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ABSTRACT OF THE DISSERTATION

Sparse Optimization Methods and Statistical Modeling with Applications to Finance

By

Michael Ho

Doctor of Philosophy in Mathematics

University of California, Irvine, 2016

Professor Jack Xin, Chair

It is well known that the out-of-sample performance of Markowitz’s mean-variance portfolio

criterion can be negatively affected by estimation errors in the mean and covariance. In this

dissertation we examine methods to address this problem through application of methods

and techniques from sparse optimization and modeling. Two new techniques are developed

with the aim of improving the performance of mean-variance portfolio optimization.

In the first technique a pairwise weighted elastic net penalized mean-variance criterion for

portfolio design in proposed. Here we motivate the use of this penalty through a robust

optimization interpretation. This interpretation is then employed to develop a bootstrap

calibration technique for the pairwise elastic net. The benefit of the pairwise weighted

elastic net and calibration is shown in portfolio performance results using recent U.S. stock

market data.

In the second application robust Kalman filtering techniques are applied to return covariance

estimation from high frequency financial price data. The methods developed address three

factors which make covariance estimation from high frequency data difficult: 1) microstruc-

ture noise, 2) asynchronous trading, and 3) jumps. The performance of these robust Kalman

filtering techniques are tested against simulated high frequency data and are compared with

other existing covariance estimators. The results indicate that the robust Kalman filtering

x



techniques substantially improve covariance estimation performance versus other approaches.
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Chapter 1

Introduction

Modern portfolio theory (MPT) addresses the problem of constructing an optimal investment

portfolios. The cornerstone of the theory is that investors make decisions based solely on

opportunity for profit and risk. An implication of this is that given two investment options

with the same expected return an investor will always choose the option with the lowest risk.

Hence the investor is solving an optimization problem to minimize risk subject to a given

level of return.

In 1952 Harry Markowitz proposed a mean variance criterion for portfolio selection [66].

In the mean-variance criterion the mean return and return variance serve as surrogates for

opportunity and risk. Thus the optimization problem becomes minimize variance such that

the expected return exceeds a threshold. Mathematically this problem can be formulated

as convex quadratic program with linear constraints and can solved using a wide variety of

techniques [75, 12].

One drawback of the mean variance criterion for portfolio optimization is that it requires

the investor to specify the expected return of each asset and the covariance of the returns

of different assets. This poses a problem when the future mean and covariance matrix
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are not known exactly, since incorrect parameter values can lead to sub-optimal portfolio

performance [70, 25]. This additional risk due to parameter uncertainty is commonly referred

to as estimation risk.

Two classes of approaches to addressing this limitation are studied in this dissertation:

� Class 1: Estimate the unknown parameters using historical data

� Class 2: Augment the mean-variance objective criterion with constraints or penalties.

1.1 Class 1: Parameter Estimation

Most parameter estimation approaches use historical return data [59] to estimate mean

and covariance. One approach motivated by the law of large numbers is to estimate the

unknown parameters using sample averaging. This approach can be very accurate when

sufficient training data is available and the returns are identically distributed.

Despite its simplicity there are difficulties in effectively implementing the sample averaging

approach. The primary difficulty is that in many cases there is limited amount of relevant

historical financial return data available to estimate the mean and covariance. One cause of

this is that the investments’ return can be non-stationary. Thus only a limited amount of

past data can be used in estimating the current mean and covariance. Since the volatility

of assets returns can be large, the sample average may require a large number of samples

to converge. Further complicating the problem is that the covariance matrix for financial

data can be ill-conditioned. This makes the portfolio weights extremely sensitive to small

parameter errors. These estimation errors result in sub-optimal out of sample portfolio

performance [25, 6, 49].

As an alternative to sample average estimates, Bayesian estimators for both mean and co-

2



variance have been proposed [39, 50, 55]. These estimators effectively “shrink” the sample

average estimates towards a more structured estimate (via a convex combination) which takes

into account prior knowledge. Prior knowledge can take the form of structured data models

such as a single factor model [80] or the Fama- French three-factor model [31]. Shrinking

the sample average estimates towards the more structured model reduces the variability in

the parameter estimates and can improve out-of-sample portfolio performance.

Appealing to the law of large numbers covariance estimation errors can be reduced by using

more data in the sample average estimate. One approach to obtain more data is to simply

increase the time window size when forming the sample covariance (e.g. use 1 year of data

vs 3 months of data). In order for this approach to be effective the additional data used

in covariance estimation should be nearly identically distributed to future data. If the data

statistics are non-stationary then increasing the window’s size to obtain more data may not

improve portfolio performance as the additional data used in the covariance estimation may

not be relevant to future returns.

Another approach to obtaining more data is to sample at a higher frequency [3] (e.g. 1 second

update rate vs 1 day update rate) and maintain the sampling window size. This approach is

less vulnerable to non-stationary statistics but presents additional challenges unique to high

frequency data. For example, high frequency data is subject to market microstructure noise

[14] such as bid-ask bounce which can corrupt volatility and covariance estimates. At higher

frequencies the variance of the market microstructure noise can mask the true volatility of

the asset returns if it is not accounted for [4, 3]. Asynchronous trading of assets observed

at higher frequencies [62] further complicates covariance estimation as the standard sample

average estimate assumes return data is available at each time instance.

Many approaches have been proposed for estimating covariance matrices from high frequency

data in the presence of asynchronous trading and microstructure noise. For example, the

refresh-time approach proposed in [5] addresses asynchronous trading by attempting to syn-

3



chronize the return data by waiting for all assets to trade at least one time prior to forming

an asset price vector used in covariance estimation. One disadvantage of this approach is

that much of the data is ignored while waiting for all assets to trade. The pairwise refresh

approach [33] uses more data by refreshing the covariance matrix element by element. Here

we form a 2 � 1 asset price vector every time period where two assets trade. This allows for

more data to be used but the resulting sample covariance matrix is not guaranteed to be

positive semi-definite without applying additional corrections such as a projection method

[33]. Another approach is the previous tick method employed in [90] where a fixed sampling

grid is defined and trade prices are approximated on that grid as the nearest previous trade

price.

To address both micro-structure noise and asynchronous returns, quasi-maximum likelihood

estimators were proposed in [2, 60] that utilize pairwise refresh. A two scale realized covari-

ance (TSCV) approach was developed in [90] where covariance estimates are obtained using

both low frequency and high frequency sampling. An approach based on Kalman filtering

and the EM algorithm [22], models the true unobserved log-price process and observed prices

as a discrete linear normal dynamical system. Here the unobserved synchronous true price

is treated as latent data and the EM algorithm is used to determine a maximum-likelihood

estimate of the covariance. A Bayesian version of the Kalman-EM approach where the pos-

terior distribution of the covariance is approximated via an augmented Gibbs sampler is

proposed in [76]. This technique generates an estimate of the posterior distribution of the

covariance which can then be used to obtain to a point estimate.

Each of the above techniques addressing micro-structure noise and asynchronous returns

utilize a log-normal price model. However, empirical return data often exhibits heavy tails

that are better explained by a jump diffusion or stochastic volatility models. Under these

conditions the approaches which assume log-normal returns will yield sub-optimal results.

Techniques for addressing jumps have been proposed in the literature. In [34] the authors

4



propose wavelet techniques for detecting jumps with an application to volatility estimation.

The jumps estimated using this approach are then removed from the observed data prior to

volatility estimation. In [10] a jump detector is employed to selectively remove data that

contain jumps from the covariance estimation samples prior to TSCV. Another technique

proposed in [9] is also robust to jumps but does not address market microstructure noise.

In Chapter 3 we extend the Kalman-EM approach in [22] to discretized jump diffusion models

by introducing two Kalman-ECM (KECM) approaches. In our first KECM approach we

model the jumps as Laplace distributed random variables. Although the Laplace prior may

seem to be an unnatural model for a jump process, we will see that the prior promotes a

sparse posterior mode for the jumps by inducing an `1 norm penalty on the jumps into the

complete log-likelihood function. Conditioned on other variables determining the posterior

mode for the jumps is a convex `1 norm penalized quadratic program which can be solved

with a variety of fast techniques [43, 11, 7]. In our second KECM approach we consider a

more natural, but less tractable, spike and slab model for the jump process.

We also extend the Bayesian approach in [76] to jump models where jumps are modeled using

a spike and slab prior [72, 73]. Here we use Gibbs sampling to approximate the posterior of

the jumps along with the unknown covariance matrix. An estimate of the posterior mean

of the covariance matrix is then obtained using the samples obtained from the posterior

distribution.

1.2 Class 2: Reformulate Criterion

For Class 2, several enhancements to the mean-variance criterion have been proposed. One

approach that has been shown to improve portfolio return involves regularizing the portfolio

selection criterion by adding penalties to the objective function [24, 13, 36, 88] such as norm

5



penalties on the portfolio weights. In [24] `1 and squared `2 norm constraints are proposed

for the minimum variance criterion along with a method for choosing the constraints. The

authors in [88, 87] propose an elastic net penalty and calibration method for use in con-

strained minimum variance portfolio optimization. In [36] a weighted LASSO [93] and a

SCAD penalty [32] are proposed for use in minimum variance portfolios. For the weighted

LASSO approach the authors propose a calibration scheme where the portfolio weights are

selected according to the variability in the volatility of each asset.

The above norm constrained and penalty approaches for portfolio optimization primarily

focus on the minimum variance criterion. The mean return is not taken into consideration

when calibrating the penalty, making it less applicable for a mean-variance criterion. In

this dissertation we propose a method which can be applied to the more general mean-

variance criterion where both mean and variance are considered. In this setting we propose

regularizing the objective function with a weighted elastic net (WEN) penalty. A WEN

penalty is the sum of a portfolio’s weighted `1 norm and the square of a portfolio’s weighted

`2 norm. It is shown that the WEN penalized criterion is equivalent to a robust portfolio

optimization problem [42, 83]. Using this interpretation, a bootstrap method for calibrating

the weights in the WEN penalty is derived.

The WEN penalized criterion has two advantages over the general robust portfolio optimiza-

tion problem. First the WEN penalized portfolios can be solved using fast algorithms for

`1 penalized optimization problems such as the Split-Bregman algorithm [43], the alternat-

ing direction method of multipliers (ADMM) algorithm [11] and the fast iterative shrinkage

thresholding algorithm (FISTA) [7]. This is in stark contrast to the more general robust

portfolio optimization problem which requires using semi-definite programming techniques

[44] which do not scale well to large portfolios. Secondly the WEN penalty results in sparse

portfolios which can contribute to reduced portfolio turnover and transaction costs when

compared with portfolios generated with generalized robust optimization approaches. This
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dissertation also introduces a novel adaptive support split-Bregman approach to computing

WEN penalized portfolios. This new algorithm exploits the sparse nature of WEN penalized

solutions to minimize computational requirements for large portfolios. We show that this

new algorithm offers significant improvements in convergence speed versus other techniques.

1.3 Outline and Contributions

The remainder of this dissertation is structured as follows. In Chapter 2, we provide an

overview of various mean-variance driven portfolio optimization criteria along with com-

monly used parameter estimation techniques. In Chapter 3 we present new jump robust

covariance estimation techniques for asynchronous, and noisy high frequency data sources.

Chapter 4 introduces the weighted elastic net penalty for portfolio optimization and provides

a justification for its use. Conclusions and future work are discussed in Chapter 5.

The key contributions of this dissertation are as follows:

1. Introduction and analysis of jump robust covariance matrix estimation techniques for

asynchronous high frequency data with microstructure noise (Chapter 3)

2. Application of sparsity promoting priors (weighted Laplace prior, spike and slab) to

improve robustness of covariance matrix estimation in jump diffusion model (Chapter

3)

3. Application of weighted elastic net (WEN) and pairwise weighted elastic net (PWEN)

penalties to mean-variance portfolio selection (Chapter 4)

4. Relationship between pairwise weighted elastic net penalty and robust optimization is

shown (Chapter 4)

7



5. Bootstrap calibration technique for weighted elastic net penalty is proposed using ro-

bust optimization interpretation (Chapter 4)

6. Development of adaptive support split-Bregman approach for solving weighted elastic

net penalized portfolio problems (Chapter 4).

8



Chapter 2

Mean-Variance Portfolio Optimization

and Parameter Estimation

This chapter reviews some background material relevant to Chapters 3 and 4. We begin by

presenting several mean-variance inspired portfolio criteria. We then describe approaches to

mean and covariance estimation needed to implement the various portfolio selection criteria.

2.1 Portfolio Selection Criteria

Suppose that there exists a set of N assets. Let �rn�Nn�1 be the returns of each asset for a

time period T . We model �rn�Nn�1 as random variables with finite mean and covariance. For

the purposes of this section we will only model the first and second order statistics of rn.

A portfolio is defined to be a set of weights �wn�Nn�1 ` R. When wi A 0 a long position in the

ith asset is taken. A short position on the ith asset is taken if wi @ 0. There are many criteria

for how an investor chooses the portfolio. In this section we review some common criteria.

9



2.1.1 Mean-Variance Criteria

The mean-variance criteria was proposed by Markowitz in 1952 [66]. The objective of the

mean-variance criteria is to minimize the variance of a portfolio’s return such that the mean

return equals a specific threshold ρ. A portfolio optimal in the mean-variance sense is said

to be on the efficient frontier [18].

The motivation for the mean-variance criteria is that low risk portfolios are preferred over

higher risk portfolios provided each portfolio provides the same mean return. The mean-

variance criteria uses variance as a proxy for risk ( high variance = high risk, low variance

= low risk).

Given the returns of each asset, the portfolio return is wT r. If the mean and covariance of

the asset returns are known then the mean and variance of the return can be easily computed

to wTEr and wTΓw respectively, where Γ is the covariance of r. Thus the mean variance

criteria may be written as the following quadratic program

min
w

wTΓw

s.t. wTµ � ρ

wTÑ1 � c.

If short selling is not allowed then the mean variance criteria becomes

min
w

wTΓw

s.t. wTµ � ρ

wTÑ1 � c

wn C 0 ¦n.
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These quadratic programs can be efficiently solved using many different algorithms [85].

2.1.2 Sharpe Ratio Criteria

An asset is called risk free if its return is deterministic and non-negative. The excess return

of each asset is defined as r � rf where rf is the return of a risk-free asset over a time period

T .

The Sharpe ratio, SR is defined as ratio between the mean excess return and the standard

deviation of the excess return, i.e.

SR �
wTµº
wTΓw

.

where µ is the mean of the excess return. For investors maximizing Sharpe ratio is desirable

in that one will get the highest excess return per unit of risk (standard deviation). A portfolio

that has maximal Sharpe ratio is often referred to as the tangency or market portfolio. It is

of theoretical interest due to the one-fund theorem which states that any efficient portfolio

is a linear combination of a risk free portfolio and the tangency portfolio [52]. Figure 2.1

shows a plot of the efficient frontier with and without a risk-free asset.

In Sharpe ratio optimization we seek to maximize SR. Thus the Sharpe ratio optimization

criteria may be written as

max
w

wTµº
wTΓw

s.t. w x 0

11



Figure 2.1: Portfolios satisfying the mean variance criteria are said to be on the efficient
frontier. The portfolio with maximal Sharpe ratio is referred to as the Tangency Portfolio.
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in the case short sales are allowed or

max
w

wTµº
wTΓw

s.t. w x 0

wn C 0 ¦n

if short selling is not allowed.

A solution to the Sharpe ratio optimization problem can be obtained in closed form when

short selling is allowed. First note that the Sharpe ratio is unaffected by a positive scalar

multiplication of the weight vector. Thus the problem can be reformulated as (up to a

positive scalar multiple)

max
w

wTµ

s.t. wTΓw B c

where c A 0 is arbitrary. If µ x 0 the optimal objective value is positive and the constraint

above will be satisfied with equality. Thus we may solve the equivalent problem

min
w

�wTµ � ρ �wTΓw� (2.1)

where ρ A 0 is arbitrary. From first order optimality conditions the solution is (up to a

positive constant multiple)

w � ρ�1Γ�1µ (2.2)
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2.1.3 Minimum Variance Criterion

Estimation of parameters is necessary to implement the mean-variance criteria. It has been

recognized that estimation of mean return is more difficult than covariance [69] and thus a

minimum variance criterion is often advocated for in recent literature [47, 24, 36]. In the

minimum variance criterion the mean of asset returns are ignored and the following criterion

is used for portfolio selection

min
w

wTΓw

s.t.
N

Q
i�1

wi � 1. (2.3)

Despite ignoring all information on the mean return, the minimum variance criterion often

outperforms the mean-variance criterion when judged by out-of-sample Sharpe ratio [24, 47].

2.1.4 Norm Penalized Portfolio optimization

As was stated in the introduction mean-variance portfolio optimization is sensitive to pa-

rameter estimation error. To address these concerns a number of norm penalized criteria

have been proposed, primarily in the context of minimum variance optimization. Commonly

used convex norm penalties include the `1 norm , squared `2 norm and elastic net penalties

[88]. The `1 and squared `2 norm penalties are given as

N

Q
i�1

SwiS (2.4)

and
N

Q
i�1

w2
i . (2.5)
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The elastic net penalty is a weighted sum of the `1 and squared `2 norm penalties

λ1

N

Q
i�1

SwiS � λ2

N

Q
i�1

w2
i (2.6)

where λ1, λ2 A 0. Another convex penalty is the adaptive LASSO penalty [93] which was ap-

plied to minimum variance optimization in [36]. The adaptive LASSO penalty is a weighted

`1 norm given by

SSwSSÑβ,`1 � N

Q
k�1

βkSwkS (2.7)

where βk C 0. Calibration of the weighting parameters for the above penalties has primarily

been studied with the goal of improving the portfolio return variance [88, 36].

Several justifications for using `1 and squared `2 norms as penalties and constraints have been

given in the literature. For example in [13] it is stated that the use of an uniformly weighted

`1 penalty can be motivated by the desire to obtain sparse portfolios and to regularize the

mean-variance problem when the covariance is ill-conditioned. In [35] the authors show that

estimation risk in the mean-variance setting due to errors in the mean return estimation is

bounded above by

SSµ � µ̂SSªSSwSS`1 (2.8)

and use that upper bound as a rationale for promoting small SSwSS`1 . In [57] it is mentioned

that a benefit of using a uniformly weighted `2 norm penalty is to stabilize the inverse

covariance matrix which is often ill-conditioned in financial applications.

