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ABSTRACT OF THE DISSERTATION

Single Cell Molecular and Biophysical Phenotyping

by

Jonathan Lin

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2018

Professor Dino Di Carlo, Chair

Understanding cellular heterogeneity is a crucial part of modern biomedical research as well

as medical diagnostics and therapeutics. A multitude of technologies have emerged to per-

form single cell measurements, but low throughput and high cost remain barriers to largescale

adoption. This dissertation discusses the development of three single cell techniques that

enable new measurement modalities in addition to improving throughput. Two of the de-

scribed technologies are label-free assays, measurements that do not require molecular labels

and as a result, are cheaper, faster, and less invasive ways of measuring cell state.

Chapter 1 discusses the importance of single cell measurements and the benefits of label-

free assays. Chapter 2 discusses Multiparameter Deformability Cytometry, a label-free tech-

nique to measure the physical properties of cells. This technique builds upon previous

deformability cytometry work by extending measurement capabilities to include cellular

morphology and deformation kinetics. We demonstrate the usefulness of the new system by

measuring and classifying stem cells and their descendants based on mechanical phenotype

alone. Chapter 3 discusses the development of a parallel flow cytometer. By integrating an

ultrafast fluorescence imaging technology with a novel microfluidic flow cell, we are able to

increase sample throughput by interrogating up to eight samples simultaneously. Chapter

4 describes a technology that bridges the gap between conventional biomolecular measure-

ments and physical phenotype measurements. By once again integrating an ultrafast imaging
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technique with a novel microfluidic flow cell, we can perform simultaneous biochemical and

physical measurements on single cells. Additionally, by staining subcellular structures, we

can begin to investigate the mechanical properties of cellular components such as the nu-

cleus. We demonstrate the capabilities of the system by measuring the deformability of cells

after treatment with various cytoskeletal agents as well as by osmotically shocking cells and

observing changes to their nuclear and cytoplasmic deformations.
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CHAPTER 1

Introduction

The measurement of cellular properties has long been core to our modern understanding of

biology and human physiology. In recent years, advances in medical technology including

immunotherapy and personalized medicine have been enabled by cytometry but have also

revealed a growing need for new cytometry technologies. One major trend in cytometry is

a focus on single-cell measurements that enable researchers and physicians to detect and

understand the heterogeneity present within populations of cells. Related to this, there is

a trend towards technologies with higher throughputs that boast increased statistical power

when studying rare cells and enable cytometry to scale up towards the throughputs needed

in personalized medicine and drug discovery. Another field of growing interest is label-free

assays, cellular measurements that do not require molecular labels such as antibodies. In

this chapter, we will discuss each of these trends in turn and in subsequent chapters we

will present three technologies that we have developed to help overcome these technological

hurdles.

1.1 Single-cell Cytometry

The ability to detect and characterize cellular heterogeneity is essential to a nuanced under-

standing of biology. The ability to detect subpopulations of cells has proven to be invaluable

in a wide variety of biomedical applications.

In the detection and study of disease, for instance, subpopulations of cells can be respon-

sible for the majority of disease burden or can rapidly become the dominant phenotype if

ignored. Recent research has focused on heterogeneity in tumors as a reservoir of diversity
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that can give rise to treatment resistance. As a result, there is an increased focus on measur-

ing diversity through techniques such as spatial and temporal sampling and technologies such

as single-cell sequencing.1 Similarly, recent research has revealed that, in addition to genetic

mutations, diversity in the expression and activity of critical bacterial cell processes can give

rise to antibiotic resistance.2 Rare cells can even dictate the prognosis of disease. Circulating

tumor cells, because they can give rise to lethal metastatic tumors, can be the dominant in-

fluence on disease burden and patient outcomes while existing as an overwhelming minority

of neoplastic cells by count.3–5

Cellular diversity is also important in the development of therapeutics. This is especially

true in light of the development and commercialization of chimeric antigen receptor (CAR) T

cells as a cancer treatment. In all cell-based therapies, the ability to detect and enrich cells of

a specific phenotype, whether that is expression of a chimeric antigen receptor or the ability

to infiltrate and survive within tumors, is crucial.6,7 The importance of heterogeneity will

only become more pronounced as CAR-T cells are brought to bear against solid tumors where

the lack of a universal marker such as CD19 will require careful antigen characterization and

selection.8

These advances in diagnostics, therapeutics, and personalized medicine were made pos-

sible by single-cell measurement technologies. Technologies such as flow cytometry and

fluorescence-activated cell sorting (FACS) have been commercially available for decades and

are workhorses of both research and medicine. However, as the needs of biomedical research

have evolved, cytometry technologies have evolved as well. Techniques that have traditionally

been limited to aggregate measurements of large numbers of cells are being rapidly adapted

to single cell formats. For instance, techniques such as single-cell nucleic acid sequencing are

rapidly evolving and are available commercially.9,10 Similarly, single-cell Western blotting is

actively being developed and commercialized.11,12 Additionally, new technologies are emerg-

ing to measure new properties of cells such as force generation and adhesion profile.13,14 Even

long-standing single cell technologies such as flow cytometry are currently being researched

with many groups focusing on microfluidics as a way to improve throughput and lower cost
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and on imaging as a way to increase the measurable parameter space.15–19

It is clear that single-cell cytometry remains a field of active interest due not only to the

wide array of applications that remain to be explored but also the rapidly growing needs of

the healthcare and biomedical research industries.

1.2 High-throughput Cytometry

Another active area of cytometry research is high-throughput cytometry. One of the major

barriers to widespread adoption of single-cell measurement techniques is their relatively low

throughput. Although commercially available flow cytometers already boast measurement

rates >10,000 events/second and sample throughputs of >100 µl/minute, these throughputs

remain too low for applications such as drug discovery where cell numbers in excess of a

million are routinely processed. These fields continue to largely use aggregate-readout tech-

niques such as microplate absorbance measurements, with limited use of single-cell techniques

such as flow cytometry and microscopy-based high-content screening.20–22

As previously discussed, however, there is much to be gained by capturing cellular het-

erogeneity by adopting single-cell measurement techniques. These measurements are more

information-rich, capable of performing multiplexed measurements at the single cell level,

allowing researchers to simultaneously probe numerous properties of individual cells. For

instance, flow cytometry has enabled single cell investigation of numerous drug screening-

relevant experiments including antibody screening, efflux transporter activity, receptor bind-

ing, G-protein-coupled receptor activity, and in vitro toxicology.23

Numerous attempts have been made to improve the throughput of single-cell techniques.

In the field of flow cytometry, the main approach has been to run smaller sample volumes,

which reduces statistical power and imposes constraints on experimental design in order to

improve sample throughput.23 Another method has been to run multiple flow cytometers in

parallel, an approach that comes at a significant monetary and complexity cost. Comparing

data from multiple instruments is particularly difficult.24,25
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New microfluidic technologies have attempted to improve cytometry throughput with a

variety of approaches. Some technologies improve particle focusing through techniques such

as inertial or acoustic focusing, enabling faster flow rates.26–29 Other technologies generate

multiple streams of particles, allowing higher sample throughput or simultaneous measure-

ment of multiple samples through parallelization.30–33 While the particle focusing approaches

can yield modest improvements to sample throughput, the parallel stream approaches rep-

resent potential improvements of an order of magnitude or greater. However, these systems

make significant sacrifices in their optical systems due to the difficulty of illuminating mul-

tiple spatial locations and efficiently collecting fluorescent emissions across a large field of

view. Previous works have explored using scanning laser illumination systems and cameras

to overcome these barriers.31 However, these approaches lack the speed and sensitivity of

photomultiplier tube (PMT) based systems. Other works have incoporated on-chip optical

elements, adding complexity and cost to manufacturing.33

An instrument capable of bringing single-cell measurements to high-volume fields such

as drug discovery has yet to emerge. Nascent techniques that parallelize measurements are

promising but have yet to mature into fully integrated systems.

1.3 Label-free Cytometry

A growing area of interest in cytometry research is the use of label-free measurements,

measurements that do not require the addition of molecular labels such as antibodies. These

measurements can be performed a variety of ways including measuring the light scattering

and attenuating properties of cells in order to assay cell cycle, cellular DNA content, and cell

senescence.34,35 Similarly, impedance measurements have been used to measure cell electrical

properties, and microfluidic resonators have been used to measure cell mass and size.36,37 Still

other technologies have used soft substrates to measure the forces generated by cells.13,38

One set of cellular properties that is of particular interest consists of physical properties

including the shape, size, and resistance of cells to an applied load. These properties are
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interesting because they stem from structural and molecular cell properties in a complex fash-

ion that is not easily discerned.39–43 Whereas conventional molecular biomarkers indicate the

presence of specific biomolecules, these physical properties integrate many molecular changes,

allowing them to serve as summary measurements of cell state. Recent findings demonstrate

that physical properties are a promising alternative for phenotyping a range of cell types in

different stages. For instance, recent studies have revealed that the differentiation potential

of mesenchymal stromal/stem cells is strongly dependent upon their elastic and viscoelas-

tic properties and that mechanical markers can help predict osteogenesis in differentiating

stem cells.44,45 Other work has demonstrated that physical changes contribute to natural

phenomena such as leukocyte demargination.46

Although physical properties are promising biomarkers of cell state, performing quanti-

tative and reliable physical measurements for large population of cells has always been chal-

lenging.47 Conventional approaches, such as atomic force microscopy (AFM) or micropipette

aspiration (MA), provide reliable measurements of the effective Young’s modulus of indi-

vidual cells.48,49 Unfortunately, these methods are both labor intensive and time consuming

(tens of cells per hour), making it difficult to achieve statistical power or detect rare cell pop-

ulations. Recent advances in micro-/nano-fabrication technologies, however, have enabled

new mechanophenotyping technologies that can measure deformations of tens to hundreds

of cells per second.50–58

Recent work in our lab on a technique called deformability cytometry has enabled single-

cell mechanophenotyping at 2,000 cells per second. This system integrates an inertial mi-

crofluidic chip and a high-speed camera in order to measure cell size and deformation upon

exposure to uniform hydrodynamic stress.59 Deformability cytometry’s ability to assay cell

state was demonstrated by successfully discriminating activated/non-activated leukocytes

and identifying malignancy in pleural effusion samples.60

Physical properties hold great promise as biomarkers for cell state and may be useful in

the detection of disease. However, physical properties remain relatively unexplored. Further

research is needed to identify and characterize new, useful physical properties. Additionally,
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mechanophenotyping systems need to be integrated with traditional cytometry techniques

so that the strengths of both approaches can be combined.

1.4 New Approaches to High-throughput, Single-cell cytometry

In the following three chapters, we describe three cytometry technologies that we have de-

veloped to address the need for high-throughput, single-cell measurement techniques.

The first technology, Multiparameter Deformability Cytometry, is a high-throughput,

label-free technique to measure the physical properties of single cells. This technique extends

previous work on deformability cytometry, adding the ability to measure cellular morphology

and deformation kinetics. The usefulness of the technique is demonstrated by measuring and

classifying stem cells and their descendants based on mechanical phenotype.

The second technology is a parallel flow cytometer. The system integrates an ultrafast

fluorescence imaging technology with a novel microfluidic flow cell, enabling a dramatic

increase in sample throughput by interrogating up to eight samples simultaneously. This

technology is targeted towards drug discovery and personalized medicine applications where

high sample throughput, in addition to high event rates, is a key requirement.

The third technology is one that combines conventional biomolecular measurements and

physical phenotype measurements. Through integration of an ultrafast imaging technique

with a novel microfluidic flow cell, we perform simultaneous biochemical and physical mea-

surements on single cells. The imaging capabilities of the system can further be used to

investigate the mechanical properties of subcellular components such as the nucleus. This

technology enables the study of the molecular underpinnings of cell mechanical properties

and the mechanical phenotypes of different cellular subpopulations.
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CHAPTER 2

High-throughput Physical Phenotyping of Cell

Differentiation

Jonathan Lin, Donghyuk Kim, Henry T. Tse, Peter Tseng, Lillian Peng, Manjima Dhar,

Saravan Karumbayaram, Dino Di Carlo

In this chapter, we present multiparameter deformability cytometry (m-DC), in which we

explore a large set of parameters describing the physical phenotypes of pluripotent cells and

their derivatives. m-DC utilizes microfluidic inertial focusing and hydrodynamic stretching

of single cells in conjunction with high-speed video recording to realize high-throughput char-

acterization of over 20 different cell motion and morphology-derived parameters. Parameters

extracted from videos include size, deformability, deformation kinetics, and morphology. We

train support vector machines (SVMs) that provide evidence that these additional physical

measurements improve classification of induced pluripotent stem cells (iPSCs), mesenchy-

mal stem cells (hMSCs), neural stem cells (hNSCs), and their derivatives compared to size

and deformability alone. Additionally, we utilize visual interactive Stochastic Neighbor Em-

bedding (viSNE) to visually map the high-dimensional physical phenotypic spaces occupied

by these stem cells and their progeny and the pathways traversed during differentiation.

