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Abstract

Sensitivity Analysis of Stochastic Simulators with Information Theory

by

Yu-Jay Huoh

Doctor of Philosophy in Statistics

University of California, Berkeley

Assistant Professor Cari G. Kaufman, Chair

The increased computational power available today has made the use of �computer models�
or �simulators� common in many �elds. While there is a widely adopted set of tools for the
analysis of simulators, there are still many unsolved problems when dealing with these mod-
els. Speci�cally, the traditional methods for sensitivity analysis of deterministic computer
models, based on functional ANOVA decompositions, do not generalize well to simulators
with stochastic or nondeterministic output. This paper presents a methodological solution
for conducting sensitivity analysis on computer models with stochastic output through the
use of information theory and Bayesian density regression. The presented method is applied
to the inputs of a near-fault ground motion stochastic simulator of Dabaghi et al. (2011).
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Chapter 1: Introduction

The goal of this dissertation is to present a method for performing global sensitivity analysis
on stochastic simulators.

1.1 Simulators

A simulator refers to any computer program or model that, when given input parameters,
produces some output value. The term simulator is used because, these programs typically
represent numerical approximations to any number of real life phenomena. There are simu-
lators for natural processes such as earthquakes or climate. Simulators also exist for smaller
scale processes such as automobile factories or motorcycle crashes.

In the past, most simulators have been deterministic: for a given set of inputs, a determin-
istic simulator always returns the same output value. Because one set of inputs corresponds
to a singular output value, we can represent simulators mathematically as functions. For-
mally, for a �xed input X, a deterministic simulator, F , is a function mapping X to the
same output value Y = F (X), regardless of the number of times the function is evaluated
or the computer program is run. Here, X does not have to be a scalar; it may be a vector
of inputs X = (x1, x2, . . . , xp). However, for the purposes of this dissertation, the simulators
(deterministic or otherwise) being studied will only produce output that is scalar or univari-
ate. That is, for a given set of inputs, the simulator only produces a one-dimensional output.
In contrast, a multivariate simulator would produce multiple values on a single simulation
run for a given set of parameters. Although our focus will be on the analysis of univariate
simulators, the methods described here may still be applicable to multivariate simulators. If
the output from a multivariate simulator can be reduced to a single variable summary, then
all of our methods can be applied.

1.1.1 Stochastic Simulators

A stochastic simulator is also a computer program or model, with the distinction being the
output value produced is random or nondeterministic. That is, for a �xed set of inputs,
a stochastic simulator will output a di�erent value each time it is run. Since stochastic
simulators do not map a set of inputs to a singular output value, we cannot think of them as
functions in the traditional mathematical sense. Instead, we think of a stochastic simulator
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as a process mapping input values to output distributions. Formally, a stochastic simulator,
F , is a process mapping a set of inputs, X, to a distribution for the output values. We
let Y denote the output from a single run of the simulator and we write Y |X ∼ F (X) to
emphasize both the randomness in Y and the roles of F and X on the distribution of Y ,
not just the output value. When the simulator F is not in question, we write Y |X for the
output distribution of the simulator given X.

1.1.2 Input Uncertainty

There are many situations where one would want to attach a distribution to the inputs of a
simulator. For example, the simulator under study may represent a real-life process and one
of the input parameters may correspond to a physical constant whose true value is unknown
because it is di�cult or costly to measure. In this case, the distribution on the inputs may
account for uncertainty in the true value of this parameter. Alternatively, suppose a factory
simulator is being used to identify the e�ects of varying worker e�ciency or the chances of
a machine breaking on factory output. In this case, the uncertainty in the inputs represents
potential values for employee e�ciency or equipment reliability.

This notion of input uncertainty is important in the context of sensitivity analysis for
simulators, which will be discussed further in Section 1.2. However, it is for this reason
that we take care to emphasize the distinctions in both the outputs of deterministic and
stochastic simulators as well as the di�erent kinds of output distributions that arise when
talking about them. For a deterministic simulator, any distribution on the outputs is entirely
a result of uncertainty in the inputs. If the inputs were known exactly, the output would
not be random. Formally, let GX be some uncertainty distribution on the inputs X, that is,
X ∼ GX . Then this input uncertainty induces a distribution for the output and Y = F (X)
would be a random variable following this distribution. If the form of F is known, then the
distribution of Y can be derived analytically through a change of variables formula.

In contrast, a stochastic simulator is inherently random by de�nition, so certainty in the
inputs would still result in a distribution for the output Y . Uncertainty in the inputs induces
a distribution on distributions for Y . Formally, if X ∼ GX , then GX induces a distribution
over distributions for the output Y , and Y |X denotes one potential realization from the
possible distributions.

1.2 Sensitivity Analysis

Of course, computer models are never run in isolation; researchers often use them to make
decisions or inform them about the represented process. Seismologists run earthquake simu-
lations to help them make decisions about building materials or location. Climatologists run
climate models to learn how the global climate will reacts to di�erent settings for greenhouse
gases or deforestation. In these situations, sensitivity analyses allow researchers to quantify
how much their decisions or conclusions are a�ected by the value of the inputs that are put
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into the simulator. In the case of the climate model, the climatologist might be interested
in the e�ect of these human activities on the global mean temperature.

Sensitivity analysis can be done on two scales � local and global. Sensitivity analysis
on the local scale looks to determine how small (local) changes in the inputs a�ect the
output at a given location. For example, if a factory manager is using a simulator to identify
the optimal parameters steps in his process to maximize e�ciency, a local sensitivity study
quanti�es how small changes near the optimal settings a�ect the e�ciency of the factory.
While de�nitely an interesting problem and applicable in many situations in addition to the
one described here, the focus of this dissertation will instead be on sensitivity analysis at the
global scale.

Global sensitivity analysis quanti�es the impact or relationship of parameters on the
outputs across the entire input space. Since global sensitivity analysis is independent of
the input values being evaluated, it is a tool for understanding the simulator or underlying
process as a whole. Through a global sensitivity study, a climatologist can understand the
e�ect of deforestation on global mean temperature and their conclusions about the climate
based on this output.

This global framework for sensitivity analysis is particularly useful when there is un-
certainty in the inputs. Speci�cally, a global sensitivity analysis quanti�es the e�ect of
uncertainty in the inputs on the outputs of the simulator. If uncertainty in the input param-
eters is due to di�culty in measurement, a sensitivity study can identify which parameters
have a large in�uence on the output distribution and would thus be a good utilisation of
resources for more accurate measurement. Inputs that have little or no e�ect on the output
distribution could be �xed at the most likely or average value.

The primary resource for global sensitivity analyses are Saltelli et al. (2004) and Saltelli
et al. (2008). These books are primarily written to guide non-experts in sensitivity analysies
through the process of choosing and implementing the appropriate methods for their prob-
lems. However, they contain complete derivations for all the methods described as well as
full descriptions to build the necessary intuition required to conduct meaningful analyses.

1.2.1 Sensitivity Analysis for Deterministic Simulators

Global sensitivity analysis for deterministic simulators has been well studied within the last
two decades. In the statistics community, one of the preferred methods for conducting these
types of analyses is based on the work of Sobol (2001). This method is centered around the
principle of variance decomposition for functions. If F (X) = F (x1, . . . , xp) is an integrable
function, then it can always be expressed as a sum of orthogonal mean-zero functions.

F (X1, . . . , xp) = f0 +
∑
i

Fi(xi) +
∑
i<j

Fij(xi, xj) + . . .+ F1...p(x1, . . . , xp), (1.1)

If the inputs, X, are distributed according to some uncertainty distribution, GX , then F (X)
is now a random variable. If F is also square integrable, then Eq. 1.1 can be used to
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decompose the variance of F (X) into

V ar[F (X)] =
∑
i

V ar[Fi(Xi)] +
∑
i<j

V ar[Fij(Xi, Xj)] + . . .+ V ar[F1...p(X1, . . . , Xp)] (1.2)

where the variances are integrals over the input distribution GX .
Written in this from, the V ar[Fi(xi)] quantities could be considered �rst order sensi-

tivity measures: they represent the proportion of the variability in F (X) attributable to
uncertainty in Xi. Similar interpretations exist for the higher order terms, V ar[Fij(Xi, Xj)],
V ar[Fi...p(X1, . . . , Xp)], etc.

For the most part, these quantities can be estimated through Monte Carlo methods.
However, if F is a slow-to-evaluate function or simulator, then it is no longer feasible to take
the large samples necessary for Monte Carlo estimates. The most common approach in these
situations, �rst proposed by Oakley and O'Hagan (2004), is to use a statistical surrogate for
F that is fast-to-evaluate.

1.2.2 Sensitivity Analysis for Stochastic Simulators

The goal of sensitivity analysis on stochastic simulators is to characterize the relationship
between the input parameters and the output distribution. Speci�cally, we want to quantify
how much changing one or more of the inputs changes the distribution of the output � i.e.
how sensitive the output distribution is to changes in the inputs.

Quantifying the e�ect of input parameters on the output distribution requires a good way
to characterize distributions. A naïve approach would be to summarize the distribution with
a mean and a variance. That is, for a given output distribution Y |X, we would calculate

m(x) = E[Y |X] =

∫
Y

yf(dy|x)

and

V (x) = V ar[Y |X] =

∫
Y

(y −m(x))2 f(dy|x)

where f is the conditional density of the output distribution.
The e�ect of the inputs X on the distribution of the output Y can then be measured

by calculating some sensitivity measures on these two functions. In fact, since m and V are
deterministic functions, we can apply the previously mentioned methods for deterministic
simulators to these functions.

Unfortunately, there are a few problems to this approach. First, sensitivity measures
calculated in this manner only quantify the e�ects of X on the means and variances of the
output distribution for Y . Whether or not conclusions drawn from these e�ects translate
back to the output distribution depends entirely on how adequately Y 's distribution is char-
acterised by �rst and second order summaries. For output distributions resembling a normal
distribution, this may not be much of a problem. If the form of the output distribution is
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unknown or has more complicated behaviors (e.g. asymmetry, multi-modality) or if m and
V vary strangely with respect to x, then conclusions about the impact of the inputs on m
and V may not necessarily apply to the output distribution.

Additionally, it is not always clear how to simultaneously interpret the results of a sen-
sitivity analyses on these two functions. For example, suppose the simulator has two inputs
X1 and X2. After you calculate m(x1, x2) and V (x1, x2) and perform a sensitivity study, you
�nd that X1 has a large impact on the mean function, but a low impact on the variance.
Conversely, X2 has a low impact on the mean function and a high impact on the variance
function. Which of these two factors is more important? Are they equally important? In
most cases, the goal of the study may provide some insight on how to answer these ques-
tions. Even then, it is often di�cult to �gure out the best way to simultaneously interpret
two di�erent summaries. While having both the mean and variance provides more informa-
tion about the process than a single number possibly could, situations often arise where just
a single summary is desired.

Lastly, computing the two quantities (V (x) in particular) with any certainty requires
either replicated evaluations of the simulator at certain inputs or strong assumptions about
the form of the output distribution. For fast functions, this required ine�ciency may not
be a problem. However, if the simulator under study is slow-to-evaluate, then this method
suddenly becomes infeasible.

Instead of relying on the mean and variance functions of a stochastic simulator to quan-
tify the relationship between the input parameters and the output distribution, we propose
the use of tools from information theory, speci�cally entropy and mutual information, to
quantify said relationship. The entropy of a distribution is a measure of the variability in
the possible outcomes. Entropy can also be thought of as a quanti�cation of the amount
of uncertainty there is in the value of a random variable. The mutual information between
two random variables X and Y quanti�es the dependence between the two variables by
measuring how much learning the value of one variable reduces the entropy or uncertainty
in the other. In the context of stochastic simulators (which may have multiple inputs), the
mutual information between an input Xi and Y quanti�es how much learning the value of
Xi reduces the uncertainty in the value of Y . If an input has a large e�ect on the output
distribution, be it through an e�ect on the mean or the variance, the mutual information
between Y and the input will be high.

1.3 Outline

The material in this dissertation is meant to be self-contained from an implemenation stand-
point; all the relevant information needed to implement the methods presented here is in-
cluded. The rest of the dissertation proceeds as follows.

Chapter 2 introduces the relevant information theoretic tools and de�nitions that will
be used in the proceeding chapters. One new contribution in this chapter is the simulation
study comparing di�erent estimators for mutual information.
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Chapter 3 introduces a method for Bayesian density regression, utilizing Kernel Stick
Breaking Processes, �rst developed by Dunson and Park (2008). This method will be our
main tool for modelling dependence between X and Y . In this chapter, there are novel
derivations of the posterior predictive distribution for the model and a new method for
illiciting prior parameters based on prior information on the correlation strength.

Chapter 4 presents a method for using the model in Chapter 3 to conduct mutual
information-based sensitivity analysis for a stochastic simulator. The majority of this dis-
sertation's novel contributions to the �eld are contained in this chapter.

Chapter 5 details the application of the method described in Chapter 4 to a stochastic
simulator of near fault ground motions.

Finally, in Chapter 6, there will be a brief discussion on the topics covered and potential
directions for future work.
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Chapter 2: Information Theory

This chapter contains the necessary background on topics in information theory that will be
used throughout the rest of the dissertation. It is written to contain all relevant information
to understand the applications in the later sections, but with only a cursory overview of
less-related topics. For a deeper treatment of the �eld with more details, a good resource
would be Cover and Thomas (2012).

The �rst section de�nes and develops the notion of entropy for both discrete and contin-
uous random variables. The next section gives some estimators for entropy as well as some
of their properties. The chapter concludes with a section that extends the idea of entropy
to mutual information and frames it as a tool for conducting sensitivity analysis. That last
section also contains methods for estimating the mutual information as well as a simulation
study comparing the di�erent estimators.

2.1 De�nitions

Although the methods in this dissertation are primarily based on di�erential entropy, the
discussion on entropy and information theory in this chapter begins with Shannon entropy
in hopes of developing improved understanding and intuition of entropy as a whole.

2.1.1 Shannon Entropy

Let X be a random variable with probability mass function p on some discrete space X .
The entropy of X, as �rst presented in Shannon and Weaver (1948), is de�ned as

H(X) = −
∑
x∈X

log {p(x)} p(x). (2.1)

The unit of entropy depends on the base of the log being used. The two most common
are base 2, which would give bits, and base e, which gives nats. Unless otherwise denoted,
all the logs used in this dissertation will be base e logs. Note that the entropy is not a�ected
by the values that X could take on, it depends solely on the distribution p. For this reason,
in certain �elds the entropy may sometimes be written as H(p). For the most part, this type
of notation will be avoided throughout this dissertation.
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Notice that the Shannon entropy is always nonnegative. This is an immediate result due
to the fact that since X is discrete, 0 ≤ p(x) ≤ 1 and hence −log{p(x)} ≥ 0, with the
inequality being strict unless X is a constant.

There are many common interpretations of entropy, with the predominant one being
dependent on the �eld of study. However, all interpretations boil down to entropy being a
measure of the uncertainty or randomness in X. That is, if the entropy of X is large, then
the value of realizations are more unpredictable. In the special case that X is �xed, then it
has zero entropy.

This notion of entropy as a measure of randomness naturally leads to a popular inter-
pretation of entropy amongst computer scientists - the entropy is the expected or average
number of bits or nats (depending on the base of the logarithm) required to describe the
outcome of the random variable. This interpretation also arises directly when the entropy is
written as the following expectation

H(X) = −
∑
x∈X

log {p(x)} p(x) = −E [log {p(X)}] . (2.2)

To see how this expression corresponds to the bit-average, consider the case where X is a
set with n components. In order to uniquely identify the di�erent elements in X, it would
take log(n) bits or nats (depending on the base) to represent them.

Example: Coin tossing

Let X be the outcome of a coin toss, with the chance of a heads being p. That is,

X =

{
1 with probability p
0 with probability 1− p

From our de�nition of entropy, we see

H(X) = −plog(p)− (1− p)log(1− p) (2.3)

If p = 1
2
and the coin is fair, then H(X) = 1 (when the log is base 2). As the coin

gets biased (towards heads when p increases or towards tails when p decreases), then the
entropy decreases. Biasing the coin towards an outcome decreases the uncertainty because
an outcome is more likely. Eventually, at the ends of the spectrum where p = 0 or p = 1,
the coin always has the same outcome and there is no uncertainty and hence the entropy
will be 0.

2.1.2 Joint and Conditional Entropy

There is nothing preventing us from generalizing our de�nition of entropy for a single random
variable directly to pairs of random variables (or more). Let (X, Y ) be a pair of discrete
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random variables on X and Y with joint distribution p(x, y). Then the joint entropy of
(X, Y ) is

H(X, Y ) = −
∑
x∈X

∑
y∈Y

log{p(x, y)}p(x, y), (2.4)

or as an expectation,

H(X, Y ) = E [log{p(X, Y )}] . (2.5)

Because the generalization of entropy to joint entropy is so direct, all the interpretations of
entropy also translate straightforwardly to joint entropy as well. Additionally, when working
with two random variables, we can also de�ne the conditional entropy

H(Y |X) = −
∑
x∈X

∑
y∈Y

log{p(y|x)}p(x, y) (2.6)

=
∑
x∈X

px(x)
∑
y∈Y

log{p(y|x)}p(y|x), (2.7)

where px(x) =
∑

y∈Y p(x, y) is the marginal distribution for x, and p(y|x) = p(x,y)
px(x)

is the
conditional distribution for y given x. As an expectation, the conditional entropy based on
Eq. 2.6 is

H(Y |X) = −E [log {p(Y |X)}] . (2.8)

When using Eq 2.7, the conditional entropy as an expectation is

H(Y |X) = −EX
[
EY |X [log {p(Y |X)}]

]
. (2.9)

One useful result that follows conveniently from these natural de�nitions for joint and
conditional entropy is the following expression, often referred to as the chain rule,

H(X, Y ) = H(X) +H(Y |X) (2.10)

= H(Y ) +H(X|Y )

In words, the joint entropy for a pair of random variables is equal to the sum of the entropy
of one of the variables and the conditional entropy for the other. Formally, the chain rule is
true because

H(X, Y ) = −
∑
x∈X

∑
y∈Y

log{p(x, y)}p(x, y) = −
∑
x∈X

∑
y∈Y

log{px(x)p(y|x)}p(x, y)

= −
∑
x∈X

∑
y∈Y

log{px(x)}p(x, y)−
∑
x∈X

∑
y∈Y

log{p(y|x)}p(x, y)

= −
∑
x∈X

log{px(x)}
∑
y∈Y

p(x, y)−
∑
x∈X

∑
y∈Y

log{p(y|x)}p(x, y)

= −
∑
x∈X

log{px(x)}px(x)−
∑
x∈X

∑
y∈Y

log{p(y|x)}p(x, y)

= H(X) +H(Y |X)
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Alternatively, from a probabilistic point of view, we know that p(x, y) = px(x)p(y|x) and
hence log{p(x, y)} = log{px(x)}+ log{p(y|x)}. Since expectation is linear, this means

H(X, Y ) = −E [log{p(X, Y )}]
= −E [log{px(X)}]− E [log{p(Y |X)}]
= H(X) +H(Y |X)

One result immediately clear from either of the chain rule derivations is that if X and Y
are independent, then the joint entropy is just the sum of the two marginal entropies:

H(X, Y ) = H(X) +H(Y ). (2.11)

This result shows up because X and Y being independent means p(y|x) = p(y).

Example: Two Dependent Events

Let X be the outcome of one roll of a six sided die. Given the value of X, Y is the outcome
of a fair coin toss if X is even. If X is odd, then Y is the outcome of a biased coin, with
probability p = .75 of landing heads. Marginally, the outcome of Y is equivalent to tossing
a coin with probability p = 0.625 of landing heads, so the entropy, using Eq. 2.3, is

H(Y ) = −0.625 · log(0.625)− (1− 0.625) · log(1− 0.625) ≈ 0.662 nats.

The marginal distribution for the die roll X is

k 1 2 3 4 5 6

P (X = k)
1
6

1
6

1
6

1
6

1
6

1
6

so the entropy for X is H(X) = −log
(

1
6

)
≈ 1.792 nats. Since the relationship between X

and Y is de�ned in terms of Y |X, we can calculate H(Y |X) directly using Eq. 2.3 and 2.7

H(Y |X) = −1

2
· [.5 · log(.5) + (1− .5) · log(1− .5)]− 1

2
· [.75 · log(.75) + (1− .75)log(1− .75)]

≈ 0.628 nats.

For the joint entropy and the conditional entropy H(X|Y ), we'll need the joint distribu-
tion of X and Y :

Y
X

1 2 3 4 5 6

1
1
8

1
12

1
8

1
12

1
8

1
12

0
1
24

1
12

1
24

1
12

1
24

1
12
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From the joint distribution table, we can calculate both the the joint entropy and the con-
ditional entropy H(X|Y ) using Eq 2.6. First, the conditional entropy

H(X|Y ) = −
6∑

k=1

log{P (X = k|Y = 0)}P (X = k, Y = 0)−
6∑

k=1

log{P (X = k|Y = 1)}P (X = k, Y = 1)

= −3 · log
(

1

9

)
1

24
− 3 · log

(
2

9

)
1

12
− 3 · log

(
1

5

)
1

8
− 3 · log

(
2

15

)
1

12
≈ 1.758 nats.

Now, the joint entropy

H(X, Y ) = 3 · log
(

1

8

)
1

8
+ 6 · log

(
1

12

)
1

12
+ 3 · log

(
1

24

)
1

24
≈ 2.42 nats.

Notice that both H(Y )+H(X|Y ) = 0.662+1.758 = 2.42 = H(X, Y ) and H(X)+H(Y |X) =
1.792 + 0.628 = 2.42 = H(X, Y ), as suggested by the chain rule. Additionally, H(Y |X) 6=
H(X|Y ), so conditional entropy is not symmetric.

2.1.3 Di�erential Entropy

In this section, we'll describe how one generalizes the concept of Shannon entropy for discrete
distributions and random variables to continuous distributions and random variables. For
the most part, summations and probability mass functions are replaced with integrals and
probability density functions, respectively. However, there are subtle distinctions between
the two that can be important and care will be taken to point them out as these discrepancies
arise.

Let X be a random variable on some space X with probability density function (if it
exists) f(x). Then the di�erential entropy for X is:

H(X) = −
∫

X

log {f(x)} f(x)dx, (2.12)

which is essentially identical to the de�nition for discrete entropy with an integral replacing
the summation. As in the discrete case, the di�erential entropy can be written as the
expectation

H(X) = −E [log{f(x)}] . (2.13)

Example: Uniform distribution

If X has uniform distribution on the interval (a, b), then the density of X is f(x) = 1
b−a .

Then the di�erential entropy is

H(X) = −
∫

(a,b)

log{f(x)}f(x)dx = −
∫

(a,b)

log

{
1

b− a

}
1

b− a
dx

= log {b− a}
∫

(a,b)

1

b− a
dx = log {b− a} . (2.14)
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So the di�erential entropy for a uniform distribution is equal to the log of the length of the
interval. If the interval has length one, then the di�erential entropy will be zero (regardless of
the base of the log, in fact). If the length of the interval is less than one, then the di�erential
entropy will be negative. This is in stark contrast to Shannon entropy, which is always
nonnegative and is only zero for constants.

The de�nitions of joint entropy and conditional entropy for pairs (or more) of discrete
random variables also translate straightforwardly to continuous random variables. If X and
Y are two random variables with joint density function f(x, y), then the joint di�erential
entropy for X and Y is

H(X, Y ) = −
∫

X

∫
Y

log{f(x, y)}f(x, y)dxdy. (2.15)

As an expectation, the joint di�erential entropy is

H(X, Y ) = −E [log{f(X, Y )}] (2.16)

Example: Multivariate normal distribution

Let (X1, X2, . . . , Xn) be a realization from a multivariate normal distribution with mean
vector µ and covariance matrix Σ. The joint density for X = (X1, X2, . . . , Xn)

f(x1, . . . , xn) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
, (2.17)

where x = (x1, . . . , xn). Then the joint di�erential entropy for X1, X2, . . . , Xn is

H(X1, . . . , Xn) = −
∫
X
log {f(x)} f(x)dx

=
1

2
log {(2π)n|Σ|}+

1

2

∫
X

(x− µ)TΣ−1(x− µ)f(x)dx

=
1

2
log {(2π)n|Σ|}+

1

2
E
[
(x− µ)TΣ−1(x− µ)

]
=

1

2
log {(2π)n|Σ|}+

1

2
Tr
{
Σ−1Cov(x− µ)

}
+ E[x− µ]TΣ−1E[x− µ]

=
1

2
log {(2π)n|Σ|}+

1

2
Tr {In}

=
1

2
log {(2πe)n|Σ|} (2.18)

Here, X denotes Rn, which is the support of X = (X1, . . . , Xn).
The last de�nition to generalize to continuous random variables is the conditional entropy.

