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Abstract

Receding Horizon Control with Sliding Surfaces and its Application to Vehicle Dynamics

by

Andreas Hansen

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In light of the current surge in mobile robotics development, receding horizon control has
become of high interest to both academia and industry. This control technique is a systematic
way to compute intelligent control actions while accounting for complicated system dynam-
ics, forecasted environment information, and system constraints. This work contributes to
the field of receding horizon control by merging sliding surfaces into the controller design
process. The resulting methodology is named receding horizon sliding control. It is shown
that the invariance properties of sliding surfaces can be exploited for deriving provably stable
and persistently feasible controllers for a wide class of constrained nonlinear systems. Fur-
thermore, for linear systems this work reduces the complexity of receding horizon tracking
controllers compared to current state-of-the-art methods by exploiting the flatness of sliding
hyperplanes. The practicality of the proposed control approach is demonstrated by using
applications from vehicle dynamics. The applications include an autonomous underwater
robotics problem, an automotive engine control scenario, and a self-driving vehicle control
case study. Simulations and real-world experiments confirm the effectiveness of the developed
control methodology. The results indicate that the proposed control scheme is typically easy
to tune, behaves well under system uncertainty, and has manageable computational require-
ments that make it amenable to fast systems with sampling times of the order of fractions
of seconds.
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Introduction
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Chapter 1

Motivation

The work presented in this dissertation is motivated and outlined in this introductory chap-
ter. First, systems and control research and its application to vehicle dynamics is motivated
in order to introduce the reader to the broader background of this dissertation. Second,
conceptual foundations and the central idea of developing a novel predictive control scheme
with sliding surfaces is discussed. Third, the contributions of this work are explicitly stated
and the chapter closes with an overview of the structure of this dissertation.

1.1 Background
Academia and industry are investing tremendous efforts in the development of intelligent
vehicle systems for ground, air, and sea vehicles. The current surge in vehicle technology
research is motivated by the enormous potential of such systems to benefit society and the
high revenue that is expected from the transportation and mobility sector in the future. This
includes work on autonomous cars that have the potential to drastically increase roadway
safety. Further examples are advanced powertrain research for low and zero emission vehicles
as well as novel suspension systems that increase ride comfort. In addition, autonomous or
remote controlled robots can be vastly applied for tasks that are dangerous or otherwise
undesirable for humans.

The desired progress in the area of vehicle systems requires engineering solutions with
more complex features and increased functionality [79]. Hence, the current trends demand
for advancements in vehicle software in general and further development and deployment of
advanced control techniques in particular. Therefore, vehicle research has become a main
incubator for advanced systems and control research at the current time. The importance
of systems and control research in light of the current technology innovations was also em-
phasized in the recent paper [57]. The challenging task of advanced control algorithms is to
compute intelligent control actions for possibly complex and nonlinear systems subject to
physical and computational budget limits.
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1.2 Terminology and Central Idea
The work [57] specifically highlights the role of receding horizon control, also known as model
predictive control (MPC), as a promising approach for addressing the current challenges in
the automatic control field. The popularity of MPC is due to its ability to account for
complicated system dynamics, forecasted environment information, and system constraints.
MPC uses the receding horizon technique to approximately solve the infinite horizon optimal
control problem. Using a model of the considered system, MPC extrapolates the system
evolution over a finite prediction horizon, while accounting for constraints and forecasted
environment information. Then, a sequence of future control moves is obtained as the
solution to a constrained optimization problem that minimizes a cost function encoding
the desired system behavior. Once the optimization problem is solved, part of the resulting
solution sequence is applied and by repeating this procedure the plan is revised once new
measurements become available. While MPC is extremely powerful, unfortunately, it can be
challenging to explicitly prove stability especially for nonlinear and tracking control systems.
Another bottleneck is the relatively high computational budget that MPC requires, but this
becomes less critical as computing hardware is becoming more and more powerful. While
the MPC objective is most commonly formulated as a quadratic function in terms of the
states and inputs, this is a somewhat arbitrary choice as the success of MPC is rather linked
to the flexibility obtained from its generality [11]. This raises the question whether there are
other cost functionals that can prove beneficial in certain control scenarios.

Another method that has attracted the attention of many researchers and engineers
especially in the nonlinear control and vehicle dynamics fields is sliding mode control (SMC).
The popularity of SMC is inherently linked to its rich theory and its practicality, which allows
application to nonlinear and uncertain systems. The essence of SMC lies in formulating a
sliding manifold in state space with guaranteed stability. Discontinuous control action is
used to steer the system state onto this manifold and render it invariant by confining the
state in a sliding motion. In effect, this technique translates a possibly high dimensional
tracking control problem to a lower dimensional stabilization control problem [91]. Several
extensions to classical SMC were proposed in the past decades that allow for the application
of the simple concept of sliding mode control to a variety of systems and control scenarios.
A discrete-time counterpart to sliding mode control was established mostly in the 1990s.
Different discrete-time sliding control strategies can be found in the literature, see e. g. [28,
29, 2] as well as the comprehensive overview included in [53].

In contrast to sliding mode control, sliding control (SC) uses the concept of a sliding
hypersurface for design, but typically no discontinuous control is used. In order to avoid
confusion about the terminology, the following quote that is in agreement with standard
nonlinear control literature like [91] gives additional insight in the use of the term sliding
control versus sliding mode control.

“We use the term sliding control rather than sliding mode control when the uti-
lized design procedure is generally similar to the sliding mode method. A stable
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differential/difference manifold is defined such that on this manifold all trajecto-
ries approach the desired trajectory. The control is chosen to drive all trajectories
to this manifold. The term sliding mode is used when a discontinuous control is
designed that can drive all trajectories to this manifold in finite time forcing the
system to enter the sliding mode which is a zero amplitude, infinite frequency
motion along the manifold. On the other hand, the term sliding control refers
to a smoothed version of the sliding mode control law that drives all trajectories
to a boundary layer around the manifold and thus does not necessarily result in
perfect asymptotic tracking in the presence of uncertainty.”

