 9T and T̂, τEi must be
a proper subtree of τEi`1

for all i, with indices modulo 2k. Going around the cycle we find
that τE1 is a proper subtree of τE2k`1

“ τE1 , which gives the required contradiction.

2.2.3 Bethe formula

The messages 9τe, τ̂e can be used to define probability measures 9me, m̂e on t0, 1u where

9me ” 9mp 9τeq represents the law of vpeq in absence of apeq;
m̂e ” m̂pτ̂eq represents the law of vpeq in absence of δvpeqze.

If 9τe ‰ ‹, then there will be a normalizing constant 9ze such that

9mepxq “
1

9ze

ź

e1Pδvpeqze

m̂e1pxq for x P t0, 1u.

Similarly, let Inaepxq be the indicator that the entries of x are not all equal: if τ̂e ‰ ‹ then
there will be a normalizing constant ẑe such that

m̂epxq “
1

ẑe

ÿ

xδapeqze

Inaepx‘ Le, px‘ Lqδapeqzeq
ź

e1Pδapeqze

9mpxe1q for x P t0, 1u.

In what follows we usually represent a probability measure on t0, 1u by the probability
assigned to 1, writing 9m ” 9mp1q and m̂ ” m̂p1q. Explicitly, 9mp 9τq and m̂pτ̂q can be defined
recursively, starting from the base cases

9mp1q “ m̂p1q “ 1, 9mp0q “ m̂p0q “ 0.

If 9τ P 9Ωf equals 9Tpτ̂1, . . . , τ̂d´1q where none of the τ̂i are ‹, then set

9mp 9τq “
1

9zp 9τq

d´1
ź

i“1

m̂pτ̂iq, 9zp 9τq “
d´1
ź

i“1

m̂pτ̂iq `
d´1
ź

i“1

p1´ m̂pτ̂iqq, (2.2.4)

where we note that pτ̂1, . . . , τ̂d´1q can be recovered from 9τ modulo permutation of the indices,
so 9zp 9τq is well-defined. Similarly, if τ̂ P Ω̂f equals T̂p 9τ1, . . . , 9τk´1q where none of the 9τi are ‹,
then set

m̂pτ̂q “
1

ẑpτ̂q

ˆ

1´
k´1
ź

i“1

9mp 9τiq

˙

, ẑpτ̂q “ 2´
k´1
ź

i“1

9mp 9τiq ´
k´1
ź

i“1

p1´ 9mp 9τiqq. (2.2.5)

Finally, we will see below that for our purposes we can take 9mp‹q, m̂p‹q to be any fixed values
in p0, 1q. We arbitrarily set 9mp‹q “ 1

2
“ m̂p‹q.
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Lemma 2.2.9. Suppose on G “ pV, F,Eq that τ is a valid message configuration, and let x
be the corresponding frozen configuration (which has no free cycles). Suppose T is a free piece
of x, and let t be the free tree inside T . Let sizepx;T q count the number of valid nae-sat
assignments which extend x on T . Then

sizepx;T q “
ź

vPtXV

9ϕpτ̂ tXδvq
ź

aPtXF

ϕ̂lit
pp 9τ ‘ Lqδaq

ź

ePtXE

ϕ̄pτeq (2.2.6)

where ϕ̄p 9τ , τ̂q ” r 9mp 9τqm̂pτ̂q ` p1´ 9mp 9τqqp1´ m̂pτ̂qqs´1,

ϕ̂lit
p 9τ1, . . . , 9τkq “ 1´

k
ź

i“1

9mp 9τiq ´
k
ź

i“1

p1´ 9mp 9τiqq,

and for any ` ě 0 we define

9ϕpτ̂1, . . . , τ̂`q “
ź̀

i“1

m̂pτ̂iq `
ź̀

i“1

p1´ m̂pτ̂iqq.

We take the convention that the empty product equals one, so if ` “ 0 then 9ϕ “ 2. The
number of valid nae-sat assignments extending x is given by

sizepxq “
ź

T Px

sizepx;T q (2.2.7)

where the product is taken over all free pieces (Definition 2.2.5) T of x.

Proof. The first claim (2.2.6) is a well-known calculation; see e.g. [MM09, Ch. 14]. The
product formula (2.2.7) then follows from the fact that different free trees are disjoint.

Corollary 2.2.10. Suppose on G “ pV, F,Eq that τ is a valid message configuration, and
let x be the corresponding frozen configuration. Then

sizepxq “
ź

vPV

9ϕpτ̂ δvq
ź

aPF

ϕ̂lit
pp 9τ ‘ Lqδaq

ź

ePtXE

ϕ̄pτeq;

and this identity holds for any choices of 9mp‹q, m̂p‹q P p0, 1q.

Proof. Let V 1 denote the set of free variables, and F 1 the set of non-separating clauses. For
each v P V 1 let tpvq denote the (unique) free tree containing v. Rearranging the product
formula (2.2.7) gives

sizepxq “
ź

vPV 1

"

9ϕpτ̂ tpvqXδvq
ź

ePtpvqXδv

ϕ̄pτeq

*

ź

aPF 1

ϕ̂lit
pp 9τ ‘ Lqδaq.

If e joins a free variable v to a separating clause a, then m̂pτ̂eq “
1
2
“ ϕ̄pτeq

´1, so

9ϕpτ̂ tpvqXδvq “ 9ϕpτ̂ δvq2
|δvzt|

“ 9ϕpτ̂ δvq
ź

ePδvztpvq

ϕ̄pτeq.
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Substituting into the above proves that

sizepxq “
ź

vPV 1

"

9ϕpτ̂ δvq
ź

ePδv

ϕ̄pτeq

*

ź

aPF 1

ϕ̂lit
pp 9τ ‘ Lqδaq. (2.2.8)

For v R V 1 (meaning xv P t0, 1u), partition δv into

δvprq “ te P δv : ŷe “ xvu, δvpbq “ te P δv : ŷe “ fu.

Say without loss that xv “ 1: since m̂pτ̂eq “ 1 for all e P δvprq, we have

9ϕpτ̂ δvq “
ź

ePδv

m̂pτ̂eq `
ź

ePδv

p1´ m̂pτ̂eqq “
ź

ePδvpbq

m̂pτ̂eq “
ź

ePδvpbq

ϕ̄pτeq
´1. (2.2.9)

Some of the messages τ̂e incoming to v may equal ‹, but the above identity holds for any
choice of m̂p‹q P p0, 1q. Likewise, if a is a separating clause which is non-forcing, then some
of the messages 9τe incoming to a may equal ‹, but

ϕ̂lit
pp 9τ ‘ Lqδaq “ 1 (2.2.10)

for any choice of 9mp‹q P p0, 1q. Finally, if a is forcing in the direction of edge e, then

ϕ̂lit
pp 9τ ‘ Lqδaq “ ϕ̄pτeq

´1
“

"

9mp 9τeq if xvpeq “ 1;
1´ 9mp 9τeq if xvpeq “ 0;

(2.2.11)

including in the case that 9τe “ ‹. It follows from (2.2.9), (2.2.10), and (2.2.11) that

ź

vPV zV 1

"

9ϕpτ̂ vq
ź

ePδv

ϕ̄pτeq

*

ź

aPF zF 1

ϕ̂lit
pp 9τ ‘ Lqδaq “ 1,

and multiplying with (2.2.8) proves the claim.

2.2.4 Colorings

We now define the last step of (2.2.3). Recall τ P M E, and let Ωf Ď M denote the subset of
values τ “ p 9τ , τ̂q P M for which 9τ P 9Ωf and τ̂ P Ω̂f. Then the colorings will be configurations
σ P ΩE where

Ω ” tr0, r1, b0, b1u Y Ωf.

We define a mapping s : M Ñ Ω by

spτq “

$

’

’

’

’

&

’

’

’

’

%

r0 τ̂ “ 0;
r1 τ̂ “ 1;
b0 τ̂ ‰ 0 and 9τ “ 0;
b1 τ̂ ‰ 1 and 9τ “ 1;
τ otherwise.

(2.2.12)
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Note that if τ “ p 9τ , τ̂q with 9τ “ ‹, then τ̂ must equal some x P t0, 1u, and so we set
σpτq “ rx. Likewise if τ̂ “ ‹ then 9τ must equal some x P t0, 1u and so we set σpτq “ bx. If
σ “ τ P Ωf we write p 9σ, σ̂q ” p 9τ , τ̂q; otherwise we write p 9σ, σ̂q ” pσ, σq. We write 9Ω, Ω̂ for
the possible values of 9σ, σ̂. The map s is not one-to-one, and we shall denote

9τposp 9σq “ t 9τ P 9M : p 9τ , τ̂q P s´1p 9σ, σ̂q for some τ̂ P M̂ , σ̂ P Ω̂u,

τ̂pospσ̂q “ tτ̂ P M̂ : p 9τ , τ̂q P s´1p 9σ, σ̂q for some 9τ P 9M , 9σ P 9Ωu,

9σposp 9τq “ t 9σ P 9Ω : p 9σ, σ̂q “ sp 9τ , τ̂q for some τ̂ P M̂ , σ̂ P Ω̂u,

σ̂pospτ̂q “ tσ̂ P Ω̂ : p 9σ, σ̂q “ sp 9τ , τ̂q for some 9τ P 9M , 9σ P 9Ωu.

The following definition is derived from Definition 2.2.6.

Definition 2.2.11. On G “ pV, F,Eq, σ P ΩE is a valid coloring if for all e P E,

9σe P 9Sppσ̂e1qe1Pδvpeqzeq and
σ̂e P Le ‘ ŜppLe1 ‘ 9σe1qe1Pδapeqzeq

where 9S : Ω̂d´1 Ñ 2
9Ω and Ŝ : 9Ωk´1 Ñ 2Ω̂ are defined by

9Spσ̂q “ 9σpos ˝ 9T ˝ τ̂pospσ̂q “ t 9σ : 9σ P 9σposp 9Tpτ̂qq for any τ̂ with τ̂i P τ̂
pospσ̂iq @iu,

Ŝp 9σq “ σ̂pos ˝ T̂ ˝ 9τposp 9σq “ tσ̂ : σ̂ P σ̂pospT̂p 9τqq for any 9τ with 9τi P 9τposp 9σiq @iu.

An equivalent characterization is that σ is a valid coloring if and only if

ź

vPV

9Ipσδvq
ź

aPF

Î lit
ppσ ‘ Lqδaq “ 1 (2.2.13)

where 9I : Ωd Ñ t0, 1u and Î lit : Ωk Ñ t0, 1u are given by

9Ipσq ”
d´1
ź

i“1

1t 9σi P 9Sppσ̂jqj‰iqu, Î lit
pσq ”

k´1
ź

i“1

1tσ̂i P Ŝpp 9σjqj‰iqu.

This builds on a related encoding introduced by [CP16a]. More explicitly, we have

9Ipσq “

$

’

’

’

’

&

’

’

’

’

%

1 r0 P tσiu Ď tr0, b0u,
1 r1 P tσiu Ď tr1, b1u,
1 tσiu Ď Ωf and

9σi “ 9Tppσ̂jqj‰iq @i,
0 otherwise;

Î litpσq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 Di : σi “ r0 and tσjuj‰i “ tb1u,
1 Di : σi “ r1 and tσjuj‰i “ tb0u,
1 tσiu X tr0, r1u “ ∅,

Ei : tσjuj‰i “ tb0u or tb1u, and
σ̂i P tb0, b1, T̂pp 9τ

posp 9σjqqj‰iqu @i,
0 otherwise.

In the definition of Î lit, we note that if tσiu X tr0, r1u “ ∅, then 9τposp 9σiq is a singleton for
each i. If tσjuj‰i is neither tb0u nor tb1u, then we have T̂pp 9τposp 9σjqqj‰iq P Ω̂f.
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One purpose of this encoding is to take advantage of some of the cancellations seen in
the proof of Corollary 2.2.10. It follows easily from the definition that we have a bijection

"

message configurations
τ P M E

*

Ø

"

colorings
σ P ΩE

*

,

The following is a straightforward consequence of Lemma 2.2.9:

Lemma 2.2.12. Suppose σ be a valid coloring on G “ pV, F,Eq. Let τ be the corresponding
message configuration, and x the corresponding frozen configuration. Then sizepxq ” sizepσq
is given by the formula

sizepσq “ wlit
G pσq ”

ź

vPV

9Φpσδvq
ź

aPF

Φ̂lit
ppσ ‘ Lqδaq

ź

ePE

Φ̄pσeq

where Φ agrees with ϕ for v, a, e belonging to free trees, and is one otherwise. More precisely,
9Φ : Ωd Ñ Rě0 is given by

9Φpσq “

$

&

%

0 9Ipσq “ 0;

1 9Ipσq “ 1 and tσiu contains r0 or r1;
9ϕpτ̂q otherwise, meaning v P V 1;

note in the last case that each σi can be mapped to a unique τ̂i, so the value of 9ϕpτ̂q is
well-defined. Similarly, Φ̂lit : Ωk Ñ Rě0 is given by

Φ̂lit
pσq “

$

’

’

&

’

’

%

0 Î litpσq “ 0;

1 Î litpσq “ 1 and tσiu contains r0 or r1;

1 Î litpσq “ 1 and tb0, b1u Ď tσiu;
ϕ̂litp 9τq otherwise, meaning a P F 1;

note again in the last case that each σi can be mapped to a unique 9τi, so the value of ϕ̂litp 9τq
is well-defined. Finally, Φ̄ : Ω Ñ Rě0 is given by

Φ̄pσq “

"

1 σ P tr0, r1, b0, b1u;
ϕ̄pσq otherwise.

Proof. This is essentially a rewriting of (2.2.8).

According to the above definitions, if σ is not a valid coloring, then wlit
G pσq ” 0. For

σ P Ω let |σ| count the number of free variables encoded by σ. Thus |σ| “ 0 if and only if
σ R Ωf. On G “ pV, F,Eq we say that σ is a valid T -coloring if |σe| ď T for all e P E. We
write IG ,T pσq for the indicator that σ is a valid T -coloring of G , and let

wlit
G ,T pσq ” w

lit
G pσqIG ,T pσq.
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Recall from Lemma 2.2.12 the product formula for wlit
G pσq, and note that an analogous

formula for wlit
G ,T pσq is obtained by simply replacing Φ̄ with the modified factor Φ̄T , where

Φ̄T pσq ” Φ̄pσq1t|σ| ď T u.

We then define Zλ,T to be the partition function of λ-tilted T -colorings,

Zλ,T “
ÿ

σPΩE

wlit
G ,T pσq

λ. (2.2.14)

Thus Zλ,T is a function of the nae-sat problem instance G “ pV, F,Eq. Clearly Zλ,T is
nondecreasing in T , and we write Zλ,8 ” Zλ for the sum over all valid colorings with no size
truncation. The following gives the formal version of (2.1.3) which we will work with in the
proof of the free energy lower bound.

Proposition 2.2.13. On G “ pV, F,Eq let C pG q denote the collection of nae-sat clusters,
so each γ P C pG q is a subset of t0, 1uV . Then, for all 0 ď T ď 8,

Zλ,T ď
ÿ

γPC pG q

|γ|λ.

Proof. This is a direct consequence of Lemma 2.2.12.

2.3 Proof outline

Having formally set up our combinatorial model encoding the clusters of nae-sat solutions
(Proposition 2.2.13), we now proceed to outline the proof of Theorem 1. The basic approach
will be to show concentration for Zλ,T via the second moment method.

2.3.1 Averaging over edge literals

In the setting of nae-sat, we can take advantage of the following simplification:

Remark 2.3.1. For any function g : t0, 1ut Ñ R, let Elitg denote the average value of gpLq
over all L P t0, 1ut. Recalling from (2.2.1) the notation G “ pG, Lq, if σ is any coloring of
the edges of G, then the average of wlit

G ,T pσq over all L is given by

Elit
rwlit

G ,T pσq
λ
s “ wG,T pσq

λ
”

"

ź

vPV

9Φpσδvq
ź

aPF

Φ̂pσδaq
ź

ePE

Φ̄T pσeq

*λ

, (2.3.1)

with Φ̂pσq ” pElitrΦ̂pσ‘Lqλsq1{λ. A similar simplification holds in the second moment, where
we consider pairs σ ” pσ1, σ2q with weights wlit

G ,T pσq ” w
lit
G ,T pσ

1qwlit
G ,T pσ

2q:

Elit
rwlit

G ,T pσq
λ
s “ wG,T pσq

λ
”

"

ź

vPV

9Φ2pσδvq
ź

aPF

Φ̂2pσδaq
ź

ePE

Φ̄T,2pσeq

*λ

(2.3.2)
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where 9Φ2pσq ” 9Φpσ1q 9Φpσ2q, Φ̄T,2pσq ” Φ̄T pσ
1qΦ̄T pσ

2q, and

Φ̂2pσq “
´

Elit
rΦ̂pσ1

‘ LqλΦ̂pσ2
‘ Lqλs

¯1{λ

.

Let us emphasize that Φ̂ and Φ̂2 depend on λ, although we suppress it from the notation.

Clearly the weight wlit
G ,T pσq depends on L, since σ need not even be a valid coloring for

all choices of L. However, the following lemma shows that, as long as σ remains valid, the
size of its encoded cluster remains the same:

Lemma 2.3.2. Given G, let wmax
G,T pσq denote the maximum of wlit

G ,T pσq over all G “ pG, Lq.

For any G “ pG, Lq, wlit
G ,T pσq is either zero or equal to wmax

G,T pσq.

Proof. We claim that for all σ, L we have the factorization

Φ̂litpσ ‘ Lq “ Î litpσ ‘ LqΦ̂maxpσq, where

Φ̂maxpσq ” maxtΦ̂litpσ ‘ Lq : L P t0, 1uku.

To see this, note that for ζ P Ωd´1 and ξ P Ωk´1, if 9Ipσ, ζq “ 1 and Î litpσ, ξq “ 1, then

9Φpσ, ζqΦ̄T pσq “ 9zp 9σq ”

"

9zp 9τq if 9σ “ 9τ ,
1 otherwise;

Φ̂litpσ, ξqΦ̄T pσq “ ẑpσ̂q ”

"

ẑpτ̂q if σ̂ “ τ̂ ,
1 otherwise.

(2.3.3)

In particular, since ẑpσ̂q “ ẑpσ̂‘1q, we see that the claim holds with Φ̂maxpσq “ ẑpσ̂iq{Φ̄T pσiq
for any 1 ď i ď k. The lemma then follows: either wlit

G ,T pσq is zero, or it equals

ź

v

9Φpσδvq
ź

a

Φ̂max
pσδaq

ź

e

Φ̄T pσeq “ w
max
G,T pσq,

as claimed.

Lemma 2.3.2 says that, in averaging over the literals, we do not lose any essential infor-
mation on the cluster size. For σ P Ωk, let

v̂pσq ” Elit
rÎ lit

pσ ‘ Lqs (2.3.4)

denote the fraction of L P t0, 1uk which are compatible with σ. Then Lemma 2.3.2 gives

wG,T pσq
λ
“ wmax

G,T pσq
λpGpσq, pGpσq ”

ź

aPF

v̂pσq. (2.3.5)

We will see below that, thanks to this simplification, we can extract the desired information
from the averaged weights wG,T pσq, without referring to the edge literals L.
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Definition 2.3.3. On a bipartite factor graph G (without edge literals), the factor model
with specification g ” p 9g, ĝ, ḡq is the probability measure νG on configurations ξ P X E

defined by

νGpξq “
1

Z

ź

vPV

9gpξδvq
ź

aPF

ĝpξδaq
ź

ePE

ḡpξeq, (2.3.6)

with Z the normalizing constant.

The measure (2.3.1) on T -colorings is a factor model with specification p 9Φ, Φ̂, Φ̄T q
λ. The

measure (2.3.2) on pairs of T -colorings is a factor model with specification p 9Φ2, Φ̂2, Φ̄T,2q
λ.

To distinguish between the two cases, we sometimes refer to (2.3.1) as the “first-moment” or
“single-copy” model, and refer to (2.3.2) as the “second-moment” or “pair” model. In much
of what follows, we treat these two in a unified manner under the general framework (2.3.6).

2.3.2 Empirical measures and moments

We will decompose colorings σ according to their empirical measure H, defined as follows:

Definition 2.3.4. Given a coloring σ on G “ pG, Lq, let

9Hpζq “ |tv P V : σδv “ ζu|{|V | for ζ P Ωd,

Ĥpξq “ |ta P F : σδa “ ξu|{|F | for ξ P Ωk,
H̄pσq “ |te P E : σe “ σu|{|E| for σ P Ω.

Note that the validity of σ on G clearly depends on L, but we can regard H as a function of
pG, σq only. We therefore write

H ” HpG , σq ” HpG, σq ” p 9H, Ĥ, H̄q,

and we term this the empirical measure of σ on G.

If H is any subset of empirical measures H, we write σ P H to indicate that HpG, σq P H,
and let Zλ,T pHq denote the contribution to Zλ,T from (valid) colorings σ P H. If H is a
singleton tHu, then we write σ P H to indicate HpG, σq “ H, and let Zλ,T pHq denote the
contribution from all colorings σ P H. Much of the paper concerns the calculation of first
and second moments for Zλ,T pHq.

First note that for any pair pG, σq with HpG, σq “ H, the weight wG,T pσq is the same
and depends only on T , G, and H. In fact, the weight equals wGpσq ” wG,8pσq if the
support of H̄ is contained in ΩT , and equals zero otherwise. From now on we assume H̄
is supported within ΩT , so wG,T pσq “ wGpσq depends only on pG,Hq, and can be denoted
wGpHq. Further, we see in (2.3.5) that, as long as supp H̄ Ď ΩT , the weights wmax

G,T pσq and
pGpσq also depend only on pG,Hq, so we can rewrite (2.3.5) as

wGpHq
λ
“ wmax

G pHqλppHq. (2.3.7)
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In what follows, for ease of notation we will often suppress the dependence on λ and T , and
write simply Z ” Zλ,T .

In fact we have a quite explicit expression for EZpHq, as follows. We will use the usual
multi-index notations, in particular, if π is a probability measure on a space X, we write

ˆ

n

nπ

˙

” n!

N

ź

xPX

pnπpxqq!.

It follows straightforwardly from the definition of the random regular nae-sat graph that

EZpHq “
"ˆ

n

n 9H

˙ˆ

m

mĤ

˙Nˆ

nd

ndH̄

˙*

wGpHq
λ. (2.3.8)

We write Hpπq “ ´xπ, ln πy for the Shannon entropy of π. Applying Stirling’s formula gives
the following:

Lemma 2.3.5. For any fixed H ” p 9H, Ĥ, H̄q, we have in the limit of large n that

EZpHq — n´℘pHq{2 exptnF pHqu

where for an empirical measure H “ p 9H, Ĥ, H̄q we define

vpHq ” pd{kqxln v̂, Ĥy “ n´1 lnppHq,

spHq ” xln 9Φ, 9Hy ` pd{kqxln Φ̂max, Ĥy ` dxln Φ̄, H̄y “ n´1 lnwmaxpHq,

ΣpHq ” Hp 9Hq ` pd{kqHpĤq ´ dHpH̄q ` vpHq,
F pHq ” ΣpHq ` spHqλ,

℘pHq ” | supp 9H| ` | supp Ĥ| ´ | supp H̄| ´ 1.

(2.3.9)

2.3.3 Outline of first moment

The function F pHq is difficult to optimize directly, and we combine a few techniques in order
to analyze it. In view of the result of [DSS16] (see Remark 2.1.1), we restrict consideration
to the regime

p2k´1
´ 2q ln 2 ” αlbd ď d ď αubd ” 2k´1 ln 2. (2.3.10)

In this regime, we use a priori estimates to show that the optimal H must lie in a certain
restricted set N˝. We then show that in the restricted set, a certain block optimization
procedure converges to a unique, and explicit, optimizer H‹. The convergence of the block
optimization is based on a certain contraction estimate for the belief propagation recursion,
which we describe below.

First, to describe the set N˝, let us abbreviate H̄prq and H̄pfq for the mass assigned by
H̄ to the sets tru ” tr0, r1u and tfu ” Ωf; and let N˝ denote the set of H such that

maxtH̄pfq, H̄prqu ď 7{2k. (2.3.11)

The following a priori estimate shows that in the regime (2.3.10), the measures H R N˝ give
a negligible contribution to the first moment.
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Lemma 2.3.6. Let ZppN˝q
cq be the contribution to Z “ Zλ,T from empirical measures

H R N˝. For k ě k0, α satisfying (2.3.10), and 0 ď λ ď 1, EZppN˝q
cq is exponentially small

in n.

Proof. In view of Proposition 2.2.13, for 0 ď λ ď 1 we have

ZppN˝q
c
q ď Zfree

` Zred

where Zfree (resp. Zred) counts nae-sat solutions x P t0, 1uV which map — via coarsening
and the bijection (2.2.3) — to warning configurations y with density of free (resp. red) edges
ě 7{2k. For α satisfying (2.3.10), EZf is exponentially small in n by [DSS16, Propn. 2.2].
As for Zred, let us say that an edge e P E is blocked under x P t0, 1uV if

Le ‘ xvpeq “ 1‘ Le1 ‘ xvpe1q for all e1 P δapeqze.

Note that if x maps to y, the only possibility for ye P tr0, r1u is that e was blocked under
x. (The converse need not hold.) If we condition on x being a valid nae-sat solution, then
each clause contains a blocking edge independently with chance θ “ 2k{p2k ´ 2q; note also
that a clause can contain at most one blocking edge. It follows that

EZred
ď pEZqP

ˆ

Binpm, θq ě 7nd{2k
˙

,

which is exponentially small in n by a standard Chernoff bound, in combination with the
trivial bound EZ ď 2n.

Lemma 2.3.6 tells us that maxtF pHq : H R N˝u is negative. On the other hand, we shall
assume that the global maximum of F is non-negative, since otherwise EZ is exponentially
small in n and there is nothing to prove. From this we conclude that any maximizer H of
F must lie in N˝. By a block optimization procedure in N˝, we prove

Proposition 2.3.7 (proved in Section 2.6). Assuming the global maximum of F is non-
negative, the unique maximizer of F is a point H‹ in the interior of N˝. Further, there is
a positive constant ε “ εpk, λ, T q so that for }H ´H‹} ď ε, F pHq ď F pH‹q ´ ε}H ´H‹}

2.
Explicitly,

9H‹pζq “
9Φpζqλ

9Z‹

d
ź

i“1

q̂‹p 9ζiq, Ĥ‹pξq “
Φ̂pξqλ

Ẑ‹

d
ź

i“1

9q‹pξ̂iq, H̄‹pσq “
Φ̄pσq´λ

Z̄‹
9q‹p 9σqq̂‹pσ̂q,

(2.3.12)

where 9q‹ is the fixed point of BPλ,T given by Proposition 2.4.2, q̂‹ “ B̂Pλ,T p 9q‹q, and 9Z‹, Ẑ‹,

Z̄‹ are the normalizing constants such that 9H‹, Ĥ‹, H̄‹ are probability measures.

A straightforward consequence of the above is that we can compute the first moment of
Z up to constant factors. More formally, define the neighborhood

N “ tH : }H ´H‹} ď n´1{3
u Ď N˝.



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 31

We say σ P N if HpG, σq P N, and let ZpNq be the contribution to Z from colorings σ P N.
In the following, let 9s ” 9spT q count the number of d-tuples σ P pΩT q

d for which 9Φpσq ą 0.
Let ŝ ” ŝpT q count the number of k-tuples σ P pΩT q

k for which Φ̂pσq ą 0. Let s̄ ” |ΩT |, and
denote ℘ ” 9s` ŝ´ s̄´ 1.

Corollary 2.3.8. In the setting of Proposition 2.3.7,

EZpNq — EZ — exptF pH‹qu.

Proof. In an pair empirical measure H “ p 9H, Ĥ, H̄q, the edge marginal H̄ can be determined
from either the variable or the clause measure:

ndH̄pσq “
ÿ

ζ

n 9Hpζq 9Mpσ, ζq “
ÿ

ξ

mĤpξqM̂pσ, ξq (2.3.13)

where 9M P Rs̄ˆ 9s and M̂ P Rs̄ˆŝ are defined by

9Mpσ, ζq “
d
ÿ

i“1

1tζi “ σu, M̂pσ, ξq “
k
ÿ

i“1

1tξi “ σu.

The p 9s ` ŝq-dimensional vector p 9H, Ĥq gives rise to a valid empirical measure on the graph
G if and only if

(i) x1, 9Hy “ 1;

(ii) pn 9H,mĤq lies in the kernel of the s̄ˆ p 9s` ŝq matrix M ”
`

9M ´M̂
˘

;

(iii) pn 9H,mĤq is integer-valued;

(iv) 9H, Ĥ ě 0.

One can verify that the matrix M is of full rank, from which it follows that the space of
p 9H, Ĥq satisfying (i) and (ii) has dimension ℘. In Lemma 2.5.6 we will show that M satisfies
a stronger condition, which implies that the space of p 9H, Ĥq satisfying (i), (ii), and (iii) is
an affine translation of pn´1Zq℘, where the coefficients of the transformation are bounded.
It then follows by combining Lemma 2.3.5 and Proposition 2.3.7 that

EZ
exptnF pH‹qu

—
ÿ

zPpn´1Zq℘

1

n℘{2 exptΘp1qn}z}2u
— 1

The contribution to EZ from H R N is negligible, so the above estimate holds as well with
EZpNq in place of EZ.
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2.3.4 Second moment of correlated pairs

We will show in Section 2.10 that for fixed λ P r0, 1s, the pair pspH‹q,ΣpH‹qq converges
as T Ñ 8 to a limit psλ,Σpsλqq, which matches the physics 1RSB prediction. We then
consider the second moment only for colorings in N, beginning with the following definition
(following [CP16a]) which is intended to address the contribution from pairs of colorings
with large correlation.

Definition 2.3.9. Given a coloring σ of G, write xpσq ” pxvpσqqvPV for the corresponding
frozen configuration. For two colorings σ, σ1 of G, let

δpσ, σ1q ” |tv P V : xvpσq ‰ xvpσ
1
qu|{|V |.

Let Isep ” rp1 ´ k4{2k{2q{2, p1 ` k4{2k{2q{2s. Write σ1 ě σ if the number of free variables in
xpσ1q upper bounds the number in xpσq. We say that a coloring σ P N is separable if

|tσ1 P N : σ1 ě σ and δpσ, σ1q R Isepu| ď exptplnnq4u,

where it is understood that both σ, σ1 must be valid colorings.

Proposition 2.3.10 (proved in Section 2.7). If SpNq is the contribution to ZpNq from
separable colorings, then ESpNq “ p1´ op1qqEZpNq.

In the second moment, we continue to write H ” p 9H, Ĥ, H̄q for the empirical measure,
with the understanding that it now refers to pair colorings σ “ pσ1, σ2q. Thus 9H is in this
context a measure on p 9Ωdq2, and so on. If we wish to emphasize that we are in the second
moment setting, we will refer to H as the pair empirical measure. The single-copy marginals
of H are defined as Hj “ p 9Hj, Ĥj, H̄jq for j “ 1, 2 where

9Hj
pζq “

ÿ

σ1,σ2

9Hpσ1, σ2
q1tσj “ ζu,

and similarly for Ĥj, H̄j. To calculate the second moment of ZpNq, we must understand all
pair empirical measures H in the set

N2 ” tH : H1, H2
P Nu.

The purpose of Definition 2.3.9 is to allow us to make a further restriction: we compute the
second moment of SpNq rather than of ZpNq. Any σ “ pσ1, σ2q with pair empirical measure
H will have the same value δpσ1, σ2q “ δ, so we can define δpHq “ δ. Let

Nsep ” tH P N2 : δpHq P Isepu, Nns ” N2zNsep.

Lemma 2.3.11. If S2pNnsq is the contribution to SpNq2 from pair empirical measures H P

Nns, then ErS2pNnsqs 9ď exptnspH‹qλ` opnquEZ.
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Proof. Denote σ P SpNq if σ contributes to SpNq, meaning that σ is separable and has
empirical measure in N. Then, by symmetry,

S2
pNnsq “

ÿ

pσ,σ1qPNns

1tσ, σ1 separableuwlit
G ,T pσq

λwlit
G ,T pσ

1
q
λ

ď 2
ÿ

pσ,σ1qPNns

1tσ separableu1tσ1 ě σuwlit
G ,T pσq

λwlit
G ,T pσ

1
q
λ

ď exptnspH‹qλ` opnquSpNq,

where the last step is by the definition of separability. The result follows easily by noting
that SpNq ď Z.

Corollary 2.3.12. For any λ P r0, 1s with Σpsλq ą 0, there exists T pλq large enough such
that for all T ě T pλq, the ratio

ErS2pNnsqs

pEZpNqq2

decays exponentially with n.

Proof. By Lemma 2.3.11 and and Proposition 2.3.7,

ErS2pNnsqs

pEZpNqq2
ď

exptnspH‹qλ` opnqu

EZpNq
“ expt´nΣpH‹q ` opnqu.

Since for fixed λ the pair pspH‹q,ΣpH‹qq converges in the limit T Ñ 8 to psλ,Σpsλqq, for
T ě T pλq the above ratio decays exponentially with n, concluding the proof.

2.3.5 Second moment of uncorrelated pairs

The derivation of Lemma 2.3.5 applies equally well to the second moment, giving the expan-
sion

ErZ2
pHqs — n´℘pHq exptnF2pHqu

where H is the empirical measure for pair colorings, and ℘pHq,F2pHq are defined explicitly
as follows. Recalling (2.3.4), for σ P Ω2k let

v̂2pσq ” Elit
rÎ lit

pσ1
‘ LqÎ lit

pσ2
‘ Lqs.

For a pair empirical measure H with single-copy marginals H1, H2 we have (cf. (2.3.9))

v2pHq ” pd{kqxln v̂2, Ĥy,
s2pHq ” spH1q ` spH2q,

Σ2pHq ” Hp 9Hq ` pd{kqHpĤq ´ dHpH̄q ` v2pHq,
F2pHq ” Σ2pHq ` s2pHqλ,

℘pHq ” | supp 9H| ` | supp Ĥ| ´ | supp H̄| ´ 1.

(2.3.14)

We will show that the maximizer for F2 can be described in terms of the maximizer H‹ of
F . To this end, we will say that a measure K̂ on pairs pξ, Lq is factorized if
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(i) the marginal K̂ on L is uniform over t0, 1uk, and

(ii) for each ξ the conditional measure K̂pL|ξq is uniform on tL : Î litpξ ‘ Lq “ 1u.

From (2.3.12) and Lemma 2.3.2, Ĥ‹ is the marginal on ξ of the probability measure K̂‹ on
pairs pξ, Lq P Ωk ˆ t0, 1uk defined by

K̂‹pξ, Lq – Î lit
pξ ‘ Lqĝpξq, where ĝpξq “ Φ̂max

pξq
k
ź

i“1

9q‹pξiq.

We will characterize 9q‹ in detail below, but for now we note that it has the symmetry
9q‹p 9σq “ 9q‹p 9σ‘ 1q, which implies ĝpξq “ ĝpξ‘ Lq for any L P t0, 1uk. It follows from this that
the measure K̂‹ is indeed factorized.

Lemma 2.3.13. Assume we have empirical measures Hj “ p 9Hj, Ĥj, H̄jq (j “ 1, 2), such
that Ĥj is the marginal on ξ of an L-factorized measure K̂j. Suppose H “ p 9H, Ĥ, H̄q where
9H, H̄ are the product measures 9H1 b 9H2 and H̄1 b H̄2, and

Ĥpξq “ Elit
rK̂1

pξ1
|LqK̂2

pξ2
|Lqs.

Then F2pHq “ F pH
1q ` F pH2q.

Proof. From the definitions we have

pk{dqrF2pHq ´ F pH
1
q ´ F pH2

qs “ HpĤq ` xln v̂2, Ĥy ´
ÿ

j“1,2

rHpĤj
q ` xln v̂, Ĥj

ys.

From the assumption, Ĥ is the marginal on ξ of the measure K̂pξ, Lq “ 2´kK̂1pξ1|LqK̂2pξ2|Lq.
Note that the marginal of K̂ on L is uniform, and K̂pL|ξ1, ξ2q is uniform on L compatible
with both ξ1, ξ2. Therefore, letting pξ1, ξ2, Lq denote a random sample from K̂,

HpĤq ` xln v̂2, Ĥy “ Hpξ1, ξ2
|Lq `HpLq ´HpL|ξ1, ξ2

q ` xln v̂2, Ĥy “ Hpξ1, ξ2
|Lq.

Applying conditional independence gives

Hpξ1, ξ2
|Lq “

ÿ

j“1,2

rHpξjq `HpL|ξjq ´HpLqs “
ÿ

j“1,2

rHpĤj
q ` xln v̂, Ĥj

ys,

which proves F2pHq “ F pH
1q ` F pH2q.

Proposition 2.3.14 (proved in Section 2.6). The unique maximizer of F2 in Nsep is the

pair empirical measure Hb “ p 9Hb, Ĥb, H̄bq given by 9Hb “ 9H‹ b 9H‹, H̄b “ H̄‹ b H̄‹, and

Ĥb “ Elit
rK̂‹p¨|Lq b K̂‹p¨|Lqs.

Further, there is a positive constant ε “ εpk, λ, T q so that for }H ´Hb} ď ε,

F2pHq ď F2pHbq ´ ε}H ´Hb}
2.
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Corollary 2.3.15. There exists a constant C “ Cpk, λ, T q such that

ErZ2
pNsepqs ď CpEZpNqq2

Proof. Recall from Corollary 2.3.8 the definition of p 9s, ŝ, s̄q for the single-copy model, and
define p 9s2, ŝ2, s̄2q analogously for the pair model. Let ℘2 ” 9s2 ` ŝ2 ´ s̄2 ´ 1. For any fixed
H1, H2 P N, the set of pair empirical measures H with single-copy marginals pH1, H2q

spans a space of dimension ℘2 ´ 2℘. Thus, writing ErZ2pH1, H2qs for the second-moment
contribution from such measures, it follows from Proposition 2.3.14 and Lemma 2.5.6 that

ErZ2
pH1, H2

qs — n´℘ exptnF2pHbqu.

Summing over pH1, H2q P Nsep then gives

ErZ2
pNsepqs — n´℘ exptnF2pHbqu,

which in turn is — pEZpNqq2 by Proposition 2.3.7 and Lemma 2.3.13.

2.3.6 Conclusion of main result

We now explain that the main theorem follows from the preceding assertions.

Corollary 2.3.16. For any λ P r0, 1s with Σpsλq ą 0, there exists T pλq large enough such
that for all T ě T pλq, and for n sufficiently large,

ErSpNq2s ď CpESpNqq2

for a constant C “ Cpk, λ, T q.

Proof. Since S ď Z, we can bound

ErSpNq2s ď ErZ2
pNsepqs ` ErZ2

pNnsqs.

By Corollaries 2.3.12 and 2.3.15, the above is bounded by a constant times pEZpNqq2, which
in turn is bounded by a constant times pESpNqq2 by Proposition 2.3.10.

Corollary 2.3.16 implies PpSpNq ě δESpNqq ě δ for some positive constant δ. By
adapting methods of [DSS16] we can strengthen this to

Proposition 2.3.17. In the setting of Corollary 2.3.16, SpNq concentrates around its mean
in the sense that limεÓ0 lim inf Ppε ď SpNq{ESpNq ď ε´1q “ 1.1

Proof. This is a straightforward consequence of the method described in [DSS16, §6].

Corollary 2.3.18. For k ě k0, fpαq ě f1rsbpαq for all αlbd ď α ă αsat.

1The upper bound follows trivially from Markov’s inequality, so the task is to show the lower bound.
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Proof. Follows by combining Corollary 2.3.16 and Proposition 2.3.17.

The proofs of the above propositions occupies Sections 2.4 through 2.7, with the contrac-
tion estimates deferred to Section 2.9. In Section 2.8 we will show

Proposition 2.3.19. For k ě k0, it holds for all α ă αsat that fpαq ď f1rsbpαq.

Proof of Theorem 1. Follows by combining Corollary 2.3.18 and Proposition 2.3.19.

2.4 Tree recursions

2.4.1 Belief propagation

We now describe the belief propagation (bp) recursions for this model. In the standard
formulation (see e.g. [MM09, Ch. 14]), this is a pair of relations for two probability measures
9q, q̂ over Ω:

9qpσq “ r 9Bpq̂qspσq “
1

9z
Φ̄T pσq

λ
ÿ

σ2,...,σd

9Φpσ, σ2, . . . , σdq
λ

d
ź

i“2

q̂pσiq

q̂pσq “ rB̂p 9qqspσq “
1

ẑ
Φ̄T pσq

λ
ÿ

σ2,...,σk

Φ̂pσ, σ2, . . . , σkq
λ

k
ź

i“2

9qpσiq

where 9z, ẑ are the normalizing constants ensuring that the outputs are probability measures.
The first equation above is the variable recursion, and the second is the clause recursion. A
standard simplification (see e.g. [MM09, Ch. 19]) is to assume a one-sided dependence:

9qpσq – 9qp 9σq and q̂pσq – q̂pσ̂q. (2.4.1)

where 9q, q̂ are probability measures on 9Ω, Ω̂, and – denotes equivalence up to normalization.
To see that this restriction makes sense, we note the following lemma which confirms that
the restriction is preserved under the bp mapping:

Lemma 2.4.1. The restriction (2.4.1) is preserved under the bp mapping, that is, if 9q
depends only on 9σ then B̂p 9qq depends only on σ̂; and if q̂ depends only on σ̂ then 9Bpq̂q
depends only on 9σ.

Proof. Suppose q̂ depends only on σ̂, so q̂pσq – q̂pσ̂q, and consider the variable bp mapping
9B. If σ R Ωf then σ̂ is uniquely determined by 9σ, so there is nothing to prove. Therefore we

need only consider the case that σ P Ωf. In order for 9Ipσ, σ2, . . . , σdq “ 1, we must have

9σ “ 9Tpσ̂2, . . . , σ̂dq; (2.4.2)
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note that this condition does not depend on σ̂. Further, given pσ, σ̂2, . . . , σ̂dq satisfying
(2.4.2), there is a unique choice of p 9σ2, . . . , 9σdq for which 9Ipσ, σ2, . . . , σdq “ 1; it is determined
by the relation 9σi “ 9Tppσ̂jqj‰iq. In this case, applying (2.3.3) gives

9Φpσ, σ2, . . . , σdqΦ̄pσq “ 9zp 9σq,

which also does not depend on σ̂. It follows that

r 9Bpq̂qspσq – 9zp 9σqλ
ÿ

σ̂2,...,σ̂d

1t 9σ “ 9Tppσ̂iqiě2qu

d
ź

i“2

q̂pσ̂iq.

The right-hand side does not depend on σ̂, which proves the claim concerning 9B.
Similarly, suppose 9q depends only on 9σ, so 9qpσq – 9qp 9σq, and consider the clause mapping

B̂. Again, if σ R Ωf then there is nothing to prove, so suppose σ P Ωf. Then, in order for
Î litppσ, σ2, . . . , σkq ‘ Lq “ 1, we must have

σ̂ “ L1 ‘ T̂pp 9σi ‘ Liqiě2q; (2.4.3)

note that this condition does not depend on 9σ. Further, given pσ, 9σ2, . . . , 9σk, Lq satisfying
(2.4.3), there is a unique choice of pσ̂2, . . . , σ̂kq for which Î litppσ, σ2, . . . , σkq ‘ Lq “ 1; it is
determined by the mapping T̂. In this case, applying (2.3.3) gives

Φ̂ppσ, σ2, . . . , σkq ‘ LqΦ̄pσq “ ẑpσ̂q,

which also does not depend on 9σ. It follows that

rB̂p 9qqspσq – ẑpσ̂qλ
ÿ

L

ÿ

9σ2,..., 9σd

1tσ̂ “ L1 ‘ T̂pp 9σi ‘ Liqiě2qu

k
ź

i“2

9qp 9σiq.

The right-hand side does not depend on 9σ, which proves the claim concerning B̂.

Lemma 2.4.1 verifies that the one-sided dependence is preserved under the bp recursion,
and from now on we always assume (2.4.1). In this setting, 9B and B̂ reduce to mappings

9BP ” 9BPλ,T : PpΩ̂q Ñ Pp 9Ωq,

B̂P ” B̂Pλ,T : Pp 9Ωq Ñ PpΩ̂q.

(Generally we will fix λ, T and suppress them from the notation.) We also denote

BP ” 9BP ˝ B̂P ” BPλ,T . (2.4.4)

Note that 9q is a measure on spins 9σ P 9Ω. In the introduction we discussed probability
measures over messages 9m; this can be recovered by taking 9qpt 9σ : 9mp 9σq “ 9muq. As in
Proposition 2.1.2 we consider Pp 9Ωq and PpΩ̂q as `1 sequence spaces.
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In the context of nae-sat, a useful observation is that the bp recursion has an averaging
property, as follows. Since in the clause recursion we average over the clause literals L, we
can make the change of variables τi “ L1 ‘ σi ‘ Li for i ě 2, which yields

B̂p 9qq – Φ̄T pσq
λ

ÿ

τ2,...,τk

1
2

ÿ

L1

Φ̂lit
ppσ, τ2, . . . , τkq ‘ L1q

λ
k
ź

i“2

"

1
2

ÿ

Li

9qpτi ‘ Li ‘ L1q

*

“ Φ̄T pσq
λ

ÿ

τ2,...,τk

Φ̂lit
pσ, τ2, . . . , τkq

λ
k
ź

i“2

9qavg
pτiq “ B̂p 9q

avg
q

where 9qavgpσq ” 1
2
r 9qpσq ` 9qpσ ‘ 1qs. Therefore, under assumption (2.4.1),

B̂P 9q “ B̂P 9qavg, and consequently BP 9q “ BP 9qavg.

We are primarily interested in fixed points of the mapping BP, in which case we can restrict
attention to measures satisfying 9q “ 9qavg.

The bp recursions for the pair model are completely analogous to those of the single-copy
model. They can be simplified to a pair of mappings

9BP2 : PpΩ̂2q Ñ Pp 9Ω2q,

B̂P2 : Pp 9Ω2q Ñ PpΩ̂2q;

and once again BP2 ” 9BP2 ˝ B̂P2 satisfies the averaging property BP2p 9qq “ BP2p 9q
avgq where

9qavg
p 9σ1, 9σ2

q “ 1
2
9qp 9σ1, 9σ2

q ` 1
2
9qp 9σ1

‘ 1, 9σ2
‘ 1q.

In what follows we will drop the subscript and write simply 9BP, B̂P, BP; it will be clear from
context whether we are in the single-copy or pair setting.

2.4.2 Contraction estimate

A key step in the proof is to (explicitly) define a subset Γ Ď Pp 9Ωq on which we have a
contraction estimate of the form }BP 9q ´ 9q‹}1 ď c} 9q ´ 9q‹}1 for a constant c ă 1, in both
first- and second-moment settings. We remark that it suffices to prove such an estimate for
measures 9q “ 9qavg, since for general 9q it implies

}BP 9q ´ 9q‹}1 “ }BP 9q
avg
´ 9q‹}1 ď c} 9qavg

´ 9q‹}1 ď c} 9q ´ 9q‹}1.

Thus it will be sufficient to define Γ as a subset of measures satisfying 9q “ 9qavg. Let us
abbreviate tru ” tr0, r1u and tbu ” tb0, b1u. We also abbreviate tfu ” 9Ωf in the context of
9q, and tfu ” Ω̂f in the context of q̂. For the first moment analysis, we define Γ to be the set
of measures 9q supported on 9ΩT , satisfying 9q “ 9qavg, such that

9qprq ` 2k 9qpfq “ Op1q 9qpbq,
9qpbqr1´Op2´kqs ď 9qprq.

(2.4.5)
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For the second moment analysis, we define Γ “ Γpc, κq to be the set of 9q supported on p 9ΩT q
2,

satisfying 9q “ 9qavg, such that

(a)
ř

9σRtbbup2
´kqrr 9σspp 9σq “ Op2´kqppbbq, |ppb0b0q ´ ppb0b1q| ď pk

9{2ckqppbbq,

(b) pptrf, fruq “ Op2´κkqppbbq, pprrq “ Op2p1´κqkqppbbq,
(c) pprx 9σq ě r1´Op2

´kqsppbx 9σq and

pp 9σrxq ě r1´Op2
´kqspp 9σbxq for all x P t0, 1u and 9σ P 9Ω.

(2.4.6)

Proposition 2.4.2. In the first moment, let BP ” BPλ,T for λ P r0, 1s and 1 ď T ď 8.
There is a unique 9q‹ ” 9qλ,T P Γ satisfying 9q‹ “ BP 9q‹. If 9q is any element of Γ, then BP 9q P Γ
also, with }BP 9q ´ 9q‹}1 “ Opk2{2kq} 9q ´ 9q‹}1.

Proposition 2.4.3 (second moment contraction). In the second moment, let BP ” BPλ,T for
λ P r0, 1s and 1 ď T ď 8. There is a unique 9q‹ ” 9qλ,T P Γp1, 1q satisfying 9q‹ “ BP 9q‹. Further,
for c P p0, 1s and k ě k0pcq, there is no other fixed point of BP in Γpc, 1q: if 9q P Γpc, 1q then
BP 9q P Γp1, 1q, with }BP 9q ´ 9q‹}1 “ Opk4{2kq} 9q ´ 9q‹}1.

We will also make use of the following lemma which says that if 9q is a bp fixed point,
then showing (2.4.6) with κ “ 0 implies the stronger bound with κ “ 1:

Lemma 2.4.4. In the second moment, if for some c P p0, 1s we have 9q P Γpc, 0q and 9q “
BPp 9qq, then in fact 9q P Γpc, 1q.

The proofs of Proposition 2.4.2 and 2.4.3 and of Lemma 2.4.4 are deferred to Section 2.9.
In the next sections we apply them to compute the first and second moments of Zλ,T pHq.

2.5 Reduction to tree optimization

In this section we prove a key reduction for the proofs of Propositions 2.3.7 and 2.3.14,
concerning the optimization of F and its second-moment analogue F2. As we have already
commented, direct analysis of these functions is in general quite challenging. Instead, we
first rely on other means to restrict the set of empirical measures — the set N˝ in the first
moment, and the set Nsep in the second moment. With this restriction, we can successfully
optimize F and F2 through a related, but simpler, optimization problem on trees. In this
section we explain this reduction.

Definition 2.5.1. The tree analogues of Σ,Σ2 (from (2.3.9) and (2.3.14)) are defined as

ΘpHq ” Hp 9Hq ` dHpĤq ´ dHpH̄q ` vpHq

Θ2pHq ” Hp 9Hq ` dHpĤq ´ dHpH̄q ` v2pHq

(where H denotes a single-copy empirical measure in the first line, and a pair empirical
measure in the second). The tree analogues of F ,F2 are defined as

ΛpHq ” ΘpHq ` λspHq,
Λ2pHq ” Θ2pHq ` λs2pHq.
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Given H, let 9htreepHq be the measure on 9σ defined by

r 9htree
pHqsp 9σq ” pk ´ 1q´1

ÿ

ξPΩk

k
ÿ

j“2

Ĥpσq1tξj “ 9σu.

We then let

Λoptp 9hq ” suptΛpHq : 9htreepHq “ 9hu, ΞpHq ” Λoptp 9htreepHqq ´ΛpHq;

Λopt
2 p 9hq ” suptΛ2pHq : 9htreepHq “ 9hu, Ξ2pHq ” Λopt

2 p 9htreepHqq ´Λ2pHq.

Note that Ξ,Ξ2 are non-negative functions.

Definition 2.5.2. For σ P Ωk and j P rks define the rotation

σpjq ” pσj, . . . , σk, σ1, . . . , σj´1q.

We let Ĥsympσq denote the average of Ĥpσpjqq over j P rks, and write Hsym ” p 9H, Ĥsym, H̄q.

Theorem 2.5.3. For ε small enough, and with Hsym as in Definition 2.5.2,

F pHq ď maxtF pH 1q : }H 1 ´H}1 ď εpdkq2T u ´ ε ¨ΞpHsymq,
F2pHq ď maxtF2pH

1q : }H 1 ´H}1 ď εpdkq2T u ´ ε ¨Ξ2pH
symq.

For the sake of exposition, we will give the proof of Theorem 2.5.3 for F only; the assertion
for F2 follows from the same argument with essentially no modifications. The interpretation
of Λ will emerge during the proof, which occupies the remainder of this section. Informally,
while F refers to a graph optimization problem which need not be concave, Λ refers to
an entropy maximization problem on colorings of a finite tree, which becomes a tractable
problem. Once we have proved Theorem 2.5.3 it remains to analyze the functions Λ,Λ2,
which will be done in Section 2.6.

2.5.1 Tree updates

We prove Theorem 2.5.3 by analyzing one step of a certain Markov chain. To define the
chain we require a certain update function for colorings on trees, which we now describe.

