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A Perron-type Theorem on the
Principal Eigenvalue of Nonsymmetric

Elliptic Operators

Lei Ni

And I cherish more than anything else the Analogies,
my most trustworthy masters.

They know all the secrets of Nature. —Kepler

Abstract. We provide a proof for a Perron-type theorem on the principal eigenvalue of non-
symmetric elliptic operators based on the strong maximum principle. This proof is modeled
after a variational proof of Perron’s theorem for matrices with positive entries that does not
appeal to Perron–Frobenius theory.

1. INTRODUCTION. Perron’s theorem (cf. [3, Theorem 1, Ch. 13]) asserts that a
square matrix A = (αi j ) with positive entries αi j > 0 must possess a positive eigen-
value with multiplicity one. Moreover, for this positive eigenvalue, there exists an
eigenvector whose entries are all positive. The purpose of this note is to prove an
analogous result for second order elliptic operators, which we will now describe.

Let � be a smooth bounded domain in R
n and let

L = −
n∑

i, j=1

ai j (x)
∂2

∂xi∂x j
+

n∑
k=1

bk(x)
∂

∂xk
+ c(x)

be an elliptic operator defined on �. For simplicity, we assume that ai j (x), bk(x),

c(x) ∈ C∞(�). We also assume that L is uniformly elliptic, i.e., there exists a constant
θ > 0 so that for all x ∈ �,

n∑
i, j=1

ai j (x)ξiξ j ≥ θ |ξ |2 (1)

for any ξ ∈ R
n . For the purpose of our discussion on the spectrum of L (with zero

boundary data), we may assume, by adding a constant if necessary, that c(x) ≥ 0.
Since L is not necessarily self-adjoint, its eigenvalues are in general complex numbers.
However, there exists the following analog of Perron’s theorem for positive matrices.

Theorem 1.1.

(i) There exists a real eigenvalue λ1 > 0 for the operator L with zero boundary
condition.

(ii) This eigenvalue is of multiplicity one, in the sense that there exists an eigen-
function w1(x) > 0 in � with w1|∂� = 0, and if u is any other function not
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identically zero satisfying Lu = λ1u, in � and u|∂� = 0, then u must be a
multiple of w1.

(iii) Furthermore, if for some function v not identically zero, Lv = λv and λ �= λ1,
then �e(λ) > λ1.

The eigenvalue λ1 above is called the principal eigenvalue of the operator L . We
can find a proof of Theorem 1.1 in [2, Section 6.5], which is now a classic text on
partial differential equations (PDE). The proof in [2] makes use of iterations and the
sophisticated Schaefer’s fixed point theorem. In this note, we begin by giving a simple
proof of Perron’s original theorem for positive matrices. Then using the idea of this
proof, together with some standard results in the basic theory of second-order elliptic
PDE, such as the strong maximum principle, we give a more direct proof of Theo-
rem 1.1.

The main property of Sobolev spaces H k(�) = W k,2(�) that will be needed here
is the Rellich–Kondrachov compactness theorem. Our proof (as well as that of [2])
also assumes some knowledge of the L2-theory of elliptic operators concerning the
solvability and the regularity of weak solutions. We can find these basic results, for
example, in Theorem 1 of Section 5.7, Theorem 6 of Section 6.2, and Theorem 5 of
Section 6.3 in [2].

2. A PROOF OF PERRON’S THEOREM. In this section, we give a proof of Per-
ron’s theorem. In the next section, we will use analogous methods for the proof of
the corresponding PDE result. We first fix the convention that for an (m × n)-matrix
B = (βi j ), B > 0 (respectively, B ≥ 0) means that each entry βi j > 0 (respectively,

βi j ≥ 0), and A ≥ B means that A − B ≥ 0. For a vector x, we apply the same con-
vention by viewing it as an (m × 1)-matrix. Below is a proof of Perron’s theorem for
a positive square (m × m)-matrix A.