J. Karl Hedrick

A remaining weakness of sliding control is the difficulty of incorporating constraints on the
system’s state and input. Setting constraints on the control input and the system’s state
vector significantly complicates the design of sliding controllers and little research has been
done on methods that incorporate constraints. In the previous works [46, 82, 81] the problems
of state and output constraints were addressed for sliding control systems, however, the issue
of also having a constrained input was not considered. In fact, it is common engineering
practice to ignore input constraints during the design phase and simply apply saturation
to the computed control signal to ensure that the signal is in some feasible range when
implemented. This approach, however, can cause poor system behavior or even instability
of the closed-loop. Therefore, finding a systematic way of handling constraints is a highly
relevant engineering issue.

Inspired by the complementary characteristics of sliding control and model predictive
control, this work merges sliding surfaces into the receding horizon control design process.
The resulting control scheme is called receding horizon sliding control (RHSC).

1.3 Main Contributions
This work contributes the development of the receding horizon sliding control technique and
studies its application to selected vehicle systems. This dissertation first reviews similar
control approaches from the existing literature. Subsequently, expanding on previous works,
this dissertation develops RHSC for a wide class of nonlinear systems exploiting invariance
properties of sliding surfaces for guaranteeing persistent feasibility and asymptotic stability.
Moreover, for linear tracking control problems, the flatness property of sliding surfaces is used
to obtain a predictive controller of minimal complexity. The ideas presented in this work are
applied to practical control problems. The applications include an autonomous underwater
robotics problem, an automotive engine control scenario, and a self-driving vehicle control
case study. Simulations and real-world experiments confirm the effectiveness of the developed
control methodology. The results indicate that the proposed control scheme is typically
easy to tune, behaves well under system uncertainty, and has manageable computational
requirements that make it amenable to fast systems with sampling times of the order of
fractions of seconds.
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This work spans across multiple domains of control theory, specifically those are dis-
crete sliding control (SC), model predictive control (MPC), and existing combinations of the
aforementioned two methodologies (SC/MPC). The impact of this work on each individual
domain is summarized in the following. The contributions can roughly be categorized in
theoretical and application related contributions.

SC: This work contributes a new discrete sliding control approach that is extended with
a receding prediction horizon, while most of the standard design and tuning remains un-
changed. This way, the popular discrete sliding control approach is extended to constrained
nonlinear systems and to systems that require anticipatory control action. Hence, the new
approach allows application of discrete sliding control concepts to a far larger class of sys-
tems that would normally be hard to control using classical discrete sliding control. Specific
examples treated in this dissertation that require anticipatory control action are the path
following control problems for an autonomous car and an underwater robot.

MPC: With regard to the model predictive control community, this work contributes a
novel predictive control scheme for a wide class of nonlinear systems. In particular, it con-
tributes a suitable choice for the cost function and a systematic way for obtaining invariant
sets for nonlinear systems. These two components are the key for proving persistent feasibil-
ity and stability but are typically hard to find for general nonlinear systems. Furthermore, for
provably stable linear setpoint tracking control, this work reduces the complexity of state-of-
the-art methods by reducing the number of necessary optimization variables and constraints.
In addition, this work covers an engine control scenario, where RHSC outperforms MPC in
terms of tracking performance and average computational effort.

SC/MPC: This work contributes to the theory of combined SC/MPC schemes for nonlin-
ear and MIMO systems, which are rarely covered adequately by the existing approaches. To
the author’s knowledge, the application of combined SC/MPC approaches to provably sta-
ble and persistently feasible constrained tracking control is entirely new. On the application
side, this work contributes three new applications that have not been treated with SC/MPC
approaches before. Moreover, the experimental validation of a combined SC/MPC method
on systems with sampling times of the order of fractions of seconds such as autonomous
vehicle control is unprecedented at this point. The observed robust stability in the presence
of uncertainty and the good performance in practical applications seen from the case studies
in this work support the observations in the SC/MPC literature.

1.4 Outline
The structure of the remainder of this dissertation is detailed in the following. The remaining
chapter 2 of this introductory part I gives a review of predictive control fundamentals that
this dissertation builds on. Part II of this dissertation develops and analyzes the receding
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horizon sliding control technique. In particular, chapter 3 contains a literature review on
related approaches and receding horizon sliding control is formulated for nonlinear output
error regulation control systems. Further theoretical developments for constrained linear
tracking control systems are given in chapter 4. Application of receding horizon sliding
control to different vehicle systems is discussed in part III. Specifically, chapter 5 discusses
the application of RHSC to the three-dimensional path following problem of an autonomous
micro-underwater vehicle. In chapter 6, RHSC is applied to a cold-start control problem.
Finally, in chapter 7, the RHSC method is applied to an autonomous car for autonomously
performing severe maneuvers, both in simulations and real-world experiments. Finally, chap-
ter 8 in part IV summarizes this dissertation and an outlook on possible future research
directions is given.
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Chapter 2

Predictive Control Fundamentals

This chapter reviews some of the fundamental concepts of model predictive control that
are essential for the developments in the remainder of this dissertation. In particular, the
chapter contains a discussion of the control methodology’s basic algorithm, an introduction
to the mathematical notation conventions, and a summary of selected theoretical results.

2.1 Model Predictive Control Algorithm
The conceptual idea of model predictive control, or receding horizon control, is the following.
At every time-step, the state of the system of interest is measured. Based on a prediction
model of the considered system, the MPC algorithm generates a plan of future actions/con-
trols in an attempt to optimize a given performance index over a finite preview window.
The first part of the plan is executed and the system evolves accordingly for one sampling
interval. Instead of executing the complete plan of actions, at the next time-step, the algo-
rithm incorporates new information in terms of an updated measurement of the state vector.
Starting from the updated state, the MPC algorithm replans the sequence of future controls
with the prediction window shifted forward by one step. This procedure repeats at every
time-step.

