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Abstract

Toric Stacks

by

Anton Igorevich Geraschenko

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vera Serganova, Chair

The first purpose of this dissertation is to introduce and develop a theory of toric stacks
which encompasses and extends the notions of toric stacks defined in [Laf02, BCS05, FMN09,
Iwa09a, Sat09], as well as classical toric varieties. In addition to introducing a broader class
of smooth toric stacks, the definition we introduce allows singularities.

The second purpose is to characterize toric stacks in a “bottom up” fashion, similar to
the treatment of smooth toric Deligne-Mumford stacks in [FMN09] and the characterization
of toric varieties as “abstract toric schemes” which are reduced, separated, and normal.
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1 Introduction

Recently, a number of theories of toric stacks have been introduced [Laf02, BCS05, FMN09,
Iwa09a, Sat09]. There are several reasons one may be interested in developing such a theory.
First, these stacks provide a natural place to test conjectures and develop intuition about
algebraic stacks, much the same way that toric varieties do for schemes. After developing
an adequate theory, they are easy to work with combinatorially, just as toric varieties are.
Second, in some situations toric stacks can serve as better-behaved substitutes for toric
varieties. A toric variety has a canonical overlying smooth stack. It is sometimes easier to
prove results on the smooth stack and “push them down” to the toric variety. Third, with
the appropriate machinery, one can show that an “abstract toric stack” (e.g. the closure of
a torus within some stack of interest) often arises from a combinatorial “stacky fan.” The
combinatorial theory of stacky fans then allows one to effectively investigate the stack in
question.

There are three distinct kinds of toric stacks in the literature.

Lafforgue’s Toric Stacks. In [Laf02], Lafforgue defines a toric stack to be the stack quo-
tient of a toric variety by its torus. These stacks are very “small” in the sense that
they have a dense open point. They are rarely smooth.

Smooth Toric Stacks. Borisov, Chen, and Smith defined smooth toric Deligne-Mumford
stacks in [BCS05]. These are the stacks studied in [FMN09] and [Iwa09b]. They are
smooth and have simplicial toric varieties as their coarse moduli spaces. Satriano
generalized this approach in [Sat09] to include certain smooth toric Artin stacks which
have toric varieties as their good moduli spaces.

Toric Varieties. Toric varieties are neither “small” nor smooth in general, so the standard
theory of toric varieties is not subsumed by the above approaches.

The following definition unifies and extends these approaches. We define a toric stack to
be the stack quotient of a toric variety X by a subgroup G of its torus T0. The stack [X/G]
has a dense open torus T = T0/G which acts on [X/G]. An integral T -invariant substack of
[X/G] is necessarily of the form [Z/G] where Z ⊆ X is an integral T0-invariant subvariety
of X.1 The subvariety Z is naturally a toric variety whose torus T ′ is a quotient of T0. The
quotient stack [Z/G] contains a dense open “stacky torus” [T ′/G] which acts on [Z/G].

Definition 1.1. In the notation of the above paragraph, a toric stack is an Artin stack of
the form [X/G], together with the action of the torus T = T0/G. A generically stacky toric
stack is an Artin stack which is a closed substack of a toric stack, i.e. is of the form [Z/G],
together with the action of the stacky torus [T ′/G].

1Note that Z must be irreducible because G cannot permute the irreducible T0-invariant subvarieties of
X.
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Remark 1.2. This definition neatly encompasses and extends the three kinds of toric stacks
listed above.

• Taking G to be trivial, we see that any toric variety X is a toric stack.

• Smooth toric Deligne-Mumford stacks in the sense of [BCS05, FMN09, Iwa09a] are
smooth generically stacky toric stacks which happen to be separated and Deligne-
Mumford. This is explained in the discussion immediately after Definition 2.18.

• Toric stacks in the sense of [Laf02] are toric stacks that have a dense open point with
no stabilizer (i.e. toric stacks for which G = T0).

• A toric Artin stacks in the sense of [Sat09] is a smooth generically stacky toric stack
with finite generic stabilizer and a toric variety of the same dimension as a good moduli
space. See Sections 4 and 6.

We develop the theory of toric stacks in two essentially different ways, which we refer to
as the combinatorial approach and the intrinsic approach.

1.1 The Combinatorial Approach

Just as toric varieties can be understood in terms of fans, toric stacks can be understood
in terms of combinatorial objects called stacky fans. The first part of this dissertation is
dedicated to developing the dictionary between the combinatorics of stacky fans and the
geometry of toric stacks. We define the basic objects of study, stacky fans, in Section 2.

In Section 3, we prove that any toric morphism of toric stacks is induced by a morphism
of stacky fans (Theorem 3.5), a key result in the dictionary between toric stacks and stacky
fans.

Sections 2 and 3 provide a sufficient base to generate interesting examples. In Section
4, we highlight a particularly easy to handle class of toric stacks, which we call fantastacks.
The stacks defined in [BCS05] and [Sat09] which have no generic stabilizer are fantastacks.
Generically stacky toric stacks are considerably more general than fantastacks, but it is
sometimes easiest to understand a generically stacky toric stack in terms of its relation to
some fantastack. For example, the stacks defined in [BCS05] and [Sat09] are closed substacks
of fantastacks.

{fantastacks} ⊂ {toric stacks} ⊂ {generically stacky toric stacks}

Section 5 is devoted to the construction of the canonical stack over a toric stack. The main
result is Proposition 5.7, which justifies the terminology by showing that canonical stacks
have a universal property. Canonical stacks are minimal “stacky resolutions” of singularities.
Heuristically, the existence of a canonical resolution of singularities is desirable because it is
sometimes possible to prove theorems on the smooth resolution and then descend them to
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the singular base. Indeed, the main result of this dissertation, Theorem 12.1, is proved in
this way.

In Section 6, we prove several results that identify toric good moduli space morphisms in
the sense of [Alp08]. Good moduli space morphisms generalize the notion of a coarse moduli
space and that of a good quotient in the sense of [GIT]. Good moduli space morphisms are
of central interest in the theory of moduli, so it is useful to have tools for easily identifying
and handling many examples.

In Section 7, we prove a moduli interpretation for smooth toric stacks (Theorem 7.7).
That is, we characterize morphisms to smooth toric stacks from an arbitrary source, rather
than only toric morphisms from toric stacks. The familiar moduli interpretation of Pn is
that specifying a morphism to Pn is equivalent to specifying a line bundle, together with
n+ 1 sections that generate it. Cox generalized this interpretation to smooth toric varieties
in [Cox95], and Perroni further generalized it to smooth toric Deligne-Mumford stacks in
[Per08]. Smooth toric stacks are the natural closure of this class of moduli problems. In
other words, any moduli problem of the same sort as described by Cox and Perroni is
represented by a smooth toric stack (see Remark 7.10).

Much of this first part of the dissertation can be done over an arbitrary base, but we work
over an algebraically closed field in order to avoid imposing confusing hypotheses (e.g. every
subgroup of a torus we consider is required to be diagonalizable).

1.2 The Intrinsic Approach

As for toric varieties, there is an intrinsic approach to toric stacks. A toric variety can be
defined as a reduced finite type scheme with a torus action which contains a dense open copy
of the torus (i.e. stabilizer-free orbit). It is a classical result that such an “abstract toric
variety” arises from a fan (i.e. is a “combinatorial toric variety”) if and only if it is separated
and normal.

In [FMN09], Fantechi, Mann, and Nironi develop an analogous approach to smooth
toric Deligne-Mumford stacks. They define “abstract” smooth toric Deligne-Mumford stacks
roughly as a smooth separated Deligne-Mumford stack with an action of a “stacky torus”
and a dense open copy of this torus. They show in [FMN09, Theorem 7.24] that such a stack
arises from a stacky fan as defined in [BCS05, §3].

In Sections 8–12, we aim to give a similar intrinsic characterization of toric stacks. The-
orem 12.1 achieves this goal. It would be desirable to prove an analogous result for the
generically stacky case, but this would require a careful study of actions of stacky tori and
some additional hypotheses (see Example 11.10).

Theorem 12.1. Let X be an Artin stack over an algebraically closed field k of characteristic
0. Suppose X has an action of a torus T and a dense open substack which is T -equivariantly
isomorphic to T . Then X is a toric stack if and only if the following conditions hold:

1. X is normal, reduced, and of finite type,
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2. X has affine diagonal,

3. geometric points of X have linearly reductive stabilizers, and

4. every point of [X/T ] is in the image of an étale representable map from a stack of the
form [U/G], where U is quasi-affine and G is an affine group.

It is possible that condition 4 is always satisfied given the other hypotheses in the theorem.
If this is true, then as a special case, we recover a new proof of [FMN09, Theorem 7.24] in
the case when X has trivial generic stabilizer.

It is worth noting that unlike the classical result about toric varieties and the result in
[FMN09], we cannot require our stacks to be separated. Indeed, algebraic stacks which are
not Deligne-Mumford are hardly ever separated. The condition that the stack have affine
diagonal essentially replaces the separatedness condition (see Remark 11.6). In particular,
there are toric stacks which are schemes, but which are not toric varieties because they are
not separated (see Example 2.15).

This part of the dissertation can be done over a separably closed field k, but we addi-
tionally impose the condition that k is of characteristic zero to avoid confusing hypotheses
(e.g. that every group we consider is smooth).

Remark 1.3 (The Log Geometric Approach). There is yet another approach to toric geometry,
namely that of log geometry. In this dissertation, we do not develop this approach to toric
stacks. We refer the interested reader to [Sat09, §§5–6], in which the log geometric approach
is taken for fantastacks.

Logical Dependence of Sections

The logical dependence of sections is roughly as follows.

2

�� !!DDDDDDDD

combinatorial approach

9

��

intrinsic approach

3

}}zzzzzzzz

�� !!DDDDDDDD

**VVVVVVVVVVVVVVVVVVVVVVVV 7 10

��

6 4 5

**VVVVVVVVVVVVVVVVVVVVVVVV 8

!!DDDDDDDD 11

��

12

2 Definitions

For a brief introduction to algebraic stacks, we refer the reader to [Ols08, Chapter 1]. For
a more detailed treatment, we refer to [Vis05] or [LMB00]. If the reader is unfamiliar with
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stacks, we encourage her to continue reading, simply treating [X/G] as a formal quotient of
a scheme X by an action of a group G. Just as it is possible to learn the theory of toric
varieties as a means of learning about varieties in general, we hope the theory of toric stacks
can serve as an introduction to the theory of algebraic stacks.

We refer the reader to [Ful93, Chapter 1] or [CLS11, Chapter 3] for the standard cor-
respondence between fans on lattices and toric varieties, and for basic results about toric
varieties. We will follow the notation in [CLS11] whenever possible.

2.1 The Toric Stack of a Stacky Fan

Suppose X is a toric variety and G ⊆ T0 is a subgroup of its torus. We may then encode the
toric stack [X/G] combinatorially as follows.

Associated to the toric variety X is a fan Σ on the lattice of 1-parameter subgroups of T0,
L = Homgp(Gm, T0) (see [Ful93, §1.4] or [CLS11, §3.1]). The surjection of tori T0 → T0/G
is encoded by the induced homomorphism of lattices of 1-parameter subgroups, β : L →
N = Homgp(Gm, T0/G). We may therefore recover the toric stack [X/G] from the pair
(Σ, β : L → N). We will refer to such a pair as a “stacky fan.” In order to generalize this
notion to include generically stacky toric stacks, we first introduce some terminology.

Definition 2.1. Suppose B is a finitely generated abelian group and A ⊆ B is a subgroup.
The saturation of A in B is the subgroup

satBA = {b ∈ B|n · b ∈ A for some n ∈ Z>0}.

We say A is saturated in B if A = satBA. We say that a homomorphism f : A → B is
saturated if f(A) is saturated in B.

Remark 2.2. Saturated morphisms are precisely morphisms whose cokernels are lattices (free
abelian groups). In particular, the image of a saturated morphism has a direct complement.

Definition 2.3. A homomorphism of finitely generated abelian groups f : A → B is close
if satBf(A) = B.

Remark 2.4. Equivalently, f is close if the dual homomorphism f ∗ : B∗ = Hom(B,Z) →
Hom(A,Z) = A∗ is injective. Note that the property of being a close morphism depends

only on the quasi-isomorphism class of the mapping cone C(f) = [A
f−→ B] in the derived

category of abelian groups.

Definition 2.5. A generically stacky fan is a pair (Σ, β), where Σ is a fan on a lattice L,
and β : L → N is a homomorphism to a finitely generated abelian group. If N is a lattice
and β is close, we say (Σ, β) is a stacky fan.

Definition 2.6. If L is a lattice, we denote by TL the torus D(L∗) = Homgp(L∗,Gm) whose
lattice of 1-parameter subgroups is naturally isomorphic to L.
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Remark 2.7. Here, the functor D(−) is the Cartier dual Homgp(−,Gm). It is an anti-
equivalence of categories between finitely generated abelian groups and diagonalizable group
schemes. See [SGA3, Exposé VIII].

Given a stacky fan (Σ, β), we construct a toric stack as follows. Let XΣ be the toric
variety associated to Σ. The dual of β, β∗ : N∗ → L∗, induces a homomorphism of tori
Tβ : TL → TN , naturally identifying β with the induced map on lattices of 1-parameter
subgroups. Since β is close, β∗ is injective, so Tβ is surjective. Let Gβ = ker(Tβ). Note that
TL is the torus of XΣ, and Gβ ⊆ TL is a subgroup.

Definition 2.8. Using the notation in the above paragraph, if (Σ, β) is a stacky fan, we
define the toric stack XΣ,β to be [XΣ/Gβ], with the torus TN = TL/Gβ.

Example 2.9 2.10 2.12 2.13 2.15 2.16

L

β

��

Σ

N

N

id
��

Σ

N

Z2

( 1 0
1 2 )

��

Z2

Z2

( 1 0 )

��

Z

Z2

( 1 -1 )

��

Z

Z2

( 1 1 )

��

Z

Z
2

��

Z

Example 2.9 (Toric Varieties). Suppose Σ is a fan on a lattice N . Letting L = N and
β = idN , we see that the induced map TN → TN is the identity map, so Gβ is trivial. So
XΣ,β is the toric variety XΣ. �

Example 2.10. Here XΣ = A2. We have that β∗ is given by ( 1 1
0 2 ) : Z2 → Z2, so the induced

map on tori is G2
m → G2

m given by (s, t) 7→ (st, t2). The kernel is Gβ = µ2 = {(ζ, ζ)|ζ2 =
1} ⊆ G2

m.
So we see that XΣ,β = [A2/µ2], where the action of µ2 is given by ζ · (x, y) =

(ζx, ζy). Note that this is a smooth stack. It is distinct from the singular toric
variety with the fan shown to the left. �

Since quotients of subschemes of An by subgroups of Gn
m appear frequently, we often

include the weights of the action in the notation.

Notation 2.11. Let G ↪→ Gn
m be the subgroup corresponding to the surjection Zn → D(G).

Let gi be the images of ei in D(G). Let X ⊆ An be a subscheme. We denote the quotient
[X/G] by [X/( g1 ··· gn )G].

In this notation, the stack in Example 2.10 would be denoted [A2/( 1 1 )µ1].

Example 2.12. Again we have that XΣ = A2. This time β∗ = ( 1
0 ) : Z → Z2, which induces

the homomorphism G2
m → Gm given by (s, t) 7→ s. Therefore, Gβ = Gm = {(1, t)} ⊆ G2

m,
so XΣ,β = [A2/( 0 1 )Gm] ∼= A1 × [A1/Gm]. �
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Example 2.13. This time XΣ = A2 r {(0, 0)}. We see that β∗ = ( 1
-1 ) : Z → Z2, which

induces the morphism G2
m → Gm given by (s, t) 7→ st−1. So Gβ = Gm = {(t, t)} ⊆ G2

m. We
then have that XΣ,β = [(A2 r {(0, 0)})/( 1 1 )Gm] = P1. �

� Warning 2.14. Examples 2.9 and 2.13 show that non-isomorphic stacky fans (see
Definition 3.2) can give rise to isomorphic toric stacks. The two presentations [(A2 r

{(0, 0)})/( 1 1 )Gm] and [P1/{e}] of the same toric stack are produced by different stacky fans.
y

Example 2.15 (The non-separated line). Again we have that XΣ = A2 r {(0, 0)}. However,
this time we see that β∗ = ( 1

1 ) : Z → Z2, which induces the homomorphism G2
m → Gm

given by (s, t) 7→ st. Therefore, Gβ = Gm = {(t, t−1)} ⊆ G2
m. So we have that XΣ,β =

[(A2 r {(0, 0)})/( 1 -1 )Gm] is the affine line A1 with a doubled origin.
This example shows that there are toric stacks which are schemes, but are not toric

varieties because they are non-separated. �

Example 2.16. Here XΣ = A1, and β∗ = 2: Z→ Z, which induces the map Gm → Gm given
by t 7→ t2. So Gβ = µ2 ⊆ Gm and XΣ,β = [A1/µ2]. �

2.2 The Generically Stacky Case

Before we generalize Definition 2.8 to produce a generically stacky toric stack from a gener-
ically stacky fan, it is convenient to define some groups associated to 2-term complexes of
finitely generated abelian groups with free kernels.

