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ABSTRACT OF THE DISSERTATION

Quasiregularly Elliptic Manifolds

by

Eden Prywes

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Mario Bonk, Chair

The work in this dissertation is centered around the study of quasiregularly elliptic manifolds.

These are manifolds that admit quasiregular maps from Euclidean space. The research of

quasiregular maps is motivated by the pursuit of extending theorems from complex analysis

and conformal geometry to higher dimensional settings.

We first provide a new proof for the Rickman-Picard theorem, which states that a non-

constant quasiregular map from Euclidean space to a sphere may omit a bounded number

of points depending on the dilatation of the map.

We next show that a closed, connected and orientable Riemannian manifold that is

quasiregularly elliptic must have bounded dimension of the cohomology independent of the

distortion of the map. The bound for the dimension is sharp and proves the Bonk-Heinonen

conjecture. A corollary of this theorem answers an open problem posed by Gromov in

1981. He asked whether there exists a simply connected manifold that does not admit a

quasiregular mapping from Euclidean space. The result shown gives an affirmative answer

to this question.

Lastly, we study the behavior of branched covers whose image of their branch set is

contained in a simplicial complex. The image of the branch set of a piecewise linear branched

cover between piecewise linear manifolds is a simplicial complex. We demonstrate that the

reverse implication also holds. A branched cover from a sphere to a sphere with the image

of the branch set contained in a codimension two simplicial complex is equivalent up to
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homeomorphism to a PL mapping. This extends a result by Martio and Srebro in the three

dimensional setting.
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CHAPTER 1

Introduction

A classical area of study in complex analysis is the theory of value distribution of holomorphic

functions f : C → C, also known as entire functions. The goal of this discipline is to study

the possible behaviors of entire functions. For example, according to Liouville’s theorem a

bounded entire function must be constant. An extension of this theorem is Picard’s theorem

that states an entire function omitting more than two values in its image must be constant.

Out of these results grew an entire area of research pioneered by the Finnish school of

mathematics, often called Value Distribution theory or Nevanlinna theory, see [Nev70].

This dissertation focuses on how such results can be generalized to higher dimensions.

Since on Rd there is no longer a natural complex structure, there is no notion of holomor-

phicity. Instead, the geometric properties of holomorphic maps can be generalized to higher

dimensions. Injective holomorphic maps are conformal and non-injective holomorphic maps

are conformal away from their critical points. In light of this, conformal maps provide a

generalization to d dimensions. Unfortunately, this is a small family compared to conformal

maps on C. Conformal maps on Rd form a finite-dimensional Lie group if d ≥ 3 (this theorem

is also called Liouville’s theorem). In order to have a richer class of maps, angle preservation

can be weakened to bounded distortion of angles. This is the class of quasiconformal maps.

They have been studied in both dimension 2 and in higher dimensions.

A K-quasiconformal map, for K > 1, is a homeomorphism f : Rd → Rd that is in the

Sobolev space W 1,d
loc (Rd) and satisfies

‖Df(x)‖d ≤ KJf (x), (1.0.1)

for almost every x ∈ Rd, where Df is the differential of f , Jf = det(Df) and ‖Df‖ denotes
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the operator norm. If f is not a homeomorphism but satisfies (1.0.1), then f is called K-

quasiregular. Inequality (1.0.1) describes the infinitesimal angle distortion properties of f .

The constant K, known as the dilatation of f , describes to what extent f maps ellipsoids to

spheres of eccentricity dependent on K. If K = 1, then f is conformal.

Quasiconformal maps were first introduced by Grötzsch [Gro28] in dimension 2. The

study of quasiconformal and quasiregular maps in dimension n was developed by the Finnish

school during the previous fifty years. The standard reference for n-dimensional quasicon-

formal maps is [V71] and for quasiregular maps is [Ric93].

A key difference between quasiregular maps and holomorphic maps is that quasiregular

maps are not necessarily smooth. Due to this, different tools have been developed to study

quasiregular maps that originate from real analysis and differential geometry. Even though

different methods are used, many similar results from the holomorphic theory still apply.

Perhaps the most famous of these generalizations is the Rickman-Picard theorem.

The Rickman-Picard theorem was originally proved by Rickman in [Ric80]. The theorem

states that if f : Rd → Rd is a nonconstant K-quasiregular map, then f omits at most C

values, where C is a constant that depends on d and K. A difference between this result

and the classical case is that the constant depends on the dilatation K. This is unavoidable

since Rickman in [Ric85] constructed quasiregular maps from R3 → R3 that omit arbitrarily

many points. Pankka and Drasin in [DP15] generalized this to Rd showing that the number

of points omitted must depend on K in every dimension.

This extension of Picard’s theorem has been reproven in several subsequent publications.

In [EL91] and in [Lew94], Eremenko and Lewis, and Lewis proved the theorem using tools

from potential theory and nonlinear elliptic partial differential equations. In [BP19], Bonk

and Poggi-Corradini also used these tools, but provided a new approach in proving the

theorem. In chapter 2, I give a new proof that is loosely based on the approach in [EL91].

My approach uses the language of differential forms and hence is closely connected to the

material in the subsequent chapters.

The study of the value distribution of a quasiregular map leads to the question: Which

2



Riemannian manifolds admit nonconstant quasiregular maps from Rd? Such manifolds are

generally called quasiregularly elliptic and this question is the major focus of the thesis. For

d = 2, this question simplifies to the holomorphic case. If f : C → M is quasiregular, then

f = g ◦ φ, where φ : C → C is quasiconformal and g : C → M is holomorphic (this result is

sometimes known as Stöılow’s theorem, see [Sto28], [LP17]).

Picard essentially showed that if M admits a holomorphic map, then M must be home-

omorphic to C, S2, S1 × R or S1 × S1. The proof of this is as follows. Suppose that M

does admit a holomorphic map g. By the uniformization theorem, the universal cover of M

is either C, Ĉ or D. In the first two cases, M must be one of the manifolds mentioned. If

the universal cover is the unit disk D, then g lifts to a holomorphic function g̃ : C→ D. By

Liouville’s theorem, g̃ is constant and therefore g is constant as well. This would mean that

M is not quasiregularly elliptic.

There is also a characterization of quasiregularly elliptic compact manifolds in dimension

3. Jormakka in [Jor88] showed, given Thurston’s geometrization conjecture, that M must be

homeomorphic to a quotient of S3, S2 × S1 or S1 × S1 × S1. For dimensions d greater than

3 such characterizations do not exist. However, there are several conditions that M must

satisfy. Varopolous showed that the fundamental group of M must have polynomial growth

order less than d (see [VSC92]). This result crucially does not depend on the dilatation K

of the mapping. Relating to this result, Gromov in [Gro81] asked whether there exists any

simply-connected manifolds that are not quasiregularly elliptic.

In attempting to answer this question, Bonk and Heinonen in [BH01] studied the dimen-

sion of the de Rham cohomology of M . They showed that the dimension of the de Rham

cohomology of a compact quasiregular map is bounded above by a constant depending on d

and K. However, they conjectured that such a constant should be independent of K. They

predicted that the d-dimensional torus is extremal. The dimension of the degree l de Rham

cohomology of the torus is
(
d
l

)
. So they conjectured that for any quasiregularly elliptic M ,

dimH l(M) ≤
(
d

l

)
,

where H l(M) is the degree l de Rham cohomology of M . Note that the bound is independent
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of the dilatation of the map. Kangasniemi in [Kan17] proved a weaker version of this con-

jecture. He showed that if M admits a self-map f : M →M , such that the iterates of f are

all K-quasiregular, then the above bound is satisfied. Such manifolds are called uniformly

quasiregularly elliptic. Uniform quasiregular ellipticity implies quasiregular ellipticity. In

Chapter 3, I show the proof of the conjecture due to Bonk and Heinonen.

This conjecture also answers Gromov’s question. Let M be the connected sum of k copies

of S2 × S2. Then M is simply-connected, but dimH2(M) = 2k. So for k ≥ 4, M is not

quasiregularly elliptic.

The proof of the Bonk-Heinonen conjecture includes an independently interesting result.

I show that the Jacobian of a quasiregular map f : Rd → M satisfies a reverse Hölder

inequality as long as M has a nontrivial cohomology group of degree l, where 1 ≤ l ≤ d− 1.

This was shown for quasiconformal maps f : Rd → Rd by Gehring in [Geh73]. Bojarski and

Iwaniec showed this for quasiregular maps from Rd to Rd in [BI83]. It is interesting to note

that such an inequality fails when f : Rd → Sd.

A related question can be asked, which noncompact manifolds, M , are quasiregularly

elliptic? In dimensions 2, if M is quasiregularly elliptic, then M is homeomorphic to C or

S1 × R. In higher dimensions very little is known. A cohomology dimension bound as in

the compact case is not possible due to the sharpness of the Rickman-Picard theorem. The

manifold Sd \ {p1, . . . , pk} is quasiregularly elliptic for all k ∈ N. However, dimHd−1(Sd \
{p1, . . . , pk}) = k − 1. Additionally, the quasiregular ellipticity of M will depend on the

Riemannian metric, which is not the case in the compact case. For example, in [PR11],

Pankka and Rajala showed that there exists a Riemannian metric on M = Sd \ L, where

L is the unknot or a Hopf link, such that M is quasiregularly elliptic. If M was given the

spherical metric, then it would not admit a nonconstant quasiregular map.

The main result of Chapter 3 gives a condition that restricts the existence of quasiregular

maps. In Chapter 4 the main goal is to study the behavior of certain types of quasiregular

maps and give an indication of how to construct quasiregular maps. By a theorem due to

Reshetnyak (see [Res89]), a quasiregular map is always open and discrete. A map is called
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open if it maps open sets to open sets and discrete if the preimage of a point is a discrete

set. In this direction, I study a more general class of maps called branched covers.

A branched cover is a continuous map that is open and discrete. In dimension 2, Stöılow’s

theorem (see [LP17]) states that every branched cover f : C → C is equivalent up to a

homeomorphism to a holomorphic map. In this sense, this class is a topological generalization

of holomorphic maps. A branched cover f has a branch set Bf that is defined to be the

set of points where f is not locally injective. The restriction f : Rd \ Bf → Rd \ f(Bf ) is

a covering map. The study of the branch set of the map can often give information of the

map itself.

The fundamental example of a branched cover is the k-winding map. In dimension 2, this

map can be written in polar coordinates as (r, θ) 7→ (r, kθ). Topologically this is equivalent

to the map z 7→ zk. If these maps are extended to Rd by the identity on Rd−2, then they are

still branched covers (the former will be quasiregular). The branch set will be {(0, 0)×Rd−2.

In dimension 2, locally every branched cover behaves as a winding map. In higher dimensions

this is not always true, though there are corresponding results in special cases.

A theorem due to Černavskǐi and Väisälä [V66] states that the topological dimension ofBf

and f(Bf ) is bounded by d− 2. If the image of the branch set is contained in a codimension

2 subspace, then Church and Hemmingsen [CH60] showed that the map is topologically

equivalent to a winding map. This is a very specialized case since the assumption is generally

not satisfied. Martio and Srebro in [MS79] generalized this to include cases where f : R3 → R3

and the image of the branch set is contained in a collection of rays emanating from a point.

Martio and Srebro showed that if f : R3 → R3 is a branched cover and near a point x0,

f(Bf ) can be embedded into a collection of rays originating at f(x0), then f is equivalent

to a cone of a rational map g : Ĉ→ Ĉ. More specifically, near x0, f is equivalent to a map g̃

from the ball B3 to itself, where g̃(r, z) = rg(z). Here, r is the radius from 0 and z is a point

on Ĉ. A consequence of this theorem is that if the image of the branch set of f is contained

in a piecewise linear (PL) structure, then f is topologically equivalent to a piecewise linear

map. In chapter 4, I show, in a collaboration with Rami Luisto, that this result can be
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extended to higher dimensions.

We showed that if f : Rd → Rd is a branched cover and the image of the branch set can be

embedded into a simplicial complex, then f is topologically equivalent to a piecewise linear

map. As long as the branch set of f satisfies the geometrical hypothesis of the theorem, the

map’s behavior will be entirely understood.

A corollary of this result pertains to the theory of quasiregular maps. In general, a

branched cover will not satisfy the analytic properties required in the definition for quasireg-

ularity. However, a piecewise linear map on a compact set that is also a branched cover will

always be quasiregular. The theorem proven in Chapter 4 gives a way to generate piece-

wise linear maps, and hence quasiregular maps, from the more easily constructed family of

branched coverings. An example of this is given to show that CPd is quasiregular elliptic for

all d ∈ N.

The thesis is organized in the following way. Chapter 2 contains a new proof for the

Rickman-Picard theorem. In Chapter 3, Section 3.1 has a construction for a quasiregular

map f : R4 → CP2, showing that CP2 is quasiregularly elliptic. In Section 3.2, I provide the

proof for the theorem that states the dimension of the cohomology of a quasiregularly elliptic

manifold is bounded. In Chapter 4, I present the theorem that characterizes the behavior of

branched coverings with the images of their branch sets contained in simplicial structures.
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CHAPTER 2

Rickman-Picard theorem

2.1 Introduction

The Rickman-Picard theorem is a generalization of the Picard theorem for entire functions.

Theorem 2.1.1 (Picard Theorem). Let f : C→ Ĉ be a nonconstant holomorphic function.

Then the image of f omits at most 2 points.

This theorem is sharp since ez omits 0 and ∞. A proof of the theorem can be found in

most standard Complex Analysis texts. This theorem also extends to quasiregular mappings

since every quasiregular mapping f can be written as g ◦ φ, where g is holomorphic and

φ : C→ C is quasiconformal.

This result is one of the fundamental value distribution results for entire functions. For

this reason it is interesting to ask if an analogous result holds for quasiregular mappings

from Rn to Sn.

In [Ric80], Rickman showed that a similar theorem was true for mappings from Rn to

Sn. He proved the following theorem:

Theorem 2.1.2 (Rickman-Picard Theorem). Let f : Rn → Sn be a nonconstant K-

Quasiregular mapping. Then the image of f omits at most C(n,K) points, where C(n,K)

only depends on n and the dilatation K of f .

This theorem is also sharp by results from Rickman in [Ric85] and Drasin and Pankka

in [DP15]. Note that in this case there is a dependence on the dilatation constant of f , while

in the 2-dimensional case the number of omitted values is independent of K.
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There have been several proofs in the literature of Theorem 2.1.2, see [Ric80], [EL91],

[Lew94], and [BP19]. The proofs in all these cases used functions similar to log |f | in order

to show the theorem. The function log |f | notably is A-harmonic, a degenerate elliptic PDE

that has often been used in the context of quasiregular mappings.

In this section we will provide a new proof of Theorem 2.1.2 that uses A-harmonic

differential forms instead of A-harmonic functions. The use of these forms is inspired by the

proofs in [EL91] and [Lew94].

The notation used in this section and the subsequent chapters is as follows:

Euclidean space of dimension d will be denoted by Rn. The d-dimensional sphere will be

written as Sn. The symbol . will denote ”less than a constant multiple of”. The symbol

∼ denotes . and &. Often we will also write C(·, . . . , ·) for a constant. This will mean the

constant depends on the terms mentioned. For x ∈ Rn and r > 0, the set B(x, r) ⊂ Rn

denotes the ball of radius r, centered at x.

Let
∧l(Rn) denote the space of degree l exterior powers of the cotangent bundle of Rn, for

1 ≤ l ≤ n− 1. Let D ⊂ Rn be an open domain. By C∞c (D), we denote the space of smooth

functions with compact support in D. We say a differential form α is in Lp(D), whenever

the component functions of α are in the usual Lp-space. Similarly, α is in the Sobolev

space W 1,p(D) whenever the component functions are in the standard Sobolev space, i.e.,

αi ∈ Lp(D) of functions and αi has weak derivatives in Lp(D) of functions. Sometimes

these will be written as Lp(∧lD) and W 1,p(∧lD) when the degree of the form needs to be

emphasized. The norm of a differential form α will be denoted by |α| and will refer to the

pointwise `2-norm on the component functions of α.