Non-convex penalized minimum-variance portfolio criteria were studied in [36]. One such

penalty examined in [36] is the Softly Clipped Absolute Deviation (SCAD) penalty [32]. The

SCAD penalty is defined as follows
N

Q
i�1

pλ�wi� (2.9)
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where

pλ�x� �
¢̈̈̈̈̈
¨̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¤

λSxS if SxS B λ
�
x2�2aSCADλSxS�λ2

2�aSCAD�1� if λ @ SxS B aSCADλ
�aSCAD�1�λ2

2 if SxS A aSCADλ
(2.10)

and where aSCAD A 2. This penalty is similar to the `1 penalty and was initially proposed

in context of variable selection. Calibration of the parameters aSCAD and λ in (2.10) for

portfolio optimization has not been fully addressed in the literature.

In chapter 4 we introduce a new weighted elastic net penalty for portfolio optimization, and

compare its performance with the techniques described in this chapter.

2.2 Parameter Estimation from synchronous noise-free

data

Each of the above portfolio optimization criteria require an estimate of the mean and covari-

ance of the return. Estimation of the mean and covariance matrix is often performed using

a training set of historical price data from each asset. In this section we shall assume that

we observe each asset’s efficient price at even spaced times 0,1,2, . . . T . Denote ri�t� as the

return of the ith asset for time period from �t � 1�δ to tδ. We shall assume in this section

that the training data is independent and identically distributed.
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2.2.1 Sample Average and MLE

The simplest technique for obtaining estimates of mean and covariance is the sample aver-

aging method. Here the estimate of the mean of the ith asset is given as

µ̂i �
1

T

T

Q
t�1

ri�t�
and the estimate of the �i, j� entry of the covariance matrix is

Γ̂i,j �
1

T

T

Q
t�1

�ri�t� � µ̂i��rj�t� � µ̂j�.
Due to the strong law of large numbers these estimates converge almost surely to µi and Γi,j

as the number of samples T goes to infinity. It is noteworthy that for finite T the covariance

estimate is biased with expected value

T � 1

T
Γ.

However for larger T this bias is small.

Another technique for mean and covariance estimation is the maximum likelihood estimator

(MLE). Here the estimation criterion is to select µ and Γ that maximize the log-likelihood

of the training data. Under some mild regularity conditions the MLE for a parameter θ is

an asymptotically efficient estimator. For normally distributed returns the MLE for mean

and covariance are identical to the sample average estimators.

2.2.2 Shrinkage and Bayesian Approaches

In financial applications the return statistics may be time-varying which limits the amount

of revelent data available for covariance estimation. In this setting the sample average and
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MLE approaches may not have sufficient number of samples to converge which can lead to

unstable and unreliable portfolio performance [25].

For data starved settings shrinkage and Bayesian approaches to parameter estimation have

been proposed. In both of these techniques additional structure is introduced into the

parameter estimates which act to stabilize the estimates. The amount of additional structure

to incorporate into the estimate is a trade-off between bias and variability in the estimate.

This trade can be optimized to minimize estimation error or some other loss criterion.

For shrinkage estimators the additional structure is enforced by constraining the estimates

to be a weighted sum of the sample average estimate and a pre-selected target estimate. For

mean and covariance estimation we have

µ̂ � ρ1µ̂S � ρ2µ̂tgt

Γ̂ � ψ1Γ̂S � ψ2Γ̂tgt

where ψi, ρi A 0. Here µ̂S and Γ̂S are the sample average estimates and µ̂tgt and Γ̂tgt are

the target parameters. The target parameters are typically chosen to add structure into the

parameter estimates and may be based on some prior knowledge on the return statistics.

Selection of the weighting factors and target return for mean estimation has been considered

in [50]. There a James-Stein estimator is used for the mean where the shrinkage target is a

constant vector and summation of the target and sample average is convex

µ̂ � ρµ̂S � �1 � ρ�ηÑ1.
In [50] the weighting factor is defined as

ρ � min�1,
�N � 2�

Ttrain�µS � ηÑ1�T Γ̂�1�µS � ηÑ1�¡ .
18



Although biased, James-Stein estimators have the surprising property of achieving lower

(weighted) mean-squared error than the MLE estimator when the returns are Gaussian [28]

and the number of assets is 3 or more.

For financial applications the target parameter η may be set to the global mean of the

returns (i.e. averaging over all assets). This has the effect of shrinkage the sample average

estimate to the global average. Thus extremely high and low sample average returns are

biased towards the global average.

In [54] a shrinkage technique for estimating covariance is presented where the shrinkage

target is scaled identity matrix

Γ̂ � ψ1Γ̂S � ψ2I.

For ψ2 A 0 we see that this estimator is guaranteed to be positive definite with minimum

eigenvalue C ψ2. A criterion for choosing ψ1 and ψ2 is proposed in [54]. Under mild as-

sumptions this criterion results in an asymptotically (as T goes to infinity and N~T tends

to a positive constant) optimal estimate with respect to the squared Frobenius norm of the

covariance error.

More sophisticated shrinkage targets for covariance can also be employed. For example

in [53] the authors propose using structured covariance estimates as shrinkage targets. In

particular a single factor return model is used to determine the shrinkage target. Thus the

resulting covariance estimate is a weighted sum of the sample covariance and a structured

single factor covariance.

Bayesian approaches can also be used to estimate mean and covariance. The Bayesian

approach is similar to shrinkage techniques in that prior knowledge and assumptions are used

to add stability to the parameter estimation process. In the Bayesian approach the mean

and covariance are treated as a random vector and matrix with a known prior distribution.

Given observed return data, estimates of the mean and covariance are chosen to minimize a
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loss function. One typical loss function for a parameter θ is the mean-squared error (MSE)

loss function.

EθSY �θ � θ̂�2

where the expectation is with respect to the posterior distribution of the parameter θ given

Y . Under this loss function the estimate of the parameter is equal to the conditional mean

of θ given past returns, Y [56]. Another loss function is the binary loss function

Lbin�θ, θ̂� �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 if Sθ � θ̂S B ε
1 otherwise

A common and convenient choice of prior distribution is one that is conjugate to the likeli-

hood function [37, 40]. If one assumes normally distributed returns then the conjugate prior

distribution for the mean and covariance is the normal-inverse-Wishart distribution. This

distribution is characterized by 4 parameters �µ�, λ,Ψ, ν� and can be written as

p�µ,Γ� � N �µ,µ�, 1

λ
Γ�W�1�Γ,Ψ, ν�

where

� N �x,x�,Σ� is the normal distribution in x with mean x� and covariance Σ

� W�1�Σ,Ψ, ν� is the inverse Wishart distribution in Σ with scale Ψ and ν degrees of

freedom.

Since this distribution is conjugate to the normal likelihood function the posterior distri-

bution is also normal-inverse-Wishart. The parameters for the posterior distribution are

[52]

�T µ̂S � λµ�
T � λ

,λ � T,Ψ � T Γ̂S �
Tλ

T � λ
�µ̂S � µ���µ̂S � µ��T , T � ν� .
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If one takes as a loss function the MSE then the resulting mean and covariances are

µ̂ �
T µ̂S � λµ�

T � λ

and

Γ̂ �
1

T � ν �N � 1
�Ψ � T Γ̂S �

Tλ

T � λ
�µ̂S � µ���µ̂S � µ��T� .

Thus we see that the Bayesian estimate for this prior is a type of shrinkage estimator.

The choice of the hyperparameters in the prior �µ�, λ,Ψ, ν� can be addressed using an empir-

ical Bayesian approaches or techniques developed for shrinkage estimators. For the empirical

Bayesian approach one may assume a structured form of µ� and Ψ such as constant mean,

constant variance and covariance. This reduces the number of “free” hyperparameters sig-

nificantly. Then one can estimate these few number of hyperparameters from the return

training data using method of moment estimators [52].
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Chapter 3

Covariance Estimation from High

Frequency Data

In this chapter we present jump robust methods of covariance estimation from high frequency

data. The techniques address the following challenges with using high frequency data for

covariance estimation

1. Asynchronous trading

2. Market microstructure noise

3. Jumps.

In section 3.1 we introduce the models which form the basis for our covariance estimation

approaches. In section 3.2 and 3.3 we describe numerical algorithms for computing the co-

variance estimate with both the Laplace and spike and slab prior. A performance evaluation

of our proposed approach is presented in section 3.4 using simulated high frequency data.

The use of matrix factorization approaches for covariance estimation from high frequency

data is presented in section 3.5.
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3.1 High Frequency Return Modeling

Suppose that we have N assets where the true (or efficient) log price of the nth asset at time

t is Xn�t�. Let X�t� denote the N � 1 vector of log prices for each asset at time t and let

T denote the total number of time samples. Here Xn�t� can be viewed as the fundamental

value of the asset in an efficient market without friction [78].

We model the dynamics of the log prices using a discrete time jump diffusion model with a

drift D

Xi�t� �Xi�t � 1� � Vi�t� � J̃i�t�Zi�t� �D. (3.1)

Here we assume the following:

� V �t� is multivariate normally distributed with mean 0 and covariance Γ

� J̃i�t� is normally distributed with zero mean and variance σ2
j,i�t�

� Zi�t� is Bernoulli distributed, with Pr�Zi�t� � 0� � ζ
� J̃m�t� ÙÙ J̃n�s�, Zm�t� ÙÙ Zn�s� ,m x n and all t, s

� J̃ , Z, V are jointly independent.

To simplify notation we denote the jump component as

J�t� � J̃�t�Z�t�. (3.2)

In many markets trading of distinct assets does not occur simultaneously. When trades occur

asynchronously, current pricing data for all assets will not be observed. For prices that are

observed, market microstructure noise needs to be addressed. Here transaction costs due to
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order processing expenses, inventory costs and adverse selection costs [14] add noise to the

true efficient price. Thus the true efficient price is not directly observed.

Both asynchronous returns and microstructure noise can be captured in the following obser-

vation model

Y �t� � Ĩ�t�X�t� �W �t� (3.3)

where

� Ĩ�t� is a“partial” identity matrix where the rows corresponding to missing asset prices

at time t are removed

� W �t� is normal distributed market microstructure noise with zero mean and covariance

Σo�t� � Ĩ�t�Σ�

oĨ�t�T .

Here Σ�

o is a diagonal matrix diag�σ2
o,1, . . . , σ

2
o,N�. For purposes of this paper we shall assume

that Ĩ�t� is known, and that �W �t�,X�t��Tt�1 are jointly independent. In section 3.4 we will

test our algorithms on simulated data where the microstructure noise and price innovation

are statistically dependent.

3.1.1 Conditional Distributions of Observations and Log-Prices

Now we examine the joint probability distribution of X�1 � T �,Y �1 � T �,J�2 � T �. Here

the notation X�m � n� refers to the set �X�m�,X�m � 1�, . . . ,X�n��. We consider the

case of when the parameters D,Γ, σ2
o,i, ζ and σ2

j,i are random variables with known prior

distributions. Details on our assumed priors are given in section 3.1.2.

To determine the probability distribution we first note that our model in equations (3.1) and

(3.3) can be represented by the Bayesian network depicted in Figure 3.1. From the Bayesian

network we see that the following conditional independence properties hold
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X�1� X�2� X�3� X�N�

Y �1� Y �2� Y �3� Y �N�

J�2� J�3� J�N�
Figure 3.1: Bayesian Network Representation of �X,Y, J�. Observed variables are shaded.
Here the model parameters are not shown.

Y �t� ÙÙ J�s�SX�t� ¦s

Y �t� ÙÙX�s�SX�t� ¦s x t

X�t� ÙÙX�s�S�X�t � 1�, J�t�� ¦s @ t � 1

X�t� ÙÙ J�s�S�X�t � 1�, J�t�� ¦s x t.

From the conditional independence implied by the Bayesian network we have that the proba-

bility distribution conditioned on the parameter values may be fully characterized as follows

p�y�t�Sx�1 � T �,Σ2
o�t�� � N �Ĩ�t�x�t�,Σo�t��

p�x�t � 1�Sx�1 � t�, j�2 � t � 1�, d,Γ� � N �x�t� � j�t � 1� � d,Γ�
p�x�1�� � N �µ,K�

p�j�t�Sζ, σ2
j �t�� �

N

M
i�1

f�ji�t��.
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Here f is the spike and slab prior

f�ji�t�� � ζδ0�ji�t�� � 1 � ζº
2πσj,i�t� exp�� ji�t�2

2σ2
j,i�t�� (3.4)

with δ0 being a point mass distribution at 0. The initial time parameters, µ and K can be

chosen based on prior stock return data and will be treated as known values.

3.1.2 Prior Distribution of Parameters

To allow for more flexible modeling we shall impose prior distributions on the parameters

D,Γ, σ2
o,i as well as the jump parameters ζ and σ2

j,i. Here we take a commonly used approach

of using conjugate prior distributions which facilitate calculation of conditional maximum a

posteriori (MAP) parameter estimates. These priors will play an essential part in the proofs

of convergence for the ECM algorithm presented in Section 3.2.

The drift parameter D is modeled as normally distributed with mean D̄ and covariance σ2
DI

D � N �D̄, σ2
DI�,

which is conjugate to the multivariate normal distribution given above. For the covariance

matrix prior we use an inverse Wishart prior (which is also conjugate to the multivariate

normal) with η A N � 1 degrees of freedom and positive definite scale matrix Wo

Γ �W�1�Wo, η�.
In the observation noise variance,σ2

o,i, we impose a inverse gamma distribution with shape

parameter αo A 0 and scale βo A 0

σ2
o,i � IG�αo, βo�.
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Finally for the jump parameters ζ and σ2
j we use the beta distribution and inverse gamma

distribution as priors

ζ � Beta�αζ , βζ�
σ2
j,i�t� � IG�αj, βj�.

We assume that ζ and σ2
j,i�t� are independent and that the parameters in each of the prior

distributions is known. For each of these priors the hyperparameters may be selected to

make them relatively uninformative.

3.1.3 Mixture Model Representation

We may also represent our jump model as mixture model with 2TN�N components. To see

this we condition on Z�1 � T � and obtain the following

p�y�t�Sx�1 � T �,Σo�t�� � N �Ĩ�t�x�t�,Σo�t��
p�x�t�Sx�1 � t � 1�, z�2 � t�, d,Γ� � N �x�t � 1� � d,Γ �Diag�t, z�t���

p�x�1�� � N �µ,K�
p�z�t�Sζ� � ζTN�TJ �1 � ζ�TJ

where TJ is the total number of jumps

TJ �Q
i,t

zi�t�
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and where Diag�t, z�t�� is the diagonal matrix

Diag�t, z�t�� �
�����������

z1�t�σ2
j,1�t� 0 . . . 0

0 � � �

� � � 0

0 . . . 0 zN�t�σ2
j,N�t�

�����������
.

Here we see that the covariance is time-varying and at time t is equal to Γ �Diag�t,Z�t��.
Thus our model is equivalent to a large switching state space model [41] with a log-price

posterior distribution consisting of 2TN�N components.

3.1.4 Laplace Prior Approximation

Recall from the previous section that jump model is equivalent to a switching state space

model. Inference in switching state space models becomes intractable as the number of states

increase [41]. For example estimation of the posterior distribution of X given Y involves

marginalizing out the 2TN�N possible states for Z, which is an intractable integral. Maximum

a posteriori (MAP) estimation of Z is also difficult due to the multimodal structure of p�z�.
In this section we approximate the distribution of J using a Laplace distribution. We denote

the Laplace distribution for J as g�j�
p�j� � g�jSλ� �M

i,t

λi�t�
2

exp ��λi�t�Sji�t�S�
where λi�t� A 0.

There are two advantages to taking this approximation. First the log-likelihood of a Laplace

distribution is concave in its parameter. This aids in conditional MAP estimation of J .

Secondly, the Laplace distribution is desired in that it promotes sparse MAP estimates of J
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[79, 67, 1] making it a good approximation to infrequent jumps. We illustrate this with the

following example.

Example 3.1. Suppose that κ is a Laplace distributed random variable with parameter 2

and η � κ�q where q is independent of κ and normally distributed with mean 0 and variance

1. Suppose η is observed to be 0.5. Then the likelihood of κ given η is N �0.5,1� but the

posterior of κ has its mode at 0 as shown in Figure 3.2.

κ

-6 -4 -2 0 2 4 6
0

0.1
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Laplace Prior Promotes Sparse Posterior Mode

Likelihood
Laplace Prior
Posterior

Figure 3.2: Here we show an example of a Laplace prior promoting a posterior mode at 0.

To make the model more robust we will not assume that each λi�t� is known. Instead we

will estimate λi�t� from the data. Since the problem of estimating both Ji�t� and λi�t� is

ill-posed we regularize it by introducing a prior distribution on each λi�t� which we denote

as q�λ�.
We wish to design the prior distribution q such that it induces a similar level of sparseness

that is induced by the spike and slab prior f . To develop a criterion for designing q we first

define a notion of similarity between g�jSλ� and f�jS, ζ, σ2
j �.

Definition 1. Let V be a zero-mean normal random variable with variance σ2
v and let J1 �
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Laplace�λ�� and J2 � SpikeSlab�ζ �, σ2�

j � which are independent of V . Define

Y1 � J1 � V

Y2 � J2 � V.

Then Laplace�λ�� is σ2
v-equivalent to SpikeSlab�ζ �, σ2�

j � (denoted λ� �σ2
v
�ζ �, σ2�

j � ) if

Ep�y2SJ2�0�Pr�J2 � 0SY2� � Ep�y1SJ1�0�Pr�J̄1 � 0� (3.5)

where J̄1 is the mode of p�j1SY1�.
To interpret the above definition assume that a jump has not occurred. Then λ� �σ2

v
�ζ �, σ2�

j � if

the probability of falsely declaring a jump under the Laplace�λ�� model (with MAP criterion)

equals the average posterior probability of a jump under the spike and slab prior with

parameters ζ � and σ2�

j . Here σ2
v can be interpreted as the squared volatility of the diffusion

component of the asset returns. Note that for each triplet �σ2
v , ζ

�, σ2�

j � there is a unique λ�

such that λ� �σ2
v
�ζ �, σ2�

j �.
Since �σ2

v , ζ
�, σ2�

j � are random and unobserved we cannot directly select a λ� such that λ� �σ2
v

�ζ �, σ2�

j �. However the distribution of �σ2
v , ζ

�

o, σ
2�

j � induces a distribution on λ through the

mapping �σ2
v
. The resulting distribution can then be used as a prior q�λ�. The following

section presents an example on how to construct a distribution for λ.