More formally, the standard receding horizon control strategy [9] is summarized in al-
gorithm 1. The main challenge is the design of a constrained finite-time optimal control

Algorithm 1 Online receding horizon control
1: repeat
2: measure the state vector at the current time-step
3: solve a CFTOC problem and obtain a future control sequence
4: command the first element of the obtained future control sequence to the plant
5: let the plant evolve for one sampling interval
6: increase the current time-step by one
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(CFTOC) problem [9] that captures the considered control objective within a prediction
window. By modifying the CFTOC problem, the concept of predictive control can be ap-
plied to different system classes and control scenarios. Selected model predictive control
variants are discussed in the following sections of this chapter. First, MPC for regulation
problems is addressed. Subsequently, specific MPC formulations for tracking are covered.

2.2 MPC for Regulation Problems
Firstly, consider the most common model predictive control formulation which is concerned
with regulation, i. e. the problem of driving the system state to the origin. The cases of
nonlinear and linear systems are treated separately in the following.

2.2.1 MPC Regulator for Nonlinear Systems
Consider discrete-time systems with state vector x(k) ∈ Rn and input vector u(k) ∈ Rm,
where the time-step k is indicated in parentheses representing the respective signal at time
kTs with Ts denoting the sampling time. The evolution of the system state is governed by
equations of the form x(k) = f(x(k),u(k)) that are assumed to have an equilibrium point
at the origin, i. e. 0n×1 = f(0n×1,0m×1). Assume the exact prediction model

xk+1 = f(xk,uk) (2.1)

is available and state and input constraints are of the form

x ∈ X ⊆ Rn, (2.2)
u ∈ U ⊆ Rm. (2.3)

Since (2.1) involves model-based predictions of the system’s signals rather than the actual
signals, a subscript is used to indicate the time-step rather than parentheses.

Using the shorthand notation

Xk =
[
xk . . . xk+N

]
, (2.4)

Uk =
[
uk . . . uk+N−1

]
, (2.5)

the standard CFTOC problem for MPC regulators can be formulated as

min
Xk,Uk

p(xk+N) +
N−1∑
i=0

q(xk+i,uk+i) (2.6)

s. t. xi+1 = f(xi,ui), i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ Xf
xk = x(k).
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Problem (2.6) minimizes a chosen performance index subject to a set of constraints using
the sequences of future states and inputs, Xk and Uk, as optimization variables. The cost
function in (2.6) is separated in a terminal cost term, p(xk+N), and a sum over stage cost
terms, q(xk+i,uk+i), i = 0, . . . N−1. Furthermore, the constraints in (2.6) include the system
dynamics from (2.1) as well as the conditions (2.2), (2.3). Moreover, a terminal constraint
involving the terminal set Xf ⊆ X is included. The problem is initialized with the current
state, x(k), that is assumed to be measurable.

Two key properties for receding horizon controllers are persistent feasibility and asymp-
totic stability [9]. The following theorems give conditions under which persistent feasibility
and asymptotic stability are guaranteed. The theorems rely on invariant set concepts that
are defined first.

Definition 2.1 (From [9]). A set O ⊆ X is said to be a positive invariant set for the
autonomous system xk+1 = f(xk) subject to the constraints xk ∈ X , ∀k ≥ 0, if

x0 ∈ O ⇒ xk ∈ O,∀k ∈ N+. (2.7)

Farther, the set O∞ ⊆ X is the maximal positive invariant set for the autonomous system
xk+1 = f(xk) subject to the constraints xk ∈ X ,∀k ≥ 0, if O∞ is invariant and O∞ contains
all invariant sets contained in X .

Definition 2.2 (From [9]). A set C ⊆ X is said to be a control invariant set for the system
xk+1 = f(xk,uk) subject to the constraints xk ∈ X ,uk ∈ U ,∀k ≥ 0, if

x0 ∈ C ⇒ ∃uk ∈ U : f(xk,uk) ∈ C, ∀k ∈ N+. (2.8)

Farther, the set C∞ ⊆ X is the maximal control invariant set for the system xk+1 = f(xk,uk)
subject to the constraints xk ∈ X ,uk ∈ U , ∀k ≥ 0, if C∞ is control invariant and C∞ contains
all control invariant sets contained in X .

Theorem 2.1 (From [9]). Consider algorithm 1 with the CFTOC problem (2.6) in line 3
and with N ≥ 1. If Xf is a control invariant set for system (2.1), (2.2), (2.3), then the
receding horizon controller is persistently feasible.

Proof. The proof is given in [9].

Theorem 2.2 (From [9]). Consider algorithm 1 with the CFTOC problem (2.6) in line 3
and with N ≥ 1. Assume that

• q and p are positive definite functions;

• the sets X , Xf , and U are closed and contain the origin in their interior;

• Xf is control invariant;

• the condition minv∈U ,f(x,v)∈Xf
p(f(x,v))− p(x) + q(x,v) ≤ 0,∀x ∈ Xf holds.
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Then, the state of the closed-loop system converges to the origin, i.e. limk→∞ x(k) = 0, and
the origin of the closed-loop system is asymptotically stable.

Proof. The proof is given in [9].

Remark 2.1. For a given nonlinear systems, it is often very difficult to compute the terminal
invariant set, Xf , and a suitable terminal cost function, p(x).

2.2.2 MPC Regulator for Linear Systems
For the case of a linear system with quadratic terminal and stage cost terms as well as
polyhedral input and state constraints, the CFTOC problem (2.6) simplifies to the following
form,

min
Xk,Uk

‖xk+N‖2P +
N−1∑
i=0

‖xk+i‖2Q + ‖uk+i‖2R (2.9)

s. t. xi+1 = Axi +Bui, i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ Xf
xk = x(k).

The weighted Euclidean norm is used in (2.9) and the matrices Q and R are restricted to
be positive definite. The pair (A,B) is assumed to be stabilizable.