If we let

fX(x) =

∫
Y

f(x, y)dy



2.1. DEFINITIONS 13

denote the marignal density for X and

fY |X(y|x) =
f(x, y)

fX(x)

denote the conditional density of Y given X (if it exists), then the conditional di�erential
entropy of Y given X is

H(Y |X) = −
∫

X

∫
Y

log
{
fY |X(y|x)

}
f(x, y)dydx. (2.19)

As an expectation, the conditional di�erential entropy is

H(Y |X) = −E
[
log
{
fY |X(Y |X)

}]
(2.20)

Just like in the discrete case, we can write both the integral and expectation forms of
conditional di�erential entropy in terms of the marginal distribution

H(Y |X) = −
∫

X

[∫
Y

log
{
fY |X(y|x)

}
f(y|x)dy

]
fX(x)dx

= −EX
[
EY |X [log

{
fY |X(Y |X)

}
]
]
. (2.21)

Example: A Bayesian Distribution

Let X be a normal random variable with mean µ and variance σ2. Given the value of X, Y
is also a normal random variable, but with mean X and variance τ 2. Formally:

X ∼ N(µ, σ2)

Y |X ∼ N(X, τ 2).

First, the entropy of X

H(X) = −
∫

X

log

{(
2πσ2

)−1/2
exp

{
− 1

2σ2
(x− µ)2

}}(
2πσ2

)−1/2
exp

{
− 1

2σ2
(x− µ)2

}
dx

=
1

2
log
{

2πσ2
}

+
1

2σ2

∫
X

(x− µ)2 (2πσ2)−1/2exp

{
− 1

2σ2
(x− µ)2

}
dx

=
1

2
log
{

2πσ2
}

+
1

2σ2
σ2

=
1

2
log
{

2πeσ2
}
nats. (2.22)

Note that the equality in the last line is due to the preceding integral being E [(X − µ)2] = σ2.
To get the entropy of Y , a quick glance at the form of the integral for the marginal

distribution

fY (y) =

∫
X

fY |X(y|x)fX(x)dx ∝
∫

X

exp

{
− 1

2τ 2
(y − x)2

}
exp

{
− 1

2σ2
(x− µ2)

}
dx
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reveals that Y will have a Gaussian marginal distribution, so we only have to calculate the
mean and the variance of Y to know the marginal distribution exactly. The expectation is

EY [Y ] = EX
[
EY |X [Y |X]

]
= EX [X] = µ

and the variance is

V arY [Y ] = V arX
[
EY |X [Y |X]

]
+ EX

[
V arY |X [Y |X]

]
= V arX [X] + EX [τ 2] = σ2 + τ 2.

(2.23)

So marginally Y has distribution N(µ, σ2 + τ 2), and hence (through the use of Eq. 2.22)
H(Y ) = 1

2
log {2πe (σ2 + τ 2)} nats.

Since the dependence between Y and X is de�ned conditionally through Y |X, the con-
ditional entropy H(Y |X) is straightforward to calculate using Eq. 2.21:

H(Y |X) = −EX
[
EY |X

[
log
{
fY |X(Y |X)

}]]
= EX

[
1

2
log
{

2πeτ 2
}]

=
1

2
log
{

2πeτ 2
}
nats.

(2.24)

To get the joint entropy, instead of computing the integral

H(X, Y ) =

∫
X

∫
Y

log
{
fX(x)fY |X(y, x)

}
fX(x)fY |X(y, x)dydx,

we �rst identify the joint distribution:

f(x, y) = fX(x)fY |X(y, x) ∝ exp

{
− 1

2τ 2
(y − x)2

}
exp

{
− 1

2σ2
(x− µ2)

}
,

which is some kind of multivariate Normal distribution. From above, we know that the
marginal means and variances of X and Y are (µ, σ2) and (µ, σ2 + τ 2), respectively. So the
only missing component is the Cov[X, Y ], the o�-diagonal terms in the covariance matrix
for (X, Y ). To calculate this quantity, �rst realize that

V ar[X + Y ] = V arX
[
EY |X [X + Y |X]

]
+ EX

[
V arY |X [X + Y |X]

]
= V arX [2X] + EX [τ 2] = 4σ2 + τ 2.

This means

4σ2 + τ 2 = V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X, Y ] = σ2 + σ2 + τ 2 + 2Cov[X, Y ]

and consequently Cov[X, Y ] = σ2. This means (X, Y ) has bivariate normal distribution with
mean vector (µ, µ) and covariance matrix

Σ =

[
σ2 σ2

σ2 σ2 + τ 2

]
.
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From Eq 2.18, the joint entropy of (X, Y ) is

H(X, Y ) =
1

2
log
{

(2πe)2|Σ|
}

=
1

2
log
{

(2πe)2(σ4 + σ2τ 2 − σ4)
}

=
1

2
log
{

(2πe)2σ2τ 2
}
nats,

which is exactly

H(X) +H(Y |X) =
1

2
log
{

2πeσ2
}

+
1

2
log
{

2πeτ 2
}

=
1

2
log
{

(2πe)2σ2τ 2
}

= H(X, Y ).

Framed from a Bayesian point of view, Y |X ∼ N(X, τ 2) would be the sampling distri-
bution of the data with X being a parameter of this distribution. Then N(µ, σ2) would be
the prior distribution for X. Of course, thinking of the distributions in this manner does not
alter any of the calculations; it only o�ers a di�erent interpretation. From this point of view,
the conditional entropy, H(Y |X) is the amount of uncertainty or randomness inherent to the
process generating Y , i.e. after accounting for our prior uncertainty about the parameter X.
In this case, it is entirely based on τ 2, the conditional variance of Y .

As we can see from this example, it turns out that since all of our de�nitions for entropy,
both joint and conditional, were generalized in the same way, without any signi�cant modi�-
cation, the chain rule still applies to di�erential entropy. The formal derivation of the chain
rule for di�erential entropy mirrors the discrete case exactly and is consequently omitted.

One recurring property of entropy that has not been explicitly mentioned but has shown
up in all three examples in this section is the translation invariance of entropy. In the
multivariate normal example, the entropy, 1

2
log {(2πe)n|Σ|} is independent of the mean

vector µ. For the uniform example, shifting the support of the distribution left or right
doesn't change the width of the interval and consequently won't a�ect the entropy of the
distribution. In the Bayesian distribution example, the mean µ did not show up in any
of the quantities calculated: H(X), H(Y ), H(Y |X), or H(X, Y ). This property of entropy
(both Shannon and di�erential) is a result of entropy being a functional of the density (or
distribution for the discrete case) and not on the speci�c values of the random variable under
study.

2.2 Entropy Estimation

Before moving on to mutual information, which will be our primary information theoretic
tool when working with stochastic simulators, this section surveys some popular methods
for estimating the entropy of a distribution from a sample of points. For the most part, this
section will mirror the approach taken by Beirlant et al. (2001), although our primary goal
will be to estimate mutual information, not the entropy, so some of the less relevant details
will be omitted.

Let X1, . . . Xn be a sample of realizations from some distribution f . For the purposes of
this section, we will focus primarily on continuous random variables, so f is a density. The
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goal of entropy estimation is to estimate the quantity

H(X) = −
∫
log{f(x)}f(x)dx, (2.25)

where X is a random variable, also with distribution f . We use Ĥn(X) to denote an estimate
of H(X) based on the sample of realizations X1, . . . , Xn. This section is primarily interested
in nonparametric methods for estimatingH(X), which are typically used when little is known
about the underlying process generating X. A parametric entropy estimator requires the
assumption of some parametric form f(x|θ) for f . An estimate θ̂n for θ is computed based
on X1, . . . , Xn that can be plugged into the integral to estimate the entropy

Ĥn(X) = −
∫
log
{
f(x|θ̂n)

}
f(x|θ̂n)dx ≈ −

∫
log {f(x|θ)} f(x|θ)dx = H(X).

As is the case when comparing any parametric and nonparametric methods, parametric
estimators of entropy typically perform a bit better than nonparametric estimators for a
given sample size. Unfortunately, these methods require some prior knoweldge about the
form of f in order to use the correct parametrization; after all, it is these assumptions we
make about the form of the data that allows parametric estimators to be more accurate with
smaller samples. If these assumptions are not true, then the performance is not necessarily
better and often lead to worse estimates. Often, in the context of computer models, very little
is known about the form of f which limits the usefulness of these methods. Consequently,
the emphasis of this section will be on nonparametric entropy estimators, despite the need
for larger sample sizes to perform as well.

Before discussing the di�erent types of estimators, here are some desirable convergence
properties for Ĥn(X):

Weak consistency: limn→∞ Ĥn(X) = H(X) in probability.

Mean square consistency: limn→∞E
[
(Ĥn(X)−H(X))2

]
= 0.

Strong consistency: limn→∞ Ĥn(X) = H(X) almost surely.

Root-n Asymptotic normality: n1/2(Ĥn(X)−H(X))⇒ N(0, σ2).

L2 rate of convergence: limn→∞ nE
[
(Ĥn(X)−H(X))2

]
= σ2.

For both Root-n asymptotic normality and L2 rate of convergence, σ2 is some calculable
quantity that depends on both the density f and the estimator used. If an estimator men-
tioned possesses any of these properties, the property along with an idea of any necessary
conditions will be highlighted.
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2.2.1 Integral Estimates

Perhaps the most natural estimate of entropy one might think up would be to replace the
density in the integrand with an estimate generated from the data. Let f̂n(x) be an estimate
of the density f based on the sample X1, . . . , Xn. Then an integral estimate for H(X), �rst
introduced in Dmitriev and Tarasenko (1974), has the form

Ĥn(X) = −
∫

A

f̂n(x)log
{
f̂n(x)

}
dx (2.26)

where A is usually some set that excludes tail or small values of f̂n in order to prevent
the log in the integrand from producing large, negative values. The original publication
showed, in one dimension, if A = [−bn, bn] and f̂n is a kernel density estimator, then Hn is
strong consistent. When fn is a kernel density estimator, the integration usually must be
done numerically, which makes this type of estimation di�cult for anything higher than two
dimensions.

If f̂n is the histogram estimator, then the integral is easy to compute. Györ� and Van der
Meulen (1987) showed that for general dimension and taking A = {x : fn(x) ≥ an} with
0 < an → 0, the histogram based integral estimate is strong consistent under a mild condition
on the tails of X.

The main reason these types of estimators are not used more often is because of the
need to come up with reasonable domains of integration, A, while allowing the estimate to
still have the desired convergence properties. Additionally, in higher dimensions, histogram
estimators necessarily require dense samples in order to resemble the true density.

2.2.2 Resubstitution Estimates

The next estimator introduced builds on the idea behind the integral estimate. A resubsti-
tution estimate for entropy has the form

Ĥn(X) = − 1

n

n∑
k=1

log
{
f̂n(Xk)

}
(2.27)

where f̂n is some estimate of f based on the sample X1, . . . , Xn. This type of estimator arises
from the layering of two approximations: (1) a Monte Carlo approximation to the entropy
integral and (2) an approximation to the density.

Formally, the Monte Carlo integral approximation is

−
∫

X

log {f(x)} f(dx) ≈ − 1

n

n∑
k=1

log {f(Xk)} (2.28)
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since the X1, . . . , Xn are distributed according to f . As with any Monte Carlo integral, this
approximation can also be viewed as an application of the law of large numbers:

H(X) = −E [log {f(x)}] ≈ − 1

n

n∑
k=1

log {f(Xk)}

Monte Carlo integral approximations are known to be good in multiple dimensions for
even modestly sized samples, with the speci�c level of accuracy for a given sample size being
dependent on the true form of the integrand, log {f(x)} (Press et al. 2007).

The density approximation of f in the estimate is

− 1

n

n∑
k=1

log {f(Xk)} ≈ −
1

n

n∑
k=1

log
{
f̂n(Xk)

}
. (2.29)

Two potential choices for f̂n are kernel density estimators (KDE) or histogram estimators.
The accuracy of this approximation depends primarily on how well f̂n approximates the true
density f . Unless noted otherwise, we will be using KDEs for f̂n whenever a resubstitution
type estimator is mentioned.

Some factors a�ecting how closely f̂n resembles f , and subsequently the approximation
accuracy of Eq. 2.29, are (i) the true form of f , (ii) the dimension of X, (iii) the type
of estimator being used, and (iv) the sample size, n. However, the limiting factor for the
approximation (for a given dimensionality of X) will almost always be the sample size,
n. For any reasonable choice of density estimators, f̂n should be fairly close to the true
density as long as n is large enough. Typically, the size of sample required to produce a
good approximation in Eq. 2.29 will also produce an accurate approximation in Eq. 2.28.
Heuristically, if the integrand in Eq. 2.28 behaves poorly and requires an atypically large
sample to integrate accurately, then f̂n will also require a large sample before starting to
resemble f .

Resubstitution estimators possess many desirable convergence properties. Ahmad and
Lin (1976) showed, under some mild conditions, if f̂n is a kernel density estimate, then
Ĥ(X) is mean square consistent. Hall and Morton (1993) showed that, under certain tail
and smoothness conditions, Ĥ(Y ) is root-n asymptotically normal with a calculable variance
for both kernel density and histogram estimators. It is these reasonably general convergence
properties, along with the fast evaluation speed (the averaging of logs is a fast operation),
that makes the resubstitution estimate with a KDE one of the estimators used throughout
the rest of this chapter.

Since we'll be using this type of estimator again in this chapter, we'll take a moment to
present a resubstitution estimate for the conditional entropy. Let (X1, Y1), . . . , (Xn, Yn) be
a sample from some joint density f(x, y) and let (X, Y ) be random variables also with joint
density f(x, y). Then a resubstitution estimate of the conditional entropy H(Y |X) would
be

Ĥn(Y |X) = −
∑
i

log
{
f̂n(yi|xi)

}
, (2.30)
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where f̂n(y|x) is a KDE of f(y|x) based on the sample (X1, Y1), . . . , (Xn, Yn). One more
advantage that resubstitution estimates have over integral estimates, despite being further
removed from the desired integral, appears in Eq. 2.30. An equivalent integral estimator for
the conditional entropy would be

H̃n(Y |X) = −
∫

X

∫
Y

log
{
f̂n(y|x)

}
f̂n(y, x)dydx,

where f̂n(y, x) is a KDE of the joint density f(y, x) based on the sample (X1, Y1), . . . , (Xn, Yn)
and, as before, f̂n(y|x) is a kernel density estimate of the conditional density fY |X(y, x). The
integral estimate requires estimates of two densities: the joint density f(x, y) and the condi-
tional density fY |X(y|x). Since they are estimated from the same data, (X1, Y1), . . . , (Xn, Yn),
the correlation between the two estimated densities makes estimation even more di�cult.

2.2.3 Nearest Neighbor Estimates

Before presenting the main estimator of this type, we'll provide some insight into the intuition
behind the derivation of it. For a complete derivation as well as details on some properties
of this estimator, see Kozachenko and Leonenko (1987).

Recall that the entropy H(X) is the integral

H(X) = −
∫
log {f(x)} f(x)dx,

which depends primarily on the density f . Not having much prior knowledge about f pre-
cludes the use of any parametric method, which is why we're looking at these nonparametric
methods. The previously introduced resubstitution and integral estimates for entropy rely
on the estimation of f through some means - either a kernel density estimate or a his-
togram estimate. The e�cacy of those methods depends largely on f being relatively easy
to estimate. However, a nearest neighbor based entropy estimate attempts to circumvent
this problem altogether by using the distribution of the k-th nearest neighbor distance as a
proxy or surrogate (note the distinction from estimate) to the density.

To get some intuition as to why one could possibly use the k-th nearest neighbor density
in this way, consider a sample X1, . . . , Xn with distribution f . In an area where the density
f is low, the sample will contain fewer points in that area and consequently the distribution
of the distance to the k-th nearest neighbor will assign more mass to longer distances in that
region (regardless of the value of k). Conversely, if f is high in a region, the sample will be
denser in that area and hence the distribution of the distance to the k-th nearest neighbor
will tend to shorter distances in that region. A formal derivation of this correspondence
between the density f and the k-th nearest neighbor distance distribution is available in
?. Given that there exists a relationship between the two distributions, the k-th nearest
neighbor entropy estimate is

Ĥn(X) = −ψ(k) + ψ(n) +
p

n

n∑
i=1

log {εi,k} , (2.31)
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where ψ is the digamma function,

ψ(x) =
d

dx
logΓ(x) =

Γ′(x)

Γ(x)
,

p is the dimension of the input space X, and εi,k is the distance from xi to it's k-th nearest
neighbor. Here, the term distance refers to the supremum norm i.e.

d(x,y) = maxj {x1 − y1, . . . , xp − yp}

Under a general distance, the estimator is

Ĥn(X) = −ψ(k) + ψ(n) + log(cp) +
p

n

n∑
i=1

log {εi,k}

where cp is the volume of the unit ball under the given distance. We choose to use the
supremum norm because the analogous mutual information estimator in Section 2.3.2 uses
the supremum norm. For the purposes of entropy estimation, no distance should have an
advantage for a general density f .

Note that, for a �xed sample, the choice of k will change the estimated value. Typically,
though, k should be small since the link between the density and the distribution of k-th
nearest neighbor distances only holds for small neighborhoods. However, taking k too small,
like k = 1, may cause numerical issues when computing the estimate for large samples ; in
extreme cases, it's possible for two sample points to be so close that they are numerically
distance 0 apart.

One nice computational property of this estimate is that the slowest operation in the
estimate is the computation of the k-th nearest neighbor distances. Luckily, �nding k-th
nearest neighbors is a well studied problem in the computer sciences and, through the use of
data structures such as a kd-tree, is a very fast operation. Searching a kd-tree for the k-th
nearest neighbor is at worse an O(n) operation and an O(logn) operation on average. This
is orders of magnitude faster than the computation of a KDE to use in a resubstitution or
integral estimate.

In addition to the low computational complexity, nearest neighbor estimates of entropy
also possess some useful convergence properties. The original authors, Kozachenko and
Leonenko (1987), showed that Eq 2.31 is a mean square consistent for general distance
functions. Bickel and Breiman (1983) showed that speci�c estimates for general functionals
of a density can be root-n asymptotically normal. The class of functionals does not include
the entropy, but their results suggest that there is hope for root-n asymptotic normality for
this entropy estimate.

2.3 Mutual Information and Sensitivity Analysis

In this section, we introduce the concept of mutual information, a quantity based on entropy,
and demonstrate how to use it to conduct sensitivity analysis. We also look at methods of
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estimating the mutual information given a sample of data. The section concludes with two
simulation studies comparing the di�erent methods in order to choose the estimate used in
the proceeding chapters.

2.3.1 De�nition

We begin with the de�nition of mutual information. Unlike the way that we worked up to
di�erential entropy for the continuous case by starting with Shannon entropy for discrete
distributions, mutual information will be presented entirely from the continuous case since
our focus will be on working with continuous distributions. The development for the discrete
case is identical in almost every aspect and has consequently been omitted.

Let X and Y be two random variables with joint density f(x, y). Then the mutual
information between X and Y is

I(X, Y ) =

∫
X

∫
Y

log

{
f(x, y)

fX(x)fY (y)

}
f(x, y)dydx, (2.32)

where fX(x) =
∫

Y
f(x, y)dy and fY (y) =

∫
X
f(x, y)dx are the marginal densities forX and Y ,

respectively. While Eq. 2.32 is the formal de�nition for mutual information, in that form it's
not immediately clear what the mutual information represents or why such a quantity might
be useful. (Traditional literature on information theory and mutual information present Eq.
2.32 in the context of KL-divergence - a topic that we've omitted entirely. Under that setting,
this form of mutual information is actually quite revealing.)

Luckily, there are other expressions for mutual information which are more illuminating
given the topics covered in the preceding sections. First, by manipulating the log in the
integrand, we can write mutual information in terms of entropies:

I(X, Y ) =

∫
X

∫
Y

log

{
f(x, y)

fX(x)fY (y)

}
f(x, y)dxdy

= −
∫

X

∫
Y

log {fX(x)fY (y)} f(x, y)dxdy +

∫
X

∫
Y

log {f(x, y)} f(x, y)dxdy

= H(X) +H(Y )−H(X, Y ) (2.33)

Written in this manner, it should be clear that the mutual information is symmetric. That
is, I(X, Y ) = I(Y,X).

Recall that if X and Y are two independent random variables, then the joint entropy of
X and Y is just H(X) + H(Y ), the sum of the two marginal entropies. With this in mind,
the mutual information is the di�erence in entropy between the product of the marginal
distributions for X and Y (i.e. under independence) and the joint distribution of X and Y .
In a sense, mutual information measures the amount of dependence present between X and
Y . (Here, the term measure is used loosely and not in the formal mathematical sense.) A
low mutual information means that knowing X reveals little about the value of Y while a
high mutual information means knowing X reveals a lot about the value of Y .
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We can further manipulate the expression for mutual information in Eq. 2.33 by applying
the chain rule to the joint entropy

I(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(X) +H(Y )− (H(Y ) +H(X|Y ))

= H(X)−H(X|Y ). (2.34)

Applying the chain rule in the other direction gives an equivalent version H(Y )−H(Y |X).
In both versions, the mutual information is the reduction in entropy of one variable due to
knowing the other variable. That is, H(Y ) − H(Y |X) is the reduction in the randomness
or uncertainty in Y caused by knowing the value of X. This coincides with the above
interpretation of mutual information as a quanti�cation of the dependence between X and
Y - if knowing the value of X reduces the uncertainty in Y by a large amount, then there
must be strong dependence between X and Y . Conversely, if knowing the value of X does
not reduce the randomness in Y by very much, then there the dependence between X and
Y must be weak.

Example: Mutual Information in a Bayesian Setting

Returning to the example at the end of Section 2.1.3, recall in that example, X has a
normal distribution with mean µ and variance σ2 and Y |X follows a normal distribution
with mean X and variance τ 2. In that section, we calculated H(Y ) = 1

2
log {2πe (σ2 + τ 2)}

nats and H(Y |X) = 1
2
log {2πeτ 2} nats. Using the Y -centric version of 2.34 gives the mutual

information of Y and X to be

I(X, Y ) = H(Y )−H(Y |X) =
1

2
log
{

2πe
(
σ2 + τ 2

)}
− 1

2
log
{

2πeτ 2
}

=
1

2
log

{
σ2 + τ 2

τ 2

}
nats. (2.35)

If the variance in X, σ2, is �xed, increasing the value of τ 2, the conditional variance of Y ,
decreases the mutual information. As τ 2 approaches in�nity, the mutual information ap-
proaches 0. These behaviors should not be surprising since increasing the marginal variance
should decrease the e�ect of our uncertainty in the mean, X.

Alternatively, for �xed τ 2, increasing the value of the prior variance for the mean, σ2 will
increase the mutual information. Increasing the variance of the mean increases the marginal
randomness in Y , since H(Y ) = 1

2
log {2πe (σ2 + τ 2)}, which consequently increases the

importance or impact of learning the value of X. So this behavior in the mutual information
is as expected.

This example clearly demonstrates how mutual information can be a tool for conducting
sensitivity analyses. Being able to quantify how much learning the value of X reduces the
uncertainty in Y is in some sense a measure of how important or how much impact X has
on the distribution of Y . It is for this reason that we will be using mutual information
as our primary measure of sensitivity when studying the output distributions of stochastic
simulators.
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2.3.2 Estimation

In this section, we'll present two estimators for the mutual information between two random
variables. The end of the section contains a simulation study to determine which of the two
estimators performs better given limitations such as sample size. As before, we'll begin with
some notational details and a clear de�nition of the quantity being estimated.

