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Abstract 

Manipulating Light with Nano-Photonic Structures 

by 

Bo Zeng 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Feng Wang, Chair 

 

 

Manipulation light in the nano scale, by controlling its phase or magnitude, is key to efficient and 

compact designs in modern photonic technology. Its application ranges from tele-communication, 

biological imaging to probing electronic phenomena and quantum computation. High Quality 

factor (Q) resonators for both dielectric and metallic devices with two dimensional form factors, 

and high on-off ratio wave modulators where light transmission can be tuned in situ are exemplary 

ideas and of great interest and importance in those applications. Among the light waves, terahertz 

radiation, known as the last frontier connecting microwave and optical regime in the 

electromagnetic spectrum, has been an increasingly active field of research. Recent development 

of THz sources and detection has led to an increasing demand of active devices for its wave 

manipulation. In the thesis, we focus our effort on developing novel nano photonic structures that 

act as better light modulator and resonators. We first develop theories regarding principles and 
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techniques to achieve tunable high Q resonances in dielectric photonic structures using a new 

“diatomic” design. The essence of the “diatomic” design is that it can dramatically improve Q of 

the resonating modes by minimizing the radiative far-field coupling. We then extend the concept 

of “diatomic” in dielectric gratings to “diatomic” metallic cavities that results in high Q plasmonic 

metamaterial resonators compared to conventional designs. Lastly, we demonstrate, in simulation 

and experiment, a hybrid metamaterial design showing much larger modulation power by 

combining metallic nano-slits with graphene, a promising THz-active 2D material. Our 

investigation into THz metamaterial designs combines device fabrication, numerical simulation, 

semi-analytical modelling and ultra-fast time domain THz measurements. Our theoretical and 

experimental results could provide insight to the physical understanding and future development 

of THz metamaterial devices, as well as being of value to the THz community that seeks 

application with high performance modulator/resonators in general. 
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INTRODUCTION 

 

1. Metamaterial and its optical resonance 

Metamaterial is an umbrella word for man-made materials whose electric and magnetic properties 

can be readily engineered1. Examples that demonstrate its exotic properties include negative 

refractive index lenses, invisible cloaks and so on2,3. Metamaterial is usually composed of periodic 

structures of subwavelength size, where the detail of each unit cell is too small to be “seen” from 

the incident light. Therefore, the entire metamaterial, however complex in its unit cells, can be 

modelled as an equivalent bulk whose permittivity 𝜖 and permeability 𝜇 are convenient functions 

of some design parameters4.  

Generally speaking, properties of a metamaterial are controlled by its constituting unit cells, and 

its periodic nature makes its optical eigenstates Bloch waves. There are numerous ways to study 

the optical behavior of a metamaterial from its unit cells, either through LC circuit modelling5, 

parameter extraction from S Matrix6 in numerical simulations or by semi-analytic methods like 

Rigorous Coupling Wave Analysis (RCWA) and moment matching7,8. We focus on semi-analytic 

methods in this thesis when we deal with metamaterial designs.  

Among many of the variants of metamaterial, metasurface is a particular type with extremely thin 

optical thickness. Apart from being a conventional metamaterial, metasurface holds the advantage 

of easy integration with other 2D materials (graphene/MoS2) as a possible experiment platform as 

well as large fabrication throughputs, i.e. using lithography, thanks to its planar geometry.   

By engineering the real part of 𝜖 , it is possible to make metasurface support reflection or 

transmission resonances around the wavelength of interest. By engineering the imaginary part of 
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𝜖, we can further control the Quality factor (Q). Also known as “scale invariance”, a design of 

metamaterial for one wavelength can be relatively easily applied to a different range of 

wavelengths just by scaling the design parameters accordingly. This attribute is practically 

invaluable as it makes validating optical metamaterial designs much easier. Experiments can 

potentially be done in the THz or even microwave regime to verify optical designs using devices 

with μm features instead those of nms. 

2. Graphene and its free carrier THz Absorption 

Graphene, a two dimensional sheet of carbon atoms arranged in a honeycomb lattice, has been an 

important example of two dimensional (2D) materials. Band structure of graphene calculated using 

tight binding models reveals that it a semi metal and it has a linear 𝜔 − 𝑘 dispersion curve for the 

so called “massless fermions” around K(K’) points in the Brillouin zone. The most significant 

optical and electronic consequences of this is the uniform absorption in the long wavelength 

regime9 and efficient tuning of Fermi levels by electrostatic gating10.  

Dielectric functions of graphene have been studied in theory11 and in experiments12 in depth. It 

follows that the dielectric function approximates a Drude response in the long wavelength limit, 

indicating a dominant contribution from free carriers. Therefore, we can engineer its dielectric 

function by controlling the free carrier concentration, also known as Drude weight13. Thanks to 

the low density of states (DOS) near its 𝐾(𝐾′) point, it is remarkably efficient to dope graphene 

using simple electrostatic gating, for example, using ion gel12.  

We will primarily use this technique to tune the Fermi level of our graphene devices in experiments 

described in this thesis.  
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3. Simulation Techniques: Numerical and Semi-Analytical Methods 

Simulation is, at the expense of computational resources (memory, CPU, network etc.), a general 

purpose and vastly powerful tool to solve electromagnetic problems in complex systems. Capable 

of computing the distribution and dynamics for electromagnetic fields, it often lends insight to 

various optical systems like plasmonic gratings and resonating cavities. Simulation using 

numerical methods largely comes into two flavors: FDTD (Finite Difference Time Domain) and 

FEM (Finite Element Method)14,15. In a nutshell, they tackle the problem by mapping 𝐸 and 𝐻 

fields into space-time grids and search for solution in each grid iteratively, following the form of 

discretized Maxwell equations. While FDTD is capable of simulating a broadband source and 

visualizing the field evolution with time, FEM has advantages of supporting more complex, non-

uniform grids as well as faster computation for high Q modes, where the former generally fall 

short of.  

Numerical simulation is a brutal force solver for Maxwell equations, as it doesn’t assume any prior 

knowledge on the form of its solutions. When it does, however, computational costs can be 

drastically reduced. RCWA (Rigorous Coupling Wave Analysis)16 is such an example that 

assumes a planar wave excitation and planar wave solutions in the far field. It is a semi-analytic 

method as it involves analytical forms of eigenmodes in incidence (region I), device (region II) 

and transmission (region III). It expands the field in all three regions into their corresponding, 

orthonormal eigenmodes and match the boundary condition to solve for respective coefficients. Its 

computational speed can improve as we truncate higher order eigenmodes, and from the 

convergence curve we can gain insight on which eigenmodes the observed resonance is mostly 

attributed to.
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1 FDTD AND RCWA  

 

1.1 INTRODUCTION TO FDTD 

FDTD (Finite Difference Time Domain) method is, in a broad language, a family of appropriate 

algorithms that predicts the time and space evolution of electromagnetic fields with high numerical 

accuracy for any given configuration. The configuration, in electromagnetic languages, is the 

geometric arrangement of permittivity (𝜖) and permeability (𝜇) plus any source setup if incident 

waves are involved. FDTD always assumes no free charge for Gauss’s Law, hence: 

∇ ∙ �⃗⃗� = 0 (1 − 1) 

∇ ∙ �⃗� = 0 (1 − 2) 

Recall Maxwell Equations for Ampere’s and Faraday’s law in free space: 

∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
(1 − 3) 

∇ × �⃗⃗� = 𝜖0

𝜕�⃗� 

𝜕𝑡
(1 − 4) 

FDTD can be written using staggered update rules for both 1D and 2D problems in a discretized 

space and time scheme. The staggering is necessary to make sure FDTD’s numerical stability, 

ensuring a conservation of electro-magnetic energy to avoid blow up for either �⃗�  or �⃗�  fields after 

several rounds of updates. 
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1.1.1 FDTD for 1D and 2D Problems 

For 1D case, let �⃗�  be polarized in 𝑦, �⃗�  be polarized in 𝑧, and our 1D system in along 𝑥 axis, Eq. 

(1-3) and (1-4) can be rewritten symmetrically: 

𝜕𝐸𝑦

𝜕𝑡
= −

1

𝜖0

𝜕𝐻𝑧

𝜕𝑥
(1 − 5) 

𝜕𝐻𝑧

𝜕𝑡
= −

1

𝜇0

𝜕𝐸𝑦

𝜕𝑥
(1 − 6) 

Take the central difference approximations for both space and time derivatives and we will have a 

finite difference form: 

𝐸𝑦
𝑡+0.5𝛿𝑡(𝑥) − 𝐸𝑦

𝑡−0.5𝛿𝑡(𝑥)

𝛿𝑡
= −

1

𝜖0

𝐻𝑧
𝑡(𝑥 + 0.5𝛿𝑥) − 𝐻𝑧

𝑡(𝑥 − 0.5𝛿𝑥)

𝛿𝑥
(1 − 7) 

𝐻𝑧
𝑡+𝛿𝑡(𝑥 + 0.5𝛿𝑥) − 𝐻𝑧

𝑡(𝑥 + 0.5𝛿𝑥)

𝛿𝑡
= −

1

𝜇0

𝐸𝑦
𝑡+0.5𝛿𝑡(𝑥 + 𝛿𝑥) − 𝐸𝑦

𝑡+0.5𝛿𝑡(𝑥)

𝛿𝑥
(1 − 8) 

Eq. (1-7) is following the exact central difference formalism while Eq. (1-8) has a grid shift of 

0.5𝛿𝑥 and 0.5𝛿𝑡 for both 𝐻𝑧 and 𝐸𝑦. Rearranging Eq. (1-7) and Eq. (1-8), it is possible to write a 

set of temporal update equations for 𝐸𝑦(𝑥),𝐻𝑧(𝑥) in the entire problem space, giving FDTD the 

name “time domain”: 

𝐸𝑦
𝑡+0.5𝛿𝑡(𝑥) = 𝐸𝑦

𝑡−0.5𝛿𝑡(𝑥) −
𝛿𝑡

𝜖0𝛿𝑥
(𝐻𝑧

𝑡(𝑥 + 0.5𝛿𝑥) − 𝐻𝑧
𝑡(𝑥 − 0.5𝛿𝑥)) (1 − 9) 

𝐻𝑧
𝑡+𝛿𝑡(𝑥 + 0.5𝛿𝑥) = 𝐻𝑧

𝑡(𝑥 + 0.5𝛿𝑥) −
𝛿𝑡

𝜇0𝛿𝑥
(𝐸𝑦

𝑡+0.5𝛿𝑡(𝑥 + 𝛿𝑥) − 𝐸𝑦
𝑡+0.5𝛿𝑡(𝑥)) (1 − 10) 

Eq. (1-9), Eq. (1-10) moves both 𝐸𝑦 and 𝐻𝑧 in time by step of 𝛿𝑡. It is important to note the update 

equations are written in a staggered manner. As an example, in order to calculate an update for 𝐸𝑦 
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at position 𝑥  from time stamp 𝑡𝐴  to 𝑡𝐵 , we use fields of 𝐻𝑧  at staggered positions 𝑥𝐴  and 𝑥𝐵 

calculated at time stamp in the middle of 𝑡𝐴  and 𝑡𝐵 . So that 𝑡 = (𝑡𝐴 + 𝑡𝐵) 2⁄ , also 𝑥 =

(𝑥𝐴 + 𝑥𝐵) 2⁄ . The same rule applies for 𝐻𝑧. In this way, we always calculate 𝐸 at odd (1 2⁄ )𝛿𝑡 

time stamps, and 𝐻 in even time stamps. Similarly, we always calculate 𝐻 at odd (1 2⁄ )𝛿𝑥 space 

coordinates, and 𝐸  at even coordinates. This interleaving manner ensures a controlled pace at 

which the two mutually interacting components updates, and also avoids blow off instabilities 

should an update cycle emerges. 

 

Figure 1-1: Two dimensional FDTD calculation grids for a TM wave 

 

To make Eq. (1-9) and Eq. (1-10) more symmetric, it is customary to normalize 𝐸 so that �̃� =

√𝜖0 𝜇0⁄ 𝐸. Using this notation, Eq. (1-9) and Eq. (1-10) become: 

�̃�𝑦
𝑡+0.5𝛿𝑡(𝑥) = �̃�𝑦

𝑡−0.5𝛿𝑡(𝑥) −
𝛿𝑡

√𝜖0𝜇0𝛿𝑥
(𝐻𝑧

𝑡(𝑥 + 0.5𝛿𝑥) − 𝐻𝑧
𝑡(𝑥 − 0.5𝛿𝑥)) (1 − 11) 

𝐻𝑧
𝑡+𝛿𝑡(𝑥 + 0.5𝛿𝑥) = 𝐻𝑧

𝑡(𝑥 + 0.5𝛿𝑥) −
𝛿𝑡

√𝜖0𝜇0𝛿𝑥
(�̃�𝑦

𝑡+0.5𝛿𝑡(𝑥 + 𝛿𝑥) − �̃�𝑦
𝑡+0.5𝛿𝑡(𝑥)) (1 − 12) 
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Note the time domain update step 𝛿𝑡 cannot be too large or it will connect spacelike points in 

space-time, which violates special relativity. To enforce the compliance, we set  
𝛿𝑡

𝛿𝑥
<

1

𝑐
, where 𝛿𝑥 

is the maximum sampling step in all space dimensions. In general, for a N dimensional problem, 

we need 
𝛿𝑡

𝛿𝑥
<

1

√𝑁

1

𝑐
. Since all physical problems occur within 3D, it is sufficient to set 

𝛿𝑡

𝛿𝑥
=

1

2𝑐
. This 

is also known as the Courant condition17,18 in FDTD. On the other hand, 𝛿𝑥 is referred to as the 

spatial sampling size. It is a rule of thumb that we set 𝛿𝑥 ≤ 𝜆/10 to obtain numerically accurate 

and stable solutions. It is in tandem with experience that one needs roughly 10 sampling points to 

resolve a sinusoidal curve within one cycle.  