Definition 2.5.4. A directed tree is a bipartite tree n rooted at an edge e˝ which has a
single incident vertex x˝. All edges e of n are labelled with literals Le P t0, 1u. We let Lpnq
denote the boundary edges of n other than e˝. We call n a variable-to-clause tree if x˝ is
a variable; otherwise we call it a clause-to-variable tree. We say that σ P ΩEpnq is a valid
T -coloring of the tree n if the weight

wlit
n,T pσq ”

ź

vPV pnq

9Φpσδvq
ź

aPF pnq

Φ̂lit
ppσ ‘ Lqδaq

ź

ePEpnq

Φ̄T pσeq

is positive.
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Figure 2.5.1: A variable-to-clause tree n (Definition 2.5.4).

We always visualize the tree n as in Figure 2.5.1, with the root edge at the top, so that
paths leaving the root travel downwards. On an edge e “ pavq, the upward color is 9σav if a
lies above v, and σ̂av if v lies above a. Now suppose σ is a valid T -coloring of a directed tree
n with root spin σe˝ “ σ, and consider updating to a new root spin ζ P ΩT . If σ and ζ agree
in the upward direction of e˝, then there is a unique valid coloring

ζ “ updatepσ, ζ;nq P ΩEpnq

which has root spin ζ, and agrees with σ in all the upward colors. Indeed, the only possibility
for σ ‰ ζ is that both σ, ζ P Ωf. It is then clear that updatepσ, ζ;nq is uniquely defined by
recursively applying the mappings 9T and T̂, starting from the root and continuing downwards.

Since we assumed that σ was a valid T -coloring and ζ P ΩT , it is easy to verify that the
resulting ζ is also a valid T -coloring, so the update procedure respects the restriction to ΩT .
From now on we assume all edge colors belong to ΩT , and for the most part we drop T from
the notation.

Lemma 2.5.5. If σ is a valid coloring of the directed tree n, and ζ “ updatepσ, ζ;nq agrees
with σ on the boundary edges Lpnq, then

wlit
n pσq “ w

lit
n pζq.

Proof. For each vertex x P n, let epxq denote the parent edge of x (the unique edge of n
which lies above x). We then have

wlit
n pσq “

ź

ePLpnq

Φ̄pσeq
ź

vPV pnq

!

9ΦpσδvqΦ̄pσepvqq
)

ź

aPF pnq

!

Φ̂lit
ppσ ‘ LqδaqΦ̄pσepaqq

)

.

For a variable v in n with epvq “ e, it follows from (2.3.3) that

9ΦpσδvqΦ̄pσeq “ 9zp 9σeq “ 9zp 9ζeq “ 9ΦpζδvqΦ̄pζeq.

Likewise, at a clause a in n with epaq “ e, it follows from (2.3.3) that

Φ̂lit
ppσ ‘ LqδaqΦ̄pσeq “ ẑpσ̂eq “ ẑpζ̂eq “ Φ̂lit

ppζ ‘ LqδaqΦ̄pζeq.

Recalling that σ and ζ agree on Lpnq, we have wlit
n pσq “ w

lit
n pζq as claimed.
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Lemma 2.5.6. Let 9M, M̂ be as defined in Corollary 2.3.8, and let 9M2, M̂2 be their analogues
in the pair model. For any σ, σ1 P Ω there exists an integer-valued vector p 9H, Ĥq so that

x1, 9Hy “ 0 “ x1, Ĥy and 9M 9H ´ M̂Ĥ “ 1σ ´ 1σ1 ,

where 1 denotes the all-ones vector, and 1σ denotes the vector which is one in the σ coordinate
and zero elsewhere. The analogous statement holds for p 9M2, M̂2q.

Proof. We define a graph on Ω by putting an edge between σ and σ1 if there exist valid
colorings σ, σ1 on some directed tree n which take values σ, σ1 on the root edge e˝, but agree
on the boundary edges Lpnq. If σ, σ1 are connected in this way, then taking

9Hpζq “
ÿ

vPV pnq

1tσδv “ ζu ´
ÿ

vPV pnq

1tpσ1qδv “ ζu,

Ĥpξq “
ÿ

aPF pnq

1tσδa “ ξu ´
ÿ

aPF pnq

1tpσ1qδa “ ξu.

gives 9M 9H ´ M̂Ĥ “ 1σ ´ 1σ1 as required. It therefore suffices to show that the graph we
have defined on Ω is connected (hence complete).

If 9σ “ 9σ1, it is clear that σ and σ1 can be connected via colorings σ, σ1 of some variable-to-
clause tree n, with σ1 “ updatepσ, ζ;nq. Similarly, if σ̂ “ σ̂1, then σ and σ1 can be connected
using a clause-to-variable tree. This implies that Ωf is connected.

Next, it is also easy to see that if σ “ rx and σ1 “ bx, then they can be connected via a
depth-one variable-to-clause tree. Similarly, if σ “ bx and σ1 “ p 9τ , ˝q for any 9τ P 9Ωf, then
they can be connected via a depth-one clause-to-variable tree. It follows that Ω is indeed
connected, which proves the assertion concerning p 9M, M̂q. The proof for p 9M2, M̂2q is very
similar.

2.5.2 Markov chain

We now define a Markov chain on tuples pG , σ, Y q where G “ pV, F,Eq is a pd, kq-regular
nae-sat instance, σ is a valid T -coloring on G , and Y Ď V is a subset of variables such that

(i) for all v P Y , the neighborhood B2T pvq is a tree, and
(ii) each pair of variables v ‰ v1 in Y lies at graph distance at least 4T .

(2.5.1)

(Recall that each variable-clause edge is defined to have length 1
2
.) For v P Y let N pvq

denote the depth-one neighborhood of v, excluding the variables at unit distance from v.
Let N ” N pY q denote the (disjoint) union of the graphs N pvq, v P Y :

N “ pN, LNq

where N denotes the graph without the edge literals, and LN denotes the vector of |Y |dk
edge literals. Let σN be the restriction of σ to the edges incident to vertices of N, and define

wlit
N pσN|LNq ” w

lit
N pσNq ”

ź

vPY

"

9Φpσδvq
ź

ePδv

!

Φ̂lit
ppσ ‘ LqδapeqqΦ̄pσeq

)

*

.
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Let VB denote the vertices of GzN (including the variables at unit distance from Y ), and let
FB denote the clauses of GzN. Let EB denote the set of all edges incident to VB YFB, and let
σB denote the restriction of σ to EB. Define

wlit
B pσBq ”

ź

vPVB

9Φpσδvq
ź

aPFB

Φ̂lit
ppσ ‘ Lqδaq

ź

ePEB

Φ̄pσeq.

Then the overall weight wlit
G pσq of σ factorizes as

wlit
G pσq “ w

lit
B pσBqw

lit
N pσN|LNq. (2.5.2)

Let δN denote the boundary edges of N, and let 9htreepσδNq be the empirical measure of the
spins p 9σeqePδN. Given initial state pG , σ, Y q, we take one step of the Markov chain as follows:

1. Sample a new pair pL1N, ζNq from the probability measure

pppL1N, ζNq | pLN, σNqq “
1

z
1t 9htree

pσδNq “
9htree

pζδNquw
lit
N pζN|L

1
Nq

λ

where z denotes the normalizing constant, which depends on |N| and 9htreepσδNq.

2. If e “ p 9e, êq then denote
9σe ” 9σp 9eq ” 9σpêq.

Each edge e P E pairs some 9ei with some êmpiq, for some permutation m : rnds Ñ rnds.
Let B denote the subset of indices i P rnds such that p 9ei, êmpiqq P δN. Now consider the
set M “MpG , Y, σ, ζq of permutations m1 : rnds Ñ rnds such that

m1piq “ mpiq for all i P rndszB, 9σp 9eiq “ 9ζpêm1piqq for all i P B. (2.5.3)

Sample M uniformly at random from M. Let G 1 be the new graph formed from G by
replacing LN with L1N, and replacing m with M.

3. For each e P δN, let npeq denote the depth-2T neighborhood of vpeq in the graph G ztapequ,
including the edge e which we regard as the root of npeq. Let

ζnpeq ” updatepσnpeq, ζe;npeqq;

note that, since σ is a valid T -coloring, ζnpeq and σnpeq must agree at the boundary of
npeq. For any edge e1 which does not appear in N or any of the trees npeq, define ζe1 “ σe1 .

The state of the Markov chain after one step is pG 1, ζ, Y q. See Figure 2.5.2.

Lemma 2.5.7. Suppose we have a measure PpY |G q such that, whenever the tuples pG , Y, σq
and pG 1, Y, ζq belong to the same orbit of the Markov chain, it holds that

PpY |G q “ PpY |G 1
q. (2.5.4)

A reversing measure for the Markov chain is then given by

µpG , σ, Y q “ PpG qPpY |G qwlit
G pσq

λ
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(a) pG , Y, σq

(b) pG 1, Y, σ1q

Figure 2.5.2: pG , Y, σq to pG 1, Y, σ1q.

Proof. Started from a “ pG , σ, Y q, let πpa, bq denote the chance to reach state b “ pG 1, ζ, Y q
in one step of the Markov chain:

πpa, bq “
pppL1N, ζNq | pLN, σNqq

|
Mpa, bq|

for M as defined in (2.5.3). The size of M can be expressed as a function of p|Y |, 9hq only, so
|Mpa, bq| “ |Mpb,aq|. It follows that

µpaqπpa, bq

µpbqπpb,aq
“
wlit

G pσq
λ

wlit
G pζq

λ

pppL1N, ζNq | pLN, σNqq

pppLN, σNq | pL
1
N, ζNqq

“
wlit
B pσBq

λwlit
N pσN|LNq

λwlit
N pζN|L

1
Nq

λ

wlit
B pζBq

λwlit
N pζN|L

1
Nq

λwlit
N pσN|LNq

λ
“
wlit
B pσBq

λ

wlit
B pζBq

λ
,

using (2.5.2). It follows from Lemma 2.5.5 that this ratio equals one, which proves re-
versibility. (We remark that since the Markov chain breaks up into many disjoint orbits, the
reversing measure is not unique.)
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Let A be any subset of the state space, and let B denote the set of states reachable from
A in one step of the chain. Then reversibility implies

µpAq “
ÿ

aPA

ÿ

bPB
µpaqπpa, bq “

ÿ

aPA

ÿ

bPB
µpbqπpb,aq ď µpBqmax

bPB
πpb, Aq. (2.5.5)

2.5.3 From graph to tree optimizations

Given G “ pV, F,Eq, a valid coloring σ on G , and a nonempty subset of variables Y Ď V ,
we define

Hsamp
” Hsamp

pG , σ, Y q ” Hsamp
pG, σ, Y q ” p 9Hsamp, Ĥsamp, H̄samp

q

which records the empirical distribution of σ near Y , as follows. For v P Y and e P δv, let
1 ď jpeq ď k denote the index of e in δapeq. Let

9Hsamppζq “ |tv P Y : σδv “ ζu|{|Y |, ζ P Ωd,

Ĥsamppξq “ |tpv, eq : v P Y, e P δv, pσδapeqq
pjpeqq “ ξu|{pd|Y |q, ξ P Ωk,

H̄samppζq “ |tpv, eq : v P Y, e P δv, σe “ σu|{pd|Y |q, σ P Ω,

(2.5.6)

where pσδaq
pjq is the rotation of σδa in which the j-th entry appears first (Definition 2.5.2).

We then define 9h “ 9htreepHsampq as the empirical measure of 9σ on the edges δapeqze, for
e P δv:

9htree
p 9σq “ pk ´ 1q´1

ÿ

ζPΩk

Ĥpζq
k
ÿ

i“2

1t 9ζi “ 9σu, 9σ P 9Ω.

It is clear that HsamppG , σ, Y q can be expressed as a function of σN, and from now on we
indicate this relation by

Hsamp
pG , σ, Y q “ HpσNq.

Let EZNpH
sampq denote the total weight of pairs pLN, σNq which are consistent with Hsamp,

normalized by the number of literal assignments:

EZNpH
samp

q ”
1

2|N|dk

ÿ

σN

1tHpσNq “ Hsamp
u
ÿ

LN

wlit
N pσN|LNq

λ.

Clearly, this depends on N only through s “ |N|, so we denote EZspHsampq ” EZNpH
sampq.

The following lemma gives an explicit calculation of EZspHsampq.

Lemma 2.5.8. With Φ̂ as in Remark 2.3.1,

EZspHsamp
q “

`

s
s 9Hsamp

˘`

ds
dsĤsamp

˘

`

ds
dsH̄samp

˘

9Φλs 9Hsamp

Φ̂λdsĤsamp

Φ̄λdsH̄samp

.

This equals sOp1q exptsΛpHsampqu where Λ is given by Definition 2.5.1, and is concave in H.
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Proof. The first assertion follows by a straightforward combinatorial calculation (cf. (2.3.8)).
Stirling’s formula yields the asymptotic expansion EZspHsampq “ sOp1q exptsΛpHsampqu. The
function ΛpHq is the sum of ΘpHq and the linear function spHqλ, and we claim that Θ is
concave. To see this, recall that H “ Hsamp must satisfy

H̄pσq “
ÿ

ζPΩk

Ĥpζq1tζ1 “ σu.

Let Ĥσpζq denote the probability of ζ under Ĥ, conditioned on ζ1 “ σ. Then

ΘpHq “ Hp 9Hq ` d
ÿ

σ

H̄pσqHpĤσq ` vpHq.

The entropy function H is concave, so this proves that Θ is indeed concave.

Remark 2.5.9. An equivalent characterization of Λ is as follows. Recall that N consists of
s disjoint trees Npv1q, . . . ,Npvsq where each Npvsq is a copy of the depth-one tree D depicted
in Figure 2.5.3. We use LpDq to denote the set of boundary edges e P δazpavq, a P Bv, so
|LpDq| “ dpk ´ 1q. Both N and D do not include edge literals. The natural weight function
on colorings of D is defined by

wDpσDq “
9Φpσδvq

ź

ePδv

"

Φ̄pσeqΦ̂pσδapeqq

*

,

where Φ̂ is as in Remark 2.3.1. If ν is a probability measure over colorings σD, then we
denote Hpνq “ p 9H, Ĥ, H̄q where (cf. (2.5.6))

9Hpζq “ νpσδv “ ζq, Ĥpξq “ d´1
ÿ

ePδv

νppσδapeqq
jpeq

“ ξq, H̄pσq “ d´1
ÿ

ePδv

νpσe “ σq.

Let Zspνq be the contribution to ZspH
sampq from colorings σN with empirical measure ν —

that is, colorings σN satisfying sνpσDq “ |ti P rss : σNpviq
“ σDu| for all σD. Using multi-index

notation as before, we have

EZspνq “
ˆ

s

sν

˙

pwDq
λν
“ sOp1q exptHpνq ` λxlnwD, νyu.

Summing over all ν such that sν is integer-valued and Hpνq “ Hsamp gives

EZspHsamp
q “

ÿ

ν

EZspνq “ sOp1q exptnΛpHsamp
qu

for the following alternative equivalent of Λ:

ΛpHsamp
q “ suptHpνq ` λxlnwD, νy : Hpνq “ Hsamp

u.

This representation also explains clearly why Λ is concave. Lastly, note we can express Λopt

similarly as Λoptp 9hq “ suptHpνq ` λxlnwD, νy : 9htreepHpνqq “ Hsampu.
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v

Figure 2.5.3: The depth-one tree D, rooted at variable v.

Proposition 2.5.10. Let ApHq be the set of tuples pG , σ, Y q such that σ is a valid T -coloring
on G with empirical measure H, and Y is a subset of V satisfying (2.5.1) as well as

nε ď |Y | ď 6nε and }Hsamp
pG , σ, Y q ´Hsym

} ď pln lnnq´1{2.

Suppose we define an exceptional set of graphs B with PpBq ď expt´nplnnq1{2u, and a law
PpY |G q such that for all G R B and all σ with HpG , σq “ H, we have

PpApHq | pG , σqq “
ÿ

Y

PpY |G q1tpG , σ, Y q P ApHqu ě 1
2
. (2.5.7)

Then the expected weight of colorings with empirical measure H satisfies

EZpHq ď
eonp1q maxtEZpH 1q : }H 1 ´H}1 ď εpdkq2T u

exptnεmintΞpH2q : }H2 ´Hsym}1 ď pln lnnq´1{2uu
.

Proof. Since ZpHq ď 2n,

EZpHq ď ErZpHq; G R Bs ` expt´Ωpnplnnq1{2qu.

Since we only consider measures H for which F pHq ą ´8, the right-hand side above is
dominated by the contribution from G R B. Next recall from Lemma 2.5.7 the reversing
measure µpG , σ, Y q. Applying assumption (2.5.7),

EZpHq ď 2ErZpHq; G R Bs “ 2
ÿ

G RB

PpG q
ÿ

σ

wlit
G pσq

λ
ď 4µpApHqq.

We now apply (2.5.5), writing BpHq for the set of states b “ pG 1, σ1, Y 1q reachable from
ApHq in one step of the Markov chain. First note that if b P BpHq then H 1 “ HpG 1, σ1, Y 1q
must satisfy (crudely) }H 1´H} ď εpdkq2T , so summing over the εpdkq2T -neighborhood of H,

µpBpHqq ď sOp1q maxtEZpH 1
q : }H 1

´H} ď εpdkq2T u.

Next, writing s “ |Y 1|, we have

πpb, ApHqq “
ZspH

sampq
ř

H2 ZspH
2q1t 9htreepH2q “ 9htreepHsampqu

,

where H2 represents HsamppG 1, σ1, Y 1q. Applying Lemma 2.5.8 gives

πpb, ApHqq ď sOp1q exptsrΛpHsamp
q ´Λopt

p 9htree
pHsamp

qqsu.

Recalling }Hsamp ´Hsym} ď pln lnnq´1{2 and nε ď s ď 6nε, the result follows.
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2.5.4 Sampling

We now define the law PpY |G q and verify condition (2.5.7). To this end, given G “ pV, F,Eq,
let Vt Ď V be the subset of variables v P V such that the t-neighborhood Btpvq around v is
a tree. Recall the following form of the Chernoff bound: if X is a binomial random variable
with mean µ, then for all t ě 1 we have

PpX ě tµq ď expt´tµ lnpt{equ. (2.5.8)

Lemma 2.5.11. If G “ pV, F,Eq is sampled from the pd, kq-regular configuration model,
then for any fixed t it holds for n ě n˝ptq that

Pp|V zVt| ě npln lnnq´1
q ď expt´nplnnq1{2u.

Proof. Let γ count the total number of cycles in G of length at most 2t. If v R Vt then v
must certainly lie within distance t of one of these cycles, so crudely we have

|V zVt| ď 2tpdkqtγ. (2.5.9)

Consider breadth-first search exploration in G started from an arbitrary variable, say v “ 1.
At each step of the exploration we reveal one edge, so the exploration takes nd steps total.
Conditioned on everything revealed in the first t steps, the chance that the edge revealed at
step t` 1 will form a new cycle of length ď 2t is upper bounded by

pdkq2t

nd´ t
.

It follows that the total number of cycles revealed up to time ndp1 ´ δq is stochastically
dominated by a binomial random variable

γ1 „ Bin
´

ndp1´ δq,
pdkq2t

ndδ

¯

.

The final ndδ exploration steps can form at most ndδ new cycles, so γ ď γ1`ndδ. Applying
(2.5.8) with δ “ pln lnnq´2,

Ppγ ě 2ndδq ď Ppγ1 ě ndδq ď exp
!

´ ndδ ln
ndδ2

epdkq2t

)

ď expt´nplnnq1{2u

for large enough n. Recalling (2.5.9) gives the claimed bound.

Recalling Proposition 2.5.10, let B be the set of graphs G for which |V zVt| ě n{2.
For G R B, take i.i.d. random variables Iv „ Berpε1q indexed by v P Vt for some ε1 to be
determined, and let

Yv ” 1tIv “ 1, and Iu “ 0 for all u P Btpvqztvuu, ε ” 1
2
EYv. (2.5.10)
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We define PpY |G q to be the law of the set Y “ tv P Vt : Yv “ 1u, with t “ 4T . Given a valid
coloring σ on G “ pV, F,Eq, define (cf. (2.5.6))

9Xvpζq ” 1tσδv “ ζu, ζ P Ωd,

X̂vpξq ” |te P δv : pσδapeqq
jpeq “ ξu|, ξ P Ωk,

X̄vpσq ” |tpa, eq : a P Bv, e P δazpavq, σe “ σu|, σ P Ω.

Lemma 2.5.12. Fix pG , σq and let n1 “ |Vt| ă n{2. Then for all x ą 4|n´ n1| we have the
concentration bounds

P
´ˇ

ˇ

ˇ

ÿ

vPVt

Yv ´ n
1ε
ˇ

ˇ

ˇ
ě x

¯

ď exp
!

´
x2

8n1pdkq2t

)

P
´ˇ

ˇ

ˇ

ÿ

vPVt

Yv 9Xvpζq ´ n
1ε 9Hpζq

ˇ

ˇ

ˇ
ě x

¯

ď exp
!

´
x2

8n1pdkq2t

)

P
´
ˇ

ˇ

ˇ

1

d

ÿ

vPVt

YvX̂vpξq ´ n
1εĤsym

pξq
ˇ

ˇ

ˇ
ě x

¯

ď exp
!

´
x2

8n1pdkq2t`1

)

P
´
ˇ

ˇ

ˇ

1

dpk ´ 1q

ÿ

vPVt

YvX̄vp 9σq ´ n
1εH̄pσq

ˇ

ˇ

ˇ
ě x

¯

ď exp
!

´
x2

8n1pdkq2t`1

)

Proof. Assume without loss that Vt “ rn
1s ” t1, . . . , n1u, and for 0 ď s ď n1 let Fs denote

the sigma-field generated by Y1, . . . , Ys. Let

S ”
ÿ

vďn1

AvYv, Ms ” ErS|Fss

where we take different values of Av for the various bounds:

Av “ 1, Av “ 9Xvpζq, Av “ X̂vpξq, Av “ X̄vpσq.

We emphasize that G and σ are fixed, so the only randomness is in the Y ’s:

Ms “
ÿ

vďn1

AvErYv|Fss.

If v lies at distance greater than 2t from any variable in rss ” t1, . . . , su, then

ErYv|Fss “ ErYvs “ 2ε.

More generally, ErYv|Fss is a measurable function of all the Yw values for w P rss X B2tpvq.
Therefore the only possibility for ErYv|Fs`1s ‰ ErYv|Fss is that rs` 1sXB2tpvq differs from
rssXB2tpvq, which implies in particular that v P B2tps`1q. The number of such v is at most
pdkqt, so we conclude

|Ms`1 ´Ms| ď pdkq
t
}A}8.
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It follows by the Azuma–Hoeffding martingale inequality that

Pp|S ´ ES| ě xq ď exp
!

´
x2

2n1pdkq2t}A}8

)

,

and the claimed bounds follow from the fact that removing n ´ n1 ă n{2 vertices from a
graph can change the empirical measure by at most 2pn´ n1q{n.

Proof of Theorem 2.5.3. Take ε1 ą 0 small enough such that the resulting ε defined by
(2.5.10) satisfies 6εpdkq2T ă 1. It then follows from Lemmas 2.5.11 and 2.5.12 that the
conditions of Proposition 2.5.10 are satisfied by taking B to be the set of graphs with
|V zVt| ě npln lnnq´1, and PpY |G q to be the law of Y “ tv P Vt : Yv “ 1u, for Yv as given by
(2.5.10).

2.6 Tree optimization problem

In this section we give the analysis of ΞpHq (Definition 2.5.1 and Theorem 2.5.3). Recall
from (2.3.11) the definition of N˝, and from (2.3.12) the definition of H‹.

Proposition 2.6.1. For Ξ,Ξ2 as defined by (2.3.9) and (2.3.14), we have

(a) On tH P N˝ : H “ Hsymu, Ξ is uniquely minimized at H “ H‹, with ΞpH‹q “ 0.

(b) On tH P Nsep : H “ Hsymu, Ξ2 is uniquely minimized at H “ Hb, with Ξ2pHbq “ 0.

Proposition 2.6.2. There exists a positive constant ε “ εpkq such that

ΞpHq ě ε}H ´H‹}
2 for all }H ´H‹} ď ε,

Ξ2pHq ě ε}H ´Hb}
2 for all }H ´Hb} ď ε.

2.6.1 Uniqueness of minimizer

We now outline the proof of Proposition 2.6.1. Let ν be any probability measure over
colorings of the depth-one D (Figure 2.5.3). Recall from Remark 2.5.9 that

ΛpHq “ suptHpνq ` λxlnwD, νy : Hpνq “ Hu,

Λoptp 9hq “ suptHpνq ` λxlnwD, νy : 9htreepHpνqq “ 9hu.

The mappings ν ÞÑ Hpνq and ν ÞÑ 9htreepHpνqq are linear, so we are in the setting of Sec-
tion 2.11. The discussion in that section (see in particular Remark 2.11.7) implies the

following: there is a unique measure ν “ νoptp 9hq achieving the maximum in Λoptp 9hq, and
there exists a probability measure 9q on 9Ω such that

νpσq “ rνbd
p 9qqspσq ”

1

Z

"

9Φpσδvq
ź

aPBv

rΦ̄pσavqΦ̂pσδaqs

*λ
ź

ePLpDq

9qp 9σeq, (2.6.1)
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with Z the normalizing constant. Likewise, in the second moment there is a unique measure
ν “ νopt

2 p 9hq achieving the maximum in Λopt
2 p 9hq, and there exists a probability measure 9q on

9Ω2 such that

νpσq “ rνbd
2 p 9qqspσq ”

1

Z

"

9Φ2pσδvq
ź

aPBv

rΦ̄2pσavqΦ̂2pσδaqs

*λ
ź

ePLpDq

9qp 9σeq. (2.6.2)

In each case, although νoptp 9hq is uniquely determined by 9h, 9q need not be if the constraints
are rank-deficient. Nevertheless we shall proceed simply from the existence of some 9q.

Lemma 2.6.3. ΞpH‹q “ 0 and Ξ2pHbq “ 0.

Lemma 2.6.4. Zeroes of Ξ,Ξ2 correspond to bp fixed points, as follows:

(a) Suppose ν “ νoptp 9htreepHqq “ νbdp 9qq, and let µ “ µoptpHq be the optimizer for ΛpHq. If
H P N˝ with H “ Hsym and ΞpHq “ 0, then µ “ ν and BP 9q “ 9q.

(b) Suppose ν “ νopt
2 p 9htreepHqq “ νbdp 9qq, and let µ “ µopt

2 pHq be the optimizer for Λ2pHq.
If H P Nsep with H “ Hsym and Ξ2pHq “ 0, then µ “ ν and BP 9q “ 9q.

Lemma 2.6.5. The fixed points of Lemma 2.6.4 correpond to 9q‹:

(a) If H P N˝ and ν “ νoptp 9htreepHqq “ νbdp 9qq with 9q “ BP 9q, then 9q “ 9q‹.

(b) If H P Nsep and ν “ νopt
2 p 9htreepHqq “ νbd

2 p 9qq with 9q “ BP 9q, then 9q “ 9q‹ b 9q‹.

Proof of Proposition 2.6.1. From Lemma 2.6.3, it suffices to show that if H P N˝ with
H “ Hsym and ΞpHq “ 0, then H “ H‹. From Lemmas 2.6.4 and 2.6.5, ν “ νoptp 9htreepHqq
and µ “ µoptpHq are equal, and can be expressed via (2.6.1) in terms of 9q “ 9q‹. It follows
that H “ Hpµq “ H‹ as claimed.

Proof of Lemma 2.6.3. As we noted above, νoptp 9hq can be expressed via (2.6.1) in terms of

9q, but 9q is not uniquely determined by 9h if the constraints are rank-deficient. However, if 9h is
a strictly positive measure on 9Ω, then it is straightforward to check that the constraints are
of full rank, so 9q is unique. Let ν‹ denote the measure given by (2.6.1) with 9q “ 9q‹. It is easy
to check, from the proof of Proposition 2.4.2, that 9q‹ is fully supported on 9ΩT . Therefore
Hpν‹q “ H‹ and 9htreepHpν‹qq “ 9htreepH‹q, and these are strictly positive. It follows that ν‹
is the (unique) optimizer for both ΛpH‹q and Λoptp 9htreepH‹qq, which proves ΞpH‹q “ 0.

Proof of Lemma 2.6.4. Note that ΛpHq is an optimum over a subset of the measures ν which

are considered for Λoptp 9htreepHqq. Let µ “ µoptpHq be the (unique) optimizer for ΛpHq, and

write ν “ νoptp 9htreepHqq. Since ν is the unique optimizer in Λoptp 9htreepHqq, we have ΞpHq “ 0
if and only if µ “ ν. In this case, since Hpµq “ H with H “ Hsym, the same must hold for
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Hpνq. Recall H “ Hsym means that Ĥ is rotationally symmetric. We can take a marginal
of (2.6.1) to obtain an expression for Ĥ: in the first-moment calculation,

Ĥpσq “ pẑq´1Φ̂pσqppBP 9qqp 9σ1qq

k
ź

i“2

9qp 9σiq, σ P Ωk.

The analogous expression holds in the second moment. We now claim that for the above
measure Ĥ to be symmetric, we must have BP 9q “ 9q. Note that if Φ̂ were fully supported on
Ωk, and both 9q and BP 9q were fully supported on 9Ω, the claim would be obvious. Since Φ̂ is
certainly not fully supported, and we also do not know a priori whether 9q and BP 9q are fully
supported, the claim requires some argument, which differs slightly between the first- and
second-moment cases:

1. In the first moment, Lemma 2.3.6 implies that 9qp 9σq is positive for at least one 9σ P tb0, b1u.
Assume without loss that 9qpb0q is positive; it follows that pBP 9qqp 9σq is positive for both
9σ “ b0, b1. For any 9σ P 9Ω, there exists σ̂ such that

Φ̂pp 9σ, σ̂q, b0, . . . , b0q ą 0. (2.6.3)

The symmetry of Ĥ then gives the relation

pBP 9qqp 9σq

pBP 9qqpb0q
“

9qp 9σq

9qpb0q
,

so it follows that BP 9q “ 9q in the first moment.

2. In the second moment, since we restrict to H P Nsep, 9qp 9σq is positive for at least one
9σ P tb0, b1u

2. Assume without loss that 9qpb0b0q is positive. For any 9σ R tr0r1, r1r0u,
there exists σ̂ such that the second-moment analogue of (2.6.3) holds. The preceding
argument gives

pBP 9qqp 9σq

pBP 9qqpb0b0q
“

9qp 9σq

9qpb0b0q
for all 9σ R tr0r1, r1r0u.

Since pBP 9qqp 9σq is positive for all 9σ P tb0, b1u
2, it follows that the same holds for 9q, so

pBP 9qqp 9σq

pBP 9qqpb0b1q
“

9qp 9σq

9qpb0b1q
for all 9σ R tr0r0, r1r1u.

Combining these, we have for 9σ P tr0r1, r1r0u that

pBP 9qqp 9σq

pBP 9qqpb0b0q
“

pBP 9qqp 9σq

pBP 9qqpb0b1q

pBP 9qqpb0b1q

pBP 9qqpb0b0q
“

9qp 9σq

9qpb0b0q
,

and this proves BP 9q “ 9q in the second moment.
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Altogether, the above proves in both the first- and second-moment settings that 9q is a bp
fixed point.

Proof of Lemma 2.6.5. It suffices to prove that 9q P Γ. Since by assumption 9q “ BP 9q, we
must have 9q “ 9qavg. We then argue separately for the first and second moment:

1. For the first moment, we must verify (2.4.5). It follows directly from the relation 9q “ BP 9q
that 9qprq ě 9qpbq. Since H P N˝, the majority of clauses have all blue edges, so

1{2 ď Ĥpbkq ď pẑq´1 9qpbqk.

Next, for any σ P Ωk which has exactly one entry free and the remaining k ´ 1 entries
blue, we must have Φ̂pσq ě 1{2. It follows that

1 Á 2kpH̄prq ` H̄pfqq Á pẑq´1
r 9qprq ` 2k 9qpfqs 9qpbqk´1.

Comparing the two displays above gives 9qprq ` 2k 9qpfq À 9qpbq, proving 9q P Γ.

2. For the second moment, we must verify (2.4.6). Condition (c) is immediate from the
relation 9q “ BP 9q. From Lemma 2.4.4 it suffices to verify the condition with κ “ 0, in
which case condition (b) follows from (a). It therefore remains to verify (a). Denote

B ” tb0, b1u
2, B“ ” tb0b0, b1b1u Ď B, B“ ” tb0b1, b1b0u Ď B.

Since the total density of red and free edges is small, the majority of clauses must have
all colors in B: ĤpBkq “ 1´Opk{2kq. For any σ P Bk, Φ̂pσq “ 1´Opk{2kq. Therefore

1 — ĤpBkq — 9qpBqk{ẑ. (2.6.4)

For H P Nsep, we have |H̄pB“q ´ H̄pB‰q| À k4{2k{2. We can obtain H̄ as a marginal of Ĥ:

using the rotational symmetry of Ĥ, we can express

H̄pB“q ´ H̄pB‰q ´ errpHq

“
ÿ

ξ“pξ2,...,ξkqPBk´1

k
ź

i“2

9qpξiq

„

ÿ

σPB“

9qpσqΦ̂pσ, ξq ´
ÿ

σ1PB‰

9qpσ1qΦ̂pσ1, ξq



where errpHq is the contribution from the clauses which are not all B, and is bounded by
Opk{2kq. Recalling Φ̂pσq “ 1´Opk{2kq for σ P Bk, the right-hand side above equals

9qpBqk

ẑ

„

Opk{2kq `
9qpB“q ´ 9qpB‰q

9qpBq



.

Applying (2.6.4) and rearranging gives

k4

2k{2
Á
| 9qpB“q ´ 9qpB‰q|

9qpBq
.
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It remains to show that
ř

9σRBp2
´kqrr 9σs 9qp 9σq “ Op2´kq 9qpBq. We will deduce this from the

fact that the total fraction of clauses where σi R B for some i P rks is Opk{2kq. By
rotational symmetry of Ĥ, the fraction with σ1 R B is Op2´kq. Take 9σ “ p 9σ1, 9σ2q P 9Ω2zB.
For j “ 1, 2, let

σj “

"

σj σj P tr, bu,
p 9σj, ˝q otherwise.

Denote σ ” pσ1, σ2q. We now consider separately the cases rr 9σs “ 0, 1, 2:

(a) If rr 9σs “ 0, then note that for any ξ P Bk´1 we have Φ̂pσ, ξq — 1. On the other
hand, using the rotational symmetry of Ĥ, the total fraction of clauses where the
first incident edge has a color in 9Ω2zB is Op2´kq. Thus

2´k Á
9qpBqk

ẑ

ÿ

9σRB

1trr 9σs “ 0u
9qp 9σq

9qpBq
—

9qp 9σ R B : rr 9σs “ 0q

9qpBq
.

(b) If rr 9σs “ 1, then for any ξ P Bk´1 with at least two indices each in B“ and B‰, we
have Φ̂pσ, ξq — 2´k. Thus

2´k Á
9qpBqk

ẑ

ÿ

9σRB

1trr 9σs “ 1u2´k
9qp 9σq

9qpBq
—

9qp 9σ R B : rr 9σs “ 1q

2k 9qpBq
.

(c) If rr 9σs “ 2, then

2´k Á
1

ẑ

ÿ

9σRB

1trr 9σs “ 2u2´k mint 9qpB“q, 9qpB‰qu
k´1

—
9qp 9σ R B : rr 9σs “ 2q

4k 9qpBq

Combining the above estimates verifies
ř

9σRBp2
´kqrr 9σs 9qp 9σq “ Op2´kq 9qpBq.

Altogether this verifies, in both the first and second moment, that 9q lies in the regime for
bp contraction, and consequently must equal 9q‹ as claimed.

2.6.2 Non-degeneracy around minimizer

Proof of Proposition 2.6.2. Consider H near H‹, and let ν “ νoptp 9htreepHqq and µ “ µoptpHq.
It follows from Proposition 2.11.6 that

ΞpHq “ Hpµ|νq Á }µ´ ν}2,

so it suffices to show that }µ ´ ν} Á }H ´ H‹}. To this end, recall ν can be expressed via
(2.6.1) in terms of some 9q, while ν‹ can be expressed in terms of 9q‹. Thus

}ν ´ ν‹}1 À } 9q ´ 9q‹}1.
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For H in a small enough neighborhood of H‹, the constraints are of full rank, so νoptp 9htreepHqq

is expressible in terms of 9q for 9q uniquely determined by 9htreepHq, hereafter denoted 9q “
9qoptpHq. In fact, we see further from (2.11.6) that 9qopt is differentiable in a neighborhood of
H‹. Then, since 9qoptpH‹q “ 9q‹ which lies in the interior of Γ, we must have 9qoptpHq P Γ for
H in some neighborhood of H‹. It then follows by Proposition 2.4.2 in the first moment,
and by Proposition 2.4.3 in the second moment, that

p1´ cq} 9q ´ 9q‹}1 ď } 9q ´ 9q‹}1 ´ }BP 9q ´ 9q‹}1 ď } 9q ´ BP 9q}1.

To compare 9q with BP 9q, consider

suptHpν̂q ` λxln Φ̂, ν̂y : ν̂p 9σi “ 9σq “ Ĥp 9σi “ 9σq for each iu.

There is a unique optimizer ν̂ “ ν̂optpĤq which can be expressed as

ν̂pσq – Φ̂pσqλ
k
ź

i“1

rγip 9σiq.

In a neighborhood of Ĥ‹, the vector rγ ” prγiqi is uniquely determined as a smooth function of
Ĥ, which we denote rγoptpĤq. Consequently, if we denote Ĥrotpσq “ Ĥpσ2, . . . , σk, σ1q, then

} 9q ´ BP 9q}1 ď }pBP 9q, 9q, . . . , 9qq ´ p 9q, BP 9q, 9q, . . . , 9qq}1 “ }rγ
opt
pĤpνqq ´ rγopt

pĤpνqrot
q}1

À }Ĥpνq ´ Ĥpνqrot
} ď }Ĥpνq ´ Ĥpµq} ` }Ĥpµq ´ Ĥpνqrot

}

“ 2}Ĥpνq ´ Ĥpµq} À }µ´ ν}.

where in the last line we used that Ĥpµq “ Ĥpµqrot. Combining the above inequalities gives
}H ´H‹} À }µ´ ν} as claimed.

Proof of Propositions 2.3.7 and 2.3.14. Follows from Proposition 2.6.1 and 2.6.2.

2.7 Conclusion of lower bound

In this section we prove Propositions 2.3.10 and 2.3.17.

2.7.1 Intermediate overlap

We first show that configurations with “intermediate” overlap are negligible. This can be
done with quite crude estimates, working with nae-sat solutions rather than colorings.

Lemma 2.7.1. Consider random regular nae-sat at clause density α ě 2k´1 ln 2 ´ Op1q.
On G “ pV, F,Eq, let Z2rρs count the number of pairs x, x́ P t0, 1uV of valid nae-sat
solutions which agree on ρ fraction of variables. Then

EZ2
rρs ď pEZq exp

!

n
”

Hpρq ´ pln 2qπpρq `Op1{2kq
ı)

,

for πpρq ” 1´ ρk ´ p1´ ρqk.



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 56

Proof. For u P t0, 1uV , let InaeG puq be the indicator that u is a valid nae-sat solution on G .
Fix any pair of vectors x, x́ P t0, 1uV which agree on ρ fraction of variables:

EZ2
rρs “ 2n

ˆ

n

nρ

˙

ErInaeG pxqInaeG px́qs “ pEZq
ˆ

n

nρ

˙

ErInaeG px́q | InaeG pxq “ 1s.

Given x, x́, let M ”Mpx, x́q count the number of clauses a P F where

|te P δa : xvpeq “ x́vpequ| R t0, ku.

In each of these clauses, there are 2k ´ 2 literal assignments Lδa which are valid for x. Out
of these, exactly 2k ´ 4 are valid also for x́. If we define i.i.d. binomial random variables
Da „ Binpk, ρq, indexed by a P F , then

PpM “ mγq “ P
ˆ

ÿ

aPF

1tDa R t0, kuu

ˇ

ˇ

ˇ

ˇ

ÿ

aPF

Da “ mkρ

˙

.

The pDaqaPF sum to mkρ with probability which is polynomial in n, so

PpM “ mγq ď nOp1qPpBinpm,πq “ mγq

with π “ πpρq as in the statement of the lemma. Therefore

ErInaeG px́q | InaeG pxq “ 1s ď nOp1qE
„ˆ

2k ´ 4

2k ´ 2

˙X

for X „ Binpm, ρq. It is easily seen that the above is ď expt´mπ{2k´1u, and the claimed
bound follows, using the lower bound on α “ m{n.

Corollary 2.7.2. Let ψpρq “ Hpρq ´ pln 2qπpρq. Then ψpρq ď ´2k{2k for all ρ in

rexpt´k{pln kqu, 1
2
p1´ k{2k{2qs Y r1

2
p1` k{2k{2q, 1´ expt´k{pln kqus.

Assuming α “ m{n ě 2k´1 ln 2´Op1q, EZ2rρs ď expt´nk{2ku for all such ρ.

Proof. Note that Hp1`ε
2
q ď ln 2´ ε2{2. If pk ln kq{2k ď ε ď 1{k, then

ψp1`ε
2
q ď ´ε2{2`Opkε{2kq ď ´ε2{3.

Both Hp1`ε
2
q and πp1`ε

2
q are symmetric about ε “ 0, and decreasing on the interval 0 ď ε ď 1.

It follows that for any 0 ď a ď b ď 1,

max
aďεďb

ψp1`ε
2
q ď Hp1`a

2
q ´ pln 2qπp1`b

2
q.

With this in mind, if 1{k ď ε ď 1´ 5pln kq{k,

ψp1`ε
2
q ď ´p2k2

q
´1
`Opk´5{2

q ď ´p4k2
q
´1.
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If 1´ 5pln kq{k ď ε ď 1´ pln kq3{k2,

ψp1`ε
2
q ď Op1qpln kq2{k ´ Ωp1qpln kq3{k ď ´Ωp1qpln kq3{k.

Finally, if 1´ pln kq3{k2 ď ε ď 1´ expt´2k{pln kqu, then

ψp1`ε
2
q ď Op1qεk{pln kq ´ Ωp1qεk ď ´Ωp1qεk.

Combining these estimates proves the claimed bound on ψpρq. The assertion for ErZ2pρqs
then follows by substituting into Lemma 2.7.1, and noting that EZ ď exptOpn{2kqu.

2.7.2 Large overlap

In what follows, we restrict consideration to a small neighborhood N of H‹. We abbreviate
σ P H if HpG , σq “ H, and σ P N if HpG , σq P N. Recall that we write σ1 ě σ if the number
of free variables in xpσ1q upper bounds the number in xpσq. We also write H 1 ě H if σ1 ě σ
for any (all) σ P H and σ1 P H 1. Let ZnspH,H 1q count the colorings σ P H such that

ˇ

ˇ

ˇ

!

σ1 P H 1 : δpσ, σ1q ď expt´k{pln kqu
)ˇ

ˇ

ˇ
ě ωpnq,

for ωpnq “ exptplnnq4u. (Although we will not write it explicitly, it should be understood
that ZnspH,H 1q depends on G , since both σ, σ1 are required to be valid colorings of G .) Let
ZnspNq denote the sum of ZnspH;H 1q over all pairs H,H 1 P N with H 1 ě H. Let ZpNq
denote the sum of ZpHq over all H P N.

Proposition 2.7.3. There exists a small enough positive constant εmaxpkq such that, if N
is the ε-neighborhood of H‹ for any ε ď εmax, then

EZns
pNq ď EZpNq expt´plnnq2u.

Proof. By definition,

Zns
pNq “

ÿ

HPN

Zě
pHq, Zě

pHq ”
ÿ

H 1PN

1tH 1 ě HuZns
pH,H 1

q.

It suffices to show that for every H P N, EZěpHq ď EZpHq expt´2plnnq2u. Note that the
total number of empirical measures H 1 is at most nc for some constant cpk, T q. Let E denote
the set of pairs pG , σq for which

ˇ

ˇ

ˇ

!

σ1 P N : σ1 ě σ and δpσ, σ1q ď expt´k{pln kqu
)ˇ

ˇ

ˇ
ě ωpnq.

(Again, it is understood that both σ, σ1 must be valid colorings of G .) Then

Zě
pHq ď nc

ÿ

σPH

1tpG , σq P Eu.
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Consequently, in order to show the required bound on EZěpHq, it suffices to show

PHpEq ď n´c expt´2plnnq2u, (2.7.1)

where PH is a “planted” measure on pairs pG , σq: to sample from PH , we start with a set
V of n isolated variables each with d incident half-edges, and a set F of m isolated clauses
each with k incident half-edges. Assign colorings of the half-edges,

σδ ” pσδV , σδF q where σδV ” pσδvqvPV , σδF ” pσδaqaPF ,

which are uniformly random subject to the empirical measure H. Then σδ is the “planted”
coloring: conditioned on it, we sample uniformly at random a graph G such that σδ becomes
a valid coloring σ on G . The resulting pair pG , σq is a sample from PH .

Suppose pG , σq P E. The total number of configurations σ1 with δpσ, σ1q ď δ is at most
pcnqnδ, which is ! ωpnq if δ ď n´1plnnq2. This implies that there must exist σ1 P N such
that σ1 ě σ and n´1plnnq2 ď δpσ, σ1q ď expt´k{pln kqu. It follows that

S ” tv P V : xvpσq P t0, 1u and xvpσ
1
q ‰ xvpσqu

has size |S| ” ns for s P rp2nq´1plnnq2, expt´k{pln kqus. The set S is internally forced in σ:
for every v P S, any clause forcing to v must have another edge connecting to S. Formally,
let RU (resp. BU) count the number of red (resp. blue) edges incident to a subset of vertices
U . Let IS be the indicator that all variables in S are forced. For any fixed S Ď V ,

PHpS internally forcedq ď EPH

„

ISk
RS
pBSqRS
pBF qRS



ď EPH rISp4ksq
RS s.

In the first inequality, the factor kRS accounts for the choice, for each S-incident red edge e,
of another edge e1 sharing the same clause. The factor pBSqRS{pBF qRS then accounts for the
chance that the chosen edge e1 (which must be blue) will also be S-incident. The second
inequality follows by noting that we certainly have BS ď nsd, and for H near H‹ we also
clearly have BF ě nd{4.

To bound the above, we can work with a slightly different measure QH : instead of
sampling σδ subject to H, we can simply sample variable-incident colorings σδv i.i.d. from
9H, and clause-incident colorings σδa i.i.d. from Ĥ. On the event MARG that the resulting σδ

has empirical measure H, we sample the graph G according to PHpG |σδq, and otherwise we
set G “ ∅. Then, since QHpMARGq ě n´c (adjusting c as needed), we have

PHppG , σqq “ QH
ppG , σq |MARGq ď ncQH

ppG , σq;MARGq.

Let us abbreviate 9Hp`q for the probability under 9H that σ has ` red entries: then

EPH rISp4ksq
RS s ď nc EQH rISp4ksq

RS ;MARGs ď nc
ˆ

ÿ

`ě1

9Hp`qp4ksq`
˙ns

. (2.7.2)
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For H sufficiently close to H‹, we will have

9Hp`q ď 2 9H‹p`q ď 2

ˆ

d

`

˙

q̂‹pr1q
`q̂‹pb1q

d´`

rq̂‹pr1q ` q̂‹pb1qsd ´ q̂‹pb1qd
.

It follows that the right-hand side of (2.7.2) is (for some absolute constant δ)

ď nc 2ns
ˆ

rq̂‹pr1q ¨ 4ks` q̂‹pb1qs
d ´ q̂‹pb1q

d

rq̂‹pr1q ` q̂‹pb1qsd ´ q̂‹pb1qd

˙ns

ď ncsns2´δkns,

where the last inequality uses that s ď expt´k{pln kqu. Summing over S gives

PHpEq ď max
sěp2nq´1plnnq2

nc2´δkns{2 ď expt´Ωp1qkplnnq2u.

This implies (2.7.1); and the claimed result follows as previously explained.

Proof of Proposition 2.3.10. Follows by combining Corollary 2.7.2 and Proposition 2.7.3.

2.8 Upper bound

In this section we prove the upper bound, Proposition 2.3.19.

2.8.1 Interpolation bound for regular graphs

For a certain family of spin systems that includes nae-sat, an interpolative calculation
gives an upper bound for the free energy on Erdős-Rényi graphs ([FL03; PT04], cf. [Gue03]).
These bounds build on earlier work [GT03] concerning the subadditivity of the free energy in
the Sherrington–Kirkpatrick model, which was later generalized to a broad class of models
[BGT13; Gam14]. (Although these results are closely related, we remark that interpolation
gives quantitative bounds whereas subadditivity does not.) To prove our main result, we
establish the analogue of [FL03; PT04] for random regular graphs. Although the main
concern of this paper is the nae-sat model, we give the bound for a more general class of
models, which may be of independent interest.

Recall G “ pV, F,Eq denotes a pd, kq-regular bipartite graph (without edge literals). We
consider measures defined on vectors x P XV where X is some fixed alphabet of finite size.
Fix also a finite index set S. Suppose we have (random) vectors b P RS and f P FpXqS,
where FpXq denotes the space of functions X Ñ Rě0. Independently of b, let f1, . . . , fk be
i.i.d. copies of f , and define the random function

θpxq ”
ÿ

sPS

bs

k
ź

j“1

fs,jpxjq. (2.8.1)
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Let h be another (random) element of FpXq. Assume there is a constant ε ą 0 so that

ε ď th, 1´ θu ď 1{ε almost surely. (2.8.2)

Note we do not require the bs to be non-negative; however, we assume that

bppsq ” E
”

p
ź

`“1

bs`

ı

ě 0 for any p ě 1, s ” ps1, . . . , spq P S
p. (2.8.3)

Let G denote the graph G labelled by a vector pphvqvPV , pθaqaPF q of independent functions,
where the hv are i.i.d. copies of h and the θa are i.i.d. copies of θ. For a P F we abbreviate
xδa ” pxvpeqqePδa P X

k, and we consider the (random) Gibbs measure

µG pxq ”
1

ZpG q

ź

vPV

hvpxvq
ź

aPF

r1´ θapxδaqs (2.8.4)

where ZpG q is the normalizing constant. Now let G be the random pd, kq-regular graph on
n variables, together with the random function labels. We write En for expectation over the
law of G , and define the (logarithmic) free energy of the model to be

Fn ” n´1En lnZpG q.

Example 2.8.1 (positive temperature nae-sat). Let X “ t0, 1u, and let L ” pLiqiďk be a
sequence of i.i.d. Bernoullip1{2q random variables. The positive-temperature nae-sat model
corresponds to taking h ” 1 and

θpxq ” p1´ e´βq

ˆ k
ź

i“1

L1 ‘ xi
2

`

k
ź

i“1

1‘ Li ‘ xi
2

˙

where β P p0,8q is the inverse temperature. In this model, each violated clause incurs a
multiplicative penalty e´β.

Example 2.8.2 (positive-temperature coloring). Let X “ rqs. The positive-temperature
coloring (anti-ferromagnetic Potts) model on a k-uniform hypergraph corresponds to h ” 1
and

θpxq ” p1´ e´βq
q
ÿ

s“1

1tx1 “ ¨ ¨ ¨ “ xk “ su

where β P p0,8q is the inverse temperature. In this model, each monochromatic (hyper)edge
incurs a multiplicative penalty e´β.

The following bound is a random regular graph analog of [PT04, Thm. 3]. (We have
stated our result for a more general class of models than considered in [PT04]; however the
main result of [PT04] extends to these models with minor modifications.)
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Theorem 2.8.3. Consider a (random) Gibbs measure (2.8.4) satisfying assumptions (2.8.1)-
(2.8.3), and let Fn ” n´1En lnZpG q. Let

M0 ” space of probability measures over X,
M1 ” space of probability measures over M0,
M2 ” space of probability measures over M1.

For ζ PM2, let η ” pηa,jqaě0,jě0 be an array of i.i.d. samples from ζ. For each index pa, jq
let ρa,j be a conditionally independent sample from ηa,j, and denote ρ ” pρa,jqaě0,jě0. Let
phρqa,jpxq ” ha,jpxqρa,jpxq, define random variables

uapxq ”
ÿ

xPXk

1tx1 “ xur1´ θapxqs
k
ź

j“2

phρqa,jpxjq,

ua ”
ÿ

xPXk

r1´ θapxqs
k
ź

j“1

phρqa,jpxjq.

For any λ P p0, 1q and any ζ PM2,

Fn ď λ´1E lnE1
„

´

ÿ

xPX

hpxq
d
ź

a“1

uapxq
¯λ


´ pk ´ 1qαλ´1E lnE1rpu0q
λ
s `Oεpn

´1{3
q

where E1 denotes the expectation over ρ conditioned on all else, and E denotes the overall
expectation.

Remark 2.8.4. In the statistical physics framework, elements ρ P M0 correspond to belief
propagation messages for the underlying model, which has state space X. Elements η PM1

correspond to belief propagation messages for the 1rsb model (termed “auxiliary model” in
[MM09, Ch. 19]), which has state space M0. The informal picture is that the η associated
to variable x is determined by the geometry of the local neighborhood of x — that is to
say, the randomness of ζ reflects the randomness in the geometry of the R-neighborhood of
a uniformly randomly variable in the graph. In random regular graphs this randomness is
degenerate — the R-neighborhood of (almost) every vertex is simply a regular tree. It is
therefore expected that the best upper bound in Theorem 2.8.3 can be achieved with ζ a
point mass.

