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Abstract

One-sided prime ideals in noncommutative algebra

by

Manuel Lionel Reyes

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Tsit Yuen Lam, Chair

The goal of this dissertation is to provide noncommutative generalizations of the following
theorems from commutative algebra: (Cohen’s Theorem) every ideal of a commutative ring
R is finitely generated if and only if every prime ideal of R is finitely generated, and (Kaplan-
sky’s Theorems) every ideal of R is principal if and only if every prime ideal of R is principal,
if and only if R is noetherian and every maximal ideal of R is principal. We approach this
problem by introducing certain families of right ideals in noncommutative rings, called right
Oka families, generalizing previous work on commutative rings by T. Y. Lam and the author.
As in the commutative case, we prove that the right Oka families in a ring R correspond bi-
jectively to the classes of cyclic right R-modules that are closed under extensions. We define
completely prime right ideals and prove the Completely Prime Ideal Principle, which states
that a right ideal maximal in the complement of a right Oka family is completely prime. We
exploit the connection with cyclic modules to provide many examples of right Oka families.
Our methods produce some new results that generalize well-known facts from commutative
algebra, and they also recover earlier theorems stating that certain noncommutative rings
are domains—namely, proper right PCI rings and rings with the right restricted minimum
condition that are not right artinian.

After developing the theory of right Oka families, we proceed to the generalizations of
the theorems stated above. Define a right ideal P of a ring R to be cocritical if the module
R/P has larger Krull dimension than each of its proper factors. We prove that a ring is right
noetherian (resp. a principal right ideal ring) if and only if all of its (essential) cocritical
right ideals are finitely generated (resp. principal). We apply our methods to prove that a
(left and right) noetherian ring is a principal right ideal ring if and only if all of its maximal
right ideals are principal. Examples are provided to show that the left noetherian hypothesis
cannot be omitted. Finally, we compare these results with previous generalizations of these
theorems, and are able to recover most of these with our methods.
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Chapter 1

Introduction

1.1 Background: the existence of prime ideals in com-

mutative rings

A well documented phenomenon in commutative algebra is the tendency for ideals that
are maximal for certain properties to be prime. For instance, if R is a commutative ring,
any ideal of one of the following types must be prime:

• A maximal ideal of R;

• An ideal maximal with respect to being disjoint from a fixed multiplicatively closed
subset S ⊆ R;

• An ideal maximal with respect to not being finitely generated;

• An ideal maximal with respect to not being principal;

• An ideal maximal with respect to not being invertible;

• A maximal point annihilator of a fixed module MR.

It seems that such results are ripe for inclusion as exercises in commutative algebra textbooks;
for instance, see [27, pp. 1, 4–5, 8, 44, 74] or [11, pp. 84–85]. Until recently, the proofs of
these results relied on various ad hoc methods. Although the similarity of the results may
have been noted, there had been no attempt to find a uniform method for proving all of
them.

In [37], T. Y. Lam and the author provided the first systematic analysis of these “maximal
implies prime” results. The key insight there is to study the problem in terms of families
of ideals. (The term family is used here to mean a set. We use this special word to refer
to sets of ideals. Such a distinction seems especially relevant, because every ideal is itself a



2

set!) Given a family F of ideals of a ring R, the problem of unifying the above results can be
rephrased as follows: find conditions on the family F that ensure that every ideal maximal
in the complement of F is prime.

An Oka family of ideals of a commutative ring R was defined to be a family F of ideals
of R such that R ∈ F and, for any ideal I of R and any element a ∈ R, if I + (a) ∈ F and
(I : a) ∈ F , then I ∈ F . (Recall that (I : a) = {r ∈ R : ar ∈ R}. The central result of [37]
is the Prime Ideal Principle, which states that for any Oka family F in a commutative ring
R, every ideal maximal in the complement of F is prime. This was applied to give a unified
presentation of the classical “maximal implies prime” results stated above, by reducing the
proof of each result to showing that a certain ideal family is Oka. In addition, the Prime
Ideal Principal led to a number of new “maximal implies prime” results. For instance, it
was shown that an ideal of a commutative ring that is maximal with respect to not being
idempotent must be a maximal ideal.

Results of the type listed above can sometimes be applied to show that all ideals of a
commutative ring have a certain property precisely when the prime ideals of that ring have
the property in question. For instance, I. S. Cohen characterized commutative noetherian
rings in the following, which appeared as Theorem 2 of [8].

Theorem 1.1.1 (Cohen’s Theorem). A commutative ring R is noetherian iff every prime
ideal of R is finitely generated.

Also, we recall two characterizations of commutative principal ideal rings due to I. Ka-
plansky, which appeared as Theorem 12.3 of [26]. Throughout this dissertation, a ring in
which all right ideals are principal will be called a principal right ideal ring, or PRIR. Sim-
ilarly, we have principal left ideal rings (PLIRs), and a ring which is both a PRIR and a
PLIR is called a principal ideal ring, or PIR.

Theorem 1.1.2 (Kaplansky’s Theorem). A commutative noetherian ring R is a principal
ideal ring iff every maximal ideal of R is principal.

Combining this result with Cohen’s Theorem, Kaplansky deduced the following in Foot-
note 8 on p. 486 of [26].

Theorem 1.1.3 (Kaplansky-Cohen Theorem). A commutative ring R is a principal ideal
ring iff every prime ideal of R is principal.

(We refer to this result as the Kaplansky-Cohen Theorem for two reasons. The primary
and most obvious reason is that it follows from a combination of the above results due to
Cohen and Kaplansky. But we also use this term because it is a result in the spirit of Cohen’s
Theorem, that was first deduced by Kaplansky.)
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1.2 From commutative to noncommutative algebra

There are many natural questions in noncommutative algebra that are raised by the
discussion above. What can one say about a right ideal of a noncommutative ring R that
is maximal with respect to not being finitely generated? What families of right ideals are
sufficient “test sets” for the property of being a right noetherian ring or a princiapl right
ideal ring?

In this dissertation, we answer these questions and many more, generalizing the circle of
ideas in the previous section to the setting of right ideals in noncommutative rings. As one
should expect, the situation is more subtle in noncommutative algebra. However, the idea
of an Oka family survives as a unifying theme among all of the various results.

While prime two-sided ideals are studied in noncommutative rings, it is safe to say that
they do not control the structure of noncommutative rings in the sense of the theorems of
Cohen and Kaplansky above. Part of the trouble is that many complicated rings have few
two-sided ideals. A striking class of examples is given by the simple rings, which have only
one prime ideal but often have complicated one-sided structure.

We begin in §2.1 by introducing and studying completely prime right ideals, which are
a certain type of “prime one-sided ideal” illuminating the structure of a noncommutative
ring. The idea of prime one-sided ideals is not new, as evidenced by numerous attempts to
define such objects in the literature (for instance, see [1], [29], and [41]). However, a common
theme among earlier versions of one-sided prime ideals is that they were produced by simply
deforming the defining condition of a prime ideal in a commutative ring (ab ∈ p implies a or
b lies in p). Our approach is slightly less arbitrary, as it is inspired by the systematic analysis
in [37] of results from commutative algebra in the vein of Theorems 1.1.1 and 1.1.3 above.
As a result, these one-sided primes are accompanied by a ready-made theory producing a
number of results that relate them to the one-sided structure of a ring.

In §2.2, after introducing Oka families of right ideals, we present the Completely Prime
Ideal Principle 2.2.4 (CPIP). This result generalizes the Prime Ideal Principle of [37] to one-
sided ideals of a noncommutative ring. It formalizes a one-sided “maximal implies prime”
philosophy: right ideals that are maximal in certain senses tend to be completely prime. The
CPIP is our main tool connecting completely prime right ideals to the (one-sided) structure
of a ring. For instance, it allows us to provide a noncommutative generalization of Cohen’s
Theorem 1.1.1 in Theorem 4.2.5.

In order to effectively apply the CPIP, we investigate how to construct examples of right
Oka families (from classes of cyclic modules that are closed under extensions) in §3.1. Most
of the applications of the Completely Prime Ideal Principle are given in §3.2. Some highlights
include a study of point annihilators of modules over noncommutative rings, conditions for
a ring to be a domain, and a simple proof that a right PCI ring is a domain.

Then in §3.3 we turn our attention to a special subset of the completely prime right
ideals of a ring, the set of comonoform right ideals. These right ideals are more well-behaved
than completely prime right ideals generally are. They enjoy special versions of the “Prime
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Ideal Principle” and its “Supplement,” which again allow us to produce results that relate
these right ideals to the one-sided structure of a noncommutative ring. Their existence is
also closely tied to the well-studied right Gabriel filters from the theory of noncommutative
localization.

Our work in §4.1–4.2 addresses the following question: what are some sufficient conditions
for all right ideals of a ring to lie in a given right Oka family? In §4.1 we develop the idea of
a point annihilator set in order to deal with this problem. We give a number of examples of
point annihilator sets, particularly examples of noetherian point annihilator sets.

Then in §4.2 we prove the Point Annihilator Set Theorem 4.2.3, a generalized version
of the Completely Prime Ideal Principle Supplement 2.2.6. As a result of these efforts,
we emerge with our generalization of Cohen’s Theorem in Theorem 4.2.5. This theorem is
“flexible” in the sense that, in order to check whether a ring is right noetherian, one can use
various test sets of right ideals. However, one important specific case of the theorem can be
stated as follows. A right ideal P ⊆ R is said to be cocritical if K. dim(R/P ) > K. dim(R/I)
for any right ideal I ) P , where K. dim denotes the (Gabriel-Rentschler) Krull dimension.
Then a ring is right noetherian iff all of its cocritical right ideals are finitely generated. We
also develop conditions for a (left) perfect ring to be right artinian.

Next we consider families of principal right ideals in §5.1. Whereas the family of principal
ideals of a commutative ring is always an Oka family, it turns out that the family Fpr of
principal right ideals can fail to be a right Oka family in certain noncommutative rings.
Nevertheless, we are able to give a characterization of the rings for which this is a right Oka
family, and we provide some examples of such rings. Moreover, by defining another family
F ◦pr which “approximates” Fpr and is always a right Oka family, we are able to provide a
noncommutative generalization of the Kaplansky-Cohen Theorem in Theorem 5.1.11. As
before, a specific version of this theorem is the following: a ring is a principal right ideal
ring iff all of its cocritical right ideals are principal.

In §5.2 we sharpen our versions of the Cohen and Kaplansky-Cohen Theorems by consid-
ering families of right ideals that are closed under direct summands. Of course, this includes
the family of finitely generated right ideals and the family of principal right ideals. This
allows us to reduce the “test sets” of our the Point Annihilator Set Theorem 4.2.3 to sets of
essential right ideals. For instance, to check if a ring is right noetherian or a principal right
ideal ring, it suffices to test the essential cocritical right ideals. The section ends with some
homological applications.

In §5.3 we work toward a noncommutative generalization of Kaplansky’s Theorem 1.1.2.
This requires a number of preparatory results, and incorporates the results of §5.2. All of
this culminates in Theorem 5.3.9, which states that a (left and right) noetherian ring is
a principal right ideal ring iff its maximal right ideals are principal. Notably, our analysis
also implies that such a ring has right Krull dimension ≤ 1. An example shows that the
left noetherian hypothesis is in fact necessary. We close with some questions raised by this
theorem.

Finally, we explore the connections between our results and previous generalizations of the
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Cohen and Kaplansky-Cohen theorems in §5.4. These include theorems due to V. R. Chan-
dran, K. Koh, G. O. Michler, P. F. Smith, and B. V. Zabavs’kĭı. Reviewing these earlier
results affords us an opportunity to survey some earlier notions of “prime right ideals” stud-
ied in the literature.

1.3 Conventions

Throughout this dissertation, all rings are assumed to be associative with unit element,
and all subrings, modules and ring homomorphisms are assumed to be unital. Fix a ring R.
We say that R is a semisimple ring if RR is a semisimple module. We say R is Dedekind-finite
if every right invertible element is invertible; this is equivalent to the condition that RR is
not isomorphic to a proper direct summand of itself (see [36, Ex. 1.8]). We write IR ⊆ R
(resp. I C R) to mean that I is a right (resp. two-sided) ideal in R. The term ideal always
refers to a two-sided ideal of R, with the sole exception of the phrase “Completely Prime
Ideal Principle” (Theorem 2.2.4). We denote the Jacobson radical of R by rad(R). We say
that R is semilocal (resp. local) if R/ rad(R) is semisimple (resp. a division ring). A ring is
right duo if all of its right ideals are two-sided ideals. The set of prime (two-sided) ideals of
R is denoted by Spec(R). An element of R is regular if it is not a left or right zero-divisor.
Given a family F of right ideals in R, we let F ′ denote the complement of F within the set
of all right ideals of R, and we let Max(F ′) denote the set of maximal elements of F ′.

Now fix an R-module MR. We let soc(M) denote the socle of M (the sum of all simple
submodules of M). We will write N ⊆e M to mean that N is an essential submodule of M .
A proper factor of M is a module of the form M/N for some nonzero submodule NR ⊆ M .
We use “f.g.” as shorthand for “finitely generated.”

The symbol “:=” is used to mean that the left-hand side of the equation is defined to
be equal to the right-hand side. Occasionally, the end of a multi-paragraph example will be
marked by the symbol “�” for the sake of clarity.
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Chapter 2

A new type of prime right ideal

2.1 Completely prime right ideals

In this section we define the completely prime right ideals that we shall study, and we
investigate some of their basic properties. Throughout this dissertation, given an element m
and a submodule N of a right R-module MR, we write

m−1N := {r ∈ R : mr ∈ N},

which is a right ideal of R. Except in §3.3, we only deal with this construction in the form
a−1I for an element a and a right ideal I of R. In commutative algebra, this ideal is usually
denoted by (I : a).

Definition 2.1.1. A right ideal PR ( R is completely prime if for any a, b ∈ R such that
aP ⊆ P , ab ∈ P implies that either a ∈ P or b ∈ P (equivalently, for any a ∈ R, aP ⊆ P
and a /∈ P imply a−1P = P ).

Our use of the term “completely prime” is justified by the next result, which characterizes
the two-sided ideals that are completely prime as right ideals. Recall that an ideal P CR is
said to be completely prime if the factor ring R/P is a domain (equivalently, P 6= R and for
all a, b ∈ R, ab ∈ P =⇒ a ∈ P or b ∈ P ); for instance, see [33, p. 194].

Proposition 2.1.2. For any ring R, an ideal P CR is completely prime as a right ideal iff
it is a completely prime ideal. In particular, an ideal P is completely prime as a right ideal
iff it is completely prime as a left ideal.

Proof. For an ideal P C R, we tautologically have aP ⊆ P for all a ∈ R. So such P 6= R is
completely prime as a right ideal iff for every a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P , which
happens precisely when P is a completely prime ideal.

Corollary 2.1.3. If R is a commutative ring, then an ideal P CR is completely prime as a
(right) ideal iff it is a prime ideal.
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Thus completely prime right ideals extend the notion of completely prime ideals in non-
commutative rings, and these right ideals also directly generalize the the concept of a prime
ideal of a commutative ring. Some readers may wonder whether it would be better to reserve
the term “completely prime” for a right ideal P ( R satisfying the following property: for
all a, b ∈ R, if ab ∈ P then either a ∈ P or b ∈ P . (Such right ideals have been studied,
for instance, in [1].) Let us informally refer to such right ideals as “extremely prime.” We
argue that one merit of completely prime right ideals is that they occur in situations where
extremely prime right ideals are absent. We shall show in Corollary 2.1.10 that every max-
imal right ideal of a ring is completely prime, thus proving that every nonzero ring has a
completely prime right ideal. On the other hand, there are many examples of nonzero rings
that do not have any extremely prime right ideals. We thank T. Y. Lam and G. Bergman
for contributing to the following.

Proposition 2.1.4. Let R be a simple ring that has a nontrivial idempotent. Then R has
no extremely prime right ideals.

Proof. Assume for contradiction that I ( R is an extremely prime right ideal. For any
idempotent e 6= 0, 1 of R we have RfR = R, where f = 1 − e 6= 0. Since I is extremely
prime and (eRf)2 = 0 ⊆ I, we have eRf ⊆ I. Hence eR = eRfR ⊆ I, so that e ∈ I.
Similarly, f ∈ I. Hence 1 = e+ f ∈ I, which is a contradiction.

Explicit examples of such rings are readily available. Let k be a division ring. Then
we may take R to be the matrix ring Mn(k) for n > 1. Alternatively, if Vk is such that
dimk(V ) = α is any infinite cardinal, then we may take R to be the factor of E := Endk(V )
by its unique maximal ideal M = {g ∈ E : dimk(g(V )) < α} (see [34, Ex. 3.16]). The
latter example is certainly neither left nor right noetherian. More generally, large classes
of rings satisfying the hypothesis of Proposition 2.1.4 include simple von Neumann regular
rings that are not division rings, as well as purely infinite simple rings (a ring R 6= 0 that is
not a division ring is purely infinite simple if, for every r ∈ R, there exist x, y ∈ R such that
xry = 1; see [2, §1]).

It follows from Proposition 2.1.2 that we can omit the modifiers “left” and “right” when
referring to two-sided ideals that are completely prime. The same result shows that the
completely prime right ideals can often be “sparse” among two-sided ideals in noncommuta-
tive rings. For example, there exist many rings that have no completely prime ideals, such
as simple rings that are not domains. Also, it is noteworthy that a prime ideal P C R of
a noncommutative ring is not necessarily a completely prime right ideal. Thus completely
prime right ideals generalize the notion of prime ideals in commutative rings in a markedly
different way than the more familiar two-sided prime ideals of noncommutative ring theory.
(For further evidence of this idea, see Proposition 2.1.11.) The point is that these two types
of “primes” give insight into different facets of a ring’s structure, with completely prime right
ideals giving a better picture of the right-sided structure of a ring as argued throughout this
dissertation.
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Below are some alternative characterizations of completely prime right ideals that help
elucidate their nature. The idealizer of a right ideal JR ⊆ R is the subring of R given by

IR (J) := {x ∈ R : xJ ⊆ J} .

This is the largest subring of R in which J is a (two-sided) ideal. It is a standard fact that
EndR(R/J) ∼= IR(J)/J .

Proposition 2.1.5. For a right ideal PR ( R, the following are equivalent:

(1) P is completely prime;

(2) For a, b ∈ R, ab ∈ P and a ∈ IR(P ) imply either a ∈ P or b ∈ P ;

(3) Any nonzero f ∈ EndR(R/P ) is injective;

(4) E := EndR(R/P ) is a domain and E(R/P ) is torsionfree.

Proof. Characterization (2) is merely a restatement of the definition given above for com-
pletely prime right ideals, so we have (1)⇐⇒ (2).

(1) =⇒ (3): Let P be a completely prime right ideal, and let 0 6= f ∈ EndR(R/P ).
Choose x ∈ R such that f(1 + P ) = x + P . Because f 6= 0, x /∈ P . Also, because f is
an R-module homomorphism, (1 + P )P = 0 implies that (x + P )P = 0, or xP ⊆ P . Then
because P is completely prime, x−1P = P . But this gives ker f = (x−1P )/P = 0, so f is
injective as desired.

(3) =⇒ (1): Assume that any nonzero endomorphism of R/P is injective. Suppose x, y ∈
R are such that xP ⊆ P and xy ∈ P . Then there is an endomorphism f of R/P given by
f(r+P ) = xr+P . If x /∈ P then f 6= 0, making f injective. Then f(y+P ) = xy+P = 0+P
implies that y + P = 0 + P , so that y ∈ P . Hence P is a completely prime right ideal.

(3) ⇐⇒ (4): This equivalence is still true if we replace R/P with any nonzero module
MR. If E = EndR(M) is a domain and EM is torsionfree, then it is clear that every nonzero
endomorphism of M is injective. Assume conversely that all nonzero endomorphisms of M
are injective. Given f, g ∈ E \ {0} and m ∈ M \ {0}, injectivity of g gives g(m) 6= 0 and
injectivity of f gives f(g(m)) 6= 0. In particular fg 6= 0, proving that E is a domain. Because
g and m above were arbitrary, we conclude that M is a torsionfree left E-module.

(As a side note, we mention that modules for which every nonzero endomorphism is
injective have been studied by A. K. Tiwary and B. M. Pandeya in [56]. In [57], W. Xue
investigated the dual notion of a module for which every nonzero endomorphism is surjective.
These were respectively referred to as modules with the properties (∗) and (∗∗). In our proof
of (3)⇐⇒ (4) above, we showed that a module MR satisfies (∗) iff E := EndR(M) is a domain
and EM is torsionfree. One can also prove the dual statement that M 6= 0 satisfies (∗∗) iff
E is a domain and EM is divisible.)
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One consequence of characterization (3) above is that the property of being completely
prime depends only on the quotient module R/P . (Using language to be introduced in
Definition 3.1.3, the set of all completely prime right ideals in R is closed under similarity.)
It is a straightforward consequence of (2) above that a completely prime right ideal P is
a completely prime ideal in the subring IR(P ). This is further evidenced from (4) because
IR(P )/P ∼= EndR(R/P ) is a domain.

One might wonder whether the torsionfree requirement in condition (4) above is necessary.
That is, can a cyclic module CR have endomorphism ring E which is a domain but with EC
not torsionfree? The next example shows that this is indeed the case.

Example 2.1.6. For an integer n > 1, consider the following ring and right ideal:

R :=

(
Z Z/(n)
0 Z

)
⊇ JR :=

(
0 0
0 Z

)
.

It is easy to show that IR(J) = ( Z 0
0 Z ), so that E := EndR(R/J) ∼= IR(J)/J ∼= Z is a domain

acting on R/J ∼= (Z, Z/(n))R by (left) multiplication. But E(R/J) has nonzero torsion
submodule isomorphic to (0, Z/(n))R.

For a prime ideal P in a commutative ring R, the factor module R/P is indecomposable
(i.e., has no nontrivial direct summand). This property persists for completely prime right
ideals.

Corollary 2.1.7. If P is a completely prime right ideal of R, then the right R-module R/P
is indecomposable.

Proof. By Proposition 2.1.5 the ring E := EndR(R/P ) is a domain. Thus E has no nontrivial
idempotents, proving that R/P is indecomposable.

For a commutative ring R and P ∈ Spec(R), the module R/P is not only indecomposable,
it is uniform. (A module UR 6= 0 is uniform if every pair of nonzero submodules of U has
nonzero intersection.) However, the following example shows that for a completely prime
right ideal P in a general ring R, R/P need not be uniform as a right R-module.

Example 2.1.8. Let k be a division ring and let R be the following subring of M3(k):

R =

k k k
0 k 0
0 0 k

 .

Notice that R has precisely three simple right modules (since the same is true modulo its
Jacobson radical), namely Si = k (i = 1, 2, 3) with right R-action given by multiplication by
the (i, i)-entry of any matrix in R.
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Let P ⊆ R be the right ideal consisting of matrices in R whose first row is zero. Notice
that R/P is isomorphic to the module V := (k k k) of row vectors over k with the usual
right R-action. Then V has unique maximal submodule M = (0 k k), and M in turn has
precisely two proper nonzero submodules, U = (0 k 0) and W = (0 0 k). Having cataloged
all submodules of V , let us list the composition factors:

V/M ∼= S1, M/W ∼= U ∼= S2, M/U ∼= W ∼= S3.

Notice that S1 occurs as a composition factor of every nonzero factor module of V , and it
does not occur as a composition factor of any proper submodule of V . Thus every nonzero
endomorphism of V ∼= R/P is injective, proving that P is a completely prime right ideal.
However, V contains the direct sum U ⊕W , so R/P ∼= V is not uniform.

Proposition 2.1.2 shows how frequently completely prime right ideals occur among two-
sided ideals. The next few results give us further insight into how many completely prime
right ideals exist in a general ring. The first result gives a sufficient condition for a right
ideal to be completely prime. Recall that a module is said to be cohopfian if all of its
injective endomorphisms are automorphisms. For example, it is straightforward to show
that any artinian module is cohopfian (see [34, Ex. 4.16]). The following is easily proved
using Proposition 2.1.5(3).

Proposition 2.1.9. If a right ideal P ⊆ R is such that E := EndR(R/P ) is a division ring,
then P is completely prime. The converse holds if R/P is cohopfian.

Corollary 2.1.10. (A) A maximal right ideal mR ⊆ R is a completely prime right ideal.
(B) For a right ideal P in a right artinian ring R, the following are equivalent:

(1) P is a completely prime right ideal;

(2) EndR(R/P ) is a division ring;

(3) P is a maximal right (equivalently, maximal left) ideal in its idealizer IR(P ).

Proof. Part (A) follows from Schur’s Lemma and Proposition 2.1.9. For part (B), (1)⇐⇒ (2)
follows from Proposition 2.1.9 (every cyclic right R-module is artinian, hence cohopfian), and
(2)⇐⇒ (3) follows easily from the canonical isomorphism IR(P )/P ∼= EndR(R/P ).

Because every nonzero ring has a maximal right ideal (by a familiar Zorn’s lemma argu-
ment), part (A) above applies to show that a nonzero ring always has a completely prime
right ideal. (This fact was already mentioned at the beginning of this section.) The same can-
not be said for completely prime two-sided ideals or the aforementioned “extremely prime”
right ideals! On the other hand, Example 2.1.8 shows that a completely prime right ideal
in an artinian ring need not be maximal, so we cannot hope to strengthen part (B) very
drastically.
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To get another indication of the role of completely prime right ideals, we may ask the
following natural question: when is every proper right ideal of a ring completely prime? It is
straightforward to verify that a commutative ring in which every proper ideal is prime must
be a field. On the other hand, there exist nonsimple noncommutative rings in which every
proper ideal is prime. (For example, take R = End(Vk) where V is a right vector space of
dimension at least ℵ0 over a division ring k; see [34, Ex. 10.6]). In contrast, the behavior of
completely prime right ideals is much closer to that of prime ideals in the commutative case.

Proposition 2.1.11. For a nonzero ring R, every proper right ideal in R is completely prime
iff R is a division ring.

Proof. (“Only if”) For an arbitrary 0 6= a ∈ R, it suffices to show that a is right invertible.
Assume for contradiction that aR 6= R. Then the right ideal J = a2R ⊆ aR ( R is proper
and hence is completely prime. Certainly a ∈ IR(J). Because a2 ∈ J , we must have a ∈ J
(recall Proposition 2.1.5(2)). But also the ideal 0 6= R is completely prime, so R is a domain
by Proposition 2.1.2. Then a ∈ J = a2R implies 1 ∈ aR, contradicting that aR 6= R.

An inspection of the proof above actually shows that a nonzero ring R is a division ring
iff the endomorphism ring of every nonzero cyclic right R-module is a domain, iff R is a
domain and the endomorphism ring of every cyclic right R-module is reduced. We mention
here that certain other “prime right ideals” studied previously do not enjoy the property
proved above. For instance, K. Koh showed [29, Thm. 4.2] that all proper right ideals I of
a ring R satisfy

(aRb ∈ I =⇒ a ∈ I or b ∈ I) for all a, b ∈ R
precisely when R is simple. In this sense, a ring may have “too many” of these prime-like
right ideals.