FDTD can readily solve for 2D electromagnetic problems using central difference time domain 

equations generalized from the above 1D cases. For a TM mode where only 𝐻𝑥, 𝐻𝑦 , 𝐸𝑧 are nonzero, 

the update equations can be written similarly as: 

 

�̃�𝑧
𝑡+0.5𝛿𝑡(𝑥, 𝑦) − �̃�𝑧

𝑡−0.5𝛿𝑡(𝑥, 𝑦)

𝛿𝑡
=

1

√𝜖0𝜇0

(
𝐻𝑦

𝑡(𝑥 + 0.5𝛿𝑥, 𝑦) − 𝐻𝑦
𝑡(𝑥 − 0.5𝛿𝑥, 𝑦)

𝛿𝑥
) 

−
1

√𝜖0𝜇0

(
𝐻𝑥

𝑡(𝑥, 𝑦 + 0.5𝛿𝑦) − 𝐻𝑥
𝑡(𝑥, 𝑦 − 0.5𝛿𝑦)

𝛿𝑦
) (1 − 13) 

 

𝐻𝑥
𝑡+𝛿𝑡(𝑥, 𝑦 + 0.5𝛿𝑦) − 𝐻𝑥

𝑡(𝑥, 𝑦 + 0.5𝛿𝑦)

𝛿𝑡
 

= −
1

√𝜖0𝜇0

�̃�𝑧
𝑡+0.5𝛿𝑡(𝑥, 𝑦 + 𝛿𝑦) − �̃�𝑧

𝑡+0.5𝛿𝑡(𝑥, 𝑦)

𝛿𝑦
(1 − 14) 
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𝐻𝑦
𝑡+𝛿𝑡(𝑥 + 0.5𝛿𝑥, 𝑦) − 𝐻𝑦

𝑡(𝑥 + 0.5𝛿𝑥, 𝑦)

𝛿𝑡
 

= −
1

√𝜖0𝜇0

�̃�𝑧
𝑡+0.5𝛿𝑡(𝑥 + 𝛿𝑥, 𝑦) − �̃�𝑧

𝑡+0.5𝛿𝑡(𝑥, 𝑦)

𝛿𝑥
(1 − 15) 

Note it is possible to have independent sampling sizes for 𝑥 and 𝑦. A familiar staggering manner 

follows from the 1D case and we can then write the time stamp update equations for �⃗�  and �⃗⃗�  

correspondingly. In our work, we mostly use 2D FDTD simulations. For people interested in 3D 

and more complex formalism, they can refer to Kane Yee’s seminar paper19 ,where a structure 

called Yee’s cell is employed. 

1.1.2 FDTD with dielectric functions 

Free space FDTD provides a trivial solution to Maxwell Equations. In problems of interest, 

however, materials with frequency-dependent dielectric functions are usually present, giving rise 

to complex electromagnetic phenomena. Assuming they are all non-magnetic (keeping 𝜇𝑟 = 1), 

FDTD formalism needs certain adjustment to get compatible with these materials. 

The first, simpler example would be to incorporate a material with dielectric constant 𝜖𝑟(𝑥, 𝑦) in 

our simulation. To do so, we need to recognize the general form of Ampere’s Law and replace �̃� 

by �̃�  in its central difference equation. Note that 𝜖𝑟�̃� = �̃� , therefore we update 
1

√𝜖0𝜇0
 with 

1

𝜖𝑟(𝑥,𝑦)√𝜖0𝜇0
  in Eq. (1-10) and Eq. (1-12). This is consistent with free space formalism where 

𝜖𝑟(𝑥, 𝑦) = 1. 

We will then use metal (or to a larger extent, plasma) as our second and more general example. 

The dielectric function is now frequency dependent.  
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𝜖𝑟(𝜔) = 1 +
𝜔𝑝

2

𝜔(𝑗𝑣𝑐 − 𝜔)
(1 − 16) 

where 𝜔𝑝 is the plasma frequency, 𝑣𝑐 is the collision frequency for a given metal.  

Ampere’s law still holds for �⃗⃗�  but the simple connection with �⃗⃗� = 𝜖𝑟�⃗�  in time domain breaks 

down. They are now connected in time domain with a full convolutional relation as follows: 

�⃗⃗� (𝑡) = ∫ 𝜖(𝑡 − 𝜏)�⃗� (𝜏)
𝑡

𝜏=−∞

(1 − 17) 

where 𝜖(𝑡) and 𝜖(𝜔) are related by Inverse Fourier Transform: 

𝜖𝑟(𝑡) = ∫ 𝜖𝑟(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

(1 − 18) 

The trick employed in the simple constant dielectric case will fail as 𝐷(𝑡) is calculated by not the 

instantaneous 𝐸(𝑡) but its past values back to the beginning of simulation. We therefore need a 

better machinery to find out update equations from �⃗⃗�  to �⃗� . 

It turns out that 𝑍 transform is the ideal tool to convert frequency domain to finite difference 

domain without dealing with complicated algebra in the convolution20. From the constitutional 

law: 

�⃗⃗� (𝜔) = 𝜖𝑟�⃗� (𝜔) = (1 +
𝜔𝑝

2

𝜔(𝑗𝑣𝑐 − 𝜔)
) �⃗� (𝜔) 

= (1 +
𝜔𝑝

2

𝑣𝑐

1

𝑗𝜔
−

𝜔𝑝
2

𝑣𝑐

1

𝑣𝑐 + 𝑗𝜔
) �⃗� (𝜔) (1 − 19) 

Applying 𝑍 transform in both sides: 
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�⃗⃗� (𝑧) = (1 +
𝜔𝑝

2𝛿𝑡 𝑣𝑐⁄

1 − 𝑧−1
−

𝜔𝑝
2𝛿𝑡 𝑣𝑐⁄

1 − 𝑒−𝑣𝑐𝛿𝑡𝑧−1
) �⃗� (𝑧) (1 − 20) 

Rearrange and let 𝑆(𝑧) =
𝜔𝑝

2𝛿𝑡

𝑣𝑐
(

1−𝑒−𝑣𝑐𝛿𝑡

1−(1−𝑒−𝑣𝑐𝛿𝑡)𝑧−1+𝑒−𝑣𝑐𝛿𝑡𝑧−2)𝐸(𝑧) be an auxiliary function, we have: 

𝐸(𝑧) = 𝐷(𝑧) − 𝑧−1𝑆(𝑧) (1 − 21𝑎) 

 

𝑆(𝑧) = (1 + 𝑒−𝑣𝑐𝛿𝑡)𝑧−1𝑆(𝑧) − 𝑒−𝑣𝑐𝛿𝑡𝑧−2𝑆(𝑧) 

+
𝜔𝑝

2𝛿𝑡

𝑣𝑐
(1 − 𝑒−𝑣𝑐𝛿𝑡)𝐸(𝑧) (1 − 21𝑏) 

We have thus established the update formula for 𝐸 from 𝐷. Rewrite this 𝑍 form into time domain, 

we have the following set of update rules (assuming a 2D problem with TM mode): 

𝐸𝑧
𝑡(𝑥, 𝑦) = 𝐷𝑧

𝑡(𝑥, 𝑦) − 𝑆𝑧
𝑡−𝛿𝑡(𝑥, 𝑦) (1 − 22𝑎) 

 

𝑆𝑧
𝑡(𝑥, 𝑦) = (1 + 𝑒−𝑣𝑐𝛿𝑡)𝑆𝑧

𝑡−𝛿𝑡(𝑥, 𝑦) − 𝑒−𝑣𝑐𝛿𝑡𝑆𝑧
𝑡−2𝛿𝑡(𝑥, 𝑦) 

+
𝜔𝑝

2𝛿𝑡

𝑣𝑐
(1 − 𝑒−𝑣𝑐𝛿𝑡)𝐸𝑧

𝑡(𝑥, 𝑦) (1 − 22𝑏) 

where 𝐸(𝑡) is updated from 𝐷(𝑡) minus the auxiliary function at last time stamp 𝑆(𝑡 − 𝛿𝑡), and 

𝑆(𝑡) is updated according using its own history of previous two time stamps. Collision frequency 

𝑣𝑐 here is physically depicted as a decaying factor for connecting quantities several time stamps 

older. 
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Adding Eq. (1-22) to Eq. (1-13), (1-14), (1-15) and replacing �⃗�  with �⃗⃗�  , we arrive at the final 

formula for running FDTD in a system with dielectric and metal. In general, material with arbitrary 

dielectric function 𝜖(𝜔) can be transformed to 𝑍 forms and the above formalism still applies, 

including Debye terms for a conductor, as well as Lorentian terms for materials with a absorption 

peak . This is the completes an overall setting for our study with metamaterials using FDTD.  

1.1.3 Boundary Conditions 

Boundaries are important concepts as we use FDTD to simulate larger and larger problems. For 

one thing, we barely care about solutions outside areas of our interest in the problem. In such cases, 

we want to simulate only this particular area for economic reasons and a special type of boundary 

is necessary to enclose the area and truncate outgoing fields without disturbing solutions inside. 

For another, we want to make full use of available symmetries in our problem, so that the 

computational power required for solution is drastically reduced. A prominent example is grating, 

where discrete translational symmetry is present. It is sufficient to simulate a unit cell of the grating 

with periodic conditions, which imposes certain rules to fields at cell boundaries. 

The first type is called a Perfectly Matching Layer (PML) boundary21. It mimics, as its name 

indicates, a layer with perfectly matched impedance so that any wave incident to it from the 

simulated area will transmit through and incrementally dissipated. It ensures no reflection happens 

at its interface with the simulated area so our solution is not disturbed. By employing PML, we 

can efficiently simulate a limited region of area that we are interested in while solutions outside of 

this area are safely thrown away. 

The second type of FDTD boundaries is called the periodic boundary. It is equivalent to imposing 

a set of mathematical constraints at the specified coordinates. In the context of a one dimensional 
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(1D) grating, periodic boundaries at 𝑥 = 0, 𝑥 = 𝐿 is implemented as 𝐸(0) = 𝐸(𝐿)𝑒𝑖𝑘𝑥𝐿 , 𝐻(0) =

𝐻(𝐿)𝑒𝑖𝑘𝑥𝐿, where 𝐿 is the size of grating unit cells and 𝑘𝑥 is Bloch vector in reduced Brouillon 

zone. This formalism can be conveniently extended to 2D and 3D cases. 

1.2 INTRODUCTION TO RCWA 

RCWA is a semi-analytic method in the frequency domain that takes advantage of eigenmode 

expansion to obtain far field solutions of a layered system.  

 

Figure 1-2: Typical field expansion of RCWA of one dimensional gratings  

source: http://www.photond.com. 

 

It is useful, for example, to calculate reflection/transmission spectra of a grating.  It is generally 

faster compared to FDTD as it converts the problem of calculating the full electromagnetic fields 

in time domain to coefficients of electromagnetic eigenmodes in the frequency domain. It is also 

particularly suited for resonating systems, since its computational time is independent of Quality 

factor (Q) of the resonance and its frequency resolution can be extremely high, which usually 

means protracted simulation time in FDTD. 

http://www.photond.com/
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1.2.1 Eigenmode inside gratings 

An efficient representation of eigenmodes in a uniform medium are planar waves. It is widely used 

in RCWA on the incidence and transmission side for its simple forms, where a substrate with 

constant dielectric function (or free space) is employed. In Fig. 1-2, the device layer (layer II, the 

layer of grating) is usually where interesting optical phenomena arise. If layer II is a dielectric slab, 

its eigenmodes will be trivial planar waves and our problem is reduced to a simple F-P cavity. On 

the other hand, if layer II is of a more complex structure, then the spatial profile of its leading 

eigenmodes, together with their relative phases, will eventually determine the overall far field 

optical spectrum of the device. Let’s use a binary rectangular grating as an example. 

Inside a binary rectangular grating, the dielectric function 𝜖(𝑥) is piecewise of the form 

𝜖(𝑥) = 𝜖1, 0 < 𝑥 ≤ 𝑠 

𝜖(𝑥) = 𝜖2, 𝑠 < 𝑥 ≤ 𝐷 (1 − 23) 

In a unit cell (one period), we can write its eigensolutions in these two regions22s. Without loss of 

generality, we consider a TM mode. In region I, Electrical field 𝐸𝑦  can be represented, in the 

frequency domain, as sum of left and right propagating fields, with complex amplitudes 𝐸1
+, 𝐸1

− to 

be determined: 

𝐸𝑦
𝐼 (𝑥) = 𝐸1

+𝑒−𝑗𝑘1𝑥 + 𝐸1
−𝑒𝑗𝑘1𝑥 (1 − 24𝑎) 

Accordingly, by Faraday’s law, we can get 𝐻𝑧
𝐼(𝑥) as: 

𝐻𝑧
𝐼(𝑥) =

𝜔𝜖1

𝑘1
(𝐸1

+𝑒−𝑗𝑘1𝑥 − 𝐸1
−𝑒𝑗𝑘1𝑥) (1 − 24𝑏) 

where 𝑘1 = √𝑘0𝜖1
2 − 𝛽2, and 𝛽 is the propagation constant for the eigenmodes in 𝑧 direction. 
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In fact, the amplitudes 𝐸1
+ and 𝐸1

− are determined by values of 𝐸𝑦
𝐼 (0) and 𝐻𝑧

𝐼(0), by setting 𝑥 = 0 

of Eq. (1-24). 