Definition 2.17. Suppose f : A → B is a homomorphism of finitely generated abelian

groups so that ker f is free. For i = 0, 1, let D(Gi
f ) be H i(C(f)∗), where C(f) = [A

f−→ B] is
the mapping cone of f and (−)∗ is the derived functor RHomgp(−,Z). We define Gi

f to be
the diagonalizable groups corresponding to D(Gi

f ), and we define Gf = G0
f ⊕G1

f .

Note that the homomorphism A∗ → D(G1
f ) induces a homomorphism Gf → D(A∗) (that

is trivial on G0
f ). In the case where A and B are free abelian groups, H i(C(f)∗) are simply

the kernel (i = 0) and cokernel (i = 1) of f ∗. If we additionally assume f is close (as was the
case in §2.1), then f ∗ has no kernel, so G0

f is trivial. In particular, the notation is consistent
with the notation in the paragraph above Definition 2.8, where f = β.

We now generalize Definition 2.8. If β is assumed to be close, the definition essentially
agrees with the ones in [BCS05, §3] and [Sat09, §5]. However, those constructions effectively
impose additional conditions on Σ (e.g. that Σ is a subfan of the fan of An) since it is required
to be induced by a fan on N ⊗Z Q.

Definition 2.18. If (Σ, β) is a generically stacky fan, we define XΣ,β to be [XΣ/Gβ], where
the action of Gβ on XΣ is induced by the homomorphism Gβ → D(L∗) = TL.
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Now we give a more explicit description of XΣ,β, which also has the benefit of demon-
strating that it is a generically stacky toric stack according to Definition 1.1. See Example
4.15 for an illustration of this approach.

Let (Σ, β : L→ N) be a generically stacky fan. Let

Zs Q−→ Zr → N → 0

be a presentation of N , and let B : L→ Zr be a lift of β.
Define the fan Σ′ on L ⊕ Zs as follows. Let τ be the cone generated by e1, . . . , es ∈ Zs.

For each σ ∈ Σ, let σ′ be the cone spanned by σ and τ in L⊕Zs. Let Σ′ be the fan generated
by all the σ′. Corresponding to the cone τ , we have the closed subvariety Y ⊆ XΣ′ , which
isomorphic to XΣ since Σ is the star (sometimes called the link) of τ [CLS11, Proposition
3.2.7]. We define

β′ = B ⊕Q : L⊕ Zs // Zr

(l, a) � // B(l) +Q(a).

Then (Σ′, β′) is a stacky fan and we see that XΣ,β
∼= [Y/Gβ′ ]. Note that C(β′) is quasi-

isomorphic to C(β), so Gβ′
∼= Gβ.

Remark 2.19. Note that if σ is a smooth cone,1 then the cone spanned by σ and τ is also a
smooth cone. So if XΣ,β is a smooth generically stacky toric stack, then it is a closed substack
of a smooth toric stack.

Remark 2.20 (On the condition “β is close”). Since the action of G0
β on Xσ is trivial, we

have that XΣ,β = [XΣ/G
1
β]×BG0

β. It is often easiest to treat this extra stackiness separately.
Let N1 be the saturation of β(L) in N , let N0 be a direct complement, and let β1 : L→ N1

be the factorization of β through N1. Then G0
β = D(N∗0 ) = Grk(N0)

m and [XΣ/G
1
β] = XΣ,β1 .

We therefore typically assume β is close (or equivalently that XΣ,β has finite generic sta-
bilizer), with the understanding that the non-close case can usually be handled by replacing
β by β1.

Remark 2.21 (On the generically stacky case). In this dissertation, we opt to work primarily
with toric stacks, since generically stacky toric stacks can be described as closed substacks.

The primary reason for this focus is that we would like to avoid discussing stacky tori
and their actions. We refer the interested reader to [FMN09, §1.7, §2, and Appendix B]
for a discussion on stacky tori and their actions. All stacky tori that arise in generically
stacky toric stacks are of the form T × BG, where T is a (non-stacky) torus, and G is a
diagonalizable group.

However, we do deal with generically stacky fans whenever it is possible to do so without
delving too heavily into the theory of stacky tori.

1A smooth cone is a cone whose corresponding toric variety is smooth. See [CLS11, Definition 1.2.16].
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3 Morphisms of Toric Stacks

The main goal of this section is to define morphisms of toric stacks and stacky fans, and
to show (in Theorem 3.5) that every morphism of toric stacks is induced by a morphism of
stacky fans.

After proving Theorem 3.5, we mitigate the problem introduced in Warning 2.14 by
studying presentations of cohomologically affine toric stacks and morphisms of stacky fans
which induce isomorphisms of toric stacks.

Definition 3.1. A toric morphism or a morphism of (generically stacky) toric stacks is a
morphism which restricts to a homomorphism of (stacky) tori.

Definition 3.2. A morphism of generically stacky fans (Σ, β : L→ N)→ (Σ′, β′ : L′ → N ′)
is a pair of group morphisms Φ: L→ L′ and φ : N → N ′ so that β′ ◦ Φ = φ ◦ β and so that
for every cone σ ∈ Σ, Φ(σ) is contained in a cone of Σ′.

We typically draw a morphism of generically stacky fans as a commutative diagram.

L

β

��

Φ //

Σ

L′

β′

��

Σ′//

N
φ

// N ′

A morphism of generically stacky fans (Φ, φ) : (Σ, β) → (Σ′, β′) induces a morphism of
toric varieties XΣ → XΣ′ and a compatible morphism of groups Gβ → Gβ′ , so it induces a
toric morphism of (generically stacky) toric stacks X(Φ,φ) : XΣ,β → XΣ′,β′ .

Proposition 3.3. Let P be a property of morphisms which is stable under composition and
base change. For i = 0, 1, let (Φi, φi) : (Σi, βi : Li → Ni)→ (Σi, βi : Li → Ni) is a morphism
of generically stacky fans. Then the product morphism (Φ0×Φ1, φ0×φ1) induces an morphism
of generically stacky toric stacks which has property P if and only if each (Φi, φi) does.

L0 × L1

β0×β1

��

Φ0×Φ1 //

Σ0 × Σ1

L′0 × L′1
β′0×β′1

��

Σ′0 × Σ′1//

N0 ×N1
φ0×φ1

// N ′0 ×N ′1

(see [CLS11, Proposition 3.1.14] for basic facts about product fans)

Proof. Products of morphisms with property P have property P because f × g = (f × id) ◦
(id× g), and f × id (resp. id× g) is a base change of f (resp. g).
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The constructions of XΣ,β from (Σ, β) and of X(Φ,φ) from (Φ, φ) commute with products,
so (Φ0 × Φ1, φ0 × φ1) induces the product morphism X(Φ0×Φ1,φ0×φ1) = X(Φ0,φ0) × X(Φ1,φ1). It
follows that if X(Φi,φi) have property P, then so does X(Φ0×Φ1,φ0×φ1).

Conversely, suppose X(Φ0×Φ1,φ0×φ1) = X(Φ0,φ0) × X(Φ1,φ1) has property P. We have that
XΣ′0,β

′
0

has a k-point, induced by the identity element of its torus, which induces a morphism
XΣ′1,β

′
1
→ XΣ′0,β

′
0
×XΣ′1,β

′
1
. Base changing X(Φ0,φ0)×X(Φ1,φ1) by this morphism, we get X(Φ1,φ1),

so X(Φ1,φ1) has property P. Similarly, X(Φ0,φ0) has property P.

3.1 Toric Morphisms are Induced by Morphisms of Stacky Fans

Lemma 3.4. Let X be a connected scheme, G a group, and P → X a G-torsor. Suppose
Q ⊆ P is a connected component of P .1 Then Q → X is an H-torsor, where H is the
subgroup of G which sends Q to itself.

Proof. Let φ be an automorphism of P . Since Q is a connected component of P , φ(Q) is
either equal to Q or is disjoint from Q. It follows that (G×Q)×PQ = (H×Q)×PQ ∼= H×Q,
where the map G×Q→ P is induced by the action of G on P .

The diagonal Q → Q ×X Q ⊆ P ×X Q is a section of the G-torsor P ×X Q → Q, so it
induces a G-equivariant isomorphism P×XQ ∼= G×Q. We then have the following cartesian
diagram.

H ×Q ∼= (G×Q)×P Q //

��

Q×X Q

��

// Q

��

G×Q ∼= P ×X Q //

��

P

��

Q // X

In particular, the map H × Q → Q ×X Q, given by (h, q) 7→ (h · q, q), is an isomorphism.
This shows that Q is an H-torsor.

Theorem 3.5. Let (Σ, β : L → N) and (Σ′, β′ : L′ → N ′) be stacky fans, and suppose
f : XΣ,β → XΣ′,β′ is a toric morphism. Then there exists a stacky fan (Σ0, β0) and morphisms
(Φ, φ) : (Σ0, β0) → (Σ, β) and (Φ′, φ′) : (Σ0, β0) → (Σ′, β′) such that the following triangle
commutes and X(Φ,φ) is an isomorphism.

XΣ0,β0

oX(Φ,φ)

��

X(Φ′,φ′)
))TTTTTT

XΣ′,β′

XΣ,β
f

55jjjjjj

1The hypothesis that X is connected is actually unnecessary, but it makes the condition on Q simpler. It
is enough to assume that every connected component of X has exactly one connected component of Q lying
over it.
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Proof. By assumption, f restricts to a homomorphism of tori TN → TN ′ , which induces a
homomorphism of lattices of 1-parameter subgroups φ : N → N ′.

We define Y = XΣ×XΣ′,β′
XΣ′ . Since XΣ → XΣ′,β′ and XΣ′ → XΣ′,β′ are toric, TL×TN′ TL′

is a diagonalizable group. The connected component of the identity, T0 ⊆ TL ×TN′ TL′ , is a
connected diagonalizable group, so it is a torus. Let Y0 be the connected component of Y
which contains T0, and let GΦ be the kernel of the homomorphism T0 → TL. We then have
the following diagram.

GΦ� _

��

� � // Gβ′� _

��

Gβ′� _

��

T0
� � //� r

$$JJJJJ TL ×TN′ TL′

����

//
� r

$$JJJJ
TL′ � r

$$JJJJ

����

Y0
� � // Y

��

// XΣ′

Gβ′ -torsor

��

TL � r

$$JJJJ
// TN ′ � r

$$JJJ

XΣ
// XΣ′,β′

Since XΣ is normal and separated, and Y is a Gβ′-torsor over XΣ, we have that Y is normal
and separated, so Y0 is normal, separated, and connected. In particular, Y0 is irreducible.
We have that T0 is an open subscheme of Y0, and T0 acts on Y0 in a way that extends the
multiplication, so Y0 is a toric variety with torus T0. Say it corresponds to a fan Σ0 on the
lattice L0 of 1-parameter subgroups of T0.

Now Y0 → XΣ and Y0 → XΣ′ are morphisms of toric varieties, so they are induced by

morphisms of fans Σ0 → Σ and Σ0 → Σ′. Defining β0 to be the composition L0
Φ−→ L

β−→ N ,
we have morphisms of stacky fans

L

β

��

Σ

L0
Φoo //

β0

��

Σ0
oo

L′

β′

��

Σ′//

N N
φ

// N ′

Note that GΦ is the kernel of the surjection T0 → TL, so the notation is consistent with
Definition 2.17. By construction, GΦ is the subgroup of Gβ′ which takes T0 to itself, so it is
the subgroup which takes Y0 = T0 to itself. By Lemma 3.4, Y0 is a GΦ-torsor over XΣ.

Since T0 is a connected component of a group that surjects onto TL, the induced morphism
T0 → TL is surjective, so Φ is close. By Lemma A.2, Gβ0 is an extension of Gβ by GΦ. The
morphism of stacky fans (Σ0, β0) → (Σ, β) induces the isomorphism XΣ0,β0 = [Y/Gβ0 ] →
[(Y/GΦ)/Gβ] = XΣ,β.

On the other hand, the morphism (Σ0, β0) → (Σ′, β′) induces the morphism [Y0/Gβ0 ] ∼=
[XΣ/Gβ]→ XΣ′,β′ .
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3.2 The Cohomologically Affine Case

In this subsection, we study cohomologically affine generically stacky toric stacks in some
detail. Roughly, the goal is to mitigate Warning 2.14 and establish a tight connection
between cohomologically affine generically stacky toric stacks and their stacky fans. This is
important in the proofs of some technical results, specifically Lemma 5.5 and Theorem 8.12.

Definition 3.6. A generically stacky toric stack XΣ,β is cohomologically affine if XΣ is affine
(c.f. Definition 6.1).

A toric variety is affine if and only if its fan is the set of faces of a single cone σ.

Notation 3.7. As a slight abuse of notation, we use the symbol σ to denote a cone as well
as the fan consisting of the cone σ and all of its faces.

Lemma 3.8. Let (Φ, φ) : (σ, β)→ (Σ′, β′) be a morphism of generically stacky fans, with σ
a single cone. Suppose every torus orbit of XΣ′,β′ is in the image of the induced morphism
X(Φ,φ) (e.g. if X(Φ,φ) is surjective). Then the map σ → Σ′ is a surjection. In particular, Σ′

is a single cone.

Proof. The cones of Σ′ correspond to torus orbits of XΣ′ , and to those of XΣ′,β′ . We see that
every torus orbit of XΣ′ is in the image of Xσ. Thus, the relative interior of every cone of
Σ′ contains the image of some face of σ. Therefore Φ(σ) intersects the relative interiors of
all cones, and in particular all rays, of Σ′. Since Φ(σ) is a convex polyhedral cone, it follows
that the Φ(σ) is the cone generated by the rays of Σ′. In particular, Σ′ ⊆ Φ(σ).

Remark 3.9. The cohomological affineness condition in Lemma 3.8 cannot be removed. For

example, let Σ = and Σ′ = . Then XΣ is the blowup of A2 at the origin, minus the two
torus-invariant points of the exceptional divisor, and XΣ′ is A2. The natural map XΣ → XΣ′

is surjective, but the map on fans is not.

Definition 3.10. An affine toric variety Xσ is pointed if it contains a torus-invariant point.
Alternatively, Xσ is pointed if σ spans the ambient lattice L. If (σ, β) is a generically stacky
fan and Xσ is pointed, we say that Xσ,β is a pointed generically stacky toric stack. In this
case, we say that (σ, β) is a pointed generically stacky fan.

Note that a pointed toric variety has a unique torus-invariant point.

Remark 3.11. Note some immediate consequences of the equivalence of categories between
toric varieties and fans. For any affine toric variety Xσ, there is a canonical pointed toric
subvariety. Explicitly, let Lσ ⊆ L be the sublattice spanned by σ. Then Xσ,Lσ is pointed,
and the inclusion Lσ → L induces a toric closed immersion Xσ,Lσ → Xσ,L. We have that
Xσ,L is (non-canonically) isomorphic to the product of Xσ,Lσ and the torus TL/Lσ .
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Remark 3.12. Similarly, if (σ, β : L → N) is a generically stacky fan, with σ a single cone,
there is a canonical morphism from a pointed toric stack. Let Lσ ⊆ L be the saturated
sublattice generated by σ, let Nσ = satN(β(Lσ)), and let βσ : Lσ → Nσ be the morphism
induced by β. Then we have a morphism of generically stacky fans (σ, βσ)→ (σ, β). We see
that Xσ,β is (non-canonically) isomorphic to the product of the pointed generically stacky
toric stack Xσ,βσ and the stacky torus X∗,L/Lσ→N/Nσ , where ∗ is the trivial fan.

Remark 3.13. Note that Xσ,βσ , as defined in Remark 3.12, has the following property. Any
toric morphism to Xσ,β from a pointed toric stack factors uniquely through Xσ,βσ . This
follows immediately from the fact that any toric morphism from a pointed toric stack to a
stacky torus must be trivial.

Lemma 3.14. Let Xσ be a pointed affine toric variety, and let Y → Xσ be a toric morphism
from a toric variety making Y into a G-torsor over Xσ for some group G. Then Y → Xσ is
a trivial torsor and G is a torus. In particular, Y ∼= G×Xσ as a toric variety, so there is a
canonical toric section Xσ → Y .

Proof. We have that G is the kernel of the homomorphism of tori induced by Y → Xσ, so it
is diagonalizable. We decompose G as a product of a finite group G0 and a torus Gr

m.
We then have that Y0 = Y/Gr

m is a toric variety which is a G0-torsor over Xσ. The fiber
over the torus-invariant point of Xσ is then a torus invariant finite subset of Y0. A torus has
no finite-index subgroups, so any finite torus-invariant subset of a toric variety must consist
of fixed points of the torus action. On the other hand, Y0 is affine over Xσ, so it is affine, so
it contains at most one torus fixed point. Therefore, G0 must be trivial, so G ∼= Gr

m.
We have that G-torsors over Xσ are parametrized by H1(Xσ, G) ∼= H1(Xσ,Gm)r ∼=

Pic(Xσ)r. By [CLS11, Proposition 4.2.2], we have that Pic(Xσ) = 0, so all Gr
m-torsors on

Xσ are trivial. It follows that Y = Gr
m ×Xσ, so there is a canonical toric section.