The following is an analogue of the theorem describing Spec(R/I) for a commutative
ring R and an ideal I C R. We present the result in a more general context than that of
completely prime right ideals because it will be applicable to other types of “prime right
ideals” that we will consider later.

Remark 2.1.12. Let P be a module-theoretic property such that, if VR is a module and
I is an ideal of R contained in ann(V ), then V satisfies P as an R-module iff it satisfies P
when considered as a module over R/I. For every ring R let S(R) denote the set of all right
ideals PR ⊆ R such that R/P satisfies P . Then it follows directly from our assumption on
the property P that there is a one-to-one correspondence

{PR ∈ S(R) : P ⊇ I} ←→ S(R/I)

given by P ↔ P/I.
In particular, we may take P to be the property “V 6= 0 and every nonzero endomorphism

of V is injective.” Then the associated set S(R) is the collection of all completely prime right
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ideals of R, according to characterization (3) of Proposition 2.1.5. In this case we conclude
that for any ideal I C R the completely prime right ideals of R/I correspond bijectively, in
the natural way, to the set of completely prime right ideals of R containing I.

In §§2.2–3.2 we will take a much closer look at the existence of completely prime right
ideals in rings. To close this section, we explore how completely prime right ideals be-
have when “pulled back” along ring homomorphisms. One can interpret Remark 2.1.12 as
demonstrating that, under a surjective ring homomorphism f : R→ S, the preimage of any
completely prime right ideal of S is a completely prime right ideal of R. The next example
demonstrates that this does not hold for arbitrary ring homomorphisms.

Example 2.1.13. For a division ring k, let S := M3(k) and let R be the subring of S defined
in Example 2.1.8. Consider the right ideals

QS :=


a b c
d e f
d e f

 ⊆ S and PR :=

k k k
0 0 0
0 0 0

 ⊆ R.

Because QS
∼= (k k k)2S has composition length 2, it is a maximal right ideal of S and thus

is completely prime by Corollary 2.1.10(A). Let f : R→ S be the inclusion homomorphism.
Then P = Q ∩ R = f−1(Q). However (R/P )R ∼= (0 k k)R ∼= (0 k 0)R ⊕ (0 0 k)R is
decomposable, so Lemma 2.1.7 shows that PR is not completely prime.

The above example may seem surprising to the reader who recalls that completely prime
(two-sided) ideals pull back along any ring homomorphism. The tension between this fact
and Example 2.1.13 is resolved in the following result.

Proposition 2.1.14. Let f : R → S be a ring homomorphism, let QS ( S be a completely
prime right ideal, and set PR := f−1(Q). If f(IR(P )) ⊆ IS(Q), then P is a completely prime
right ideal of R.

Proof. Because Q is a proper right ideal of S, P must be a proper right ideal of R. Suppose
that a ∈ IR(P ) and b ∈ R are such that ab ∈ P . Then f(a)f(b) = f(ab) ∈ f(P ) ⊆ Q with
f(a) ∈ f(IR(P )) ⊆ IS(Q). Because QS is completely prime, this means that one of f(a) or
f(b) lies in Q. Then one of a or b lies in f−1(Q) = P . Hence P is completely prime.

This simultaneously explains why the preimage of a completely prime right ideal is again
completely prime when the original ideal is two-sided and when the ring homomorphism
is surjective. When QS ⊆ S above is a two-sided ideal, IS(Q) = S and the condition
f(IR(P )) ⊆ IS(Q) is trivially satisfied. On the other hand, if Q ⊆ im(f) (e.g. if f is
surjective), then one can use the fact that f(P ) = Q to show that f(IR(P )) ⊆ IS(Q) again
holds.
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2.2 The Completely Prime Ideal Principle

A distinct advantage that completely prime right ideals have over earlier notions of “one-
sided primes” is a theorem assuring the existence of completely prime right ideals in a wide
array of situations. It states that right ideals that are “maximal” in certain senses must be
completely prime. This result is the Completely Prime Ideal Principle, or CPIP, and it is
presented in Theorem 2.2.4 below.

A number of famous theorems from commutative algebra state that an ideal maximal
with respect to a certain property must be prime. A useful perspective from which to study
this phenomenon is to consider a family F of ideals in a commutative ring R and ask when
an ideal maximal in the complement F ′ of F is prime. Some well-known examples of such
F include the family of ideals intersecting a fixed multiplicative set S ⊆ R, the family of
finitely generated ideals, the family of principal ideals, and the family of ideals that do not
annihilate any nonzero element of a fixed module MR. In [37] an Oka family of ideals in a
commutative ring R was defined to be a set F of ideals of R with R ∈ F such that, for any
ideal I C R and element a ∈ R, I + (a) ∈ F and (I : a) ∈ F imply I ∈ F . The Prime
Ideal Principle (or PIP) [37, Thm. 2.4] states that for any Oka family F , an ideal maximal
in the complement of F is prime (in short, Max(F ′) ⊆ Spec(R)). In [37, §3] it was shown
that many of the “maximal implies prime” results in commutative algebra (including those
mentioned above) follow directly from the Prime Ideal Principle.

The following notion generalizes Oka families to the noncommutative setting.

Definition 2.2.1. Let R be a ring. An Oka family of right ideals (or right Oka family) in
R is a family F of right ideals with R ∈ F such that, given any IR ⊆ R and a ∈ R,

I + aR, a−1I ∈ F =⇒ I ∈ F . (2.2.2)

If R is commutative, notice that this coincides with the definition of an Oka family of
ideals in R, given in [37, Def. 2.1]. When verifying that some set F is a right Oka family,
we will often omit the step of showing that R ∈ F if this is straightforward.

Remark 2.2.3. The fact that this definition is given in terms of the “closure property” (2.2.2)
makes it clear that the collection of Oka families of right ideals in a ring R is closed under
arbitrary intersections. Thus the set of right Oka families of R forms a complete lattice
under the containment relation.

Without delay, let us prove the noncommutative analogue of the Prime Ideal Principle [37,
Thm. 2.4], the Completely Prime Ideal Principle (CPIP).

Theorem 2.2.4 (Completely Prime Ideal Principle). Let F be an Oka family of right ideals
in a ring R. Then every I ∈ Max(F ′) is a completely prime right ideal.
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Proof. Let I ∈ Max(F ′). Notice that I 6= R since R ∈ F . Assume for contradiction that
there exist a, b ∈ R \ I such that aI ⊆ I and ab ∈ I. Because a /∈ I we have I ( I + aR.
Additionally I ⊆ a−1I, and b ∈ a−1I implies I ( a−1I. Since I ∈ Max(F ′) we find that
I+aR, a−1I ∈ F . Because F is a right Oka family we must have I ∈ F , a contradiction.

In the original setting of Oka families in commutative rings, a result called the “Prime
Ideal Principle Supplement” [37, Thm. 2.6] was used to recover results such as Cohen’s
Theorem [8, Thm. 2] that a commutative ring R is noetherian iff its prime ideals are all
finitely generated. As with the Completely Prime Ideal Principle above, there is a direct
generalization of this fact for noncommutative rings. The idea of this result is that for certain
right Oka families F , in order to test whether F contains all right ideals of R, it is sufficient
to test only the completely prime right ideals. We first define the one-sided version of a
concept introduced in [37].

Definition 2.2.5. A semifilter of right ideals in a ring R is a family F of right ideals such,
for all right ideals I and J of R, if I ∈ F and J ⊇ I then J ∈ F .

Theorem 2.2.6 (Completely Prime Ideal Principle Supplement). Let F be a right Oka
family in a ring R such that every nonempty chain of right ideals in F ′ (with respect to
inclusion) has an upper bound in F ′. (This holds, for example, if every right ideal in F is
f.g.) Let S denote the set of completely prime right ideals of R.

(1) Let F0 be a semifilter of right ideals in R. If S ∩ F0 ⊆ F , then F0 ⊆ F .

(2) For JR ⊆ R, if all right ideals in S containing J (resp. properly containing J) belong
to F , then all right ideals containing J (resp. properly containing J) belong to F .

(3) If S ⊆ F , then all right ideals of R belong to F .

Proof. For (1), let F0 be a semifilter of right ideals and suppose that S ∩ F0 ⊆ F . Assume
for contradiction that there exists a right ideal I ∈ F \ F0 = F ′ ∩ F0. The hypothesis on
F ′ allows us to apply Zorn’s lemma to deduce that there exists a right ideal P ⊇ I with
P ∈ Max(F ′), so P ∈ S by the Completely Prime Ideal Principle 2.2.4. Because F0 is a
semifilter containing I, we also have P ∈ F0. It follows that P ∈ S ∩ F0 \ F , contradicting
our hypothesis.

Parts (2) and (3) follow from (1) by taking the semifilter F0 to be, respectively, the set
of all right ideals containing J , the set of all right ideals properly containing J , or the set of
all right ideals of R.

We will largely refrain from applying the Completely Prime Ideal Principle and its Sup-
plement until §3.2, when we will have enough tools to efficiently construct right Oka families.
However, it seems appropriate to at least give one classical application to showcase these
ideas at work. In [42, Appendix], M. Nagata gave a simple proof of Cohen’s Theorem 1.1.1
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using the following lemma: if an ideal I and an element a of a commutative ring R are
such that I + (a) and (I : a) are finitely generated, then I itself is finitely generated. This
statement amounts to saying that the family of finitely generated ideals in a commutative
ring is an Oka family. Nagata cited a paper [43] of K. Oka as the inspiration for this result.
(In [37, p. 3007] it was pointed out that Oka’s Corollaire 2 is the relevant statement.) This
was the reason for the use of the term Oka family in [37]. More generally, in [37, Prop. 3.16]
it was shown that, for any infinite cardinal α, the family of all ideals generated by a set of
cardinality < α is Oka. The following generalizes this collection of results to the noncom-
mutative setting. We let µ(M) denote the smallest cardinal µ such that the module MR can
be generated by a set of cardinality µ.

Proposition 2.2.7. Let α be an infinite cardinal, and let F<α be the set of all right ideals
IR ⊆ R with µ(I) < α. Then F<α is a right Oka family, and any right ideal maximal with
respect to µ(I) ≥ α is completely prime. In particular, the set of finitely generated right
ideals is a right Oka family; hence a right ideal maximal with respect to not being finitely
generated is completely prime.

Proof. We first show that F<α is a right Oka family. Let IR ⊆ R, a ∈ R be such that
I + aR, a−1I ∈ F<α. From µ(I + aR) < α it is straightforward to verify that there is a right
ideal I0 ⊆ I with µ(I0) < α such that I + aR = I0 + aR. It follows that I = I0 + a(a−1I).
Because µ(I0) < α and µ(a(a−1I)) ≤ µ(a−1I) < α, we see that µ(I) < α + α = α. Thus
I ∈ F<α, proving that Fα is right Oka.

If I is a right ideal maximal with respect to µ(I) ≥ α then I ∈ Max(F ′) and the
CPIP 2.2.4 implies that I is completely prime. The last sentence follows when we take
α = ℵ0.

This leads to a noncommutative generalization of Cohen’s Theorem 1.1.1 for completely
prime right ideals.

Theorem 2.2.8 (A noncommutative Cohen’s Theorem). A ring R is right noetherian iff all
of its completely prime right ideals are finitely generated.

Proof. This follows from Proposition 2.2.7 and the CPIP Supplement 2.2.6(3) applied to
F = F<ℵ0 , the family of f.g. right ideals.

Notice how quickly the last two results were proved using the CPIP and its Supplement!
This highlights the utility of right Oka families as a framework from which to study such
problems. Of course, other generalizations of Cohen’s Theorem have been proven in the
past. In Chapters 4 and 5, we will apply the methods of right Oka families developed here
to improve upon our generalization of Cohen’s Theorem. We will also develop noncommu-
tative generalizations of the theorems of Kaplansky which say that a commutative ring is
a principal ideal ring iff its prime ideals are principal, iff it is noetherian and its maximal
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ideals are principal. See §5.4 for a comparison of our version of Cohen’s Theorem to earlier
generalizations in the literature.

The generalization of Cohen’s Theorem 1.1.1 in Theorem 2.2.8 above does not hold if we
replace the phrase “completely prime” with “extremely prime” (as defined in §2.1). Indeed,
using Proposition 2.1.4 we showed that there exist rings R that are not right noetherian with
no extremely prime right ideals. But for such R, it is vacuously true that every extremely
prime right ideal of R is finitely generated! This strikingly illustrates the idea that completely
prime right ideals control the right-sided structure of a general ring better than extremely
prime right ideals.

For any cardinal β, we can also define a family F≤β of all right ideals I such that
µ(I) ≤ β. Letting β+ denote the successor cardinal of β, we see that F≤β = F<β+ , so we
have not sacrificed any generality in the statement of Proposition 2.2.7. In particular, taking
β = ℵ0 we see that the family of all countably generated right ideals is a right Oka family.
The “maximal implies prime” result in the case where R is commutative and β = ℵ0 was
noted in Exercise 11 of [27, p. 8]. The case of larger infinite cardinals α for commutative
rings was proved by Gilmer and Heinzer in [14, Prop. 3]. (This reference was unfortunately
overlooked in [37, p. 3017].)

One might wonder whether the obvious analogue of Cohen’s Theorem for right ideals with
generating sets of higher cardinalities is also true, in light of Proposition 2.2.7. However, in
the commutative case Gilmer and Heinzer [14] have already settled this in the negative. The
rings which serve as their counterexamples are (commutative) valuation domains.

Here we provide a sample application of the Completely Prime Ideal Principle. It is
well-known that Cohen’s Theorem 1.1.1 can be used to prove that if R is a commutative
noetherian ring, then the power series ring R[[x]] is also noetherian. In [41], G. Michler
proved a version of Cohen’s Theorem and gave an analogous application of this result to
power series over noncommutative rings. Our version of Cohen’s Theorem can be applied in
the same way.

Corollary 2.2.9. If a ring R is right noetherian, then the power series ring R[[x]] is also
right noetherian.

Proof. Let P be a completely prime right ideal of S := R[[x]]; by Theorem 2.2.8 it suffices
to show that P is finitely generated. Let CR ⊆ R be the right ideal of R consisting of all
constant terms of all power series in P . Then P is finitely generated. Choose power series
f1, . . . , fn ∈ P whose constant terms generate C, and set I :=

∑
fjR ⊆ P . If x ∈ P then

it is easy to see that P = I + xS is finitely generated. So assume that x /∈ P . In this
case, we claim that P = I. Again we will have P finitely generated and the proof will be
complete. Given h ∈ P , the constant term of h0 := h is equal to the constant term of some
g0 =

∑
a0jfj ∈ I, where a0j ∈ R. Then h0 − g0 = xh1 for some h1 ∈ S. Notice that

xh1 = h0 − g0 ∈ P . Because P is completely prime with xP = Px ⊆ P and x /∈ P , it
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follows that h1 ∈ P . One can proceed inductively to find gi =
∑n

j=1 aijfj (aij ∈ R) such

that hi = gi + xhi+1. Hence h =
∑n

j=1 (
∑∞

i=0 aijx
i) fj ∈ I.

Before moving on, we mention a sort of “converse” to the CPIP 2.2.4 characterizing
exactly which families F of right ideals are such that Max(F ′) consists of completely prime
right ideals. It turns out that a weak form of the Oka property (2.2.2) characterizes these
families.

Proposition 2.2.10. Let F be a family of right ideals in a ring R. All right ideals in
Max(F ′) are completely prime iff, for all IR ⊆ R where every right ideal J ) I lies in F and
for all elements a ∈ IR(I), the Oka property (2.2.2) is satisfied.

Proof. First suppose that F satisfies property (2.2.2) for all I and a described above. Then
the proof of the CPIP 2.2.4 applies to show that any right ideal in Max(F ′) is completely
prime. Conversely, suppose that Max(F ′) consists of completely prime right ideals, and let
IR ⊆ R and a ∈ IR(I) be as described above. Assume for contradiction that I /∈ F . It follows
that I ∈ Max(F ′), so I is a completely prime right ideal. Because I /∈ F and I+aR ∈ F , we
see that a /∈ I. But then the remark at the end of Definition 2.1.1 shows that I = a−1I ∈ F ,
a contradiction. We conclude that in fact I ∈ F , completing the proof.

So for a commutative ring R, this result classifies precisely which families F of ideals
satisfy Max(F ′) ⊆ Spec(R). (Note: here we can replace a ∈ IR(I) by a ∈ R.) In fact, the
above result was first discovered in the commutative setting by T. Y. Lam and the present
author during the development of [37], though it did not appear there.
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Chapter 3

Further results on right Oka families

3.1 Right Oka families and classes of cyclic modules

In order to apply the CPIP 2.2.4, we need an effective tool for constructing right Oka
families. The relevant result will be Theorem 3.1.7 below. This theorem generalizes one of the
most important facts about Oka families in commutative rings: there is a correspondence
between Oka families in a ring R and certain classes of cyclic R-modules (to be defined
below). Throughout this paper we use MR to denote the class of all right R-modules and
Mc

R ⊆MR to denote the subclass of cyclic R-modules.

Definition 3.1.1. Let R be any ring. A subclass C ⊆ Mc
R with 0 ∈ C is closed under

extensions if, for every exact sequence 0 → L → M → N → 0 of cyclic right R-modules,
whenever L, N ∈ C it follows that M ∈ C.

Specifically, it was shown in [37, Thm. 4.1] that for any commutative ring R, the Oka
families in R are in bijection with the classes of cyclic R-modules that are closed under
extensions. This correspondence provided many interesting examples of Oka families in
commutative rings. The goal of this section is to show that the Oka families of right ideals
in an arbitrary ring R correspond to the classes of cyclic right R-modules which are closed
under extensions.

In a commutative ring R, the correspondence described above was given by associating to
any Oka family F the class C := {MR : M ∼= R/I for some I ∈ F} of cyclic modules. Then
F is determined by C because, for an ideal I of R, we may recover I from the isomorphism
class of the cyclic module R/I since I is the annihilator of this cyclic module. (In fact,
this works for any family F of ideals in R.) However, in a noncommutative ring there can
certainly exist right ideals I, J ⊆ R such that I 6= J but R/I ∼= R/J (as right R-modules).

Example 3.1.2. Any simple artinian ring R has a single isomorphism class of simple right
modules. Thus all maximal right ideals mR ⊆ R have isomorphic factor modules R/m. But
if R ∼= Mn(k) for a division ring k and if n > 1 (i.e. R is not a division ring), then there
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exist multiple maximal right ideals: we may take mi (i = 1, . . . , n) to correspond to the right
ideal of matrices whose ith row is zero. In fact, over an infinite division ring k even the ring
M2(k) has infinitely many maximal right ideals! This is true because, for any λ ∈ k, the set
of all matrices of the form (

a b
λa λb

)
is a maximal right ideal, and these right ideals are distinct for each value of λ. (Of course,
a similar construction also works over the ring Mn(k) for n > 2.)

Therefore we do not expect every family F of right ideals to naturally correspond to a
class of cyclic modules. This prompts the following definition.

Definition 3.1.3. Two right ideals I and J of a ring R are said to be similar if R/I ∼= R/J
as right R-modules. A family F of right ideals in a ring R is closed under similarity if,
for any similar right ideals IR, JR ⊆ R, I ∈ F implies J ∈ F . This is equivalent to
I ∈ F ⇐⇒ J ∈ F whenever R/I ∼= R/J .

The notion of similarity dates at least as far back as Jacobson’s text [23, pp. 33 & 130]
(although he only studied this idea in specific classes of rings). With the appropriate termi-
nology in place, the next fact is easily verified.

Proposition 3.1.4. For any ring R, there is a bijective correspondence
families F of right
ideals of R that are

closed under similarity

←→


classes C of cyclic right
R-modules that are closed

under isomorphism

 .

For a family F and a class C as above, the correspondence is given by the maps

F 7→ CF := {MR : M ∼= R/I for some I ∈ F},
C 7→ FC := {IR ⊆ R : R/I ∈ C}.

We will show that every right Oka family is closed under similarity with the help of the
following two-part lemma. The first part describes, up to isomorphism, the cyclic submodules
of a cyclic module R/I. The second part is a rather well-known criterion for two cyclic
modules to be isomorphic.

Lemma 3.1.5. Let R be a ring.

(A) For any right ideal I ⊆ R and any element a ∈ R, there is an isomorphism

R/a−1I
∼−→ (I + aR)/I ⊆ R/I

given by r + a−1I 7→ ar + I.
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(B) Given two right ideals IR, JR ⊆ R, R/I ∼= R/J iff there exists a ∈ R such that
I + aR = R and a−1I = J .

Proof. Part (A) is a straightforward application of the First Isomorphism Theorem. Proofs
for part (B) can be found, for instance, in [9, Prop. 1.3.6] or [34, Ex. 1.30]. (In fact, it was
already observed in Jacobson’s text [23, p. 33], though in the special setting of PIDs.) In
any case, the “if” direction follows from part (A) above, and the reader can readily verify
the “only if” direction.

These elementary observations are very important for us. The reader should be aware
that we will freely use the isomorphism R/a−1I ∼= (I + aR)/I throughout this paper.

Proposition 3.1.6. A family F of right ideals in a ring R is closed under similarity iff for
any IR ⊆ R and a ∈ R, I + aR = R and a−1I ∈ F imply I ∈ F . In particular, any right
Oka family F is closed under similarity.

Proof. The first statement follows directly from Lemma 3.1.5(B), and the second statement
follows from Definition 2.2.1 because every right Oka family contains the unit ideal R.

Thus we see that every right Oka family will indeed correspond, as in Proposition 3.1.4,
to some class of cyclic right modules; it remains to show that they correspond precisely to
the classes that are closed under extensions. We first need to mention one fact regarding
module classes closed under extensions. From the condition 0 ∈ C and the exact sequence
0 → L → M → 0 → 0 for LR ∼= MR, we see that a class C of cyclic modules closed under
extensions is also closed under isomorphisms. We are now ready to prove the main result of
this section.

Theorem 3.1.7. Given a class C of cyclic right R-modules that is closed under extensions,
the family FC is an Oka family of right ideals. Conversely, given a right Oka family F , the
class CF of cyclic right R-modules is closed under extensions.

Proof. First suppose that the given class C is closed under extensions. Then R ∈ FC because
0 ∈ C. So let IR ⊆ R and a ∈ R be such that I + aR, a−1I ∈ FC. Then R/(I + aR) and
R/a−1I lie in C. Moreover, we have an exact sequence

0→ (I + aR)/I → R/I → R/(I + aR)→ 0,

where (I + aR)/I ∼= R/a−1I lies in C (recall that C is closed under isomorphisms). Because
C is closed under extensions, R/I ∈ C. Thus I ∈ FC, proving that FC is a right Oka family.

Now suppose that F is a right Oka family. That 0 ∈ CF follows from the fact that R ∈ F .
Consider an exact sequence of cyclic right R-modules

0→ L→M → N → 0
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where L,N ∈ CF , so that there exist A,B ∈ F such that L ∼= R/A and N ∼= R/B.
We may identify M up to isomorphism with R/I for some right ideal I ⊆ R. Because
L is cyclic and embeds in M ∼= R/I, we have L ∼= (I + aR)/I for some a ∈ R. Hence
R/(I + aR) ∼= N ∼= R/B, and Proposition 3.1.6 implies that I + aR ∈ F . Note also
that R/a−1I ∼= (I + aR)/I ∼= L ∼= R/A, so by Proposition 3.1.6 we conclude that a−1I ∈ F .
Because F is a right Oka family we must have I ∈ F . So M ∼= R/I implies that M ∈ CF .

We examine one consequence of this correspondence. This will require the following
lemma, which compares a class C ⊆ Mc

R that is closed under extensions with its closure
under extensions in the larger class MR.

Lemma 3.1.8. Let C be a class of cyclic right R-modules that is closed under extensions (as
in Definition 3.1.1), and let C be its closure under extensions in the class MR of all cyclic
right R-modules. Then C = C ∩Mc

R.

Proof. Certainly C ⊆ C ∩Mc
R. Conversely, suppose that M ∈ C ∩Mc

R. Because M ∈ C,
there is a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

such that each Mj/Mj−1 ∈ C. One can then prove by downward induction that the cyclic
modules M/Mj lie in C. So M ∼= M/M0 and M/M0 ∈ C imply that M ∈ C.

Corollary 3.1.9. Let F be a right Oka family in a ring R. Suppose that IR ⊆ R is such
that R/I has a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = R/I

where each filtration factor is cyclic and of the form Mj/Mj−1 ∼= R/Ij for some Ij ∈ F .
Then I ∈ F .

Proof. Let C := CF , which is closed under extensions by Theorem 3.1.7. Then the above
filtration of the cyclic module M = R/I has filtration factors isomorphic to the R/Ij ∈ C.
From Lemma 3.1.8 it follows that R/I ∈ C, and thus I ∈ FC = F .

This implies, for instance, that if a right Oka family F in a ring R contains all maximal
right ideals of R, then it contains all right ideals I such that R/I has finite length.

We close this section by applying Theorem 3.1.7 to produce a second “converse” to the
Completely Prime Ideal Principle 2.2.4, distinct from the one mentioned at the end of §2.2.
This result mildly strengthens the CPIP to an “iff” statement, saying that a right ideal P
of a ring R is completely prime iff P ∈ Max(F ′) for some right Oka family F . (This was
already noted in the commutative case in [38, p. 274].)

Let VR be an R-module, and define the class

E [V ] := {MR : M = 0 or M 6↪→ V }. (3.1.10)
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We claim that E [V ] is closed under extensions in MR. Indeed, suppose that 0→ L→M →
N → 0 is a short exact sequence in MR with L,N ∈ E [V ]. If L = 0 then M ∼= N , so
that M ∈ E [V ]. Otherwise L cannot embed in V . Because L ↪→ M , M cannot embed in
V , proving M ∈ MR. With the class E [V ] in mind, we prove the second “converse” of the
CPIP.

Proposition 3.1.11. For any completely prime right ideal PR ⊆ R, there exists an Oka
family F of right ideals in R such that P ∈ Max(F ′).

Proof. Let VR = R/P , and let E [V ] be as above. Fixing the class C = E [V ]∩Mc
R, set F := FC.

By Theorem 3.1.7, F is a right Oka family. Certainly P /∈ F since R/P = V /∈ E [V ], so it
only remains to show the maximality of P . Assume for contradiction that there is a right
ideal I /∈ F with I ) P . Then we have a natural surjection R/P � R/I, and because I /∈ F
we have 0 6= R/I ↪→ V = R/P . Composing these maps as

R/P � R/I ↪→ R/P

gives a nonzero endomorphism f ∈ End(R/P ) with ker f = I/P 6= 0. This contradicts
characterization (3) of Proposition 2.1.5, so we must have P ∈ Max(F ′) as desired.