Proof. Set 	 = {ε > 0|ε ∈ R, Ax ≥ εx, for some vector x ≥ 0, x �= 0}.
It is easy to see that 	 �= ∅ and that it is bounded. Let λ1 = sup 	. We now show

that there exists a vector x > 0 such that Ax = λ1x. First, by the definition of λ1, we
can pick λ( j) ∈ 	 such that the sequence {λ( j)} converges to λ1. By the definition of
	 we also have vectors x( j) ≥ 0 such that Ax( j) ≥ λ( j)x( j). Without loss of generality,
we may choose x( j) with ‖x( j)‖ = 1. After possibly passing to a subsequence, we may
also assume that x( j) converges to a vector x. By the way x is obtained, it is clear that
x ≥ 0, Ax ≥ λ1x, and ‖x‖ = 1. To show that Ax = λ1x, we use the following simple
lemma.

Lemma 2.1. For any vector y ≥ 0 with y �= 0, Ay > 0. In particular, for any real
vector z, there exists real number ε > 0 such that Ay > εz.

Proof. The assumption y �= 0 implies that y j > 0 for some 1 ≤ j ≤ m. Hence,∑m
k=1 aik yk ≥ ai j y j > 0. For the second statement, we may let, for example,

ε = δ

max1≤i≤m(|zi | + 1)

where δ = min1≤i≤m(Ay)i .

To finish the proof of Ax = λ1x, we use reductio ad absurdum. Assume that Ax
�= λ1x and we will derive a contradiction. Let y = Ax − λ1x. Thus y �= 0 by assump-
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tion, and since y = limi→∞ Ax( j) − λ( j)x( j), we also have y ≥ 0. By Lemma 2.1, there
is an ε > 0 so that Ay > εAx. This implies that Az > (λ1 + ε)z for z = Ax > 0, con-
tradicting the fact that λ1 = sup 	. Hence, Ax = λ1x. In addition, Lemma 2.1 implies
that Ax > 0 and also x > 0, i.e., all the entries of the eigenvector x are positive.

To finish the proof of Perron’s theorem, we must show that, up to a positive scalar
constant, x is the unique eigenvector with eigenvalue λ1 > 0. First, we observe that if
x′ �= 0 is a vector such that Ax′ = λ1x′, and x′ ≥ 0, Lemma 2.1 implies x′ > 0. Now for
any vector y �= 0 with Ay = λ1y, we can find a real number c such that cx − y ≥ 0 and
such that at least one entry of cx − y is equal to 0 (i.e., there exists i , with 1 ≤ i ≤ m
so that cxi − yi = 0). We claim that this implies cx − y = 0 so that y = cx. Suppose
not; then if we let x′ = cx − y, we would have x′ �= 0, Ax′ = λ1x′, and x′ ≥ 0, but x′ is
not positive, contradicting the observation we made at the beginning of this paragraph.
This proves that y = cx and λ1 is of multiplicity one.

We now make an additional observation. If λ is an eigenvalue (which in general is
a complex number) of A with an eigenvector z, then let w = abs(z), the nonnegative
vector obtained by taking the norm of each entry of the vector z. It is easy to see
that Aw ≥ |λ|w, and equality holds if and only if w > 0, λ > 0. Since λ1 = sup 	, it
implies that λ1 ≥ |λ|.

The above proof is basically the same as that of [1], which was attributed to Bohnen-
bust.

3. THE PDE CASE. We proceed to give a proof of Theorem 1.1 along the same line
of arguments as above. Let L be the uniformly elliptic operator of Section 1. First,
recall the following strong maximum principle (see Corollary 2.8, 2.9 of [4], as well
as Theorem 4 and Lemma of Section 6.4 in [2]).

Theorem 3.1. Assume that u ∈ C2(�) ∩ C(�) satisfies Lu ≥ 0 and u|∂� = 0. Then
u > 0 in � unless u ≡ 0. If u is not identically 0, then ∂u

∂ν
< 0 on ∂�, where ν is the

exterior unit normal of ∂�.