3.1.5 Procedure for selecting q�λ�

In this section we outline the method for selecting the distribution q�λ� for a special case

of when the prior distribution of volatility of each asset is identical. Suppose the squared

volatility of each asset return is inverse gamma distributed with scale c and shape η. Let σ2
v
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be distributed as IG�c, η� and be statistically independent of ζ � and σ2
j .

To determine an appropriate prior distribution of λ we first obtain samples of λ, (λ̃1, . . . , λ̃Mλ
)

by the performing the following steps

1. For k � 1, . . . ,Mλ

2. Draw independent samples from the distribution of �σ2�
v , ζ

�, σ2�

j �. This is relatively

straight forward using standard statistical functions due to the independence assump-

tions.

3. Determine a λ� such that λ� �σ2�
v
�ζ �, σ2�

j �. This can be done via Monte Carlo integration

as shown below.

� For a large number L draw a sample v1 . . . vL from the distribution N �0, σ2
v�.

� Compute Pi � Pr�J � 0SJ �V � vi�, where J � SpikeSlab�ζ �, σ2�

j �. The value of Pi

is
ζ�¼
σ2�
v

exp��v2
i ~�2σ2

v��
ζ�¼
σ2�
v

exp��v2
i ~�2σ2�

v �� � 1�ζ�¼
σ2�
v �σ2�

j

exp��v2
i ~�2�σ2�

v � σ2�
j ��� .

� Compute the simulated empirical mean P̄ � 1
L PL

i�1Pi.

� Choose λ� such that (3.5) is satisfied with Ep�y2SJ2�0�Pr�J2 � 0SY2� approximated

as P̄ . This value is given below

λ� �
erf�1�P̄ �»2σ2�

v

σ2�
v

where erf�1�� is the inverse error function.

4. Set λ̃k � λ�

5. Goto step 1
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Examples of histograms of samples obtained using the above procedures are shown in Figures

3.3 - 3.5. Once we obtain samples of λ we fit a smooth distribution to the sampled data.

Since the gamma distribution is a conjugate prior to the Laplace distribution a gamma

distribution is a convenient choice for q�λ�. Furthermore examination of Figures 3.3 -3.5

indicate that a gamma distribution is a reasonable approximation. Thus we choose

q�λ� � βαλλ
Γf�αλ�λαλ�1 exp ��λβλ�

where Γf�� is the gamma function. Here αλ and βλ can be selected using maximum likelihood

or method of moments.

Since q�λ� develops a singularity near zero for large values of βλ we shall impose a prior of

λ�1 rather than λ. We denote this prior as qinv�λ�1�. Since λ is gamma distributed with

shape αλ and rate βλ it follows that qinv�λ�1� is the inverse gamma distribution with shape

αλ and scale βλ

qinv�λ�1� � βαλλ
Γf�αλ��λ�1��αλ�1 exp�� βλ

λ�1
� .

3.2 KECM Approach to estimation of Γ

Maximum a posteriori (MAP) estimation of Γ with Kalman ECM (KECM) techniques is

investigated in this section. The first ECM approach is an approximate technique where

the prior distribution on the jumps is modeled as a Laplace distribution. The advantage of

this approximation is that the conditional maximization steps in the ECM approach result

in global (conditional) optimal solutions can be obtained. The disadvantage is that we are

approximating the true spike and slab jump model. The second approach uses the spike

and slab model for jumps, which is a true representation of the model presented in Section
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Figure 3.3: Normalized histograms of λ samples. In all experiments σ2
j � IG�10,0.0011�,ζ �

Beta�5,1.0201�, σ2
v � IG�5, βv�.

3.1. However we will see that using the spike and slab jump model results in a non-concave

optimization problem in the conditional M-step for J .

3.2.1 KECM algorithm for Laplace Distribution

First we consider a KECM approach to estimating Γ when Ji is approximated by a Laplace

distributed random variable. We define

Θ � �Θ1,Θ2,Θ3,Θ4,Θ5�
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Figure 3.4: Normalized histograms of λ samples. In all experiments σ2
j � IG�10, βj�,ζ �

Beta�5,1.0201�, σ2
v � IG�5,6e � 6�.

where

Θ1 � D

Θ2 � Γ

Θ3 � σ2
o,i,1 B i B N

Θ4 � J�2 � T �
Θ5 � �λi�t��1�1BiBN,2BtBT

as our vector of unknown parameters and X�1 � T � as the latent variables.

The KECM approach is an iterative algorithm that can be applied to the following problem

Θ� � arg max
θ
L�θ�
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where L�θ� is the log posterior of Θ. In the KECM algorithm we iterate over E-steps and

conditional M-steps to arrive at an estimate of Θ.

The E-step in the KECM algorithm involves computing the expected value of

log p�X�1 � T �, y�1 � T �Sθ�p�θ�
with respect to p�x�1 � T �Sy,Θ�k��

G�θ,Θ�k�� � Ep�xSy,Θ�k�� log p�X�1 � T �, y�1 � T �Sθ� � log�p�θ��
where Θ�k� is an estimate of Θ at the kth iteration and where p�θ� is the prior distribution

of parameters

p�θ� � p�θ1�p�θ2�p�θ3�g�θ4, Sλ�qinv�λ�1�.

35



Here the complete log-likelihood is

log p�x, ySθ� � �0.5
T

Q
t�1

log�SΣo�t�S� � 1

2

T

Q
t�1

SSy�t� � Ĩ�t�x�t�SS2diag�Σo�t��1�,`2

�
T � 1

2
log�SΓS�

�
1

2

T

Q
t�2

r�t�TΓ�1r�t�
�const

where

r�t� � x�t� � x�t � 1� � d � j�t�.
and where

SSqSS2β,`2 �Q
i

βiq
2
i .

It is well known that the function G�θ,Θ�k�� serves as a lower bound to log p�θ, y� and that

log p�Θ�k�, y� � G�Θ�k�,Θ�k�� [26].

The EM approach prescribes a joint maximization of G�θ,Θ�k�� with respect to θ. This is

difficult due to the coupling of variables and the non-concavity of the problem. Conditional

maximization of each parameter in turn is more tractable. Thus we apply conditional maxi-

mization as in the ECM [68] algorithm. The conditional M-steps involves a coordinate-wise

maximization of G. Here the conditional M-steps are

Θ
�k�1�
1 � arg max

θ1
G ��θ1,Θ

�k�
2 ,Θ

�k�
3 ,Θ

�k�
4 ,Θ

�k�
5 � ,Θ�k��

Θ
�k�1�
2 � arg max

θ2
G ��Θ�k�1�

1 , θ2,Θ
�k�
3 ,Θ

�k�
4 ,Θ

�k�
5 � ,Θ�k��

Θ
�k�1�
3 � arg max

θ3
G ��Θ�k�1�

1 ,Θ
�k�1�
2 , θ3,Θ

�k�
4 ,Θ

�k�
5 � ,Θ�k��

Θ
�k�1�
4 � arg max

θ4
G ��Θ�k�1�

1 ,Θ
�k�1�
2 ,Θ

�k�1�
3 , θ4,Θ

�k�
5 � ,Θ�k��

Θ
�k�1�
5 � arg max

θ5
G ��Θ�k�1�

1 ,Θ
�k�1�
2 ,Θ

�k�1�
3 ,Θ

�k�1�
4 , θ5� ,Θ�k�� . (3.6)
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Each of these problems can be readily solved as we will show later.

E-step of KECM

The posterior p�xSy,Θ�k�� needed to perform the E-step is normal and can be computed using

a Kalman smoother [81]. By normality and the Markov property the posterior is completely

defined by the following posterior moments for m � T

X̄�tSm� � E�X�t�Sy�1 �m��
P �tSm� � cov�X�t�,X�t�Sy�1 �m��

P �t, t � 1Sm� � cov�X�t�,X�t � 1�Sy�1 �m��
where cov��, �� refers to the covariance function. Equations for these quantities are derived in

[82] and are stated in Appendix A.1. The expected value of log-posterior distribution with

respect to the posterior of X�1 � T � can be shown to be

G�θ,Θ�k�� � Ep�xSy,Θ�k�� log p�X�1 � T �, y�1 � T �Sθ� � log�p�θ��
� �

T � 1

2
log�SΓS� � 1

2
tr�Γ�1�C �B �BT

�A��
�0.5

T

Q
t�1

log�SΣo�t�S�
�

1

2

T

Q
t�1

SSy�t� � Ĩ�t�X̄�t�SS2diag�Σo�t��1�,`2 � tr�P �tST �Ĩ�t�TΣo�t��1Ĩ�t��
� log�p�θ�� � const (3.7)

where

A �

T

Q
t�2

�P �t � 1ST � � X̄�t � 1ST �X̄�t � 1ST �T �
B �

T

Q
t�2

�P �t, t � 1ST � � �X̄�tST � �D�k�
� J�k��t��X̄�t � 1ST �T �
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C �

T

Q
t�2

�P �tST � � �X̄�tST � �D�k�
� J�k��t���X̄�tST � �D�k�

� J�k��t��T � .
These equations are derived in Appendix A.2. For notational convenience the dependence

of P �tSm� and P �t, t � 1Sm� on the iteration number has been dropped.

Conditional M-steps of KECM

For the conditional M-step it can be shown using standard conjugate prior relationships [37]

that

D�k�1� � F � 1

σ2
D

D̄ � Γ�k��1 T

Q
t�2

X̄�tST � � X̄�t � 1ST � � J�k��t�� (3.8)

and

Γ�k�1� � 1

T � 1 � η
�A �C�k�

�B�k�
�B�k�T � � 1

T � 1 � η
W (3.9)

where

F � ��T � 1�Γ�k��1
� σ�2

D I��1

B�k� �
T

Q
t�2

�P �t, t � 1ST � � �X̄�tST � �D�k�1�
� J�t��k��X̄�t � 1ST �T �

and

C�k� �

T

Q
t�2

P �tST �
�

T

Q
t�2

�X̄�tST � �D�k�1�
� J�t��k���X̄�tST � �D�k�1�

� J�t��k��T .

The conditional M-step for the observation noise variance is

σ
2,�k�1�
o,i �

2βo �Pt>Ti�y�t� � Ĩ�t�X̄�tST ��2
η�i,t� � �P �tST ��i,i

2αo � 2 �Mi

. (3.10)

Here Ti is the set of times where the price of asset i is observed and Mi is the total number
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of prices observed for asset i. The subscript η�i, t� is the row number of Ĩ�t� such that

Ĩ�t�η�i,t�,i � 1.

For each conditional M-step P �t, T �, P �t, t � 1ST � and X̄�tST � are evaluated with respect to

p�X�1 � T �SY,Θ�k��.
To compute the conditional M-step for J we denote

Q�j� � G��Γ�k�1�,D�k�1�,�σ2
o,i�1BiBN , j,�λi�t��1��k�1BiBN,2BtBT �,Θ�k��.

Then up to a constant not depending on j

Q�j� � �
1

2

T

Q
t�2

�X̄�tST � � j�t� �D�k�1��T �Γ�k�1���1�X̄�tST � � j�t� �D�k�1��
�

T

Q
t�2

�X̄�tST � � j�t� �D�k�1��T �Γ�k�1���1X̄�t � 1ST �
� log�g�j�2 � T �S�λi�t���k�1BiBN,2BtBT �� � const1

� �
1

2

T

Q
t�2

�X̄�tST � � j�t� �D�k�1��T �Γ�k�1���1�X̄�tST � � j�t� �D�k�1��
�

T

Q
t�2

�X̄�tST � � j�t� �D�k�1��T �Γ�k�1���1X̄�t � 1ST �
�

T

Q
t�2

SSj�t�SSλ�t�,`1 � const2.
where SSj�t�SSλ�t�,`1 � PN

n�1 λn�t�Sjn�t�S. By rearranging terms we can express Q�j� as a

quadratic function of j

Q�j� � �
1

2

T

Q
t�2

j�t�T �Γ�k�1���1j�t�
�

T

Q
t�2

�X̄�tST � �D�j�1�
� X̄�t � 1ST ��T �Γ�k�1���1j�t�

�

T

Q
t�2

SSj�t�SSλ�t�,`1 � const3.
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Referring to equation (3.6) we see that J�k�1��t� is the solution of the following `1 penalized

quadratic program

J�k�1��t� � arg min
j

1

2
jT �Γ�k�1���1j � jT �Γ�k�1���1∆�k�1�

� SSj�t�SSλ�t�,`1 (3.11)

where

∆�k��t� � X̄�tST � �D�k�
� X̄�t � 1ST �. (3.12)

This problem can be solved with a variety of fast algorithms such as ADMM [11] and FISTA

[7].

Now we determine �λi�t��1�1BiBN,2BtBT which depends only on qinv�λ�1� and p�jSλ�. Using

conjugate prior relationships we have p�λi�t��1Sji�t�� is inverse gamma distributed with shape

αλ � 1 and scale βλ � Sji�t�S. Thus the conditional MAP estimate is

λi�t��1 �
SJ�k�1�
i �t�S � βλ
αλ � 2

. (3.13)

which implies that

λi�t� � αλ � 2

SJ�k�1�
i �t�S � βλ . (3.14)

An outline of the KECM algorithm for Laplace jump models is given below.

40



Algorithm 1 KECM Algorithm for estimation of Γ under Laplace Prior

Initialize: Θ�0�, k � 0

while not converged do

Compute X̄�tST �, P �tST �, P �t, t�1ST � using Kalman smoothing equations for Θ�k� using

equations (A.1)-(A.6)

Compute D�k�1�,Γ�k�1�, and σ
2,�k�1�
o,i using equations (3.8),(3.9), and (3.10) respectively

Compute J�k�1� by solving (3.12)

Compute �λi�t��1BiBN,2BtBT by solving (3.14)

k � k � 1

end while

Convergence results for this algorithm are given in Appendix A.3.

Remark. Since of value of �λi�t��1BiBN,2BtBT changes with each iteration we see that we

effectively reweight the `1 penalty in (3.11) after each iteration. Reweighting of the `1 norm

has been proposed in several papers and has been shown to have improved performance in

compressive sensing problems versus a fixed set of weights [17].
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3.2.2 KECM approach for the Spike and Slab Jump Prior

Now we present a KECM for the spike and slab jump prior. As with the Laplace prior we

treat X as a latent variable. Let us denote the unknown parameters as Φ where

Φ1 � D

Φ2 � Γ

Φ3 � σ2
o,i

Φ4 � Z�2 � T �, J̃�2 � T �
Φ5 � ζ

Φ6 � �σ2
j,i�t��i�1,...,N,t�1,...,T

.

Here we allow for distinct σ2
j values for each time and asset.

The E-step as well as the conditional M-steps for Φ1,Φ2,Φ3 are identical to the KECM

algorithm for Laplace priors. The differences for this section are in the conditional M-steps

for J , ζ and σ2
j .

First we address the conditional M-step for J�k�1�. Here we need to solve

�J�k�1��t�, Z�k�1��t�, J̃�k�1��t�� � arg min
j,z,j̃

1

2
jT �Γ�k�1���1j

�jT �Γ�k�1���1∆�k�1�
�

N

Q
i�1

log�f�j̃i, zi��
s.t. ji � j̃izi (3.15)

where

log f�j̃i, zi� � log �ζ1zi�0 � �1 � ζ�1zi�1� � log
���

1¼
2πσ2

j,i

exp�� j̃2
i

2σ2
j,i

���� . (3.16)
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Here we dropped the notation for time dependence. When restricted to ji � j̃izi, � log�j̃i, zi�
induces a penalty on ji. which is a weighted sum of an `0 and squared `2 norm. A plot of

this penalty is shown in Figure 3.6.
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Figure 3.6: Spike and slab penalty function for various parameter values. Here we see that
the penalty is a weighted sum of `0 and squared `2 norms.

The term � log�j̃i, zi� is non-convex and complicates the conditional M-step (3.15). Hence we

seek an approximate maximization through coordinate descent. Here we divide the problem

into tractable 1-dimensional optimization problems with respect to one asset at a time. The

method and equations for implementing coordinate descent are derived in Appendix A.4.2

and described below. For ease of notation we drop the notation denoting dependence on k.

Let us define the following conditional mean and variance

a�i� � ∆i�t� � Γi,�iΓ
�1
�i,�i�j�i�t� �∆�i�t�� (3.17)

and

b2�i� � Γi,i � Γi,�iΓ
�1
�i,�iΓ�i,i (3.18)
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where the subscript �i is to be interpreted as all indices except i. Then the following rule

determines the MAP optimal value of zi�t� conditioned on j�i�t�

ziS�i�t� �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 if ζ
1�ζN �0, a�i�, b2�i�� A N �0, a�i�, b2�i� � σ2

j,i�t��
1 else

(3.19)

where N �0, a�i�, b2�i�� is the normal PDF with mean a�i� and variance b2�i� evaluated at

0. An optimal value of J̃iS�i�t� is then given as

J̃iS�i�t� �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈

a
1�b2σ�2j,i�t� if ziS�i�t� x 0

0 else

. (3.20)

The mapping defined by equations (3.19) and (3.20) is a combination of a thresholding step

followed by a shrinkage operation

JiS�i�t� � SpikeSlabShrink�a, b2�
�

¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 if ζN �0,a�i�,b2�i��
�1�ζ�N �0,a�i�,b2�i��σ2

j,i�t�� A 1

a�i�
1�b2�i�σ�2j,i�t� else

. (3.21)

This spike and slab shrinkage is illustrated in Figure 3.7. As the plots indicate the shrinkage

is discontinuous and large values are shrunk more than smaller values.

Equation (3.21) is cycled through all i � 1 . . .N . Multiple cycles may also be performed to

obtain an improved estimate of J . A summary of the algorithm for the conditional M-step

for J is given below in Algorithm 2.
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Figure 3.7: Spike and slab shrinkage function for various parameter values

Algorithm 2 Coordinate Descent for Determination of Z�k�1��t�,J̃�k�1��t�, and J�k�1��t�
Initialize: Set J�k�1��t� � J�k��t�, it=0, L A 0

while it B L do

it � it � 1

i � 0

while i @ N do

i � i � 1

Compute Z
�k�1�
i �t� using equations (3.17), (3.18), and (3.19)

Compute J̃
�k�1�
i �t� using equations (3.17), (3.18), and (3.20)

Set J
�k�1�
i �t� � Z�k�1�

i �t�J̃�k�1�
i �t�

end while

end while

return J�k�1��t�
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Although this method is not guaranteed to solve (3.15) it will not increase the value of the

objective function compared with Jk�t�.
Once J�k�1� is obtained, values for ζ�k�1� and σ

2,�k�1�
j are easily computed through conjugate

prior relationships. First let NZ be number of zero values in J�2 � T ��k�1�. Then by conjugate

prior relationships the conditional M-steps for ζ and σ2
j are

ζ�k�1� � αζ �NZ

N�T � 1� � βζ � αζ (3.22)

and

σ
2,�k�1�
j,i �t� � βj � 0.5�Ji�t��2

αj � 1 � 0.5�Zi�t�� . (3.23)

The KECM algorithm for spike and slab models is summarized in Algorithm 3.