3.2 Applications of the Completely Prime Ideal Prin-

ciple

In this section we will give various applications of the Completely Prime Ideal Principle.
Every application should be viewed as a new source of completely prime right ideals in a ring
or as an application of the notion of completely prime right ideals (and right Oka families)
to study the one-sided structure of a ring. The diversity of concepts that interweave with
the notion of completely prime right ideals (via right Oka families) in this section showcases
the ubiquity of these objects. We remind the reader that when verifying that a set F of
right ideals in R is a right Oka family, we will often skip the step of checking that R ∈ F .

Remark 3.2.1. An effective method of creating right Oka families is as follows. Consider a
subclass E ⊆MR that is closed under extensions in the full class of right modules MR. Then
C = E ∩Mc

R is a class of cyclic modules that is closed under extensions. Hence F := FC is a
right Oka family. (Notice that, according to Lemma 3.1.8, every such C arises this way.)

When working relative to a ring homomorphism, a similar method applies. Recall that
for a ring k, a k-ring R is a ring with a fixed homomorphism k → R. Given a k-ring R, let
E1 be any class of right k-modules that is closed under extensions in Mk, and let E denote
the subclass of MR consisting of modules that lie in E1 when considered as k-modules under
the map k → R. Then E is certainly closed under extensions in MR, so C := E ∩Mc

R is
closed under extensions and F := FC is a right Oka family.
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3.2.A Point annihilators and zero-divisors

Point annihilators are basic objects from commutative algebra that connect the modules
over a commutative ring to the ideals of that ring. Prime ideals play an important role there
in the form of associated primes of a module. Here we study these themes in the setting of
noncommutative rings.

Definition 3.2.2. For a ring R and a module MR 6= 0, a point annihilator of M is a right
ideal of the form ann(m) for some 0 6= m ∈M .

A standard theorem of commutative algebra states that for a module MR over a com-
mutative ring R, a maximal point annihilator of M is a prime ideal. The next result is the
direct generalization of this fact. This application takes advantage of the construction E [V ]
presented in (3.1.10).

Proposition 3.2.3. Let R be a ring and MR 6= 0 an R-module. The family F of right
ideals that are not point annihilators of M is a right Oka family. Thus, a maximal point
annihilator of M is a completely prime right ideal.

Proof. Following the notation of (3.1.10), let C = E [M ] ∩Mc
R, which is a class of cyclic

modules closed under extensions. Then FC is a right Oka family. But by definition of E [M ],
we see that

F ′C = {IR ⊆ R : 0 6= R/I ↪→M}
= {ann(m) : 0 6= m ∈M}
= F ′.

So F = FC is a right Oka family. The last statement follows from the CPIP 2.2.4.

The proof that a maximal point annihilator of a module MR is completely prime can also
be achieved using the following family:

F := {IR ⊆ R : for m ∈M , mI = 0 =⇒ m = 0}.

One can show that F is a right Oka family. Moreover, it is readily checked that Max(F ′)
consists of the maximal point annihilators of M . The CPIP again applies to show that the
maximal point annihilators of M are completely prime. This was essentially the approach
taken in the commutative case in [37, Prop. 3.5].

As in the theory of modules over commutative rings, one may wish to study “associated
primes” of a module M over a noncommutative ring R. For a module MR, let us say that
a completely prime right ideal PR ⊆ R is associated to M if it is a point annihilator of M
(equivalently, if R/P ↪→M). A famous fact from commutative algebra is that a noetherian
module over a commutative ring has only finitely many associated primes; see [11, Thm. 3.1].
It is easy to show that the analogous statement for completely prime right ideals does not hold
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over noncommutative rings. For instance, Example 3.1.2 provided a ring R with infinitely
many maximal right ideals {mi} such that the modules R/mi were all isomorphic to the
same simple module, say SR. Then the mi are infinitely many completely prime right ideals
that are associated to the module S (which is simple and thus noetherian).

In response to this easy example, one may ask whether a noetherian module has finitely
many associated completely prime right ideals up to similarity. Again, the answer is negative.
We recall an example used by K. R. Goodearl in [18] to answer a question by Goldie. Let k
be a field of characteristic zero and let D be the derivation on the power series ring k[[y]]
given by D = y d

dy
. Define R := k[[y]][x;D], a skew polynomial extension. Consider the right

module MR = R/xR. Notice that M ∼= k[[y]] as a module over k[[y]]. Goodearl showed that
the nonzero submodules of M are precisely the ȳiR ∼= yik[[y]] (where ȳi = yi + xR ∈ M)
and that these submodules are pairwise nonisomorphic. From the fact that each of these
submodules has infinite k-dimension and finite k-codimension in M , one can easily verify
that M (and its nonzero submodules) are monoform (in the sense of Definition 3.3.2). So the
right ideals ann(ȳi) are comonoform and thus are completely prime by Proposition 3.3.3 to be
proved later. But they are pairwise nonsimilar because the factor modules R/ ann(ȳi) ∼= ȳiR
are pairwise nonisomorphic.

(In spite of this failure of finiteness, interested readers should note that O. Goldman
developed a theory of associated primes of noncommutative rings in which every noetherian
module has finitely many associated primes; see [17, Thm. 6.14]. We will not discuss Gold-
man’s prime torsion theories here but will simply remark that they are related to monoform
modules and comonoform right ideals, which are discussed in the the next section. See, for
instance, [55].)

The following is an application of Proposition 3.2.3. For a nonzero module MR, we define
the zero-divisors of M in R to be the set of all z ∈ R such that mz = 0 for some 0 6= m ∈M .
A theorem from commutative algebra states that the set of zero-divisors of a module over
a commutative ring R is equal to the union of some set of prime ideals. Here we generalize
this fact for noetherian right modules over noncommutative rings.

Corollary 3.2.4. Let MR be a module over a ring R such that R satisfies the ACC on
point annihilators of M (e.g., this will hold if MR or RR is noetherian). Then the set of
zero-divisors of M is a union of completely prime right ideals.

Proof. Let z ∈ R be a zero-divisor of MR. Then there exists 0 6= m ∈ M such that z ∈
ann(m). Because R satisfies ACC on point annihilators of M , there exists a maximal point
annihilator Pz ⊆ R of M containing ann(m), so that z ∈ ann(m) ⊆ Pz. By Proposition 3.2.3,
Pz is a completely prime right ideal. Choosing some such Pz for every zero-divisor z on M ,
we see that the set of zero-divisors of M is equal to

⋃
z Pz.

If R is right noetherian, then the ACC hypothesis is certainly satisfied. Finally, let us
assume that MR is noetherian and prove that R satisfies ACC on point annihilators of M .
Let I := ann(m0) ⊆ ann(m1) ⊆ · · · be an ascending chain of point annihilators of M (where
mi ∈M \ {0}). Notice that R/I ∼= m0R ⊆M is a noetherian module; thus R satisfies ACC
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on right ideals containing I. It follows that this ascending chain of point annihilators of M
must stabilize.

Next we shall investigate conditions for a ring to be a domain. The following fact from
commutative algebra was recovered in [37, Cor. 3.2]: a commutative ring R is a domain iff
every nonzero prime ideal of R contains a regular element. We generalize this result through
a natural progression of ideas, starting with another application of Proposition 3.2.3. Given
a ring R, we will use the term right principal annihilator to mean a right ideal of the form
I = annr(x) for some x ∈ R \ {0}. This is just another name for a point annihilator of the
module RR, but we use this term below to evoke the idea of chain conditions on annihilators.
Also, by a left regular element of R we mean an element s ∈ R such that ann`(s) = 0.

Proposition 3.2.5. For any nonzero ring R, the following are equivalent:

(1) R is a domain;

(2) R satisfies ACC on right principal annihilators, and for every nonzero completely prime
right ideal P of R, P is not a right principal annihilator;

(3) R satisfies ACC on right principal annihilators, and every nonzero completely prime
right ideal of R contains a left regular element.

Proof. Certainly (1) =⇒ (3) =⇒ (2), so it suffices to show (2) =⇒ (1). Let R be as in (2),
and let F be the family of right ideals of R which are not point annihilators of the module
RR. Then F is a right Oka family by Proposition 3.2.3. Because every point annihilator
of RR is a right principal annihilator, the first hypothesis shows that F ′ has the ascending
chain condition. Furthermore, the second assumption shows that any nonzero completely
prime right ideal of R lies in F . By the CPIP Supplement 2.2.6(2), all nonzero right ideals
lie in F . It follows that every nonzero element of R has zero right annihilator, proving that
R is a domain.

A simple example demonstrates that the chain condition is in fact necessary for (1)⇐⇒
(2) above. Indeed, let k be a field and let R be the commutative k-algebra generated by
{xi : i ∈ N} with relations x2i = 0. Clearly R is not a domain, but its unique prime ideal
(x0, x1, x2, . . . ) is not a principal annihilator.

This leaves us with the following question: If every completely prime right ideal of a ring
contains a left regular element, then is R a domain? Professor G. Bergman has answered
this question in the affirmative. With his kind permission, we present a modified version of
his argument below.

Lemma 3.2.6. For a ring R and a module MR, let F be the family of right ideals I of R
such that there exists a nonempty finite subset X ⊆ I such that, for all m ∈ M , mX =
0 =⇒ m = 0. The family F is a right Oka family.
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Proof. To see that R ∈ F , simply take X = {1} ⊆ R. Now suppose that IR ⊆ R and a ∈ R
are such that I + aR, a−1I ∈ F . Choose nonempty subsets X0 = {i1 + ar1, . . . , ip + arp} ⊆
I + aR (where each ik ∈ I) and X1 = {x1, . . . , xq} ⊆ a−1I such that, for m ∈ M , mXj = 0
implies m = 0 (for j = 0, 1). Define

X := {i1, . . . , ip, ax1, . . . , axq} ⊆ I.

Suppose that mX = 0 for some m ∈ M . Then maX1 ⊆ mX = 0 implies that ma = 0. It
follows that mX0 = 0, from which we conclude m = 0. This proves that I ∈ F , hence F is
right Oka.

Proposition 3.2.7. For a module MR 6= 0 over a ring R, the following are equivalent:

(1) M has no zero-divisors (i.e., 0 6= m ∈M and 0 6= r ∈ R imply mr 6= 0);

(2) Every nonzero completely prime right ideal of R contains a non zero-divisor for M ;

(3) Every nonzero completely prime right ideal P of R has a nonempty finite subset X ⊆ P
such that, for all m ∈M , mX = 0 =⇒ m = 0.

Proof. Clearly (1) =⇒ (2) =⇒ (3); we prove (3) =⇒ (1). Assume that (3) holds, and let F
be the Oka family of right ideals defined in Lemma 3.2.6. It is easy to check that the union
of any chain of right ideals in F ′ also lies in F ′. By (3), every nonzero completely prime
right ideal of R lies in F . Then the CPIP Supplement 2.2.6 implies that all nonzero right
ideals of R lie in F . It is clear that no right ideal in F can be a point annihilator for M . It
follows immediately that M has no zero-divisors.

Corollary 3.2.8. For a ring R 6= 0, the following are equivalent:

(1) R is a domain;

(2) Every nonzero completely prime right ideal of R contains a left regular element;

(3) Every nonzero completely prime right ideal of R has a nonempty finite subset whose
left annihilator is zero.

Here is another demonstration that completely prime right ideals control the structure
of a ring better than the “extremely prime” right ideals (discussed in §2.1). Using Proposi-
tion 2.1.4 we constructed rings with no extremely prime right ideals that are not domains.
But it is vacuously true that every extremely prime right ideal of such a ring contains a
regular element. Thus there is no hope that the result above could be achieved using this
more sparse collection of one-sided primes.
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3.2.B Homological properties

Module-theoretic properties that are preserved under extensions arise very naturally in
homological algebra. This provides a rich supply of right Oka families, and consequently
produces completely prime right ideals via the CPIP.

Example 3.2.9. For a ring k and a k-ring R, consider the following properties of a right
ideal IR ⊆ R (which are known to be preserved by extensions of the factor module):

(1) R/I is a projective right k-module;

(2) R/I is an injective right k-module;

(3) R/I is a flat right k-module.

For each property above, the family F of all right ideals with that property is a right Oka
family (by Remark 3.2.1); hence Max(F ′) consists of completely prime right ideals.

We have the following immediate application, which includes a criterion for a ring to be
semisimple.

Proposition 3.2.10. The family F of right ideals that are direct summands of RR is a right
Oka family. A right ideal IR ⊆ R maximal with respect to not being a direct summand of
R is a maximal right ideal. A ring R is semisimple iff every maximal right ideal of R is a
direct summand of RR.

Proof. This family F is readily seen to be equal to the family given in Example 3.2.9(1) (with
k = R and the identity map k → R), and thus it is right Oka. Let P ∈ Max(F ′). Then
P is completely prime, so R/P is indecomposable by Corollary 2.1.7. On the other hand,
because every right ideal properly containing P is a direct summand of RR, the module R/P
is semisimple. It follows that R/P is simple, so P is maximal as claimed.

The nontrivial part of the last statement of the proposition is the “if” direction. Assume
that every maximal right ideal of R is a direct summand. It suffices to show that every com-
pletely prime right ideal of R is maximal. (For if this is the case, then every completely prime
right ideal will lie the right Oka family F . Now F consists of principal—hence f.g.—right
ideals by the classical fact that F = {eR : e2 = e ∈ R}. Then the CPIP Supplement 2.2.6(3)
will show that every right ideal of R is a direct summand, making R semisimple.) So suppose
PR ( R is completely prime. Fix a maximal right ideal m of R with m ⊇ P . Because m
is a proper direct summand of RR, m/P must be a proper summand of R/P . But R/P is
indecomposable by Proposition 2.1.7. Thus m/P = 0, so that P = m is maximal.

Of course, we can also prove the “iff” statement above without any reference to right
Oka families. (Suppose that every maximal right ideal of R is a direct summand. Assume
for contradiction that the right socle SR := soc(RR) is a proper right ideal. Then there is
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some maximal right ideal m ⊆ R such that S ⊆ m. But by hypothesis there exists VR ⊆ R
such that R = V ⊕ m. Then V ∼= R/m is simple. So V ⊆ S, contradicting the fact that
V ∩ S ⊆ V ∩ m = 0.) Although such ad hoc methods are able to recover this fact, our
method involving the CPIP 2.2.4 has the desirable effect of fitting the result into a larger
context. Also, the CPIP and right Oka families may point one to results that might not
have otherwise been discovered without this viewpoint, even if these results could have been
proven individually with other methods.

We can also use Example 3.2.9 to recover a bit of the structure theory of right PCI rings.
A right module over a ring R is called a proper cyclic module if it is cyclic and not isomorphic
to RR. (Note that this is stronger than saying that the module is isomorphic to R/I for
some 0 6= IR ⊆ R, though it is easy to confuse the two notions.) A ring R is a right PCI
ring if every proper cyclic right R-module is injective, and such a ring R is called a proper
right PCI ring if it is not right self-injective (by a theorem of Osofsky, this is equivalent to
saying that R is not semisimple). C. Faith showed in [13] that any proper right PCI ring
is a simple right semihereditary right Ore domain. In Faith’s own words [13, p. 98], “The
reductions to the case R is a domain are long, and not entirely satisfactory inasmuch as they
are quite intricate.” Our next application of the Completely Prime Ideal Principle shows
how to easily deduce that a proper right PCI ring is a domain with the help of a later result
on right PCI rings.

Proposition 3.2.11 (Faith). A proper right PCI ring is a domain.

Proof. A theorem of R. F. Damiano [10] states that any right PCI ring is right noetherian.
(Another proof of this result, due to B. L. Osofsky and P. F. Smith, appears in [46, Cor. 7].)
In particular, any right PCI ring is Dedekind-finite.

Now let R be a proper right PCI ring. Because R is Dedekind-finite, for every nonzero
right ideal I, R/I � RR is a proper cyclic module. Letting F denote the family of right
ideals I such that R/I is injective, we have 0 ∈ Max(F ′). But F is a right Oka family
by Example 3.2.9, so the CPIP 2.2.4 and Proposition 2.1.2(2) together show that R is a
domain.

The astute reader may worry that the above proof is nothing more than circular reasoning,
because the proof of Damiano’s theorem in [10] seems to rely on Faith’s result! This would
indeed be the case if Damiano’s were the only proof available for his theorem. (Specifically,
Damiano cites another result of Faith—basically [13, Prop. 16A]—to conclude that over a
right PCI ring, every finitely presented proper cyclic module has a von Neumann regular
endomorphism ring. But Faith’s result is stated only for cyclic singular finitely presented
modules. So Damiano seems to be implicitly applying the fact that a proper right PCI ring
is a right Ore domain.) Thankfully, we are saved by the fact that Osofsky and Smith’s
(considerably shorter) proof [46, Cor. 7] of Damiano’s result does not require any of Faith’s
structure theory.
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It is worth noting that A. K. Boyle had already provided a proof [5, Cor. 9] that a right
noetherian proper right PCI ring is a domain. (This was before Damiano’s theorem had
been proved.) One difference between our approach and that of [5] is that we do not use any
facts about direct sum decompositions of injective modules over right noetherian rings. Of
course, the proof using the CPIP is also desirable because we are able to fit the result into
a larger context in which it becomes “natural” that such a ring should be a domain.

As in [37], we can generalize Example 3.2.9 with items (1)–(3) below. One may think
of the following examples as being defined by the existence of certain (co)resolutions of the
modules. Recall that a module MR is said to be finitely presented if there exists an exact
sequence of the form Rm → Rn →M → 0, and that a finite free resolution of M is an exact
sequence of the form

0→ Fn → · · · → F1 → F0 →M → 0

where the Fi are finitely generated free modules.

Example 3.2.12. Let R be a k-ring, and fix any one of the following properties of a right
ideal I in R (known to be closed under extensions), where n is a nonnegative integer:

(1) R/I has k-projective dimension ≤ n (or <∞);

(2) R/I has k-injective dimension ≤ n (or <∞);

(3) R/I has k-flat dimension ≤ n (or <∞);

(4) R/I is a finitely presented right R-modules;

(5) R/I has a finite free resolution as a right R-module.

Then the family F of right ideals satisfying that property is right Oka (as in Remark 3.2.1);
hence Max(F ′) consists of completely prime right ideals.

The families in Example 3.2.9 are just (1)–(3) above with n = 0. Restricting to the case
n = 1 and k = R, the family obtained from part (1) (resp. part (3)) of Example 3.2.12 is
the family of projective (resp. flat) right ideals of R (for the latter, see [32, (4.86)(2)]). In
particular, the CPIP 2.2.4 implies that a right ideal of R maximal with respect to not being
projective (resp. flat) over R is completely prime.

The family F in part (4) above is actually equal to the family of finitely generated right
ideals. Indeed, if IR ⊆ RR is finitely generated, then the module R/I is certainly finitely
presented. Conversely, if R/I is a finitely presented module, [32, (4.26)(b)] implies that IR is
f.g. This recovers the last sentence of Proposition 2.2.7 from a module-theoretic perspective.

We can also use the family in (2) above to generalize Proposition 3.2.11 about proper
right PCI rings. Given a nonnegative integer n, let us say that a ring R is a right n-PCI
ring if the supremum of the injective dimensions of all proper cyclic right R-modules is equal
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to n. (Thus a right 0-PCI ring is simply a right PCI ring.) Also, call a right n-PCI ring R
proper if RR has injective dimension greater than n (possibly infinite). Then the following
is proved as in 3.2.11, using the family from Example 3.2.12(2).

Proposition 3.2.13. If a proper right n-PCI ring is Dedekind-finite, then it is a domain.

Unlike the above result, Proposition 3.2.11 is not a conditional statement because Dami-
ano’s theorem guarantees that a right 0-PCI ring is right noetherian, hence Dedekind-finite.
Also, it is known that right PCI rings are right hereditary, which implies that the injective
dimension of RR is 1 if R is proper right 0-PCI. Thus we pose the following questions.

Question 3.2.14. What aspects of the Faith-Damiano structure theory for PCI rings carry
over to n-PCI rings? In particular, for a proper right n-PCI ring R, we ask:

1. Must RR have finite injective dimension? If so, is this dimension necessarily equal to
n+ 1?

2. Must R be Dedekind-finite, or even possibly right noetherian? What if we assume that
RR has finite injective dimension, say equal to n+ 1 (if (1) above fails)?

Further generalizing Examples 3.2.9 and 3.2.12, we have the following.

Example 3.2.15. Given a k-ring R, fix a right module Mk and a left module kN , and let n
be a nonnegative integer. Fix one of the following properties of a right ideal I ⊆ R:

(1) R/I satisfies Extnk(R/I,M) = 0;

(2) R/I satisfies Extnk(M,R/I) = 0;

(3) R/I satisfies Torkn(R/I,N) = 0.

Applying Remark 3.2.1, the family F of right ideals satisfying that fixed property is right
Oka. Thus Max(F ′) consists of completely prime right ideals.

(The fact that the corresponding classes of cyclic modules are closed under extensions
follows from a simple analysis of the long exact sequences for Ext and Tor derived from a
short exact sequence 0→ A→ B → C → 0 in MR.)

We can actually use these to recover the families (1)–(3) of Example 3.2.12 as follows.
It is known that a module B has k-projective dimension n iff Extnk(B,M) = 0 for all right
modules Mk. Then intersecting the families in Example 3.2.15(1) over all modules Mk gives
the class in Example 3.2.12(1). A similar process works for (2) and (3) of Example 3.2.12.

As an application of case (1) above, we present the following interesting family of right
ideals in any ring associated to an arbitrary module MR.
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Proposition 3.2.16. For any module MR, the family F of all right ideals IR ⊆ R such that
any homomorphism f : I → M extends to some f̃ : R → M is a right Oka family. A right
ideal maximal with respect to I /∈ F is completely prime.

Proof. Let G be the family in Example 3.2.15(1) with k = R and n = 1. We claim that
F = G, from which the proposition will certainly follow. Given IR ⊆ R, consider the long
exact sequence in Ext associated to the short exact sequence 0→ I → R→ R/I → 0:

0→HomR(R/I,M)→ HomR(R,M)→ HomR(I,M)

→Ext1R(R/I,M)→ Ext1R(R,M) = 0

(Ext1R(R,M) = 0 because RR is projective). Thus I ∈ F iff the natural map HomR(R,M)→
HomR(I,M) is surjective, iff its cokernel Ext1R(R/I,M) is zero, iff I ∈ G.

It is an interesting exercise to “check by hand” that the family F above satisfies the Oka
property (2.2.2). When R is a right self-injective ring, one can dualize the above proof of
Proposition 3.2.16, (RR must be injective to ensure that Ext1R(M,R) = 0), and a similar
argument works using the functor Tor1 in place of Ext1. We obtain the following.

Proposition 3.2.17. (A) Let R be a right self-injective ring and let MR be any module.
The family F of right ideals I ⊆ R such that every homomorphism f : M → R/I lifts to
some f ′ : M → R is a right Oka family. Hence, any I ∈ Max(F ′) is completely prime.

(B) For a ring R and a module RN , let F be the family of right ideals IR ⊆ R such that
the natural map I ⊗R N → R ⊗R N ∼= N is injective. Then F is an Oka family of right
ideals. Hence, any I ∈ Max(F ′) is completely prime.

For us, what is most interesting about Propositions 3.2.16 and 3.2.17 is that they provide
multiple ways to define right Oka families starting with any given module MR. Thanks to
the Completely Prime Ideal Principle 2.2.4, each of these families F gives rise to completely
prime right ideals in Max(F ′) whenever this set is nonempty.

3.2.C Finiteness conditions, multiplicative sets, and invertibility

The final few applications of the Completely Prime Ideal Principle given here come from
finiteness conditions on modules, multiplicatively closed subsets of a ring, and invertible
right ideals.

We first turn our attention to finiteness conditions. We remind the reader that a module
MR is said to be finitely cogenerated provided that, for every set {Ni : i ∈ I} of submodules
of M such that

⋂
i∈I Ni = 0, there exists a finite subset J ⊆ I such that

⋂
j∈J Nj = 0. This

is equivalent to saying that the socle of M is finitely generated and is an essential submodule
of M . See [32, §19A] for further details.

Example 3.2.18. Let R be a k-ring. Fix any one of the following properties of a right ideal
I of R:
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(1A) R/I is a finitely generated right k-module;

(1B) R/I is a finitely cogenerated right k-module;

(2) R/I has cardinality < α, where α is an infinite cardinal;

(3A) R/I is a noetherian right k-module;

(3B) R/I is an artinian right k-module;

(4) R/I is a right k-module of finite length;

(5) R/I is a right k-module of finite uniform dimension.

The family F of right ideals satisfying that fixed property is right Oka by Remark 3.2.1;
hence Max(F ′) consists of completely prime right ideals.

As a refinement of (4) above, notice that the right k-modules of finite length whose
composition factors have certain prescribed isomorphism types is closed under extensions.
The same is true for the right k-modules whose length is a multiple of a fixed integer d. Thus
these classes give rise to two other Oka families of right ideals.

Right Oka families and completely prime right ideals also arise in connection with mul-
tiplicatively closed subsets of a ring.

Example 3.2.19. Consider a multiplicative subset S of a ring R (i.e., a submonoid of the
multiplicative monoid of R). A module MR is said to be S-torsion if, for every m ∈M there
exists s ∈ S such that ms = 0. It is easy to see that the class of S-torsion modules is closed
under extensions. Thus the family F of right ideals IR ⊆ R such that R/I is S-torsion is a
right Oka family. Hence Max(F ′) consists of completely prime right ideals.

Recall that a multiplicative set S in a ring R is called a right Ore set if, for all a ∈ R
and s ∈ S, aS ∩ sR 6= ∅. (For example, it is easy to see that any multiplicative set in a
commutative ring is right Ore.) One can show that a multiplicative set S is right Ore iff for
every module MR the set

tS(M) := {m ∈M : ms = 0 for some s ∈ S}

of S-torsion elements of M is a submodule of M . This makes it easy to verify that for such
S, R/I is S-torsion iff I ∩ S 6= ∅. So for a right Ore set S ⊆ R, the family of all right ideals
I of R such that I ∩S 6= ∅ is equal to the family F above and thus is a right Oka family. In
particular, a right ideal maximal with respect to being disjoint from S is completely prime.
We will be able to strengthen these statements later—see Example 3.3.24.
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One further right Oka family comes from the notion of invertibility of right ideals. Fix a
ring Q with a subring R ⊆ Q. For any submodule IR ⊆ QR we write I∗ := {q ∈ Q : qI ⊆ R},
which is a left R-submodule of Q. We will say that a right R-submodule I ⊆ Q is right
invertible (in Q) if there exist x1, . . . , xn ∈ I and q1, . . . , qn ∈ I∗ such that

∑
xiqi = 1.

(This definition is inspired by [54, §II.4].) Notice that if I is right invertible as above, then
I is necessarily finitely generated, with generating set x1, . . . , xn. The concept of a right
invertible right ideal certainly generalizes the notion of an invertible ideal in a commutative
ring, and it gives rise to a new right Oka family.