2.8.2 Replica symmetric bound

Along the lines of [PT04], we first prove a weaker “replica symmetric” version of Theo-
rem 2.8.3. Afterwards we will apply it to obtain the full result.

Theorem 2.8.5. In the setting of Theorem 2.8.3, define

ΦV ” E ln
´

ÿ

xPX

hpxq
d
ź

a“1

uapxq
¯

, ΦF ” pk ´ 1qαE lnpu0q.
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Then Fn ď ΦV ´ ΦF ´Oεpn
´1{3q.

Inspired by the proof of [BGT13], we prove Theorem 2.8.5 by a combinatorial interpo-
lation between two graphs, G´1 and Gnd`1. The initial graph G´1 will have free energy ΦV ,
and the final graph Gnd`1 will have free energy Fn ` ΦF . We will show that, up to Oεpn

1{3q

error, the free energy of G´1 will be larger than that of Gnd`1, from which the bound of
Theorem 2.8.5 follows.

To begin, we take G´1 to be a factor graph consisting of n disjoint trees (Figure 2.8.1a).
Each tree is rooted at a variable v which joins to d clauses. Each of these clauses then joins
to k´ 1 more variables, which form the leaves of the tree. We write V for the root variables,
A for the clauses, and U for the leaf variables. Note |V | “ n, |A| “ nd, and |U | “ ndpk´ 1q.

Independently of all else, take a vector of i.i.d. samples pηu, ρuquPU where ηu is a sample
from ζ, and ρu is a sample from ηu.

2 As before, the variables and clauses in G´1 are labelled
independently with functions hv and θa. We now additionally assign to each u P U the label
pηu, ρuq. Let phρqupxq ” hupxqρupxq. We consider the factor model on G´1 defined by

µG´1pxq “
1

ZpG´1q

ź

vPV

hvpxvq
ź

aPA

r1´ θapxδaqs
ź

uPU

phρqupxuq.

We now define the interpolating sequence of graphs G´1,G0, . . . ,Gnd`1. Fix m1 ” 2n2{3. The
construction proceeds by adding and removing clauses. Whenever we remove a clause a, the
edges δa are left behind as k unmatched edges in the remaining graph. Whenever we add a
new clause b, we label it with a fresh sample θb of θ. The graph Gr has clauses Fr which can
be partitioned into AU,r (clauses involving U only), AV,r (clauses involving V only), and Ar
(clauses involving both U and V ). We will define below a certain sequence of events COUPr.
Let COUPďr be the event that COUPs occurs for all 0 ď s ď r. The event COUPď´1 occurs
vacuously, so PpCOUPď´1q “ 1. With this notation in mind, the construction goes as follows:

1. Starting from G´1, choose a uniformly random subset of m1 clauses from F´1 “ A´1 “ A,
and remove them to form the new graph G0.

2. For 0 ď r ď nd´m1 ´ 1, we start from Gr and form Gr`1 as follows.

a. If COUPďr´1 succeeds, choose a uniformly random clause a from Ar, and remove it to
form the new graph Gr,˝. Let δ1Ur,˝ and δ1Vr,˝ denote the unmatched half-edges incident
to U and V respectively in Gr,˝, and define the event

COUPr ” tmintδ1Ur,˝, δ
1Vr,˝u ě ku.

If instead COUPďr´1 fails, then COUPďr fails by definition.

b. If COUPďr fails, let Gr`1 “ Gr. If COUPďr succeeds, then with probability 1{k take k
half-edges from δ1Vr,˝ and join them into a new clause c. With the remaining probability
pk ´ 1q{k take k half-edges from δ1Ur,˝ and join them into a new clause c.

2For the proof of Theorem 2.8.5 it is equivalent to sample ρ from ηavg ”
ş

η dζ.
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3. For nd ´ m1 ď r ď nd ´ 1 let Gr`1 “ Gr. Starting from Gnd, remove all the clauses
in And. Then connect (uniformly at random) all remaining unmatched V -incident edges
into clauses. Likewise, connect all remaining unmatched U -incident edges into clauses.
Denote the resulting graph Gnd`1.

By construction, Gnd`1 consists of two disjoint subgraphs, which are the induced subgraphs
GU ,GV of U, V respectively. Note that GV is distributed as the random graph G of interest,
while GU consists of a collection of ndpk ´ 1q{k “ nαpk ´ 1q disjoint trees.

V

A

U

(a) G´1

V

Ar

U

AV,r

AU,r

(b) Gr with m1 “ 1, r “ 3

V

U

AU

AV

(c) Gnd`1

Figure 2.8.1: Interpolation with d “ 2, k “ 3, n “ 6.

Lemma 2.8.6. Under the construction above,

E lnZpG0q ě E lnZpGndq ´Oεpn
1{3
q, (2.8.5)

where the expectation E is over the sequence of random graphs pGrq´1ďrďnd`1.

Proof. Let Fr,˝ be the σ-field generated by Gr,˝, and write Er,˝ for expectation conditioned
on Fr,˝. One can rewrite (2.8.5) as

E ln
ZpG0q

ZpGndq
“

nd´1
ÿ

r“0

E∆r, ∆r ” Er,˝ ln
ZpGrq

ZpGr,˝q
´ Er,˝ ln

ZpGr`1q

ZpGr,˝q
. (2.8.6)
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In particular, ∆r “ 0 if the coupling fails. Therefore it suffices to show that ∆r is positive
conditioned on COUPďr.

3 First we compare Gr and Gr,˝. Conditioned on Fr,˝, we know
Gr,˝. From Gr,˝ we can obtain Gr by adding a single clause a ” ar, together with a random
label θa which is a fresh copy of θ. To choose the unmatched edges δa “ pe1, . . . , ekq which
are combined into the clause a, we take e1 uniformly at random from δ1Vr,˝, then take
te2, . . . , eku a uniformly random subset of δ1Ur,˝. Let µr,˝ be the Gibbs measure on Gr,˝
(ignoring unmatched half-edges). Let x ” px, x1, x2, . . .q be an infinite sequence of i.i.d.
samples from µr,˝, and write x¨yr,˝ for the expectation with respect to their joint law. Then

Er,˝ ln
ZpGrq

ZpGr,˝q
“ Er,˝ lnp1´ xθpxδaqyr,˝q “

ÿ

pě1

1

p
Ap, Ap ” Er,˝

„

A

p
ź

`“1

θpx`δaq
E

r,˝



.

We have Er,˝ “ EaEθ where Ea is expectation over the choice of δa, and Eθ is expectation
over the choice of θ. Under Ea, the edges pe2, . . . , ekq are weakly dependent, since they
are required to be distinct elements of δ1Ur,˝. We can consider instead sampling e2, . . . , ek
uniformly with replacement from δ1Ur,˝, so that e1, . . . , ek are independent conditional on
Fr,˝; let Ea,ind denote expectation with respect to this choice of δa. Under Ea,ind the chance
of a collision ei “ ej (i ď j) is Opk2{|δ1Ur,˝|q. Recalling 1´ θ ě ε almost surely, we have

Ap,ind ” Ea,indEθ
„

A

p
ź

`“1

θpx`δaq
E

r,˝



“ Ap `Op1qp1´ εq
p min

"

k2

|δ1Ur,˝|
, 1

*

.

Recall from (2.8.1) the product form of θ, and let Ef denote expectation over the law of
f ” pfsqsPS. Then, with bppsq as defined in (2.8.3), we have

Ap,ind “
ÿ

sPSp

bppsq

B

Ea,ind

" k
ź

j“1

Ef
„ p
ź

`“1

fs`px
`
ej
q

*F

r,˝

“
ÿ

sPSp

bppsqxIV,spxqIU,spxq
k´1
yr,˝,

where, for W “ U or W “ V , we define

IW,spxq ”
1

|δ1Wr,˝|

ÿ

ePδ1Wr,˝

Ef
„ p
ź

`“1

fs`px
`
eq



.

Summing over p ě 1 gives that, on the event COUPďr,

Er,˝ ln
ZpGrq

ZpGr,˝q
“

ÿ

pě1

1

p

ÿ

sPSp

bppsqEr,˝xIV,spxqIU,spxqk´1
yr,˝ ` errr,1,

where |errr,1| ď Oεp1qmin

"

k2

|δ1Ur,˝|
, 1

*

.

3The event COUPďr is measurable with respect to Fr,˝, since δ1Vr,˝, δ
1Ur,˝ would remain less than k if

the coupling fails at an earlier iteration.
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A similar comparison between Gr`1 and Gr,˝ gives

Er,˝ ln
ZpGrq

ZpGr,˝q
“

ÿ

pě1

1

p
Er,˝

„

ÿ

sPSp

bppsq

B

k ´ 1

k
IU,spxq

k
`

1

k
IV,spxq

k

F

r,˝



` errr,2,

|errr,2| ď Oεp1qmin

"

k2

mint|δ1Ur,˝|, |δ1Vr,˝|u
, 1

*

.

We now argue that the sum of the error terms errr,1, errr,2, over 0 ď r ď nd ´ 1, is small in
expectation. First note that for a constant C “ Cpk, εq,

nd´1
ÿ

r“0

Ererrr,1 ` errr,2s ď Cn

„

n´2{3
` P

´

mint|δ1Vr,˝|, |δ
1Vr,˝|u ď n2{3 for some r ď nd

¯



.

The process p|δ1Vr,˝|qrě0 is an unbiased random walk started from m1 ` 1 “ 2n2{3 ` 1. In
each step it goes up by 1 with chance pk ´ 1q{k, and down by k ´ 1 with chance 1{k; it
is absorbed if it hits k before time nd ´m1. Similarly, p|δ1U |r,˝qrě0 is an unbiased random
walk started from pm1 ` 1qpk ´ 1q with an absorbing barrier at k. By the Azuma–Hoeffding
bound, there is a constant c “ cpkq such that

Pp|δ1Vr,˝| ď |δ1V0,˝| ´ n
2{3
q ` Pp|δ1Ur,˝| ď |δ1U0,˝| ´ n

2{3
q ď expt´cn1{3

u

Taking a union bound over r shows that with very high probability, neither of the walks
|δ1Vr,˝|, |δ

1Ur,˝| is absorbed before time nd´m1, and (adjusting the constant C as needed)

nd´1
ÿ

r“0

Ererrr,1 ` errr,2s ď Cn1{3.

Altogether this gives

E ln
ZpG0q

ZpGndq
´Oεpn

1{3
q

“

nd´1
ÿ

r“0

ÿ

pě1

1

p

ÿ

s

bppsqEr,˝
B

IV,spxqIU,spxq
k´1

´
k ´ 1

k
IU,spxq

k´1
´

1

k
IV,spxq

k´1

F

r,˝

.

Using the fact that xk ´ kxyk´1 ` pk ´ 1qyk ě 0 for all x, y P R and even k ě 2, or x, y ě 0
and odd k ě 3 finishes the proof.

Corollary 2.8.7. In the setting of Lemma 2.8.6,

E lnZpG´1q ě E lnZpGnd`1q ´Oεpn
2{3
q,

where the expectation E is over the sequence of random graphs pGrq´1ďrďnd`1.
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Proof. Adding or removing a clause can change the partition function by at most a multi-
plicative constant (depending on ε). On the event that the coupling succeeds for all r,

ˇ

ˇ

ˇ

ˇ

ln
ZpG0q

ZpG´1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ln
ZpGnd`1q

ZpGndq

ˇ

ˇ

ˇ

ˇ

“ Oεpm
1
q “ Oεpn

2{3
q.

On the event that the coupling fails, the difference is crudely Oεpnq. We saw in the proof of
Lemma 2.8.6 that the coupling fails with probability exponentially small in n, so altogether
we conclude

E
ˇ

ˇ

ˇ

ˇ

ln
ZpG0q

ZpG´1q

ˇ

ˇ

ˇ

ˇ

` E
ˇ

ˇ

ˇ

ˇ

ln
ZpGnd`1q

ZpGndq

ˇ

ˇ

ˇ

ˇ

“ Oεpn
2{3
q.

Combining with the result of Lemma 2.8.6 proves the claim.

Proof of Theorem 2.8.5. In the interpolation, the initial graph G´1 consists of n disjoint trees
Tv, each rooted at a variable v P V . Thus

n´1E lnZpG´1q “ E lnZpTvq “ E ln

ˆ

ÿ

xPX

hvpxq
d
ź

a“1

uapxq

˙

.

The final graph Gnd`1 is comprised of two disjoint subgraphs — one subgraph GV has the
same law as the graph G of interest, while the other subgraph GU “ pU, FU , EUq consists of
nαpk ´ 1q disjoint trees Sc, each rooted at a clause c P AU . Thus

n´1E lnZpGnd`1q “ αpk ´ 1qE lnZpScq ` n
´1E lnZpG q “ αpk ´ 1qE lnu0 ` Fn.

The theorem follows by substituting these into the bound of Corollary 2.8.7.

2.8.3 1RSB bound

For the proof of Theorem 2.8.3, we take G´1 as before and modify it as follows. Where
previously each u P U had spin value xu P X, it now has the augmented spin pxu, γuq where
γ goes over the positive integers. Let γ ” pγuqu. Next, instead of labeling u with phu, ηu, ρuq
as before, we now label it with phu, ηu, pρ

γ
uqγě1q where pργuqγě1 is an infinite sequence of i.i.d.

samples from ηu. Lastly, we join all variables in U to a new clause a˚ (Figure 2.8.2), which
is labelled with the function

ϕa˚pγq “
ÿ

γě1

zγ
ź

uPU

1tγu “ γu

for some sequence of (random) weights pzγqγě1. Let H´1 denote the resulting graph.
Given H´1, let µH´1 be the associated Gibbs measure on configurations pγ, xq. Due to

the definition of ϕa˚ , the support of µH´1 contains only those configurations where all the
γu share a common value γ, in which case we denote pγ, xq ” pγ, xq. Explicitly,

µH´1pγ, xq “
1

ZpH´1q
zγ

ź

vPV

hvpxvq
ź

aPA

r1´ θapxδaqs
ź

uPU

pργhqupxuq.
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V

A

U

a∗

Figure 2.8.2: H´1

We can then define an interpolating sequence H´1, . . . ,Hnd`1 precisely as in the proof of
Theorem 2.8.5, leaving a˚ untouched. Let Gr denote the graph Hr without the clause a˚,
and let ZγpGrq denote the partition function on Gr restricted to configurations where γu “ γ
for all u. Then, for each 0 ď r ď nd` 1,

ZpHrq “
ÿ

γ

zγZγpGrq.

The proofs of Lemma 2.8.6 and Corollary 2.8.7 carry over to this setting with essentially no
changes, giving

Corollary 2.8.8. Under the assumptions above,

E lnZpH´1q ě E lnZpHnd`1q ´Oεpn
2{3
q,

where the expectation E is over the sequence of random graphs pHrq´1ďrďnd`1.

The result of Corollary 2.8.8 applies for any choice of pzγqγě1. Let us now take pzγqγě1

to be a Poisson–Dirichlet process with parameter λ P p0, 1q.4 The process has the following
invariance property (see e.g. [Pan13, Ch. 2]):

Proposition 2.8.9. Let pzγqγě1 be a Poisson–Dirichlet process with parameter λ P p0, 1q.
Independently, let pξγqγě1 be a sequence of i.i.d. positive random variables with finite second
moment. Then the two sequences pzγξγqγě1 and pzγpEξλ1 q1{λqγě1 have the same distribution,
and consequently

E ln
ÿ

γě1

zγξγ “
1

λ
lnEξλ.

Proof of Theorem 2.8.3. Consider

Zpγq ” pZγpGrqq´1ďrďnd`1.

4That is to say, let pwγqγě1 be a Poisson point process on Rą0 with intensity measure w´p1`λq dw. Let
W denote their sum, which is finite almost surely. Assume the points of wγ are arranged in decreasing order,
and write zγ ” wγ{W . Then pzγqγě1 is distributed as a Poisson–Dirichlet process with parameter λ.
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If we condition on everything else except for the ρ’s, then pZpγqqγě1 is an i.i.d. sequence
indexed by γ. Let Ez,ρ denote expectation over the z’s and ρ’s, conditioned on all else: then
applying Proposition 2.8.9 gives

n´1E lnZpH´1q “ pnλq
´1E lnEz,ρrZpG´1q

λ
s “ λ´1E lnEz,ρ

„ˆ

ÿ

xPX

hpxq
d
ź

a“1

uapxq

˙λ

,

n´1E lnZpHnd`1q “ Fn ` λ
´1E lnEz,ρrpu0q

λ
s.

Combining with Corollary 2.8.8 proves the result.

2.8.4 Conclusion of upper bound

We now apply Theorem 2.8.3 to prove the upper bound for the nae-sat model, Proposi-
tion 2.3.19. Following Example 2.8.1, let Fnpβq ” n´1E lnZnpβq be the expected free energy
for nae-sat at inverse temperature β. (The expectation is with respect to the law of the
random pd, kq-regular graph.)

Let 9µλ be the fixed point specified by Proposition 2.1.2, and let pρajqa,jě0 be an array of
i.i.d. samples from 9µλ. For each ρ “ ρaj we can define a (random) measure on X “ t0, 1u
by giving mass ρ to 1, and giving the remaining mass 1 ´ ρ to 0. Let η ” ηλ be the law
of this measure, and let ζ ” ζλ denote the Dirac mass at η (cf. Remark 2.8.4). Recall
from Proposition 2.1.2 that ρ has the same distribution as 1´ ρ. Using this symmetry, the
quantities u0 and uapxq in Theorem 2.8.3 are equidistributed with v0 and vapxq where

v0 ” 1´ p1´ e´βq

" k
ź

j“1

ρ0j `

k
ź

j“1

p1´ ρ0jq

*

,

pvap0q,vap1qq ”

ˆ

1´ p1´ e´βq
k´1
ź

j“1

ρ0j, 1´ p1´ e
´β
q

k´1
ź

j“1

p1´ ρ0jq

˙

.

In the following calculation we will accumulate some error terms of size Ope´βq, which we
will eventually take care of by sending β Ñ 8. It is useful to recall that for any a, b ě 0 and
λ P r0, 1s we have pa` bqλ ď aλ ` bλ. It follows that for any x ě 0 and any ε P r´x,8q,

|px` εqλ ´ xλ| ď |ε|λ. (2.8.7)

(Note this bound is not useful for λ “ 0, but in that case px` εqλ “ 1 “ xλ.)

Lemma 2.8.10. Let 9µλ be the fixed point of Proposition 2.1.2. With 9Zλ and Ẑλ as in (2.1.8),

Erpu0q
λ
s “ Ẑλ `Ope

´λβ
q,

E
„

´

ÿ

xPt0,1uk

d
ź

a“1

uapxq
¯λ


“ pẐλ{Z̄λq
d 9Zλ `Ope

´λβ
q.
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Proof. We assume λ P p0, 1s, since for λ “ 0 there is nothing to prove. It follows straightfor-
wardly from the above definitions that

Erpu0q
λ
s “ Erpv0q

λ
s “ Ẑλ `Ope

´λβ
q,

where the Ope´λβq error is by an application of (2.8.7). Next, let

za ” vap0q ` vap1q, ra ” vap1q{za.

Recall from (2.1.7) the definition of the distributional recursion R̂λ : 9µλ ÞÑ µ̂λ, and the

associated normalizing constant Ẑ p 9µλq. For any continuous bounded function f : r0, 1sd Ñ
R,

ż

fpr1, . . . , rdq
´

d
ź

a“1

za

¯λ d
ź

a“1

" k´1
ź

j“1

9µλpdρajq

*

“ Ẑ p 9µλq
d

ż

fpρ̂1, . . . , ρ̂dq
d
ź

a“1

µ̂λpdρ̂aq `Ope
´λβ
q.

It follows from this that

E
„

´

ÿ

xPt0,1uk

d
ź

a“1

uapxq
¯λ


`Ope´λβq

“ Ẑ p 9µλq
d

ż
ˆ d
ź

a“1

ρ̂a `
d
ź

a“1

p1´ ρ̂aq

˙λ d
ź

a“1

µ̂λpdρ̂aq “ Ẑ p 9µλq
d 9Zλ.

Finally, it is straightforward to check that for the fixed point 9µλ we have

Ẑ p 9µλqZ̄λ “ Ẑλ, (2.8.8)

so the lemma follows.

Proof of Proposition 2.3.19. Applying Lemma 2.8.10 to the bound of Theorem 2.8.3, we have

Fnpβq ď λ´1
´

ln 9Zλ ` α ln Ẑλ ´ d ln Z̄λ `Ope
´λβ
q

¯

“ λ´1
´

Fpλq `Ope´λβq
¯

.

A standard argument gives that for any finite β, n´1 lnZnpβq is well-concentrated around its
expected value Fnpβq.

5 Thus, for any fixed λ P p0, 1s and ε ą 0, we can choose β “ βpλ, εq
sufficiently large so that

lim sup
nÑ8

P
ˆ

pZnpβqq
1{n
ě exptp1` εqλ´1Fpλqu

˙

“ 0.

Since Zn ď Znpβq for any finite β, we conclude

fpαq ď inftλ´1Fpλq : λ P p0, 1su.

For α ă αsat, if λ “ λ‹ P p0, 1q then λ´1Fpλq ď s‹ “ f1rsbpαq. If instead λ “ λ‹ “ 1 then
again λ´1Fpλq “ s‹ ` Σps‹q “ f1rsbpαq. In any case this proves fpαq ď f1rsbpαq.

5Take the Doob martingale of lnZnpβq with respect to the clause-revealing filtration for the random
nae-sat instance, then apply the Azuma–Hoeffding concentration bound.



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 70

2.9 Contraction estimates

In this section we prove Propositions 2.4.2 and 2.4.3, as well as Lemma 2.4.4.

2.9.1 Single-copy coloring recursions

We first analyze the bp recursions for the single-copy coloring model, and prove Proposi-
tion 2.4.2. We first consider the bp recursion with fixed parameters λ P r0, 1s and 1 ď T ď 8.
Recall that we have restricted our attention to measures 9Q, Q̂ such that

9Qpσq – 9qp 9σq1t|σ| ď T u,

Q̂pσq – q̂pσ̂q1t|σ| ď T u

for some probability measures 9q, q̂ defined on 9ΩT , Ω̂T . Recall further that we can assume
9q “ 9qavg and q̂ “ q̂avg. For measures of this type we can give a fairly explicit description of
the bp recursion. In what follows it will be convenient to take the convention

9mpr1q “ m̂pb1q “ 1, 9mpr0q “ m̂pb0q “ 0. (2.9.1)

For x P t0, 1u we abbreviate

g ” bY f, gx ” bx Y f, y ” rY f, px ” bx Y rx.

The variable recursion 9BP ” 9BPλ,T is given by

p 9BPq̂qp 9σq –

$

’

’

’

’

&

’

’

’

’

%

q̂pp1q
d´1 9σ P tr0, r1u,

q̂pp1q
d´1 ´ q̂pb1q

d´1 9σ P tb0, b1u,

9zp 9σqλ
ÿ

σ̂2,...,σ̂d

1t 9σ “ 9Tppσ̂iqiě2qu

d
ź

i“2

q̂pσ̂iq 9σ P 9Ωf X 9ΩT ,

where – indicates the normalization which makes 9BPq̂ a probability measure on 9ΩT .
For the clause bp recursion, by symmetry it suffices to consider a clause a with all incident

edge literals Laj “ 0. We write 9σ „ σ̂ if 9σ ” p 9σ2, . . . , 9σkq P p 9ΩT q
k´1 is compatible with σ̂, in

the sense that there is a valid coloring σ of δa with

σ “ pp 9σ, σ̂q, p 9σ2, σ̂2q, . . . p 9σk, σ̂kqq P pΩT q
k. (2.9.2)

The clause recursion B̂P ” B̂Pλ,T is given by

pB̂P 9qqpσ̂q –

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

9qpb0q
k´1 σ̂ P tr0, r1u,

ẑpσ̂qλ
ÿ

9σ

1tσ̂ “ T̂pp 9σiqiě2qu

k
ź

i“2

9qp 9σiq σ̂ P Ω̂f X Ω̂T ,

ÿ

9σ„b1

´

1´
k
ź

i“2

9mp 9σiq
¯λ k

ź

i“2

9qp 9σiq σ̂ P tb0, b1u,
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where the last line uses the convention (2.9.1). Recall that BP ” 9BP ˝ B̂P ” BPλ,T . We will
show the following contraction result.

Proposition 2.9.1. Suppose 9q1, 9q2 belong to Γ, as defined by (2.4.5). Let BP ” BPλ,T for
λ P r0, 1s and 1 ď T ď 8. Then BP 9q1, BP 9q2 P Γ and }BP 9q1 ´ BP 9q2}1 “ Opk2{2kq} 9q1 ´ 9q2}1.

Before the proof of Proposition 2.9.1 we deduce the following consequences:

Proof of Proposition 2.4.2. Let 9qp0q be the uniform measure on tb0, b1, r1, r0u, and recur-
sively define 9qplq ” BPp 9qpl´1qq. It is clear that 9qp0q P Γ, so Proposition 2.9.1 implies 9qplq P Γ
for all l ě 1, and furthermore that p 9qplqqlě1 forms an `1 Cauchy sequence. By completeness
of `1 we conclude that there exists 9qp8q “ 9q‹ P Γ satisfying

lim
lÑ8

} 9qplq ´ 9q‹}1 “ 0, BP 9q‹ “ 9q‹.

Applying Proposition 2.9.1 again gives }BP 9q ´ 9q‹}1 “ Opk2{2kq} 9q ´ 9q‹}1 for any 9q P Γ, from
which it follows that 9q‹ is the unique fixed point of BP in Γ.

Corollary 2.9.2. For λ P r0, 1s and 1 ď T ď 8, let 9qλ,T be the fixed point of BPλ,T given by
Proposition 2.4.2. Then } 9qλ,T ´ 9qλ,8}1 Ñ 0 in the limit T Ñ 8.

Proof. For each 1 ď T ď 8, let p 9qλ,T q
plq (l ě 0) be defined in the same way as 9qplq in the proof

of Proposition 2.9.1. It follows from the definition that p 9qλ,T q
plq “ p 9qλ,8q

plq for all l ď lT ,
where lT ” lnT { lnpdkq. By the triangle inequality and Proposition 2.4.2,

} 9qλ,T ´ 9qλ,8}1 ď } 9qλ,T ´ p 9qλ,8q
plT q}1 ` }p 9qλ,8q

plT q ´ 9qλ,8}1 ď pC{2
k
q
lT

for some absolute constant k. The result follows assuming k ě k0.

We now turn to the proof of Proposition 2.9.1. We work with the non-normalized bp
recursions 9NBP ” 9NBPλ,T and ˆNBP ” ˆNBPλ,T , defined by substituting “–” with ““” in the
definitions of 9BP and B̂P respectively. One can then recover 9BP, B̂P from 9NBP, ˆNBP via

p 9BPp̂qp 9σq “
p 9NBPp̂qp 9σq

ř

9σ1P 9Ωp
9NBPp̂qp 9σ1q

, pB̂P 9pqpσ̂q “
p ˆNBP 9pqpσ̂q

ř

σ̂1PΩ̂p
ˆNBP 9pqpσ̂1q

.

Let 9p be the reweighted measure defined by

9pp 9σq ” r 9pp 9qqsp 9σq ”
9qp 9σq

1´ 9qprq
. (2.9.3)

In the above we have assumed that the inputs to 9BP, B̂P, 9NBP, ˆNBP are probability measures;
we now extend them in the obvious manner to non-negative measures with strictly positive
total mass.
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Given two measures r1, r2 defined on any space X, we denote ∆rpxq ” |r1pxq ´ r2pxq|.
We regard ∆r as a non-negative measure on X: for any subset S Ď X,

∆rpSq “
ÿ

xPS

|r1pxq ´ r2pxq| ě |r1pSq ´ r2pSq|,

where the inequality may be strict. For any non-negative measure r̂ on Ω̂, we abbreviate

m̂λr̂pσ̂q ” m̂pσ̂qλr̂pσ̂q,
p1´ m̂qλr̂pσ̂q ” p1´ m̂pσ̂qqλr̂pσ̂q.

In what follows we will begin with two measures in Γ, and show that they contract under one
step of the bp recursion. Let ˆNBP and 9NBP be the non-normalized single-copy bp recursions
at parameters λ, T . Starting from 9qi P Γ (i “ 1, 2), denote

9pi ” 9pp 9qiq (as defined by (2.9.3)),
p̂i ” ˆNBPp 9piq and p̂i,8 ” ˆNBPλ,8p 9piq,
9pu
i ” 9NBPpp̂iq and q̃i ” 9BPp̂i “ BP 9qi.

With this notation in mind, the proof of Proposition 2.9.1 is divided into four lemmas.

Lemma 2.9.3 (effect of reweighting). Assuming 9q1, 9q2 P Γ, }∆ 9p}1 “ Op1q} 9q1 ´ 9q2}1, where
Op1q indicates a constant depending on the constant appearing in (2.4.5).

Lemma 2.9.4 (clause bp). Assuming 9q1, 9q2 P Γ,

m̂λp̂ip˝q “ 1´ 4{2k `Opk{4kq,
m̂λp̂ipfq “ m̂λp̂ip˝q `Opk{4

kq,
m̂λp̂ipb1q “ 1`Opk{2kq,
m̂λp̂ipr1q “ p2{2kqr1`Opk{2kqs.

(2.9.4)

Further, writing ∆m̂λp̂p¨q ” m̂λp¨q|p̂1p¨q ´ p̂2p¨q|,

∆m̂λp̂pfq `∆m̂λp̂prq “ Opk{2kq∆ 9ppfq,
}∆m̂λp̂}1 “ Opk2{2kq}∆ 9p}1.

(2.9.5)

(Recall that p̂pσ̂ ‘ 1q “ p̂pσ̂q and m̂pσ̂ ‘ 1q “ 1´ m̂pσ̂q, so p1´ m̂qλp̂pσ̂q “ m̂λp̂pσ̂ ‘ 1q. As
a result, the bounds for ∆m̂λp̂ imply analogous bounds for ∆p1´ m̂qλp̂.)

Lemma 2.9.5 (variable bp, non-normalized). Assuming 9q1, 9q2 P Γ,

„

9pu
i pfq

9pu
i prq



“

„

Op2´kq
1`Op2´kq



9pu
i pbq,

»

–

∆ 9pupfq

∆ 9pupbq

∆ 9puprq

fi

fl “

»

–

Opkq
Opk2kq
Opk2kq

fi

fl }∆m̂λp̂}1 max
i“1,2

!

9pu
i pbq

)

. (2.9.6)

Lemma 2.9.6 (variable bp, normalized). Assuming 9q1, 9q2 P Γ, we have q̃1, q̃2 P Γ as well,
with }q̃1 ´ q̃2}1 À k}∆m̂λp̂}1.
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Proof of Proposition 2.9.1. Follows by combining the four preceding lemmas 2.9.3–2.9.6.

We now prove the four lemmas.

Proof of Lemma 2.9.3. This follows from the elementary identity

a1

b1

´
a2

b2

“
1

b1

pa1 ´ a2q `
b2 ´ b1

b1b2

a2. (2.9.7)

together with (2.4.5).

In the proof of the next two lemmas, the following elementary fact will be used repeatedly:
suppose for 1 ď l ď m that we have non-negative measures al, bl over a finite set Xl. Then,
denoting X “ X1 ˆ ¨ ¨ ¨ ˆ Xm, we have

ÿ

xPX

ˇ

ˇ

ˇ

ˇ

m
ź

l“1

alpxlq ´
m
ź

l“1

blpxlq

ˇ

ˇ

ˇ

ˇ

ď

m
ÿ

l“1

ÿ

xPX

"

ź

1ďjăl

bjpxjq

*"

ź

lăjďm

ajpxjq

*

ˇ

ˇ

ˇ
alpxlq ´ blpxlq

ˇ

ˇ

ˇ

ď

m
ÿ

l“1

}al ´ bl}1
ź

j‰l

´

}aj}1 ` }a
j
´ bj}1

¯

. (2.9.8)

If all the pXl, al, blq are the same pX, a, bq, this reduces to the bound

ÿ

x1,...,xmPX

ˇ

ˇ

ˇ

ˇ

m
ź

i“1

apxiq ´
m
ź

i“1

bpxiq

ˇ

ˇ

ˇ

ˇ

ď m}a´ b}1

´

}a}1 ` }a´ b}1

¯m´1

. (2.9.9)

In what follows we will abbreviate (for x P t0, 1u)

ax ”
!

σ̂ P Ω̂T : 9σ P pgxq
k´1 for all 9σ „ σ̂

)

. (2.9.10)

Proof of Lemma 2.9.4. From the definition, if 9p “ 9pp 9qq then

9ppbq “
9qpbq

1´ 9qprq
“

9qpbq

9qpgq
“ 1´ 9ppfq.

It follows that for any 9q1, 9q2 P Γ we have

∆ 9ppbq ď ∆ 9ppfq ď 9p1pfq ` 9p2pfq “ Op2´kq.

Another consequence of the definition of Γ is that }∆ 9p}1 “ Op1q. We now control ∆m̂λp̂pσ̂q,
distinguishing a few cases:

1. We first consider σ̂ P Ω̂ztb, ˝u. For such σ̂ we have

∆m̂λp̂pσ̂q “

ˇ

ˇ

ˇ

ˇ

rm̂pσ̂qẑpσ̂qsλ
ÿ

9σ„σ̂

ˆ k
ź

j“2

9p1p 9σjq ´
k
ź

j“2

9p2p 9σjq

˙
ˇ

ˇ

ˇ

ˇ

,



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 74

and it is easy to check that

m̂pσ̂qẑpσ̂q “ 1´
k
ź

j“2

9mp 9σjq P r0, 1s.

Note moreover that any such σ̂ must belong to a0 or a1. By summing over σ̂ P a0 and
applying (2.9.9) we have

∆m̂λp̂pa0q ď pk ´ 1q∆ 9ppg0q
´

9p1pg0q `∆ 9ppfq
¯k´2

.

Recalling that 9p1, 9p2 P Γ, in the above we have 9p1pg0q `∆ 9ppfq ď r1 ` Op2´kqs{2, as well
as ∆ 9ppg0q “ Op1q∆ 9ppfq. Combining these gives

∆m̂λp̂pa0q “ Opk{2kq∆ 9ppfq,

and the same bound holds for ∆m̂λp̂pa1q.

2. Next consider σ̂ “ ˝, for which we have m̂pσ̂q “ 1{2 and ẑpσ̂q “ 2. Thus

m̂λp̂p˝q “ 1´ 9ppg0q
k´1

´ 9ppg1q
k´1

` 9ppfqk´1. (2.9.11)

Arguing as above gives ∆m̂λp̂p˝q “ Opk{2kq∆ 9ppfq, proving the first half of (2.9.5).

3. Lastly consider σ̂ P tb0, b1u. Recalling (2.9.1) we have ∆m̂λp̂pb0q “ 0, so let us take
σ̂ “ b1, and consider 9σ „ b1. Note that if 9σ „ b1 has no red spin, then there must
exist some σ̂ P Ω̂f such that 9σ „ σ̂ as well. Conversely, if σ̂ P Ω̂f X Ω̂T and 9σ „ σ̂, then
9σ „ b1, unless 9σ has exactly one spin 9σi P tb0, fu with the remaining k´ 2 spins equal to
b1.

6 Again making use of (2.9.1), this 9σ gives the same contribution to m̂λp̂8pσ̂
1q as to

m̂λp̂pb1q. It follows that

∆m̂λp̂pb1q ď ∆m̂λp̂8pyq ` k
ˇ

ˇ

ˇ
9p1pr0q 9p1pb1q

k´2
´ 9p2pr0q 9p2pb1q

k´2
ˇ

ˇ

ˇ
.

The first term on the right-hand side captures the contribution from those 9σ with no red

spin, and by the preceding arguments it is Opk{2kq∆ 9ppfq. It is easy to check that the
second term is Opk2{2kq}∆ 9p}1, which finishes the second part of (2.9.5).

Combining the above estimates proves (2.9.5). We next prove (2.9.4). Denote fě1 ” tfuzt˝u.
Since 9qi P Γ, we must have from (2.4.5) that

m̂λp̂ipfě1q ď 2
k´1
ÿ

l“1

ˆ

k ´ 1

l

˙

9pipfq
l 9pipb0q

k´1´l
ď 2 9pipb0q

k´1
k´1
ÿ

l“1

ˆ

k 9pipfq

9pipb0q

˙l

“ Opk{4kq.

(2.9.12)

6The converse is not needed for the final bound, but we mention it for the sake of concreteness.
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On the other hand, we see from (2.9.11) that

m̂λp̂ip˝q “ 1´ 4{2k `Opk{4kq.

It follows that

m̂λp̂ipb1q “ p̂ipb1q “ m̂λp̂i,8pfq ` pk ´ 1q
”

9pipr0q ´ 9pipg0q
ı

9pipb1q
k´2 (2.9.13)

ď m̂λp̂i,8pfq ` pk ´ 1q 9pipr0q 9pipb1q
k´2

“ 1`Opk{2kq.

For a lower bound it suffices to consider the contribution from clauses with all k incident
edges colored blue:

m̂λp̂ipb1q “ p̂ipb1q ě 9pipbq
k´1
r1´Opk{2kqs “ 1´Opk{2kq. (2.9.14)

Lastly, note by symmetry that

m̂λp̂ipr1q “ p̂ipr1q “ p̂ipb0q
k´1

“ p2{2kqp̂ipbq
k´1.

Combining these estimates proves (2.9.4).

Proof of Lemma 2.9.5. We control 9pu and ∆ 9pu in two cases.

1. First consider 9σ P 9Ωf. Up to permutation there is a unique σ̂ P pΩ̂fq
d´1 such that 9σ “ T̂pσ̂q.

Let combp 9σq denote the number of distinct tuples σ̂1 that can be obtained by permuting
the coordinates of σ̂. For this σ̂ we have

d
ź

j“2

m̂pσ̂jq
λ
ď 9zp 9σqλ ď

d
ź

j“2

m̂pσ̂jq
λ
`

d
ź

j“2

p1´ m̂pσ̂jqq
λ, (2.9.15)

where the rightmost inequality uses that pa` bqλ ď aλ ` bλ for a, b ě 0 and λ P r0, 1s. It
follows that for i “ 1, 2 we have

combp 9σq
d
ź

j“2

m̂p̂ipσ̂jq ď 9pu
i p 9σq ď combp 9σq

" d
ź

j“2

m̂λp̂ipσ̂jq `
d
ź

j“2

p1´ m̂qλp̂ipσ̂jq

*

.

It follows by symmetry that m̂λp̂ipfq “ p1´ m̂q
λp̂ipfq, so

rm̂λp̂ip˝qs
d´1

ď 9pu
i pfq ď rm̂

λp̂ipfqs
d´1

` rp1´ m̂qλp̂ipfqs
d´1

“ 2rm̂λp̂ipfqs
d´1. (2.9.16)

Making use of the symmetry together with (2.9.15) gives

∆ 9pu
pfq ď 2

ÿ

σ̂PpΩ̂fqd´1

ˇ

ˇ

ˇ

ˇ

d´1
ź

j“2

m̂λp̂1pσ̂jq ´
d´1
ź

j“2

m̂λp̂2pσ̂jq

ˇ

ˇ

ˇ

ˇ

,
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and applying (2.9.9) gives

∆ 9pu
pfq À d}∆m̂λp̂}1

´

m̂λp̂1pfq `∆m̂λp̂1pfq
¯d´2

.

Combining (2.9.4) with the lower bound from (2.9.15) then gives

∆ 9pu
pfq À d}∆m̂λp̂}1 max

i“1,2

!

9pu
i pfq

)

.

2. Next consider 9σ P tred, blueu: note that 9pu
i prxq “ p̂ippxq

d´1, and

9pu
i prxq ´ 9pu

i pbxq

9pu
i prxq

“
p̂ipbxq

d´1

p̂ippxqd´1
“

ˆ

1´
p̂iprxq

p̂ippxq

˙d´1

“ Op2´kq, (2.9.17)

where the last estimate uses (2.9.4) and d{k “ 2k´1 ln 2`Op1q. Applying (2.9.9) gives

∆ 9pu
pp1q À d}m̂λp̂}1

´

min
i“1,2

!

m̂λp̂ipp1q
)

`∆m̂λp̂pp1q
¯d´2

.

Suppose without loss that m̂λp̂1pb1q ď m̂λp̂2pb1q: then

m̂λp̂1pp1q `∆m̂λp̂pp1q “ m̂λp̂2pb1q ` m̂
λp̂1pr1q `∆m̂λp̂pr1q

ď m̂λp̂2pp1q ` 2∆m̂λp̂pr1q,

and substituting into the above gives

∆ 9pu
pp1q À d}m̂λp̂}1

´

max
i“1,2

!

m̂λp̂ipp1q
)

`∆m̂λp̂pr1q
¯d´2

.

From (2.9.5) and the definition (2.4.5) of Γ we have ∆m̂λp̂pr1q “ Opk{2kq∆ 9ppfq “
Opk{4kq. It follows from (2.9.17) that

∆ 9pu
pp1q À d}∆m̂λp̂}1 max

i“1,2

!

9pu
i pb1q

)

. (2.9.18)

It remains to show 9pupfq{ 9pupbq “ Op2´kq. From (2.9.13),

m̂λp̂ipfq ´ m̂
λp̂ipb1q ď m̂λp̂i,8pfq ´ m̂

λp̂ipb1q ď pk ´ 1q
”

9pipg0q ´ 9pipr0q
ı

9pipb1q
k´2,

and from the definition of Γ the right-hand side is Opk{4kq 9pipbq
k´1. Now recall from (2.9.14)

that m̂λp̂ipb1q Á 9pipbq
k´1. Combining these gives

m̂λp̂ipfq ď r1`Opk{4
k
qsm̂λp̂ipb1q. (2.9.19)

Recalling (2.9.15), it follows that

9pu
i pfq

9pu
i pb1q

À

ˆ

m̂λp̂ipfq

m̂λp̂ipp1q

˙d´1

À

ˆ

m̂λp̂ipb1q

m̂λp̂ipp1q

˙d´1

À 2´k,

where the last step uses (2.9.4). This concludes the proof.
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Proof of Lemma 2.9.6. Denote q̃i ” BP 9qi and ∆q̃ ” |q̃1´ q̃2|. We first check that q̃i lies in Γ:
the first condition of (2.4.5) follows from (2.9.6), and the second is automatically satisfied
from the definition of 9BP. Next we bound ∆q̃. With some abuse of notation, we shall write
q̃ipRq ” q̃iprq ´ q̃ipbq and

∆q̃pRq ” |pq̃1prq ´ q̃1pbqq ´ pq̃2prq ´ q̃2pbqq|.

Let 9pu
i pRq and ∆ 9pupRq be similarly defined. Arguing similarly as in the derivation of (2.9.18),

∆ 9pu
pRq “ 2|p̂1pb1q

d´1
´ p̂2pb1q

d´1
| À k}∆m̂λp̂}1 max

i“1,2

!

9pu
i pbq

)

(2.9.20)

Recalling }q̃i}1 “ 1, we have

2q̃iprq “ r1´ q̃ipfqs ` rq̃iprq ´ q̃ipbqs and
2q̃ipbq “ r1´ q̃ipfqs ´ rq̃iprq ´ q̃ipbqs, so
}∆q̃}1 À ∆q̃pfq `∆q̃pRq.

If we take a P t1, 2u and b “ 2´ a, and write 9Zi ” } 9p
u
i }1, then

∆q̃pfq `∆q̃pRq ď
∆ 9pupfq `∆ 9pupRq

9Za
`
| 9Za ´ 9Zb|

9Za

r 9pu
b pfq ` 9pu

b prq ´ 9pu
b pbqs

9Zb
.

If we take a P arg maxi 9p
u
i pbq, then, by (2.9.6) and (2.9.20), the first term on the right-hand

side is

À
k}∆m̂λp̂}1 9p

u
apbq

9Za
À k}∆m̂λp̂}1,

where the rightmost inequality uses 9Zi ě 9pu
i pbq. As for the second term, (2.9.6) gives

| 9Za ´ 9Zb|

9Za
À d}∆m̂λp̂}1 and

r 9pu
b pfq ` 9pu

b prq ´ 9pu
b pbqs

9Zb
À 2´k.

Combining these estimates yields the claimed bound.

2.9.2 Pair coloring recursions

In this section we analyze the bp recursions for the pair coloring model and prove Proposi-
tion 2.4.3 and Lemma 2.4.4. Recall that we have restricted our attention to measures 9Q, Q̂
such that

9Qpσ1, σ2q – 9qp 9σ1, 9σ2q1t|σ1|, |σ2| ď T u,

Q̂pσ1, σ2q – q̂pσ̂1, σ̂2q1t|σ1|, |σ2| ď T u

for probability measures 9q, q̂ defined on p 9ΩT q
2, pΩ̂T q

2. Recall further that we assume 9q “ 9qavg

and q̂ “ q̂avg. For any measure ppxq defined on x ” px1, x2q in p 9ΩT q
2 or pΩ̂T q

2, define

pFpqpxq ” ppFxq where Fx ” x‘ p0, 1q ” px1, x2
‘ 1q.

Recall the definition (2.4.6) of Γpc, κq. We will prove that
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Proposition 2.9.7. For any constant c P p0, 1s and probability measures 9q1, 9q2 P Γpc, 1q, we
have BP 9q1, BP 9q2 P Γp1, 1q and

}BP 9q1 ´ BP 9q2}1 “ Opk4
{2kq} 9q1 ´ 9q2}1 `Opk

4
{2kq

ÿ

i“1,2

} 9qi ´ F 9qi}1. (2.9.21)

Assuming this result, it is straightforward to deduce Proposition 2.4.3:

Proof of Proposition 2.4.3. Let 9qp0q be the uniform probability measure on tb0, b1, r1, r0u
2,

and define recursively 9qplq “ BPp 9qpl´1qq for l ě 1. It is clear that 9qp0q P Γp1, 1q and 9qp0q “ F 9qp0q.
Since 9qplq “ F 9qplq for all l ě 1, it follows from (2.9.21) that p 9qplqqlě1 forms an `1 Cauchy
sequence. It follows by completeness of `1 that 9qplq converges to a limit 9qp8q “ 9q‹ P Γp1, 1q,
satisfying 9q‹ “ F 9q‹ “ BP 9q‹. This implies that for any probability measure 9q,

} 9q ´ F 9q}1 ď } 9q ´ 9q‹}1 ` } 9q‹ ´ F 9q}1 “ 2} 9q ´ 9q‹}1.

Applying (2.9.21) again gives

}BP 9q ´ 9q‹}1 “ Opk4
{2kq} 9q ´ 9q‹}1 `Opk

4
{2kq} 9q ´ F 9q}1 “ Opk4

{2kq} 9q ´ 9q‹}1,

proving the claimed contraction estimate. Uniqueness of 9q‹ can be deduced from this con-
traction.

We now turn to the proof of Proposition 2.9.7. The proof of Lemma 2.4.4 is given after
the proof of Proposition 2.9.7. Let 9NBP, ˆNBP now denote the non-normalized bp recursions
for the pair model. Let 9p ” 9pp 9qq be the reweighted measure

9pp 9σq ”
9qp 9σq

1´ 9qprr 9σs ą 0q
. (2.9.22)

Recalling convention (2.9.1), we will denote

m̂λr̂pσ̂1, σ̂2
q ” rm̂pσ̂1

qm̂pσ̂2
qs
λr̂pσ̂1, σ̂2

q.

Let ˆNBP and 9NBP be the non-normalized pair bp recursions at parameters λ, T . Starting from
9qi P Γpc, κq (i “ 1, 2), we denote

9pi ” 9pp 9qiq (as defined by (2.9.22)),
p̂i ” ˆNBPp 9piq and p̂i,8 ” ˆNBPλ,8p 9piq,
9pu
i ” 9NBPpp̂iq and q̃i ” 9BPp̂i “ BP 9qi.

With this notation in mind, the proof of Proposition 2.9.7 is divided into the following
lemmas.

Lemma 2.9.8 (effect of reweighting). Suppose 9q1, 9q2 P Γpc, κq for c P p0, 1s and κ P r0, 1s:
then

}∆ 9p}1 ” Op22p1´κqkq}∆ 9q}1,
} 9pi ´ F 9pi}1 ” Op2p1´κqkq} 9qi ´ F 9qi}1.
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Lemma 2.9.9 (clause bp contraction). Suppose 9q1, 9q2 P Γpc, κq for c P p0, 1s and κ P r0, 1s:
then

∆m̂λp̂pyyq “ Opk3{2kq∆ 9ppggq “ Opk3{2p1`cqkq,

∆m̂λp̂ptbr, bfě1uq “ Opk2{2kqr∆ 9ppggq ` 2´k∆ 9pp 9Ω2ztrruqs “ Opk3{2p1`cqkq,
}∆m̂λp̂}1 “ Opk3{2kq}∆ 9p}1 “ Opk32p1´2κqkq,

(2.9.23)

and the same estimates hold with Fp̂ in place of p̂. For both i “ 1, 2,

}m̂λp̂i ´ m̂
λFp̂i}1 “ Opk3

{2p1`κqkq} 9pi ´ F 9pi}1 “ Opk3
{22κk

q} 9qi ´ F 9qi}1. (2.9.24)

Lemma 2.9.10 (clause bp output values). Suppose 9q1, 9q2 P Γpc, κq for c P p0, 1s and κ P
r0, 1s. For s, t Ď Ω̂ let st ” sˆ t. Then it holds for all s, t P tr1, b1, f, ˝u that

m̂λp̂ips, tq

p2{2kqrrss`rrts
“

#

1`Opk2{2kq rrss ` rrts ď 1,

1`Opk2{2ckq rrss ` rrts “ 2.
(2.9.25)

Furthermore we have the bounds

m̂λp̂ipfě1tq ` m̂
λp̂iptfě1q ď Opk{4kq for all t P tr1, b1, f, ˝u,

m̂λp̂iptfu ˆ Ω̂q ´ m̂λp̂iptb1u ˆ Ω̂q ď Opk{4kq.
(2.9.26)

The same estimates hold with Fp̂i in place of p̂i.

Lemma 2.9.11 (variable bp). Suppose 9q1, 9q2 P Γpc, κq for c P p0, 1s and κ P r0, 1s. Then we
have BP 9q1, BP 9q2 P Γpc1, 1q with c1 “ maxt0, 2κ´ 1u, and

}BP 9q1 ´ BP 9q2}1 “ Opkq
`

}∆m̂λp̂`∆m̂λFp̂}1
˘

`Opk2kq
ÿ

i“1,2

}m̂λp̂i ´ m̂
λFp̂i}1.

Proof of Proposition 2.9.7. Follows by combining the preceding lemmas 2.9.8–2.9.11.

Proof of Lemma 2.4.4. If 9q P Γpc, 0q is a fixed point of BP, then it follows from the preceeding
lemmas 2.9.9–2.9.11 that 9q P Γpc, 0q X Γp0, 1q “ Γpc, 1q.

We now prove the three lemmas leading to Proposition 2.9.7.

Proof of Lemma 2.9.8. Applying (2.9.7) we have

| 9p1p 9σq ´ 9p2p 9σq| ď
| 9q1p 9σq ´ 9q2p 9σq|

9q1pggq
`
| 9q1pggq ´ 9q2pggq|

9q1pggq 9q2pggq
9q2p 9σq,

and summing over 9σ P 9Ω2 gives

}∆ 9p}1 ď
} 9q1 ´ 9q2}1

9q1pggq
`
| 9q1pggq ´ 9q2pggq|

9q1pggq 9q2pggq
ď

2} 9q1 ´ 9q2}1

9q1pggq 9q2pggq
.
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Since 9qi P Γ, we have

9pip 9Ω
2ztrruq “ Op1q by part (a) of (2.4.6),

and 9piprrq “ Op2p1´κqkq by part (b) of (2.4.6).
(2.9.27)

Consequently 9qipggq
´1 ď Op1q2p1´κqk, and the claimed bound on }∆ 9p}1 follows. The bound

on } 9pi ´ F 9pi}1 follows by noting that if 9q2 “ F 9q1, then 9q1pggq “ 9q2pggq.

Proof of Lemma 2.9.9. We will prove (2.9.23) for p̂i; the proof for Fp̂i is entirely similar. It
follows from the symmetry 9pi “ p 9piq

avg that for any x, y P t0, 1u,

ˇ

ˇ

ˇ
9pipbbq ´ 4 9pipbxbyq

ˇ

ˇ

ˇ
“ 2

ˇ

ˇ

ˇ
9pipbxby‘1q ´ 9pipbxbyq

ˇ

ˇ

ˇ
“ 2

ˇ

ˇ

ˇ
9pipb0b0q ´ 9pipb0b1q

ˇ

ˇ

ˇ
,

from which we obtain that

∆ 9ppbbq “ | 9p1pbbq ´ 9p2pbbq| `Op1qmax
i“1,2

ˇ

ˇ

ˇ
9pipb0b0q ´ 9pipb0b1q

ˇ

ˇ

ˇ
.