Let (X1, Y1), . . . , (Xn, Yn) be a sample of points distributed according to the joint density
f . The desired quantity is the mutual information between X and Y , i.e.,

I(X, Y ) = −
∫

X

∫
Y

log

{
f(x, y)

fX(x)fY (y)

}
f(x, y)dydx, (2.36)

where (X, Y ) are placeholder random variables also with joint density f . We let În(X, Y )
denote an estimate of I(X, Y ) based on the sample (X1, Y1), . . . , (Xn, Yn). As was the case
with entropy, the two estimators presented here are nonparametric estimators of mutual
information since usually little is known about the form of the joint density.

Resubstitution Estimates

A rather naïve estimator for the mutual information would be to look at one of the expanded
forms in terms of entropies, e.g.,

I(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(Y )−H(Y |X), (2.37)

and then replacing each of the entropies with the appropriate estimates. An estimator of
this type would be

În(X, Y ) = Ĥn(X) + Ĥn(Y )− Ĥn(X, Y ). (2.38)

Here, Ĥn(X) and Ĥn(Y ) are estimates of H(X) and H(Y ) based on the marginal samples
X1, . . . , Xn and Y1, . . . , Yn. Also, Ĥn(X, Y ) is an estimate of H(X, Y ) from the joint sample
(X1, Y1), . . . , (Xn, Yn). The estimator used could be any of the estimators mentioned in
Section 2.2. Since this expression is just a sum, most of the convergence or limiting properties
for the individual entropy estimators should translate to this estimate of mutual information.

However regardless of the type of entropy estimator used, any mutual information esti-
mator of the form of Eq. 2.38 does not perform well because the estimation errors for the
individual entropies will be additive and there is no reason to expect any kind of cancellation.
One might hope to improve on this estimate by using the second expression in Eq. 2.37 to
get the estimator

În(X, Y ) = Ĥn(Y )− Ĥn(Y |X), (2.39)

which has one less entropy estimate and, ostensibly, should improve on accuracy on this
premise alone. For the most part, this estimator performs reasonably well when using the
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resubstitution estimators in Eq. 2.27 and 2.30 for Ĥn(Y ) and Ĥn(Y |X), respectively; the
accuracy is comparable to the other estimate presented in this section.

Note that, by symmetry, we could come up with an X-oriented analogue to Eq. 2.39,

În(X, Y ) = Ĥn(X)− Ĥn(X|Y ), (2.40)

which, from a purely statistical point of view, should not o�er any advantages. However,
in the context of stochastic simulators or Bayesian problems, the quantity of interest, Y , is
often de�ned in terms of or conditionally given X. In the simulation setting, X is typically
used to denote the input values and Y = f(X) is the output of a simulator when it is run at
a given X-value. In the Bayesian setting, X would be the parameters (e.g. mean, variance,
correlation parameter) and Y |X is the generative model given the parameters.

In these types of settings, the distribution of X is often known. For simulators, the
distribution for the inputs is often determined by the scientists conducting the experiment
and is typically based on how uncertain they are about the parameters. For Bayesian models,
the distribution for X would be the prior distribution which has a known form. In both these
cases, H(X) can be calculated exactly (or at least numerically, independently of the data),
and so an estimate of the mutual information between X and Y is

În(X, Y ) = H(X)− Ĥn(X|Y ), (2.41)

which should clearly be more accurate than Eq. 2.40 due to estimating one less quantity.
In principle, having one less estimated quantity should also make it more accurate than the
estimator in Eq. 2.39. For a �xed sample size, the accuracy of Hn(Y |X) and Hn(X|Y ) to
their target quantities is largely dependent on the forms of the true conditional densities
fY |X(y|x) and fX|Y (x|y), so there are cases where the Y -centric estimator may be more
accurate. However, without any prior knowledge on the forms of the conditional densities,
it's not possible to know which would be better for a speci�c case. In the ensuing simulation
study, we'll evaluate the performance of Eq. 2.39, Eq. 2.40, and Eq. 2.41 to highlight
possible scenarios where one would outperform the others.

Nearest Neighbor Estimates

In this section, we brie�y present the two nearest neighbor distance-based estimates of mutual
information derived by Kraskov et al. (2004). The presentation here contains only the
formulae and a brief desription about the estimators. Formal developments and the intuition
behind the estimators can be found in Kraskov et al. (2004).

These estimators of mutual information start o� in the same way as in Eq. 2.38 � by
replacing the entropies in the expression for mutual information with their respective nearest
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neighbor distance based estimates, e.g.,

În(X, Y ) = −ψ(k) + ψ(n) +
px
n

n∑
i=1

log
{
εxi,k
}
− ψ(k) + ψ(n) +

py
n

n∑
i=1

log
{
εyi,k
}

(2.42)

+ ψ(k)− ψ(n)−
p(x,y)

n

n∑
i=1

log
{
ε

(x,y)
i,k

}
where εxi,k is the distance between xi and it's k-th nearest neighbor, εyi,k is the distance

between yi and it's k-th nearest neighbor, and ε
(x,y)
i,k is the distance between (xi, yi) and it's

k-th nearest neighbor. Note that since they are on di�erent spaces, the neighbors do not
necessarily correspond for the di�erent ε's.

Through some astute insight and reasoning, some of the terms in the entropy estimators
can be cancelled out in order to simplify the expression while simultaneously reducing esti-
mation error. The authors present two separate estimators of mutual information derived in
this manner.

The �rst mutual information estimator is

Î(1)
n (X, Y ) = ψ(k) + ψ(n)− 1

n

n∑
i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] . (2.43)

As before, ψ is the digamma function. Here, nx(i) is the number of sample points whose x
values are closer than the distance between (xi, yi) and it's k-th nearest neighbor. Formally:

nx(i) = #
{
xj : d(xi, xj) ≤ ε

(x,y)
i,k

}
, (2.44)

where, as before, ε
(x,y)
i,k is the distance of (xi, yi) from it's k-th nearest neighbor. For both

ε
(x,y)
i,k and d(xi, xj), the distance used is the supremum norm. ny(i) is de�ned in a similar
fashion.

The second estimator of mutual information is

Î(2)
n (X, Y ) = ψ(k) + ψ(n)− 1

k
− 1

n

n∑
i=1

[ψ(mx(i)) + ψ(my(i))] , (2.45)

where mx(i) is the number of sample points whose x values are closer than the distance
between the xi and the x-component of (xi, yi)'s k-th nearest neighbor. Formally

mx(i) = #
{
xj : d(xi, xj) ≤ d(xi, xk(i))

}
, (2.46)

where xk(i) is the x component of the k-th nearest neighbor of (xi, yi). That is, xk(i) is such
that

k = #
{

(xj, yj) : d ((xi, yi), (xj, yj)) ≤ d
(
(xi, yi), (xk(i), yk(i))

)}
.
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As before, my(i) and yk(i) are de�ned similarly. The original authors found that Eq. 2.43 and
Eq. 2.45 perform similarly in most situations, with computation times also being comparable.
In our tests, we've found Eq. 2.43 to be easier to implement, and consequently will only
use that estimator when comparing against the other estimates mentioned in Section 2.3.2.
However, since the two are nearly interchangeable, most of our �ndings should hold for Eq.
2.45 as well.

An important parameter choice that must be made for both these estimators is the choice
of k, the number of neighbors being considered. We've found that, for large sample sizes,
setting k too small, say k = 1 or 2, may result in numerical issues when computing the
estimators since the distance between a point and its nearest neighbor may be numerically
0. However, taking k too large increases the approximation error that occurs when using the
distribution of nearest neighbor distances as an analog for the density. This e�ect becomes
quite pronounced in higher dimensions since the distance between subsequent neighbors is
quite large when the dimension increases, so smaller values of k are preferable. Conversely,
for large samples and small values of k, minor changes in k have little e�ect on the estimated
mutual information aside from eliminating potential numerical issues. For the most part,
setting k between 3-5 yields good accuracy.

The most important feature of these nearest neighbor types of estimators is their fast
computational times. The slowest operation for both estimates is identifying the k-th nearest
neighbor for each point, which is a well studied topic in the computer sciences. Through the
use of k-d trees, �nding the k-th nearest neighbors for a sample of size n is, on average, an
operation of O(nlogn) complexity, which is orders of magnitude faster than the estimation
and evaluation of a KDE for a size n sample, which has O(n2) complexity. So the estimate
in Eq. 2.43 is much faster to calculate than both 2.39 and 2.41. If computation time were
the only factor, then this would be the primary estimate used.

2.3.3 Simulation Studies

In this section, we'll evaluate the performance of the mutual information estimators presented
in Section 2.3.2 on two di�erent example problems. The important factors considered are
(i) overall accuracy and (ii) accuracy given a �xed sample size. Di�erences in computation
time will also be mentioned, since we will be estimating the mutual information from each
individual MCMC draws from a posterior distribution later on. However, this process is
largely parallelizable, so computing time will not have as much in�uence on the chosen
method as accuracy considerations.

The �rst problem we'll estimate is the Bayesian example from Sections 2.1.3 and 2.3.1.
In that example, X ∼ N(µ, σ2) and Y |X ∼ N(X, τ 2). In 2.3.1, we calculated the mutual
information between X and Y to be

I(X, Y ) =
1

2
log

{
σ2 + τ 2

τ 2

}
.

In our �rst set of simulation studies, we will be evaluating the performance of the three
resubstitution estimates of mutual information, Eq. 2.39, 2.40, and 2.41, and the �rst
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nearest neighbor distance based mutual information estimator, Eq. 2.43, when estimating
the mutual information between Y and X for this model. For the resubstitution estimates,
Ĥn(Y ), Ĥn(X), Ĥn(Y |X), and Ĥn(X|Y ) will be computed with a KDE using a Gaussian
kernel. In Eq. 2.40, the true value of H(X) = 1

2
log {2πeσ2} is used. The two cases used are

when (i) σ2 = 2 and τ 2 = 2 and (ii) σ2 = 3 and τ 2 = 1. In both cases, the marginal variance
for Y is σ2 + τ 2 = 4 (see Eq. 2.23).
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(2.39)
(2.40)
(2.41)

(b) σ2 = 3, τ2 = 1

Figure 2.1: Plots of di�erent estimates of I(X,Y ) when X ∼ N(µ, σ2) and Y |X ∼ N(X, τ2) across
varying sample sizes. The parameters were chosen so the marginal variance, V ar(Y ), remains

constant in both Figs. 2.1a and 2.1b. Eq. 2.43, in green, is the nearest-neighbor based estimate

of mutual information. Eq. 2.39, in red, is Î(X,Y ) = Ĥ(Y ) − Ĥ(Y |X). Eq. 2.40, in blue, is

Î(X,Y ) = Ĥ(X)− Ĥ(X|Y ). Eq.2.41, in orange, is Î(X,Y ) = H(Y )− Ĥ(Y |X).

Figure 2.1 contains the result of the simulation studies for these di�erent values of σ2

and τ 2. The most noticeable result from these studies is how the three resubstitution type
estimators are quite biased for small samples. This is not surprising since, in general, kernel
density estimates are biased estimators for the density, so one should not expect estimators
using these KDEs to produce an unbiased estimate of mutual information. Like the KDE
estimator itself, the bias for these resubstitution estimate decreases with sample size. Eq.
2.43, the nearest neighbor distance based estimator looks unbiased for all sample sizes.
However, while the bias is smaller, it appears to have slightly more variability than the
resubstitution estimators for each sample sizes.

First, let's consider the case when sample size is not a limiting factor. In this case,
it is hard to pick the better estimator based on just performance since the resubstitution
estimators are more biased but have less variability while the nearest neighbor estimator
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is less biased but has more variability. Luckily, there is a large di�erence in computation
times that makes this decision easy. Estimating the mutual information with the nearest
neighbor estimator from a sample with n = 2000 is 2 to 3 times faster than calculating the
resubstitution estimator for a sample of size n = 1000 and the gap widens for even larger
sized samples. Since we will be estimating the mutual information from individual MCMC
draws, the di�erence in time between the estimates is on the order of several hours, even
after parallelization. Note that the variability for the nearest neighbor estimator at n = 2000
is comparable to the variability of the resubstitution estimators when n = 1000, so accuracy
does not need to be sacri�ced if using the faster estimator. Consequently, when sample size
is not a restriction, the nearest neighbor estimator should be the preferred choice.

When restricting ourselves to moderately sized samples (n ≤ 500), the bias in the case
of the resubstitution estimators is quite large - on the order of ten percent when n = 250.
Additionally, the improvement in variance over the nearest neighbor estimate is small, and
hardly meaningful when the bias is that large. So when samples are small, the nearest
neighbor estimator is also the better choice.

When looking at just the resubstitution estimates, �rst notice that Eq. 2.40 is less biased
than Eq. 2.41 for all sample sizes regardless of the value of σ2, the variance of X. While
there is no immediately obvious reason for any of the estimation error to cancel out when
di�erencing Ĥ(X) and Ĥ(X|Y ) in Eq. 2.40, it should be clear that error cancellation must
be at least partially responsible for Eq. 2.41 having a larger estimation bias. The only
di�erence between the two estimates is the replacement of Ĥ(X) with the true value, H(X).
As for Eq. 2.39 and 2.40, we see that their performance is nearly identical for all sample
sizes. This should not be surprising since Y and X are both marginally Normal and both
Y |X and X|Y also have Normal distributions. So for this example, changing the point of
view should not have an impact on the estimation accuracy since the distributions are of the
same family and thus are comparably well-approximated with kernel density estimators.

The second example problem we will look at is the following Normal mixture:

Y |X ∼

{
N(2X,

√
.005) with probability exp (−30X6)

N(X4,
√
.04) with probability 1− exp (−30X6)

(2.47)

X ∼ Unif(0, 1)

This example is chosen because the model we use in Chapters 3 and later will be mixtures
of this type, so it is important to determine which of the mutual information estimators
performs better on these types of models. Since we will be referring to this model later on,
we provide the conditional density for Y |X here:

f(y|x) =
exp (−30x6)√

2π(.005)
exp

{
−(y − 2x)2

2(.005)

}
+

1− exp (−30x6)√
2π(.04)

exp

{
−(y − x4)

2

2(.04)

}
. (2.48)

A plot of n = 500 realizations from Model 2.47 is provided in Fig. 2.2a. The two
groups are quite distinct, with both groups only having similar chances of occuring when



2.3. MUTUAL INFORMATION AND SENSITIVITY ANALYSIS 29

X ∈ [0.4, 0.6]. From both the plot of realizations and the formulation of the model, it's clear
that both the marginal mean and variance for Y are changing with X.
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(2.43)
(2.39)
(2.40)
(2.41)

(b) Î(X,Y )

Figure 2.2: Fig. 2.2a contains a sample of n = 500 draws from the Normal mixture model de�ned

in Model 2.47. Fig. 2.2b contains the result of a simulation study for estimating I(X,Y ) from the

model. The equations and colouring scheme is the same as in Fig. 2.1. Unlike in Fig. 2.1, the

Y -oriented estimator, Eq. 2.39 in red, has larger bias than the X-oriented estimators, Eqs. 2.40

and 2.41 in blue and orange.

Figure 2.2 contains the results of the simulation study on mutual information estimation.
As was the case in the previous example, the nearest-neighbor estimator, Eq. 2.43, has a
much smaller bias and slightly higher variability than any of the resubstitution estimators.
From this, we can safely conclude that whatever property of the estimator is causing the
bias advantage and increased variance is at least partially independent of the form of the
joint density for X and Y .

Another similar �nding from the previous study is the improvement of Eq. 2.40, Î(X, Y ) =
Ĥ(X)− Ĥ(X|Y ), over Eq. 2.41, Î(X, Y ) = H(X)− Ĥ(X|Y ). Again, this implies whatever
error cancellation occurs when di�erencing the two estimates in Eq. 2.40 is at least partially
independent of the form of the distributions being studied.

One deviation from our �ndings in the �rst study is the improved performance of the
X-oriented estimators over Eq. 2.39, the Y -oriented estimator, Î(X, Y ) = Ĥ(Y )− Ĥ(Y |X).
As alluded to when presenting these estimators Section 2.3.2, the better performing point
of view will depend on the distributions of X and Y , both marginally and jointly. In this
case, it's clear that the distributions for either Y or Y |X (or both) is harder to approximate
with a KDE. Consequently, we see Eq. 2.39 having larger estimation error in Fig. 2.2b.
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The di�erence gets quite pronounced for larger sample sizes, where even Eq. 2.41, which we
know to perform poorly, becomes less biased.

From our studies on both the Bayesian model from Sections 2.1.3 and 2.3.1 and the
Normal mixture in Model 2.47, the mutual information estimator we will use in the rest of
the chapters is the nearest-neighbor estimator, Eq. 2.43. This choice is based primarily on
the smaller bias for this estimator and the orders of magnitude faster run times. When we
perform mutual information estimation in Chapter 3.5, there will not be a strict limitation
on sample size, so given the fast computation speed, the slightly higher variance of this
estimator can be accounted for with a larger sample.

2.3.4 Sensitivity Analysis with Mutual Information: A Bayesian
Example

In the context of sensitivity analysis for stochastic simulators, it turns out that this interpre-
tation of the mutual information between X and Y as a quanti�cation of how much knowing
the value of X reduces the randomness or uncertainty in Y can be quite useful. A full de-
velopment of how to use mutual information as a tool for sensitivity analysis in that setting
is presented in Chapter 4. For now, we merely see how mutual information can be used to
conduct sensitivity analysis by taking a thorough look at a canonical Bayesian problem.

Consider the following Bayesian model:

Y |µ, σ2 ∼ N(µ, σ2)

µ|σ2 ∼ N

(
µ0,

σ2

ν

)
(2.49)

σ2 ∼ IG(a0, b0)

Y is normally distributed with mean and variance (µ, σ2) which have a Normal-Inverse-
Gamma (NIG) prior distribution. Utilizing a NIG prior for the parameters introduces depen-
dence between the two. However, the dependent prior was chosen purely for it's conjugacy
to the likelihood for Y , not for any illustrative purposes. In general, the inputs to most sim-
ulators should be independent unless there is strong justi�cation for dependence amongst
the inputs from the researcher.

We set a0 = 0.1 and b0 = 0.1, so that σ2 has a reasonably non-informative prior. We want
to calculate the mutual information between Y and the two parameters, I(Y, µ) and I(Y, σ2)
for di�erent values of ν. The integrals are quite involved, so we will not bother deriving closed
form expressions for the desired quantities. Instead, we estimate these quantities from using
our estimator of choice - the nearest neighbor estimator in Eq. 2.43. For a given value of
ν, we generate a sample of data from Model 2.49 by �rst sampling (µ, σ2) according to the
NIG prior. For each value of (µ, σ2) in our sample, we draw a corresponding realization of
Y ∼ N(µ, σ2).

Figure 2.3 is a plot of I(Y, µ) and I(Y, σ2) from Model 2.49 for di�erent values of ν. By
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Figure 2.3: Mutual information between (Y, µ) and (Y, σ2) for di�erent values of ν.

the law of total variance, we know

V ar(Y ) = E
[
V ar(Y |(µ, σ2)

]
+ V ar

[
E(Y |(µ, σ2))

]
= E(σ2) + V ar(µ).

When ν is low, the marginal variance of µ is large which subsequently increases the marginal
variance of Y . When Y has high marginal variability due to uncertainty in µ, learning the
value of µ reduces the variance of Y signi�cantly. More formally, when µ has high variance,
the di�erence between V ar(Y ) and V ar(Y |µ) will be large. Since the mutual information
measures the reduction in uncertainty, this means small values of ν result in larger values of
I(Y, µ), as is apparently in the plot.

As ν gets larger, the marginal variability of µ decreases along with the e�ect of learning
it's value on the entropy of Y . This decrease in e�ect on the entropy is why we see I(Y, µ)
decrease for larger values of ν. For large enough ν, σ2

ν
= V ar(µ) will be small and hence

µ will be nearly constant. In this case, µ will have a minimal e�ect on the variability or
uncertainty in Y and hence the mutual information will be close to zero. This turns out to
be the case - while not plotted in Figure 2.3, when log(ν) ≈ 50, I(Y, µ) ≤ 10−5.

For σ2, recall that in this model, the distribution for σ2 is independent of ν, so it is not
surprising that I(Y, σ2) does not change much based on the value of ν as demonstrated in
Fig. 2.3. While the value of σ2 does have a large e�ect on Y for modest values of ν, recall
that mutual information is determined by the joint density of Y and σ2, f(y, σ2), which
requires marginalization over µ. Since µ, along with any dependence between ν and σ2, has
been integrated out in the joint distribution, I(Y, σ2) should be constant regardless of the
value of ν.
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In terms of sensitivity, for small values of ν, learning the value of µ tells you more
about the value of Y than σ2. However, as ν increases, the importance of µ decreases, and
eventually σ2 will provide more information about Y .
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Chapter 3: Nonparametric Bayesian Den-

sity Regression with Kernel Stick Break-

ing Processes

In this chapter, we present a family of distributions over distributions called kernel stick
breaking processes (KSBPs). These processes, originally developed in Dunson and Park
(2008), are generalizations of Dirichlet Process mixtures (DP mixtures) that allows for pre-
dictor dependent mixing probabilities. A more complete treatment of the method and some
important properties can be found in the original paper. Here, only the de�nition and some
basic properties of the model and the method for taking samples from the model posterior are
presented. Section 3.1.1 presents a method of utilizing KSBPs as a prior in a nonparametric
Bayesian density regression model.

A Bayesian method for density estimation is used because sampling from the posterior
distribution provides a direct way to calculate the variability of any estimated quantities
of interest. In the context of this dissertation, our quantities of interest will primarily be
the mutual information between the input and output of a stochastic simulator. Similar
frequentist calculations of variability are quite di�cult. Additionally, in cases where there is
limited data available, frequentist methods often give poor estimates while Bayesian methods
can still provide decent estimates - the posterior distribution will just have high uncertainty.

3.1 Kernel Stick Breaking Processes

Kernel stick breaking processes are generalizations of Dirichlet process mixtures that allow
for predictor dependence. A typical DP-mixture can be represented with the in�nite sum

F (·) =
∞∑
h=1

WhGh(·) (3.1)

where the {Wh, h = 1, . . . ,∞} are mixing probabilities that sum to 1, and the {Gh(·), h =
1, . . . ,∞} are distributions. Often, the Gh's have a parametric form, so we can equivalently
think of {θh, h = 1, . . . ,∞} with Gh(·) = G(·|θh).
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Of course, what makes Eq. 3.1 a DP mixture is if the Wh's are a realization from a
Dirichlet process. Under the stick-breaking representation of Dirichlet processes, we can
generate the Wh's by taking Wh = Vh

∏
l<h(1 − Vl) where the Vh's are i.i.d. Beta(1, λ)

random variables. The {Vh, h = 1, . . . ,∞} can be thought of proportions of a progressively
shrinking probability stick, giving rise to the term �stick-breaking.�

KSBP's generalize DP-mixtures by allowing the mixing probabilities, {Wh, h = 1, . . . ,∞},
to depend on a predictor x. The intention is for points with similar x values to have similar
chances of mixing into each component, giving predictor dependence. Let X denote the
space of input values x. A KSBP is composed of the following components:

• A collection of stick lengths, {Vh, h = 1, . . . ,∞} which are i.i.d. Beta(1, λ) random
variables. Like in the DP-mixture case, α controls dispersion about the central or
modal distribution.

• A collection of knots, {Γh, h = 1, . . . ,∞} which are elements from some space DΓ.
Note that DΓ does not have to be the same space as X , the predictor space. However,
well chosen spaces will have points that have a clear sense of distance relative to points
from X .

• A collection of distributions, {Gh, h = 1, . . . ,∞}. Typically these are all i.i.d. real-
izations from some distribution on distributions, G. If the Gh's are parametric distri-
butions, then this is equivalent to a collection of parameters {θh, h = 1, . . . ,∞} with
Gh = G(·|θh). If G is a Dirichlet process, then each Gh would be a mixture of Dirac
masses.

• A kernel function, K, that maps X ×DΓ to [0, 1]. Potential kernel functions could be
the supremum norm K(x,Γ) = maxp {|xp − Γp|} or exponential distance K(x,Γ) =
exp {−ψ||x− Γ||2}. The kernel function is what governs the level of predictor depen-
dence in the mixture.