A standard way to guarantee that the results of theorems 2.1 and 2.2 apply in this
simplified case uses the linear quadratic regulator as a terminal control law, i. e. v = Kx

with K = −
(
R+B>P∞B

)−1
B>P∞A. The matrix P∞ is found from the algebraic Riccati

equation
P∞ = A>P∞A+Q−A>P∞B(R+B>P∞B)−1B>P∞A. (2.10)

Then, as shown in [9], a suitable terminal cost matrix is P = P∞. Moreover, denote the
maximal positive invariant set of the autonomous system

xk+1 = (A+BK)xk (2.11)

subject to the constraints

x ∈ X , (2.12)
Kx ∈ U (2.13)

as O∞. Then, a suitable terminal set is found as Xf = O∞. Hence, for the given simplified
scenario with linear system dynamics a standard procedure for finding persistently feasible
and asymptotically stable predictive controllers exists.
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Remark 2.2. While terminal invariant sets are a powerful concept for ensuring stability and
persistent feasibility of receding horizon controllers, they are rarely used in practice. Instead,
long prediction horizons are typically used to increase the feasibility region of predictive con-
trollers and simulation trials and experiments are carried out to verify closed-loop stability.

2.3 Tracking MPC for Linear Systems
In a series of publications [66, 67, 23, 24], the authors develop a provably stable and persis-
tently feasible MPC for setpoint tracking of linear systems. The method allows for changing
setpoints online, which can lead to infeasibility when using classical MPC regulation schemes.
The main result on setpoint tracking MPC from [66, 67, 23, 24] is reviewed in this section.

For the following developments a linear prediction model of the following form is consid-
ered,

xk+1 = Axk +Buk, (2.14)
yk = Cxk +Duk. (2.15)

The newly added output is denoted yk ∈ Rp. The pair (A,B) is assumed to be stabilizable.
Moreover, polyhedral set constraints of the form

x ∈ X ⊆ Rn, (2.16)
u ∈ U ⊆ Rm (2.17)

are assumed. Then, for any given target output, r, it is ensured that the equation

[
A− In×n B 0n×p

C D −Ip×p
]x̃ũ

r

 =

[
0n×1

0p×1

]
(2.18)

has a solution [66]. Solving (2.18) yields the desired setpoint for a given reference value, r,
and can be described with a parameter vector of minimal size, θ ∈ Rl, as

x̃ = Nθθ, (2.19)
ũ = Mθθ, (2.20)
r = Gθθ. (2.21)

As a next step, the linear quadratic regulator parametrized by θ is used as a terminal
control law, i. e. v = K(x− x̃)+ ũ = Kx+Lθ with L = −KNθ +Mθ. For given positive
definite matrices Q ∈ Rn×n and R ∈ Rm×m, the algebraic Riccati equation,

P∞ = A>P∞A+Q−A>P∞B(R+B>P∞B)−1B>P∞A, (2.22)
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yields P∞. Set P = P∞ and K = −(R + B>P∞B)−1B>P∞A and define an augmented
state vector as w :=

[
x> θ>]>. Then, the dynamics of the augmented system become

wk+1 =

[
A+BK BL

0l×n I l×l

]
wk =: Aaugwk (2.23)

subject to the constraint
w ∈ W , (2.24)

where
W :=

{
w :

[
In×n 0n×l

]
w ∈ X ,

[
K L

]
w ∈ U

}
. (2.25)

The so-called invariant set for tracking is then found as the maximal positive invariant set
of (2.23) subject to (2.24) as

T :=
{
w : Aaugkw ∈ W ,∀k ≥ 0

}
. (2.26)

Then, the fundamental idea from [66] is to introduce an additional optimization variable,
θ̃, and to allow for reference offset that is penalized with an additional term in the cost
function. This way, persistent feasibility can be maintained even during large reference
jumps. The corresponding CFTOC problem for the tracking MPC can be formulated as
follows [24],

min
Xk,Uk,θ̃

‖xk+N −Nθθ̃‖2P +
N−1∑
i=0

‖xk+i −Nθθ̃‖2Q + ‖uk+i −Mθθ̃‖2R + ‖T (θ̃ − θ)‖∞ (2.27)

s. t. xi+1 = Axi +Bui, i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1[
x>
k+N θ̃>

]> ∈ T
xk = x(k),

where θ is such that r = Gθθ. The matrix T ∈ Rl×l involved in the offset cost function is
restricted to be designed as non-singular. Using (2.27) as part of a receding horizon control
scheme yields a persistently feasible controller with desirable convergence properties as stated
in the following theorem.

Theorem 2.3 (From [24]). Consider algorithm 1 with the CFTOC problem (2.27) in line
3 and with N ≥ 1. If the given target operating point, r, is such that θ ∈ O, then for
any feasible initial state the closed-loop system asymptotically evolves to the target operating
point. If the given target operating point, r, is such that θ /∈ O, then for any feasible initial
state the closed-loop system asymptotically evolves to the operating point θ̃∗ that minimizes
the offset cost function, i. e.

θ̃∗ = arg min
θ̃∈O
‖T (θ̃ − θ)‖∞. (2.28)

The set O is given by O :=

{
θ :

[
Nθ

I l×l

]
θ ∈ T

}
.
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Proof. The proof is given in [24].

2.4 Delta Input Formulation of MPC
For general nonlinear output tracking problems it is often difficult to obtain a state and
input reference trajectory. A popular alternative MPC scheme in this case is the so-called
delta input formulation [9]. Assume a state space prediction model of the form

xk+1 = f(xk,uk), (2.29)
yk = h(xk,uk) (2.30)

with the constraints

x ∈ X ⊆ Rn, (2.31)
u ∈ U ⊆ Rm. (2.32)

The idea of the delta input formulation is to penalize the deviation of the system output
from its desired value and the change in the input signal. Using e. g. the weighted Euclidean
norm, the resulting scheme reads

min
Xk,Uk

‖yk+N − rk+N‖2Q +
N−1∑
i=0

‖yk+i − rk+i‖2Q + ‖uk+i − uk+i−1‖2R (2.33)

s. t. xi+1 = f(xi,ui), i = k, . . . , k +N − 1

yi = h(xi,ui), i = k, . . . , k +N

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ Xf
xk = x(k)

uk−1 = u(k − 1).