Corollary 3.15. Let Xσ,β : L→N be a pointed generically stacky toric stack, where σ spans
the lattice L. Let f : Xσ,β → XΣ′,β′ be a homomorphism of toric stacks. Then f is induced
by a morphism of stacky fans (σ, β)→ (Σ′, β′).

Proof. Following the proof (and notation) of Theorem 3.5, we see that there is toric variety
Y0 with a toric morphism Y0 → Xσ making Y0 into a GΦ-torsor over Xσ. By Lemma 3.14,
there is a canonical toric section s. This toric section induces a section of the morphism of
stacky fans (Φ, idN) : (Σ0, β0)→ (σ, β).

L

β

��

44

σ

L0
Φoo //

β0

��

Σ0
oo

**
s

L′

β′

��

Σ′//

N N
φ

// N ′

The composition (σ, β)→ (Σ′, β′) then induces the morphism f .
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Corollary 3.16. Let (Σ, β : L→ N) be a generically stacky fan. There is a natural bijection
between toric morphisms A1 → XΣ,β and elements of Σ ∩ L.

Proof. This follows immediately from Corollary 3.15 and the usual description of the fan of
A1, namely ( , id : Z→ Z).

Lemma 3.17. Let (Φ, φ) : (σ, β : L → N) → (σ′, β′ : L′ → N ′) be a morphism of generi-
cally stacky fans, with σ and σ′ single cones. Suppose the induced morphism X(Φ,φ) is an
isomorphism. Then Φ induces an isomorphism of monoids σ ∩ L→ σ′ ∩ L′.

Proof. By Corollary 3.16, elements of the monoid σ∩L are in bijection with toric morphisms
from A1 to Xσ,β. The isomorphism X(Φ,φ) induces a bijection of these sets. On the other
hand, the induced morphism is a morphism of monoids.

3.3 Isomorphisms From Morphisms of (Generically) Stacky Fans

As we saw in Warning 2.14, non-isomorphic stacky fans can induce isomorphic toric stacks.
In this section, we prove some useful results for identifying morphisms of stacky fans which
induce isomorphisms of toric stacks.

Lemma 3.18. For i = 0, 1, let (Φi, φi) be a morphism of generically stacky fans. Then
(Φ0 × Φ1, φ0 × φ1) induces an isomorphism of generically stacky toric stacks if and only if
each (Φi, φi) does.

Proof. This is an immediate corollary of Proposition 3.3.

Lemma 3.19. Let Σ be a fan on a lattice L and let β : L → N be a close morphism to a
finitely generated abelian group. Let L0 be a lattice, and β0 : L0 → N any homomorphism.
Let Σ × 0 be the fan Σ regarded as a fan on L ⊕ L0, supported entirely on L. Then the
morphism of generically stacky fans (Σ, β : L→ N)→ (Σ× 0, β⊕ β0 : L⊕L0 → N) induces
an isomorphism XΣ,β → XΣ×0,β⊕β′.

Proof. Since Σ× 0 is the product of Σ on L and the trivial fan on L0, we have that XΣ×0 =
XΣ × TL0 .

The first diagram has exact rows.

0 // L

β

��

// L⊕ L0

β⊕β0

��

// L0

��

// 0

0 // N N // 0 // 0

0 // Gβ
//

��

Gβ⊕β′

��

// GL0→0
//

o
��

0

0 // TL // TL ⊕ TL0
// TL0

// 0

Since β is close, Lemma A.2 implies that the second diagram has exact rows. We see that
the induced morphism is then

XΣ,β = [XΣ/Gβ]
∼−→
[
[XΣ×0/TL0 ]/Gβ

]
=
[
[XΣ×0/GL0→0]/Gβ

]
= [XΣ×0/Gβ⊕β0 ] = XΣ×0,β⊕β0 .
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Remark 3.20. The condition that β is close is necessary in the above argument. As a simple
counterexample to the lemma when β is not close, consider the morphism of generically
stacky fans (0, id) : (Σ, 0 → Z) → (Σ, id : Z → Z), where Σ is the trivial fan. This induces
the morphism BGm → Gm.

Lemma 3.21. Let σ be a cone on L. Suppose (Φ, φ) : (σ, β : L→ N)→ (Φ(σ), β′ : L′ → N ′)
is a morphism of generically stacky fans so that φ is an isomorphism, Φ is close, and so that
Φ induces an isomorphism of monoids (σ ∩ L)→ (Φ(σ) ∩ L′). Then the induced morphism
Xσ,β → XΦ(σ),β′ is an isomorphism.

Proof. Let Lσ ⊆ L be the sublattice generated by σ ∩L, and let L1 be a direct complement.
Let Xσ denote the toric variety corresponding to the cone σ, regarded as a fan on Lσ. The
fan σ (on L) is the product σ × 0 on Lσ × L1, so Xσ,β = [(Xσ × TL1)/Gβ].

By assumption, the sublattice of L′ generated by Φ(σ) ∩ L′ is isomorphic to Lσ, and the
isomorphism identifies σ with Φ(σ). Let L′1 be a direct complement to Lσ in L′. As above,
we have that XΦ(σ),β′ = [(Xσ × TL′1)/Gβ′ ].

Note that TL = TLσ × TL1 and TL′ = TLσ × TL′1 . Since Φ is close, Lemma A.1 tells us
that the following diagram has exact rows.

0 // GΦ
// Gβ

//

��

Gβ′
//

��

0

0 // GΦ
×

// TL1×
// TL′1×

// 0

0 // 0 // TLσ TLσ // 0

So we see that the toric morphism induced by (Φ, φ) is Xσ,β = [(Xσ × TL1)/Gβ] =
[
[(Xσ ×

TL1)/GΦ]/Gβ′
]

= [(Xσ × TL′1)/Gβ′ ] = XΦ(σ),β′ .

Lemmas 3.19 and 3.21 can be combined and extended.

Proposition 3.22. Let (Φ, φ) : (σ, β : L → N) → (σ′, β′ : L′ → N ′) be a morphism of
generically stacky fans, with σ and σ′ single cones. Suppose

1. φ is an isomorphism,

2. Φ induces an isomorphism of the monoids (σ ∩ L) and (σ′ ∩ L′), and

3. φ
(
satNβ(L)

)
= satN ′β

′(L′).

Then the induced morphism Xσ,β → Xσ′,β′ is an isomorphism.

Proof. First we reduce to the case when β is close. Let N0 be a direct complement to
satNβ(L). Then we see that (Σ, β : L → N) is the product of

(
Σ, β1 : L → satNβ(L)

)
and

(∗, β0 : 0→ N0), where ∗ is the trivial fan (which contains only the zero cone). Condition 3
implies that φ(N0) is a direct complement to satN ′β

′(L′), so the same argument shows that
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(Σ′, β′ : L′ → N ′) is the product of
(
Σ′, β′1 : L′ → satN ′β

′(L′)
)

and
(
∗, β′0 : 0 → φ(N0)

)
. We

see that (Φ, φ) is a product of
(
Φ: L → L′, φ1 : satN(β(L) → satN ′(β

′(L′))
)

and (0, φ|N0).
The later is an isomorphism by conditions 1 and 3, so by Lemma 3.18, we have reduced to
the case where N = satNβ(L).

Let Lσ be the sublattice of L generated by σ ∩ L. Let N1 be the free part of β(L), and
choose a splitting s : N1 → L. Let L1 = Lσ + s(N1) in L.

Applying Lemmas 3.21 and 3.19 in succession, we see that the morphism induced by the
composition (σ, β|L1)→ (σ, β|satLL1)→ (σ, β) is an isomorphism.

Note that Φ|L1 has no kernel, so we may identify Φ(L1) with L1. Then the same argument
shows that (σ, β|L1)→ (σ′, β′) induces an isomorphism.

We then have a factorization (σ, β|L1) → (σ, β)
(Φ,φ)−−−→ (σ′, β′). Since the first morphism

induces an isomorphism and the composite induces an isomorphism, it follows that (Φ, φ)
induces an isomorphism.

Definition 3.23. Suppose Φ: Σ→ Σ′ is a morphism of fans and σ′ ∈ Σ′. The pre-image of
σ′, Φ−1(σ′), is the subfan of Σ consisting of cones whose image lie in σ′.

Remark 3.24. Suppose f : XΣ → XΣ′ is the morphism of toric varieties corresponding to
the map of fans Σ → Σ′. The cone σ′ ∈ Σ′ corresponds to an affine open subscheme
Uσ′ = Spec(k[σ′∨ ∩ N ′]) ⊆ XΣ′ , the complement of the divisors corresponding to rays not
on σ′. The key property of Φ−1(σ′) is that XΣ ×XΣ′

Uσ′ is naturally the open subvariety
XΦ−1(σ′) ⊆ XΣ.

Proposition 3.25. Let (Φ, φ) : (Σ, β : L → N) → (Σ′, β′ : L′ → N ′) be a morphism of
generically stacky fans. Suppose

1. β is close,

2. φ is an isomorphism,

3. for every cone σ′ ∈ Σ′, Φ−1(σ′) is a single cone, and

4. for every cone σ′ ∈ Σ′, Φ induces a isomorphism of monoids Φ−1(σ′) ∩ L→ σ′ ∩ L′.

Then the induced morphism XΣ,β → XΣ′,β′ is an isomorphism.

Proof. We may check whether the map is an isomorphism locally on the base, so we may
assume Σ′ is a single cone σ′. By Proposition 3.22, we get the result.

Remark 3.26. Suppose XΣ is a smooth toric variety and Φ: (Σ̃,Zn)→ (Σ, L) is its Cox con-
struction [CLS11, §5.1]. Then the induced morphism XeΣ,Φ → XΣ,idL = XΣ is an isomorphism.
In particular, any smooth toric variety can be expressed as a quotient of a Gn

m-invariant open
subvariety of An by a subgroup of Gn

m. Toric stacks of this form are called fantastacks (see
§4 and Example 4.7).
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4 Fantastacks: Easy-to-Draw Examples

In this section, we introduce a broad class of smooth toric stacks which are easy to handle
because N is a lattice and the fan on L is induced by a fan on N .

Definition 4.1. Let Σ be a fan on a lattice N , and β : Zn → N a close homomorphism
so that every ray of Σ contains some β(ei) and every β(ei) lies in the support of Σ. For a

cone σ ∈ Σ, let σ̂ = cone({ei|β(ei) ∈ σ}). We define the fan Σ̂ on Zn as the fan generated
by all the σ̂. We define FΣ,β = XbΣ,β. Any toric stack isomorphic to some FΣ,β is called a
fantastack.

Remark 4.2. The cones of Σ̂ are indexed by sets {ei1 , . . . , eik} such that {β(ei1), . . . , β(eik)}
is contained in a single cone of Σ. It is therefore easy to identify which open subvariety of
An is represented by Σ̂. Explicitly, define the ideal

JΣ =
( ∏
β(ei)6∈σ

xi

∣∣∣ σ ∈ Σ
)
.

(Note, as in the Cox construction of a toric variety, that JΣ is generated by the monomials∏
β(ei)6∈σ xi, where σ varies over maximal cones of Σ.) Then XbΣ = An r V (JΣ).

Remark 4.3. Since β is a homomorphism of lattices, C(β)∗ can be computed by simply
dualizing β. Since β is assumed to be close, G0

β = 0, so Gβ = D(cok β∗).
If f : Zn → cok β∗ is the cokernel of β∗, with gi = f(ei), then we have that FΣ,β =[

(An r V (JΣ))/( g1 ··· gn )D(cok β∗)
]

using Notation 2.11.

Remark 4.4. Fantastacks are precisely the toric Artin stacks in [Sat09] which have trivial
generic stabilizers.

Remark 4.5. The fantastack FΣ,β has the toric variety XΣ as its good moduli space, as we
will show in Corollary 6.11 (this is also proved in [Sat09, Theorem 5.5]). In fact, a smooth
toric stack X is a fantastack if and only if it has a toric variety X as a good moduli space
and the morphism X → X restricts to an isomorphism of tori.

Example 4.6. Let N = 0 and Σ the trivial fan on N . Let β : Zn → N be the zero map. Then
Σ̂ is the fan of An, and Gβ = Gn

m, so FΣ,β = [An/Gn
m]. �

Example 4.7. By Remark 3.26, any smooth toric variety is a fantastack. If XΣ is a smooth
toric variety, then we construct β : Zn → Σ by sending the generators of Zn to the first
lattice points along the rays of Σ. Then XΣ

∼= FΣ,β.
For a general (non-smooth) fan Σ, one can still construct β as above, but the resulting

fantastack FΣ,β is not isomorphic to XΣ. However, it is the canonical stack over XΣ, a sort
of minimal stacky resolution of singularities. See Section 5. �

Notation 4.8. When describing fantastacks, we draw the fan Σ and label β(ei) with the
number i.
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1

2 3

4

Example 4.9 Example 4.10 Example 4.11 Example 4.12

Example 4.9. Since a single cone contains all the β(ei), we have that XbΣ = A2 (see Remark
4.2). We have β = (1 1) : Z2 → Z, so we compute the cokernel

Z
β∗=( 1

1 )
−−−−−→ Z2 ( 1 -1 )−−−→ Z.

We see that FΣ,β = [A2/( 1 -1 )Gm] (see Remark 4.3). �

Example 4.10. Since a single cone contains all the β(ei), we have that XbΣ = A2 (c.f. Remark
4.2). We compute the cokernel of β∗

Z2
β∗=( 1 0

1 2 )
−−−−−−→ Z2 ( 1 1 )−−−→ Z/2.

Note that β∗ can be read off of the picture directly: the rows of β∗ are simply the coordinates
of the β(ei).

Therefore, FΣ,β = [A2/( 1 1 )µ2] (c.f. Remark 4.3). This is a “stacky resolution” of the A1

singularity

A2/( 1 1 )µ2 = Spec(k[x1, x2]µ2)

= Spec k[x2
1, x1x2, x

2
2] = Spec

(
k[x, y, z]/(xy − z2)

)
. �

Example 4.11. As in the previous examples, XbΣ is all of A3. We compute the cokernel of β∗

Z2
β∗=

„
1 0
1 1
0 1

«
−−−−−−→ Z3 ( 1 −1 1 )−−−−−→ Z.

So FΣ,β = [A3/( 1 -1 1 )Gm].
Note that refining the fan yields an open substack. In this example, consider what

happens when we refine the fan Σ to the fan Σ′ below.

1

23
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Here Gβ is unchanged; indeed, Gβ depends only on β, not on Σ. However, we remove

the cone cone(e1, e2) from Σ̂′. The resulting stack is therefore the open substack FΣ′,β =
[(A3 r V (x1, x2))/( 1 −1 1 )Gm], which is the blowup of A2 at the origin (c.f. Example 4.7).

The birational transformation Bl0(A2) → A2 can therefore be realized as the morphism
of good moduli spaces induced by the open immersion FΣ′,β → FΣ,β. �

Example 4.12. We have that XbΣ = A4. We compute the cokernel

Z3

β∗=

 0 0 1
1 0 1
1 1 1
0 1 1

!
−−−−−−−→ Z4 ( 1 -1 1 -1 )−−−−−−→ Z,

so FΣ,β = [A4/( 1 -1 1 -1 )Gm]. We will see in Section 5 that FΣ,β is the canonical stack over
the singular toric variety

XΣ = Spec k[x1, x2, x3, x4]Gm = Spec k[x1x2, x3x4, x1x4, x2x3]

= Spec
(
k[x, y, z, w]/(xy − zw)

)
.

It can be regarded as a “stacky resolution” of the singularity.
Note that the two standard toric small resolutions of this singularity are both open

substacks of this stacky resolution.

1

2 3

4 1

2 3

4

The fan on the left is [(A4 r V (x2, x4))/( 1 -1 1 -1 )Gm] and the fan on the right is [(A4 r
V (x1, x3))/( 1 -1 1 -1 )Gm]. These are both toric varieties (c.f. Example 4.7). �

4.1 Some Non-fantastack Examples

Example 4.13. Suppose {n1, . . . , nk} is a set of positive integers. Let N be Zr⊕
⊕k

i=1(Z/niZ),
L be 0, Σ be the trivial fan on L, and β : L→ N the zero map.

To compute Gβ, we take a free resolution of C(β), namely

Zk diag(n1,...,nk)⊕0−−−−−−−−−→ Zk ⊕ Zr.
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Then we see that

H0(C(β)∗) = D(G0
β) = Zr

H1(C(β)∗) = D(G1
β) =

k⊕
i=1

(Z/niZ)

Therefore, Gβ = Gr
m ×

∏
µni .