This report demonstrates the potential of m-DC for improving understanding of physical

differences that arise as cells differentiate and identifying cell subpopulations in a label-free

manner. Ultimately, such approaches could broaden our understanding of subtle changes in

cell phenotypes and their roles in human biology.
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2.1 Introduction

Cell physical properties, including the shape, size, and resistance of cells to an applied load,

stem from other structural and molecular cell properties in a complex fashion that is not

easily discerned.1–4 Compared to conventional molecular biomarkers, these physical prop-

erties integrate many molecular changes. Recent findings have clearly demonstrated that

physical and mechanical properties can be a promising alternative for phenotyping a range

of cell types in different stages. For example, a recent study identified that the differenti-

ation potential of mesenchymal stromal/stem cells is strongly dependent upon their elastic

and viscoelastic properties.5 Similarly, it was shown that cell mechanical markers can be a

promising alternative for predicting osteogenesis of differentiating stem cells.6 Other work

has demonstrated that physical changes are important for explaining natural phenomena

such as leukocyte demargination.7

Obtaining quantitative and reliable measurements of mechanical properties from a large

population of cells has always been a challenge.8 The conventional approaches have been

atomic force microscopy (AFM) or micropipette aspiration (MA),9,10 both of which provide

a reliable measurement of the effective Young’s modulus of individual cells. However, both

methods are time and labor intensive (tens of cells per hour), posing challenges for examin-

ing large populations of cells to either obtain statistically valid conclusions or identify rare

sub-populations. Recent advances in micro-/nano-fabrication technologies have opened up

a range of new mechanophenotyping technologies that can measure deformations of tens to

hundreds of cells per second.11–19 We recently reported a technology, called deformability cy-

tometry, in which a cross-slot microfluidic channel is employed to generate a hydrodynamic

extension zone where individual cells are exposed to uniform hydrodynamic stress and de-

formed.20 Using a standard inverted microscope setup equipped with a high-speed camera,

the technology successfully monitored cell size and deformation at a throughput of approx-

imately 2,000 cells per second. The developed technology, with cell size and deformability

alone, successfully discriminated activated/non-activated leukocytes and identified malig-

nancy in pleural effusion samples;21 however, it was also noted that there were potentially
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other easily extracted parameters (e.g., time dependent deformation and cell morphology)

that might provide additional physical phenotypic information about cell type/status. As

such, we hypothesized that expanding the analysis to additional physical properties may

help to distinguish a spectrum of changes that occur as stem cells differentiate.

We were able to extract additional metrics from high-speed video that yielded repeatable

cell type-specific values and distributions. Our results indicate that the additional parameters

are important; particularly, the addition of morphological parameters (e.g., surface roughness

and cell shape) significantly improved the classification accuracy when comparing induced

pluripotent stem cells (iPSCs) vs. retinal pigmented epithelial cells (RPEs), neural stem cells

(NSCs) vs. neurons and mesenchymal stem cells (MSCs) vs. osteocytes. In addition, iPSCs

and RPEs were found to be the most physically distinguishable cell types, while MSCs and

osteocytes were the least distinguishable. All of our results indicate that physical properties

are modulated in stem cell differentiation and, thus, may play critical roles in cell physiology

and can be used to identify cell populations.

2.2 Materials and Methods

2.2.1 Deformability Cytometry

The microfluidic device used for m-DC has been previously described (Figure 2.1).20 In brief,

traditional soft lithography techniques were used to fabricate polydimethylsiloxane microflu-

idic chips in which cells are uniformly delivered to an extensional flow region (Figure 2.1).

Cell suspensions (approximately 100,000 cells/ml) were injected into the microfluidic chip

using a syringe pump. Uniform delivery was achieved using inertial microfluidics with a

channel aspect ratio of 2 in order to create two vertically stacked focusing positions (channel

dimensions 60 µm x 30 µm, flow rate 750 µl/min). The extensional flow caused cells to de-

form, and the process of deformation was captured using high-speed bright field photography

(approximately 500,000 frames per second).

Automated computer analysis (MATLAB) was then performed to extract physical phe-
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Figure 2.1: Deformability cytometry.
A) Microfluidic device with single inlet and two outlets. Asymmetric focusers and inertial
focusing aid in biasing the cells to two vertically stacked equilibrium positions. B) Cells are
delivered uniformly to an extensional flow region where they are deformed. The deformation
process is captured using high-speed photography, and parameters associated with size,
morphology, strain or deformability, and strain rate are extracted from sequences of images
through computer automated image analysis. C) Bright field images of a cell entering the
extensional flow and deforming.

notype parameters from single cells. Prior to deformation, cell size and morphology were

measured. Cell size metrics capture cell diameter and area, with cell area being robust to

cell shape. Cell morphology metrics compare the distance from the cell membrane to the

cell center (rmembrane) with a moving average in order to describe the shape and surface

roughness of a cell. For these measurements, a radial coordinate system was used to simplify

calculations. During the deformation process, cell deformability and deformation kinetics

were measured. Deformability captures the peak deformation of each cell normalized by size

as an aspect ratio, and the deformation kinetics summarize the aspect ratio changes in the

cell as a function of time. The resulting physical phenotype was composed of 21 parameters

that fall under the broad categories of cell size, deformability, deformation kinetics and mor-

phology (Figure 2.1b-c, Table 2.1-2.3). General descriptions of the parameters are included

in Figure 2.2.

2.2.2 Cell Culture and Preparation for Measurement

Induced pluripotent stem cells (iPSCs, DMD1002) and retinal pigment epithelial cells (RPEs)

were obtained through the stem cell core banks at the University of California, Los Angeles
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Figure 2.2: Physical phenotype parameters.

(Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research), a funded

research facility of the California Institute of Regenerative Medicine (CIRM). The iPSCs

were derived from a punch biopsy from the normal human skin of a single patient, and details

regarding the generation, culture, and characterization of the iPSCs have been previously

published.22 Retinal pigment epithelial cells (RPEs) were derived from DMD1002 iPSCs at

passage 6. DMD1002 iPSCs were plated in suspension in low-adherent dishes with 14%

knockout serum replacement (KSR) and 10 mM nicotinamide and cultured for 2 weeks.

Then, activin A (final concentration of 140 ng/mL) and fibroblast growth factor (FGF, final

concentration of 20 ng/mL) were added into the culture media, and cells were allowed to

further grow for an additional 3-4 weeks. Later, pigmented regions of the embryoid bodies

were manually dissected using a scalpel under a microscope and re-plated as adherent cultures

in RPE media (Alpha DMEM supplemented with 4% FBS, 0.02 ng/ml triiodothyronine, 0.02

µg/ml hydrocortisone, 0.25 mg/ml taurine, 10 mM nicotinamide, non-essential amino acids,

N1, 0.1 mM beta-mercaptoethanol and Glutamax).23 Pigmented monolayers of cells were

passaged both enzymatically and mechanically and plated at a density of 10,000 cells/cm2

(Figure 2.5). Cultured cells were trypsinized for 3 minutes (0.025% trypsin, Sigma-Aldrich,

Missouri, USA) and resuspended in PBS prior to measurement.

Neural stem cells derived from iPSCs were acquired from XCell Science, Inc. The NSCs

were plated in microplates coated in extracellular matrix (Matrigel, Becton Dickinson, Cali-
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fornia, USA). They were cultured in neurobasal medium (Life Technologies, California, USA)

supplemented with recombinant human fibroblast growth factor 2 (Stemgent, Massachusetts,

USA), B27 supplement (Life Technologies), GlutaMAX (Life Technologies), non-essential

amino acids (Life Technologies) and 1% penicillin/streptomycin (Life Technologies). Cells

were seeded at an initial density of 100,000 cells per cm2 and allowed to grow for 5 days with

a passage on day 3 (Figures 2.6 and 2.7). Cells were released from the surface for measure-

ment using Accutase (Life Technologies) for 3-5 minutes until the cells were visibly detached.

NSCs were then resuspended in growth medium for 30 minutes at room temperature prior

to beginning the measurement.

Pre-differentiated neurons derived from iPSCs were acquired from XCell Science (Califor-

nia, USA). Neurons were plated on microplates coated with poly-L-ornithine (Sigma-Aldrich)

and mouse laminin (Thermo Fisher Scientific, California, USA) at a density of 50,000 cells

per cm2. They were cultured in proprietary medium supplied by XCell Science, Inc. for

5 days (Figures 2.6 and 2.7). Cells were released from the microplate for measurement us-

ing Accutase (Life Technologies) for approximately 5 minutes until the cells were visibly

detached. The neurons were then resuspended in growth medium for 30 minutes at room

temperature prior to measurement.

Human adipose-derived stem cells (hMSCs, Thermo Fisher Scientific) were cultured in

tissue culture flasks in MesenPRO RS medium (Thermo Fisher Scientific). Three separate

vials of cells were purchased, each derived from a single donor and received at passage number

1. Cells were seeded at approximately 5000 cells per cm2 and were allowed to grow for 17

days. Cells were released for measurement using TrypLE Express (Thermo Fisher Scientific)

for approximately 7 minutes. hMSCs were resuspended in growth medium for 30 minutes

at room temperature prior to measurement. The effect of m-DC measurements on hMSC

viability and differentiation was also evaluated (Figures 2.8-2.9). Additionally, the batch-to-

batch variation of hMSCs was assessed using DC (three vials of hMSCs were compared with

data pooled from three technical replicates per sample, Figure 2.11).

Human osteocytes were derived from hMSCs using the StemPro Osteogenesis Differen-
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tiation Kit (Thermo Fisher Scientific). hMSCs were initially seeded as previously described

and allowed to grow for 7 days in MesenPRO RS medium. They were then placed in Os-

teogenesis Differentiation Medium for 10 days. Cells were released for measurement using

TrypLE Express for approximately 7 minutes. Osteocytes were then resuspended in growth

medium for 30 minutes at room temperature before measurement.

2.2.3 Evaluation of Parameter Importance with an Iterative Support Vector

Machine (SVM) Approach

To evaluate the importance of each physical parameter, SVMs were trained to classify iPSCs

vs. RPEs, NSCs vs. neurons, and MSCs vs. osteocytes. Each of these comparisons represents

a differentiated cell type and a pluripotent progenitor. In brief, an SVM is a supervised

machine-learning algorithm that defines a boundary based on training data to classify data

points into one of two categories. Here, we use SVMs as a tool to determine if physical

parameters enable us to classify cells into separate categories (or classes).

Initially, the SVMs were provided with two parameters, cell diameter and maximum de-

formation. This established a baseline accuracy based on metrics previously measured by

deformability cytometry. Next, a new set of SVMs were trained on the full physical pheno-

type dataset. The improvement in classification accuracy represents the cellular information

captured by the new physical phenotype parameters. In each case, SVMs were trained on

labeled populations of each cell type and then tested against a 1:1 unlabeled mixture of the

two cell types. The classification accuracy was therefore defined as the percentage of cells

that were correctly identified during the SVM test.

To evaluate the relative importance of different parameters, SVMs were incrementally

trained, adding one parameter at a time. The training began with average cell diameter and

maximum deformation, metrics collected by the original deformability cytometry system.

From there, the parameters were added to the SVM sequentially to maximize classification

accuracy. At each step in this process, a new set of SVMs were trained, each with the

parameters selected in previous iterations as well as one of the remaining parameters. The
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addition of a remaining parameter that led to the best performance for the new SVM was

then included in the next iteration. In this way, parameters that were more important for

classifying the cells were added sooner in the process. This process quantitatively revealed the

order in which parameters provide new independent information for distinguishing between

the two cell types.

In all cases, a grid search was performed on a random subset of the data (500 data points

from each cell population) to determine optimal training parameters (radial basis function

kernel). Classification accuracy was determined by performing a five-fold cross validation

training on a random subset of the data (5000 data points from each cell population).

2.2.4 Visualization of Physical Phenotypes

A two-dimensional projection of the physical phenotype is produced using visual interactive

Stochastic Neighbor Embedding (viSNE), an algorithm that reduces dimensionality while

preserving spatial relationships between data points.23 This analysis was performed on iP-

SCs, NSCs, and neurons, three cell types that represent points along the spectrum of differ-

entiation. A two-dimensional projection allows for the visualization of relationships between

cell types and the changes in physical phenotype that occur during differentiation. Further

exploration of the differences in physical phenotype between the cell types was performed by

relabeling the projections using a parameter from each of the four broad categories of phys-

ical phenotypic parameters. Relabeling the projections in this way helped to reveal changes

in physical phenotype that occur during differentiation as well as the variability among cells

of the same type.

2.3 Results

We first investigated the repeatability and robustness of the new metrics extracted from the

high-speed videos of cell deformation. We found that similar to the previously introduced

deformability and size (Figure 2.3a), metrics of morphology and deformation kinetics pos-
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sessed similar characteristics run to run, independent of slight changes in lighting and flow

conditions. For NSCs, the median max deformability had a mean of 1.85 and a coefficient of

variance (cv) of 0.15 across nine replicates (3 technical replicates from 3 separate biological

replicates). The average median cell size was 13.1 µm with a cv of 0.69. The surface rough-

ness morphology parameter had an average median value of 141.4 and a cv of 0.14. The

average relaxation rate, a deformation kinetics parameter, was the least reproducible with a

mean value of -0.09 with a cv of 0.21 (Table 2.4).

To investigate the utility in identifying a cell state with these additional parameters

beyond deformability and size, SVMs were trained with the full physical phenotype or with

only cell size and maximum deformation. In each case, SVMs that were trained with the

full physical phenotype outperformed those trained with only size and deformation (Figure

2.3b). The improvements to classification accuracy were not uniform and depended on

the comparison populations. The comparison that benefited the most from the addition

of new physical phenotype parameters was NSCs vs. neurons, with a 14-percentage point

improvement, followed by iPSCs vs. RPEs, with a 13.5-percentage point improvement. The

improvement for the comparison of hMSCs vs. osteocytes was the smallest at 4.8 percentage

points. In each of the comparisons, the data represented pooled results from three or more

biological replicates each with three or more technical replicates.