The space M will always be a closed, connected and orientable Riemannian manifold of

dimension d. By Ωl(M), we mean the space of smooth differential forms on M of degree

l. On Ωl(M), there exists an inner product induced by the Riemannian metric on M . For

ω ∈ Ωl(M), we denote by ‖ω‖∞ the L∞-norm given by this inner product. The de Rham

cohomology group of M will be denoted by H l(M). If α ∈ Ωl(M), then [α] ∈ H l(M) will

denote its equivalence class in the de Rham cohomology group of M .

8



If M is a Riemannian manifold, then the Hodge star operator, denoted by ∗, is the unique

operator ∗ : L2(∧lM)→ L2(∧n−lM) such that for all α, β ∈ L2(∧lM),

α ∧ ∗β = 〈α, β〉dV,

for almost every point on M . Here, 〈·, ·〉 is the inner product induced by the Riemannian

metric and dV is the volume form on M .

2.2 Calculus of measurable differential forms and integral inequal-

ities

Before proceeding to the proof of the Rickman-Picard theorem, several analysis lemmas are

needed in order to apply the tools of calculus to differential forms that are in Lp-spaces.

The first lemma gives a version of the Poincaré-Sobolev inequality. Let D ⊂ Rn be an

open domain and let α ∈ Lp(∧lD). The form α is closed in distribution if for all smooth

(n− l − 1)-forms φ, with compact support,

ˆ
D

α ∧ dφ = 0.

Lemma 2.2.1. If D is simply connected, l ≥ 1 and p > 1, then there exists u ∈ W 1,p(∧l−1D)

such that du = α in distribution and

‖u‖1,p . ‖α‖p.

Additionally, by Sobolev embedding,

‖u‖p∗ . ‖α‖p,

where p∗ = np/(n − p). The constants are independent of u and α. If D is a ball, the

constants are independent of D as well.

The content of this lemma is a summary of the results shown in [IL93, Section 4]. The

main ingredient of their proof is the use of a bounded homotopy operator T : Lp(∧lD) →

9



W 1,p(∧l−1D) where D ⊂ Rn is a convex domain. They showed that α = Tdα + dTα, which

in this case means α = dTα = du.

The next lemma gives a criterion for integration by parts to hold.

Lemma 2.2.2. If β ∈ W 1,q(∧n−l−1D) for 1
p

+ 1
q

= 1, then

ˆ
D

α ∧ dβ = 0.

The proof follows from Lemma 2.2.1, [GT01, Theorem 7.4] and the discussion following

the theorem in the reference.

Finally, we record here a lemma regarding the pullback of differential forms by quasireg-

ular maps. Let M and N be Riemannian manifolds and let f : M → N be a quasiregular

map. Additionally, let ω ∈ Ωl(N) for an integer l ∈ {0, . . . , n}. Then the pullback of f ∗ω

depends on the product of l derivatives of f . Since f lies in the Sobolev space W 1,n
loc (M), the

form f ∗ω is in L
n/l
loc (M).

Lemma 2.2.3. If ω ∈ Ωl(N), then

d(f ∗ω) = f ∗(dω).

For a proof of this lemma see [DS89, Lemma 2.22] or [IM93, Lemma 3.6].

2.3 Proof of the Rickman-Picard theorem

Suppose f : Rn → Sn is K-quasiregular and omits the points {p1, . . . , pm, q1, . . . , qm}. To

prove the theorem, it suffices to show that m is bounded by a constant that depends only

on K and n.

Without loss of generality, f is uniformly Hölder continuous. Indeed, if there exists a

quasiregular map f : Rn → Sn, then f can be rescaled in a way that gives a uniformly Hölder

continuous map from Rn to Sn. Additionally, the Hölder exponent will only depend on the

dilatation K of f . This is result is due to Miniowitz [Min79]. The rescaling technique is

similar to the proof of Zalcman’s lemma or the Bloch-Brody principle in Complex Analysis.
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For a discussion of this result, see [BH01]. The proof below relies on some results relating to

this rescaling. They will be stated but used without proof. For their proofs consult [BH01].

In order to prove the theorem, p-harmonic differential forms related to potentials on Sn

will be constructed.

Definition 2.3.1. A differential form ω on a Riemannian manifold M is p-harmonic if

ω ∈ Lp(M) and

dω = 0 and d(∗|ω|p−2ω) = 0

in the weak sense. Here, ∗ is the Hodge star operator.

Note that if ω is a degree k-form and if p = n/k, then the p-harmonic equation for ω is

conformally invariant. That is, if ψ : M →M is conformal, then ψ∗ω is still p-harmonic.

Define the following (n− 1) form on Sn \ {0,∞},

ω(x) =
n∑
i=1

(−1)i+1 xi
|x|ndx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where |x| denotes the Euclidean norm in the stereographic projection of Sn \ {∞} to Rn.

The form ω(x) = ∗d(log x). The function log x is n-harmonic in the sense that

d(∗|d log x|n−2 log x) = 0.

This equation and the fact that d2 = 0 give that

dω = 0 and d(∗|ω|n/(n−1)−2ω) = 0,

and so ω is n/(n− 1)-harmonic.

Given p, q ∈ Sn, there exists a rotation of Sn so that q is mapped to the north pole. By

a stereographic projection, p can be mapped to Rn. Additionally, there exists a translation

that maps p to 0. This gives a Möbius transformation ψ : Sn → Sn that maps p, q to 0,∞,

respectively. Define

ωi = ψ∗i ω. (2.3.1)

11



The map ψi is a Möbius transformation and therefore conformal. So ωi is still n/(n − 1)-

harmonic. Let τi = f ∗ωi. To study the pullbacks of p-harmonic differential forms, it is useful

to consider a new class of forms.

Definition 2.3.2. A differential form ω on a Riemannian manifold M is A-harmonic if for

some p ≥ 1, ω ∈ Lp(M) and ω satisfies

dω = 0 and d(∗A(ω)) = 0

in the weak sense, where A is a measurable map from l-forms to l-forms that satisfies the

following properties:

(i) For t ∈ R, A(tω) = |t|p−2tA(ω),

(ii) |A(ω)| ≤ c1|ω|p−1,

(iii) 〈A(ω), ω〉 ≥ c2|ω|p.

The constants c1 > 0 and c2 > 0 are the structure constants associated to A.

The pullback of a p-harmonic form by a K-quasiregular map is A-harmonic, where

A(ω) = 〈G−1ω, ω〉(p−2)/2G−1ω.

Here, G is defined by

(Df)tDf = J
2/n
f G

and

〈Gv, v〉 ∼ ‖v‖2,

with constants depending only on n and K. This last condition can be used to show that

the properties in the definition for A are satisfied with structure constants depending only

on n and K. So τi is an A-harmonic (n− 1) form. That is,

d(∗〈G−1τi, τi〉
1
2

( n
n−1
−2)G−1τi) = 0 and dτi = 0,

The following lemma is a Caccioppoli inequality for A-harmonic exact forms on Rn.

12



Lemma 2.3.3. If dα is an A-harmonic l-form on Rn and η ∈ C∞c (Rn) non-negative, then

ˆ
Rn
|dα|n/lηn/l .

ˆ
Rn
|α|n/l|dη|n/l,

where the constant depends on l, n and K.

Proof. The weak version of the A-harmonic equation for dα gives that

0 =

ˆ
Rn
∗A(dα) ∧ d(ηn/lα).

Note that d(ηn/lα) is not necessarily smooth. However it is an element of Ln/l(Rn) so the

weak formulation of the A-harmonic equation is still valid. By integration by parts,

0 =

ˆ
Rn

(∗A(dα) ∧ dα)ηn/l +
n

l

ˆ
Rn
∗A(dα) ∧ dη ∧ αηn/l−1.

By Properties (ii) and (iii) of A, the integrand of the first term is comparable with constants

depending on n and K to |dα|n/l(η)n/l. By Property (ii), the integrand of the second term is

bounded above by C(n,K)|dα|n/l−1ηn/l−1|α||dη|. So if the terms are rearranged the following

inequality emerges:

ˆ
Rn
|dα|n/lηn/ldx .

ˆ
Rn
|dα|n/l−1ηn/l−1|α||dη|dx

≤
(ˆ

Rn
|dα|n/lηn/ldx

)(n−l)/n(ˆ
Rn
|dη|n/l|α|n/ldx

)l/n
,

by Hölder’s inequality. Combining the like terms gives the lemma.

A remark is that such an inequality also works for anA-harmonic (n−1)-form α satisfying

dα = σ, with ∗σ > 0. The proof is the same as showing that A-subharmonic functions satisfy

a Caccioppoli inequality, see [BP19, Lemma 4.1].

we will also need to use a Poincaré-Sobolev type inequality for differential forms from

Lemma 2.2.1. As mentioned in the discussion after the lemma, there exists a bounded

operator T : Lp(∧lB)→ W 1,p(∧l−1B). Additionally, τ = Tdτ + dTτ , which means τ = dTτ

in this setting. So(
1

|B(0, R)|

ˆ
B(0,R)

|Tτ |
np
n−p

)n−p
np

≤ CR

(
1

|B(0, R)|

ˆ
B(0,R)

|τ |p
) 1

p

, (2.3.2)
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where C depends on n. So if τ is an (n− 1)-form that is A-harmonic, by Lemma 2.3.3,(
1

|B(0, R)|

ˆ
B(0,R)

|τ | n
n−2

)n−2
n

.
1

R

(
1

|B(0, 2R)|

ˆ
B(0,2R)

|Tτ | n
n−2

)n−2
n

,

where the implicit test function used in Lemma 2.3.3 is 1 on B(0, R) and 0 outside B(0, 2R).

Crucially, the gradient of the test function is bounded above by 1/R. By (2.3.2),(
1

|B(0, R)|

ˆ
B(0,R)

|τ | n
n−2

)n−2
n

.

(
1

|B(0, 2R)|

ˆ
B(0,2R)

|τ | n
n−1

)n−1
n

. (2.3.3)

We now proceed with the proof of the Rickman-Picard Theorem.

Proof of Theorem 2.1.2. Let (ωi)
m
i=1 be the differential forms described in (2.3.1) and let

τi = f ∗ωi. By the above discussion, τi satisfies the reverse Hölder inequality (2.3.3) on

B(0, R). Let d be half the minimum (spherical) distance between the omitted points so that

the sets B(pi, d), B(qi, d) are disjoint for all indices i. Define

Ai,R = f−1(B(pi, d) ∪B(qi, d)) ∩B(0, R)

and

Ci,R = B(0, R) \ Ai,R.

Let p = n/(n− 1) and q = (n− 1)/(n− 2). Then by the reverse Hölder inequality (2.3.3)

and Hölder’s inequality,(
m∑
i=1

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

=

(
1

|B(0, R)|

ˆ
B(0,R)

m∑
i=1

|τi|p1Ai,R

)q

≤ |B(0, R)|q−1

|B(0, R)|q
ˆ
B(0,R)

(
m∑
i=1

|τi|p1Ai,R

)q

.

The sets Ai,R are disjoint so(
m∑
i=1

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

≤ 1

|B(0, R)|
m∑
i=1

ˆ
Ai,R

|τi|pq

≤ 1

|B(0, R)|
m∑
i=1

ˆ
B(0,R)

|τi|
n
n−2 .
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By (2.3.3), (
m∑
i=1

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

.
m∑
i=1

(
1

|B(0, 2R)|

ˆ
B(0,2R)

|τi|p
)q

Note that the inequalities above only depend on the A-harmonicity and the dimension. So

the constants only depend on n and K and not on m.

Recall that f is uniformly Hölder continuous. By [BH01, Corollary 2.2], this property

implies that
ˆ
B(0,R)

Jf . Rn,

where the constant only depends on n and K. So
ˆ
B(0,R)

|τi|p =

ˆ
B(0,R)

|f ∗ωi|p(x)dx

≤ K

ˆ
B(0,R)

1

min(dSn(f(x), pi), dSn(f(x), qi))
Jf (x)dx

.
ˆ
B(0,R)

|x|αnJf (x)dx . R(α+1)n,

where α is the Hölder exponent of f . So the growth of the integral is bounded polynomially

and therefore is doubling outside a set of radii with finite logarithmic measure by [BH01,

Lemma 4.14]. A set E ⊂ [0,∞) has finite logarithmic measure if
ˆ
E∩[1,∞)

1

t
dt <∞.

Choosing a radius outside this finite logarithmic measure set,
ˆ
B(0,2R)

|τi|p .
ˆ
B(0,R)

|τi|p,

and by the calculations above,(
m∑
i=1

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

.
m∑
i=1

(
1

|B(0, 2R)|

ˆ
B(0,R)

|τi|p
)q

.

The right hand side splits to get an integral over Ai,R and Ci,R,(
m∑
i=1

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

.
m∑
i=1

(
1

|B(0, R)|

ˆ
Ai,R

|τi|p
)q

+
m∑
i=1

(
1

|B(0, R)|

ˆ
Ci,R

|τi|p
)q

.

(2.3.4)
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Again, note that the constants depend only on n and K.

The goal now is to normalize by the integrals over Ai,R. Multiplying τi by a constant does

not change any of the inequalities proven above. So for a fixed R > 0, the above inequality

becomes

mq . m+
m∑
i=1

(
1

|B(0, R)|

ˆ
Ci,R

|τi|p
)q(

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)−q

. (2.3.5)

Showing that the second term is bounded uniformly of m will imply the theorem. To prove

this, the following Equidistribution Theorem, due to Pankka [Pan10, Theorem 5], is needed.

Theorem 2.3.4. Let M be a closed, connected and oriented Riemannian manifold and let

f : Rn → M be K-quasiregular. Then for every α ∈ Ls(∧nM) for s > n and ε > 0, there

exists a set E ⊂ [1,∞) of finite logarithmic measure so that(ˆ
M

α− ε
) ˆ

B(0,r)

Jf <

ˆ
B(0,r)

f ∗α <

(ˆ
M

α + ε

) ˆ
B(0,r)

Jf

for r ∈ [1,∞) \ E.

This equidistribution theorem originates from similar results for measures due to Mattila

and Rickman that can be found in [MR79]. Since the union of finitely many sets with finite

logarithmic measure still has finite logarithmic measure, the above bounds apply to a finite

number of differential forms simultaneously.

Since f is K-quasiregular,

f ∗(|ωi|pdV ) ∼ |f ∗ωi|p,

for p = n/(n − 1), where the constant depends only on n and K. Let ω′i be the form ωi

restricted to Sn \ (B(pi, ρ) ∪ B(qi, ρ)), where ρ > 0 is a small number to be determined.

By applying Theorem 2.3.4 to |ω′i|pdV , for all ε > 0 and for a large radius R satisfying the

conditions in Theorem 2.3.4,

1

Af (R)

ˆ
Ai,R

|τi|p ≥
1

Af (R)

ˆ
B(0,R)∩f−1(B(pi,ρ)∪B(qi,ρ))

|τi|p

&
1

Af (R)

ˆ
B(0,R)∩f−1(B(pi,ρ)∪B(qi,ρ))

f ∗(|ω′i|pdV ),
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where

Af (R) =

ˆ
B(0,R)

Jf .

The setting is now the same as in Theorem 2.3.4 and therefore

1

Af (R)

ˆ
Ai,R

|τi|p &
ˆ

(B(pi,d)∪B(qi,d))\(B(pi,ρ)∪B(qi,ρ))

|ωi|p − ε.

Computing the last term explicitly gives that

1

Af (R)

ˆ
Ai,R

|τi|p & log
d

ρ
− ε.

On the other hand,

1

Af (R)

ˆ
Ci,R

|τi|p =
1

Af (R)

ˆ
Ai,R

|f ∗ω′i|p

.
1

Af (R)

ˆ
Ai,R

f ∗(|ω′i|pdV ).