Since XΣ = Spec k, we have that XΣ,β = BGβ. �

Example 4.14 (C.f. [BCS05, Examples 2.1 and 3.5]). Consider the stacky fan in which L =

Z2, Σ = is the subfan of A2 corresponding to A2 r {0}, N = Z ⊕ (Z/2), and β =

( 2 -3
1 0 ) : Z2 → Z⊕ (Z/2). Then C(β)∗ is represented by the map

(
2 1
-3 0
0 2

)
: Z2 → Z3. This map

is injective, and its cokernel is (6 4 -3) : Z3 → Z. Therefore, Gβ = Gm, and the induced map
to TL = G2

m is given by t 7→ (t6, t4). So XΣ,β = [(A2 r {0})/( 6 4 )Gm]. This is the weighted
projective stack P(6, 4), or the moduli stack of elliptic curves M1,1. �

We repeat the previous example to illustrate that it can be realized as a closed substack
of a fantastack. This approach is explained in the discussion following Definition 2.18.

Example 4.15. Consider the stacky fan in which L = Z2, Σ = is the subfan of A2 corre-
sponding to A2 r {0}, N = Z⊕ (Z/2), and β = ( 2 -3

1 0 ) : Z2 → Z⊕ (Z/2).
We replace β by the quasi-isomorphic map β′ = ( 2 −3 0

1 0 2 ) : Z3 → Z2, and the fan Σ by
the fan Σ′ obtained by adding the cone τ .

L = Z2

β

��

Σ =

L⊕ Z
β′=( 2 −3 0

1 0 2 )
��

τ

= Σ′

N Z⊕ Z

1

2

3

We see that XΣ′,β′ is the fantastack corresponding to the fan on the right. Explicitly, it is the
fantastack [(A3rV (x1, x2))/( 6 4 -3 )Gm]. The closed substack XΣ,β is the divisor corresponding
to the “extra ray,” which is numbered 3 in the picture. That is, it is the divisor V (x3) =
[(A2 r V (x1, x2))/( 6 4 )Gm]. �

5 Canonical Stacks

The Cox construction demonstrates that any toric stack is the good moduli space of a smooth
stack. Given a generically stacky toric stack, there is a canonical smooth generically stacky



5. CANONICAL STACKS 21

toric stack of which it is a good moduli space. The purpose of this section is to construct
and characterize this canonical smooth stack.

Given a fan Σ on a lattice L, the Cox construction [CLS11, §5.1] of the toric variety XΣ

produces an open subscheme U of An and a subgroup H ⊆ Gn
m so that XΣ = U/H. That is,

so that [U/H]→ XΣ is a good moduli space in the sense of [Alp08]. We recall and generalize
this construction here.

Let (Σ, β) be a generically stacky fan. Let Σ(1) be the set of rays of Σ. Let M ⊆ L be the
saturated sublattice spanned by Σ, and let M ′ ⊆ L be a direct complement to M . For each
ray ρ ∈ Σ(1), let uρ be the first element of M along ρ, and let eρ be the generator in ZΣ(1)

corresponding to ρ. We then have a morphism Φ: ZΣ(1)×M ′ → L given by (eρ,m) 7→ uρ+m.

We define a fan Σ̃ on ZΣ(1)×M ′. For each σ ∈ Σ, we define σ̃ ∈ Σ̃ as the cone generated by
{eρ|ρ ∈ σ}. The morphism of generically stacky fans

ZΣ(1) ×M ′ Φ //

β̃
��

Σ̃

L

β

��

Σ//

N N

induces a toric morphism XeΣ,β̃ → XΣ,β.

Remark 5.1. The usual Cox construction expresses XΣ as a quotient of XeΣ by GΦ. Applying
Lemma A.1 (Φ is close by construction), we see that the morphism constructed above is
obtained by quotienting the morphism [XeΣ/GΦ]→ XΣ by the action of Gβ. This shows that
the construction above commutes with quotienting XΣ,β by its torus (i.e. replacing Gβ by
GL→0).

Remark 5.2. Moreover, since [XeΣ/GΦ]→ XΣ is a good moduli space morphism, so is XeΣ,β̃ →
XΣ,β by [Alp08, Proposition 4.6].

Definition 5.3. We call XeΣ,β̃ the canonical stack over XΣ,β, and we say that the morphism
XeΣ,β̃ → XΣ,β is a canonical stack morphism.

The remainder of this subsection is dedicated to justifying this terminology by showing
that the canonical stack has a universal property (Proposition 5.7).

Remark 5.4. The universal property itself is basically useless. There is a more practical
universal property using the language of log geometry, but a useless universal property is
good enough for our needs. The only purpose of demonstrating the universal property is to
show that the canonical stack is uniquely determined by the stack XΣ,β together with the
torus action (rather than by the stacky fan (Σ, β)). In particular, if a stack X (with a dense
open torus that acts on it) has an open cover by toric stacks, the canonical stacks over the
open substacks are canonically isomorphic on overlaps, so they glue to a canonical stack over
X . This will be important in the proof of Theorem 12.1.



5. CANONICAL STACKS 22

Lemma 5.5. Let XΣ,β be a cohomologically affine toric stack with n torus-invariant irre-
ducible divisors. Suppose f : XΣ′,β′ → XΣ,β is a toric surjection from a smooth cohomologi-
cally affine toric stack with n torus-invariant divisors, which restricts to an isomorphism on
tori. Then XΣ′,β′ → XΣ,β factors uniquely through the canonical stack over XΣ,β.

Proof. Applying Theorem 3.5, we may assume f is induced by a morphism of stacky fans
(Φ, φ) : (Σ′, β′)→ (Σ, β). Since f restricts to an isomorphism on tori, φ must be an isomor-
phism.

Since we are only considering torus-equivariant morphisms, we may verify the property
after quotienting by the action of the torus, so we may assume XΣ,β is the quotient of an
affine toric variety by its torus, and XΣ′,β′ is the quotient of a smooth affine toric variety with
n-divisors by its torus. This identifies XΣ′,β′ as [An/Gn

m], so we may assume Σ′ is the fan of
An. We identify the first lattice points along the rays of Σ′ with the generators ei ∈ Zn.

Since f is surjective, the induced morphism Σ′ → Σ is surjective by Lemma 3.8. Every ray
of Σ is then the image of a unique ray of Σ′, since Σ′ has only n rays. Suppose Φ(ei) = kiρi.
Then we see that Φ factors uniquely through the canonical stack via the morphism of fans
Σ′ → Σ̃ given by sending ei to kieρi .

Remark 5.6 (“Canonical stacks are stable under base change by open immersions”). The pre-
image of a torus-invariant divisor of XΣ,β is a divisor in its canonical stack. So by the above
lemma, restricting a canonical stack morphism to the open complement of a torus-invariant
divisor yields a canonical stack morphism.

As a corollary, we get the following Proposition.

Proposition 5.7 (Universal property of the canonical stack). Suppose XΣ′,β′ → XΣ,β is a
toric morphism from a smooth toric stack, which restricts to an isomorphism of tori, and
which restricts to a canonical stack morphism over every torus-invariant cohomologically
affine open substack of XΣ,β. Then XΣ′,β′ is canonically isomorphic to the canonical stack
over XΣ,β.

Remark 5.8. We will see in Lemma 6.5 that the morphism XeΣ,β̃ → XΣ,β is a good moduli
space morphism.

Remark 5.9. Note that if π : XeΣ,β̃ → XΣ,β is the canonical stack, then the restriction of π to
any torus-invariant open substack of XΣ,β is also a canonical stack morphism.

By Remark 3.26, we see that the canonical stack morphism over a smooth toric stack is
an isomorphism. In particular, this shows that for any generically stacky toric stack XΣ,β,
the canonical stack is isomorphic to XΣ,β over its smooth locus. Thus, the canonical stack
can be regarded as a (canonical!) “stacky resolution of singularities.” (c.f. Examples 4.10
and 4.12)

By Remark 5.9, the definition of a canonical stack morphism can be extended to stacks
which are only locally known to be toric stacks.
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Definition 5.10. Suppose X is a stack with an open cover by generically stacky toric stacks
with a common torus. A morphism from a smooth stack Y → X is a canonical stack
morphism if it restricts to canonical stack morphisms on the open toric substacks of X .

6 Toric Good Moduli Space Morphisms

6.1 Good Moduli Space Morphisms

In [Alp08], Alper introduces the notion of a good moduli space morphism, which generalizes
the notion of a good quotient in geometric invariant theory and is moreover a common
generalization of the notion of a tame Artin stack [AOV08] and of a coarse moduli space
[KM97].

Definition 6.1. A quasi-compact and quasi-separated morphism of algebraic stacks f : X →
Y is a good moduli space morphism if

• (f is Stein) the morphism OY → f∗OX is an isomorphism, and

• (f is cohomologically affine) the pushforward functor f∗ : QCoh(OX )→ QCoh(OY) is
exact.

Remark 6.2. An algebraic stack X is said to be cohomologically affine if the structure mor-
phism X → Spec k is cohomologically affine. This is in agreement with Definition 3.6. If a
toric variety Xσ is an affine toric variety and Gβ is an affine group, then [Xσ/Gβ]→ Spec k
is cohomologically affine by [Alp08, Proposition 3.13].

Conversely, suppose XΣ,β = [XΣ/Gβ] → Spec k is cohomologically affine. Since XΣ is
affine over XΣ,β (because it is a Gβ-torsor), we have that XΣ → Spec k is cohomologically
affine, so XΣ is affine by Serre’s criterion [EGA, Corollary 5.2.2]. It follows that Σ is a single
cone.

Our main goal in this section is to identify many examples of toric good moduli space
morphisms.

Lemma 6.3. For i = 0, 1, let (Φi, φi) be a morphism of generically stacky fans. Then
(Φ0 × Φ1, φ0 × φ1) induces a good moduli space morphism of generically stacky toric stacks
if and only if each (Φi, φi) does.

Proof. Good moduli spaces are stable under composition (this follows quickly from the def-
inition) and base change [Alp08, Proposition 4.6(i)], so the result follows from Proposition
3.3.



6. TORIC GOOD MODULI SPACE MORPHISMS 24

6.2 Local Results

In this subsection, we prove several criteria for a toric morphism to be a good moduli space
morphism. See §6.4 for examples.

Throughout this subsection, we use the following setup. We have a morphism of generi-
cally stacky fans (Φ, φ) : (σ, β : L → N) → (σ′, β′ : L′ → N), where σ is a single cone on L,
and σ′ = Φ(σ).

L
Φ //

β

��

σ

L′

β′

��

σ′// //

N
φ

// N ′

Lemma 6.4 (“Quotient by the kernel of a toric map is a GMS”). Suppose Φ is close. Then
the induced morphism Xσ,Φ → Xσ′ is a good moduli space morphism.

Proof. Since Xσ = Spec k[σ∨∩L∗] and Xσ′ = Spec k[σ′∨∩L′∗] are affine and GΦ is reductive,
it suffices to show that the induced ring homomorphism k[σ′∨ ∩ L′∗] → k[σ∨ ∩ L∗] is the
inclusion of k[σ∨ ∩ L∗]GΦ . Since Φ is close, we have that Φ∗ : L′∗ → L∗ is an inclusion,
so the ring homomorphism is injective. We begin by showing that its image is the ring of
GΦ-invariants. We have the short exact sequence

0→ L′∗
Φ∗−→ L∗ → D(GΦ)→ 0.

The subring of GΦ-invariants in k[L∗] is precisely the subring generated by monomials in L∗

whose image in D(GΦ) is zero. That is, k[L∗]GΦ = k[L′∗].
Since Φ(σ) = σ′, an element λ ∈ L′∗ is non-negative on σ if and only if Φ∗(λ) is non-

negative on σ′. That is, σ′∨ ∩ L′∗ = (σ∨ ∩ L∗) ∩ L′∗ (we are identifying L′∗ with its image
Φ∗(L′∗)). This shows that k[σ′∨ ∩ L′∗] is k[σ∨ ∩ L∗]GΦ .

Lemma 6.5 (“Isomorphism on tori implies GMS”). Suppose φ is an isomorphism and β is
close. Then Xσ,β → Xσ′,β′ is a good moduli space.

Proof. First we reduce to the case where Φ is close. Let L′′ be the saturation of Φ(L) in L′,
let β′′ be the restriction of β′ to L′′, and let σ′′ be the cone σ′, regarded as a fan on L′′. By
assumption (i.e. the case where Φ is close), the induced morphism Xσ,β → Xσ′′,β′′ is a good
moduli space morphism. Note that since β is close, so is β′′, so by Lemma 3.19, the induced
morphism Xσ′′,β′′ → Xσ′,β′ is an isomorphism. Therefore the composition Xσ,β → Xσ′,β′ is a
good moduli space morphism.

Now we consider the case when Φ is close. By Lemma A.1, Gβ is an extension of Gβ′

by GΦ. The induced map is then [Xσ/Gβ] =
[
[Xσ/GΦ]/Gβ′

]
→ [Xσ′/Gβ′ ]. By Lemma 6.4,

[Xσ/GΦ]→ Xσ′ is a good moduli space. Since the property of being a good moduli space can
be checked locally in the smooth topology (even in the fpqc topology, [Alp08, Proposition
4.6]), [Xσ/Gβ]→ [Xσ′/Gβ′ ] is a good moduli space.
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Definition 6.6. We say that a cone τ of a generically stacky fan (Σ, β : L→ N) is unstable
if every linear functional N → Z which is non-negative on the image of τ vanishes on the
image of τ .

Equivalently, τ is unstable if the relative interior of the image of τ in the lattice N/Ntor

contains 0.

Lemma 6.7 (“Quotient by an unstable cone is a GMS”). Suppose β is surjective. Suppose
τ is an unstable face of σ, and that ker β is generated by τ ∩ ker β. Suppose Φ is surjective
with ker Φ generated by τ ∩ L. Suppose N ′ = N/β(ker Φ). Then Xσ,β → Xσ′,β′ is a good
moduli space.

Proof. We have the following diagram, in which the rows are exact and the first two columns
are exact. By the snake lemma, β′ is an isomorphism, so Gβ′ is trivial.

ker β� _

��

ker β� _

��

0 // ker Φ //

����

L
Φ //

β
����

L′

β′

��

// 0

0 // β(ker Φ) // N
φ

// N ′ // 0

So we aim to show that [Xσ/Gβ]→ Xσ′ is a good moduli space. As in the proof of Lemma
6.4, it suffices to show that we get an induced isomorphism k[σ∨∩L∗]Gβ ∼= k[σ′∨∩L′∗]. Since
Φ and β are surjective, L′∗ → L∗ and N∗ → L∗ are injective, so we have the exact sequence

0→ N∗
β∗−→ L∗ → D(G1

β).

Since G0
β acts trivially, the Gβ-invariants of k[L∗] are precisely k[N∗], so it suffices to show

that N∗ ∩ σ∨ = L′∗ ∩ σ′∨. (Here we are identifying N∗ and L′∗ with their images in L∗.)
First we show that L′∗ ∩ σ′∨ ⊆ N∗ ∩ σ. Any linear functional on L′ induces a linear

functional on L which vanishes on ker Φ, and so on ker β, so it must be induced by a linear
functional on L/ ker β = N . This shows that L′∗ ⊆ N∗. Since σ′ is the image of σ, any
linear functional which is non-negative on σ′ must induce a linear functional on L which is
non-negative on σ.

Now we show N∗∩σ∨ ⊆ L′∗∩σ′∨. Since τ is assumed to be unstable, any linear functional
φ on N which is non-negative on σ must vanish on τ , and therefore on ker Φ since ker Φ is
generated by τ ∩ L. Any linear functional that vanishes on ker Φ is induced by a linear
functional on L/ ker Φ = L′. Since σ′ is the image of σ and φ is non-negative on σ, we have
that the corresponding element of L′∗ is non-negative on σ′∨.

Lemma 6.8 (“Removing trivial generic stackiness is a GMS”). Suppose N = N ′ ⊕N0 and
that β factors through N ′. Let L′ = L. Then [Xσ/Gβ]→ [Xσ′/Gβ′ ] is a good moduli space.
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Proof. We have that β = β′ ⊕ 0: L ⊕ 0 → N ′ ⊕ N0, so Gβ = Gβ′ ⊕ G0, where G0 acts
trivially on Xσ. The map [Xσ/G0] → Xσ is then a good moduli space, so [Xσ/Gβ] =[
[Xσ/G0]/Gβ′

]
→ [Xσ/Gβ′ ] is a good moduli space.

Lemma 6.9 (“Removing finite generic stackiness is a GMS”). Suppose kerφ = N0 is finite
and φ is surjective. Let L′ = L. Then [Xσ/Gβ]→ [Xσ′/Gβ′ ] is a good moduli space.

Proof. Consider the left-hand diagram with exact rows

0 // 0 //

β0

��

L

β

��

L //

β′

��

0

0 // N0
// N

φ
// N ′ // 0

0 // Gβ0
//

��

Gβ
//

��

Gβ′
//

��

0

0 // 0 // TL TL // 0

Since N0 is finite, β0 is close. By Lemma A.2, we get the induced right-hand diagram with
exact rows. In particular, the action of Gβ0 on Xσ is trivial, so the map [Xσ/Gβ0 ] → Xσ

is a good moduli space. Thus, the map [Xσ/Gβ] =
[
[Xσ/Gβ0 ]/Gβ′

]
→ [Xσ/Gβ′ ] is a good

moduli space map.

6.3 Globalizing Local Results

The following proposition makes it possible to check if a morphism of non-cohomologically
affine toric stacks is a good moduli space morphism.