𝐸1
+ =

1

2
(𝐸𝑦

𝐼 (0) +
𝑘1

𝜔𝜖1
𝐻𝑧

𝐼(0)) (1 − 25𝑎) 

𝐸1
− =

1

2
(𝐸𝑦

𝐼 (0) −
𝑘1

𝜔𝜖1
𝐻𝑧

𝐼(0)) (1 − 25𝑏) 

Substitute Eq. (1-25) back to Eq. (1-24), we obtain a characteristic matrix concerning field 

propagation relations from 𝑥 = 0 in region I: 

[
𝐸𝑦

𝐼 (𝑥)

𝐻𝑧
𝐼(𝑥)

] =

[
 
 
 cos 𝑘1𝑥 −𝑗

𝑘1

𝜔𝜖1
sin 𝑘1𝑥

−𝑗
𝜔𝜖1

𝑘1
sin 𝑘1𝑥 cos 𝑘1𝑥 ]

 
 
 
[
𝐸𝑦

𝐼 (0)

𝐻𝑧
𝐼(0)

] 

= 𝑇(𝑘1, 𝑥) [
𝐸𝑦

𝐼 (0)

𝐻𝑧
𝐼(0)

] (1 − 26) 

Similarly, we write the characteristic matrix for region II: 

[
𝐸𝑦

𝐼𝐼(𝑥)

𝐻𝑧
𝐼𝐼(𝑥)

] =

[
 
 
 cos 𝑘2(𝑥 − 𝑠) −𝑗

𝑘2

𝜔𝜖2
sin 𝑘2(𝑥 − 𝑠)

−𝑗
𝜔𝜖2

𝑘2
sin 𝑘2(𝑥 − 𝑠) cos 𝑘2(𝑥 − 𝑠)

]
 
 
 
[
𝐸𝑦

𝐼𝐼(𝑠)

𝐻𝑧
𝐼𝐼(𝑠)

] 

= 𝑇(𝑘2, 𝑥 − 𝑠) [
𝐸𝑦

𝐼𝐼(𝑠)

𝐻𝑧
𝐼𝐼(𝑠)

] (1 − 27) 

Matching the continuity boundary condition at 𝑥 = 𝑠, we have: 

[
𝐸𝑦

𝐼𝐼(𝑥)

𝐻𝑧
𝐼𝐼(𝑥)

] = 𝑇(𝑘2, 𝑥 − 𝑠)𝑇(𝑘1, 𝑠) [
𝐸𝑦

𝐼 (0)

𝐻𝑧
𝐼(0)

] (1 − 28) 
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In particular, set 𝑥 = 𝐷: 

[
𝐸𝑦

𝐼𝐼(𝐷)

𝐻𝑧
𝐼𝐼(𝐷)

] = 𝑇(𝑘2, 𝐷 − 𝑠)𝑇(𝑘1, 𝑠) [
𝐸𝑦

𝐼 (0)

𝐻𝑧
𝐼(0)

] = 𝑒±𝑖𝑘𝐷 [
𝐸𝑦

𝐼 (0)

𝐻𝑧
𝐼(0)

] (1 − 29) 

𝑒𝑖𝑘𝑥 is determined by the incident condition, and it relates relative phases between adjacent unit 

cells. In the case of normal incidence, 𝑒𝑖𝑘𝑥 = 1.  

Eq. (1-29) is recognized as a eigenvalue-eigenvector function for matrix 𝑇(𝑘1, 𝑘2, 𝐷, 𝑠) =

𝑇(𝑘2, 𝐷 − 𝑠)𝑇(𝑘1, 𝑠). Relating 𝑡𝑟(𝑇) to the sum of its eigenvalues, a dispersion equation for 

propagating modes in the grating region can be established: 

cos 𝑘𝐷 = cos 𝑘1𝑠 cos 𝑘2(𝐷 − 𝑠) −
1

2
(
𝜖1𝑘2

𝑘1𝜖2
+

𝜖2𝑘1

𝑘2𝜖1
) sin 𝑘1𝑠 sin 𝑘2(𝐷 − 𝑠) (1 − 30) 

Given 𝑘 from incident conditions, Eq. (1-30) is an equation relating 𝜔 with propagation constant 

𝛽, as 𝑘𝑖 = √𝜖𝑖𝜔2/𝑐2 − 𝛽2 for 𝑖 = 1,2. This formalism can be easily extended to unit cells with 3 

or more regions (beyond binary gratings).  

Once 𝛽 is solved from Eq. (1-9), 𝑘1, 𝑘2 will be determined and so is shape of each eigenmode. 

Usually for each 𝜔, there are multiple solutions for 𝛽. They are arranged with ascending |𝑘𝑖|. 

Note that some of the modes are even (bright), some of the modes are odd (dark). Their overlap 

with free space fields determine their coupling coefficient to the fat field. The concept of bright 

and dark modes inside grating can be useful when we study optimizing gratings for large Q factors.  

1.2.2 Matching the boundary condition 

To solve 𝑟𝑚, 𝑡𝑚 and mode coefficients inside the grating region, we need to additional constraints. 

Physically speaking, we need to match 𝐸 and 𝐻 according to Maxwell’s Equations at both the 

incidence and transmission boundaries (𝑦 = 0, 𝑦 = 𝑡, where 𝑡 is the thickness of the grating).It 
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yields a set of simultaneous equations that one can solve numerically. A full treatise of the topic 

in matrix forms can be found in references elsewhere16,23.  

1.2.3 Far field reflection and transmission  

Once 𝑟𝑚, 𝑡𝑚  are solved and repeated for many different wavelengths, we are able to calculate 

reflection and transmission spectra. For a system with many nonzero 𝑟𝑚 (or 𝑡𝑚) , each of them 

corresponds to a diffraction term in the far field. For a subwavelength grating where 𝐷 ≪ 𝜆, only 

zeroth order reflection/transmission is non-evanescent. In such cases, we can simply get: 

𝑅 = |𝑟0|
2, 𝑇 = |𝑡0|

2 

Below is an example of spectra calculated using RCWA compared to FDTD. They agree with each 

other very well. By RCWA, we can further inspect the field distribution on and off resonance, to 

validate our intuition of the origin of such resonances.   
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2 BROADBAND THZ MODULATORS BY GRAPHENE-

METAMATERIAL HYBRID DEVICE  

 

2.1 MOTIVATION 

Terahertz (THz) wave is widely referred to as the “last frontier”24 in the electromagnetic spectrum, 

with frequency ranging from 0.3 to 10 THz (1 THz = 1012 Hz) and photon energy on the order of 

several meV. THz technology has been widely recognized as a promising candidate for next 

generation imaging and wireless communication. Although it is still not mature compared to its 

electronic and optical counterparts, we have seen significant progress in THz generation25,26,27 and 

detection28,29 over the last decade. Consequently, demand for active THz wave control is surging. 

Among them, electrically controlled THz modulator is particularly appealing because it provides 

both real time manipulation of THz wave and easy integration on chip.  

Research on electrical modulation of THz waves has been an increasingly active field lately. 

Graphene, in particular, has been shown to provide an impressive broadband modulation of ~ 20% 

on power30, a significant improvement over previous semiconductor modulators. This broadband 

modulation is of special advantage given the limited THz sources available. At the same time, the 

modulation depth of THz waves is still limited by the finite conductivity achievable for a single 

atomic layer. Alternatively, coupling semiconductor or graphene to a resonant THz meta-material 

results in a larger modulation depth but it only works for a narrow band frequency window31,32.  
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2.2 RECENT PROGRESS 

Compared to a plain sheet of graphene, plasmonic structures exhibit extraordinary light 

transmission and greatly enhanced local electrical field33,34. By modifying this enhanced field, it 

is possible to achieve large modulation of transmitted waves. Atomically thin and flexible, 

graphene can efficiently couple to locally enhanced fields, known as “hot spots”. Consequently 

we can achieve large modulation with a graphene/plasmonic-structure hybrid device using 

graphene as an active load35,36.  

However, there remain two major challenges to implement graphene/plasmonic-structure hybrid 

device for optimized THz modulation. First of all, it is desirable to preserve the broadband THz 

modulation of bare graphene for the new hybrid device30. Secondly, an efficient coupling between 

graphene and the plasmonic structure is necessary for optimized modulation. For example, 

graphene conductivity is attributed to the delocalized π-electrons so that the enhanced local field 

needs to be engineered “in-plane” to maximize the coupling efficiency. Recently, 

semiconductors37 or graphene31,32 coupled to resonant THz metamaterials have shown improved 

modulation depth but they only work for a narrow frequency window. Meanwhile, researchers 

have attempted to improve the THz modulation by coupling graphene to broadband 

metamaterials38, but the modulation depth is still limited and the study on optimized coupling is 

lacking. 
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2.3 THEORY 
 

2.3.1 Far Field Transmission of Metamaterial 

A meta-material surface made of periodic gold slit arrays, shown schematically in Fig. 2-1a, is 

used in our design to enhance THz modulation. It has been shown previously39 that a single sub-

wavelength slit of width w, light with polarization perpendicular to the slit (along x axis) excites 

surface current that induces charge oscillations across the slit. This capacitive-coupled oscillation 

gives rise to a near field enhancement factor of  ~𝜆/𝑤 in the slit according to the effective λ-zone 

theory40, and the transmission through the slit comes from the displacement current in the slit. On 

the contrary, periodic gold slits exhibit a wavelength independent enhancement factor of ~𝑝/𝑤 in 

the slit if 𝑝 ≪ 𝜆, while the enhancement reduces to the single slit case (~𝜆/𝑤) if 𝑝~𝜆 . In the 𝑝 ≪

𝜆 limit, we expect that the radiation from each periodic slit adds up coherently, giving rise to a 

large THz transmission.  

In the coordinate system shown in Fig. 2-2,  𝑧 = 0 denotes the interface between the slit array and 

medium on the transmission side. To relate electrical fields in both regions, we apply the tangential 

continuity boundary condition from Faraday’s Law at the interface: 

𝐸𝑥
𝐼𝐼𝐼(𝑥, 𝑧 = 0) = 𝐸𝑥

𝐼𝐼(𝑥, 𝑧 = 0) (2 − 1) 

where 𝐸𝑥
𝐼(𝑥, 𝑧) ,  𝐸𝑥

𝐼𝐼𝐼(𝑥, 𝑧)  is the 𝑥  component of Electric field in region I and region III 

respectively. 
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Figure 2-1: Broadband Terahertz metamaterial of periodic gold slits.  

(a) Schematic drawing of periodic gold slits suspended in air. (b) Simulated spatial distribution of electrical field 

enhancement of THz wave for a gold slit of width 2 µm and period 20 µm. The THz wave is polarized along x 

(perpendicular to the slit). (c) Color plot of power transmission as a function of period to wavelength ratio and slit 

width to period ratio. (d) Frequency dependent transmission for various geometries. The three solid lines correspond 

to the dashed line cuts in (c) and show large transmission over a broad range of frequency (black trace is for slit 

width 2 µm and period 20 µm).  Slits with width 2 µm and period 40 µm (red dashed trace) and 60 µm (magenta 

dashed trace) show decrease of transmission at high frequency. All simulations are performed for gold slit devices 

which are 80 nm thick and suspended in air. 

 

We perform Fourier Transform (FT) with respect to variable 𝑥 in both sides of Eq. (2-1). Note that 

both sides are periodic functions with a period of 𝑃. The FT of Left Hand Side (LHS) results in a 

sum of planar waves for arbitrary 𝑧: 

𝐸𝑥
𝐼𝐼𝐼(𝑥, 𝑧) =

2𝜋

𝑃
∑ �̃�𝑥

𝐼𝐼𝐼(𝑘𝑛)𝑒𝑖𝜁𝑛𝑧𝑒𝑖𝑘𝑛𝑥

∞

𝑛=−∞

(2 − 2) 
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with 𝑘𝑛 = 2𝜋
𝑛

𝑃
  . The wave vector in 𝑧  for each term is determined by Helmholtz equation as 

𝜁𝑛 = √(
2𝜋

𝜆
)2 − 𝑘𝑛

2
, where 𝜆 is the effective wavelength in region III. Eq. (2-2) is also known as 

the Rayleigh-Bloch Expansion. 

 

Figure 2-2: Schematic representation of a Faraday Loop (A-B-C-D).  