As shown above, m-DC generates high-dimensional information from individual cells;

despite its benefits, data interpretation and decision making from multi-dimensional data

can be challenging. As such, we adopted viSNE to visualize the physical phenotypes of

iPSCs, NSCs, and neurons without deteriorating the power of single cell analysis (Figure

2.4). viSNE utilizes a t-distributed stochastic neighbor embedding algorithm to generate

a scatter plot using all pairwise distances in a high dimensional data set; as such, viSNE

provides a biaxial scatter plot that best preserves the projection of the multidimensional

physical phenotypic space at a single-cell level. The resulting projection shows that the

three cell types occupy generally separable spaces, with some overlap. iPSCs showed the

smallest degree of overlap with the other cell populations. NSCs and neurons exhibited a
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Figure 2.3: Cell classification improves with morphology and kinetics parameters.
A) Scatter plots of cell size and deformability for induced pluripotent stem cells (iPSC), reti-
nal pigmented epithelial cells (RPE), neural stem cells (NSC), neurons, mesenchymal stem
cells (hMSC), and osteocytes. Each pairing (iPSC/RPE, NSC/Neuron, hMSC/Osteocyte)
represents a differentiated cell type and its progenitor stem cell. In the cases of NSCs vs.
neurons and hMSCs vs. osteocytes, there are not clear changes in cell size and deformability,
suggesting that classification of these cell types based on these parameters alone would be dif-
ficult. N=5000 for each scatter plot. B) Classification accuracies of support vector machines
(SVMs) trained on each of the three cell type pairs. In each case, SVMs were supplied with
either the full physical phenotype or just size and deformability. In all cases, the addition of
parameters improved classification accuracy. C) SVMs were trained starting with size and
deformability followed with the sequential addition of five additional parameters from the
four categories (size, deformability, morphology, and kinetics parameters). The parameters
are listed from left to right in order of importance in improving classification accuracy in a
cumulative manner. In all cases, SVMs were trained using 5000 randomly sampled cells of
each cell type.
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Figure 2.4: Visualization of physical phenotypic spaces occupied by iPSCs, NSCs, and neu-
rons based on their 21 parameters.
A) viSNE is used to produce a two-dimensional projection of the physical phenotypic space.
These cells represent different points on the spectrum of differentiation. Separation in this
projection indicates differences in physical phenotype. B) The 2-D projection from (A)
recolorized according to a parameter from cell size, deformability, deformation kinetics or
morphology. The resulting scatter plots demonstrate how these physical properties differ
within cell populations and how they change during the differentiation process.

higher degree of overlap, though there were still spaces uniquely occupied by cells in either

population.

By relabeling the viSNE projection using a parameter from each of the four broad cat-

egories (size, deformability, morphology, and kinetics), a connection to physical changes

between the cells during differentiation can be better discerned. This reveals general char-

acteristics of the cell populations and changes that occur during differentiation. In general,

iPSCs are larger and more deformable than the more differentiated NSCs and neurons. Ad-

ditionally, iPSCs have a higher average relaxation rate and higher surface roughness than the

other cell populations (Figure 2.4). Comparing NSCs and neurons, we can see differences as

well. NSCs are larger and less deformable than neurons with higher surface roughness and

lower average rates of relaxation.
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2.4 Discussion

m-DC improves upon the previously published deformability cytometry system by expanding

the parameters extracted by our analysis algorithm to include morphology and deformation

kinetics metrics in addition to new cell size and deformability metrics. The new parameter

set, the physical phenotype of a cell, consists of 19 new parameters for a total of 21. We

demonstrated that the new metrics contain useful information by measuring the physical

phenotypes of several pluripotent cells and their differentiated descendants. We then used

the physical phenotypes to train SVMs that revealed that the new parameters improve the

classification of these cell types in comparison to SVMs trained only on average cell diameter

and maximum deformation. The improvement in classification accuracy indicates that the

new parameters capture biologically relevant information that can aid in the identification of

these cell populations. It is worth noting that although the classification accuracy increased

across all of the cell comparisons, the improvements were not uniform and were cell-type

dependent.

The highest observed cell classification accuracy was 87.4% with iPSCs and RPEs. Al-

though the accuracy is not yet high enough for confident determination of all cells in a

mixed cell population, our results indicate the potential of the m-DC tool for identifying

pluripotent cells within a population of more differentiated cells such as neural stem cells

or retinal pigment epithelial cells, and the approach may be more generally applicable to

the characterization of the level of remaining pluripotent cells remaining in other cultures,

especially given the unique biophysical features for these very phenotypically plastic cells.

We also performed sequential training of SVMs to determine which five parameters were

most useful in improving classification accuracy in each comparison. Not surprisingly, the

five parameters that emerged as most important in each comparison were dependent on cell

type.

We discovered that morphological parameters and additional deformability metrics were

generally important in improving accuracy; however, kinetics parameters were less so, only
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improving classification between NSCs and neurons. We ranked the physical phenotype pa-

rameters by incrementally increasing the number of parameters supplied to an SVM and

instructing the SVM to select the parameter that best improved classification at each it-

eration. This analysis revealed that morphologic parameters as well as new size and de-

formability measurements were important in improving classification accuracy for most cell

populations (Figure 2.3c, Table 2.5). New size parameters compute the cell area instead of

the cell diameter, which can be affected by differences in cell morphology such as shape.

Thus, the new size parameters may be able to more accurately capture the differences in

cell size that can be seen in Figure 2.3. The new deformability parameters also corrected

for cell morphology by measuring the increase in the aspect ratio during the deformation

process relative to the aspect ratio prior to deformation instead of using a circle as the base-

line reference. Additionally, a kinetics parameter, the mean relaxation rate, was useful in

improving the classification of NSCs and neurons but was not one of the top five metrics

that added additional information beyond deformability and size for classification for the

other cell types tested.

Case-specifically, in the comparison between iPSCs and RPEs, the important parameters

were morphology and size metrics. The morphology parameters encompass both surface

roughness and cell shape, and the size metrics evaluate the area of a cell instead of the

previously used size parameter (average diameter). Morphology parameters compare the

actual distance from the cell membrane to the cell centroid as a function of radial angle

with the moving average of the distance. The surface roughness parameters use a short

moving average (5 degrees), and the cell shape parameters use a longer moving average (30

degrees). The importance of the surface roughness and cell shape parameters indicates that

there are important differences in both of these types of morphologies between the two cell

populations, perhaps due to cortical actin differences, which lead to more ruffling or blebbing.

Additionally, it is likely that the area measurements capture the size of iPSCs better when

the irregular shape of the cells interferes with diameter measurements.

In the comparison between NSCs and neurons, the important parameters also included
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cell area, surface roughness, and cell shape. Notably, the important parameters also included

a deformation kinetics parameter, the average relaxation rate. The kinetics parameters are

computed based on the cell aspect ratio as a function of time during the deformation process.

Increases in the aspect ratio are recorded as deformations, while decreases are recorded as

relaxations. Thus, the importance of the average relaxation rate metric indicates that the

time-dependent characteristics of the deformation process contain important information

about cell phenotypes. It should be noted that this time-dependent metric was found to

have a larger inter-trial measurement variation as discussed above with a cv up to 2-3-

fold higher than that for deformability measures, which may be one reason for the reduced

importance compared to that of the other metrics in the classification of cells.

Lastly, the comparison between hMSCs and osteocytes benefited as well from cell area,

surface roughness and cell shape. Interestingly, a morphology parameter that examines the

aspect ratio of the cell prior to deformation was also important. This serves as another

measurement of cell shape and indicates that morphology is an important distinguishing

factor for these cell types.

The analysis of each of these comparisons indicates that some physical phenotype pa-

rameters such as cell area and morphology are very important factors in cell classification.

However, the differences in each comparison, such as the use of a kinetics parameter in the

NSC vs. neuron comparison, reveals that there is no essential set of physical parameters

that defines cell types and that many of the different physical phenotype parameters have

the potential for being important factors in cell classification. A hallmark of neuron differ-

entiation is the development of a polarized cell structure with axons and dendrites. Studies

have shown that the neural differentiation process involves significant reorganization of the

cytoskeleton including actin, intermediate filaments, and microtubules.24,25 A key biomarker

for neural stem cells is nestin, an intermediate filament protein whose expression is tightly

regulated during differentiation.26 Furthermore, microtubule organization is particularly im-

portant both for maintaining the polarized structure of neurons as well as facilitating their

activity.27,28 These changes to cytoskeletal structure may contribute to the observed decrease
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in deformability of NSCs and neurons relative to iPSCs as well as the observed importance

of cell morphology when classifying NSCs and neurons (Figure 2.3).

Previous work on hMSCs and osteogenesis has demonstrated that cytoskeletal changes

occur during the differentiation process. Pronounced cell shape changes occur, mediated in

part by extensive reorganization of actin into thick bundles at the cell periphery.29,30 Ad-

ditionally, previous work has also demonstrated that MSCs undergo changes in mechanical

properties such as Young’s modulus during osteogenesis, although the nature of the change

can be method dependent.31,32 These changes in cell shape due to actin reorganization may

help explain the differences in cell morphology observed in m-DC (Figure 2.3). The am-

biguous results of previous mechanical measurements comparing hMSCs and osteocytes may

also help explain the relative unimportance of deformability when distinguishing the two cell

types.

There have been studies demonstrating changes in expression of several genes and tran-

scription factors (e.g., cathepsin D, Pax 6, calbindin, PKC-a, and Mitf) during pluripotent

stem cell differentiation;33,34 many of these contribute to the organization of the cytoskele-

ton through microfilaments, intermediate filaments, and/or microtubules.35–42 For example,

up-regulation of Pax6 or PKC-a during differentiation may stabilize the cytoskeleton.43,44

Furthermore, loosely organized heterochromatin and/or abundant euchromatin modifica-

tions have been observed in pluripotent cells compared to that observed in differentiated

cells.45–50 These changes to cytoskeletal and nuclear structure may contribute to the decrease

in deformability and overall change in physical phenotype observed in RPEs compared to

that in iPSCs (Figure 2.3).

Further improvements to the measurement of physical phenotype can be made in the

future by focusing on decoupling the effects of cell size on deformability and deformation rate

parameters. In the previously described SVM experiments, size information was provided to

the SVMs so that deformability and kinetics could be considered in the context of cell size.

However, direct comparisons of cell deformability and kinetics will benefit from correcting

for cell size.
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Figure 2.5: Retinal pigmented epithelial (RPE) cell characterization.
Phase contrast images showed the normal pigmented structure of a RPE monolayer. RPEs
were immunostained for tight junction protein, ZO1 (using rabbit anti-ZO1, Invitrogen,
shown in green) which is a common marker for RPEs, and their nuclei (4’,6-diamidino-2-
phenylindole or DAPI shown in blue in). The procedure is as follows: a monolayer of RPE
cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes and permeabilized with 0.1%
triton X-100 for 10 minutes. Cells were blocked in 10% goat serum. Scale bar: 100 µm.

Finally, the visualization of the physical phenotypes of iPSCs, NSCs, and neurons re-

vealed that the three cell types occupy generally separable spaces, confirming that changes

in physical phenotype occur throughout the differentiation process. Further exploration re-

vealed changes in all four broad categories of physical parameters. Thus, we have used m-DC

to begin the process of mapping the physical changes that occur during differentiation. A

general trend found in moving along the spectrum from less to more differentiated was in-

creasing stiffness and more circular cell shapes in suspension. This may be linked to higher

cortical tension, and these maps can be useful in understanding the process of differentiation

and the importance of physical properties. They can also aid in the detection of subpopula-

tions and provide context to physical changes that occur in other biological processes such

as neoplasia.
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Figure 2.6: Human neural stem cells (hNSCs) and neurons stained using immunohistochem-
istry for neural markers.
hNSCs and neurons were fixed in 0.2% paraformaldehyde for 10 minutes, permeabilized in
0.04% Triton X-100 for 10 minutes, and immuno-stained with anti-MAP2 (EMD Millipore
MAB5326A4, Massachusetts, USA) and anti-TUJ-1 (Abcam ab18207, Cambridge, UK), two
neural cell markers. 5% goat serum was used as a blocking agent. Neurons at 5 and 7 days
post-plating show high levels of TUJ-1 expression and demonstrate clear neural morphol-
ogy with extensive neural processes. Nuclear staining was performed with DAPI (Thermo
Fisher).
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Figure 2.7: hNSCs and neurons stained for nestin
hNSCs and neurons were fixed, permeabilized, and immuno-stained with anti-nestin (EMD
Millipore clone 10C2 MAB5326A4) a neural stem cell marker. hNSCs at 5 and 7 days
following seeding show nestin expression. Neurons at day 5 show nestin expression with
clear neural morphology and neurons at day 7 show decreasing levels of nestin expression.
Nuclear staining was performed with DAPI (Thermo Fisher).
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Figure 2.8: hMSC and osteocyte viability 1 week following DC measurements.
hMSCs were run through the DC device at varying flowrates to determine the effect of DC on
cell viability. Samples with flowrates of 0 µl/min were not exposed to stretching or any flow.
Following treatment, the cells were seeded at equal density and kept in either MesenPRO RS
medium or osteogenic medium for 1 week. After 1 week, a BCA assay (Pierce, California,
USA) was performed to determine total protein concentration which was used as a proxy for
cell viability and proliferation. There is no clear effect of DC treatment on hMSC viability.
Each datapoint represents 4 replicates and error bars represent a single standard deviation.
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Figure 2.9: hMSC and osteocyte viability 2 weeks following DC measurement.
hMSCs were treated as described in Figure 2.8. After 2 weeks, a BCA assay (Pierce) was
performed to determine total protein concentration which was used as a proxy for cell via-
bility and proliferation. There is no clear effect of DC treatment on hMSC viability. Each
datapoint represents 4 replicates and error bars represent a single standard deviation.
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Figure 2.10: hMSC and osteocyte calcium content 2 weeks following DC measurement.
Calcium content, an osteogenesis marker, was assayed (QuantiChrom, BioAssay Systems,
California, USA) and normalized against total protein content at 2 weeks for the hMSCs
and osteocytes described in Figure 2.9. There is no clear effect of DC treatment on the
differentiation of hMSCs. Error bars represent 1 standard deviation.
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Figure 2.11: Lot variation in hMSCs.
Three batches of adipose-derived stem cells were purchased from Thermo Fisher and mea-
sured with several replicates using DC. Here, the median deformability is plotted as a function
of cell size for both hMSCs and the osteocytes that were differentiated from them. Error
bars represent a standard deviation and numbers above bars represent the percentage of
cells that fall within the size range. Although cells within a given size range have similar
deformability across multiple batches of hMSCs, the percentage of cells that fell within the
size bins varied between batches. Over 20,000 events were collected for each batch of hMSCs.
This demonstrates the ability to detect batch-to-batch variation in stem cell properties that
is enabled by high-throughput, single-cell measurements.
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Table 2.1: Size and Deformability Parameters
Parameter Description
Average Size The average cell diameter is computed for each frame prior to the be-

ginning of the deformation process. For each frame, the cell boundary is
detected and the diameter is measured in the vertical direction by taking
the average of 61 diameters between the angles 60 to 120 degrees, each sep-
arated by 1 degree of rotation. These average diameters are then averaged
again.