Proposition 6.10. Let (Φ, φ) : (Σ, β : L→ N)→ (Σ′, β′ : L′ → N ′) be a morphism of gener-
ically stacky fans. The induced morphism XΣ,β → XΣ′,β′ is a good moduli space morphism if
and only if

1. For every σ′ ∈ Σ′, the pre-image Φ−1(σ′) is a single cone σ ∈ Σ with Φ(σ) = σ′. In
particular, the pre-image of the zero cone is some cone τ ∈ Σ, and the pre-image of
any other cone has τ as a face.

2. The restrictions Xσ,β → Xσ′,β′ are good moduli space morphisms.

Proof. For σ′ ∈ Σ′, let Xσ′ be the open subscheme of XΣ′ corresponding to σ′. The property
of being a good moduli space can be checked Zarsiki locally on the base, so it is equivalent
to checking that [XΦ−1(σ′)/Gβ] → [Xσ′/Gβ′ ] is a good moduli space morphism for each
σ′ ∈ Σ′. Therefore, the two given conditions imply that XΣ,β → XΣ′,β′ is a good moduli
space morphism.

Conversely, if [XΦ−1(σ′)/Gβ]→ [Xσ′/Gβ′ ] is a good moduli space morphism, then we have
that [XΦ−1(σ′)/Gβ] is cohomologically affine since it is cohomologically affine over a cohomo-
logically affine stack. So Φ−1(σ′) is a single cone σ ∈ Σ. Good moduli space morphisms are
surjective [Alp08, Theorem 4.14(i)], so by Lemma 3.8, Φ(σ) = σ′.
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The above results allow us to determine when a generically stacky toric stack has a toric
variety as a good moduli space. The following corollary generalizes [Sat09, Theorem 5.5].

Corollary 6.11. Let (Σ, β : L → N) be a generically stacky fan. Let N1 = satNβ(L),
L′ = N1/(N1)tor, and Φ: L→ L′ the natural map. Suppose Φ−1(Φ(σ)) is a single cone of Σ
for every σ ∈ Σ. Let Σ′ be the fan on L′ generated by the images of the maximal cones of Σ.
Then XΣ,β → XΣ′ is a good moduli space.

Proof. By Proposition 6.10, we may assume Σ is a single cone. Let N0 be a complement to
N1, the span of Σ, in N . By Lemma 6.8, XΣ,β → XΣ,L→N1 is a good moduli space, and by
Lemma 6.9, XΣ,L→N1 → XΣ,L→N1/(N1)tor is a good moduli space. Since L → N1/(N1)tor is
surjective, Lemma 6.4 tells us that XΣ,L→N1/(N1)tor → XΣ′ is a good moduli space. Therefore,
the composite map XΣ,β → XΣ′ is a good moduli space.

Remark 6.12. We recover [Sat09, Theorem 5.5] as the situation where β is close and N is a
lattice. In that case, L′ = N1 = N , so the morphism of stacky fans is of the following form.

L

β
��

β
//

Σ

N

Σ′//

N N

6.4 Examples

Example 6.13. Lemma 6.4 (with Proposition 6.10) shows that the Cox construction of a toric
variety is a good moduli space, and more generally that canonical stack morphisms are good
moduli space morphisms. For example, consider the morphism of toric varieties given by the
following map of fans:

0@1 1
0 2

1A
−−−−−−−−−−−−→

Lemma 6.4 tells us that the toric variety on the right, the A1 singularity, is the good moduli
space of [A2/GΦ] = [A2/µ2]. �
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Example 6.14. Lemma 6.7 is illustrated by the following example.

Z2

( 1 -1 )

��

// 0

��

Z // 0

This morphism of stacky fans represents the good moduli space morphism [A2/( 1 1 )Gm] →
Spec k. Note that the unstable cone (the 2-dimensional cone) corresponds to the origin in
A2. �

Example 6.15. This example illustrates Lemma 6.9.

Z
2

��

2 // Z
id

��

Z id // Z

This morphism of stacky fans represents the good moduli space morphism [A1/µ2] →
A1/µ2

∼= A1. �

It is often useful to think about a toric stack as “sandwiched” between its canonical stack
and its good moduli space (if it has one). In this way, we often regard a toric stack as a
“partial good moduli space” of its canonical stack, or as a “stacky resolution” of its good
moduli space.

Example 6.16. Consider the stacky fan (Σ, β) shown in the center below. On the left we
have the stacky fan of the corresponding canonical stack (see §5). On the right we have a
toric variety. By Lemma 6.5, the two morphism of stacky fans induce good moduli space
morphisms of toric stacks.

Σ̃ Σ Σ′

Z2
Φ=( 1 1

0 2 )
//

β̃=( 1 1
0 4 )

��

Z2

β=( 1 0
0 2 )

��

( 1 0
0 2 )

// Z2

id

��

Z2 id // Z2 id // Z2
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We can easily see that XΣ is the A1 singularity A2/( 1 1 )µ2, and that Gβ is µ2, but it is easiest
to describe the action of µ2 on XΣ in terms of the canonical stack.

The canonical stack is XeΣ,β̃ = [A2/( 1 -1 )µ4]. We get the induced short exact sequence
(c.f. Lemma A.1)

0 // GΦ
// Gβ̃

// Gβ
// 0

0 // µ2
2 // µ4 // µ2 // 0

We can therefore express XΣ,β as
[
(A2/µ2)

/
(µ4/µ2)

]
. We can view this either as a “partial

good moduli space” of XeΣ,β̃ = [A2/( 1 -1 )µ4], or as a “partial stacky resolution” of the singular

toric variety XΣ′ = A2/( 1 -1 )µ4. �

Example 6.17. Here is another interesting example of a non-smooth toric stack which is not
a scheme. Consider the stacky fan (Σ, β) shown in the center below. On the left we have the
stacky fan of the corresponding canonical stack (see §5). On the right we have a toric variety.
By Lemma 6.5, the two morphism of stacky fans induce good moduli space morphisms of
toric stacks.

Σ̃ Σ Σ′

Z2
Φ=( 1 1

0 2 )
//

β̃=( 2 2
0 4 )

��

Z2

β=( 2 0
0 1 )

��

( 2 0
0 1 )

// Z2

id

��

Z2 id // Z2 id // Z2

Like the previous example, XΣ,β is a quotient of the A1 singularity XΣ = A2/( 1 1 )µ2 by an
action of µ2. The canonical stack over it is XeΣ,β̃ =

[
A2/( 1 0

0 1 )(µ2×µ2)
]
, and it is the “partial

good moduli space”
[
(A2/( 1 1 )µ2)/((µ2 × µ2)/( 1 1 )µ2)

]
. The toric stack XΣ,β has A2 as its

good moduli space.
In Example 4.10, we constructed a stack which “resolves the A1 singularity by introducing

stackiness.” In the same informal language, this example introduces a singularity at a smooth
point of A2 by introducing stackiness. �

7 Moduli Interpretation of Smooth Toric Stacks

A morphism f : Y → Pn is equivalent to the data of a line bundle L = f ∗OPn(1) and a choice
of n+ 1 sections On+1

Y → L which generate L. Cox generalized this moduli interpretation to
smooth toric varieties [Cox95], and Perroni generalized it further to smooth toric Deligne-
Mumford stacks [Per08]. The main goal for this section is to generalize it further to smooth
generically stacky toric stacks.
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In fact, we will see (Remark 7.10) that smooth generically stacky toric stacks are precisely
the moduli stacks parametrizing tuples of Cartier pseudodivisors satisfying any given linear
relations and any given intersection relations.

Proposition 7.1 ([SGA3, Exposé VIII, Proposition 4.1]). Let G be a diagonalizable group
scheme, and Y a scheme. Suppose A is a quasi-coherent sheaf of algebras on Y , together
with an action of G (i.e. a grading A =

⊕
χ∈D(G)Aχ). Then Spec

Y
A is a G-torsor if and

only if

• Aχ is a line bundle for each χ ∈ D(G), and

• the homomorphism induced by multiplication Aχ⊗OY Aχ′ → Aχ+χ′ is an isomorphism.

Since any G-torsor is affine over Y , it is clear that any G-torsor is of this form.

Notation 7.2. Given a collection of line bundles L1, . . . ,Ln ∈ Pic(Y ) and a = (a1, . . . , an) ∈
Zn, let La = L⊗a1

1 ⊗ · · · ⊗ L⊗ann .

Let β : Zn → N be the close morphism of lattices so that Gβ = G ⊆ Gn
m. Then we have

the presentation N∗
β∗−→ Zn φ−→ D(G)→ 0. A quasi-coherent OY -algebra as in Proposition 7.1

is therefore equivalent to a collection of line bundles L1, . . . ,Ln ∈ Pic(Y ) with isomorphisms
cψ : OY

∼−→ Lβ∗(ψ) for ψ ∈ N∗, such that cψ ⊗ cψ′ = cψ+ψ′ : Lβ
∗(ψ)+β∗(ψ′) → OY ⊗OY ∼= OY .

Definition 7.3. Suppose Σ is a subfan of the fan of An, and β : Zn → N is a close lattice
homomorphism. A (Σ, β)-collection on a scheme Y consists of

• an n-tuple of line bundles (L1, . . . ,Ln),

• global sections si ∈ H0(Y,Li) so that for each point y ∈ Y , there is a cone σ ∈ Σ so
that si(y) 6= 0 for all ei 6∈ σ.

• trivializations cψ : OY
∼−→ Lβ∗(ψ) for each ψ ∈ N∗, satisfying the compatibility condition

cψ ⊗ cψ′ = cψ+ψ′ .

An isomorphism of (Σ, β)-collections is an n-tuple of isomorphisms of line bundles respecting
the associated sections and trivializations.

Remark 7.4. Note that since N∗ is a free subgroup of Zn, it suffices to specify cψ where ψ
varies over a basis of N∗. If specified this way, the isomorphisms do not need to satisfy any
compatibility condition. Different choices of these trivializations are related by the action of
the torus (see Remark 7.8), so we often suppress the trivializations.

Remark 7.5. A line bundle with section is an effective Cartier pseudodivisor. If the section
is non-zero, the vanishing locus of the section is an effective Cartier divisor. Therefore, a
(Σ, β)-collection can be defined as an n-tuple of effective Cartier pseudodivisors (D1, . . . , Dn)
such that

∑
aiDi is linearly equivalent to zero whenever (a1, . . . , an) ∈ N∗ and such that

Di1 ∩ . . . , Dik = ∅ whenever ei1 , . . . , eik do not all lie on a single cone of Σ. Here we are
suppressing the trivializations as in Remark 7.4.
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Remark 7.6. Given a morphism Y ′ → Y and a (Σ, β)-collection on Y , we may pull back the
line bundles, sections, and trivializations to produce a (Σ, β)-collection on Y ′. This makes
the category of (Σ, β)-collections into a fibered category over the category of schemes.

Theorem 7.7 (Moduli interpretation of smooth XΣ,β). Let Σ be a subfan of the fan for An,
and let β : Zn → N be close. Then XΣ,β represents the fibered category of (Σ, β)-collections.

Proof. A morphism f : Y → [An/Gβ] consists of a Gβ-torsor P → Y and a Gβ-equivariant
morphism P → An. By Proposition 7.1, the data of a Gβ-torsor is equivalent to a D(Gβ)-
graded quasi-coherent sheaf of algebras A such that Aχ is a line bundle for each χ ∈ D(Gβ).
A Gβ-equivariant morphism P → An is then equivalent to a homomorphism of OT -algebras⊕

a∈Nn OT → A which respects the D(Gβ)-grading (the D(Gβ)-grading on the former algebra
is induced by the Zn-grading and the homomorphism φ : Zn → D(Gβ)). This is equivalent
to homomorphisms of OT -modules si : OT → Aφ(ei). Under this correspondence, the van-
ishing locus of si is the pre-image [An−1

i /Gβ], where An−1
i is the i-th coordinate hyperplane.

In particular, (Aφ(e1), . . . ,Aφ(en), s1, . . . , sn) (along with the implicit trivializations) form a
(Σ, β)-collection if and only if f factors through the open substack XΣ,β.

It is straightforward to verify that the above correspondence induces an equivalence.

Remark 7.8. Carefully following the construction in the proof shows that the action of the
torus is as follows. Suppose N∗ ⊆ Zn is the sublattice of trivialized line bundles. Then the
trivializations cψ have natural weights of the torus T = Homgp(N∗,Gm) associated to them.
T acts on the trivializations via these weights.

Remark 7.9. This moduli interpretation is stable under base change by open immersions.
Suppose a morphism Y → XΣ,β corresponds to the (Σ, β)-collection (Li, si, cψ). Let Σ′ be
a subfan of Σ. Then the pullback Y ′ = Y ×XΣ,β

XΣ′,β is the open subscheme of Y where a
subset of sections may simultaneously vanish only if Σ′ contains the cone spanned by the
rays corresponding to those sections.

Remark 7.10. As a sort of converse to Theorem 7.7, note that any set of intersection relations
among an n-tuple of effective Cartier pseudodivisors (i.e. any specification of which subsets of
divisors should have empty intersection) determines a subfan Σ of the fan of An. Furthermore,
any1 compatible collection of trivializations determines a subgroup N∗ = {a ∈ Zn|La is
trivialized}. The dual of the inclusion of N∗ is a close homomorphism β : Zn → N . Then XΣ,β

is the moduli stack of n-tuples of effective Cartier pseudodivisors with the given intersection
relations and linear relations.

1There is one required relationship between the intersection relations and the trivializations. Namely, if
the intersection of a single Cartier divisor is required to be empty (i.e. if the corresponding section of the line
bundle is nowhere vanishing), then the line bundle must be trivialized. That is, if the intersection relations
explicitly require the section to trivialize the line bundle, then it must be trivialized.
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7.1 Examples

The simplest examples to describe are fantastacks. See Notation 4.8 and Examples 4.9–4.12
for an explanation of the notation used below.

Remark 7.11. Any smooth toric stack contains an open substack which has a toric open
immersion into a fantastack. Remark 7.9 therefore allows us to understand the moduli inter-
pretation of non-fantastack smooth toric stacks by appropriately modifying the intersection
relations.

Remark 7.12. We explicitly obtain linear relations by choosing a basis for N∗. For each basis
element ψ, we get a trivialization of Lβ

∗(ψ). That is, we get trivializations of the divisors
whose coefficients appear in the rows of β∗.

1

2

3 2
1 1

2

Example 7.13 Example 7.14 Example 7.15

We follow the less formal approach to (Σ, β)-collections explained in Remark 7.5.

Example 7.13. A morphism to the leftmost stack is a choice of three effective Cartier pseudo-
divisors D1, D2, D3 such that D1 ∩D2 ∩D3 = ∅ (because no cone contains all three dots),
and so that D1−D3 ∼ ∅ and D2−D3 ∼ ∅ (because β∗ = ( 1 0 -1

0 1 -1 ); see Remark 7.12). Here,
∅ denotes the empty divisor.

In other words, it is a choice of a line bundle and three global sections that do not all
vanish at any point. This is the usual description of morphisms to P2. �

Example 7.14. A morphism to the middle stack is a choice of two effective Cartier pseudo-
divisors D1 and D2 so that D1 +D2 ∼ ∅ (because β∗ = (1 1); see Remark 7.12). Notice two
particular morphisms from A1 to this stack; one given by setting D1 = 0 and D2 = ∅, and
another by setting D1 = ∅ and D2 = 0. Indeed, the open substack where we impose the
condition D1 ∩D2 = ∅ is the non-separated line. �

Example 7.15. A morphism to the rightmost stack is a choice of two effective Cartier pseudo-
divisors D1 and D2 so that D1 + D2 ∼ ∅ and 2D2 ∼ ∅ (because β∗ = ( 1 1

0 2 ); see Remark
7.12). Since there is a single cone that contains all the dots, there is no intersection condition
on D1 and D2. Notice that two such divisors satisfy the relation necessary to specify a map
to the stack in Example 7.14, so this stack has a morphism to the stack in that example. �
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7.2 Generically Stacky Smooth Toric Stacks

In this subsection we use the moduli interpretation to show that any smooth generically
stacky toric stack is an essentially trivial gerbe over a toric stack.

Suppose Y → XΣ,β = [XΣ/Gβ] is the morphism to a smooth toric stack corresponding to
the (Σ, β)-collection (Li, si, cψ). It factors through the closed substack corresponding to the
j-th coordinate hyperplane of An if and only if sj = 0. Theorem 7.7 (together with Remark
2.19) therefore gives us the following moduli interpretation of generically stacky smooth toric
stacks.

Corollary 7.16 (of Theorem 7.7). The generically stacky smooth toric substack Z of XΣ,β

corresponding to a coordinate subspace H of An has the following moduli interpretation.
Morphisms Y → Z correspond to (Σ, β)-collections on Y in which we require that sj = 0 if
H does not contain the j-th coordinate axis.

Definition 7.17. Suppose K is a line bundle on a stack X and b is a positive integer. The
root stack b

√
K/X is defined as the fiber product in the following diagram, where the map

X → BGm is the one induced by K.

b
√
K/X //

��

BGm

b̂

��

X // BGm

The map b̂ : BGm → BGm is given by sending a line bundle to its b-th tensor power, induced
by the group homomorphism Gm → Gm given by t 7→ tb.