For a given predictor value x, the mixing probabilities de�ned in terms of these compo-
nents is

Wh(x) = VhK(x,Γh)
∏
l<h

(1− VlK(x,Γl)) (3.2)

From this expression, it should be clear why the {Γh, h = 1, 2, . . .} variables are referred
to as knots - the mixing probabilities for the h-th group for a given x is dependent on (i)
how close x is to Γh and also (ii) far away x is from Γl for l < h. Essentially, the inclusion
of the {Γh, h = 1, 2, . . .} variables associates a location to each component in the in�nite
mixture. How near or far x is to these locations a�ects the likelihood of that component
being selected.
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With the components de�ned above and the mixing probabilities as de�ned in Eq. 3.2,
a KSBP can be written as

Fx(·) =
∞∑
h=1

Wh(x)Gh(·) (3.3)

=
∞∑
h=1

Wh(x)G(·|θh), (3.4)

with Eq. 3.4 being the case when G is a distribution over a parametric family.
The desired level of predictor dependence is introduced through these mixing probabilities

and the components required for their calculations. It turns out that the strength of the
dependence is primarily controlled by the kernel function K. The impact of K on the
dependence is most apparent when taking K to be the the identity kernel, K(x,Γ) = 1,
which reduces this model back to the predictor independent DP-mixture in Eq. 3.1.

For nontrivial kernel functions, decreasing the distance between x and x′ decreases
the dissonance between {Wh(x), h = 1, . . . ,∞} and {Wh(x

′), h = 1, . . . ,∞}. That is,
as x and x′ get closer, they are more likely to come from the same mixture component.
Throughout the rest of the dissertation, we'll be using the exponential distance kernel
K(x, γ) = exp {−ψ||x− γ||2}, where ψ is what we'll be referring to as the distance pa-
rameter.

Increasing the distance parameter ψ makes K decay more quickly, so K(x,Γh) and subse-
quentlyWh(x) will be smaller for h's where Γh is far from x. This means the selected mixture
component (i.e. h value) will be associated with a Γh that is close to x. If x and x′ are close
to each other, they will be close to the same Γh's and consequently it is more likely that they
are assigned to the same mixture component. Thus, increasing the distance parameter ψ
increases the predictor dependence and, conversely, lowering the distance parameter lowers
the amount of predictor dependence. A more formal calculation involving this relationship
is given in 3.1.2.

3.1.1 KSBPs for Bayesian Density Regression

While KSBPs are very �exible models, we don't use them to conduct density regression
directly. Instead, we perform nonparametric density regression by using a KSBP prior in
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the following Bayesian model of Normal mixtures

βi|Xi,V,Γ,G, ψ ∼ KSBP (V,Γ,G;ψ)

Yi|Xi, β, σ
2 ∼ N

(
Xiβi, σ

2
)

σ2 ∼ IG(a0, b0)

ψ ∼ log-N(µψ, σ
2
ψ) (3.5)

Vh
i.i.d.∼ Beta(1, λ)

Γh
i.i.d.∼ H

Gh
i.i.d.∼ DP (αG0),

where V = {Vh, h = 1, . . . ,∞} ,Γ = {Γh, h = 1, . . . ,∞}, and G = {Gh, h = 1, . . . ,∞}. H is
a distribution on the space DΓ. In low dimensions, H can be a uniform distribution over a
�ne grid of locations. In higher dimensions, H is usually some continuous distribution like
a multivariate normal. For most stochastic simulators, a sensible choice for H would be the
uncertainty distribution on inputs.

In Model 3.5, the distribution on distributions G is taken to be a Dirichlet process with
dispersion parameter α and base distribution, G0, being a multivariate normal with mean
vector µ0 and covariance matrix Σ0. In practice, a prior is also placed on µ0 and Σ0, e.g.,

G0|µ0,Σ0 = MVN(µ0,Σ0)

µ0 ∼MVN(u0, S0) (3.6)

Σ0 ∼ Inv-Wishart(ν, T0)

where u0, S0, ν, T0 are the parameters for their respective distributions chosen to make the
corresponding priors uninformative.

Figure 3.2 illustrates the e�ect of placing a G = DP (αG0) prior on the {Gh, h = 1, 2, . . . ,∞}.
Figure 3.2a shows what potential draws from G will look like. The red line in the backgrounds
is G0, the base distribution governing the locations of the sticks. α, the dispersion parameter,
controls the distribution of stick heights.

When working in higher dimensions with only modestly sized samples, the choice of
hyperparameters for the log-Normal prior on the distance parameter ψ has an impact on the
performance of the model, so they must be chosen sensibly. Section 3.1.2 presents a method
for choosing reasonable parameter values for this prior.

Since Model 3.5 is the main generative model for data used throughout the rest of the
dissertation, the graphical model representation is provided in Figure 3.1 to help visualize the
relationship between the components in the model. We'll also take a moment to introduce
some terminology that we'll be using throughout the rest of the dissertation. We refer to the
h-th mixture component and the variables that correspond to that component, (Vh,Γh, Gh),
as the h-th group. We say that the data point (Xi, Yi) comes from the h-th group if βi is
from the h-th mixture component, i.e., βi ∼ Gh. Since Gh is a realization from a Dirichlet
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Figure 3.1: Graphical model for density regression using a KSBP.

process, this means the distribution of βi will be a mixture of Dirac masses. That is,

βi ∼
∞∑
k=1

p
(h)
k δ

θ
(h)
k

(·), (3.7)

where h is the group that (Xi, Yi) comes from, p
(h)
k is a mixing probability, and θ

(h)
k are the

di�erent possible values of βi sampled according to G0, the base distribution. Figure 3.2b
contains a potential distribution for βi given that it is from the h-th group.

We can use Eq 3.7 to further separate all the (Xi, Yi) points from the h-th group into
even smaller collections based on the speci�c values of βi. We refer to these more �nely
separated classes as di�erent clusters. Formally, the (h, k)-th cluster is the set{

i : (Xi, Yi) ∼ N(Xiθ
(h)
k , σ2)

}
. (3.8)

To clarify, if (Xi, Yi) and (Xj, Yj) are from the same cluster, then βi = βj. If (Xi, Yi) and

(Xj, Yj) are from the same group, then βi
D
= βj.

In Figure 3.3, some example data is provided to highlight the di�erences between groups
and clusters (Note: the data is not a realization from Model 3.5.). The points are colored
according to which group they are from. Notice how points from the same group are spatially
close in the X dimension. The green circles indicate the di�erent clusters within the green



3.1. KERNEL STICK BREAKING PROCESSES 38

(a) Possible draws from G = DP (αG0). (b) Possible values of θ
(h)
j for a given Gh.

Figure 3.2: Figures to help illustrate the e�ect of having G = DP (αG0) on the actual values
of βi. In both �gures, the red line indicates G0.

Figure 3.3: Example data illustrating the di�erences between groups and clusters.

group. The dashed lines in these groups represent the means within each cluster, which are
determined by the values of θ

(h)
k .

It is important that the de�nitions for groups and clusters be made very clear here
because these terms will be used very frequently in the proceeding sections. Understanding
the di�erences will be particularly important in Section 3.2 since the procedure for sampling
from the posterior distribution of the model given data relies on augmenting the model with
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cluster assignment indicators for each data point, and group assignment indicators for each
cluster.

3.1.2 Prior Speci�cation for ψ

As mentioned at the beginning of Section 3.1, the strength of the spatial relationship between
the distributions βi|Xi = x and βi|Xi = x′ is highly dependent on the value of ψ, the distance
parameter of K, the kernel. Consequently, the choice of parameters for the prior distribution
of ψ in Model 3.5 has a large e�ect on the resulting posterior distribution. In this section, we
present a way to quantify the strength of the predictor dependence of a KSBP for di�erent
values of ψ. This method can be used to derive sensible upper and lower quantiles for ψ
which implicitly de�ne parameters to the log-Normal prior distribution on ψ.

Before we begin, recall that in Model 3.5, the KSBP is used as a prior distribution on
a collection of Xi-dependent distributions for βi|Xi. For concreteness, let X , the space of
inputs be a p-dimensional and hence βi will be a vector in Rp. In this case, a singular �draw�
or realization from a KSBP de�nes a collection of distributions on Rp of the form de�ned in
Eq. 3.3:

Fx(·) =
∞∑
h=1

Wh(x)Gh(·).

Here, we must emphasize the role of the subscript x - di�erent values of x de�ne di�erent
distributions on Rp. Explicitly, for any Borel set B ⊆ Rp , Fx(B) will, in general, be di�erent
from Fx′(B) for x,x′ ∈ X whenever x 6= x′.

Since the collection of distributions {Fx(·),x ∈ X} is a realization from a KSBP, Fx(B)
and Fx′(B) are not varying completely at random - the measure depends on x and x′. If
x and x′ are �close� in some sense, then they might even be similar. In our case, since
we are using the ψ-parameterized exponential kernel, K(x,Γ) = exp {−ψ||x− Γ||2}, �close-
ness� corresponds to Euclidean distance and we can actually calculate how similar the two
quantities Fx(B) and Fx′(B) will be given a value of ψ.

The ensuing calculation relies heavily on the following expression, originally from Dunson
and Park (2008):

corr {Fx(B), Fx′(B)} =
κ(x,x′)

{
(2 + λ) κ(x)

κ2(x)
− 1
}1/2 {

(2 + λ) κ(x′)
κ2(x′)

− 1
}1/2

(1 + λ/2) {κ(x) + κ(x′)} − κ(x,x′)
(3.9)

where κ(x) = E[K(x,Γh)], κ2(x) = E[K(x,Γh)
2], and κ(x,x′) = E[K(x,Γh)K(x′,Γh)].

Here, we will just accept this statement to be true; the section in the original paper that
derives this equation is thorough and acceptably easy to follow. Instead, we focus more on
what is being calculated and its implications as well as how to use this expression to specify
a prior on ψ.

First, note that many of the components in this expression are expectations but the
variables of integration for these expectations have been left out for notational simplic-
ity (in lieu of clarity). While in the end unambiguous, it is not immediately clear which
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variables are being integrated out. The correlation on the left, corr {Fx(B), Fx′(B)} is actu-
ally an integral over the KSBP-de�ned prior distribution on the collection of distributions
{Fx(·),x ∈ X}. This is equivalent to an integral over all the components that make up Fx:
{(Vh,Γh, Gh), h = 1, 2, . . .}. While an integral over multiple in�nite sequences of parameters
may seem lofty, this integral is possible due to (i) the form of Fx as de�ned by a KSBP, (ii)
the chosen prior distributions for these components, and (iii) the independence across both
variables and draws.

In particular, the choice of Gh to be i.i.d. draws from a Dirichlet process prior indepen-
dently of {Vh, h = 1, 2, . . .} and {Γh, h = 1, 2, . . .} results in none of the parameters for this
prior distribution appearing in the expression on the right. This is primarily a result of a
marginalization properties for Dirichlet processes: the marginal distribution of a single draw
from F , where F is a realization from a Dirichlet process, is the base distribution. Formally,
if X|F ∼ F and F ∼ DP (αG0), then marginally, X ∼ G0.

Having Γh be i.i.d. draws from the distributionH and the independence between {Vh, h =
1, 2, . . .} allows the expression on the right to contain only integrals of Γh (κ(·), κ2(·), κ(·, ·));
all terms containing {Vh, h = 1, 2, . . .} have already been integrated out and only λ, the
parameter of the Beta(1, λ) prior distribution on Vh, remains.

The quantities κ(x), κ2(x), and κ(x,x′) are all expectations with respect to H, the prior
distribution on Γh. Since K is the exponential distance, the simplest choice, mathematically,
for H is a multivariate Normal with mean 0 and covariance matrix Ip. The integrals may
be possible with prior distributions, but for now we focus only on the multivariate Normal
case. With this choice of H, the desired integrals are

κ(x) =

(
1

1 + 2ψ

)p/2
exp

{
− ψ

1 + 2ψ
xTx

}
(3.10)

κ2(x) =

(
1

1 + 4ψ

)p/2
exp

{
− 2ψ

1 + 4ψ
xTx

}
(3.11)

κ(x,x′) =

(
1

1 + 4ψ

)p/2
exp

{
−2ψ2 + ψ

1 + 4ψ

[
xTx + x′

T
x′
]

+
2ψ2

1 + 4ψ

[
xTx′ + x′

T
x
]}
(3.12)

κ(x)/κ2(x) =

(
1 + 4ψ

1 + 2ψ

)p/2
exp

{
ψ

(1 + 2ψ)(1 + 4ψ)
xTx

}
(3.13)

The derivations for these expressions are provided in Appendix 7.1. The last expression,
Eq. 3.13, is also provided because that ratio shows up twice in the numerator of Eq. 3.9.
With these expressions, it is possible to calculate the correlation between the two measures
Fx(B) and Fx′(B) in terms of ψ for any two values of x and x′. Since the resulting quantity
is independent of the measured set, B, it can be interpreted as a measure of how related Fx
and Fx′ are in terms of the distance parameter ψ. A cursory evaluation of Eq. 3.9 with Eqs.
3.10-3.13 plugged in reveals, for given x and x′, the correlation decreases as ψ increases and
vice versa. Intuitively, when ψ is close to zero, K(x,Γ) = exp{ψ||x− Γ||} ≈ 1 regardless of
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the values of x or Γ. This means Wh(x) = VhK(x,Γh) ≈ VhK(x′,Γh) = Wh(x
′) for any x,x′,

and h. If the mixing probabilities, Wh(x) and Wh(x
′), are close, then the distributions, Fx

and Fx′ , must be close as well and hence there will be a strong correlation in their measures.
In order to turn this expression into a measure of spatial dependence, we average over

possible values of x and x′. If taking a fully Bayesian approach then the averaging would be
over the input distribution for x and x′. Alternatively, if a set of data is available, one could
resample the input values in the data and then average over the resampled input distribution.
In both cases, the target quantity is the expectation

E [corr {Fx(B), Fx′(B)}] =

∫
X

∫
X
corr {Fx(B), Fx′(B)} dP (x)P (x′), (3.14)

where P is the input distribution on x and x′. Note, in the integral we've taken x and
x′ to be independent of each other. Taking expectations over x and x′ means Eq. 3.14 is
independent of their values and can be thought of as the average correlation when taking
two points at random according to P . In this sense, it is a measure of the spatial strength of
the KSBP process for a given value of ψ. In the context of spatial statistics, it is analogous
to the range of a spatial process.
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Figure 3.4: Plot of Eq. 3.14, the expected correlation between Gx(B) and Gx′(B) for dif-
ferent values of ψ. The di�erently colored lines indicate di�erent input dimensions, p. The
expectation is over x and x′, which are independent p-variate Normal random variables.

Figure 3.4 contains a plot of the estimated value of Eq. 3.14 for di�erent values of ψ and
di�erent dimensions, p. As was the case when x and x′ were �xed, higher values of ψ means
that the expected correlation will be smaller. We see this e�ect to be more pronounced as
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the dimension, p, increases; in 12 dimensions, the expected correlation is almost zero when
ψ = 0.5. This plot can be used to pick sensible high and low quantiles for ψ.

For example, if p = 5, we can take the 2.5th and 97.5th percentile of ψ to be 0.01 and
0.5. These values of ψ correspond to expected correlations of close to 1 when ψ = 0.01 and
about 0.2 when ψ = 0.5. Anything lower than an expected correlation of 0.2 implies almost
no smoothness - in which case there would no bene�t to using a KSBP prior on βi|Xi in
the �rst place. Since ψ has a log-Normal distribution, given the desired quantiles, then the
mean and standard deviation of ψ on the log scale must be -2.649 and 0.998, respectively.

3.2 Posterior Computation

This section presents a method for sampling from the posterior distribution of the KSBP-
based density regression model de�ned in Model 3.5. The method here follows the method
presented in the original paper pretty closely, so the emphasis will be less on the derivations
and more on the implementation details. One particular deviation from the original method
worth noting is the use of slice sampling in Section 3.2.2 for the group assignments for each
cluster instead of a retrospective sampler. Many of the descriptions in the original paper are
for the more general case. Here, they are speci�c to the likelihood and priors de�ned in Model
3.5. The descriptions provided here are intended so that someone should be able to fully
implement a sampler from the posterior without needing to reference any other resources.

Given a set of n data points, D = {(Xi, Yi), i = 1, . . . , n}, sampling from the posterior
distribution of Model 3.5 requires sampling from the posterior distribution for βi|Xi given
the data. However, due to the form of the KSBP prior placed on βi|Xi, sampling from that
posterior distribution is equivalent to sampling from the posterior distributions of the vari-
ables that make up that distribution - V = {Vh, h = 1, . . . ,∞},Γ = {Γh, h = 1, . . . ,∞},G =
{Gh, h = 1, . . . ,∞}. In addition to these quantities, we also need samples from the posterior
distributions for the distance parameter ψ, the process variance σ2, and the parameters of
the base distribution µ0 and Σ0.

To facilitate the sampling from this posterior, we augment the data with the following
variables:

• The unique values of βi, which we denote as Θ = {θj, j = 1, . . . , J}. For a sample of
size n, there are at most n unique values of β, so clearly J ≤ n. Recall from Section
3.1.1, that points in the same cluster have the same values of β, so J is the number of
�observed� clusters and there will be one value of θj for each cluster.

• Cluster assignments for each data point, S = {Si, i = 1, . . . , n}. If Si = j, then Xi

is from the j-th cluster and hence E(Y ) = Xiθj and Y ∼ N(Xiθj, σ
2). It is these

properties that causes us to want to focus on cluster assignments for each data point
when sampling (as opposed to group assignments, which would not give this property).

• Group assignments for each cluster, C = {Cj, j = 1, . . . , J}. From Section 3.1.1, clus-
ters are subdivisions of a group resulting from the Gh distributions being realizations
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of a DP (αG0). So if Xi is assigned into the j-th cluster (i.e. Si = j), then it must
have been assigned into group Cj at some point.

For notational convenience, we also de�ne Z = {Zi, i = 1, . . . , n} to be the group assignments
for each data point. We will never sample these variables directly; their values can be inferred
using the relationship Zi = CSi

. However, the sampling methods for some of the variables
may be easier write out in terms of these variables, so we provide adequate notation here.

When sampling the cluster assignments, Si, we will sample them one-at-a-time given the
values of Sj, j 6= i. So it's bene�cial to introduce some simplifying notation here. Let S(i)

denote the set of cluster assignments for all the data points except for Xi. Let Θ(i) denote all
the unique values of β when Xi is excluded (i.e. all the unique values of βj, j 6= i). Similarly,
C(i) denotes the group assignments for all the existing clusters when i is excluded. Lastly,
Z(i) denotes the group assignments for all data points with the exception of Xi. Some care
should be taken when implementing this sampler because the lengths of C(i) and Θ(i) will
di�er based on the value of i. For example, when i is assigned to it's own cluster, C(i) and
Θ(i) will have one less entry than C and Θ. In these cases, J (i), the number of clusters with
Xi removed, is also one less.

With these additional variables, a sample from the posterior for V,Γ,G, ψ, σ2, µ0,Σ0 is
equivalent to a sample from the posterior for V,Γ,S,C,Θ, ψ, σ2µ0,Σ0. In particular, the
inclusion of Θ and S allows us to avoid storing any of the distributions in G, since each of
the individual Gh's in G is an in�nite mixture.

The rest of this section describes the steps of a Gibbs sampler for drawing from the
posterior. Since the sampling method is of the Gibbs type, each step describes how to
sample from the full conditional for a variable. In order to help visualize the conditional
dependence between the variables, an updated graphical model with the augmented variables
is provided in Figure 3.5.

3.2.1 Cluster Assignments for Each Data Point, Si

The sampling method for the cluster assignment variables is by far the most complicated
of the variables being sampled. The derivation for many of the steps for the general case
presented in Dunson and Park (2008) is quite lengthy so they will be omitted. In the case
of 3.5 and the chosen priors, some simpli�cations can be made and those are presented here.
We �rst de�ne the following quantities. Let N (i)

h denote the number of data points assigned
to group h with the exception of the i-th point. Since point i is being excluded, this means∑∞

h=1N
(i)
h = n − 1 for all i. In terms of the augmented variables, this quantity can be

calculated according to

N (i)
h =

∑
j 6=i

1
{
Z

(i)
j = h

}
.
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Figure 3.5: Graphical model for density regression using a KSBP with augmented variables
included. The inclusion of the augmented variables Si, Cj, θj breaks many of the dependences.

(Note: this de�nition of N (i)
h is slightly di�erent from the usage in the original paper.) We

use this quantity to de�ne the following two ratios

lih0 =
α

α +N (i)
h

(3.15)

lihk =
1

α +N (i)
h

, k = 1, . . . , n

Those familiar with sampling methods for Dirichlet processes will recognize these as Polya
urn-style sampling probabilities. In the original paper, the authors use these ratios to de�ne
the following weights

wi,0 =
∑
h∈I(i)

oc

Wh(Xi)lih0

wi,j =
∑

k:S
(i)
k =j

l
iC

(i)
j k
, j = 1, . . . , J (i) (3.16)

wi,J(i)+1 =
∑
h∈I(i)

uc

Wh(Xi)lih0
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where, as before, Wh(Xi) = VhK(Xi,Γh)
∏

l<h (1− VlK(Xi,Γl)) denotes the probability of
assigning point Xi to the h-th group. A brief note about the sets being summed over in Eqs.
3.16. For wi,0 and wi,J(i)+1, the sets I

(i)
oc and I

(i)
uc are used to denote the set of �occupied� and

�unoccupied� groups with the e�ect of point Xi is removed. A group is occupied if at least
one data point is assigned to a cluster within that group. In terms of the variables being
sampling, the set I

(i)
oc is all the unique values of C(i). More precisely,

I(i)
oc =

{
h : C

(i)
j = h for some j

}
Using this de�nition, I

(i)
uc is simply {1, 2, . . . ,∞} \ I(i)

oc . For wi,j, the sum is over the set

{k : S
(i)
k = j} which denotes the set of data points that have been assigned to cluster j.

Unlike wi,0 and wi,J(i)+1, which are sums over collections of groups, this is a sum over a

collection of data points. Explicitly, {k : S
(i)
k = j} ⊆ {1, 2, . . . , n}.

The formulae in 3.16 were presented in a very general setting in the original paper.
For our purposes, we can use the speci�c forms of lih0 and lihj and the de�nitions of the
summation sets to get simpli�ed expressions for these weights. In the case of wi,j, notice
that from our de�nition of lihk in Eq. 3.15 the value of l

iC
(i)
j k

is always

l
iC

(i)
j k

=
1

α +N (i)

C
(i)
j

regardless of the value of k. Since the summand is constant, for j = 1, . . . , J (i), wi,j simpli�es
to

wi,j =
∑

g:S
(i)
g =j

l
iC

(i)
j g

=

∑n
k=1 1 {Sk = j}
α +N (i)

C
(i)
j

. (3.17)

To simplify wi,J(i)+1, notice that for any h ∈ I
(i)
uc , N (i)

h = 0 since, group h is unoccupied.

Consequently, for h ∈ I(i)
uc , lih0 = α

α+N (i)
h

= α
α+0

= 1. With this in mind, wi,J(i)+1 simpli�es to

just

wi,J(i)+1 =
∑
h∈I(i)

uc

Wh(Xi)lih0 =
∑
h∈I(i)

uc

Wh(Xi) = 1−
∑
h∈I(i)

oc

Wh(Xi), (3.18)

with the last equality being due the fact that
∑∞

h=1 Wh(Xi) = 1. (Note: this property of
KSBP's has not been proven here, but is presented as a theorem in the original paper. Here,
we accept it to be true.)

The �nal necessary de�nition for sampling is the conditional density

f0(yi|xi) =

∫
Φ

f(yi|xi, φ)dG0(φ),
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which is a marginalization over potential values for the slope of a new cluster. In the case
of Model 3.5, since Y |Xi, βi, σ

2, . . ., is a N(Xiβi, σ
2) and hence

f(yi|xi, φ) =
1√

2πσ2
exp

{
− 1

2σ2
(yi − xiφ)2

}
. (3.19)

Luckily, we do not have to integrate out φ in the above expression to �gure out the form of
f0 due to our choice for G0. Since G0|µ0,Σ0 ∼ MVN(µ0,Σ0) is conditionally conjugate for
φ with the above likelihood, we know f0 is the density for a Normal disribution with mean
xTi µ0 and variance xTi Σ0xi + σ2. Formally,

f0(yi|xi) =
1√

2π (xTi Σ0xi + σ2)
exp

{
− 1

2 (xTi Σ0xi + σ2)
(yi − xi

Tµ0)2

}
. (3.20)

With the quantities de�ned above, we can sample from the full conditional for Si accord-
ing to

P (Si = 0|X,S(i),C(i),Θ(i),D) ∝ wi,0f0(y|xi)
P (Si = j|X,S(i),C(i),Θ(i),D) ∝ wi,jf(y|xi, θ(i)

j ) (3.21)

P (Si = J (i) + 1|X,S(i),C(i),Θ(i),D) ∝ wi,J(i)+1f0(yi|xi).