Proposition 3.2.20. Let R be a subring of a ring Q. The family F of right ideals of R that
are right invertible in Q is a right Oka family. Hence the set Max(F ′) consists of completely
prime right ideals.

Proof. Let IR ⊆ R and a ∈ R be such that I + aR and a−1I are right invertible. We want
to show that I is also right invertible. There exist i1, . . . , im ∈ I and qk, q ∈ (I + aR)∗ such
that

∑m
i=1 ikqk + aq = 1. Similarly, there exist x1, . . . , xn ∈ a−1I and pj ∈ (a−1I)∗ such that∑

xjpj = 1. Combining these equations, we have

1 =
∑

ikqk + aq

=
∑

ikqk + a
(∑

xjpj

)
q

=
∑

ikqk +
∑

(axj)(pjq).

In this equation we have ik ∈ I, qk ∈ (I + aR)∗ ⊆ I∗, and axj ∈ a(a−1I) ⊆ I. Thus we will
be done if we can show that every pjq ∈ I∗.

We claim that qI ⊆ a−1I. This follows from the fact that, for any i ∈ I, qki ∈ R so that

aqi =
(

1−
∑

ikqk

)
i = i−

∑
ik(qki) ∈ I.

Thus we find
(pjq)I = pj(qI) ⊆ (a−1I)∗(a−1I) ⊆ R.

It follows that pjq ∈ I∗, completing the proof.

In the case that R is a right Ore ring, it is known (see [54, II.4.3]) that the right ideals of
R that are right invertible in its classical right ring of quotients Q are precisely the projective
right ideals that intersect the right Ore set S of regular elements of R. (Recall that a ring
R is right Ore if the multiplicatively closed set of regular elements in R is right Ore. This is
equivalent to the statement that R has a classical right ring of quotients Q; see [32, §10B].)
We can use this to give a second proof that the family F of right invertible right ideals of
R is a right Oka family in this case. The alternative characterization of right invertibility
in this setting means that F is the intersection of the family F1 of projective right ideals
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(which was shown to be a right Oka family as an application of Example 3.2.12) with the
family F2 of right ideals that intersect the right Ore set S (which was shown to be a right
Oka family in Example 3.2.19). Recalling Remark 2.2.3, we conclude that F = F1 ∩ F2 is a
right Oka family.

Using this notion of invertibility, we can generalize the theorem of I. S. Cohen stating that
a commutative ring R is a Dedekind domain iff every nonzero prime ideal of R is invertible.

Proposition 3.2.21. For a subring R of a ring Q, every nonzero right ideal of R is right
invertible in Q iff every nonzero completely prime right ideal of R is right invertible in Q.
If R is a right Ore ring with classical right ring of quotients Q, then R is a right hereditary
right noetherian domain iff every nonzero completely prime right ideal of R is right invertible
in Q.

Proof. First suppose that R is right Ore. According to [54, Prop. II.4.3], a right ideal of R
is right invertible in Q iff it is projective and contains a regular element. Thus the right Ore
ring R is a right hereditary right noetherian domain iff every nonzero right ideal of R is right
invertible in the classical right quotient ring of R. So it suffices to prove the first statement.

Now for any R and Q, the family F of right ideals of R that are right invertible in Q is
a right Oka family by Proposition 3.2.20. Once we recall that a right invertible right ideal
is finitely generated, the claim follows from the CPIP Supplement 2.2.6(2).

3.3 Comonoform right ideals and divisible right Oka

families

We devote the final section of this chapter to the study of a particularly well-behaved
subset of the completely prime right ideals of a general ring, the comonoform right ideals
(Definition 3.3.2). Our goal is to provide a richer understanding of the completely prime right
ideals of a general ring. There is a special type of Prime Ideal Principle that accompanies
this new set of right ideals, as well as new applications to the one-sided structure of rings.

These special right ideals IR ⊆ R are defined by imposing a certain condition on the
factor module R/I. First we must describe the many equivalent ways to phrase this module-
theoretic condition. Given an R-module MR, a submodule N ⊆ M is said to be dense if,
for all x, y ∈ M with x 6= 0, x · (y−1N) 6= 0 (recall the definition of y−1M from §2.1).
We write N ⊆d M to mean that N is a dense submodule of M , and we let E(M) denote
the injective hull of M . It is known that N ⊆d M iff HomR(M/N,E(M)) = 0, iff for
every submodule U with N ⊆ U ⊆ M we have HomR(U/N,M) = 0. In addition, for any
submodules N ⊆ U ⊆ M , it turns out that N ⊆d M iff N ⊆d U and U ⊆d M . (See [32,
(8.6) & (8.7)] for details.) Finally, any dense submodule of M is essential in M , meaning
that it has nonzero intersection with every nonzero submodule of M .

Proposition 3.3.1. For a module MR 6= 0, the following are equivalent:
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(1) Every nonzero submodule of M is dense in M ;

(2) Every nonzero cyclic submodule of M is dense in M ;

(3) For any x, y, z ∈M with x, z 6= 0, x · y−1(zR) 6= 0;

(4) Any nonzero f ∈ HomR(M,E(M)) is injective;

(5) For any submodule C ⊆ M , any nonzero f ∈ HomR(C,M) (resp. any nonzero f ∈
HomR(C,E(M))) is injective;

(5′) M is uniform and for any cyclic submodule C ⊆M , any nonzero f ∈ HomR(C,M) is
injective;

(6) There is no nonzero R-homomorphism from any submodule of any proper factor of M
to M (resp. to E(M)).

Proof. Clearly (1) =⇒ (2). For (2) =⇒ (1), let P be any nonzero submodule of M . Then,
taking some cyclic submodule 0 6= C ⊆ P , we have C ⊆d M =⇒ P ⊆d M .

Now (2)⇐⇒ (3) is clear from the definition of density. Also, (1)⇐⇒ (4) and (1)⇐⇒ (5)
follow from the various reformulations of density stated above. The equivalence of (5), (6),
and their parenthetical formulations is straightforward.

Finally we prove (5) ⇐⇒ (5′). Assume (5) holds; to verify (5′), we only need to show
that M is uniform. By the equivalence of (1) and (5), we see that every nonzero submodule
of M is dense and is therefore essential. This proves that M is uniform. Now suppose
that (5′) holds, and let 0 6= f ∈ Hom(C,M) where C is any submodule of M . Fix some
cyclic submodule 0 6= C0 ⊆ C such that C0 * ker f , and let g denote the restriction of f to
C0. By hypothesis, 0 = ker g = ker f ∩C0. Because M is uniform this implies that ker f = 0,
proving that (5) is true.

An easy example shows that the requirement in (5′) thatM be uniform is in fact necessary.
If Vk is a vector space over a division ring k then it is certainly true that every nonzero
homomorphism from a cyclic submodule of V into V is injective. However, if dimk V > 1,
then V has nontrivial direct summands and cannot be uniform.

Definition 3.3.2. A nonzero module MR is said to be monoform (following [20]) if it satisfies
the equivalent conditions of Proposition 3.3.1. A right ideal PR ( R is comonoform if the
factor module R/P is monoform.

As a basic example, notice that simple modules are monoform and hence maximal right
ideals are comonoform. We can easily verify that the comonoform right ideals of a ring form
a subset of the set of completely prime right ideals, as mentioned earlier.

Proposition 3.3.3. If MR is monoform, then every nonzero endomorphism of M is injec-
tive. In particular, every comonoform right ideal of R is completely prime.
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Proof. The first claim follows from Proposition 3.3.1(5) by taking C = M there. Now the
second statement is true by Proposition 2.1.5.

Some clarifying remarks about terminology are appropriate. Monoform modules have
been given several other names in the literature. They seem to have been first investigated
by O. Goldman in [17, §6]. Each monoform module is associated to a certain prime right
Gabriel filter F (a term which we will not define here), and Goldman referred to such a
module as a supporting module for F . They have also been referred to as cocritical modules,
F-cocritical modules, and strongly uniform modules. The latter term is justified because, as
shown in (5′) above, any monoform module is uniform. Also, comonoform right ideals have
been referred to as critical right ideals [39] (which explains the term “cocritical module”)
and super-prime right ideals [47]. We have chosen to use the term “monoform” because
we feel that it best describes the properties of these modules, and we are using the term
“comonoform” rather than “critical” for right ideals in order to avoid confusion with the
modules that are critical in the sense of the Gabriel-Rentschler Krull dimension.

Comonoform right ideals enjoy special properties that distinguish them from the more
general completely prime right ideals. For instance, if P is a comonoform right ideal of R,
then R/P is uniform by Proposition 3.3.1(5′). On the other hand, Example 2.1.8 showed
that the more general completely prime right ideals do not always have this property. A
second desirable property of comonoform right ideals is given in the following lemma. It
is easy to verify (from several of the characterizations in Proposition 3.3.1) that a nonzero
submodule of a monoform module is again monoform. Applying Lemma 3.1.5(A) yields the
following result.

Lemma 3.3.4. For any comonoform right ideal PR ⊆ R and any element x ∈ R \ P , the
right ideal x−1P is also comonoform.

It is readily verified that the lemma above does not hold if we replace the word “comono-
form” with “completely prime.” For instance, consider again Example 2.1.8. For the com-
pletely prime right ideal P of the ring R described there and the element x = E12 +E13 ∈ R,
it is readily verified that

x−1P =

k k k
0 0 0
0 0 0


is not a completely prime right ideal (because the module R/x−1P is decomposable).

Without going into details, we mention that the lemma above suggests that comonoform
right ideals P can be naturally grouped into equivalence classes corresponding to the isomor-
phism classes of the injective hulls E(R/P ). (This is directly related to Goldman’s notion
of primes in [17], and is also investigated in [39].)

Let us consider a few ways one might find comonoform right ideals in a given ring R.
First, we have already seen that every maximal right ideal in R is comonoform. Second,
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Remark 2.1.12 shows that if I C R is an ideal contained in a right ideal J , then J is a
comonoform right ideal of R iff J/I is a comonoform right ideal of R/I. Next, let us
examine which (two-sided) ideals of R are comonoform as right ideals. The following result
seems to have been first recorded (without proof) in [21, Prop. 4].

Proposition 3.3.5. An ideal P C R is comonoform as a right ideal iff R/P is a right Ore
domain.

Proof. First suppose that PR is comonoform. Then P is completely prime by Proposi-
tion 3.3.3, hence R/P a domain by Proposition 2.1.2. Also R/P is right uniform (see
Proposition 3.3.1(5′)). Now because the domain R/P is right uniform, it is right Ore.

Conversely, suppose that S := R/P is a right Ore domain, with right division ring of
quotients Q. Then because E(SR) = QR, it is easy to see that every nonzero map

f ∈ Hom(SR, E(SR)) = Hom(SS, QS)

must be injective. Thus SR is monoform, completing the proof.

Remark 3.3.6. This result makes it easy to construct an example of a ring with a completely
prime right ideal that is not comonoform. Let R be any domain that is not right Ore (such
as the free algebra generated by two elements over a field), and let P = 0C R. Then PR is
completely prime (recall Proposition 2.1.2), but it cannot be right comonoform by the above.

Incidentally, because every monoform module is uniform, the ring R constructed in Ex-
ample 2.1.8 is an example of an artinian (hence noetherian) ring with a completely prime
right ideal that is not comonoform. This is to be contrasted with the non-Ore domain
example, which is necessarily non-noetherian.

Another consequence of this result is that the comonoform right ideals directly generalize
the concept of a prime ideal in a commutative ring, just like the completely prime right
ideals.

Corollary 3.3.7. In a commutative ring R, an ideal P CR is comonoform iff it is a prime
ideal.

The Completely Prime Ideal Principle 2.2.4 gives us a method for exploring the existence
of completely prime right ideals. We will provide a similar tool for studying the existence of
the more special comonoform right ideals in Theorem 3.3.10. The idea is that comonoform
right ideals occur as the right ideals that are maximal in the complement of right Oka families
that satisfy an extra condition, defined below.

Definition 3.3.8. A family F of right ideals in a ring R is divisible if, for all a ∈ R,

I ∈ F =⇒ a−1I ∈ F .
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The next lemma is required to prove the “stronger PIP” for divisible right Oka families.

Lemma 3.3.9. In a ring R, suppose that I and K are right ideals and that a ∈ R. Then

K ⊇ a−1I ⇐⇒ K = a−1J for some right ideal JR ⊇ I.

Proof. If K = a−1J for some J ⊇ I, then clearly K = a−1J ⊇ a−1I. Conversely, suppose that
K ⊇ a−1I. Then for J := I+aK, we claim that K = a−1J . Certainly K ⊆ a−1J . So suppose
that x ∈ a−1J . Then ax ∈ J = I + aK implies that ax = i + ak for some i ∈ I, k ∈ K.
Because a(x−k) = i, we see that x−k ∈ a−1I. Hence x = (x−k) +k ∈ a−1I+K = K.

Theorem 3.3.10. Let F be a divisible right Oka family. Then every P ∈ Max(F ′) is a
comonoform right ideal.

Proof. Let P ∈ Max(F ′). To show that R/P 6= 0 is monoform, it is sufficient by Proposi-
tion 3.3.1(1) to show that every nonzero submodule I/P ⊆ R/P is dense. That is, for any
0 6= x+P ∈ R/P and any y+P ∈ R/P , we wish to show that (x+P ) · (y+P )−1(I/P ) 6= 0.
It is straightforward to see that (y + P )−1(I/P ) = y−1I. Thus it is enough to show, for any
right ideal I ) P and elements x ∈ R \ P and y ∈ R, that x · y−1I * P .

Assume for contradiction that x · y−1I ⊆ P for such x, y, and I. Then y−1I ⊆ x−1P ,
and Lemma 3.3.9 shows that x−1P = y−1J for some right ideal J ⊇ I. Since P ∈ Max(F ′),
the fact that J ⊇ I ) P implies that J ∈ F . Because F is divisible, x−1P = y−1J ∈ F .
Also x /∈ P and maximality of P give P + xR ∈ F . Since F is right Oka we conclude that
P ∈ F , a contradiction.

As with the more general completely prime right ideals, there is a “Supplement” that
accompanies this “stronger PIP.” We omit its proof, which parallels that of Theorem 2.2.6.

Theorem 3.3.11. Let F be a divisible right Oka family in a ring R such that every nonempty
chain of right ideals in F ′ (with respect to inclusion) has an upper bound in F ′. Let S denote
the set of comonoform right ideals of R.

(1) Let F0 be a semifilter of right ideals in R. If S ∩ F0 ⊆ F , then F0 ⊆ F .

(2) For JR ⊆ R, if all right ideals in S containing J (resp. properly containing J) belong
to F , then all right ideals containing J (resp. properly containing J) belong to F .

(3) If S ⊆ F , then F consists of all right ideals of R.

To apply the last two theorems, we must provide some ways to construct divisible right
Oka families. The first method is extremely straightforward.

Remark 3.3.12. Let E ⊆MR be a class of right R-modules that is closed under extensions
and closed under passing to submodules. Then for C := E ∩Mc

R, the right Oka family FC is
divisible. For if I ∈ FC and x ∈ R, then R/x−1I is isomorphic to the submodule (I + xR)/I
of R/I ∈ C ⊆ E . Then by hypothesis, R/x−1I ∈ E ∩Mc

R = C, proving that x−1I ∈ FC.
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The above method applies immediately to many of the families FC which we have al-
ready investigated. To begin with, for a k-ring R, all of the finiteness properties listed in
Example 3.2.18 pass to submodules, with the exception of finite generation (1A). Thus a
right ideal I maximal with respect to R/I not having one of those properties is comonoform.

We can apply this specifically to rings with the so-called right restricted minimum con-
dition; these are the rings R such that R/I is an artinian right R-module for all right ideals
I 6= 0. If such a ring R is not right artinian, we see that the zero ideal is in Max(F ′) where
F is the divisible Oka family of right ideals I ⊆ R such that R/I is an artinian R-module.
Thus the zero ideal is right comonoform by Theorem 3.3.10. Hence R is a right Ore do-
main by Proposition 3.3.5. The fact that such a ring is a right Ore domain was proved by
A. J. Ornstein in [44, Thm. 13] as a generalization of a theorem of Cohen [8, Cor. 2].

Corollary 3.3.13 (Ornstein). If a ring R satisfies the right restricted minimum condition
and is not right artinian, then R is a right Ore domain.

In addition, for a multiplicative set S ⊆ R the class of S-torsion modules (see Exam-
ple 3.2.19) is closed under extensions and submodules. So a right ideal I maximal with
respect to R/I not being S-torsion is comonoform. Notice that this is true whether or not
the set S is right Ore. (However, if S is not right Ore then we do not have the characterization
that R/I is S-torsion iff I ∩ S 6= ∅.)

For another example, fix a multiplicative set S ⊆ R, which again need not be right Ore.
A module MR is said to be S-torsionfree if, for any m ∈ M and s ∈ S, ms = 0 implies
m = 0. The class of S-torsionfree modules is easily shown to be closed under extensions.
Hence the family F of right ideals in R such that R/I is S-torsionfree is a right Oka family.
Notice that F can alternatively be described as

F = {IR ⊆ R : for r ∈ R and s ∈ S, rs ∈ I =⇒ r ∈ I}.

Furthermore, F is divisible because any submodule of a torsionfree module is torsionfree.
So every right ideal P ⊆ R with P ∈ Max(F ′) is comonoform.

A second effective method of constructing a divisible right Oka family is by defining it
in terms of certain families of two-sided ideals. This is achieved in Proposition 3.3.15 below.
Given a right ideal I of R, recall that the largest ideal of R contained in I is called the core of
I, denoted core(I). It is straightforward to check that core(I) = ann(R/I) for any IR ⊆ R.

Lemma 3.3.14. Let F be a semifilter of right ideals in a ring R that is generated as a
semifilter by two-sided ideals—that is to say, there exists a set G of two-sided ideals of R
such that

F = {IR ⊆ R : I ⊇ J for some J ∈ G}
= {IR ⊆ R : core(I) ∈ G}.

Then F is divisible.



40

Proof. The equality of the two descriptions of F above follows from the fact that G is a
semifilter. Suppose that I ∈ F , so that there exists J ∈ G such that I ⊇ J . Then for any
a ∈ R, aJ ⊆ J ⊆ I implies that J ⊆ a−1I. It follows that a−1I ∈ F , and F is divisible.

By analogy with Definition 2.2.5, we define a semifilter of (two-sided) ideals in a ring R
to be a family G of ideals of R such that, for I, J C R, I ∈ G and J ⊇ I imply J ∈ G. As
in [37] we define the following property of a family G of two-sided ideals in R:

(P1): G is a semifilter of ideals that is closed under pairwise products and that contains the
ideal R (equivalently, is nonempty).

In [37, Thm. 2.7], it was shown that any (P1) family of ideals in a commutative ring is an
Oka family. The following shows how to define a right Oka family from a (P1) family of
ideals in a noncommutative ring.

Proposition 3.3.15. Let G be a family of ideals in a ring R satisfying (P1). Then the
semifilter F of right ideals generated by G (as in Lemma 3.3.14) is a divisible right Oka
family. Thus, every right ideal in Max(F ′) is comonoform.

Proof. Let E be the class of right R-modules M such that ann(M) ∈ G. We claim that E is
closed under extensions in MR. Indeed, let L, N ∈ E and suppose 0 → L → M → N → 0
is an exact sequence of right R-modules. We want to conclude that M ∈ E . Because ann(L)
and ann(N) belong to G, the fact that G is (P1) means that ann(M) ⊇ ann(N) ·ann(L) must
also lie in G. Thus M ∈ E as desired.

Now any cyclic module R/I has annihilator ann(R/I) = core(I). So for C := E ∩Mc
R we

see that our family is F = FC. Hence F is a right Oka family. Lemma 3.3.14 implies that
F is divisible. The last sentence of the proposition now follows from Theorem 3.3.10.

We will apply the result above to a special example of such a family G of ideals. For a
ring R, recall that a subset S ⊆ R is called an m-system if 1 ∈ S and for any s, t ∈ S there
exists r ∈ R such that srt ∈ S. It is well-known that an ideal P CR is prime iff R \ P is an
m-system.

Corollary 3.3.16. (1) For an m-system S in a ring R, the family F of right ideals I such
that core(I) ∩ S 6= ∅ is a divisible right Oka family. A right ideal maximal with respect to
having its core disjoint from S is comonoform.

(2) For a prime ideal P of a ring R, the family of all right ideals IR such that core(I) * P
is a divisible right Oka family. A right ideal I maximal with respect to core(I) ⊆ P is
comonoform. In particular, if R is a prime ring, a right ideal maximal with respect to
core(I) 6= 0 is comonoform.

Proof. For (1), we can apply Proposition 3.3.15 to the family G of ideals having nonempty
intersection with the m-system S, which is certainly a (P1) family of ideals. Then (2) follows
from (1) if we let S = R \ P , which is an m-system when P is a prime ideal.
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Another application of Proposition 3.3.15 involves the notion of boundedness. Recall
that a ring R is said to be right bounded if every essential right ideal contains a two-sided
ideal that is right essential. (Another way to say this is that if IR ⊆ R is essential, then
core(I) is right essential.) Then one can characterize whether certain types of rings are right
bounded in terms of their comonoform right ideals. Given a module MR, we write N ⊆e M
to mean that N is an essential submodule of M .

Proposition 3.3.17. Let R be a ring in which the set of ideals {JCR : JR ⊆e RR} is closed
under squaring (e.g. a semiprime ring or a right nonsingular ring), and suppose that every
ideal of R that is right essential is finitely generated as a right ideal (this holds, for instance,
if R is right noetherian). Then R is right bounded iff every essential comonoform right ideal
of R has right essential core.

Proof. Assume that R satisfies the two stated hypotheses. We claim that the ideal family
{J CR : JR ⊆e R} is in fact closed under pairwise products. Indeed, if I, J CR are essential
as right ideals, then their product IJ contains the essential right ideal (I ∩ J)2 and thus is
right essential. This allows us to apply Proposition 3.3.15 to say that the family F of right
ideals with right essential core is a divisible right Oka family. Next, the assumption that
every ideal that is right essential is right finitely generated implies that the union of any
nonempty chain of right ideals in F ′ lies in F ′. Also, the set F0 of essential right ideals is a
semifilter. Thus the statement of the proposition, excluding the first parenthetical remark,
follows from Theorem 3.3.11(1).

It remains to verify that a semiprime or right nonsingular ring R satisfies the first hypoth-
esis. Suppose that J CR is right essential, and let IR be a right ideal such that I ∩ J2 = 0.
Then

(I ∩ J)2 ⊆ I ∩ J2 = 0 and (I ∩ J)J ⊆ I ∩ J2 = 0

respectively imply that I ∩ J squares to zero and has essential right annihilator. Thus if R
is either semiprime or right nonsingular, then I ∩ J = 0. Because J is right essential, we
conclude that I = 0. Hence J2 is right essential as desired.

Corollary 3.3.18. A prime right noetherian ring R is right bounded iff every essential
comonoform right ideal of R has nonzero core.

Proof. It is a well-known (and easy to verify) fact that every nonzero ideal of a prime ring is
right essential. Thus a right ideal of R has right essential core iff its core is nonzero. Because
R is prime and right noetherian, we can directly apply Proposition 3.3.17.

In fact, the last result can be directly deduced from Corollary 3.3.16(2). We chose to
include Proposition 3.3.17 because it seems to apply rather broadly.

Next we will show that certain well-studied families of right ideals are actually examples
of divisible right Oka families, providing a third method of constructing the latter. The
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concept of a Gabriel filter of right ideals arises naturally in the study of torsion theories and
the related subject of localization in noncommutative rings. The definition of these families
is recalled below.

Definition 3.3.19. A right Gabriel filter (or right Gabriel topology) in a ringR is a nonempty
family F of right ideals of R satisfying the following four axioms (where IR, JR ⊆ R):

(1) If I ∈ F and J ⊇ I then J ∈ F ;

(2) If I, J ∈ F then I ∩ J ∈ F ;

(3) If I ∈ F and x ∈ R then x−1I ∈ F ;

(4) If I ∈ F and JR ⊆ R is such that x−1J ∈ F for all x ∈ I, then J ∈ F .

Notice that axiom (3) above simply states that a right Gabriel filter is divisible. For the
reader’s convenience, we outline some basic facts regarding right Gabriel filters and torsion
theories that will be used here. Refer to [54, VI.1-5] for further details.

Given any right Gabriel filter F and any module MR, we define a subset of M :

tF(M) := {m ∈M : ann(m) ∈ F}.

Axioms (1), (2), and (3) of Definition 3.3.19 guarantee that this is a submodule of M , and
it is called the F-torsion submodule of M . A module MR is defined to be F-torsion if
tF(M) = M or F-torsionfree if tF(M) = 0. One can easily verify that for a right Gabriel
filter F , a right ideal I ⊆ R lies in F iff R/I is F-torsion.

For any Gabriel filter F , it turns out that the class

TF := {MR : M is F -torsion, i.e. M = tF(M)}

of all F -torsion right R-modules satisfies the axioms of a hereditary torsion class. While we
shall not define this term here, it is equivalent to saying that the class TF is closed under
factor modules, direct sums of arbitrary families, and extensions (in MR). (Thus the reader
may simply take this to be the definition of a hereditary torsion class.)

With the information provided above we will prove that right Gabriel filters are examples
of divisible right Oka families.

Proposition 3.3.20. Over a ring R, any right Gabriel filter F is a divisible right Oka
family. Any right ideal P ∈ Max(F ′) is comonoform.

Proof. Any right Gabriel filter is tautologically a divisible family of right ideals. The torsion
class TF is closed under extensions in MR, so the class C := TF ∩Mc

R of cyclic F -torsion
modules is closed under extensions. A right ideal I ⊆ R lies in F iff R/I ∈ TF (as mentioned
above), iff R/I ∈ C (since R/I ∈ Mc

R), iff I ∈ FC. It follows from Theorem 3.1.7 that
F = FC is a right Oka family. The last sentence is true by Theorem 3.3.10.
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We pause for a moment to give a sort of “converse” to this result, in the spirit of Proposi-
tion 3.1.11. Given any injective module ER, the class {MR : Hom(M,E) = 0} is a hereditary
torsion class. This is called the torsion class cogenerated by E. We will also say that the cor-
responding right Gabriel filter is the right Gabriel filter cogenerated by E. As stated in [54,
VI.5.6], this is the largest right Gabriel filter with respect to which E is torsionfree. Let I be
a right ideal in R. In the following, we let FI denote the right Gabriel filter cogenerated by
E(R/I); that is, FI is the set of all right ideals J ⊆ R such that HomR(R/J,E(R/I)) = 0.
We are now ready for the promised result.

Proposition 3.3.21. For any right ideal P ( R, the following are equivalent:

(1) P ∈ Max(F ′) for some right Gabriel filter F ;

(2) P ∈ Max((FP )′);

(3) P is a comonoform right ideal.