If K = (K1, . . . ,Kr) is an r-tuple of line bundles and b = (b1, . . . , br) is an r-tuple of
positive integers, we similarly define b

√
K/X as X ×BGrm BGr

m, where the map X → BGr
m

is induced by the tuple (K1, . . . ,Kr) and the map ˆb : BGr
m → BGr

m is induced by the
homomorphism Gr

m → Gr
m given by (t1, . . . , tr) 7→ (tb11 , . . . , t

br
r ). It is straightforward to

check that b
√
K/X is the fiber product of the bi

√
Ki/X over X .

Remark 7.18. Explicitly, a morphism from a scheme (or stack) Y to the root stack b
√
K/X is

a morphism f : Y → X , an r-tuple of line bundles (L1, . . . ,Lr), and isomorphisms L⊗bii
∼= Ki.

Definition 7.19. We say that X → Y is an essentially trivial gerbe if X is of the form
B(Gs

m)× b
√
K/Y .

Proposition 7.20. Let Z be a smooth generically stacky toric stack. Then Z is an essen-
tially trivial gerbe over a toric stack.

Proof. Suppose Z is a closed torus-invariant substack of a toric stack XΣ,β, with Σ a subfan
of the fan of An (this is possible by Remark 2.19). Let D1, . . . ,Dn be the torus-invariant
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divisors of XΣ,β. Without loss of generality, Z = D1 ∩ · · · ∩ Dl. By Corollary 7.16, Z is the
stack of (Σ, β)-collections where si = 0 for 1 ≤ i ≤ l.

Let Σ′ be the restriction of Σ to the sublattice Zn−l ⊆ Zn given by the last n − l
coordinates, let N ′∗ = Zn−l ∩ N∗, and let β′ : Zn−l → N ′ be the dual to the inclusion.
For each i between 1 and l, let bi be the smallest positive integer (if it exists) so that
(0, . . . , 0, bi, 0, . . . , 0, ai,l+1, . . . , ai,n) ∈ N∗. Without loss of generality, we may assume these

integers exist for 1 ≤ i ≤ r. Define Ki = L−ai,l+1

l+1 ⊗ · · · ⊗ L−ai,nn .
Suppose (Li, si, cψ) is a (Σ, β)-collection on a scheme such that si = 0 for 1 ≤ i ≤ l. Then

the last n − l line bundles with sections form a (Σ′, β′)-collection, the line bundles Li for
r < i ≤ l satisfy no relations, and for 1 ≤ i ≤ r, we have isomorphisms Lbii ∼= Ki. Therefore, a
morphism to Z is precisely the data of a morphism to B(Gl−r

m )× (b1,...,br)
√

(K1, . . . ,Kr)/XΣ′,β′ .

8 Local Construction of Toric Stacks

The main goal of this section is to prove Theorem 8.12.

8.1 Colimits of Toric Monoids

Definition 8.1. A toric monoid is any monoid of the form σ ∩ L, where σ is a cone in a
lattice L.

Remark 8.2. Toric monoids are precisely the finitely generated, commutative, torsion-free
monoids M so that M →Mgp is injective and saturated.

Remark 8.3. Colimits exist in the category of toric monoids, and have a nice description.
A diagram of toric monoids D induces a diagram of free abelian groups Dgp. Let L be the
colimit of Dgp in the category of free abelian groups. Then the colimit of D is the image in
L of the direct sum of all the objects of D. In particular, colim(D)gp = colim(Dgp).

Definition 8.4. A face of a monoid M is a submonoid F so that a+ b ∈ F implies a, b ∈ F .

Remark 8.5. For a toric monoid σ ∩L, the faces are precisely submonoids of the form τ ∩L,
where τ is a face of σ. So the faces of σ ∩ L are obtained as the vanishing locus of linear
functionals on L which are non-negative on σ.

Remark 8.6. If F is a face of a toric monoid M , then F gp → Mgp is a saturated inclusion,
so it is the inclusion of a direct summand. In particular, any linear functional on F gp can be
extended to a linear functional on Mgp. Since F is a face of M , there is a linear functional χ
on Mgp which is non-negative on M and vanishes precisely on F . Given any linear functional
on F gp which is non-negative on F , we extend it arbitrarily to a linear functional on Mgp.
By then adding a large multiple of χ, we can guarantee that the extension is positive away
from F .
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Definition 8.7. Let D be a diagram in the category of toric monoids (i.e. D is a collection
of toric monoids Di and a collection of morphisms between the monoids). We say D is tight
if

1. every morphism is an inclusion of a proper face,

2. if Di appears in D, then all the faces of Di appear in D,

3. the diagram commutes, and

4. for any two objects Di and Dj in the diagram, there is a unique maximal common face
in the diagram.

Definition 8.8. The subdiagram D0 of a tight diagram D generated by a set of objects is
join-closed if it is tight and for every pair of objects Di and Dj of D0, if they are both faces
of an object Dk of D, then the smallest face of Dk containing Di and Dj is in D0.

Lemma 8.9. Let D0 be a join-closed subdiagram of a tight diagram D. Suppose χ is a linear
functional on colim(D0)gp. Then χ can be extended to a linear functional on colim(D)gp.
Moreover, if χ induces non-negative functions on all objects of D0, then the extension can be
chosen to be non-negative on all objects of D, and if D 6= D0, it can be chosen to be positive
away from D0.

Remark 8.10. By the universal property of a colimit, a linear functional on a colimit of
groups is equivalent to a compatible collection of linear functionals on the groups in the
diagram.

Proof. We induct on the size of D rD0. Let Db be a maximal object of D which is not in
D0. Let D1 be the subdiagram of D consisting of D0 and all the faces of Db. Since Db is
maximal, D1 is join-closed. It suffices to extend the linear functional to colim(D1)gp.

Since D0 is join-closed, there is a maximum object Dm of D0 which is a face of Db. We
may extend χ|Dm to a linear functional on Db as in Remark 8.6. If χ|Dm is non-negative, we
may choose the extension to be positive away from Dm.

Corollary 8.11. Let D be a tight diagram of toric monoids with colimit M . Then for every
object Di of D, Di →M is an inclusion of a face.

Proof. To show that Di → M is an inclusion, it suffices to show that Dgp
i → Mgp is an

inclusion, for which it suffices to show that the dual map is surjective. The subdiagram
consisting of all the faces of Di is join-closed, so every linear functional on Dgp

i can be
extended to a linear functional on Mgp by Lemma 8.9, so the dual map is surjective.

To show that Di is a face, it suffices to find a linear functional on Mgp which is non-
negative on M and vanishes exactly on Di. Such a linear functional exists by Lemma 8.9.
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8.2 Constructing Toric Stacks Locally

We saw in §5 that every toric stack is a good moduli space of a canonical smooth toric stack.
In this subsection, we show that we can construct a toric stack by starting with a smooth
toric stack and specifying compatible good moduli space maps from an open cover. In other
words, given a canonical stack morphism from a smooth toric stack, the property of being a
toric stack can be checked locally. This result will be very important in the proof of Theorem
12.1.

Theorem 8.12. Let X be a stack with an action of a torus T and a dense open T -orbit
which is T -equivariantly isomorphic to T . Let Y → X be a morphism from a toric stack.
Suppose X has a cover by T -invariant open substacks Xi which are toric stacks with torus
T , and that the maps Y ×X Xi → Xi are canonical stacks. Then X is a toric stack.

Proof. Let N = Homgp(Gm, T ). Refining the cover, we may assume each Xi is of the form
Xσi,βi : Li→N with σi a single cone. Moreover, we may assume that if Xσi,βi is in the open
cover, then the open substacks corresponding to the faces of σi are as well. Then X is the
gluing of this diagram of open immersions of toric stacks.

Suppose Y = XeΣ,β̃, where Σ̃ is a subfan of the fan of An and β̃ : Zn → N is a close
homomorphism. The canonical stack over each Xσi,βi is an open substack of Y , so it is

the open substack corresponding to a cone σ̃ of Σ̃. We may assume we have compatible

factorizations of β as Zn → Li
βi−→ N , where the first map sends σ̃i to σi. Then the colimit

of toric monoids σi ∩ Li is of the form σ ∩ L, where L is the colimit of the Li. By Corollary
8.11, the σi are faces of σ. By Proposition 3.22, the induced morphisms Xσi,βi → Xσ,β are
the open immersions corresponding to the inclusions of the faces σi → σ. The diagram of
open immersions of the Xσi,βi can therefore be realized as the diagram of inclusions of open
substacks of Xσ,β. Therefore, X is the union of these open substacks of Xσ,β. In particular,
it is toric.

Remark 8.13. Note that the proof in fact shows that X is an open substack of a cohomolog-
ically affine toric stack Xσ,β.

Remark 8.14. Let XΣ′,β′ : L′→N be an arbitrary toric stack, and let XeΣ,β̃ be its canonical stack.
Applying Remark 8.13, we see that XΣ′,β′ is an open substack of a cohomologically affine
toric stack. In fact, if Σ′ spans L′ (i.e. XΣ′ has no torus factors), XΣ′,β′ is an open substack
of a canonical cohomologically affine toric stack.

9 Preliminary Technical Results

In this section, we gather technical results that will be used in the proofs of Theorems 10.2,
11.2, and 12.1.
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9.1 Some Facts About Stacks

Lemma 9.1. Let Z be an irreducible Weil divisor (i.e. a reduced irreducible closed substack)
of a stack X . Suppose U → X is a smooth cover. Then Z is a Cartier divisor of X if and
only if Z ×X U is a Cartier divisor of U . In particular, on any smooth stack, every Weil
divisor is Cartier.

Proof. If I is the ideal sheaf of the Weil divisor Z, then Z is Cartier if and only if I is a line
bundle. One may verify that a quasi-coherent sheaf is locally free of a given rank locally in
the smooth topology [Mil, Theorem 11.4]. Since smooth morphisms are flat, the pullback to
U of ideal sheaf I is the ideal sheaf of the fiber product Z ×X U .

Proposition 9.2. Suppose f : X → Y is a representable étale morphism of algebraic stacks.
Then f induces finite-index inclusions on stabilizers of geometric points.

Proof. Since f is representable, it is faithful [LMB00, Proposition 2.4.1.3 with Corollary
8.1.2], so the induced maps on stabilizers are inclusions. Suppose x : SpecK → X is a
geometric point, and let G be the stabilizer of f(x). The residual gerbe of Y at f(x) must
be trivial since K is separably closed, so we have a stabilizer-preserving morphism BG→ Y
through which f(x) factors. Since stabilizer-preserving morphisms are stable under base
change, it suffices to show that the morphism BG×YX → BG induces finite-index inclusions
on stabilizers. Base changing along SpecK → BG, we get an étale cover U of SpecK, which
must be a finite disjoint union of copies of SpecK.

U //

��

BG×Y X //

ét, rep

��

X
f

��

SpecK // BG // Y

We have that U is a G-torsor over BG ×Y X . If H ⊆ G is the stabilizer of a point of U ,
then the orbit is isomorphic to G/H. Since U is finite, any such G/H must be finite, so H
must have finite index inside of G. The stabilizers at points of BG×Y X are precisely such
H.

Lemma 9.3. Suppose X is an algebraic stack with affine diagonal. Suppose G is an affine
algebraic group with an action on X . Then [X/G] has affine diagonal.

Proof. The following diagram is cartesian:

G×X ∼= X ×[X/G] X //

��

X × X

��

[X/G]
∆[X/G]

// [X/G]× [X/G]
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Since X × X → [X/G] × [X/G] is a smooth cover, it suffices to verify that the action
morphism G×X → X ×X is affine.

Composing with the projections gives the projection and action maps p2, α : G×X → X .
The projection p2 is affine because G is affine, and α is isomorphic to p2, so it is also affine.

The top map is then the composition G × X ∆−→ (G × X ) × (G × X )
α×p2−−−→ X × X . Since

α × p2 is a product of affine maps, it is affine. Since G is affine, it has affine diagonal. By
assumption, X also has affine diagonal, so G× X has affine diagonal. So G× X → X × X
is a composition of affine morphisms.

Lemma 9.4. If X has affine diagonal and Y → X is a canonical stack morphism, then Y
has affine diagonal.

Proof. Consider the following diagram, in which the square is cartesian.

Y
∆Y/X

//

∆Y

&&

Y ×X Y //

��

Y × Y

��

X
∆X // X × X

Since ∆Y is a composition of ∆Y/X and a pullback of ∆X (which is assumed to be affine), it
suffices to show that ∆Y/X is affine.

Affineness can be verified locally on the base in the smooth topology, so we may assume
Y = [XeΣ/GΦ] and X = XΣ (see Remark 5.1). In this case, Y has affine diagonal by Lemma
9.3, so in the above diagram, Y and Y×X Y are both affine over Y×Y , so ∆Y/X is affine.

Lemma 9.5. Let X be an algebraic stack over a field k, with reductive stabilizers at geometric
points, and let G be a diagonalizable group over k which acts on X . Then [X/G] has reductive
stabilizers at geometric points.

Proof. Let f : SpecK → [X/G] be a geometric point (i.e. K be a separably closed extension
of the field k). Then f is the image of some geometric point f̃ : SpecK → X . We have the
following diagram, in which the square is cartesian:

SpecK

f %%JJJJJJJJJ
f̃

// X //

��

Spec k

��

[X/G] π // BG

An automorphism φ of f in [X/G] induces an automorphism of π ◦ f , which is a K-point of
G. By cartesianness of the square, this image in G is the identity if and only if φ is induced
by an automorphism of f̃ , so we get an exact sequence

1→ AutX (f̃)→ Aut[X/G](f)→ G
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(exactness on the left follows from the fact that X → [X/G] is representable). So the
stabilizer of the point of [X/G] is an extension of a subgroup of G by the stabilizer of a pre-
image in X . Since G is diagonalizable, any subgroup of it is diagonalizable, and so reductive.
An extension of reductive groups is reductive.

Lemma 9.6. Let X be a normal noetherian algebraic stack, and let U ⊆ X be an open
subscheme whose complement is of codimension at least 2. Then the inclusion U ↪→ X is
Stein.

Proof. By cohomology and base change [Har77, Proposition 9.3], the property of being Stein
is local on the base in the smooth topology, so we may assume X = SpecR, with R a normal
noetherian domain. Then U is a scheme, and we must show that any regular function on
U arises as an element of R. Any regular function on U is a rational function on R, so it
is of the form f/g, with f, g ∈ R. Since the complement of U is of codimension at least 2,
we see that f/g ∈ Rp for any codimension 1 prime p. A noetherian normal domain is the
intersection in its fraction field of its localizations at codimension 1 primes [Eis95, Corollary
11.4], so f/g ∈ R.

Corollary 9.7. Let f : X → Y be a morphism of normal noetherian algebraic stacks. Sup-
pose there is an open substack U ⊆ X so that f |U is an isomorphism, and so that U ⊆ X
and f(U) ⊆ Y have complements of codimension at least 2. Then f is Stein.

Proof. Let i : U → X be the inclusion. By Lemma 9.6, we have that i and f ◦ i are Stein. It
follows that f∗OX = f∗i∗OU = OY , so f is Stein.

Proposition 9.8. Let D1, . . . , Dn be effective Cartier divisors on a locally finite type scheme
X over a field k. Let x ∈ X be a point at which X is smooth, at which each Di is smooth,
and at which these divisors have simple normal crossings. Then the induced morphism
φ : X → [An/Gn

m] is smooth at x.

Remark 9.9. Smoothness of X and the divisors at x can be checked on a smooth cover of X,
as can the property of having simple normal crossings. Therefore, this smoothness criterion
applies to stacks as well.

However, note that smoothness of the map φ : X → [An/Gn
m] does not entail repre-

sentability of the map. It simply means that for any smooth cover by a scheme U → X , the
composite map U → [An/Gn

m] is smooth.

Proof. If some Di does not pass through x, then there is an open neighborhood of x such
that φ factors through [(An−1 × Gm)/Gn

m] = [An−1/Gn−1
m ]. Smoothness can be checked on

this neighborhood. We may therefore assume that all the divisors pass through x.
We may verify formal smoothness at x after restricting to the completed local ring ÔX,x.

Since X is locally of finite type, formal smoothness implies smoothness. By the Cohen
structure theorem [Eis95, Theorem 7.7], ÔX,x = k[[x1, . . . , xr]], and since the divisors are
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smooth with simple normal crossing, we may choose coordinates so that the divisor Di is
the vanishing locus of the coordinate xi. Then φ is a composition of three formally smooth
morphisms: the “inclusion” of the complete local ring Spec ÔX,x → Ar, the coordinate
projection Ar → An, and the quotient morphism An → [An/Gn

m].

9.2 Luna’s Slice Argument

Here we prove a weak form of Luna’s slice theorem. Our hypotheses are weaker than those
in Luna’s slice theorem (e.g. we do not assume an action of a reductive group, only that the
stabilizers are reductive), as is the conclusion (we do not get strong étaleness). Since the
hypotheses differ from the standard result significantly, we reproduce the proof here.