For a �nite set of data, J (i) + 1 ≤ n is �nite and the proportionality constant in this case is
just

C =
J(i)+1∑
g=0

P (Si = g|S(i),C(i),Θ(i),D)

For the most part, J (i) should be much smaller than n, so the calculation of C should not
be subject to numerical issues. When Si = 1, . . . , J (i) this indicates the assignment of Xi to
cluster j and no special steps need to be taken.

If Si = 0 is drawn, then this means that Xi is assigned to a new cluster in an already
occupied location. The group assignment for this new cluster is drawn according to

P (CSi
= h) =

Wh(Xi)∑
l∈I(I)

oc
Wl(Xi)

(3.22)

The use of Si for the subscript in this expression is intentional since the actual value will be
J (i) +1 (see below). Essentially, Eq. 3.22 is sampling amongst the occupied groups according
to the normalized chance that Xi is assigned to that group since Xi will be the only point
assigned to the new cluster.

If Si = J (i) + 1 is drawn, this corresponds to Xi being assigned to a new cluster in
an unoccupied location. The group assignment for this new cluster can take on an in�nite
number of values since I

(i)
oc is �nite and the potential locations are the set I

(i)
uc = {1, 2, . . . ,∞}\

I
(i)
oc . The proposed way in the original paper is to sample the group assignment is through
retrospective sampling. It is done as follows
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1. Sample U ∼ Unif(0, 1).

2. Take k to be the �rst integer such that
∑k−1

h=1 Wh(Xi) < U ≤
∑k

h=1Wh(Xi)

3. If k ∈ I(i)
uc , then set CJ(i)+1 = k. Otherwise, go back to Step 1 and repeat.

The separation of Si = 0 and Si = J (i) + 1 into two cases was to distinguish between the
two possible methods of assiging the new cluster to a group. When actually implementing
the sampler in code, Si should be set to J (i) + 1 for both outcomes.

For both the Si = 0 and Si = J (i) + 1 cases, to draw the slope associated with the new
cluster, θJ(i)+1, should be drawn according to

θJ(i)+1 ∝ f(yi|xi, θ)G0(θ) (3.23)

In our case, since f(yi|xi, θJ(i)+1), a N(xTi θJ(i)+1, σ
2), and G0, aMVN(µ0,Σ0), are conjugate,

we know θJ(i)+1 is distributed according to a multivariate Normal distribution with mean
vector and covariance matrix

µ∗ = Σ∗
(

Σ−1
0 µ0 +

xiyi
σ2

)
(3.24)

Σ∗ =

(
Σ−1

0 +
xix

T
i

σ2

)−1

(3.25)

3.2.2 Group Assignments for Each Cluster, Cj

As mentioned at the beginning of this section, the sampling method presented here for the
group assignments variables for each cluster deviates from the method described by the
original authors; we use a slice sampler instead of a retrospective sampler to update the
group assignments for cluster j, Cj. First, the full conditional for Cj is

P (Cj = h|X,S,V,Γ, ψ) ∝
∏
i:Si=j

P (Xi assigned to group h|X,S,V,Γ, ψ)

=
∏
i:Si=j

[
VhK(Xi,Γh)

∏
l<h

(1− VlK(Xi,Γl))

]
(3.26)

While Eq. 3.26 does not look particularly di�cult to sample from, remember that h can be
any of {1, 2, . . .}, which is a countably in�nite set of values. To accont for this, and so only
�nitely many values of Vh and Γh need to be stored, we use the following slice sampler. Let
ph denote the quantity in 3.26. Suppose, after t iterations of the sampler, θ

(t)
j = q. Then

1. Draw U ∼ Unif (0, pq).

2. Let U (t)
j be the set {h : U < ph}.

3. Draw the value for C
(t+1)
j uniformly at random from U (t)

j .
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Special care needs to be taken in Step 2 when identifying the values of h in U (t)
j . Often,

previously unobserved (i.e. new) values of Vh and Γh may need to be drawn since ph must

be continuously evaluated until an h∗ such that ph < U for all h > h∗ is found. While |U (t)
j |

is almost surely �nite and hence h∗ is almost surely �nite as well, there is no quick way of
knowing the value of h∗ without knowing the entire sequences V and Γ.

In our implementation, we used the heuristic of stopping at h′, where h′ is such that
ph′+ph′+1 < U . This heuristic is based on the fact that for large values of h′, p′h+ph′+1 > ph
for any h > h′ with high probability. This is based on the fact that, while ph, h = 1, 2, . . . is
not a strictly decreasing sequence, it does decrease as along h since

∑
h ph < ∞ and hence

the limh ph = 0. Consequently, this implies h′ ≥ h∗ with high probability. Those concerned
can stop at h′′, where h′′ is such that ph′′ + ph′′+1 + ph′′+2 < U . Clearly, h′′ ≥ h′ ≥ h∗ and
hence h′′ ≥ h∗ with even higher probability.

3.2.3 Slopes for Each Cluster, θj

The slopes for each cluster can be sampled in a way similar to the way of drawing the slope
for a new cluster in Eq. 3.23. The value of θj should be drawn according to

θj ∝
∏
i:Si=j

f(yi|xi, θ)G0(θ) (3.27)

Note the only di�erence is the inclusion of more points due to θj not necessarily correpsonding
to a cluster with only one point assigned to it. By the same conjugacy arguments as before,
this means θj has a multivariate Normal distribution with mean and covariance matrix

µ∗j = Σ∗j

(
Σ−1

0 µ0 +
∑
i:Si=j

xiyi
σ2

)
(3.28)

Σ∗j =

(
Σ−1

0 +
∑
i:Si=j

xix
T
i

σ2

)−1

(3.29)

3.2.4 Stick Lengths for Each Group, Vh

The sampling method for the stick lengths, Vh, follows the method presented in the original
paper exactly. Adopting their notation, we let M (t) denote the maximum element of Ioc
across the �rst t iterations of the sampler. In practical terms, points assigned to newly
created groups during one iteration often get reassigned to a larger group during the next
iteration of the Gibb's sampler. Despite being empty, both the stick lengths, Vh, and the
group centers, Γh, for these groups must be sampled during each iteration of the sampler.

The sampling method for Vh relies on a further layer of data augmentation. We introduce
two more sequences of Bernoulli random variables - one corresponding to the stick lengths,
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Vh, and one corresponding to the e�ect of the kernel and group centers, Γh. Formally, let

Aih ∼ Bernoulli(Vh) (3.30)

Bih ∼ Bernoulli(K(Xi,Γh)) (3.31)

From the indices, there will be n×M (t) of these variables, M (t) of them for each data point.
These sequences are essentially idicators for the components that make up Wh(Xi). With
this in mind, Xi will be assigned to the �rst group such that both tosses come up heads.
Formally, Zi = min{h : Aih = Bih = 1}. The graphical representation for this augmented
sub-model is provided in Fig. 3.6.

Figure 3.6: Graphical representation of the submodel for Z,Γ,V with the augmented vari-
ables Aih and Bih. The inclusion of the augmented variables removes the dependence between
Xi and V given the value of Zi, allowing for simpler sampling of Vh.

To sample Vh, we �rst draw Aih and Bih from their respective posteriors given Xi and Zi
through the following:

• If Zi < h, then learning the value of Zi does not provide new information about the
values of Aih and Bih, so they are sampled according to their prior distributions in
Eqs. 3.30 and 3.31, respectively.

• If Zi = h, then from the de�nition of Zi, we know both Aih, Bih = 1.

• If Zi > h, then by the way Zi is de�ned, this means Aih and Bih cannot both be 1. So
jointly draw (Aih, Bih) according to Table 3.1.
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(a, b) P [(Aih, Bih) = (a, b)|Zi > h]

(0, 0)
P (Aih=0,Bih=0)
P ((Aih,Bih)6=(1,1))

(1−Vh)(1−K(Xi,Γh))
1−VhK(Xi,Γh)

(0, 1)
P (Aih=0,Bih=1)
P ((Aih,Bih)6=(1,1))

(1−Vh)K(Xi,Γh)
1−VhK(Xi,Γh)

(1, 0)
P (Aih=1,Bih=0)
P ((Aih,Bih)6=(1,1))

Vh(1−K(Xi,Γh))
1−VhK(Xi,Γh)

Table 3.1: Joint distribution table for (Aih, Bih) given Zi > h.

Once Aih and Bih have been sampled from their posterior distributions given the values
of Zi, Vh can be drawn according to

Vh|Z, Aih ∼ Beta

(
1 +

∑
i:Zi≥h

Aih, λ+
∑
i:Zi≥h

(1− Aih)

)
(3.32)

since the Beta distribution is a conjugate prior for the success chance of a Bernoulli random
variable.

3.2.5 Center Locations for Each Group, Γh

Here, we use Metropolis-Hastings to take samples from the full conditional for the group
centers Γh. As with the stick lengths, V, h = 1, . . . ,M (t) ≥ max{C}, so the group centers
for empty groups will be resampled in each iteration. The full conditional for Γh is

P (Γh = γ|Γ−h,V,S,C, ψ) =
n∏
i=1

[
VZi

K(Xi,ΓZi
)
∏
l<Zi

(1− VlK(Xi,Γl))

]
H(γ) (3.33)

∝
n∏
i=1

[
VhK(Xi, γ)1(Zi=h) (1− VhK(Xi, γ))1(Zi>h)

]
H(γ) (3.34)

where Γ−h denotes the set of all Γ's except for Γh and H indicates the prior distribution
on group locations. The proportionality in the second line is due to the variables being
conditioned on, Γ−h, in particular. Notice that the terms in the product are mutually
exclusive; Zi can only satisfy one or none of the conditions, never both. When Zi = h and
Xi is assigned to group h, it's contribution to the product is VhK(Xi, γ), which encourages
values of γ that are close toXi underK. Intuitively, we would want the center of group h, Γh,
to be close to the points that are assigned to group h. Conversely, when Zi > h, which means
Xi is assigned to a group after h, then the contribution to the product is 1 − VhK(Xi, γ),
which encourages values of γ that are far from these Xi values. The combination of these
two contributions is what should cause di�erent groups to separate themselves. In the case
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where Zi < h, that point does not provide any information about the value of Γh and it
makes no conribution to Eq. 3.34.

Written in the form of Eq. 3.34, it is clear that Γh should be sampled one-at-a-time.
Luckily, for groups that do not have points assigned into or after them, i.e. when h ≥
max{C}, then all the terms in the product are 1. In this case, the full conditional reduces to
just sampling from the prior, H. Additionally, once the �rst group with no points assigned
into or after it is identi�ed (i.e. the �rst h such that h ≥ max{C}, all subsequent groups
will also have no points assigned into or after them. This means the group centers for all
of those �empty� groups can be sampled at once. In the case where H is a multivariate
Normal, sampling these locations together should provide a signi�cant speed up, especially
when there are a lot of such empty groups.

3.2.6 Distance Parameter, ψ

From the graphical model in Fig. 3.5, we know that the full conditional for the distance
parameter ψ depends only on C,S,Γ,V, and X. The full conditional for ψ is

p(ψ|V,Γ,S,C,X) ∝

[
n∏
i=1

P (Zi = zi|Xi,V,Γ, ψ)

]
πψ(ψ) =

[
n∏
i=1

WZi
(Xi)

]
πψ(ψ)

=

[
n∏
i=1

{
VZi

K(Xi,ΓZi
)
∏
l<Zi

(1− VlK(Xi,Γl))

}]
πψ(ψ) (3.35)

where πψ denotes the log-Normal prior density speci�ed for ψ in Model 3.5. For clarity,
Zi = zi in the �rst line denotes the event the group assignment for Xi is the value of Zi. A
standard Metropolis-Hastings approach should be able to take samples from Eq. 3.35.

3.2.7 Process Variance, σ2

Given the cluster assignments, S, and the slopes for each cluster, Θ, we know βi exactly.
From the graphical model in Fig. 3.5, this implies the full conditional for σ2 depends only
on S, Θ, and the data D = (X,Y). The full conditional for σ2 is

P (σ2|S,Θ,X,Y) ∝
n∏
i=1

f(yi|xi, Si,Θ, σ2)πσ2(σ2) (3.36)

where πσ2 denotes the prior density for σ2. In our case, Yi|Xi, Si,Θ, σ2 ∼ N(XiθSi
, σ2) and

σ2 has an Inverse-Gamma prior distribution, which is a conjugate prior for the variance of a
Normal distribution. This means we know the posterior distribution for σ2 exactly:

σ2|S,Θ,X,Y ∼ IG

(
a0 +

n

2
, b0 +

1

2

n∑
i=1

(Yi −XiθSi
)2

)
. (3.37)
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3.2.8 Mean and Variance of the Base Distribution, µ0 and Σ0

Recall from the hyper-Model 3.6, G0|µ0,Σ0 ∼ MVN(µ0,Σ0). As mentioned earlier, since
the Gh's are realizations from a DP (αG0), this means, marginallly, the θj random variables
are distributed according to G0, which is a multivariate Normal. This property gives a
simple way to sample from the full conditionals of µ0 and Σ0. Since µ0 and Σ0 are given
conditionally conjugate priors for the multivariate Normal likelihood, there are closed form
expressions for the posterior full conditional distributions:

µ0|Θ,Σ0 ∼MVN
((
S−1

0 + JΣ−1
0

)−1 (
S−1

0 u0 + JΣ−1θ
)
,
(
S−1

0 + JΣ−1
0

)−1
)

(3.38)

Σ0|Θ, µ0 ∼ Inv-Wishart

(
ν + J, T0 +

n∑
i=1

(Xi − µ) (Xi − µ)T
)

(3.39)

where J = #Θ is the number of clusters and θ = 1
J

∑
θj is the mean vector of Θ.

3.3 Posterior Predictive Distribution

Using the Gibb's sampler described in Section 3.2, a draw from the posterior distribution
for Model 3.5 given a sample of data D = {(Xi, Yi), i = 1, . . . , n} would contain the vari-
ables S,Θ,C,Γ,V, ψ, σ2, µ0,Σ0. In this section, we will describe how to use these sampled
quantities to calculate the posterior distribution for Y given a new set of input values.

For a new point Xn+1, the distributions for βn+1 and Yn+1 given a sample from the
posterior of the unaugmented form of Model 3.5 follow

Yn+1|Xn+1, βn+1, σ
2 ∼ N(Xn+1βn+1, σ

2) (3.40)

βn+1|Xn+1,V,Γ,G, ψ, µ0,Σ0 =
∞∑
h=1

Wh(Xn+1)Gh(·) (3.41)

We can separate the sum in Eq. 3.41 into the two cases when h ∈ Ioc and h ∈ Iuc

βn+1|Xn+1,V,Γ,G, ψ =
∑
h∈Ioc

Wh(Xn+1)Gh(·) +
∑
h∈Iuc

Wh(Xn+1)Gh(·). (3.42)

Recall, the original purpose of augmenting the model with S,C and Θ was to avoid the
storing or sampling of any of the Gh's, since each one is an in�nite mixture. Expressed in
terms of our augmented variables, Eq. 3.42 is

Gh(·)|S,C,Θ, µ0,Σ0 =
∑
j:Cj=h

∑
i 1 (Si = j)

α +
∑

i 1 (Zi = h)
δθj(·) +

α

α +
∑

i 1 (Zi = h)
G0(·). (3.43)

The expression in Eq. 3.43 is derived from the Chinese restaurant process. The summation
in the left term represents a new customer joining one of the existing tables in group h. The
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term on the right is the chance of a new customer sitting down at a new table. Since Gh is
a realization from a DP (αG0), the slope associated with the new table will be a draw from
the base distribution G0 = MVN(µ0,Σ0).

From Eq. 3.43, it is clear that for any h ∈ Iuc, the set Ch = {j : Cj = h} is empty
and hence

∑
i 1 (Si = j) = 0 for any j ∈ Ch and

∑
i 1 (Zi = h) = 0. Consequently, for any

h ∈ Iuc, Gh = G0.
For convenience, we denote

phj =

∑
i 1 (Si = j)

α +
∑

i 1 (Zi = h)
, (3.44)

which allows expression of Eq. 3.43 as

Gh(·)|S,C,Θ, µ0,Σ0 =
∑
j∈Ch

phjδθj(·) + (1− ph)G0(·). (3.45)

where ph =
∑

j∈C〈 phj. Plugging Eq. 3.45 in for Gh(·) in Eq. 3.42 gets

βn+1|Xn+1,S =
∑
h∈Ioc

Wh(xn+1)

[∑
j∈Ch

phjδθj(·) + (1− ph)G0(·)

]
+
∑
h∈Iuc

Wh(xn+1)G0(·)

=
∑
h∈Ioc

∑
j∈Ch

Wh(xn+1)phjδθj(·) +

[∑
h∈Ioc

Wh(xn+1)(1− ph) +
∑
h∈Iuc

Wh(xn+1)

]
G0(·)

(3.46)

where S is shorthand for the sampled quantities, V,Γ,S,C,Θ, ψ, µ0, and Σ0.
However, since we avoided sampling of all the Vh and Γh values for any h ≥M , we cannot

draw values of β from the distribution in Eq. 3.46. Instead, notice that by our de�nitions
for phj and ph, we must have

∑
j∈Cj phj + (1− ph) = 1 and hence∑

j∈Cj

Wh(xn+1)phj +Wh(xn+1)(1− ph) = Wh(xn+1).

Additionally,
∞∑
h=1

Wh(xn+1) = 1.

These two properties allow us to rewrite the distribution in Eq. 3.46 as

βn+1|Xn+1,S =
∑
h∈Ioc

∑
j∈Ch

Wh(Xn+1)phjδθj(·) +

[
1−

∑
h∈Ioc

∑
j∈Ch

Wh(Xn+1)phj

]
G0(·), (3.47)
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which contains only sampled quantities. Combining we can use Eq. 3.47 and the conditional
distribution in Eq. 3.40 to get the following posterior predictive distribution for Yn+1

Yn+1|Xn+1,S, σ2 ∼
∑
h∈Ioc

∑
j∈Ch

Wh(Xn+1)phjN
(
Xn+1θj, σ

2
)

+

[
1−

∑
h∈Ioc

∑
j∈Ch

Wh(Xn+1)phj

]
N
(
Xn+1µ0, X

T
n+1Σ0Xn+1 + σ2

)
.

(3.48)

The normal distribution in the second term is from marginalization of G0|µ0,Σ0 (see Eq.
3.20).

3.4 Example: Mixture of Gaussians

In this section, we demonstrate the use of the KSBP-based density regression model to
estimate the conditional density for the mixture of Normal densities described by Model
2.47 in Section 2.3.3. Recall that the conditional density (Eq. 2.48) for the model is:

f(y|x) =
exp (−30x6)√

2π(.005)
exp

{
−(y − x)2

2(.005)

}
+

1− exp (−30x6)√
2π(.04)

exp

{
−(y − x4)

2

2(.04)

}
.

We generate samples from Model 2.47 by �rst sampling xi, i = 1, . . . , n from a Unif(0, 1)
distribution, and then sampling yi according to the conditional distributions described in
the model. In the context of the density regression model, Model 3.5, we set Yi = yi and
include an intercept term to the regression component, so Xi = (1, xi).

The data, D = {(Xi, Yi), i = 1, . . . , n}, will be a sample of this type of size n = 75, 150,
and 500. As for the other parameters in Model 3.5:

• a0 and b0 are both set to 0.1, which gives a relatively disperse and noninformative prior
for the process variance σ2.

• For the mean and variance for the log-Normal prior on the distance parameter, ψ, we
set µψ = 2 and σ2

ψ = 0.5.

• Both λ and α, the dispersion parameters for groups and clusters within each group,
respectively, are set to 1. This encourages fewer groups and fewer clusters within
groups.

• DΓ is the grid {0.00, 0.02, . . . , 0.98, 1.00} and H to be the uniform distribution over
DΓ.
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A brief note on the choice of log-Normal prior parameters for ψ. These are the parameter
values suggested in Dunson and Park (2008) for a nearly identical example problem. The
method described in Section 3.1.2 was not used to select parameters because the expressions
in Eqs. 3.10-3.13 were derived with H being a normal distribution.

Framing these values in the context of that section, for a log-N(2, 0.5), the 2.5-th and
97.5-th quantiles are roughly 1.85 and 29.5. While these values seem inordinately high
relative to those in Fig. 3.4, that �gure is a plot of Eq. 3.14, which averages over a standard
Normal distribution for x and x′. Under that input distribution, the di�erence between x
and x′ (in one dimension, this is essentially the distance) follows a N(0, 2) distribution. In
contrast, when x,x′ ∼ Unif(0, 1), the di�erence follows a triangular distribution on −1, 0, 1.
So two points from the uniform input space will be much closer, requiring larger values of ψ
for equivalent spatial range.

For the hyper-model on the base distribution of G = DP (αG0) (Model 3.6) we set
the parameters of µ0 to be u0 = 0 and S0 = I2. For Σ0, we take ν = 2 and T0 = I2.
In the Bayesian context, the degrees of freedom for an Inverse-Wishart distribution, ν,
corresponds to sample-size used to generate our prior knoweldge. To make make our prior
as noninformative as possible, ν should be as low as possible, which is ν = 2. The impact of
the choices for S0 and T0 will be discussed in Chapter 4.

For the described prior parameter values, the Gibb's sampler described in Section 3.2
was used to produce samples from the posterior distribution for Model 3.5 given a set of
observations D. The outcome of these samples for di�erent sized data sets are presented in
Figs. 3.7 - 3.10.

In Figs. 3.7 - 3.9, for each posterior sample, Eq. 3.48 is used to calculate the posterior
predictive density for x = 0.1, 0.3, 0.5, 0.7, and 0.9. In Fig. 3.7, the 75 points that made
up the data, D are plotted in the top left plot. The blue dashed line represents the true
conditional density for the generative model, which is given in Eq. 2.48. The red line
indicates the pointwise-median posterior predictive density. The dashed black lines indicate
pointwise 95% credible intervals for the predictive density. Figures 3.8 and 3.9 contain similar
plots, but with datasets of size n = 150 and n = 500.

In the case of n = 75, we see the posterior density manages to get the location of the
modes correctly for most values of X and the posterior predictive densities look reasonable
(good coverage, correct shape), except when X = 0.1 and X = 0.3. The posterior predictive
densities in these two panels are furthest from the truth due to lacking the height of the
true density. This is mostly an e�ect of the small sample size causing the posterior to lack
certainty about the values in that region. For a sample of size n = 75 distributed uniformly
on the unit interval, there are only 7-15 points near X = 0.1 or X = 0.3. As n increases
to 150 and 500, we see that the height of the posterior predictive densities for those panels
increases and become more similar to the true conditional density.

Figure 3.10 contains visualizations of individual realizations for some of the sampled
variables of Section 3.2. In the top left plot, points are colored according to their cluster
assignments, Si for a single draw of the posterior. The lines indicate the slopes, θj, for each
of the clusters. The length of the lines are proportional to the standard deviations of the X
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values for points assigned to that cluster. Short lines indicate clusters where the assigned
points span a short range. Long lines indicate clusters whose assigned points cover a large
area of the input space.

In the top right plot of Fig. 3.10, the points are colored according to the group assign-
ments, Zi for a single draw of the posterior. The colored squares indicate the location of
the centers for each of the groups. The height of the center (recall the centers are only on
the X-space) corresponds to the average value of Yi for Xi's assigned to that group. The
shading in the background of the top right plot is indicative of the true mixing probabilities
for the two mixtures from the data generating process, Model 2.47.

The plots in the top left and top right represent the same individual draw. However, the
colors do not have any meanings across plots. That is, the green cluster in the top left does
not necessarily have any relationship with the green group in the top right plot. The two
plots in the middle are identical to the top two plots, but given a sample of size n = 150.
The bottom two plots are also identical to the top two plots, but given a sample of size
n = 500.