Proof. (2) =⇒ (1) is clear, and (1) =⇒ (3) follows from Theorem 3.3.20. For (3) =⇒ (2),
assume that R/P is monoform. Proposition 3.3.1 implies that for every right ideal I ) P
we have HomR(R/I,E(R/P )) = 0. Then every such right ideal I tautologically lies in FP ,
proving that P ∈ Max((FP )′).

We mention in passing that this result is similar to [20, Thm. 2.9], though it is not stated
in quite the same way. This proposition actually provides a second, though perhaps less
satisfying, proof that any comonoform right ideal is completely prime. Given a comonoform
right ideal P ⊆ R, Proposition 3.3.21 provides a right Gabriel filter F with P ∈ Max(F ′).
Then because F is a right Oka family (by Theorem 3.3.20), the CPIP implies that P is a
completely prime right ideal.

As a first application of Theorem 3.3.20 we explore the maximal point annihilators of an
injective module, recovering a result of Lambek and Michler in [39, Prop. 2.7]. This should
be compared with Proposition 3.2.3.

Proposition 3.3.22 (Lambek and Michler). For any injective module ER, a maximal point
annihilator of E is comonoform.

Proof. Let F = {IR ⊆ R : HomR(R/I,E) = 0} be the right Gabriel filter cogenerated
by E. Then the set of maximal point annihilators of E is clearly equal to Max(F ′). By
Theorem 3.3.20, any P ∈ Max(F ′) is comonoform.

Example 3.3.23. As shown in [54, VI.6], the set F of all dense right ideals in any ring R
is a right Gabriel filter. (In fact, it is the right Gabriel filter cogenerated by the injective
module E(RR).) Therefore F is a right Oka family, and a right ideal maximal with respect
to not being dense in R is comonoform. Furthermore, in a right nonsingular ring, this family



44

F coincides with the set of all essential right ideals (see [32, (8.7)] or [54, VI.6.8]). Thus in
a right nonsingular ring, the family F of essential right ideals is a right Gabriel filter, and a
right ideal maximal with respect to not being essential is comonoform.

Example 3.3.24. Let S be a right Ore set in a ring R, and let F denote the family of all
right ideals IR ⊆ R such that I ∩ S 6= ∅. It is shown in the proof of [54, Prop. VI.6.1] that
F is a right Gabriel filter. It follows from Theorem 3.3.20 that a right ideal maximal with
respect to being disjoint from S is comonoform.

We offer an application of the example above. Let us say that a multiplicative set S in
a ring R is right saturated if ab ∈ S implies a ∈ S for all a, b ∈ R.

Corollary 3.3.25. For every right saturated right Ore set S ⊆ R, there exists a set {Pi} of
comonoform right ideals such that R \ S =

⋃
Pi.

Proof. Indeed, for all x ∈ R \ S, we must have xR ⊆ R \ S because S is right saturated. By
a Zorn’s Lemma argument, there is a right ideal Px containing x maximal with respect to
being disjoint from S. Example 3.3.24 implies that Px is comonoform. Choosing such Px for
all x ∈ R \ S, we have R \ S =

⋃
Px.

Next we apply Example 3.3.24 to show that a “nice enough” prime (two-sided) ideal must
be “close to” some comonoform right ideal.

Corollary 3.3.26. Let P0 ∈ Spec(R) be such that R/P0 is right Goldie. Then there exists
a comonoform right ideal PR ⊇ P0 such that core(P ) = P0. In particular, if R is right
noetherian then every prime ideal occurs as the core of some comonoform right ideal.

Proof. Remark 2.1.12 shows that, for any right ideal LR ⊆ R and any two-sided ideal I ⊆ L,
L is comonoform in R iff L/I is comonoform in R/I. Then passing to the factor ring R/P0,
it clearly suffices to show that in a prime right Goldie ring R there exists a comonoform
right ideal P of R with zero core. Indeed, let S ⊆ R be the set of regular elements, and let
PR ⊆ R be maximal with respect to P ∩ S = ∅. Because R is prime right Goldie it is a
right Ore ring by Goldie’s Theorem, making S a right Ore set. Then P is comonoform by
Example 3.3.24. We claim that core(P ) = 0. Indeed, suppose that I 6= 0 is a nonzero ideal
of R. Then since R is prime, I is essential as a right ideal in R. It follows from the theory
of semiprime right Goldie rings that I ∩ S 6= ∅ (see, for instance, [32, (11.13)]). This means
that we cannot have I ⊆ P , verifying that core(P ) = 0.

Notice that the above condition on P0 is satisfied if R/P0 is right noetherian. Conversely,
it is not true that the core of every comonoform right ideal is prime, even in an artinian
ring. For example, let R be the ring of n× n upper-triangular matrices over a division ring
k for n ≥ 2, and let P ( R be the right ideal consisting of matrices in R whose first row is
zero. Then one can verify that R/P is monoform (for example, using a composition series
argument), so that P is comonoform. But the ideal core(P ) = 0 is not (semi)prime.
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We also provide a slight variation of Corollary 3.2.8, which tested whether or not a
ring R is a domain. The version below applies when R is a right Ore ring (e.g., when the
multiplicative set of non-zero-divisors of R is a right Ore set).

Proposition 3.3.27. A right Ore ring R is a domain iff every nonzero comonoform right
ideal of R contains a regular element.

Proof. (“If” direction) Let S ⊆ R be the set of regular elements of R. Then S is a right Ore
set, so the family F := {IR ⊆ R : I∩S 6= ∅} is a right Gabriel filter (in particular, a divisible
right Oka family) by Example 3.3.24. Clearly the union of a chain of right ideals in F ′ also
lies in F ′. By Theorem 2.2.6, if every nonzero comonoform right ideal of R contains a regular
element, then so does every nonzero right ideal. It follows easily that R is a domain.

As a closing observation, we note that there is a second way (aside from Theorem 3.3.20)
that right Gabriel filters give rise to comonoform right ideals. Given a right Gabriel filter G in
a ring R, the class of G-torsionfree modules is closed under extensions and submodules (just
as the class of G-torsion modules was). Thus a right ideal I of R maximal with respect to the
property that R/I is not G-torsionfree must be comonoform by Theorem 3.3.10. A similar
statement was shown to be true for the S-torsionfree property, where S is a multiplicative
set. However, there is a logical relation between these facts only in the case that S is right
Ore, when the family G of right ideals intersecting S is a right Gabriel filter.
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Chapter 4

Test sets for properties of right ideals

4.1 Point annihilator sets for classes of modules

In this section we develop an appropriate notion of a “test set” for certain properties of
right ideals in noncommutative rings. This is required for us to state the main theorems
along these lines in the next section. Recall that a point annihilator of a module MR is
defined to be an annihilator of a nonzero element m ∈M \ {0}.

Definitions 4.1.1. Let C be a class of right modules over a ring R. A set S of right ideals
of R is a point annihilator set for C if every nonzero M ∈ C has a point annihilator that lies
in S. In addition, we make the following two definitions for special choices of C:

• A point annihilator set for the class of all right R-modules will simply be called a
(right) point annihilator set for R.

• A point annihilator set for the class of all noetherian right R-modules will be called a
(right) noetherian point annihilator set for R.

Notice that a point annihilator set need not contain the unit ideal R, because point
annihilators are always proper right ideals. Another immediate observation is that, for a
right noetherian ring R, a right point annihilator set for R is the same as a right noetherian
point annihilator set for R.

Remark 4.1.2. The idea of a point annihilator set S for a class of modules C is simply that S
is “large enough” to contain a point annihilator of every nonzero module in C. In particular,
our definition does not require every right ideal in S to actually be a point annihilator for
some module in C. This means that any other set S ′ of right ideals with S ′ ⊇ S is also a
point annihilator set for C. On the other hand, if C0 ⊆ C is a subclass of modules, then S is
again a point annihilator set for C0.
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Remark 4.1.3. Notice that S is a point annihilator set for a class C of modules iff, for every
nonzero module MR ∈ C, there exists a proper right ideal I ∈ S such that the right module
R/I embeds into M .

The next result shows that noetherian point annihilator sets for a ring R exert a consid-
erable amount of control over the noetherian right R-modules.

Lemma 4.1.4. A set S of right ideals in R is a noetherian point annihilator set iff for every
noetherian module MR 6= 0, there is a finite filtration of M

0 = M0 (M1 ( · · · (Mn = M

such that, for 1 ≤ j ≤ n, there exists Ij ∈ S such that Mj/Mj−1 ∼= R/Ij.

Proof. The “if” direction is easy, so we will prove the “only if” part. For convenience, we
will refer to a filtration like the one described above as as an S-filtration. Suppose that S
is a noetherian point annihilator set for R, and let MR 6= 0 be noetherian. We prove by
noetherian induction that M has an S-filtration. Consider the set X of nonzero submodules
of M that have an S-filtration. Because S is a noetherian point annihilator set, it follows
that X is nonempty. Since M is noetherian, X has a maximal element, say N . Assume for
contradiction that N 6= M . Then M/N 6= 0 is noetherian, and by hypothesis there exists
I ∈ S with I 6= R such that R/I ∼= N ′/N ⊆M/N for some N ′R ⊆M . But then N ( N ′ ∈ X ,
contradicting the maximality of N . Hence M = N ∈ X , completing the proof.

We wish to highlight a special type of point annihilator set in the definition below.

Definition 4.1.5. A set S of right ideals of a ring R is closed under point annihilators if,
for all I ∈ S, every point annihilator of R/I lies in S. (This is equivalent to saying that
I ∈ S and x ∈ R \ I imply x−1I ∈ S.) If C is a class of right R-modules, we will say that
S is a closed point annihilator set for C if S is a point annihilator set for C and S is closed
under point annihilators.

The idea of the above definition is that S is “closed under passing to further point
annihilators of R/I” whenever I ∈ S. The significance of these closed point annihilator sets
is demonstrated by the next result.

Lemma 4.1.6. Let C be a class of right modules over a ring R that is closed under taking
submodules (e.g. the class of noetherian modules). Suppose that S is a closed point annihi-
lator set for C. Then for any other point annihilator set S1 of C, the set S1 ∩ S is a point
annihilator set for C.

Proof. Let 0 6= MR ∈ C. Because S is a point annihilator set for C, there exists 0 6= m ∈M
such that I := ann(m) ∈ S. By the hypothesis on C, the module mR lies in C. Because S1
is also a point annihilator set for C, there exists 0 6= mr ∈ mR such that ann(mr) ∈ S1. The
fact that S is closed implies that ann(mr) ∈ S ∩ S1. This proves that S ∩ S1 is also a point
annihilator set for C.
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The prototypical example of a noetherian point annihilator set is the prime spectrum of
a commutative ring. In fact, every noetherian point annihilator set in a commutative ring
can be “reduced to” some set of prime ideals, as we show below.

Proposition 4.1.7. In any commutative ring R, the set Spec(R) of prime ideals is a closed
noetherian point annihilator set. Moreover, given any noetherian point annihilator set S for
R, the set S ∩ Spec(R) is a noetherian point annihilator subset of S consisting of prime
ideals.

Proof. The set Spec(R) is a noetherian point annihilator set thanks to the standard fact
that any noetherian module over a commutative ring has an associated prime; see, for
example, [11, Thm. 3.1]. Furthermore, this set is closed because for P ∈ Spec(R), the
annihilator of any nonzero element of R/P is equal to P . The last statement now follows
from Lemma 4.1.6.

In this sense right noetherian point annihilator sets of a ring generalize the concept of
the prime spectrum of a commutative ring. However, one should not push this analogy too
far: in a commutative ring R, any set S of ideals containing Spec(R) is also a noetherian
point annihilator set! In fact, with the help of Proposition 4.1.7 it is easy to verify that any
commutative ring R has smallest noetherian point annihilator set S0 := {P ∈ Spec(R) :
R/P is noetherian}, and that a set S of ideals of R is a noetherian point annihilator set for
R iff S ⊇ S0.

For most of the remainder of this section, we will record a number of examples of point
annihilator sets that will be useful in later applications. Perhaps the easiest example is the
following: the family of all right ideals of a ring R is a point annihilator set for any class of
right R-modules. A less trivial example: the family of maximal right ideals of a ring R is a
point annihilator set for the class of right R-modules of finite length, or for the larger class
of artinian right modules. More specifically, according to Remark 4.1.3 it suffices to take
any set {mi} of maximal right ideals such that the R/mi exhaust all isomorphism classes of
simple right modules.

Example 4.1.8. Recall that a module MR is said to be semi-artinian if every nonzero factor
module of M has nonzero socle, and that a ring R is right semi-artinian if RR is a semi-
artinian module. One can readily verify that R is right semi-artinian iff every nonzero right
R-module has nonzero socle. Thus for such a ring R, the set of maximal right ideals is a
point annihilator set for R, and in particular it is a noetherian point annihilator set for R.

Example 4.1.9. Let R be a left perfect ring, that is, a semilocal ring whose Jacobson
radical is left T -nilpotent—see [33, §23] for details. (Notice that this class of rings includes
semiprimary rings, especially right or left artinian rings.) By a theorem of Bass (see [33,
(23.20)]), over such a ring, every right R-module satisfies DCC on cyclic submodules. Thus
every nonzero right module has nonzero socle, and such a ring is right semi-artinian. But R
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has finitely many simple modules up to isomorphism (because the same is true modulo its
Jacobson radical). Choosing a set S = {m1, . . . ,mn} of maximal right ideals such that the
modules R/mi exhaust the isomorphism classes of simple right R-modules, we conclude by
Remark 4.1.3 that S is a point annihilator set for any class of right modules C. Hence S
forms a right noetherian point annihilator set for R. (The observant reader will likely have
noticed that the same argument applies more generally to any right semi-artinian ring with
finitely many isomorphism classes of simple right modules.)

Directly generalizing the fact that the prime spectrum of a commutative ring is a noethe-
rian point annihilator set, we have the following fact, valid for any noncommutative ring.

Proposition 4.1.10. The set of completely prime right ideals in any ring R is a noetherian
point annihilator set.

Proof. Let MR 6= 0 be noetherian. For any point annihilator I = ann(m) with 0 6= m ∈ M ,
the module R/I ↪→ M is noetherian. Thus M must have a maximal point annihilator
PR ⊇ I, and P is completely prime by Proposition 3.2.3.

Recall that in any ring R, the set of comonoform right ideals of R forms a subset of the
set of all completely prime right ideals of R. As we show next, the subset of comonoform
right ideals is also a noetherian point annihilator set.

Proposition 4.1.11. For any ring R, the set of comonoform right ideals in R is a closed
noetherian point annihilator set.

Proof. Because a nonzero submodule of a monoform module is again monoform, Remark 4.1.3
shows that it is enough to check that any nonzero noetherian module MR has a monoform
submodule. This has already been noted, for example, in [40, 4.6.5]. We include a separate
proof for the sake of completeness.

Let LR ⊆M be maximal with respect to the property that there exists a nonzero cyclic
submodule N ⊆M/L that can be embedded in M . It is readily verified that N is monoform,
and writing N ∼= R/I for some comonoform right ideal I, the fact that N embeds in I shows
that I is a point annihilator of M .

Our most “refined” instance of a noetherian point annihilator set for a general non-
commutative ring is connected to the concept of (Gabriel-Rentschler) Krull dimension. We
review the relevant definitions here, and we refer the reader to the monograph [20] or the
textbooks [19, Ch. 15] or [40, Ch. 6] for further details. Define by induction classes Kα of
right R-modules for each ordinal α (for convenience, we consider −1 to be an ordinal num-
ber) as follows. Set K−1 to be the class consisting of the zero module. Then for an ordinal
α ≥ 0 such that Kβ has been defined for all ordinals β < α, define Kα to be the class of all
modules MR such that, for every descending chain

M0 ⊇M1 ⊇M2 ⊇ · · ·
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of submodules of M indexed by natural numbers, one has Mi/Mi+1 ∈
⋃
β<αKβ for almost all

indices i. Now if a module MR belongs to some Kβ, its Krull dimension, denoted K. dim(M),
is defined to be the least ordinal α such that M ∈ Kα. Otherwise we say that the Krull
dimension of M does not exist.

From the definitions it is easy to see that the right R-modules of Krull dimension 0 are
precisely the (nonzero) artinian modules. Also, a module MR has Krull dimension 1 iff it is
not artinian and in every descending chain of submodules of M , almost all filtration factors
are artinian.

One of the more useful features of the Krull dimension function is that it is an exact
dimension function, in the sense that, given an exact sequence 0 → L → M → N → 0 of
right R-modules, one has

K. dim(M) = sup(K. dim(L),K. dim(N))

where either side of the equation exists iff the other side exists. See [19, Lem. 15.1] or [40,
Lem. 6.2.4] for details.

The Krull dimension can also be used as a dimension measure for rings. We define the
right Krull dimension of a ring R to be r.K. dim(R) = K. dim(RR). The left Krull dimension
of R is defined similarly.

Now a module MR is said to be α-critical (α ≥ 0 an ordinal) if K. dim(M) = α but
K. dim(M/N) < α for all 0 6= NR ⊆ M , and we say that MR is critical if it is α-critical for
some ordinal α. With this notion in place, we define a right ideal IR ⊆ R to be α-cocritical
if the module R/I is α-critical, and we say that I is cocritical if it is α-cocritical for some
ordinal α. Notice immediately that a 0-critical module is the same as a simple module, and
the 0-cocritical right ideals are precisely the maximal right ideals.

Cocritical right ideals were already studied by A. W. Goldie in [16], though they are
referred to there as “critical” right ideals. (The reader should take care not to confuse this
terminology with the phrase “critical right ideal” used in a different sense elsewhere in the
literature, as mentioned in §3.3.)

Remarks 4.1.12. The first two remarks below are known; for example, see [40, §6.2].

(1) A nonzero submodule N of a critical module M is also critical, with K. dim(N) =
K. dim(M). Let M be α-critical. If K. dim(N) < α, then because K. dim(M/N) < α,
the exactness of Krull dimension would imply the contradiction K. dim(M) < α. Hence
K. dim(N) = α. Also, for any nonzero submodule N0 ⊆ N we have K. dim(N/N0) ≤
K. dim(M/N0) < α, proving that N is α-critical.

(2) A critical module is always monoform. Suppose that M is α-critical and fix a nonzero
homomorphism f : C → M where CR ⊆ M . Because C and im f are both nonzero
submodules of M , they are also α-critical by (1). Then K. dim(C) = K. dim(im f) =
K. dim(C/ ker f), so we must have ker f = 0. Thus M is indeed monoform.
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(3) Any cocritical right ideal is comonoform and, in particular, is completely prime. This
follows immediately from the preceding remark and the fact (Proposition 3.3.3) that
any comonoform right ideal is completely prime.

It is possible to classify the (two-sided) ideals that are cocritical as right ideals.

Proposition 4.1.13. For any ring R and any ideal P CR, the following are equivalent:

(1) P is cocritical as a right ideal;

(2) R/P is a right Ore domain with right Krull dimension;

(3) R/P is a domain with right Krull dimension.

Proof. Because every cocritical right ideal is comonoform, (1) =⇒ (2) follows from Proposi-
tion 3.3.5. Also, (2) =⇒ (3) is trivial.

(3) =⇒ (1): It can be shown that, given any module MR whose Krull dimension exists
and an injective endomorphism f : M → M , K. dim(M) > K. dim(M/f(M)) (see [19,
Lem. 15.6]). Applying this to M = S := R/P , we see that K. dim(S) > K. dim(S/xS) for
all nonzero x ∈ S (this is also proved in [40, Lem. 6.3.9]). Thus SS, and consequently SR,
are critical modules.

Example 4.1.14. The last proposition is useful for constructing an ideal of a ring that
is (right and left) comonoform but not (right or left) cocritical. If R is a commutative
domain that does not have Krull dimension, then the zero ideal of R is prime and thus is
is comonoform by Corollary 3.3.7. But because R does not have Krull dimension, the zero
ideal cannot be cocritical by the previous result. For an explicit example, one can take
R = k[x1, x2, . . . ] for some commutative domain k. It is shown in [20, Ex. 10.1] that such
a ring does not have Krull dimension, using the fact that a polynomial ring R[x] has right
Krull dimension iff the ground ring R is right noetherian.

The reason for our interest in the set of cocritical right ideals is that it is an important
example of a noetherian point annihilator set in a general ring.

Proposition 4.1.15. For any ring R, the set of all cocritical right ideals is a closed point
annihilator set for the class of right R-modules whose Krull dimension exists. In particular,
this set is a closed noetherian point annihilator set for R.

Proof. Because any nonzero module with Krull dimension has a critical submodule (see [19,
Lem. 15.8] or [40, Lem. 6.2.10]), Remark 4.1.3 shows that the set of cocritical right ideals of
R is a point annihilator set for the class of right R-modules with Krull dimension. Because
any noetherian module has Krull dimension (see [19, Lem. 15.3] or [40, Lem. 6.2.3]), we see
by Remark 4.1.2 that this same set is a right noetherian point annihilator set for R. The
fact that this set is closed under point annihilators follows from Remark 4.1.12(1).
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Let us further examine the relationship between the general noetherian point annihila-
tor sets given in Propositions 4.1.10, 4.1.11, and 4.1.15. From Proposition 3.3.3 and Re-
mark 4.1.12(3) we see that there are always the following containment relations (where the
first three sets are noetherian point annihilator sets but the last one is not, in general):{

completely prime
right ideals

}
⊇
{

comonoform
right ideals

}
⊇
{

cocritical
right ideals

}
⊇
{

maximal
right ideals

}
.

(4.1.16)
Notice that in a commutative ring R the first two sets are equal to Spec(R) by Corollar-
ies 2.1.3 and 3.3.7, and when R is commutative and has Gabriel-Rentschler Krull dimension
(e.g., when R is noetherian) the third set is also equal to Spec(R) by Proposition 4.1.13. The
latter fact provides many examples where the last containment is strict: in any commutative
ring R with Krull dimension > 0 there exists a nonmaximal prime ideal, which must be
cocritical. We saw in Remark 3.3.6 and Example 4.1.14 that the first two inclusions can
each be strict. However, the latter example was necessarily non-noetherian. Below we give
an example of a noncommutative artinian (hence noetherian) ring over which both contain-
ments are strict. Before presenting the example, we provide a useful characterization of the
semi-artinian modules that are monoform. For a module MR, we denote the socle of M by
soc(M).

Lemma 4.1.17. Let MR be a semi-artinian R-module. Then the following are equivalent:

(1) M is monoform;

(2) For any nonzero submodule KR ⊆M , soc(M) and soc(M/K) do not have isomorphic
nonzero submodules;

(3) soc(M) is simple and does not embed into any proper factor module of M .

Proof. (1) =⇒ (3): Because M is semi-artinian, S := soc(M) 6= 0. Suppose that M is
monoform; then M is uniform (see Proposition 3.3.1(5′)). So S is a uniform semisimple
module and is therefore simple. Now assume for contradiction that S embeds into M/K for
some nonzero KR ⊆ M . Let the image of this embedding be equal to L/K. Then because
L/K ∼= S, we have a nonzero noninjective map L � S ↪→ M , which contradicts the fact
that M is monoform. So S cannot embed into any proper factor of M .

(3) =⇒ (2) is clear. For (2) =⇒ (1), fix any nonzero homomorphism f : M → E(M),
where E(M) ⊇M is the injective hull of M . Let K = ker f , so that M/K embeds in E(M).
Let S = soc(M) and S ′ = soc(M/K), which are both nonzero because M is semi-artinian.
We will consider S ′ to be a submodule of E(M) under the embedding M/K ↪→ E(M). Then
because M is essential in E(M), we have 0 6= S ′ ∩M = S ′ ∩ S. By (2) we conclude that
K = 0, proving that M is monoform.
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Example 4.1.18. Let k be a division ring, and let R be the ring of all 3× 3 matrices over
k of the form a b c

0 d e
0 0 d

 . (4.1.19)

One can easily verify (for example, by passing to the factor ring R/ rad(R)) that R has two
simple right modules up to isomorphism. We may view these modules as S1 = k with right
R-action given by right multiplication by a in (4.1.19) and S2 = k with right action given
by right multiplication by d in (4.1.19). Consider the right ideals

P0 :=


0 0 0

0 d e
0 0 d

 ⊆ P1 :=


0 0 c

0 d e
0 0 d

 ⊆ P2 :=


0 b c

0 d e
0 0 d

 .

Then the cyclic module V := R/P0 is isomorphic to the space (k k k)R of row vectors with
the natural right R-action. Notice that Vi := Pi/P0 (i = 1, 2) corresponds to the submodule
of row vectors whose first 3− i entries are zero. One can check that the only submodules of
V are 0 ⊆ V1 ⊆ V2 ⊆ V , which implies that this is the unique composition series of V . It is
clear that

V1 ∼= V2/V1 ∼= S2 and V/V2 ∼= S1.

We claim that P0 is a completely prime right ideal that is not comonoform. To see that
it is completely prime, it suffices to show that every nonzero endomorphism of V = R/P0

is injective. Indeed, the only proper factors of V are V/V1 and V/V2. By an inspection of
composition factors, neither of these can embed into V , proving that P0 is completely prime.
To see that P0 is not comonoform, consider that

soc(V ) = V1 ∼= V2/V1 = soc(V/V1).

By Lemma 4.1.17 we see that R/P0 = V is not monoform and thus P0 is not comonoform.
We also claim that P1 is comonoform but not cocritical. Notice that over any right

artinian ring, every cyclic critical module has Krull dimension 0. But a 0-critical module is
necessarily simple. Thus a cocritical right ideal in a right artinian ring must be maximal. But
P1 is not maximal and thus is not cocritical. On the other hand, R/P1

∼= V/V1 has unique
composition series 0 ⊆ V2/V1 ⊆ V/V1. This allows us to easily verify, using Lemma 4.1.17,
that V/V1 ∼= R/P1 is monoform, proving that P1 is comonoform.

This same example also demonstrates that the set of completely prime right ideals is not
always closed under point annihilators (as in Definition 4.1.5). This is because the cyclic
submodule V2 ⊆ V = R/P0 certainly has a nonzero noninjective endomorphism, as both of
its composition factors are isomorphic.

An example along these lines was already used in [20, p. 11] to show that a monoform
module need not be critical. Notice that the completely prime right ideal P0 above is such
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that R/P0 is uniform, even if it is not monoform. (This means that the right ideal P0 is
“meet-irreducible.”) An example of a completely prime right ideal whose factor module is
not uniform was already given in Example completely prime not meet-irreducible.