Definition 9.10. Let Z be a scheme with an action of a group scheme H, and let H ⊆ G
be a subgroup. Then Z ×H G denotes [G × Z/H], where the action of H is given by
h · (g, z) = (gh−1, h · z).

Lemma 9.11. Let Z be a scheme over a field k of characteristic 0. Let G be a group scheme
over k, and let H ⊆ G be a subgroup. The tangent space to G ×H Z at the image of (g, z)
is (TgG ⊕ TzZ)/TeH, where the inclusion TeH → TgG ⊕ TzZ is induced by the inclusion
H → G× Z, h 7→ (gh−1, h · z).

Moreover, G ×H Z is smooth at the image of a k-point (g, z) if and only if Z is smooth
at z.

Proof. We have a smooth map G × Z → G ×H Z whose fiber over the image of (g, z) is
{(gh−1, h · z)|h ∈ H}. For any smooth map, the tangent space of an image point is the
quotient of the tangent space of the point by the tangent space of the fiber at that point.
This proves the first statement.

We have that G×Z is an H-torsor over G×H Z and a G-torsor over Z. Smoothness can
be checked locally in the smooth topology. Since G and H are smooth as we are over a field
of characteristic zero, we see that Z is smooth at z if and only if G× Z is smooth at (g, z)
if and only if G×H Z is smooth at the image of (g, z).

Lemma 9.12. Let f : Y → X be a quasi-compact morphism of schemes and x ∈ X a point
so that f is étale at every point in the pre-image of x. Then there is an open neighborhood
U ⊆ X of x so that the restriction f−1(U)→ U is étale.

Proof. For every point y ∈ f−1(x), let Vy ⊆ Y be an open neighborhood of y so that f |Vy is
étale. Since étale morphisms are open, f(Vy) ⊆ X is open. We have that the fiber f−1(x)
is quasi-compact and étale over the point x, so it is finite. Let U =

⋂
y∈f−1(x) f(Vy). Then

U is an open neighborhood of x such that f−1(U) ⊆
⋃
y∈f−1(x) Vy, so the induced morphism

f−1(U)→ U is étale.
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Proposition 9.13 (Luna slice argument). Let G be an affine algebraic group acting on a
quasi-affine scheme X over an algebraically closed field k of characteristic 0. Suppose x ∈ X
is a k-point whose stabilizer H ⊆ G is linearly reductive. Then there exists a connected
locally closed H-invariant subscheme Z ⊆ X such that x ∈ Z and such that the induced
morphism Z ×H G→ X is étale.

This roughly says that at a point with linearly reductive stabilizer H, a quotient stack
[X/G] is étale locally a quotient by H. Explicitly, we have the étale representable morphism
[Z/H] ∼= [(Z ×H G)/G]→ [X/G].

Proof. We first consider the case where X is smooth. Let A = OX(X). By [StPrj, Lemma
01P9], the natural map X → SpecA is an open immersion, so we identify X with an
open subscheme of SpecA. Let m be the maximal ideal in A corresponding to x ∈ X.
The surjection m → m/m2 ∼= (TxX)∗ is H-equivariant. Since H is linearly reductive,
there is an H-equivariant splitting, which induces an H-equivariant ring homomorphism
Sym∗(m/m2) → A sending the positive degree ideal into m. This corresponds to an H-
equivariant map SpecA → TxX sending x to 0 and inducing an isomorphism on tangent
spaces at x. Since X and TxX are smooth, the map is étale at x [BLR90, §2.2, Corollary
10].

The tangent space TxX has a natural action of H. The tangent space to the G-orbit
through x is an H-invariant subspace of TxX. Since H is linearly reductive, this subspace
has an H-invariant complement V .

V � _

��

Z ′
H-eq

oo
� _

��

� � // G×H Z ′

��

TxX X
H-eq

oo X

We define Z ′ as V ×TxX X. This is a closed H-invariant subscheme of X which contains x.
The map Z ′ → V is H-equivariant and and is étale over V at x. In particular, Z ′ is smooth
at x. The action of G induces a morphism G×HZ ′ → X. By Lemma 9.11, G×HZ ′ is smooth
at the image of (e, x), X is smooth at x, and the map induces an isomorphism of tangent
spaces since TxZ

′ ∼= V is complementary to Tx(G · x). By [BLR90, §2.2, Corollary 10], the
map G ×H Z ′ → X is étale at the image of (e, x). Since the morphism is G-equivariant
and every point in the fiber over x is in a single G-orbit, it is étale at every point in the
fiber, and therefore étale over a neighborhood of x ∈ X by Lemma 9.12. Since this map is
G-equivariant, the locus in X where it is étale is a G-invariant open neighborhood U of x.
Setting Z = Z ′ ∩U , we get that Z ×H G→ X is étale. This completes the proof in the case
when X is smooth.

Now consider the case where X is not smooth. We may choose a G-equivariant immer-
sion of X into a smooth scheme X0. Indeed, X0 can be chosen to be a finite-dimensional
representation of G [PV94, Theorem 1.5]. As shown above, there are representations V ⊆ W

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01P9
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of H, a G-invariant open neighborhood U0 of x, and a closed subscheme Z0 ⊆ U0 such that
Z0 = V ×W U0 and Z0×H G→ U0 is étale. Setting U = U0×X0 X and Z = Z0 ∩X, we have
the following cartesian diagram.

Z ×H G //

��

Z0 ×H G

��

U //

��

U0

��

X // X0

Since Z0 ×H G→ U0 is étale, so is Z ×H G→ U .
Finally, since x is fixed by H, the connected component of Z which contains x is H-

invariant. We may replace Z by this connected component.

9.3 A Characterization of Pointed Toric Varieties

The proof of the following proposition is due to Vera Serganova (see [Ger]).

Proposition 9.14. Let V be a representation of a linearly reductive group G over a field k
of characteristic 0, and let Z = G · v ⊆ V be the closure of an unstable G-orbit (i.e. 0 ∈ Z).
If Z is not contained in a direct sum of 1-dimensional representations of G, then it contains
a positive highest weight vector (with respect to some Borel subgroup of G).

Proof. We may assume v is not contained in a direct sum of 1-dimensional representations.
By the Hilbert-Mumford criterion [GIT, Proposition 2.4], there is a 1-parameter subgroup
γ : Gm → G so that γ(t) ·v contains 0 in its closure. We have the weight space decomposition
V =

⊕
i∈Z Vi, where Vi = {x ∈ V |γ(t)x = tix}. Let v =

∑
i≥p vi, where vi ∈ Vi and vp 6= 0.

We may assume p > 0 (replacing γ by its inverse if necessary).
Let T be a maximal torus containing the image of γ, and let B ⊆ H be a Borel subgroup

containing T so that γ pairs non-negatively with all positive roots. Since only a finite number
of weights appear in V , we may modify γ so that it pairs positively with all positive roots.
If v is a highest weight vector with respect to B, then we are done. Otherwise, there is some
positive root α so that eα · v 6= 0, with eα ∈ gα, where gα is the root space corresponding
to α in the Lie algebra of G. Let exp(teα) · v =

∑
i≥p fi(t), where fi(t) ∈ Vi ⊗ k[t]. Let

mi = deg fi. Since α pairs positively with γ (and eα ·Vi ⊆ Vi+〈γ,α〉), we have eα · v ∈
⊕

i>p Vi,
so mp = 0. Moreover, since eα · v 6= 0, some mi is positive.
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Let a
b
∈ Q be the rational number so that mi ≤ a

b
i for all i and

mj = a
b
j for some j. Consider the function g : A1 → V given by

g(t) =
∑
ta·ifi(t

−b). Note that this is well-defined since deg fi =
mi ≤ a

b
i for all i, so deg

(
ta·ifi(t

−b)
)

= a · i − b ·mi ≥ 0. Note also

that g(0) 6= 0 since mj = a
b
j for some j. For t 6= 0, we have that

g(t) = γ(ta) · exp(t−beα) · v ∈ Z. Since Z is closed, we have that
i

mi

p

slope = a/b

g(0) ∈ Z. Note that the minimal weight (with respect to γ) appearing in g(0) is greater
than p, and that g(0) does not lie in a direct sum of 1-dimensional representations since it
is in the image of eα. Since V is finite-dimensional, repeating this procedure a finite number
of times produces a positive highest weight vector in Z.

Proposition 9.15. Suppose Z is an irreducible affine scheme over an algebraically closed
field k of characteristic 0, with an action of a linearly reductive group H. Suppose that x ∈ Z
is an H-invariant k-point, that Z contains a dense open stabilizer-free orbit, and that the
stabilizer of each k-point of Z is linearly reductive. Then H is a torus. In particular, if Z is
reduced and normal, it is a toric variety.

Proof. SinceH is dense in Z, it is irreducible. Let Z = SpecA, and let m ⊆ A be the maximal
ideal corresponding to x. We may choose a finite-dimensional H-invariant subspace V ∗ ⊆ m

such that V ∗ generates A as a k-algebra . Then SpecA→ Spec(Sym∗(V ∗)) = V is a closed
H-equivariant immersion of Z into a finite-dimensional representation of H, sending x to the
origin. Since Z contains a dense open stabilizer-free H-orbit, the subrepresentation spanned
by Z is faithful. If Z is contained in a direct sum of 1-dimensional representations, then H is
diagonalizable, so it is a torus. Otherwise, Z contains a positive highest weight vector v by
Proposition 9.14. Then v is stabilized by the unipotent radical of some Borel subgroup of H.
Since v has reductive stabilizer, it must be stabilized by the opposite unipotent group, so by
the derived group of H, contradicting the assumption that it is a positive weight vector.

10 The Local Structure Theorem

The main result of this section is Theorem 10.2. Together with Lemma 10.1, this theorem
serves as our main tool for showing that a stack is toric.

Lemma 10.1. Let X be an algebraic stack over a field k with an action of a torus T and
a dense open substack which is T -equivariantly isomorphic to T . Then X is a toric stack if
and only if [X/T ] is a toric stack.

Proof. If X = [X/G] is a toric stack, where X is a toric variety and G ⊆ TX is a subgroup
of the torus, then T = TX/G. We see that [X/T ] ∼= [X/TX ] is a toric stack.

Now suppose [X/T ] = [X/G] is a toric stack, where X is a toric variety and G ⊆ TX is
a subgroup of the torus. Since [X/T ] has a dense open point, we have G = TX is the torus
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of X. Consider the following cartesian diagram.

TX × T� t

''OOOOOOOOO

��

// T � t

''OOOOOOOOOOOOO

��

X ×[X/T ] X //

��

X

��

TX � t

''OOOOOOOOOOOO
// [TX/TX ] = [T/T ] = ∗� t

''OOOOOOOOO

X // [X/TX ] ∼= [X/T ]

The stack Z ×H G → X has an action of the torus TX × T , and a dense open substack
isomorphic to TX × T . Since X ×[X/T ] X is a T -torsor over X, it is a normal separated
scheme, so it is a toric variety with torus TX × T . It is also a TX-torsor over X , so X =
[(X ×[X/T ] X )/TX ] is a toric stack.

Theorem 10.2. Suppose X is a reduced finite type Artin stack over an algebraically closed
field k of characteristic 0, with a dense open (non-stacky) point k-point. Let ξ : Spec k → X
be a point. Suppose

1. X is normal,

2. X has affine diagonal,

3. X has linearly reductive stabilizers at geometric points, and

4. ξ is in the image of an étale representable map [U/G] → X , where U is quasi-affine
and G is an affine group scheme (see Remark 10.3 below),

Then there is an affine toric variety X with torus T and an open immersion [X/T ] ↪→ X
sending the distinguished closed point of [X/T ] to ξ.1

Remark 10.3. A quasi-compact stack in which every point is in the image of an étale repre-
sentable map from a quotient of a quasi-affine scheme by an affine group is said to be locally
of global type [Ryd09]. It is possible that every quasi-compact quasi-separated stack with
locally separated diagonal and affine stabilizers is of global type. In particular, it is possible
that condition 4 of Theorem 10.2 is unnecessary given the other hypotheses.

Since X is assumed to be normal, finite type, and to have affine diagonal, any stack étale
over it is normal, Noetherian, and has affine stabilizers at closed points. Totaro has shown
[Tot04, Theorem 1.1] that such a stack is a quotient of a quasi-affine scheme by an affine

1Note that [X/T ] has a distinguished closed point, even if X does not. An affine toric variety X can only
fail to have a distinguished closed point if it is of the form X ′ × T0, where X ′ has a distinguished closed
point and T0 is a torus. In this case, [X/T ] ∼= [X ′/(T/T0)].
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group if and only if it has the resolution property. Thus, to verify that X is of global type,
it suffices to find a cover by étale representable morphism from stacks with the resolution
property.

Finally, any stack of the form [X/G] where X is a normal Noetherian scheme and G is a
connected affine group is of global type [Ryd09, Remark 2.3]. In practice, this is probably
the most useful way to verify this condition.

Proof. Let x ∈ U be a k-point mapping to ξ, and let H ⊆ G be the stabilizer of x. Since the
morphism [U/G] → X is étale representable, Proposition 9.2 implies that the stabilizers of
geometric points of [U/G] are finite index subgroups of the stabilizers of geometric points of
X . That is, given a point y : Spec k → [U/G], StabX (y)/ Stab[U/G](y) is finite, and therefore
affine. Since the stabilizers of geometric points of X are linearly reductive, Matsushima’s
criterion (see [Alp08, Proposition 11.14(i)]) implies that the stabilizers of geometric points
of [U/G] are linearly reductive.

Applying Proposition 9.13, there is a connected locally closed H-invariant subscheme
Z ⊆ U so that x ∈ Z and Z ×H G → U is étale. We have that Z is smooth over X . Since
X is normal, and normality is local in the smooth topology, Z is normal. Since Z is also
connected, it is irreducible.

The map [Z/H] → [U/G] → X is étale and representable. Base changing [Z/H] → X
to the dense open k-point of X , we get an irreducible étale cover of Spec k, which must be
trivial since k is algebraically closed. In particular, [Z/H] has a dense open k-point, so Z
contains a dense open stabilizer-free H-orbit.

Next we show that Z must be affine. Since Z is quasi-affine, it is a dense open subscheme
of SpecOZ(Z) [StPrj, Lemma 01P9]. The action of H on Z induces an action of H on
SpecOZ(Z). By [GIT, Theorem 1.1], Spec

(
OZ(Z)

)
/H = Spec

(
OZ(Z)H

)
is a good quotient.

Since OZ(Z) contains a dense open copy of H, any H-invariant regular function must be
constant, so the good quotient is Spec k. It follows that the closures of any two H-orbits
intersect. But, x ∈ Z is a closed H-orbit, and Z ⊆ SpecOZ(Z) is an H-invariant open
neighborhood of x, so Z = SpecOZ(Z).

By the same argument we used in the first paragraph of this proof, the stabilizers of
[Z/H] are linearly reductive. Since Z is smooth over X , it is normal and reduced. By
Proposition 9.15, H is a torus and Z is a toric variety.

Finally, we have an étale representable map [Z/H]→ X , whose image is an open substack.
Replacing X by this open substack, we may assume the map is surjective. Now we have that

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01P9
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Z → X is a smooth cover. Consider the following cartesian diagram:

Z ×X Z

��

// Z

H-torsor
��

Y //

��

[Z/H]

��

Z // X

Since Z is affine and X has affine diagonal, we have that Z ×X Z is affine. This affine space
is the total space of an H-torsor over an algebraic space Y . Since H is linearly reductive, Y
is an affine scheme [GIT, Theorem 1.1]. Since Y and Z are both affine, Y → Z is separated.
Separatedness is local on the base in the smooth topology, so [Z/H]→ X is separated.

Now [Z/H] → X is representable separated étale birational and surjective, so it is an
isomorphism by Zariski’s Main Theorem [LMB00, Theorem 16.5].

11 Main Theorem: Smooth Case

Lemma 11.1. Suppose f : X → Y is a smooth (but not necessarily representable) mor-
phism of Artin stacks. Then f is codimension-preserving: if Z ⊆ Y is a closed substack of
codimension d, then Z ×Y X ⊆ X is of codimension d.

Proof. Let π : U → X be a smooth cover by a scheme. Then g = f ◦ π : U → Y is smooth
and representable, so it is open and codimension-preserving. If Z ⊆ Y is a closed substack
of codimension d, then Z ×Y U ⊆ U is closed of codimension d. On the other hand, U → X
is codimension-preserving, and Z×Y U = (Z×Y X )×X U , so Z×Y X ⊆ X is of codimension
d.

Theorem 11.2. Let X be a smooth Artin stack over an algebraically closed field k of char-
acteristic 0. Suppose X has an action of a torus T and a dense open substack which is
T -equivariantly isomorphic to T . Then X is a toric stack if and only if the following condi-
tions hold:

1. X is reduced and of finite type,

2. X has affine diagonal,

3. geometric points of X have linearly reductive stabilizers, and

4. every point of [X/T ] is in the image of an étale representable map from a stack of the
form [U/G], where U is quasi-affine and G is an affine group.
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Remark 11.3. The final condition in the theorem is required to apply Theorem 10.2. It is
possible that it is unnecessary given the other hypotheses (see Remark 10.3).