The side C sits exactly at the interface between region I (the side of the incident light) and II (slits array) 

 

In the subwavelength regime (in which the slit-array device is designed to work) where 𝜆 > 𝑃, it 

is easy to see that 𝜁𝑛 is always imaginary except for the term 𝑛 = 0. Since imaginary 𝜁𝑛 leads to 

evanescent waves that decay in z direction and cannot propagate into far field in region III (𝑧 ≫

𝜆), the far field transmission (𝑃𝑡𝑟𝑎𝑛𝑠) is solely determined by the 𝑛 = 0 term of Eq. (2-2). In other 

words, only the zeroth order of transmission contributes to our measured transmission in 

experiment.  

In the far field limit, we have: 

𝐸𝑥
𝐼𝐼𝐼(𝑥, 𝑧 → ∞) =

2𝜋

𝑃
�̃�𝑥

𝐼𝐼𝐼(0)𝑒𝑖𝜁0𝑧 (2 − 3) 
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Therefore, the transmission intensity can be written as 𝑃𝑡𝑟𝑎𝑛𝑠 =
1

2
𝐸𝑥𝐻𝑦

∗ =
|
2𝜋

𝑃
�̃�𝑥

𝐼𝐼𝐼(0)|2

2𝑍𝐼𝐼𝐼
, where 𝑍𝐼𝐼𝐼 is 

the electromagnetic impedance in region III. 

The FT of right hand side (RHS) of Eq. (2-1) can be written in a similar form as well: 

𝐸𝑥
𝐼𝐼(𝑥, 𝑧 = 0) =

2𝜋

𝑃
∑ �̃�𝑥

𝐼𝐼(𝑘𝑛)𝑒𝑖𝑘𝑛𝑥

∞

𝑛=−∞

(2 − 4) 

Substitute Eq. (2-4), (2-2) to Eq. (2-1), we have: 

∑ �̃�𝑥
𝐼𝐼𝐼(𝑘𝑛)𝑒𝑖𝑘𝑛𝑥

∞

𝑛=−∞

= ∑ �̃�𝑥
𝐼𝐼(𝑘𝑛)𝑒𝑖𝑘𝑛𝑥

∞

𝑛=−∞

(2 − 5) 

By Eq. (2-3), (2-5) and orthogonality of each Fourier Transform component, we can rewrite 

electrical field at far field in Region III as: 

𝐸𝑥
𝐼𝐼𝐼(𝑥, 𝑧 → ∞) =

2𝜋

𝑃
�̃�𝑥

𝐼𝐼𝐼(0) =
2𝜋

𝑃
�̃�𝑥

𝐼𝐼(0) (2 − 6) 

On the other hand: 

2𝜋

𝑃
�̃�𝑥

𝐼𝐼(0) =
1

𝑃
∫ 𝐸𝑥

𝐼𝐼(𝑥, 𝑧 = 0)𝑑𝑥

𝐷
2

−
𝐷
2

(2 − 7) 

Since the tangential field 𝐸𝑥
𝐼𝐼(𝑥, 𝑧 = 0) must be zero everywhere on top of gold (gold is assumed 

to be a Perfect Electric Conductor (PEC) in the THz regime), we have: 

𝐸𝑥
𝐼𝐼𝐼(𝑥, 𝑧 → ∞) =

1

𝑃
∫ 𝐸𝑥

𝐼𝐼(𝑥, 𝑧 = 0)𝑑𝑥

𝑤
2

−
𝑤
2

=
𝜂𝐸0𝑤

𝑃
(2 − 8) 
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where 𝜂 ≡
1

𝑤

∫ 𝐸𝑥
𝐼𝐼(𝑥,𝑧=0)𝑑𝑥

𝑤
2

−
𝑤
2

𝐸0
 is explicitly the average field enhancement, defined as 〈

𝐸𝑔𝑎𝑝

𝐸0
〉 ,  inside 

the slit. 𝐸0 is the field amplitude of the incident THz wave.  

Putting all these pieces together, we have the final expression for THz power transmittance: 

𝑇 =
𝑃𝑡𝑟𝑎𝑛𝑠

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
=

1
2𝑍𝐼

(
𝜂𝐸0𝑤

𝑃 )
2

1
2𝑍𝐼𝐼𝐼

𝐸0

2 =
𝑍𝐼𝐼𝐼

𝑍𝐼
(
𝜂𝑤

𝑃
)
2

(2 − 9) 

where 𝑍𝐼𝐼𝐼 is the impedance of the region for incident light (region III). When the configuration 

is symmetric, i.e. 𝑍𝐼 = 𝑍𝐼𝐼𝐼:  

𝑇 = (
𝜂𝑤

𝑃
)
2

(2 − 10) 

2.3.2 Local Field Enhancement 

In the limit of large period 𝑃/𝜆 → ∞, our slit array effectively becomes a single-slit, in which the 

average field enhancement inside the slit can be calculated exactly using the “local capacitor” 𝜆 –

zone model40. In this model, local field enhancement in the slit originates from opposite charge 

oscillation (thus accumulation) at both edges of the slit due to surface currents excited by the 

incident light. The effective “size” of accumulated charge extends to roughly ~𝜆 on both sides of 

the slit. The amount of charge accumulation within this extension is given by: 

𝑄 =
𝜖0𝜆

𝑖𝜋
(2 − 11) 

The field enhancement in the slit is estimated to be proportional to 𝑄 and inversely proportional 

to slit width 𝑤. We have: 
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𝜂 =
𝜖0𝜆

𝜋𝑤𝐶
~

𝜆

𝑤𝐶
(2 − 12) 

where 𝐶 is the effective capacitance of a single slit. 

For a small enough wavelength with 𝑃 ≫ 𝜆, the 𝜆-zone for individual slit is not disturbed by 

adjacent slits, and Eq. (2-12) is still valid. One immediate conclusion from Eq. (2-12) is that for 

sufficiently high frequencies ( 𝜆 → 0 ), 𝜂 → 0 , hence 𝑇 → 0 . In general, 𝑇  decreases with 

increasing frequency, which agrees with our simulation result. 

On the other hand, in the long wavelength limit when 𝑃 ≪ 𝜆, we can construct a quasi-static 

Faraday Loop41 depicted in Fig. 2-2. 

Note 𝐸𝑥
𝐴(𝑥) ≈ 𝐸0 for large enough |𝑙𝐵| and 𝐸𝑧

𝐵(𝑧) = 𝐸𝑧
𝐷(𝑧) because of the periodic condition. 

Also by definition of the average local field enhancement, ∫ 𝐸𝑥
𝐶𝑑𝑥

𝐶
= 𝜂𝑤𝐸0 . Following the 

Faraday’s loop A-B-C-D in the quasi-static limit, we therefore deduce: 

∮ 𝐸 ⋅ 𝑑𝑠

𝐴→𝐵→𝐶→𝐷

= 0 → 𝜂~
𝑃

𝑤
(2 − 13) 

This reveals a frequency independent 𝜂 , in the long wavelength regime, consistent with our 

simulation. According to Eq. (2-10), we can find the frequency independent transmission T. From 

the simulation results, we know 𝑇 → 1 in the 𝜆 ≫ 𝑃 limit. Combining this with Eq. (2-10), the Eq. 

(2-13) can be written exactly as 𝜂 =
𝑃

𝑤
, which is also the maximum value for field enhancement in 

the slit according to Eq. (2-10). This maximum enhancement is therefore solely determined by the 

geometry and can be improved through miniaturization of the slit 𝑤 for any a fixed period 𝑃. It 
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can be, in principle, extremely high up to a limit imposed by the state of the art technology of 

lithography.   

Eq. (2-12) and Eq. (2-13) reveal distinctively different behavior of 𝜂. In the short wavelength 

regime,  𝜂 diminishes for shorter wavelengths while it remains a constant upon long wavelength 

excitation. The power transmittance 𝑇 changes accordingly. A “cross-over” point can be defined 

between these two regimes where 𝑇 = 0.5.  

A rigorous solution for 𝜂 for entire range of 𝜆 including the “cross-over” can be found in Ref41 

from an electron-dynamic point of view, or using general wave expansion techniques like the 

Rigorous Coupling Wave Analysis (RCWA)23. 

By Eq. (2-8), we know the far field transmission 𝑇 is directly related to the average local fields 

inside each slit. We therefore expect a large modulation of the THz wave transmission if we couple 

the periodic slits with an active load which can modify the local field significantly. As mentioned 

before, graphene is an ideal candidate for this active load because of its highly tunable conductivity 

at THz 42,43. When gated sufficiently, the conductivity of graphene can be increased by more than 

10 times from its minimum conductivity44 at CNP (~ 4 G0). At the same time, graphene has a non-

resonant Drude response to THz wave, which is essential to operate the hybrid modulator over 

broad frequency range. Moreover, being atomically thin, graphene is flexible can be strongly 

coupled to the enhanced near field in the slit. 
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2.4 EXPERIMENT 

We fabricate a novel hybrid device by coupling a single layer graphene sheet to a broadband THz 

metamaterial and achieve extraordinary THz wave power modulation by controlling the graphene 

conductivity through electrostatic gating.  This THz metamaterial, made of periodic gold slit array, 

shows close to unity THz transmission over broad range of frequency that arises from the coherent 

radiation of greatly enhanced near field in the slits. Graphene coupled to this metamaterial acts as 

an active load which significantly modifies the near field when doped efficiently. We also show 

that this strong coupling between graphene and the metamaterial device gives rise to a large 

enhancement of absorption of graphene even when the graphene is charge neutral. This hybrid 

graphene-metamaterial device therefore provides a new platform for future nonlinear THz 

investigation of graphene. The broadband nature of this hybrid device is particularly advantageous 

for nonlinear THz spectroscopy study considering the limited intense THz sources available.  

2.4.1 Device Fabrication 

To describe our experiment in detail, we first transfer a single layer graphene grown by chemical 

vapor deposition method (CVD)45 to a 2-20 𝜇𝑚 gold slit device on 300 nm SiO2/ Si substrate. We 

define the source, drain and gate electrodes on graphene using a shadow mask and gate graphene 

electrostatically using ion-gel46, as schematically shown in Fig. 2-4a.  During the THz transmission 

measurement, we vary the gate voltage to control the density of carriers in graphene and 

simultaneously monitor the resistance of the device by applying a small bias across the source-

drain electrodes. This simultaneous electrical transport measurement helps to determine the charge 

neutral point (CNP) of graphene (~ 0.33 V in Fig. 2-4c). Fig. 2-4b shows that when the graphene 

is charge neutral the transmitted THz wave through the hybrid device (blue trace) shows a small 

phase shift compared with the transmitted THz wave through the reference sample of SiO2/Si chip, 
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while the most obvious change is the decrease of the peak value near sampling delay τ = 0 ps. 

Since the THz transmission spectrum of the device is relatively flat in the frequency window of 

our THz source, we can use the change of the peak value to estimate the transmission of the hybrid 

device, which is roughly ~84% when the graphene is at CNP and ~ 43% for graphene gated at -2 

V away from the CNP.  

2.4.2 Conductivity of graphene sheet in the slit 

To verify our theory of THz modulation, it is necessary to determine the actual conductivity of 

graphene sheets within slit gaps during experiment. For the devices in Fig. 2-4a, we simultaneously 

measure the resistance of the device in a two terminal geometry by applying a small bias. The 

resistance we measure is the sum of contact resistance and that of graphene sheet carrying current. 

Considering the geometry factor and assuming a gating capacitance for ion gel, we have the 

following expression: 

𝑅 = 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 +
1

𝑔𝑒𝜇√𝑛𝑖𝑚𝑝
2 + (

𝐶|𝑉 − 𝑉𝑐𝑛𝑝|
𝑒 )

2
 

= 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 +
1

𝑔𝑒√(𝜇𝑛𝑖𝑚𝑝)
2
+ (

𝜇𝐶|𝑉 − 𝑉𝑐𝑛𝑝|
𝑒 )

2
(2 − 14)

 

Where 𝑉𝑐𝑛𝑝 is the charge neutral point (CNP) of graphene, 𝐶 is the gating capacitance, 𝑉 is the 

gating voltage for electrostatic gating, 𝜇 is graphene mobility, 𝑛𝑖𝑚𝑝 is impurity doping at 𝑉 = 𝑉𝑐𝑛𝑝, 

𝑔 is geometry factor of the graphene piece in study, and 𝑒 is the electron charge.  
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Figure 2-3: Electrical transport characterization and the THz transmission modulation. 

(a) Resistance measured for the bare graphene device on SiO2/Si substrate. (b) Resistance measured for the 

graphene-slit array hybrid device on SiO2/Si substrate. 

For our control device of bare graphene, we measure the geometry ratio to be 𝑔 =
𝑤

𝐿
=

2

3
. For the 

slit hybrid device where the major conducting channel is the graphene outside of slit array 

(graphene on top of gold slit array is shorted), we measure the geometry ratio to be 𝑔 =
𝑤

𝐿𝑜𝑢𝑡
= 4.  

For both devices, we fit the experimental data according to Eq. (2-14). We fix the values for  

𝑔, 𝑉𝑐𝑛𝑝 . 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝜇𝑛𝑖𝑚𝑝 and 𝜇𝐶 are fitting parameters. 𝑉 is the fitting variable. 