Area The cell boundary is detected for each frame prior to the beginning of
the deformation process. The distance from the cell boundary to the
cell centroid is computed as a function of angle with 360 data points each
separated by 1 degree of rotation. The sum of these distances is computed
and averaged over all pre-deformation frames.

Area2 The cell boundary is detected for each frame prior to the beginning of
the deformation process. The distance from the cell boundary to the cell
centroid is computed as a function of angle with 360 data points each
separated by 1 degree of rotation. The distance data is then smoothed
using first order Savitzky-Golay filter with a window size of 17. The
resulting data is converted back to Cartesian coordinates and the area of
the cell is determined using MATLAB’s polyarea function.

Initial aspect
ratio

Peak aspect ratio of the cell prior to the deformation process. Aspect ratio
is defined as the long axis of the cell divided by the short axis of the cell.
The two axes are defined such that one is vertical (between 70 and 110
degrees) and one is horizontal (between -20 and 20 degrees).

Final aspect
ratio

Peak aspect ratio of the cell during the deformation process.

Compensated
aspect ratio

Aspect ratio measurement that attempts to control for non-unity cell as-
pect ratio prior to deformation. Compensated aspect ratio is the difference
between the final aspect ratio and the initial aspect ratio.
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Table 2.2: Morphology Parameters
Parameter Description
Morphology
1A, 2A, 3A

The cell boundary is detected for each frame prior to the beginning of
the deformation process. The distance from the cell boundary to the cell
centroid is computed as a function of angle with 360 data points each
separated by 1 degree of rotation. This yields cell radius as a function
of angle which is used to compute a moving average of length 5, 15, or
30 degrees. The moving average is subtracted from the raw radius data
and the absolute value of the result is integrated over the entire cell (360
degrees).

Morphology
1C, 2C, 3C

For these morphology parameters, the moving average is compared to
the raw cell data and the number of cross over events between the two
functions is counted.

Cell size and
morphology

Combined measurement of surface roughness and cell size. Prior to de-
formation, cell diameter is measured in the vertical direction (between 60
to 120 degrees). Additionally, the distance from the cell boundary to the
cell centroid is computed as a function of angle with 360 data points each
separated by 1 degree of rotation. The cell diameter is then added to the
sum of the absolute value of the derivative of the cell boundary distance.
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Table 2.3: Deformation Kinetics Parameters
Parameter Description

Max, initial,
average
deformation
rate

Cell aspect ratio is recorded as a function of time during the deformation
process. This function is differentiated to produce the rate of aspect ratio
change as a function of time. These parameters represent the maximal
positive rate of aspect ratio change, the first recorded positive rate of
aspect ratio change, and the average of all recorded positive rate of aspect
ratio change, respectively.

Max, initial,
average
relaxation
rate

These parameters represent the maximal negative rate of aspect ratio
change, the first recorded negative rate of aspect ratio change, and the
average of all recorded negative rate of aspect ratio change, respectively.

Deformation
rate before
max

This parameter represents the positive rate of aspect ratio change that
occurs just prior to the maximum measured aspect ratio.

Wobble A second order polynomial is fit to the rate of change of aspect ratio and
the root mean square of the residuals is reported.

Table 2.4: Technical and biological variability in measurements of neural stem cells.
This table compares the variability due to the m-DC system with the biological variability
of neural stem cells. The first three rows of the table contain the coefficients of variance
for the average median values of 4 physical phenotype parameters for each of 3 biological
replicates. Each statistic represents the results of 3 technical replicates and gives an estimate
of the variability of the m-DC measurement itself. The final row of the table contains the
coefficients of variance for the average median values of the same parameters for the overall
dataset. Each statistic describes the results of 3 biological replicates and gives an estimate
of the biological variability of neural stem cells.

Biological
Replicate

Deformability
CV

Cell Size CV
Surface
Roughness
CV

Relaxation
Rate CV

1 0.015 0.009 0.018 0.013
2 0.032 0.010 0.021 0.070
3 0.013 0.003 0.037 0.039
All 0.167 0.079 0.158 0.237
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Table 2.5: Repeatability of relative importance of physical phenotype parameters.
This table depicts three replicates of the SVM-based experiments to determine the relative
importance of physical phenotype parameters. In these experiments, SVMs were initially
supplied with average cell size and deformability. From there, parameters were iteratively
added to the SVM, maximizing the improvement of classification accuracy at each iteration
(see Materials and Methods). Replicates of these experiments demonstrate that some
parameters are robustly important for distinguishing certain pairings of cells (e.g. cell area
for iPSC vs. RPE) while other parameters are seemingly interchangeable (e.g. Morphology
M3A and M3C in iPSC vs. RPE). This confirms that parameters can often be correlated
and that there is not a clear minimum set of parameters capable of describing all cell types.

iPSC vs. RPE 3 4 5 6 7

Replicate 1 Area
Cell Size &
Morphology

Morphology:
M1A

Morphology:
M3A

Area 2

Replicate 2 Area
Morphology:
M1C

Morphology
M3C

Area 2
Compensated
Aspect Ratio

Replicate 3 Area
Morphology:
M1C

Cell Size &
Morphology

Morphology:
M1A

Morphology:
M3A

NSC vs. Neuron

Replicate 1 Area 2
Morphology:
M3A

Area
Average
Relaxation
Rate

Cell Size &
Morphology

Replicate 2 Area 2
Morphology:
M3A

Average
Relaxation
Rate

Morphology:
M1C

Area

Replicate 3 Area 2
Morphology:
M3A

Average
Relaxation
Rate

Area
Morphology:
M2A

hMSC vs. Osteocyte

Replicate 1
Cell Size &
Morphology

Morphology:
M2A

Area 2
Compensated
Aspect Ratio

Morphology:
M1A

Replicate 2
Morphology:
M2A

Cell Size &
Morphology

Morphology:
M1A

Morphology:
M2C

Average
Deformation
Rate

Replicate 3
Morphology:
M1C

Cell Size &
Morphology

Area
Morphology:
M3C

Initial Aspect
Ratio
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2.5 Conclusions

In this report, we demonstrated m-DC, an improvement to the previously described de-

formability cytometry platform by adding two new categories of physical parameters: cell

morphology and deformation kinetics. In conjunction with size and deformability metrics,

the new parameters produce a description of a cell’s physical phenotype. Using SVMs, we

demonstrated that the physical phenotype improves classification of pluripotent stem cells

and their differentiated descendants. Additionally, we showed that the new categories of

parameters are important contributors to the improved classification accuracy. Finally, we

demonstrated how the physical phenotype can be visualized and used to explore the phys-

ical changes that occur during the differentiation process. m-DC is a high-throughput and

label-free method for analyzing the physical properties of cells. This technique opens the

door to label-free assays of differentiation progression with applications in stem cell therapy.

Furthermore, the biophysical maps produced by measurements of stem cells and their de-

scendants provide a tool for studying the role of differentiation in other biological processes

such as cancer. Ultimately, such approaches can deepen our understanding of subtle changes

to cell phenotypes and their implications in physiological processes.

2.6 Acknowledgements

The authors acknowledge financial support from the Packard Foundation and the National

Science Foundation grant #1150588. JL is supported under NIH MSTP Training Grant

#T32GM008042.

2.7 Conflicts of Interest

D.D., H.T. and the Regents of the University of California have financial interests in CytoVale

Inc., which is commercializing the deformability cytometry technology.

39



2.8 References

[1] Eric M. Darling and Dino Di Carlo. “High-Throughput Assessment of Cellular Me-

chanical Properties”. In: Annual Review of Biomedical Engineering 17.1 (Dec. 2015),

pp. 35–62.

[2] Paul A Janmey and Christopher A McCulloch. “Cell mechanics: integrating cell re-

sponses to mechanical stimuli.” In: Annual review of biomedical engineering 9 (2007),

pp. 1–34.

[3] Christophe Guilluy et al. “The Rho GEFs LARG and GEF-H1 regulate the mechanical

response to force on integrins.” In: Nature cell biology 13.6 (June 2011), pp. 722–7.

[4] Kendra D. Nyberg et al. “The physical origins of transit time measurements for rapid,

single cell mechanotyping”. In: Lab on a Chip 16.17 (2016), pp. 3330–3339.

[5] R. D. Gonzalez-Cruz, V. C. Fonseca, and E. M. Darling. “Cellular mechanical proper-

ties reflect the differentiation potential of adipose-derived mesenchymal stem cells”. In:

Proceedings of the National Academy of Sciences 109.24 (June 2012), E1523–E1529.

[6] Tom Bongiorno et al. “Mechanical stiffness as an improved single-cell indicator of

osteoblastic human mesenchymal stem cell differentiation.” In: Journal of biomechanics

47.9 (June 2014), pp. 2197–204.

[7] Meredith E Fay et al. “Cellular softening mediates leukocyte demargination and traf-

ficking, thereby increasing clinical blood counts.” In: Proceedings of the National Academy

of Sciences of the United States of America 113.8 (Feb. 2016), pp. 1987–92.

[8] G. Bao and S. Suresh. “Cell and molecular mechanics of biological materials”. In:

Nature Materials 2.11 (Nov. 2003), pp. 715–725.

[9] M Radmacher et al. “From molecules to cells: imaging soft samples with the atomic

force microscope.” In: Science (New York, N.Y.) 257.5078 (Sept. 1992), pp. 1900–5.

[10] R M Hochmuth. “Micropipette aspiration of living cells.” In: Journal of biomechanics

33.1 (Jan. 2000), pp. 15–22.

40



[11] Dongping Qi et al. “Screening cell mechanotype by parallel microfiltration”. In: Sci-

entific Reports 5 (Dec. 2015), p. 17595.

[12] Kerryn Matthews et al. “Microfluidic deformability analysis of the red cell storage

lesion.” In: Journal of biomechanics 48.15 (Nov. 2015), pp. 4065–72.

[13] Gonghao Wang et al. “Microfluidic cellular enrichment and separation through differ-

ences in viscoelastic deformation”. In: Lab on a Chip 15.2 (2015), pp. 532–540.

[14] Tobias Sawetzki et al. “Viscoelasticity as a biomarker for High-throughput flow cy-

tometry”. In: Biophysical Journal 105.10 (2013), pp. 2281–2288.

[15] Josephine Shaw Bagnall et al. “Deformability-based cell selection with downstream

immunofluorescence analysis”. In: Integrative Biology (United Kingdom) 8.5 (2016),

pp. 654–664.

[16] Yi Zheng et al. “Recent advances in microfluidic techniques for single-cell biophysical

characterization”. In: Lab on a Chip 13.13 (2013), pp. 2464–2483.

[17] Jason P Beech et al. “Sorting cells by size, shape and deformability.” In: Lab on a chip

12.6 (2012), pp. 1048–1051.

[18] Oliver Otto et al. “Real-time deformability cytometry: on-the-fly cell mechanical phe-

notyping”. In: Nature Methods 12.3 (2015).

[19] Aline T. Santoso et al. “Microfluidic cell-phoresis enabling high-throughput analysis of

red blood cell deformability and biophysical screening of antimalarial drugs”. In: Lab

on a Chip 15.23 (Dec. 2015), pp. 4451–4460.

[20] D. R. Gossett et al. “Hydrodynamic stretching of single cells for large population

mechanical phenotyping”. In: Proceedings of the National Academy of Sciences 109.20

(May 2012), pp. 7630–7635.

[21] Henry T K Tse et al. “Quantitative diagnosis of malignant pleural effusions by single-

cell mechanophenotyping.” In: Science translational medicine 5.212 (Nov. 2013), 212ra163.

41



[22] Saravanan Karumbayaram et al. “From Skin Biopsy to Neurons Through a Pluripo-

tent Intermediate Under Good Manufacturing Practice Protocols”. In: STEM CELLS

Translational Medicine 1.1 (Jan. 2012), pp. 36–43.

[23] El Ad David Amir et al. “ViSNE enables visualization of high dimensional single-cell

data and reveals phenotypic heterogeneity of leukemia”. In: Nature Biotechnology 31.6

(May 2013), pp. 545–552. arXiv: NIHMS150003.

[24] Claudia Compagnucci et al. “Cytoskeletal dynamics during in vitro neurogenesis of

induced pluripotent stem cells (iPSCs)”. In: Molecular and Cellular Neuroscience 77

(2016), pp. 113–124.

[25] Claudia Compagnucci et al. “The cytoskeletal arrangements necessary to neurogene-

sis”. In: Oncotarget 5.15 (2016).

[26] Jonas Dahlstrand, Michael Lardelli, and Urban Lendahl. “Nestin mRNA expression

correlates with the central nervous system progenitor cell state in many, but not all,

regions of developing central nervous system”. In: Developmental Brain Research 84.1

(1995), pp. 109–129.

[27] Casper C. Hoogenraad and Frank Bradke. “Control of neuronal polarity and plasticity -

a renaissance for microtubules?” In: Trends in Cell Biology 19.12 (Dec. 2009), pp. 669–

676.
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CHAPTER 3

A High-throughput, Inertial-microfluidic, Digital,

Radiofrequency-encoded Array (HIDRA) Parallel Flow

Cytometer

Jonathan Lin, Dino Di Carlo

Flow cytometry is a powerful biological tool, allowing multiparameter, single-cell mea-

surements of biochemical markers. Although conventional flow cytometers are capable of

high-throughput, their sample throughput is limited by serial processing. In this chapter, we

demonstrate a high-sample-throughput, inertial-microfluidic, digital radiofrequency-encoded

array (HIDRA) parallel flow cytometer that is capable of simultaneous interrogation of eight

samples through Fluorescence Imaging using Radiofrequency-tagged Emission (FIRE) and

inertial microfluidic focusing. We perform validation with 6-peak fluorescent calibration

beads and demonstrate compatibility with conventional biological assays. With this sys-

tem, we adapt a research tool for high throughput screening, enabling the study of drug-cell

interactions at the single cell level.