Recall g “ tb, fu and 9pipggq “ 1. Combining the above with (2.4.6) gives

∆ 9ppggq ď ∆ 9ppbbq `∆ 9ppgfq `∆ 9ppfgq

À
ÿ

i“1,2

"

ˇ

ˇ

ˇ
9pipb0b0q ´ 9pipb0b1q

ˇ

ˇ

ˇ
` 9pipgfq ` 9ppfgq

*

“ Op2´ckq. (2.9.28)

Step I. We first control ∆m̂λp̂pσ̂q. As before, by symmetry it suffices to analyze the bp
recursion at a clause with all literals Lj “ 0. We distinguish the following cases of σ̂ P Ω̂2:

1. Recall y ” rY f, and note tyuzt˝u Ď a0 Y a1 (as defined by (2.9.10)). Thus

∆m̂λp̂ptyyuzt˝˝uq ď
ÿ

xPt0,1u

“

∆m̂λp̂paxyq `∆m̂λp̂pyaxq
‰

. (2.9.29)

Consider σ̂ P taxyu: in order for 9σ P p 9Ω2qk´1 to be compatible with σ̂, it is necessary that
9σj P tgxgu for all 2 ď j ď k. Combining with (2.9.9) gives

∆m̂λp̂paxyq ď
ÿ

9σPtgxguk´1

ˇ

ˇ

ˇ

ˇ

k
ź

j“2

9p1p 9σjq ´
k
ź

j“2

9p2p 9σjq

ˇ

ˇ

ˇ

ˇ

ď k∆ 9ppggq
´

9p1pgxgq `∆ 9ppggq
¯k´2

.

It follows from (2.4.6) that 9p1pAq `∆ 9ppggq “ 1
2
`Op2´ckq, so we conclude

∆m̂λp̂ptyyuzt˝˝uq “ Opk{2kq∆ 9ppggq. (2.9.30)



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 81

2. Now take σ̂ “ ˝˝: for 9σ P p 9Ω2qk´1 to be compatible with σ̂, it is necessary that 9σ P tgguk´1.
On the other hand, it is sufficient that 9σ P tgguk´1 does not belong to any of the sets
tgxgu

k´1, tggxu
k´1, x P t0, 1u. Therefore

∆m̂λp̂p˝˝q ď
ÿ

xPt0,1u

ÿ

9σPtgxguk´1Ytggxuk´1

ˇ

ˇ

ˇ

ˇ

k
ź

j“2

9p1p 9σjq ´
k
ź

j“2

9p2p 9σjq

ˇ

ˇ

ˇ

ˇ

“ Opk{2kq∆ 9ppggq,

where the last estimate follows by the same argument that led to (2.9.30). This concludes
the proof of the first line of (2.9.23).

3. Now consider σ̂ with exactly one coordinate in tbu, meaning the other must be in tyu.
Recalling convention (2.9.1), we assume without loss that σ̂ P tb1yu and proceed to bound
∆m̂λp̂pσ̂q. Let 9σ P p 9Ω2qk´1 be compatible with σ̂. There are two cases:

a. If 9σ contains no red spin, it must also be compatible with some σ̂1 P tyyu, as long
as we permit the possibility that |pσ̂1q1| ą T . Such 9σ gives the same contribution to
m̂λp̂pσ̂q as to m̂λp̂8pyyq. It follows from the preceding estimates that the contribution
to ∆m̂λp̂pb1yq from all such 9σ is upper bounded by

∆m̂λp̂8pyyq “ Opk{2kq∆ 9ppggq (2.9.31)

b. The only remaining possibility is that some permutation of 9σ belongs to AˆBk´2 for
A “ tr0gu and B “ tb1gu: the contribution to ∆m̂λp̂pb1yq from all such 9σ is

ď pk ´ 1q
ÿ

9σPAˆBk´2

ˇ

ˇ

ˇ

ˇ

k
ź

j“2

9p1p 9σjq ´
k
ź

j“2

9p2p 9σjq

ˇ

ˇ

ˇ

ˇ

“ Opk2
{2kq}∆ 9p}1, (2.9.32)

where the last estimate follows using (2.9.8) and (2.9.27).

Combining the above estimates (and using the symmetry between b1y and yb1) gives

∆m̂λp̂pb1yq `∆m̂λp̂pyb1q “ Opk2
{2kq}∆ 9p}1. (2.9.33)

If we further assume σ̂ P tb1u ˆ tr, fě1u, then, arguing as above, 9σ either contributes to
∆m̂λp̂8py ˆ tr, fě1uq, or else belongs to Ax ˆ Bk´2

x for Ax “ tr0gxu, Bx “ tb1gxu and
x P t0, 1u. The contribution from first case is bounded by (2.9.30). The contribution
from the second case, using (2.9.8) and (2.9.27), is

À k∆ 9pp 9Ω2
ztrruq

´

max
xPt0,1u

9p1pBxq `∆ 9ppggq
¯k´2

“ Opk2
{4kq∆ 9pp 9Ω2

ztrruq.

The second claim of (2.9.23) follows by combining these estimates and recalling (2.9.28).

4. Lastly we consider σ̂ P tbbu. Without loss of generality, we take σ̂ “ b1b1 and proceed to
bound ∆m̂λp̂pb1b1q. Let 9σ P p 9Ω2qk´1 be compatible with σ̂. We distinguish three cases:
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a. For at least one i P t1, 2u, 9σi contains no red spin. In this case 9σ is also compatible
with some σ̂1 P tb1yu Y tyb1u, as long as we permit the possibility that |pσ̂1qi| ą T .
The contribution of all such 9σ to ∆m̂λp̂pb1b1q is therefore upper bounded by

∆m̂λp̂8pb1yq `∆m̂λp̂8pyb1q “ Opk2
{2kq}∆ 9p}1, (2.9.34)

where the last step is by the same argument as for (2.9.33).

b. The next case is that 9σ is a permutation of pr0r0, pb1b1q
k´2q. The contribution to

∆m̂λp̂pb1b1q from this case is at most

pk ´ 1q

ˇ

ˇ

ˇ

ˇ

9p1pr0r0q 9p1pb1b1q
k´2

´ 9p2pr0r0q 9p2pb1b1q
k´2

ˇ

ˇ

ˇ

ˇ

.

Using (2.9.8) and (2.4.6), this is at most

Opk2
{4kq

´

∆ 9ppr0r0q ` 9ppr0r0q ¨∆ 9ppb1b1q
¯

“ Opk2
{4kq} 9p}1}∆ 9p}1 “ Opk2

{2p1`κqkq}∆ 9p}1. (2.9.35)

c. The last case is that 9σ is a permutation of pr0b1, b1r0, pb1b1q
k´3q. The contribution to

∆m̂λp̂pb1b1q from this case is at most

k2

ˇ

ˇ

ˇ

ˇ

9p1pr0b1q 9p1pb1r0q 9p1pb1b1q
k´3

´ 9p2pr0b1q 9p2pb1r0q 9p2pb1b1q
k´3

ˇ

ˇ

ˇ

ˇ

.

This is at most Opk2{4kq}∆ 9p}1 by another application of (2.9.8) and (2.4.6).

The above estimates together give

∆m̂λp̂pb1b1q “ Opk2
{2kq}∆ 9p}1, (2.9.36)

where the main contribution comes from (2.9.34). Combining with the previous bound
(2.9.33) yields the last part of (2.9.23).

Step II. Next we prove (2.9.24) by improving the preceding bounds in the special case that
9p1 “ 9p and 9p2 ” F 9p. Recall p̂i ” ˆNBPp 9piq; it follows that p̂2 “ Fp̂1. Thus, for any σ̂ P Ω̂2

with σ̂2 “ ˝, we have σ̂ “ Fσ̂, so p̂2pσ̂q “ p̂1pFσ̂q “ p̂1pσ̂q. For σ̂ P Ω̂2 with σ̂1 “ ˝, we
have σ̂ “ pFσ̂q ‘ 1, so p̂2pσ̂q “ p̂1pFσ̂q “ p̂1pσ̂q, where the last step uses that p̂1 “ pp̂1q

avg. It
follows that instead of (2.9.29) and (2.9.31) we have the improved bound

∆m̂λp̂8pyyq “ ∆m̂λp̂8ptyyuzpt˝yu Y ty˝uqq ď
ÿ

xPt0,1u

∆m̂λp̂8paxayq

“ Opkq}∆ 9p}1
ÿ

x,yPt0,1u

´

9p1pgxgyq `∆ 9ppggq
¯k´2

“ Opk{4kq} 9p´ F 9p}1.
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Similarly, instead of (2.9.32) we would only have a contribution from 9σ belonging to either
A0 ˆ pB0q

k´2 or A1 ˆ pB1q
k´2, where Ax “ tr0gxu and Bx “ tb1gxu. It follows that instead

of (2.9.33) and (2.9.34) we have the improved bound

∆m̂λp̂8pb1yq `∆m̂λp̂8pyb1q “ Opk4
{4kq}∆ 9p}1.

Previously the main contribution in (2.9.36) came from (2.9.34), but now it comes instead
from (2.9.35). This gives the improved bound ∆m̂λp̂pb1b1q “ Opk2{2p1`κqkq, which proves
the first part of (2.9.24). The second part follows by applying Lemma 2.9.8.

Proof of Lemma 2.9.10. We first prove (2.9.25). Assume s, t P tb1, f, ˝u, and write st ”
sˆ t Ď Ω̂2. Then for a lower bound we have

m̂λp̂ipstq ě r1´Opk{2
k
qs 9pipbbq

k´1
“ 1´Opk{2kq.

for an upper bound we have

m̂λp̂ipstq ď 9pipggq
k´1

` k 9pipr0gq 9pipb1gq
k´2

` k 9pipgr0q 9pipgb1q
k´2

` k 9pipr0r0q 9pipb1b1q
k´2

` k2 9pipr0b1q 9pipb1r0q 9pipb1b1q
k´3

“ 1`Opk2
{2kq.

Writing r1t ” r1 ˆ t for t P tb1, f, ˝u, a similar argument gives

m̂λp̂ipr1tq ě r1´Opk{2kqs 9pipb0bq
k´1 “ r1´Opk{2kqs ¨ p2{2kq,

m̂λp̂ipr1tq ď 9pipb0gq
k´1 ` k 9pipb0r0q 9pipb0b1q

k´2 “ r1`Opk{2kqs ¨ p2{2kq.

Lastly, it is easily seen that

m̂p̂ipr1r1q “ 9pipb0b0q
k´1

“ r1´Opk{2ckqs ¨ p2{2kq2.

This concludes the proof of (2.9.25), and we turn next to the proof of (2.9.26). Arguing
similarly as for (2.9.12) gives

m̂λp̂iptffuzt˝˝uq ď m̂λp̂ipfě1fq ` m̂
λp̂ipffě1q “ Opk{4kq.

Next, suppose 9σ is compatible with σ̂ P b1fě1: if 9σ has no red spin, then it is also compatible
with some σ̂1 P ffě1, provided we allow |pσ̂1q1| ą T . Therefore

m̂λp̂ipb1fě1q ´ m̂
λp̂i,8pffě1q

ď
ÿ

yPt0,1u

„

k 9pipr0fq 9pipb1gyq
k´2

` k2 9pipr0byq 9pipb1fq 9pipb1gyq
k´3



,

and applying (2.4.6) this is Opk{4kq. Finally,

m̂λp̂ipr1fě1q ď
ÿ

yPt0,1u

k 9pipb0fq 9pipb0gyq
k´2

“ Opk{8kq,
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which proves the first part of (2.9.26). For the second part, arguing similarly as for (2.9.19),
we have for any ξ P Ω̂ that

m̂λp̂ipfξq ´ m̂
λp̂ipb1ξq ď pk ´ 1q

ÿ

9σ„ξ

r 9pipg0 9σ2q ´ 9pipr0 9σ2qs

k
ź

j“3

9pipb1 9σjq.

Note that 9σ has at most one red spin. If 9σ2 “ r0, then 9σj “ b1 for all j ě 3. Since 9qi P Γpc, κq
(which means also that 9qi “ p 9qiq

avg), we have

ÿ

9σ„ξ

1t 9σ2 “ ζu
k
ź

j“3

9pipb1 9σjq ď

"

9pipb1b1q
k´2 ď Op4´kq if ζ “ r0,

9pipb1gq
k´3 ď Op2´kq if ζ P 9Ωztr0u.

On the other hand, 9qi P Γpc, κq also implies

9pipg0ζq ´ 9pipr0ζq ď Op2´kq 9pipb0ζq ` 9pipfζq ď

"

Op1q ζ “ r0,

Op2´kq if ζ P 9Ωztr0u.

Combining these estimates and summing over ξ proves the second part of (2.9.26).

An immediate application of (2.9.25), which will be useful in the next proof, is that

m̂λp̂iprxtq

m̂λp̂ipbxtq
ě r1`Opk2

{2kqs ¨ p2{2kq. (2.9.37)

for all t P tb0, b1, f, ˝u.

Proof of Lemma 2.9.11. We divide the proof in two parts.

Step I. Non-normalized messages.

1. First consider 9σ P tffu. Recalling pa` bqλ ď aλ ` bλ for a, b ě 0 and λ P r0, 1s,

∆ 9pu
pffq ď 2

ÿ

r̂Ptp̂,Fp̂u

ÿ

σ̂Ptffuk´1

ˇ

ˇ

ˇ

ˇ

d
ź

j“2

m̂λr̂1pσ̂jq ´
d
ź

j“2

m̂λr̂2pσ̂jq

ˇ

ˇ

ˇ

ˇ

where the r̂ “ Fp̂ term arises from the fact that

m̂pσ̂1
q
λ
r1´ m̂pσ̂2

qs
λp̂pσ̂q “ m̂pσ̂1

q
λm̂pσ̂2

‘ 1qλpFp̂qpFσ̂q “ m̂λFp̂pFσ̂q.

Applying (2.9.9) gives

∆ 9pu
pffq “ Opdq

ÿ

r̂Ptp̂,Fp̂u

∆m̂λr̂pffq
´

m̂λr̂1pffq `∆m̂λr̂pffq
¯d´2

.

We have from (2.9.23) and (2.9.25) that m̂λp̂1pffq — 1 and ∆m̂λp̂pffq “ Opk3{2p1`cqkq, so

∆ 9pu
pffq “ Opdq}∆m̂λp̂`∆m̂λFp̂}1 ¨ 9p

u
1pffq. (2.9.38)
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2. Next consider 9σ P tp1fu. Let r̂maxpσ̂q ” maxi“1,2 r̂ipσ̂q — in this notation,

r̂maxpΩ̂q “
ÿ

σ̂PΩ̂

max
i“1,2

r̂ipσ̂q ě max
i“1,2

ÿ

σ̂PΩ̂

r̂ipσ̂q “ max
i“1,2

r̂ipΩ̂q

where the inequality may be strict. Then

∆ 9pu
pp1fq “ Opdq

ÿ

r̂Ptp̂,Fp̂u

∆m̂λr̂pp1fqrm̂
λr̂maxpp1fqs

d´2.

Let a P arg maxi r̂ipb1˝q, so that

0 ď m̂λr̂maxpp1fq ´ m̂
λr̂app1fq ď ∆m̂λr̂pr1fq `∆m̂λr̂pb1fě1q “ Op2´p1`cqkq,

where the last estimate is by (2.9.23) and (2.9.26). On the other hand, we have from
(2.9.25) that m̂λp̂pp1fq ě m̂λp̂pb1fq — 1, and it follows that

rm̂λr̂maxpp1fqs
d´2

— rm̂λr̂app1fqs
d´1. (2.9.39)

Applying (2.9.25) and (2.9.26) again, we have (for i “ 1, 2)

rm̂λr̂ipp1fqs
d´1

— rm̂λr̂ipp1˝qs
d´1.

On the other hand, assuming T ě 1, we have

9pu
i pr1fq ě rm̂

λr̂ipp1˝qs
d´1

´ rm̂λr̂ipb1˝qs
d´1

— rm̂λr̂ipp1˝qs
d´1

where the last step follows by (2.9.37). Similarly,

9pu
i pr1fq ´ 9pu

i pb1fq “ Op1q
ÿ

r̂Ptp̂,Fp̂u

m̂λr̂ipb1fq
d´1

“ Op2´kq
ÿ

r̂Ptp̂,Fp̂u

m̂λr̂ipp1fq
d´1

“ Op2´kq 9pu
i pr1fq “ Op2´kq 9pu

i pb1fq, (2.9.40)

where the last step follows by rearranging the terms. Combining the above gives

∆ 9pu
pp1fq ď Opdq}∆m̂λp̂`∆m̂λFp̂}1 max

i“1,2
9pu
i pb1fq. (2.9.41)

Clearly, similar bounds hold if we replace p1f with any of p0f, fp1, or fp0.

3. Lastly we bound ∆ 9puppxpyq. As in the single-copy recursion, for x, y P t0, 1u we denote

9rpRx 9σq ” 9rprx 9σq ´ 9rpbx 9σq,
9rp 9σRxq ” 9rp 9σrxq ´ 9rp 9σbxq,
9rpRxRyq ” 9rprxryq ´ 9rprxbyq ´ 9rpbxryq ` 9rpbxbyq.
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Applying (2.9.37) gives

9pu
i pRxryq “ rp̂ipbxpyqs

d´1 “ Op2´kqrp̂ippxpyqs
d´1 “ Op2´kq 9pu

i prxryq,
9pu
i pRxRyq “ rp̂ipbxbyqs

d´1 “ Op2´kq 9pu
i prxryq.

Combining the above estimates gives

9pu
i prxryq ´ 9pu

i pbxbyq “ 9pu
i pRxryq ` 9pu

i prxRyq ´ 9pu
i pRxRyq “ Op2´kq 9pu

i prxryq.

Further, it follows from the bp equations that

maxt 9pu
i prxRyq, 9p

u
i pbxRyq, 9p

u
i pRxryq, 9p

u
i pRxbyqu ď 9pu

i prxryq ´ 9pu
i pbxbyq,

so 9pu
i pstq “ r1`Op2

´kqs 9pu
i pbxbyq for all s P trx, bxu, t P try, byu.

(2.9.42)

Similarly, we can upper bound

∆ 9pu
ppxpyq ď 4r∆ 9pu

prxryq `∆ 9pu
pRxryq `∆ 9pu

prxRyq `∆ 9pu
pRxRyqs.

ď Opdq
ÿ

r̂Ptp̂,Fp̂u

ÿ

sPtpx,bxu
tPtpy ,byu

}∆m̂λr̂}1rm̂
λr̂maxpstqs

d´2. (2.9.43)

For r̂ P tp̂, Fp̂u, let a “ arg maxi“1,2 m̂
λr̂ipb1b1q: then, for any s P tpx, bxu, t P tpy, byu,

0 ď m̂λr̂maxpstq ´max
i“1,2

m̂λr̂ipstq ď m̂λr̂maxpstq ´ m̂
λr̂apstq

ď Op1q∆m̂λr̂ptppuztbbuq ď Op1{2p1`cqkq,

where the last estimate is by (2.9.23). Combining with (2.9.4) and (2.9.42) gives

ÿ

sPtpx,bxu
tPtpy ,byu

rm̂λr̂maxpstqs
d´2

“ Op1q
”

max
i“1,2

r̂ippxpyq
ıd´1

“ Op1qmax
i“1,2

9pu
i pbbq.

Substituting into (2.9.43) gives

∆ 9pu
ppxpyq ď Opdq}∆m̂λp̂`∆m̂λFp̂}1 max

i“1,2
9pu
i pbbq. (2.9.44)

Further, for any st P trxRy, Rxry, RxRyu, we have

∆ 9pu
pstq ď Opkq}∆m̂λp̂`∆m̂λFp̂}1 max

i“1,2
9pu
i pbbq. (2.9.45)

Lastly, in the special case p̂2 “ Fp̂1, (2.9.44) reduces to

| 9pu
1pb0b0q ´ 9pu

1pb0b1q| ď Opdq}m̂λp̂1 ´ m̂
λFp̂1}1 9p

u
1pbbq

ď k52p1´2κqk} 9pi ´ F 9pi}1.
(2.9.46)

where the last estimate is by (2.9.24).
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Step II. Normalized messages. Recall q̃i ” BP 9qi. It remains to verify that q̃i P Γpc1, 1q with
c1 “ maxt0, 2κ´ 1u: recalling (2.4.6), this means

(a)
ř

9σRtbbup2
´kqrr 9σspp 9σq “ Op2´kqppbbq, |ppb0b0q ´ ppb0b1q| ď pk

9{2c
1kqppbbq,

(b) ppfrq “ Op2´kqppbbq, pprrq “ Op1qppbbq,

(c) pprx 9σq ě r1´Op2
´kqsppbx 9σq for all x P t0, 1u and 9σ P 9Ω.

(2.9.47)
Condition (c) is automatically satisfied due to the bp equations. The second part of (b)
follows from (2.9.42). The second part of (a) holds trivially in the case c1 “ 0, and otherwise
follows from (2.9.46). We claim that

q̃iptrf, fr, ffuq “ Op2´kqq̃ipbbq. (2.9.48)

This immediately implies the first part of (b). Further, the bp equations give q̃ipbfq ď q̃iprfq
and q̃ipfbq ď q̃ipfrq, so the first part of (a) also follows. To see that (2.9.48) holds, note that
the second part of (2.9.26) gives

9pu
i pffq ď Op1q

ÿ

r̂Ptp̂,Fp̂u

rm̂λr̂ipffqs
d´1

ď Op1q
ÿ

r̂Ptp̂,Fp̂u

rm̂λr̂ipb1b1qs
d´1,

9pu
i pr1fq ď Op1q

ÿ

r̂Ptp̂,Fp̂u

rm̂λr̂ipp1fqs
d´1

ď Op1q
ÿ

r̂Ptp̂,Fp̂u

rm̂λr̂ipp1b1qs
d´1.

Combining with (2.9.37) gives 9pu
i ptr1f, ffuq “ Op2´kq 9pu

i pr1r1q. Recalling (2.9.42) (and mak-
ing use of symmetry) gives (2.9.48). Finally, we conclude the proof of the lemma by bounding
the difference ∆q̃ ” |q̃1 ´ q̃2|. Recalling the definition of Rx, we have

∆q̃pppq ď Op1q∆q̃ptbb, rR, Rr, RRuq,

∆q̃p 9Ω2ztppuq ď Op1q∆q̃ptbf, fb, ff, fR, Rfuq.

We next bound ∆q̃pbbq, which is the sum of ∆q̃pbxbyq over x, y P t0, 1u. By symmetry let
us take x “ y “ 0. Since q̃i “ pq̃iq

avg, q̃ipb0b0q “
1
4
q̃ipbbq `

1
2
rq̃ipb0b0q ´ q̃ipb0b1qs, so

∆q̃pb0b0q À |q̃1pbbq ´ q̃2pbbq| `
ÿ

i“1,2

|q̃ipb0b0q ´ q̃ipb0b1q|.

Since the q̃i are normalized to be probability measures,

1´ q̃ip 9Ω
2
ztppuq “ q̃ipppq “ 2q̃iprRq ` 2q̃ipRrq ´ 3q̃ipRRq ` 4q̃ipbbq,

from which it follows that

|q̃1pbbq ´ q̃2pbbq| À |q̃1p 9Ω
2
ztppuq ´ q̃2p 9Ω

2
ztppuq| `∆q̃ptrR, Rr, RRuq.

Combining the above estimates gives

}∆q̃}1 À ∆q̃pAq `
ÿ

i“1,2

|q̃ipb0b0q ´ q̃ipb0b1q|, A ” tbf, fb, ff, fR, Rf, rR, Rr, RRu.
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Write 9Zi ” } 9p
u
i }1. Taking a P t1, 2u and b “ 2´ a,

}∆q̃}1 ď e1 ` e2e3 ` e4 with e1 ”
∆ 9pupAq

9Za
, e2 ”

| 9Z1 ´ 9Z2|

9Za
ď
}∆ 9pu}1

9Za
,

e3 ”
9pu
b pAq

9Zb
, e4 ”

ÿ

i“1,2

| 9pu
i pb0b0q ´ 9pu

i pb0b1q|

9Zi
.

It follows from (2.9.38), (2.9.41), (2.9.45) and (2.9.48), and taking a “ arg maxi 9p
u
i pbbq, that

e1 À }∆m̂
λp̂`∆m̂λFp̂}1pd{2

k
qmax
i“1,2

9pu
i pbbq{

9Za À k}∆m̂λp̂`∆m̂λFp̂}1.

Further, recalling (2.9.44) gives

e2 À k2k}∆m̂λp̂`∆m̂λFp̂}1.

Combining (2.9.40), (2.9.42), and (2.9.48) gives e3 “ Op2´kq. Finally, (2.9.46) gives

e4 À k2k}m̂λp̂i ´ m̂
λFp̂i}1.

Combining the pieces together finishes the proof.

2.10 The 1RSB free energy

2.10.1 Equivalence of recursions

In this section, we relate the coloring recursion (2.4.4) to the distributional recursion (2.1.7).
The main task of this section is to show the following

Proposition 2.10.1. Let 9qλ be the fixed point given by Proposition 2.4.2 for parameters
λ P r0, 1s and T “ 8. Let Hλ ” p 9Hλ, Ĥλ, H̄λq be the associated triple of measures defined by
Proposition 2.3.7. Then pspHλq,ΣpHλq,F pHλqq “ psλ,Σpsλq,Fpλqq.

In the course of proving Proposition 2.10.1, we will obtain Proposition 2.1.2 as a corollary.
Throughout the section we take T “ 8 unless explicitly indicated otherwise. We begin
with some notations. Recall that PpXq is the space of probability measures on X. Given
9q P Pp 9Ωq, we define two associated measures 9mλ 9q, p1´ 9mqλ 9q on 9Ω by

p 9mλ 9qqp 9σq ” 9mp 9σqλ 9qp 9σq, pp1´ 9mqλ 9qqp 9σq ” p1´ 9mp 9σqqλ 9qp 9σq,

We let 9π ” 9πp 9qq be the probability measure on 9M zt‹u given by

9πp 9τq “

"

r1´ 9qprqs´1 9qp 9τq if 9τ P 9Ωf,
r1´ 9qprqs´1 9qpbxq if 9τ “ x P t0, 1u.
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Recalling the definition (2.2.4) of the mapping 9m : 9Ω Ñ r0, 1s, we denote the pushforward
measure 9u ” 9up 9qq ” 9π˝ 9m´1, so that 9u belongs to the space P of discrete probability measures
on r0, 1s. Analogously, given q̂ P PpΩ̂q, we define two associated measures m̂λq̂, p1 ´ m̂qλq̂

on Ω̂. We let π̂ ” π̂pq̂q be the probability measure on M̂ zt‹u given by

π̂pτ̂q ”

"

r1´ q̂pbqs´1q̂pτ̂q if τ̂ P Ω̂f,
r1´ q̂pbqs´1q̂prxq if τ̂ “ x P t0, 1u.

Recalling the definition (2.2.5) of the mapping m̂ : Ω̂ Ñ r0, 1s, we denote the pushforward
measure û ” ûpq̂q ” π̂ ˝ m̂´1, so that û P P also. The next two lemmas follow straightfor-
wardly from the above definitions, and we omit their proofs:

Lemma 2.10.2. Suppose 9q P Pp 9Ωq satisfies 9q “ 9qavg and

9mλ 9qpfq “ 9qpr1q ´ 9qpb1q “ 9qpr0q ´ 9qpb0q “ p1´ 9mqλ 9qpfq (2.10.1)

Then q̂ ” B̂P 9q P PpΩ̂q must satisfy q̂ “ q̂avg and

m̂λq̂pfq “ q̂pb1q “ q̂pb0q “ p1´ m̂q
λq̂pfq, (2.10.2)

Let ẑ ” p ˆNBP 9qq{pB̂P 9qq be the normalizing constant. Then 9u ” 9up 9qq and û ” ûpq̂q satisfy

û “ R̂λp 9uq, Ẑλp 9uq “
ẑp1´ q̂pbqq

p1´ 9qprqqk´1
. (2.10.3)

Lemma 2.10.3. Suppose q̂ P PpΩ̂q satisfies q̂ “ q̂avg and (2.10.2). Then 9q ” B̂Pq̂ P Pp 9Ωq
must satisfy 9q “ 9qavg and (2.10.1). Let 9z ” p 9NBPq̂q{p 9BPq̂q be the normalizing constant: then

9u “ 9Rλpûq, 9Zλpûq “
9zp1´ 9qprqq

p1´ q̂pbqqd´1
. (2.10.4)

Proof of Proposition 2.1.2. This is simply a rephrasing of the proof of Proposition 2.4.2,
using Lemma 2.10.2 and Lemma 2.10.3.

We next prove Proposition 2.10.1. In the remainder of this section, fix λ P r0, 1s and
T “ 8. Let 9q ” 9qλ be the fixed point of BP ” BPλ,8 given by Proposition 2.4.2. Let q̂ ” q̂λ
denote the image of 9q under the mapping B̂P ” B̂Pλ,8. Denote the associated normalizing
constants

ẑ ” ẑλ ” p ˆNBP 9qq{pB̂P 9qq, 9z ” 9zλ ” p 9NBPq̂q{p 9BPq̂q.

Let Hλ ” p 9Hλ, Ĥλ, H̄λq be the triple of associated measures defined as in Proposition 2.3.7,

with normalizing constants p 9Zλ, Ẑλ, Z̄λq. Recall from (2.1.9) that Fpλq “ ln 9Zλ ` α ln Ẑλ ´
d ln Z̄λ. We now show that it coincides with F pHλq:



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 90

Lemma 2.10.4. Under the above notations, F pHλq “ ln 9Zλ ` α ln Ẑλ ´ d ln Z̄λ, and

Z̄λ “
Z̄λ

p1´ 9qλprqqp1´ q̂λpbqq
, 9Zλ “

9Zλ

p1´ q̂λpbqqd
, Ẑλ “

Ẑλ

p1´ 9qλprqqk
. (2.10.5)

Consequently Fpλq “ F pHλq.

Proof. It follows from (2.3.9) (and recalling (2.3.5) that Φ̂pσqλ “ Φ̂maxpσqλv̂pσq) that

F pHλq “ xlnp 9Φ
λ
{ 9Hq, 9Hλy ` αxlnpΦ̂

λ
{Ĥλq, Ĥλy ` dxlnpΦ̄

λH̄λq, H̄λy.

Substituting in (2.3.12) and rearranging gives

F pHλq ´

´

ln 9Zλ ` α ln Ẑλ ´ d ln Z̄λ

¯

“ ´

A

d
ÿ

i“1

ln q̂λpσ̂iq, 9Hλ

E

´ α
A

k
ÿ

i“1

ln 9qλp 9σiq, Ĥλ

E

` dxlnr 9qλp 9σqq̂λpσ̂qs, H̄λy.

This equals zero by (2.3.13). The proof of (2.10.5) is straightforward from the preceding
definitions, and is omitted.

Proof of Proposition 2.10.1. By similar calculations as above, it is straightforward to verify
that sλ “ spHλq. Since by definition Fpλq “ λsλ ` Σpsλq and F pHλq “ λspHλq `ΣpHλq, it
follows that Σpsλq “ ΣpHλq, concluding the proof.

2.10.2 Large-k asymptotics

We now evaluate the large-k asymptotics of the free energy, beginning with (2.1.9). Let 9µλ
be as given by Proposition 2.1.2, and write µ̂λ ” R̂λp 9µλq. In what follows it will be useful
to denote

ψλ ”

ż

xλ1tx P p0, 1qu 9µλpdxq, ρλ ”

ż

yλ1ty P p0, 1qzt1
2
uuµ̂λpdyq.

Proposition 2.10.5. For k ě k0, αlbd ď α “ p2k´1 ´ cq ln 2 ď αubd, and λ P r0, 1s,

ln 9Zλ “ ln 2´ p1´ 2λ´1
q{2k ` d ln

´

2´λµ̂λp
1
2
q ` µ̂λp1q ` ρλ

¯

` err, (2.10.6)

´d ln Z̄ “ ´d ln
´

2´λµ̂λp
1
2
q ` µ̂λp1q ` ρλ

¯

´ pk ln 2qr´ 9µλpfq ` 2ψλs ` err, (2.10.7)

α ln Ẑ “ α lnp1´ 2{2kq ` pk ln 2qp´ 9µλpfq ` 2ψλq ` err, (2.10.8)

where err denotes any error bounded by kOp1q{4k. Altogether this yields

Fpλq “ frspαq ´ p1´ 2λ´1
q{2k ` err “ rp2c´ 1q ln 2´ p1´ 2λ´1

qs{2k ` err.

On the other hand λsλ “ λpln 2q2λ´1{2k ` err.
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Proof of Proposition 2.1.5. Apply Proposition 2.10.5: setting Fpλq “ λsλ gives

αλ “ p2
k´1

´ cλq ln 2` err, cλ “
1

2
`

1´ 2λ´1p1´ λ ln 2q

2 ln 2
.

Substituting the special values λ “ 1 and λ “ 0 gives

ccond “ c1 “ 1, csat “ c0 “
1

2
`

1

4 ln 2
,

as claimed.

Proof of Proposition 2.10.5. Throughout the proof we abbreviate εk for a small error term
which may change from one occurrence to the next, but is bounded throughout by kC{4k for
a sufficiently large absolute constant C. Note that

µ̂λp
1
2
q “ 1´ 2 ¨

21´λ

2k
` εk, µ̂λp1q “ µ̂λp0q “

21´λ

2k
` εk, µ̂λpp0, 1qzt

1
2
uq “ εk,

from which it follows that ρλ “ εk. Meanwhile, ψλ is upper bounded by 9µλpfq ” 9µλpp0, 1qq,
and we will show below that

9µλpfq “
2λ´1

2k
` εk. (2.10.9)

Estimate of 9Zλ. Recall from the definition (2.1.8) that

9Zλ “

ż
ˆ d
ź

i“1

yi `
d
ź

i“1

p1´ yiq

˙λ d
ź

i“1

µ̂λpdyiq.

Let 9Zλpfq denote the contribution to 9Zλ from free variables, meaning yi P p0, 1q for all i.
This can be decomposed further into the contribution 9Zλpf1q from isolated free variables
(meaning yi “ 1{2 for all i) and the remainder 9Zλpfě2q. We then calculate

9Zλpf1q “ 2λ
´

2´λµ̂λp
1
2
q

¯d

.

This dominates the contribution from non-isolated free variables:

9Zλpfě2q “

d
ÿ

j“1

ˆ

d

j

˙ˆ
ż

yλ1ty P p0, 1qzt1
2
uuµ̂λpdyq

˙j
´

2´λµ̂λp
1
2
q

¯d´j

ď Op1qdµ̂λpp0, 1qzt
1
2
uq

´

2´λµ̂λp
1
2
q

¯d

ď 9Zλpf1qk
Op1q
{2k.

Next let 9Zλp1q denote the contribution from variables frozen to 1:

9Zλp1q “
´

ż

yλµ̂λpdyq
¯d

´

´

ż

yλ1ty P p0, 1quµ̂λpdyq
¯d

“

´

2´λµ̂λp
1
2
q ` µ̂λp1q ` ρλ

¯d

´ 2´λ 9Zλpf1q ` εk.
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The ratio of free to frozen variables is given by

9Zλpfq

2r 9Zλp1q ` 2´λ 9Zλpfqs
“

2λ

2

ˆ

µ̂λp
1
2
q

µ̂λp
1
2
q ` 2λµ̂λp1q

˙d

` εk “
2λ´1

2k
` εk.

Combining these yields (2.10.6). The proof of (2.10.9) is very similar.

Estimate of Z̄λ. Recall from the definition (2.1.8) that

Z̄λ “

ż

´

xy ` p1´ xqp1´ yq
¯λ

9µλpdxqµ̂λpdyq.

The contribution to Z̄ from x “ 1 is given by

Z̄λpx “ 1q “ 9µλp1q
´

2´λµ̂λp
1
2
q ` µ̂λp1q ` ρλ

¯

.

There is an equal contribution from the case x “ 0. Next, the contribution from x P p0, 1q
and y “ 1{2 is given by

Z̄λpx P p0, 1q, y “ 1{2q “ 9µλpfq2
´λµ̂λp

1
2
q.

Lastly, the contribution from x P p0, 1q and y “ 1 is given by

Z̄λpx P p0, 1q, y “ 1q “ µ̂λp1qψλ,

and there is an equal contribution from the case x P p0, 1q and y “ 0. The contribution from
the case that both x, y P p0, 1q is ď kOp1q{8k. Combining these estimates gives

d ln Z̄λ “ d ln
´

2´λµ̂λp
1
2
q ` 2 9µλp1qµ̂λp1q ` 2 9µλp1qρλ ` 2µ̂λp1qψλ

¯

` εk

“ d ln
´

2´λµ̂λp
1
2
q ` µ̂λp1q ` ρλ

¯

` d ln
´

1`
µ̂λp1qr´ 9µλpfq ` 2ψλs

2´λµ̂λp
1
2
q ` µ̂λp1q

¯

` εk.

Recalling µ̂λ “ R̂ 9µλ gives

d ln
´

1`
µ̂λp1qr´ 9µλpfq ` 2ψλs

2´λµ̂λp
1
2
q ` µ̂λp1q

¯

“ d 9µλp0q
k´1
r´ 9µλpfq ` 2ψλs ` εk,

and (2.10.7) follows.

Estimate of Ẑλ. Recall from the definition (2.1.8) that

Ẑλ “

ż
ˆ

1´
k
ź

i“1

xi ´
k
ź

i“1

p1´ xiq

˙ k
ź

i“1

9µλpxiq.

The contribution to Ẑ from separating clauses is

1´ 2 9µλp0, fq
k
` 9µλpfq

k
“ 1´ p2{2kqp1` k 9µpfqq ` kOp1q{8k.
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The contribution from clauses which are forcing to some variable that is not forced by any
other clause is 2k 9µλp0q

k´1ψλ. The contribution from all other clause types is ď kOp1q{8k, and
(2.10.8) follows.

Estimate of sλ. Recall from (2.1.10) the definition of sλ. By similar considerations as
above, it is straightforward to check that the total contribution from frozen variables, edges
incident to frozen variables, and separating or forcing clauses is zero. The dominant term is
the contribution of isolated free variables, and the estimate follows.

2.10.3 Properties of the complexity function

We conclude by deducing some properties of the complexity function Σpsq.

Lemma 2.10.6. For fixed 1 ď T ă 8, the fixed point 9qλ,T is continuously differentiable as
a function of λ P r0, 1s.

Proof. Fix T ă 8 and define fT r 9q, λs ” BPλ,T r 9qs ´ 9q as the mapping from Pp 9ΩT q ˆ r0, 1s
to the set of signed measures on ΩT . Since function 9zp 9σq (ẑpσ̂q, respectively) can take only
finitely many values on 9ΩT (Ω̂T , respectively) and therefore must be uniformly bounded away
from 0. It is straightforward to check that for any λ P r0, 1s,

fT r 9q‹pλ, T q, λsp 9σq “ 0, @ 9σ P ΩT ,

and is uniformly differentiable in a neighborhood of tp 9q‹pλ, T q, λq : λ P r0, 1su.
For any other 9q in the contraction region (2.4.5), Proposition 2.9.1 guarantees that

}fT r 9q, λs ´ fT r 9q‹pλ, T q, λs}1 ě } 9q ´ 9q‹pλq}1 ´ }BPλ,T r 9qs ´ BPλ,T r 9q‹pλ, T qs}1

ě p1´Opk22´kqq} 9q ´ 9q‹pλ, T q}1.

Therefore the Jacobian matrix
´

BfT p 9σiq

B 9qp 9σjq

¯

9Ωˆ 9Ω

is invertible at each p 9q‹pλ, T q, λq. By implicit function theorem, 9q‹pλ, T q, as the solution of
fT r 9q, λs “ 0, is uniformly differentiable in λ.

Let us first fix T ă 8 and consider the clusters encoded by T -colorings. We have
explicitly defined ΣpHq and spHq. Let

Spsq ” suptΣpHq : spHq “ su,

with the convention that a supremum over an empty set is ´8. Thus Spsq is a well-defined
function which captures the spirit of the function Σpsq discussed in the introduction. (Note
S implicitly depends on T since the maximum is taken over empirical measures H which
are supported on T -colorings.) Recall that the physics approach [Krz+07] takes Spsq as a
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conceptual starting point. However, for purposes of explicit calculation the actual starting
point is the Legendre dual

Fpλq ” p´Sq‹pλq “ sup
sPR

!

λs` Spsq
)

“ sup
H
FλpHq,

where FλpHq ” λspHq `ΣpHq. The replica symmetry breaking heuristic gives an explicit
conjecture for F. One then makes the assumption that Spsq is concave in s: this means it is
the same as

Rpsq ” ´F‹psq “ ´p´Sq‹‹psq,

so if S is concave then it can be recovered from F.
We do not have a proof that Spsq is concave for all s, but we will argue that this holds on

the interval of s corresponding to λ P r0, 1s. Formally, for λ P r0, 1s, we proved that FλpHq
has a unique maximizer H‹ ” Hλ. This implies that there is a unique sλ which maximizes
λs` Spsq, given by

sλ “ spHλq.

Recall that Hλ and sλ both depend implicitly on T . We also have from Lemma 2.10.6 that
for any fixed T ă 8, sλ is continuous in λ, so it maps λ P r0, 1s onto some compact interval
I ” rs´, s`s. Define the modified function

Spsq ”

"

Spsq s P I,
´8 otherwise.

Lemma 2.10.7. For all s P R, Spsq “ ´p´Sq‹‹psq. Consequently the function S is concave,
and sλ is nondecreasing in λ.

Proof. The function ´Spsq has Legendre dual

Fpλq “ sup
sPR

!

λs` Spsq
)

“ sup
sPI

!

λs` Spsq
)

ď Fpλq.

For λ P r0, 1s it is clear that Fpλq “ Fpλq. It is straightforward to check that if λ ă 0 then

Fpλq ď max
sPI

λs`max
sPI

Spsq “ λsmin ` Sps0q,

so if s ă smin then

p´Sq‹‹psq “ pFq‹psq ě sup
λă0

!

λs´ Fpλq
)

ě sup
λă0

!

λps´ sminq ´ Sps0q

)

“ `8.

A symmetric argument shows that p´Sq‹‹psq “ `8 also for s ą smax. If s P I, we must have
s “ sλ˝ for some λ˝ P r0, 1s, and so

p´Sq‹‹psq ě λ˝s´ Fpλ˝q “ ´Spsq.

This proves p´Sq‹‹psq ě ´Spsq for all s P R. On the other hand, it holds for any function f
that f ‹‹ ď f , so we conclude p´Sq‹‹psq “ ´Spsq for all s P R. This implies that S is concave,
concluding the proof.
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Proof of Proposition 2.1.4. We can obtain Σpsq as the limit of Spsq in the limit T Ñ 8.
It follows from Lemma 2.10.7 together with Corollary 2.9.2 that it is strictly decreasing in
s.

2.11 Constrained entropy maximization

In this section we review some general theory for entropy maximization problems under
affine constraints.

2.11.1 Constraints and continuity

We will optimize a functional over non-negative measures ν on a finite space X (with |X| “
s), subject to some affine constraints Mν “ b. We begin by discussing basic continuity
properties. Denote

Hpbq ” tν ě 0u X tMν “ bu Ď Rs.

Let ∆ ” tν ě 0u X tx1, νy “ 1u, and let B denote the space of b P Rr for which

∅ ‰ Hpbq Ď ∆.

Then B is contained in the image of ∆ under M , so B is a compact subset of Rr.

Proposition 2.11.1. If F is any continuous function on ∆ and

F pbq “ maxtF pνq : ν P Hpbqu, (2.11.1)

then F is (uniformly) continuous over b P B.

Proposition 2.11.1 is a straightforward consequence of the following two lemmas.

Lemma 2.11.2. For b P B and any vector u in the unit sphere Sr´1, let

dpb, uq ” inftt ě 0 : b` tu R Bu.

There exists δ “ δpbq ą 0 such that

dpb, uq P t0u Y rδ,8q for all b P B.

Proof. B is a polytope, so it can be expressed as the intersection of finitely many closed
half-spaces H1, . . . , Hk, where Hi “ tx P Rr : xai, xy ď ciu. Consequently there is at least
one index 1 ď i ď k such that

dpb, uq “ inftt ě 0 : b` tu R Hiu.
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It follows that xai, uy ą 0 and

dpb, uq “
ci ´ xai, by

xai, uy
ě
ci ´ xai, by

|ai|
“ dpb, BHiq

where dpb, BHiq is the distance between b and the boundary of Hi. In particular, dpb, uq ą 0
if and only if xai, by ă ci, which in turn holds if and only if dpb, BHiq ą 0. It follows that for
all u P Sr´1 we have dpb, uq P t0u Y rδ,8q with

δ “ δpbq “ mintdpb, BHiq : dpb, BHiq ą 0u;

δ is a minimum over finitely many positive numbers so it is also positive.

Lemma 2.11.3. The set-valued function H is continuous on B with respect to the Hausdorff
metric dH, that is to say, if bn P B with limnÑ8 bn “ b then

lim
nÑ8

dHpHpbnq,Hpbqq “ 0.

Proof. Recall that the Hausdorff distance between two subsets X and Y of a metric space is

dHpX, Y q “ inftε ě 0 : X Ď Y ε and Y Ď Xε
u,

where Xε, Y ε are the ε-thickenings of X and Y . Any sequence νn P Hpbnq converges along
subsequences to limits ν P Hpbq, so for all ε ą 0 there exists n0pεq large enough that

Hpbnq Ď pHpbqqε, n ě n0pεq.

In the other direction, we now argue that if ν P Hpbq and b1 “ b ` tu for u P Sr´1 and t
a small positive number, then we can find ν 1 P Hpb1q which is close to ν. For u P Sr´1 let
dpb, uq be as in Lemma 2.11.2, and take νpb, uq to be any fixed element of Hpb ` dpb, uquq
(which by definition is nonempty). Since we consider b1 “ b ` tu for t ą 0, we can assume
that dpb, uq is positive, hence ě δpbq by Lemma 2.11.2. We can express b1 “ b ` tu as the
convex combination

b1 “ p1´ εqb` εrb` dpb, uqus, ε “
t

dpb, uq
“
|b1 ´ b|

dpb, uq
ď
|b1 ´ b|

δ
.

Then ν 1 “ p1´ εqν ` ενpb, uq P Hpb1q, so

|ν 1 ´ ν| “ ε|νpb, uq ´ ν| ď
pdiam ∆q|b´ b1|

δ

This implies Hpbq Ď pHpbnqq
ε for large enough n, and the result follows.
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Proof of Proposition 2.11.1. Take ν P Hpbq so that F pbq “ F pνq. If b1 “ b ` tu P B for
u P Sr´1, then Lemma 2.11.3 implies that we can find ν 1 P Hpb1q with |ν 1 ´ ν| “ otp1q,
where otp1q indicates a function tending to zero in the limit t Ó 0, uniformly over u P Sr´1. It
follows that F pνq “ F pν 1q`otp1q, since F is uniformly continuous on ∆ by the Heine–Cantor
theorem. Therefore

F pbq “ F pνq “ F pν 1q ` otp1q ď F pb1q ` otp1q.

By the same argument F pb1q ď F pbq ` otp1q, concluding the proof.

When solving (2.11.1) for a fixed value of b P B, it will be convenient to make the
following reduction:

Remark 2.11.4. Suppose M is an rˆs matrix where s “ |X|. We can assume without loss
that M has full rank r, since otherwise we can eliminate redundant constraints. We consider
only b P B, meaning ∅ ‰ Hpbq Ď ∆. The affine space tMν “ bu has dimension s ´ r; we
assume this is positive since otherwise Hpbq would be a single point. Then, if Hpbq does not
contain an interior point of tν ě 0u, it must be that

X˝ ” tx P X : Dν P tν ě 0u X tMν “ bu so that νpxq ą 0u

is a nonempty subset of X. In this case, it is equivalent to solve the optimization problem
over measures ν˝ on the reduced alphabet X˝, subject to constraints M 1ν˝ “ b where M 1

is the submatrix of M formed by the columns indexed by X˝. Then, by construction, the
space

H˝pbq “ tν˝ ě 0u X tM 1ν˝ “ bu

contains an interior point of tν˝ ě 0u. The matrix M 1 is r ˆ s˝ where s˝ “ |X˝|; and if
M 1 is not of rank r then we can again remove redundant constraints, replacing M 1 with
an r˝ ˆ s˝ submatrix M˝ which has full rank r˝. We emphasize that the final matrix M˝

depends on b. In conclusion, when solving (2.11.1) for a fixed b P B, we may assume with
no essential loss of generality that the original matrix M is r ˆ s with full rank r, and that
Hpbq “ tν ě 0u X tMν “ bu contains an interior point of tν ě 0u. It follows that this space
has dimension s´ r ą 0, and its boundary is contained in the boundary of tν ě 0u.

2.11.2 Entropy maximization

We now restrict (2.11.1) to the case of functionals F which are concave on the domain
tν ě 0u. It is straightforward to verify from definitions that the optimal value F pbq is
(weakly) concave in b. Recall that the convex conjugate of a function f on domain C is the
function f ‹ defined by

f ‹px‹q “ suptxx‹, xy ´ fpxq : x P Cu.

Denote Gpγq ” p´F q‹pM tγq, and consider the Lagrangian functional

Lpγ; bq “ suptF pνq ` xγ,Mν ´ by : ν ě 0u “ ´xγ, by `Gpγq.
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It holds for any γ P Rr that Lpγ; bq ě F pbq, so

F pbq ď inftLpγ; bq : γ P Rr
u “ ´G‹pbq. (2.11.2)

Now assume ψ is a positive function on X, and consider (2.11.1) for the special case

F pνq “ Hpνq ` xν, lnψy “
ÿ

xPX

νpxq ln
ψpxq

νpxq
. (2.11.3)

We remark that the supremum in p´Hq‹pν‹q “ suptxν‹, νy ` Hpνq : ν ě 0u is uniquely
attained by νoptpxq “ expt´1` ν‹pxqu, yielding

p´Hq‹pν‹q “ xνopt
pν‹q, 1y “

ÿ

x

expt´1` ν‹pxqu.

This gives the explicit expression

Gpγq “ p´F q‹pM tγq “ p´Hq‹plnψ `M tγq “
ÿ

x

ψpxq expt´1` pM tγqpxqu. (2.11.4)

Lemma 2.11.5. Assume ψ is a strictly positive function on a set X of size s and that M
is r ˆ s with rank r. Then the function Gpγq of (2.11.4) is strictly convex in γ.

Proof. Let ν ” νpγq denote the measure on X defined by

νpxq “ ψpxq expt´1` pM tγqpxqu,

and write xfpxqyν ” xf, νy. The Hessian matrix H ” HessGpγq has entries

Hi,j “
B2Lpγ; bq

BγiBγj
“

ÿ

xPX

νpxqMi,xMj,x “ xMi,xMj,xyν .

Let Mx denote the vector-valued function pMi,xqiďr, so

αtHα “ xpαtMxq
2
yν .

This is zero if and only if νptx P X : αtMx “ 0uq “ 1. Since ν is a positive measure, this
can only happen if αtMx “ 0 for all x P X, but this contradicts the assumption that M has
rank r. This proves that H is positive-definite, so G is strictly convex in γ.

Proposition 2.11.6. Let b P B such that Hpbq “ tν ě 0u X tMν “ bu contains an interior
point of tν ě 0u, and consider the optimization problem (2.11.1) for F as in (2.11.3). For
this problem, the inequality (2.11.2) becomes an equality,

F pbq “ inftLpγ; bq : γ P Rr
u “ ´G‹pbq.

Further, Lpγ; bq is strictly convex in γ, and its infimum is achieved by a unique γ “ γpbq.
The optimum value of (2.11.1) is uniquely attained by the measure ν “ νoptpbq defined by

νpxq “ ψpxq expt´1` pM tγqpxqu. (2.11.5)

For any µ P Hpbq, F pνq ´F pµq “ Hpµ|νq Á }ν ´ µ}2. Finally, in a neighborhood of b in B,
γ1pbq is defined and F pbq is strictly concave in b.
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Proof. Under the assumptions, the boundary of the set Hpbq is contained in the boundary of
tν ě 0u. The entropy H has unbounded gradient at this boundary, so for F as in (2.11.3),
the optimization problem (2.11.1) must be solved by a strictly positive measure ν ą 0. Since
ν ą 0, we can differentiate in the direction of any vector δ with Mδ “ 0 to find

0 “
d

dt

„

Hpν ` tδq ` xlnψ, ν ` tδy

ˇ

ˇ

ˇ

ˇ

t“0

“ xδ,´1´ ln ν ` lnψy.

Recalling Remark 2.11.4, we assume without loss that M is rˆs with rank r, since otherwise
we can eliminate redundant constraints. Then, since Mδ “ 0, for any γ P Rr we have

0 “ xδ, εy where ε “ ´1´ ln ν ` lnψ `M tγ.