Applying Theorem 2.3.4 again gives that

1

Af (R)

ˆ
Ci,R

|τi|p .
ˆ
Sn\(B(qi,d/2)∪B(pi,d/2))

|ωi|p + ε ∼ log
1

d
+ ε.

Recall that d was half the distance between the points {p1, . . . , pm, q1, . . . , qm}. So d is fixed

and there exists ρ small enough satisfying

log 1
d
− ε

log d
ρ

+ ε
. m−1/q.

Therefore there exists a radius R > 0 so that(
1

|B(0, R)|

ˆ
Ci,R

|τi|p
)(

1

|B(0, R)|

ˆ
Ai,R

|τi|p
)−1

. m−1/q.

Hence, equation (2.3.5) becomes,

mq . m+ 1.

This is only possible if m is bounded by a constant depending only on n and K.
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CHAPTER 3

Quasiregularly elliptic manifolds

3.1 Examples of quasiregularly elliptic manifolds

In this section CP2 is shown to be quasiregularly elliptic. Recall that complex projective

space, CPn is defined as Cn+1/ ∼, where x ∼ y if x = λy for some λ ∈ C. Below I will

denote elements in CPn using projective coordinates,

z ∈ CPn, z = [z0 : z1 : · · · : zn].

The proof that CP2 is quasiregularly elliptic involves constructing a quasiregular map

f : R4 → CP2. Later, in Chapter 4, it is shown that CPn is quasiregularly elliptic for all

n ∈ N. However, it is instructive to see an example of how one constructs such maps.

Note that in general a Riemannian metric must be specified when considering quasiregular

ellipticity. However, when a manifold is compact, if it is quasiregularly elliptic under one

Riemannian metric, then it will be quasiregularly elliptic under all Riemannian metrics.

Theorem 3.1.1. The manifold CP2 is quasiregularly elliptic.

There exists a quasiregular mapG : R4 → S2×S2 (see [Ric88]). The mapG is constructed

by first taking the covering map p : R4 → S1×S1×S1×S1, which is a local isometry. There

exists a 2-to-1 branched covering map from S1×S1 → S2 that has bounded length distortion

(BLD). The class of BLD maps was first introduced by Martio and Väisälä in [MV88].

Definition 3.1.2. A map f : Rd → Rd is L-BLD if f is continuous, open, discrete and there

exists a constant L ≥ 1 such that for any path γ : [0, 1]→ Rd,

1

L
`(γ) ≤ `(f(γ)) ≤ L`(γ),
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where `(·) denotes the length of a path.

Martio and Väisälä in [MV88] showed that orientation-preserving L-BLD maps are special

cases of K-quasiregular maps. Given an equivalent definition of BLD maps, see [MV88,

Section 2.1], it is not difficult to show that the Cartesian product of BLD maps is BLD and

hence quasiregular.

So there exists a two-to-one quasiregular map from R4 → S2 × S2. To show that CP2 is

quasiregularly elliptic it therefore suffices to find a map whose domain is S2×S2 ' CP1×CP1.

I will construct a candidate for such a map in steps. The general idea behind the proof

is first to construct a branched covering from S2 × S2 → CP2. The branched covering will

not be quasiregular near its branch set. Near the branch set the map will locally behave

like a power mapping, i.e., (z, w) 7→ (z2, w), where S2 × S2 ' Ĉ × Ĉ. Such a map is not

quasiregular, but the topologically equivalent winding map,

(z, w) 7→ (
z2

|z| , w)

is quasiregular. So the goal will be to locally alter the map near the branch set so the

behavior is that of a winding map while ensuring that the alterations can be glued together

in a well-defined manner. This gluing method is delicate since the branch set will twisted in

the space.

I now present the full details of the proof. Define f1 : CP1 × CP1 → CP3 as

([z0 : z1], [w0 : w1]) 7→ [z0w0 : z0w1 : z1w0 : z1w1].

This map is a diffeomorphism onto the quadric X0X3 = X1X2. Projecting from a point not

on the quadric to the plane [Y0 : Y1 : Y2 : 0] gives a map from Q to CP2, where

Q = {[X0 : X1 : X2 : X3] ∈ CP3 : X0X3 = X1X2}.

One version of this map is

[X0 : X1 : X2 : X3] 7→ [X0 : −X1 −X2 : X3].
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Composing the projection with f1 we define f2 as

([z0 : z1], [w0 : w1]) 7→ [z0w0 : −z0w1 − w0z1 : z1w1].

Note that entries in the image of f2 correspond to the coefficients of the polynomial

p(u, v) = (z0u− z1v)(w0u− w1v).

That is, z0w0 is the coefficient of u2, −z0w1 − w0z1 is the coefficient of uv and z1w1 is the

coefficient of v2. From this representation of f2, it follows that f2 is two-to-one with a branch

set equal to the diagonal ∆ ⊂ CP1 × CP1.

Outside a small open neighborhood N(∆) of the branch set, f2 : CP1×CP1 \ (N(∆))→
CP2 \ f(N(∆)) is a covering map. In fact, f2 restricted as above is quasiregular. However,

near the branch set the quasiregularity fails and so f2 needs to be modified.

The set N(∆) is diffeomorphic to a neighborhood of ∆ in the normal bundle N∆. Denote

this neighborhood Uε(∆) ⊂ N∆. The normal bundle of the diagonal is diffeomorphic to

the tangent bundle of CP1 (see [BT82, Lemma 11.23]). Let X = f(∆) and consider the

diffeomorphism from a neighborhood of X in the normal bundle NX to a neighborhood of

X in CP2. Let Uε(X) be the neighborhood of X in NX. This gives the following diagram:

f−1
2 (N(X)) ⊂ CP1 × CP1

φ1
��

f2 // N(X) ⊂ CP2

φ2
��

Uε(∆) ⊂ N∆
f̃2 // Uε(X) ⊂ NX

It is not immediately clear that φ1 exists. However, f is injective on ∆ and a covering

map outside ∆. Additionally, by direct computation, f−1
2 (N(X)) must be contained in

N(∆) ⊂ CP1 × CP1 for a small enough neighborhood of X. Therefore, it can be embedded

by a submersion, φ1 into N∆ and will be diffeomorphic to Uε(∆).

A rank 2 vector bundle over S2 is completely characterized up to bundle diffeomorphism

by its Euler class (see [Mor01, Theorem 6.22]). In addition, the S1-bundle generated by

considering the unit circle in the vector bundle is always diffeomorphic to a lens space L1/q,

where q ∈ Z is the Euler class. If S3 ⊂ C4, then the 1/q-lens space can be defined as L1/q =
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S3/ ∼, where the equivalence relation is given by (z1, z2) ∼ (w1, w2) when zi = e2πi/qwi, for

i = 1, 2. This definition shows that π1(L1/q) ∼= Z/qZ.

The S1-bundle that comes from the tangent space of S2 is diffemorphic to L1/2 ' RP3.

So considering f̃2 on the boundary of Uε(∆), f̃2 will be a covering map from RP3 to L1/q.

Since f̃2 is a two-to-one map, π1(L1/q) must contain Z/2Z as an index 2 subgroup. However,

π1(L1/q) ∼= Z/qZ and hence q = 4. In fact, up to a homeomorphism, f̃2 is the quotient map

when RP3 and L1/4 are considered as quotients of S3, as described above.

I will now define two new spaces in order to more easily analyze the behavior of f̃2. It

is convenient to consider S2 at this point as the Riemann sphere Ĉ. Let E1(S2) = {(u, v) ∈
N∆ : |u|, |v| ≤ 1}, where u and v are the coordinates of the trivialization of N∆ around

(0, 0) ∈ ∆. If (w, v) is the trivialization around (∞,∞) ∈ ∆, then

(u, v) ∼ (w, u2v).

Additionally, define E2(S2) = {(u, v) ∈ NX : |u|, |v| ≤ 1}, i.e., the equivalent construction

but for X instead of ∆. Note that, X is diffeomorphic to ∆, but the transition maps are

now,

(u, v) ∼ (w, u4v).

As mentioned above, f̃2 is a covering map from Uε(∆) \∆ to Uε(X) \X. The behavior of

f̃2 on the boundary of Uε(∆) is topologically the same as (u, v) 7→ (u, v2). Hence there exist

diffeomorphisms, ψ1, of Uε(∆) to the unit disk bundle over S2 and ψ2 of Uε(X) to the unit

disk bundle over S2 so that f3 = ψ2 ◦ f̃2 ◦ ψ−1
1 (u, v) = (u, v2) on the boundary of E1(S2).

Uε(∆)

ψ1

��

f̃2 // Uε(X)

ψ2

��
E1(S2)

f3 // E2(S2)

Initially, ψ1 exists on Uε(∆) \∆ and ψ2 exists on Uε(X) \X. Since f̃2 and f3 extend to

∆ and S2 respectively as diffeomorphisms, ψ1 and ψ2 extend to ∆ and X respectively so

that they are still both diffeomorphisms (in fact, ψ2 can be chosen to be any diffeomorphism

from Uε(X)→ E2(S2)).

21



Next I show that f3 is well-defined. Consider the two charts for the normal bundle are

(u, v) and (w, v) where (w, v) ∼ (u, u2v) in E1(S2) and (w, v) ∼ (u, u4v) in E2(S2). So

f3(u, v) = (u, v2) ∼ (u, u4v2) = f3(u, u2v) and (u, v) ∼ (u, u2v).

(This also shows that f3 is not quasiregular near v = 0.)

The map f3 can be modified to

f̃3(u, v) =



(
u, v

2

|v|

)
if |u| ≤ 1,

(
w, v

2

|v|

)
if |w| ≥ 1.

The two definitions are in the different trivializations of the bundle. To see what f̃3 does in

the u trivialization when |u| > 1:

f̃3(u, v) ∼ f̃3(u, u2v) =

(
u,

u4v2

|u|2|v|

)
∼
(
u,

v2

|u|2|v|

)
This shows that if |u| = |w| = 1, then the two maps agree. If |v| = 1, then the maps also

agree since the norms on v agree when |u| = |w| = 1.

f̃3 is a BLD-mapping since it is a branched cover that satisfies the BLD condition. Define

a map F : CP1 × CP1 → CP2. If ([z0 : z1], [w0, w1]) /∈ N(∆), then

([z0 : z1], [w0, w1]) 7→ [−z0w1 − z1w0 : z0w0 : z1w1]

Otherwise take the map

N(∆)
φ1−→ Uε(∆) ⊂ N∆

ψ1−→ E1(S2)
f̃3−→ E2(S2)

ψ−1
2−−→ Uε(X) ⊂ NX φ−1

2−−→ N(X). (3.1.1)

Each map in (3.1.1) is a diffeomorphism of compact sets except f̃3. So this is a composition

of BLD mappings and therefore BLD. Hence, F is a quasiregular mapping. This concludes

the proof that CP2 is quasiregularly elliptic.
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3.2 Cohomology of quasiregularly elliptic manifolds

3.2.1 Introduction

In Section 3.1 we constructed an explicit example of a quasiregularly elliptic manifold. In

this section we exhibit a condition on M which guarantees that M is not quasiregularly

elliptic. The main result of this section is as follows:

Theorem 3.2.1. Let M be a closed, connected and orientable Riemannian manifold of

dimension d. If M admits a nonconstant quasiregular mapping from Rd, then

dimH l(M) ≤
(
d

l

)
,

for 0 ≤ l ≤ d, where H l(M) is the de Rham cohomology group of M of degree l.

Theorem 3.2.1 is the first result that gives a restriction, independent of the fundamental

group of M and the distortion K of the mapping, on quasiregular ellipticity of manifolds.

A K-dependent version of Theorem 3.2.1 was proved by Bonk and Heinonen [BH01]. They

showed that dimH l(M) ≤ C(d, l,K) and conjectured that the constant is independent of K.

Theorem 3.2.1 answers this with a sharp bound. The d-dimensional torus, T d = S1×· · ·×S1,

is quasiregularly elliptic and dimH l(T d) =
(
d
l

)
.

This theorem also leads to an answer of a longstanding open problem first posed by Gro-

mov in 1981 [Gro81, p. 200]. He asked whether their exists a d-dimensional, simply connected

manifold that does not admit a nonconstant quasiregular mapping from Rd. Theorem 3.2.1

implies the following corollary.

Corollary 3.2.2. The simply connected manifold M = #n(S2 × S2), the connected sum of

n copies of S2 × S2, is not quasiregularly elliptic for n ≥ 4.

Proof. Firstly, the 2-sphere S2, and hence S2 × S2, is simply connected. Furthermore, since

the dimension of M is larger than 2, the connected sum of simply connected manifolds is

simply connected. So M is simply connected.
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The sphere S2 satisfies dimH2(S2) = 1. By the Künneth formula [BT82, p. 47], dimH2(S2×
S2) = 2. By the Mayer-Vietoris Theorem [BT82, p. 22], H2(#n(S2×S2)) ∼= ⊕nH2(S2×S2).

Therefore dimH2(M) = 2n >
(

4
2

)
for n ≥ 4. So by Theorem 3.2.1, M is not quasiregularly

elliptic.

We next outline the proof for Theorem 3.2.1. We argue by contradiction. Suppose there

is a quasiregular map f : Rd → M . Fix an index l ∈ N so that 1 ≤ l ≤ d. Let k >
(
d
l

)
and

let α1, . . . , αk be representatives of cohomology classes that form a basis in H l(M). Using

Poincaré duality we can choose closed (d− l)-forms β1, . . . , βk on M such thatˆ
M

αi ∧ βj = δij,

for 1 ≤ i, j ≤ k and where δij is the Kronecker delta. In previous papers on quasiregular

ellipticity, p-harmonic forms were used instead of smooth forms arising from Poincaré duality.

Our approach allows us to avoid the use of this machinery.

The pullbacks, ηi = f ∗αi and θi = f ∗(βi) are closed forms on Rd and they satisfy

local Ld/l-bounds depending on the Jacobian of f . Note that the exponent p = d/l is the

conformally invariant exponent for l-forms. For this reason, it is appropriate to consider the

pullbacks of differential forms by a quasiregular map in this Lp-space. The uniform bounds

allow us to use a rescaling procedure to obtain forms on the unit ball in Rd such that the

wedge product of the rescaled forms is equal to 0 almost everywhere.

In the papers by Eremenko and Lewis, [EL91] and [Lew94], the authors applied a sim-

ilar rescaling to A-harmonic functions in order to prove the Rickman-Picard theorem for

quasiregular mappings. Instead of rescaling functions, we consider rescalings of differential

forms. We also note that Kangasniemi [Kan17] rescaled differential forms in the uniformly

quasiregular case. The differential forms in his case rescale so that they are orthogonal at

every point to each other. The main connection between the techniques used in this section

and the above two results is that in the limit the rescaled objects obey pointwise results.

This is the crucial ingredient of the proof.

The rescaling captures how f : Rd →M behaves on average. Since quasiregular mappings

have equidistribution properties similar to holomorphic mappings, f will map a large set
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evenly over M . This can be measured by the size of the Jacobian of f on a set. We choose

a sequence of balls, Bn, so that the integral of the Jacobian of f on Bn limits to infinity.

The differential forms, ηi and θi, rescaled from Bn to B(0, 1), will converge to averages of

themselves on M . The limit, η̃i and θ̃j, in this rescaling will be both non-zero and pair to 0

pointwise. On M , we have that

ˆ
M

αi ∧ βj = 0

for i 6= j. However, the limits of the rescaled forms will satisfy

η̃i ∧ θ̃j = 0,

for almost every x ∈ B(0, 1).

Once the differential forms on the unit ball are constructed and we know that they pair

pointwise to 0, we see that at most
(
d
l

)
= dim(

∧lRd) of the forms can be non-zero. This

will imply that the sets where at least one of the forms is 0 covers the entire ball, apart from

a set of measure 0. However, the size of the rescaled forms is governed by the size of the

Jacobian of f . In order to prove this we need to first show that the Jacobian of f satisfies a

reverse Hölder inequality. In general, the Jacobian of a quasiregular mapping is in L1
loc(Rd).