3.1 Introduction

In recent decades, the standard approach to drug discovery has become increasingly brute

force with researchers regularly testing thousands to millions of compounds in search for

hits. In this vein, the workhorse of the pharmaceutical industry has been high-throughput

screening, a process that utilizes automation and massive parallelization to screen large

compound libraries against cell populations of interest. The assays used in high-throughput
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screening, such as microplate absorbance measurements, are typically aggregate-readout

techniques where the information from large numbers of cells are combined into a single

output value.1

Drug discovery stands to benefit from high-content assay formats that can provide single-

cell multiplexed molecular information that reports on compound mechanisms of action. One

widely used assay format has been multi-color fluorescence flow cytometry.2 Flow cytometry

has enabled single cell investigation of numerous drug screening-relevant experiments in-

cluding antibody screening, efflux transporter activity, receptor binding, G-protein-coupled

receptor activity, and in vitro toxicology.3 However, although these approaches currently are

being used extensively, there is a fundamental trade-off between higher information content

and sample throughput when using flow cytometry, which has significantly lower through-

put than low-content well-plate reader-based assays. Commercial flow cytometry systems sip

from a single well at a time and report the ability to process a 384-well plate in 20 minutes.

The main approach to increase sample throughput in flow cytometry for drug discovery has

been to run smaller sample volumes, sacrificing statistical power and imposing restrictions

on experimental design, or to simply run more flow cytometers in parallel, which of course

comes with significant cost and complexity barriers.3–5

Numerous novel microfluidic technologies have been developed to improve the through-

put of flow cytometry. A subset of these technologies improve the spatial distribution of

cells, an important parameter to ensure uniform illumination. These technologies enhance

flow focusing using inertial or acoustic focusing systems.6–9 This allows for higher sample

flow rates, achieving modest improvements to throughput. Another subset of technolo-

gies improve throughput by generating multiple stream of particles, allowing either higher

volumetric throughput or parallel interrogation of multiple samples.10–13 Whereas particle

focusing approaches can only achieve minor improvements to throughput, parallelization

approaches have the potential to improve throughput by an order of magnitude or more.

There are significant technical challenges, however, in terms of focusing and optically

sensing parallel streams of cells that have prevented significant parallelization within a single

47



instrument and flow cell. Previously, others have explored microfluidic, inertial focusing,

and acoustic focusing approaches to generating parallel streams.8,10–12 Each of the previous

systems has had to make significant sacrifices on the optical side of the system due to

the difficulty of interrogating multiple spatial locations and efficiently collecting fluorescent

emissions across a large field of view. Previous works have explored using scanning laser

illumination systems and cameras to overcome these barriers. However, these approaches lack

the speed and sensitivity of photomultiplier tube (PMT) based systems and put substantial

limits on sample throughput.

Here we introduce the High-throughput, Inertial-microfluidic, Digital Radiofrequency-

encoded Array (HIDRA) Flow Cytometer (Figure 3.1). The HIDRA flow cytometer simul-

taneously addresses the challenges of parallel sample fluid handling and optical readout and

analysis, focusing and optically detecting 8 concurrent samples for a total volume throughput

exceeding 960 µL/min, all with the sensitivity of a commercial PMT-based flow cytometer

across 2 fluorescent channels and 2 scatter channels. The flow cell consists of a microfluidic

chip in which 8 syringe pump-driven parallel inertial focusing streams are merged into an

imaging window without losing their relative spatial information which encodes the initial

sample. In the imaging window the location information of each cell is next encoded through

fluorescent imaging using frequency-tagged emission (FIRE).14 In this system, spatial infor-

mation is encoded into a frequency-modulated emission or scatter following excitation by a

linear laser comb consisting of a gradient of amplitude-modulated excitation beams. The

resulting single-cell signals therefore contain both intensity information as well as sample

origin-encoding which allows us to assign each cell to its stream of origin. With this system

we show that a 6-point IC50 dose-response curve can be obtained for a sample all in a single

shot.
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3.2 Results and Discussion

3.2.1 Spatial Encoding of Samples using Parallel Inertial Focusing

A microfluidic flow cell was fabricated to uniformly deliver 8 samples to a small interrogation

region while maintaining spatial separation between the samples.

The first region of the flow cell, the inlet region, consists of 8 fluidic inlets arrange in

fan-like pattern (Figure 3.1B). This region of the flow cell acts as an interface between the

relatively large input tubings and the small microfluidic channels comprising the next portion

of the device, the focusing region.

This next region consists of 8 high aspect ratio channels that inertially focus particles.

Here, inertial focusing causes cells to migrate to two vertically stacked position, allowing

for uniform illumination of cells in the downstream interrogation region. In brief, inertial

focusing occurs when cells in finite Reynolds number flows interact with two opposing forces,

the shear gradient and wall lift forces, causing them to migrate to equilibrium positions within

the channel. Channels with similar cross sections have been used previously when uniform

cell delivery is needed.10,15–18 An important consideration in the design of the focusing region

is the channel length. The channels need to be sufficiently long to allow particles to fully

migrate to the equilibrium positions near the midpoints of the channel floor and ceiling.

At the same time, the channels need to be short to minimize the fluidic resistance of the

flow cell. High fluidic resistance makes it difficult to achieve the driving pressures needed

for high volumetric flowrates. A channel length of 5 mm was found to have high inertial

focusing efficiency at a wide range of flowrates. Devices were tested by infusing a suspension

of Jurkat cells stained with Calcein Red-Orange and performing fluorescent streak imaging

(Figure 3.7). At a Reynolds number of 50, the Jurkat cells were focused to the two vertically

stacked focusing positions along the channel midlines (Figure 3.1B). This effect was also

seen at Reynolds numbers of 100 and 150. Thus, the inertial focusing appears to be robust

over a wide range of Reynolds numbers. It is worth noting that these Reynolds numbers

correspond to flowrates ranging between 120 and 360 µl per minute per sample, a substantial
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improvement over commercially available flow cytometers.

The final region before the flow cell outlet is the interrogation region. This is an imaging

region where cells from each sample stream are interrogated. This region is designed as a

single, wide channel which serves as a merging point for the 8 sample streams. Here, the

challenge is to maintain spatial separation of the samples without the use of channel walls

which would scatter light and make side scatter measurements difficult. This is accomplished

by once again taking advantage of particle inertia. In finite Reynolds number flows (Re ¿

1), particle inertia allows particles to migrate across fluid streamlines.17 Thus, despite the

tendency for the fluid to decelerate and spread out to fill the larger imaging region, particles

are carried forward by their own momentum. Thus, the spatial separation between sample

streams is preserved as seen in Figures 3.1B and 3.7. It is important to note that the

vertically stacked focusing positions along the channel midlines are important here as well

since they keep particles and cells away from the portions of the flow that are changing

direction and decelerating most rapidly. This ensures that particles are uniformly delivered

to the illumination spots.

3.2.2 Frequency Encoding of Spatial Information

Interrogation of the 8 sample streams is accomplished using a single laser and a single pho-

todetector for each data channel (forward scatter, side scatter, FITC fluorescence, and PE

fluorescence). This is accomplished by structuring the illumination such that each interro-

gation laser spot is amplitude modulated at a unique frequency. This frequency encoding

is present in forward and side scattered light as well as fluorescence emissions (fluorophores

serve as receiver broadcasters of the amplitude modulated signal). Therefore, spatial in-

formation, i.e. which laser spot a particle is interacting with, is encoded in the frequency

domain. This spatial information can be easily extracted using the fast Fourier transform.

This imaging technique, Fluorescence Imaging using Radiofrequency-tagged Emission, was

previously reported.14,19,20 In brief, the amplitude modulated laser spots are created by pass-

ing a laser through an acousto-optic deflector (AOD) to generate frequency-shifted beams
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which can be combined in an interferometer to produce beat-frequency amplitude modu-

lation. The AOD allows for digital control of the illumination, simplifying the process of

aligning the laser spots with the microfluidic flow cell.

The ability to identify the sample stream of origin for a given event was demonstrated

by flowing 8 unique samples through the flow cell, one sample to each inlet. These samples

were generated by selecting 7 unique pairs of beads from the 6 peak calibration bead set.

The eighth sample was a blank, containing no beads. Each sample was faithfully reproduced

by the cytometer with minimal crosstalk between the different sample streams, confirming

the system’s ability to detect the steam of origin for each event (Figure 3.2).

3.2.3 Cytometer Characterization

Characterization of the HIDRA system was performed using 6-peak calibration beads, polystyrene

particles with 6 discrete concentrations of encapsulated fluorophore. First, a suspension of

all 6 beads was infused into all 8 of the sample inlets at a high volumetric flow rate (960

µl/min total throughput). All 6 bead types could be resolved, but each bead had two corre-

sponding, overlapped peaks (Figure 3.3). This observation was caused by subtle differences

in illumination and optical collection efficiency across the different flow streams. In order

to normalize the fluorescence intensity across flow streams, a Gaussian mixture model was

fitted to the brightest bead population in each flow stream. The median intensities were

then used to normalize the fluorescence from each stream.

Following the normalization, the 6 peaks are well separated and the computed mean

equivalent soluble fluorophore (MESF) metrics are 277 for PE and 709 for FITC (Figures

3.3, 3.4). The high MESF value for FITC is likely due to autofluorescence from the silicone

elastomer used in prototyping. The sensitivity of the system is on par with commercially

available flow cytometers. Thus, a large sacrifice is fluorescence sensitivity is not necessary

to achieve parallel measurements in our system.

In order to evaluate the performance of the fluidic system, we returned to the results

from the experiment where 7 unique pairs of beads from the 6 peak calibration set and one
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blank sample were infused into the cytometer. The faithful reporudction of all 8 samples

indicates that the different samples remain fluidically isolated, demonstrating the ability

of the HIDRA system to act as a truly parallel cytometer where distinct samples can be

measured simultaneously (Figure 3.2).

3.2.4 Simultaneous 6-point IC50 curve

In order to demonstrate compatibility of the HIDRA system with conventional drug screen-

ing experiments, two IC50 experiments were performed with ethanol and camptothecin as

inducers of apoptosis (Figure 3.5, 3.6). In each case, 6 points on an IC50 curve and 2 com-

pensation experiments were conducted simultaneously at a total volumetric throughput of

960 µl/min. Each experiment yielded expected results with ethanol having an IC50 value

near a concentration of 10% v/v (1 hour incubation) and camptothecin having an IC50 value

between 10 µM and 100 µM (24 hour incubation).

Measuring each treatment condition simultaneously reduces experimental complexity by

removing the need to consider measurement time when designing experiments. Additionally,

high sample-throughput in conjunction with parallelization removes the need to trade event

number, and thus statistical power, for sample throughput. Additionally, it avoids the

complexity associated with normalizing results across multiple flow cytometers.

3.3 Materials and Methods

3.3.1 Chip Design and Manufacture

The microfluidic flow cell in the HIDRA system was fabricated using traditional single-layer

soft lithography. A silicon wafer was spin-coated with KMPR 1025 (Microchem Corp.) to

a layer thickness of 30 micrometers. The flow cell design was transferred to the photoresist

using a printed photomask (CAD/Art Services, Inc.) and a mask aligner (Karl Suss). Af-

ter developing the photoresist, the resultant mold was used to fabricate devices in silicone

elastomer (Sylgard 184, Dow Corning). The devices were then bonded to glass slides using
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a plasma cleaner (Harrick Plasma).

Cell suspensions are introduced into the flow cell’s eight inlets using syringe pumps (Har-

vard Apparatus). After the inlet region, the 8 separate fluid streams are brought close

together into 8 parallel channels (60 µm channel widths with 20 µm channel walls), reducing

field of view of requirements for the optical system. The high aspect ratio (AR = 2) of these

channels in conjunction with a high Reynolds number (Re ¿ 50) allow them act as inertial

focusers that focus particles and cells to two vertically stacked equilibrium positions along

channel midlines. Following the inertial focusing region of the device, the 8 sample streams

are merged into a single large channel. Here, particle inertia allows particles to cross fluid

streamlines, preventing particle migration and maintaining 8 distinct particle streams. Once

in the merged channel, the particle streams are interrogated with 8 laser spots in the absence

channel walls which would otherwise cause scattering of the laser light. Thus, the flow cell

acts to uniformly introduce particles and cells to the interrogation.

3.3.2 Optical System

The HIDRA optical system prototype was supplied by Omega Biosystems. The system

utilizes a 1 watt, 488 nm, long coherence length laser (Coherent) coupled with an acousto-

optic deflector (Isomet) to generate spatially separated, frequency-shifted light. The signal

sent to the acousto-optic deflector (AOD), generated using an arbitrary waveform generator

(AWG) (Wavepond), is designed to yield 16 frequency-shifted beams with frequency shifts

in the radiofrequency range. These beams are interfered in pairs using an interferometer,

taking advantage of beat-frequency amplitude modulation to produce 8 amplitude modulated

beams. Each beam is sinusoidally amplitude-modulated at a different frequency, allowing

frequency to serve as a unique identifier for each beam. The beams are then imaged onto

the flow cell where they are used to interrogate each of the 8 sample streams.

It is worth noting that the AOD-induced frequency shift is entirely controlled by the signal

output of the AWG. Thus, the position and beat frequency of each of the 8 excitation beams

can be digitally controlled. Additionally, the frequency spacing between the interrogation
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spots can be controlled as well, allowing for widely spaced frequencies such that power

spreading due to fast moving particles will not cause data to spill over into frequency bins

of adjacent interrogation spots.