There are a few things of note in Fig. 3.10. In every panel, the KSBP model manages
to separate the points from each component well. In the group assignment plots, for n = 75
and 150, it knows that there are predominantly two main groups - red and green or blue in
the top right, and red and yellow for the middle right plot. In the bottom right plot, while
there are more occupied groups in this realization, they are pretty well separated - no group
spans both mixture components.

In the cluster assignment plots, for points originally from the mixture component with
the linear mean (roughly X ≤ 0.5), when n = 75 or 150, it groups nearly all of those points
into one cluster with only a single slope. This is sensible because it should only take a
singular line to represent a linear process. For points from the mixture component with
a quartic mean (roughly X ≥ 0.5), it assigns those points into multiple smaller clusters
with multiple slopes. Again, this is desirable behavior because this indicates that the model
realizes that the process generating these points is non-linear and is attempting represent it
using multiple locally linear approximations.
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Figure 3.7: Results of �tting the KSBP -based density regression model on a sample of size
n = 75 from Model 2.47. The points in the sample are plotted in the top left panel. The
remaining panels contain the predictive density for di�erent values of X. The blue dashed
line is the true density. The red is the pointwise posterior median. The dashed black lines
are pointwise 95% credible intervals.
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Figure 3.8: Results of �tting the KSBP -based density regression model on a sample of size
n = 150 from Model 2.47. The points in the sample are plotted in the top left panel. Here,
the lines have the same meaning as in Fig. 3.7. Blue - true density, red - pointwise median,
black - pointwise 95 credible intervals.
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Figure 3.9: Results of �tting the KSBP -based density regression model on a sample of size
n = 500 from Model 2.47. The points in the sample are plotted in the top left panel. Here,
the lines have the same meaning as in Fig. 3.7. Blue - true density, red - pointwise median,
black - pointwise 95 credible intervals.
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Figure 3.10: Visualizations of individual realizations from posterior distribution given datasets of size
75 (top), 150 (middle), and 500 (bottom). The left plots have points colored according to their cluster
assignments (Si) for the given realization. Lines indicate the slopes (θj) for each cluster. Line length is
proportional to the SD of the X-values of points in cluster. The right plots have points colored according to
their group assignments (Zi) for the given realization. The colored squares indicate the center of each group
(Γh). Backround shading corresponds to mixing probabilities in the original model. Note: The colors do not

correspond to similar clusters or groups; they are separate across plots.
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Chapter 4: KSBP for Sensitivity Analysis

of Stochastic Functions

In this chapter we present a novel method for conducting sensitivity analysis on a stochastic
simulator. We begin by formalizing the problem and then describing the proposed solution.
The chapter concludes with an application of the method on a previously seen toy model
from Chapters 2 and 3 as well as a short analysis of the impact of the prior choice on the
outcome of the study. Application of this technique to a real stochastic simulator is available
in Chapter 5.

4.1 Sensitivity Analysis of Stochastic Simulators

In this section we formalize our de�nition for stochastic simulators and what we mean by
sensitivity analysis. This was done brie�y in Section 1.2.1, and this section builds upon the
ideas introduced there.

Let X be some space of inputs. For the purposes of this chapter, we let X ⊆ Rp. However,
this may not always be the case when working with stochastic simulators. We will often refer
to an element X ∈ X as a set of inputs because X = (x1, x2, . . . , xp) is a vector and contains
multiple values. In the rare cases when we refer to multiple elements from X, we will use
the term collection to refer to {X1, X2, . . . , Xn} ⊆ X.

A stochastic simulator, F maps elements of X to output distributions, which we denote
F (X). If Y is the output from a single run of F at a set of inputs X, since F is stochastic, Y
is a random variable. We write Y |X ∼ F (X) to indicate both the randomness in Y and the
role of F as the process mapping the inputs, X, to the distribution governing Y |X. When
the simulator being studied is clear, we omit F and refer to Y |X as the output distribution.

To conduct a �rst-order global sensitivity analysis on the simulator F , we want to quantify
the impact of the one of the input dimentions, say xj, on the output distribution Y |X. In
the case where there is an uncertainty distribution for the inputs, GX , we'd also like to
determine how much of the variability or uncertainty in the output distribution Y |X is
due to uncertainty in xi under GX . Higher order analyses would be centered around the
calculation of these quantities for two or more inputs, say {xj, xk}.

Our primary tool for calculating these quantities will be the mutual information. Ex-
plicitly, our measure of the sensitivity of the input xj on the output distribution Y |X will
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be

I(Y, xj) = H(Y ) +H(xj)−H(Y, xj) = H(Y )−H(Y |xj) (4.1)

= −
∫

Y

log {fY (y)} fY (y)dy +

∫
Xj

∫
Y

log
{
fY |xj(y|xj)

}
fY,xj(y, xj)dydxj (4.2)

where Xj is the domain of input xj.
Eq. 4.1 provides two equivalent forms for the mutual information. The �rst form is to

emphasize what is actually being calculated - a functional of Eq. 4.5, the joint distribution
for (Y, xj). The second form is to highlight the desired interpretation for the purposes of
sensitivity analysis. Recall from Section 2.3, the mutual information between Y and xj, in
the form of the right-most expression of Eq. 4.1, measures how much learning the value of
xj reduces the entropy of Y . Speci�cally, it is how much of the uncertainty in Y is due to
the input uncertainty in xj, i.e. by GXj

, which is exactly the type of quantity needed for
performing global sensitivity analyses for stochastic simulators.

In Eq. 4.2, fY , fY |xj , and fY,xj are the the marginal density for Y , the conditional density
for Y |xj, and the joint density for (Y, xj), respectively. Formally, these quantities are

fY (y) =

∫
X

f(y|x)g(x)dx (4.3)

fY |xj(y|xj) =

∫
X−j

f(y|x)g−j|j(x−j|xj)dx−j (4.4)

fY,xj(y, xj) =

∫
X−j

f(y|x)g(x)dx−j (4.5)

where g is the density of the input distribution GX and g−j|j is the conditional density for the
inputs when conditioning on the value of xj. Here, x−j is shorthand for all inputs except the
j-th one i.e. x−j = (x1, x2, . . . , xj−1, xj+1, . . . , xp). Similarly, X−j is the space of all inputs
except for the j-th dimension i.e. X−j = X1 ×X2 × . . .×Xj−1 ×Xj+1 × . . .×Xp.

Of note in Eqs. 4.3-4.5 is the reoccurrence of GX and its density g. While Y |X ∼ F (X)
is random for a deterministic value of X, it is the uncertainty in the inputs X that makes
I(Y, xj) meaningful. If X and hence the xj's were deterministic constants, then I(Y, xj)
would be identically zero; a deterministic constant does not provide any information about
a random variable.

Figure 4.1 illustrates the role of the stochastic simulator F and our desired quantity,
I(Y, xj). The stochastic simulator F maps inputs X to conditional densities. When averaged
against an input distribution GX , these conditional densities de�ne a joint density fY,xj (Eq.
4.5) which corresponds to a mutual information.

One point worth addressing is how to evaluate the magnitude of the calculated mutual
informations. Depeding on the base of the log being used, the mutual information will be
in bits or nats. However, it is not immediately clear how many nats constitutes a high
or low level of sensitivity. Critch�eld and Willard (1986) and later Lüdtke et al. (2008)
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Figure 4.1: Diagram illustrating the relationship between the stochastic simulator F and our
desired quantities, I(Y, xj). F maps inputs X to conditional densities which corresponds to
a joint density with mutual informations I(Y, xj) for j = 1, . . . , p..

have suggested normalizing the mutual information by the marginal entropy of the response,
H(Y ), to get

Sj =
I(Y, xj)

H(Y )
(4.6)

which they call the mutual information index. When dealing with discrete random variables
or distributions and using the Shannon entropy, these quantities now re�ect percentages -
e.g. Sj represents the percentage reduction in entropy caused from learning the true value of
xj. Using the Shannon entropy ensures that I(Y,X) = H(Y )−H(Y |X) will always be less
than H(Y ) since the Shannon entropy - conditional or otherwise - is always non-negative.
However, we are working with continuous random variables and distributions so when we
use H to denote the di�erential entropy which could potentially be negative. This eliminates
the interpretation of Sj as a percentage reduction. However, this does suggest a valid way
to evaluate the magnitude of the calculated mutual informations - by comparing against the
marginal entropy H(Y ).

Equations 4.2 - 4.5 may appear cumbersome, but their inclusion is only to clarify what
the mutual information represents. In most cases, we never know the form of any of those
densities, and so I(Y, xj) is never calculated directly. For any of our estimators from Section
2.3.2, the only quantities needed to estimate I(Y, xj) are samples from the joint distribution
of (xj, Y ). Given such a sample, any of our estimators from Section 2.3.2 will produce an
estimate of I(Y, xj).

Let D = {(Xi, Yi), i = 1, . . . , n} denote a collection of n runs from a stochastic simulator
F , that is Xi ∼ GX and Yi|Xi ∼ F (Xi). Since the inputs to F may be a vector, under
this notation, Xi = (x1,i, x2,i, . . . , xp,i). Given D, to estimate I(Y, xj), realize that the set
Dj = {(xi,j, Yi), i = 1, . . . , n} constitutes a size n sample from the joint distribution of (xj, Y )
which can be used with any of the mutual information estimators. In our case, we will be
using the nearest-neighbor estimator in Eq. 2.43. A diagram illustrating this estimation
process is provided in Fig. 4.2.

For large enough samples, as demonstrated by the simulation studies in Section 2.3.3,
estimates of mutual information calculated in this manner should be close to the true value of
I(Y, xj). In some situations, a point estimate may be all that is desired. However, to conduct
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Figure 4.2: Diagram illustrating how a set of observations from F are used to generate the
point estimate Î(Y, xj).

any meaningful form of inference, a variance or some other measure of uncertainty in the
estimated value is required. Since Eq. 2.43 or any other estimate of mutual information, is
an estimate of a functional of the densities in Eqs. 4.3 - 4.5, it is di�cult to derive expressions
for the desired variances.

In situations where the variance is hard to calculate, one common approach is to estimate
the variance through resampling of the data. However, since our estimates of mutual infor-
mation are based on either nearest-neighbor distances or KDE's, it is unclear what e�ect
having replicates in the resampled datasets will have on the desired variance estimates.

4.2 Nonparametric Bayesian Density Regression

To circumvent the inferential di�culties in the above method, we instead propose using the
data, D = {(Xi, Yi), i = 1, . . . , n}, to estimate a model for F , and then calculating the mutual
information between Y and the inputs implied by the model. Since stochastic simulators
map inputs to a distribution, a model for F will be some kind of density regression model.
In our case, we choose to use the KSBP-based Bayesian nonparametric density regression
model described in Model 3.5.

Model 3.5 de�nes a distribution over a collection of X-dependent conditional densities
- that is, realizations from this model map values of X to conditional densities for Y . Un-
der the model prior, that is, given no observations, the shape of these conditional densities
depends entirely on the prior distributions for the model parameters. Given a set of observa-
tions, realizations from the model posterior will produce conditional densities resembling the
conditional densities of the generative process, F . As illustrated in Section 3.4, the level of
similarity increases as more observations are seen. A set of draws from the model posterior
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thus corresponds to a collection of densities resembling the original conditional density of F .
The mutual information of Y and xj calculated from each element of the collection should
then be close to the true mutual information, I(Y, xj), with the dissimilarity decreasing with
sample size. A diagram illustrating this process is provided in Fig. 4.3.

Figure 4.3: Diagram illustrating the bene�t of using a density regression model. The sample

from F informs our density regression model. Realizations from the model posterior correspond to

conditional densities similar to the one generating the original data. Each of these densities has

an associated mutual information - the density regression model provides us a distribution for the

mutual information.

A nonparametric density regression method is chosen because simulators requiring such
in-depth analysis are often complex; for such complicated models, scientists rarely have any
ideas about the form of the output distribution. Since we will be estimating the mutual
information - a functional of densities - from the �tted model, we must be especially careful
about any assumptions made. Density regression models have been studied for a long time
and the impact of any assumptions on the resulting densities are well understood. However,
the impact of these assumptions on the mutual information of the output density has, to our
knowledge, never been investigated and is often unclear. For this reason, we refrain from
imposing unnecessary or unvalidated assumptions about the output distribution and employ
a nonparametric model.

We choose a Bayesian method for density regression because the posterior distribution
from a Bayesian model is a very natural tool for conducting inference - desired variances or
intervals are straightforward to calculate from a posterior distribution. As seen in Fig. 4.3,
the use of a Bayesian model gives a distribution for the mutual information given the data.
Additionally, when dealing with complex simulators, often the amount of data available will
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be limited. In these limited data situations, it is clear how the estimated mutual information
from a Bayesian model will behave - the posterior distribution will have more uncertainty
(given reasonable prior distributions) and the outcome will re�ect more of the prior know-
eldge. For a frequentist model, it is unclear how limiting the data points available will e�ect
such estimates aside from the it being more likely that the estimated quantities are far from
the true value.

Additionally, the Bayesian approach provides a framework for scientists to apply any
prior knowledge they have about the simulator and its outputs. While not explicitly used in
any of our examples, there are de�nitely models complicated enough to require prior input
and researchers who would bene�t from this capability.

One bene�t to �tting a model for F given the data is, given a good, well-�tting model, any
quanti�cation of dependence or sensitivity can be calculated, not just mutual information.
If there is a more appropriate or preferred sensitivity measure for a speci�c simulator, �tting
a density regression model to F allows the calculation of that measure as well.

4.3 Methodology

In this section, we present the following method for conducting Bayesian estimation and
inference for I(Y, xj). As emphasized in Section 4.2, the posterior distribution for Model 3.5
given D will be a distribution on a set of distributions and draws from the model posterior
correspond to realizations of potential distributions.

For each realization from the posterior, Eq. 3.48 gives an analytic form for the posterior
predictive of Y given X. While informative, calculating the mutual information between Y
and xj from this posterior predictive requires marginalization of the X−j dimensions in order
to get a conditional or joint density of the forms in Eq. 4.4 or 4.5. The input dependence
on the mixing probabilities makes such marginalization too di�cult and we instead use
the posterior predictive to generate new samples for (Y, xj). We then estimate the mutual
information between Y and xj for that realization from this new sample. The size of the
generated sample is arbitrary and can be large enough to achieve any desired level of accuracy.
An illustration outlining the method described in this section is provided in Figure 4.4.

Let D = {(Yi, Xi), i = 1, 2, . . . , n} denote a set of observations with Xi ∼ GX and Yi|Xi ∼
F (Xi). We draw a sample from the posterior distribution for Model 3.5 given D according to
the method described in Section 3.2. Recall that each draw from the posterior distribution
consists of the variables S = {V,Γ,S,C,Θ, ψ, µ0,Σ0, σ

2} (Note: this de�nition of S di�ers
slightly from the de�nition Section 3.3 by including σ2). We denote individual draws from
the posterior distribution as S(m),m = 1, . . . ,M where M is the total number of posterior
samples taken.

For the m-th sample from the posterior, m = 1, . . . ,M :

1. Generate a collection of inputs of size N according to the input distribution GX . We

denote this collection of inputs by X (m) =
{
X

(m)
1 , X

(m)
2 , . . . , X

(m)
N

}
.
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Figure 4.4: Diagram illustrating generation of a sample of mutual informations. Observations from

F inform a density regression model. New data samples,
(
Xi, Y

(m)
i

)
, are generated according to

realizations from the model posterior, S(m). The mutual information for each of these new samples

is calculated.

2. For each X
(m)
i ∈ X (m), draw a corresponding Y

(m)
i according to the posterior predictive

distribution Y
(m)
i |X(m)

i ,S(m) as de�ned by S(m) and Eq. 3.48.

3. Focusing only on the j-th component and ignoring the remaining dimensions of X
(m)
i ,

(x
(m)
i,1 , . . . , x

(m)
i,j−1, x

(m)
i,j+1, . . . , x

(m)
i,p ), the set D(m)

j =
{(
x

(m)
i,j , Y

(m)
i

)
, i = 1, . . . , N

}
is a

sample of size N from the joint distribution f
(m)
Y,xj

(y, xj) (details to follow). So given

D(m)
j , we can calculate, using the nearest-neighbor estimator of Eq. 2.43, the estimate

Î(m)(Y, xj) = ψ(k) + ψ(N)− 1

N

N∑
i=1

[
ψ(nxj(i) + 1) + ψ(ny(i) + 1)

]
, (4.7)

In Step 3, the set D(m) =
{(
X

(m)
i , Y

(m)
i

)
, i = 1, . . . , N

}
, generated in the manner de-
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scribed by Steps 1 and 2, constitutes a sample of size N from the joint distribution

f (m)(y, x) = f (m)(y|x)g(x)

where g is the density for the input distribuion GX , and f (m)(y|x) is the density of the pos-

terior predictive distribution Y |X,S(m). Focusing on the j-th component x
(m)
i,j and ignoring

the other components to get D(m)
j as described in Step 3 is equivalent to marginalizing over

the remaining components. Formally, D(m)
j is a sample of size N from the joint density

f
(m)
Y,xj

(y, xj) =

∫
X−j

f (m)(y, x)dx−j =

∫
X−j

f (m)(y|x)g(x)dx−j. (4.8)

and consequently, the estimates Î(m)(Y, xj) calculated from the samples D(m)
j will be es-

timates of the mutual information I(m)(Y, xj) for the joint density of (Y, xj) given in Eq.
4.8.

The set of densities
{
f

(m)
Y,xj

(y, xj),m = 1, . . . ,M
}
is a set of realizations from the posterior

of our nonparametric density regression model on the process F . This means I(m)(Y, xj),

the mutual information between Y and xj under the joint density f
(m)
Y,xj

(y, xj), is a func-
tional of a realization from the posterior of our model on F . In this sense, the pos-
terior distribution for our model on F implies a distribution on I(m)(Y, xj) and the set
Ij =

{
I(m)(Y, xj),m = 1, . . . ,M

}
is a sample from this implied distribution.

In Step 1, the value of N , the size of the sample, D(m), used to estimate Î(m)(Y, xj), is an

arbitrarily chosen value. From our �ndings in Section 2.3.3, this means we can make Î(m)(xj)
as close as we want to I(m)(Y, xj) by taking N large enough. This means, for a suitably large

value of N and enough computing time, the set Îj =
{
Î(m)(Y, xj),m = 1, . . . ,M

}
should be

nearly indistinguishable from the target set, Ij.
Of course, our goal is not to produce a sample resembling Ij, it is to produce a sample

that tells us about the true quantity of interest, I(Y, xj) - the mutual information between

Y and xj under the stochastic simulator F . Whether or not the quantities Î(m)(Y, xj) are
close to I(Y, xj) depends entirely on how well our KSBP-based density regression model
approximates the true process F . If the posterior distribution for Model 3.5 produces den-
sities close to the true densities of F - that is, if the realizations from the model posterior

in
{
f

(m)
j (Y, xj),m = 1, . . . ,M

}
are densities close to the joint density fY,xj(y, xj) of Eq. 4.5

- then the set Îj should contain values close to I(Y, xj). From our example in Section 3.4,
we know that one of the factors with the most in�uence on the goodness-of-�t of the model
posterior is n, the number of observed data points used in the computation of the posterior.
For enough observations in D, the model posterior for F should produce densities close to
the true density and hence the values in Îj should be close to the true value of I(Y, xj).
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4.4 Application to a Toy Model

In this section, we apply the global sensitivity analysis method described in Section 4.3 to
the Normal mixture example from Sections 2.3.3 and 3.4, Model 2.47.

In Section 3.4, we took samples from the posterior distribution for Model 3.5 given data
sets of size n = 75, 150, and 500. Figures 3.7 - 3.9 contain plots of the observed data set
(upper left) as well as visualizations of the conditional density associated with each sample
from the posterior distribution (remaining panels). These conditional densities are analogous
to the red curve in Fig. 4.4. Similarly, the dashed blue line denoting the true density in
these panels is analogous to the blue curve in Fig. 4.1 - 4.4.

Using the process described in Section 4.3, a sample of size N = 2000 is generated for
each draw from the posterior given a set of n observations. From each of these samples,
we estimate the mutual information of the conditional density implied by each posterior
realization - denoted Î(m) - with the nearest-neighbor mutual information estimate of Eq.
2.43. This produces a posterior sample for the mutual information between Y and X, which
we denote Î; this is the set Îj from section 4.3 only the j subscript has been omitted since
there is only one input parameter to this model.

Since this process was repeated for n = 75, 150, and 500, we denote these three di�erent
samples of the mutual information Î(75), Î(150), and Î(500). Figure 4.5 contains plots of the
resulting samples. The top left panel contains a plot of all three samples together as well
as 95% credible intervals for I(Y,X), indicated by the red shading. The dotted black line
indicates the true value of I(Y,X) = .889. The solid red line goes through the mean of
each sample. The remaining panels are histograms of the estimated mutual informations for
the three samples. Again, the red line indicates the sample mean and the dotted black line
indicates the true value.

As the number of observations used to �t the model n increases, the mean of the samples
gets closer to the true value. This is not surprising considering the conditional densities
in Figs. 3.7 - 3.9 also converge toward the true density. As the number of observations
increases, the variability in the sampled mutual informations is decreasing. For Bayesian
models, as the number of data points increases, the posterior uncertainty should decrease
and that is exactly what is happening here - both in the sampled values of Î(m)(Y,X) and
the realizations from the model posterior illustrated in Figs. 3.7 - 3.9.

One troubling behavior illustrated in Fig. 4.5 is the sizeable bias seen at all sample sizes.
Even when the model is �t with n = 500 data points, the sampled posterior mean is too small
by nearly 10%. We conjecture that this underestimation is primarily an e�ect of the prior
distributions of the model. Since these are Bayesian estimates, they will be biased slightly
toward the value de�ned by the prior, with the amount of prior in�uence depending on the
number of observations n. This behavior, while not entirely unexpected, is quite unsettling
so Section 4.5 is dedicated to its discussion.

It is worth noting that in other simulation studies (not presented here), the method for
sampling the mutual information presented here successfully identi�es relevant and irrelevant
variables; only the magnitudes are not captured correctly. Additionally, recall that the
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Figure 4.5: Sensitivity analysis using method of Section 4.3 on Model 2.47 for samples of size
n = 75, 150, 500. The red lines denote the sample means. The dashed black line indicates
the true value I(Y,X) = .8887. The shaded red areas in the upper-left plot indicate 95%
credible intervals.

inputs, X, are distributed uniformly on [0, 1], so the sample size is actually quite limited. To
put this in perspective, if instead of estimating a conditional density process, ten separate
conditional densities are estimated, corresponding to [0, 0.1], [0.1, 0.2], . . ., then when n = 75
or 150, each density would be based on roughly 10-20 points, which is quite limited. That
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the posterior credible interval for the mutual information even covers the true value in these
cases is impressive.

4.5 KSBP Priors on Mutual Information

In this section, we discuss the impact of parts of the prior distribution on the sampled values
in Îj from the model posterior. The ideas covered here are primarily conjectures based on
simulation experiments. Consequently, no formal proofs will be provided and the discussion
will be centered around providing intuition as to why these conjectures should be true.
Where applicable, a potential method of proof will be provided for those interested.

As mentioned in Section 4.4 and illustrated in Fig. 4.5, the sampled values are negatively
biased toward the prior mean. In the case of Model 3.5, the prior mean will be close to zero.
Given most input distributions GX , the mutual information should be non-negative, so the
prior mean for the mutual information should be positive.

To see why the mutual information under the model prior is small, notice that under
the model prior, the conditional distribution for Y |X is an in�nite mixture of Normal linear
regression models, with the form being similar to the posterior predictive of Eq. 3.48.
Because of the Dirichlet process prior on the Gh's, the slope of the regression components in
the mixture are i.i.d. realizations from a multivariate normal with mean µ0, which itself is
a random variable with mean u0 = 0. Through the law of iterated expectations, this means
the slopes of the regression components have mean zero and, on average, X will not have
much e�ect on Y . Since mutual information is a measure of dependence, on average, the
mutual information between X and Y will also be low. This link between the slopes of the
regression components and the mutual information is actually quite important, and will be
further explored in Section 4.5.2.