Bojarski and Iwaniec [BI83], using a method similar to Gehring’s lemma [Geh73], showed

that if f : Rd → Rd, then the Jacobian of f is in L1+ε
loc (Rd) for a sufficiently small ε > 0. In

addition, they show that f satisfies a reverse Hölder inequality, i.e.,(
1

|B(x, r
2
)|

ˆ
B(x, r

2
)

J
(1+ε)
f

)1/(1+ε)

≤ C(d, ε,K)
1

|B(x, r)|

ˆ
B(x,r)

Jf , (3.2.1)

where x ∈ Rd and r > 0. If f : Rd → M , then the Jacobian of f will be in L1+ε
loc (Rd), but it

will not necessarily satisfy a reverse Hölder inequality. The reverse Hölder inequality only

holds when H l(M) 6= 0 for some l, where 1 ≤ l ≤ d− 1.

An example of a map that does not satisfy a reverse Hölder inequality is f(z) = ez : C→
Ĉ. The Jacobian of f at z ∈ C

Jf (z) = e2x/(1 + e2x)2,
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where x = Re(z). If we consider balls of the form B(0, r), then the term on the left hand

side of (3.2.1) will be comparable to r−1/(1+ε) while the term on the right hand side be

comparable to r−1. This is not possible and hence such an inequality cannot be satisfied.

Crucially, H1(Ĉ) = 0 and so (3.2.1) is not expected to hold.

Once we know that the Jacobian of f satisfies a reverse Hölder inequality, we prove that

the size of the Jacobian governs the size of the rescaled forms, ηi and θi, on Bn. In turn, this

shows that the integral of the Jacobian of f on Bn will be arbitrarily small as n → ∞. At

this point we arrive at a contradiction since the balls were exactly chosen so that the integral

of the Jacobian of f is bounded away from 0. Hence the number of forms is bounded by(
d
l

)
. These forms correspond to the dimension of the degree l de Rham cohomology on M ,

proving Theorem 3.2.1.

The structure of the rest of the chapter is as follows. Section 3.2.2 gives a brief intro-

duction to differential forms on manifolds and pullbacks of differential forms by quasiregular

mappings. We also show the reverse Hölder inequality for the Jacobian of f . For the

relationship between quasiregular mappings and differential forms, see [BH01, Section 3]

and [IM93]. The use of differential forms in this setting is inspired by the work of Bonk and

Heinonen [BH01], Donaldson and Sullivan [DS89] and Iwaniec and Martin [IM93].

In Section 3.2.3 we discuss equidistribution properties for f . In Section 3.2.4 we define the

rescalings of the differential forms and prove certain required convergence results. Section

3.2.5 gives the proof of Theorem 3.2.1. Some of the methods in the proof are influenced by

techniques developed by Pankka [Pan10]. For a reference on the facts used for quasiregular

mappings, see [BH01], [DS89] and [Ric93].

3.2.2 Exterior algebra and differential forms

This section gives an introduction to the tools needed to prove Theorem 3.2.1.

Recall that M is a closed, connected and orientable Riemannian manifold of dimension

d. The map f : Rd → M is a K-quasiregular map. Let l be an integer corresponding to the

degree of a de Rham cohomology group of M . In the following it suffices to consider l such
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that 1 ≤ l ≤ d − 1. This is because Hd(M) ∼= H0(M) ∼= R for the manifolds considered in

Theorem 3.2.1.

In order to select suitable differential forms from the cohomology classes on M , we use

Poincaré duality (see [BT82, p. 44]).

Theorem 3.2.3. Let k = dimH l(M). Then there exists closed forms α1, . . . , αk ∈ Ωl(M)

and β1, . . . , βk ∈ Ωd−l(M) such that {[αi]}ki=1 forms a basis for H l(M) and
ˆ
M

αi ∧ βj = δij (3.2.2)

for 1 ≤ i, j ≤ k.

In estimating integrals of differential forms, the following inequality will be useful later

on. If α ∈ ∧l1(Rd) and β ∈ ∧l2(Rd), then

|α ∧ β| ≤ C(d)|α||β|, (3.2.3)

where C(d) only depends on the dimension. To prove this note that the above norms are

translation invariant so it suffices to consider the forms evaluated at 0. The bilinear operator

(α(0), β(0)) 7→ α(0) ∧ β(0) is defined on two finite-dimensional vector spaces. Therefore it

is bounded and and we arrive at (3.2.3).

A key tool we use is the pullback of a differential form by a quasiregular map. If f : Rd →
M is quasiregular and ω ∈ Ωl(M), then f ∗ω is a well-defined measurable form in Lploc(Rd)

and

d(f ∗ω) = f ∗(dω). (3.2.4)

Here, d(f ∗ω) is interpreted in the weak sense (see Lemma 2.2.3).

We also have the following well-known inequality for pullbacks of differential forms by f :

|f ∗ω(x)| ≤ C(d)‖ω‖∞‖Df(x)‖l (3.2.5)

for almost every x ∈ Rd, where ‖Df‖ is the operator norm for Df and C(d) > 0 is a constant

that depends only on d. If f is K-quasiregular, then this becomes

|f ∗ω(x)| ≤ C(d)K‖ω‖∞Jf (x)l/n,
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for almost every x ∈ Rd.

The inequality is a pointwise estimate. So to prove it, without loss of generality, we may

assume that ω ∈ Ωl(B(0, 1)). For almost every x ∈ Rd,

f ∗ω(x) =
∑
I

(ωI ◦ f(x))df I(x)

where I = {i1, . . . , il} is a multi-index of length l. That is,

df I = dfi1 ∧ · · · ∧ dfil ,

where fi is i-th component function of f and we sum over all multi-indices I = {i1, . . . , il}
such that 1 ≤ i1 < · · · < il ≤ d. One can deduce from Hadamard’s inequality that

|dfi1 ∧ · · · ∧ dfil | ≤ |dfi1| · · · |dfil | ≤ ‖Df‖l.

Thus,

|f ∗ω(x)| ≤ C(d)‖ω‖∞‖Df(x)‖l.

Bojarski and Iwaniec [BI83, Theorem 5.1] showed that a quasiregular mapping f : Rd →
Rd has a Jacobian that satisfies a reverse Hölder inequality. That is, there exists b > 1 so

that if F,Ω ⊂ Rd are sets such that F is compact, Ω is open and F ⊂ Ω, then(ˆ
F

J bf

)1/b

≤ C(d, b,K)
1

dist(F, ∂Ω)d/a

ˆ
Ω

Jf (3.2.6)

where 1
a

+ 1
b

= 1. Crucially, b and C(d, b,K) are independent of f, F and Ω. They prove this

by showing a weaker reverse Hölder inequality, where the exponents are 1 and 1/2. They

then use Gehring’s lemma to upgrade to the above inequality. We would like to have such a

statement for f : Rd →M . If H l(M) = 0 for 1 ≤ l ≤ d− 1, then the Jacobian of f does not

necessarily satisfy a reverse Hölder inequality. An example of such a map is f(z) = ez as a

map from C → Ĉ, as mentioned in the introduction. In the setting of Theorem 3.2.1, we

may assume there exists an l such that H l(M) 6= 0, otherwise the theorem is trivially true.

Proposition 3.2.4. Let M be a closed Riemannian manifold and let f : Rd → M be

K-quasiregular. If there exists an integer l with 1 ≤ l ≤ d − 1 such that H l(M) 6= 0,

28



then the Jacobian of f satisfies the weak reverse Hölder inequality,

1

|1
2
B|

ˆ
1
2
B

Jf .

(
1

|B|

ˆ
B

J
d/(d+1)
f

)(d+1)/d

,

where B ⊂ Rd is an arbitrary ball and the constant depends only on K, d and M .

In order to prove the proposition we will need two lemmas. In general, a top-dimensional

product that integrates to the volume of M can be expressed as α ∧ β = V + dτ , where

τ ∈ Ωd−1(M). In order to prove the revere Hölder inequality of Proposition 3.2.4, we would

like to write V as solely the sum of products of differential forms. The following lemma

describes how to absorb the dτ term into the product term.

Lemma 3.2.5. Let l be an integer such that 1 ≤ l ≤ d−1. If there exists a pair of differential

forms, α ∈ Ωl(M) and β ∈ Ωd−l(M) that are closed and satisfy

ˆ
M

α ∧ β =

ˆ
M

V,

where V is the volume form on M , then V can be expressed as

V =
m∑
ν=1

αν ∧ βν ,

where αν ∈ Ωl(M) and βν ∈ Ωd−l(M).

Proof. Without loss of generality, the volume of M is 1. Since α ∧ β is a top-dimensional

form, we have that

α ∧ β = gV,

where V is the volume form on M and g ∈ C∞(M). There exists a point a ∈ M so that

g(a) > 0.

Let x ∈M . By the isotopy lemma [GP74, p. 142], there exists an orientation-preserving

diffeomorphism Φx : M → M such that Φx(x) = a. Let U be an open set containing a such

that g is positive on U . Then {Φ−1
x (U)}x∈M is an open cover of M and there exists a finite

collection of points, x1, . . . , xm such that {Uν}mν=1 cover M , where Uν = Φ−1
xν (U). By the
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construction, g ◦ Φx is positive on Ux. Let Φν be the diffeomorphism corresponding to Uν

and let {λν}mν=1 be a partition of unity subordinate to {Uν}mν=1. Define

ω :=
m∑
ν=1

λνΦ
∗
ν(α ∧ β).

From this definition we get that for any x ∈M ,

ω(x) =
m∑
ν=1

λν(x)(g ◦ Φν(x))Φ∗ν(V )(x)

=
m∑
ν=1

λν(x)(g ◦ Φν(x))JΦν (x)V (x),

where JΦν is the Jacobian of Φν . The diffeomorphism Φν is orientation-preserving, so

JΦν (x) > 0. So the term in the sum is non-negative everywhere and for every x ∈ M ,

at least one term is positive. So ω is a positive top-dimensional form and thus V = cω,

where c : M → (0,∞) is a positive, smooth function on M .

The following lemma is well-known to experts.

Lemma 3.2.6. Let f : Rd → M be a K-quasiregular mapping and let α ∈ Ωl(M) and

β ∈ Ωd−l(M) be closed forms. If B is a ball in Rd such that f ∗(α∧ β) = gdx1 ∧ · · · ∧ dxd for

a non-negative function g : B → R, then

1

|1
2
B|

ˆ
1
2
B

f ∗(α ∧ β) ≤ C(d,K)‖α‖∞‖β‖∞
(

1

|B|

ˆ
B

J
d/(d+1)
f

)(d+1)/d

,

where C(d,K) depends only on d and K.

Proof. Let ψ ∈ C∞c (Rd) be a non-negative function that is 1 on 1
2
B with compact support

in B. Note that we can choose ψ so that |dψ| ≤ 2r−1, where r is the radius of B. Since

f ∗(α ∧ β) is a non-negative multiple of the volume form,ˆ
1
2
B

f ∗(α ∧ β) ≤
ˆ
B

ψf ∗(α ∧ β).

On M , α is closed. By (3.2.4), f ∗α = du on B. We can choose u so that u satisfies a

Poincaré-Sobolev inequality, see. The precise formulation of this is given in Lemma 2.2.1.

Integration by parts (see Lemma 2.2.2) gives that∣∣∣∣ˆ
B

ψf ∗α ∧ f ∗β
∣∣∣∣ =

∣∣∣∣ˆ
B

dψ ∧ u ∧ f ∗β
∣∣∣∣.
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By (3.2.3), Hölder’s inequality and because |dψ| ≤ 2r−1,∣∣∣∣ˆ
B

dψ ∧ u ∧ f ∗β
∣∣∣∣ ≤ C(d)

r
‖u‖d2/(l(d+1)−d)‖f ∗β‖d2/((d+1)(d−l)).

Since du = f ∗α and by the Poincaré-Sobolev inequality,

C(d)

r
‖u‖d2/(l(d+1)−d)‖f ∗β‖d2/((d+1)(d−l)) ≤

C(d)

r
‖f ∗α‖d2/(l(d+1))‖f ∗β‖d2/((d+1)(d−l)).

We remark that the Poincaré-Sobolev inequality is only valid here because 1 ≤ l ≤ d − 1.

The forms α and β are smooth on M and therefore are bounded independently of f . So by

(3.2.5),

C(d)

r
‖f ∗α‖d2/(l(d+1))‖f ∗β‖d2/((d+1)(d−l))

≤ C(d,K)

r
‖α‖∞‖β‖∞‖Jf‖l/dd/(d+1)‖Jf‖

(d−l)/d
d/(d+1)

=
C(d,K)

r
‖α‖∞‖β‖∞

(ˆ
B

J
d/(d+1)
f

)(d+1)/d

.

By taking averages we arrive at the lemma.

We can now proceed to showing the proposition.

Proof of Proposition 3.2.4. Since H l(M) 6= 0 there exists a Poincaré pair, α ∈ Ωl(M) and

β ∈ Ωd−l(M), given in Theorem 3.2.3, with
ˆ
M

α ∧ β = 1.

Fix a ball B ⊂ Rd. Let ψ ∈ C∞c (Rd) be a non-negative function that is 1 on 1
2
B and 0

with compact support in B. The Jacobian of f satisfies

Jfdx
1 ∧ · · · ∧ dxd = f ∗V.

So, by Lemma 3.2.5,
ˆ

1
2
B

Jf ≤
ˆ
B

ψJf

=

ˆ
B

ψf ∗V

=
m∑
ν=1

ˆ
B

f ∗(αν ∧ βν).
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We also know that c and λν are positive and bounded above by constants depending only

on M . So by Lemma 3.2.6,

1

|1
2
B|

ˆ
1
2
B

Jf ≤ C(d,K)
m∑
ν=1

‖αν‖∞‖βν‖∞
(

1

|B|

ˆ
B

J
d/(d+1)
f

)(d+1)/d

.

The number m and the L∞-norms of αν and βν depend only on M and can be absorbed into

the constant. Therefore

1

|1
2
B|

ˆ
1
2
B

Jf ≤ C(d,K,M)

(
1

|B|

ˆ
B

J
d/(d+1)
f

)(d+1)/d

.

Proposition 3.2.4 and [BI83, Theorem 4.2] together imply the following statement:

Proposition 3.2.7. There exists b > 1 such that for any ball B ⊂ Rd(
1

|1
2
B|

ˆ
1
2
B

J bf

)1/b

≤ C(d,M,K, b)
1

|B|

ˆ
B

Jf .

3.2.3 Equidistribution

In this section we provide equidistribution results for a quasiregular mapping f : Rd → M .

These results will help show that the limits of our rescaled forms, which will be constructed

in Section 3.2.4, are non-zero. Define

A(E) :=

ˆ
E

Jf , (3.2.7)

for a Borel set E ⊂ Rd, to be the averaged counting function for f (see [Ric93, Chapter IV]).

The following theorem [BH01, Theorem 1.11] shows that A(B(0, r)) is unbounded.

Theorem 3.2.8. Let f : Rd → M be a quasiregular mapping. If H l(M) 6= {0} for some

l ∈ {1, . . . , d− 1}, then there exists a constant α > 0 such that

lim inf
r→∞

A(B(0, r))

rα
> 0.

In particular, A(Rd) =∞.

We also record a lemma due to Rickman; for the proof see [Ric80, Lemma 5.1].
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Lemma 3.2.9 (Rickman’s Hunting Lemma). Let µ be a Borel measure on Rd that is ab-

solutely continuous with respect to Lebesgue measure. If µ(Rd) = ∞, then, for all M > 0,

there exists a point a ∈ Rd and a radius r > 0 such that

µ(B(a, r)) ≥M and µ(B(a, r)) ≤ D(d)µ(B(a, r/2)),

where D(d) is a constant that depends only on the dimension.

We remark that variants of this lemma have been used in most proofs of the Rickman-

Picard theorem.

The next proposition is the key equidistribution result for the quasiregular mapping f .

Equidistribution results for quasiregular mappings were first shown by Mattila and Rickman

in [MR79]. The following result also bears some similarity to an equidistribution result due

to Pankka [Pan10, Theorem 4]. The proof also uses some methods developed there.