For the control device, 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 191.6 ± 9Ω, 𝜇𝐶 = (5000 ± 40)𝜇𝐹/(𝑉𝑠), 𝜇𝑛𝑖𝑚𝑝 = (1537 ±

7) × 1012/(𝑉𝑠). The value of 𝜇𝐶 agrees with previous studies for ion-gel gated graphene13,47, 

where 𝜇~1000𝑐𝑚2/(𝑉𝑠) and 𝐶~6𝜇𝐹/𝑐𝑚2. For the graphene-slit hybrid device, we have the best 

fitting (red trace in Fig. S3b) with the fitting parameters 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 140 ± 5Ω, 𝜇𝐶 = (1124 ±

8)𝜇𝐹/(𝑉𝑠), 𝜇𝑛𝑖𝑚𝑝 = (1156 ± 4) × 1012/(𝑉𝑠).  

With the value of  𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡, we can extract graphene sheet conductivity for different gate voltages 

using:   

𝜎 =
1

(𝑅 − 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡)𝑔
(2 − 15) 
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We use this derived graphene sheet conductivity to plot Fig. 2-5c. 

2.4.3 Measuring THz transmission 

By monitoring the peak value change, we obtain the normalized transmission change as a function 

of gate voltage as shown in Fig. 2-4d.  

 

Figure 2-4: THz modulation by the graphene/metamaterial hybrid device. 

(a) Schematic representation of the experiment setup for measurement as well as the hybrid device configuration. 

We fabricate the hybrid device by transferring a single layer graphene on top of a gold slit device of width 2 µm and 

period 20 µm. The incoming THz wave is polarized perpendicular to the slit orientation. (b) Transmitted THz 

waveforms for a reference sample (dashed black trace), the hybrid device with graphene at CNP (solid blue trace), 

and the hybrid device with graphene at gate voltage -1.75 V (solid magenta trace). (c) Resistance measured for this 

hybrid device shows CNP at the gate voltage of 0.33 V. (d) Simultaneously measured THz field transmission of this 

hybrid device (normalized to the transmission when graphene is at CNP). 

 

This change of transmission through the hybrid device (red dots in Fig. 2-4d) closely correlates to 

the graphene conductance we measure simultaneously (Fig. 2-4c): the transmission being the 

highest when the graphene is charge neutral and the lowest when the graphene conductance is the 

highest. The field modulation, defined as 
|𝐸𝑚𝑎𝑥|−|𝐸𝑚𝑎𝑥𝑚𝑖𝑛|

|𝐸𝑚𝑎𝑥|
, is as large as ~ 60% when the gate 
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voltage is at -2 V. This field modulation corresponds to a power modulation (defined as 
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥
) 

of ~ 82%, which is about 4 time larger than previous result using bare graphene.  

Fig. 2-5 shows a summary of our device together with its transmission modulation as we gate the 

graphene. In an FEM simulation shown in Fig. 2-5b, it is clear that the local field enhancement 

changes with graphene conductivity accordingly, supporting our underlying claims. In Fig. 2-5c, 

we explore the modulation performance of a miniaturized device (0.1-2 𝜇𝑚), projecting it to be as 

high as 95%.  

 

 

Figure 2-5: THz modulation depth vs. graphene conductivity. 

(a) Schematic drawing of the side view of the hybrid device. (b) Simulated field enhancement factor in the slit for 

the hybrid device when there is no graphene (0 G0), graphene conductivity at 4 G0, and graphene conductivity at 60 

G0, respectively. The slit device is of width 2 µm and period 20 µm. (c) Normalized THz power transmission 

modulation as a function of graphene conductivity. The solid line traces are simulation results for bare graphene 

(red) and the hybrid device (blue). The empty dots are experimental data for bare graphene (red) and the hybrid 

device (blue), and we fit the experimental data to the simulation result with the contact resistance being the only 

fitting parameter. 
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2.5 CONCLUSION 

In summary, we systematically investigate, both in theory and in experiment, a broadband THz 

metamaterial of periodic gold slits that exhibits near unity transmission over a broad range of 

frequencies. We attribute the large THz transmission to the coherent radiation from the enhanced 

near field in the slits, and this transmission can be greatly modulated by modifying the near field 

enhancement. We achieve so in a proof of concept demonstration by coupling a single layer CVD 

graphene to the metamaterial device and controlling the conductivity of graphene through 

electrostatic gating. Our broadband hybrid device shows much larger THz modulation than a bare 

graphene device, which itself is much improved compared to the previous semiconductor 

modulator. We also show the possibility for further improvement through miniaturization of the 

slits. At last, this hybrid device provides a new platform to realize strong light matter interaction 

in graphene, providing a design framework to future nonlinear THz studies. 
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3 TUNABLE DARK MODES IN ONE-DIMENSIONAL “DIATOMIC” 

DIELECTRIC GRATINGS 

 

3.1 MOTIVATION 

Planar optical resonators with high quality factor (Q) modes are important in modern photonic 

technologies. Their applications range from sensing48–50,  filtering51–54, display55–57 to laser and 

optical interconnects58,59. The planar design has attracted much attention in research because of its 

benefits of easy fabrication and potential compatibility for on-chip integration with other 

optoelectronic components60–62. Compared to the small mode-volume and defect-based 

counterparts63–66, delocalized modes, most notably the guided waves in photonic crystal slabs, 

allow free space excitation and better coupling efficiency with quantum well or 2D materials like 

graphene or transition metal dichalcogenides61,67,68. Ultra high Q resonances in photonic crystal 

slabs have been proposed and demonstrated in various designs, a recent example being the high 

contrast gratings (HCG)54,69,70. However, their optimization towards robustness and tunability is 

generally lacking. 

Therefore, we are motivated to study a new class of subwavelength 1D dielectric gratings with two 

nonequivalent subcells in each period, referred to as “diatomic” gratings. These “diatomic” 

gratings have great design flexibility as they support structurally defined “dark modes”. Q factors 

of these “dark modes” are robust against strong external perturbation and their resonance can be 

tuned continuously, for instance, by mechanically stretching the grating in-situ. When suspended 

in air, our optimized “diatomic” design boasts a much thinner geometry, higher Q and better in-

situ tunability compared to conventional HCGs71,72. At resonance, electrical fields of the “diatomic” 

grating are largely concentrated in its air gap, making it a suitable device for sensing. The 
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“diatomic” grating acts effectively as a thin layer of low refractive index medium with tunable 

resonances and exposed fields, making it a potentially useful platform to various applications. 

3.2 THEORY 

3.2.1 Dark modes in grating 

A “dark” mode is an electromagnetic eigenmode of an optical system that has very small radiative 

coupling (𝜅) to far fields73,74. The concept of “dark” mode is central to many novel optical 

phenomena including Fano resonance (FR) and electromagnetically induced transparency (EIT)75–

77. For an optical cavity, 𝜅 is usually related to 1 − |𝑟|2, where 𝑟 is the complex mode reflectivity 

at the cavity interfaces (e.g. 𝑧 = 0 or 𝑧 = 𝑡 in Fig. 3-1a). Compared with “bright” modes, photons 

in a “dark” mode experience longer lifetime in the cavity and thus higher Q because of the 

effectively larger 𝑟. This leads to ultra-high Q resonances in dielectric structures where other types 

of photonic energy loss are negligible.  

For a guided mode in subwavelength gratings,  𝜅 is qualitatively determined by the field overlap 

between this mode and the zeroth order reflection or transmission plane wave at the interfaces 𝑧 =

0, 𝑡 respectively78,79. In particular, with normal incidence and TM polarization which is our main 

focus in this paper, 𝜅 can be written as: 

1 − |𝑟|2 ≡ 𝜅 ∝
|∫ 𝐸𝑥𝑑𝑥

𝑃

0
|
𝑧=0,𝑡

2

𝑃
(3 − 1)

 

where 𝑃 is the period of the grating and 𝐸𝑥 is the 𝑥 component of the electrical field of the mode 

at the interface 𝑧 = 0 or 𝑧 = 𝑡. 𝑟 and 𝜅 are the same for both reflection (𝑧 = 0) and transmission 

(𝑧 = 𝑡) interfaces when the grating is suspended in air.  
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The reduced Brillouin zone and coupling behavior of a regular subwavelength 1D grating 

(schematic view in Fig. 3-1a) is illustrated in Fig. 3-1b. With normal incidence, only modes at the 

zone center (Γ point) can be excited in the grating, if scattering from grating edges are to be ignored. 

Due to the overall reflection symmetry of the 1D grating, both even and odd modes are present at 

the zone center. The even modes are “bright” modes that couple strongly to the far-field radiation 

(red dots in Fig. 3-1b), and the odd modes are completely “dark” with zero coupling (dark 

dots)80 .The modes at finite 𝜅, in particular those close to the zone edge, cannot couple to the 

normal incident because of large momentum mismatch. Those modes (gray dots) are otherwise 

considered “dark” because 𝜅 ≈ 0 owing to the field’s sign change in one unit cell (𝑘𝑥 → 𝜋/𝑃). 

3.2.2 Zone folding 

The zone edge “dark” modes can be folded back to Γ point by breaking the symmetry of adjacent 

unit cells in the grating, after which they gain a small but finite 𝜅 to the normal incidence. In this 

process, which is also known as “zone folding”, two adjacent unit cells (referred here as subcell 1 

and subcell 2) merge into a bigger one, illustrated in Fig. 3-1c. We call such 1D gratings with two 

subcells in one period “diatomic” gratings. It is worth noting that a similar symmetry breaking 

concept, called the “doubly periodic grating”, has been previously proposed to improve the angular 

tolerance of guided mode resonances81–85. However, the Q of these resonators remain relatively 

low (~8,000) and their dark mode aspects are largely unexplored.  

One can engineer the asymmetry between the subcells to control the behavior of the grating with 

great flexibility. Here we focus on the cases that the two subcells are identical except for their air 

gaps. This asymmetry is captured by 𝛿 =
|𝑎1−𝑎2|

𝑃
, where 𝑎1  and 𝑎2  are the widths of the 

corresponding air gaps and 𝑃 is the grating period. 𝛾 =
2𝑠

𝑃
 is the dielectric filling factor and 𝑠 is 
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the width for each dielectric bar in the subcells (Fig. 3-1c). In our case, the dielectric bar is made 

of silicon ( 𝑛𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 3.48). When 𝛿 = 0, the design is identical to a regular grating. However, 

when 𝛿 ≠ 0, the zone edge “dark” modes are folded back to Γ point in the Brillouin Zone with 

finite 𝜅,  shown as the gray dots in Fig. 3-1d.  

 

Figure 3-1: Design of the Double Bump and the emergence of intrinsic “dark” modes. 

a) Schematic diagram of the regular grating. Excitation is with normal incidence and TM polarization. Grating 

parameters: thickness t, period P/2 and filling factor γ. Grating incidence and transmission interfaces are at z=0 

and z=t, respectively. b) Brillouin zone of a typical regular grating. Red dots represent “bright” modes at the zone 

center and dark dots represent completely “dark” modes due to particular symmetries in the grating. Gray dots 

represent “dark” modes with a small but finite κ at the zone edge. c) Schematic diagram of a double bump grating 

with the same filling factor γ, thickness t except for a doubled period P and finite air gap difference δ. Two subcells 

merge into a larger unit cell. d) Brillouin zone of a typical double bump grating with δ=0.05. e) Illustration of 

emergence of a pair of odd/even modes from the “bright” eigenmode in terms of symmetry breaking. f) The field 

profile for 𝐸𝑥 for the 1st order “bright” and “dark” eigenmodes in the double bump design. 

 

It is important to note that the 1st order “dark” mode (the gray dot in the dashed blue curve of Fig. 

3-1d) is guaranteed to exist in the subwavelength regime as long as 𝛾 ≠ 0 and 𝑛𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 > 1, even 

at large incidence angles when 𝑘𝑥 ≫ 0. This is easily checked as the result of gap opening due to 

the non-uniform 𝜖(𝑥) in the grating. The dispersion of the fundamental mode (blue curve) in Fig. 



33 

 

3-1b always bends downwards from the light cone, ensuring 𝜔1𝑠𝑡 𝑑𝑎𝑟𝑘 𝑚𝑜𝑑𝑒 <
2𝜋𝑐

𝑃
 . The emergence 

of these “dark” modes in the zone center can also be viewed as mode splitting in Fig. 3-1e, where 

a pair of even and odd modes are created from the originally “bright” mode after symmetry 

breaking. The odd mode has weak coupling to far field radiation due to the destructive 

interferences from its two subcells, corresponding to a “dark” mode. Typical electrical field 

profiles for the 1st order “bright” and “dark” modes of the “diatomic” grating (𝛿 = 0.05, 𝛾 = 0.2) 

are shown in Fig. 3-1f. The mode profiles and band structures in the Brillouin zone are calculated 

using numerical methods described in Ref22. 

3.2.3 Diatomic structures 

The “diatomic” structure is completely defined with three parameters: grating period (𝑃), dielectric 

filling factor (𝛾) and the subcell difference (𝛿). When 𝛿 ≠ 0 but 𝛿 ≪ 1 (that is, |𝑎1 − 𝑎2| → 0),  it 

is straightforward to estimate the coupling coefficient 𝜅 for the “dark” modes represented in Fig. 