Algorithm 3 KECM Algorithm for estimation of Γ under Spike and Slab Prior

Initialize: Φ�0�, k � 0

while not converged do

Compute X̄�tST �, P �tST �, P �t, t�1ST � using Kalman smoothing equations for Θ�k� using

equations (A.1)-(A.6)

Compute D�k�1�,Γ�k�1�, and σ
2,�k�1�
o,i using equations (3.8), (3.9), and (3.10) respectively

For all t, compute J̃�k�1��t�, Z�k�1��t� using Algorithm 2

Set J
�k�1�
i �t� � Z�k�1�

i �t�J̃�k�1�
i �t�

Compute ζ�k�1� using equation (3.22)

Compute σ
2,�k�1�
j,i �t� using equation (3.23) for all i, t

k � k � 1

end while

Note that although J�t� is only approximately maximized in each conditional M-step this is
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still an ECM algorithm. To see this we can simply redefine Φ as

�D,Γ, σ2
o , J1�2�, . . . , JN�2�, . . . , J1�T �, . . . , JN�T �, ζ, σ2

j � .
Then the above algorithm is an ECM algorithm for the redefined parameter vector. The

convergence of Algorithm 3 is similar to the proof of the convergence of Algorithm 1 in

Appendix A.3.

Remark. A comparison of the spike and slab shrinkage function with the shrinkage function

of the b2 � equivalent Laplace prior is shown in Figure 3.8. The Laplace shrinkage function

(with parameter λ) is defined as

LaplaceShrink�a, b2� �

¢̈̈̈̈̈
¨̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¤

a � λb2 if a A λb2

a � λb2 if a @ �λb2

0 else

.

The graphs illustrate advantages and disadvantages of the Laplace prior. One notable dis-

advantage is that for large σ2
j the Laplace prior has a large bias relative to spike and slab

priors. However for small σ2
j and large values of a we see that the Laplace prior is less biased

than the spike and slab. This can be attributed to the quadratic penalty induced by the

spike and slab prior which penalizes large jumps more heavily than the Laplace prior.

Remark. The use of Laplace priors and `1 penalties has been applied in context of robust

Kalman filtering and smoothing in [67, 1]. Here the authors considered the problem of non-

gaussian heavy tailed observation noise rather than process noise.

47



a
×10-3

-5 -4 -3 -2 -1 0 1 2 3 4 5

 S
hr

in
ka

ge
 O

ut
pu

t

×10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5
Shrinkage function b

2 = 1e− 7

σ
j
2=0.0001, p=0.999

Laplace Equiv σ
j
2=0.0001, p=0.999

σ
j
2=1e-06, p=0.5

Laplace Equiv σ
j
2=1e-06, p=0.5

Figure 3.8: Shrinkage Functions of the spike and slab and the corresponding b2 � equivalent
Laplace prior

3.3 Bayesian Approach using MCMC

In this section we consider a fully Bayesian approach where we estimate the posterior distri-

bution of Γ. The advantages of the fully Bayesian approach to this problem are

1. Uncertainty in nuisance parameters such as J and σ2
o are averaged out rather than

relying on MAP point estimates

2. Estimate of the posterior distribution of Γ is obtained which provides more information

than a posterior mode

3. Estimates of uncertainty in covariance estimate can be obtained.
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To describe the Bayesian approach to estimation of Γ, let Φ represent the unknown param-

eters

Φ0 � Ymiss

Φ1 � X�1 � T �
Φ2 � J�2 � T �
Φ3 � D

Φ4 � �σ2
o,i�1BiBN

Φ5 � ζ

Φ6 � �σ2
j,i�t��i�1,...,N,t�1,...,T

(3.24)

where Ymiss are the unobserved prices. Unlike the KECM approaches in the previous section

we sample the missing observations Ymiss. One advantage of sampling Ymiss is that the

covariance of X�t�SX�t� 1�,X�t� 1�, Y �t�, Ymiss�t� is the same for all 2 B t B T � 1, where as

the covariance of X�t�SX�t � 1�,X�t � 1�, Y �t� depends on t. This simplification allows for

faster numerical simulation in the Gibbs sampler.

In the Bayesian approach given the data Y �t� we wish to compute the posterior distribution

of Γ

p�γSy� � R p�ySφ, γ�p�φ, γ�dφ
R R p�ySφ, γ��p�φ, γ��dφdγ� . (3.25)

Once the posterior is obtained the posterior mean of Γ can be obtained via

ESyΓ � S γp�γSy�dγ. (3.26)

The posterior mean which is optimal in a minimum mean squared error (MMSE) sense can

be used as an estimate of Γ.
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Evaluating the integrals in (3.25) and (3.26) are intractable, however we can obtain samples

from the posterior distribution using a Markov Chain Monte Carlo (MCMC) technique such

as Gibbs sampling. These samples can then be used to obtain an estimate of ESyΓ. A Gibbs

sampling approach for estimating ESyΓ is described in the next section.

3.3.1 Gibbs Sampling approach

Gibbs sampling [19] is an MCMC approach for generating samples from a multivariable

distributions such as p�φ, γSy�. In this application Gibbs sampling may be implemented as

follows to generate samples of Γ�1�, . . . ,Γ�MG� from p�γSy�.
1. Initialize the first samples,Φ�0�,Γ�0�

2. for k � 1 to MG

� Sample Y
�k�
miss from the conditional distribution p�YmissSX�k�1�, σ2

o�
� for t � 1 to T

– Sample X�t��k� from

p�x�t�Sy, Y �k�
miss,Φ

�k�1�
2�6 ,X�k��1 � t � 1�,X�k�1��t � 1 � T �,Γ�k�1��

� for l � 1 to L

– for t � 1 to T ,n � 1 to N

* Sample Jn�t��k�1�l~L� from

p�jn�t�Sy,Φ�k�
0,1 , J

�k�1�l~L�
1�n�1 �t�, J�k�1��l�1�~L�

n�1�N �t�,Γ�k�1��
� Sample D from p�dSy,Φ�k�

0�2 ,Φ
�k�1�
4�6 ,Γ�k�1��

� Sample Γ�k� from p�γSy,Φ�k�
0�3 ,Φ

�k�1�
4�6 �
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� Sample σ
2,�k�
o from p�σ2

o Sy,Φ�k�
0�3 ,Φ

�k�1�
5�6 ,Γ�k��

� Sample ζ�k� from p�ζ Sy,Φ�k�
0�4 ,Φ

�k�1�
6 ,Γ�k��

� Sample σ
2,�k�
j,i �t� from p�σ2

j,i�t�Sy,Φ�k�
0�5 ,Γ

�k�� for all i, t

where Φi�j refers to �Φi, . . . ,Φj� and where

Φ�n�t� � �Φ0�t�, . . . ,Φn�1�t�,Φn�1�t�, . . . ,Φ6�t��
Each of these steps draws from conditional distributions can be implemented easily as shown

in Appendix A.4.

It can be shown using well known results on Markov chains that the samples produced by

the above Gibbs sampler form a Markov chain [77] with a limiting stationary distribution

p�φ, γSy�.

3.3.2 Estimation of Γ

The samples of Γ�k� are used as an estimate of the posterior distribution of Γ. Using the

estimated posterior distribution the posterior mean of Γ is the sample average of Γ�k� ( where

we discarded earlier samples to allow for the samples to converge )

Γ̂ �
1

MG � k � 1

MG

Q
m�k

Γ�m�.

Another technique to estimate Γ is Rao-Blackwellization which reduces the variance in the

covariance estimate [61]. Here we take the sample of average of the conditional means to

arrive at an estimate of the posterior mean of Γ

Γ̂ �
1

MG � k � 1

MG

Q
m�k

E�ΓSΦ�k��.
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The numerical experiments presented in the next section use Rao-Blackwellization for the

posterior mean estimation.

3.4 Numerical Results

In this section we evaluate the performance of the following algorithms

1. KEM [22]

2. KECM Laplace(section 3.2)

3. KECM Spike and Slab (section 3.2)

4. MCMC approach (section 3.3)

5. Pairwise refresh with TSCV [33, 90]

6. Pairwise refresh with TSCV and jump correction [10]

for determining a covariance matrix from high frequency data. The performance is evaluated

using a Monte Carlo approach with simulated high frequency return data.

3.4.1 Performance Assessment Methodology

We track two performance measures for the covariance estimate, Γ̂, in this study. For the

first performance measure we compute the minimum variance portfolio

w̃ � arg min
w
wT Γ̂w

s.t.Q
i

wi � 1.
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The variance of this portfolio’s return is then computed as a figure of merit. The variance

of the portfolio return is given below

w̃TΓw̃.

For the second performance measure we compute the relative Frobenius norm of the error

between the true and estimated covariance

¼
Pi,j SΓi,j � Γ̂i,j S2»Pi,j SΓi,j S2 .

3.4.2 Algorithm Initialization and other considerations

In each study we initialize the algorithms in the same way. The hyper-parameters for the

prior distribution are listed in Table 3.1. For the KEM and KECM algorithms the initial

covariance estimate is computed using the time refresh method in [5]. The initialization of

drift and jump estimate of each algorithm is set to zero. For the MCMC algorithm we take

the output of the KECM spike and slab algorithm as the first sample.

In the KECM algorithms we employ one additional initialization step to avoid being trapped

in an over-smoothed local solution. This step involves using a forward Kalman filter rather

than a smoother to approximate the posterior distribution of X�t� in the first 10 iteration of

the KECM algorithms. After 10 iterations we revert to the approaches described in Section

3.2 which use the Kalman smoother.

The stability of the covariance estimate forms the basis for a stopping criterion in the KECM

algorithms. The KECM algorithms are terminated at iteration n when the relative difference
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between the current and previous covariance estimate is less than 0.001

¼
Pi,j SΓ̂�n�

i,j � Γ̂
�n�1�
i,j S2¼

Pi,j SΓ̂�n�1�
i,j S2 @ 0.001.

For the MCMC algorithm we generate 10000 samples and discard the first 2000 samples to

allow for convergence of the Markov chain.

Since jumps cannot be predicted an ambiguity occurs if there is no observation of the price

at the time the jump occurs. Thus to prevent ambiguity we assume jumps in the ith asset

price can only occur if an observation of the ith price is made. We believe that this is a

mild assumption given that in many markets jumps in the efficient price will be traded upon

almost immediately. This assumption is built into the KECM and MCMC approaches by

setting λ �ª and ζ � 1 when an observation does not occur.

3.4.3 Simulated Data Jump Model

For the data study we simulated 30 minutes of data from 20 assets according to equations

(3.1) and (3.3) at 1 second intervals. Here 50 data sets were generated to test our algorithms.

Taking motivation from factor models for U.S. stock returns we set our covariance Γ according

to the following 5 factor model

Γ �

5

Q
i�1

βviviv
T
i � εI.

Here we compute a new covariance for each Monte Carlo data set. We draw v1 from a

multivariate normal distribution with mean 1º
2

and covariance 0.5I. For i A 1, we draw

vi from a multivariate normal distribution with zero mean and covariance I. The factor

variance βvi is modeled as gamma distributed with shape 2 and mean 0.7�0.022

23400 for i � 1 and

mean 0.3~4�0.022

23400 for i x 1. The ε term is defined to be 0.022

23400�100 . With these settings each

simulated asset will on average have a daily return volatility of approximately 2 percent.
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Value Comment

αζ 10 � 0.995

βζ 10 � αζ prior mean of ζ is 0.995

αj 10

βj 0.012�αj � 1� prior mode of σ2
j is 1e-4

αo 5

βo �αo � 1� � 0.00012 prior mode of σ2
o is 1e-8

η N � 5

Wo
0.022�η�N�1�

23400 I Corresponds to 0.02% daily volatility

αλ 5.6 Obtained using method in Section 3.1.4

βλ 5e-04 Obtained using method in Section 3.1.4

Table 3.1: Parameters used in KEM, KECM and MCMC algorithms

For the D parameter we use a random number generator for each data set. The value for D

was drawn from a multi-variate normal distribution with mean 0 and covariance � 0.01
23400

�2
I.

The observation noise variance of each asset was set to a random number drawn from a

gamma distribution with shape 2 and mean 0.00022. For a stock price of $25 this corresponds

to a mean noise standard deviation of about $0.005. The jump parameters ζ and σ2
j were

varied parametrical over several values.

Both the KECM and MCMC algorithms require hyperparameters to be specified for the

prior distributions. For these experiments we choose hyperparameters which would result

in diffuse priors in order to minimize bias. For the hyperparameters of the Laplace prior in

the KECM algorithm we used the technique described in Section 3.1.5. A listing of all the

hyperparameters used in the algorithms are shown in Table 3.1.

The probability that any given price is observed is set to be commensurate with the price

innovation. This is consistent with empirical observations that trading volume can be posi-

tively correlated with volatility [51]. To model this association the probability that the mth

asset price will be observed at time t is simulated as

pobs,m�t� � SXm�t� �Xm�1�t� �DmSSXm�t� �Xm�1�t� �DmS � ν
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 1.2e-10 1.3e-10 1.3e-10 1.3e-10 1.8e-10 2.3e-10

0.9999 6.25e-06 1.5e-10 1.4e-10 1.4e-10 1.5e-10 1.8e-10 3.3e-10

0.9999 0.0001 1.6e-10 1.4e-10 1.4e-10 1.5e-10 2.6e-10 3.5e-10

0.9995 6.25e-06 1.6e-10 1.3e-10 1.3e-10 1.3e-10 2.4e-10 3.5e-10

0.9995 0.0001 3e-10 1.3e-10 1.2e-10 1.3e-10 7.9e-10 4.4e-10

0.999 6.25e-06 2.4e-10 1.6e-10 1.6e-10 1.7e-10 4.7e-10 4.1e-10

0.999 2.5e-05 4.5e-10 1.7e-10 1.7e-10 1.8e-10 9.8e-10 4.3e-10

0.999 0.0001 8.2e-10 1.6e-10 1.6e-10 1.7e-10 1.7e-09 6.4e-10

Table 3.2: Portfolio variance for jump model, best performance highlighted in green.

where

ν �

»
2Γm,m

π
� 1

pObs
� 1� .

This choice of ν ensures that when the innovation achieves its mean absolute value ,
¼

2Γm,m
π ,

the probability of an observation will be pObs. We set pObs � 0.3 in our numerical experiments.

The performance results for different values of the jump parameters are shown Tables 3.2

and 3.3. For the majority of cases we see that the KECM approaches outperform the other

methods when jumps are present. In Figure 3.9 we show the Kalman estimate of the true

price for various algorithms. The figure highlights the disadvantage of the KEM algorithm

in the presence of jumps, namely that it over smoothes prices near jumps.

3.4.4 Simulated Data from GARCH(1,1)-jump model

In addition to the jump diffusion model we also evaluate the algorithms against a multivariate

GARCH(1,1)-jump pricing model [21, 65, 8], where the effect of jumps persists in the price

volatility. Using the GARCH(1,1)-jump model the log- price data is generated as

Xi�t� �Xi�t � 1� �»hiVi�t� � Ji�t�Zi�t� �D
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 0.2 0.2 0.2 0.22 0.48 0.51

0.9999 6.25e-06 0.22 0.22 0.22 0.24 0.47 0.52

0.9999 0.0001 0.73 0.21 0.21 0.22 0.89 0.56

0.9995 6.25e-06 0.29 0.21 0.21 0.22 0.55 0.58

0.9995 0.0001 3.5 0.18 0.18 0.2 2.9 0.57

0.999 6.25e-06 0.36 0.21 0.21 0.22 0.67 0.63

0.999 2.5e-05 1.1 0.21 0.21 0.22 1.5 0.68

0.999 0.0001 4.8 0.2 0.2 0.21 4.6 0.73

Table 3.3: Average covariance error for jump model, best performance highlighted in green.
Large errors highlighted in red.

hi�t � 1� � bihi�t� � ai�Xi�t� �Xi�t � 1� �D�2
� ci

hi�0� � Γi,i

where ai, bi, ci are non-negative with bi �ai @ 1 and ci � Γi,i�1�ai � bi�. Here V �t� is modeled

as multivariate normal with

� Vi�t� � N �0,1�
� EVi�t�Vj�t� � Γi,j»

Γi,iΓj,j

� EVi�t1�Vj�t2� � 0 for t1 x t2.

The value of c ensures that in the absence of jumps, the long term average volatility for the

ith asset will be
»

Γi,i. We also see that the correlation coefficient between any two assets is

constant [8].

In these experiments ai � 0.3 and bi � 0.5. This allows for volatility clustering which has been

observed in many empirical stock return data. All other parameters such as the covariance

matrix are identical to the previous experiment.
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Figure 3.9: Price estimate example from the KEM, KECM, and Gibbs sampling. This is an
example of the KEM algorithm over-smoothing near a small jump in price

The results for the GARCH(1,1)-jump model are shown in Tables 3.4 - 3.5. From these

tables we see that the KECM and MCMC algorithms are robust to the volatility clustering

exhibited in GARCH models.