Let {Bn}n∈N be a sequence of balls satisfying

lim
n→∞

A(Bn) =∞.

Let Tn(x) = an + rnx, where an is the center of Bn and rn is the radius of Bn.

Proposition 3.2.10. Suppose ψ ∈ C∞c (B(0, 1)) is a non-negative function that satisfies

A(Bn) ≤ C(d,K)

ˆ
Bn

(ψ ◦ T−1
n )dJf . (3.2.8)

If ω ∈ Ωd(M) satisfies

ˆ
M

ω =

ˆ
M

V,

where V is the volume form on M , then

lim
n→∞

∣∣∣∣ 1´
Bn

(ψ ◦ T−1
n )dJf

ˆ
Bn

(ψ ◦ T−1
n )df ∗ω − 1

∣∣∣∣ = 0.

We can interpret this result in the following way. The condition that A(Bn) → ∞
corresponds to the blow up of the degree of f on the balls Bn. The proposition then shows

that as f wraps Bn around a manifold M an increasing amount of times, f must distribute
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evenly its values on M . If this were not so, we could choose an ω whose support is where f

distributes its values least often and the limit in the proposition would not follow. We now

give the proof of the proposition.

Proof. Let ψn(x) = ψ ◦T−1
n . Since

´
M
ω =
´
M
V , the d-form ω−V integrates to 0 on M . By

de Rham’s theorem, it is exact and ω − V = dτ , where τ ∈ Ωd−1(M). We apply integration

by parts, ∣∣∣∣ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣ =

∣∣∣∣ˆ
Bn

ψdnd(f ∗τ)

∣∣∣∣ =

∣∣∣∣dˆ
Bn

ψd−1
n dψn ∧ f ∗τ

∣∣∣∣.
By (3.2.3) and Hölder’s inequality,∣∣∣∣ˆ

Bn

ψdnf
∗(ω − V )

∣∣∣∣ ≤ C(d)‖dψn‖d,Bn
(ˆ

Bn

ψdn|f ∗τ |d/(d−1)

)(d−1)/d

.

By (3.2.5) and quasiregularity of f ,∣∣∣∣ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣ ≤ C(d)K(d−1)/d‖τ‖∞‖dψn‖d,Bn
(ˆ

Bn

ψdnJf

)(d−1)/d

.

Thus, ∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnf
∗ω − 1

∣∣∣∣ ≤ C(K, d,M)‖dψn‖d,Bn
(ˆ

Bn

ψdnJf

)−1/d

Note that

‖dψn‖d,Bn = ‖dψ‖d,B(0,1),

by the conformal invariance of the d-energy. In other words, the term with ψn is independent

of n. This and (3.2.8) give that∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnf
∗ω − 1

∣∣∣∣ ≤ C(K, d,M)‖dψ‖d,B(0,1)A(Bn)−1/d → 0

as n→∞.

3.2.4 Rescaling principle

In this section we construct rescaled forms on B(0, 1). By Theorem 3.2.3, there exist closed

differential forms α1, . . . , αk ∈ Ωl(M) and β1, . . . , βk ∈ Ωd−l(M) such that the cohomology
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classes [α1], . . . , [αk] form a basis for H l(M). In addition, they satisfy the orthogonality

relation

ˆ
M

αi ∧ βj = δij,

for 1 ≤ i, j ≤ k.

By Theorem 3.2.8 and Lemma 3.2.9, there exist balls Bn ⊂ Rd such that lim
n→∞

A(Bn) =∞
and

A(Bn) ≤ D(d)A(1
2
Bn). (3.2.9)

In the following {Bn}n∈N will always refer to a sequence of balls satisfying these conditions.

We can now rescale the pullbacks, ηi = f ∗αi and θi = f ∗βi on the sequence of balls,

{Bn}n∈N. Let Tn : B(0, 1)→ Bn = B(an, rn) be the map x 7→ an + rnx. The rescaled forms

are defined as

ηni :=
1

A(Bn)1/p
T ∗nηi (3.2.10)

and

θni :=
1

A(Bn)1/q
T ∗nθi. (3.2.11)

Note that by (3.2.4), ηni and θni are closed. By quasiregularity of f , we have that f ∈
W 1,d

loc (Rd,M). By (3.2.5), ηni ∈ Lploc(Rd) and θni ∈ Lqloc(Rd), where p = d/l and q = d/(d− l),
1 ≤ l ≤ d− 1.

The following lemma provides a convergence result for the sequences, {ηni }n∈N and {θni }n∈N.

Lemma 3.2.11. For n ∈ N, there exists a (d − l − 1)-form uni ∈ W 1,q(B(0, 1)), where

q = d/(d− l), such that

duni = θni .

Furthermore, we can pass to a subsequence so that the following convergence results hold.
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(i) There exists an l-form η̃i ∈ Lp(B(0, 1)) and a (d− l)-form θ̃i ∈ Lq(B(0, 1)) such that

lim
n→∞

ηni = η̃i and lim
n→∞

θni = θ̃i

where the convergence of ηni is in the weak topology on Lp(B(0, 1)) and the convergence

of θni is in the weak topology on Lq(B(0, 1)).

(ii) There exists a (d− l − 1)-form, ũi ∈ W 1,q(B(0, 1)) such that

lim
n→∞

uni = ũi

in the norm topology of Lq(B(0, 1)).

(iii) On B(0, 1), we have that dũi = θ̃i in the weak sense.

Proof. In the following proof we will construct several subsequences of the sequences men-

tioned in the lemma. It is understood that the subsequences should be taken simultaneously

for all the forms used.

For the proof of (i), we compute the Lp-norm of ηni . Indeed, by (3.2.10),

ˆ
B(0,1)

|ηni |p =
1

A(Bn)

ˆ
Bn

|ηi|p,

by the conformal invariance of the integral. By quasiregularity of f and (3.2.5),

1

A(Bn)

ˆ
Bn

|ηi|p ≤ KC(d)
‖αi‖p∞
A(Bn)

ˆ
Bn

Jf ≤ KC(d)‖αi‖p∞.

Hence, the Lp-norm of ηni is uniformly bounded. By the Banach-Alaoglu theorem, we can

pass to a subsequence so that

lim
n→∞

ηni = η̃i

in the weak-* topology of Lp(B(0, 1)). Since the dual of Lp(B(0, 1)) is Lq(B(0, 1)) for 1
p
+ 1

q
=

1, the weak-* topology on Lp(B(0, 1)) coincides with the weak topology. So ηni converges to

η̃i weakly.
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The proof for θni is very similar. By (3.2.11),

ˆ
B(0,1)

|θni |q =
rdn

A(Bn)

ˆ
B(0,1)

|θi(an + rnx)|q

=
1

A(Bn)

ˆ
Bn

|θi|q

≤ KC(d)
‖βi‖q∞
A(Bn)

ˆ
Bn

Jf

≤ KC(d)‖βi‖q∞.

Again, by the Banach-Alaoglu theorem, we can pass to a subsequence so that

lim
n→∞

θni = θ̃i

weakly in Lq(B(0, 1)).

We next prove (ii). By part (i), the Lq-norm of θni is uniformly bounded. The forms θni

are closed by (3.2.4). By the Sobolev embedding theorem, there exists (d − l − 1)-forms,

uni ∈ W 1,q(B(0, 1)) such that duni = θni and ‖uni ‖d/(d−l−1) ≤ C‖θni ‖q, where C does not depend

on n, uni or θni (see Lemma 2.2.1). Thus there exists a subsequence of uni that converges to

ũi strongly in Lq(B(0, 1)). We will also denote this subsequence as uni .

Finally, we show (iii). We demonstrate that dũi = θ̃i in the weak sense. By duality, we

can consider test forms φ ∈ Ωl+1(B(0, 1)) with compact support. We pair ũi with dφ,

ˆ
Rd
ũi ∧ dφ = lim

n→∞

ˆ
Rd
uni ∧ dφ

= lim
n→∞

(−1)d−l
ˆ
Rd
θni ∧ φ

= (−1)d−l
ˆ
Rd
θ̃i ∧ φ.

This proves the claims in the lemma.

The following convergence result is a key tool in proving the main result.

Lemma 3.2.12. Let ψ ∈ C∞c (B(0, 1)). Then

lim
n→∞

ˆ
B(0,1)

ψηni ∧ θnj =

ˆ
B(0,1)

ψη̃i ∧ θ̃j,

for 1 ≤ i, j ≤ k.
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Proof. Consider the difference,∣∣∣∣ˆ
B(0,1)

ψηni ∧ θnj −
ˆ
B(0,1)

ψη̃i ∧ θ̃j
∣∣∣∣ ≤ ∣∣∣∣ˆ

B(0,1)

ψηni ∧ (θnj − θ̃j)
∣∣∣∣

+

∣∣∣∣ˆ
B(0,1)

ψ(ηni − η̃i) ∧ θ̃j
∣∣∣∣

= I + II.

Lemma 3.2.11 gives that

I =

∣∣∣∣ˆ
B(0,1)

ψηni ∧ (dunj − dũj)
∣∣∣∣.

Since ψ has compact support, integrating by parts (see Lemma 2.2.2) yields that

ˆ
B(0,1)

ψηni ∧ d(unj − ũj) = (−1)l+1

ˆ
B(0,1)

d(ψηni ) ∧ (unj − ũj)

= (−1)l+1

ˆ
B(0,1)

dψ ∧ ηni ∧ (unj − ũj)

because ηni is weakly closed and ψ(unj − ũj) ∈ W 1,q(Rd), where q = d/(d− l). By (3.2.3),

|dψ ∧ ηni ∧ (unj − ũj)| ≤ C(d)|dψ ∧ ηni ||unj − ũj|,

where C(d) only depends on d. By Hölder’s inequality,

I ≤ C(d)‖dψ ∧ ηni ‖p‖unj − ũj‖q.

A computation in the proof of Lemma 3.2.11 implies that ‖dψ ∧ ηni ‖p is bounded indepen-

dently of n. Additionally, uni → ũi in Lq(B(0, 1)). So limn→∞ |I| = 0.

For the term II, by Lemma 3.2.11, ηni → η̃i in Lp(B(0, 1)) in the weak sense. Since

ψθ̃j ∈ Lq(B(0, 1)), it follows that

lim
n→∞

II = lim
n→∞

∣∣∣∣ˆ
B(0,1)

(ηni − η̃i) ∧ (ψθ̃j)

∣∣∣∣ = 0.

We show that, as a result of the rescaling, condition (3.2.2) transfers to a pointwise

property of the forms η̃i and θ̃j.
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Lemma 3.2.13. For almost every x ∈ B(0, 1),

η̃i ∧ θ̃j(x) = 0 (3.2.12)

when i 6= j.

Proof. When i 6= j,
ˆ
M

αi ∧ βj = 0,

by (3.2.2). By de Rham’s theorem [BT82, Corollary 5.8], there exists τ ∈ Ωd−1(M) such

that dτ = αi ∧ βj. Let ψ ∈ C∞c (B(0, 1)). Define ψn(x) = ψ ◦ T−1
n (x) for x ∈ Bn, where Tn is

the affine transformations that maps the unit ball to Bn. Then
ˆ
B(0,1)

ψηni ∧ θnj =
1

A(Bn)

ˆ
Bn

ψnd(f ∗τ)

=
−1

A(Bn)

ˆ
Bn

dψn ∧ f ∗τ,

due to integration by parts and the compactness of the support of ψ. By (3.2.3) and Hölder’s

inequality, ∣∣∣∣ˆ
B(0,1)

ψηni ∧ θnj
∣∣∣∣ ≤ C(d)

A(Bn)
‖dψn‖d,Bn

(ˆ
Bn

|f ∗τ |d/(d−1)

)(d−1)/d

.

The two integrals can be estimated separately. By the conformal invariance of the d-energy,

‖dψn‖d,Bn = ‖dψ‖d,B(0,1).

By (3.2.5) and quasiregularity of f ,
ˆ
Bn

|f ∗τ |d/(d−1) ≤ K‖τ‖d/(d−1)
∞

ˆ
Bn

Jf .

Combining these we find that∣∣∣∣ˆ
B(0,1)

ψηni ∧ θnj
∣∣∣∣ ≤ C(d)K(d−1)/d‖dψ‖d,B(0,1)‖τ‖∞

A(Bn)

(ˆ
Bn

Jf

)(d−1)/d

→ 0

as n→∞. By Lemma 3.2.12,
ˆ
B(0,1)

ψη̃i ∧ θ̃j = 0.

Since ψ was an arbitrary test function, η̃i ∧ θ̃j(x) = 0 for almost every x ∈ B(0, 1).
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We finish this section with a corollary of the lemma.

Corollary 3.2.14. Suppose the differential forms η̃i and θ̃i are as provided by Lemma 3.2.12

for each i ∈ {1, . . . , k}. Under our assumption that k >
(
d
l

)
, for almost every x ∈ B(0, 1)

there exists an i ∈ {1, . . . , k} such that

η̃i ∧ θ̃i(x) = 0.

Proof. Fix x ∈ B(0, 1) such that (3.2.12) holds for all pairs. Let {η̃j1(x), . . . , η̃jm(x)} be

a basis for span({η̃j(x)}kj=1) ⊂ ∧lRd. Since the dimension of
∧lRd is

(
d
l

)
, we have that

m ≤
(
d
l

)
. By our assumption k >

(
d
l

)
, so there exists an index j /∈ {j1, . . . , jm}. It follows

that η̃j(x) is a linear combination of the other forms. So

η̃j ∧ θ̃j(x) =
m∑
a=1

λia η̃ia ∧ θ̃j(x) = 0

by (3.2.12).

3.2.5 Proof of Theorem 3.2.1

In this section we complete the proof of the main result. Recall that η̃i and θ̃i are the forms

that were constructed in Lemma 3.2.11. For each i = 1, . . . , k, let Di = {x ∈ B(0, 1) :

η̃i ∧ θ̃i(x) = 0} and define Dn
i = an + rnDi.

We will prove Theorem 3.2.1 by contradiction; assume k >
(
d
l

)
. It follows from Corollary

3.2.14 that |Bn| = |
⋃k
i=1D

n
i | and

A(1
2
Bn) ≤

k∑
i=1

ˆ
Dni ∩

1
2
Bn

Jf .

So for each n ∈ N there exists an index 1 ≤ in ≤ k so that

ˆ
Dnin∩

1
2
Bn

Jf ≥
1

k
A(1

2
Bn) ≥ A(Bn)

kD(d)
. (3.2.13)

by (3.2.9). We may assume, by taking a subsequence that the index in = i is always the

same.
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Lemma 3.2.15. For all ε > 0, there exists a compact set Ci ⊂ Di ∩B(0, 1
2
) and an open set

Ui ⊂ Ui ⊂ B(0, 1) containing Di ∩B(0, 1
2
) such that

ˆ
Cni

Jf ≥
A(Bn)

2kD(d)
, (3.2.14)

where Cn
i = an + rnCi, and

ˆ
Ui

|η̃i ∧ θ̃i| < ε. (3.2.15)

Proof. Fix ε > 0. Since
´
Di
|η̃i ∧ θ̃i| = 0, there exists an open set Ui containing Di ∩B(0, 1

2
)

such that (3.2.15) is satisfied. To simplify notation, denote 1
2
Di := Di ∩B(0, 1

2
) and 1

2
Dn
i :=

an + rn
1
2
Di, where Dn

i = an + rnDi.

To construct Ci, first note that for each δ > 0, there exist compact sets Ci(δ) ⊂ Di ∩
B(0, 1

2
) satisfying

|(Di ∩B(0, 1
2
)) \ Ci(δ)| < δ.