Again, scheme (2.33) includes the system’s state transition model as a constraint. Due to
the inclusion of the output in the cost function, the output model is added as a constraint
as well. In addition to the standard state, input, terminal, and initial constraints, the past
control has to be initialized in order to evaluate the cost function in (2.33). As before, an
MPC can be obtained by using the CFTOC problem (2.33) in line 3 of algorithm 1.
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Part II

Receding Horizon Sliding Control
Theory



15

Chapter 3

RHSC for Nonlinear Systems

This chapter formalizes receding horizon sliding control for output error regulation of non-
linear systems. In particular, the concept of sliding hypersurfaces is used to translate this
output tracking goal into a state space objective. Sliding hypersurfaces are designed to en-
code desired tracking error dynamics, hence, the design and tuning is easy and intuitive.
By applying a predictive control framework, the controller minimizes the deviation of the
system’s state to the designed reference surfaces. Constraint satisfaction is directly inherited
from nonlinear MPC. Furthermore, stability and persistent feasibility are proven by exploit-
ing the invariance property of sliding hypersurfaces. A simple motion control problem is used
to illustrate the effectiveness of the proposed control methodology. Parts of this chapter have
been previously published in the works [39] and [94].

3.1 Motivation and Literature Review
The idea of combining sliding control with so-called soft computing methods such as neural
networks, fuzzy logic or probabilistic reasoning, has resulted in broad research efforts and
enormous output in terms of publications as the survey paper [100] reports. Along a similar
line of thought but far less exposed in the literature stands the idea of combining sliding
control with core concepts from model predictive control. Hybrid control methodologies
proposed so far can be roughly categorized in two groups. The first group utilizes a receding
horizon framework together with a sliding surface cost function. The second class of algo-
rithms have a model predictive controller at its core and use sliding control in an outer loop
that provides robustness to the overall control scheme. This work follows the first research
path. Existing works along this line of thought are reviewed next. The interested reader
is referred to [84, 65, 64] for further details on the second research path, which is mostly
concerned with mitigating the computational burden and conservativeness of robust MPC.

The fact that the characteristics of MPC and SMC are complementary and the idea of
combining both methods in one control scheme was pointed out in [102]. In this paper, a
control method called sliding mode model predictive control is proposed for linear multi-
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input systems. The controller uses a constrained optimization problem with a performance
index that penalizes the distance of the system state from a sliding surface as well as the
control effort to reach this surface. Once the state is on the sliding surface, it remains
there and slides to the origin. The paper [101] extends the ideas from [102] to nonlinear
multi-input systems. While pioneering the idea of combining model predictive control and
sliding control, the works [102, 101] are incomplete, e. g. as pointed out in [98] the persistent
feasibility property is not considered. Persistent or recursive feasibility ensures that feasi-
bility of the underlying optimization problem at the initial time-step yields feasibility at all
successive time-steps. Since this condition is also essential for stability, the stability proofs
in [102, 101] are not adequate. In [98] a thorough treatment of the persistent feasibility and
stability properties is given for linear single-input systems. Moreover, it is shown that the
robustness properties of SMC can be exploited in a receding horizon control formulation by
using a min-max formulation of the corresponding constrained optimization problem. The
resulting methodology is named model predictive sliding mode control and as in [102, 101]
the functionality of the methodology is demonstrated with a simple simulation example.

Further related work has appeared in [43], where an explicit discrete sliding controller
with prediction horizon was derived but it only applies to unconstrained linear systems. On
the other hand, in [16] generalized predictive control is combined with variable structure
control for linear single-input single-output (SISO) systems. Successful simulations of the
resulting controller applied to a chemical process justify the novel design. It is reported that
the resulting controller inherits anticipatory actuation from generalized predictive control
and has good robustness under parameter variations. The paper [78] develops a so-called
predictive sliding mode controller for first-order plus dead time systems that combines gen-
eralized predictive control with discrete sliding mode control. It is emphasized that the
resulting controller only requires a small number of tuning parameters. In [76], predictive
sliding mode controllers are applied using a SISO first-order plus dead time model of a solar
energy plant. The resulting control strategy is successfully tested on a distributed solar col-
lector field. In the paper [31], a method called sliding mode predictive control for linear SISO
systems is applied to a solar air conditioning plant. The authors report that the resulting
controller has good robustness properties and successfully handles setpoint changes, with-
out requiring bigger computational resources than classical MPC. The experimental tests
reported in [76] and [31] both utilize sampling intervals of the order of several seconds.

This chapter builds on the existing literature [102, 101, 98] and uses sliding surfaces for
deriving predictive controllers. However, the resulting design from this work is applicable
to a wide class of multi-input multi-output (MIMO) nonlinear systems. In essence, sliding
surfaces are used to generate a reference location in state space based on the desired output
signal. The development leads to a receding horizon cost function, which penalizes the
distance of the system state from this reference manifold. On the surfaces, predefined error
dynamics hold that ensure tracking error decrease as desired. A detailed analysis shows
that the developed cost function is a suitable Lyapunov-like function for analyzing stability.
Moreover, a subset of the sliding surface that remains invariant in the presence of system
constraints is extracted from the sliding surface and utilized as a terminal set within a
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predictive control framework. The modified cost and the novel terminal set yield the key
components for deriving a provably stable and persistently feasible predictive control scheme.
The developed control method is referred to as receding horizon sliding control.

The remainder of this chapter is structured as follows. Section 3.2 describes the concept
of sliding surfaces for nonlinear SISO and MIMO systems. RHSC for SISO and MIMO regu-
lation problems is discussed in sections 3.3 and 3.4, respectively. These sections also include
persistent feasibility and stability proofs. Subsequently, the proposed control algorithm is
further illustrated in section 3.5 with a simple nonlinear motion control example. Concluding
remarks on this chapter are given in section 3.6.