Given the containments of noetherian point annihilator sets in (4.1.16), one might ques-
tion the need for the notion of a point annihilator set. Why not simply state all theorems
below just for the family of cocritical right ideals? We already have an answer to this ques-
tion in Example 4.1.9, which demonstrates that every left perfect ring has a finite right
noetherian point annihilator set. The reason we can reduce to a finite set S in such rings
is the fact stated in Remark 4.1.3 that a noetherian right module only needs to contain a
submodule isomorphic to R/I for some I ∈ S. In other words, S only needs to contain a
single representative from any given similarity class. So while a left perfect ring R may have
infinitely many maximal right ideals, it has only finitely many similarity classes of maximal
right ideals. Thus we can reduce certain problems about all right ideals of R to a finite
set of maximal ideals! This will be demonstrated in Proposition 4.2.8 and Corollary 5.1.5,
below where we shall prove that a left perfect ring is right noetherian (resp. a PRIR) iff all
maximal right ideals belonging to a (properly chosen) finite set are finitely generated (resp.
principal).

We have also phrased the discussion in terms of general noetherian point annihilator
sets to leave open the possibility of future applications to classes of rings which have nicer
noetherian point annihilator sets than the whole set of cocritical right ideals, akin to the
class of left perfect rings.

4.2 The Point Annihilator Set Theorem

Having introduced the notion of a point annihilator set, we can now state our fundamental
result, the Point Annihilator Set Theorem 4.2.1. This theorem gives conditions under which
one may deduce that one family F0 of right ideals is contained in a second family F of right
ideals. We will most often use it as a sufficient condition for concluding that all right ideals
of a ring lie in a particular right Oka family F .

Certain results in commutative algebra state that when every prime ideal in a commuta-
tive ring has a certain property, then all ideals in the ring have that property. As mentioned
in the introduction, the two motivating examples are Cohen’s Theorem 1.1.1 and Kaplan-
sky’s Theorem 1.1.3. In [37, p. 3017], these theorems were both recovered in the context of
Oka families and the Prime Ideal Principle. The useful tool in that context was the “Prime
Ideal Principle Supplement” [37, Thm. 2.6]. We have already provided one noncommuta-
tive generalization of this tool in the CPIP Supplement 2.2.6, which we used to produce a
noncommutative extension of Cohen’s Theorem in Theorem 2.2.8.

The CPIP Supplement states that for certain right Oka families F , if the set S of com-
pletely prime right ideals lies in F , then all right ideals lie in F . The main goal of this
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section is to improve upon this result by allowing the set S to be any point annihilator set.
This is achieved in Theorem 4.2.3 as an application of the Point Annihilator Set Theorem.

The Point Annihilator Set Theorem basically formalizes a general “strategy of proof.”
For the sake of clarity, we present an informal sketch of this proof strategy before stating the
theorem. Suppose that we want to prove that every module with the property P also has the
property Q. Assume for contradiction that there is a counterexample. Use Zorn’s Lemma to
pass to a counterexample M satisfying P that is “critical” with respect to not satisfying Q,
in the sense that every proper factor module of M satisfies Q but M itself does not satisfy
Q. Argue that M has a nonzero submodule N that satisfies Q. Finally, use the fact that N
and M/N have Q to deduce the contradiction that M has Q.

Our theorem applies in the specific case where one’s attention is restricted to cyclic
modules. In the outline above, we may think of the properties P and Q to be, respectively,
“M = R/I where I ∈ F0” and “M = R/I where I ∈ F .”

Theorem 4.2.1 (The Point Annihilator Set Theorem). Let F be a right Oka family such
that every nonempty chain of right ideals in F ′ (with respect to inclusion) has an upper bound
in F ′.

(1) Let F0 be a semifilter of right ideals in R. If F is a point annihilator set for the class
of modules {R/I : IR ∈ Max(F ′) ∩ F0}, then F0 ⊆ F .

(2) For any right ideal JR ⊆ R, if F is a point annihilator set for the class of modules R/I
such that I ∈ Max(F ′) and I ⊇ J (resp. I ) J), then all right ideals containing (resp.
properly containing) J belong to F .

(3) If F is a point annihilator set for the class of modules {R/I : IR ∈ Max(F ′)}, then F
consists of all right ideals of R.

Proof. Suppose that the hypotheses of (1) hold, and assume for contradiction that there
exists I0 ∈ F0 \ F . The assumptions on F ′ allow us to apply Zorn’s Lemma to find I ∈
Max(F ′) with I ⊇ I0. Then I ∈ F0 because F0 is a semifilter. The point annihilator
hypothesis implies that there is a nonzero element a+I ∈ R/I such that a−1I = ann(a+I) ∈
F . On the other hand, a + I 6= 0 + I implies that I + aR ) I. By maximality of I, this
means that I + aR ∈ F . Because F is a right Oka family, we arrive at the contradiction
I ∈ F .

Parts (2) and (3) follows from (1) by taking F0 to be, respectively, the set of all right
ideals of R (properly) containing J or the set of all right ideals of R.

Notice that part (1) above remains true if we weaken the condition on chains in F ′ to the
following: every nonempty chain in F ′ ∩F0 has an upper bound in F ′. The latter condition
holds if every I ∈ F0 is such that R/I is a noetherian module, or more generally if F0

satisfies the ascending chain condition (as a partially ordered set with respect to inclusion).
However, we shall not make use this observation in the present work.
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The following is an illustration of how Theorem 4.2.1 can be applied in practice. It is
well-known that every finitely generated artinian module over a commutative ring has finite
length. However, there exist finitely generated (even cyclic) artinian right modules over
noncommutative rings that do not have finite length; for instance, see [34, Ex. 4.28]. Here
we provide a sufficient condition for all finitely generated artinian right modules over a ring
to have finite length.

Proposition 4.2.2. If all maximal right ideals of a ring R are finitely generated, then every
finitely generated artinian right R-module has finite length.

Proof. It suffices to show that every cyclic artinian right R-module has finite length. Let F0

be the semifilter of right ideals IR such that R/I is right artinian, and let F be the right
Oka family of right ideals I such that R/I has finite length. Our goal is then to show that
F0 ⊆ F . Because every nonzero cyclic artinian module has a simple submodule, we see that
F is a point annihilator set for the class {R/I : I ∈ F0} ⊇ {R/I : I ∈ Max(F ′) ∩ F0}. To
apply Theorem 4.2.1(1) we will show that every nonempty chain in F ′ has an upper bound
in F ′. For this, it is enough to check that F consists of finitely generated right ideals. The
hypothesis implies that all simple right R-modules are finitely presented. If I ∈ F then R/I,
being a repeated extension of finitely many simple modules, is finitely presented. It follows
that I is finitely generated. (The fact that F consists of f.g. right ideals can also be deduced
from Corollary 3.1.9.)

In light of the result above, it would be interesting to find a characterization of the rings
R over which every finitely generated artinian right R-module has finite length. How would
such a characterization unite both commutative rings and the rings in which every maximal
right ideal is finitely generated?

For our purposes, it will often best to use a variant of the theorem above. This variant
keeps with the theme of Cohen’s and Kaplansky’s results (Theorems 1.1.1–1.1.3) of “testing”
a property on special sets of right ideals.

Theorem 4.2.3. Let F be a right Oka family such that every nonempty chain of right ideals
in F ′ (with respect to inclusion) has an upper bound in F ′. Let S be a set of right ideals that
is a point annihilator set for the class of modules {R/I : IR ∈ Max(F ′)}.

(1) Let F0 be a divisible semifilter of right ideals in R. If F0 ∩ S ⊆ F , then F0 ⊆ F .

(2) For any ideal JCR, if all right ideals in S that contain J belong to F , then every right
ideal containing J belongs to F .

(3) If S ⊆ F , then all right ideals of R belong to F .
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Proof. As in the previous result, parts (2) and (3) are special cases of part (1). To prove (1),
Theorem 4.2.1 implies that it is enough to show that F is a point annihilator set for the class
of modules {R/I : IR ∈ Max(F ′)∩F0}. Fixing such R/I, the hypothesis of part (1) ensures
that R/I has a point annihilator in S, say A = ann(x+I) ∈ S for some x+I ∈ R/I \{0+I}.
Because I ∈ F0 and F0 is divisible, the fact that A = x−1I implies that A ∈ F0. Thus
A ∈ S ∩ F0 ⊆ F , providing a point annihilator of R/I that lies in F .

We also record a version of Theorem 4.2.3 adapted especially for families of finitely
generated right ideals. Because of its easier formulation, it will allow for simpler proofs as
we provide applications of Theorem 4.2.3.

Corollary 4.2.4. Let F be a right Oka family in a ring R that consists of finitely generated
right ideals. Let S be a noetherian point annihilator set for R. Then the following are
equivalent:

(1) F consists of all right ideals of R;

(2) F is a noetherian point annihilator set;

(3) S ⊆ F .

Proof. Given any I ∈ Max(F ′), any nonzero submodule of R/I is the image of a right
ideal properly containing I, which must be finitely generated; thus R/I is a noetherian
right R-module. Stated another way, the class {R/I : I ∈ Max(F ′)} consists of noetherian
modules. Thus (1) ⇐⇒ (2) follows from Theorem 4.2.1(3) and (1) ⇐⇒ (3) follows from
Theorem 4.2.3(3).

As our first application of the simplified corollary above, we will finally present our
noncommutative generalization of Cohen’s Theorem 1.1.1, improving upon Theorem 2.2.8.

Theorem 4.2.5 (A noncommutative Cohen’s Theorem). Let R be a ring with a right noethe-
rian point annihilator set S. The following are equivalent:

(1) R is right noetherian;

(2) Every right ideal in S is finitely generated;

(3) Every nonzero noetherian right R-module has a finitely generated point annihilator;

(4) Every nonzero noetherian right R-module has a nonzero cyclic finitely presented sub-
module.

In particular, R is right noetherian iff every cocritical right ideal is finitely generated.
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Proof. The family of finitely generated right ideals is a right Oka family by Proposition 2.2.7.
The equivalence of (1), (2), and (3) thus follows directly from Corollary 4.2.4. Also, (3)⇐⇒
(4) comes from the observation that a right ideal I is a point annihilator of a module MR

iff there is an injective module homomorphism R/I ↪→ M , as well as the fact that R/I is
a finitely presented module iff I is a finitely generated right ideal [32, (4.26)(b)]. The last
statement follows from Proposition 4.1.15.

In particular, if we take the set S above to be the completely prime right ideals of R, we
recover Theorem 2.2.8. Our version of Cohen’s Theorem will be compared and contrasted
with earlier such generalizations in §5.4.

The result above suggests that one might wish to drop the word “cyclic” in characteriza-
tion (4). This is indeed possible. We present this as a separate result since it does not take
advantage of the “formalized proof method” given in Theorem 4.2.1. However, this result
does follow the informal “strategy of proof” outlined at the beginning of this section.

Proposition 4.2.6. For a ring R, the following are equivalent:

(1) R is right noetherian;

(5) Every nonzero noetherian right R-module has a nonzero finitely presented submodule.

Proof. Using the numbering from Theorem 4.2.5, we have (1) =⇒ (4) =⇒ (5). Suppose
that (5) holds, and assume for contradiction that there exists a right ideal of R that is
not finitely generated. Using Zorn’s Lemma, pass to IR ⊆ R that is maximal with respect
to not being finitely generated. Then because every right ideal properly containing I is
f.g., the module R/I is noetherian. By hypothesis, there is a finitely presented submodule
0 6= J/I ⊆ R/I. Then J ) I implies that J is finitely generated, so that R/J is finitely
presented. Because R/I is an extension of the two finitely presented modules J/I and R/J ,
R/I is finitely presented [36, Ex. 4.8(2)]. But if R/I is finitely presented then IR is finitely
generated [32, (4.26)(b)]. This is a contradiction.

A well-known theorem in commutative algebra states that a commutative ring R is ar-
tinian iff it is noetherian and every prime ideal is maximal. Recall that a module MR is
finitely cogenerated if any family of submodules of M whose intersection is zero has a finite
subfamily whose intersection is zero. In [37, (5.17)] consideration of the class of finitely
cogenerated right modules led to the following “artinian version” of Cohen’s theorem: a
commutative ring R is artinian iff for all P ∈ Spec(R), P is finitely generated and R/P is
finitely cogenerated. Here we generalize both of these results to the noncommutative setting.

Proposition 4.2.7. For a ring R with right noetherian point annihilator set S, the following
are equivalent:

(1) R is right artinian;
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(2) R is right noetherian and for all P ∈ S, (R/P )R has finite length;

(3) For all P ∈ S, PR is finitely generated and (R/P )R has finite length;

(4) For all P ∈ S, PR is finitely generated and (R/P )R is finitely cogenerated;

(5) R is right noetherian and every cocritical right ideal of R is maximal;

(6) Every cocritical right ideal of R is finitely generated and maximal.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3): It is well-known that R is right artinian iff RR has finite
length. This equivalence then follows from Corollary 4.2.4, Theorem 4.2.5, and the fact (see
Example 3.2.18(4)) that F := {IR ⊆ R : R/IR has finite length} is a right Oka family.

(1)⇐⇒ (4): It is known that a module MR is artinian iff every quotient of M is finitely
cogenerated (see [36, Ex. 19.0]). Then (1) ⇐⇒ (4) follows from Corollary 4.2.4 and Exam-
ple 3.2.18(1B) with k = R.

We get (1) ⇐⇒ (5) ⇐⇒ (6) by applying the equivalence of (1), (2), and (3) to the case
where S is the set of cocritical right ideals of R, noting that every artinian critical module
is necessarily simple.

Of course, the fact that a right noetherian ring is right artinian iff all of its cocritical right
ideals are maximal follows from a direct argument involving Krull dimensions of modules.
Indeed, given a right noetherian ring R with right Krull dimension α, choose a right ideal I ⊆
R maximal with respect to K. dim(R/I) = α. Then for any right ideal J ⊇ I, K. dim(R/J) <
α = K. dim(R/I); hence I is cocritical. So

r.K. dim(R) = sup{K. dim(R/I) : IR ⊆ R is cocritical}.

The result now follows once we recall that the 0-critical modules are precisely the simple
modules.

Another application of Theorem 4.2.5 tells us when a right semi-artinian ring, especially
a left artinian ring, is right artinian. (The definition of a right semi-artinian ring was recalled
in Example 4.1.8.)

Proposition 4.2.8. (1) A right semi-artinian ring R is right artinian iff every maximal right
ideal of R is finitely generated.

(2) Let R be a left perfect ring (e.g. a semiprimary ring, such as a left artinian ring) and
let m1, . . . ,mn be maximal right ideals such that R/mi exhaust all isomorphism classes of
simple right modules. Then R is right artinian iff all of the mi are finitely generated.

Proof. It is easy to check that a right semi-artinian ring R is right artinian iff it is right
noetherian. The proposition then follows from Theorem 4.2.5 and Examples 4.1.8–4.1.9.
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A result of B. Osofsky [45, Lem. 11] states that a left or right perfect ring R with Jacobson
radical J is right artinian iff J/J2 is finitely generated as a right R-module. This applies,
in particular, to left artinian rings. D. V. Huynh characterized which (possibly nonunital)
left artinian rings are right artinian in [22, Thm. 1]. In the unital case, his characterization
recovers Osofsky’s result above for the special class of left artinian rings. We can use our
previous result to recover a weaker version of Osofsky’s theorem that implies Huynh’s result
for unital left artinian rings.

Corollary 4.2.9. Let R be a ring with J := rad(R). The the following are equivalent:

(1) R is right artinian;

(2) R is left perfect and J is a finitely generated right ideal;

(3) R is perfect and J/J2 is a finitely generated right R-module.

In particular, if R is semiprimary (for instance, if it is left artinian), then R is right artinian
iff J/J2 is finitely generated on the right.

Proof. Because any right artinian ring is both perfect and right noetherian, we have (1) =⇒
(3). For (3) =⇒ (2), suppose that R is perfect and that J/J2 is right finitely generated.
Then for some finitely generated submodule MR ⊆ JR, J = M+J2. Since R is right perfect,
J is right T-nilpotent. Then by “Nakayama’s Lemma” for right T-nilpotent ideals (see [33,
(23.16)]) implies that JR = MR is finitely generated.

Finally we show (2) =⇒ (1). Suppose that R is left perfect and that JR is finitely
generated. For any maximal right ideal m of R, we have J ⊆ m. Now m/J is a right ideal
of the semisimple ring R/J and is therefore finitely generated. Because JR is also finitely
generated, we see that mR itself is finitely generated. Since this is true for all maximal right
ideals of R, Proposition 4.2.8(2) implies that R is right artinian.

Next we give a condition for every finitely generated right module over a ring R to have a
finite free resolution (FFR). Notice that such a ring is necessarily right noetherian. Indeed,
any module with an FFR is necessarily finitely presented. Thus if every f.g. right R-module
has an FFR, then for every right ideal I ⊆ R the module R/I must have an FFR and
therefore must be finitely presented. It follows (from Schanuel’s Lemma [32, (5.1)]) that IR
is finitely generated, and R is right noetherian.

Proposition 4.2.10. Let S be a right noetherian point annihilator set for a ring R (e.g. the
set of cocritical right ideals). Then the following are equivalent.

(1) Every finitely generated right R-module has a finite free resolution;

(2) For all P ∈ S, R/P has a finite free resolution;
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(3) Every right ideal in S has a finite free resolution.

Proof. (1) =⇒ (3): As mentioned before the proposition, if every f.g. right R-module has
a finite free resolution then R is right noetherian. So every right ideal IR ⊆ R is finitely
generated and therefore has a finite free resolution.

Next, (3) =⇒ (2) follows from the easy fact that, given IR ⊆ R, if I has a finite free
resolution then so does R/I. For (2) =⇒ (1), let F be the family of right ideals I such that
R/I has a finite free resolution and assume that S ⊆ F . This is a right Oka family according
to Example 3.2.12(5). Moreover, if I ∈ F then R/I is finitely presented. As noted earlier,
this implies that IR must be finitely generated [32, (4.26)(b)]. It follows from Corollary 4.2.4
that every right ideal of R lies in F . Because any finitely generated right R-module is an
extension of cyclic modules and because the property of having an FFR is preserved by
extensions, we conclude that (1) holds.
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Chapter 5

When are all right ideals principal?

5.1 Families of principal right ideals

We will use Fpr(R) to denote the family of principal right ideals of a ring R. If the ring
R is understood from the context, we may simply use Fpr to denote this family.

A theorem of Kaplansky [26, Thm. 12.3 & Footnote 8] states that a commutative ring is
a principal ideal ring iff its prime ideals are all principal. In [37, (3.17)] this theorem was
recovered via the “PIP supplement.” It is therefore reasonable to hope that the methods
presented here will lead to a generalization of this result. Specifically, we would like to know
whether a ring R is a principal right ideal ring (PRIR) if, say, every cocritical right ideal
is principal. It turns out that this is in fact true, but the path to proving the result is not
as straightforward as one might imagine. The obvious starting point is to ask whether the
family Fpr of principal right ideals in an arbitrary ring R is a right Oka family. Suppose
that R is a ring such that Fpr is a right Oka family. Then Corollary 4.2.4 readily applies to
Fpr. However, it is not immediately clear whether or not Fpr(R) is necessarily right Oka for
every ring R. The following proposition provides some guidance in this matter.

Proposition 5.1.1. Let S ⊆ R be a multiplicative set. Then F := {sR : s ∈ S} is a right
Oka family iff it is closed under similarity. In particular, for any ring R, the family Fpr of
principal right ideals is a right Oka family iff it is closed under similarity.

Proof. By Proposition 3.1.6, any right Oka family is closed under similarity. On the other
hand, assume that the family F in question is closed under similarity. Suppose that I +
aR, a−1I ∈ F , and write I + aR = sR for some s ∈ S. In the short exact sequence of right
R-modules

0→ I + aR

I
→ R

I
→ R

I + aR
→ 0,

observe that R/(a−1I) ∼= (I + aR)/I = sR/I ∼= R/(s−1I). Because F is closed under
similarity and a−1I ∈ F , we must also have s−1I ∈ F . Fix t ∈ S such that s−1I = tR. Then
because I ⊆ I + aR = sR we have I = s(s−1I) = stR, and st ∈ S implies that I ∈ F .
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In particular, we have the following “first approximation” to our desired theorem.

Corollary 5.1.2. Let S be a right noetherian point annihilator set for R. The following are
equivalent:

(1) R is a principal right ideal ring;

(2) Fpr is closed under similarity and every right ideal in S is principal;

(3) Fpr is closed under similarity and is a right noetherian point annihilator set.

Proof. If R is a PRIR, then Fpr is equal to the family of all right ideals in R and therefore is
closed under similarity. Also, by Proposition 5.1.1, if Fpr is closed under similarity then it is
a right Oka family. These observations along with Corollary 4.2.4 establish the equivalence
of (1)–(3).

This provides some motivation to explore for which rings the family Fpr is closed under
similarity (and consequently is a right Oka family). It is easy to see that in any right duo
ring, and particularly in any commutative ring, every family of right ideals is closed under
similarity. This is because in such a ring R, any right ideal I is necessarily a two-sided
ideal, so that I = ann(R/I) can be recovered from the isomorphism class of R/I. Thus
Proposition 5.1.1 applies to show that Fpr is a right Oka family whenever R is a right duo
ring, such as a commutative ring. For commutative rings R, the fact that Fpr is an Oka
family was already noted in [37, (3.17)].

Another collection of rings in which Fpr is closed under similarity is the class of local
rings. To show that this is the case, we apply Proposition 3.1.6. Suppose that R is local, and
that IR ⊆ R and a ∈ R are such that I + aR = R and a−1I = xR is principal. We want to
conclude that I is principal. Write 1 = i0 + ar for some i0 ∈ I and r ∈ R. Let U(R) denote
the group of units of R. If i0 ∈ U(R), then I = R is principal. Else i0 /∈ U(R) implies that
1 − i0 = ar ∈ U(R) and hence a ∈ U(R) (R local implies that right invertible elements are
invertible). But then a−1I = a−1 · I, so that I = a(a−1I) = axR is principal as desired.

Remark 5.1.3. In any ring R, let IR, JR ⊆ R be right ideals such that J = xR is principal
and R/I ∼= R/J . Then I is generated by at most two elements. To see this, apply Schanuel’s
Lemma (for instance, see [32, (5.1)]) to the exact sequences

0→ I → R→ R/I → 0 and

0→ J → R→ R/J → 0

to get R⊕ I ∼= R⊕J . The latter module is generated by at most two elements. Therefore I,
being isomorphic to a direct summand of this module, is generated by at most two elements.
Thus we see that such I is “not too far” from being principal. (Of course, the same argument
shows that if JR ⊆ R is generated by at most n elements and if IR ⊆ R is similar to J , then
I is generated by at most n+ 1 elements.)
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The analysis above also provides the following useful fact: if the module RR is cancellable
in the category of (finitely generated) right R-modules (or even in the category of finite direct
sums of f.g. right ideals), then the family Fpr is closed under similarity (and hence is a right
Oka family). Indeed, if this is the case, suppose that R/I ∼= R/J for right ideals I and J
with J principal. By the remark above, we have I finitely generated and R ⊕ I ∼= R ⊕ J .
With the assumption on RR we would have IR ∼= JR principal, proving Fpr to be closed
under similarity. (In fact one can similarly show that, over such rings, the minimal number
of generators µ(I) of a f.g. right ideal I ⊆ R is an invariant of the similarity class of I.)

This provides another class of rings for which Fpr is a right Oka family, as follows. Recall
that a ring R is said to have (right) stable range 1 if, for a, b ∈ R, aR + bR = R implies
that (a + br)R = R for some r ∈ R (see [35, §1] for details). In [12, Thm. 2] E. G. Evans
showed that for any ring with stable range 1, RR is cancellable in the full module category
MR. Thus for any ring R with stable range 1, Fpr(R) is a right Oka family. The class of
rings with stable range 1 includes all semilocal rings (see [33, (20.9)] or [35, (2.10)]), so that
this generalizes the case of local rings discussed above.

A similar argument applies in the class of 2-firs. A ring R is said to be a 2-fir (where “fir”
stands for “free ideal ring”) if the free right R-module of rank 2 has invariant basis number
and every right ideal of R generated by at most two elements is free. We claim that Fpr(R)
is closed under similarity if R is a 2-fir. Suppose that IR ⊆ R is similar to a principal right
ideal J . As before, we have R⊕ I ∼= R⊕ J , and I is generated by at most two elements. So
I ∼= Rm, and J ∼= Rn where n ≤ 1 because J is princpal. Thus Rm+1 ∼= Rn+1 with n+1 ≤ 2,
and the invariant basis number of the latter free module implies that m = n ≤ 1. Hence
IR ∼= Rm is a principal right ideal.

There is yet another way in which Fpr(R) can be closed under similarity. Suppose that
every finitely generated right ideal of R is principal; rings satisfying this property are often
called right Bèzout rings. Then Fpr is equal to the set of all f.g. right ideals of R and is
therefore a right Oka family by Proposition 2.2.7. A familiar class of examples of such rings
is the class of von Neumann regular rings; in such rings, every finitely generated right ideal
is a direct summand of RR, and therefore is principal.

We present a summary of the examples above.

Examples 5.1.4. In each of the following types of rings, the family Fpr is closed under
similarity and thus is a right Oka family:

(1) Right duo rings (including commutative rings);

(2) Rings with stable range 1 (including semilocal rings);

(3) 2-firs;

(4) Right Bèzout rings (including von Neumann regular rings).
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One collection of semilocal rings that we have already mentioned is the class of left perfect
rings. An application of Corollary 5.1.2 in this case gives the following.

Corollary 5.1.5. Let R be a left perfect ring (e.g. a semiprimary ring, such as a one-sided
artinian ring), and let m1, . . . ,mn ⊆ R be maximal right ideals such that the R/mi represent
all isomorphism classes of simple right R-modules. Then R is a PRIR iff all of the mi are
principal right ideals.

Proof. By Example 5.1.4(2), Fpr is an Oka family of right ideals in R. By Example 4.1.9,
the set {mi} is a right noetherian point annihilator set. The claim then follows from Corol-
lary 5.1.2.

As it turns out, the family Fpr can indeed fail to be right Oka, even in a noetherian
domain! This will be shown in Example 5.1.7 below, with the help of the following lemma.

Lemma 5.1.6. Let R be a ring with an element x ∈ R that is not a left zero-divisor.

(A) If J and K are right ideals of R with J ⊆ xR, then

x−1(J +K) = x−1J + x−1K.

(B) For any f ∈ R,
x−1(xfR + (1 + xy)R) = fR + (1 + yx)R.

Proof. (A) The containment “⊇” holds without any assumptions on x, J , or K because
x(x−1J + x−1K) = x · (x−1J) + x · (x−1K) ⊆ J + K. To show “⊆” let f ∈ x−1(J + K), so
that there exist j ∈ J and k ∈ K such that xf = j+k. Because J ⊆ xR, there exists j0 such
that j = xj0; notice that j0 ∈ x−1J . Then we have k = xk0 for k0 = f − j0 ∈ x−1K. Now
xf = xj0 + xk0, and because x is not a left zero-divisor we have f = j0 + k0 ∈ x−1J + x−1K.

(B) Setting J = xfR and K = (1 + xy)R, one may compute that x−1J = fR and
x−1K = (1 + yx)R (using the fact that x is not a left zero divisor). The claim follows
directly from part (A).