Let Cn
i (δ) = an + rnCi(δ). Then, by Hölder’s inequality,

ˆ
1
2
Dni \Cni (δ)

Jf ≤ |12Dn
i \ Cn

i (δ)|1/a
(ˆ

1
2
Dni \Cni (δ)

J bf

)1/b

where 1
a

+ 1
b

= 1 and b > 1 is chosen from Proposition 3.2.7. Continuing the calculation, we

get

ˆ
1
2
Dni \Cni (δ)

Jf ≤ rd/an |12Di \ Ci(δ)|1/a
(ˆ

1
2
Dni \Cni (δ)

J bf

)1/b

≤ rd/an |12Di \ Ci(δ)|1/a
(ˆ

1
2
Bn

J bf

)1/b

.

We now use the higher integrability for Jacobians of quasiregular mappings given in Propo-

sition 3.2.7,

rd/an |12Di \ Ci(δ)|1/a
(ˆ

1
2
Bn

J bf

)1/b

≤ C(K,M, d, b)|1
2
Di \ Ci(δ)|1/ard/an r−d/an

ˆ
Bn

Jf

= C(K,M, d, b)|1
2
Di \ Ci(δ)|1/aA(Bn).
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We choose now δ > 0 to be so small that |1
2
Di \ Ci(δ)|1/a < 1

2C(K,M,d,b)kD(d)
. Then

ˆ
1
2
Dni \Cni (δ)

Jf ≤
A(Bn)

2kD(d)
.

If we combine this with (3.2.13), then the lemma follows.

We now have all of the ingredients to finish the proof of the main theorem.

Proof of Theorem 3.2.1. Recall that we proceed by contradiction and assume that k >
(
d
l

)
.

We may assume that vol(M) = 1. Let Ci and Ui be the sets given in Lemma 3.2.15. Define

Cn
i and Un

i as in Lemma 3.2.15. Choose ψ̃ ∈ C∞c (B(0, 1)) so that 0 ≤ ψ̃ ≤ 1, ψ̃ ≡ 1 on Ci

and ψ̃ ≡ 0 on the complement of Ui. Next we define ψn(x) = ψ̃ ◦ T−1
n . By Lemma 3.2.15,

A(Bn) ≤ 2kD(d)

ˆ
Cni

Jf ≤ 2kD(d)

ˆ
Bn

ψnJf .

By Proposition 3.2.10 and Lemma 3.2.14,

lim
n→∞

∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnηi ∧ θi − 1

∣∣∣∣ = 0 (3.2.16)

By Lemma 3.2.12,

lim
n→∞

∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdnη
n
i ∧ θni

∣∣∣∣ =

∣∣∣∣ˆ
B(0,1)

ψ̃dη̃i ∧ θ̃i
∣∣∣∣ ≤ ˆ

B(0,1)

ψ̃d|η̃i ∧ θ̃i|

Since the support of ψ̃ is contained in Ui,

ˆ
B(0,1)

ψ̃d|η̃i ∧ θ̃i| ≤
ˆ
Ui

|η̃i ∧ θ̃i| < ε,

by (3.2.15). So, for n sufficiently large, we have that∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdnηi ∧ θi
∣∣∣∣ ≤ 2ε. (3.2.17)

Therefore, by (3.2.14) and (3.2.17),

1

(
´
Bn
ψdnJf )

∣∣∣∣ˆ
Bn

ψdnηi ∧ θi
∣∣∣∣ =

A(Bn)

(
´
Bn
ψdnJf )

∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdnηi ∧ θi
∣∣∣∣ ≤ 4kD(d)ε.

This bound is independent of n and contradicts (3.2.16) for small ε and large n. Therefore

|⋃Di| 6= |B(0, 1)| and k ≤
(
d
l

)
. This proves Theorem 3.2.1.
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CHAPTER 4

A classification of the branch set of branched coverings

4.1 Introduction

In this chapter we discuss the behavior of branched covers whose image of its branch set is

contained in a simplicial complex. This work was done jointly with Rami Luisto.

A mapping between topological spaces is said to be open if the image of every open

set is open and discrete if the preimages of points are discrete sets in the domain. A

continuous, discrete and open mapping is called a branched cover. The canonical example is

the winding map in the plane wp(z) = zp

|z|p−1 , p ∈ Z, and the higher dimensional analogues,

wp × idRk : Rk+2 → Rk+2. An important subclass of branched covers is that of quasiregular

mappings.

By the Reshetnyak theorem quasiregular mappings are branched covers ( [Res89] or

[Ric93, Section IV.5, p. 145]) and so branched coverings can be seen as generalizations of

quasiregular mappings, see e.g. [LP17] for some further discussion.

We denote by Bf the branch set of f . This is the set of points where f fails to be a local

homeomorphism. In dimension two the branch set of branched covers is well understood.

By the classical Stöılow theorem (see e.g. [Sto28] or [LP17]) the branch set of a branched

cover between planar domain is a discrete set. In higher dimensions the Černavskii-Väisälä

theorem [V66] states that the branch set of a branched cover between two n-manifolds has

topological dimension of at most n− 2. Note that the winding map wp : Rn → Rn gives an

extremal example as the branch set of wp is the (n− 2)-dimensional subspace

{(0, 0, x3, . . . , xn) ∈ Rn : (x3, . . . , xn) ∈ Rn−2}.
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On the other hand the Černavskii-Väisälä result is not strict in all dimensions. In Section

4.2.3 we describe an example by Church and Timourian of a branched cover S5 → S5 with

dimT (Bf ) = 1. It is not currently known if such examples exist in lower dimensions. Church

and Hemmingsen asked if there exists a branched cover in three dimensions with a branch

set homeomorphic to a Cantor set (see [CH60] and [AP17]). In general the structure of the

branch set of a branched cover, or even a quasiregular mapping, is not well understood but

the topic garners great interest. In Heinonen’s ICM address, [Hei02, Section 3], he asked the

following:

Can we describe the geometry and the topology of the allowable branch sets of quasiregular

mappings between metric n-manifolds?

In the setting of piecewise linear (PL) branched covers between PL manifolds the result

due to Černavskii and Väisälä is exact in the sense that the branch set is (n−2)-dimensional.

Furthermore, it is a simplicial subcomplex of the underlying PL structure and the branched

cover is locally a composition of winding maps. Even without an underlying PL structure of

the mapping, we can in some situations identify that a branched cover between Euclidean

domains is a winding map. Indeed, by the classical results of Church and Hemmingsen [CH60]

and Martio, Rickman and Väisälä [MRV71], if the image of the branch set of a branched

cover f : Ω → Rn is contained in an (n − 2)-dimensional affine subset, then the mapping is

locally topologically equivalent to a winding map. Winding maps, in turn, admit locally a

canonical PL structure.

These notions were improved upon by Martio and Srebro [MS79] in dimension three in

the form of the following theorem. For the definition of a cone see Section 4.2.

Theorem (Martio-Srebro). Let f : D → R3 be a continuous, open and discrete (or quasireg-

ular) mapping, and let x0 ∈ Bf . Suppose there exists a neighborhood V of f(x0) such that

V ∩ fBf is a finite union of half-open line segments originating from f(x0). Then f is

topologically (or quasiconformally) equivalent to a cone of a rational function locally at x0.

Our following main theorem extends this result to all dimensions. For terminology on

simplicial complexes and cones we again refer to Section 4.2. We formulate and prove our
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results in the topological setting, but a quasiregular version of the theorem in the spirit of

the Martio-Srebro result can be acquired using similar methods (see Section 4.5).

Theorem 4.1.1. Let Ω ⊂ Rn be a domain and f : Ω→ Rn be a branched cover. Suppose that

f(Bf ) is contained in a topological simplicial (n− 2)-complex. Then f is locally topologically

equivalent to a piecewise linear map which is a cone of a lower-dimensional PL mapping

g : Sn−1 → Sn−1.

Theorem 4.1.1 also yields the following corollary.

Corollary 4.1.2. Let f : Sn → Sn be a branched cover such that f(Bf ) is contained in a

topological simplicial (n− 2)-complex. Then f is topologically equivalent to a PL mapping.

The previous two statements assume that f(Bf ) is contained in a simplicial (n − 2)-

complex. Since the results are stated up to topological equivalence, Theorem 4.1.1 can be

proven with the added assumption that f(Bf ) is contained in a Euclidean (n− 2)-simplicial

complex.

Note that whenever f(Bf ) is contained in a codimension two simplicial complex, the

topological dimension of f(Bf ) must be exactly (n− 2) The removal of f(Bf ) must locally

generate elements in the fundamental group by the classical result of Church and Hem-

mingsen [CH60, Corollary 5.3].

However, there are many branched covers for which the image of the branch set is compli-

cated. Indeed, Heinonen and Rickman construct a quasiregular branched cover f : S3 → S3

containing a wild Cantor set in the branch set. The set S3 \ f(Bf ) is not simply con-

nected and so f(Bf ) cannot be contained in a codimension 2 simplicial complex (see [HR02]

and [HR98]). Here a wild Cantor set refers to any Cantor set C in Rn such that there is no

homeomorphism h : Rn → Rn for which h(C) ⊂ R×{0}n−1. We also note that the hypothe-

sis of the PL structure must be made on the image of the branch set and not on the branch

set itself (again see Section 4.2.3 for an example due to Church and Timourian [CT78]).

A crucial step in the proof of Theorem 4.1.1 is showing that the boundaries of so-called

normal domains of the mapping f are (n − 1)-manifolds when f(Bf ) is piecewise linear.

45



This method is also a major step in the proof by Martio and Srebro of the three dimensional

case. In higher dimensions the situation is more complicated. In dimensions above three

we need to study not only the boundary of a normal domain U , but also the boundaries of

the (n − 1)-dimensional normal domains of the restriction f |∂U : ∂U → f∂U , and so forth

continuing these restrictions to boundaries of normal domains all the way down to dimension

1.

Finally, as an application of our results, we construct examples of quasiregular mappings

in Section 4.5 in the form of the following proposition.

Proposition 4.1.3. For each n ∈ N there exists a non-constant quasiregular mapping

f : R2n → CPn.

As mentioned above, a large motivation for the contemporary study of branched covers

comes from their subclass of quasiregular mappings. Often quasiregular mappings in dimen-

sions larger than 2 are difficult to construct, but it can oftentimes be easier to construct

branched covers. Thus Proposition 4.1.3 demonstrates that Theorem 4.1.1 can be applied in

some cases to enhance a branched cover into a quasiregular mapping.

4.2 Preliminaries

We follow the conventions of [Ric93] and say that U ⊂ X is a normal domain for f : X → Y

if U is a precompact domain such that

∂f(U) = f(∂U).

A normal domain U is a normal neighborhood of x ∈ U if

U ∩ f−1({f(x)}) = {x}.

By U(x, f, r), we denote the component of the open set f−1(BY (f(x), r)) containing x. The

existence of arbitrarily small normal neighborhoods is essential for the theory of branched

covers. The following lemma guarantees the existence of normal domains, the proof can be

found in [Ric93, Lemma I.4.9, p. 19] (see also [V66, Lemma 5.1.]).
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Lemma 4.2.1. Let X and Y be locally compact complete path-metric spaces and f : X → Y

a branched cover. Then for every point x ∈ X there exists a radius r0 > 0 such that U(x, f, r)

is a normal neighborhood of x for any r ∈ (0, r0). Furthermore,

lim
r→0

diamU(x, f, r) = 0.

The following Černavskii-Väisälä theorem (see [V66]) is of prime importance in the study

of branched covers.

Theorem 4.2.2. Let X and Y be n-dimensional manifolds. If f : X → Y is a branched

cover, then the topological dimension of Bf , f(Bf ) and f−1(f(Bf )) is bounded above by n−2.

In particular, Bf , f(Bf ) and f−1(f(Bf )) have no interior points and do not locally separate

the spaces X nor Y .

Another concept that we will use below is that of a cone.

Definition 4.2.3. Let X be a topological space.

1. The cone of X is the set (X × [0, 1])/(X × {0}) =: cone(X).

2. The suspension of X, denoted S(X), is the disjoint union of two copies of cone(X)

glued together by the identity at X × {1}.

3. If Y is another topological space, a cone map f : cone(X)→ cone(Y ) is a continuous

map such that f(x, t) = (h(x), t) for some h : X → Y and for all t ∈ [0, 1]. Note that

a mapping g : X → Y induces a canonical cone map cone(X) → cone(Y ), (x, t) 7→
(g(x), t) which we will denote by cone(g).

The suspension map of f , denoted S(f) : S(X) → S(Y ), is defined in an identical

manner.

Note that cone(Sk) is homeomorphic to the closed (k+1)-ball, and S(Sk) is homeomorphic

to Sk+1.
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Definition 4.2.4. A mapping f : X → Y is topologically equivalent to g : X ′ → Y ′ if there

exists homeomorphisms φ and ψ such that

f = ψ−1 ◦ g ◦ φ.

In other words the following diagram commutes:

X Y

X ′ Y ′

f

φ ψ

g

.

4.2.1 Simplicial complexes and PL structures

We largely follow [RS72] in our notation and terminology. We list some of the basic definitions

and concepts in this section for the sake of completeness.

Definition 4.2.5. Let {v0, . . . , vk} ⊂ Rn be a finite set of points not contained in any

(k − 1)-dimensional affine subset. The Euclidean k-simplex D is defined as

D =

{
k∑
i=1

λivi :
k∑
i=1

λi = 1, λi ≥ 0

}
.

We say D is spanned by {v1, . . . , vk}.

Definition 4.2.6. A topological k-simplex is a set D ⊂ Rn for which there exists a homeo-

morphism φ : Rn → Rn, that maps D to a Euclidean k-simplex.

A face of a simplex D is a simplex spanned by a subset of the vertices that span D.

Definition 4.2.7. A Euclidean simplicial complex X is a finite collection of simplices such

that

1. if D1 ∈ X and D2 is a face of D1, then D2 ∈ X, and

2. if D1, D2 ∈ X, then D1 ∩D2 is a face of both D1 and D2.

The simplicial complex X is k-dimensional if the highest degree simplex in X is a k-simplex.
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Definition 4.2.8. A topological simplicial complex X is a collection of subsets of X that

are homeomorphic to simplices and a homeomorphism φ : X → Y ⊂ Rn such that φ maps

the collection of subsets to a simplicial complex Y .

We will often consider X as a subset of Rn. In this case we tacitly identify X with the

union of the simplices contained in X.

Definition 4.2.9. Let Ω ⊂ Rn be a domain. A mapping f : Ω → Rn is piecewise linear if

there exists a simplicial complex X = Ω such that f is linear on each n-simplex in X.

4.2.2 Algebraic topology

We refer to [Hat02] for basic definitions and theory of homotopy and homology. We denote

the homotopy groups and the singular homology groups of a space X by πk(X) and Hk(X),

respectively, for k ∈ N. A closed n-manifold M is said to be a homology sphere if H0(M) =

Hn(M) = Z and Hk(M) = 0 for all k 6= 0, n.

A homology sphere need not be a sphere. The canonical example of a nontrivial homology

sphere is the so-called Poincaré homology sphere, defined by gluing the opposing edges of a

solid dodecahedron together with a twist (see e.g. [Can78] and [KS79]). We will denote the

Poincaré homology sphere by P and note that even though the suspension S(P ) of P is not

a manifold, the double suspension S2(P ) of P is homeomorphic to S5 (see again e.g. [Can78]

and [KS79]).

An important result for us is the following theorem that is an immediate corollary of

the Hurewicz isomorphism theorem [Hat02, Theorem 4.32] combined with the generalized

Poincaré conjecture.

Proposition 4.2.10. If M is a simply connected homology sphere, then M is homeomorphic

to the n-dimensional sphere Sn.
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4.2.3 The double suspension of the cover S3 → P .

To contrast our results and underline the necessity of the more technical arguments we recall

in this section a classical branched cover S5 → S5 constructed by Church and Timourian

[CT78] with complicated branch behavior. This example shares many of the properties of

branched covers with f(Bf ) contained in an (n − 2)-simplicial complex, but it is not a PL

mapping. For further discussion on this map see e.g. [AP17].