We can then solve for γ so that Mε “ 0:7

γ “ pMM t
q
´1Mpln ν ´ lnψ ` 1q.

Setting δ “ ε in the above gives 0 “ }ε}2, therefore we must have ε “ 0. This proves the
existence of γ “ γpbq P Rr such that (2.11.1) is optimized by ν “ νoptpbq, as given by (2.11.5).
The optimal value of (2.11.1) is then

F pbq “ x1, νopt
pbqy ´ xM tγpbq, νopt

pbqy

“
ÿ

x

ψpxq expt´1` pM tγqpxqu ´ xγ, by

ˇ

ˇ

ˇ

ˇ

γ“γpbq

“ Lpγpbq, bq.

In view of (2.11.2), this proves that in fact

´G‹pbq “ inftLpγ, bq : γ P Rr
u “ mintLpγ, bq : γ P Rr

u “ Lpγpbq, bq “ F pbq

as claimed. Now recall from Lemma 2.11.5 that Gpγq is strictly convex, which implies that
Lpγ; bq is strictly convex in γ. Thus γ “ γpbq is the unique stationary point of Lpγ; bq.

These conclusions are valid under the assumption that Hpbq contains an interior point of
tν ě 0u, which is valid in a neighborhood of b in B. Throughout this neighborhood, γpbq is
defined by the stationarity condition b “ G1pγq. Differentiating again with respect to γ gives

b1pγq “ HessGpγq, γ1pbq “ rHessGpγpbqqs´1. (2.11.6)

We also find (in this neighborhood) that

F 1pbq “ ´γpbq, F 2pbq “ ´γ1pbq “ ´rHessGpγpbqqs´1,

so F is strictly concave.

7The matrix MM t is invertible: if MM tx “ 0 then M tx P kerM “ pimM tqK. On the other hand
clearly M tx P imM t, so M tx P pimM tq X pimM tqK “ t0u. Therefore x P kerM t, but M t is injective by
assumption.
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It remains to prove that F pνq ´ F pµq “ Hpµ|νq. (The estimate Hpµ|νq Á }µ ´ ν}2 is
well known and straightforward to verify.) For any measure µ,

´Hpµ|νq “ Hpµq ` xµ, lnpψ expt´1`M tγuqy.

Applying this with µ “ ν gives

0 “ ´Hpν|νq “ Hpνq ` xν, lnpψ expt´1`M tγuqy.

Subtracting these two equations gives

´Hpµ|νq “ Hpµq ´Hpνq ` xµ´ ν, lnψy ` xµ´ ν, lnpexpt´1`M tγuqy.

If Mν “Mν “ b then the last term vanishes, giving ´Hpµ|νq “ F pµq ´ F pνq.

Remark 2.11.7. Our main application of Proposition 2.11.6 is for the depth-one tree D

as shown in Figure 2.5.3. In the notation of the current section, X is the space of valid
T -colorings σ of D, and ψ : X Ñ p0,8q is defined by

ψpσq “ wDpσq
λ
“

"

9Φpσδvq
ź

aPBv

rΦ̄pσavqΦ̂pσδaqs

*λ

.

We then wish to solve the optimization problem (2.11.1) for F pνq as in (2.11.3), under the

constraint that ν has marginals 9htreep 9σq on the boundary edges LpDq. This can be expressed

as Mν “ 9h where M has rows indexed by the spins 9σ P 9Ω, columns indexed by valid
T -colorings ζ of D: the p 9σ, ζq entry of M is given by

Mp 9σ, ζq “ |LpDq|´1
ÿ

ePLpDq

1t 9ζe “ 9σu.

Recall Remark 2.11.4, let 9Ω` “ t 9σ P 9Ω : 9htreep 9σq ą 0u, and X˝ “ tζ P X : Mp 9σ, ζq “ 0 @ 9σ R
9Ωu. Let M` be the 9Ω` ˆ X˝ submatrix of M , and set 9qp 9σq “ 0 for all 9σ R 9Ω`. Next, in

the matrix M`, if the 9ζ row is a linear combination of other rows, then set 9qp 9ζq “ 1 and
remove this row. Repeat until we arrive at an 9Ω˝ˆX˝ matrix M˝ of full rank r˝ “ | 9Ω˝|. The
original problem reduces to an optimization over tν˝ ě 0u X tM˝ν˝ “ b˝u where b˝ denotes
the entries of b indexed by 9Ω˝. It follows from Proposition 2.11.6 that the unique maximizer
of (2.11.1) is the measure ν “ νoptpbq given by

νpσq “
1

Z
wDpσq

λ
“

1

Z

"

9Φpσδvq
ź

aPBv

rΦ̄pσavqΦ̂pσδaqs

*λ
ź

ePLpDq

9qpσeq.

Note however that if M` is not of full rank then 9q need not be unique.
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Chapter 3

Reconstruction threshold of graph
coloring

In this chapter we study the reconstruction threshold for k-coloring model on d-regular trees,
the main result is Theorem 2. We first give a formal definition of reconstruction threshold
using the broadcasting models on trees.

3.1 Introduction

The broadcast model on a tree is the process where information is sent from the root down-
ward, along edges acting as noisy channels, to the leaves of the tree. Given a tree T “ pV,Eq,
a finite set rks “ t1, . . . , ku of k values and a rks ˆ rks probability matrix M as the noisy
channel, the broadcast model on tree T is the probability measure on the space of configura-
tions rksV defined as follows: The spin σρ at the root ρ is chosen according to the stationary
distribution of M , denoted by π. Then for each vertex v P T with parent u, the spin σv is
chosen according to the conditional distribution Ppσv “ i | σu “ jq “ Mpi, jq. For example,
the coloring model has alphabet rks and probability matrix Mpi, jq “ 1

k´1
1ti ‰ ju. One

can check that the measure defined by the broadcasting process is the same as the Gibbs
measure defined in Definition 1.1.1 with G “ T .

For technical convenience and independent interest, we allow randomness in the under-
lying trees. For any probability distribution ξ on the set of non-negative integers Z`, we let
Tξ denote the distribution of Galton-Watson tree with offspring distribution ξ. Two special
cases of interest are the d-ary tree Td and the Galton-Watson tree TPoispdq with Poisson off-
spring distribution of average degree d, which are the local weak limit of random d-regular
graphs and Erdős-Rényi random graphs respectively. The definition of broadcast model can
be easily generalized to the (first finite levels of) Galton-Watson trees.

Given a (possibly random) infinite tree, the reconstruction problem asks if the distribution
of the state of the root is affected by the configuration on the n’th level as n goes to infinity.
More precisely, let Tn be the first n levels of tree T and Ln be its set of vertices at level n.



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 102

Write Tn “ T, Ln “ ∅ if T has fewer than n levels.

Definition 3.1.1 (Reconstruction). Given a family of Galton-Watson trees Tξ, we say that
the broadcast model with alphabet rks is reconstructible for Tξ if there exist i, j P rks such
that,

lim sup
nÑ8

ET„TξdTVpPpσLn “ ¨ | T, σρ “ iq,PpσLn “ ¨ | T, σρ “ jqq ą 0,

where dTV is the total-variation distance. Otherwise, we say that it is non-reconstructible.

Non-reconstruction implies that on average the spins on the distant levels have a vanishing
effect on the root. Equivalently, it corresponds to the mutual information between the
root and the leaves going to 0 (see e.g. [Mos04] for more equivalent definitions). Apart
from the study of random CSPs, reconstruction of broadcast models also emerge in many
other settings, for example in biology it determines a phase transition for the information
requirements for phylogenetic reconstruction [DMR11].

Locating the exact reconstruction threshold has only been achieved in a small number
of spin systems, the symmetric [Eva+00] and near-symmetric binary channels [Bor+06] and
the three state symmetric channel with large degrees [Sly11]. For the k-coloring model
only bounds are known which match in the first and second order asymptotic term. In one
direction, the model is non-reconstructible whenever [Bha+11; Sly09; Eft15]

d ď kpln k ` ln ln k ` 1´ ln 2` okp1qq. (3.1.1)

In the other direction, one need to find algorithms that reconstruct the root better than
random guess. One simple algorithm is to reconstruct the root only when it is uniquely
determined by the leaves. Calling the root in such case frozen. We define the freezing
threshold as follows.

Definition 3.1.2 (Freezing). Given a family of Galton-Watson tree Tξ, we say that the
broadcast model with alphabet rks is frozen for Tξ if

lim sup
nÑ8

PT„Tξpσρ is uniquely determined by σLnq ą 0.

The exact location of the freezing threshold for Poisson tree TPoispdq has been calculated in
[Mol12]. Following a similar calculation for Td, one can show that for k ě k0, the k-coloring
model is frozen if and only if (see also [MP03; Sem08])

d ą dfk :“

#

infxą0 x ln´1
´

1´ p1´e´xqk

k´1

¯

Td

infxą0
pk´1qx
p1´e´xqk

TPoispdq

“ kpln k ` ln ln k ` 1` okp1qq. (3.1.2)

Moreover, [Mol12] proves that the freezing threshold for k-colorings on TPoispdq corresponds
to the rigidity threshold on Erdős-Rényi graph.

It is easy to see that the k-coloring problem is reconstructible on Tξ if it is frozen. Indeed,
the freezing threshold gives the best known upper bound for reconstruction threshold with
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the only exception of d “ 5 and k “ 14, in which case reconstruction is proved in [MM06]
using a variational principle. The main result of this chapter is the following theorem showing
that the reverse statement is not true for large k. Throughout we will assume that k exceeds
a large enough absolute constant k0, where the exact value may vary from place to place.

Theorem 2. There exists a constant β˚ ă 1 such that for any k ě k0 the k-coloring model
is reconstructible for both Td and TPoispdq for d satisfying

d ě kpln k ` ln ln k ` β˚q. (3.1.3)

Remark 3.1.3. The numerical result in [ZK07] suggests that the actual reconstruction
threshold has a constant term roughly in the middle of 1´ ln 2 and 1, for technical reasons
we only show reconstruction for β˚ close to the freezing threshold 1.

We hope that the result of this chapter can contribute to the study of clustering phase
transition of random CSPs in two directions. First, we show for the first time that the gap
between reconstruction threshold and freezing threshold on trees is linear in k. This combined
with the conjecture that reconstruction coincides with clustering strongly suggests a distinct
phase where the solution space are clustered but non-frozen. It will be of great interest
to analyze algorithms in this region. Secondly, the distributional recursion involved in the
reconstruction problem (known as the averaged 1RSB equation in physics jargon [MM09])
is closely related to the BP recursion, thus in bounding the fixed point of the reconstruction
recursion, we hope to provide additional information on the fixed point of the BP recursion,
and shed light on the structure of the clusters.

3.1.1 Outline of the proof

Theorem 2 follows from a detailed analysis of the distributional tree recursion. We begin
by specifying the distribution of the reconstruction probability Ppσρ “ ¨ | σLnq on n-level
trees as a function of the distribution on pn ´ 1q-level trees Ppσρ “ ¨ | σLn´1q. This defines
a distributional recursion on the set of probability measures on the k dimensional simplex
∆k. For the purpose of proving reconstruction, it is enough to show that the recursion
has a non-trivial fixed point, which is done in two steps: First we show that there exists
a non-trivial measure µ on ∆k such that after one step of the recursion the new measure
stochastically dominates the original one. This step is done in Section 3.3. Given the result
of stochastic dominance, we provide a randomized algorithm such that the distribution of
the reconstruction probability equals µ on trees of any depth, which is done in Section 3.2.

3.2 Reconstruction algorithm

We begin by introducing the notations we will be using throughout the proof. In general, we
will use U, V . . . for random variables and µ, ν for measures. To avoid complicated subscripts,
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we will use both U and µU for the distribution of U and use fU for its density (using delta
functions for atoms). For any function φ, we write φ ˝ µ for the distribution of φpXq, where
X is a random sample of µ, denoted as X „ µ. We will use B ‘ C to denote the (measure
of) the sum of two independent copies of B and C, and a b B to denote the sum of a i.i.d.
copies of B. One should distinguish these two operators with ` and ¨, the usual addition
and scaler multiplication of measures. By definition, we have

µB‘C “ µB ˚ µC , µabB “ µB ˚ µB ˚ ¨ ¨ ¨ ˚ µB
looooooooomooooooooon

a times

.

For any space Ω, we will use MpΩq to denote the space of probability measures on Ω. A
substantial portion of our proof will be comparing different measures. For that sake, we
define the following partial order on MpRq, where R ” R Y t´8,8u is the extended real
numbers.

Definition 3.2.1 (Stochastic dominance). For µ, ν P MpRq, we say that ν stochastically
dominates µ, denoted by µ ă ν, if for any x P R, µpr´8, xsq ě νpr´8, xsq. Moreover, for
any ε ą 0, we say that ν stochastically dominates µ by ε, denoted by µ ăε ν, if for any x P R,
we have either µpr´8, xsq “ 1 or νpr´8, xsq “ 0 or µpr´8, xsq ´ ε ě νpr´8, xsq.

The following proposition gives two sufficient conditions of stochastic dominance that
will be used throughout the proof. The proof of proposition should be trivial.

Proposition 3.2.2. Let X, Y be two arbitrary independent random variables

1. If µX , µY are absolutely continuous and fXpyq ď fY pyq for all y satisfying PpY ě yq ą
0, then X ą Y .

2. If X stochastically dominates Y by ε, then for any random variable X 1 such that PpX ‰

X 1q ď ε and tx1 : PpX 1 ă x1q “ 0u Ď ty : PpY ă yq “ 0u, X 1 also stochastically
dominates y.

3.2.1 k-coloring model and the tree recursion

In this section we give the distributional recursion involved in the reconstruction problem.
Recall that rks “ t1, . . . , ku denotes the set of k-colors and let T “ pV,Eq „ Tξ be an
instance of the Galton-Watson tree of offspring distribution ξ with root ρ. For each n ě 1,
let Tn “ pVn, Enq denote the restriction of T to its first n levels and let Ln be the leaves of
Tn. For each n, the k-coloring model restricted on Tn is the uniform measure on the set of
proper colorings

Ωn :“ tσ P rksVn : σu ‰ σv, for all e “ pu, vq P Enu.

And we will use ΩpLnq to denote the set of possible configurations on Ln.
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For any η P ΩpLnq and l P rks, let fn be the (deterministic) function defined as follows:

fnpl, η;T q :“ Ppσρ “ l|Tn, σLn “ ηq.

Given tree Tn and the observed configuration η P ΩpLnq, the maximum likelihood estimator
of σρ is the color l that achieves the maximum of fnpl, η;T q, and this estimation is correct
with probability maxl fnpl, η;T q. Let dρ be the degree of the root ρ of T , and u1, . . . , udρ be
the dρ offspring of the root ρ. For each 1 ď i ď dρ, let Ti be the subtree rooted at ui and
Lni “ LnXTi be the subset of Ln restricted to Ti. Given the color of ui, the configuration on
Ti is independent of the configuration on T zTi. A standard recursive calculation gives that,
for each η P ΩpLnq and l P rks,

fn`1pl, η;T q “

śdρ
i“1p1´ fnpl, ηi;Tiq

řk
m“1

śdρ
i“1p1´ fnpm, ηi;Tiqq

. (3.2.1)

To study one step of the recursion from a vertex, one first samples the number of offspring
from ξ then decides the color of each offspring accordingly. Let Ξl “ Ξlpn; ξq denote the
distribution of pTn, σLnq given σρ “ l and let pTn, η

lq be a sample from Ξl. Then the vector

of posterior probability ~Xn :“ pfnp1, η
1;T q, . . . , fnpk, η

1;T qq is a random vector in the k-
dimensional simplex ∆k :“ tpx1, . . . , xnq : xi ě 0,

řn
i“1 xi “ 1u. Let pTi, η

l
iq be the restriction

of pTn, η
lq onto Ti. By the symmetry between branches of Galton-Watson trees and the

symmetry between colors, we have that

pfnpm, η
l;T qqkm“1

d.
“ pXpm´l`1q

n q
k
m“1,

where we uses the notation xplq to denote the l-th entry of vector ~x, modulo k when neces-
sary. Furthermore, conditioned on the value of ~X

p1q
n , p ~X

p2q
n , . . . , ~X

pkq
n q are exchangeable. In

particular ~X
plq
n

d.
“ ~X

p2q
n for all l ‰ 1.

The distribution of ~Xn can be solved recursively using the following ∆k-valued function
Γ that takes an indefinite number of variables: Let

Γpmqp~xi,l, l “ 1, . . . k, i “ 1, . . . blq :“

śk
l“2

śbl
i“1p1´ ~x

pm´l`1q
i,l q

řk
l1“1

śk
l“2

śbl
i“1p1´ ~x

pl1´l`1q
i,l q

, @m P rks, (3.2.2)

where we adopt the convention of
ś

iP∅ ai “ 1. Here bl represent the number of ui’s with
color l. Given dρ and σρ “ 1, the joint distribution of pb2, . . . , bkq follows the multinomial
distribution with sum dρ and probability p 1

k´1
, . . . , 1

k´1
q and b1 “ 0. Let Dρ, pB1, . . . , Bkq be

an i.i.d. copy of dρ, pb1, . . . , bkq and ~Xi,l be i.i.d. samples of ~Xn, (3.2.1) implies that

~Xn`1
d.
“

˜

śk
l“2

śBl
i“1p1´

~X
pm´l`1q
i,l q

řk
m1“1

śk
l“2

śBl
i“1p1´

~X
pm1´l`1q
i,l q

¸k

m“1

“ Γp ~Xi,l, l “ 1, . . . k, i “ 1, . . . Blq. (3.2.3)



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 106

Let Ξ̃ be the distribution of pTn, σLnq without conditioning on the value of σρ and define the
unconditional posterior probability X̃n :“ pfnp1, η̃;T q, . . . , fnpk, η̃, T qq similarly, where η̃ is

sampled from Ξ̃. The distribution of ~Xn and X̃n satisfies that at each point x P ∆k,

Pp ~Xn P dxq “ kP
´

σρ “ 1,
`

Ppτρ “ j | Tn, τLn “ σLnq
˘k

j“1
P dx

¯

“ kPpX̃n P dxqPpσρ “ 1 |
`

Ppτρ “ j | Tn, τLn “ σLnq
˘k

j“1
P dxq

“ kxp1qPpX̃n P dxq. (3.2.4)

Equation (3.2.3) and (3.2.4) are all we need to describe the distributional recursion. To
be more concrete, we introduce some further notations. Let Msp∆

kq ĂMp∆kq be the subset
of measures in Mp∆kq that are invariant under permutations of the coordinates. With some
abuse of notation, we will also use Γ for the transformation it induces on Mp∆kq, i.e. for any

ν P Mp∆kq, we define Γν as the distribution of Γp ~Xi,l, l “ 1, . . . , k, i “ 1, . . . Blq where ~Xi,l

are i.i.d. copies with distribution ν and Bl are defined as before. For each ν P Msp∆
kq, let

Πlν be defined as pΠlνqpdxq :“ kxplqνpdxq and define

Γsν :“
1

k

k
ÿ

l“1

pΓ ˝ Πlqν. (3.2.5)

Under these notations, if X̃n „ ν, then ~Xn „ Π1ν, ~Xn`1 „ Γ ˝ Π1ν and X̃n`1 „ Γsν.
It is easy to check that δp 1

k
,..., 1

k
q is a trivial fixed point of Γs, which corresponds to no

information about the root. To show reconstruction, it is enough to prove for X̃0 „ µ0 :“
1
k
rδp1,0,...,0q`¨ ¨ ¨` δp0,...,0,1qs that Γnsµ0 is weakly bounded away from δp 1

k
,..., 1

k
q. One of the main

difficulties for analyzing graph colorings is that the dimension of the recursion grows linearly
in k. Luckily, as it will become clear in the proof, it is sufficient to consider only the largest
coordinate of X̃n. All the other entries are w.h.p. negligible as k Ñ 8. Since we are not
aiming at the tightest possible bound, we shall discard this extra information reducing the
recursion to R.

Define λp~xq “ pλp0q, λp1qqp~xq :“ p}~x}8, arg max ~xq and Λ : ∆k Ñ ∆k to be

Λpmqp~xq “

#

}~x}8 m “ arg max }~x}8
1´}~x}8
k´1

otherwise
. (3.2.6)

We are mostly interested in the transformation λ and Λ induces on spaces of probability
measures. With some abuse of notation, we allow extra randomness to be used to break
ties in the arg max of λ and Λ independently and uniformly randomly. For example if
X “ p1

2
, 1

2
, 0, . . . , 0q with probability 1, then λpXq equals p1

2
, 1q or p1

2
, 2q with probability

1
2
. Let Λk “ Λp∆kq Ă ∆k be the “star-shaped” image of Λ, λp~xq gives a bijection between

Λkzp 1
k
, 1
k
, . . . , 1

k
q and p 1

k
, 1sˆrks. Hence there is a bijection between Mpr 1

k
, 1sq and MspΛ

kq :“



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 107

Msp∆
kq XMpΛkq given by:

λp0q : MspΛ
k
q ÑMpr

1

k
, 1sq, µÑ λp0q ˝ µ “ }µ}8;

λ´1 : Mpr
1

k
, 1sq ÑMspΛ

k
q, µÑ λ´1

˝

ˆ

µb
1

k
pδ1 ` ¨ ¨ ¨ ` δkq

˙

.

Thus Λ˝Γs induces a transformation on MspΛ
kq and λp0q˝Λ˝Γs˝λ

´1 “ }Γs˝λ
´1}8 induces a

transformation on Mpr 1
k
, 1sq. With another abuse of notation, we will use the same notation

for both µ P Mpr 1
k
, 1sq and its unique correspondence in MspΛkq and use Λ ˝ Γs for both

transformations. Also for µ, ν PMspΛkq, we say µ ă ν iff µ ă ν as elements of Mpr 1
k
, 1sq.

The main technical result of this chapter is the following theorem, which will be proved
in Section 3.3.

Theorem 3.2.3. There exist β0 ă 1, c ą 0 such that for any k ą k0, d ě kpln k`ln ln k`β0q,
and T „ TPoispdq, one can constructs µk P Mpr 1

k
, 1sq such that pΛ ˝ Γsqµk stochastically

dominates µk by c{ ln k.

Using the fact that }Λp~xq}8 “ }~x}8, Theorem 3.2.3 is equivalent to the statement that
}Γsµk}8 stochastically dominates µk by c{ ln k. It follows that if at some level we can
reconstruct the root with success probability }X̃n}8 for some X̃n „ µk P MspΛ

kq, then
in the level above we can do strictly better with success probability }X̃n`1}8 ą }X̃n}8.
However this does not directly imply reconstruction due to two reasons. First, the proof
of Theorem 3.2.3 depends heavily on the low-dimensional structure of µk P MspΛ

kq, but in
general after one step Γsµk no longer belongs to MspΛkq. Secondly, due to the non-linearity
of Λ ˝ Γs, it is not clear whether pΛ ˝ Γsqµk ą µk would imply pΛ ˝ Γsq

2µk ą pΛ ˝ Γsqµk.
We address both problems in next subsection by intentionally manipulating the observed
configuration and thus manually maintaining a nontrivial fixed point for the “manipulated
recursion”.

3.2.2 Manipulating the tree recursions

In this section we provide a reconstruction algorithm such that its estimator of σρ satisfies a
modified recursion with the fixed point µk defined in Theorem 3.2.3. Let Sk be the symmetric
group of degree k. For any π P Sk, η P ΩpLnq and X P ∆k, define π ˝ η P ΩpLnq to
be the configuration specified by pπ ˝ ηqv “ πpηvq and π ˝ X P ∆k to be the vector with
pπ ˝Xqplq “ Xpπplqq. We first illustrate the main idea with an example:

Suppose that two people, Alice and Bob, are trying to reconstruct σρ, the color of the
root, from σLn . Observing T and σLn “ η P ΩpLnq, Bob knows that root ρ has color l
with probability fnpl, η;T q. Then Alice tells Bob that the η he observed was not the actual
σLn , but the σLn after a randomly selected permutation π. Namely, η “ π ˝ σLn where π
is sampled from some distribution ν P MpSkq. Let F pηq :“ pfnp`, η;T qqkl“1 P ∆k be the
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original estimator of the root with T omitted for brevity. Bob’s estimation of σρ after Alice’s
permutation becomes

F pη; νq :“
´

Pπ„νpσρ “ l | π ˝ σLn “ ηq
¯k

l“1
“

ÿ

πPSk

νpπqF pπ´1
˝ ηq “

ÿ

πPSk

νpπqpπ ˝ F qpηq.

Thus if Alice chooses the distribution ν carefully, she can manipulate Bob’s estimation to
any vector in the convex hull of

 

pπ ˝ F qpηq : π P Sk
(

. And that’s essentially what we will
do in this section. In particular, we consider the following two families of ν PMpSkq:

1. For each l P rks, let ν1plq be the uniform distribution on Srkszl :“ tπ P Sk : πl “ lu. For
any η P ΩpLnq and m P rks,

F pmqpη; ν1plqq “

#

fnpm, ηq m “ l
1

k´1

ř

m‰l fnpm, ηq m ‰ l
“

#

fnpm, ηq m “ l
1

k´1
p1´ fnpm, ηqq m ‰ l

. (3.2.7)

2. For each p P r0, 1s, let ν2ppq :“ pνunif `p1´pqδid where νunif is the uniform distribution
on Sk and δid is the point mass at the identity permutation id. For any η P ΩpLnq,

F pη; ν2ppqq “ p1´ pqF pηq `
p

k!

ÿ

πPSk

pπ ˝ F qpηq “ p1´ pqF pηq ` p ¨
´1

k
, . . . ,

1

k

¯

. (3.2.8)

In the proof, we will use ν1plq to simulate the transformation Λ defined in (3.2.6) and ν2ppq
to reduce the distribution pΛ ˝ Γsqµk to µk. For the later purpose, we show the following
lemma.

Lemma 3.2.4. For any µ1, µ2 P Mpr 1
k
, 1sq such that µ1 ą µ2, there exist function q :

r 1
k
, 1sˆr0, 1s Ñ r 1

k
, 1s, such that qpy, uq ď y for all y P r 1

k
, 1s,u P r0, 1s and for any independent

random variables Y „ µ1 and U „ Unifr0, 1s, qpY, Uq „ µ2. We say that such function q
reduces µ1 to µ2.

Proof. Let G1, G2 be the c.d.f. of µ1, µ2, and G1px ´ 0q be the left limit of G1 at x. For
y ě 1

k
, define

qpy, uq :“ inf
!

x ě
1

k
: G2pxq ě G1py ´ 0q ` upG1pyq ´G1py ´ 0qq

)

.

Note that µ1 ą µ2 implies that G2pyq ě G1pyq for all y ě 1
k
. Hence qpy, uq P r 1

k
, ys. Let

yx “ supty : G1py ´ 0q ď G2pxqu. A direct calculation shows that for x ě 1
k
,

PpqpY, Uq ď xq “ PpG2pxq ě G1pY ´ 0q ` UpG1pY q ´G1pY ´ 0qqq

“ G1pyx ´ 0q ` pG1pyxq ´G1pyx ´ 0qq
G2pxq ´G1pyx ´ 0q

G1pyxq ´G1pyx ´ 0q
“ G2pxq.
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Recalling the 1-to-1 correspondence between MpΛkq and Mpr 1
k
, 1sq, we define q0 to be the

function that reduces µ0 “
1
k
pδp1,0,...0q ` ¨ ¨ ¨ ` δp0,...,0,1qq to µk and q‹ to be the function that

reduces pΛ ˝ Γsqµk to µk, where the later one exists because pΛ ˝ Γsqµk ą µk. We further
define for each ‚ P t0, ‹u that

q̃‚py, uq :“
ky ´ q‚py, uq

ky ´ 1
P r0, 1s such that p1´ q̃‚py, uqq ¨y` q̃‚py, uq ¨

1

k
“ q‚py, uq. (3.2.9)

Let us introduce further notations for the algorithm: Let U :“ pUvqvPT be an array of
independent Unifr0, 1s random variables indexed by the vertices of T and let Uv :“ pUwqwPTv
be the sub-array indexed over Tv, the subtree rooted at v. For each v P T and w P Tv, we
will encode Alice’s action on Tv and Bob’s information at w after Alice’s actions on Tv as

av :“ ppv, lv, πvq P r0, 1s ˆ rks ˆ Sk and bw,v :“ ppw,v, ηw,vq P r0, 1s ˆ rks.

Let Av and Bv be arrays of aw and bw,v indexed over w P Tv respectively. Letting Lv1 denote
the set of offspring of v, we define BLv1 :“ pbw,uquPLv1 ,wPTu as the concatenation of pBuquPLv1 for
each v R Ln and define BLv1 :“ pσvq otherwise. With the meaning of av and bw,v to be given
in a moment, we formally define

P˝v :“ P˝vpBLv1q “

#

pPpσv “ l | σvqq
k
l“1 v P Ln.

pPpσv “ l | BLv1qq
k
l“1 v R Ln.

, Pv :“ PvpBvq “ pPpσv “ l | Bvqq
k
l“1,

as Bob’s belief on σv before and after Alice’s actions on Tv (if he is given BLv1 or Bv respec-
tively).

We now define the actions of Alice, namely what av, bv means and how she recursively
constructs them from the leaves up to the root as a function of Tv, σTvXLn and Uv:

1. For each leaf vertex v P Ln, Tv “ tvu. Bob’s belief before Alice’s action is simply

P˝v “ pPpσv “ l | σvqq
k
l“1 “ p1tσv “ luqkl“1.

Alice then sets lv “ σv, pv “ q̃0p1, Uvq and πv “ π2
v ˝ π

1
v , where π1

v is a sample of ν1plvq
and π2

v is an independent sample of ν2ppvq. Finally, she permute σv by πv (which has
the same effect as using π2

v) and prepares Bob’s share of information as Bv “ pbv,vq,
where

bv,v “ pqv,v, ηv,vq “ ppv, π
2
vplvqq “ ppv, π

2
vpσvqq.

2. Suppose that for each w P Lm`1, Alice has recorded her actions on Tw as Aw and
prepared the information for Bob as Bw, where Aw is a function of pTw, σTwXLn ,Uwq
and Bw is a function of Aw. We now describe Alice’s actions on Tv, namely how she
constructs Av and Bv for each v P Lm as a function of pBuquPLv1 and Uv.
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a) First, for each u P Lv1, Alice calculates Pu, namely Bob’s belief of σu given infor-
mation Bu. Given pPuquPLv1 , Alice calculates Bob’s belief of σv before her actions
on Tv. Following a similar recursion of (3.2.1),

P˝v “

˜

ś

uPLv1
p1´ P

plq
u q

řk
m“1

ś

uPLv1
p1´ P

pmq
u q

¸k

l“1

.

b) Let U i
v, i “ 1, 2, 3 be three independent Unifr0, 1s random variables constructed

from Uv. Let lv “ lvpP
˝
v, U

1
v q be uniformly picked from tl : pP˝vq

plq “ }P˝v}8u,
the set of largest coordinates of P˝v, using the randomness of U1

v and let pv “
q̃‹p}P

˝
v}8, U

2
v q. Alice then uses the randomness U3

v to sample π1
v from ν1plvq and

π2
v from ν2ppvq independently and sets πv “ π2

v ˝ π
1
v . This gives av “ ppv, lv, πvq

and completes the construction of Av.

c) Finally, Alice “permutes” Bob’s current observation of Tv X Ln and all the pre-
vious information she prepares for Bob by πv. This, in the language of Av and
Bv, corresponds to setting qv,v “ pv, ηv,v “ π2

vplvq and setting for each w P Tvztvu
that qw,v “ pw and

ηw,v “ πvpηw,w1q “ πw0pπw1p¨ ¨ ¨ πwr´1pπ
2
wplwqq ¨ ¨ ¨ q ¨ ¨ ¨ q,

where w0 “ v, w1 P L
v
1, . . . , wr´1, wr “ w is the unique path connecting v to w.

This completes the definition of Bv “ pbw,vqwPTv .

3. As a final step, Alice tells Bob the array Bρ as partial information of her actions, which
in particular includes Bob’s final observation as pηv,ρqvPLn . We emphasis that Bρ is the
only piece of information given to Bob. All the intermediate Bv’s exist only in Alice’s
deduction and remain unknown to Bob.

The main result of the section is the following theorem.

Theorem 3.2.5. For any n ě 1, let T be a n-level tree sampled from TPois and σLn be
generated by the coloring model on T . Let U be a T -indexed array of independent Unifr0, 1s
random variables. If Alice performs her actions as described above, then Bob’s final belief of
σρ after all Alice’s actions, represented as

Pρ “ PρpBρq “ pPpσρ “ l | Bρqq
k
l“1 P ∆k,

follows the distribution of µk.

Proof. For each permutation π P Sk and T -indexed array B “ pbvqvPT P pr0, 1s ˆ rksq
T , let

π ˝ bv :“ ppv, πpηvqq and π ˝ B :“ pπ ˝ bvqvPT . We induct on the number of levels in tree T
to prove the claim of Theorem 3.2.5 together with the result that

Pρpπ ˝ Bρq “
´

Ppσρ “ l | π ˝ Bρq
¯k

l“1
“ π´1

˝ PρpBρq. (3.2.10)
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For n “ 0, T “ tρu is the singleton tree and P˝ρ “ p1tσρ “ luqkl“1, Bob’s belief before
Alice’s action, follows distribution µ0. Given bρ,ρ “ ppρ, ηρ,ρq, Bob’s posterior estimation of
σρ satisfies

Ppσρ “ π̃´1
pηρ,ρq | bρ,ρq “ ν2ppρqpπ̃q, @π̃ P Sk.

Therefore, applying (3.2.8), Bob’s belief of σρ after Alice’s action at ρ becomes

Pρ “
´

Ppσρ “ l | πρpσρq “ ηρ,ρq
¯k

l“1
“ p1´ pρqP

˝
ρ ` pρ ¨

´1

k
, . . . ,

1

k

¯

.

Observe that by definition pρ “ q̃0p1, Uρq “ q̃0p}P
˝
ρ}8, Uρq. Lemma 3.2.4 and (3.2.9) then

imply that Pρ follows the distribution of µk. It is not hard to check that (3.2.10) also holds.
Suppose we have proved Theorem 3.2.5 and (3.2.10) for trees no greater than n ´ 1

levels, we now proceed to trees of n levels. By the induction hypothesis, for each u P L1,
Pu “ PupBuq, Bob’s belief of σu after Alice’s actions on Tu, follows the distribution µk.
Following a similar calculation of (3.2.4), we can show that conditioning on σρ “ l but not T
and σT ztρu, pPuquPL1 has the same joint distribution as Poispdq independent samples of Πlµk.
Therefore

P˝ρ “

˜

ś

uPL1
p1´ P

plq
u q

řk
m“1

ś

uPL1
p1´ P

pmq
u q

¸k

l“1

„ Γsµk.

Now we turn to Pρ “ PρpBρq. For each u P L1, let Bρ,u :“ pbw,ρqwPTu , Bρ,L1 :“
pbw,ρqwPTρztρu be sub-arrays of Bρ. Using the induction hypothesis on (3.2.10), for each
π P Sk we have

P˝ρpπ ˝ BL1q “

˜

ś

uPL1
p1´ P

plq
u pπ ˝ Buqq

řk
m“1

ś

uPL1
p1´ P

pmq
u pπ ˝ Buqq

¸k

l“1

“

˜

ś

uPL1
p1´ P

pπ´1plqq
u pBuqq

řk
m“1

ś

uPL1
p1´ P

pmq
u pBuqq

¸k

l“1

“ π´1
˝ P˝ρpBL1q.

Hence set tl : pP˝ρpπ̃ ˝π
1
ρ ˝BL1qq

plq “ }P˝ρpBL1q}8u has the same size for all π̃ P Sk and contains
lρ if π̃ P supp ν1plρq. Furthermore, by the symmetry of σLn , each element of tπ ˝ BρuπPSk is
equally likely to happen. Therefore by (3.2.7), the belief of Bob after the first action of Alice
on Tρ satisfies that

P1
ρ “ P1

ρplρ, π
1
ρ ˝ BL1q :“

´

Ppσρ “ l | lρ, π
1
ρ ˝ BL1q

¯k

l“1

“
ÿ

π̃PSk

ν1plρqpπ̃qP
˝
ρpπ̃

´1
˝ π1

ρ ˝ BL1q “ ΛpP˝ρq,

where the same randomness U1
ρ is used in breaking ties of Λ. It follows that P1

ρ „ pΛ˝Γsqµk.
Next we note that for any π̃ P Sk, }P

˝
ρpπ̃˝BL1q}8 “ }P

˝
ρpBL1q}8. Therefore pρ, as a function

of }P˝ρpBL1q}8 and U2
ρ , is invariant under permutations of BL1 . Given bρ,ρ “ ppρ, ηρ,ρq, Bob’s

posterior estimation of lρ and π1
ρ ˝ BL1 satisfies that
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Pplρ “ π̃´1
2 pηρ,ρq, π

1
ρ ˝ BL1 “ π̃´1

2 ˝ Bρ,L1 | Bρq “ ν2ppρqpπ̃2q.

Applying (3.2.8), we have that

PρpBρq “
ÿ

π̃2PSk

ν2ppρqpπ̃2qP
1
ρpπ̃

´1
2 pηρ,ρq,Bρ,L1q “ p1´ pρqP

1
ρpηρ,ρ,Bρ,L1q ` pρ ¨

´1

k
, . . . ,

1

k

¯

.

Recall that pρ “ q̃‹p}P
˝
ρ}8, U

2
ρ q “ q̃‹p}P

1
ρ}8, U

2
ρ q where q‹ is the function that reduces pΛ ˝

Γsqµk to µk and q̃‹ is defined in (3.2.9). Lemma 3.2.4 then implies that Pρ follows the
distribution of µk.

Finally we finish the induction hypothesis of (3.2.10). Observe that for π̃ „ ν1plq, π ˝ π̃ ˝
π´1 follows the distribution ν1pπplqq. For each π P Sk, we have

P1
ρpπplρq, πpπ

1
ρ ˝ BL1qq “

ÿ

π̃PSk

ν1pπplρqqpπ̃qP
˝
ρpπ̃

´1
˝ π ˝ BL1q

“
ÿ

π̃PSk

ν1plρqpπ̃qP
˝
ρpπ ˝ π̃

´1
˝ π´1

˝ π ˝ BL1q

“
ÿ

π̃PSk

ν1plρqpπ̃qP
˝
ρpπ ˝ π̃

´1
˝ BL1q “ π´1

˝ P1
plρ, π

1
ρ ˝ BL1q.

It follows that

Pρpπ ˝ Bρq “ p1´ pρqP
1
ρpπpηρ,ρq, π ˝ Bρ,L1q ` pρ ¨

´1

k
, . . . ,

1

k

¯

. “ π´1
˝ PρpBρq.

And that finishes the proof the induction hypothesis.

Theorem 3.2.3 and Theorem 3.2.5 immediately imply the following result.

Corollary 3.2.6. For any d, k such that Theorem 3.2.3 holds, there exist independent ran-
dom array U and measurable function BρpT, σLn ,Uq such that

lim inf
nÑ8

E sup
lPrks

ˇ

ˇ

ˇ

ˇ

P pσρ “ l | BρpTn, σLn ,Uqq ´
1

k

ˇ

ˇ

ˇ

ˇ

ą 0.

3.2.3 Regular trees

The result of Theorem 3.2.5 and Corollary 3.2.6 can be modified to regular trees by, roughly
speaking, truncating T „ Td into a smaller tree: Let tPoispd1, dq be the truncated Poisson
distribution defined as the distribution of D1 ¨ 1tD1 ď du where D1 „ Poispd1q and let
TtPoispd1dq be the Galton-Watson tree of offspring distribution tPoispd1, dq. There exists a
natural coupling between T1 „ TtPoispd1dq, T2 „ TPoispd1q and T „ Td such that T1 is a subtree
of T2 and T with probability 1.
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Recall that Mp∆kq-operator Γ defined in (3.2.3) depends implicitly on the offspring dis-
tribution ξ. We differentiate the two operators under ξ “ TPoispd1q and ξ “ TtPoispd1,dq as Γp

and Γt respectively. Fix β˚ P pβ0, 1q. For any d, k satisfying (3.1.3), let d1 :“ td´pβ˚´β0qku.
For k ě k0pβ

‹, cq,

dTVpΛ ˝ Γpsµk,Λ ˝ Γtsµkq ď PpPoispd1q ą dq ă cpk ln kq´1. (3.2.11)

Therefore if pd1, kq further satisfies Theorem 3.2.3, then pΛ ˝Γtqsµk stochastically dominates
µk. Thus we can find function qt that reduces pΛ ˝ Γtqsµk to µk and define q̃t similarly.

Let T „ Td be the n-level d-ary tree and D :“ pDvqvPT be a T -indexed array of indepen-
dent tPoispd1, dq random variables. We now describe the necessary modification such that
rAv, rBv, rP

˝
v,

rPv can be constructed in a similar fashion as Av,Bv, P
˝
v, Pv. The construction

remains the same for each v P Ln. For each v R Ln, we proceed with the following changes:

1. In step 2(a), instead of considering all u P Lv1, Alice now only uses the first Dv vertices
and discards the rest. Namely, letting u1, . . . , ud be the d offspring of v, she calculates

rP˝v :“

˜

śDv
i“1p1´

rP
plq
ui q

řk
m“1

śDv
i“1p1´

rP
pmq
ui q

¸k

l“1

,

and sets b̃w,v “ p‹, ‹q for each w P Tui , i ą Dv. She then continues to set ãv and the

rest of rBv using rP˝v and Uv.

2. In step 2(b), instead of setting pv “ q̃‹p}P
˝
v}8, U

2
v q, Alice sets pv “ q̃tp}rP

˝
v}8, U

2
v q.

In short, Bob now has to reconstruct σρ based only on the information rBρ of a truncated
tree of T sampled from TtPoispd1,dq, as the information on the rest of the vertices are erased
and set to p‹, ‹q.

Corollary 3.2.7. Fix β‹ P pβ0, 1q. For any d, k such that pd1 :“ td´pβ˚´β0qku, kq satisfies
Theorem 3.2.3 and (3.2.11), there exist independent random arrays U,D and measurable

function rBρpσLn ,U,Dq such that

lim inf
nÑ8

E sup
lPrks

ˇ

ˇ

ˇ

ˇ

P
´

σρ “ l | rBρpσLn ,U,Dq
¯

´
1

k

ˇ

ˇ

ˇ

ˇ

ą 0.

Proof. By an essentially parallel argument of Theorem 3.2.5, we can inductively show that
rP˝v, as a function of pT, σTvXLn ,Uv,Dvq, follows the distribution of Γtsµk and hence rPv „ µk
for each v P T . Corollary 3.2.7 then follows immediately.

Proof of Theorem 2. Let β0, c be the constant in Theorem 3.2.3 and β˚ be selected in Corol-
lary 3.2.7. For any k ě k0 and d, k satisfying (3.1.3), they also satisfy the conditions of
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Theorem 3.2.3 and Corollary 3.2.6. Therefore if the k-coloring model on T „ TPoispdq is not
reconstructible for some d, k in the same region, then we must have

lim sup
nÑ8

ET„TPoispdq
rVarpσρ | BρpTn, σLn ,Dqqs ď lim sup

nÑ8
ET„TPoispdq

rVarpσρ | Tn, σLnqs “ 0,

where the first step follows from the fact that Bρ “ BρpTn, σLn ,Uq is independent of σρ given
σLn . But that conflicts with the result of Corollary 3.2.6. The same confliction exists with

T „ Td, rBρ “ rBρpσLn ,U,Dq and Corollary 3.2.7. Therefore both models are reconstructible.

3.3 Proof of Theorem 3.2.3

In this section we prove the stochastic dominance result of Theorem 3.2.3. In Section 3.3.1,
we first analyse the transformation Γ induced on MpΛkq by (3.2.3) and give a parameterized
candidate of µk. In the remaining sections, we verify that the candidate does indeed satisfy
Theorem 3.2.3.

3.3.1 Reformulating the recursion

Recall the notations in the definition of Γµ in (3.2.3), where µ “ Π1µs for some µs PMspΛ
kq.

For each l P rks, 1 ď i ď Bl, let mi,l :“ mp ~Xi,l, lq :“ arg maxmPrks ~X
pm´l`1q
i,l be the coordinate

of ~Xn`1 that contains the largest entry of ~Xi,l and draw mi,l from rks uniformly at random

if ~Xi,l “ p
1
k
, . . . , 1

k
q. Since µ is tilted from some symmetric measure µs, similar to (3.2.4),

Ppmi,l “ m | } ~Xi,l}8 “ xq “

#

x m “ l
1´x
k´1

m ‰ l
.

Let µ“pdxq :“ xµpdxq and µ‰pdxq :“ p1 ´ xqµpdxq. The joint distribution of p} ~Xi,l}8,mi,lq

satisfies

Pp} ~Xi,l}8 P dx,mi,l “ mq “

#

µ“pdxq l “ m
1

k´1
µ‰pdxq l ‰ m

, @x P r0, 1s, m P rks.

For each m P rks, define

C“m :“ tpi,mq : mi,m “ mu, C‰m :“ tpi, lq : l ‰ m,mi,l “ mu and Cm :“ C“m Y C
‰
m.

Let c“m, c‰m be the cardinality of C“m and C‰m respectively and set p‰ :“ µ‰pr 1
k
, 1sq “ 1 ´

µ“pr 1
k
, 1sq to be the probability of tpi, lq R C“l u. Note that no offspring of the root has color

1. Given dρ “
řk
l“1Bl, pc

“
1 , c

“
2 , . . . , c

“
k , c

‰
1 , c

‰
2 , . . . , c

‰
k q follows multinomial distribution of

sum dρ and probability

1

k ´ 1

ˆ

0, 1´ p‰, . . . , 1´ p‰, p‰,
k ´ 2

k ´ 1
p‰, . . . ,

k ´ 2

k ´ 1
p‰

˙

. (3.3.1)
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We now use the new notations to rewrite (3.2.3). For each ~Xi,l ‰ p
1
k
, . . . , 1

k
q, the entries

of ~Xi,l take only two values: } ~Xi,l}8 and p1´} ~Xi,l}8q{pk´1q. And ~X
pm´l`1q
i,l “ } ~Xi,l}8 if and

only if m “ mi,l. Let φpxq :“ ln
“

p1´ 1´x
k´1
q{p1´xq

‰

, which is an increasing function mapping

r0, 1s to r´8,8s. By taking out the common factor of
ś

l,ip1´
1´} ~Xi,l}8

k´1
q, we rewrite (3.2.3)

as

~X
pmq
n`1

d.
“

ś

pi,lqPCm
p1´ } ~Xi,l}8q{p1´

1´} ~Xi,l}8
k´1

q

řk
m1“1

ś

pi,lqPCm1
p1´ } ~Xi,l}8q{p1´

1´} ~Xi,l}8
k´1

q

“

ś

pi,lqPCm
e´φp}

~Xi,l}8q

řk
m1“1

ś

pi,lqPCm1
e´φp} ~Xi,l}8q

.

(3.3.2)

Note that the exact value of mi,l when ~Xi,l “ p
1
k
, . . . , 1

k
q does not matter since φp 1

k
q “ 0. We

further rewrite (3.3.2) as

~X
pmq
n`1

d.
“

´

śc“m
i“1 expp´φpY “i,mqq

śc‰m
i“1 expp´φpY ‰i,mqq

¯

řk
l“1

´

śc“l
i“1 expp´φpY “i,l qq

śc‰l
i“1 expp´φpY ‰i,l qq

¯ “:
expp´Zmq

řk
m“1 expp´Zmq

. (3.3.3)

where Y “i,l and Y ‰i,l are i.i.d. samples of 1
1´p‰

µ“ and 1
p‰
µ‰ respectively and

Zm :“

c“m
ÿ

i“1

φpY “i,mq `
c‰m
ÿ

i“1

φpY ‰i,mq.

We conclude our calculation so far in the following claim.

Proposition 3.3.1. For any d, k, if there exists νk P Mpr 1
k
, 1sq (with its unique correspon-

dence in MpΛkq) and c ą 0, such that µs “ Π´1
1 pφ

´1 ˝ νkq P MspΛ
kq and for the pZmq

k
m“1

defined as above using µs,

W :“ ln

„

k ´ 2

k ´ 1
`

1
řk
m“2 exppZ1 ´ Zmq



_ 0 ąc{ ln k νk, (3.3.4)

then µs satisfies the requirement of Theorem 3.2.3.

Proof. Maximizing (3.3.3) over m P rks, we have that

} ~Xn`1}8 “
maxt1, exppZ1 ´ Zmq,m “ 2, . . . , ku

1`
řk
m“2 exppZ1 ´ Zmq

ě
1

1`
řk
m“2 exppZ1 ´ Zmq

_
1

k
.

Composing φ to both side yields that φp} ~Xn`1}8q ą W . Theorem 3.2.3 then follows from

the fact that }Λp ~Xn`1q}8 “ } ~Xn`1}8.
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We now propose a parameterized candidate of νk: Let δ, κ P p0, 1q,M " 0, 0 ă γ, α0, σ, ε !
1 be parameters to be determined in the order of pδ, κ, α0,M, σ, γ, εq and write α “ φ

`

1
2
´

α0

˘

“ ln 2 ´ Opα0q ` okp1q. Let ν‹ be an infinite-volume measure defined as (recalling that
φp 1

k
q “ 0)

ν‹pdyq :“ κδ0pdyq ` p1´ κqδαpdyq `
γ

y2
eδy1ty ąMudy, (3.3.5)

where δx is the Dirac measure at x, and write νrpdyq :“ γ
y2
eδy1ty ą Mudy for the right tail

of ν‹. We will use ν‹ as a “scaling limit” of νk and show that the assumption of Prop. 3.3.1
is satisfied with

νkpdyq :“
1

ln k
ν‹pdyq1t0 ď y ď aku,

for some choice of pδ, κ, α0,M, σ, γ, εq and k ě k0 “ k0pδ, κ, α0,M, σ, γ, εq, where ak is the
constant such that νk is a probability measure.

For convenience of notation, we will write k ě k0 where k0 depends on all six parameters.
We will use 1ďak or 1ěck to cut (part of) a measure above or below such that the total mass is
1. The exact value of ak and ck can be derived implicitly and may vary from line to line. Let
ν“‹ pdyq :“ φ ˝ µ“pdxq “ φ ˝ xµpdxq “ φ´1pyqν‹pdyq, where φ´1pyq “ 1 ´ pey ` pk ´ 1q´1q

´1

and define ν‰‹ , ν
“
r , ν

‰
r , ν

“
k , ν

‰
k similarly. We define the tail weights

p‰r :“
1

γ
ν‰r prM,8qq “

ż 8

M

eδy

y2pey ` 1
k´1
q
dy ă 8

p‰k :“ µ‰k pr1{k, 1qq “ ν‰k pr0,8qq

ď
1

ln k

„

1

k
p1´ κq `

´1

2
´ α0

¯

κ` γp‰r



“ p1´ op1qq
γp‰r
ln k

.

3.3.2 Distribution of Zm

In this section we bound the distribution of Zm in terms of ν‹. Let D :“ d{pk ´ 1q “
ln k ` ln ln k ` β. For T „ TPoispdq, (3.3.1) implies that pc“m, c

‰
mq’s are independent Poisson

random variables with rate p0, p‰kDq for m “ 1 and pp1´ p‰k qD,
k´2
k´1

p‰kDq for m ě 2. Hence,
for m ě 2,

Zm
d.
“

ˆ

Poispp1´ p‰k qDq b
1

1´ p‰k
ν“k

˙

‘

ˆ

Pois
´k ´ 2

k ´ 1
p‰kD

¯

b
1

p‰k
ν‰k

˙

“ Pois

ˆ

´

1´
p‰k
k ´ 1

¯

D

˙

b
ν“k `

k´2
k´1

ν‰k
p1´ 1

k´1
p‰k q

ą Pois

ˆ

´

1´
p‰k
k ´ 1

¯

D

˙

b
νk

p1´ 1
k´1

p‰k q
1ďak ,

where the last line follows from that pν“k `
k´2
k´1

ν‰k qpdyq ď νkpdyq. Namely, Zm stochastically
dominates the sum of points in a Poisson point process with intensity Dνk1ďa0k , where a0

k

satisfies νkpr0, a
0
ksq “ 1 ´ 1

k´1
p‰k . We expand the summation according to the three parts

of νk as in (3.3.5). Firstly, δ0 does not contribute to the summation. For the second term,
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we define S1 :“ Poispκq b δα and note that κ ď κD
ln k

. Finally for k ě k0, the total intensity
coming from the right tail of νk satisfies

DνkprM,a0
ksq “ Dpνkpr0, a

0
ksq ´ ln´1 kq “ D ´ 1´Opk´1 ln kq ě D ´ 1´ γ.

and p1´ 1
k´1

p‰k q
´1νkpdyq ď

1`γ
D´1´γ

νrpdyq. Therefore defining

S0 :“ Pois pD ´ 1´ γq b
1` γ

D ´ 1´ γ
νr1ďak ,

it follows that Zm ą S0 ` S1. We first show the following bound for S0.