Example 5.1.7. A ring in which Fpr is not a right Oka family. Let k be a field and let
R := A1(k) = k〈x, y : xy = yx+ 1〉 be the first Weyl algebra over k. Then R is known to be
a noetherian domain (which is simple if k has characteristic 0). Define the right ideal

IR := x2R + (1 + xy)R ⊆ R,

which is shown to be nonprincipal in [40, 7.11.8]. Because I + xR contains both 1 + xy ∈ I
and xy ∈ xR, we must have 1 ∈ I + xR = R.

Because 1 + yx = xy ∈ xR, Lemma 5.1.6(B) above (with f = x) implies that x−1I =
xR + (1 + yx)R = xR. Therefore we have I + xR = R and x−1I = xR both members of
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Fpr with I /∈ Fpr proving that Fpr is not a right Oka family. In fact we have R/I ∼= R/xR
where I is not principal (the isomorphism follows from Lemma 3.1.5(A), showing explicitly
that Fpr is not closed under similarity as predicted by Proposition 5.1.1. In agreement with
Remark 5.1.3, I is generated by two elements.

Notice that R/xR ∼= k[y], where k[y] ⊆ R acts by right multiplication and x ∈ R
acts as −∂/∂y. If k has characteristic 0 then this module is evidently simple, and because
R/I ∼= R/xR we see that I is a maximal right ideal. If instead char(k) = p > 0, then
R/xR ∼= k[y] is evidently not simple, and not even artinian (the submodules ynpk[y] form
a strictly descending chain for n ≥ 0). But every proper factor of this module has finite
dimension over k and is therefore artinian. So we see that R/I ∼= R/xR is 1-critical, making
I a 1-cocritical right ideal. Thus regardless of the characteristic of k, the nonprincipal right
ideal I is cocritical.

On the other hand, when char k = 0 the ring M2(R) is known to be a principal (right
and left) ideal ring—see [40, 7.11.7]. Then Fpr(M2(R)) is equal to the set of all right ideals
in M2(R) and thus is a right Oka family. So we see that the property “Fpr(R) is a right Oka
family” is not Morita invariant.

It would be very desirable to eliminate the condition in Corollary 5.1.2 that Fpr is closed
under similarity. It turns out that a suitable strengthening of the hypothesis on the point
annihilator set S will in fact allow us to discard that assumption. The following constructions
will help us achieve this goal in Theorem 5.1.11 below. Recall that for right ideals I and J
of a ring R, we write I ∼ J to mean that I and J are similar.

Definition 5.1.8. For any ring R, we define

F ◦pr(R) := {IR ⊆ R : ∀JR ⊆ R, I ∼ J =⇒ J ∈ Fpr}
= {IR ⊆ R : I is only similar to principal right ideals}.

Alternatively, F ◦pr is the largest subset of Fpr that is closed under similarity.

As with Fpr, we will often write F ◦pr in place of F ◦pr(R) when the ring R is understood
from the context. We saw in Proposition 5.1.1 that certain families of principal right ideals
are right Oka precisely when they are closed under similarity. But F ◦pr is the largest family
of principal right ideas that is closed under similarity. Thus one might wonder whether F ◦pr
might be a right Oka family. As it turns out, we are very fortunate and this is in fact true
in every ring!

Proposition 5.1.9. For any ring R, F ◦pr(R) is an Oka family of right ideals.

Proof. We will denote F := F ◦pr(R). Because IR ∼ RR implies I = R ∈ Fpr, we see that
R ∈ F . Suppose that IR ⊆ R and a ∈ R are such that I + aR, a−1I ∈ F . Set C1 := R/a−1I
and C2 := R/(I + aR), so that we have an exact sequence

0→ C1 → R/I → C2 → 0.
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To prove that I ∈ F , let JR ⊆ R be such that R/J ∼= R/I. We need to show that J is
principal. There is also an exact sequence

0→ C1 → R/J → C2 → 0.

Thus there exists x ∈ R with C1
∼= (J+xR)/J and C2

∼= R/(J+xR). But then R/(I+aR) =
C2
∼= R/(J + xR) and I + aR ∈ F imply that J + xR = cR for some c ∈ R. Now

R

a−1I
= C1

∼=
J + xR

J
=
cR

J
∼=

R

c−1J

and a−1I ∈ F , so we find that c−1J is principal. Then J ⊆ J + xR = cR gives J = c(c−1J),
proving that J is principal.

The following elementary observation will be useful in a number of places. It is simply a
convenient restatement of the fact that F ◦pr is the largest set of principal right ideals that is
closed under similarity.

Lemma 5.1.10. Let S be a set of right ideals of a ring R that is closed under similarity. If
S ⊆ Fpr, then S ⊆ F ◦pr (and, of course, conversely).

We are finally ready to state and prove our noncommutative generalization of the Kaplansky-
Cohen Theorem 1.1.3.

Theorem 5.1.11 (A noncommutative Kaplansky-Cohen Theorem). For any ring R, let S
be a right noetherian point annihilator set that is closed under similarity. The following are
equivalent:

(1) R is a principal right ideal ring;

(2) Every right ideal in S is principal;

(3) F ◦pr is a right noetherian point annihilator set.

In particular, R is a principal right ideal ring iff every cocritical right ideal of R is principal.

Proof. The set of cocritical right ideals of R is a noetherian point annihilator set that is
closed under similarity, so it suffices to prove the equivalence of (1)–(3). It is easy to see
that (1) is equivalent to the claim that all right ideals lie in F ◦pr. Also, it follows from
Lemma 5.1.10 that (2) holds precisely when S ⊆ F ◦pr. The equivalence of (1)–(3) now
follows from Corollary 4.2.4 and Proposition 5.1.9.

As with Cohen’s Theorem, there exist previous noncommutative generalizations of the
Kaplansky-Cohen theorem in the literature. In §5.4 we relate our theorem with these earlier
results.
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Comparing our two versions of the Kaplansky-Cohen Theorem, we see that Corollary 5.1.2
follows from Theorem 5.1.11, at least if we consider condition (3) in each equivalence. (Recall
Remark 4.1.2, and the fact that F ◦pr ⊆ Fpr.) However, this does not mean that Corollary 5.1.2
is obsolete. It is clear that Theorem 5.1.11 is preferable to Corollary 5.1.2 if we have enough
knowledge about the point annihilator set S but we do not know whether the family Fpr is
closed under similarity. On the other hand, if we are working in a class of rings for which
we know that Fpr is closed under similarity, then Corollary 5.1.2 may be of more use. This
proved to be the case in Corollary 5.1.5, where we were able to reduce the point annihilator
set S to a finite set.

Notice that our earlier examination of the Weyl algebra A1(k) in Example 5.1.7 fits
nicely with Theorem 5.1.11, because the nonprincipal right ideal discussed in that example
was shown to be cocritical.

As a simple application of Theorem 5.1.11, we can show that a domain R with right Krull
dimension ≤ 1 is a principal right ideal domain iff its maximal right ideals are principal.
Indeed, by Proposition 4.1.13 the zero ideal of R is 1-cocritical as a right ideal (and it is, of
course, principal). Thus any nonzero cocritical right ideal of R is 0-critical and therefore is
a maximal right ideal. The claim then follows from Theorem 5.1.11. However, we will prove
a substantially more general version of this fact in Proposition 5.3.1.

5.2 Families closed under direct summands

In this section we will develop further generalizations of Cohen’s Theorem and the
Kaplansky-Cohen theorems by further reducing the set of right ideals in a ring which we are
required to “test.” In particular, where our previous theorems stated that it was sufficient to
check that every right ideal in some noetherian point annihilator set S is finitely generated
(or principal), we will further reduce the task to checking that every essential right ideal in
S is finitely generated (or principal). We begin with a definition, temporarily digressing to
families of submodules of a given modules other than RR.

Definition 5.2.1. Let MR be a module over a ring R. We will say that a family F of
submodules of M is closed under direct summands if for any N ∈ F , any direct summand
of N also lies in F .

Notice that a family F of submodules of M that is closed under direct summands nec-
essarily has 0 ∈ F as long as F 6= ∅. The following result is the reason for our interest in
families that are closed under direct summands. It shows the link between such families and
the essential submodules of M .

Lemma 5.2.2. In a module MR, let F be a family of submodules that is closed under direct
summands. Then all submodules of M lie in F iff all essential submodules of M lie in F . In
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particular, if F is a family of right ideals in a ring R that is closed under direct summands,
then all right ideals of R lie in F iff all essential right ideals of R lie in F .

Proof. (“If” direction) Suppose that every essential submodule of M lies in F , and let
LR ⊆M . By Zorn’s lemma there exists a submodule NR maximal with respect to L∩N = 0
(in the literature, such N is referred to as a complement to L). We claim that N ⊕ L is an
essential submodule of M . Indeed, assume for contradiction that 0 6= K ⊆M is a submodule
such that (L⊕N) ∩K = 0. Then we have the direct sum L⊕N ⊕K in M . It follows that
L ∩ (N ⊕K) = 0, contradicting the maximality of N .

By assumption, N ⊕ L ⊆e M implies that N ⊕ L ∈ F . Then because F is closed under
direct summands, we conclude that N ∈ F .

With this result as our motivation, let us consider a few examples of families of right
ideals that are closed under direct summands.

Example 5.2.3. In any module MR, the easiest nontrivial example of a family that is closed
under direct summands is the family F of all direct summands of M ! The application of
Lemma 5.2.2 in this case says that a module M is semisimple iff every essential submodule
of M is a direct summand. However, it is easy to check that a direct summand of M is
essential in M iff it is equal to M . So this says that a module is semisimple iff it has no
proper essential submodules. This is a known result; for instance, see [36, Ex. 3.9].

Example 5.2.4. The family of finitely generated submodules of a module MR is certainly
closed under direct summands. It follows that a module M is right noetherian iff all of
its essential submodules are finitely generated. Again, this fact can be found, for instance,
in [36, Ex. 6.11].

We can generalize the result above as follows. Let α be any cardinal (finite or infinite),
and let F be the family of all submodules of M that have a generating set of size < α. Then
F is again closed under direct summands. So every submodule of M is generated by < α
elements iff the essential submodules of M are all generated by < α elements.

Taking MR = RR and α = 2, we see in particular that Fpr is closed under direct sum-
mands, and Lemma 5.2.2 implies that R is a PRIR iff its essential right ideals are principal.

Here we end our digression into families of submodules of arbitrary modules and focus
our attention on families of right ideals in a ring R that are closed under direct summands.
The next two examples are of a homological nature.

Example 5.2.5. For a module MR, let F be the family of right ideals I ⊆ R such that
every module homomorphism f : I → M extends to a homomorphism R → M . This was
shown to be a right Oka family in Proposition 3.2.16. We claim that F is closed under direct
summands. For if I ⊕ J ∈ F and f : I → M is any homomorphism, then we may extend
f trivially to I ⊕ J → M . This morphism in turn extends to R → M because I ⊕ J ∈ F .
Hence I ∈ F .
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By Baer’s Criterion, every right ideal lies in F precisely when M is injective. So applying
Lemma 5.2.2, we find that M is injective iff every essential right ideal of R lies in F . This
“essential version” of Baer’s Criterion has been noticed before; for instance, see [36, Ex. 3.26].

More generally, for any module MR and integer n ≥ 0, let FnM denote the family of
right ideals I ⊆ R such that Extn+1

R (R/I,M) = 0. The family F above was shown to be
equal to F0

M in the proof of Proposition 3.2.16. We claim that the families Fn are closed
under direct summands. The case n = 0 is covered above, so suppose that n ≥ 1. Note that
ExtnR(R,M) = Extn+1

R (R,M) = 0 because RR is projective. So for any right ideal K ⊆ R, the
long exact sequence in Ext provides isomorphisms ExtnR(K,M) ∼= Extn+1

R (R/K,M). Thus
for any direct sum of right ideals I ⊕ J ⊆ R, combining this observation with a standard
fact about Ext and direct sums gives

Extn+1
R (R/(I ⊕ J),M) ∼= ExtnR(I ⊕ J,M)

∼= ExtnR(I,M)⊕ ExtnR(J,M)

∼= Extn+1
R (R/I,M)⊕ Extn+1

R (R/J,M).

This makes it clear that if I ⊕ J ∈ FnM , then I ∈ FnM .
Extending Baer’s Criterion, one can show that a module MR has injective dimension ≤ n

iff Extn+1
R (R/I,M) = 0 for all right ideals I of R (this is demonstrated in the proof of [50,

Thm. 8.16]). If we apply Lemma 5.2.2 to the family FnM , we see that for any module MR we
have id(M) ≤ n iff Extn+1

R (R/I,M) = 0 for all essential right ideals I of R.

Example 5.2.6. As an application of Example 5.2.5 above, we produce another example of
a family that is closed under direct summands. Let Fn be the family of all right ideals of R
such that pd(R/I) ≤ n. Because R/I has projective dimension ≤ n iff Extn+1

R (R/I,M) = 0
for all modules M , we see that Fn is equal to the intersection of all of the families FnM as M
ranges over all right R-modules. Since all of these families are closed under direct summands,
Fn is also closed under summands. In this case we can apply Lemma 5.2.2 to say that a ring
R has r. gl. dim(R) ≤ n iff pd(R/I) ≤ n for all essential right ideals IR ⊆ R. Notice that
when n = 0, F0 is the family of right ideal direct summands mentioned in Example 5.2.3.

Before continuing to the heart of this section, we require a small observation as well as a
new definition.

Remark 5.2.7. Notice that the set of essential right ideals is a divisible semifilter, and is
closed under similarity. It is easy to see that the set is a semifilter. To see that it is divisible,
we will use the following fact about essential submodules: for any homomorphism of modules
f : MR → NR and any essential submodule N0 ⊆ N , the preimage f−1(N0) is an essential
submodule of M (see [36, Ex. 3.7] for a proof of this fact). Now given a right ideal I ⊆ R,
x−1I is the preimage of the right ideal I under the homomorphism RR → RR given by left
multiplication by x. Thus if I is an essential right ideal, so is x−1I. Finally, to see that this
set is closed under similarity, one only needs to realize that IR ⊆ R is essential iff R/I is a
singular module; see [36, Ex. 2(b)].
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Definition 5.2.8. Let F be a family of right ideals in a ring R. We define

F̃ := {IR ⊆ R : I ⊕ J ∈ F for some JR ⊆ R}.

This is the smallest family of right ideals containing F that is closed under direct summands

The next result, which is fundamental to this section, is a variation of Theorem 4.2.3 and
Corollary 4.2.4.

Theorem 5.2.9. Let F be an Oka family of right ideals in a ring R.

(1) Assume that every chain of right ideals in F ′ has an upper bound in F ′, and let S be a
point annihilator set for the class of modules {R/I : I ∈ Max(F ′)}. If every essential

right ideal in S lies in F , then all right ideals of R lie in F̃ .

(2) Let S be a noetherian point annihilator set for R, and assume that F consists of finitely
generated right ideals. If every essential right ideal in S lies in F , then all right ideals
of R lie in F̃ .

Proof. To prove (1), let S and F satisfy the given hypotheses. Let F0 denote the divisible
semifilter of essential right ideals of R. By assumption we have F0 ∩ S ⊆ F , so it follows
from Theorem 4.2.3 that F0 ⊆ F . Then all essential right ideals of R lie in F̃ ⊇ F , and it
follows from Lemma 5.2.2 that all right ideals lie in F̃ .

Now (2) follows from (1) because the fact that F consists of finitely generated right ideals
implies both that every chain of right ideals in F ′ has an upper bound in F ′ and that the class
{R/I : I ∈ Max(F ′)} consists of noetherian modules (as in the proof of Corollary 4.2.4).

In particular, if the right Oka family F in the theorem above is in fact closed under
direct summands, then F̃ = F . Thus in this case Theorem 5.2.9 is a generalization of Theo-
rem 4.2.3. Our first application of this result will be a strengthening of the noncommutative
Cohen’s Theorem 4.2.5.

Theorem 5.2.10. For a ring R, let S be a right noetherian point annihilator set (such as
the set of cocritical right ideals). Then R is right noetherian iff every essential right ideal in
S is finitely generated.

Proof. (“If” direction) This follows directly from Example 5.2.4 and Theorem 5.2.9(2) by

taking F = F̃ to be the family of finitely generated right ideals of R.

Our next application of Theorem 5.2.9 will strengthen our noncommutative version of
the Kaplansky-Cohen Theorem 5.1.11. The careful statement of Theorem 5.2.9 will pay off
here.

Theorem 5.2.11. Let R be a ring with noetherian point annihilator set S that is closed
under similarity (such as the set of cocritical right ideals). Then R is a principal right ideal
ring iff every essential right ideal in S is principal.



72

Proof. (“If” direction) Suppose that every essential right ideal in S is principal, and set
F := F ◦pr. If S0 ⊆ S is the set of essential right ideals in S, then S0 is closed under
similarity because both S and the set of essential right ideals are closed under similarity
(recall Remark 5.2.7). By hypothesis S0 ⊆ Fpr, so Lemma 5.1.10 gives S0 ⊆ F ◦pr =: F . That
is, every essential right ideal in S lies in F . Now Theorem 5.2.9(2) implies that all right

ideals of R lie in F̃ . But Fpr is closed under direct summands by Example 5.2.4, so F ⊆ Fpr

implies that F̃ ⊆ Fpr. Hence every right ideal of R is principal.

Our final applications of Theorem 5.2.9 show how to reduce the test sets for various
homological properties in a right noetherian ring.

Theorem 5.2.12. Let R be a right noetherian ring, and let S be a right (noetherian) point
annihilator set for R (such as the set of cocritical right ideals).

(1) A module MR has injective dimension ≤ n iff Extn+1
R (R/P,M) = 0 for all essential

right ideals P ∈ S.

(2) All finitely generated right R-modules have finite projective dimension iff pd(R/P ) <∞
for all essential right ideals P ∈ S.

(3) r. gl. dim(R) = sup{pd(R/P ) : P ∈ S is an essential right ideal}.

Proof. For a module MR and a nonnegative integer n, let FnM and Fn be the families
introduced in Examples 5.2.5 and 5.2.6, where they were shown to be closed under di-
rect summands. These familes were shown to be right Oka families in §3.2.B. Defining
F∞ :=

⋃∞
n=1Fn, it follows that F∞ is also a right Oka family closed under direct sum-

mands.
For part (1), we note that a module MR has injective dimension ≤ n iff FnM consists of

all right ideals of R, which happens iff all essential right ideals in S lie in FnM according to
Theorem 5.2.9(2). Next we prove part (2). Because every finitely generated right R-module
is has a finite filtration with cyclic filtration factors, and because the finiteness of projective
dimension is preserved by extensions, we see that every finitely generated right R-module
has finite projective dimension iff every cyclic right R-module does, iff F∞ consists of all
right ideals. By Theorem 5.2.9, this occurs iff all essential right ideals in S lie in F∞.

Part (3) similarly follows from Theorem 5.2.9 applied to the family Fn, noting that R
has right global dimension ≤ n iff Fn consists of all right ideals.

The above joins a whole host of results stating that certain homological properties can
be tested on special sets of ideals. We mention only a few relevant references here. When
R is commutative, S = Spec(R), and n = 0 in part (1), the theorem above recovers a
result of J. A. Beachy and W. D. Weakley in [3]. Part (2) generalizes a result characterizing
commutative regular rings, the “globalizations” of regular local rings (see [32, (5.94)]). Many
results along the lines of part (3) are known. For instance, a result of J. J. Koker in [30,
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Lem. 2.1] implies that if a ring R has right Krull dimension, then its right global dimension
is equal to the supremum of the projective dimensions of the right modules R/P , where P
ranges over the cocritical right ideals of R. On the other hand, for a commutative noetherian
ring R the global dimension of R is equal to the supremum of pd(R/m), where m ranges over
the maximal ideals of R (see [32, (5.92)]). It has also been shown by K. R. Goodearl [18,
Thm. 16] and S. M. Bhatwadekar [4, Prop. 1.1] that for a (left and right) noetherian ring
R whose global dimension is finite, the global dimension of R is the supremum of pd(R/m)
where m ranges over the maximal right ideals of R. It is an open question whether the
finiteness of the global dimension can be dropped [19, Appendix].

5.3 A noncommutative generalization of Kaplansky’s

Theorem

The goal of this section is to prove a noncommutative generalization of Kaplansky’s
Theorem 1.1.2. Specifically, we shall show in Theorem 5.3.9 that a noetherian ring whose
maximal right ideals are all principal is a principal right ideal ring. To motivate our approach,
we shall recall a result [15, Theorem C] of A. W. Goldie: a left noetherian principal right
ideal ring is a direct sum of a semiprime ring and an artinian ring. Inspired by this fact, our
proof of Theorem 5.3.9 will proceed by taking noetherian ring whose maximal right ideals
are principal and decomposing it as a direct sum of a semiprime ring and an artinian ring.
This should seem reasonable because we have already shown in Corollary 5.1.5 that, in order
to test whether an artinian ring is a PRIR, it suffices to test only its maximal right ideals.

With Goldie’s result in mind, we begin this section by investigating under what conditions
one can check the PRIR condition on a semiprime ring by testing only its maximal right
ideals. The first result applies to semiprime rings with small right Krull dimension.

Proposition 5.3.1. Let R be a semiprime ring with r.K. dim(R) ≤ 1. Then R is a principal
right ideal ring iff its maximal right ideals are principal.

Proof. (“If” direction) By Theorem 5.2.11, it suffices to show that the essential cocritical
right ideals of R are principal. Thus it is enough to show that every essential cocritical
right ideal of R is maximal. According to [40, 6.3.10] the fact that R is semiprime with
right Krull dimension means that, for every ER ⊆ R, K. dim(R/E) < K. dim(RR) = 1. So
K. dim(R/E) ≤ 0, and if E is also cocritical then it is 0-cocritical and thus is maximal. This
completes the proof.

In Example 5.3.11 below we will show that the hypothesis on the right Krull dimension
cannot be relaxed. Of course, it is not the case that every semiprime PRIR has right Krull
dimension ≤ 1. In fact, in [20, Ex. 10.3] it is shown (using a construction of A. V. Jategaonkar
from [25]) that there exist principal right ideal domains whose right Krull dimension is equal
to any prescribed ordinal! So while Proposition 5.3.1 gives a sufficient condition for semiprime
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rings to be PRIRs, it is certainly not a necessary condition. However, with some additional
effort we will use this result to formulate a precise characterization of semiprime left and
right principal ideal rings in Corollary 5.3.5 below.

We will show in Proposition 5.3.4 below that if a semiprime ring with a certain finiteness
condition on the left has all maximal right ideals principal, it must have small right Krull
dimension. We take this opportunity to recall that a multiplicatively closed subset S ⊆ R is
saturated if, for any a, b ∈ R, ab ∈ S implies a, b ∈ S.

Lemma 5.3.2. Let R be a ring in which the multiplicative set of (resp. left) regular elements
is saturated and which satisfies the ascending chain condition on left ideals of the form Rs
where s ∈ R is a (resp. left) regular element. Furthermore, suppose that every maximal right
ideal of R is principal. If b ∈ R is a (resp. left) regular element, then R/bR has finite length.

Proof. This argument adapts some of the basic ideas of factorization in noncommutative
domains, as in Prop. 0.9.3 and Thm. 1.3.5 of [9]. However, we do not assume any of those
results here.

If our fixed b ∈ R is not right invertible, then bR 6= R. If bR is not maximal, choose a
maximal right ideal a1R ( R such that bR ( a1R. Then b = a1b1 for some b1 ∈ R. We
claim that Rb ⊆ Rb1 is strict. Indeed, assume for contradiction that Rb = Rb1. Then we
may write b1 = ub for some u ∈ R. Thus b = a1b1 = a1ub, and because b is (left) regular we
have a1u = 1. This contradicts the fact that a1R is maximal. Hence Rb ( Rb1.

Because the set of (left) regular elements is saturated, we may now replace b above by
b1 and proceed inductively to write bi−1 = aibi (if bi−1R is not maximal) where bi is (left)
regular and aiR is a maximal right ideal. By the ACC condition on R, the chain

Rb ( Rb1 ( Rb2 ( · · ·

cannot continue indefinitely. So the process must terminate, say at bn−1 = anbn. This means
that bnR is a maximal right ideal. Writing an+1 := bn, we have a factorization b = a1 · · · an+1

where the right ideals aiR are maximal. Then in the filtration

bR = (a1 · · · an+1)R ⊆ (a1 · · · an)R ⊆ · · · ⊆ a1R ⊆ R,

each factor module (a1 · · · aj−1)R/(a1 · · · aj)R is a homomorphic image of the simple module
R/ajR (via left multiplication by a1 · · · aj−1) and thus is simple. This proves that R/bR has
finite length, as desired.

In light of the hypotheses assumed above, the following definition will be useful.

Definition 5.3.3. We will say that a ring R satisfies left ACC-reg if it satisfies the ascending
chain condition on left ideals of the form Rs where s ∈ R is a regular element.

Proposition 5.3.4. Let R be a semiprime ring with right Krull dimension that satisfies left
ACC-reg. If all of the maximal right ideals of R are principal, then r.K. dim(R) ≤ 1 and R
is a principal right ideal ring.
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Proof. Because R is semiprime and has right Krull dimension, it is right Goldie (see [40,
6.3.5]). This has two important consequences. First, the set of regular elements of R is
saturated (because it is the intersection of R with the group of units in its semisimple right
ring of quotients). Second, the essential right ideals of R are precisely the right ideals
containing a regular element (see [32, (11.13)]). Thus, for every ER ⊆e R, R/E has finite
length by Lemma 5.3.2 and thus has Krull dimension at most 0. Now [40, 6.3.10] provides
us with the following equation for r.K. dim(R) (which is valid because R is semiprime with
right Krull dimension):

r.K. dim(R) = sup{K. dim(R/E) + 1 : ER ⊆e R} ≤ 1.

Applying Proposition 5.3.1, we see that R is a principal right ideal ring.

An immediate consequence is the aforementioned characterization of semiprime PIRs.

Corollary 5.3.5. Let R be a semiprime ring.

(1) R is a principal ideal ring iff its left and right Krull dimensions are both at most 1 and
the maximal left ideals and maximal right ideals of R are all principal.

(2) Suppose that R satisfies left ACC-reg. Then R is a principal right ideal ring iff
r.K. dim(R) ≤ 1 and the maximal right ideals of R are principal.

It is possible to strengthen Proposition 5.3.4 to show that more general types of rings
must have small right Krull dimension.

Corollary 5.3.6. Let R be a ring with right Krull dimension, and let N be its prime radical.
Suppose that one of the following two conditions holds:

(A) R/N satisfies left ACC-reg;

(B) R/P satisfies left ACC-reg for every minimal prime ideal P CR.

If the maximal right ideals of R are principal, then r.K. dim(R) ≤ 1. In particular, a
noetherian ring whose maximal right ideals are principal has right Krull dimension at most 1.