Notice that Model 3.5 is overparametrized - in the example of Section 3.4, an in�nite
mixture of Normal regression models is used to conduct inference on a two component mix-
ture. The prior distribution helps regularize the parameters, but the prior choice a�ects
the types of realizations that are favored in the model posterior - e.g. priors can be chosen
to favor realizations with fewer clusters and more process variance. For the purposes of
density estimation, the densities from the model posterior are not particularly sensitive to
which types of models are preferred - after all, it is an overparametrized model for densi-
ties. However, it is not necessarily an overparametrized model for mutual information - the
mutual information of realizations from the posterior are de�nitely a�ected by the types of
models, especially when estimated according to our sampling-based method. Consequently,
the ensuing sections will be emphasizing the interactions between the di�erent parameters to
Model 3.5 and the impact of these interactions on the sampled values of mutual information.
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4.5.1 Process Variance E�ects (σ2)

In the Bayesian example of Section 2.3.1, we derived the mutual information of a normal
linear model to be (Eq. 2.35):

I(X, Y ) =
1

2
log

{
σ2 + τ 2

τ 2

}
.

Note the notational di�erences between that example and here - in the above expression,
σ2 is the variance of the mean, which would be equivalent to the variance of θj. τ

2 is the
process variance, which we now denote σ2. This expression is decreasing in the process
variance, hence overestimation of σ2, causes underestimation of the mutual information, and
vice versa.

The clearest way to visualize the role σ2 plays in the model posterior is in the cluster
assignment plots on the left side of Fig. 3.10. The process variance is determined by the
spread of the colored points about the line of that color. If the the lines corresponding to
each cluster do not produce accurate approximations of the underlying process, then the
process variance will be in�ated. As a concrete example, in Model 2.47, when X ≥ 0.5, Y
comes from a Normal distribution whose mean is quartic in X, so the lines for clusters in
that region of the input space should be non-parallel in order to approximate the quartic
behavior in Y . If they are nearly parallel, then it is not accurately approximating the quartic
mean process in that region and the process variance will be in�ated to make up for this. In
terms of the sampled conditional densities, this e�ect is barely noticeable. For the sampled
mutual informations, the in�ated process variance will cause underestimation.

Potential ways to account for this would be to choose a prior that encourages more clusters
and consequently more lines in those plots. More clusters would allow for better �tting should
reduce the sampled process variance, which would increase the mutual information. A more
straightforward way would be to choose a prior that allows more posterior �exibility for the
slopes, making it more likely that the slopes associated with each cluster produce accurate
approximations.

4.5.2 Slope-Related E�ects (θj, µ0,Σ0)

We've already mentioned the two primary ways the slope of the regression components a�ects
the mutual information: through the prior mean, which the posterior mean for mutual
information will be biased towards, and through potential overestimation of the process
variance. In this section, we discuss how our prior choices impact the e�ect of the slope on
the mutual information of the model posterior.

In the case of biasing toward the prior mean, the usual way to address this is to make
the prior more disperse, since the magnitude of the bias is proportional to the prior mass.
However, due to the hierarchical nature of Model 3.5 and the degrees of separation between
the slopes and the mutual information, it is not immediately clear how to increase the
dispersion of the distribution of mutual information under the model prior.
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A naive approach might be to increase the variance of the slopes by encouraging Σ0 to
take on larger values (see Model 3.6). Through marginal properties of Dirichlet processes,
this should increase the dispersion in θj since θj ∼ MVN(µ0,Σ0). However, this does not
increase the dispersion in the distribution of mutual information under the model prior.
Under the model prior, points will be assigned into clusters nearly at random so the mutual
information for a realization will be dependent on how similar (i.e. near parallel) the sampled
slopes are. Since the prior mean of µ0 is u0 = 0, θj must also have mean zero. Increasing the
dispersion in θj actually lowers the chance of sampled slopes pointing in similar directions
which means the mutual information will be lower.

A better approach to increasing the dispersion of the distribution for mutual information
under the model prior would be to increase the dispersion in µ0 through increasing the
diagonals of S0, the prior variance of µ0. As mentioned previously, the θj will have mean
µ0. Because the prior mean of µ0 is u0 = 0, increasing the dispersion in µ0 makes large-
magnitude values of µ0 more likely. For a given value of Σ0, this makes values θj more likely
to be pointing in similar directions and makes larger values of mutual information more
likely.

One potential bene�t of increasing the dispersion in the prior distribution for µ0 is that
it addresses the second way the slopes a�ect mutual information. As mentioned in Section
4.5.1, poor linear approximations to the true process results will overestimate the process
variance causing an arti�cially lower mutual information. Increasing the dispersion in µ0

makes the posterior draws of µ0 less in�uenced by their prior mean, u0. This makes it more
likely that the Normal linear regression components can accurately approximate the form of
the mean for the true generative process.

On this front, encouraging larger entries in Σ0 encourages potentially di�erent values of
θj, which also aids in accurate linear approximations and hence should increase the sampled
mutual informations for similar reasons. This is contrary to its e�ect on the distribution for
the mutual information under the prior mean, so there is a bit of a trade-o� when it comes
to the prior for Σ0 and further investigation could be bene�cial.

Worth noting is the e�ective sample size when considering the e�ects on the mutual
information from the priors for µ0 and Σ0. From Eqs. 3.38 and 3.39, the e�ective sample
size for these two parameters is the number of clusters. For the two realizations pictured
in the top-left and middle-left panels of Fig. 3.10, the e�ective sample size for µ0 and Σ0

is the same (5) for that realization, depsite the middle-left panel having twice the number
of observations. For the most part, the number of clusters will be small, so the in�uence
of the prior distributions for µ0 and Σ0 on the sampled values of θj will be present in even
moderately sized samples. So caution must be exercised when choosing priors based on how
they e�ect the distribution of mutual information from the model posterior.
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Chapter 5: Case Study: Sensitivity Anal-

ysis for a Stochastic Simulator of Near

Fault Ground Motions

In this chapter we demonstrate the application of the sensitivity analysis method from Chap-
tper 4 on the stochastic simulator for near fault ground motions presented in Dabaghi et al.
(2011). Sites in the near-�eld (< 30 km) region of a fault rupture may experience ground mo-
tion with atypically large velocity pulses. These large-amplitude velocity pulses may impose
extreme demands on a structure, which warrants investigation into the underlying process.
Current simulators do not adequately represent these types of ground motions, although
there have been attempts at doing so in recent years, see Shahi and Baker (2011). Of partic-
ular interest is their inclusion in probabilistic seismic hazard studies and performance-based
earthquake engineering due to their potentially damaging e�ects on structures, like the study
in Ta�anidis and Jia (2011). However, our approach di�ers in that there is less emphasis on
risk assessment and more on model understanding.

Note that there are many potential types of ground motions that can occur in the near-
�eld region. For simplicity, the study in this section is focused primarily on the directivity
e�ect of strike-slip near fault ground motions in the strike-normal (SN) direction that have
pulse-like behaviors.

This chapter begins with a short description of the conceptual model for ground motion
represented in the simulator. Next, the method for determining the distribution of model
parameters given a speci�ed set of source and site characteristics is described. Section
5.3 describes how to frame the simulator and generative distribution under the sensitivity
analysis methodology developed in Chapter 4. The remaining sections assess the model and
present the sensitivity �ndings.

5.1 Model Description

This section contains a brief description of the conceptual model underlying the ground
motion simulator that we use. A detailed description of this model is given in Dabaghi
et al. (2011). The conceptual model can be separated into two components - a deterministic
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component for modelling the pulse-like behavior in the velocity of a motion and a stochastic
component modelling the acceleration of the remaining or residual motion after accounting
for velocity pulses. To generate a ground motion from a velocity pulse and a realization of the
residual acceration, the derivative of the velocity pulse is added to the residual acceleration
to give the total acceleration. Given the total acceleration, it is straightforward to calculate
both the total velocity and total displacement.

Although this study only uses the model to generate a very speci�c type of ground motion
- ground motion in the SN direction from strike-slip faults with pulse-like behavior in the
velocity - the actual model is quite general; it is a valid model for near-fault ground motions
with and without pulse-like behaviors for both the strike-slip and dip-slip faults.

5.1.1 Velocity Pulse Process

The submodel used for the velocity pulse in the model by Dabaghi et al. (2011) is a modi�ed
version of the idealized pulse model presented in Mavroeidis and Papageorgiou (2003). The
modi�cation made to their model is to ensure that the pulse model achieves zero residual
displacement. The form of the modi�ed pulse submodel used in the simulator is

v(t) =

{[
Vp
2
cos
(

2π(t−tmax,p)

Tp
+ ν
)
− Dr

γTp

][
1 + cos

(
2π(t−tmax,p)

γTp

)]
if − γ

2
Tp < t−tmax,p ≤ γ

2
Tp

0 elsewhere

(5.1)

where (Vp, Tp, γ, ν, tmax,p) are the parameters to this component of the model, which we
denote xP . Vp is the pulse amplitude, Tp is the pulse period, γ is a parameter controlling
the number of oscillations in the pulse, ν is the phase angle, and tmax,p is the time of the
envelope peak.

5.1.2 Residual Acceleration Process

The residual acceleration corresponds to the remaining acceleration after the e�ect of the
velocity pulse has been removed. The submodel used by Dabaghi et al. (2011) for the residual
acceleration is a modulated, �ltered white-noise process with time-varying �lter parameters.
The residual acceleration is a realization from the solution to the following stochastic integral

a(t) = q(t)

{
1

σh(t)

∫ t

−∞
h[t− τ, λ(τ)]w(τ)dτ

}
(5.2)

where w is a white-noise process, h[t − τ, λ(τ)] is a unit-impulse response function (IRF)
for a time-varying �lter, σh(t) is the standard deviation of the integrand, and q(t) is a time
modulating function characterizing the root-mean-square of the acceleration. Since we are
dividing by the standard deviation, the solution to the stochastic integral has unit variance.
λ(τ) = [ωf (τ), ζf (τ)] denotes the time-varying parameters of the IRF - ωf (τ) is the �lter
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frequency at time τ and ζf (τ) is the �lter damping at time τ . Since the residual acceleration,
a(t), is a realization from a stochastic process, this is what makes both the model and any
simulator based on the model, stochastic.

The IRF, h, is chosen according to Rezaeian and Der Kiureghian (2008) and is taken to
be

h[t− τ, λ(τ)] =


ωf (τ)exp{−ζf (τ)ωf (τ)(t−τ)}sin{ωf (τ)

√
1−ζ2

f (τ)(t−τ)}√
1−τ2

f (τ)
τ ≤ t

0 otherwise
(5.3)

where ωf (τ) and ζf (τ) are the time-varying components of λ(τ) described previously. We
give ωf the following linear form

ωf (τ) = ωmid + ω′(τ − t45). (5.4)

Here, ωmid is the �lter frequency at the time to the 45% Arias intensity value of the residual
motion. ω′ is the rate of change of the frequency over time. ζf (τ) is taken to be a constant

ζf (τ) = ζf (5.5)

The modulating function, q, is proposed by Dabaghi et al. (2011) and has the form

q(t) =


0 t ≤ t0

c
(

t−t0
tmax,r−t0

)α
t0 < t ≤ tmax,r

c exp {−β (t− tmax,r)} tmax,r < t

(5.6)

where t0 is the time of the peak of the envelope and tmax,r is the time of the maximum root-
mean-square acceleration. Using the method of Rezaeian and Der Kiureghian (2010), the
remaining parameters c, α, and β are determined by a mapping onto the physical parameters
Ia, the expected Arias intensity, D5,95, the e�ective duration, and t30, the time to the 30%
Arias intensity value. The details of the mapping onto these parameters is omitted for
brevity. They can be found both in the original paper as well as in Dabaghi et al. (2011).

From Eqs. 5.2 - 5.6, the parameters to the submodel for residual acceleration are
(Ia, D5,95, t30, tmax,r, ωmid, ω

′, ζf ), which we denote xR.

5.1.3 Displacement of an Inelastic Single Degree of Freedom Oscil-
lator

The output of the ground motion model is a continuous process over time. In numerical
implementations of this model, the simulator outputs a multivariate response, with the
actual number of outputs determined by the number of discretization steps. The mutual
information based sensitivity analysis method described in Chapter 4 is for simulators with
continuous, univariate responses. In order to apply this method to the model described
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here, the simulated ground motions must be condensed to a univariate response of some
kind. There are a variety of potential univariate responses that can be calculated from
simulated ground motion with varying degrees of complexity and usefulness - such as the
probability that the peak displacement will be above a value, whether or not a simulated
motion is considered pulse-like, etc. In our study, we look at the displacement of an inelastic
single degree of freedom oscillator when subjected to the simulated motion. For details on
the speci�c quantity being calcualted, see Dabaghi et al. (2013) and Chopra (2011).

5.2 Parameter Generation

The parameters of the model from Section 5.1 are easy to interpret from a physically, par-
ticularly given that some of them are mapped on to physical parameters. However, they are
less useful in design or engineering situations because many of these parameters are hard to
measure or often unavailable in many cases. In the context of probabilistic seismic studies,
these di�culties are worsened since it unlikely for a researcher to know the distribution for
parameters whose values are di�cult to measure.

Instead, it is preferable to have a method for generating these parameters for a given
set of source and site characteristics - magnitude, distance, type of faulting, etc. This
is particularly useful because there are limited numbers of recorded ground motions for
many potential characteristic combinations, especially when restricting ourselves to near-
fault ground motions. This section describes the method developed and used in Dabaghi
et al. (2011) to produce a generative distribution for the model parameters given a set of
source and site characteristics. Given a collection of recorded ground motions at sites with
known site characteristics, the model parameters are estimated for each ground motion in
the collection. From these estimated model parameters, an empircal predictive distribution
for the model parameters is derived through regression.

The collection of near-fault ground motions used in the derivation of the empirical pre-
dictive distribution is from the Paci�c Earthquake Engineering Research (PEER)'s Next
Generation Attenuation (NGA) database. There are 100 recorded near-fault ground mo-
tions in this database with pulse-like behavior in the strike-normal direction.

5.2.1 Pulse Extraction and Estimation

In order to properly estimate the parameters of the two component model described in
Section 5.1, it is necessary to separate a measured ground motion into a pulse like component
for the velocity and a residual acceleration, corresponding to the two submodels. For a
measured ground motion, the measured velocity pulse is extracted from the velocity time
history according to a method proposed by Baker (2007). The method iteratively �ts wavelet
expansions based on 4-th order Daubechies wavelets to the recorded velocity time history
to identify the velocity pulse. Complete details on the implementation can be found in the
original paper. Figure 5.1 is a visualization of the wavelets used in the pulse extraction
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process.

Figure 5.1: A Daubechies wavelet of order 4. Transformed and scaled versions of this wavelet
are used in the pulse extraction process. From Baker (2007).

Once the velocity pulse has been extracted from the recorded velocity time history, the
parameters to Model 5.1, (Vp, tp, γ, ν, tmax,p), are estimated from the extracted pulse through
least squares.

For a ground motion record, the residual velocity time history is taken to be the recorded
time history minus the modeled (�tted) velocity pulse. This residual velocity time history
corresponds to the residual component of the model described by Eqs. 5.2-5.6. The pa-
rameters to this model, (Ia, D5,95, t30, tmax,r, ωmid, ω

′, ζf ) are estimated from this component
through a many step process, which is described in Dabaghi et al. (2011) and explained in
detail in Rezaeian and Der Kiureghian (2010).

5.2.2 Empirical Predictive Distribution

For each of the 100 ground motions in the database, multiple site and source characteris-
tics are also recorded. The characteristics used in Dabaghi et al. (2011) for the predictive
distribution are:

• Mw, the earthquake moment magnitude

• F , an indicator for the type of faulting

• R, the closest distance between the site and rupture, in kilometers

• Vs30 the shear-wave velocity in the top 30 meters of the soil pro�le, in meters per second

• s or d, the length or width of the rupture between the hypocenter and the site, in kilometers

• θ or φ, the angle between the rupture plane and the direction between the site and hypocenter,

in degrees

The last two parameters both depend on the type of fault and occur in pairs - i.e. either
(s, θ) or (d, φ). For strike-slip earthquakes, θ is the horizontal angle between the rupture plane
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and the direction between the site and epicenter. For dip-slip or oblique-slip earthquakes,
φ is the vertical angle between the rupture plane and the direction between the site and
hypocenter. For justi�cations of the choices of these variables, see Dabaghi et al. (2011),
Somerville (2000), Abrahamson et al. (2008), and Rezaeian and Der Kiureghian (2010).

With a set of model parameters, Xi, i = 1, . . . , 100 and source and site characteristics
Wi = (Mi,w, Fi, Ri, Vi,s30, si, θi) in the strike-slip case or Wi = (Mi,w, Fi, Ri, Vi,s30, di, φi) in
the dip/oblique-slip case, i = 1, . . . , 100, it is possible to derive a predictive distribution for
Xi+1 for a new set of source and site characteristics Wi+1.

First, the components of Xi are transformed to the standard normal space through the
transformation

zi,j = Φ−1 (Fj(xi,j)) (5.7)

where xi,j is the j-th component of Xi and Fj is the marginal c.d.f. for the j-th component of
Xi. The family for each of the Fj's is chosen through visual inspection, with the parameters
for that family being estimated through maximum likelihood. The speci�c families and
estimated parameters as well as more details on the transformation process can be found in
Dabaghi et al. (2011).

If Fj accurately represents the true marginal c.d.f. of the components of Xi, then the
transformation in Eq. 5.7 should produce Zi = (zi,1, . . . , zi,12), which has marginally standard
normal components. Each component is then regressed one at a time according to one of
the following regression models

zi,j = βj,0 + βj,1Fi + fM,j(Mw,i) + fR,j(Ri) + fMR,j(Mw,i, Ri)

+ fV,j(Vs30,i) + fdir,j(θi, si) + εi,j (5.8)

zi,j = βj,0 + βj,1Fi + fM,j(Mw,i) + fR,j(Ri) + fMR,j(Mw,i, Ri) + fV,j(Vs30,i) + εi,j (5.9)

with Eq. 5.8 being the model used for the components of the pulse parameters zi,j, j =
1, . . . , 5 and Eq. 5.9 the model for components of the residual parameters zi,j, J = 6, . . . , 12.
The f functions in Eq. 5.8 and 5.9 are de�ned as

fM,j(Mw) = βj,2Mw + βj,3M
2
w

fR,j(R) = βj,4R + βj,5log(R) + βj,6log
(
R2 + 10

)
fMR,j(Mw, R) = βj,7Mwlog(R) (5.10)

fv,j(Vs30) = βj,8Vs30 + βj,9log(Vs30)

fdir,j(θ, s) = βj,10θ + βj,11s

In the last equation in Eqs. 5.10, θ denotes both angles θ and φ and s denotes both rupture
lengths s and d due to the limited number of data points. There are physical interpretations
bethind the expressions in Eqs. 5.10, with a detailed explanation of these interpretations
being available in Dabaghi et al. (2011).

If we let ẑi,j denote the �tted value from the regression model, then the regression residual
is ei,j = zi,j − ẑi,j. To account for any potential correlations in the model parameters, a
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correlation matrix can be estimated from these regression residuals. The estimated regression
matrix would have entries

Σh,k =

∑100
i=1 ei,hei,k√(∑100

i=1 e
2
i,h

) (∑100
i=1 e

2
i,k

) (5.11)

The estimated values of the β's and correlation matrix from the collection of 100 ground
motions are not reproduced here, but can be found in Chapter 3 of Dabaghi et al. (2011).
Given a new set of source and site characteristics, Wi+1, a generative distribution for Zi+1,
the model parameters in the normal space is

Zi+1|Wi+1 ∼MVN (ẑi+1,Σ) (5.12)

where Σ is the correlation matrix with entries de�ned by Eq. 5.11 and ẑi+1 is the vector of
predicted regression values. That is,

ẑi+1,j = β̂j,0 + β̂j,1Fi+1 + f̂M,j(Mw,i+1) + f̂R,j(Ri+1) + f̂MR,j(Mw,i+1, Ri+1)

+ f̂V,j(Vs30,i+1) + f̂dir,j(θi+1, si+1) (5.13)

for j = 1, . . . , 5 with zi+1,j de�ned similarly when j = 6, . . . , 12. To generate model param-
eters in the unnormalized space, �rst generate normalized model parameters according to
Eq. 5.12 and then transform the normalized variables using the inverse transformation of
Eq. 5.7.

5.3 Experimental Setup

In this section, we demonstrate how the simulator and generative distributions described
in Sections 5.1 and 5.2 �t into the framework developed in Chapter 4. We begin with a
description of the dataset used in the study and then follow that by clear de�nitions of
both the input distribution and the stochastic simulator being studied. Using the estimated
regression parameters and correlation matrix from Section 5.2, a collection of n = 1000
model parameters in the transformed space were taken according to the multivariate Normal
distribution in Eq. 5.12 with the following source and site characteristics

F = 1 Vs30 = 400 m/s

Mw = 6.5 R = 10 km (5.14)

s = 30 km θ = 20o

We denote each element of the collection of model parameters as Xi, i = 1, . . . , 1000. The
model parameters will be in the transformed normal space, not in the original parameter
space. For a set of model parameters, Xi, a realization from the model described in Section
5.1 is drawn. Using this generated ground motion, the displacement of an inelastic single
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degree of freedom oscillator is calculated, which we denote Yi. The initial period of oscillator
being studied is 2 seconds. In the normalized space, this corresponds to a value of roughly
-0.243. The yield displacement of the oscillator is 0.15 meters.

Figure 5.2 is an illustration of the di�erent parameters and their roles in this process.
The red box encloses what is considered the stochastic simulator (denoted F in Chapter 4)
when viewed in this manner.

Figure 5.2: Diagram of the full simulation process when considering all 12 model parameters. Site charac-
teristics de�ne a distribution for model parameters. These model parameters de�ne a distribution for ground
motions, and one draw is taken from this distribution. Using the simulated ground motion, the displacement
of an inelastic single degree of freedom oscillator is calculated.

However, there are 12 model parameters and only 1000 (Xi, Yi) observations in our data
set, which is quite limited. To address this, we restrict the input space to �ve parameters of
interest: Tp, Vp, Ia, D5,95, ωmid on the transformed space. To emphasize the transformation,
we write T̃p, Ṽp, Ĩa, D̃5,95, ω̃mid. For convenience, we write Xi = (xi,I ,xi,R) where xi,I and
xi,R denote the parameters of interest (I) and the remaining parameters (R), respectively.
Similarly, we also denote the mean values of the transformed model parameters as µx =
(µx,I , µx,R). The exact value of µx can be calculated through Eq. 5.13. However, we will
not just ignore or �x the remaining seven parameters of the model. Instead, we incorporate
their distributions as another component of the �stochastic simulator� being studied.

From Eq. 5.12, we know that Xi = (xi,I ,xi,R) follows a multivariate normal distribution
with mean µx = (µx,I , µx,R) and covariance matrix which we write as

Σ =

[
ΣI ΣIR

ΣIR ΣR

]
where ΣI and ΣR denotes the covariance matrices for the parameters of interest and the
remaining parameters, respectively, and ΣIR denotes the matrix of covariances between the
two parameter sets. Using the Schur complement, we know the exact distribution for xi,R
given the values of xi,I

xi,R|xi,I = xi,I ∼MVN
(
µx,R + ΣIRΣ−1

I (xi,I − µx,I) ,ΣR − ΣIRΣ−1
I ΣIR

)
(5.15)

We can think of the stochastic simulator generating Yi for a given set of parameters of
interest, xi,I as a black box that �rst generates xi,R according to the conditional distribution
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of Eq. 5.15. The remaining steps are now the same - based on the 12 parameters (xi,I ,xi,R)
and the model in Section 5.1, a ground motion is simulated. Using this simulated ground
motion, the displacement of an inelastic single degree of freedom oscillator is calculated.
Figure 5.3 contains a visualization of this process. The red box denotes what is considered
the stochastic simulator, F , under this point of view.

Figure 5.3: Diagram of the simulation process when considering only the �ve parameters of interest. Site
characteristics de�ne a distribution for these �ve parameters. Conditional on these parameters, there is a
known distribution for the remaining seven parameters and a realization of is taken from this distribution.
Together, these twelve parameters de�ne a distribution for ground motions and a draw is taken from this
distribution. From the simulated ground motion, the displacement of an inleastic single degree of freedom
oscillator is calculated.