3.2 Sliding Surfaces for Nonlinear Systems
This section introduces sliding surfaces for nonlinear systems, which is a key concept in the
development of RHSC in this chapter. Based on nonlinear system equations, sliding variables
and sliding hypersurfaces are derived. The section first covers single-input single-output
systems and, subsequently, the presented ideas are extended to the multi-input multi-output
case.

3.2.1 SISO Systems
Consider discrete-time SISO dynamical systems in state space form. The constrained state
vector is denoted by x ∈ X ⊆ Rn, the constrained input signal is u ∈ U ⊆ R, and y ∈ R
denotes the output. The sampling time is Ts and the system’s signals at time kTs are
represented by x(k), u(k), and y(k). For simplicity it is assumed that x(k) and y(k) are
exactly known at the current time-step.

Furthermore, let

xk+1 = f(xk, uk), (3.1)
yk = h(xk) (3.2)

constitute an exact prediction model for extrapolating the system evolution into the future.
Subscripts rather than brackets indicate the time-steps in (3.1), (3.2) in order to emphasize
that these equations are a prediction model for the system’s signals. Moreover, the smooth
state transition map and output function are symbolized by f : Rn×R→ Rn and h : Rn → R,
respectively. The following assumptions are imposed on the system equations (3.1), (3.2).

Assumption 3.1. Everywhere in the feasible set X , the system (3.1), (3.2)

• has well-defined and fixed relative degree d;

• is globally minimum phase.
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The relative degree for discrete nonlinear SISO systems is the number of delay steps
that it takes for the input to directly affect the output, see [49] for the formal definition.
The minimum phase assumption ensures that the system’s zero dynamics are asymptotically
stable.

The control goal consists of letting the system track a desired output reference. Different
from the classical predictive control literature the concept of sliding hypersurfaces is used for
approaching the tracking objective in this work. In particular, the surface design procedure
from [89, 90] is adopted in this work. Conceptually, a sliding surface is defined as a manifold
in state space, where stable output error dynamics hold.

Let the tracking error be denoted by

ek = yk − rk, (3.3)

representing the difference between the system output from (3.2) and its predefined desired
reference value, rk. Using the shorthand notation D(e)k, let a general output error difference
equation of order l = d− 1 be defined as follows [54],

D(e)k := ek+l − δ(ek, . . . , ek+l−1) = 0. (3.4)

The function δ : Rl → R is to be chosen by the designer to encode desired error dynamics
for the system. It is required that the design is such that ek = 0 is a globally asymptotically
stable equilibrium point of ek+l = δ(ek, . . . , ek+l−1) [54]. Hence, in addition to stability in
the sense of Lyapunov it can be concluded that

D(e)k = 0,∀k ⇒ lim
k→∞

ek = 0. (3.5)

Then, a sliding variable is readily defined as

sk = D(e)k. (3.6)

An alternative representation of the sliding variable can be obtained through recursive
substitution using the relations (3.1), (3.2), and (3.3). Then the sliding variable (3.6) can
be rewritten as a function of the state vector at time-step k and the desired output,

sk = Ψ(xk, rk, . . . , rk+l). (3.7)

The chosen design procedure guarantees that sk from (3.7) has relative degree equal to one.
In other words, sk+1 = Ψ(xk+1, rk+1, . . . , rk+l+1) is an explicit function of the control uk after
substituting (3.1).

As in [91], driving sk to zero simultaneously corresponds to enforcing the predefined error
dynamics D(e)k = 0 and to forcing the system to approach a hypersurface in state space
that is parametrized by the reference signal and given by Ψ(xk, rk, . . . , rk+l) = 0. Figure
3.1 illustrates a two-dimensional sliding surface in a three-dimensional state space. As the
depicted exemplary trajectory indicates, once the state is on the sliding surface, the designed
error dynamics apply and the system slides to the desired setpoint.

Next, a similar procedure is discussed for MIMO systems.
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Figure 3.1: Schematic of a two dimensional sliding surface in a three dimensional state space
as well as an exemplary trajectory of the state approaching the surface and sliding to the
origin once it is on the surface

3.2.2 MIMO Systems
Consider the class of prediction models that can be defined by the nonlinear MIMO discrete-
time system equations

xk+1 = f(xk,uk), (3.8)
yk = h(xk). (3.9)

The state vector is again denoted by x ∈ X ⊆ Rn, the input vector is u ∈ U ⊆ Rm,
and the output vector is y ∈ Rp, where X and U contain the feasible state and control
vectors as usual. The state transition function is now denoted as f : Rn × Rm → Rn and
the measurement function is defined as h : Rn → Rp. As before, the discrete time-step is
indicated by the subscripts k and k+1, respectively. Additionally, the following assumption
is made.

Assumption 3.2. Everywhere in the feasible set X , the system (3.8), (3.9)

• has well-defined and fixed relative degree (d1, . . . , dp);

• is globally minimum phase.

The control goal consists of steering the system to desired output trajectories. Formally,
in the MIMO case this corresponds to driving the vector

ek = yk − rk (3.10)
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to zero. The signal e ∈ Rp consists of the p tracking errors between outputs, yk, and desired
reference outputs, rk.

Extending the design method from section 3.2.1 to MIMO systems, desired dynamics are
selected for each output error. In particular, let δi(ei,k, . . . , ei,k+li−1), i = 1, . . . , p denote p
functions of the tracking error components analogous to the previous section. The li equal
the relative degree di of the ith output minus one, i. e. li = di − 1. Using the shorthand
operator notation D(e)k, the above is formalized as follows,

D(e)k :=

ek+l1 − δ1(e1,k, . . . , e1,k+l1−1)
...

ek+lp − δp(ep,k, . . . , ep,k+lp−1)

 . (3.11)

The functions in (3.11) are to be chosen by the designer. Thereby, it is required that the
p difference equations in the tracking errors, D(e)k = 0, are globally asymptotically stable.
In addition to stability, it is required that the functions δi are chosen such that they are of
relative degree one, which is analogous to the SISO case.

The sliding variable vector is now readily defined as

sk = D(e)k. (3.12)

Due to the relative degree requirement it is ensured that all components of sk+1 are explicit
functions of at least one control input.