Proof. According to [40, 6.3.8], the ring R with right Krull dimension has finitely many
minimal prime ideals P1, . . . , Pn and

r.K. dim(R) = r.K. dim(R/N) = max{r.K. dim(R/Pi)}.

Because every factor ring of R again has principal maximal right ideals, we may now apply
Proposition 5.3.4.

It is an open question whether the left and right Krull dimensions of a general noetherian
ring must be equal [19, Appendix]. However, another application of Proposition 5.3.4 shows
that the Krull dimension of a noetherian PRIR must is symmetric.
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Corollary 5.3.7. A left noetherian principal right ideal ring R has

l.K. dim(R) = r.K. dim(R) ≤ 1.

Proof. As mentioned before, the Krull dimension of R is not changed upon factoring out
its nilradical [40, 6.3.8]; thus we may assume that R is semiprime. In this case, a result
of J. C. Robson [48, Cor. 3.7] states that because R is a noetherian PRIR, it must also be
a PLIR. According to Proposition 5.3.4, both l.K. dim(R) and r.K. dim(R) are at most 1.
Now R has Krull dimension 0 on either side precisely when R is artinian on that side. But
a noetherian ring is artinian on one side iff it is artinian on the other side. (This follows,
for instance, from the Hopkins-Levitzki Theorem [33, (4.15)].) Thus we see that the left and
right Krull dimensions of R must coincide, both equal to 0 when R is artinian and both
equal to 1 when R is not artinian.

The next preparatory result provides a method of testing whether a module over a semilo-
cal ring is zero. One may think of this as a variation of Nakayama’s Lemma (even though
the latter is used in the proof below).

Lemma 5.3.8. Let R be a semilocal ring, and let RB be a finitely generated left module. If
B = mB for all maximal right ideals m of R, then B = 0.

Proof. Let R and RB be as above, and let J = rad(R). We claim that B/JB satisfies the
same hypotheses over the semisimple ring R/J . Indeed, the maximal right ideals of R/J are
the right ideals of the form m/J for a maximal right ideal m of R. For such m/J we have

(m/J) · (B/JB) = mB/JB = B/JB.

Also, B/JB is finitely generated over R/J . So B/JB indeed satisfies the same hypotheses
over R/J . If we knew the lemma to hold over all semisimple rings, it would follow that
B/JB = 0. Nakayama’s Lemma would then imply that B = 0.

So we may assume that R is semisimple. Choose orthogonal idempotents e1, . . . , en in R
whose sum is 1 such that RR =

⊕
eiR is a decomposition of R into minimal right ideals.

Then for any k, (1− ek)R =
⊕

i 6=k eiR is a maximal right ideal of R. By hypothesis, we have
B = (1− ek)RB = (1− ek)B. Because the ei are orthogonal,

(1− e1) · · · (1− ek) = 1− (e1 + · · ·+ ek)

In particular, (1− e1) · · · (1− en) = 1− (e1 + · · ·+ en) = 0. It follows that

B = (1− e1)B = (1− e1)(1− e2)B = · · · = (1− e1) · · · (1− en)B = 0.

Let us review some relevant results on noetherian rings. For an ideal I of a ring R, we let
C(I) denote the set of elements c ∈ R such that c+ I is a regular element of R/I. A theorem
of J. C. Robson [49] states that a noetherian ring R with prime radical N is a direct sum of a
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semiprime ring and an artinian ring iff, for every c ∈ C(N), N = cN = Nc. However, Robson
commented in [49, p. 346] that if one only assumes that N = cN for all c ∈ C(N), one can still
conclude that there exists an idempotent e ∈ R such that eRe is semiprime, (1− e)R(1− e)
is artinian, and eR(1−e) = 0. This gives a useful “triangular decomposition” of such a ring.
In particular it can be used to derive the result of Goldie, mentioned at the beginning of this
section, that a left noetherian principal right ideal ring is a direct sum of a semiprime ring
and an artinian ring. The first paragraph of our argument below borrows from the proof of
this last statement given in [49, Thm. 4]. With Robson’s decomposition result in hand, we
are finally ready to prove our noncommutative generalization of Kaplansky’s Theorem 1.1.2.

Theorem 5.3.9 (A noncommutative Kaplansky’s Theorem). A noetherian ring is a prin-
cipal right ideal ring iff its maximal right ideals are principal.

Proof. (“If” direction) Suppose R is a noetherian ring whose maximal right ideals are prin-
cipal. Notice that every factor ring of R satisfies the same hypotheses. Let N C R be the
prime radical of R. We claim that N = cN for every c ∈ C(N). Let x 7→ x̄ denote the
canonical map R → R/N =: R. By Proposition 5.3.4, r.K. dim(R) ≤ 1. For c ∈ C(N), the
element c̄ ∈ R is regular. So by [40, 6.3.9] we must have K. dim(R/c̄R) < K. dim(R) ≤ 1.
So the right R-module R/(N + cR) ∼= R/c̄R has Krull dimension at most 0 and thus has
finite length. Hence R/(N + cR) has a finite filtration with factors isomorphic to R/mi for
some maximal right ideals m1, . . . ,mp of R. The set of maximal right ideals of R is cer-
tainly closed under similarity (it is the set of right ideals whose factor module is simple),
so by Lemma 5.1.10 all maximal right ideals lie in the right Oka family F ◦pr. It follows
from Corollary 3.1.9 that we have N + cR ∈ F ◦pr. Choose d ∈ R such that N + cR = dR.

Now in R, c̄R = d̄R means that c̄ = d̄r̄ for some r ∈ R. Because the set of regular ele-
ments in the semiprime noetherian ring R is saturated, the fact that c ∈ C(N) implies that
d ∈ C(N). Now N ⊆ dR implies that N = d(d−1N), and d ∈ C(N) gives d−1N = N .
Thus N = d(d−1N) = dN = (cR + N)N = cN + N2, and we conclude from Nakayama’s
Lemma [33, (4.22)] (or by induction and the fact that N is nilpotent) that N = cN .

Now according to Robson’s decomposition result [49, p. 346] the ring R is (up to isomor-
phism) of the form

R =

(
A B
0 S

)
,

where A is an artinian ring, S is a semiprime ring, and ABS is a (left and right noetherian)
bimodule. Given any maximal right ideal m of A, we will show that B = mB. The following
is a maximal right ideal of R, and is therefore principal:(

m B
0 S

)
=

(
x y
0 z

)
·R

for some x ∈ m, y ∈ B, and z ∈ S. It is easy to see that zS = S. Because S is noetherian,
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z must be a unit. Now for any β ∈ B, there exists ( a b0 c ) ∈ R such that(
x y
0 z

)(
a b
0 c

)
=

(
0 β
0 0

)
∈
(
m B
0 S

)
.

Since zc = 0 and z is a unit, we must have c = 0. Thus β = xb ∈ mB. Because β ∈ B was
arbitrary, this proves that B = mB. Since this holds for every maximal right ideal m of A,
we conclude from Lemma 5.3.8 that B = 0.

Hence R = A ⊕ S where A is an artinian ring and S is a semiprime ring. The maximal
right ideals of both S and A must also be principal. The artinian ring A is a PRIR according
to Corollary 5.1.5, and it follows from Proposition 5.3.4 that the semiprime ring S is a PRIR.
It follows that R = A⊕ S is a PRIR.

It is interesting to notice that, in the commutative setting, Kaplansky’s Theorem 1.1.2 is
“stronger” than the Kaplansky-Cohen Theorem 1.1.3, in the sense that Kaplansky originally
derived Theorem 1.1.3 as a consequence of Theorem 1.1.2. This is opposite from our present
situation, where the noncommutative version of the Kaplansky Theorem 5.3.9 in fact follows
from (the “essential version” of) the noncommutative Kaplansky-Cohen Theorem 5.2.11
(through a series of other intermediate results).

The following example shows that Kaplansky’s Theorem does not generalize if we remove
the left noetherian hypothesis.

Example 5.3.10. A local right noetherian ring R with right Krull dimension 1 whose unique
maximal right ideal is principal, but which is not a principal right ideal ring. This construc-
tion is based on an exercise given in [34, Ex. 19.12]. Let k be a field such that there exists a
field isomorphism θ : k(x) → k (which certainly does not fix k), such as k = Q(x1, x2, . . . ).
Consider the discrete valuation ring A = k[x](x). Given a finitely generated module MA, we
define a ring R := A⊕M with multiplication given by

(a,m) · (a′,m′) := (aa′,m′θ(a) +ma′).

Let m = xA ⊕M and N = 0 ⊕M , both of which are ideals of R. Notice that N2 = 0
while R̄ := R/N ∼= A is a domain. This means that N is the prime radical of R. Thus N
is contained in the Jacobson radical rad(R). Because R/ rad(R) ∼= R̄/ rad(R̄) is a field, the
ring R is local with Jacobson radical equal to m. Using the fact that θ(x) ∈ k is a unit in
A, it is easy to conclude that m = (x, 0) ·R is a principal right ideal.

Next we show that R is right noetherian. Because the ring R/N ∼= A is noetherian,
it is noetherian as a right R-module. Also, because N2 = 0, the right R-action on NR =
(0⊕M)R factors through R/N ∼= A. Because A is noetherian and MA is finitely generated,
this means that NR is noetherian. So RR is an extension of the noetherian right modules
R/N and N , proving that R is right noetherian. Because the prime radical of R is N ,
r.K. dim(R) = r.K. dim(R/N) = K. dim(A) = 1 (see [40, 6.3.8]). Finally, because the R-
action on NR = (0⊕M)R factors through R/N ∼= A, if MA is any noncyclic A-module then
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N is not principal as a right ideal in R. In fact, because the minimal number of generators
of µ(NR) is equal to µ(MA) <∞, this number can be made as large as one desires.

Notice that the example above is not semiprime, in accordance with Proposition 5.3.1.
With some extra work, we can produce a similar example R that is a domain. By Propo-
sition 5.3.1 again, we expect such R to have right Krull dimension > 1. (We thank
G. M. Bergman for helping to correct an error in an earlier version of this example.)

Example 5.3.11. A local right noetherian domain R with right Krull dimension 2 whose
unique maximal right ideal is principal, but which is not a principal right ideal ring. Let k,
θ : k(x)

∼→ k, and A = k[x](x) be as in Example 5.3.10. Let B = A[[y; θ]] ⊇ A, the ring of
skew power series over A subject to the relation ay = yθ(a). Consider the ideal I = y2B,
and define the subring R := A ⊕ I ⊆ B. (Notice that R is the subring of B consisting
of power series in which y does not appear with exponent 1. We can suggestively write
R = A[[y2, y3; θ]], with the understanding that the equation ay = yθ(a) only has meaning
via its consequences ayn = yθn(a) for n ≥ 2.) Being a subring of the domain B, R itself is a
domain.

We claim that I ⊆ rad(R). It suffices to show that 1+I ⊆ U(R) (see [33, (4.5)]). Let i ∈ I;
then 1 + i is a unit of B because I ⊆ yB = rad(B). For i′ := −(1 + i)−1i = −i(1 + i)−1 ∈ I
(note: (1 + i)−1 commutes with i because 1 + i does), we have

(1 + i) · (1 + i′) = 1 + i+ (1 + i)i′ = 1,

and similarly (1 + i′)(1 + i) = 1. So 1 + i ∈ U(R) as desired. One can now proceed
as in Example 5.3.10 to show that R is a local ring whose unique maximal right ideal
m := xA⊕ I = xR is principal.

It is easy to see that R is a free right module over the subring A[[y2; θ]] ∼= A[[t; θ]] =: S
with basis {1, y3}. Because S is right noetherian (in fact, a principal right ideal domain,
according to [24]), R is also right noetherian. We claim that r.K. dim(S) = 2. First we show
that for every f ∈ S \ {0}, K. dim(S/fS) ≤ 1. Indeed, we can write f = tmxnu for some
unit u ∈ S. It follows from the filtration

S ⊇ tS ⊇ t2S ⊇ · · · ⊇ tmS ⊇ tmxS ⊇ tmx2S ⊇ · · · ⊇ tmxnS = fS

that S/fS has a filtration whose factors are isomorhpic to either S/tS ∼= A or S/xS ∼= A/xA.
These filtration factors have submodule lattices isomorphic to that of AA or (A/xA)A, and
thus respectively have Krull dimension 1 or 0. Hence K. dim(S/fS) ≤ 1 as claimed. Because
S has right Krull dimension and is a domain, we see from Proposition 4.1.13 that SS is a
critical module. We conclude that r.K. dim(S) = 2. Thus K. dim(RS) = K. dim(S2

S) =
K. dim(SS) = 2 (the second equality follows from the exact sequence 0→ S → S2 → S → 0),
which implies that K. dim(RR) ≤ K. dim(RS) = 2. On the other hand, the descending chain
I ⊇ I2 ⊇ I3 ⊇ · · · of right ideals in R has filtration factors Im/Im+1 = y2mB/y2m+2B ∼=
A⊕A. These have Krull dimension 1, so we find K. dim(RR) > 1 and thus r.K. dim(R) = 2.
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Finally, we show that I is not a principal right ideal of R. It suffices to show that I/Im
is not a cyclic right module over R/m ∼= k. Notice that Im = I(Ax + I) = Ix + I2. Now
By ⊆ yB implies that I2 = (y2B)2 = y4B. Also, Ix = y2xA ⊕ y3xA ⊕ y4xA · · · . Thus
Im = Ix+ I2 = y2xA⊕ y3xA⊕ y4B. It follows that

I

Im
∼=

y2A[[y; θ]]

y2xA⊕ y3xA⊕ y4A[[y; θ]]
∼= y2k ⊕ y3k

is not a cyclic k-vector space, as desired.

We conclude this section with some questions that arise in light of the results above.
Examples 5.3.10 and 5.3.11 show that the left noetherian hypothesis in Theorem 5.3.9 cannot
simply be dropped. While it seems somehow unnatural to try to omit the right noetherian
hypothesis, we have not found an example showing this to be impossible. Thus we ask the
following.

Question 5.3.12. Does there exist a left (but not right) noetherian ring R whose maximal
right ideals are all principal, but which is not a principal right ideal ring? What if we assume,
in addition, that R has right Krull dimension?

While reading an earlier draft of this work, G. M. Bergman kindly pointed out to us that
no such example exists if we assume further that R is a domain. We were able to generalize
this to include semiprime right Goldie rings as follows.

Proposition 5.3.13. Let R be a semiprime left noetherian ring in which every essential
right ideal contains a regular element (the latter hypothesis is satisfied if R is a domain or
if R is right Goldie—in particular, if R has right Krull dimension). If every maximal right
ideal of R is principal, then R is a principal right ideal ring.

Proof. By Example 5.2.4, it is enough to show that every essential right ideal of R is principal.
To this end, fix ER ⊆e R. Because R has a semisimple left ring of quotients, the multiplicative
set of regular elements of R is saturated. Thus the hypotheses of Lemma 5.3.2 are satsfied.
Since E contains a regular element, that lemma implies that R/E has finite length. So R/E
has a finite filtration whose factors are isomorphic to R/mi for some maximal right ideals
m1, . . . ,mn ofR. Since the set of maximal right ideals is closed under similarity, Lemma 5.1.10
implies that all maximal right ideals of R lie in F ◦pr. In particular, Corollary 3.1.9 implies
that E ∈ F ◦pr ⊆ Fpr, so that E is principal.

We also wonder to what extent the PRIR condition can be tested up to similarity.

Question 5.3.14. Suppose that R is a noetherian ring each of whose maximal right ideals
is similar to a principal right ideal. Is R a principal right ideal ring? If not, then is every
right ideal of R similar to a principal right ideal?

It would be interesting to test the status of the first Weyl algebra R := A1(k) with respect
to this question. Is every maximal right ideal of R similar to a principal right ideal? Does
R have any right ideals that are not similar to principal right ideals?
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5.4 Previous generalizations of the Cohen and Kaplan-

sky theorems

In this final section we will discuss how Theorem 4.2.5 and Theorem 5.1.11 relate to
earlier noncommutative generalizations of the Cohen and Kaplansky-Cohen theorems in the
literature. (We are not aware of any previous generalizations of Kaplansky’s Theorem 1.1.2.)
In [29], K. Koh generalized both of these theorems. He defined a right ideal IR ( R to be a
“prime right ideal” if, for any right ideals A,B ⊆ R such that AI ⊆ I, AB ⊆ I implies that
A ⊆ I or B ⊆ I. Notice that this is equivalent to the condition that for a, b ∈ R, aRb ⊆ I
with aRI ⊆ I imply that either a ∈ I or b ∈ I. We will refer to such a right ideal as a
Koh-prime right ideal. Koh showed that a ring R is right noetherian (resp. a PRIR) iff all
of its Koh-prime right ideals are finitely generated (resp. principal). Independently, in [6, 7]
V. R. Chandran also gave generalizations of the Cohen and Kaplansky theorems, showing
that a right duo ring is right noetherian (resp. a PRIR) iff all prime ideals of R are finitely
generated (whether this is f.g. as an ideal or f.g. as a right ideal is irrelevant, since R is right
duo). But Koh’s result implies Chandran’s result, since a two-sided ideal is Koh-prime as a
right ideal iff it is a prime ideal in the usual sense.

Notice that our completely prime right ideals are necessarily Koh-prime right ideals. For
suppose that PR ⊆ R is completely prime and that A,B ⊆ R are such that AP ⊆ P and
AB ⊆ P . If A * P , then there exists a ∈ A \ P . Now aP ⊆ P , and for any b ∈ B we have
ab ∈ P . It follows that b ∈ P because P is completely prime. So B ⊆ P , proving that P is
Koh-prime. It follows that Theorem 4.2.5 and Theorem 5.1.11, with the set S taken to be the
set of completely prime right ideals, imply Koh’s theorems, which in turn imply Chandran’s
theorems.

On the other hand, G. O. Michler offered another noncommutative generalization of Co-
hen’s Theorem in [41]. He defined a right ideal I ( R to be “prime” if aRb ⊆ I implies that
either a ∈ I or b ∈ I. This is equivalent to saying that, for right ideals A,B ⊆ R, AB ⊆ I
implies that one of A or B lies in I. We will refer to such right ideals as Michler-prime right
ideals. Michler proved in [41] that a ring is right noetherian iff its Michler-prime right ideals
are all finitely generated. Notice immediately that the Michler-prime right ideals of a given
ring form a subset of the set of all Koh-prime right ideals of that ring; thus Michler’s version
of Cohen’s Theorem generalizes Koh’s version.

If we were to try to recover Michler’s theorem directly from Theorem 4.2.5, we would
need to check that the Michler-prime right ideals form a noetherian point annihilator set
over an arbitrary ring R. In order to settle whether or not this is true, we offer an alternate
description of the Michler-prime right ideals below. Recall that a module MR 6= 0 is said to
be a prime module if, for every nonzero submodule N ⊆ M , ann(N) = ann(M). One can
show that the annihilator of a prime module is a prime ideal (for example, as in [32, (3.54)]).

Proposition 5.4.1. A right ideal P ( R is Michler-prime iff R/P is a prime module.
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Proof. First suppose that P is Michler-prime. To see that R/P is a prime module, consider
a nonzero submodule A/P ⊆ R/P (so that the right ideal A properly contains P ). Denote
B := ann(A/P )CR. Then (A/P ) ·B = 0 implies that AB ⊆ P . Because P is Michler-prime,
this means that B ⊆ P , so that (R/P ) · B = (P + B)/P = 0. So B = ann(R/P ), proving
that the module R/P is prime.

Conversely, suppose that R/P is a prime module. Let a, b ∈ R be such that aRb ⊆ P
and a /∈ P . It follows that b annihilates (P + aR)/P 6= 0, so that b ∈ ann((P + aR)/P ) =
ann(R/P ). In particular, (R/P ) · b = 0 implies that b ∈ P . This proves that P is Michler-
prime.

Corollary 5.4.2. For a ring R, the set S of Michler-prime right ideals is a noetherian point
annihilator set iff every nonzero noetherian right R-module has a prime submodule. This is
satisfied, in particular, if R has the ACC on ideals.

Proof. The “only if” direction is clear from Proposition 5.4.1. For the “if” direction, let MR

be any module with a prime submodule N . Notice that a nonzero submodule of a prime
module is prime. Thus for any nonzero element m ∈ N , R/ ann(m) ∼= mR ⊆ N is a prime
module. By Proposition 5.4.1, ann(m) is a Michler-prime right ideal. So if every nonzero
noetherian module has a prime submodule, the set S is a noetherian point annihilator set.

If R satisfies ACC on ideals, then every nonzero right R-module has a prime submodule—
see [32, (3.58)]. So in this case S is a point annihilator set, hence a noetherian point
annihilator set.

We conclude from Corollary 5.4.2 and Theorem 4.2.5 that a ring is right noetherian iff it
satisfies ACC on ideals and all of its Michler-prime right ideals are finitely generated. This
is actually a slight generalization of [41, Lem. 3], which Michler used as a “stepping stone”
to prove his main result.

Nevertheless, there do exist nonzero noetherian modules over some (large) rings which
do not have any prime submodules. Thus Michler’s primes do not form a noetherian point
annihilator set in every ring. We include an example below.

Example 5.4.3. Let k be a division ring, and let R be the ring of N × N row-finite upper
triangular matrices over k. Let MR =

⊕
N k, viewed as row vectors over k, with the obvious

right R-action. Let Mi denote the submodule of M consisting of row vectors whose first i
entries are zero. Then one can show that

M = M0 )M1 )M2 ) · · ·

are the only nonzero submodules of M . This visibly shows that M is noetherian. (Indeed,
one can say more: every submodule of M is actually principal, generated by one of the
“standard basis vectors.” We omit the details because we will not use this fact.) However,
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one can see that ann(Mi) is equal to the set of all matrices in R whose first i rows are
arbitrary and whose other rows are zero. So the fact that

ann(M0) ( ann(M1) ( ann(M2) ( · · ·

makes it clear that M has no prime submodules.
Incidentally, MR is also an example of a cyclic 1-critical module that is not a prime

module. Thus, choosing a right ideal IR ⊆ R such that R/I ∼= M (such as the right ideal of
matrices in R whose first row is zero), we see that I is cocritical but not Michler-prime.

In spite of this complication, it is in fact possible to derive Michler’s Theorem from
Theorem 4.2.5. The key observation that makes this possible is a lemma [51, Lem. 2] due
to P. F. Smith. This result states that if every ideal of a ring R contains a finite product
of prime ideals each containing that ideal, and if R satisfies the ACC on prime ideals, then
every nonzero right R-module has a prime submodule.

Theorem 5.4.4 (Michler). A ring R is right noetherian iff all of the Michler-prime right
ideals of R are finitely generated.

Proof. (“If” direction.) Suppose that the Michler-prime right ideals of R are all finitely
generated. Every prime (two-sided) ideal of R is Michler-prime, and thus is finitely generated
as a right ideal. By [41, Lemmas 4 & 5] the following two conditions hold:

1. Every ideal I CR contains a product of finitely many prime ideals of R, where each of
these ideals contains I;

2. R satisfies the ascending chain condition on prime ideals.

It follows from [51, Lem. 2] that every nonzero right R-module has a prime submodule. So
by Corollary 5.4.2, the set of Michler-prime right ideals is a noetherian point annihilator set
for R. Now it follows from Theorem 4.2.5 that R is a right noetherian ring.

In addition, our methods allow us to produce a generalization of the Kaplansky-Cohen
Theorem that is in the spirit of Michler’s Theorem! Note that this was not proved in [41],
and in fact seems to be a new result.

Theorem 5.4.5. A ring R is a principal right ideal ring iff the all of the Michler-prime
right ideals of R are principal.

Proof. (“If” direction.) Suppose that all of the Michler-prime right ideals of R are principal.
As in the proof of Theorem 5.4.4 above, it follows that the set S of Michler-prime right ideals
of R is a noetherian point annihilator set for R. This set is closed under similarity thanks
to Proposition 5.4.1, so Theorem 5.1.11 implies that R is a principal right ideal ring.
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For a given ring R, the effectiveness of Michler’s Theorem versus Theorem 4.2.5 with S
taken to be the set of completely prime right ideals of R depends on the scarcity or abundance
of right ideals in R from the “test set” in either theorem. For example, over a simple ring
R, every nonzero right R-module is certainly prime. So every proper right ideal of R will be
Michler-prime. (In fact, Koh [28, Thm. 4.2] has shown even more: a ring R is simple iff all
of its proper right ideals are Michler-prime.) Thus for a simple ring R, Michler’s theorem
provides no advantage, as we would still need to test every right ideal to see whether R is
right noetherian. On the other hand, Proposition 2.1.11 states that all right ideals of a ring
R are completely prime only if R is a division ring. So outside of this trivial class of rings, we
are guaranteed that Theorem 4.2.5 with S = {completely prime right ideals} reduces the set
of right ideals which we need to test in order to determine whether a ring is right noetherian.
We can expect Theorem 4.2.5 to be increasingly effective when we take S to be either of the
two smaller test sets in (4.1.16).

There is another variant of Cohen’s Theorem for right fully bounded rings. (Recall that
R is right fully bounded if, for every prime ideal P C R, every essential right ideal of R/P
contains a nonzero ideal of R/P ). This result says that a right fully bounded ring is right
noetherian iff all of its prime ideals are finitely generated as right ideals. A statement of
this theorem is given in [31, p. 95], and it is attributed to G. O. Michler and L. W. Small
independently. P. F. Smith provided a proof using homological methods in [52, Cor. 5] and
an elementary proof in [53, Thm. 1]. We wonder whether it is possible to recover this
result using the methods developed in the present work, such as the Point Annihilator Set
Theorem 4.2.1 or its adaptation in Theorem 5.2.9. On a related note, [53] also features a
version of Cohen’s Theorem for modules over commutative rings.

In a more recent paper [58], B. V. Zabavs’kĭı also studied noncommutative versions of
the Cohen and Kaplansky-Cohen theorems. Theorem 1 of that paper states that, for a right
chain ring R (i.e., a ring whose right ideals are totally ordered under inclusion), if every
Michler-prime right ideal is principal, then R is a principal right ideal ring. This is clearly
generalized by Theorem 5.4.5 above. To prove a version of the Kaplansky-Cohen Theorem
for general rings, he defined a right ideal P to be weakly primary if, for any a, b ∈ R,
(a + P )R(b + P ) ⊆ P implies that one of a or b is in P . In [58, Thm. 2] it is shown
that a ring is a principal right ideal ring iff every weakly primary right ideal is principal.
It is straightforward to verify that completely prime right ideals are weakly primary, so
this theorem is generalized by Theorem 5.1.11 with the set S taken to be the completely
prime right ideals. There is a version of Cohen’s Theorem in [58, Thm. 5] that is subsumed
by Michler’s Theorem; we do not include its statement here. Finally, there are also some
results in [58] investigating when every two-sided ideal of a ring is either finitely generated
or principal when considered as a right ideal.
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