We note first that the Poincaré homology sphere can be equivalently defined as a quotient

of S3 under a group action of order 120 (see [KS79]). The mapping f : S3 → P induced by

the group action is a covering map, and since S3 is simply connected we see that S3 is the

universal cover of the Poincaré homology sphere P . As a covering map f has an empty

branch set but the suspension of f , S(f) : S(S3)→ S(P ), has a branch set equal to the two

suspension points. By definition of the cone of a map, the preimage of either suspension

point P × {0} or P × {1} is a point and the preimage of any other point is a discrete set of

120 points. Thus the double suspension of f ,

S2(f) : S2(S3) ' S5 → S2(P ) ' S5

is a branched cover between 5-spheres and has a branch set equal to the suspension of the

two branch points of S(f). Thus the branch set BS2(f) is PL equivalent to S1 and so we see

that S2(f) is a branched cover between two spheres with a branch set of codimension four.

The image of the branch set BS2(f) is complicated since its complement has a fundamental

group of 120 elements. Furthermore even though the branch set is PL equivalent to S1, the

image of the branch set is not PL equivalent to a simplicial complex even though it is a Jordan

curve in S5. Thus the map S2(f) does not satisfy the hypothesis of our main theorem.

We also remark for future comparison that for S2(f) the boundaries of normal neighbor-

hoods U(x0, f, r), where x0 is one of the two suspension points of the second suspension, are

homeomorphic to S(P ). This means that the suspension of the Poincaré homology sphere

foliates a punctured neighborhood of a point in R5, but the simply connected space S(P )

with homology groups of a sphere is not a manifold.
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4.3 Boundary of a normal domain

In this section we show that for a branched cover f : Ω → Rn with f(Bf ) contained in a

simplicial (n− 2)-complex, the boundaries of sufficiently small normal domains are homeo-

morphic to a sphere. The main step of the proof takes the form of an inductive argument

where in the inductive step we restrict a branched cover to the boundary of a small normal

domain and study the new branched cover between the lower dimensional spaces. Since we

do not a priori know that the boundary of a normal domain is a manifold, many of the

results in this section are proved in a more general setting where the domain of the mapping

is not assumed to be a manifold.

We begin with a few preliminary results on the behavior of f on the boundary of a normal

domain. The following Lemma 4.3.1 is known to the experts in the field (see e.g. [MS79])

but we give a short proof for the convenience of the reader.

Lemma 4.3.1. Let X be a locally compact and complete metric space and f : X → Rn a

branched cover. Fix x0 ∈ X and let r0 > 0 be such that Ur := U(x0, f, r) is a normal

neighborhood of x0 for all r ≤ r0. Then the restriction

f |∂Ur : ∂Ur → ∂B(f(x0), r)

is a branched cover for all r < r0.

Proof. The restriction is clearly continuous and discrete, so it suffices to show that it is

an open map. Let V ⊂ ∂Ur be a relatively open set and suppose y = f(x1) ∈ f(V ),

where x1 ∈ V . Additionally, suppose that {x1, . . . , xk} = f−1(y). For δ > 0 let Nδ(y) =

B(y, δ) ∩ ∂B(x0, r) and for ε > 0 let Nε(xi) = B(xi, ε) ∩ ∂Ur.

Fix ε > 0 so that Nε(xi) ∩ Nε(xj) = ∅ for i 6= j and Nε(xi) ⊂ V for 1 ≤ i ≤ k.

By [BM17, Lemma 5.15], there exists a δ > 0 such that

f−1(B(y, δ)) ⊂ ∪ki=1B(xi, ε).

Let y′ ∈ Nδ(y). There exists a path γ connecting y to y′ in Nδ(y). By the path-lifting

properties of branched covers, (see e.g. [Ric93, Chapter II.3]), γ can be lifted to paths
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γ1, . . . , γk each contained in Nε(xi). The end point of each lift x′i maps to y′. So Nδ(y) ⊂
f(V ), which means that f(V ) is open.

We will repeatedly choose suitably small normal neighborhoods for points in the domain.

For clarity we formulate this selection as the following lemma.

Lemma 4.3.2. Let X be a locally connected, locally compact and complete metric space and

f : X → Rn a branched cover. Then for every x ∈ X there exists a radius r(x, f) > 0 such

that for all r < r(x, f), U(x, f, r) is a normal neighborhood of x.

Furthermore if f(Bf ) is contained in an Euclidean (n − 2)-simplicial complex we may

assume that f(Bf ) ∩ f(∂U(x, f, r)) = f(Bf ) ∩ ∂B(f(x), r) is contained in an Euclidean

(n− 3)-simplicial complex (up to a global homeomorphism) for all r < r(x, f).

4.3.1 Radial properties of the mapping f

In the following arguments we need a consistent way of describing boundaries of normal

domains of mappings which are themselves restrictions of ambient mappings to boundaries

of normal domains. To this end we define nested collections of lower dimensional normal

domains.

Definition 4.3.3. Let Ω ⊂ Rn be a domain and f : Ω → Rn a branched cover. Denote by

Un−1 the collection of boundaries of normal domains U(x, f, r) ⊂ Ω with r < r(x, f) as in

Lemma 4.3.2. For k = n−1, . . . , 2 we similarly define Uk−1 to be the collection of boundaries

of normal domains U(x, f |V , r) ⊂ V , V ∈ Uk, with r < r(x, f |V ) as in Lemma 4.3.2. We

call these collections as lower dimensional normal domains.

By Lemma 4.3.2, in the case where f(Bf ) is contained in an (n− 2)-simplicial complex

we may assume that for given 1 ≤ k ≤ n−1 and V ∈ Uk that the set f(Bf )∩f(∂U(x, f |V , r))
is contained, up to a homeomorphism, in an (n− 3)-simplicial for r < r(x, f |V ).

Lemma 4.3.4. Let Ω ⊂ Rn be a domain and f : Ω → Rn a branched cover with f(Bf )

contained in an (n− 2)-simplicial complex. Then for any k = n− 1, . . . , 1 and V ∈ Uk, fV
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is homeomorphic to a sphere.

Proof. By using an inductive argument we see that it suffices to study the case where f(V ) ⊂
f(U) with U ∈ Uk+1 and f(U) is a (k + 1)-sphere. The proof in this setting identical to the

proof of [Ric93, Lemma I.4.9].

The following proposition is of prime importance to the proof of Theorem 4.1.1. It

captures the fact that for branched covers with f(Bf ) contained in an Euclidean (n − 2)-

simplicial complex, the branching should occur ‘tangentially’, i.e., inside the boundaries of

normal domains. Some of the steps of the proof are described in Figure 4.1.

Proposition 4.3.5. Let f : Ω→ Rn be a branched cover such that f(Bf ) is contained in an

Euclidean (n− 2)-simplicial complex. Then for any x0 ∈ Ω, there exists a sufficiently small

r < r(x0, f) so that for v ∈ Sn−1, the path

β : [0, r]→ B(f(x0), r), β(t) = (r − t)v + f(x0)

has a unique lift starting from any point z0 ∈ U(x0, f, r) ∩ f−1{β(0)}.

Proof. Choose r small enough so that f(Bf ) ∩ B(f(x0, r)) is contained in a codimension-2

radial set. That is, there exists an (n − 2)-simplicial complex D such that D ∩ B(x0, r1) =

r1
r2

(D ∩B(x0, r2)).

Suppose towards contradiction that the claim is false. Then there exists two different

lifts of β, say α1, α2 : [0, r]→ U(x0, f, r) satisfying,

α1(0) = α2(0) = z0 and α1(s0) 6= α2(s0),

for some s0 ∈ (0, r). Set

t0 = inf{t ∈ [0, r] | α1(t) 6= α2(t)}.

So α1(t) = α(t) for all t ∈ [0, t0], but for s ∈ (t0, t0 + ε) for small ε, α1(s) 6= α2(s). Without

loss of generality we may assume that t0 = 0 and that

α1(t0) = α2(t0) = z0.
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(see top part of Figure 4.1).

Fix a radius R < r(z0, f) such that B(f(z0), R) ⊂ B(f(x0), r(x0, f)) (see middle part

of Figure 4.1). Let s0 ∈ (t0, t0 + ε), we may assume that s0 is sufficiently small so that

β(s0) ∈ B(f(x0), R). We now let U(α1(s0)) and U(α2(s0)) be normal neighborhoods of

α1(s0) and α2(s0) respectively. Let ζ be a line segment that has one endpoint at β(s0) and

intersects f(Bf ) only at β(s0). Additionally, suppose that ζ is small so that

ζ ⊂ fU(α1(s0)) ∩ fU(α2(s0)).

Since everything is contained in the image of normal neighborhoods we can lift ζ to γ1 ⊂
U(α1(s0)) and γ2 ⊂ U(α2(s0)) from the points α1(s0) and α2(s0), respectively – note though

that these lifts might not be unique. Let γ3 be a path connecting γ1 and γ2 that lies outside

of f−1(f(Bf )). The path f(γ1 ∪ γ2 ∪ γ3) will be a loop based at β(s0) that consists of a line

segment and a loop. The loop will lie outside of f(Bf ) (see bottom part of Figure 4.1).

The image of the branch set is contained in a simplicial complex so if the normal neigh-

borhood around x0 is chosen to be sufficiently small the image of the branch set will be

radial in the normal neighborhood. By this we mean that it is contained in the union of

(n − 2)-dimensional planes whose intersection contains f(x0). We may choose the normal

neighborhood V of z0 to be so small that the image of the branch set is also radial with

respect to z0 in this normal neighborhood V . The point β(s0) lies on a path between f(z0)

and f(x0) so the branch set will be radial at β(s0) with respect to small enough normal

domains as well; indeed, for any w ∈ B(f(z0), R)∩ f(Bf ) the line segment [w, f(z0)] belongs

to the branch, and so will the line [w, f(x0)]. Additionally, for each w′ ∈ [w, f(z0)], the line

[w′, f(x0)] will be in f(Bf ) and so we conclude that f(Bf ) contains the segment [w, β(s0)].

Define a homotopy that consists of the straight line from each point in f(γ1 ∪ γ2 ∪ γ3)

to β(s0). Due to the local radial structure of f(Bf ) at β(s0) we see that the homotopy will

take f(γ1∪γ2∪γ3) to an arbitrarily small neighborhood of β(s0) without intersecting f(Bf ).

Additionally, the end loop will be contained in the image of the normal neighborhoods,

U(α1(s0)) and U(α2(s0)).

The homotopy will always preserve a small straight line in ζ and so we can lift the
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homotopy uniquely. The end loop of the homotopy will be lifted separately to the normal

neighborhood of α1(s0) and α2(s0). This gives a homotopy from a connected curve to two

disconnected loops, which is a contradiction.

The previous proposition allows us to uniquely lift radial paths in normal neighborhoods.

We would also like to be able to lift radial paths uniquely in lower dimensional normal

neighborhoods U ⊂ V with V ∈ Uk for any k.

Let f : Ω→ Rn be a branched cover such that f(Bf ) is contained in an (n− 2)-simplicial

complex. Let x0 ∈ V ∈ Uk. By Lemma 4.3.4, f(V ) ' Sk. Up to homeomorphism we can

assume that f(V ) minus a point maps to a k-dimensional plane. In this case f |V will have

a branch set contained in a (k − 2)-simplicial complex.

Proposition 4.3.6. If r < r(x0, f |V ) and v ∈ Sk−1, the path

β : [0, r]→ B(f(x0), r), β(t) = (r − t)v

has a unique lift starting from any point z0 ∈ U(x0, f |V , r) ∩ f |−1
V {β(0)}.

Proof. By Proposition 4.3.5 we know that β has a unique lift in Ω starting from any preimage

of β(0). Thus we only need to show that such a lift is contained V . But this is clear since

f(V ) maps surjectively onto a k-dimensional plane containing β and thus there will be a

preimage of β(0) in V and the lift of β under f |V starting from this preimage is contained

in V .

Proposition 4.3.7. Let Ω ⊂ Rn be a domain and f : Ω→ Rn a branched cover with f(Bf )

contained in an (n − 2)-simplicial complex. Suppose k = n − 1, . . . , 2 and W ∈ Uk. Then

for any x0 ∈ W and all normal domains U(x0, f |W , r) with r < r(x, f) =: r0 (as in Lemma

4.3.2) there exists a parameterized collection of homeomorphisms

ht : ∂U(x0, f |W , r0)→ ∂U(x0, f |W , t),
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Figure 4.1: Showing that radial lifts are unique.
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t ∈ (0, r0) such that the mapping

H : (0, r0)× ∂U(x0, f |W , r0)→ U(x0, f |W , r0) \ {x0},

H(t, x) = ht(x)

is also a homeomorphism and U(x0, f |W , r0) ' cone(∂U(x0, f |W , r0)).

Proof. For t ∈ (0, r0) and any given point x ∈ ∂U(x0, f |W , t) we define the homeomorphism

ht to map x to the endpoint of the unique lift, guaranteed by Proposition 4.3.6, of the straight

line connecting f(x) and f(x0). Since these lifts are unique, there exists a canonical inverse

map for ht. Since these two maps are defined symmetrically it suffices to show that ht is

continuous to prove the claim.

Suppose that there exists a sequence {aj}j∈N such that aj ∈ U(x0, f |W , r0) and

lim
j→∞

aj = a ∈ U(x0, f |W , r0).

This would imply that there is a radial line segment I together with a sequence (Ij) of line

segments converging to I. We must show that the unique lifts αj of Ij converge to the unique

lift α of I. By compactness of the Hausdorff metric (see e.g. [BH99, pp. 70–77]) {αj}j∈N must

have a converging subsequence. So by taking a subsequence suppose that limj→∞ αj = β.

Additionally, β will be connected since for each j ∈ N, αj is connected.

We can parametrize the Ij by a time parameter t in the obvious way. Similarly, we can

parametrize αj so that f ◦αj(t) = Ij(t). By [BH99, Lemma 5.32], for every x ∈ β, there exists

a sequence {αj(t)}j∈N so that limj→∞ αj(tj) = x. Since f is continuous and f(αj(tj)) ∈ Ij,
we have that f(x) ∈ I. So β ⊂ α. Note that β cannot be contained in a different preimage

of I by f since limj→∞ aj = a ∈ α and β is connected.

If x ∈ α, then there exists a sequence of points yj ∈ Ij such that limj→∞ yj = f(x).

The point yj has a unique preimage xj ∈ αj for all j ∈ N. By [BH99, Lemma 5.32] there

exists a subsequence {xjk}k∈N such that limk→∞ xjk = x′ ∈ β ⊂ α. So f(x′) ∈ I and by

uniqueness of lifts we have that x = x′. This gives that β = α. The argument shows that
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every subsequence of {αj}j∈N must limit to α and so limj→∞ ht(aj) = ht(a), which gives that

ht is continuous.

Finally, it is straightforward to check that H is also a homeomorphism, which implies

that U(x0, f |W , r0) = cone(∂U(x0, f |W , r0)).

The previous Proposition 4.3.7 shows that we can foliate the small punctured lower

dimensional normal domains with their boundaries. Note that this does not a priori imply

that the boundaries are spheres, see again the example in Section 4.2.3.

4.3.2 Boundaries of normal domains are homeomorphic to spheres

We wish to show that the boundary of a normal domain is homeomorphic to a sphere for a

branched cover f with f(Bf ) contained in an (n− 2)-simplicial complex. The proof is based

on an inductive argument on the dimension of the lower dimensional normal domains. Most

of the complications in the statements and proofs of the following proposition arise from the

fact that we need to study the restriction of f to the boundary of a normal domain before

showing that the boundary is a manifold.

We first compute the homology groups of the boundary of a lower dimensional normal

neighborhood.

Lemma 4.3.8. Fix k ∈ {2, . . . , n− 2}. Let U be a normal neighborhood in Uk+1 centered at

a point x ∈ Rn. Let also ∂U = V ∈ Uk. If U is sufficiently small, then

Hl(V ) = Hl(Sk)

for 0 ≤ l ≤ k, where Hl is the simplicial homology group.

Proof. By Proposition 4.3.7, U ' cone(V ) and therefore U \ {x} ' V × (0, 1).