Lemma 3.3.2. For any M ąMpα0q _
2
δ
, there exists constant CM ą 0 such that

S0 ą
eγ`1´β

k ln k
pδ0 ` p1` CMγqνr1ďa1kq, (3.3.6)

where a1
k satisfies 1` p1` CMγqνrprM,a1

ksq “ k ln ke´pγ`1´βq.

Proof. Let B0 „ Pois pD ´ 1´ γq and Yi be i.i.d. samples of distribution 1`γ
D´1´γ

νr1ďak . We
have

PpS0 “ 0q “ PpB0 “ 0q “ e´pD´1´γq
ď

1

k ln k
e1`γ´β.

Since νr is supported on rM,8q and is absolutely continuous, for z ěM ,

fS0pzq “
d

dz
P
´

B0
ÿ

i“1

Yi ď z
¯

ď

tz{Mu
ÿ

n“1

PpB0 “ nq
d

dz

„
ż

ř

yiďz

ˆ

1` γ

D ´ 1´ γ

˙n

νrpdy1q ¨ ¨ ¨ νrpdynq



ď
e1`γ´β

k ln k

tz{Mu
ÿ

n“1

1

n!

d

dz

„
ż

yiěM,
řn
i“1 yiďz

p1` γqnγn

y2
1y

2
2 ¨ ¨ ¨ y

2
n

eδpy1`¨¨¨`ynqdy1 ¨ ¨ ¨ dyn



“
e1`γ´β

k ln k

tz{Mu
ÿ

n“1

p1` γqnγn

n!
eδz

ż

yiěM,
řn´1
i“1 yiďz´M

1

y2
1 ¨ ¨ ¨ y

2
n´1pz ´

řn´1
i“1 yiq

2
dy1 ¨ ¨ ¨ dyn´1.

Applying Fact 3.3.3 below for n ě 2, we have that for z ěM ,

fS0pzqdz ď
e1`γ´β

k ln k

ˆ

p1` γqγ `
8
ÿ

n“2

pp1` γqγCMq
n

n!

˙

1

z2
eδzdz

ď
e1`γ´β

k ln k
p1` C 1Mγq

γ

z2
eδzdz “

e1`γ´β

k ln k
p1` C 1Mγqνrpdzq.

The desired result follows from the last equation and the fact that PpS0 P p0,Mqq “ 0.

Fact 3.3.3. There exist constant CM such that for n ě 2 and z ě nM ,
ż

yiěM,
řn´1
i“1 yiďz´M

1

y2
1 ¨ ¨ ¨ y

2
n´1pz ´

řn´1
i“1 yiq

2
dy1 ¨ ¨ ¨ dyn´1 ď

Cn
M

z2
.
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The proof of Fact 3.3.3 is postponed to Section 3.4. Next consider the independent sum
of S0 ` S1.

Lemma 3.3.4. For any M ąMpα0q _
2
δ

and constant CM specified in Lemma 3.3.2,

Zm ą S0 ` S1 ą
eγ`1´β

k ln k

“

νS1 ` p1` α0qp1` CMγq exp
`

κpe´αδ ´ 1q
˘

νr1ďak
‰

. (3.3.7)

Proof. Letting ν`S0
:“ νr1ďa1k where a1

k is defined in (3.3.6), we have

νS0`S1 “
e1`γ´β

k ln k
pδ0 ˚ νS1 ` p1`CMγqν

`
S0
˚ νS1q “

e1`γ´β

k ln k
pνS1 ` p1`CMγqν

`
S0
˚ νS1q. (3.3.8)

It is left to verify that ν`S0`S1
:“ ν`S0

˚ νS1 ą p1 ` α0q exp
`

κpe´αδ ´ 1q
˘

νr1ďak where ak is

chosen such that RHS of (3.3.8) has total mass 1. Recall that S1
d.
“ α ¨ Poispκq. ν`S0`S1

is
absolutely continuous and supported on rM,8q. For z ěM we have

f`S0`S1
pzq “

8
ÿ

n“0

κne´κ

n!
f`S0
pz ´ nαq ď

8
ÿ

n“0

κne´κ

n!

γeδpz´nαq

pz ´ nαq2
1tz ´ nα ěMu

To control the pz ´ nαq´2 term, we first choose for any α ą 0 a N “ Npα0q such that
ř8

n“N`1
1
n!
ď 1

2e
α0 and then choose Mpα0q such that for M ąMpα0q, n ď N and z ěM ,

p1´ nα{zq´2
ď p1´ nα{zq´2

ď 1` α0{2. (3.3.9)

Observe that γ
z2
eδz is monotone increasing for z P p2

δ
,8q. For all M ąMpα0q_

2
δ

and z ěM ,

f`S0`S1
pzqdz ď

γeδz

z2
dz

N
ÿ

n“0

κne´κ

n!

e´npαδq

p1´ nα{zq2
`
γeδz

z2
dz

8
ÿ

n“N`1

κne´κ

n!

ď p1` α0q exprκpe´αδ ´ 1qsνrpdzq.

The proof finishes by cutting νr at the place such that (3.3.8) has the total mass 1.

Finally, for m “ 1 and k ě k0 such that D
ln k
ď p1` γq _ p1` α0q, we have

Z1
d.
“ Poispp‰kDq b

1

p‰k
ν‰k ă

ˆ

Pois

ˆ

1

2
κ

˙

b δα

˙

‘

ˆ

Poispγp‰r q b
1

γp‰r
ν‰r

˙

, (3.3.10)

where the second term is 0 with probability expp´γp‰r q.
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3.3.3 Distribution of
řk
m“2 expp´Zmq

In this section we analysis the distribution of
řk
m“2 expp´Zmq “ pk ´ 1q b expp´Zmq. Let

ψpxq :“ e´x. An easy calculation gives that

ψ ˝ ν‹pdxq “ p1´ κqδ1pdxq ` κδψpαqpdxq `
γ

plnxq2
1

x1`δ
1t0 ă x ă ψpMqudx.

Define

CZ :“ CZpδ, κ, α0,M, γq “ p1` α0qp1` CMγq exp
`

κpe´αδ ´ 1q
˘

. (3.3.11)

Now (3.3.7) can be rewritten as

ψpZmq ă
1

k ln k
eγ`1´β

”

ψ ˝ νS1 ` CZ
γ

plnxq2
1

x1`δ
1tck ă x ă ψpMqu

ı

. (3.3.12)

As k grows, the density of ψpZmq diverges quickly around 0 and the probability of seeing
Zm ě x for more than one m P rks is op 1

k
q for any fixed x ą 0. Hence intuitively,

νkbψpZmq « νmaxmPrks ψpZmq « k ¨ νψpZmq.

Lemma 3.3.5. Fix δ “ 1
2
. For any M ą Mpα0q _

2
δ

such that (3.3.8) holds and σ, ε ą 0,
k ě k0,

pk ´ 1q b ψpZmq ă
eγ`1´β

ln k

„

pψ ` σq ˝ νS1 ` p1` εqCZ
γ

plnxq2
1

x1`δ
1xďψpMq



1ěck `
ε

ln k
δ8,

where pψ ` σqpxq :“ ψpxq ` σ and CZ is defined in (3.3.11).

Proof. We recall the RHS of (3.3.12) and treat its discrete part and continuous part sepa-

rately. Let p1 :“ eγ`1´β

k ln k
, µ1

Z :“ ψ ˝ νS1 and µ2
Zpdxq :“ p1

1´p1

γ
plnxq2

x´p1`δq1ckăxďψpMqdx. Among

the pk´1q i.i.d. samples from the RHS of (3.3.12), b „ Binompk´1, p1q of them comes from µ1
Z

and the rest comes from µ2
Z . Choose Cb ą 0 such that for any k ě k0, Ppb ě 2q ď Cb ln´2 k.

It follows that

pk ´ 1q b ψpZmq ă
`

Binompk, p1q b µ
1
Z

˘

‘
`

k b µ2
Z

˘

ă

”

p1´ kp1q ¨ k b µ
2
Z ` kp1 ¨

`

µ1
Z ‘ pk b µ

2
Zq
˘

ı

1ěck `
Cb

ln2 k
δ8. (3.3.13)

We will show in Lemma 3.3.8 that for any ε ą 0 and k ě k0,

k b µ2
Z ă p1` εqk ¨ µ2

Z1ěc0k `
ε

2 ln k
δ8. (3.3.14)
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Therefore for any σ ą 0, there exists Cσ ą 0 such that for k ě k0, Ppkbµ2
Z ě σq ď Cσ ln´1 k

and

RHS of (3.3.13) ă
”

p1´ kp1q ¨ k b µ
2
Z ` kp1 ¨ pµ

1
Z ˚ δσq `

kp1Cσ
ln k

¨ δ8

ı

1ěck `
Cb

ln2 k
δ8

ă

”

p1` εqkp1´ kp1q ¨ µ
2
Z1ěc0k ` kp1 ¨ pµ

1
Z ˚ δσq

ı

1ěck `
ε

ln k
δ8

ă
eγ`1´β

ln k

„

pψ ` σq ˝ νS1 ` p1` εqCZ
γ

plnxq2
1

x1`δ



1ěck `
ε

ln k
δ8.

where in the last step, we observe that removing the 1ěc0k after µ2
Z will only make the measure

inside the square bracket stochastically larger after cutting from below.

In the remaining of the section, we check that (3.3.14) is true. We will henceforth omit
the Op1q factor pk ln kq ¨ p1

1´p1
by absorbing it into γ and let

U „ µU :“ µ2
Z “

1

k ln k

γ

plnxq2
x´p1`δq1tck ă x ď ψpMqudx. (3.3.15)

Measure µU resembles distributions that converge to stable law. However, we can not directly
apply the usual proof of convergence for stable laws (cf. Section 3.7 of [Dur10], or the reference
there) to k b U , since the expression of µU also depends on k. With some modification, we
show the following result.

Lemma 3.3.6. For any δ, γ P p0, 1q, M ą 2
δ
, let tk :“ inftt : µUprt,8qq ă 1{ku, then

k b pt´1
k Uq converges weakly to the stable law with index δ and characteristic function

expt´b‹|t|
δ
p1` isgnptq tanpπδ{2qqu,

where sgn is the sign function and b‹ “ δ
ş8

0
pcosx´ 1qx´p1`δqdx “ ´ cospπ

2
δqΓp1´ δq.

In the proof we use the following calculus result, the proof of which is deferred to Section
3.4.

Fact 3.3.7. Let tk be defined as in Lemma 3.3.6, we have

1. tk “ p1` okp1qqp
γδ

ln kpln ln kq2
q1{δ and therefore

γ

δ
t´δk ln´2 tk “ p1` okp1qq ln k.

2. For any constant c ą 0,

lim
kÑ8

kPpU ě ctkq “ lim
kÑ8

t´1
k

ż 8

ctk

1

k ln k

γ

ln2 x

1

x1`δ
dx “ c´δ,

lim
kÑ8

kEpt´1
k U1Uďctkq “ lim

kÑ8
t´1
k k

ż ctk

0

1

k ln k

γ

ln2 x

x

x1`δ
dx “ c1´δ δ

1´ δ
,

lim
kÑ8

kEpt´2
k U21Uďctkq “ lim

kÑ8
t´2
k k

ż ctk

0

1

k ln k

γ

ln2 x

x2

x1`δ
dx “ c2´δ δ

2´ δ
.
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Proof of Lemma 3.3.6. Let Ui, i “ 1, 2, . . . , k be i.i.d. copies of U and let Sk :“
řk
i“1 Ui.

Given ω P p0, 1q, let mďω :“ EpU1tU ď ωtkuq, S
ω
k :“

řk
i“1 Ui1tUi ě ωtku and T ωk :“

řk
i“1 Ui1tUi ă ωtku ´ kmďω. We have

Sk “ Sωk ` T
ω
k ` k ¨mďω.

For the first term Sωk , let F ω
k and ψωk be the c.d.f. and characteristic function of t´1

k Ui
conditioned on tt´1

k Ui ě ωu. By Fact 3.3.7(2), for any ω ą 0 and any x ą ω,

1´ F ω
k pxq “ p1` okp1qqpx{ωq

´δ
Ñ pω{xqδ, as k Ñ 8.

Hence for any t P R, ψωk ptq Ñ ψωptq :“
ş8

ω
eitx ¨ δωδx´pδ`1qdx. Meanwhile by Fact 3.3.7(2),

the distribution of the number of i P rks such that Ui ě ωtk converges weakly to Poispω´δq,
hence

lim
kÑ8

E exppitSωk {tkq “ expr´ω´δp1´ ψωptqqs “ exp

ˆ
ż 8

ω

peitx ´ 1qδx´pδ`1qdx

˙

.

For the second term T ωk , observe that ET ωk “ 0. By Fact 3.3.7,

t´2
k EpT ωk q2 “ t´2

k VarpT ωk q ď kt´2
k EU2

i 1tUi ă ωtku ď p1` okp1qq
δ

2´ δ
ω2´δ.

For each t P R, exppitxq is a Lipschitz function with Lipschitz constant t. By Jensen’s
inequality,

|E exppitpt´1
k Skqq ´ E exppitpt´1

k Sωk qq| ď t
`

E|t´1
k T ωk | ` t

´1
k kmďω

˘

ď Opω1´δ{2
q.

Let ω Ñ 0. By dominated convergence theorem, we have

lim
kÑ8

EpexppitSk{tkqq “ exp

ˆ
ż 8

0

peitx ´ 1qδx´pδ`1qdx

˙

.

The rest of the proof follows from complex analysis: Let Γ denote the gamma function (not
to be confused with the recursion Γs defined before). For t ą 0, (the case of t ă 0 is parallel)

ż 8

0

peitx ´ 1qδx´pδ`1qdx “ tδ
ż 8

0

peix ´ 1qδx´p1`δqdx

“ itδ
ż 8

0

x´δeixdx “ iδtδ
ż 8

0

pixq´δeixdpixq

“ Γp1´ δqiδtδ “ cospπδ{2qΓp1´ δqtδp1` i tanpπδ{2qq,

where the second equality follows by integration by part and the last equality follows by doing
contour integral on region treiθ : ω ď r ď R, θ P r0, π

2
su and letting ω Ñ 0, RÑ 8.
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Let rU denote the limiting stable law specified in Lemma 3.3.6. When δ “ 1
2
, rU follows

the Levy distribution with parameter π
2
. Since this is the only value of δ for which we have a

closed formula for f
rU , here and henceforth we will take δ “ 1{2. The result, however, should

hold for all δ ď 1
2

as long as (3.3.16) holds. Plugging in the formula of Levy distribution and
comparing with Fact 3.3.7, we have

PprU ď cq “
2
?
π

ż 8

1
2

?
π{c

e´t
2

dt ď
2
?
π

1

2

c

π

c
e´π{2c ď c´1{2e´π{2c

ă c´1{2
“ p1` okp1qqkPpU ă ctkq. (3.3.16)

Thus we can upper-bound µkbUpdxq by p1 ` okp1qqk ¨ µUpdxq for small x « Optkq. In the
next lemma, we bound larger values of k b U using the intuition of k b U « maxi“1,...,k Ui.

Lemma 3.3.8. Fix δ “ 1{2. For any M ě 2
δ
, γ, ε P p0, 1q, and k ě k0,

k b µU ă p1` εqk ¨ µU1ěck `
ε

ln k
δ8. (3.3.17)

Proof. Let U1, . . . , Uk be i.i.d. copies of U and define Up1q :“ maxi“1,...,k Ui, UR :“
řk
i“1 Ui ´

Up1q. Let c “ cpδ,M, γ, εq ą 0 be some small constant to be determined. We write

P
´

k
ÿ

i“1

Ui ě z
¯

ď PpUp1q ě p1´ cqzq `
ż p1´cqz

0

fUp1qpxqPpUR ě z ´ x | Up1q “ xqdx, (3.3.18)

where fUp1qpzq “ kfUpzqpFUpzqq
k´1 ď kfUpzq. Fix σ “ σpδ,M, γ, εq P p0, 1

2
q such that

PpU ě p1´ σqψpMqq ď
1

ln k

ż ψpMq

p1´σqψpMq

γ

ln2 x
x´p1`δqdx ď

ε

2 ln k
.

We will split the proof into three cases: x P rck, Ntks, x P rNtk, p1 ´ σqψpMqs and x ě
p1´ σqψpMq where N “ Npδ,M, γ, ε, σ, cq is a large constant to be determined.

1. x P rNtk, p1 ´ σqψpMqs: To bound the first term of (3.3.18), we observe that fU is a
decreasing function and for z ď p1´ σqψpMq, p1` σqz ď ψpMq P suppU . Therefore

PpUp1q P rp1´ cqz, zsq
PpUp1q P rz, p1` σqzsq

ď
czfUpp1´ cqzqF

k´1pzq

σzfUpp1` σqzqF k´1pzq
ď
c

σ

fUpz{2q

fUpp1` σqzq
ď Cσ,M ¨ c,

for all c ď 1{2 and z ď p1´ σqψpMq. It follows that

PpUp1q ě p1´ cqzq ď p1` Cσ,M ¨ cqPpUp1q ě zq ď p1` Cσ,M ¨ cqkPpU ě zq. (3.3.19)
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For the second term of (3.3.18), a similar calculation of Fact 3.3.7 gives that for any
x ď ψpMq,

k ln kEpU | U ď xq “
k ln k

FUpxq

ż x

0

zfUpzqdz ď
γ

1´ δ

1

FUpxq

1

ln2 x
x1´δ,

k ln kEpU2
| U ď xq “

k ln k

FUpxq

ż x

0

z2fUpzqdz ď
γ

2´ δ

1

FUpxq

1

ln2 x
x2´δ.

Recall the expression of tk from Fact 3.3.7. For any c ą 0 we choose N “ NpM,γ, ε, cq
such that for k ě k0 and x ě Ntk,

kEpU | U ď xq ď
1` okp1q

ln k

γ

1´ δ

xpNtkq
´δ

ln2 tk
“ p1` okp1qqN

´δ δ

1´ δ
x ď

1

2
cx. (3.3.20)

Given Up1q “ x, UR is distributed as the sum of pk ´ 1q i.i.d. copies of U conditioned
on U ď x. By Chebyshev inequality, for any z P r2Ntk, ψpMqs and x ď p1´ cqz,

PpUR ě z ´ x | Up1q “ xq ď
k ¨ EpU2 | U ď xq

pz ´ x´ kEpU | U ď xqq2
ď

4

c2z2

1

ln k

γ

2´ δ

1

FUpxq

x2´δ

ln2 x
,

where in the second step, we use the fact that EpU | U ď xq is monotone decreasing
in x. Plugging the estimation into the RHS of (3.3.18), for z ď ψpMq, we have that

ż p1´cqz

0

kfUpxqFUpxq
k´1PpUR ě z ´ x | Up1q “ xqdx

ď

ż p1´cqz

ck

1

ln k

γ

ln2 x
x´1´δ

¨
4

c2z2

1

ln k

γ

2´ δ

x2´δ

ln2 x
dx

ď
Cc,γ

ln2 k

1

z2

ż p1´cqz

ck

1

ln4 x
x1´2δdx ď

Cc,γ,M

ln2 k ¨ z2δ ln4 z
. (3.3.21)

Meanwhile, for z ď p1´ σqψpMq,

kPpU ě zq ě k ¨ σzfUpp1` σqzq “
Cγ,σ,M

ln k ¨ zδ ln2 z
. (3.3.22)

Comparing (3.3.21) and (3.3.22) and using Fact 3.3.7(1), we have for all z ě Ntk that

ż p1´cqz

0

fUp1qpxqP
ˆ n
ÿ

i“1

Ui ě z | Up1q “ x

˙

dx ď Cc,γ,σ,MN
´δkPpU ě zq. (3.3.23)

Combine (3.3.19) and (3.3.23). For each ε ą 0, we can first pick c ď ε{2Cσ,M and
then choose N “ NpM,γ, ε, σ, cq such that (3.3.20) is true and for all k ě k0, z P
rNtk, p1´ σqψpMqs,

P
ˆ k
ÿ

i“1

Ui ě z

˙

ď kPpU ě zq

ˆ

1` Cσ,M ¨ c`
Cc,γ,σ,M
N δ

˙

ď p1` εqkPpU ě zq. (3.3.24)
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2. z P rck, Ntks: Lemma 3.3.6 implies that for z1 P p1, N s, Pp
řk
i“0 Ui ě z1tkq converges

uniformly to 1 ^ PprU ą z1q as k Ñ 8 and rU follows the Levy distribution with
parameter π

2
. Comparing the ck in the RHS of (3.3.17) to the definition of tk yields that

ck ě tk for any ε ą 0. Therefore for k ą k0 and z P rck, Ntks with z1 “ z{tk P p1, N s,

P
ˆ k
ÿ

i“1

Ui ě z

˙

ď p1` ε{2qP
`

Ũ ą z1
˘

ď p1` εqkPpU ě z1tkq, (3.3.25)

where the last step uses (3.3.16).

3. Finally using (3.3.24) and recall the definition of σ, we have for all z ě p1 ´ σqψpMq
that

P
ˆ k
ÿ

i“1

Ui ě z

˙

ď P
ˆ k
ÿ

i“1

Ui ě p1´ σqψpMq

˙

ď p1` εqkPpU ě p1´ σqψpMqq ď
ε

ln k
.

(3.3.26)

Combining (3.3.24), (3.3.25) and (3.3.26) completes the proof.

3.3.4 Distribution of lnp
řk
m“2 exppZ1 ´ Zmqq

In this section we bound the distribution of W0 :“ ´ lnp
řk
m“2 e

Z1´Zmq. First we rewrite
(3.3.10) as

Z1 ă

ˆ

Pois

ˆ

1

2
κ

˙

b δα

˙

‘

ˆ

Poispγp‰r q b
1

γp‰r
ν‰r

˙

“: R0 `Rr “: rZ1,

and let ν̃´Z1 be the distribution of ´ rZ1. Then we define V :“ ´ lnp
řk
m“2 e

´Zmq. The
conclusion of Lemma 3.3.5 can be rewritten as

νV ą
eγ`1´β

ln k

“

ψ´1
˝ pψ ` σq ˝ νS1 ` p1` εqCZνr

‰

1ďak `
ε

ln k
δ´8

“: ν̃1
V ` ν̃

r
V ` ν̃

8
V “: ν̃V . (3.3.27)

Let rV be sampled from ν̃V . Note that Z1 is independent of
řk
m“2 Zm. We finally define

ĂW0 :“ rV ´ rZ1 ă V ´ Z1 “ W0, (3.3.28)

Lemma 3.3.9. Assume that pδ, κ, α0,M, σ, γ, εq satisfies the conditions of Lemma 3.3.4 and
3.3.5.

1. If δ ď 1
2
, then there exists constant Cδ,M ą 0 such that for each y ěM ,

pνr ˚ ν̃´Z1qpdyq ď p1` Cδ,Mγq exppκpeαδ ´ 1q{2qνrpdyq.



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 125

2. There exists constant C‹δ,α,M ą 0 such that pνr ˚ ν̃´Z1qpp´8,M sq ď γ ¨ C‹δ,α,M .

3. For any fixed κ, α0 and y1, y2 ěM ,

lim inf
σ,γÑ0

pν̃1
V ˚ ν̃´Z1qpry1, y2sq ě

e´κ{2

2 ln k
P
`

Poispκq ¨ α P py1, y2q
˘

.

Proof. Part 1: By definition, for any y ěM

νr ˚ ν̃´Z1pdyq “

ż 0

´8

γeδpy´zq

py ´ zq2
ν̃´Z1pdzq ď

γeδy

y2
dy ¨

ż 0

´8

e´δzν̃´Z1pdzq “ νrpdyqEeδ
rZ1 . (3.3.29)

Hence it is enough to bound E exppδ rZ1q “ E exppδR0qE exppδRrq. For the first term,

E exppδR0q “ E exp
`

δα ¨ Poispκ{2q
˘

“ exp
`

κpeαδ ´ 1q{2
˘

. (3.3.30)

For the second term, Rr has the same distribution as the sum of points from the Poisson
point process with intensity ν‰r pdyq. Recall that

ν‰r pdyq “
`

ey ` pk ´ 1q´1
˘´1

νrpdyq ď
γ

y2
epδ´1qydy

and p‰r “
1
γ
ν‰r prM,8qq depends only on δ,M . By Campbell’s Theorem, for any δ ď 1

2
and

γ ď 1,

E exppδRrq “ exp

ˆ
ż ak

M

peδy ´ 1qν‰r pdzq

˙

ď exp

ˆ

γ

ż 8

M

y´2ep2δ´1qydy

˙

ď 1` γCδ,M ,

(3.3.31)
where in the last step we use the inequality ex ď 1 ` xex, @x ě 0. Plugging (3.3.30) and
(3.3.31) back into (3.3.29) yields the desired result.

Part 2: Expanding the convolution of νr ˚ ν̃´Z1 yields that

νr ˚ ν̃´Z1pp´8,M sq ď

ż 8

0

ż z`M

M

γ

y2
eδy ¨ ν̃Z1pdzqdy ď

γeδM

δM2

ż 8

0

eδzν̃Z1pdzq “
γeδM

δM2
Eeδ rZ1 .

Applying (3.3.30) and (3.3.31) to Eeδ rZ1 gives one possible C‹δ,α,M .
Part 3: Noting that ψ´1pψpyq ` σq “ ´ lnpe´y ´ σq, we have that

ν̃1
V ˚ ν̃´Z1pry1, y2sq ě

eγ`1´β

ln k
Pp rZ1 “ 0q ¨ P

`

Poispκq ¨ α P rlnpe´y1 ´ σq, lnpe´y2 ´ σqs
˘

ě
1

ln k
e´

1
2
κ´γp‰r P

`

Poispκq ¨ α P plnp´e´y1 ´ σq,´ lnpe´y2 ´ σqq
˘

.

Poispκq ¨ α takes values from the discrete set αZ`. For any fixed y1, y2, there exists σ “
σpα, y1, y2q such that there is no points of αZ` between ´ lnpe´yi´σq and yi, i “ 1, 2. Hence
in the last line we can substitute the probability by PpPoispκq ¨ α P py1, y2qq. Letting γ Ñ 0
finishes the proof.
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−∞ −σ α M x

maps to 0

maps to α

qM̃

ν̃rW0
([0,M ])

ν̃rW0

ν̃1W0
+ ν̃∞W0

νk

0 M̃

Figure 3.3.1: ν̃W0
and νk

3.3.5 Final step

Finally we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. By Proposition 3.3.1, it suffices to show that under certain choice
of parameters pδ, κ, α0,M, σ, γ, εq, the random variable W defined in (3.3.4) stochastically
dominates νk by c{ ln k for some fixed c ą 0. For any α0 ą 0 and α “ φp1

2
´ α0q, we first

choose σ ă σ1pα0q such that lnp1` e´σq ą 1
2
p1´ α0q. Thus for k ě k0 we can write

W ą ln

ˆ

k ´ 2

k ´ 1
` exppĂW0q

˙

_ 0 ě

$

’

&

’

%

ĂW0
ĂW0 ěM

α M ą ĂW0 ě ´σ

0 ´σ ą ĂW0

. (3.3.32)

Comparing the RHS of last equation with the definition of νk, it is suffices show that

PpĂW0 ă ´σq ď
1

ln k
p1´ κq ´

c

ln k
and (3.3.33)

PpĂW0 ď xq ď νkpr0, xsq ´
c

ln k
for all x ě 0 such that νkpr0, xsq ă 1. (3.3.34)

Recall the three parts of ν̃V in (3.3.27) and define ν̃‚W0
pdxq :“ ν̃‚V ˚ ν̃´Z1pdxq for ‚ P t1, r,8u.

Figure 3.3.1 gives an illustration of ν̃W0 and νk, where bars represent the discrete parts,
curves represent the continuous parts and the left two dotted boxes corresponds to last two
cases of (3.3.32). Fix δ “ 1

2
. To show (3.3.33) is to show that the weight in the first dotted

box is strictly smaller than νkpt0uq “ κ. We set κ “ 1
2

such that

PpPoispκ{2q “ 0q “ e´1{4
ą

3

4
ą

1

2
“ κ.
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Recall the definition of CZ “ CZpδ, κ, α0,M, γq in (3.3.11). By Lemma 3.3.9(2), for each
fixed δ, κ, α0,M , we can choose ε0, γ0, β0 such that for all ε ă ε0, γ ă γ0, β0 ă β ă 1 and
c0 “

1
10

,

PpĂW0 ă ´σq ď
eγ`1´β

ln k

”

Pp rZ1 ‰ 0q ` p1` εqCZγ ¨ C
˚
δ,α,M ` ε

ı

ď
eγ`1´β

ln k

”

1´ e´
1
2
κ´γpr‰ ` 2CZC

˚
δ,α,Mγ ` ε

ı

“
4{3

ln k

„

1

4
` ε` oγp1q



ă
2

5

1

ln k
“

ˆ

1

2
´ c0

˙

1

ln k
.

The proof of (3.3.34) is roughly done in three parts. We first show that the asymptotically,
ν̃rW0

is smaller than νrk by a multiplicative constant factor. Then we show that the underflow
of ν̃rW0

below M (the vertical stripped area in Figure 3.3.1) can be compensated by the
overflow of ν̃1

W0
above M (the q

ĂM box in Figure 3.3.1). Finally we make sure that the
compensation is can be absorbed into the gap of ν̃rW0

and νrk (the wide stripped area in
Figure 3.3.1).

We first look at sufficiently large values of x. By Lemma 3.3.9(1),

ν̃rW0
pdxq ď

eγ`1´β

ln k
p1` α0qp1` Cδ,Mpγ ` εqq exppκpeαδ ` 2e´αδ ´ 3q{2qνrpdxq, @x ěM.

(3.3.35)
Let α0 be a small constant such that (note that φp1

2
q “ ln 2 ´ okp1q and expp

?
2 ´ 3{2q «

0.92 ă 12
13

)

p1` α0q exppκpeαδ ` 2e´αδ ´ 3q{2q “ p1` oα0p1qq expp
?

2´ 3{2q ă
12

13
ă 1,

and let M ąMpα0q_
2
δ

such that Lemma 3.3.4 is satisfied. Recall the definition of constant
Cδ,M from the constants in Lemma 3.3.2 and Lemma 3.3.9. Given our choice of δ, κ, α0,M
so far, we can choose γ1, ε1, β1 such that for all γ ď γ1, ε ď ε1, 1´ β ă 1´ β1 and all x ěM ,

RHS of (3.3.35) ď
12

13
¨

1

ln k
e1`γ´βνrpdxq ď

14

15

1

ln k
νrpdxq. (3.3.36)

Next we consider the values of x near M . We first choose ĂM “ ĂMpδ, α,Mq ą M _ 2α
such that

1

15
νrprM,ĂM sq “

1

15

ż

ĂM

M

γ

y2
eδydy ě eγ1`1´β1pC˚δ,α,M ` 2eγ1 ` ε1qγ, (3.3.37)

where C˚δ,α,M is the constant in Lemma 3.3.9(2). Let q
ĂM :“ 1

2
PpPoispκq ¨ α P pĂM, 2ĂMqq. q

ĂM

is strictly positive since ĂM ą 2α. By Lemma 3.3.9(3), we can choose σ2, γ2 such that for all
σ ă σ2, γ ă γ2,

ν̃1
W0
prĂM, 2ĂM sq “ ν̃1

V ˚ ν̃´Z1pr
ĂM, 2ĂM sq ě q

ĂM ą 0. (3.3.38)
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We further choose γ3, ε3, β2 such that for all γ ď γ3, ε ď ε2 ă 1, 1 ´ β ď 1 ´ β2 and some
c1 P p0, qM̃q,

eγ`1´β
“

p1´ qM̃q ` γC
˚
δ,α,M ` ε

‰

ď 1´ c1 ă 1. (3.3.39)

(3.3.36), (3.3.38) and (3.3.39) together implies for x ď ĂM , (note that νkpr0,M sq “ 1{ ln k)

ν̃W0pr´8, xsq :“ pν̃1
W0
` ν̃rW0

` ν̃8W0
qpr´8, xsq

ď
eγ`1´β

ln k

`

p1´ q
ĂMq ` γC

˚
δ,α,M ` ε

˘

`
14

15

1

ln k
νrprM,x_M sq

ď
1´ c1

ln k
`

14

15

1

ln k
νrprM,x_M sq ď νkpr0, xsq ´

c1

ln k
.

Finally, for x ě ĂM such that νkpr0, xsq ă 1, we can choose c2, β3 such that for γ “
pγ0 ^ γ1 ^ γ2 ^ γ3q and 1´ β ă 1´ β3, we have eγ`1´β ` c2 ă 1` 2γeγ. Using (3.3.37), we
have

ν̃W0pr´8, xsq ď
eγ`1´β

ln k

`

1` γC˚δ,α,M ` ε
˘

`
14

15

1

ln k
νrprM,ĂM sq `

14

15

1

ln k
νrppĂM,xsq

ď
1

ln k
`

1

ln k

`

eγ`1´β
p1` γC˚δ,α,M ` εq ´ 1´

1

15
νrprM,ĂM sq

˘

`
1

ln k
νrprM,xsq

ď
1´ c2

ln k
`

1

ln k
νrprM,xsq “ νkpr0, xsq ´

c2

k ln k
.

Combining all pieces together, we have the desired result with δ, κ, α0,M, γ set as specified
before, σ “ σ1 ^ σ2, ε “ ε0 ^ ε1 ^ ε2, and β0 “ β0 _ β1 _ β2 _ β3, c “ c0 ^ c1 ^ c2 .

3.4 Remaining Calculations

Proof of Fact 3.3.3. First fix n “ 2 and t1 ě 2M . For each x1 ě M , either x1 or t1 ´ x1 is
larger than t1{2, hence

ż t1´M

M

1

x2
1pt´ x1q

2
dx1 ď

2

pt1{2q2

ż 8

M

1

x2
1

dx1 “
8

Mt12
. (3.4.1)

Recursively apply (3.4.1) with t1 “ t´
řn´j
i“1 xi, j “ 2, . . . , n´ 1, we have

ż

xiěM,
řn´1
i“1 xiďt´M

1

x2
1 ¨ ¨ ¨ x

2
n´1pt´

řn´1
i“1 xiq

2
dx1 ¨ ¨ ¨ dxn´1

“

ż

xiěM,
řn´2
i“1 xiďt´2M

1

x2
1 ¨ ¨ ¨ x

2
n´2

˜

ż t´
řn´2
i“1 xi´M

M

1

x2
n´1pt´

řn´1
i“1 xiq

2
dxn´1

¸

dx1 ¨ ¨ ¨ dxn´2

ď
8

M

ż

xiěM,
řn´2
i“1 xiďt´M

1

x2
1 ¨ ¨ ¨ x

2
n´2pt´

řn´2
i“1 xiq

2
dx1 ¨ ¨ ¨ dxn´2 ď ¨ ¨ ¨ ď p

8

M
q
n 1

t2
.
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Proof of Fact 3.3.7. Let sk “ p
γδ

ln kpln ln kq2
q1{δ, it is easy to check that

γ

δ
s´δk ln´2 sk “ p1` okp1qq ln k.

For any ε ą 0, let c be large enough such that p1´ εqδ ´ 2c´δ ą 1. It follows that

ż 8

p1´εqsk

k ln k ¨ µUpdxq “

ż ψpMq

p1´εqsk

γ

plnxq2
x´p1`δqdx ě

γ

ln2
p1´ εqsk

ż csk

p1´εqsk

x´p1`δqdx

“
γ

δ ln2
p1´ εqsk

s´δk pp1´ εq
´δ
´ c´δq ą p1` c´δ ` okp1qq ln k.

Therefore tk ą p1 ´ εqsk for k ě k0. In the other direction, let s1k “ pc1 ln kq´1{δ for some
large constant c1 ą 0, lnps1kq “ p1` okp1qq

1
δ

ln ln k “ p1` okp1qq ln sk, we have

ż 8

p1`εqsk

k ln k ¨ µUpdxq “

ż ψpMq

p1`εqsk

γ

plnxq2
1

x1`δ
dx

ď
γ

ln2 ψpMq

ż 8

s1k

x´p1`δqdx`
γ

ln2
ps1kq

ż 8

p1`εqsk

x´p1`δqdx

ď
γ

δ ln2 ψpMq
c1´δ ln k ` p1` okp1qqp1` εq

´δ ln k.

Let c1 be large enough such that γ
δ ln2 ψpMq

c1´δ ` p1` εq´δ ă 1´ c1´1 ă 1, we have for k ě k0

that tk ă p1` εqsk. This completes the Part 1. Part 2 can be derived similarly.
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Chapter 4

Reconstruction threshold of
NAE-SAT problems

4.1 Introduction

In this chapter we show that the reconstruction threshold of the nae-sat problem on trees
is strictly smaller than the freezing threshold. One immediate difference between k-coloring
model and k-nae-sat is that the later is described by factor graph. Thus to describe the local
weak limit of random d-regular k-factor graphs and random Erdős-Rényi k-factor graph, we
define the k-factor tree as the tree with vertices on even levels being variables, the vertices
on odd levels clauses and each clause having k children (i.e. degree k ` 1).

Since we will be working on factor trees throughout the chapter, up to recursively flipping
all labels on some of the subtrees, we can ignore the literals and stay with the easier definition
that every clause is adjacent to at least one 0 and one 1 (which is also known as hyper-graph
2-coloring in literature). The broadcast process on a k-factor tree that generates a uniform
nae-sat solution can be defined as follows:

1. Choose the root uniformly randomly from t0, 1u.

2. For each clause, if we have set the value of the parent variable to be x P t0, 1u in
previous round, we then choose the value of the rest k variables together according to
the uniform distribution on t0, 1ukztxuk.

We will focus on the pk` 1q-nae-sat problem on infinite d-ary k-factor trees Td,k—k-factor
trees such that every vertex on even levels has d children. As in the case of Chapter 3, we
also consider the Galton Watson tree TPoispdq,k where the number of offspring of each variable
follows the Poisson distribution with parameter d. The definition of reconstruction and
freezing (Definition 3.1.1 and Definition 3.1.2) can be generalized to factor trees in natural
way.

The main result of this chapter is the following theorem. (The exact value of k0 and β‹

may be different than the k0 and β‹ in Theorem 2)
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Theorem 3. There exists a constant β‹ P p1´ ln 2, 1q such that for any k ě k0, the pk` 1q-
nae-sat problem on both Td,k and TPoispdq,k is reconstructible for

d ě p2k ´ 1qpln k ` ln ln k ` β‹ ` okp1qq. (4.1.1)

As comparison, we will show

Theorem 4.1.1. For pk ` 1q-nae-sat problem on both Td,k and TPoispdq,k, there exist con-

stants dfk (depending on the model) such that the root is frozen with high probability if d ą dfk
and unfrozen for d ă dfk. More specifically,

dfk “

$

&

%

infxą0 x ln´1
´

1´ p1´e´xqk

2k´1

¯

Td,k

infxą0
p2k´1qx
p1´e´xqk

TPoispdq,k

“ p2k ´ 1qpln k ` ln ln k ` 1` okp1qq.

For a complete picture, it can be shown following a similar argument of [Sly09] that the
nae-sat problem is non-reconstructible for

d ď p2k ´ 1qpln k ` ln ln k ` 1´ ln 2´ okp1qq. (4.1.2)

We does not go into its proof here due to the limitation of space.

4.1.1 Outline of proof

The proof of Theorem 3 follows a similar argument of Chapter 3. In Section 4.2 we give the
distributional recursion of reconstruction probability on trees and give the reconstruction
algorithm assuming certain stochastic dominance result. We then prove the stochastic dom-
inance result in Section 4.3. For completeness, we prove the freezing threshold in Section 4.4.

4.2 Reconstruction algorithm

4.2.1 Tree recursions

We begin by specifying the distributional recursion of the posterior probabilities. Let T “
pV, F,Eq „ Tk,ξ be sampled from the Galton-Watson k-factor tree with offspring distribution
ξ, Tn “ pVn, Fn, Enq its restriction onto the first 2n levels, and Ln the set of variables on
level 2n (the nth level of variables). Denote the set of solutions on Tn as

Ωn :“ tσ P t0, 1uVn : for each a P F, Du, v P Ba, such that σu ‰ σvu

and its restriction onto Ln as ΩpLnq. Define deterministic functions fn such that for each
η P ΩpLnq

fnpx, η;T q :“ P pσρ “ x|T, σLn “ ηq, x P t0, 1u.
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Function fnp¨, η;T q gives the distribution of the root given boundary condition η and tree
structure T . By symmetry, fnp1, ηq “ fnp0, 1‘ ηq, where 1‘ η is the configuration obtained
from η by flipping the value of every variable. Let dρ denote the degree of the root and
ui,j, i “ 1, . . . , dρ, j “ 1, . . . , k be the jth variable in L1 attached to the i’th clause. Let Ti,j
denote the subtree rooted at ui,j and let Lni,j “ Ln X Ti,j be the subset of Ln in Ti,j. Given
vertex ui,j, the configuration on Ti,j is independent of T zTi,j. Standard recursive calculation
gives that, for each η P ΩpLnq and ηi,j “ ηLi,j P ΩpLn´1q,

fn`1p0, η;T q “

śdρ
i“1p1´

śk
j“1 fnp0, ηi,j;Ti,jqq

śdρ
i“1p1´

śk
j“1 fnp1, ηi,j;Ti,jqq `

śdρ
i“1p1´

śk
j“1 fnp0, ηi,j;Ti,jqq

. (4.2.1)

For s P t0, 1u, let Ξs “ Ξspn; ξq denote the joint distribution of pTn, σLnq given σρ “ s
and let pTn, η

sq be sampled from Ξs. Write η1i,j “ η1i,jpnq for the restriction of η1 onto
Lni,j. Let ∆ :“ tpx0, x1q : x0 ` x1 “ 1, x0, x1 ě 0u. We consider the posterior distribution
Xn`1 “ pXs

n`1qsPt0,1u :“ pfn`1ps, η
1;Tn`1qqsPt0,1u P ∆, which is a deterministic function of

η1. By the conditional independence of Gibbs measure and the symmetry between the two
states, we have

fnps, η
1
i,j;Ti,jq |σpui,jq“t

d.
“ X1‘s‘t

n
d.
“

#

X0
n s ‰ t

1´X0
n s “ t

, for all s, t P t0, 1u. (4.2.2)

Further more, pη1i,1, . . . , η
1
i,kq1ďiďdρ are i.i.d. with respect to i and for each i, pη1i,jq1ďjďk are

exchangeable with respect to j. And hence are pXi,jq1ďiďdρ,1ďjďk.
To describe the one step recursion of the law of Xn, let Γs, s P t0, 1u be the following

functions that take an indefinite number of variables:

Γsp~b, ~xq :“
Λs

Λ0 ` Λ1
p~b, ~xq,

where ~b “ pblq0ďlďk´1 P Zk´1
ě0 , ~x “ pxli,jqi,lě0,1ďjďk such that each xli,j P ∆, and

Λs
p~b, ~xq :“

k´1
ź

l“0

bl
ź

i“1

«

1´
l

ź

j“1

xl,si,j

k
ź

j“l`1

xl,1‘si,j

ff

.

In the formula above, bl represents the number of clauses adjacent to the root such that
l of its variable children have value s, namely bl :“ |ti : |tj : σpui,jq “ su| “ lu|. Thus
by the property of “not all equal”, bk = 0 and we omit it from the definition. Given the
degree of the root dρ, pb0, . . . , bk´1q follows multinomial distribution of sum dρ and probability
pl “

`

k
l

˘

p2k ´ 1q´1.

Let Dρ be sampled from ξ, ~B “ pB0, . . . , Bk´1q be sampled from the conditional distri-

bution, and ~X “ pX l
i,jqi,lě0,1ďjďk be i.i.d. samples of Xn, (4.2.1) and (4.2.2) implies that

Xn`1
d.
“ Γp ~B, ~Xq :“ pΓ0

p ~B, ~Xq,Γ1
p ~B, ~Xqq. (4.2.3)
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Let X̃npsq :“ fnps, η̃q, s P t0, 1u be the posterior probability where η̃ is the restriction of an
unconditional sample pT, σq onto Ln. The distributions of Xn and X̃n satisfies that for each
x “ px0, x1q P ∆,

PpXn P dxq “ 2Ppσρ “ 1,Ppτρ “ 0 | τLn “ σLnq P dx
0
q

“ 2PpXn P dxqPpσρ “ 1 | Ppτρ “ 0 | τLn “ σLnq P dx
0
q

“ 2p1´ x0qPpX̃0
n P dxq “ 2x1PpX̃0

n P dxq. (4.2.4)

Let Msp∆q Ă Mp∆q be the subset of probability measures on Mp∆q that are invariant
under flip of the two coordinates. As in the definition leading to (3.2.5) in Chapter 3, we
again use Γ to denote the transformation it induces on Mp∆q and for each ν P Mp∆q,
define pΠsνqpdxq :“ kxsνpdxq for all x P ∆. Following (4.2.1) and (4.2.3), the distributional
recursion of X̃n can then be written as

Γ̃ν :“
1

2

”

pΓ ˝ Π0
qν ` pΓ ˝ Π1

qν
ı

, s P t0, 1u. (4.2.5)

In particular, if X̃n „ ν, then Xn „ Π1ν, Xn`1 „ Γ ˝ Π1ν and X̃n „ Γ̃ν.
Observe that for every ν P Mp∆q, there is a nature correspondence in Mpr1

2
, 1sq by

mapping x “ px0, x1q to maxs xs. With some abuse of notations, for any µ, ν P Mp∆q, we
say that ν stochastically dominate ν (by ε) if the statement is true with respect to their
correspondence in Mpr1

2
, 1sq. We prove the following result in Section 4.2.

Theorem 4.2.1. There exist β0 ă 1, c ą 0 such that for any k ą k0, d ě p2k ´ 1qpln k `
ln ln k`β0q, and T „ TPoispdq,k, one can constructs µk PMp∆q such that when both translated

into Mpr1
2
, 1sq, Γ̃µk stochastically dominates µk by c{ ln k.

From there, repeating the arguments in Section 3.2.2 and Section 3.2.3 with k “ 2 and
modifying to factor trees when necessary, one can show the following two results.

Theorem 4.2.2. For any d, k such that Theorem 4.2.1 holds, there exist independent random
array U and measurable function BρpT, σLn ,Uq such that

lim inf
nÑ8

E
ˇ

ˇ

ˇ

ˇ

P pσρ “ 0 | BρpTn, σLn ,Uqq ´
1

2

ˇ

ˇ

ˇ

ˇ

ą 0.

Corollary 4.2.3. Fix β‹ P pβ0, 1q. For any d, k such that pd1 :“ td´pβ˚´β0q2ku, kq satisfies
Theorem 4.2.1 and (3.2.11), there exist independent random arrays U,D and measurable

function rBρpσLn ,U,Dq such that

lim inf
nÑ8

E
ˇ

ˇ

ˇ

ˇ

P
´

σρ “ 0 | rBρpσLn ,U,Dq
¯

´
1

2

ˇ

ˇ

ˇ

ˇ

ą 0.

Proof of Theorem 3 (Reconstruction). The reconstruction part of Theorem 3 follows from
Theorem 4.2.1, Theorem 4.2.2 and Corollary 4.2.3.
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4.3 Proof of Theorem 4.2.1

In this section we prove Theorem 4.2.1. We first rewrite the transformation Γ on Mp∆q
defined in (4.2.3) in a way easier for analyze and a give a parameterized candidate of µk. We
then verify Theorem 4.2.1 using the candidate in the remaining sections.

4.3.1 Reformulating the recursion

To analyze (4.2.3), it is easier to work the symmetrized log-version of X0
n. Define for each

x “ px0, x1q P ∆ that

φpxq “ lnpx1{x0q, φ´1
pyq “ p1{p1` eyq, ey{p1` eyqq.

φpxq is a function mapping ∆ to R̄ “ r´8,8s. Recall that φ ˝ µ is the distribution of φpXq
where X is sampled from µ. Let MspRq denote the space of probability distributions on R
that are symmetric about 0. We can rewrite (4.2.3) as

φ ˝ Γ0
p ~B, ~Xq “ ln

˜

Γ1p ~B, ~Xq

Γ0p ~B, ~Xq

¸

“ ln

˜

Λ1p ~B, ~Xq

Λ0p ~B, ~Xq

¸

d.
“

k´1
ÿ

l“0

Bl
ÿ

i“1

„

ln

ˆ

1´
l

ź

j“1

X l,1
i,j

k
ź

j“l`1

X l,0
i,j

˙

´ ln

ˆ

1´
l

ź

j“1

X l,0
i,j

k
ź

j“l`1

X l,1
i,j

˙

, (4.3.1)

We now split the construction of φ ˝ Γ0p ~B, ~Xq into steps.

1. For each ν PMspRq, let ν1 :“ φ ˝ Π1 ˝ φ´1. By (4.2.4), if φ´1pνq is the distribution of
X̃0
n, then φ´1pν1q is the distribution of X0

n. A straightforward calculation gives that

dν1

dν
pyq “ 2rφ´1

pyqs1 “
2ey

1` ey
.

2. Observe that on the RHS of (4.3.1), the summand for each fixed l is i.i.d. with respect
to index i. For each l “ 0, . . . , k ´ 1, Define

Yl “ pY
0
l , Y

1
l q :“

ˆ

´ ln

ˆ

1´
l

ź

j“1

X l,0
j

k
ź

j“l`1

X l,1
j

˙

,´ ln

ˆ

1´
l

ź

j“1

X l,1
j

k
ź

j“l`1

X l,0
j

˙˙

,

(4.3.2)
where tX l

ju’s are i.i.d. samples of φ´1 ˝ ν1. Vector Yl evaluates the contribution from
a clause with l children being 1 to the posterior distribution.

3. For each l “ 0, . . . , k´1, let Bl „ Pois
``

k
l

˘

D
˘

and pY 0
i,l, Y

1
i,lq be i.i.d. copies of pY 0

l , Y
1
l q.

Define

pZ0
l , Z

1
l q :“

˜

Bl
ÿ

i“1

Y 0
i,l,

Bl
ÿ

i“1

Y 1
i,l

¸

(4.3.3)

to be the total contribution of clauses with l children equaling to 1.
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4. Finally we define W :“
řk´1
l“0 pZ

0
l ´ Z

1
l q.

Claim 4.3.1. If for some measure νk PMspRq, the random variable W constructed following
the steps above satisfies that

νkpr´t, tsq ě mint1, νW pp´8, tsq ` c{k ln ku, for all t ě 0,

then µk “ φ´1 ˝ νk satisfies the condition of Theorem 4.2.1.

Proof. This is just a rewriting of (4.2.5) and (4.3.1).

We now propose a parameterized candidate of νk: Let δ,M " 0, 0 ă γ, σ, ε ! 1 be
parameters to be determined in the order of pδ,M, σ, γ, εq. Let ν‹ be an infinite-volume
measure defined as (recalling that φp 1

k
q “ 0)

ν‹pdxq :“ δ0pdxq `
γ

x2
eδ|x|1t|x| ąMudx, (4.3.4)

where δx is the Dirac measure at x, and write νrpdxq :“ γ
x2
eδx1tx ąMudx for the right tail

of ν‹. We will use ν‹ as a “scaling limit” of νk and show that the assumption of Claim 4.3.1
is satisfied with

νkpdxq :“
1

k ln k
ν‹pdxq1t0 ď x ď aku,

for some choice of pδ,M, γ, εq and k ě k0 “ k0pδ,M, γ, εq, where ak is the constant such that
νk is a probability measure.

Let X,Xi „ φ˝ν1k through out the section. The idea is to view the recursion (4.3.1) as sum
of points from some Poisson point process where the main contribution comes from Z0

0 while
Z0

1 and Z1
k´1 add a symmetric noise of Op1q order. All other terms and the dependence

between Z1
l and Z0

l are negligible. To taken into account of the “approximation error”
between νk and ν‹, we will also introduce extra error terms α and ε in later sections. As it
will be clear in the proof, we will decide these parameters in the order of δ, α,M, γ, ε, k.

Recall the notations from the beginning of Section 3.2 and further define Bba to be the
product of a i.i.d. of B. We will use 1ďak or 1ěck to truncate (part of) a measure above or
below such that the total mass is 1. The specific value of ak and ck may be different from
line to line. We assume M ą 2{δ so that x´2eδ|x| is an increasing function in |x|. Let

νcpdxq “
γ

x2
eδ|x|1Mď|x|dx, νrpxq “

γ

x2
eδx1xěM

denote the continuous part of ν and its right tail. Define ν1c , ν
1
r similarly. As x goes to ´8,

ν1pdxq « 2γx´2e´p1´δqxdx is integrable, hence we denote the normalized weight of left tail as

p0 “ p0pδ,Mq “ ν1pp´8,´M sq{2γ

Finally define two more functions, both of which are monotone decreasing:

ψ1 : RÑ r0,8s, lnpp1´ xq{xq ÞÑ ´ lnp1´ xq, y ÞÑ lnp1` e´yq (4.3.5)

ψ2 : r0,8s Ñ r0,8s,y ÞÑ ´ lnp1´ e´yq,´ lnp1´ xq ÞÑ ´ lnpxq. (4.3.6)
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4.3.2 The distribution of Y 0
0

Recall that X,Xi’s are i.i.d. samples of φ ˝ ν. Let U :“ ´ lnp1´Xq „ ψ1 ˝ ν
1
k . By definition

Y 0
0

d.
“ ´ lnp1´ p1´Xqbkq, hence ψ´1

2 pY
0

0 q
d.
“ k b U . A direct calculation gives that

k ln k ¨ νUpdxq “ δln 2pdxq `
2γpex ´ 1q´1´δsgnpψ´1

1 pxqq

ln2
pex ´ 1q

dx ¨ 1Mď|ψ´1
1 pxq|ďak

(4.3.7)

«

#

2γ
ln2 x

x´p1`δqdx xÑ 0
2γ
x2
epδ´1qxdx xÑ 8

.