Transmitted and fluorescent light are gathered using a high numerical aperture lens. The

transmitted light is transformed to forward scatter light using a blocker bar and is collected

into a photodiode. Fluorescent light is picked off using a dichroic mirror and then passed

into two PMTs, each with a band pass optical filter separated by another dichroic mirror.

Side-scattered light is also collected into a PMT and used for triggering.

3.3.3 Signal Processing and Data Analysis

Analog signals from the PMTs and photodiode are digitized using a 16-bit, 250 MS/s digitizer

(AlazarTech) clocked off of the AWG. The resultant signals are conventional flow cytome-

try pulses convolved with the amplitude modulation from the illumination system. After

digitization of the signal, the fast Fourier transform (FFT) can be used to determine the

frequency of the amplitude modulation, and thus the stream of origin, for each event.

The remainder of the data processing pipeline is similar to that of conventional flow

cytometry. Pulses are low-pass filtered and then are measured in the time domain to produce

measurements such as integrated intensity, pulse height and pulse width. A multiplicative

factor, derived from a Gaussian mixture model fit to a calibration experiemnt, is applied to

each sample stream in order to compensate for changes in illumination and optical collection

efficiency across the field of view. The Gaussian mixture model fitting is further described

in system calibration and characterization.

Data is collected in the Metis software package (Omega Biosystems). For conventional

flow analysis, the data is exported in FCS 3.0 format and imported into FlowJo (FlowJo,

LLC).
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3.3.4 System Calibration and Characterization

The sensitivity of the HIDRA system was characterized using 10 µm diameter, 6-peak fluo-

rescent beads (URCP-100-2, Spherotech). This bead suspension consists of beads, each with

one of six fluorescent intensities that span a large dynamic range.

For initial calibration and performance characterization, the 6-peak bead suspension was

infused into all 8 sample inlets. The sample stream of origin of each event was automatically

determined by binning the events based on the frequency with the highest amplitude in the

FFT. A Gaussian mixtures model was then applied to the data from each sample stream

to identify each of the six bead populations. The resultant models were then used to deter-

mine the multiplicative correction factor applied to each sample stream to compensate for

decreased collection efficiency at the edges of the field of view. The resulting adjusted data

were then used to compute moelcules of equivalent soluble fluorochrome (MESF), a metric

of system performance.

Testing of the inertial focusing performance was performed using Jurkat cells stained

with Calcein red-orange. Identical cell suspensions were simultaneously infused into each

sample inlet at three volumetric flow rates (120, 240, and 360 µl/min). Fluorescent streak

images were then performed on a conventional fluorescent microscope (Eclipse Ti-E, Nikon)

using a long integration time.

Further testing of the flow cell was performed using 8 unique combinations of fluorescent

beads drawn from the 6-peak calibration bead set. A suspension of two out of six bead

intensities was infused into each sample inlet with one sample inlet receiving only distilled

water. The resulting events were then used to quantify the number of events whose source

streams were misidentified.

3.3.5 Cell Culture and Viability Assays

A proof of concept study was performed using ethanol as a means of inducing apoptosis in

Jurkat cells. Jurkat cells were treated with varying concentrations of ethanol for one hour
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in order to mimic a half maximal inhibitory concentration (IC50) assay. After treatment the

cells were stained using an apoptosis kit (V13242, Invitrogen) consisting of FITC-Annexin

V, a protein that binds phosphatidylserine which acts as a marker of early apoptosis, and

propidium iodide, a membrane impermeant nucleic acid stain that serves as a marker of cell

death. Six concentrations of ethanol were assayed in this way and the remaining two sample

streams were used for compensation experiments where apoptosis was induced with ethanol

but only one of the two cell stains was added. Compensation experiments serve to quantify

the spectral overlap of the fluorescent dyes. The spectral overlap is then used to derived

multiplicative factors that remove the contribution of spectral overlap from the data. All

eight samples were run simultaneously on the HIDRA system with a total volumetric flow

rate of 960 µl/min. Compensation and gating were performed using FlowJo.

A similar experiment was performed using camptothecin, a topoisomerase inhibitor. Cells

were treated with various concentrations of camptothecin and incubated for 24 hours at 37◦

C, 5% CO2.

3.4 Conclusions and Future Directions

In this chapter, we have demonstrated a parallel flow cytometry system that utilizes optical

and fluidic multiplexing to simultaneously measure 8 samples with a single fluidic and optical

system. The instrument represents a significant cost savings and complexity reduction com-

pared to running multiple flow cytometers. Additionally, the instrument does not require

a complex, large field of view optical system. Rather, it uses a laser and PMTs, standard

flow cytometer components, to perform measurements. The components of this system not

traditionally found in flow cytometers represent a small price increase and minimal increase

in complexity. The instrument exceeds the volumetric sample throughput of commercially

available flow cytometers, sidestepping the need to trade sample throughput for sample vol-

ume. Additionally, the ability to run time sensitive experiments such as an IC50 in parallel

removes the need to account for measurement time, reducing the experimental complexity.
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Figure 3.1: System schematic and validation.
A) Optical system. A 488 nm laser passes through an acousto-optic deflector (AOD), generat-
ing frequency-shifted beams which are combined in an interferometer to generate amplitude-
modulated excitation beams. Each excitation beam illuminates a separate fluid stream in the
flow cell (FC). Fluorescent emission and scattered light are measured with photomultiplier
tubes (PMT). Red inset : An AOD and an arbitrary waveform generator produce 16 digitally-
controlled, frequency-shifted beams. Orange inset : Frequency-shifted beams are combined
with a beam splitter (BS). Interference causes beat frequency amplitude modulation with
each beam modulated at a unique frequency. Green inset : Eight amplitude modulated beams
illuminate eight sample streams. Black inset : Example raw data. Events are flow cytome-
try pulses superimposed with engineered amplitude modulation. The fast Fourier transform
(FFT) determines which beam an event originated from. Conventional flow cytometry mea-
surements (e.g. pulse area & height) are performed as normal. B) Microfluidic device. Eight
channels inertially focus particles then merge into an interrogation region where samples are
illuminated. Clockwise: Device schematic, brightfield image of interrogation region, fluo-
rescent streak images of Jurkat cells stained with Calcein Red-Orange (sample throughput
= 960 µl/min), and line plot of fluorescence intensity vs. distance corresponding to green
region. Inertial focusing localizes cells to channel midlines. C) Fluorescence sensitivity was
measured using calibration beads. All 6 peaks were detected in the FITC and PE channels
MESF of <700 and <300 respectively.
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Figure 3.2: Simultaneous measurement of multiple samples.
Eight unique samples were generated by choosing combinations of two bead intensities from
the six-peak calibration beads used to characterize the system. Left : Legend of sample
compositions corresponding to each flow channel. Letters correspond to one of six bead
intensities as shown in the upper left histogram. Right : Each numbered histogram depicts
events collected from one of eight flow channels. All samples were run and interrogated
simultaneously and events were assigned automatically using frequency-domain analysis.
The upper left histogram is the aggregated data from all eight channels. It is important to
note that flow channel 6 was not spiked with any beads.
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Figure 3.3: Effect of equalization between sample streams.
Left : Integrated fluorescence of 6-peak fluorescent beads prior to detection of sample stream
of origin. Right : Integrated fluorescence of 6-peak beads following detection of sample stream
of origin and application of automated equalization. Equalization corrects for differences in
collection efficiency across the field of view and is determined by running 6 peak calibration
beads and fitting a six population gaussian mixtures model to each sample stream. The
equalization coefficient is set to be the multiplicative scaling factor required to make the
means of the highest intensity populations equal.
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Figure 3.4: 6-peak calibration beads in 8 sample streams.
Six peak calibration beads were infused into all 8 sample inlets. After detection of sample
stream of origin for each event and application of a multiplicative equalization factor to each
channel, all 6 peaks are visible in both FITC and PE channels for all 8 sample streams. The
upper left plot shows combined FITC and PE data from all 8 channels. Histograms show
separation of the 6 peak beads in the combined data. The eight scatter plots in the bottom
two thirds show each of the 8 sample streams. 6 bead populations are visible in all eight
streams.
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Figure 3.5: Half maximal inhibitory concentration (IC50) experiment.
Jurkat cells were treated with varying concentrations of ethanol for one hour. The cells were
then labeled with Annexin V, a marker of early apoptosis, and with propidium iodide (PI),
a cell membrane impermeable nucleic acid stain that serves as an indicator of cell death.
Upper left : Legend of treatment conditions. Samples 1 and 8 were designed as experiments
to compensate for spectral overlap of FITC and PI. Lower left : Gating strategy. Cells that
are FITC and PI negative (FITC-/PI-) are considered viable. Cells that are FITC+/PI-
, FITC+/PI+, or FITC-/PI+ are considered early apoptotic, late apoptotic, or necrotic,
respectively. Right : Results from 6-point IC50 experiment. Increasing concentrations of
ethanol is correlated with increasing degrees of apoptosis. It is important to note that all 6
samples and 2 compensation experiments were measured simultaneously at a total volumetric
sample throughput of 960 microliters per minute.
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Figure 3.6: Half maximal inhibitory concentration (IC50) experiment.
Jurkat cells were treated with varying concentrations of camptothecin for 24 hours. The cells
were then labeled with Annexin V, a marker of early apoptosis, and with propidium iodide
(PI), a cell membrane impermeable nucleic acid stain that serves as an indicator of cell death.
Upper left : Legend of treatment conditions. Samples 1 and 8 were designed as experiments
to compensate for spectral overlap of FITC and PI. Lower left : Gating strategy. Cells that
are FITC and PI negative (FITC-/PI-) are considered viable. Cells that are FITC+/PI-
, FITC+/PI+, or FITC-/PI+ are considered early apoptotic, late apoptotic, or necrotic,
respectively. Right : Results from 6-point IC50 experiment. Increasing concentrations of
camptothecin is correlated with increasing degrees of apoptosis. It is important to note
that all 6 samples and 2 compensation experiments were measured simultaneously at a total
volumetric sample throughput of 960 microliters per minute.
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Figure 3.7: Fluorescent streak images of the flow cell interrogation region.
Jurkat cells stained with Calcein Red-Orange were infused at a wide range of flowrates into
the HIDRA flow cell. At Reynolds number = 50, cells are focused to the midlines of the
flow focusing channels and particle inertia maintains spacing between sample streams in
the interrogation region. This effect holds for Re 100 and 150 as well. Line traces of the
interrogation region show a single fluorescent peak per sample stream, indicating effective
spatial focusing. The appearance of elevated “shoulders” near some line trace peaks for the
Re = 150 sample indicates degradation of performance likely due to develop of equilibrium
positions along the lateral walls of the channels due to high Re.
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Numerous papers in the past have claimed to achieve parallel cytometry without fully

integrated systems or with optical systems that lack the speed and sensitivity of traditional

flow cytometer hardwares. Our system represents a true parallel cytometer capable of per-

forming multiparameter, single cell measurements at throughputs compatible with the needs

of applications such as drug screening.

There are numerous improvements that can be made to the system described here. The

most obvious improvement that can be made is the incorporation of additional fluorescence

detectors. Currently the system sports two fluorescence channels and can easily be extended

to include two additional channels excited by the 488 nm laser (e.g. Texas Red and PE-Cy5).

Further expansion of detection capabilities is substantially more difficult, requiring the inte-

gration of additional excitation lasers. This integration can be done by building additional

AOD and interferometer systems, but this approach has a large geometric footprint. Alter-

natively, the additional lasers can be integrated into the existing AOD and interferometer

system. This approach would be difficult to design and require careful alignment due to the

fact that deflection angles produced by the AOD are wavelength dependent.

Another possible future direction for this project would be integration of an automated

sampling system. Such a system would require the syringe pump system to be replaced

with a pressure driven system. Both positive and negative (vacuum) pressure systems can

potentially work but both have unique implementation challenges. Pressurizing a wellplate

is difficult and can lead to air being forced into the microfluidic channels where it is difficult

to purge. On the other hand, using a vacuum to drive flow can lead to cavitation. Also, it is

unclear if a single atmosphere of pressure differential is adequate to achieve inertial focusing.

Yet another possible future direction is modification of the FIRE illumination scheme

to allow for imaging cytometry of each of the sample streams. Instead of using a single

amplitude modulated excitation spot for each fluid stream, an array of spots can be used

instead. Collectively, the spots on a given fluid stream would function as a line scan camera

with each spot acting as a single pixel. This approach would add tremendous amounts of

data to the measurement, allowing for localization of scatter and fluorescence, enabling high
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content analysis such as colocalization of fluorophores, measurements of particle size, and

measurements of fluorescence distribution.19–22 This approach requires substantially higher

AOD frequency bandwidth because modulation frequencies of adjacent pixels need to suf-

ficiently spaced in the frequency domain to prevent frequency spreading, caused by fast

moving objects, from corrupting the image.
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CHAPTER 4

Integrated Deformability and Fluorescence Imaging

Cytometry

Jonathan Lin, Lillian Peng, Bonnie Yeh, Tridib Biswas, Dino Di Carlo

In recent years, biophysical phenotyping has emerged as a promising method of assaying

cell states including differentiation, neoplasia, and immune activation. Thus far, mechani-

cal phenotyping and traditional biochemical labeling at the single-cell level have only been

studied separately or at extremely low throughputs. In this chapter, we demonstrate a

microfluidic device that performs high-throughput, continuous, single-cell measurements of

both mechanical and biochemical phenotype. To accomplish this, we integrate an ultra-high-

speed fluorescent imaging system with a microfluidic device featuring a tunable constriction

to perform biochemical profiling as well as measurements of the deformation of subcellular

compartments. By performing measurements in a high-throughput, single-cell manner, we

establish one-to-one correlations of biochemical markers and physical properties with sam-

ple sizes representative of the entire population. In doing so, we open the door to a deeper

understanding of the molecular factors that contribute to the physical properties of cells and

add an entirely new dimension, physical phenotype, to traditional biochemical cytometry.