As a consequence of the above maximum principle, we conclude that 0 is not an
eigenvalue of L . Hence, by [2, Theorem 6 of Ch. 6.2], L has a well-defined inverse L−1

on L2(�) such that it is a bounded operator from L2(�) → H 2(�) ∩ H 1
0 (�), where

H 1
0 (�) = W 1,2

0 (�) denotes the first L2-Sobolev space with vanishing boundary value.
This implies that there exists C such that

‖L−1( f )‖2 ≤ C‖ f ‖L2 . (2)

Here ‖ · ‖k denotes the Sobolev norm of H k(�). Moreover, by [2, Theorem 5 of Ch.
6.3] there exists Ck ≥ 0 such that ‖L−1( f )‖k+2 ≤ Ck‖ f ‖k for any k ≥ 0. Let k0 be
an integer so large, but fixed, that C2(�) ⊂ H k0−1(�), and let X be the Hilbert space
H k0(�) ∩ H 1

0 (�). Elliptic regularity ensures that L−1 maps X into X . In our discus-
sions below, L−1 : X → X is the infinite dimensional analogue of the linear transfor-
mation defined by a positive square matrix A : Rm → R

m in the previous section.
For the proof of Theorem 1.1, we need an infinite dimensional analogue of Lemma

2.1.

Lemma 3.1. For any nonzero u ∈ X, u ≥ 0, let w = L−1(u). Then w > 0 in � and
w|∂� = 0. Furthermore, for any v ∈ C2(�) with v|∂� = 0, there exists an ε > 0 such
that w ≥ εv.
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Proof. By the maximum principle, Theorem 3.1, we conclude that w > 0 in � and
∂w

∂ν
< 0 on ∂�. We now prove the last statement. Consider a general boundary

point x ∈ ∂�. After a local change of coordinates, we may assume that there is a
neighborhood U of x on which is defined a coordinate system x = (x ′, xn) with x ′

= (x1, . . . , xn−1) such that U ∩ ∂� is defined by xn = 0 and U ∩ � is defined by
xn > 0. Theorem 3.1 implies ∂w

∂xn
> 0. Consequently, by the Taylor expansion in xn ,

we have

w(x ′, xn) = w(x ′, 0) + ∂w

∂xn
(x ′, 0)xn + o(xn)

and

v(x ′, xn) = v(x ′, 0) + ∂v

∂xn
(x ′, 0)xn + o(xn).

Observe that w(x ′, 0) = v(x ′, 0) = 0 and ∂w

∂xn
(x ′, 0) > 0. Therefore, a comparison of

the two equations above shows that in a neighborhood of ∂�, w ≥ εv for some ε > 0.
By the continuity of w, v and the positivity of w in �, this implies the claim of the
lemma.

Now we present the proof of Theorem 1.1, the infinite dimensional analogue of
Perron’s theorem.

Proof. Let 	̃ = {ε > 0|L−1( f ) > ε f in �, for some f ∈ X, f > 0 in �}. In view of
(2), it is easy to see that 	̃ is bounded. Lemma 3.1 implies that 	̃ �= ∅. Let μ1 = sup 	̃.
Pick μ( j) ∈ 	̃ with μ( j) → μ1. By the definition of 	̃, there exist u j ∈ X , with
u j (x) > 0 for x ∈ � and u j |∂� = 0 such that L−1(u j ) > μ( j)u j . Without loss of gen-
erality, we assume that ‖u j‖L2 = 1. Since we can only infer that a subsequence of
{u j } is weakly convergent, we shall employ a finite iteration to get a better convergent
subsequence {z j } with each term z j satisfying the same properties as the correspond-
ing u j .

First, for any fixed j and l with 1 ≤ l ≤ k0, let z j,l = (L−1)l(u j ). We prove induc-
tively using the maximum principle that z j,l > μ( j)z j,l−1 in �. Indeed, for l = 1, this
follows from the choice of z j,1 = L−1(u j ) and z j,0 = u j . Assume that the claimed
inequality holds for l, namely z j,l > μ( j)z j,l−1. Since z j,l+1 − μ( j)z j,l = L−1(z j,l −
μ( j)z j,l−1), Theorem 3.1 and the inductive hypothesis imply that z j,l+1 > μ( j)z j,l .