When k is large, νU is highly concentrated around 0 and the density as xŒ 0 is asymp-
totically equal to the density in 3.3.15. Thus following a similar argument of Lemma 3.3.6,
we can show the following result.

Lemma 4.3.2. For any δ, γ P p0, 1q, M ą 2
δ
, let tk :“ inftt : νUprt,8qq ă 1{ku, then

k b pt´1
k Uq converges weakly to stable law with index δ and characteristic function

expp´b|t|δp1` isgnptq tanp
π

2
δqq,

where b “ δ
ş8

0
pcosx´ 1qx´p1`δqdx “ ´ cospπ

2
δqΓp1´ δq.

The proof to Lemma 4.3.2 follows exactly the same as the proof of Lemma 3.3.6 and we
omit the proof from here.

Let Ũ the denote limiting stable law specified in Lemma 4.3.2. For δ “ 1
2
, Ũ follows Levy

distribution with parameter c “ π
2
. We henceforth set δ “ 1{2. In particular, this implies

PpŨ ď cq “
2
?
π

ż 8

1
2

?
π{c

e´t
2

dt ď
2
?
π

1

2

c

π

c
e´π{2c ď c´1{2e´π{2c

cą1
ă c´1{2

“ p1` okp1qqkPpU ă ctkq.

This implies that νkbUpdxq is upper-bounded by p1`okp1qqk ¨νUpdxq for small x « Optkq.
On the other end of the spectrum, for any fix x ą 0, k ln k ¨ νUprx,8qq Ñ ψ1pνqprx,8qq.
Hence among k i.i.d. copies of U , the probability of seeing more than one of them larger
than x is Op 1

ln2 k
q, and we would expect

νkbUpdxq « νminUi,i“1,...,kpdxq « kνUpdxq «
1

ln k
pψ1 ˝ ν

1
qpdxq.

And indeed, that’s the motivation of the following lemma.

Lemma 4.3.3. Fix δ “ 1{2, for any M ě 2
δ
, γ, ε, α P p0, 1q, and k ě k0

ψ´1
2 pY

0
0 q

d.
“ k b U ă

1

ln k
p1` εq

”

ψ1 ˝ ν
1
r ` δψ1p´αq ` 2γp0δ8

ı

1ěck
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Proof. For each α P p0, 1q, let M 1 be the chosen such that

ψ1pM
1
q ` ψ1p0q “ ψ1pM

1
q ` ln 2 ă ψ1pαq. (4.3.8)

Recall the definition of νU in 4.3.7. The probability that a sample of U is bigger than ψ1pM
1q

is Op1{k ln kq. Therefore out of k i.i.d. samples of U , the probability that more than one
sample come is larger than ψ1pM

1q is op1{ ln kq. Namely,

k b pU1tU ě ψ1pM
1
quq ă

´

1´
wk
ln k

¯

δ0 `
1

ln k
rψ1 ˝ ν

1
r1ěψ1pM 1q ` δψ1p0q ` p2γp0 ` εqδ8s,

where wk is chosen such that the RHS has weight 1.
For the rest of the mass, a similar argument of Lemma 3.3.8 shows that the contribution

from samples smaller than ψ1pM
1q can be bounded as

k b pU1tU ď ψ1pM
1
quq ă

1

ln k
p1` εqrψ1 ˝ ν

1
r1ďψ1pM 1q ` εδ8s.

Taking convolution of the last two equations and using (4.3.8) finishes the proof.

Now we recover Y0 from ψ´1
2 pY0q. Observe that ψ2 is a decreasing function with

ψ2 ˝ ψ1pyq “ lnp1` eyq ě y, ψ2 ˝ ψ1p´αq “ ln 2´Opαq, ψ2p8q “ 0.

By passing a different α1, ε1 P p0, 1q into Lemma 4.3.3 when necessary, we have for k ě k0,

Y 0
0 ą

1

ln k
p1` εqrψ2 ˝ ψ1 ˝ ν

1
r ` δln 2´α ` 2γp0δ0s1ďak “: Ỹ 0

0 . (4.3.9)

4.3.3 The distribution of Y 0
l , l ě 1

In this section, we bound the effect of Y 0
l for l “ 1, . . . , k ´ 1. By definition

Y 0
l

d.
“ Y 1

k´l
d.
“ ´ lnp1´ p1´Xqbpk´lqXbl

q ă ´ lnp1´Xbl
q “: Ỹl,

where the second last step corresponds to ignoring the contribution of variables with the
same value as the parent variable. In particular setting l “ 1, we have

Ỹ1
d.
“ ´ lnp1´Xq “

1

k ln k
ψ1 ˝ ν

11ěck .

The next lemma gives a crude bound of Ỹl using Ỹ1 and shows that it is negligible for l ě 2.

Lemma 4.3.4. There exist constant C “ Cpδ, γ,Mq such that for all l “ 1, . . . , k

ψ2pỸlq “ l b p´ lnXq ą
C l´1

pk ln kql
ψ2 ˝ ψ1 ˝ ν

11ďak ,

and hence Ỹl ă
1

k ln k
p C
k ln k

ql´1ψ1 ˝ ν
11ěck .
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Proof. For each l, we truncate ψ2 ˝ ψ1 ˝ ν
1 at different places and apply different scalings.

For convenience of notation, write ν̃V :“ ψ2 ˝ψ1 ˝ ν
1 (resp. f̃V ) for the untruncated measure

(resp. density) and let V :“ ´ lnX „ 1
k ln k

ν̃V 1ďak . Recall that ψ2 ˝ ψ1pxq “ x` lnp1` e´xq.
A direct calculation gives

ν̃V pdxq “ δln 2pdxq `
2γpex ´ 1qδ

ln2
pex ´ 1q

1ψ2˝ψ1pMqďxdx`
2γpex ´ 1q´δ

ln2
pex ´ 1q

10ăxďψ2˝ψ1p´Mqdx

ď δln 2pdxq `
2γ

x2
eδx1ψ2˝ψ1pMqďxdx`

2γ

xδ ln2 x
10ăxďψ2˝ψ2p´Mqdx. (4.3.10)

We will prove by induction that for any t ě 0,

Ppψ2pY
0
l q ď tq “ νlbV pr0, tsq ď

1

k ln k

´ C

k ln k

¯l´1

ν̃V pr0, tsq, (4.3.11)

which together with proper truncation will imply the desired result.
The base case of l “ 1 is trivial. Let C be a constant to be determined. Suppose (4.3.11)

is true for l ´ 1 and all t ą 0. Let M̃ “ ψ2 ˝ ψ1pMq and C1 “ ν̃V pr0, 2M̃ sq. For t ď 2M̃ ,

Ppl b V ď tq “

ż t

0

Pppl ´ 1q b V ď t´ sqνV pdsq ď Pppl ´ 1q b V ď tq

ż 2M̃

0

νV pdsq

“
C1

k ln k
Pppl ´ 1q b V ď tq ď

C1 ¨ C
l´2

pk ln kql
ν̃pr0, tsq.

For t ě 2M̃ , by induction hypothesis,

Ppl b V ď tq “

ż t

0

Pppl ´ 1q b V ď t´ sqνV pdsq ď
C l´2

pk ln kql

ż t

0

ν̃V pr0, t´ ssqν̃V pdsq.

Again, we have
ż M̃

0

ν̃V pr0, t´ ssqν̃V pdsq ď C1νV pr0, tsq

By integrating by part, it is enough to show that

ż t

M̃

ν̃V pr0, t´ ssqν̃V pdsq “

ż t´M̃

0

ν̃V prM̃, t´ ssqν̃V pdsq ď C ν̃V pr0, tqq.

Since fV ptq is well-defined for t̃ ě M̃ , differentiating the last two steps of the last equation
with respect to t yields

ż t´M̃

0

f̃V pt´ sqν̃V pdsq ď Cf̃V ptq.
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To prove the last inequality. Recall the upperbound (4.3.10) and note that ν̃V pp0, ψ2 ˝

ψ1p´Mqsq “ ν1pp´8,´M sq “ 2γp0. For t ě 2M̃ ,

ż t

0

f̃V pt´ sqν̃V pdsq “ 2

ż t{2

0

f̃V pt´ sqν̃V pdsq

“ 2f̃V pt´ ln 2q ` 2

ż t{2

M̃

f̃V pt´ sqf̃V psqds` 2

ż ψ2˝ψ1p´Mq

0

f̃V pt´ sqf̃V psqds

ď p2` 4γp0q
2γeδt

t2
` 2

ż pt´M̃q

M̃

8γ2eδt

pt´ sq2s2
ds ď p2` 4γp0 ` 4γCM̃q

2γeδt

t2
,

where in the last step constant CM̃ is finite because
ş8

M̃
1{t2dt ă 8.

In particular, for Y 1
0

d.
“ Y 0

k
d.
“ ψ2pk b V q , a crude application of Lemma (4.3.4) yields

PpY 1
0 ą k´3

q ď k´3. (4.3.12)

We will use this to give a bound for Y 0
0 ´ Y

1
0 regardless of their dependency.

Corollary 4.3.5. For fixed δ “ 1
2
,M, γ ą 0 and any α, ε ą 0, for k ą kpδ, α,M, γ, εq,

Y 0
0 ´ Y

1
0 satisfies that

Y 0
0 ´ Y

1
0 ą

1

ln k
rp1` εqpν1r ` 2γp0δ0q ` δln 2´αqs1ďak `

1

k3
δ´8 “: Ỹ0. (4.3.13)

Proof. By (4.3.9) and (4.3.12), for all y ą 0 and k ě k0,

PpY 0
0 ´ Y

1
0 ď yq ď PpY 0

0 ď y ` αq ` PpY 1
0 ą αq

ď p1` εqPpỸ 0
0 ď yq `

1

ln k
1yPr ln 2´2α,ln 2´αq `

1

k3
.

Hence passing a different ε, α onto Lemma 4.3.3 if necessary, it is enough to show that
PpY 0

0 ´ Y 1
0 ă 0q ă 1

k3
, which is equivalent to Ppk b lnpp1 ´ Xq{Xq ă 0q ă 1

k3
. Recall by

definition lnp1´Xq{X “ φpXq „ ν1k , there exist constant Cγ,M such that

Ee´
1
2

lnpp1´Xq{Xq
ď

1

k ln k

ż 8

´8

e´
1
2
sν1pdsq “

1

k ln k
Cγ,M .

Applying Markov inequality yields

P
`

k b ln
1´X

X
ă 0

˘

ă Ee´
1
2
kblnpp1´Xq{Xq

ă

ˆ

Cγ,M
k ln k

˙k

ă
1

k3
.
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4.3.4 The distribution of Z0
0 ´ Z

1
0

Let D :“ d{p2k ´ 1q “ ln k ` ln ln k ` β. Recall from definitions (4.3.3) and (4.3.13) that

Z0
0 ´ Z

1
0
d.
“ PoispDq b pY 0

0 ´ Y
1

0 q ą PoispDq b Ỹ0,

where Ỹ0 is a mixture of Dirac measure δln 2´α, δ0, δ´8 and a continuous part p1 ` εqν1r1ďak
with mass 1

ln k
, p1`εq2γp0

ln k
, 1
k3

and 1´ p1`εq2γp0`1
ln k

. Define p´ :“ p1` εq2γp0 ` 1 and

S1 :“ Poisp1q b δln 2´α, S0 :“ Pois
´´

1´
p´
ln k

¯

D
¯

b
p1` εq

1´ p´
ln k

ν1r1ďak , S8 :“ Poispk´2
q b δ´8

By Poisson thinning and the fact that ln k ď D ď k, S1, S0 and S8 give lower-bounds to
the contribution of Ỹ0 samples supported on δln 2´α, ν1r and δ´8 and

PoispDq b Ỹ0 ą S1 ` S0 ` S´8. (4.3.14)

In particular, S´8 take two values 0 and ´8 with

PpS´8 ‰ 0q “ Opk´2
q. (4.3.15)

The next two lemmas follows from a similar argument to Lemma 3.3.2 and Lemma 3.3.4,
the proofs of which are omitted to avoid redundancy. Note that the key term ep2e

´αq´δ´1 in
Lemma 3.3.4 comes from shifting νr by Poisp1q number of pln 2´ αq’s.

Lemma 4.3.6. There exists constant CM such that for any parameter pδ, α,M, γ, εq and
k ě k0 satisfying the condition of Corollary 4.3.5 holds, we have

S0 ą
1

k ln k
eγ`p´´βrδ0 ` p1` CMpγ ` εqq2νr1ďaks. (4.3.16)

Lemma 4.3.7. For any α ą 0, there exist constant Mpαq such that for all M ą Mpαq _ 4
and pδ, α,M, γ, εq satisfying Lemma 4.3.6, we have

S0 ` S1 ą
ep´`γ´β

k ln k
rνS1 ` p1` αqp1` CMpγ ` εqqe

p2e´αq´δ´1
p2νrq1ďaks. (4.3.17)

Corollary 4.3.5, (4.3.14) and (4.3.17) together complete the picture of Z0
0 ´ Z

1
0 .

Corollary 4.3.8. Fix δ “ 1
2
, for any α, γ, ε P p0, 1q, and all M ą Mpαq _ 4, there exist

constant CM such that for large enough k,

Z0
0 ´ Z

r
0 ą

ep´`γ´β

k ln k
pνS1 ` ν

1
S0`S1

q `
1

k2
δ´8 (4.3.18)

where νrS0`S1
“ p1`αqp1`CMpγ ` εqqe

p2e´αq´δ´1p2νrq1ďak is the continuous part of S0`S1.
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4.3.5 The effect of R “
řk´1
l“1 pZ

0
l ´ Z

1
l q

Recall from definition that W “ pZ0
0 ´ Z1

0q `
řk´1
l“1 pZ

0
l ´ Z1

l q. Define R :“
řk´1
l“1 pZ

0
l ´ Z1

l q.
R acts as a symmetric perturbation on the leading term pZ0

0 ´ Z
1
0q. From Corollary 4.3.8,

W ą pS0 ` S1q `R ` S´8 ą
ep´`γ´β

k ln k
pνS1 ˚ νR ` ν

1
S0`S1

˚ νRq `
1

k2
δ´8. (4.3.19)

Let ν̃0
W :“ νS1 ˚ νR, ν̃rW :“ νrS0`S1

˚ νR where νrS1`S0
is defined in Corollary 4.3.8.

Lemma 4.3.9. For any δ P p0, 1
2
s, M ą M‹pδq, pδ, α,Mγ, εq satisfying the conditions of

Corollary 4.3.8 and Lemma 4.3.4, and k ą k0,

1. There exists some constant Cδ,M such that for x ěM ,

ν̃rW pdtq ď p1` Cδ,Mγq expp2δ ` 2´δ ´ 2qνrS0`S1
pdtq.

2. There is constant C‹δ,α,M such that ν̃rW pp´8,M sq ď γ ¨ C‹δ,α,M .

3. For every integer m ě 1 and M̃ “ pm` 1{2q ¨ pln 2´ αq, we have

ν̃0
W prM̃,8qq ě νS1prM̃, 2M̃qq “ PpPoisp1q P rm` 1, 2m` 1sq.

The M‹pδq in the proof comes from the following calculus fact, the proof of which is
postponed,which will be proved in Secion 4.5.

Fact 4.3.10. There exist M‹pδq such that for M ąM‹pδq and t ą t´ s ąM

1

pt´ sq2
e´δs `

1

pt` sq2
eδs ď

1

t2
pe´δs ` eδsq. (4.3.20)

Proof of Lemma 4.3.9. Part 1: Let fr denote the density of νr. Since νR is symmetric about
0, using Fact 4.3.10 we have

p2νrq ˚ νRpdtq ď

ż t´M

´8

2frpt´ sqdpt´ sqνRpdsq ď

ż t´M

´8

2γeδpt´sq

pt´ sq2
νRpdsqdt

ď 2γeδt
ˆ
ż t´M

0

ˆ

1

pt´ sq2
e´δs `

1

pt` sq2
eδs

˙

νRpdsq `

ż 8

t´M

1

pt` sq2
eδsνRpdsq

˙

ď
2γeδt

t2
dt ¨

ż 8

´8

e´δsνRpdsq “ ν1pdtqEe´δR

It is enough to show that Ee´δR ď p1`Opγqq expp2δ`2´δ´2q for large k. Since tpZ1
l , Z

0
l qu

k
`“1

are independent random variables with respect to l, by Campbell theorem,

Ee´δR “ Ee´δ
řk´1
l“1 pZ

0
l´Z

1
l q “

k´1
ź

l“1

Ee´δpZ0
l´Z

1
l q

“

k´1
ź

l“1

Ee´δ
“

PoisppklqDqbpY
0
l ´Y

1
l q
‰

“ exp

˜

k´1
ÿ

l“1

ˆ

k

l

˙

D ¨ EpeδpY 1
l ´Y

0
l q ´ 1q

¸

.
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For arbitrary a, b ą 0, we have ea´b´1 ď eape´b´1q`ea´1 ď pe´b´1q`pea´1q. Applying
this inequality to δY 1

l , δY
0
l and exchanging the order of summation, the last equation satisfies

Ee´δR ď exp

˜

k´1
ÿ

l“1

ˆ

k

l

˙

DrEpe´δY 0
l ´ 1q ` EpeδY 1

l ´ 1qs

¸

“ exp

˜

k´1
ÿ

l“1

ˆ

k

l

˙

DrEpe´δY 0
l ´ 1q ` EpeδY 1

k´l ´ 1qs

¸

. (4.3.21)

Note that by definition Y 1
l

d
“ Y 0

k´l. Since e´δs ` eδs ´ 2 is increasing in s for s ą 0, by
properties of stochastic dominance and Lemma 4.3.4, we have

Epe´δY 0
l ´ 1q ` EpeδY 1

k´l ´ 1q “ Epe´δY 0
l ` eδY

0
l ´ 2q ď Epe´δỸ 0

l ` eδỸ
0
l ´ 2q

ď
C l´1

pk ln kql

ż 8

0

pe´δs ` eδs ´ 2qpψ1 ˝ ν
1
qpdsq. (4.3.22)

Recall the density of ψ ˝ ν1 calculated in (4.3.7), we have

ż 8

0

pe´δs ` eδs ´ 2qψ1 ˝ ν
1
pdsq “ p2´δ ` 2δ ´ 2q `

ż 8

0

pe´δs ` eδs ´ 2qψ1 ˝ ν
1
c pdsq

Since γ´1ν1c is independent of γ, for δ ď 1
2
, we define

Cδ,M :“
1

γ

ż 8

0

pe´δs ` eδs ´ 2qψ1 ˝ ν
1
c pdsq ă 8.

Plugging the last two equations back into (4.3.22) and then (4.3.21), we have

Ee´δR ď exp

˜

pp2´δ ` 2δ ´ 2q ` 2γCδ,Mq ¨
k´1
ÿ

l“1

ˆ

k

l

˙

D
C l´1

pk ln kql

¸

“

ˆ

1`Opγq `O

ˆ

ln ln k

ln k

˙˙

expp2´δ ` 2δ ´ 2q. (4.3.23)

Part 2: Again, writing out the integration form of p2νrq ˚ νR and applying (4.3.23), we have

p2νrq ˚ νRpp´8,M sq ď

ż 8

M

ż 8

t´M

νRpdsq ¨ p2νrqpdtq ď

ż 8

0

ˆ
ż s`M

M

2γ

t2
eδtdt

˙

νRpdsq

ď
2γeδM

δM2

ż 8

0

eδsνRpdsq “ γC 1δ,M .

Therefore by the definition of ν1S0`S1
in Corollary 4.3.8, there exists C‹α,δ,M depending on the

choice of α, δ and M such that ν̃1W pp´8,M sq ď γC‹α,δ,M .
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Part 3: Finally we bound ν̃0
W “ νS1 ˚ νR and show that PpS1`R ě M̃q ě PpS1 P rM̃, 2M̃ sq.

Write α1 “ pln 2´ αq so that M̃ “ pm` 1{2qα1. Note that S1 only takes values in α1Z`.

PpS1 `R ě M̃, S1 ă M̃q “ PpS1 `R ě M̃, S1 ď M̃ ´ α1{2q

“

m
ÿ

l“0

PpS1 “ lα1qPpR ě M̃ ´ lα1q

Since PpPoisp1q “ mq is decreasing in m ě 1 and R is symmetric about 0, it follows that

m
ÿ

l“0

PpS1 “ lα1qPpR ě M̃ ´ lα1q ě
m
ÿ

l“0

PpS1 “ 2M̃ ´ lα1qPpR ď ´M̃ ` lα1q

“ PpS1 P rM̃, 2M̃ s, S1 `R ď M̃q.

Comparing the last two equations yields the proof.

4.3.6 Final step

Now we have all the ingredients to nail down the parameters and prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Recall from Claim 4.3.1 that it is enough to show that

νW pp´8, tsq ď νkpr´t, tsq ´ c{k ln k, whenever νkpr´t, tsq ă 1. (4.3.24)

for some choice of parameter pδ, α,M, γ, εq, constant c ą 0 and all k ě k0. Recall (4.3.19),
on the right hand side we can absorb the 1

k2
δ´8 term into c{k ln k. Thus it is enough to

consider the rest two terms:

ν0
W :“

ep´`γ´β

k ln k
ν̃0
W “

ep´`γ´β

k ln k
νS1 ˚ νR, νrW :“

ep´`γ´β

k ln k
ν̃rW “

ep´`γ´β

k ln k
νrS0`S1

˚ νR.

We first consider the right tail of νrW . Combining Lemma 4.3.9 Part 1 and Corollary 4.3.8
and recalling that |p´ ´ 1| “ p1` εqγp0, for all t ěM we have

νrW pdtq ď
e1´β

k ln k
p1` αqep2e

´αq´δ`2δ`2´δ´3
p1` Cδ,Mpγ ` εqqp2νrqpdtq. (4.3.25)

Fix δ “ 1{2 and α small enough such that (note expp2
?

2´ 3q « 0.8423)

p1` αq exppp2e´αq´δ ` 2δ ` 2´δ ´ 3q “ p1`Opαqq expp2
?

2´ 3q ď
17

20
ă 1.

Let M “ pm` 1{2qpln 2´αq where m is the smallest integer such that the condition in Fact
4.3.10 and Lemma 4.3.7 is satisfied. Finally for constant Cδ,M depending on p0 “ p0pδ,Mq
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and the constants in Corollary 4.3.8 and Lemma 4.3.9, let γ ď γ1 ă 1, ε ď ε1 ă 1 and
0 ă 1´ β ă 1´ β1 such that for all t ěM ,

RHS of (4.3.25) ď
9

10

e1´β

k ln k
p2νrqpdtq ď

19

20

1

k ln k
p2νrqpdtq. (4.3.26)

Next we prove (4.3.24) for t around M . The key idea is to show that the mass of ν0
W

escaping r´M,M s is smalle than the mass of νrW dropping below M , and those mass can
be absorbed by the mulipilicative improvement of νrW in (4.3.26). Let M̃ “ M̃pδ, α,Mq “
pm̃` 1{2qpln 2´ αq such that for the C‹δ,α,M in Lemma 4.3.9 Part 2,

1

20
p2νrqprM, M̃ sq “

1

20

ż M̃

M

2γ

t2
eδtdt ě e1´β1pC‹δ,α,M ` 1qγ. (4.3.27)

Write qM̃ :“ Pppln 2´αqPoisp1q P rM̃, 2M̃ sq ą 0. Given α and M̃ , let γ ď γ2 and 1´β ď 1´β2

such that for some c1 P p0, qM̃q,

e1´β
`

p1´ qM̃q ` γC
‹
δ,α,M

˘

ď 1´ c1 ă 1. (4.3.28)

Note for any t ă M , νkpr´t, tsq “ νkpt0uq “ 1{k ln k. By Lemma 4.3.9 Part 3, PpS1 ` R ě
M̃q ě qM̃ . By (4.3.26) and (4.3.28), we have for t ď M̃

νW pp´8, tsq ď ν0
W pp´8, M̃qq ` ν

r
W pp´8,M sq ` ν

r
W ppM, t_M sq

ď
e1´β

k ln k
pp1´ qM̃q ` γC

‹
δ,α,Mq `

19

20

1

k ln k
p2νrqprM, t_M sq

ď
1´ c1

k ln k
`

19

20

1

k ln k
p2νrqprM, t_M sq ď νkpr´t, tsq ´

c1

k ln k
.

Finally we prove (4.3.24) for t ě M̃ and νkpr´t, tsq ă 1. Choose c2 ą 0 such that for
γ “ γ1 ^ γ2 and 1´ β ă 1´ β3, e1´β ` c2 ă 1` γ. By (4.3.27), we have

νW pp´8, tsq ď
e1´β

k ln k
p1` γC‹δ,α,Mq `

19

20

1

k ln k
p2νrqprM, M̃ sq `

19

20

1

k ln k
p2νrqppM̃, tsq

ď
e1´β ´ γ

k ln k
`

1

k ln k
p2νrqprM, tsq `

1

k ln k

„

e1´β
p1` C‹δ,α,Mqγ ´

1

20
p2νrqprM, M̃ sq



ď 1´
c2

k ln k
`

1

k ln k
p2νrqprM, tsq “ νkpr´t, tsq ´

c2

k ln k
.

Combine all pieces together, we have the desired result with β‹ “ β1 _ β2 _ β3, c “ c1 ^ c2

and k ą k0.

4.4 Freezing threshold

Proof of Theorem 4.1.1. Let pn denote the probability that the root is uniquely fixed by the
configuration on Ln. This will happen if and only if there is at least one clause i attached
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to ρ such that tui,ju
l
j“1 has the same value under σ and each of them is fixed by the sub-

configuration Lij. Hence p0 “ 1 and

pn “ 1´ Ppno such iq “ 1´ E
ˆ

1´
1

2k ´ 1
pkn´1

˙dρ

“

#

1´ p1´ 1
2k´1

pkn´1q
d Td,k

1´ e´p2
k´1q´1pkn´1d TPoispdq,k

“: fppn´1q.

Recall the definition of dfk in Theorem 4.1.1, we first prove the correctness of dfk . For

T „ TPoispdq,k and d ą dfk , let xd be the largest solution of p2k´1qx
p1´e´xqk

“ d. fppq is an increasing

function of p and pd :“ 1 ´ e´xd is a fix point of f . Hence by induction we have pn “
fppn´1q ě fppdq “ pd and lim inf pn ě pd ą 0, i.e. the model freezes on infinite tree with
positive probability.

For each d ă dfk , the definition of dfk ensures the existence of δ ą 0 such that for every

x ą 0, p2k´1qx
p1´e´xqk

ą dp1` δq. For every p “ 1´ e´x ă 1,

1´ fppq “ e´p2
k´1q´1pkd

ě e´x{p1`δq “ p1´ pq1{p1`δq.

Note that 1´p1 “ 1´fp1q “ p2k´2
2k´1

qd ą 0. By induction we have 1´pn ě p1´p1q
1{p1`δqn Ñ 1,

i.e. with high probability the model will not freeze as the size of the tree tends to infinity.
The proof for T „ Td,k is exactly parallel.

To determine the asymptotic of dfk , we first work with TPoispdq,k. Split the infimum over
x ą 0 into three cases: x P p0, ln 2s, x P rln 2, ln ks and x ě ln k. For x ě ln k, let
y “ k ln k ¨ e´x P p0, ln ks. Using the fact that p1´ aq´k ě p1` aqk ě 1` ka, we have

xp1´ e´xq´k “ pln k ` ln ln k ´ ln yqp1´
y

k ln k
q
´k
ě pln k ` ln ln k ´ ln yqp1`

y

ln k
q

ě ln k ` ln ln k ` y ´ ln y ě ln k ` ln ln k ` 1,

where in the last step equality is achieved by y “ 1. Plugging y “ 1 back to the LHS
yields that indeed infxěln k xp1 ´ e´xq´k “ ln k ` ln ln k ` 1 ` okp1q. For x P rln 2, ln ks, let
z “ ke´x P r1, 1

2
ks. Inequality e´a ą p1´ aq implies that p1´ z

k
q´k ě ez and

inf
xPrln 2,ln ks

xp1´ e´xq´k “ inf
zPr1, 1

2
ks
pln k ´ ln zqp1´

z

k
q
´k
ě inf

zPr1, 1
2
ks
pln k ´ ln zqez “ e ln k.

where the last step uses that d
dz
ppln k ´ ln zqezq “ pln k ´ ln z ´ 1

z
qez ą 0, for all z ď 1

2
k.

Finally for x P p0, ln 2s,

inf
xPp0,ln 2s

xp1´ e´xq´k ě inf
xPp0,ln 2s

x1´k
“ pln 2q1´k.

Combining all pieces together we have dfk “ ln k ` ln ln k ` 1` okp1q for TPoispdq,k.

For regular trees, we note that since x ln´1
´

1´ p1´e´xqk

2k´1

¯

ě
p2k´1qx
p1´e´xqk

, the dfk of Td,k can

not be smaller than that of TPoispdq,k. Plugging in x “ 1
k ln k

gives the same asymptotic
order.
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4.5 Remaining calculation

Proof of Fact 4.3.10. Let hpsq “ p1´sq´2´1
1´p1`sq´2 “

2´s
2`s

¨
p1`sq2

p1´sq2
. We have hp0q “ 1 and h1psq is

uniformly bounded on r0, 1
2
s. Let m “ supsPr0, 1

2
s h
1psq _ 1. Rearranging the terms, (4.3.20) is

equivalent to

e2δs
ě
p1´ s

t
q´2 ´ 1

1´ p1` s
t
q´2

“ hp
s

t
q. (4.5.1)

Both sides of equation (4.5.1) equals to 1 at s “ 0. Differentiate both sides with respect to
s and let M ąM1 :“ m{2δ, we have for all t ąM and 0 ă s ď t{2,

d

ds
pRHS of (4.5.1)q “

1

t
h1p

s

t
q ď

m

M1

ď 2δ ď 2δe2δs
“

d

ds
pLHS of (4.5.1)q.

Hence (4.5.1) is true for all t ą M and 0 ă s ď t{2. For any s, t such that t ´ s ą M and
s ą t{2, we must have t ą 2M, s ąM . Therefore for M ąM2 :“ 2

δ
_ 1

2δ
lnp36{5q “ 2

δ

(LHS-RHS) of (4.3.20) ď
1

M2
e´δs ` p

1

p3{2q2
´ 1q

1

t2
eδs ď e´δsp

1

M2
´

5

9t2
e2δpt{2q

q

ď e´δsp
1

M2
´

5

36M2
e2δM

q “ e´δs
1

M2
p1´

5

36
e2δM

q ă 0.

Letting M‹pδq “M1 _M2 finishes the proof.
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Chapter 5

Rapid mixing of graph colorings on
trees

In this chapter we show that the mixing time of the Glauber dynamics of graph colorings
(defined in Section 5.2.1) on trees undergoes a phase transition at d “ drec. The main result
is following.

Theorem 4. There exists absolute constant k0 such that for k ě k0, β ă 1 and

d ď krln k ` ln ln k ` βs,

if the k-coloring model is non-reconstructible on d-regular trees, then the mixing time of the
Glauber dynamics of the k-coloring model on n-vertex d-ary tree is Opn lnnq.

Theorem 4 and Theorem 2 together implies that for sufficiently large k (the exact value
of k0 in the two theorems might be different), the Glauber dynamics has Opn lnnq mixing
time whenever the model is non-reconstructible. The other direction is shown in [Tet+12].

5.1 Introduction

There have been intensive studies on the mixing times of Markov chains for sampling spin
systems in both theoretical computer science and statistical physics. Many results have
shown that the mixing time of the Glauber dynamics, both for the k-coloring model and
general spin systems, are related to the spatial properties of the Gibbs measure. Two prop-
erties of primary interest are the uniqueness of the infintie-volume Gibbs measure and the
reconstructability as defined in Definition 3.1.1.

In a sequence of results by Martinelli, Sinclair and Weitz [MSW04; MSW07; Wei04], it
was shown under quite general settings that the Glauber dynamics exhibits rapid mixing on
d-regular trees regardless of the boundary condition, when the corresponding spin system
admits an unique infinite-volume Gibbs measure. Their method uses the decay of correlation
between the root and the leaves to bound the log-Soblev constant of the block dynamics.
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Less general results are known beyond the uniqueness threshold. The main obstacle, as in
the case of graph colorings, is that the chain might be reducible under certain boundary
conditions. Thus one can not hope to get a meaningful bound for all boundary conditions.

Notwithstanding this, it is still interesting to consider the mixing time under the free
boundary condition. The correlation between the roots and leaves in the absence of bound-
ary conditions is closely related to the problem of reconstructions on trees, as both prop-
erties concerns about to influences of an average boundary configurations on the root. It
is natural to hope that the rapid mixing of the Glauber dynamics holds throughout the
non-reconstruction regime.

Restrict our attention to the k-coloring problem on d-ary trees for the moment. The
uniqueness of the Gibbs measure is shown to hold for k ě d ` 2 by Jonasson [Jon02] and
the results of [MSW04; MSW07] imply an Opn lnnq mixing time in the same region. Recall
the reconstruction threshold drec “ p1 ` Op1qqk ln k from Section 3.1. Bhatnagar et al.
[Bha+11] show that the block dynamics for k-coloring model mixes in Opn lnnq time in the
same region using non-reconstruction and following the methods of [MSW04]. However their
result can not be easily extended to the Glauber dynamics due to the failure of Markov chain
comparison between the two dynamics. Namely, one step in the block dynamics might not
be replaced by bounded number of steps in the Glauber dynamics.

For more results in the non-uniqueness regime, Berger et.al. [Ber+05] showed for general
models that the mixing time on trees is at most polynomial whenever the dynamics is ergodic,
which in the case of coloring corresponds to k ě 3 and d ě 2. Goldberg et.al. [GJK10]
proved an upper bound of nOpd{ ln dq for the complete tree with branching factor d. Lucier
et.al. [LMP09] showed nOp1`d{k ln dq mixing time for all d and k ě 3. [Tet+12] proved that the
mixing time undergoes a phase transition at the reconstruction threshold k “ p1`op1qqd{ ln d,
where their upper bound for the mixing time when k ě p1` op1qqd{ ln d is Opn1`okp1qq. They
also showed that the mixing time is Ωpnd{k ln d´okp1qq for k ď p1´op1qqd{ ln d, i.e. rapid mixing
does not hold in the reconstruction regime.

The main purpose of this chapter is to reduce the mixing time in the non-reconstruction
regime from the polynomial upper-bound of n1`op1q to the sharp bound of Opn lnnq. Our
proof is based on a modification of the techniques used in [MSW04]. The main obstacle, as
hinted above, is the reducibility of the Glauber dynamics on subtrees under fixed bound-
ary condition. Heuristically, in the non-uniqueness regime, vertices may be “freezed” by
their neighbors. While the block dynamics can update “frozen” vertices together with their
neighbors in one single move, extra efforts are needed for the Glauber dynamics to pass
around the barrier and “defreeze” the vertices, leading to the failure of the standard Markov
chain comparison result between the two dynamics. With that in mind, we introduce a new
variant of the block dynamics that focuses on the connected component on the state space
of the usual block dynamics induced by valid moves of the Glauber dynamics. By carefully
examining the portion of “frozen” vertices and their influences on nearby sites, we will show
rapid mixing of our new version of the block dynamics which implies the final result.

We conclude this section by discribing the literature on the mixing times on general
graphs. For k-colorings on graphs with n vertices and maximal degree d, the Glauber
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dynamics is not in general irreducible if k ď d ` 1. A long-standing conjectured is that
the chain exhibits rapid mixing whenever k ě d` 2. So far the best result on general graphs
is given by Vigoda in [Vig00], where he showed Opn2 lnnq mixing time for k ě 11

6
d. A series

of improvements on the constant 11
6

for rapid mixing have been made with extra conditions
on the degree or the girth. See the survey [FV07] for more results toward this direction.

5.1.1 General spin system

The correspondence between rapid mixing and spatial correlation decay is not restricted to
the coloring model alone, but is a common phenomenon that extends to general spin systems.
For instance, Weitz conjectured in [Wei04] that for any k-state spin system on regular trees,
the system mixes in Opn lnnq time whenever it admits an unique Gibbs measure and the
Glauber dynamics is connected under given boundary condition. He proved the statement
for k “ 2 and for the ferromagnetic Potts model and colorings as two special cases of k ą 2.
He also provided a sufficient condition that applies to a wide range of other models.

As suggested by the case of the coloring model, the mixing time under free boundary
condition is more closely related to the reconstruction threshold. In fact, Berger et al.
[Ber+05] showed that for general spin systems on trees, Opnq relaxation time under free-
boundary condition implies non-reconstruction. Our methods for the coloring model can also
be extended to general k-state spin systems provided that the spin system satisfies certain
mild connectivity conditions. Therefore as an intermediate result, we provide a sufficient
condition for spin systems to exhibit rapid mixing in the non-reconstruction region.

In Section 5.2.1, we specify a spin system by its Markov chain kernel M , where Mpc, c1q “
µpσy “ c1|σx “ cq for any px, yq P E, and restrict our discussion to kernels that are ergodic
and reversible (see also [Geo11] for more details). Let λ be the second largest eigenvalue of
M . We show that the Glauber dynamics is rapidly mixing for spin systems M assuming a
certain connectivity condition C that will be specified in Section 5.2.3.

Theorem 5.1.1. Let M be a k-state spin system on the n-vertex d-ary tree T with second
eigenvalue λ. If M satisfies the connectivity condition C, is non-reconstructible on T , and
dλ2 ă 1 then the mixing time of Glauber dynamics on T under free boundary condition is
Opn lnnq.

In the statement of Theorem 5.1.1, the connectivity condition C mainly concerns about
the hard constraints. Roughly speaking, it requires the root to be able to “change freely”
between all k states with high probability as the size of the tree grows. In particular, it
includes all models without hard constraints or models with a permissive state, a state that
can occur next to all other states (e.g. the hardcore model).

The requirement of dλ2 ă 1 comes from the Kesten-Stigum bound dλ2 “ 1 in recon-
struction problems: Whenever dλ2 ą 1, the system is reconstructible by simply counting
the number of leaves in each state [Mos04]. Hence non-reconstruction implies dλ2 ď 1. The
Kestin-Stigum bound is known to be tight for models including the Ising model (symmetric



CHAPTER 5. RAPID MIXING OF GRAPH COLORINGS ON TREES 150

binary channel) and near-symmetric binary channels [Bor+06]. For other models such as
hardcore model and graph colorings, it is strictly larger than the true threshold. Nonetheless
it has been suggested that the speed of decay of correlation undergoes a phase transition at
the critical value dλ2 “ 1 with different scalings for dλ2 “ 1 and dλ2 ă 1. Indeed, a recent
work of Ding, Lubetzky and Peres [DLP10] showed that the mixing time for the Ising model
is at least of order n ln3 n when dλ2 “ 1. Therefore we can only hope to prove Theorem 5.1.1
for dλ2 strictly smaller than 1.

5.2 Preliminaries

5.2.1 Definition of model

General spin systems: Throughout the chapter, we will write T “ pV,Eq for the d-ary
tree with root ρ and |V | “ n vertices. Denote the l-th level of T by Ll starting with L0 “ tρu.
Given vertex x P T , we will use Tx to represent the subtree rooted at x and let Bx,l, Lx,l
denote the first l levels and the l-th level of Tx respectively.

Let rks “ t1, . . . , ku denote the set of possible spin values. We are interested in general
k-state spin systems specified by potentials U and W , where U is a symmetric function from
rksˆrks Ñ RYt8u and W is a function from rks Ñ R. Given U and W , the (free-boundary)
Gibbs measure on T is the probability measure on configurations σ P rksV defined as

µpσq “
1

Z
exp

„

´

´

ÿ

px,yqPE

Upσx, σyq `
ÿ

xPV

W pσxq
¯



,

where Z, also known as the partition function, is the normalizing constant such that
ÿ

σPrksV

µpσq “ 1.

We say that a configuration σ is proper if µpσq ą 0 and denote the set of proper configurations
on T by ΩT “ tσ : µpσq ą 0u. For each pair of states pi, jq P rks2, we say that pi, jq is a
hard constraint if Upi, jq “ 8, otherwise we say that i and j are compatible. For each
subset of vertices A Ď T , we will write σA for the restriction of σ to A and use superscript
for boundary conditions. In particular, Ωη

A “ tσ : σ P ΩT , σT zA “ ηT zAu is the set of
configurations compatible with boundary condition η and we denote the conditional law on
ΩηpAq as µηApσq “ µpσ | σ P Ωη

Aq.
For the reconstruction problem, it is easy to work with the Markov chain construction

of the Gibbs measure on trees, which is just the broadcast model on trees. Recall from Sec-
tion 3.1. For each probability kernel M with stationary π, the law of a random configuration
generated by the broadcast model on T is given by

µpσq “ πpσρq
ź

px,yqPE

Mpσx, σyq.
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It is easy to check that for any reversible M , the aformentioned probablity measure
corresponds to the spin system with potentials U,W given by

Upc1, c2q “ ´ ln

ˆ

Mpc1, c2q

πpc2q

˙

,W pcq “ ´ lnπpcq. (5.2.1)

Note that not all potential pairs U,W can be expressed this way. A necessary condition for
(5.2.1) is that

ÿ

c1Prks

expr´pUpc, c1q `W pc1qqs ” C, @c P rks

for some constant C. We will henceforth restrict our attention to spin systems that can
be expressed as (5.2.1) and refer such systems by their probability kernel M . We will also
assume that M is ergodic and reversible.

The principal example of spin systems for this chapter is the graph coloring model, where
for each c, c P rks W pcq ” 0, Upc, c1q “ 8 ¨ 1pc “ c1q , or equivalently Mpc, c1q “ 1

k´1
1pc “

c1q, πpcq ” 1
k
.

Uniqueness and reconstruction: Two key notions of spatial decay of correlation for spin
systems on trees are the uniqueness and reconstruction thresholds. Recall the definition of
reconstruction from Section 3.1.

Definition (Reconstruction). For k ě 2, we say that a k-state system M is reconstructible
on tree T if there exist two states c, c1 P rks such that

lim sup
lÑ8

dTVpµpσLl “ ¨ | σρ “ cq, µpσLl “ ¨ | σρ “ c1qq ą 0.

Otherwise we say that the system has non-reconstruction on T .

Non-reconstruction corresponds to the vanishing influence of an average boundary con-
dition. A strictly stronger condition is the uniqueness property, which corresponds to the
vanishing influence of the worst boundary condition.

Definition (Uniqueness). For k ě 2, we say that a k-state system M has uniqueness on
tree T if

lim sup
lÑ8

sup
η,η1PΩLl

dTVpµpσρ “ ¨ | σLl “ ηq, µpσρ “ ¨ | σLl “ η1qq ą 0,

where ΩLl is the set of configurations restricted to level l.

Glauber dynamics and mixing time: The Glauber dynamics of a k-state spin system
M is a Markov chain Xt on state space ΩT . A step of the Markov chain from Xt to Xt`1 is
defined as follows:

1. Pick a vertex x uniformly at random from T ;
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2. Pick a state c P rks according to the conditional distribution of the spin value of x
given the rest of configuration, i.e. state c is picked with probability µσ

txupcq “ µpσ1x “

c | σ1y “ σy, @y ‰ xq;

3. Set Xt`1pxq “ c and Xt`1pyq “ Xtpyq, for all y ‰ x.

In the case of graph coloring, the second step corresponds to picking uniformly at random
colors that do not appear in the neighborhood of x.

To justify our study of the Glauber dynamics under free boundary condition, we first show
that the Markov chain is irreducible and hence ergodic on the set of all proper configurations.
For the sake of recursive analysis on subtrees later, we also prove irreducibility in a related
case where the root of T is connected to one more vertex, namely its “parent”, and the value
of its parent is fixed. For each c P rks, let Ωc

T denote the set of configurations with the parent
of root ρ fixed to state c and let µcT be the corresponding conditional Gibbs measure.

Lemma 5.2.1. For any k-state system M on d-ary tree T , if M is reversible and ergodic,
then ΩT is irreducible under the Glauber dynamics and so is Ωc

T for each c P rks.

Proof. We first prove the irreducibility of Ωc
T by induction on the number of levels l in T .

For l “ 0, it is trivially true since Ωc
T is simply the set of states compatible of c. Suppose

that the Glauber dynamics is irreducible on the pl ´ 1q-level tree. For the l-level tree T , we
need to show that for any two configurations σ, σ1 P Ωc

T , there exists a path of valid moves of
the dynamics connecting σ to σ1. To construct such a path, one can first change every vertex
x P L1 to state c by a sequence of moves in the tree Tx. This is possible since alternating
layers of states c and σρ is a proper configuration in Ω

σρ
Tx

and any two configurations in Ω
σρ
Tx

are connected by the inductive hypothesis. One may then change the spin of the root from
σρ to σ1ρ, since both states are compatible with c. Finally we may change the configuration
of every subtree Tx to σ1Tx using the inductive hypothesis, ending in the configuration σ1.

To show the irreducibility of ΩT , we choose σ, σ1 P ΩT . By the ergodicity ofM , there exists
a sequence of states c0, . . . , c2m P rks such that c0 “ σρ, c2m “ σ1ρ and for each 0 ď i ď 2m´1,
ci is compatible with ci`1. For each 0 ď i ď m, let τi P ΩT be the configuration with
alternating layers of c2i and c2i`1(let c2m`1 be an arbitrary state compatible with c2m “ σ1ρ).
One can first change σ to τ0 using the irreducibility of the Glauber dynamics on Ω

σρ
Tx

for each
x P L1, then for each 1 ď i ď m change from τi´1 to τi by first changing all vertices on even
levels to c2i then vertices on odd levels to c2i`1, and finally change each pτmqTx to σ1Tx .

Lemma 5.2.1 implies that the Glauber dynamics with free boundary conditions will always
converges to the Gibbs measure µ. The mixing time of the Glauber dynamics is defined as

tmix “ max
σPΩT

mintt : dTVpP
t
pσ, ¨q, µq ď 1{4u,

where P is the probability kernel of Xt and dTVpη, µq “
1
2

ř

σ |ηpσq ´ µpσq| is the total
variance distance. To bound the mixing time we will make use of the log-Sobolev constant.
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For a non-negative function f : ΩT Ñ R, let µpfq “
ř

σ µpσqfpσq be the expectation of f
and Entpfq “ µpf ln fq ´ µpfq lnµpfq be its entropy. The Dirichlet form of f is defined as

Dpfq “
1

2

ÿ

σ,σ1PΩT

µpσqP pσ, σ1qpfpσq ´ fpσ1qq2.

And the log-Sobolev constant is defined as γ “ inffě0
Dp
?
fq

Entpfq
. Applying results in functional

analysis to the Glauber dynamics yields the following bound (see e.g. [SC97, Thm 2.2.5]):

Theorem. For k-state system M on n-vertex d-ary tree T , there exists a constant C ą 0
such that tmix ď

1
γ
¨ Cn lnn.

Therefore to show rapid mixing it is enough to show that γ is uniformly bounded away
from zero as nÑ 8.

5.2.2 Component Dynamics

Next we define a new variant of block dynamics on T , which we call the “component dynam-
ics”. Each step of the new dynamics updates a block of vertices each step, but only chooses
configurations within the connected component of the Glauber dynamic. In this way we can
utilize the techniques in [MSW04] while bypassing the problem that one step of the block
dynamics may not be connected in the Glauber dynamics when k ď d` 1. To give a formal
definition, for A Ă T , we say that σ1 „A σ if σ1T zA “ σT zA and σ1A, σA are connected by
valid moves of the Glauber dynamics on A with fixed boundary condition σT zA. We will
omit the A in σ „A σ

1 when it is clear from context. Let Ω˚,σA “ tσ1 P Ωσ
A, σ

1 „A σu denote
the connected component of σ in Ωσ

A, and µ˚,σA pσ1q “ µpσ1|Ω˚,σA q be the Gibbs distribution
conditioned on both configuration outside A and the connected component within A.

For l ě 1, recall Bx,l is the block of l levels rooted at x and Lx,l be the l-th level of Bx,l.
If x is within distance l of the leaves, let Bx,l “ Tx. We define the component dynamics to
be the Markov chain on ΩT with the following update rule: In each step,

1. Pick a vertex x uniformly randomly from T ,

2. Replace σ by σ1 drawn from conditional distribution µ˚,σBx,l .

The dynamics is reversible with respect to the Gibbs distribution. For test functions f :
ΩT Ñ R, let µ˚,σA pfq “

ř

σ1PΩ˚,σA
fpσ1qµ˚,σA pσ1q be the conditional expectation of f on Ω˚,σA and

for f ě 0, let

Ent˚,σA pfq “ Entpf | Ω˚,σA q “ µ˚,σA pf ln fq ´ µ˚,σA pfq lnµ˚,σA pfq

be the conditional entropy of f . We write the sum of local entropies of block size l as E˚l “
ř

xPT µT pEnt˚,σBx,lpfqq. With minor modification, the comparison result of block dynamics
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also works for component dynamics: (see e.g. Prop 3.4 of [Mar99], in the proof substitute

EDpf, fq by E˚l and note
ř

σ1 µ
τ
T pσ

1qµ˚,σ
1

Bx,l
pσq “ µτT pσq.)

γ ě
1

l
¨ inf
fě0

E˚l
Entpfq

¨min
σ,x

γ˚,σBx,l

where γ˚,σBx,l is the log-Soblev constant of the Glauber dynamics on Ω˚,σBx,l with the boundary

condition on BBx,l given by σ. From our definition of Ω˚,σBx,l , it is easy to see that minσ,x γ
˚,σ
Bx,l

is a constant only depending on the branching number d, block size l and M itself and is
strictly greater than 0 independent of T . Thus to show Opn lnnq mixing time for the Glauber
dynamics, it is enough to show E˚l ě const ˆ Entpfq for all f ě 0 and some choice of block
size l independent of tree size |T | “ n.

5.2.3 Connectivity condition

In this section we specify the connectivity condition C mentioned in Theorem 5.1.1. First
we will define the notion of free vertices. Let T be a tree of l levels. Given configuration
σ P ΩT with σρ “ c, σLl “ η, we say that the root can change (from c) to state c1 in one
step if and only if there exists a path σ “ σ0, σ1, . . . , σn P ΩT such that

1. σiLl ” η for each 0 ď i ď n. σiρ “ c, for each 0 ď i ď n´ 1 and σnρ “ c1.

2. For each 0 ď i ď n´ 1, configuration σi differs from σi`1 at exactly one vertex.

Put another way, the path is a valid trajectory of the Glauber dynamics with fixed boundary
condition which changes the state of ρ only once in the final step. For x P T , we say x is
free (in σ) if, considered as the root of Tx, x can change to all the other pk ´ 1q-states in
one step. We are interested in the probability that the root of an l-level tree is free and we
denote it by pfree

l “ µpσ : ρ is free in σq.

Definition. We say that a k-state system M on the d-ary tree satisfies the connectivity
condition C if M is ergodic, reversible and satisfies the following conditions:

1. If k ě 3, then for any c1, c2, c3 P rks, there exists c P rks such that c is compatible with
c1, c2, c3.

2. The probability of being free tends to 1 as l tends to infinity, i.e. limlÑ8 p
free
l “ 1.

Roughly speaking, the connectivity condition controls the behavior of “frozen” vertices
in a typical configuration. As will be shown in Section 5.4, under the connectivity condition
the probability that a vertex is “frozen” by the boundary condition is extremely small and
the extra restriction of the component dynamics is negligible for vertices faraway from the
bottom (see the remark after Claim 5.4.2 for more discussions).
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5.2.4 Outline of Proof

A key ingredient in [MSW04] is that a certain strong concentration property implies “entropy
mixing” in space which in turn implies the fast mixing of the block dynamics. The following
Theorem 5.2.2 can be seen as the combination of Theorems 3.4 and 5.3 of [MSW04] adapted
to the component dynamics (the notation here is closer to Theorem 5.1 of [Bha+11]). For
completeness, we include an outline of the proof in Section 5.5, highlighting the differences
from [MSW04].

Theorem 5.2.2. There exists some constant α ą 0 such that for every δ ą 0 and l ě 1
the following statement holds: If for all x P T that is at least l levels from the leaves and all
compatible pairs of states c, c1 P rks, the conditional measure µc “ µcTx satisfies

Pτ„µc
ˆ
ˇ

ˇ

ˇ

ˇ

µcpσx “ c1 | σ „Bx,l τq

µcpσx “ c1q
´ 1

ˇ

ˇ

ˇ

ˇ

ě
p1´ δq2

αpl ` 1´ δq2

˙

ď e´2αpl`1´δq2{p1´δq2 , (5.2.2)

then for every function f ě 0, Entpfq ď 2
δ
E˚l .