3-1e: 

𝜅 ∝
|∫ 𝐸𝑥𝑑𝑥

𝑃

0
|
2

𝑃
=

|∫ 𝐸𝑥𝑑𝑥
𝑠+𝑎1

0
− ∫ 𝐸𝑥𝑑𝑥

𝑃

𝑠+𝑎1
|
2

𝑃
∝ 𝛿2 → 0 (3 − 2)

 

 

Eq. (3-2) follows because for small 𝛿, the mode profile in subcell 1 and subcell 2 are approximately 

the same except for a sign change. The “diatomic” design not only makes those “dark” modes 

accessible to zone center excitation, but more importantly, it can engineer their “darkness” (𝜅) by 

proper choice of 𝛿. In addition, Eq. (3-2) depends solely on the design (𝑃, 𝛾, 𝛿) itself. As a result, 

the Q and the existence of these “dark” modes are expected to be robust even under strong external 

perturbation.  
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3.3 SIMULATION 

3.3.1 Q factor of dark mode resonance 

Fig. 3-2b shows the simulated reflection spectrum for various filling factors 𝛾 in a thin “diatomic” 

grating using rigorous coupled-wave analysis (RCWA)16. The grating design parameters are 𝛿 =

0.05 and 
𝑡

𝑃
= 0.1. Focusing on the sharp resonance of the “dark” mode, we see marked decline in 

Q (Fig. 3-2a) from 108 to 105 with 𝛾 varying from 0.1 to 0.5. The resonance wavelength  𝜆𝑟𝑒𝑠 is 

slightly red-shifted due to a larger 𝑛𝑒𝑓𝑓 . The fall in Q can be qualitatively understood by an 

increased mixing between “dark” and “bright” modes in the grating, leading to reduced effective 

|𝑟| for the “dark” mode. Intuitively, an increase in 𝛾  (thus 𝑛𝑒𝑓𝑓) helps to excite more “bright” 

modes in the grating and as a result,  photonic loss rises in general because of their contribution of 

stronger coupling to the far fields. 

 

 

Figure 3-2: Dependence of Q on filling factors for the “diatomic” design 

(a) Dramatic decline in Q for the dark mode resonance as a result of increased filling factor and subsequent 

increased mixing with “bright” modes. (b) Reflection spectrum showing resonances of varying Q for 3 different 

filling factors. Inset shows a unit cell of the “diatomic” grating with given design parameters. 
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For design parameters 𝛿 = 0.05 and 
𝑡

𝑃
= 0.5, we see in Fig. 3-3a that indeed more “bright” mode 

resonances are present with larger 𝛾 , producing complex beating patterns as an unfavorable 

spectroscopic background. The presence of “bright” modes is more pronounced in a thick grating 

compared to thinner ones. In Fig. 3-3a, each of the sharper resonances corresponds to a “dark” 

mode, while 𝜆𝑟𝑒𝑠 is determined with round trip condition 𝜙𝑟𝑜𝑢𝑛𝑑 = 2𝜋𝑛 (color line in Fig. 3-3c). 

3.3.2 Interaction between bright and dark eigenmodes 

A closer look at Fig. 3-3b reveals that the reflectivity |𝑟| at the corresponding first order resonances 

𝜆𝑟𝑒𝑠 (𝜙𝑟𝑜𝑢𝑛𝑑 = 2𝜋, color markers in Fig. 3-3c) falls as 𝛾 is increased. One can also verify that 

with larger 𝛾, more “bright” modes (gray lines in Fig. 3-3c and Fig. 3-3b) with much smaller |𝑟| 

start to resonate. The exact behavior of mixing between “dark” and “bright” modes is complicated 

but it explains well the declining trend of Q factors seen in Fig. 3-3a. We conclude that Q degrades 

with 𝛾. Our observation also reflects the difficulty to achieve high Q resonances in a beat free 

background in other grating designs like the HCG, as they generally rely on a complicated mixing 

of “bright” modes that requires large grating thicknesses70. 
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Figure 3-3: Demonstration of the effect of filling factors on the double bump design. 

a) Emergence of beating from additional bright mode resonances for large filing factor 𝛾 in a thicker grating 

design. b) Decline in |𝑟| for the “dark” supermode (color line) due to mixing with bright modes. c) Round trip phase 

for various modes. The “dark” mode is plotted in color. It predicts well where the sharp resonance is and shows the 

emergence of new resonances from “bright” modes as γ increases. 

 

We then study the Q dependence on 𝛾 more carefully with an example of a thicker “diatomic” 

grating. For design parameters 𝛿 = 0.05 and 𝑡 𝑃⁄ = 0.5, we see in Fig. 3-3a that indeed more 

“bright” mode resonances are present with larger 𝛾, producing complex beating patterns as an 

unfavorable spectroscopic background. The presence of “bright” modes is more pronounced in a 

thick grating compared to thinner ones. In Fig. 3-3a, each of the sharper resonances corresponds 

to a “dark” mode, while 𝜆𝑟𝑒𝑠 is determined with round trip condition 𝜙𝑟𝑜𝑢𝑛𝑑 = 2𝜋𝑛 (color line in 

Fig. 3-3c). A closer look at Fig. 3-3b reveals that the reflectivity |𝑟| at the corresponding first order 

𝜆𝑟𝑒𝑠 falls as 𝛾  increases. One can also verify that with larger 𝛾, more “bright” modes (gray lines 

in Fig. 3-3c and Fig. 3-3b) with much smaller |𝑟| start to resonate. The exact behavior of mixing 
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between “dark” and “bright” modes is complicated but it explains well the declining trend of 

quality factors seen in Fig. 3-3a. We conclude that Q degrades with 𝛾. Our observation also reflects 

the difficulty to achieve high Q resonances in a beat free background in other grating designs like 

the HCG, as they generally rely on a complicated mixing of “bright” modes that requires large 

grating thicknesses70. 

3.3.3 A representative design 

 

Figure 3-4: The design of a typical single high Q resonance in “diatomic” grating. 

(a) The single high Q resonance in the “diatomic” grating (red) and the corresponding regular grating (blue). (b) 

Power law dependence of Q (blue) as a function of   for the “dark” mode resonance. The resonance wavelength 

barely changes during the tuning (red). 

 

In Fig. 3-4a, we show a characteristic single high Q (~106) resonance under TM and normal 

incidence (red curve) for the “diatomic” grating. The design parameters are 𝛾 = 0.2, 𝛿 = 0.05 and 

𝑡 𝑃⁄ = 0.1, where the dielectric filling is silicon (𝑛 = 3.48) and the grating is suspended in air. It 

is much thinner and has a much smaller dielectric filling factor compared to other high Q gratings 

like the HCG70,78. The 𝜔 − 𝛽 dispersion plot22 is calculated and it shows the 1st order “dark” and 

“bright” modes (blue dashed and solid lines, respectively) excited in the grating in the 

subwavelength regime, while 𝛽 is the propagation constant in 𝑧 for a given frequency 𝜔. The 2nd 

order “dark” mode (orange dashed line) is not excited because it is “completely dark” due to the 
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reflection symmetry in the grating80. For thin “diatomic” gratings, the “dark” mode gives rise to a 

single sharp resonance in the spectrum, free of off-resonance contributions.  

We note that its resonance wavelength is very close to 𝑃 ( 
𝜆𝑟𝑒𝑠

𝑃
≈ 1.018) and this makes the grating 

an optically thin ( 𝑛𝑒𝑓𝑓𝑡/𝜆𝑟𝑒𝑠 ≈ (𝛾(𝑛 − 1) + 1)𝑡/𝜆𝑟𝑒𝑠 ≈ 0.15 ) design. A zoom-in of the 

resonance is shown at the inset of Fig. 3-4a. The slight Fano shape indicates a weak interaction 

between the “dark” and the “bright” modes86. Compared to the Q factor (~40) of the guided mode 

resonance of a regular but otherwise identical (𝛿 ≈ 0) grating, Q in the “diatomic” grating is 

increased by more than 20,000 times (blue curve in Fig. 3-4a). This impressive Q is achieved with 

a subcell difference 𝛿 = 0.05, 5% of the period length 𝑃. A more aggressive design of 𝛿 = 0.02 

will push the Q up to 107 as shown in Fig. 3-4b and this is possible (for example, when 0.5𝜇𝑚 <

𝑃 < 1𝜇𝑚) using the state of the art fabrication techniques. Similar performance is observed when 

the “diatomic” grating sits on a substrate.  

In the log-log plot of Fig. 3-4b, Q diverges as 𝛿 → 0. When 𝛿 = 0 exactly, the “dark” mode 

resonance disappears due to its complete darkness. The scaling law of Q on 𝛿 is consistent with 

Eq. (3-2). It is notable that the resonance wavelength 𝜆𝑟𝑒𝑠 remains flat for a broad range of 𝛿 up 

to 𝛿 = 0.1, indicating that while |𝑟| of the “dark” mode varies dramatically, its round trip phase is 

not much affected by 𝛿 with changes by as large as 100 times. Therefore the parameter 𝛿 provides 

an effective control of Q in the design of “diatomic” gratings. From Eq. (3-2), one can obtain the 

approximate relation for fabrication tolerance of Q in terms of 𝛿 as 
𝑑𝛿

𝛿
~ |

𝑑𝑄

𝑄
|, a linear relation.  

Additionally, we can infer from Fig. 3-4b that the fabrication tolerance for 𝜆𝑟𝑒𝑠 in terms of 𝛿 is 

extremely high. In Fig. 3-4c, we also see that the enhanced (up to 105 times) 𝐸𝑥 field is largely 

concentrated in air gaps at resonance, consistent with the field profile for the 1st “dark” mode 
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plotted in Fig. 3-1d. This is very similar to plasmonic resonators designed for sensing87 , except 

that the parasitic photonic loss in metal is absent88. This very thin (
𝑡

𝑃
< 0.1) and very small filling 

factor (𝛾 ≤ 0.2) design makes the “diatomic” grating appealing for sensing applications that 

require both high Q resonance and a planar geometry for potential integration with 2D materials68. 

3.3.4 In situ tunable resonator: a possible application 

One major advantage of the symmetry-broken “dark” modes in “diatomic” gratings is their 

robustness to strong external perturbation. This is expected in our previous discussion because of 

their structurally defined 𝜅. As an important example, resonance wavelength (𝜆𝑟𝑒𝑠) of those dark 

modes can be tuned continuously in-situ without degrading the Q, while the perturbation is 

provided by stretching the grating using a flexible substrate.  

 

Figure 3-5: In-situ tuning of the high Q resonance in “diatomic” gratings 

(a) Solid and dashed curves represent the simulation results of a typical “di atomic” and HCG grating respectively. 

(b) A schematic view of the structure that allows for in-situ mechanical tuning of the grating period. 

 

A possible way to realize this idea is to embed silicon nano-pillars in the flexible PDMS substrate 

followed by the subsequent removal of PDMS to create a window of suspended silicon bars. The 

structure is supported by remaining PDMS at its periphery as illustrated in Fig. 3-5b. By stretching 

PDMS using electro-mechanically applied stress (MEMS, for example), we can vary the period 𝑃 
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in-situ, while the widths of silicon bars remain unchanged. As a result, phase of the reflectivity of 

the “dark” mode in the grating is continuously tuned79 and 𝜆𝑟𝑒𝑠 is shifted.  

We study the tuning capability of the stretched “diatomic” grating by simulating its reflection 

spectrum using RCWA. The design parameters are 𝛾 = 0.2, 𝛿 = 0.05 and 𝑡 𝑃⁄ = 0.1. A tuning 

range (Δ𝜆/𝜆0) of 40% achieved by stretching the substrate up to 1.4 times is shown in Fig. 3-5a 

(blue solid line). The orange solid curve shows a sustained high Q cross the tuning range without 

deterioration. To compare with a representative regular grating (HCG) that also supports high Q 

resonances70, the improvement of Q in the “diatomic” grating is up to 1000 times and its tuning 

range is ~ 10 times better. The tuning capability of the “diatomic” grating approaches that of the 

ideal case with invariant 𝜆𝑟𝑒𝑠/𝑃. This is desirable for applications that requires optimal tunability, 

like a tunable pixel in a display89. The “diatomic” grating is therefore an appealing candidate for 

planar resonators with tunable high Q resonances, whose practical design is still lacking to our 

best knowledge.  

3.4 SUMMARY 

One major advantage of the symmetry-broken “dark” modes in “diatomic” gratings is their 

robustness to strong external perturbation. This is characteristic in the “diatomic” grating since: 1, 

the existence of 1st order dark mode in the subwavelength regime is guaranteed and 2, the 𝜅 of the 

“dark” mode is structurally defined and it is minimally affected during stretch. The tuning 

capability of the “diatomic” grating approaches that of the ideal case (invariant 𝜆𝑟𝑒𝑠/𝑃) because 

𝜆𝑟𝑒𝑠 ≈ 𝑃 always holds in the design. The “diatomic” grating is therefore an appealing candidate 

for planar resonators with tunable high Q resonances, whose practical design is still lacking to our 

best knowledge.  
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To sum it up, we have theoretically studied a new class of 1D subwavelength gratings that supports 

tunable high Q resonances by breaking the symmetry between its unit cells. Optimization of the 

new structure, called the “diatomic”, results in an ultra-high Q resonance in a thin grating with 

small filling factors. It offers unique advantages in terms of design flexibility and high Q sensing. 