Note that expanding what is considered the �stochastic simulator� in this manner is
preferable over �xing the remaining parameters because the sampled ground motions will
keep the same amount of variability. This expansion is similar to marginalizing over the
parameters of the submodel for residual acceleration. However, there will be some di�erences
in the interpretation of the calculated mutual information - since they are a quanti�cation
of the dependence between the parameters and the distribution of the output, some of
the dependence between the parameters of the velocity pulse parameters and the residual
acceleration parameters will be re�ected in the sampled mutual informations. For the most
part, the estimated correlations are small (see Dabaghi et al. (2011) for the exact values)
and there are many degrees of separation between the parameters and the �nal calculated
displacement, so the e�ect of this dependence should be small relative to their e�ect on the
measured displacement and worth the reduction in dimension.

In summary, the inputs to the simulator are the 5 parameters of interest xi,I = (Ṽp,i, T̃p,i, Ĩa,i,
D̃5,95,i, ω̃mid,i). The predictive or generative distribution for these inputs is

xi,I ∼MVN(µx,I ,ΣI)

where µx,I and ΣI are de�ned as before. The stochastic simulator, F , is the process mapping
these �ve inputs to a distribution for ground motions based on the model of Dabaghi et al.
(2011) in Section 5.1. Using the simulated motion, the displacement of an inelastic single
degree of freedom oscillator is calculated, which we denote Yi. We have a set of 1000 (xi,I , Yi)
realizations from the stochastic simulator. Figure 5.4 contains a histogram of the observed Yi
values and also marginal plots of the displacement Yi against the �ve parameters of interest.
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We see that Vp and Tp should have large e�ects compared to the others due to their noticeable
e�ect on the mean. It also seems that especially large values of Tp cause lower variance. Ia
has a moderate e�ect on the mean.

The goal of our sensitivity study is to get posterior distributions for mutual informations
I(Y, Vp), I(Y, Tp), I(Y, Ia), I(Y,D5,95), and I(Y, ωmid). We will follow the method described
in Section 4.3 - draws from the model posterior of Model 3.5 given the 1000 observations are
used to get samples of the desired mutual informations.

For our prior parameters, we used

• a0 and b0 are both set to 0.1, which gives a relatively disperse and noninformative prior
for the process variance σ2.

• For the mean and variance for the log-Normal prior on the distance parameter, ψ, we
set µψ = −1.4067 and σ2

ψ = 0.515.

• Both λ and α, the dispersion parameters for groups and clusters within each group,
respectively, are set to 1. This encourages fewer groups and fewer clusters within
groups.

• DΓ is R5 and H is a mean zero multivariate normal with identity covariance.

• The mean of µ0 is u0 = 0 and we took the covariance matrix to be the identity (marginal
variance of 1).

• For Σ0, we take ν = 6, the smallest possible value, and the mode T0 to be the identity
matrix.

The prior parameters for the distance parameter, ψ were chosen according to the method
described in Section 3.1.2. The chosen parameters correspond to a log-Normal whose 2.5th
and 97.5th quantiles are 0.06 and 1, respectively. In terms of the expected correlation, those
values of ψ correspond to correlations of nearly 1 and .1. Note that the input distribution
is not a standard multivariate normal, so the values in Fig. 3.4 do not apply exactly.
Nonetheless, they should still provide a general idea of the expected correlation.

5.4 Posterior Model Assessments

In this section, we look at a few diagnostics from the model posterior to ensure that draws
from the model posterior are producing reasonable conditional densities. After all, the
accuracy of our mutual information estimates depends largely on how well these conditional
densities re�ect the conditional densities generated by the true process.

Figures 5.5-5.9 contain the posterior predictive distributions for Y for di�erent values of
each of the parameters of interest. The values chosen are two standard deviations below the
mean (top right), one standard deviation below the mean (middle left), the mean (middle
right), one standard deviation above the mean (bottom left), and two standard deviations
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Figure 5.4: The top left �gure panel a histogram of the observed displacement, Y . The
remaining panels are scatter plots of the displacement against the �ve parameters of interest
Ṽp, T̃p, Ĩa, D̃5,95, ω̃mid in the normal space.
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above the mean (bottom right). When not listed in the titles, the remaining variables are set
at their mean values. The middle right panel should be the same across all �gures because
it is the posterior predictive distribution with all parameters at their mean values.

The behavior for both Fig. 5.5 (Ṽp) and Fig. 5.6 (T̃p) look reasonable. In the plots for Ṽp,
the conditional densities are shifting to the right, corresponding to the increase in the mean
we saw in Fig. 5.4. For T̃p, we see the spread decrease at the highest values, corresponding
to the decreased variance we saw in the marginal plots. The peak in response values near
T̃p = −.25 probably corresponds to the period of the oscillator being studied.

In Fig. 5.7, we see the same rightward shift in the conditional densities for Ĩa correspond-
ing to a mean e�ect, but the magnitude of the shift is smaller than that of Ṽp. In Figs. 5.8
and 5.9, we see little to no change across di�erent panels, which suggests there is little to
low e�ect from these parameters and consequently the mutual informations I(Y, D̃5,95) and
I(Y, ω̃mid) should both be low.
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Figure 5.5: Plots of the posterior predictive for the displacement Y given di�erent values of
Ṽp, with the unlisted parameters being set at their means. The values of Ṽp are the mean,
the mean ± 1 SD, and the mean ± 2 SDs. The red lines indicate the pointwise posterior
medians. The black dotted lines indicate pointwise 95% credible intervals. For reference, the
marginal scatter plot of the observations is given in the upper left.
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Figure 5.6: Plots of the posterior predictive for the displacement Y given di�erent values of
T̃p, with the unlisted parameters being set at their means. The values of T̃p are the mean,
the mean ± 1 SD, and the mean ± 2 SDs. The red lines indicate the pointwise posterior
medians. The black dotted lines indicate pointwise 95% credible intervals. For reference, the
marginal scatter plot of the observations is given in the upper left.
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Figure 5.7: Plots of the posterior predictive for the displacement Y given di�erent values of
Ĩa, with the unlisted parameters being set at their means. The values of Ĩa are the mean,
the mean ± 1 SD, and the mean ± 2 SDs. The red lines indicate the pointwise posterior
medians. The black dotted lines indicate pointwise 95% credible intervals. For reference, the
marginal scatter plot of the observations is given in the upper left.
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Figure 5.8: Plots of the posterior predictive for the displacement Y given di�erent values
of D̃5,95, with the unlisted parameters being set at their means. The values of D̃5,95 are
the mean, the mean ± 1 SD, and the mean ± 2 SDs. The red lines indicate the pointwise
posterior medians. The black dotted lines indicate pointwise 95% credible intervals. For
reference, the marginal scatter plot of the observations is given in the upper left.
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Figure 5.9: Plots of the posterior predictive for the displacement Y given di�erent values of
ω̃mid, with the unlisted parameters being set at their means. The values of ω̃mid are the mean,
the mean ± 1 SD, and the mean ± 2 SDs. The red lines indicate the pointwise posterior
medians. The black dotted lines indicate pointwise 95% credible intervals. For reference, the
marginal scatter plot of the observations is given in the upper left.
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Figures 5.10 and 5.11 contain marginal scatter plots of the data points used to �t the
KSBP-based density regression model. The points are colored according to their cluster
(Fig. 5.10) and group (Fig. 5.11) assignments for one realization from the posterior. The
individual assignments may change slightly between di�erent draws, but overall shapes and
trends do not vary much. The panels of Fig. 5.10 also contais lines indicating the value of
the slope for that parameter from the given draw. The length of the line is proportional to
the product of the log cluster size and the standard deviation of the parameter value within
the groups. That is, in the top left panel, the red line is proportional to the product of the
log of the number of red coloured points and the standard deviation of Ṽp for the points that
are colored red. Long lines correspond to clusters that either have a lot of points or span
a wide range of the parameter. Since the length of the line increases with the number of
points in the group, this is an indicator of how strongly its direction will a�ect the mutual
information - it is more likely for a new point to be assigned to a cluster with a long line
and the associated slope will show up more often. The length of the line is also an indicator
of how stable the slope estimates are - short lines were drawn from distributions based on
fewer points so there is more variability in their slope. In all the panels, the red line is the
lowest, followed by yellow, orange, and then the two greens. It appears that the clusters are
grouped based on the amount of yielding in the response.

For D̃5,95, and ω̃mid (the bottom two panels), the three longest lines (orange, yellow, and
red) are all nearly horizontal - so the mutual information for these parameters is likely to be
small. The two green lines, while clearly not horizontal, are relatively short, so it is unlikely
for points to be assigned to these clusters. There is also more variability in the sampled
slopes, so their values will change greatly between di�erent realizations from the posterior.

For Ṽp, all the lines have a positive slope, so I(Y, Ṽp) is probably relatively large. For T̃p,
there are two lines with positive slope (orange and the �rst green) and two lines with negative
slope (red and the other green). The mutual information for T̃p will certainly be nonzero,
although it's not clear why the clusters are separated in that way. This is potentially an e�ect
of one of the parameters not plotted; the di�erent positive-sloped lines could correspond to
di�erent values of one of the other parameters. Since there is not clear separation of clusters
in any of the other panels, this is likely due to an interaction e�ect. An interaction is
plausible scienti�cally; for larger amplitudes Ṽp, the oscillator softens which increases the
e�ective period which changes the e�ect of T̃p on the response.

In Fig. 5.11, we see a possible interaction in the top two panels - the green group consists
of points with high values of Ṽp and low values of T̃p. For the other parameters, Ĩa, D̃5,95, ω̃mid,
there does not seem to be as much separation.

5.5 Sensitivity Results

The results of our sensitivity study are depicted in Fig. 5.12. The black lines indicate 95%
credible intervals. The blue dots indicate the sample medians. For reference, the marginal
entropy of the displacement is I(Y ) ≈ −0.60. It is clear that Ṽp, T̃p, and Ĩa have a much
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larger e�ect on the measured response than D̃5,95, or ω̃mid. The low e�ects for D̃5,95 and ω̃mid
should not be surprising given their lack of mean e�ects in Fig. 5.4. The magnitudes of the
mutual informations for Ṽp, T̃p, and Ĩa coincide with the magnitudes of their e�ects on the
mean.

From an interpretation standpoint, Ṽp and T̃p are the parameters controlling the ampli-
tude and period of the pulse model. Ground motions with large amplitude pulses in their
velocity components should de�nitely cause larger displacements in objects, so this is a rea-
sonable �nding. The �nding for the period, while not as obvious, is also reasonable given
the possibility of resonance for inelastic oscillators due to softening. As the oscillator yields,
its natural period elongates and grows closer to the pulse period.
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Figure 5.10: Scatter plots of the parameters of interest against the displacement, Y . Points
are colored according to their cluster assignments. Coloring is consistent across panels - e.g.
red points in each panel correspond to the same cluster. The lines indicate the marginal
means for the plotted parameter with lengths proportional to the product of the log cluster
size and the SD of the within-group parameter values.



5.5. SENSITIVITY RESULTS 94

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

1.
0

V
~

p

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

T
~

p

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

0.
2

0.
4

0.
6

0.
8

1.
0

I
~

a

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

D
~

5.95

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2

0.
2

0.
4

0.
6

0.
8

1.
0

ω~mid

Y

Figure 5.11: Scatter plots of the parameters of interest against the displacement, Y . Points
are colored according to their group assignments. Coloring is consistent across panels - e.g.
red points in each panels correspond to the same group.
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Figure 5.12: Plot of posterior samples for the mutual infromation between the measured
response, Y and the parameters of interest. The black lines indicate 95% credible intervals.
The blue dots indicate the median of the samples.
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Chapter 6: Conclusion

6.1 Summary

The primary contribution of this dissertation is the proposed method for Bayesian prob-
abilistic sensitivity analysis of stochastic simulators through sampling from the posterior
distribution for the mutual information presented in Chapter 4. This method is based upon
the notion of mathematically characterizing stochastic simulators or computer models as
processes mapping input parameters to conditional distributions for the response variable,
which was developed in Section 4.1.

Chapter 3 contains ancillary contributions to the �eld of Bayesian nonparametric density
regression, speci�cally through the use of Kernel Stick Breaking Processes. Section 3.1.2
contains a proposed method for prior speci�cation for the distance parameter (ψ) of a KSBP.
Section 3.2 contains an implementation-complete description of a Gibbs sampler for the
posterior for Model 3.5. While the sampling method is not entirely novel, one of the steps
has been updated to use a slice sampler, which is simpler to implement. To our knowledge,
there has not been a complete resource available for anyone interested in the implementation
of the KSBP-based Bayesian nonparametric density regression model described in Chapter
3.1.1.

In Chapter 2, the �ndings of our simulation study comparing estimators of mutual infor-
mation in Section 2.3.3, while not entirely surprising, are at least novel; to our knowledge
there has been no such comparison for such models.

6.2 Future Work

6.2.1 Choice of Design Points

In Chapter 4, the model �tting was performed under the assumption that the input values
of the observations were distributed according to the input or uncertainty distribution GX .
Explicitly, the set of observations was de�ned as D = {(Xi, Yi), i = 1, . . . , n} where Xi ∼ GX
and Yi|Xi ∼ F (Xi). However, the requirement that Xi ∼ GX is not actually necessary. In the
sensitivity analaysis method, GX is the density that the conditional densities are averaged
against in Eq. 4.3.
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In contrast, the role of the design points, D is to inform the density regression model about
the way that the stochastic simulator F maps inputs to output densities. The relationship
between the input parameters and output densities should be independent of the distribution
the input parameters in D. In fact, if there is prior knowledge about the behavior of F -
e.g. it is more variable in certain regions of the input space - then it is preferable to choose
a design that can capitalize on this prior knowledge. In the case of knowing that F is more
variable in certain regions, more design points can be allocated to these regions so that there
is less posterior uncertainty.

For the most part, modifying the design points in this way does not a�ect the sensitivity
analysis method described in Section 4.3. The main di�erence will be the interpretation
of GX not necessarily corresponding to an input distribution, but instead the uncertainty
distribution over the input parameters. The sampled values Î(m)(Y, xj) will still be from
the same posterior distribution. Confusion could arise if caution is not taken to be explicit
about what the sampled mutual informations are estimating, which is the primary reason
this option was not mentioned when the method was �rst presented.

However, allowing this �exibility presents a di�erent challenge - how should the design
points be chosen? Should they be chosen to optimize the amount of information gained
about F? If so, what is the optimal design? Alternatively, the design points could be chosen
to minimize the estimation error, although the design achieving this type of optimality is
also unknown. These types of questions are still unexplored and would de�nitely improve
the outcomes of sensitivity analyses performed using this method.

6.2.2 Di�erent Types of Response Variables

In this dissertation, we only considered stochastic simulators with a continuous, univariate,
response variable on the real line. As we saw in Chapter 5, it is sometimes possible to
transform or condense the output of a stochastic simulator to a response of this type. For
example, for a simulator that outputs positive numbers, the log transforms the output to the
real line. However, there are de�nitely stochastic simulators where such a transformation
is not appropriate. For example, if the simulator output is an event probability or is a
multinomial (e.g. di�erent classes), then there is no transformation for this type of simulator.

Luckily, the generalization of both the KSBP-based Model 3.5 to these response types
should be reasonably straightforward. Much like the generalization of ordinary regression
to generalized linear models, the only change would be in the likelihood of Yi|Xi, βi (the
�rst equation of Model 3.5) and not in the KSBP prior for βi|Xi. This change is minor and
should not require major modi�cation of the posterior sampling method in Section 3.2.

Once draws from the modi�ed model posterior are taken, then the sensitivity analysis
method described in Section 4.3 should be applicable directly, without any modi�cation.
This means, for the most part, all the existing tools for conducting sensitivity analysis for
continuous responses on the real line should be applicable, with only minor changes needing
to be developed.
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6.2.3 Di�erent Bayesian Density Regression Models

The method for generating a sample from the posterior for the mutual information between
the response and an input parameter described in Chapter 4 is not limited to the KSBP-based
nonparametric density regression model from Chapter 3. One alternative nonparametric
density regression model that could potentially be used is the dirichlet process mixture of
general linear models proposed by Hannah et al. (2011). Really, any type of Bayesian density
regression model can be used in place of Model 3.5 - even parametric models, if one is willing
to make the required assumptions on the form of the conditional output density.

As we saw in Section 4.4, the sampled values of mutual information using the method of
Section 4.3 are biased downward, which is, at least partly, a result of using the KSBP-based
nonparametric Bayesian density regression model. It is possible that replacing with Model
3.5 with a di�erent model may increase performance (i.e. accuracy) or decrease the bias. We
chose the nonparametric KSBP-based model due to the lack of required assumptions along
with the inherent spatial dependence in the input parameters. These properties may not
be as important to other researchers, so there de�nitely exist alternative density regression
models that can be used instead.

6.2.4 Higher Order Indices and Interactions

As mentioned in Section 4.1, I(Y, xj), the mutual information between Y and xj, corresponds
to a �rst order sensitivity measure. The de�nition of mutual information generalizes directly
to sets of variables. For example for two inputs xi and xj, the mutual information between
Y and {xi, xj} is

I (Y, {xi, xj}) = −
∫

Xij

∫
Y

log

{
f(y, xi, xj)

fY (y)fij(xi, xj)

}
f(y, xi, xj)dydxidxj.

However, this quantity does not represent a second order measure of sensitivity - it is par-
tially confounded with input interactions and �rst order sensitivity. Lüdtke et al. (2008)
advocates the use of conditional mutual information for higher order sensitivity measures.
The conditional mutual information between xi and xj given Y is

I(xi, xj|Y ) =

∫
Y

(∫
Xij

log

{
fij(xi, xj|y)

fi(xi|y)fj(xj|y)
fij(xi, xj|y)dxidxj

})
f(y)dy

With this de�nition for conditional mutual information, a second order interaction is derived
from the following identity

I(Y, {xi, xj})− I(Y, xi)− I(Y, xj) = I(xi, xj|Y )− I(xi, xj)

where I(xi, xj) is analogous to the input correlation between xi and xj. In the case of input
independence, the second order sensitivity measure is the remainder after di�erencing the
�rst order sensitivities (I(Y, xi) and I(Y, xj)) from the joint sensitivity ((I(Y, {xi, xj})).
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A similar expression exists for third and higher order interactions as well. While these
derivations are sound, the resulting expressions are unsatisfactory from an interpretation
point of view. So there are many research possibilities on that front, even if they are just
framing his expressions more intuitively from a statistical standpoint.

The notion of a total sensitivity measure - the sum of all e�ects involving an input - is also
pervasive in the mathematical modelling community. The development of a mutual infor-
mation based measure of total sensitivity would thus be bene�cial to the study of stochastic
simulators.

While the emphasis on potential research directions in this secton has been on ways to
expand the types of analyses done with mutual information, the possibility of a completely
di�erent sensitivity measure should not be ruled out. After all, one of the bene�ts of con-
ducting Bayesian inference of a density regression model on the stochastic simulator is the
ability to calculate any desired quantity given realizations from the model posterior.
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Chapter 7: Appendix

7.1 Derivation of Expectations in 3.1.2

This section contains full derivations for the following expectations:

κ(x) = E [K(x,Γh)]

κ2(x) = E
[
K(x,Γh)

2
]

κ(x,x′) = E [K(x,Γh)K(x′,Γh)] .

with x,x′ being independent draws from a N(0, Ip) distribution and Γh also having a N(0, Ip)
distribution.

First, κ(x):

E [K(x,Γh)] =

∫
DΓ

exp
{
−ψ||x− γ||2

}
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

=

∫
DΓ

exp
{
−ψ(x− γ)T (x− γ)

}
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

=

∫
DΓ

exp

{
−1

2
(x− γ)T ((1/2ψ)Ip)

−1 (x− γ)

}
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

= (2π)
p
2 (1/2ψ)

p
2

∫
DΓ

(2π)−
p
2 |(1/2ψ)Ip|−1exp

{
−1

2
(x− γ)T ((1/2ψ)Ip)

−1(x− γ)

}
× (2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

= (2π)
p
2 (1/2ψ)

p
2 (2π)−

p
2 (1/2ψ + 1)−

p
2 exp

{
− 1

2 [1/2ψ + 1]
xTx

}
=

(
1

1 + 2ψ

) p
2

exp

{
− ψ

1 + 2ψ
xTx

}
The second to last equality is due to, under the following hierarchical model,

X|Γ ∼ N(Γ, σ2Ip)

Γ ∼ N(0, Ip),
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the marginal distribution forX is aN(0, (σ2+1)Ip). The integral for κ2(x) is nearly identical:

E
[
K(x,Γh)

2
]

=

∫
DΓ

(
exp

{
−ψ||x− γ||2

})2
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

=

∫
DΓ

exp
{
−2ψ||x− γ||2

}
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

= (2π)
p
2 (1/4ψ)

p
2

∫
DΓ

(2π)−
p
2 |(1/4ψ)Ip|−1exp

{
−1

2
(x− γ)T((1/4ψ)Ip)

−1(x− γ)

}
× (2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

= (2π)
p
2 (1/4ψ)

p
2 (2π)−

p
2 (1/4ψ + 1)−

p
2 exp

{
− 1

2 [1/4ψ + 1]
xTx

}
=

(
1

1 + 4ψ

) p
2

exp

{
− 2ψ

1 + 4ψ
xTx

}
,

with the integral disappearing in the second to last equality for the same reasons as before.
Lastly, κ(x,x′):

κ(x,x′) = E [Kh(x)Kh(x
′)] = E [K(x,Γh)K(x′,Γh)]

=

∫
DΓ

exp
{
−ψ||x− γ||2

}
exp

{
−ψ||x′ − γ||2

}
(2π)−

p
2 exp

{
−1

2
γTγ

}
dγ

= (2π)−
p
2

∫
DΓ

exp

{
− 1

2(1/2ψ)

(
||x− γ||2 + ||x′ − γ||2 +

γTγ

2ψ

)}
dγ

= (2π)−
p
2

∫
DΓ

exp

{
− 1

2(1/2ψ)

(
aγTγ − γT (x + x′)− (x + x′)Tγ + xTx + x′

T
x′
)}

dγ

where a = 4ψ+1
2ψ

. Completing the square by adding and subtracting (x+x′)T (x+x′)
a

gives:

= (2π)−
p
2

∫
DΓ

exp

{
− 1

2(1/2ψ)

(
a

(
γ − (x + x′)T (x + x′)

a

)T (
γ − (x + x′)T (x + x′)

a

)
−(x + x′)T (x + x′)

a
+ xTx + x′

T
x′
)}

dγ

= exp

−ψ
(a− 1)

[
xTx + x′Tx′

]
− x′Tx− xTx′

a

×∫
DΓ

(2π)−
p
2 exp

{
− 1

2(1/2aψ)

(
γ − (x + x′)T (x + x′)

a

)T(
γ − (x + x′)T (x + x′)

a

)}
dγ

=

(
1

2aψ

) p
2

exp

−ψ
(a− 1)

[
xTx + x′Tx′

]
− x′Tx− xTx′

a
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The last equality is due to the integrand having the form of a mean zero multivariate Normal
with covariance matrix 1

2aψ
Ip. Plugging a = 4ψ+1

2ψ
into this expression gives

κ(x,x′) =

(
1

2ψ(4ψ + 1)/(2ψ)

) p
2

exp

−ψ

(

4ψ+1
2ψ
− 1
) [

xTx + x′Tx′
]
− x′Tx− xTx′

4ψ+1
2ψ


= (4ψ + 1)−

p
2 exp

−ψ
(2ψ + 1)

[
xTx + x′Tx′

]
− 2ψ

(
x′Tx− xTx′

)
4ψ + 1


= (4ψ + 1)−

p
2 exp

{
−2ψ2 + ψ

4ψ + 1

[
xTx + x′

T
x′
]

+
2ψ2

4ψ + 1

[
xTx′ + x′

T
x
]}

In summary

κ(x) =

(
1

1 + 2ψ

) p
2

exp

{
− ψ

1 + 2ψ
xTx

}
κ2(x) =

(
1

1 + 4ψ

) p
2

exp

{
− 2ψ

1 + 4ψ
xTx

}
κ(x,x′) =

(
1

1 + 4ψ

) p
2

exp

{
−2ψ2 + ψ

1 + 4ψ

[
xTx + x′

T
x′
]

+
2ψ2

1 + 4ψ

[
xTx′ + x′

T
x
]}

κ(x)/κ2(x) =

(
1 + 4ψ

1 + 2ψ

) p
2

exp

{
ψ

(1 + 2ψ)(1 + 4ψ)
xTx

}
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