3.4.5 Simulated Data from GARCH(1,1)-jump Model and stochas-

tic microstructure variance

In this section we test our algorithms under a GARCH(1,1)-jump model with stochastic

microstructure variance. This microstructure noise model accounts for a positive correlation

between the bid-ask spread and the squared innovation. This models an empirical phenomena

that has been observed in many markets [91]. Here we assume the same efficient price

innovation as the GARCH(1,1)-jump model but now we allow for time-varying variance in

the microstructure noise. In this model the variance of the microstructure noise at time t
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 1.3e-10 1.3e-10 1.3e-10 1.4e-10 2.5e-10 4e-10

0.9999 6.25e-06 1.6e-10 1.6e-10 1.5e-10 1.6e-10 2.4e-10 3.1e-10

0.9999 0.0001 1.6e-10 1.3e-10 1.3e-10 1.3e-10 4.4e-10 4.2e-10

0.9995 6.25e-06 2e-10 1.5e-10 1.5e-10 1.5e-10 4.4e-10 4.6e-10

0.9995 0.0001 3.7e-10 1.3e-10 1.4e-10 1.3e-10 1e-09 3.9e-10

0.999 6.25e-06 2.6e-10 1.4e-10 1.4e-10 1.4e-10 5.8e-10 4.5e-10

0.999 2.5e-05 5.5e-10 1.5e-10 1.7e-10 1.6e-10 1.4e-09 7e-10

0.999 0.0001 1.1e-09 1.6e-10 1.5e-10 1.5e-10 2e-09 6.8e-10

Table 3.4: Portfolio variance for GARCH(1,1)-jump model, best performance highlighted in
green.

KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 0.37 0.37 0.38 0.41 0.5 0.52

0.9999 6.25e-06 0.43 0.37 0.38 0.41 0.58 0.55

0.9999 0.0001 3.3 0.39 0.4 0.43 1.7 0.55

0.9995 6.25e-06 0.88 0.42 0.43 0.44 0.81 0.62

0.9995 0.0001 18 0.65 0.49 0.46 8.5 0.61

0.999 6.25e-06 1.4 0.48 0.51 0.49 1.2 0.64

0.999 2.5e-05 7.7 0.64 0.62 0.52 4.5 0.69

0.999 0.0001 36 1.4 0.67 0.55 16 0.71

Table 3.5: Average covariance error for GARCH(1,1)-jump model, best performance high-
lighted in green. Large errors highlighted in red.
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 1.5e-10 1.6e-10 1.6e-10 1.6e-10 2.2e-10 4.7e-10

0.9999 6.25e-06 1.6e-10 1.6e-10 1.6e-10 1.6e-10 3e-10 2.8e-10

0.9999 0.0001 2e-10 1.6e-10 1.6e-10 1.6e-10 5.1e-10 4.6e-10

0.9995 6.25e-06 2.6e-10 1.9e-10 1.9e-10 1.9e-10 4.6e-10 5.1e-10

0.9995 0.0001 5.1e-10 1.8e-10 1.8e-10 1.7e-10 1.5e-09 7.4e-10

0.999 6.25e-06 2.3e-10 1.5e-10 1.5e-10 1.5e-10 5e-10 5.4e-10

0.999 2.5e-05 5.6e-10 1.7e-10 1.7e-10 1.7e-10 1.4e-09 1e-09

0.999 0.0001 9e-10 2e-10 1.6e-10 1.5e-10 2.3e-09 7.4e-10

Table 3.6: Portfolio variance for GARCH(1,1)-jump model with stochastic microstructure
noise variance, best performance highlighted in green

for ith asset is

�0.1
�Xi�t� �Xi�t � 1� �D�2

Γi,i
� 0.9� σ̃2

o,i

which is the sum of fixed variance and time varying term which is dependent on the efficient

price innovation. Here we see that when the squared innovation equals the variance then the

observation noise variance equals σ̃2
o,i. As in the previous simulations, σ̃2

o,i is chosen to be a

realization of a gamma distributed random variable with shape 2 and mean 0.00022.

The results for this model are shown in Tables 3.6 and 3.7. A comparison of the covariance

errors is shown in Table 3.8. From the comparison table we see that the covariance errors are

larger for the non-stationary microstructure noise model. Here the KECM-Laplace model is

especially sensitive to the stochastic microstructure noise variance for σ2
j � 1e � 4. In some

cases the covariance error increased by about a factor of 10. The KECM-spike and slab and

MCMC approaches were not as sensitive to the stochastic noise variance.
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

& Slab (jump)

1 N/A 0.37 0.37 0.38 0.42 0.57 0.6

0.9999 6.25e-06 0.51 0.42 0.42 0.47 0.55 0.56

0.9999 0.0001 21 1.5 0.38 0.41 2.6 0.56

0.9995 6.25e-06 0.78 0.4 0.41 0.44 0.82 0.55

0.9995 0.0001 75 3.3 0.47 0.44 9.5 0.67

0.999 6.25e-06 1.2 0.41 0.44 0.43 1 0.6

0.999 2.5e-05 13 0.48 0.51 0.46 3.5 0.79

0.999 0.0001 1.3e+02 13 2.7 0.45 13 2.2

Table 3.7: Average covariance error for GARCH(1,1)-jump model with stochastic microstruc-
ture noise variance, best performance highlighted in green. Large errors highlighted in red.

KECM KECM KECM KECM MCMC MCMC
ζ σ2

j Laplace Laplace Spike Spike

&Slab &Slab
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

1 N/A 0.37 0.37 0.38 0.38 0.41 0.42

0.9999 6.25e-06 0.37 1.5 0.38 0.38 0.41 0.41

0.9999 0.0001 0.39 0.42 0.4 0.42 0.43 0.47

0.9995 6.25e-06 0.42 3.3 0.43 0.47 0.44 0.44

0.9995 0.0001 0.65 0.4 0.49 0.41 0.46 0.44

0.999 6.25e-06 0.48 13 0.51 2.7 0.49 0.45

0.999 2.5e-05 0.64 0.48 0.62 0.51 0.52 0.46

0.999 0.0001 1.4 0.41 0.67 0.44 0.55 0.43

Table 3.8: Average covariance error comparison for GARCH-jump model (model 1) and
GARCH-jump model with stochastic microstructure noise variance (model 2)
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KECM KECM Pairwise Pairwise
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh

(sec) (sec) Slab(sec) (sec) (sec) jump (sec)

1 N/A 24.9 77.6 57.5 182.5 0.7 7.1

0.9999 6.25e-06 28.7 76.4 58.0 182.4 0.7 7.1

0.9999 0.0001 48.9 83.5 59.8 184.0 0.7 7.0

0.9995 6.25e-06 46.2 88.5 61.5 185.1 0.7 7.1

0.9995 0.0001 95.1 109.9 64.4 193.8 0.7 7.1

0.999 6.25e-06 51.9 83.1 62.0 187.4 0.8 7.0

0.999 2.5e-05 86.9 99.9 66.1 177.5 0.8 7.1

0.999 0.0001 90.0 122.9 72.8 200.9 0.8 7.1

Table 3.9: Run-time (seconds) for GARCH-jump model with stochastic microstructure noise
variance

3.4.6 Timing

Average MATLAB timing of the algorithms for the GARCH(1,1)-jump model with stochastic

microstructure noise variance are shown in Table 3.9. The machine running the simulation

has the Windows 7 operating system and an Intel i7-3740 processor with 32.0 GB of RAM.

The table shows that the pairwise refresh methods are the least computationally costly,

while the MCMC method requires the most run time. The data also indicates that the KEM,

KECM, and MCMC algorithms take longer to converge when larger and more frequent jumps

are present.

3.4.7 Numerical Results Summary

The following are key observations from the numerical simulation results:

1. Both KECM and MCMC approaches outperform KEM in the presence of jumps.

2. Laplace prior underperforms spike and slab models for large jumps.

3. Spike and slab models are more robust to stochastic microstructure noise variance than
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the Laplace prior model.

The first observation is not surprising since both the KECM and MCMC approaches explic-

itly account for jumps. The second and third observations may be the result of a large jump

estimation bias that can occur when using the Laplace prior for large σ2
j .

3.5 Extensions to Matrix Factorization Approaches

In this section we examine the use of a robust nuclear norm formulation to the recover the

missing unobserved true prices. This technique is inspired by robust PCA [15] and matrix

completion [16]. In the application to covariance estimation the recovered missing prices

could be used as an input to a covariance estimation algorithm.

Intuitively in the presence of missing data the ability of the KECM algorithms to recover

the true unobserved price depends on the approximate low rank structure of the covariance

matrix. If the covariance is low rank then missing observations can be inferred from changes

in the prices of observed assets. However if assets returns are nearly uncorrelated (i.e. high

rank covariance) then returns on one asset provide little information on the returns of other

assets. An illustration of this is shown in Figures 3.10 and 3.11. Here we see that for a

low rank covariance we are able to accurately recover missing data whereas in a high rank

covariance the missing data cannot be recovered accurately.

Mathematically we can observe this behavior by considering a toy two asset problem with

zero-mean normal log-returns with covariance

����
1 ρ

ρ 1

���� .
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Let x1�t� and x2�t� denote the log returns. Suppose the price at time 0 is observed for both

assets, but only the price of stock 2 is observed at time 1. Then the posterior distribution

of the price of asset 1 at time 1 is normal with mean

x1�0� � ρ�x2�1� � x2�0��
and variance

1 � ρ2.

Here we see that for approximately rank deficient covariance matrix ( ρ close to 1) we have a

posterior variance of nearly 0. Thus we can accurately recover the missing observation x1�1�
by setting its value to the posterior mean. If the covariance is well conditioned (ρ close to

0), then the posterior variance is close to 1 which means the posterior mean may not be a

reliable estimate.

time
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e
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51.55

Posterior Mean
Observation
Truth

Figure 3.10: Missing data is accurately recovered using KECM when covariance matrix is
low rank. Here the percentage of missing observation is 70% and asset returns from 20 stocks
is generated from a 5 factor model with small residual term.
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Figure 3.11: Missing data is not accurately recovered using KECM when covariance matrix
is high rank. Here the percentage of missing observation is 70% and asset returns from 20
stocks are generated from a 5 factor model with large residual term.

Since a large number of financial asset returns have a low rank structure it is natural to

exploit this structure directly in order to recover the missing underling true price. In this

section we show how nuclear norm minimization can be used for this. First we define the

following notation:

� Ri,t :unobserved low rank diffusion component of log-return for asset i at time t A 1.

For t � 1 let Ri,t be the unobserved true log asset price at time t � 1.

� Ji,t :unobserved sparse jump component of log return for asset i at time t A 1. Let

Ji,1 � 0.

� Yik,tk : observed (noisy) log price of asset ik at time tk.

� S: discrete time integration ( in time) operator (rectangular method).
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Here S has a upper triangular matrix representation

S �

�������������������

1 1 1 . . . 1

0 1 1 . . . 1

� 0 1 . . . 1

� 0 . . . 1

� . . . �

0 0 0 . . . 1

�������������������

.

Since the data returns consist of a low rank diffusion and sparse jump component one criterion

for recovery of the true price X�t� is

argminj,r,x rank�r� � λ1Q
k

���r � j�S�ik,tk � Yik,tk�2
� λ2SSjSS`0 s.t. ji,1 � 0 ¦i; x � �r � j�S

for some λ1, λ2 A 0. This criterion promotes low rank + sparse representations of the return

such that they are consistent with the observed noisy prices. Unfortunately solving this

problem is non-convex and NP-hard due to the rank and `0 component of the objective.

One alternative to the non-convex criterion is to use the following convex relaxation

argminj,r,x SSrSS��λ1Q
k

���r � j�S�ik,tk � Yik,tk�2
�λ2SSjSS`1 s.t. ji,1 � 0 ¦i; x � �r�j�S (3.27)

where SSrSS� represents the nuclear norm which is the sum of the singular values of r. The

nuclear norm term promotes a low rank estimate of R while the `1 term promotes a sparse

estimate of the jumps [15].

The criterion in (3.27) can be solved using accelerated proximal gradient (APG) descent

methods [58] with convergence rate of O�1~k2�. For strongly convex objective functions the

APG algorithm converges at a linear rate [20, 74]. Unfortunately the objective in (3.27) is

66



not strongly convex. However assuming the noisy price at time 0 is observed for each asset,

convergence can be accelerated to a linear rate by considering the following strongly convex

variant of (3.27)

argminx,j,r SSrSS� � λ1Q
k

���r � j�S�ik,tk � Yik,tk�2
� λ2SSjSS`1 �

�ε1Q
tA1

Q
m

r2
m,t � ε2Q

tA1

Q
m

j2
m,t s.t. ji,1 � 0 ¦i; x � �r � j�S (3.28)

where ε1 and ε2 are positive valued. Here the addition of the `2
2 penalty can be interpreted

as imposing a zero-mean normal prior on the distribution of the returns and jumps. An

application of the APG algorithm to solving (3.28) is given in Algorithm 4.
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Algorithm 4 APG algorithm solving (3.28)

Initialize: R�0�, J�0�, k � 0

Define

f�r, j� � λ1Q
k

���r � j�S�ik,tk � Yik,tk�2
� ε1Q

tA1

Q
m

r2
m,t � ε2Q

tA1

Q
m

j2
m,t

Compute maximum eigenvalue of Hessian of f�r, j�. Denote as λmax.

Compute minimum eigenvalue of Hessian of f�r, j�. Denote as λmin.

Set s � α
λmax

for some α @ 1

Set τ �
º
λmax�

º
λminº

λmax�
º
λmin

Set R̃�0� � R�0�, J̃�0� � J�0�

Set k � 0

while not converged do

Compute ©rf�R̃�k�, J̃�k��,©jf�R̃�k�, J̃�k��
Set R�k�1� � shrinkNuc�R̃�k� � s©rf, s�
Set J�k�1� � shrink`1�J̃�k� � s©jf, sλ2�
Set R̃�k�1� � R�k�1� � τ�R�k�1� �R�k�

Set J̃�k�1� � J�k�1� � τ�J�k�1� � J�k�

Set k � k � 1

end while

Here the nuclear norm shrinkage is given as

shrinkNuc�R,s� � Udiag��σ1 � s� - 0, . . . , �σM � s� - 0�V T
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where R has singular value decomposition Udiag�σ1, . . . , σM�V T . The `1 norm shrinkage is

�shrink`1�J, s��m,n �
¢̈̈̈̈̈
¨̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¤

Jm,n � s if Jm,n A s

0 else

Jm,n � s if � Jm,n A s.
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Figure 3.12: Here percentage of observed prices is 80% and there is no observation noise.
The recovery by nuclear norm minimization is nearly identical to KECM-Laplace. Parameter
settings in (3.28) are λ1 � 2000, λ2 � 0.8, ε1 � 88, ε2 � 0.88. 20 assets, 250 time samples. The
squared `2 norm of the reconstruction error is 2.9e-7 for KECM-Laplace and 2.5e-6 for nuclear
norm minimization.

3.5.1 Nuclear Norm Simulation Examples

In Figures 3.12 to 3.19 we show some example plots of the nuclear norm reconstruction

criterion in (3.28) for various levels of missing data and noise. In Figures 3.12 and 3.13

we see that for a large percentage of observations and without noise the criterion in (3.28)
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Figure 3.13: Here percentage of observed prices is 80% and there is no observation noise.
The jump recovery by nuclear norm minimization is slightly biased towards 0. Parameter
settings in (3.28) are λ1 � 2000, λ2 � 0.8, ε1 � 88, ε2 � 0.88. 20 assets, 250 time samples.

is comparable with KECM-Laplace. However as shown in Figures 3.14 to 3.19 the nuclear

norm minimization technique performs poorly when a larger percentage of data is missing

or if there is large observation noise.

Table 3.10 shows covariance matrix estimation accuracy for 20 assets and 300 time samples

under a GARCH(1,1)-jump model. Here the observation noise variance is 0.00012. All other

data parameters are identical to section 3.4. To estimate the covariance for the nuclear norm

minimization approach we use sample averaging of the recovered prices using the criterion

in (3.28). The results indicate that the covariance matrix estimates obtained using the

recovered prices from matrix factorization are less accurate than those obtained with the

KECM and MCMC approaches.
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Figure 3.14: Here percentage of observed prices is 80% and there is observation noise with
variance 0.00042. Parameter settings in (3.28) are λ1 � 20, λ2 � 0.2, ε1 � 88, ε2 � 0.88. 20
assets, 250 time samples. The squared `2 norm of the reconstruction error is 1.1e-4 for
KECM-Laplace and 2.1e-4 for nuclear norm minimization.

3.5.2 Timing

Timing results for the examples in section 3.5.1 are shown in Table 3.11. The computer and

software is identical to the description in Section 3.4.6.

Here we see that nuclear norm minimization requires significantly more computation time

then KECM. The primary contributor to the long computation time is computing the singu-

lar value decomposition which accounted for 80% of the computation time in our experiments.

When examining the no noise case we see that the nuclear norm minimization takes longer

to run. For those cases the λ1 penalty value was increased to enforce a better fit to the

observed data. This increases the condition number of the objective function which in turn

increases the number of iterations needed for convergence.
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KECM KECM Pairwise Pairwise Nuclear
ζ σ2

j KEM Laplace Spike MCMC Refresh Refresh Norm

& Slab (jump) Min.

1 N/A 0.45 0.44 0.45 0.56 0.55 0.57 0.91

0.9999 0.0001 2.4 0.43 0.43 0.56 2.4 2.1 0.91

0.9999 6.25e-06 0.63 0.39 0.39 0.48 0.66 0.66 0.91

0.9995 0.0001 12 0.66 0.46 0.6 13 11 0.95

0.9995 6.25e-06 0.79 0.38 0.39 0.45 0.82 0.78 0.91

0.999 0.0001 24 0.99 2.7 0.58 15 11 0.94

0.999 2.5e-05 6 0.6 0.73 0.53 7.5 4.4 0.93

0.999 6.25e-06 3.1 0.46 0.64 0.65 1.4 1.2 0.91

Table 3.10: Average covariance error for GARCH(1,1)-jump model, best performance high-
lighted in green,σ2

o � 0.00012. 300 time samples

Percentage Missing Noise Time Time Nuclear Norm Min (sec)
KECM-Laplace (sec) APG descent

20 % Yes 8.5 15.1

20 % No 8.7 148

70 % Yes 8.2 16.2

70 % No 8.4 150

Table 3.11: Run time (seconds) for nuclear norm model examples in Section 3.5.1
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Figure 3.15: Here percentage of observed prices is 80% and there is observation noise with
variance 0.00042. Parameter settings in (3.28) are λ1 � 20, λ2 � 0.2, ε1 � 88, ε2 � 0.88. 20
assets, 250 time samples
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Figure 3.16: Here percentage of observed prices is 30% and there is no observation noise.
Parameter settings in (3.28) are λ1 � 2000, λ2 � 0.8, ε1 � 37, ε2 � 0.37. 20 assets, 250 time
samples. The squared `2 norm of the reconstruction error is 1.7e-5 for KECM-Laplace and
4.5e-5 for nuclear norm minimization.
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Figure 3.17: Here percentage of observed prices is 30% and there is no observation noise.
Parameter settings in (3.28) are λ1 � 2000, λ2 � 0.8, ε1 � 37, ε2 � 0.37. 20 assets, 250 time
samples
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Figure 3.18: Here percentage of observed prices is 30% and there is observation noise with
variance 0.00042. Parameter settings in (3.28) are λ1 � 20, λ2 � 0.2, ε1 � 37, ε2 � 0.37. 20
assets, 250 time samples. The squared `2 norm of the reconstruction error is 2.2e-4 for
KECM-Laplace and 7.2e-4 for nuclear norm minimization.
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Figure 3.19: Here percentage of observed prices is 30% and there is observation noise with
variance 0.00042. Parameter settings in (3.28) are λ1 � 20, λ2 � 0.2, ε1 � 37, ε2 � 0.37. 20
assets, 250 time samples
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Chapter 4

Weighted Elastic Net Penalized

Portfolios

In this chapter we present a new penalization approach to improve the robustness of mean-

variance portfolio optimization. We also present efficient numerical techniques to solve the

new penalized problem.