Most importantly, we show that the resonance wavelength of the “diatomic” grating can be tuned 

in-situ, exhibiting a close to ideal tuning range without compromising its Q. This work provides 

insight and design guidelines for this new class of planar resonators that are appealing to a wide 

range of applications including optical sensing, filtering and displays. 



42 

 

4 HIGH Q METALLIC RESONATORS USING DIATOMIC DESIGNS 

 

4.1 MOTIVATION 

Plasmonic resonators33 have been an active research field for its capability of realizing extremely 

enhanced local fields, a result of strong light confinement thanks to the large refractive index in 

metal. This local field enhancement is appealing for applications ranging from sensing, nonlinear 

optics and platforms for strong light-matter interaction33,75,90. By Purcell’s effect, local field 

enhancement can increase by many folds given a larger Q and similar mode volumes, a condition 

many experiments looking for strong light-mater interaction requires. Additionally, an improved 

Q can boost sensitivity in plasmonic sensors, making it a key to engineer around in such 

applications. Traditional plasmonic resonators like split-ring and subwavelength waveguides91, 

however, suffer from low Quality factors (Q) generally due to both the intrinsic Joule loss in metal 

and poor control of free space coupling. Here we present a design that achieves high Q in 

plasmonic resonators by control of its mode reflectivity using a diatomic grating structure92. This 

special design allows us to model the resonance as Fabry-Perot cavities and tune the equivalent 

end-mirror reflectivity effectively. Analogous to a Fabry-Perot resonator, free space coupling of 

plasmonic resonators sets the mode reflectivity at cavity ends, from which Q can be determined.  

With proper design, critical coupling of the resonator can be realized where Q is much higher than 

conventional plasmonic devices. The nature of our design is explained in the following theory 

section where anti-symmetric modes that minimize far field coupling73 play a key role. The theory 

presents an important view for plasmonic structures as it explores how resonant modes in adjacent 

cavities interact with each other. Its solution could also lend help to our better understanding of 

the high Q modes in diatomic gratings.  
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4.2 THEORY 

4.2.1 MDM waveguide 

Metal-dielectric-metal (MDM) waveguides are the constituent elements for the metallic cavity 

grating we study. It is a waveguide where a dielectric in sandwiched between metals. Shown in 

Fig. 4-1,  let the width of the dielectric to be 𝑑, and the structure is infinite in the other two 

dimensions (𝑦 and 𝑧): 

 

Figure 4-1: A typical MDM configuration with dielectric width 𝑑. 

Permittivity for the dielectric and metal are represented by 𝜖𝑑, 𝜖𝑚(𝜔), respectively. 

 

Propagating eigenmodes can be solved analytically from Maxwell’s Equations for the MDM 

layered structure. Specifically, in the subwavelength regime where 𝑑 ≪ 𝜆, the only propagating 

mode along 𝑦 is a fundamental TM mode. It is due to both the extremely small mode width and 

the strong suppression of electrical fields parallel to metal interface. In such cases, the field 

distribution of this TM mode resembles much like a TEM plane wave mode and it is concentrated 

inside the dielectric. Therefore, a subwavelength MDM cavity can achieve impressive mode 

confinement as well as reduced optical power loss in metal. It is responsible for extraordinary 

transmission in metal hole arrays as reported in many research articles93,94, and has been useful for 

plasmonic devices in a broad range of applications. The dispersion relation is given as follows95: 
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𝑅 = −
𝐾𝑚 𝜖𝑚⁄

𝐾𝑑 𝜖𝑑⁄
(4 − 1𝑎) 

1 − 𝑅

1 + 𝑅
= ±𝑒−𝐾𝑑𝑑 (4 − 1𝑏) 

where  𝐾𝑑,𝑚 = √𝛽2 − 𝜔2𝜖𝑑,𝑚 𝑐2⁄ , and 𝛽 is the propagation constant along 𝑦. For convenience we 

assume the dielectric is air and 𝜖𝑑 = 1. 

Solving Exact solutions for Eq. (4-1) is difficult. However at the long wavelength limit (𝜔 → 0), 

a solution called symmetric 𝐻𝑧 TM mode exists with an approximately linear dispersion law: 

𝑅𝑒[𝛽] =
𝜔

𝑐
√

2𝜆𝑝 + 𝑑

𝑑
, 𝜆𝑝 = 𝑐/𝜔𝑝 (4 − 2) 

Usually an antisymmetric mode also is present mathematically but it is ignored as it only exists 

with a much higher 𝜔 (close to 𝜔𝑝, the plasma frequency of metal).  

 

Figure 4-2: Field distribution for the symmetric 𝐻𝑧 TM mode. 

𝐸𝑦 is in the plot has a color scale 1000 times smaller than 𝐸𝑥. 

 

It is worth noting that (still in the subwavelength regime) as 𝑑 ≫ 𝜆𝑝, which is typically ~20𝑛𝑚 

for metals like gold, Eq. (4-2) becomes identical to a FEM mode in free space. This is in agreement 

with our field distribution analysis in the last paragraph. A representative field plot for 𝐸𝑥, 𝐸𝑦 and 

𝐻𝑧 is given in Fig. 4-2. 
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4.2.2 MDM cavity and its resonance 

When the MDM waveguide is truncated in both ends in 𝑦, it becomes a cavity. Due to a strong 

mode mismatch, the propagating TM mode inside MDM excites both reflection and transmission 

as it hits the truncation interface. It is possible to define a complex reflectivity 𝑟 to model the 

reflection of a single TM mode inside MDM. Let’s also define the truncation interfaces to be at 

𝑦 = 0 on the one side, interfacing with air, and 𝑦 = 𝑡 on the other side, interfacing with metal, as 

it reflects the MDM cavity in our model (Fig. 4-3). It is reasonable to set 𝑟𝑦=𝑡 ≈ −1 as most of the 

field is reflected back. Therefore, we are only left to deal with one remaining parameter 𝑟𝑦=0. 

 

Figure 4-3: A MDM cavity and field distribution 𝐸𝑥 at one of its resonance. 

The MDM cavity is truncated at 𝑦 = 0 with air and 𝑦 = 𝑡 with metal. Complex reflectivity can be defined at these 

interfaces to model the optical performance of this cavity. 

 

Once cavity is formed, resonances arise so long as for a propagating mode, 𝐴𝑟𝑔𝑠(𝑟𝑦=0) +

𝐴𝑟𝑔𝑠(𝑟𝑦=𝑡) + 2𝑡𝑅𝑒[𝛽] = 2𝜋𝑛. The round trip phase is determined by the propagation constant 

and reflectivity together. As argued before, 𝑟𝑦=𝑡 ≈ −1, so 𝐴𝑟𝑔𝑠(𝑟𝑦=𝑡) = 𝜋. On the other hand, 

𝑅𝑒[𝛽] is known according to Eq. (4-2) given 𝜔. Therefore, the resonance condition of this MDM 

cavity can be properly modelled if we can solve 𝑟𝑦=0.  Additionally, we can eventually obtain Q 

factors for a given resonance by Fabry-Perrot models using the formula: 
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𝑄 =
𝑅𝑒[𝛽]

2𝛼 − ln|𝑟𝑦=0| 𝐿⁄
(4 − 3) 

where 𝛼 is the dissipation constant for the guided mode and it is determined by the imaginary part 

of 𝛽 as 𝛼 = 𝐼𝑚[𝛽]. 

4.2.3 Reflectivity at the Air-Cavity interface 

For a single MDM cavity, by leveraging Fourier transform and continuity of Electrical field as 

well as Poynting vector at the interface, one can obtain the complex reflectivity 𝑟𝑦=0  for the 

symmetric 𝐻𝑧 TM in the form of a Fresnel equation96: 

𝑟𝑦=0 =
1 − 𝐺

1 + 𝐺
(4 − 4𝑎) 

𝐺 =
𝑍𝑀𝐷𝑀

𝑍0

1

2𝜋𝑑
∫

|𝐹(𝑘𝑥)|
2

√1 − (𝑘𝑥 𝑘0⁄ )2

∞

−∞

𝑑𝑘𝑥 (4 − 4𝑏) 

𝐹(𝑘𝑥) is the Fourier coefficient of field profile at 𝑦 = 0 for 𝐸𝑥. 𝑘𝑥 is the wave vector in 𝑥 of plane 

wave expansion in free space. In the ideal case, 𝐸𝑥 can be approximated as a rectangular function 

with non-zero values only inside the dielectric (−𝑑/2 ≤ 𝑥 ≤ 𝑑/2). Therefore we can write a 

analytical form for 𝐹(𝑘𝑥) = 𝑠𝑖𝑛𝑐(𝑘𝑥𝑑).  

Eq. (4-4b) is subject to rich interpretation. In the integral,  𝑘𝑥 > 𝑘0 represent plane waves to be 

evanescent in the free space, which does not transport energy. Thus they contribute to the 

imaginary part of 𝑟𝑦=0 as 1 − (𝑘𝑥 𝑘0⁄ )2 < 0. On the other hand, 𝑘𝑥 ≤ 𝑘0 waves are exactly the 

plane waves that takes energy to free space from the MDM cavity, making |𝑟𝑦=0| < 1. 
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Figure 4-4: MDM cavities in a grating. 

a): showing the schematic of a grating with MDM cavities. b): Calculated phase and amplitude of 𝑟𝑦=0 using 

formula Eq. (4-5) up to |𝑚| = 50. 

 

Eq. (4-4) works well for an isolated MDM cavity interfacing with air. For an array of MDM 

cavities arranged as a grating (shown in Fig. 4-4), the allowed Floquet modes in free space must 

have discrete values of 𝑘𝑥, to satisfy the periodic boundary conditions. Specifically, 𝑘𝑥 =
2𝜋

𝑃
𝑚 

where 𝑚 is an integer and 𝑃 is the periodicity of the grating. In such cases, Eq. (4-4) replaces its 

continuous integral with discrete sums as the following: 

1 + 𝑟𝑦=0 =
2

1 + 𝐺
(4 − 5𝑎) 

𝐺 =
𝑍𝑀𝐷𝑀

𝑍0

1

𝑃𝑑
∑

|𝐹(2𝜋𝑚𝜆0 𝑃⁄ )|2

√1 − (𝑚𝜆0 𝑃⁄ )2

 ∞

𝑚=−∞

(4 − 5𝑏) 

The analysis of evanescent and propagating wave contributions to 𝑟𝑦=0 follows that of Eq. (4-4). 
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4.2.4 MDM diatomic gratings  

 

 

Figure 4-5: Diatomic design for MDM gratings 

a): Schematics for a diatomic structure in MDM gratings, with two MDM cavity of slightly different widths 𝑤1, 𝑤2 in 

one unit cell. They are separated by half the period. b): A “dark mode” emerging from interaction of two MDM 

cavities the complex ratio of 𝐸𝑥 field in right cavity normalized by the left is 𝜅. 

 

We have discussed dark modes and its application in forming high Q overall resonances in chapter 

3. It can also be applied to MDM cavity gratings as shown in Fig. 4-5. Let 𝜅 be the complex field 

ratio between two MDM cavities (as one of them is normalized) at steady state. In principle, 𝜅 

takes two distinct values differing by a phase of 𝜋 as it is the eigenvalue of a near reflection 

symmetric system. When 𝐴𝑟𝑔𝑠(𝜅) ≈ 𝜋, it represents a field distribution shown in Fig. 4-5b. The 

overall reflectivity of the diatomic system reaches minimal and therefore, a high Q resonance mode 

emerges. The working principles of dark mode mediated high Q resonators have been studied in 

depths in Chapter 3. Here we will primarily focus on solving 𝑟1 and 𝑟2 for each of the MDM 

cavities and eventually a 𝑟𝑒𝑓𝑓 for the while diatomic system. 

4.2.5 Coupling between adjacent MDM cavities 

Following the unit cell scheme in Fig. 4-5b and let 𝑟𝑦=0 for the left and right cavity to be 𝑟1 and 𝑟2 

respectively. It is possible to calculate 𝑟1 and 𝑟2 simultaneously given 𝜅: 
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Assuming 𝐸𝑥 profiles are rectangular functions at 𝑦 = 0, Eq. (4-5) still holds except that 𝐹(𝑘𝑥) 

takes in contribution from both cavities: 

𝐹(𝑘𝑥) = 𝑤1𝑆𝑖𝑛𝑐 (
𝑤1𝑘𝑥

2
) + 𝜅𝑆𝑖𝑛𝑐 (

𝑤2𝑘𝑥

2
) 𝑒−𝑖𝜋𝐷𝑘𝑥 (4 − 6) 

where 𝑤1, 𝑤2 are widths for two MDM cavities and 𝐷 is the size of unit cell. 𝑒−𝑖𝜋𝐷𝑘𝑥 accounts 

for a phase shift due to their spatial separation of 𝐷/2.  