4.1 Introduction

Recent years have born witness to a growing interest in cell mechanical properties as in-

tegrated measurements of cell state.1–11 Mechanical properties have been used as label-free

methods of assaying cell differentiation, immune activation, and neoplastic processes. Previ-
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ous work has shown that mechanical properties are predictive of the differentiation potential

of stem cells and that stem cells can be distinguished from differentiated cells via their

mechanical properties.6,7 Additionally, others have shown that mechanical properties have

diagnostic value and have been used to identify inflammation and neoplasia in pleural effu-

sions.3,4

There currently exist several techniques to measure cell mechanical properties. Tech-

niques such as micropipette aspiration, optical tweezers, and atomic force microscopy (AFM)

have existed for a while but are inherently low throughput, making it difficult to perform

measurements on large numbers of cells. In recent years, novel, high-throughput methods

have been developed using extensional flows to stretch cells and narrow channels to apply

shear forces.1–6

While mechanophenotyping cells is relatively new, biochemical phenotyping of cells through

techniques such as immunolabeling has a long and rich history. Techniques such as fluo-

rescence microscopy and flow cytometry have existed for decades and are technologically

mature. There is a massive body of literature demonstrating the power of these techniques

and a large portion of our understanding of biology is based on measurements performed on

these instruments.

Thus far, however, researchers have been unable to bridge the divide between mechanophe-

notyping technologies and traditional fluorescence-based measurements of biomolecular mark-

ers. Techniques capable of mechanical and fluorescence measurements such as confocal AFMs

are expensive and low-throughput, making it difficult to achieve statistical power and to de-

tect subpopulations of cells. Yet, these technologies are used, indicating the need for an

instrument capable of high-throughput mechanical and fluorescence measurements.12

The difficulty associated with correlating mechanical properties and biomolecular mark-

ers at a single cell level has hindered the study of the molecular underpinnings of cell phys-

ical phenotypes. It has also prevented the mechanophenotyping of cellular subpopulations.

Additionally, the inability to perform fluorescence imaging in conjunction with mechanical

measurements has also prevented the study of subcellular compartments such as cell nuclei
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and their contributions to cell mechanical properties.

In this chapter, we present a fluorescence imaging deformability cytometer (F-DC) that

combines two technological innovations (i) tunable hydrodynamic stretching of cells under

the influence of viscous sheathing streams and (ii) line-scan in-flow fluorescence imaging using

radiofrequency-tagged emission (FIRE) that enables fluorescence imaging of deforming cells

at throughputs exceeding 100 cells per second. It combines the multiparameter molecular

detail enabled by fluorescence in standard flow cytometers with additional morphological

and mechanical properties typically captured using high speed cameras.

We show that this system is capable of measuring the deformability of hundreds of cells

per second with single cell level correlation with up to four fluorescent markers. We demon-

strate this capability by treating cells with drugs that modulate the cytoskeleton and ob-

serving the corresponding changes to cellular deformability. Additionally, we perform fluo-

rescence sensitivity testing using standard 6-peak fluorescent calibration beads.

We also show that the system is capable of subcellular imaging, allowing us to study

the deformation of the nucleus and the effect of the nucleus on cell mechanical properties.

We demonstrate this capability by osmotically shocking cells with a hypo-osmotic solution

prior to measurement of nuclear deformation and whole cell deformability. This biological

test system was chosen because it has been previously shown that osmotic stress can induce

structural changes to cell nuclei which can result in changes in gene expression.13–15

Finally, we show that the system is capable of detecting cellular subpopulations based on

mechanical properties or fluorescent labels, enabling detailed study of subpopulations that

has not previously been possible. We use this capability to perform deformability measure-

ments at various points in the cell cycle using cells transfected with the FUCCI plasmid.

Previous studies of the mechanical changes that occur during the cell cycle have relied on

artifically arresting the cell cycle in order to produce pure populations for measurement.1

Our approach allows these measurements to be performed without the need for cell cycle

synchronization which can alter the phenotype of cells.
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4.2 Results and Discussion

4.2.1 Microfluidic Stretching of Cells With Viscous Sheath Flows

The microfluidic device used in F-DC has three functional regions. The inlet region contains

three inlets, a sample inlet flanked on both sides by viscous sheath flow inlets. These channels

converge in the flow focusing region where the viscous sheath flows act to focus cells to the

channel midline. This allows for uniform delivery of cells to the next region, the deformation

region. In this region, the channel narrows into a constriction where the sheath flow acts to

accentuate the forces on cells, causing them to deform (Figure 4.1A, 4.1B). The accentuation

of forces due to the viscous sheath flow allows for the channel cross-sectional area (30 x 25

µm) to be substantially larger than that of a cell. The importance of viscous sheathing

is demonstrated in Figure 4.5 where the absence of a higher viscosity sheath flow leads to

dramatically lower deformations. Both sheath flows are infused at 5 µl/min with the sample

infused at 10 µl/min between them. This 1:1 ratio of sheath flow is selected such that the

fluid lumen is approximately 5 microns in width (Figure 4.6). This narrow lumen ensures

that cells, regardless of size, are uniformly in contact with the sheathing fluid. Higher sheath

velocities would increase the shear forces on cells but the imaging system places an upper

limit on cell velocity due to image degradation caused by fast moving objects.

F-DC is an improvement upon a previously described system where cells were resuspended

in a viscous solution (0.5% w/v methylcellulose) and then flowed through a channel with

approximately the same cross-sectional area as the cell. This system is prone to clogging

and suspending cells in the viscous medium prior to measurement can lead to unintended

changes in cell phenotype.1,2

4.2.2 Analysis of Cell Images and Imaging Performance

Imaging of deformed cells is performed using a Vulcan imaging system (Omega Biosystems).

The system generates line of laser spots, each amplitude modulated at a unique frequency

(Figure 4.1C). These lasers spots are imaged half way down the channel constriction such
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that cells pass through the laser spots as they flow through the channel. Transmitted light,

scattered light, and fluorescence emission are all tagged with the radiofrequency modulation

and collected into single pixel detectors. Image reconstruction can then be performed using a

sliding window FFT (Figure 4.1C). Image quality of both brightfield and FITC fluorescence

images can be seen in Figure 4.1D. Pixel pitch is nominally 250 nm but adjacent pixels

cannot be fully resolved due to the diffraction limit. Pixel height is determined by the size

of the window used in the sliding window FFT in conjunction with the linear flow velocity.

Fluorescence sensitivity was measured using 6-peak fluorescent beads (Figure 4.6). All six

peaks are distinguishable in the FITC, PE, PE-Texas Red, and PE-Cy5 channels (Figure

4.6).

Extraction of whole cell and nuclear deformation is performed using automated computer

analysis. Cells are imaged in brightfield and FITC after being treated with Syto16, a nucleic

acid stain. The resulting images are thresholded and circularity is computed as a metric

of deformation. Other metrics, including cell area and nuclear area, are computed as well.

Example results from the cell detection are shown in Figure 4.7. The extraction of morpho-

logic information takes approximately 3 ms per cell. Thus, the system can perform real time

measurements of deformability up to an event rate of approximately 300 per second. This

rate is sustainable as long as there is sufficient computer RAM. If images of cells are not

retained, the rate can be sustained forever. The main bottleneck of the processing pipeline is

the generation of cell images which currently utilizes a single-threaded sliding window FFT

algorithm. Multithreading this algorith or replacing it with with GPU or FPGA accelerated

code could substantially improve the maximum event rate. Alternatively, much higher event

rates can be sustained if image reconstruction and processing is done after the data collection

has ended.

4.2.3 Cytoskeletal Modulators

In order to assess the sensitivity of the F-DC system to cytoskeletal changes, HL-60 cells

were treated with a variety of compounds with known effects on the cytoskeleton.
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First, HL-60 cells were treated with 0.1 µM Cytochalasin D (CytoD). The resultant cells

had a deformability of 1.13 relative to the vehicle control (DMSO). This result matches our

understanding of the molecular mechanism of Cytochalasin D which inhibits actin polymer-

ization, destabilizing the structure of the cell.2

Next, HL-60 cells were treated with 0.1 µM and 100 µM concentrations of nocodazole.

The resultant cells showed a dose dependent change in deformability. Cells treated with

0.1 µM nocodazole had a deformability of 1.12 relative to the vehicle control (DMSO). This

matches our understanding of the molecular mechanism of nocodazole which inhibits the

polymerization of microtubules, a structural component of cells.2

These experiments represent a proof of concept for the F-DC system, demonstrating that

it is capable of observing the effects of cytoskeletal modulation.

4.2.4 Osmotic Swelling and the Nucleus

HL-60 cells were resuspended in PBS diluted to 270 mOsm/kg and 240 mOsm/kg with

distilled water. Cells in the control group were resuspended in 1x PBS (300 mOsm/kg).

After a short incubation time, the cells were stained with Syto 16.

The resultant cells showed no clear trend in whole cell deformability (Figure 4.3). Relative

deformability decreased slightly to 0.94 for cells exposed to 270 mOsm/kg. However, relative

deformability increased to slightly to 1.04 for cells exposed to 240 mOsm/kg. Cell size showed

a similar trend with cell area decreasing from 1765 px2 to 1693 px2 from the control group

to the 270 mOsm/kg group. Cells treated with 240 mOsm/kg solution had cell sizes larger

than control at 1896 px2.

Although there was no clear trend in whole cell deformability, there was a dose dependent

effect on nuclear size and deformation. Treatment with 270 mOsm/kg solution corresponded

with an increase in relative deformation to 1.03. Treatment with 240 mOsm/kg solution

corresponded with further increase in deformation to 1.07. It is worth noting that the F-

DC system does not decouple the deformation of the nucleus from the deformation of the
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entire cell. Thus, the measured nuclear deformation is the result of whole cell and nuclear

mechanical properties. There was a similar trend in nuclear size as well. The control group

had median nuclear area of 864 px2 while the 270 mOsm/kg and 240 mOsm/kg treatment

groups had nuclear areas of 878 px2 and 919 px2, respectively.

Nucleus to cytoplasm (N:C) ratio was investigated to determine the effect of the nucleus

on the measured whole cell deformability. The 270 mOsm/kg sample showed an increase in

N:C ratio from the control group’s median N:C ratio of 0.495 to 0.519. The 240 mOsm/kg

sample, on the other hand, showed a small decrease to 0.488. Interestingly, the increase in

N:C ratio in the 270 mOsm/kg sample corresponded to a decrease in whole cell deformability

to a relative deformability of 0.97. Similarly, the small decrease in N:C ratio in the 240

mOsm/kg sample corresponded to an increase in deformability to a relative deformability of

1.02. The relationship between N:C ratio and whole cell deformability requires further study

but there appears to be a negative correlation between the two parameters.

Overall, these experiments demonstrate that F-DC has the capability of studying subcel-

lular compartments such as the nucleus and their contribution to the overall deformability

of a cell. Further work needs to be done to understand the trends that we observed in the

course of these experiments. It would be particularly interesting to examine the effects of

hyperosmolar stress which has been shown to cause linear changes in cell and nuclear volume.

Hypo-osmolar stress, on the other hand, has been shown to have a linear relationship with

cell volume and a asymptotic relationship with nuclear volume. The osmolar stresses tested

in the literature are greater in magnitude than what we have tested in our F-DC system. It

is possible that expanding the osmolar range that we test would yield similar trends to what

is reported in literature.13

4.2.5 Cell Cycle Effect on Deformability

A long-standing problem in cell mechanical measurements is the effect of cell cycle on me-

chanical properties. Previous work has been done to measure mechanical properties at

different points in the cell cycle but these techniques have relied on low throughput mea-
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surements or chemical synchronization of cells. Here, we attempt to study the mechanical

changes associated with the cell cycle in a high-throughput fashion without the need for syn-

chronization that may alter cell phenotypes. To do this, we utilized K562 cells transfected

with the FUCCI plasmid. This plasmid expresses GFP-geminin and RFP-cdt1. Geminin

is degraded during the G1 phase of the cell cycle and Cdt1 is degraded during the S, G2,

and M phases. Thus, transfected cells will fluoresce green during S, G2 and M phases and

will fluoresce red during G1. During the transitions between G1 and S, transfected cells will

become double positive for GFP and RFP.16

Transfected cells were infused into the F-DC system and their cell area and deformability

were measured. The gating strategy that we employed is shown in Figure 4.4. GFP+/RFP-

cells were found to be on average larger (2501 px2) and more deformable (0.133) than cells

in other parts of the cell cycle. GFP+/RFP+ cells (area = 2267 px2, deformability = 0.121)

were very similar to RFP+ cells (area = 2283 px2, deformability = 0.119) both in size and

deformability. These trends appear to match previously reported trends with cells becoming

larger and more deformable during the leadup to mitosis.1

4.3 Materials and Methods

4.3.1 Chip Design and Manufacture

The microfluidic flow cell was manufactured using traditional soft lithography techniques.

Features were transferred to wafers spin-coated with a 30 µm layer KMPR 1025 (Microchem)

to produce a mold. Silicone elastomer (Sylgard 184, Dow Corning) was molded off the wafers

and then bonded to glass using a reactive ion etcher (Technics). Fluidic interfacing was

done using PEEK tubing (IDEX) and syringe pumps (Harvard Apparatus). Sheath flow is

introduced at a total volumetric flow of 10 µl/min (5 µl/min on each side of the sample flow)

and sample is introduced at a rate of 10 µl/min.

The device features two inlets, one for cell suspensions and another for a viscous sheathing

fluid (1% w/v alginate in distilled water). The sheath flow acts to center cells prior to the
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channel constriction where cells are deformed (Figure 4.1A). The gradual constriction leading

up to the narrow channel acts to accelerate cells, increasing the spacing between cells and

reducing the likelihood of doublet events and clogging (Figure 4.1B). The narrow channel

where deformation occurs has a small cross sectional area (25 µm x 30 µm), causing cells to

experience high shear forces. These forces are accentuated by the viscous sheath fluid which

also acts to keep cells centered in the channel and away from the channel walls.