Portions of this chapter reuse material from the article [46]( © 2015 Society for Industrial

and Applied Mathematics. Reprinted with permission. All rights reserved).

4.1 Weighted Elastic Net (WEN)

The norm penalties presented in Chapter 2 are derived and calibrated primarily from a

minimum variance perspective. In this chapter we extend the above methods for minimum

variance portfolio design to mean-variance portfolios. Here we propose augmenting the

mean-variance criterion with two penalty terms. The first term is a weighted `1 norm of the

portfolio weights and the second term is the square of a weighted `2 norm of the portfolio
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weights. The sum of these two penalty terms will be referred to as a weighted elastic net

(WEN) which was studied in the context of variable selection in [94].

Let �αi�Ni�1 and �βi�Ni�1 be positive real numbers. Then the WEN penalty for portfolio weights

w is given by

SSwSSÑβ,`1 � SSwSS2Ñα,`2
where

SSwSSÑβ,`1 � N

Q
k�1

βkSwkS
and

SSwSS2Ñα,`2 � N

Q
k�1

αkSwkS2.
With these definitions the WEN penalized objective function is

Ψ�w� � wT Γ̂w �wT µ̂ � SSwSSÑβ,`1 � SSwSS2Ñα,`2 (4.1)

� wTRw �wT µ̂ � SSwSSÑβ,`1
where Γ̂ and µ̂ are estimates of Γ and µ respectively. Here R � Γ̂ �Dα where

Dα �

�����������

α1 0 . . . 0

0 � � �

� � � 0

0 . . . 0 αN

�����������
. (4.2)

Thus the WEN penalized criterion is

min
w

Ψ�w� (4.3)

Since R is positive semidefinite the objective function Ψ is strictly convex and the solution
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to (4.3) is unique.

4.1.1 Robustness of the WEN penalized portfolio

Motivation for augmenting the mean-variance criterion with a WEN penalty can be obtained

by considering a robust portfolio optimization problem. Recall from Chapter 1 that the out-

of-sample performance of the mean-variance portfolio can degrade significantly when there

are errors in the estimates of mean and covariance. This parameter estimation risk can be

reduced by accounting for it in the optimization criterion.

One way to approach parameter estimation risk is to assume that the true covariance and

mean belong to uncertainty sets such as the ones below

A � �R � Ri,j � Γ̂i,j � ei,j; Sei,j S B ∆i,j;R k 0�
B � �v � vi � µ̂i � ci; SciS B βi� .

Here the matrix ∆ is symmetric and diagonally dominant with ∆i,j C 0 for all i, j which

ensures that a matrix, R, of the form

Ri,j �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈

Γ̂i,i �∆i,i if i � j

Γ̂i,j �∆i,j if i x j

Ri,j � Rj,i

is positive semi-definite (i.e. R > A).

Robustness to parameter uncertainty can be gained by selecting a portfolio to optimize the

worse case performance over the above uncertainty sets. This can be written as a robust
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optimization problem [42]

min
w

max
R>A,v>B

wTRw � vTw. (4.4)

The main result in this section is given below.

Theorem 4.1. The WEN penalized problem in (4.3) is equivalent to the robust optimization

problem in (4.4), when

∆ �Dα (4.5)

Proof. Note that for a fixed R and v this problem is convex in w. Since the pointwise

maximum of convex functions remains convex we have that

max
R>A,v>B

wTRw � vTw (4.6)

is convex in w. Performing the inner maximization with respect to v reduces the problem to

min
w

max
R>A

wTRw �

N

Q
i�1

��µ̂i � βisgn�wi��wi (4.7)

where

sgn�wi� �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
wiSwiS if wi x 0

0 else.

This can be re-written as

min
w

max
R>A

tr�RwwT � �wT µ̂ � SSwSSÑβ,`1 ,
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and the inner maximization with respect to R can be solved in closed form to give

min
w
wT Γ̂w �wT µ̂ � SwST∆SwS � SSwSSÑβ,`1 (4.8)

where the vector SwS is defined as

SwSi � SwiS. (4.9)

This is a pairwise weighted elastic net (PWEN) [63] penalized criterion. When ∆ equals

the diagonal matrix Dα the criterion simplifies to the WEN penalized problem defined in

problem (4.3).

4.1.2 Bootstrap Calibration

In this section we address the problem of calibrating the weighting parameters α and β. A

guideline for choosing these parameters is implied by Theorem 4.1 which states that problems

(4.3) and (4.4) are equivalent. This implies that α and β represent the level of uncertainty

in the mean and variance of each asset. Thus a natural guideline for selecting α and β is

that they should be proportional to the amount of uncertainty in the parameter estimates.

Since the amount of error in the parameter estimates is unknown, we will need to estimate

the errors prior to choosing α and β. One approach to estimate the amount of error is the

bootstrap method [30]. Bootstrapping is a non-parametric approach that has been applied

to portfolio optimization [71] and calibration of robust portfolio optimization problems [83].

One advantage of bootstrapping is that it does not require specification of a distribution of

the return data or normality assumptions on the parameter estimation error.

Bootstrapping can be used to calibrate the penalty factors as follows.
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1. For k � 1 to K

� Resample Ttrain samples from the training data

� Estimate mean and covariance using this sample, denote as µ̃ and Γ̃

� Compute absolute error between the resampled estimates and µ̂ and Γ̂

µi,err�k� � Sµ̃i � µ̂iS
Γi,err�k� � TΓ̃i,i � Γ̂i,iT

2. Compute empirical distributions, fi, of µi,err

3. Compute empirical distributions, gi, of Γi,err

4. Set αi to p1 percentile of fi and βi to p2 percentile of gi

An economic interpretation of the percentile parameters p1 and p2 is that of model estimation

risk aversion factors. Here p1 represents the aversion to squared volatility estimation risk

and p2 is the aversion to mean estimation risk. A percentile value of 0 corresponds to no

aversion to estimation risk whereas a value of 1 corresponds to a high aversion to estimation

risk. Note that a higher aversion to estimation risk will increase the weights in the elastic

net.

4.2 Computational Aspects

In this section we present an adaptive support split-Bregman approach for solving (4.3).

This technique improves upon the speed of the split-Bregman [43] algorithm by exploiting

the sparse nature of WEN penalized portfolio weights.
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4.2.1 Preliminaries

First we derive approximate optimality conditions for the WEN penalized criterion (4.3).

Recall that the objective function in the WEN criterion, Ψ�w�, is convex. Thus w� minimizes

Ψ if and only if

0 > ∂Ψ�w�� (4.10)

where ∂Ψ�w� is the sub-gradient of Ψ evaluated at w [12]. Since Ψ is strictly convex there

is a unique solution to (4.3).

In most cases we are only interested in portfolios that are approximately optimal. Thus we

can relax the above optimality conditions to derive a stopping criterion. Before introducing

our relaxed conditions we define the support of a portfolio w as

supp�w� � �i � SwiS A 0�
and define the smallest variance uncertainty as

αo � min�αi � 0 B i B N�. (4.11)

With the above definitions we have the following theorem which establishes an approximate

optimality condition.

Theorem 4.2. Let w� be the solution of (4.3). Suppose that w̃ satisfies

Q
i>supp�w̃�

� ∂

∂wi
�wTRw �wT µ̂ � SSwSSÑβ,`1�Uw�w̃�

2

B 2εαo (4.12)

and

� βi B
∂

∂wi
�wTRw �wT µ̂�U

w�w̃
B βi (4.13)
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for all i ¶ supp�w̃�. Then

Ψ�w̃� B Ψ�w�� � ε (4.14)

Proof. See Section 4.2.3.

In a numerical algorithm it may happen that none of the portfolio weights are exactly 0,

although they may be extremely close to zero. Thus the above theorem may not be practical

for use as a stopping criterion. For this reason let us separate the small portfolio weights

from the larger portfolio weights. To that end we define

suppε�w� � �i > supp�w� � SwiS @ ε� .
With this definition we have the following corollary which suggests a more practical stopping

rule than Theorem 4.2.

Theorem 4.3. Let M C 2SSRSS`2 and let ε A 0 be given. Choose η @
ε,
º
εαoº

NM
. Let w� be the

solution the of (4.3). Suppose that w̃ satisfies

Q
i> supp�w̃��suppη�w̃�

� ∂

∂wi
�wTRw �wT µ̂ � SSwSSÑβ,`1�Uw�w̃�

2

B 2εαo (4.15)

and

� βi � ε B
∂

∂wi
�wTRw �wT µ̂�U

w�w̃
B βi � ε (4.16)

for i > suppη�w̃� 8 supp�w̃�. Then

Ψ�ζ� B Ψ�w�� � �º2 � 1�2

2
ε (4.17)

where

ζi �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 if i > suppη�w̃�
w̃i else .
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Proof. See Section 4.2.3.

4.2.2 Solution via adaptive support split-Bregman Algorithm

The weighted elastic net problem can be reformulated as a quadratic program and solved

using general purpose solvers. However the reformulation involves adding an additional N

primal variables as well as 2N dual variables. Thus this approach may not be applicable to

large scale problems.

An algorithm better suited to handle problems like (4.3) is the split-Bregman algorithm.

The split-Bregman algorithm was introduced in [43] for problems involving `1 regularization

such as (4.3). When using the split-Bregman method to solve (4.3) we solve an equivalent

problem

min
w,d

wTRw �wT µ̂ � SSdSS`1
s.t. d � ψ�w� (4.18)

where R � ρΓ̂ � Dα and where ψ�w� � �β1w1, . . . , βNwN�. The split-Bregman algorithm

applied to (4.18) is

Algorithm 5 Split-Bregman algorithm for solving (4.18)

Initialize: k � 1, bk � 0,wk � 0, dk � 0

while SSwk �wk�1SS`2 A tol do

wk�1 � arg minwwTRw �wT µ̂ � λ
2 SSdk � ψ�w� � bkSS2`2

dk�1 � arg mind
λ
2 SSd � ψ�wk�1� � bkSS2`2 � SSdSS`1

bk�1
i � bki � βiw

k�1
i � dk�1

i

k � k � 1

end while
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Both inner optimization problems in Algorithm 5 have closed form solutions. The first

problem is an unconstrained strictly convex quadratic program and the second problem can

be solved using the shrinkage operator

dk�1
j � shrink�βjwk�1

j � bkj ,
1

λ
�

where

shrink�x, γ� � xSxS �max�SxS � γ,0�.
The stopping criterion in Algorithm 5 does not ensure that the objective value is within a

desired tolerance. A modification to the algorithm can be made to ensure that this occurs.

One such modification uses Theorem 4.3 to derive a stopping criterion.

Algorithm 6 Modified split-Bregman Algorithm for solving (4.18)

Initialize: k � 0, bk,wk, dk � SwkS, tol A 0

while wk does not satisfy conditions of Theorem 4.3 for ε � 2
�º2�1�2 tol and w̃ � wk do

wk�1 � arg minwwTRw �wT µ̂ � λ
2 SSdk � ψ�w� � bkSS2`2

dk�1 � arg mind
λ
2 SSd � ψ�wk�1� � bkSS2`2 � SSdSS`1

bk�1
i � bki � βiw

k�1
i � dk�1

i

k � k � 1

end while

Output ζ and dk where ζ is defined as in Theorem 4.3 using ε � 2
�º2�1�2 tol and w̃ � wk.

By Theorem 4.3 this algorithm ensures that the objective value is within tol of the optimal

value.

The first sub-problem in Algorithms 5 and 6 involves solving a N �N system of equations.

When the number of assets is large completing this step becomes computational expensive.
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This is especially true for financial data where the covariance matrix is ill-conditioned and

dense. Thus Algorithms 5 and 6 may be impractical in applications where real-time results

are required or computational performance is limited.

Figure 4.1: Elastic net penalty promotes sparsity in the portfolio weights

It is well known [13] that portfolio optimization problems with an `1 regularization term can

result in sparse portfolios i.e. the solution of (4.3) is only non-zero in a small number of

indices. Figure 4.1 illustrates this behavior by showing the portfolio weights for 1600 assets

obtained using the criterion in 4.3. For this example less than 10% of the assets have a

non-zero weight.

Sparsity of the portfolio weights can be exploited to reduce computational complexity. To

see this suppose w� solves (4.3) and I � supp�w�� is known a priori (before computing the

solution). Then the problem (4.3) can be relaxed to the equivalent problem

min
w

wTRSIw �wT µ̂SI � SSwSSÑβ,`1
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where RSI and µSI represent the covariance and mean restricted to I. This problem is of

dimension SI S and requires fewer operations to compute per iteration. This suggests that

an adaptive support split-Bregman Algorithm which attempts to solve (4.3) on smaller sub-

spaces, I, where supp�w�� ` I can save computational time.

To develop an effective algorithm we first derive an optimality condition which can be used

as a stopping criterion.

Lemma 4.1. w� solves (4.3) if and only if S�2Rw��i � µ̂iS B βi for all i ~> supp�w�� and

�2Rw��i � µ̂i � βisign�w�

i � � 0 for all i > supp�w��.
Proof. Suppose w� solves (4.3) and let i > supp�w��. Then since w� is optimal and w�

i x 0

the partial derivative of the objective function with respect to wi exists and is equal to 0.

Thus

0 �
∂

∂wi
Ψ�w�Sw�w�

� 2�Rw��i � µ̂i � βisign�w�

i �.
Now suppose i ¶ supp�w��. Now the partial derivative of the objective function does not

exist. However by optimality we have

0 > ∂Ψ�w��
Thus

lim
h�0

Ψ�w� � hδi� �Ψ�w��
h

C 0

and

lim
h�0

Ψ�w� � hδi� �Ψ�w��
h

B 0
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which imply

�2Rw��i � µ̂i C �βi
and

�2Rw��i � µ̂i B βi.
For the converse suppose that S�2Rw��i � µ̂iS B βi for all i ~> supp�w�� and �2Rw��i � µ̂i �
βisign�w�

i � � 0 for all i > supp�w��. Choose ε � min�SwiS � i > supp�w��. Then for any w such

that SSw �w�SSª @ ε

Ψ�w� �Ψ�w�� C Q
i>supp�w��

��2Rw��i � µ̂i � βisgn�w�

i �� �wi �w�

i � �
� Q
i~>supp�w��

��2Rw��i � µ̂i�wi � βiSwiS
C 0.

Thus w� is locally optimal which implies global optimality.

Lemma 4.1 can be used to derive a criterion for determining which indices in a portfolio,

x, belong in the support. For example, suppose that i ~> supp�x�, and S�2Rx�i � µ̂iS A βi.
Then the objective function in (4.3) can be reduced by adding i into supp�x�. Thus x is not

optimal and we should incorporate i into supp�x�.
Next we look at how to prolongate the adaptive support split-Bregman variables �w,d, b�
from a lower dimensional space to a higher dimensional space. Prolongation of w and d can

be achieved through simple zero filling. Prolongation of b is more delicate. The following

Lemma suggests an effective prolongation.

Lemma 4.2. Suppose (w�,d�) is the solution of (4.18) obtained with Algorithm 5. Then

lim
k�ª

bki � ��2Rw�
� µ̂�i~�βiλ�. (4.19)
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Proof. By Algorithm 5 we have for all k

2�Rwk�1�i � µ̂i � λ�dk � ψ�wk�1� � bk�iβi � 0.

Since limk�ªwk � w� and limk�ª dk � d� and d� � ψ�w�

i � we have

lim
k�ª

2�Rwk�1�i � µ̂i � λ�bk�iβi � 0

which implies that

lim
k�ª

�bk�i � µ̂i � 2�Rw��i
βiλ

.

This suggests that the prolongation of b can be defined from equation (4.19). For example

suppose �w̃, d̃, b̃� solves (4.18) on a restricted domain I ` �1,2, . . .N� and let w and d

represent the prolongation of w̃ and d̃ to a set J a I i.e.

wj �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈
w̃j if j > I

0 if j > J � I

(4.20)

dj �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈
d̃j if j > I

0 if j > J � I .

(4.21)

Then taking a cue from equation (4.19) the prolongation of b̃ may be defined as

bi � ��2RSJw � µ̂SJ�i~�βiλ�. (4.22)

The adaptive support split-Bregman Algorithm for solving (4.18) is given below.
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Algorithm 7 Adaptive support split-Bregman algorithm for solving 4.18

Initialize: k � 0,w0 � 0, d0 � 0, b0 � 0, ε A 0,M A 0

Define D0 � 2Rw0 � µ̂

while SDk
i S A βi for any i ~> supp�wk� AND k @ N do

Define the set Jk � �Dk
i � i ~> supp�wk��

Set K �M - �k � 1 � Ssupp�wk�S�
Set J̃k equal to the largest K elements in Jk

Set Ik � J̃k 8 supp�wk�
Run Algorithm 6 on Ik with initialization wkSIk , bkSIk , dkIk and tolerance ε

Set �wk�1, dk�1� to the prolongation of output of previous step

Set bk�1
i � �2�Rwk�1 � µ̂�i~�βiλ�,

Set Dk�1 � 2Rwk�1 � µ̂

k � k � 1

end while

The next theorem shows that Algorithm 7 converges.