Since V ∈ Uk we know that U is a normal neighborhood contained in some W ∈ Uk+1.

By Proposition 4.3.7 there exists an open set containing U in W that is homeomorphic

to U × (0, 1). Removing the point x ∈ U thus gives rise to a neighborhood of U \ {x}
homeomorphic to U \ {x} × (0, 1) ' V × (0, 1)2.
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We can continue inductively to find an open set containing U in the top level normal

neighborhood (which is a domain in Rn) that is homeomorphic to U × (0, 1)n−k−1. Further-

more, U \ {x} is contained in an open set that is homeomorphic to V × (0, 1)n−k. These are

now open sets in Rn and are therefore manifolds. Recall that U ' cone(V ) and therefore U

is contractible. So U × (0, 1)n−k−1 is also contractible.

By extending U to an open domain in Rn the point x ∈ U is extended radially. Therefore

x× (0, 1)n−k−1 ⊂ U × (0, 1)n−k−1 is an (n− k − 1)-submanifold. Consider now a map

γ : Sl → (U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1).

Since U × (0, 1)n−k−1 is contractible, there is a homotopy H that takes γ to a point x′ 6= x.

The dimension of Sl × (0, 1) is l + 1 and, since

(l + 1) + (n− k − 1) < n,

we claim that the image of H can be guaranteed to avoid {x} × (0, 1)n−k−1. To prove this

claim note that H can be assumed to be smooth since U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)

is an open set and hence a smooth manifold. By the compactness of the image of H, there

exists an ε > 0 so that the ε-neighborhood of H lies in U × (0, 1)n−k−1) \ ({x}× (0, 1)n−k−1).

Smooth functions are dense in the uniform topology. Therefore there exists a smooth function

H̃ : Sl× [0, 1]→ U× (0, 1)n−k−1)\ ({x}× (0, 1)n−k−1) such that ‖H− H̃‖ < ε. A straight-line

homotopy takes H to H̃ and hence the claim is shown.

We can also assume that the image of H is transverse to the submanifold {x}×(0, 1)n−k−1

(see [GP74, Chapter 2]). Since the dimensions add up to less than n, the transversality

condition implies that they are actually disjoint. The entire homotopy is disjoint from the

removed set and thus

πl((U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)) = 0

for 1 ≤ l < k. By the above argument, πl(V ) = 0 for 1 ≤ l < k. The lemma now follows by

the Hurewicz theorem [Hat02, p. 366] for this index range.
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It remains to show that Hk(V ) = Hk(S
k). We show this case by the use of the Mayer-

Vietoris theorem. Let M = U × (0, 1)n−k−1 and let L = {x} × Rn−k−1. Note that

M \ L = (U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1).

The Mayer-Vietoris theorem implies that

· · · → Hk+1(M ∪ (Rn \ L))→ Hk(M ∩ (Rn \ L))→ Hk(M)⊕Hk(Rn \ L)

→ Hk(M ∪ (Rn \ L))→ · · ·

is an exact sequence. We have that M and

M ∪ (Rn \ L) = Rn \ ({x} × (0, 1)n−k−1)

are contractible. Additionally,

M ∩ (Rn \ L) = M \ ({x} × (0, 1)n−k−1).

So

0→ Hk(M \ ({x} × (0, 1)n−k−1))→ Hk(Rn \ L)→ 0.

This implies that

Hk(V ) = Hk((U × (0, 1)n−k−1) \ ({x} × (0, 1)n−k−1)

∼= Hk(Rn \ L) ∼= Hk(S
k).

We next show that the boundary of normal domains are homeomorphic to spheres.

Proposition 4.3.9. Let k ∈ {2, . . . , n− 1}. If V ∈ Uk, then V ' Sk.

Proof. We begin by noting that by the proof in Lemma 4.3.8,

V × (0, 1)n−k ' U × (0, 1)n−k−1 \ ({x} × (0, 1)n−k−1),
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where U is a normal neighborhood on the (k+ 1)-level and ∂U = V . Normal neighborhoods

are connected and removing a set of dimension n− k − 1 does not disconnect the set for

k ≥ 1. So V × (0, 1)n−k is connected and therefore V is connected.

We now continue to prove the main claim in the proposition. Suppose first that k = 1

and fix V ∈ U1. We denote the restriction f |V : V → fV by g. By Lemma 4.3.4, gV is

homeomorphic to a circle. The definition of Uk gives that

g(V ) ∩ f(Bf ) = ∅.

This implies that V ∩Bf = ∅ and

g : V → g(V ) ' S1

is a covering map. Since the branched cover f is finite-to-one in any normal domain, we see

that g is a finite-to-one cover of S1. This implies that V is homeomorphic to S1.

Suppose next that the claim holds true for some k < n − 1 and V ∈ Uk+1. Fix a point

x ∈ V and take a normal neighborhood W of x such that ∂W ∈ Uk. By the inductive

assumption ∂W is homeomorphic to Sk. By Proposition 4.3.7,

W ' cone ∂W ' coneSk ' Bn.

The point x has a neighborhood in V homeomorphic to a ball and therefore V is a closed

k-manifold. By Lemma 4.3.8,

Hl(V ) ∼= Hl(S
k)

for 0 ≤ l ≤ k. Combining these we see that V is a simply connected homology k-sphere and

so V ' Sk by Proposition 4.2.10.

4.4 PL cone mappings

In this section we prove Theorem 4.1.1. We divide the proof into a local and global part.

A branched cover f : Sn → Sn is called locally PL with respect to a simplicial decomposition
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A of Sn if, for all x ∈ Sn, there exists an open set U ⊂ U ⊂ Sn containing x and a

homeomorphism

φ : U ′ → U ⊂ Sn

such that f ◦ φ is a PL mapping. Additionally, if U is given a simplicial decomposition

defined by f ◦ φ, the k-simplices in U are mapped to k-simplices in a subdivision of A.

Lemma 4.4.1. Let g : Sn → Sn be a branched cover whose branch set is contained in an

(n − 2)-simplicial complex. Let A be a simplicial decomposition of Sn that contains g(Bg)

in its (n − 2)-skeleton. Additionally, suppose that g is locally PL with respect to A. Under

these conditions, there exists a homeomorphism

Φ: Sn → Sn

such that g◦Φ is a PL mapping and the k-simplices defined by g◦Φ are mapped to k-simplices

in A.

We remark that the proof here uses ideas from the proof in [BM17, Lemma 5.12].

Proof. The strategy of the proof will be to pull back the simplicial structure A by g. The set

Sn can be covered by finitely many open sets U that satisfy the conditions in the definition

of the local PL property of g. We refine A so that g maps the simplices in U ′ to simplices in

A, where φ : U ′ → U is a homeomorphism as described above.

In the spirit of pulling back A by g, let B be the set of simplices σ such that g(σ) ∈ A
and g|σ is a homeomorphism onto its image. To show that this is a simplicial structure for

Sn it suffices to show that every point lies in the interior of a unique simplex and that the

intersection of two simplices is a face of those simplices.

We first show that every point lies in the interior of a unique simplex. Let x ∈ Sn and

y = g(x) ∈ ∆o
k, where ∆k is a k-simplex in B and ∆o

k is the interior of ∆k. Let U be an open

set containing x such that there exists a homeomorphism φ : U ′ → U satisfying that g ◦ φ is

a PL mapping. By our assumption, x′ = φ−1(x) is contained in a simplex D that is mapped
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by g ◦ φ onto a simplex in A. Since g ◦ φ(x′) = y ∈ ∆o
k, the simplex D must be a degree k

simplex and x′ ∈ Do. Additionally, Do = (g ◦ φ)−1(∆o
k) ∩ U ′.

The map g◦φ is a PL branched cover. Therefore it is locally injective on Do. So g defines

a covering map from the component τ of g−1(∆o
k) containing x to ∆o

k. Since ∆k is simply

connected, g is actually a homeomorphism from τ to ∆o
k.

We claim that g extends to a homeomorphism from σ = τ to ∆k. It suffices to show

that g−1 : ∆o
k → σ extends continuously to the boundary. Let {yn}n∈N be a sequence of

points such that yn → y ∈ ∂∆n. Then there exists a sequence of points {xn}n∈N such that

g(xn) = yn. Let a and b be accumulation points of {xn}n∈N. Let an be a subsequence that

converges to a and bn a subsequence that converges to b.

By [BM17, Lemma 5.15], for all ε > 0, there exists δ > 0 so that

g−1(B(y, δ)) ⊂ ∪z∈g−1(y)B(z, ε).

By choosing ε sufficiently small, the sets B(z, ε) will be pairwise disjoint for z ∈ g−1(y).

However, for large n, g(an) and g(bn) will be in B(y, δ). If an and bn are connected by a

path γ, then g−1(γ) must be a path connecting an ∈ B(a, ε) and bn ∈ B(b, ε). So g−1(γ) lies

outside ∪z∈g−1(y)B(z, ε), which gives a contradiction if a 6= b. Thus g−1 extends continuously

to ∂∆k and g defines a homeomorphism from σ to ∆k. This shows that σ defines a k-simplex

in B and that x ∈ σ. This shows that every x is in a simplex defined by B.

Let σ1 and σ2 be simplices in B and suppose σ1 ∩ σ2 6= ∅. If σo1 ∩ σo2 6= ∅, then they must

both be k-simplices and by construction must be mapped homeomorphically onto the same

k-simplex ∆k ∈ A. This is not possible since ∆k is simply connected.

If σo1 ∩ σo2 = ∅, then suppose τ is a simplex such that τ o ∩ σ1 ∩ σ2 6= ∅. It follows that

g(τ) ⊂ g(σ1) ∩ g(σ2). The map g defines an inverse on g(τ)o, which must agree with the

inverses that it defines on g(σ1)o and g(σ2)o. So the entirety of τ must be contained in

σ1 ∩ σ2. This implies that σ1 ∩ σ2 is comprised of the union of finitely many simplices.

Finally, we claim that A and B can be refined so that the intersection of two simplices

is a face. Let σ1 and σ2 be k-simplices. Suppose that σ1 ∩ σ2 6= ∅ and that there are two

(k− 1)-simplices whose interiors are in σ1∩σ2. We apply a barycentric subdivision A. Then
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g pulls back this decomposition to a refinement of B and the new simplices in σ1 and σ2

cannot share more than one (k − 1)-simplex. We may now proceed by repeated barycentric

subdivision to rule out the cases when σ1∩σ2 contain more than one interior of lower degree

shared simplices. At the end of this process, the refined B must be a simplicial decomposition

of Sn.

The construction implies that g is a simplicial map from SnB to SnA. Thus there exists a

PL map from SnB to SnA that is topologically equivalent to g with respect to A.

Lemma 4.4.2. Let f : Sn → Sn be a branched cover with f(Bf ) contained in a simplicial

(n−2)-complex. Let A be a simplicial decomposition of Sn that contains f(Bf ) in its (n−2)-

skeleton. Then f is locally PL with respect to A.

Proof. We proceed by induction on n. The base case, n = 2, follows from Stöılow’s theorem

(see [Sto28] or [LP17]) as f is topologically equivalent to a rational map S2 → S2 and

rational maps are topologically equivalent to PL mappings.

We now suppose that f : Sn → Sn is defined as in the statement of the lemma. Then

there exists a Euclidean simplicial decomposition A (when Sn is viewed as Rn ∪ {∞}) such

that f(Bf ) is contained in the (n− 2)-skeleton of A.

Fix x ∈ Sn. For a small radius r0, there exists a ball B(f(x), r0) that is radially symmetric

with respect to the simplicial decomposition A. More precisely, for any simplex ∆ ∈ A,

∆ ∩ ∂B(f(x), r) =
r

s
(∆ ∩ ∂B(f(x), s))

for 0 < r, s ≤ r0, where r/s is the dilation mapping the s-sphere at f(x0) to the r-sphere.

By Proposition 4.3.7 and Proposition 4.3.9, for sufficiently small r0, the normal neigh-

borhood U(x, f, r0) ' cone(V ), where V = ∂U(x, f, r0), is homeomorphic to Sn−1. Let

g = f |V . By the construction of the homeomorphism in Proposition 4.3.7, f is topologi-

cally equivalent to cone(g) : cone(V ) → B(f(x), r0). By the choice of B(f(x), r0), the map

g : V → ∂B(f(x), r0) sends its branch set into the (n − 3)-skeleton of B(f(x), r0) induced

by A. The induction hypothesis gives that g is locally a PL mapping which respects the
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simplicial decomposition A. By Lemma 4.4.1 it is globally a PL mapping, which respects

the simplicial decomposition A.

The set B(f(x), r0) was chosen to be radially symmetric. Therefore, the map cone(g)

also respects the simplicial decomposition A on Sn. Thus f satisfies the conclusion of the

lemma.

Theorem 4.1.1 follows immediately from Lemma 4.4.2. The combination of Lemmas 4.4.1

and 4.4.2 proves Corollary 4.1.2.

4.5 Construction of a quasiregular mapping

Our main results, Theorem 4.1.1 and Corollary 4.1.2, can be used to produce examples of

quasiregular mappings between manifolds. We give one such construction in this section.

Proof of Theorem 4.1.3. We first note that the manifold CP1 is homeomorphic to Ĉ and (Ĉ)n

is quasiregularly elliptic via e.g. the Alexander mapping, see [Ric93]. Additionally, the com-

position of quasiregular mappings is still quasiregular. Thus in order to prove quasiregular

ellpiticity of CPn, it suffices to construct a quasiregular mapping (CP1)n → CPn.

We first construct a branched covering f : (CP1)n → CPn. Consider the polynomial

p(u, v) = (z1u+ w1v) . . . (znu+ wnv).

The coefficients of each term are homogeneous polynomials in ([zi : wi])
n
i=1, so in particular

the coefficients define a continuous map f : (CP1)n → CPn. By the definition of the mapping,

f is locally injective outside the set

Bf = {([z1 : w1], . . . , [zn : wn]) : [zi : wi] = [zj : wj] for i 6= j}

and at each point x ∈ Bf , f is k-to-1 for some k = k(x) < ∞. Thus f is discrete. To see

that f is open, we note that away from Bf the mapping is open by local injectivity and on

the branch set Bf , f is locally equivalent to a polynomial, and is thus an open map. Thus

we conclude that f is a branched cover.
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Again by the definition of f , it is clear that Bf has locally a simplicial structure. Since

f is locally a polynomial, we see that f(Bf ) is also locally topologically equivalent to an

(n − 2)-simplicial complex in CPn. Thus by Theorem 4.1.1 f is locally equivalent to a PL

mapping and hence topologically equivalent to a quasiregular mapping. A similar argument

as in Lemma 4.4.1 implies that there exists PL structures on (CP1)n and CPn so that f is

equivalent to a PL map. That is, there exists a map, f̃ : X → Y such that X and Y are PL

manifolds and the following diagram commutes:

(CP1)n CPn

X Y

f

φ ψ

f̃

where the mappings φ and ψ are homeomorphisms. The spaces X and Y have a PL structure

and so they also have a quasiconformal structure. When the dimension is not 4, that is, n 6= 2,

by [Sul79] there is in fact a unique quasiconformal structure. Thus we can identify X and Y

with ×ni=1CP
1 and CPn, respectively. In the case n = 4, a direct computation of the maps

shows the same result. Thus we conclude that there exists a quasiregular mapping

f̃ : (CP1)n → CPn

and we conclude this implies that CPn is quasiregularly elliptic for all n ≥ 2.

Remark 4.5.1. In [HR98] Heinonen and Rickman ask the following: Let f : S3 → S3 be a

branched cover. Does there exist homeomorphisms h1, h2 : S3 → S3 such that h1 ◦ f ◦ h2 is a

quasiregular mapping? The methods in this section offer an advance in the understanding of

the problem; indeed, the techniques here can be used to show that for n ≥ 4 any branched

cover f : Sn → Sn with fBf contained in a (n−2)-simplicial complex is, up to a conjugation

by homeomorphisms, a quasiregular mapping.
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