To prove Theorem 5.1.1, it suffices to verify (5.2.2) for some choice of l and δ. We first
show a weaker inequality (5.2.3) in the following theorem. Note that the same inequality is
proved in Theorem 5.3 of [MSW04] or Theorem 5.1 of [Bha+11] for specific models such as
the coloring model. Here we provide a different proof that works for general models using
only non-reconstruction.

Theorem 5.2.3. For a k-state system M , if M is non-reconstructible and dλ2 ă 1, then for
any α ą 0, 0 ă δ ă 1, there exist l0 ě 1 such that for all l ě l0, every x P T that is at least l
levels from the leaves, and any pair of compatible states c, c1 P rks, µc “ µcTx satisfies

Pτ„µc
ˆˇ

ˇ

ˇ

ˇ

µcpσx “ c1 | σLx,l “ τLx,lq

µcpσx “ c1q
´ 1

ˇ

ˇ

ˇ

ˇ

ě
p1´ δq2

αpl ` 1´ δq2

˙

ď e´2αpl`1´δq2{p1´δq2 (5.2.3)

The difference between (5.2.2) and (5.2.3) is that in equation (5.2.2), the inner measure
µc conditions not only on the boundary condition σLx,l “ τLx,l , but also the connected
component of τ . We will show that under connectivity condition C, the difference between
σ „Bx,l τ and σLx,l “ τLx,l is negligible in the upper half of a large block, hence (5.2.2) holds.

Lemma 5.2.4. Let M be a k-state system satisfying C such that (5.2.3) holds for l ě l0 and
δ “ δ0. Then there exist constants l1 ě 2l0 and δ1 ě δ0 such that for all l ě l1, equation
(5.2.2) holds with δ “ δ1.

Theorems 5.2.2 and 5.2.3 and Lemma 5.2.4 together imply Theorem 5.1.1. The rest of
the chapter is structured as follows: We will prove Theorem 5.2.3 in Section 5.3 and Lemma
5.2.4 in Section 5.4, and we will include a sketch of Theorem 5.2.2 in Section 5.5. After that
we will apply the result to the k-coloring model and prove Theorem 4 in Section 5.6.
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5.3 Proof of Theorem 5.2.3

In this section we prove Theorem 5.2.3. The result for the k-coloring model was proved in
[Bha+11], which used the specific structure of coloring model. Here we will give a different
proof for general systems M using only non-reconstruction and dλ2 ă 1. We first introduce
some notations. Recall that the stationary distribution of M is π. For x P T , let

R̃x,lpτqpcq “
1

πpcq
µTxpσx “ c | σLx,l “ τLx,lq

denote the ratio of conditional and unconditional distribution at x and write Rx,lpτq “
}R̃x,lpτq ´ 1}8 “ maxcPrks |R̃x,lpτqpcq ´ 1|. We will omit τ when it is clear from context. In
the proof we will work with the unconditional Gibbs measure µ “ µTx and π instead of µcTx
and µcTxpσx “ c1q and show the following stronger inequality.

Theorem 5.3.1. Under the assumptions of Theorem 5.2.3, there exists constant ξ ą 0 and
l0 ą 0, such that for all l ě l0, every x P T that is at least l levels from the leaves, µ “ µTx
satisfies

Pτ„µ
`

Rx,lpτq ě e´ξl
˘

ď expp´eξlq. (5.3.1)

Proof of Theorem 5.2.3. To see that (5.3.1) implies (5.2.3), consider the Markov chain con-
struction of σ. Let Ex be the edge set of Tx, we have

µpσq “ πpσxq
ź

py,zqPEx

Mpσy, σzq, µ
c
pσq “Mpc, σxq

ź

py,zqPEx

Mpσy, σzq.

Hence for any event A Ď ΩTx ,

Pτ„µcpAq “
ÿ

τPA

µcpτq “
ÿ

τPA

Mpc, τxq

πpτxq
µpτq ď π´1

min µpAq “ π´1
min Pτ„µpAq,

where πmin “ mincPrks πpcq ą 0. Note that

ˇ

ˇ

ˇ

ˇ

µcpσx “ c1 | σLx,l “ τLx,lq

µcpσx “ c1q
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

πpc1q
µpσx “ c1 | σLx,l “ τLx,lq ´ 1

ˇ

ˇ

ˇ

ˇ

ď Rx,lpτq.

It follows that

Pτ„µc
ˆ
ˇ

ˇ

ˇ

ˇ

µcpσx “ c1 | σLx,l “ τLx,lq

µcpσx “ c1q
´ 1

ˇ

ˇ

ˇ

ˇ

ě e´ξl
˙

ď π´1
min expp´eξlq.

Theorem 5.2.3 then follows by taking l0 large enough such that expp´ξl0q ď p1´ δq
2{αpl0 ´

1` δq2.

In the rest of the section we assume that M satisfies the assumptions of Theorem 5.3.1.
The following lemma gives the recursive relation of R̃x,lpcq.
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Lemma 5.3.2. Fix τ P ΩT and x P T and let x1, . . . , xd denote the d children of x. R̃x,l can
be written as a rational function of R̃xi,l´1:

R̃x,lpcq “

śd
i“1MR̃xi,l´1

π
śd

i“1MR̃xi,l´1

pcq “

śd
i“1

ř

ciPrks
Mpc, ciqR̃xi,l´1pciq

ř

c1Prks πpc
1q
śd

i“1

ř

ciPrks
Mpc1, ciqR̃xi,l´1pciq

. (5.3.2)

Proof. Let Ex and Exi denote the edge set of Tx and Txi , they satisfy that

Ex “ Yi pExi Y tpx, xiquq .

Let Ωxpcq “ tσ : σx “ c, σLx,l “ τLx,lu and Ωxipcq “ tσ : σxi “ c, σLxi,l´1
“ τLxi,l´1

u be
the set of configurations on Tx and Txi with boundary condition τ . By the Markov chain
construction, we have

µpΩxpcqq “ µpσx “ c, σLx,l “ τLx,lq

“
ÿ

σPΩxpcq

πpcq
ź

py,zqPE

Mpσy, σzq “
ÿ

c1,¨¨¨ ,cdPrks

πpcq
d
ź

i“1

Mpc, ciq
ÿ

σiPΩipciq

ź

py,zqPEi

Mpσiy, σ
i
zq

“
ÿ

c1,¨¨¨ ,cdPrks

πpcq
d
ź

i“1

Mpc, ciq

πci
µpΩipciqq “ πpcq

d
ź

i“1

ÿ

ciPrks

Mpc, ciq

πci
µpΩipciqq.

Therefore by Bayes formula,

R̃x,lpcq “
1

πpcq
µpσx “ c | σLx,l “ τLx,lq “

1

πpcq

µpΩxpcqq
ř

c1Prks µpΩpc
1qq

“

śd
i“1

ř

ciPrks
Mpc,ciq
πci

µpΩipciqq
ř

c1Prks πpc
1q
śd

i“1

ř

ciPrks
Mpc1,ciq
πci

µpΩipciqq

“

śd
i“1

ř

ciPrks
Mpc, ciqR̃xi,l´1pciq

ř

c1Prks πpc
1q
śd

i“1

ř

ciPrks
Mpc1, ciqR̃xi,l´1pciq

.

where the last step followed by dividing
śd

i“1

ř

c1iPrks
µpΩipc

1
iqq from the numerator and the

denominator.

Observe that in the recursive relationship of (5.3.2), R̃x,lpcq is a rational function of
R̃xi,l´1, i “ 1, . . . , d, where R̃x,l takes values from the k dimensional simplex ∆rks “ tR P Rk :
πR “ 1, Ri ě 0, i “ 1, . . . , ku. The next lemma establishes a contraction property of Rx,l,
using the continuity of (5.3.2) and the ergodicity of M .

Lemma 5.3.3. There exist an integer m ě 1 and constant ε ą 0 such that for all dm vertices
y1, . . . , ydm P Lx,m, if at most one yi has Ryi,l´m ą ε then

Rx,l ď
1

2

dm
ÿ

i“1

Ryi,l´m. (5.3.3)
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Proof. Let f : ∆d
rks Ñ ∆rks be the function on the RHS of (5.3.2) such that R̃x,l “

fpR̃x1,l´1, . . . , R̃xd,l´1q. Observe from (5.3.2) that f is a rational function with fp1, . . . , 1q “
1. When R̃x2,l´1 “ ¨ ¨ ¨ “ R̃xd,l´1 “ 1, f can be simplified as

R̃x,l “ fpR̃x1,l´1, 1, . . . , 1q “
MR̃x1,l´1

πMR̃x1,l´1

“MR̃x1,l´1.

Iterating the function m times, we can write R̃x,l “ f pmqpR̃y1,l´m, . . . , R̃ydm ,l´mq where f pmq :
∆dm

rks Ñ ∆rks is another rational function. A similar calculation shows when R̃y2,l´m “ ¨ ¨ ¨ “

R̃ydm ,l´m “ 1,
R̃x,l “ f pmqpR̃y1,l´m, 1, . . . , 1q “MmR̃y1,l´m.

Since f pmq is a smooth function in any regions without poles, there exists constant C1 “

C1pd,m,Mq such that in the local neighborhood of p1, . . . , 1q

}R̃x,l ´ 1´
dm
ÿ

i“1

pMmR̃yi,l´m ´ 1q} ď C1

dm
ÿ

i“1

}R̃yi,l´m ´ 1}2 ď C1k
dm
ÿ

i“1

}R̃yi,l´m ´ 1}28.

By the ergodicity of M , for sufficiently large m and all R̃ P ∆rks we have }MmR̃ ´ 1}8 ď
1
4
}R̃ ´ 1}8. Therefore there exists ε1 “ ε1pC1, kq such that if Ryi,l´m ď ε1 for all vertices
yi P Lx,m then

}R̃x,l ´ 1}8 ď p
1

4
` C1kε1q

dm
ÿ

i“1

}R̃yi,l´m ´ 1}8 ď
1

2

dm
ÿ

i“1

Ryi,l´m. (5.3.4)

This suffices provided that there are no large Ryi,l´m.
We now consider the case when there is one large Ryi,l´m, which we can without loss of

generality assume is i “ 1. Again since f pmq is smooth, there exists C2, ε2 ą 0 such that for
all R̃y1,l´m ą ε1, if supiě2Ryi,l´m ď ε2 then

}R̃x,l ´M
mR̃y1,l´m} ď C2

dm
ÿ

i“2

}R̃yi,l´m ´ 1}.

Let ε “ ε2 ^ p4C2d
mkq´1ε1, if we moreover have supiě2Ryi,l´m ď ε, then

}R̃x,l ´ 1}8 ď
1

4
}R̃y1,l´m ´ 1}8 ` C2d

mkε ď
1

4
Ry1,l´m `

1

4
ε1 ď

1

2
Ry1,l´m. (5.3.5)

Combining equations (5.3.4) and (5.3.5) and noting that ε ă ε1 completes the proof.

So far we have not used the assumption of non-reconstruction and dλ2 ă 1. In [JM04],
Janson and Mossel introduced the notion of “robust reconstruction” and showed the following
result: (rephrased to the notations here)
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Theorem 5.3.4 (Lemma 2.7 and Lemma 2.8 of [JM04]). If M is ergodic and dλ2 ă 1,
then there exist constants C1 “ C1pdq ą 0 and δ “ δpdq ą 0 such that for any l ě 1 if
dTVpµ

c
Ll
, µLlq ď δ for all c P rks, then

dTVpµ
c
Ll`1

, µLl`1
q ď e´C1dTVpµ

c
Ll
, µLlq, for all c P rks.

Theorem 5.3.4 combined with non-reconstruction implies the following weaker concen-
tration inequality.

Corollary 5.3.5. Under the assumptions of Theorem 5.3.1, there exists constant C1, C2 ą 0
such that

Pτ„µpRx,l ą zq ď
C2

z
e´C1l. (5.3.6)

Proof. By the definition of non-reconstruction, limlÑ8 dTVpµ
c
Ll
, µLlq “ 0. Hence for suffi-

ciently large l, dTVpµ
c
Ll
, µLlq ď δ and by induction there exists constant C2 ą 0 that

dTVpµ
c
Ll
, µLlq ď C2e

´C1l.

A duality argument then shows that

Eτ„µ|R̃x,lpcq ´ 1| “ Eτ„µ
ˇ

ˇ

ˇ

ˇ

1

πpcq
µpσx “ c | σLx,l “ τLx,lq ´ 1

ˇ

ˇ

ˇ

ˇ

“ Eτ„µ
ˇ

ˇ

ˇ

ˇ

µcpσLx,l “ τLx,lq

µpσLx,l “ τLx,lq
´ 1

ˇ

ˇ

ˇ

ˇ

“
ÿ

τ

ˇ

ˇµcpσLx,l “ τLx,lq ´ µpσLx,l “ τLx,lq
ˇ

ˇ “ 2dTVpµ
c
Ll
, µLlq ď 2C2e

´C1l.

Maximizing over c P rks we get Eτ„µRx,l ď C2e
´C1l for some (different) constant C1, C2 ą 0

and (5.3.6) follows by Markov’s inequality.

Finally we improve the concentration bound of (5.3.6) using Lemma 5.3.3.

Proof of Theorem 5.3.1. By Lemma 5.3.3, the event Rx,l ą z implies that either there exist

two i P rdms such that Ryi,l´m ą ε or
řdm

i“1Ryi,l´m ą 2z. In the second case if the event
řdm

i“1Ryi,l´m ą 2z holds and for every yi, Ryi,l´m ď
3
2
z, then there must exist at least two

i such that Ryi,l´m ą
1

2dm
z, otherwise

řdm

i“1Ryi,l´m ď
3
2
z ` dm´1

2dm
z ă 2z. Therefore we can

write

Pτ„µpRx,l ą zq ď Pτ„µpD two yi P Lx,m, Ryi,l´m ą εq ` Pτ„µpDyi P Lx,m, Ryi,l´m ą
3

2
zq

` Pτ„µpD two yi P Lx,m, Ryi,l´m ą
1

2dm
zq.

Let gpz, lq “ Pτ„µpRx,l ą zq and C “ maxt2dm, 1
επmin

u, note gpz, lq is a decreasing function
in z, the equation above become

gpz, lq ď d2mg2
pε, l ´mq ` dmgp

3

2
z, l ´mq ` d2mg2

p
1

2dm
z, l ´mq

ď dmgp
3

2
z, l ´mq ` 2d2mg2

p
1

C
z, l ´mq.
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Iterating this estimation h times, we have

gpz, lq ď
h
ÿ

i“0

p2d2m
q
2h´ip1`iqg2h´i

ˆ

p
3

2
q
i
p

1

C
q
h´iz, l ´ hm

˙

. (5.3.7)

where the coefficient can be shown by induction on h using inequality pa` bq2 ď 2pa2 ` b2q.
Since for all z ą π´1

min we have gpz, lq “ 0, the summand on the RHS of (5.3.7) is
zero for large i. Fix κ “ ln 4

3
C{ ln 3

2
C ă 1, for h ě lnp 1

zπmin
q{ lnp4

3
q and i ą κh, we have

p3
2
qip 1

C
qh´iz ą π´1

min. Therefore

gpz, lq ď
κh
ÿ

i“0

p2d2m
q
2h´ip1`iqg2h´i

ˆ

p
3

2
q
i
p

1

C
q
h´iz, l ´ hm

˙

ď κh
“

p2d2m
q
hg

`

C´hz, l ´ hm
˘‰2p1´κqh

Now apply (5.3.6) and let h “ rl{m for small r ą 0 such that p1´ rqC1 ´ r ¨
1
m

lnp2Cd2mq ą

1
2
C1 ą 0. For large enough l such that ln l ď 2

p1´κqr
m

l, we have

gpz, lq ď κh

ˆ

p2d2m
q
hC2C

h

z
e´C1pl´hmq

˙2p1´κqh

ď
κr

m
l

ˆ

C2

z
p2Cd2m

q
r
m
le´C1p1´rql

˙2
p1´κqr
m l

ď
κr

m

ˆ

2C2

z
e´

1
2
C1l

˙2
p1´κqr
m l

.

Let C3 “
2
C1
, C4 “

κr
m

, C5 “
p1´κqr
m

ln 2. For l ą C3p1 ` ln 2C2 ´ ln zq, we have gpz, lq ď
C4 expt´ exppC5lqu.

Finally define ξ “ 1
2

mintC´1
3 , C5u, plug in zl “ expp´ξlq. When l is large enough, we

have C3p1` ln 2C2 ´ ln zq ď C3p1` ln 2C2q `
1
2
l ă l and exppexpp1

2
C5lqq ą C4, therefore

Pτ„µ
`

Rx,lpτq ě e´ξl
˘

“ gpzl, lq ď C4 expp´eC5lq ď expp´eξlq,

completing the proof.

5.4 Proof of Lemma 5.2.4

The proof of Lemma 5.2.4 contains two steps. First for block Bx,l with sufficiently large l,
we study the measure µ˚,τBx,l induced on the upper half of block Bx,l{2 (here and throughout

the section, we choose l to be even) and consider the following subset of Ωτ
Bx,l

,

Aτ “ tσ P Ωτ
Bx,l

: @x P Lx,l{2`2, x is free w.r.t. σu.

Aτ can be considered as the set of “good” configurations with boundary condition τ . As we
will show later, under connectivity condition C, µ˚,τBx,lpAτ q is close to 1 with high probability.
And as the following lemma claims, conditioning on Aτ and the configuration on Lx,l{2, the
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boundary of Bx,l{2, the marginal of x induced by µ˚,τBx,l equals to the marginal induced by µc.
Therefore, as a second step we can apply the result of Theorem 5.2.3 to Bx,l{2. Let ΩLx,l{2 be
the set of configuration on Lx,l{2. Throughout the section, we assume that M satisfies the
connectivity condition C.

Lemma 5.4.1. For arbitrary τ P Ωc
Tx

, η P ΩLx,l{2 and state c1 P rks that is compatible with c,

µ˚,τBx,lpσx “ c1 | σLx,l{2 “ η, σ P Aτ q “ µcpσx “ c1 | σLx,l{2 “ ηq. (5.4.1)

Proof. For convenience of notation, abbreviate σp1q “ σBx,l{2´1
, σp2q “ σBx,lzBx,l{2 , so every

configuration σ P ΩBx,l can be written as a three tuple pσp1q, η, σp2qq. We of course have that
σp1q, σp2q are conditionally independent given σLx,l{2 “ η. By the definition of Aτ , tσ P Aτu
only depends on σp2q. Therefore to show (5.4.1), it is enough to show that conditioned on
σLx,l{2 and σ P Aτ , σ „ τ is independent of σp1q. From there we have

µ˚,τBx,lpσx “ c1 | σLx,l{2 “ η, σ P Aτ q “ µcpσx “ c1 | σLx,l{2 “ η, σ „ τ, σ P Aτ q

“ µcpσx “ c1 | σLx,l{2 “ η, σ P Aτ q “ µcpσx “ c1 | σLx,l{2 “ ηq.

Since “„” is a transitive relation, the conditional independence of σ „ τ and σp1q follows
from the following claim.

Claim 5.4.2. For each τ P Ωc
Tx

, η P ΩLx,l{2 and for all σ “ pσp1q, η, σp2qq, σ
1 “ pσ1

p1q, η, σp2qq P
Ωτ
Bx,l

if σ, σ1 P Aτ , then σ „ σ1.

Proof. For each x P T , let ppxq denote the parent of x. By Lemma 5.2.1, there exists a
path Γ connecting σp1q to σ1

p1q in Ωc
Bx,l{2

via valid moves of the Glauber dynamics on Bx,l{2

with σppxq “ c and free boundary condition on Lx,l{2. We will construct a path Γ1 in Ωτ
Bx,l

connecting σ to σ1 by adding steps between steps of Γ which only changes the configuration
on Bx,lzBx,l{2, such that vertices in Lx,l{2`1 won’t block the moves in Γ and after finishing Γ,
we can change the configuration on Bx,lzBx,l{2 back to the original σp2q. The construction of
Γ1 is specified below:

(1) Before starting Γ. For each y P Lx,l{2`2, σ P Aτ implies that there exists a path Γy
in Ty changing y from σy to σppppyqq “ ηppppyqq in one step. To see Γy is also a connected path
in Bx,l, we have to show that the parent of y won’t block Γy. The only neighbor of ppyq in
Ty is y and the only move involving y in Γy is the last step changing y from σy to σppppyqq.
The value of ppyq won’t block this last step because σppyq is compatible with both σy and
σppppyqq (they are states of neighboring vertices in σ). Now we will concatenate the Γy’s for
each y P Lx`l{2`2 and change σy to σppppyqq. After that, for each w P Lx,l{2, all vertices in Lw,2
are in state σw “ ηw. The configuration on and below Lx,l{2`2 will henceforth remain fixed
until we finish Γ.

(2) Performing Γ. For each step in Γ, the existence of Bx,l´1zBx,l{2 might block this
move only if it changes the state of some vertex w P Lx,l{2. Suppose it changes w from c1 to
c2. Remember in the construction above, all vertices in Lw,2 have states ηw. By part 1 of C,
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we can find c3 P rks which is compatible with c1, c2 and ηw. Now in order to change w from
c1 to c2, it suffices to first change the state of every vertex z P Lw,1 to c3, and then change w
from c1 to c2. This construction keeps the configuration on and below Lx,l{2`2 unchanged.

(3) After Γ. After the moves in Γ, the configuration in Bx,l{2 is pσ1
p1q, ηq. We can change

every vertex z P Lx,l{2`1 back to σ1z “ σz because at this moment its parent ppzq P Lx,l{2 and
all children of z in Lz,1 have state ηppzq “ σppzq, which is compatible with σz. From there,
we can reverse the path Γy for each y P Lx,l{2`2 and change the configuration on and below
Lx,l{2`2 back to the original configuration σp2q. This completes the construction achieving
σ1
p2q “ σp2q.

Lemma 5.4.3. There exist constants C1 ą 1, C2 ą 0 such that for all l ě 1,

1´ pfree
l ď C2 expp´C l

1q. (5.4.2)

Proof. Fix x P T and σ P ΩTx . First if for all 1 ď i ď d, zi P Lx,1 is free, then x is also free.
To see that, for any c P rks, by connectivity condition there exists c1 P rks such that c1 is
compatible with both c and σx, we can first change all zi to c1 in one step and then change
x from σx to c as the final step.

Now consider the set of yij’s where yij P Lzi,1 Ă Lx,2 for 1 ď i, j ď d. If at most one of
the yij’s is not free, say y11 P Lz1,1, then for each i ‰ 1, zi is free and z1 can change in one
step to all states compatible with σy11 . Again by C, for all c P rks there exists c1 P rks such
that c1 is compatible with c, σx and σy11 . By the construction above, we can change x from
σx to c in one step, hence x is also free.

This implies if x is not free, then there exist at least two yij P Lx,2 that are not free. By
part 2 of C, there exists l0 ą 0, such that for all l ą l0 we have 1´ pfree

l ă 1{d8 and hence

1´ pfree
l ď

ˆ

d2

2

˙

p1´ pfree
l´2q

2
ď d4

p1´ pfree
l´2q

2
ď p1´ pfree

l´2q
1.5.

By induction, 1´ pfree
l ď p1´ pfree

l0
qp1.5q

pl´l0q{2 which completes the proof.

Remark 5.4.4. Claim 5.4.2 and Lemma 5.4.3 are the two main places where connectivity
conditions are used: The first part of condition C is used in the construction of Γ1. It might be
possible circumvented the assumption by using more carefully constructed paths. However
this would be purely technical and not the main interest of this chapter. The second part of
condition C is used to show that Aτ happens with high probability.

Note that Claim 5.4.2 implies that when restricted to Aτ , the fixed boundary Glauber
dynamics on Bx,l{2 is irreducible as a subgraph of the Glauber dynamic on the larger block
Bx,l. It is possible to replace the current connectivity condition by general assumptions
bounding the probability of the later events directly.

Now we can finish the proof of Lemma 5.2.4, from which Theorem 5.1.1 follows immedi-
ately.
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Proof of Lemma 5.2.4. Let C “ αpl{2` 1´ δq2{rp1´ δq2µcpσx “ c1qs be the quantity on the
left hand side of (5.2.3). It is enough to show that there exist constants l1 ě 2l0, K ě 1 such
that for all l ě l1

Pτ„µc
ˆ

|µcpσx “ c1 | σ „ τq ´ µcpσx “ c1q| ě
K

C

˙

ď e´2C{K .

To see the sufficiency, note that this is just equation (5.2.2) with δ1 satisfying 1 ´ δ1 “
1

4K
p1´ δq.
Recall Aτ “ tσ P Ωτ

Bx,l
: @x P Lx,l{2`2, x is free in σu. Lemma 5.4.3 implies that for some

constant C1 ą 1, C2 ą 0, and l ě 1

Eτ„µcpµ˚,τBx,lpA
c
τ qq “ Eτ„µcpµcpσ R Aτ | σ „ τqq

“ Pσ„µcpDy P Lx,l{2`2, y is not free q

ď dl{2`2
p1´ pfree

l{2´2q ď C2d
l{2`2 expp´C

l{2´2
1 q.

By Markov inequality,

Pτ„µc
ˆ

µ˚,τBx,lpA
c
τ q ą

1

2C

˙

ď 2CEτ„µcpµ˚,τBx,lpA
c
τ qq ď Cdl{2`2C2 expp´C

l{2´2
1 q Ñ 0, (5.4.3)

as l Ñ 8. On the event tτ : µ˚,τBx,lpA
c
τ q ď

1
2C
u,

µ˚,τBx,lpσx “ c1 | σ P Aτ q ď
µ˚,τBx,lpσx “ c1q

µ˚,τBx,lpσ P Aτ q
ď µ˚,τBx,lpσx “ c1q `

1

C
,

µ˚,τBx,lpσx “ c1 | σ P Aτ q ě µ˚,τBx,lpσx “ c1, σ P Aτ q ě µ˚,τBx,lpσx “ c1q ´
1

C
. (5.4.4)

Combining the two results together we have

ˇ

ˇ

ˇ
µ˚,τBx,lpσx “ c1q ´ µ˚,τBx,lpσx “ c1 | σ P Aτ q

ˇ

ˇ

ˇ
ď

1

C
. (5.4.5)

Now splitting µ˚,τBx,lpσx “ c1 | σ P Aτ q according to σLx,l{2 and applying Lemma 5.4.1, we
have

µ˚,τBx,lpσx “ c1 | σ P Aτ q “
ÿ

η

µ˚,τBx,lpσx “ c1 | σ P Aτ , σLx,l{2 “ ηqµ˚,τBx,lpσLx,l{2 “ η | σ P Aτ q

“
ÿ

η

µcpσx “ c1 | σLx,l{2 “ ηqµ˚,τBx,lpσLx,l{2 “ η | σ P Aτ q. (5.4.6)

We would like to estimate the set of η such that µcpσx “ c1 | σLx,l{2 “ ηq has a large bias. Let

B “ tη :
ˇ

ˇµcpσx “ c1 | σLx,l{2 “ ηq ´ µcpσx “ c1q
ˇ

ˇ ě
1

C
u.
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Theorem 5.2.3 implies that for l{2 ě l0 and some δ ą 0, we have Pη„µc pBq ď e´2C , where
η „ µc denotes the measure µc induced on Lx,l{2. Again by Markov’s inequality,

Pτ„µcpµ˚,τBx,lpσLx,l{2 P Bq ą
1

C
q ď CEτ„µcµ˚,τBx,lpσLx,l{2 P Bq “ CµcpBq ď Ce´2C . (5.4.7)

On the event tτ : µ˚,τBx,lpσLl{2 P Bq ď
1
C
u X tτ : µ˚,τBx,lpA

c
τ q ď

1
2C
u, from (5.4.6) we have

ˇ

ˇ

ˇ
µ˚,τBx,lpσx “ c1 | σ P Aτ q ´ µ

c
pσx “ c1q

ˇ

ˇ

ˇ
ď
ÿ

η

ˇ

ˇµcpσx “ c1 | σLl{2 “ ηq ´ µcpσx “ c1q
ˇ

ˇµ˚,τBx,lpσLl{2 “ η | σ P Aτ q

ď
ÿ

ηPBc

1

C
µ˚,τBx,lpσLl{2 “ η | σ P Aτ q ` µ

˚,τ
Bx,l
pσLl{2 P B | σ P Aτ q

ď
1

C
¨ 1`

1

C
`

1

C
“

3

C
(5.4.8)

where the last inequality follows from similar argument to (5.4.4).
Combining the result of equations (5.4.5) and (5.4.8), on the event tτ : µ˚,τBx,lpσLl{2 P Bq ď

1
C
u X tτ : µ˚,τBx,lpA

c
τ q ď

1
2C
u, we have

ˇ

ˇ

ˇ
µ˚,τBx,lpσx “ c1q ´ µcpσx “ c1q

ˇ

ˇ

ˇ
ď

3

C
`

3

C
“

6

C
.

Therefore using the bounds from (5.4.3) and (5.4.7), for all l ě 2l0,

Pτ„µc
ˆ

|µcpσx “ c1 | σ „ τq ´ µcpσx “ c1q| ą
6

C

˙

ď Ppµ˚,τBx,lpσLl{2 P Bq ď
1

C
q ` Ppµ˚,τBx,lpA

c
τ q ď

1

2C
q

ď Cdl{2`2C2 expp´C
l{2´2
1 q ` Ce´2C

ď e´16C ,

where the last step is true for large enough constant l̃ depending on d, C1, C2 and C 1. This
means that the strong concentration inequality (5.2.2) holds for K “ 6, δ1 “ 1 ´ 1

4K
p1 ´ δq

and l1 “ maxt2l0, l̃u. Moreover, by taking l large enough and changing the constant C to
6C in (5.4.5) and (5.4.8), we can make K arbitrarily close to 1.

5.5 Component dynamics version of fast mixing

results

In this section we prove Theorem 5.2.2. The theorem was originally proved for block dynam-
ics in [MSW04]. Here we give a modification of their theorem adapted to the component
dynamics by roughly “adding stars” at all occurrence of Bx,l. We will only state the key steps
and refer the details to [MSW04]. For the remainder of this section, we let µ “ µcT ,Ω “ Ωc

T .
Recall that T̃x “ Txztxu. First we define the entropy mixing condition for Gibbs measure to
be the following:
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Definition (Entropy Mixing). We say that µ satisfies EM˚
pl, εq if for every x P T , η P Ω

and any f ě 0 that does not depend on the connected component of Bx,l, i.e. fpσq “
µ˚,σBx,lpfq, @σ P Ω, we have EntηTxrµT̃xpfqs ď ε ¨ EntηTxpfq where EntηTx means the entropy w.r.t

µηTx .

Let pmin “ minc,c1PrkstMpc, c
1q : Mpc, c1q ą 0u. By the Markov chain construction of

configurations, it satisfies that pmin “ minx,c,c1tµ
c
Tx
pσx “ c1q : c, c1 are compatibleu. The

following theorem relates the entropy mixing condition to the log-Soblev constant.

Theorem 5.5.1. For any l and δ ą 0, if µ satisfies EM˚
pl, rp1 ´ δqpmin{pl ` 1 ´ δqs2q then

Entpfq ď 2
δ
¨ E˚l pfq.

To prove Theorem 5.5.1, we need the following modification of Lemma 3.5 (ii) of [MSW04].
The proof follows from its analog in [MSW04] immediately once we replace νA,EntA, νB,EntB
there with νT̃x ,EntT̃x , ν

˚
Bx,l

,Ent˚Bx,l respectively.

Lemma 5.5.2. For any ε ă p2
min, if µ satisfies EM˚

pl, εq then for every x P T , any η P Ω
and any f ě 0 we have EntηTxrµT̃xpfqs ď

1
1´ε1

¨ µηTxrEnt˚Bx,lpfqs `
ε1

1´ε1
¨ µηTxrEntT̃xpfqs with

ε1 “
?
ε{pmin.

Now plugging ε “ rp1 ´ δqpmin{pl ` 1 ´ δqs2 into Lemma 5.5.2 verifies the hypothesis of
the following claim, which then implies Theorem 5.5.1:

Claim 5.5.3. If for every x P T , η P Ω and any f ě 0,

EntηTxrµT̃xpfqs ď c ¨ µηTxrEnt˚Bx,lpfqs `
1´ δ

l
¨ µηTxrEntT̃xpfqs, (5.5.1)

then Entpfq ď c
δ
¨ E˚l pfq for all f ě 0.

Proof. First we decompose Entpfq as a sum of EntηTxrµT̃xpfqs. Suppose T have m levels,
consider ∅ “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fm`1 “ T , where Fi is the lowest i levels of T . By basic
properties of conditional entropy (equation (3), (4), (5) of [MSW04]) and Markov property
of Gibbs measure, we have

Entpfq “ ¨ ¨ ¨ “
m`1
ÿ

i“1

µrEntFipµFi´1
pfqqs ď

m`1
ÿ

i“1

ÿ

xPFizFi´1

µrEntTxpµFi´1
pfqqs ď

ÿ

xPT

µrEntTxpµT̃xpfqqs.

(5.5.2)

Denote the final sum by PEntpfq. For each term in the sum of PEntpfq, apply (5.5.1) to
g “ µTxzBx,lYBBx,lpfq and perform the decomposition trick of (5.5.2) again, we have for every
x P T and η P Ω

EntηTxrµT̃xpfqs “ EntηTxrµT̃xpgqs ď c ¨ µηTxrEnt˚Bx,lpgqs `
1´ δ

l
¨ µηTxrEntT̃xpgqs

ď c ¨ µηTxrEnt˚Bx,lpfqs `
1´ δ

l
¨

ÿ

yPBx,lYBBx,l,y‰x

µηTxrEntTypµT̃ypfqqs.
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Now sum over x P T and take expectation w.r.t. µ for η P Ω. Note that the first term of the
last line sums up to E˚l “

ř

xPT µpEnt˚Bx,lpfqq and each y in second term appears in at most
l blocks, we have

PEntpfq ď c ¨ E˚l pfq `
1´ δ

l
¨
ÿ

xPT

ÿ

yPBx,lYBBx,l,y‰x

µrEntTypµT̃ypfqqs

ď c ¨ E˚l pfq `
1´ δ

l
¨ l ¨

ÿ

yPT

µrEntTypµT̃ypfqqs “ c ¨ E˚l pfq ` p1´ δq ¨ PEntpfq,

and hence Entpfq ď PEntpfq ď c
δ
¨ E˚l .

Given the result of Theorem 5.5.1, it is enough to show that for some constant α, con-
centration inequality of (5.2.2) implies EM˚

pl, rp1´ δqpmin{pl` 1´ δqs2q. For convenience of
notation, we define the two following functions for each c1 P rks:

gc1pσq “
µpσ|σρ “ c1q

µpσq
“

1

µpσρ “ c1q
¨ 1tσρ “ c1u, g

˚plq
c1 “ µ˚Bρ,lpgc1q.

Letting δ1 “ p1´ δq2{αpl ` 1´ δq2, we can rewrite (5.2.2) as

µ
´ˇ

ˇ

ˇ
g
˚plq
c1 ´ 1

ˇ

ˇ

ˇ
ą δ1

¯

ď e´2{δ1 . (5.5.3)

Theorem 5.5.4. There exists a constant C such that if (5.5.3) holds for some δ1 ě 0 and
all pairs of states c, c1 P rks, we have EntrµT̃ pfqs ď Cδ1Entpfq for any f ě 0 satisfying
fpσq “ µ˚,σBρ,lpfq, @σ P Ωc, i.e. EM˚

pl, Cδ1q holds.

Proof. Since for any f 1 ě 0, Entpf 1q ď Varpf 1q{µpfq, we can write

EntrµT̃ pfqs ď
VarrµT̃ pfqs

µpµT̃ pfqq
“

1

µpfq

ÿ

c1Prks

µpσρ “ c1q pµpf |σρ “ c1q ´ µpfqq
2

“
1

µpfq

ÿ

c1Prks

µpσρ “ c1qCovpgc1 , fq
2
ď max

c1Prks

Covpgc1 , fq
2

µpfq
“ max

c1Prks

Covpg
˚plq
c1 , fq2

µpfq
.

(5.5.4)

where covariance is taken w.r.t. µ and the last step is because fpσq “ µ˚,σBρ,lpfq. Now using

Lemma 5.4 of [MSW04] (cited below) with

f1 “
g
˚plq
c1 ´ 1
›

›

›
g
˚plq
c1

›

›

›

8

, f2 “
f

µpfq

and noting that
›

›

›
g
˚plq
c1

›

›

›

8
ď }gc1}8 ď pmin, we have Covpg

˚plq
c1 , fq2 ď Cδ1µpfqEntpfq for some

constant C “ C 1{p2
min. Plug it into (5.5.4), we get EntrµT̃ pfqs ď Cδ1Entpfq.
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Lemma 5.5.5 (Lemma 5.4 of [MSW04]). Let tΩ,F, νu be a probability space and let f1 be
a mean-zero random variable such that }f}8 ď 1 and νr|f1| ą δs ď e´2{δ for some δ P p0, 1q.
Let f2 be a probability density w.r.t ν, i.e. f2 ě 0 and νpf2q “ 1. Then there exists a
numerical constant C 1 ą 0 independent of ν, f1, f2 and δ, such that νpf1f2q ď C 1δEntνpf2q.

Proof of Theorem 5.2.2. Fix α “ C{p2
min where C is the constant in Theorem 5.5.4. The

desired result follows the combination of Theorem 5.5.1 and 5.5.4.

5.6 Results for k-coloring

In this section we prove Theorem 4, for which it is enough to verify the connectivity condition
C, in particular to show that pfree

l Ñ 1, as l Ñ 8. In fact for the coloring model, as we will
show in a moment, a vertex can change to all k states in one step if all its children can
change to 2 or 3 states in one step. We will first formalize this idea by defining the “types”
of vertices and then analyze the recursion of this new definition.

Recall the definition that for given configuration σ P ΩT with σρ “ c, we say that the root
can change to color c1 in one step if and only if there exists a path σ “ σ0, σ1, . . . , σn P Ωσ

T

such that for each i, σi, σi`1 differs by only one vertex and

σiρ “

"

c 0 ď i ď n´ 1
c1 i “ n

.

Let Cpρq denote the set of colors the root can change to in one step (including its original
color). We define the type of root to be rigid (type 2, type 3, resp.) if |Cpρq| “ 1 (“ 2, ě 3,
resp.). For general vertex x P T , not necessarily the root, we can similarly define Cpxq and
rigid, type 2, type 3 by treating x as the root of subtree Tx and considering σ|Tx . Set Cpxq
is a function of σTx and is independent of the rest of the tree.

Let prl “ µlpthe root is rigidq, where µl is the Gibbs measure on l-level tree with free

boundary condition. Define p
p2q
l , p

p3q
l similarly, we have prl ` p

p2q
l ` p

p3q
l “ 1. For tree T

with l1 ą l levels and vertex x P T that is l levels above the bottom boundary, noting that
µl1 |Tx “ µl, we also have

µl1px is rigid/type 2/type 3q “ µl1 |Txpx is rigid/type 2/type 3q “ prl {p
p2q
l {p

p3q
l .

The definition above is independent of the parent of x. In order to analyze these probabilities
recursively, we introduce one further definition describing how the type of one vertex affects
the type of its parent. Recall that ppxq denotes the parent of x. Fix a configuration σ P ΩT .
For any x P T̃ “ T ztρu, we say x is bad if Cpxqztσppxqu “ tσxu and good other wise. Observe
that σx is always an element of Cpxq. If x is good, then |Cpxqztσppxqu| ě 2, i.e. x has at
least one more choice other than σppxq. Note that the event that x is bad depends only on
σ|Tppxq and given σx, for xi P Lx,1, events txi is badu are conditionally i.i.d. and independent

of the configurations outside Tx. Hence, by similar argument, we can define pbl “ 1 ´ pgl “
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µl1px is badq. The relation between the type of a vertex and its goodness/badness is given
in the following lemma.

Lemma 5.6.1. For l1 ą l ą 0 and x P T l levels above the bottom boundary,

µl1px is bad | x is rigid)=1, µl1px is bad | x is type 2)=
1

k ´ 1
, µl1px is bad | x is type 3)=0,

(5.6.1)

Hence pbl “ prl `
1

k´1
p
p2q
l , pgl “ p

p3q
l ` k´2

k´1
p
p2q
l .

Proof. The first and third equation of (5.6.1) is obvious as |Cpxq| and |Cpxqztσppxqu| differs
at most by one, and the equality about pbl and pgl follows immediately from (5.6.1). Hence
it lefts to show the second equation. Given |Cpxq| “ 2, x is bad if and only if σppxq P Cpxq.
Therefore the conditional probability on the left hand side of the second equation equals to
PpCpxq “ tσppxq, σxu | |Cpxq| “ 2q.

Note that Cpxq is a function of σTx , in particular it is conditionally independent of σppxq
given σx. By symmetry, the distribution of Cpxqztσxu given |Cpxq| and σx is the uniformly
distribution on the

`

k´1
|Cpxq|´1

˘

ways of choosing |Cpxq| ´ 1 elements from rksztσxu. Hence

PpCpxq “ tσppxq, σxu | |Cpxq| “ 2q “
1

`

k´1
1

˘ “
1

k ´ 1
.

The next lemma follows a similar argument to Claim 5.4.2 and Lemma 5.4.3, and shows
that in order to bound the probability of a vertex being free, it is enough to bound the
probability of being bad.

Lemma 5.6.2. Suppose k ě 4. For any σ P ΩT and x P T , if every child of x is good, then
x is free.

Proof. Fix c P rks. Since all children of x are god, for each child yi there exists ci P
Cpyiqztc, σxu. Therefore to change x from σx to c in one step, we can first change the color
of every yi to ci in one step and then in the final step change x from σx to c. Since this is
true for all c P rls, we conclude that x is free.

Now we will show that for large enough k, in the region of non-reconstruction, the
probability of seeing a bad vertex l levels above bottom decays double exponentially fast in l.
In fact we will prove the result for a region slightly larger than the known non-reconstruction
region , which is d ď krln k ` ln ln k ` βs, for any β ă 1´ ln 2 (see [Sly09]).

Theorem 5.6.3. Suppose β ă 1, For sufficiently large k and d ď krln k ` ln ln k ` βs, there
exists a constant l0 depending only on k and d, such that for l ě l0,

pbl ď expp´pk{2ql´l0q. (5.6.2)
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We first finish the proof of Theorem 4 using Lemma 5.6.2 and Theorem 5.6.3.

Proof of Theorem 4. It has been shown in [Sly09] that for any β ă 1 ´ ln 2, there exist
k0 “ k0pβq such that for any k ě k0 and d ď kpln k ` ln ln k ` βq, the k-coloring model is
non-reconstructible on d-ary trees. Therefore by Theorem 5.1.1, it is enough to show that
the connectivity condition holds. The first part of the condition is obviously true for k ě 4.
For the second condition,

1´ pfree
l “ Pσ„µlproot is not freeq ď PpDx P L1, x is badq ď dpbl´1 ď d expp´p

1

2
kql´l0q.

The last term in the equation above tends to 0 as l tends to infinity, which completes the
proof.

The proof of Theorem 5.6.3 is split into two phases: when pbl is close to 1 and when pbl is
smaller than 1

ed
.

Lemma 5.6.4. Under the assumption of Theorem 5.6.3, there exist a constant l0 depending
only on k and d such that pbl0 ă

1
ed

.

Proof. This proof is similar to Lemma 2 and Lemma 4 of [Sly09]. We recursively analyze the
probabilities as a function of the depth of the tree l. For l “ 0, T consist only the bottom
boundary and hence pr0 “ 1, p

p2q
0 “ p

p3q
0 “ 0, pb0 “ pr0 `

1
k´1

p
p2q
0 “ 1.

For l ě 1, suppose without loss of generality that the color of the root is 1 and its
children are x1, . . . , xd P L1. Let F denote the sigma-field generated by pσxiq

d
i“1 and let

dc “ |ti, σxi “ cu| be the number of children with color c for 2 ď c ď k. By definition,
the sizes of Cpxiq’s and hence the types of xi’s are independent of F and i.i.d. distributed.
Conditioning on F and p|Cpxiq|q

k
i“1, set Cpxiqztσxiu is uniformly randomly chosen among all

subsets of rksztσxiu with p|Cpxiq| ´ 1q elements. Therefore the number of bad vertices of
color c given F is follows the binomial distribution with parameter Binpdc, p

b
l´1q.

Following similar argument of Lemma 5.6.2, the root can change to color c in one step if
and only if none of the xi’s with color c is bad, which happens with probability p1´ pbl´1q

dc .
Therefore we have

pbl “ prl`
1

k ´ 1
p
p2q
l “

k
ź

c“2

E
“

1´ p1´ pbl´1q
dc
‰

`
1

k ´ 1

k
ÿ

c1“2

E
„

p1´pbl´1q
dc1

ź

c‰c1

`

1´ p1´ pbl´1q
dc
˘



.

Viewing the right hand side as a function of pd2, . . . , dkq, increasing dc means adding more
vertices of color c, which increases the probability of blocking the move of the root. Therefore
pbl is an increasing function w.r.t every dc. By symmetry, pd2, . . . , dkq follows a multi-nominal
distribution. Fix β ă β˚ ă 1 and let d̃c be i.i.d. Poisson(D) random variables where
D “ ln k ` ln ln k ` β˚. We can couple pd2, . . . , dkq and pd̃2, . . . , d̃kq such that pd2, . . . , dkq ď
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pd̃2, . . . , d̃kq whenever
řk
c“2 d̃c ě d. Letting p “ PpPoissonppk ´ 1qDq ă dq, the recursion

relationship satisfies

pbl “ prl `
1

k ´ 1
p
p2q
l “

k
ź

c“2

E
“

1´ p1´ pbl´1q
dc
‰

`
1

k ´ 1

k
ÿ

c1“2

E
„

p1´ pbl´1q
dc1

ź

c‰c1

`

1´ p1´ pbl´1q
dc
˘



ď

k
ź

c“2

E
”

1´ p1´ pbl´1q
d̃c
ı

`
1

k ´ 1

k
ÿ

c1“2

Ep1´ pbl´1q
d̃c1

ź

c‰c1

E
”

1´ p1´ pbl´1q
d̃c
ı

` p

“
`

1´ expp´pbl´1Dq
˘k´1

`
k ´ 1

k ´ 1
expp´pbl´1Dq

`

1´ expp´pbl´1Dq
˘k´2

` p

“
`

1´ expp´pbl´1Dq
˘k´2

` p ď exp
`

´pk ´ 2q expp´pbl´1Dq
˘

` p

where the last step follows from the fact that p1´ rqk ď e´kr for 0 ă r ă 1.
The rest of the proof resembles the argument of Lemma 3 of [Sly09]. Let fpxq “

exp p´pk ´ 2q expp´xDqq ` p, y0 “ pb0 “ 1 and recursively define yl “ fpyl´1q. Since fpxq is
an increasing function of x, we have that pbl ď yl for any l ě 0. Hence it is enough to show
the existence of l0 such that yl0 ď

1
ed

.
Note that d

dx
expp´xq |x“0“ ´1. For any sufficiently small ε ą 0, there exists δ ą 0

such that for any 0 ă x ă δ, e´x ď 1 ´ p1 ´ εqx. Let k be large enough such that
pk ´ 2q expp´Dq “ k´2

k ln k
e´β

˚

ă δ. We have

y1 “ fp1q ď 1´ p1´ εq
k ´ 2

k ln k
e´β

˚

` p.

Recall our choice of β ă β˚ ă 1 and pk ´ 1qD ´ d ě pβ˚ ´ βqk ` opkq, by Hoeffding’s
inequality, the error term p satisfies that p “ expp´Ωp k?

d
qq “ opk´2q “ opd´1q. Therefore,

for large enough k,

y1 ď 1´
1´ ε

2e ln k
` opk´1

q ď 1 “ y0.

Repeating the arguments above shows that yl is decreasing in l as long as pk´2q expp´ylDq ă
δ. Pick ε small enough such that p1 ´ εqe´β

˚

ą e´1 and choose r1 ą r ą 0 such that
p1´ εqe´β

˚

ą e´1p1` r1q. It follows that

1´ yl`1 ě 1´ pp` 1´ p1´ εqpk ´ 2q expp´ylDqq

ě p1´ εq
pk ´ 2qe´β

˚

k ln k
exppp1´ ylq ln kq ´ p

ě
k ´ 2

k
p1´ εqe1´β˚

p1´ ylq ´ p

ě p1` r1qp1´ ylq ´ p ě p1` rqp1´ ylq

where the second last inequality follows from inequality ex ą ex, and the last inequality
follows from that 1 ´ yl ě 1 ´ y1 “ Op 1

ln k
q while p “ opk´2q. Therefore after a constant
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number of steps, there must exist some l such that pk´ 2q expp´ylDq ě δ. Now choose α, α1

such that e´δ ă α1 ă α ă 1. When k is large enough, yl`1 ď p ` e´δ ă α1 ă 1. Then again
for k large enough, expp´yl`1Dq ě expp´α1Dq ě expp´α ln kq “ k´α. Therefore for k large
enough

yl`2 ď p` expp´pk ´ 2q expp´yl`1Dqq ď p` expp´
1

2
k1´α

q ď
1

ed
.

After first l0 levels, we cannot use the same method because the error of Poisson coupling
becomes non-negligible; but meanwhile, pbl is small enough such that bounding the total
number of bad children is enough to finish the proof.

Proof of Theorem 5.6.3. In order for a vertex to be bad, there must be at least k ´ 2 of its
children which are bad. Therefore,

pbl ď

ˆ

d

k ´ 2

˙

ppbl´1q
k´2

ď pdpbl´1q
k´2.

Let l0 be the constant in Lemma 5.6.4. We complete the proof by inducting on l for l ě l0:
If l “ l0, then pbl0 ď

1
ed
ď 1

e
. If for l ą l0, pbl satisfies (5.6.2), then for k large enough such

that lnp2k ln kq ď 1
6
k and k ´ 2 ě 3

4
k,

pbl`1 ď pdp
b
l q
k´2

ď
`

2k ln k exp
`

´pk{2ql´l0
˘˘k´2

“ exppk ´ 2q
`

´pk{2ql´l0 ` lnp2k ln kq
˘

ď exp

ˆ

´
3

4
k ¨

2

3
pk{2ql´l0

˙

“ exp
`

´pk{2ql`1´l0
˘

.

Therefore (5.6.2) holds for all l ě l0.
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Henri Poincaré 4.suppl. 1 (2003), S441–S444. issn: 1424-0637. doi: 10.1007/
s00023-003-0934-x. url: http://dx.doi.org/10.1007/s00023-003-
0934-x.

[Gue03] Francesco Guerra. “Broken replica symmetry bounds in the mean field spin
glass model”. In: Comm. Math. Phys. 233.1 (2003), pp. 1–12. issn: 0010-3616.
doi: 10.1007/s00220-002-0773-5. url: http://dx.doi.org/10.1007/
s00220-002-0773-5.

[JM04] Svante Janson and Elchanan Mossel. “Robust reconstruction on trees is de-
termined by the second eigenvalue”. In: Ann. Probab. 32.3B (2004), pp. 2630–
2649. issn: 0091-1798. doi: 10.1214/009117904000000153. url: http://
dx.doi.org/10.1214/009117904000000153.

[Jon02] Johan Jonasson. “Uniqueness of uniform random colorings of regular trees”.
In: Statist. Probab. Lett. 57.3 (2002), pp. 243–248. issn: 0167-7152. doi: 10.
1016/S0167-7152(02)00054-8. url: http://dx.doi.org/10.1016/S0167-
7152(02)00054-8.

[Kar72] Richard M. Karp. “Reducibility among combinatorial problems”. In: (1972),
pp. 85–103.

[Krz+07] Florent Krza̧ka la et al. “Gibbs states and the set of solutions of random con-
straint satisfaction problems”. In: Proc. Natl. Acad. Sci. USA 104.25 (2007),
10318–10323 (electronic). issn: 1091-6490. doi: 10.1073/pnas.0703685104.
url: http://dx.doi.org/10.1073/pnas.0703685104.

[LMP09] Brendan Lucier, Michael Molloy, and Yuval Peres. “The Glauber dynamics
for colourings of bounded degree trees”. In: Approximation, randomization,
and combinatorial optimization. Vol. 5687. Lecture Notes in Comput. Sci.
Springer, Berlin, 2009, pp. 631–645. doi: 10.1007/978-3-642-03685-9_47.
url: http://dx.doi.org/10.1007/978-3-642-03685-9_47.

[Mar99] Fabio Martinelli. “Lectures on Glauber dynamics for discrete spin models”.
In: Lectures on probability theory and statistics (Saint-Flour, 1997). Vol. 1717.
Lecture Notes in Math. Springer, Berlin, 1999, pp. 93–191. doi: 10.1007/978-
3-540-48115-7_2. url: http://dx.doi.org/10.1007/978-3-540-48115-
7_2.
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