Theorem 4.4. Let w� be the optimal solution to (4.3) and let w� be a solution produced by

Algorithm 7 for ε � tol. Then

Ψ�w�� B Ψ�w�� � tol. (4.23)

Proof. By design the algorithm terminates after at most N iterations. Suppose the algorithm

terminates in k @ N iterations. Let I�k� be the support in iteration k of the adaptive support

split-Bregman algorithm. Then by the proof of Theorem 4.3, w� satisfies the conditions of

Theorem 4.2 with ε � tol. Thus by Theorem 4.2 Ψ�w�� @ Ψ�w�� � tol. Now suppose the

algorithm terminates in N iterations. Since I�N�1� contains all asset indices it follows by the

design of Algorithm 6 that Ψ�w�� @ Ψ�w�� � tol.
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To evaluate the execution speed of adaptive support split-Bregman algorithm we performed

a comparison with the following fast algorithms described in the literature: split-Bregman

algorithm (Algorithm 6 ), FISTA [7] and Multilevel Iterated-Shrinkage [84]. To the best of

our knowledge these algorithms are considered state of the art for large-scale `1-penalized

quadratic programs. For the multi-level algorithm proposed in [84] we use the FISTA [7]

algorithm for all relaxations and lowest level solvers. To make a fair comparison we have

used the same error tolerance of 10�6 for each algorithm.

Tables 4.1 and 4.2 presents MATLAB run times for solving (4.3) for a large and small basket

of US stocks. The machine running the simulation has the Windows 7 operating system and

an Intel i7-3740 processor with 32.0 GB of RAM.

Table 4.1: Adaptive support split-Bregman converges quickly to a solution for sparse port-
folios

Dimension Sparsity Adaptive Support Split-Bregman FISTA Multi-level

Level Split-Bregman FISTA [84]

2000 88 0.1 sec 20.6 sec 0.4 sec 0.2 sec

2000 142 0.2 sec 14.5 sec 0.8 sec 0.2 sec

2000 450 0.9 sec 14.6 sec 3.6 sec 1.5 sec

2000 853 4.8 sec 23.0 sec 8.8 sec 9.2 sec

2000 1692 10.4 sec 38.0 sec 21.4 sec 22.7 sec

3000 237 0.3 sec 48.2 sec 12.9 sec 2.7 sec

3000 805 1.3 sec 49.9 sec 55.7 sec 24.6 sec

4000 234 0.5 sec 107.6 sec 24.6 sec 2.2 sec

In Table 4.1 we see that the adaptive support split-Bregman algorithm converges much faster

than both split-Bregman, FISTA and Multi-Level FISTA for sparse portfolios taken from a
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large set of assets. On the other hand Tables 4.1 and 4.2 show that the advantage of the

adaptive support split-Bregman algorithm decreases when the cardinality of the asset set is

small or when the support of the portfolio is large.

Table 4.2: Benefit of adaptive support split-Bregman decreases when dimensionality is small

Dimension Sparsity Adaptive support Split-Bregman FISTA Multi-level

Level split-Bregman FISTA [84]

500 53 0.03 sec 0.8 sec 0.02 sec 0.02 sec

500 150 0.09 sec 0.6 sec 0.04 sec 0.03 sec

500 261 0.2 sec 0.5 sec 0.2 sec 0.2 sec

4.2.3 Proofs of Technical Results

In this section we provide proofs for Theorems 4.2 and 4.3. To facilitate the proof we will

first reformulate the criterion in (4.3) as a quadratic program.

Problem (4.3) can be reformulated as a quadratic program with linear inequality constraints

by introducing an auxiliary variable d,

min
w,d

Φ�w,d� (4.24)

s.t. � di B wi

� di B �wi

where Φ�w,d� � wTRw � wT µ̂ �PN
i�1 βidi and where R � Γ̂ �Dα. The Lagrangian for this
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problem

L�w,d, λ� � wTRw �wT µ̂ �
N

Q
i�1

βidi �
N

Q
i�1

λi��di �wi� � N

Q
i�1

λi�N��di �wi� (4.25)

plays an important role in our subsequent analysis in the next section.

Now we prove Theorems 4.2 and 4.3 using the quadratic program reformulation (4.24). Our

first task is to derive a lower bound on the Lagrangian for a fixed λ and when d � SwS. First

note that R is symmetric positive definite whose smallest eigenvalue is C αo where

αo � min�αi � 1 B i B N� .
Thus for di � SwiS,d̃i � Sw̃iS and λ A 0 we have

Φ�w,d� C L�w,d, λ�
� L�w̃, d̃, λ� �©wL�w̃, d̃, λ�T �w � w̃�

�©dL�w̃, d̃, λ�T �d � d̃� � �w � w̃�THw�w̃, d̃, λ��w � w̃�
C L�w̃, d̃, λ� �©wL�w̃, d̃, λ�T �w � w̃� �©dL�w̃, d̃, λ�T �d � d̃�

�αoSSw � w̃SS2`2
C L�w̃, d̃, λ� �©wL�w̃, d̃, λ�T �w � w̃� �©dL�w̃, d̃, λ�T �d � d̃�

�
1

2
αoSSw � w̃SS2`2 � 1

2
αoSSd � d̃SS2`2 (4.26)

where Hw is the Hessian of L w.r.t to the w variables.

We now present two lemmas which will be useful in deriving a stopping criterion. Our first

lemma gives an upper bound for L when the gradient of L is small.

Lemma 4.3. Suppose di � SwiS for all i and SS©w,dL�w̃, d̃, λ�SS`2 B º
2εαo. Then L�w̃, d̃, λ� B

Φ�w�, d�� � ε where w� solves (4.3) and d�i � Sw�

i S for all i.
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Proof. By equation (4.26) we have

Φ�w�, d�� C L�w�, d�, λ� C L�w̃, d̃, λ� �©wL�w̃, d̃�T �w�
� w̃� �©dL�w̃, d̃�T �d� � d̃�

�
1

2
αoSSw�

� w̃SS2`2 � 1

2
αoSSd� � d̃SS2`2 .

The righthand side is minimized by substituting � 1
αo
©dL�w̃, d̃, λ� for �d��d̃� and substituting

�
1

αo
©wL�w̃, d̃, λ�

for �w� � w̃�. With these substitutions we obtain

Φ�w�, d�� C L�w̃, d̃, λ� � 1

2αo
SS©w,dL�w̃, d̃, λ�SS2`2

C L�w̃, d̃, λ� � ε.

The next lemma can be verified easily.

Lemma 4.4. Suppose SaS B b. Then there exist x1, x2 C 0 such that

x1 � x2 � b

�x1 � x2 � a.

Proof of Theorem 4.2

We are now ready to prove Theorem 4.2 which establishes a condition for approximate

optimality of a portfolio under the weighted elastic net criterion (4.3).
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Proof. of Theorem 4.2

Choose d� and d̃ such that d�i � Sw�

i S and d̃i � Sw̃iS. For i > supp�w̃� define λ such that

λi �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 if wi A 0, i > supp�w̃�
βi if wi @ 0, i > supp�w̃�

and for i > supp�w̃�,define λi�N � βi � λi.

For i ¶ supp�w̃� we want to define λi and λi�N such that λi C 0, λi�N C 0,

λi � λi�N � βi (4.27)

and

� λi � λi�N � �
∂

∂wi
�wTRw �wT µ̂�U

w�w̃
. (4.28)

By Lemma 4.4, equation (4.13) implies that such a λi, λi�N exists.

Let us form the Lagrangian L�w,d, λ� as in equation (4.25). Then for i > supp�w̃�
∂

∂wi
L�w,d, λ�S�w̃,d̃� � ∂

∂wi
�wTRw �wT µ̂ � SSwSSÑβ,`1�Uw�w̃

and

∂

∂di
L�w,d, λ�S�w̃,d̃� � 0.

For i ¶ supp�w̃� we have by equation (4.28)

∂

∂wi
L�w,d, λ�S�w̃,d̃� � 0

and by equation (4.27)

∂

∂di
L�w,d, λ�S�w̃,d̃� � 0.
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It then follows from equation (4.12) that

SS©w,dL�w̃, d̃, λ�SS`2 Bº
2εαo

and so by Lemma 4.3 and our choice of λ we have that

Φ�w̃, d̃� � L�w̃, d̃, λ�
B Φ�w�, d�� � ε.

This clearly implies that

Ψ�w̃� B Ψ�w�� � ε.

Proof of Theorem 4.3

Now we prove Theorem 4.3 which can be used to establish a more practical convergence

criterion than Theorem 4.2.

Proof. of Theorem 4.3

By construction SSζ � w̃SS`ª B SSζ � w̃SS`2 B ε,
º
εαo

M . It follows that

Q
i>supp�ζ�

� ∂

∂wi
�wTRw �wT µ̂ � SSwSSÑβ,`1�Uw�ζ�

2

B �º2 � 1�2αoε

and

�βi B
∂

∂wi
�wTRw �wT µ̂�U

w�ζ
B βi

for all i ¶ supp�ζ�. So by Theorem 4.2 we have that ζ satisfies (4.17).
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4.3 Extension to pairwise weighted elastic net (PWEN)

As a further generalization one can also consider the pairwise weighted elastic net (PWEN)

(4.8). As was shown in the proof of Theorem 4.1, PWEN also has a robust optimization

motivation. Thus the bootstrap method can be used to calibrate the weights in PWEN.

Here for the robust optimization interpretation to hold the matrix ∆ must be chosen such

that matrices of the form

Ri,j �

¢̈̈̈̈̈
¦̈̈̈̈
¤̈

Γ̂i,i �∆i,i if i � j

Γ̂i,j �∆i,j if i x j

Ri,j � Rj,i

are positive semi-definite. This can be guaranteed by selecting ∆ to be symmetric,diagonally

dominant and non-negative. In practice diagonal dominance may be too restrictive given

the bootstrap estimated uncertainties. For those cases the ∆ matrix does not need to be

diagonal dominant, however the robust optimization interpretation will not hold. As we show

in section 4.4 this will not necessarily prevent one from obtaining good portfolio performance.

Application of split-Bregman techniques to PWEN is complicated due to the cross products

of SwiS and Swj S induced through ∆. As an alternative numerical solution of the PWEN

criterion can be performing via coordinate descent as described in [63]. Coordinate descent

converges for the PWEN problem provided ∆ is positive definite [45].

4.4 Performance Evaluation

In this section we quantify the performance benefit of using a weighted elastic net penalty

by testing our criterion in (4.3) on daily return data from 630 U.S. stocks collected between
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January 1, 2001 and July 1, 2014 with market capitalization greater than 4 billion US dollars.

The results are then compared with other portfolio selection criteria described in Section 2.1

and the naive equal-weighted portfolio.

In our experiments we compute new portfolios every 63 trading days using daily returns from

the prior 252 trading days as training data for parameter estimation and calibration of the

elastic net weights. Our criteria for evaluating the portfolio performance is the out-of-sample

Sharpe ratio of the daily portfolio returns. Sharpe ratio is defined as the portfolio’s excess

return divided by its standard deviation. The formula used for computing the Sharpe ratio

is given below

SR �

1
τ Pτ

i�1w�ti�T r�ti�¼
1
τ Pτ

i�1 �w�ti�T r�ti� � 1
τ
�Pτ

j�1w�tj�T r�tj���2
(4.29)

where τ is the total number of trading days in our 13.5 year data set. Here w�ti� is the

portfolio on day ti, which is computed from the previous set of training data and remains

fixed over intervals of 63 trading days.

4.4.1 Parameter Selection

Due to the large number of assets and small amount of training data, estimation of the

covariance and mean in our experiments is performed using shrinkage techniques [29]. We

estimate the covariance matrix using the technique described in [54]. In that paper the

following shrinkage estimator for Γ is proposed

Γ̂ � ρ1ΓS � ρ2I (4.30)

where ΓS is the sample average covariance obtained from the training data and where ρ1, ρ2

are A 0. In our experiments we use the optimal values of ρ1 A 0 and ρ2 A 0 which are derived

in [54]. Note that this choice of shrinkage target guarantees that Γ̂ will be positive definite.
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Since the weighted elastic net penalty consists of a squared weighted `2 norm, the shrinkage in

(4.30) may appear to be redundant when applied with the weighted elastic net regularization

in Section 4.1. However, this is not the case since the weights on the weighted elastic net

and the shrinkage parameters in (4.30) are adaptively selected according to different criteria.

Thus the covariance shrinkage target becomes a combination of the bootstrap derived target

and the target derived according to [54]. One benefit of this approach is that there will

always be some level of `2 regularization regardless of what the bootstrap criterion derives.

For estimation of the mean we employ a James-Stein estimator [27, 48] which was proposed

for portfolio optimization in [50]. When applying the James-Stein approach we compute the

estimate of µ using the equation

µ̂ � �1 � ρ�µS � ρηÑ1. (4.31)

Here µS is the sample mean vector and η is the maximum of average of the sample means

and the daily historical return of the US stock market between 1928 and 2000 [23]

η � � 1

N

N

Q
i�1

µS,i� - 0.0004. (4.32)

The value of ρ is set according to [50] as

ρ � min�1,
�N � 2�

Ttrain�µS � ηÑ1�T Γ̂�1�µS � ηÑ1�¡ . (4.33)

The weights for the weighted elastic net penalty are calibrated using the bootstrap technique

described in Section 4.1.2 with identical estimation risk aversion factors for mean and squared

volatility i.e. p1 � p2. Calibration of the weighted LASSO penalty is performed using the

technique described in [36]. Since the weighted LASSO calibration in [36] is only defined up

to a constant we perform a parametric study for various constants. Calibration of the elastic
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net penalty is handled using the technique described in section 1.6.2 of [87]. The calibration

method in [87] only determines the sum λ1 � λ2 in (2.6), the relative weighting of λ1 and λ2

is not addressed. Thus we perform a parametric analysis over the relative weighting between

the parameters λ1 and λ2 in the elastic net. For SCAD there are no known calibration

methods. Hence for SCAD we perform a parametric study for various λ values and a fixed

aSCAD parameter of 3.7 as suggested in [32].

For the PWEN criterion the β weights are set to the same value as the WEN β values. The

∆ term in the PWEN criterion is defined as

∆i,i � αi

∆i,j �

º
αiαj

5
for i x j.

where α are the `2 weights computed for WEN. Note that ∆ in general may not be diagonally

dominant and thus the robust optimization interpretation of the PWEN penalty may not

hold.

4.4.2 Sharpe Ratio performance

In this section we present performance results for the following 6 criteria:

1. Markowitz (no penalty)

2. Markowitz (WEN penalized)

3. Markowitz (Weighted LASSO penalized) [36]

4. Markowitz (Elastic net penalized) [88]

5. Markowitz (SCAD penalized)
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6. 1~N equal weighted portfolio

7. Markowitz (PWEN penalized)

Figure 4.2: Parametric analysis of WEN and PWEN performance using bootstrap calibration

In Figure 4.2 we present the Sharpe ratios of the weighted elastic net penalty as a function of

estimation risk aversion factor, i.e. bootstrap percentile. As a comparison the performance

of the 1~N and unpenalized portfolio are also shown. The figure demonstrates that the

PWEN and WEN criteria with bootstrap calibration improves Sharpe ratio performance

over the 1~N and unpenalized portfolio when the estimation risk aversion factor is between

0.5 and 0.95. Outside of this interval the WEN penalty did not improve performance,

which suggests that a moderate amount of estimation risk aversion is optimal for WEN.

The PWEN penalized criterion does exhibit some performance gain for risk aversion less

than 0.5. This could be attributed to the additional penalization caused by the off-diagonal

terms in ∆. For comparison purposes the Sharpe ratio of the weighted LASSO, elastic net

and SCAD penalized portfolios are shown in Figures 4.3, 4.4, and 4.5 as a function of their

respective penalty scaling parameter. We see that both weighted LASSO and the elastic net
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do not perform as well as the WEN and PWEN penalties. This could be a consequence of

their calibration being derived from a minimum variance perspective. The SCAD penalized

portfolio performs comparable to the weighted elastic net penalty if the λ parameter is

chosen correctly. However, it is still an open question on how to automate the selection of

an optimal λ in the SCAD penalty for portfolio optimization problems.

Figure 4.3: Parametric analysis of Weighted LASSO performance
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Figure 4.4: Parametric analysis of Elastic Net performance

Figure 4.5: SCAD performance as a function of λ parameter.
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Chapter 5

Conclusions and Future Work

In this dissertation we examined techniques for enhancing mean-variance portfolio perfor-

mance in the presence of parameter uncertainty. The approaches proposed in this work draw

on recent advances in sparse modeling and optimization techniques. Experimental results

using both real world and simulated data demonstrate the merits of using sparse modeling

in portfolio design.

In Chapter 3 we introduced two sparse Kalman filtering methods for estimating asset re-

turn covariance from high-frequency data. The methods address 3 features found in high

frequency data: 1) asynchronous returns, 2) market microstructure noise, and 3) jumps.

The first method, a KECM approach, was derived using both Laplace and spike and slab

distributed jump models. The second method utilized a MCMC approach to approximate

the posterior mean of the covariance estimate where the jumps were modeled using a spike

and slab distribution.

Each of these proposed covariance estimation techniques show improved performance versus

existing methods when jumps are present and are robust to other stylized facts such as

volatility clustering and stochastic microstructure noise variance. When comparing the spike
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and slab and Laplace jump models using simulated data, the spike and slab approach is more

robust to larger jumps and with stochastic microstructure noise variance. The simulated data

experiments also show that the MCMC approaches perform better than KECM when large

jumps occur.

In Chapter 4 the addition of a weighted elastic net penalty to mean-variance objective func-

tion is proposed in order to improve out-of-sample portfolio performance when parameter

estimates are uncertain. We have shown that this approach can be motivated by reformu-

lating the mean-variance criterion as a robust optimization problem. With this view we

develop a data-driven criterion for calibration of the elastic net weights based on bootstrap-

ping and an investor’s aversion to model estimation risk. To compute the portfolio weights

efficiently we proposed an adaptive support split-Bregman algorithm for solving our pro-

posed optimization criterion. This technique exploits the sparsity promoting properties of

the weighted elastic net penalty to reduce computational requirements.

Our experimental results demonstrate that using the weighted elastic net penalty and cal-

ibration approach can result in higher out-of-sample Sharpe ratio than the other norm pe-

nalization techniques designed for minimum variance portfolios. In addition, our MATLAB

run-time results indicate that the proposed adaptive support split-Bregman algorithm sig-

nificantly reduces computation time compared with other algorithms such as split-Bregman

and FISTA.