4.3.2 Optical System

A Vulcan imaging system (Omega Biosystems) was used to perform imaging. The system

functions by passing a long coherence length, 100 mW, 488 nm laser through an acousto-optic

deflector (AOD) which outputs 101 spatitally separated, frequency shifted beams of light.

The frequency shifts are controlled by the signal passed into the AOD using an arbitrary

waveform generator (Wavepond). The input signal is designed such that frequency shifts

are uniformly spaced in the frequency domain. The first of the 101 beams is then picked

off and reshaped using a flat top beam shaper. This local oscillator beam (LO) is interfered

with the remaining 100 imaging beams in an interferometer. This results in a linear array

of laser spots, each amplitude modulated at a frequency equal to the difference between the

imaging beam frequency and the LO frequency. Thus, the spatial information of each ‘pixel’

is radiofrequency-encoded. It is important to note that the generation of this array of spots

is entirely digitally controlled such that the amplitude modulation, maximum amplitude,

and spatial location can be easily changed.

This array of laser spots is placed halfway along the narrow channel such that cells are

fully deformed prior to passing through the imaging beam (Figure 4.1A). The transmitted

light, scattered light, and fluorescence emissions, all of which are radiofrequency tagged,

are then collected using single pixel detectors such as photomultiplier tubes (PMTs) and

photodiodes. The resultant signals are traditional flow cytometry pulses combined with the

radiofrequency-tagged spatial information (Figure 4.1C). Thus, a sliding window FFT can be

utilized to recover the spatial information and render brightfield, darkfield, and fluorescent
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images.

4.3.3 Image Analysis and Morphology Extraction

Measurements of cell size and deformability are done using a custom plugin designed for

the Metis software (Omega Biosystems). Brightfield and fluorescence images are generated

using the Metis software and then passed to the F-DC plugin. For brightfield images, a

Otsu thresholding step is performed to isolate the cell membrane. Then hole-filling and

removal of small objects is performed to create a solid cell mask. In cases where hole-

filling is unsuccessful, a convex hull is fitted to the binary image. Next various morphology

parameters, including cell area, are extracted using the open source scikit-image Python

library. From here, the cell circularity, a measure of deformation, is computed according to

Equation 1.

Once the cell area and deformability are computed, Metis can be used for gating and

data processing. Debris and doublet events are typically removed using gates based on axial

light loss and side scatter. Further gating is done to remove instances where the morphology

extraction fails. Finally, scatter plots of the remaining data can be plotted and summary

statistics on each of the parameters can be generated.

Equation 1:

Circularity = 4π(Area) / (Perimeter)2

4.3.4 Cytoskeletal Drug Treatments

HL-60 cells were cultured in RPMI 1640 base medium (Thermo Fisher Scientific) supple-

mented with 5% FBS (Thermo Fisher Scientific) and 1% penicillin-streptomycin (Thermo

Fisher Scientific). Cells were cultured at 37◦ C, 5% CO2.

Cytochalasin D experiments were performed by dissolving cytochalasin D (Sigma-Aldrich)

in DMSO prior to addition to cells suspended in PBS. Cells were incubated with cytochalasin

D for 10 minutes at 37◦ C. Final DMSO concentration in experiments was 0.2%. Prior to
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measurements, Syto16 was added to the cell suspensions to stain cell nuclei. Cell suspen-

sions were then infused into the F-DC system without washing. Due to the nuclear staining,

the FITC channel was used for triggering. Measurements were taken for up to 10 minutes

following the start of infusion.

Nocodazole experiments were performed by dissolving nocodazole (Sigma-Aldrich) in

DMSO prior to treatment. Cells suspended in PBS were treated with varying concentrations

of nocodazole for 30 minutes at 37◦ C. Final DMSO concentration in experiments was 0.5%

Prior to measurements, Syto16 was added so that it could be used as a triggering signal.

Cell suspensions were then infused into the F-DC system without washing. Measurements

were taken for up to 10 minutes following the start of infusion.

4.3.5 Osmotic Swelling Experiments

Dilutions of PBS produced by adding distilled water to 1x PBS (Gibco). Cells were resus-

pended in PBS and added 1:1 to diluted PBS to produce a hypo-osmolar environment. Cells

were then incubated for 5 minutes at room temperature. Prior to measurements cells were

stained with Syto 16 which was then used as a triggering signal. Cells were then infused into

the F-DC system and measurements were taken for up to 15 minutes following the start of

infusion.

4.3.6 Cell Cycle Experiments

FUCCI-transfected K562 cells were supplied by Dr. Claire Hur. Measurements were per-

formed on cells during the log growth phase. Prior to measurement they were stained with

LDS 751, a membrane permeant nucleic acid stain. This PE-Cy5 signal was used to deter-

mine if objects were nucleated cells or debris. Triggering was done with side scatter. Gating

was performed on FITC and PE channels to select for GFP+/RFP-, GFP-/RFP+, and

GFP+/RFP+ cells.
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Figure 4.1: System schematic.
A) Fluidic and optical system design. Cell suspensions are introduced into a microfluidic
chip with two inlets and a single outlet. Cells are centered and deformed in a narrow (25
µm) channel using a viscous sheathing flow. The deformed shape of the cell is captured
using an ultra-high-speed fluorescent imager. B) Bright field images of cells deforming into
“bullet-like” shapes in the narrow channel with viscous sheath flow. C) Ultra-fast fluorescent
imaging is achieved by modulating the amplitude of the excitation laser (488 nm) such
that each pixel along the laser line is modulated at a unique frequency. This modulation
is achieved by interfering frequency-shifted beams to generate beat-frequency amplitude
modulation. Fluorescent emission as well as scattered light are collected using PMTs. The
collected waveforms are converted to images using a sliding window fast Fourier transform.
D) Sample brightfield and fluorescent images generated by the system. Images are of HL-60
cells stained with Syto16, a membrane permeable nucleic acid stain. E) Automated analysis
pipeline. Brightfield images are thresholded using the Otsu method to generate a Boolean
image which is then converted to a solid region. Parameters such as cell circularity and area
are then extracted. Similarly, fluorescent images of stained cell nuclei are thresholded and
converted to solid regions from which parameters can be extracted. Both fluorescent and
brightfield images can be acquired simultaneously, allowing measurements of cytoplasmic and
nuclear properties simultaneously. The output of the analysis is single-cell-level mechanical
and biochemical measurements, allowing for both subcellular mechanical measurements and
correlation between mechanical properties and biochemical markers.
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Figure 4.2: Cytoskeletal drug treatments.
HL60 cells were treated with varying concentrations of cytoskeletal drugs targeting actin and
microtubules. Barplot: Both Cytochalasin D and Nocodazole, inhibitors of actin and micro-
tubule polymerization, respectively, led to increases in relative deformability of cells. Bars
represent median deformability and error bars represent one standard deviation. Scatter
plots: Plots of cell area vs. cell deformability for single cell data show the change in de-
formability due to Cytochalasin D treatment. Image panels: Example images from each of
the two populations present in HL60s treated with Cytochalasin D. The upper panel features
cells that are more deformable while the lower panel depicts cells that are less deformable.
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Figure 4.3: Osmotic swelling and nuclear Effects.
HL60 cells were exposed to an iso-osmolar environment (300 mOsm/kg) and varying degrees
of hypo-osmolarity. A) Mild hypo-osmolar stress (270 mOsm/kg) results in cells that are
smaller and with lower relative deformability while high hypo-osmolar (240 mOsm/kg) stress
results in cells that are larger with higher relative deformability. B) Increasing levels of
hypo-osmolar stress result in cell nuclei that are larger with higher relative deformation. C)
Mild hypo-osmolar stress results in cells that have lower relative deformability but have a
higher nucleus to cytoplasm (N:C) ratio. High hypo-osmolar stress results in cells that are
more deformable with a lower N:C ratio. D) Example images of cells with an N:C ratio of
approximately 0.4 (red) and 0.6 (blue).
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Figure 4.4: Cell cycle effects on deformability.
FUCCI-transfected K562 cells were measured using F-DC. Left: The FUCCI plasmid causes
expression of geminin-GFP and Cdt1-RFP such that cells fluoresce green during S, G2, and
M phases of the cell cycle and red during the G1 phase. During the brief transition between
G1 and S, cells will express both GFP and RFP. Center: Gating strategy for identifying
cell cycle stages. Right: Cells in S, G2, and M phases were found to be larger and more
deformable than their counterparts. Cells in G1 and between G1 and S were similar in size
and deformability.
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Figure 4.5: Effect of viscous sheath on cell deformation.
The F-DC system was run with either viscous sheath fluid (1% w/v alginate in water) or
PBS as the sheath fluid. Use of viscous sheath increased the measured deformability of
cells while use of PBS resulted in cells barely deforming. A similar effect is seen in nuclear
deformation but is less pronounced.
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Figure 4.6: Fluorescence sensitivity of Vulcan imaging system.
6 peak fluorescent beads were used to measure the sensitivity of the imaging system. All
6 peaks are resolved in each of the four fluorescent channels with the best performance
occurring in the PE channel. FITC channel performance is likely affected by PDMS autoflu-
orescence and PE-Cy5 performance is likely affected by diminished PMT sensitivity in the
far-red range.
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Figure 4.7: Example image of cell boundaries detected by the automated analysis algorithm.
Membrane detection is performed by Otsu thresholding followed by hole filling or fitting of
a convex hull. Cell morphology parameters including area and perimeter are extracted from
the binary masks used to generate the above images.
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4.4 Conclusions and Future Directions

In this chapter, we have demonstrated a new technique that combines traditional fluorescence

cytometry with physical phenotyping. This technology enables high-throughput measure-

ment of whole cell-deformability, subcellular deformations, and spatially-resolve fluorescence

intensity. By establishing one to one correlations between biomarkers and mechanical prop-

erties on large populations of cells, this technology opens the door to understanding the

molecular underpinnings of cell mechanical properties. Additionally, fluorescence imaging

enables the study of subcellular compartments and their contribution to the physical phe-

notype of a cell. With the integration of fluorescence measurements, this technology finally

connects the field of high-throughput physical phenotyping to the long-standing field of flow

cytometry.

F-DC opens the door to understanding the role that mechanical properties play in com-

plex biological systems. For instance, it can be used to study the mechanical changes that

occur in subpopulations of leukocytes in response to immune stimuli. It can also be used to

understand the mechanical changes that cancer cells undergo during metastasis. Further-

more, F-DC can be used to study the localization of cellular components to shed light on

how cells control and regulate their mechanical phenotype.

From a technology development perspective, numerous improvements can be made to

the F-DC system. Higher sample throughput can be achieved through a combination of a

higher-bandwidth excitation system and parallelization of the image processing algorithms.

Additionally, the sample and sheath infusion systems can be automated to test multiple

shear stress conditions to develop more detailed mechanical profiles of populations of cells.
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CHAPTER 5

Concluding Remarks

In the preceding chapters, we discussed three new technologies that represent improvements

upon existing cytometry technologies. Multiparameter deformability cytometry adds new

parameters that can be measured as part of a cell’s mechanical phenotype. Parallel flow

cytometry demonstrates true parallelization of flow cytometry measurements, achieving un-

precedented sample throughputs. Fluorescence imaging deformability cytometry combines

the power of fluorescent labeling with mechanophenotyping, enabling nuanced studies of the

mechanophenotypes of heterogeneous cell populations and investigation of the underlying

molecular origins of cell mechanical properties.

These technologies are parts of larger trends in cytometry towards high-throughput single-

cell measurements with large degrees of multiplexing. Future technologies will likely continue

down this path with instruments capable of mutiple categories of readouts including quan-

tifying fluorescently labeled biomolecules, measuring mechanical properties, and sequencing

of RNA and DNA.

Higher degrees of multiplexing will enable researchers to study complex biological systems

with more nuance and will lead to the development of more comprehensive models of the

cell and of cellular populations. These models will dramatically improve our understanding

of disease and our ability to develop new therapeutics.

One major barrier to ever-increasing amounts of multiplexing is our ability to visualize

and understand high-dimensional data. Techniques for data mining and data visualization

have been evolving rapidly but are still in their infancy. There exist numerous transfor-

mations that have been developed to visualize high-dimensional data but they are often
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non-parametric, new data cannot easily be projected to the transformed space, and non-

deterministic, repeated transformations of identical data will yield different transformed

data.1 New transformations need to be developed to simplify the comparison of high dimen-

sional data sets. Another related problem is the automated discovery of cellular subpopula-

tions. Many techniques have been developed to do this with varying degrees of success but

the inevitable integration of multiple types of data (e.g. fluorescence and gene sequences)

will necessitate more complex models that can handle the nature and variance of different

classes of information.2–4

Another major barrier to increased degrees of multiplexing is the need for cell sorting.

Commonly used data visualization transformations and population discovery algorithms are

computationally intensive and require knowledge of the entire cellular population. Devel-

opment of visualization and population discovery algorithms that are compatible with the

low latencies required in cell sorting will be crucial to our ability to use cytometry in cel-

lular therapies. Additionally, new approaches to cell sorting such as probabilistic modeling

of cellular populations will help us break away from classical gating strategies that rely on

humans to interpret data.

Overall, the field of cyometry is rapidly evolving. It is clear that future technologies will

measure an ever-increasing number of cellular properties at higher and higher throughputs.

The major risk in the field is that our ability to measure properties will outstrip our ability

to visualize and interpret results. If these problems are avoided, however, new cytometry

technologies will help break down the barriers between siloed fields of study such as genomics,

cell mechanics, and biochemistry. Integrating the knowledge from each of these fields will

be crucial to develop a deep understanding of how the cell functions and what occurs during

disease. The future of cytometry lies in close collaboration among biologists, engineers and

computer scientists.
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