Similar to the previous section, through recursive substitution the sliding variable vector
can be written solely in terms of the state vector at time-step k and the reference as

sk = Ψ(xk, rk, . . . , rk+l). (3.13)

Note that the set of all points xk that satisfy Ψ(xk, rk, . . . , rk+l) = 0p×1 corresponds to
the intersection of p hypersurfaces in state space, where l = maxi∈1,...,p li. The control goal
simply consists of driving sk to this intersection and exploiting the fact that stable output
error dynamics result on this manifold. Figure 3.2 illustrates this for the example of the one-
dimensional intersection of two two-dimensional sliding surfaces in a three-dimensional state
space. As the depicted exemplary trajectory indicates, once the state is on the intersection
of sliding surfaces, the designed error dynamics apply and the system slides to the desired
setpoint.

3.3 RHSC for SISO Regulation Problems
In the following, the receding horizon sliding control strategy is formalized for SISO reg-
ulation problems. First, invariant sets related to sliding surfaces are introduced for the
considered constrained setting. Subsequently, the RHSC scheme is formulated. Finally,
persistent feasibility and stability of the proposed control strategy are analyzed.
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Figure 3.2: Schematic of the one-dimensional intersection of two two-dimensional sliding
surfaces in a three-dimensional state space as well as an exemplary trajectory of the state
approaching the intersection and sliding to the origin once it is on the intersection

3.3.1 Terminal Invariant Set
In the unconstrained case, it is well known that sliding control drives the system to invariant
subsets of the state space [91]. In the following, this idea is formalized in a constrained
setting, where state constraints as well as limited control authority are taken into account.
Under these conditions only a subset of the sliding hypersurface remains invariant as illus-
trated in figure 3.3.

The so-called equivalent control is the input that renders the sliding hypersurface invari-
ant. In other words, the equivalent control, ueq

k , is defined such that it solves the scalar
algebraic equation sk+1 = 0, that means it satisfies

Ψ(f(xk, u
eq
k ), r) = 0 (3.14)

Note that it was used that SISO regulation problems are characterized by rk = r being
constant, i. e. the quantity from (3.7) simplifies according to Ψ(xk, rk, . . . , rk+l) = Ψ(xk, r).

In general, existence of ueq
k is not guaranteed. For a given r the equivalent control depends

on xk and the dynamics of the closed-loop system under the equivalent control are defined
as

xk+1 = f(xk, u
eq
k ) =: f eq(xk), (3.15)

which is only valid in the set

X eq := {x : x ∈ X ,∃ueq ∈ U such that Ψ(f(x, ueq), r) = 0} . (3.16)

In the set X eq it is ensured that the state constraints are satisfied and that the equivalent
control exists [96].



CHAPTER 3. RHSC FOR NONLINEAR SYSTEMS 22

Figure 3.3: Schematic of the invariant subset (dark gray) of a two-dimensional sliding surface
(light gray) in a three dimensional state space

Next, define the maximal positive invariant set of system (3.15) subject to (3.16) as

S :=
{
x : f eqk(x) ∈ X eq,∀k ≥ 0

}
, (3.17)

where the notion of an iterated function was used, i. e. gq(x) = (g ◦ gq−1) (x) and (g◦g)(x) =
g(g(x)). Note that S is a fully dimensional set, it contains the invariant part of the sliding
hyperplane,

S̄ :=
{
x : Ψ(x, r) = 0,f eqk(x) ∈ X eq,∀k ≥ 0

}
, (3.18)

and all states that can be steered to S̄ in one step. In other words, S is the one-step
controllable set [9] of the system (3.15) subject to (3.16) for the target set S̄, i. e. S = K1(S̄).

3.3.2 Controller Formulations
Define Sk+1 as the matrix containing the quantity sk+i, i = 1, . . . , N over an N -step predic-
tion horizon,

Sk+1 :=
[
sk+1 . . . sk+N

]
. (3.19)

In principle, either one of the equivalent definitions (3.6) or (3.7) can be used in (3.19)
leading to slightly different controller formulations.

First, consider the case where (3.7) is used as the sliding variable definition in the future
sequence (3.19) and let

Xk :=
[
xk . . . xk+N

]
, (3.20)

Uk :=
[
uk . . . uk+N−1

]
. (3.21)
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A CFTOC problem for the regulation case can be formulated as

min
Xk,Uk

‖S>
k+1‖22 (3.22)

s. t. si = Ψ(xi, r), i = k + 1, . . . , k +N

xi+1 = f(xi, ui), i = k, . . . , k +N − 1

xi ∈ X , ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ S
xk = x(k).

Due to recursive substitutions involved in obtaining (3.7) from (3.6), it is often more
compact to use (3.6) in (3.19) for nonlinear systems. Hence, this approach will be further
discussed as well. Therefore, let N̄ = N + l and rewrite the sequence of future state vectors
and control signals as

Xk :=
[
xk . . . xk+N̄

]
, (3.23)

Uk :=
[
uk . . . uk+N̄−1

]
. (3.24)

Note that it is necessary to introduce a small number of additional optimization variables at
the end of the prediction horizon in this case compared to (3.20), (3.21). A CFTOC problem
equivalent to (3.22) for this case can be formulated as

min
Xk,Uk

‖S>
k+1‖22 (3.25)

s. t. si = D(e)i, i = k + 1, . . . , k +N

ei = h(xi)− r, i = k + 1, . . . , k + N̄

xi+1 = f(xi, ui), i = k, . . . , k + N̄ − 1

xi ∈ X , ui ∈ U , i = k, . . . , k + N̄ − 1

xk+N ∈ S
xk = x(k).