There are many possible extensions to the techniques proposed in this dissertation. For ex-

ample covariance matrix estimation from high frequency data could benefit from low rank +

sparse matrix factorization techniques. Although the preliminary results using nuclear norm

penalization shown in Appendix 3.5 fall short of KECM performance, other techniques such

as weighted nuclear norms or transformed Schatten-1 penalties [92] may improve perfor-

mance. For the pairwise weighted elastic net it is interesting whether the restrictions on the

weighting matrix ∆ can be relaxed from the diagonal dominant restriction. This relaxation
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coupled with an effective calibration procedure could enhance PWEN performance beyond

what was reported in this dissertation.
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Appendix A

Appendix

A.1 Kalman Smoothing Equations

The Kalman smoother can be used to compute the posterior distribution of X�t� given Y

and an estimate of Θ � �D,Γ,Σ�

o, J�. From [81] the posterior distribution is normal and is

completely characterized by the following quantities for m � T

X̄�tSm� � E�X�t�Sy�1 �m��
P �tSm� � cov�X�t�,X�t�Sy�1 �m��

P �t, t � 1Sm� � cov�X�t�,X�t � 1�Sy�1 �m��.
These values can be computed efficiently using a set of well known forward and backward

recursions [82] known as the Rauch-Tung-Striebel (RTS) smoother. The forward recursions
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are

X̄�tSt � 1� � X̄�t � 1St � 1� �D � J�t� (A.1)

P �tSt � 1� � P �t � 1St � 1� � Γ (A.2)

G�t� � P �tSt � 1�I�t�T �I�t�P �tSt � 1�I�t�T �Σ2
o�t���1

(A.3)

X̄�tSt� � X̄�tSt � 1� �G�t��y�t� � I�t�X̄�tSt � 1�� (A.4)

P �tSt� � P �tSt � 1� �G�t�I�t�P �tSt � 1� (A.5)

with X̄�0S0� � µ and P �0S0� �K.

The backward equations are given by

H�t � 1� � P �t � 1St � 1�P �tSt � 1��1

X̄�t � 1ST � � X̄�t � 1St � 1� �H�t � 1��X̄�tST � � X̄�tSt � 1��
P �t � 1ST � � P �t � 1St � 1�

�H�t � 1��P �tST � � P �tSt � 1��H�t � 1�T .
A backward recursion for computing P �t, t � 1ST � is

P �t � 1, t � 2ST � � P �t � 1St � 1�H�t � 2�T
�H�t � 1� �P �t, t � 1ST � � P �t � 1St � 1��H�t � 2�T

where

P �T,T � 1ST � � �I �G�T �I�T ��P �T � 1ST � 1�. (A.6)
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A.2 Derivation of Equation (3.7)

Here we derive the expression for

G�θ,Θ�j�� � Ep�xSy,Θ�j�� log p�X�1 � T �, y�1 � T �Sθ� � log�p�θ��
given in equation (3.7). First recall the equation for the log-likelihood

log p�x, ySθ̃� � �0.5
T

Q
t�1

log�SΣo�t�S� � 1

2

T

Q
t�1

SSy�t� � Ĩ�t�X̄�t�SS2diag�Σo�t��1�,`2

�
T � 1

2
log�SΓS�

�
1

2

T

Q
t�2

r�t�TΓ�1r�t�
�const (A.7)

where

r�t� � x�t� � x�t � 1� � d � j�t�.
First note that using the relation

Y �t� � Ĩ�t�X�t� � Y �t� � Ĩ�t��X�t� � X̄�t�� � Ĩ�t�X̄�t�
we have that

Ep�xSy,Θ�j��SS�y�t� � Ĩ�t�X�t��SS2diag�Σo�t��1�,`2 � SSy�t� � Ĩ�t�X̄�t�SS2diag�Σo�t��1�,`2 �

�tr�P �tST �Ĩ�t�TΣo�t��1Ĩ�t��. (A.8)

Similarly noting that for R�t� �X�t� �X�t � 1� � d � j�t�
R�t� �X�t� � X̄�t� � �X�t � 1� � X̄�t � 1�� � �X̄�t� � X̄�t � 1�� � d � j�t� (A.9)
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we can show that

T

Q
t�2

Ep�xSy,Θ�j��R�t�TΓ�1R�t� � tr�Γ�1�C �B �BT
�A��. (A.10)

using the orthogonality principle. From equations (A.8) and (A.10) we arrive at (3.7).

A.3 Convergence of KECM Algorithms

Convergence of the EM and ECM algorithms in general is considered in [86] and [68] respec-

tively. It is shown in [68] that the ECM algorithm converges to stationary point of the log

posterior under the following mild regularity conditions

1. Any sequence Θ�k� obtained using the ECM algorithm lies in a compact subset of the

parameter space, Ω. For our case we need to restrict the parameter space such that

σ2
o x 0 and Γ is positive definite.

2. G�Θ,Θ�� is continuous in both Θ and Θ�.

3. The log posterior L�Θ� is continuous in Ω and differentiable in the interior of Ω.

A.3.1 Algorithm 1

Since the Laplace prior on J is not differentiable condition 3 is not satisfied and the results in

[68] are not directly applicable. However the proofs and solution set in [68] can be modified

to handle this irregularity.

Before addressing condition 3 we first verify condition 1. We start by examining the sequence

of covariance estimates Γ�k�.
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Lemma A.1. Assume a noisy asset price is observed at least one time for each asset for

t A 1 and that Ĩ�t� x 0 for all t. Let Γ�k� be a sequence of solutions obtained with Algorithm

1, where Γ�0� is positive definite. Then sequences Γ�k� and 1
s�k�

are bounded where s�k� is the

minimum eigenvalue of Γ�k�. In addition the sequence σ
2,�k�
o,i is bounded below and above by

positive values for all i.

Proof. Since Wo is positive definite we have from equation (3.9) that s�k� is bounded below

by a positive constant which implies 1
s�k�

is bounded. Similarly by equation (3.10) we have

σ
2,�k�
o,i is bounded below by a positive constant. To prove that Γ�k� is bounded we note that

the posterior may be written as

p�θSy� � C1p�ySθ�p�θ�
� C1p�y�1�Sθ�p�θ� T

M
t�2

p�y�t�Sy�1 � t � 1�, θ�
B C2p�y�1�Sθ� T

M
t�2

p�y�t�Sy�1 � t � 1�, θ�
where C1 is a constant not dependent on θ and where C2 � C1 supθ p�θ�. Note that C2 @ª.

For t A 1 each of the conditional distributions p�y�t�Sy�1 � t � 1�, θ� is a normal distribution

with covariance

Q�t� � Ĩ�t�P �tSt � 1�Ĩ�t�T � σ2
oI

where for notational simplicity we suppress the dependence of Q�t� and P �tSt�1� on k. Since

σ2
o,i is bounded below by a positive value, it follows that 1SQ�t�S is bounded.

Now suppose that Γ�k� is unbounded. Then since

P �tSt � 1� � P �t � 1St � 1� � Γ

P �tSt � 1� is unbounded as k goes to ª. Since an observation of each asset’s price occurs at
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least once for t A 1 it follows that Q�τ� is unbounded (as k �ª) for some τ A 1. Then since

the smallest eigenvalue of Q�τ� is bounded below by a positive constant, the determinant of

Q�τ� is unbounded. Thus a subsequence of p�y�τ�Sy�1 � τ � 1�,Θ�k�� will approach 0. Since

1SQ�t�S is bounded, p�y�t�Sy�1 � t � 1�,Θ�k�� will remain bounded above for all t. Then using

(A.11) we have

p�θSy� B C2p�y�1�Sθ� T

M
t�2

p�y�t�Sy�1 � t � 1�, θ�
� C2p�y�τ�Sy�1 � τ � 1�, θ� T

M
txτ

p�y�t�Sy�1 � t � 1�, θ�
which implies a subsequence of p�Θ�k�Sy� will converge to 0. This contradicts the monotonic-

ity of the ECM algorithm [68]. The proof that the sequence σ
2,�k�
o,i is bounded above for all

i is similar.

Lemma A.2. Assume the conditions of Lemma A.1. Let λ�t��1,�k� be a sequence of solutions

obtained with Algorithm 1 where Γ�0� is positive definite. Then there exist finite positive

numbers a, b where a B λi�t��k� B b for all t, k and i.

Proof. By the update equation (3.14) we may set b � αλ�2
βλ

which is positive and finite. By way

of contradiction assume the lower bound does not hold. Then for some i and t there exists

a subsequence λi�t��kn� such that limn�ª λi�t��1,�kn� �ª. Since each λi�t��1 is the mode of

an inverse gamma distribution it follows that the posterior scale parameter,(βλ� Sj�kn�S) goes

to infinity . This implies that p�λi�t��1,�kn�, ji�t��kn��� 0. Since each prior density function

is bounded as λi�t� � 0 this implies that p�θ� goes to zero, contradicting the monotonicity

of the ECM algorithm. Thus there exists an a A 0 such that λi�t��k� A a for all t, k and i.

Now we prove that the sequences J�k� and D�k� are also well behaved.

Lemma A.3. Assume the conditions of Lemma A.1. Let J�k� and D�k� be sequences of

solutions obtained with Algorithm 1 where Γ�0� is positive definite. Then sequences J�k� and
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D�k� are bounded.

Proof. From Lemma A.1 the likelihood p�ySθ� is bounded above. Recall from the previous

lemma that there exists an a A 0 such that for all k, λi�t��k� C a. Since the prior density

function is bounded above for each parameter it follows that limj�ª p�θ� � 0. This implies

J�k� is bounded by the monotonicity of the ECM algorithm. Since limd�ª p�θ� � 0 it also

follows that D�k� is bounded.

The above lemmas imply the following corollary.

Corollary 1. The sequence Θ�k� is bounded and all limit points are feasible ( e.g. variance

non-zero, positive definite covariance).

Now we derive some additional properties of the limit points of Θ�k�. To do this we shall

refer to Zangwill’s convergence theorem [89]. To use Zangwill’s theorem, we first define A

to be a point to set mapping defined by the ECM algorithm i.e. Θ�k�1� > A�Θ�k��. Let us

define a solution set, S, as the set of θ such that

θ1 � arg max
v
G ��v, θ2, θ3, θ4, θ5� , θ�

θ2 � arg max
v
G ��θ1, v, θ3, θ4, θ5� , θ�

θ3 � arg max
v
G ��θ1, θ2, v, θ4, θ5� , θ�

θ4 � arg max
v
G ��θ1, θ2, θ3, v, θ5� , θ�

θ5 � arg max
v
G ��θ1, θ2, θ3, θ4, v� , θ� .

By definition θ > A�θ� for all θ > S. This along with the monotonicity of the ECM algorithm

120



implies that L�θ� is an ascent function, i.e.

L�θ�� A L�θ� for all θ ~> S, θ� > A�θ�
L�θ�� C L�θ� for all θ > S, θ� > A�θ�.

Since G�θ, θ�� is continuous in both θ and θ� we have that A is a closed mapping. Thus we

have the following theorem.

Theorem A.1. All limit points of Θ�k� belong to S.

Proof. This is a direct consequence of Zangwill’s convergence theorem [89] (also known as

the Global convergence theorem [64]). To invoke the theorem we must meet the following

conditions

� Θ�k� belongs to a compact subset of the feasible solutions

� A is closed

� There exists a continuous ascent function

All three of these conditions were shown above, thus the theorem follows from Zangwill’s

convergence theorem.

Now we show that if θ� > S then θ� is in some sense a “stationary” point of the log posterior

L�θ� � log p�θSy�.
Theorem A.2. Let θ� > S. Then

©θiL�θ�Sθ�θ� � 0 for i > 1,2,3,5

and

0 > ∂θ4L�θ�Sθ�θ� .
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Proof. To show this we first note that L�θ� can be written as [68]

L�θSy� � G�θ, θ�� �H�θ, θ��
where

H�θ, θ�� � Ep�xSy,θ�� log p�X Sy, θ�.
From the information inequality we have that H�θ�, θ�� C H�θ, θ�� for all feasible θ. Since

H�θ, θ�� is differentiable with respect to θ it follows that

©θH�θ, θ��Sθ�θ� � 0.

Since ©θiG�θ, θ��Sθ�θ� � 0 for i > 1,2,3,5 it follows that

©θiL�θ�Sθ�θ� � 0 for i > 1,2,3

Also since G�θ, θ�� and H�θ, θ�� are convex in j, and θ� > S, it follows that

0 > ∂θ4G�θ, θ��
which implies

0 > ∂θ4L�θ, θ��.

A.3.2 Algorithm 3

Analogous results to Corollary 1 and Theorem A.1 may proven for Algorithm 3 using same

arguments as Algorithm 1. The following result is analogous to Theorem A.2.
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Theorem A.3. Let θ� > S where S is the set of fixed points of the Algorithm 3. Then

©θiL�θ�Sθ�θ� � 0 for i > 1,2,3,5,6.

The proof of this result is the same as Theorem A.2.

A.4 MCMC Details

In this section we state the conditional distributions needed to implement the Gibbs sampling

approach in Section 3.3.1.

A.4.1 Conditional Price Distribution

Let N �x,µ,R� be the normal PDF in x with mean µ and covariance R. For the Gibbs

sampling approach we need to determine the conditional distribution of X�t� given Φ�1,Γ, Y ,

and X�s�s x t. Let Ytot�t� be the total price vector obtained from observed prices Y �t� and

the current sample of the unobserved prices Ymiss�t�. We first note that for t A 1, t @ T

p�x�t�Sx�s�, φ�1, γ, ytot;¦s x t� � p�x�t�Sx�t � 1�, x�t � 1�, φ�1,�0, γ, ytot�t��
� p�x�t � 1�Sx�t�, φ�1,�0, γ�

p�ytot�t�Sx�t�, φ�1,�0, γ�
p�x�t�Sx�t � 1�, φ�1,�0, γ�.

By properties of normal distributions

p�x�t � 1�Sx�t�, φ�1,�0, γ� � N �x�t � 1�, x�t� � j�t � 1� � d,Γ� (A.11)
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and

p�ytot�t�Sx�t�, φ�1, γ� � N �ytot�t�, x�t�, σ2
oI�. (A.12)

With this recall the following multiplication property of normal PDFs

N �x,µ1,R1�N �x,µ2,R2�� N �x,µ3,R3�
where

R3 � �R�1
1 �R�1

2 ��1

and

µ3 � R3R
�1
1 µ1 �R3R

�1
2 µ2.

Using the multiplication property above

p�x�t�Sx�t � 1�, ytot�t�� � N �x�t�, q,Q�
where

Q � �Γ�1
� σ�2

j I��1

q � QΓ�1�x�t � 1� � J�t� �D� � σ�2
j Qytot�t�.

Applying the multiplication property again gives

p�x�t�Sx�t � 1�, ytot�t�, x�t � 1�� � N �x�t�, q�,Q��
where

Q� � �Γ�1
�Q�1��1

and

q� � Q�Q�1q �Q�Γ�1�x�t � 1� �D � J�t � 1�.
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The conditional distributions for t � 1 and t � T can be derived similarly.

Another approach to sampling from the conditional distribution p�X SY,Φ� is the Forward

Filtering Backward Simulation (FFBS) approach [38]. The FFBS algorithm allows one

to sample directly from the conditional joint distribution of X�1 � T �, but the required

backward simulation can be computationally intensive as one must compute T Cholesky

decompositions. In the approach outlined above one only needs to compute 3 Cholesky

decompositions (t � 1,t � T and once for 1 @ t @ T ).

A.4.2 Conditional Jump Distribution

Let N �x,µ, τ� be the normal PDF in x with mean µ and variance τ . Recall that the prior

distribution of the jumps is the spike and slab prior

p�j� � f�j� � ζδ0�j� � �1 � ζ�N �j,0, σ2
j �

and that in the prior distribution the jumps are independent and identically distributed.

When conditioned on σ2
j , ζ,X,D and Γ, Jm�t� and Jn�s� remain independent for s x t

but Jm�t� and Jn�t� become dependent. The conditional distribution p�j�t�Sφ�2, γ� can be

written as

p�j�t�Sφ�2, γ� � c exp ���j�t��v�t��TΓ�1�j�t��v�t��
2 �»�2π�N SΓS

N

M
i�1

f�ji�t�� (A.13)

where v�t� � X�t� �X�t � 1� �D and where c A 0 is independent of j�t�. Sampling directly

from this distribution is difficult due to the combinatorial nature of the prior. Therefore we

sample sequentially each component of ji�t� conditioned on j�i�t�.
To derive the posterior distribution of ji�t� we note that from properties of the multivariate
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normal distribution

p�ji�t�Sj�i�t�, γ, φ�2�� N �ji�t�, a�i�, b2�i��f�ji�t��
where

a�i� � vi�t� � Γi,�iΓ
�1
�i,�i�j�i�t� � v�i�t��

and

b2�i� � Γi,i � Γi,�iΓ
�1
�i,�iΓ�i,i.

Next we determine Pr�Zi�t� � zSφ�2, γ, j�i�t�� for z � 0,1. Recall the following identity for

normal PDFs

N �x,u1, τ
2
1 �N �x,u2, τ

2
1 � � N �u1, u2, τ

2
1 � τ

2
2 �N �x,u, τ 2�

u �
τ�2

1 u1 � τ�2
2 u2

τ�2
1 � τ�2

2

τ 2 �
τ 2

1 τ
2
2

τ 2
1 � τ

2
2

.

Using the relationship above we have

Pr�Zi�t� � zSφ�2, γ, j�i�t���
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
ζN �0, a�i�, b2�i�� if z � 0

�1 � ζ�N �0, a�i�, b�i� � σ2
j � if z � 1

(A.14)

We now draw Zi�t� from this distribution. If Zi�t� � 0, Ji�t� is set to zero, otherwise we

draw Ji�t� from the distribution

p�ji�t�Szi�t� � 1, φ�2, γ, j�i�t�� (A.15)

which from the above relationship is a normal distribution with mean

a�i�
1 � b2�i�σ�2

j
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and variance
b2�i�σ2

j

b2�i� � σ2
j

.

Conditional Posterior Mode of ji in KECM spike and slab model

Note that the conditional maximization steps for J used in KECM algorithm for spike and

slab models can be derived in a similar manner as above. To see this note that (3.15) is up

to a constant the logarithm of (A.13) where v is replaced with ∆. Thus one can compute the

modes of Zi and Ji from the conditional distributions defined above in (A.14) and (A.15).

A.4.3 Other conditional distributions

The remaining conditional distributions for the other parameters are easily obtained due to

conjugate prior relationships [37].
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