On the other hand, the standard elliptic estimate ([2, Theorem 2, Section 6.3]) as-
serts that there exists a positive constant C depending on L and � such that ‖z j,l‖2l

≤ Cl‖u j‖L2 . Let z j = z j,k0 . In particular, there exists a constant C ′ independent of
j such that ‖z j‖2k0 ≤ C ′. By the Rellich–Kondrachov compactness theorem, after
passing to a subsequence if necessary, lim j→∞ z j = w1 in H k0(�)-norm, for some
w1 ∈ X . Note that L−1(z j ) = z j,k0+1 ≥ μ( j)z j,k0 = μ( j)z j . From this, we deduce that
L−1(w1) ≥ μ1w1, w1|∂� = 0, and w1 ≥ 0. To see that w1 �= 0, we observe that z j

≥ (μ( j))k0u j ≥ 0; hence, ‖z j‖L2 ≥ (μ( j))k0 . Now the argument in the linear algebra
proof, replacing Lemma 2.1 by Lemma 3.1, implies that L−1w1 = μ1w1. In particular,
w1 > 0 in � and w1|∂� = 0. Taking λ1 = 1

μ1
, this proves the existence of the principal

eigenvalue and a corresponding positive eigenfunction.
To show that λ1 is of multiplicity one, assume that Lu = λ1u for a real-valued func-

tion u. Equivalently, we have L−1u = μ1u with μ1 = 1
λ1

. Let 	′ = {η > 0|w1 − ηu
≥ 0}. Clearly 	′ is nonempty by Lemma 3.1 and is bounded. Then let η1 = sup 	′.
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Lemma 3.1 asserts that w1 − η1u ≡ 0 since otherwise L−1(w1 − η1u) = μ1(w1 −
η1u) > εu for some ε > 0, which contradicts η1 being the supremum of 	′. Thus,
u is a multiple of w1. (This particular part of the argument is quite close to that of [2,
Section 6.5].)

Finally, we prove part (iii) of Theorem 1.1. Let u (which in general is complex
valued) be an eigenfunction with eigenvalue λ. By applying the maximum principle
to |u|2/w2−2ε

1 , for any small ε > 0, it was shown in [2, Section 6.5] (see also [6])
that �e(λ) ≥ λ1. This result can also be proved via the following slightly different
argument, which also shows a sharper result: �e(λ) > λ1, for any λ �= λ1. That is a
sharpening of the result.

Let v = u
w1

, L ′ = L − c(x). A direct calculation yields

L ′|v|2 = 2(�e(λ) − λ1)|v|2 − 2
n∑

i, j=1

ai j ∂v

∂xi

∂v̄

∂x j
+ 2

n∑
i, j=1

ai j ∂ log w1

∂xi

∂|v|2
∂x j

.

As in [7], the regularity of |v|2 (which implies the finiteness of L ′|v|2) and the sin-
gularity of ∂ log w1

∂xi
along ∂� imply that ∂|v|2

∂ N = 0 on ∂�. Here ∂|v|2
∂ N is defined as∑n

i, j=1 ai j ∂|v|2
∂xi

ν j with ν being the exterior normal and ν j = 〈ν, ∂

∂x j
〉. Suppose that

�e(λ) ≤ λ1. Since v is nonconstant, the strong maximum principle implies that |v|2
can only attain its maximum (on �) at some boundary point x0 ∈ ∂�. But Hopf’s
lemma (see Theorem 2.5 of [4]) asserts that ∂|v|2

∂ N > 0 at x0, which contradicts the just-

established conclusion that ∂|v|2
∂ N = 0 on ∂�. The contradiction proves �e(λ) > λ1.

Note that the same argument as the one above proves that if μ is any Neumann
eigenvalue of the operator L with nonconstant eigenfunction, then �e(μ) > 0. In fact,
the slightly better result �e(μ) > min� c(x) holds.

It seems interesting to estimate the gap �e(λ) − λ1 from below in terms of the
geometry of the coefficients ai j (x), bk(x), and c(x), as well as that of �. Another in-
teresting question is whether there is a generalization of this result to hypo-elliptic
operators. Similarly, we can ask for an effective positive lower estimate for the non-
trivial Neumann eigenvalue μ (i.e., the eigenvalue with nonconstant eigenfunctions)
for the operator L with c(x) = 0. For this last problem, consult [5] for some recent
progress for the case that the domain � is convex.
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