Substitute  Eq. (4-6) into Eq. (4-5) and solve for 𝑟1, 𝑟2 respectively, we obtain a simultaneous 

equation: 

1 + 𝑟1 =
2(1 + 𝑤2𝓑 − 𝑤2𝜅𝓓)

(1 + 𝑤2𝓑)(1 + 𝑤1𝓐) − 𝑤1𝑤2𝓓2
(4 − 7𝑎) 

1 + 𝑟2 =
2(1 + 𝑤1𝓐 −

𝑤1𝓓
𝜅  )

(1 + 𝑤2𝓑)(1 + 𝑤1𝓐) − 𝑤1𝑤2𝓓2
(4 − 7𝑏) 

where 𝓐,𝓑 and 𝓓 are complex integrals (sums for a grating) defined as follows: 

𝓐 =
𝑍1

𝑍0𝐷
∑

𝑆𝑖𝑛𝑐2 (
𝜋
𝐷 𝑚𝑤1)

√1 − (𝜆0𝑚 𝐷⁄ )2

∞

𝑚=−∞

(4 − 8𝑎) 

𝓑 =
𝑍2

𝑍0𝐷
∑

𝑆𝑖𝑛𝑐2 (
𝜋
𝐷 𝑚𝑤2)

√1 − (𝜆0𝑚 𝐷⁄ )2

∞

𝑚=−∞

(4 − 8𝑏) 

𝓓 =
√𝑍1𝑍2

𝑍0𝐷
∑

𝑆𝑖𝑛𝑐 (
𝜋
𝐷 𝑚𝑤2) 𝑆𝑖𝑛𝑐 (

𝜋
𝐷 𝑚𝑤1)

√1 − (𝜆0𝑚 𝐷⁄ )2

∞

𝑚=−∞

(4 − 8𝑐) 

The symmetric footing of 𝑟1, 𝑟2 is manifest in Eq. (4-7). 𝓓 is called the scattering-coupling term 

as explicit Eq. (4-8), while 𝓐,𝓑 is the self-scattering term. Their physical meaning becomes 
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apparent when we force to turn off the interaction term, i.e. set 𝓓 = 0. In such cases, Eq. (4-7) 

reduces to two independent equations of the exact form of Eq. (4-5), with 𝐺1 = 𝑤1𝓐, 𝐺2 = 𝑤1𝓑 

for 𝑟1, 𝑟2. It is interesting to also note that when 𝑤1 + 𝑤2 = 𝐷, both cavities get connected hence 

𝜅 = 1. It can be shown that as a result, 𝑟1, 𝑟2 = 0. This is consistent with the trivial fact both 

cavities diminish in this case.  

𝑟1, 𝑟2 can be easily solved once we know 𝜅. The problem therefore boils down to getting 𝜅. Unlike 

special cases discussed above, 𝜅 ≠ 0  as the scattering interaction is always present for 

subwavelength gratings in particular. However we can obtain a set of rules restricting possible 

values of 𝜅  and hope it develops to a self-consistent formula which eventually determines 𝜅 

together with 𝑟1, 𝑟2. In a steady state for the diatomic system, we propose the following rules: 

1. 𝜅 remains a constant for steady state solutions.  

2. 𝜅 is so that it makes round trip phase differences between to MDM cavities a constant. 

3. 𝜅 is so that it makes life time for photons in both MDM cavities the same.  

Requirement of 1-3 are natural for steady state solutions as both 𝑟1, 𝑟2  depends on 𝜅 , and 𝜅 

comprises of the phase difference and amplitude ratio of fields in the cavities. Point 2-3 essentially 

explains point 1 with more specificity.  

In the context of our MDM models, point 2 and 3 translates to constraints on 𝜅 as the following: 

𝐴𝑟𝑔𝑠(𝑟1) − 𝐴𝑟𝑔𝑠(𝑟2) = 2𝑡(𝑅𝑒[𝛽1] − 𝑅𝑒[𝛽2]) (4 − 9𝑎) 

𝐴𝑏𝑠(𝑟1)

𝐴𝑏𝑠(𝑟2)
= 𝑒2𝑡(𝐼𝑚[𝛽1]−𝐼𝑚[𝛽2]) (4 − 9𝑏) 

In general, 𝑅𝑒[𝛽1] ≠ 𝑅𝑒[𝛽2] as 𝑤1 ≠ 𝑤2.  
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However, in the deep subwavelength regime when 𝑤1, 𝑤2 ≫ 𝜆𝑝, we have 𝑅𝑒[𝛽1] ≈ 𝑅𝑒[𝛽2] by Eq. 

(4-2). Eq. (4-9a) relaxed to 𝐴𝑟𝑔𝑠(𝑟1) = 𝐴𝑟𝑔𝑠(𝑟2). In such cases, 𝜅 can be analytically solved to 

have the form: 

𝜅± =
𝓙 ± √𝓙 + 4𝑤1𝑤2𝓓2

2𝑤2𝓓𝑒−𝑖𝑡Δ𝛽
(4 − 10) 

where Δ𝛽 = 𝛽1 − 𝛽2 and 𝓙 is again a complex sum in the form of: 

𝓙 = (1 + 𝑤2𝓑) − 𝑒2𝑡𝑖Δ𝛽(1 + 𝑤1𝓐) +
(𝑒2𝑡𝑖Δ𝛽 − 1)𝓩

2
(4 − 11𝑎) 

𝒵 = (1 + 𝑤1𝓐)(1 + 𝑤2𝓑) − 𝑤1𝑤2𝓓
2 (4 − 11𝑏) 

 

Figure 4-6: An iterative algorithm to calculate 𝜅, 𝑟1, 𝑟2 in a self-consistent way. 

The algorithm starts with a naïve guess of 𝜅 = ±1, corresponding to bright and dark modes respectively. It then 

terminates if 𝜅 converges after many rounds of updates. 
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From Eq. (4-10), 𝜅 exhibits two solutions of nearly opposite phases. It exactly corresponds to the 

bright and dark modes of a diatomic system as discussed before. 

In the general cases, 𝜅 cannot be solved exactly. Therefore, we follow a numerical approach. Note 

Eq. (4-9a) also depends on 𝑡, the depth of MDM cavities. Therefore we develop an iterative method 

to numerically find self-consistent 𝜅 , as depicted in Fig. 4-6. This algorithm is able to find 

𝜅, 𝑟1, 𝑟2, 𝑡 for a given input 𝜆0 and 𝑤1, 𝑤2, 𝐷 when the system is at resonance. 

4.2.6 Effective Fabry-Perot and Critical Coupling  

Once 𝑟1, 𝑟2, 𝜅 is obtained, we can alternatively model our diatomic system as an effective Febry-

Perot (F-P) cavity. This can help us understand the resonance condition, Q and talk about round 

trip phase, overall reflectivity more intuitively. By definition of this terms, and consider the 

photonic energies in both cavities as a whole, we arrive at the following equations: 

(
𝜅2(1 − 𝑟2

2)

2𝑡 𝑣2⁄
+

1 − 𝑟1
2

2𝑡 𝑣1⁄
) (1 + 𝜅2)⁄ =

1 − 𝑟𝑒𝑓𝑓
2

2𝑡 𝑣𝑒𝑓𝑓⁄
 (4 − 12𝑎) 

(
𝜅2(1 − 𝑒−4𝑡𝐼𝑚[𝛽2])

2𝑡 𝑣2⁄
+

1 − 𝑒−4𝑡𝐼𝑚[𝛽1]

2𝑡 𝑣1⁄
) (1 + 𝜅2)⁄ =

1 − 𝑒−4𝑡𝐼𝑚[𝛽𝑒𝑓𝑓]

2𝑡 𝑣𝑒𝑓𝑓⁄
 (4 − 12𝑏) 

𝜔 𝑣𝑒𝑓𝑓⁄

2𝐼𝑚[𝛽𝑒𝑓𝑓] − ln(𝑟𝑒𝑓𝑓) 𝑡⁄
= 𝑄 (4 − 12𝑐) 

where 𝑣𝑖  is the phase velocity of light inside each MDM cavity. It can be calculated as 𝑣𝑖 =

𝜔/𝑅𝑒[𝛽𝑖]. 

Therefore, in principle, out diatomic grating can be effectively modeled as a single F-P cavity. Its 

resonance shape (presumably Lorentian), position (resonance frequency) and Q factors can be 

easily predicted using Eq. (4-12) once 𝜅, 𝑟1, 𝑟2, 𝑡 are solved. The resonance will reach an overall 
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𝑅 = 0 when a condition called critical coupling is reached. Physically speaking, it means all 

photonic energy coupled into the cavity has been absorbed by its round trip loss. By F-P formalism, 

the condition is given as follows: 

|𝑟𝑒𝑓𝑓| = 𝑒−2𝑡𝐼𝑚[𝛽𝑒𝑓𝑓] (4 − 13) 

We can use Eq. (4-13) together with Eq. (4-12) to determine the best design for a critically coupled 

resonator.  
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4.3 SIMULATION 

We run the above algorithm in Mathematica with different combinations of 𝑤2, 𝑤1 and 𝐷, for an 

excitation wavelength of 𝜆0 = 300𝜇𝑚. 𝜖𝑚(𝜔) is using Drude model of gold. The results are then 

plotted using Matlab. 𝑥, 𝑦 axes are of 𝜇𝑚 units. 

4.3.1 Q factors of dark modes 

Fig. 4-7 is the numerically solved 𝜅 in a 2 dimensional parameter space by tuning 𝐷 and 𝑤2 − 𝑤1. 

As shown in the figure, 𝐴𝑟𝑔𝑠(𝜅) behaves in agreement with our theoretical prediction.  Fig. 4-8 

further demonstrates how the Q factor differ for bright and dark modes. For the dark mode (using 

𝜅−), Q can be as high as 100 for a metallic resonator; while that of a bright mode lasts around 3 

for the whole parameter space we searched.  

 

Figure 4-7: Phase of both 𝜅− and 𝜅+ in the design parameter space 

For smaller 𝑤2 − 𝑤1, the dark mode 𝜅 has a phase difference close to 𝜋, while that of bright 𝜅 is close to 0. 

 

It verifies the conclusion we draw in Chapter 3 on dark modes. Because of a 𝜋 phase difference 

for the two components in a diatomic structure, its far field radiation is strongly suppressed (thus 

the name “dark mode”). Therefore, effectively this mode with 𝜅− enjoys a relatively higher 𝑟 in 

the MDM resonator. By Eq. (4-3), this translates to a very large Q resonator given the same 

intrinsic loss in metallic cavities. 
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Figure 4-8: Q factors of cavity for both 𝜅− and 𝜅+ in the design parameter space. 

The dark mode 𝜅 has consistently a higher Q than bright modes. 

 

4.3.2 Critically coupling design curves 

If  we plot |𝑟𝑒𝑓𝑓| and 𝑒−2𝑡𝐼𝑚[𝛽𝑒𝑓𝑓] together in the parameter space, as calculated from Eq. (4-12), 

one can visualize a design curve that satisfies critical coupling.  

 

Figure 4-9: Impedance matching design curve. 

also known as critically coupling, indicated as a design curve in the parameter space, where the round trip loss 

surface intercepts the reflectivity amplitude surface. 
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Critical coupling is a resonance condition when a node in reflection spectrum appears, i.e. 

𝑅(𝜔𝑟𝑒𝑠) = 0.  It is also called impedance matching in some literature. Fig. 4-9 demonstrates that 

our design for dark modes actually support such conditions. The interception of |𝑟𝑒𝑓𝑓|  and 

𝑒−2𝑡𝐼𝑚[𝛽𝑒𝑓𝑓] surfaces forms a line called the critical coupling design curve. Any point in this curve 

constitutes a dark mode design in diatomic MDM gratings which has 𝑅(𝜔𝑟𝑒𝑠) = 0. This critical 

coupling design curve is absent in ordinary bright modes as their |𝑟𝑒𝑓𝑓| is much lower than 

𝑒−2𝑡𝐼𝑚[𝛽𝑒𝑓𝑓] and thus the two surfaces barely intersect. 

4.3.3 An ultra-high Q metallic cavity resonator 

We have shown in this chapter that a diatomic MDM cavity gives rise to resonances with an ultra-

high Q (up to 50 times higher compared to bright mode ones) thanks to its dark modes.  

 

 

Figure 4-10: A representative diatomic MDM cavity design with critically coupling 

It shows a resonance with Q~190. The design is confirmed using FDTD calculation. The design parameter is given 

in the inset box. 

 

We also have shown a numerical algorithm to calculate, given incident wavelength, with what 

design parameters a high Q dark mode resonance with critical coupling would appear. Here we 

demonstrate a representative design from our calculation and verify its performance using FDTD 
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simulation. The result is shown in Fig. 4-10. With a set of design parameters extracted from the 

design curves, 𝐷 = 76.8𝜇𝑚, 𝑡 = 56.5𝜇𝑚,𝑤2 − 𝑤1 = 30𝜇𝑚, we have achieved a resonance of Q 

~ 190, centered around 𝜆𝑟𝑒𝑠 = 300𝜇𝑚 (1THz).  

4.4 CONCLUSION  

We have presented a unique design that achieves high Q in plasmonic resonators by control of its 

mode reflectivity using a diatomic grating structure. Q factors in those devices are only limited by 

its intrinsic loss, which is 
𝑄𝑎𝑏𝑠

2
 at the critical coupling condition. We have also developed a 

numerical model that solves the electromagnetism resonance problem in such diatomic MDM 

cavity gratings. This semi-analytical approach captures the nature of eigensolutions in each cavity 

and the interaction between them.  The model successfully predicts condition for critical coupling 

as well as Q for those resonances. It can be useful for designing high Q metallic resonators for a 

variety of applications and its solution lends insight to our understanding towards the high Q modes 

in diatomic gratings. 
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