Proof. It is clear that smooth toric stacks satisfy the conditions, so we focus on the converse.
By Lemma 10.1, it suffices to check that [X/T ] is a toric stack. By Lemma 9.3, [X/T ]

has affine diagonal. By Lemma 9.5, [X/T ] has linearly reductive stabilizers. Thus, we have
reduced to the case where T is trivial and X has a dense open k-point.

Consider the set of divisors of X . By Lemma 9.1, these divisors are Cartier, so they are
induced by line bundles L1, . . . ,Ln with non-zero global sections si ∈ Γ(X ,Li). These line
bundles and sections induce a morphism X → [An/Gn

m]. We will show that this morphism
is an open immersion—and therefore that X is a toric stack—by induction on n.

The case n = 0

If X has no divisors, then we claim that X = Spec k. By Theorem 10.2, every point of X has
an open neighborhood of the form [X/TX ], where X is a toric variety and TX is its torus.
Every point of a toric variety lies either in the torus or on a torus-invariant divisor. Since X
has no divisors, X can have no torus-invariant divisors. It follows that X must be a torus,
and so X is covered by its dense open point.

The case n = 1

Suppose D ⊆ X is the unique divisor. Our aim is to show that the morphism X → [A1/Gm]
is an isomorphism.

Applying Theorem 10.2 to points of D, we see that D has a dense (stacky) geometric
point, and that any other point must lie on the intersection of two or more distinct divisors
(because this is true for torus-invariant divisors on a smooth toric variety). Since D is the
unique divisor of X , it has only one geometric point p. Aside from this point, X has only
one other point: the dense open point t. Applying Theorem 10.2 around p, we get an open
neighborhood of the form [X/T ], where X is a toric variety and T is its torus. But any open
neighborhood p must be all of X , so X = [X/T ] is a toric stack. Moreover, the toric variety
X has precisely one torus-invariant divisor, so [X/T ] = [A1/Gm].

The general case n ≥ 2

Suppose D1, . . . ,Dn are the divisors cut out by the sections si ∈ Γ(X ,Li). By induction
on n, X r Di is a smooth toric stack, so the morphism X r Di → [An−1/Gn−1

m ] is an open
immersion. On the other hand, this morphism is part of the following cartesian diagram.

X rDi �
�

//

��

X

��

[Gm/Gm]× [An−1/Gn−1
m ] [An−1/Gn−1

m ] �
�

// [An/Gn
m]
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Therefore, we see that the morphism X → [An/Gn
m] restricts to an open immersion U :=

X r (D1 ∩ · · · ∩ Dn) → [(An r {0})/Gn
m]. If D1 ∩ · · · ∩ Dn = ∅, then we are done, so

we may assume Z = D1 ∩ · · · ∩ Dn is non-empty. Then any subset of divisors intersect,
but the divisors are distinct, so X → [An/Gn

m] is set-theoretically surjective. In particular,
U → [(An r {0})/Gn

m] is an isomorphism. By Theorem 10.2, Z is of codimension n ≥ 2. So
by Lemma 9.6, X → [An/Gn

m] is Stein.
By Theorem 10.2, X is Zariski locally a quotient of a smooth toric variety. In particular,

the divisors are smooth and have simple normal crossings, so by Proposition 9.8, X →
[An/Gn

m] is smooth (but may not be representable). So X ×[An/Gnm]X → [An/Gn
m] is smooth,

and is an isomorphism over the complement of the closed point of [An/Gn
m]. Since smooth

maps are codimension preserving (Lemma 11.1), the complement of U ∼= U ×[An/Gnm] U ⊆
X ×[An/Gnm] X is of codimension n ≥ 2. In particular, the diagonal ∆X/[An/Gnm] is Stein by
Lemma 9.6.

Consider the following diagram, in which the square is cartesian.

X
∆X/[An/Gnm]

//

∆X

))

X ×[An/Gnm] X //

��

X × X

��

[An/Gn
m]

∆[An/Gnm]
// [An/Gn

m]× [An/Gn
m]

Since ∆X and ∆[An/Gnm] are affine, we see that ∆X/[An/Gnm] is affine.
Now ∆X/[An/Gnm] is Stein and affine, so it is an isomorphism. Thus, X → [An/Gn

m] is
a monomorphism, so it is representable [LMB00, Corollary 8.1.2], separated, and quasi-
finite. Since [An/Gn

m] is normal, Zariski’s Main Theorem [LMB00, Theorem 16.5] implies
that X → [An/Gn

m] is an open immersion.

11.1 Counterexamples

There are varieties X that contain a dense open torus T , in which T cannot possibly act on
X. For example, blowing up a torus-non-invariant point on a divisor of a toric variety will
produce such a variety. When working with algebraic spaces and stacks, the action can fail
to extend for more subtle reasons.

Example 11.4 (Torus action does not always extend). Let U be the affine line with a doubled
origin over a field not of characteristic 2. Let Z/2 act on U by x 7→ −x (and switching the
two origins). Then X = [U/(Z/2)] is a smooth algebraic space with a dense open torus
[Gm/(Z/2)] ∼= Gm. This space is a “bug-eyed cover” of A1 [Kol92]. We claim that the torus
cannot act on X.

If it did, the étale cover A1 → X would be toric, inducing the degree 2 map of tori
Gm → Gm/(Z/2). This map induces an isomorphism of Gm-representations between the
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tangent space to A1 at 0 and the tangent space to X at “the bug eye.” It would follow that
the 1-dimensional weight 1 representation of Gm (i.e. the tangent space to A1 at 0) factors
through the degree 2 map Gm → Gm/(Z/2), which it clearly does not. �

Although we have shown that the previous example is not a toric stack, it is nonetheless
interesting to observe that it can be extended in an interesting way.

Example 11.5. Consider the stack X = [A2/(Z/2 n Gm)], with the action given by (0, t) ·
(x, y) = (tx, t−1y) and (1, 1) · (x, y) = (−y, x). This contains the “bug-eyed cover” from the
previous example as an open substack (it is the image of A2 r {0}).

What makes X particularly interesting is that it is a smooth stack with a dense open
torus (whose action does not extend, of course) so that the complement of the torus is a
single singular divisor. �

Remark 11.6. A notable difference between toric stacks and toric varieties is that toric
varieties are required to be separated. Artin stacks are almost never separated, but the
affine diagonal condition seems to play the role of separatedness. Heuristically, toric stacks
are entirely controlled by their torus-invariant divisors (this is made precise by Theorem 7.7
and the canonical stack construction in Section 5). The condition that a stack have affine
diagonal “forces all non-separatedness to occur in codimension 1” and therefore be controlled
by the combinatorics.

Example 11.7 (Non-affine diagonal). The affine plane with a doubled origin is a variety with
a torus action satisfying nearly all the conditions of Theorem 11.2, except it does not have
affine diagonal.

Note however, that the affine line with a double origin does have affine diagonal, and is
in fact a toric stack. It is [(A2 r {0})/Gm] where Gm acts by t · (x, y) = (tx, t−1y). �

In the world of stacks, non-affine diagonals can occur in stranger ways as well.

Example 11.8 (Non-separated diagonal). Let G be the affine line with a doubled origin, re-
garded as a relative group over A1. The fibers away from the origin are trivial, and the fiber
over the origin is given the structure of Z/2. We see that G→ A1 is an étale relative group
scheme. In fact, it is the quotient of the relative group Z/2 × A1 by the open subgroup of
Example 11.10.

Let X = [A1/G], where G acts trivially on A1. Since X has an étale cover by A1, it
is finite type, normal, and of global type. Moreover, it has linearly reductive stabilizers at
geometric points. It contains a dense open torus T ∼= Gm which acts on it. However, X has
non-separated diagonal. �

In Theorem 11.2, the condition that X have linearly reductive stabilizers is necessary.
It is easy to produce many examples of stacks that satisfy all the other conditions of the
theorem, but fail to be toric stacks.
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Example 11.9 (Non-reductive stabilizers). If X is any smooth scheme of finite type with an
action of a connected affine group G and a dense open copy of G, then X = [X/G] has a
dense open torus (the trivial torus [G/G]) which acts (trivially). Since G is affine, X has
affine diagonal by Lemma 9.3. By the final paragraph of Remark 10.3, X is of global type.

For example, consider the stack X = [M2×2/GL2], where the action of GL2 on M2×2
∼= A4

is given by left multiplication. �

We saw in Corollary 7.16 that smooth generically stacky toric stacks arise as essentially
trivial gerbes over toric stacks. Theorem 11.2 gives us a good handle on smooth “abstract
toric stacks,” but the analogous result is false for “abstract generically stacky toric stacks,”
as the following example demonstrates. In fact, it is not even completely clear what the anal-
ogous statement is. An analogue of the theorem for the generically stacky case would have
to include some hypothesis that prevents the stabilizers from being “smaller than expected”
along a closed substack.

Example 11.10. Let G be the disjoint union of A1 and A1 r{0}, regarded as a relative group
over A1. This is an open subgroup of the constant group Z/2. Let X = [A1/G], where G
acts trivially on A1.

This is stack containing a dense open stacky torus T ∼= Gm × B(Z/2) whose action on
itself extends to an action on X . Since it has an étale cover by A1, it is normal and of
finite type. The stabilizers of geometric points are linearly reductive, and it even has affine
diagonal. However, since it contains a point with trivial stabilizer, it is not an essentially
trivial gerbe on anything, so it is not a generically stacky toric stack.

Note that we did not verify the final condition, that [X/T ] is locally of global type. This
is because it is not clear how to define the quotient [X/T ] when T is a stacky torus. An
analogue of Theorem 11.2 would have to address this question. �

12 Main Theorem: Non-smooth Case

Theorem 12.1. Let X be an Artin stack over an algebraically closed field k of characteristic
0. Suppose X has an action of a torus T and a dense open substack which is T -equivariantly
isomorphic to T . Then X is a toric stack if and only if the following conditions hold:

1. X is normal, reduced, and of finite type,

2. X has affine diagonal,

3. geometric points of X have linearly reductive stabilizers, and

4. every point of [X/T ] is in the image of an étale representable map from a stack of the
form [U/G], where U is quasi-affine and G is an affine group.
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Proof. It is clear that any toric stack satisfies the conditions.
As in the proof of Theorem 11.2, we immediately reduce to the case where T is trivial

and X has a dense open point. By Lemma 10.1, it suffices to check that [X/T ] is a toric
stack. By Lemma 9.3, [X/T ] has affine diagonal. By Lemma 9.5, [X/T ] has linearly reductive
stabilizers. Normality and reducedness are local in the smooth topology, so those hypotheses
descend from X to [X/T ].

Applying Theorem 10.2, we obtain an open cover
∐
Xi → X , where each Xi is of the

form [Xi/Ti], with Xi an affine toric variety. Let Yi be the canonical smooth toric stack over
Xi (see §5). Since the maps Yi → Xi have the universal property in Proposition 5.7, they
are canonically isomorphic when pulled back to intersections, so they glue together into a
smooth stack Y → X .

The diagonal of Y is affine by Lemma 9.4, and it satisfies the other hypotheses of Theorem
11.2 by construction (they are local conditions which all canonical stacks satisfy), so Y is a
smooth toric stack. So by Theorem 8.12, X is a toric stack.

Remark 12.2. As mentioned in Remark 10.3, one way to verify that [X/T ] is locally of global
type (i.e. that it satisfies condition 4 of the theorem) is to show that it is locally a quotient
of a normal noetherian scheme by a connected affine group.

The typical application of this approach is as follows. Let X be a noetherian normal
scheme, and let G be an extension of a torus T by a connected affine group H. Suppose G
acts on X and that X contains a dense open subscheme isomorphic to G. Then X = [X/H]
inherits an action of T and contains a dense open copy of T . In this situation, [X/T ] ∼= [X/G]
satisfies condition 4 of the theorem.

Appendix A: Short Exact Sequences of Gβs

In this appendix, we prove two results which allow us to relate the groups of Definition 2.17.
The basic advantage of expressing a group G as an extension of a quotient H by a normal
subgroup N is that any quotient stack [X/G] can be identified with

[
[X/N ]/H

]
. This trick

is used heavily throughout the dissertation.
We refer the reader to [GM96] for the relevant homological algebra.

Lemma A.1. Suppose L, L′, and N ′ are finitely generated abelian groups. Suppose Φ: L→
L′ is close and β′ : L′ → N ′ is a homomorphism. Suppose ker Φ and ker g are free. Then we
have the following diagram, in which the rows are exact and the morphisms to D(L∗) and
D(L′∗) are the ones described above.

0 // GΦ
// Gβ′◦Φ //

��

Gβ′
//

��

0

0 // GΦ
// D(L∗) // D(L′∗) // 0
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Proof. By the octahedron axiom, the commutative triangle L → L′ → N ′ induces an exact
triangle on cones C(Φ)→ C(β′ ◦ Φ)→ C(β′)→ C(Φ)[1]. This induces an exact triangle of
duals, which induces the long exact sequence of homology groups

0→ D(G0
β′)→ D(G0

β′◦Φ)→ D(G0
Φ)︸ ︷︷ ︸

0

→ D(G1
β′)→ D(G1

β′◦Φ)→ D(G1
Φ)→ 0.

Since Φ is close, D(G0
Φ) = 0. We therefore get the diagram with exact rows

0 // 0
⊕

// G0
β′◦Φ
⊕

// G0
β′

⊕
// 0

0 // G1
Φ

// G1
β′◦Φ

//

��

G1
β′

//

��

0

0 // GΦ
// D(L∗) // D(L′∗) // 0

Lemma A.2. Suppose we have the following commutative diagram, in which the rows are
exact, in which L0, L, L′, N0, N , and N ′ are finitely generated abelian groups, and ker β0,
ker β, and ker β′ are free.

0 // L0
//

β0

��

L //

β

��

L′ //

β′

��

0

0 // N0
// N // N ′ // 0

Suppose β0 is close. Then the top row in the following diagram is exact.

0 // Gβ0
//

��

Gβ
//

��

Gβ′
//

��

0

0 // D(L∗0) // D(L∗) // D(L′∗) // 0

Proof. We are given a short exact sequence 0 → C(β0) → C(β) → C(β′) → 0, which gives
us an exact triangle in the derived category. The dual is then again an exact triangle, so we
get a long exact sequence of homology groups

0→ D(G0
β′)→ D(G0

β)→ D(G0
β0

)︸ ︷︷ ︸
0

→ D(G1
β′)→ D(G1

β)→ D(G1
β0

)→ 0.

Since β0 is close, we have that D(G0
β0

) = 0, so we get the diagram with exact rows

0 // 0
⊕

// G0
β

⊕
// G0

β′

⊕
// 0

0 // G1
β0

//

��

G1
β

//

��

G1
β′

//

��

0

0 // D(L∗0) // D(L∗) // D(L′∗) // 0



12. MAIN THEOREM: NON-SMOOTH CASE 53

Index of Terminology and Notation

(−)∗ dual HomZ(−,Z), or derived dual RHomZ(−,Z)
C(β) cone of β in the derived category of abelian groups
D(−) Cartier dual Homgp(−,Gm), Remark 2.7
FΣ,β fantastack, Definition 4.1
Gβ, GΦ Definition 2.17
L lattice (finitely generated free abelian group)
Lσ ⊆ L sublattice generated by σ ∩ L
Mgp group associated to a monoid M
Φ−1(σ) pre-image fan of a cone σ, Definition 3.23
(Φ, φ) morphism of (generically) stacky fans 3.2
satBA saturation of A in B, Definition 2.1
σ a convex polyhedral cone [CLS11, Definition 1.2.1],

or the fan it induces, Notation 3.7
σ∨ the dual cone to σ [CLS11, Definition 1.2.3]
Σ a fan [CLS11, Definition 3.1.2]

Σ̃ “canonical fan,” beginning of §5
Σ̂ fan induced by Σ, Definition 4.1
(Σ, β) (generically) stacky fan, Definitions 2.8 and 2.18
b
√
K/Y root stack, Definition 7.17

TL torus with lattice L of 1-parameter subgroups, Definition 2.6
[X/( g1 ··· gn )G] quotient stack of X by G with weights ( g1 ··· gn ), Notation 2.11
XΣ = XΣ,L toric variety associated to a fan Σ on a lattice L [CLS11, §3.1]
XΣ,β generically stacky toric stack associated to (Σ, β), Definition 2.18
X(Φ,φ) toric morphism associated to (Φ, φ) (c.f. discussion after Definition 3.2)
Z ×H G Definition 9.10
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canonical stack (morphism) Definitions 5.3 and 5.10
close morphism Definition 2.3
cohomologically affine Definitions 3.6 and 6.1
essentially trivial gerbe Definition 7.19
fantastack Definition 4.1
join-closed subdiagram of monoids Definition 8.8
(locally) of global type Remark 10.3
good moduli space morphism Definition 6.1
pointed Definition 3.10
root stack Definition 7.17
saturated Definition 2.1
Stein morphism Definition 6.1
tight diagram Definition 8.7
toric monoid Definition 8.1
unstable cone Definition 6.6
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