The cost function in (3.22) and (3.25) is chosen to be a measure of the system’s deviation
from the sliding surface over the prediction horizon. As in classical MPC, at every discrete
time-instant, k, the RHSC obtains a sequence of planned future control inputs and states,
U ∗
k and X∗

k , from solving (3.22) or (3.25). The minimization problems (3.22) and (3.25) are
dependent on the current state, x(k). The control applied to the system is set as the first
component of the obtained future control sequence, i. e. u(k) = u∗k. At the next time-step the
same problem is solved with the prediction horizon shifted by one step, compare algorithm
2. This control approach is referred to as receding horizon sliding control [39].
Remark 3.1. Equations (3.22) and (3.25) consider the RHSC objective in terms of the L2

norm. However, the ideas presented here and in the remainder of this dissertation are not
limited to the L2 case but other norms such as the L1 or L∞ norm can be used as well. Also,
a weighted norm can be utilized if desired.
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Remark 3.2. Comparing scheme (3.22) and (2.6) it can be seen that RHSC can be cast in
the form of a model predictive control scheme. However, the fact that sk = 0 is a difference
equation in terms of the tracking error introduces terms that correlate errors at different
time-steps. Such terms are typically hard to design in classical model predictive control but
they are inherently linked to the system response speed and stability. Therefore, the above
scheme can be thought of as a systematic way to design these cross correlated terms.

Algorithm 2 On-line receding horizon sliding control for nonlinear SISO regulation prob-
lems

1: repeat
2: measure x(k) at time-step k
3: solve (3.22) (or (3.25)) and obtain U ∗

k

4: extract first element u∗k of U ∗
k and set u(k) = u∗k

5: let the system evolve to x(k + 1) = f(x(k), u(k))
6: increase the time-step such that k ← k + 1

3.3.3 Analysis
While the CFTOC problems (3.22) and (3.25) are equivalent, the analysis will be carried out
for scheme (3.22) in the following. The theorems below guarantee persistent feasibility and
asymptotic stability of the proposed regulator scheme. The proofs follow a similar procedure
as used for classical nonlinear MPC schemes [12], but the invariance and stability properties
of the sliding hypersurfaces are exploited here. Moreover, it is shown that the use of sliding
surfaces in the receding horizon control design yields an apparent Lyapunov-like function
that can be used for guaranteeing stability.

Theorem 3.1. Given that the initial state, x0 = x(0), is feasible, the RHSC regulator given
in algorithm 2 is persistently feasible.

Proof. The proof follows from the invariance of the set S. While it may be obvious to some
readers, the proof will be carried out in detail for completeness of the exposition.

Feasibility at the initial time-step implies the existence of optimal state and input se-
quences, X∗

0 =
[
x∗
0 . . . x∗

N

]
and U ∗

0 =
[
u∗0 . . . u∗N−1

]
, such that all constraints are

satisfied, i. e.

x∗
i ∈ X , i = 0, . . . , N − 1, x∗

N ∈ S, (3.26)
u∗i ∈ U , i = 0, . . . , N − 1. (3.27)

Executing u(0) = u∗0 lets the system evolve to x(1) = x∗
1, since the dynamics model (3.1) is

assumed to be exact.
At k = 1, the optimal control sequence U ∗

1 is sought. A candidate sequence is

U ◦
1 =

[
u∗1 . . . u∗N−1 ueq

N

]
. (3.28)
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From (3.27), the first N − 1 entries in U ◦
1 satisfy the input constraints. Furthermore, since

x∗
N ∈ S ⊆ X eq, it follows from the definition (3.16) that the equivalent control exists

and satisfies the constraint ueq
N ∈ U . Likewise, the resulting sequence of states, X◦

1 =[
x∗
1 . . . x∗

N x◦
N+1

]
, satisfies the state constraints. This was already verified in (3.26)

except for the last entry in X◦
1 , which is x◦

N+1. But since S is invariant, definition (3.16)
can be used to conclude that x◦

N+1 ∈ S given that x∗
N ∈ S and the equivalent control ueq

N is
applied.

In summary, feasibility at the initial time-step implies feasibility at the subsequent time-
step. The above procedure can be applied recursively and therefore existence of feasible
control and state sequences is guaranteed for all future times.

Theorem 3.2. The output of the closed-loop system converges to its desired value, i. e.
limk→∞ yk = r, and the closed-loop system is asymptotically stable.

Proof. To prove asymptotic stability of the RHSC regulator scheme, a Lyapunov-like [6]
analysis is utilized. Define a scalar function

V (x(k),Uk) = ‖S>
k+1‖22 (3.29)

with optimal value V ∗(x(k)), where the optimizers are denoted by X∗
k =

[
x∗
k . . . x∗

k+N

]
and U ∗

k =
[
u∗k . . . u∗k+N−1

]
.

At the next time-step, k + 1, a feasible but possibly suboptimal control sequence is
U ◦
k+1 =

[
u∗k+1 . . . u∗k+N−1 ueq

k+N

]
and it follows that

V ∗(x(k + 1)) ≤ V (x(k + 1),U ◦
k+1) = V ∗(x(k))− s2k+1. (3.30)

In (3.30), the fact that sk+N+1 = 0 was used and hence this term does not feature in (3.30),
because the equivalent control, ueq

k+N , is applied as part of the sequence U ◦
k+1. Note that

V ∗ is decreasing unless sk+1 = 0. But sk+1 = 0 yields that the system state is such that
x(k) ∈ X eq. If xk ∈ X eq ∪ S, it can be immediately concluded that ‖S>

i+1‖22 = 0,∀i ≥ k
through repeated application of the equivalent control. Otherwise xk ∈ X eq\S, but X eq\S is
not invariant and hence sk+1+i 6= 0 for i sufficiently large. Consequently, it can be concluded
that

lim
k→∞
‖S>

k+1‖22 = 0. (3.31)

and farther from (3.5), convergence of the tracking error to zero follows,

lim
k→∞

ek = 0. (3.32)

This proves the convergence part of the theorem. Finally, asymptotic stability follows from
the global minimum phase property of system (3.1), (3.2) as stated in assumption 3.1.

Remark 3.3. Note that with regard to the persistent feasibility proof, in general U ∗
1 6=

U ◦
1 . The control sequence chosen by the controller can certainly deviate from the sequence
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obtained by shifting the previous sequence and appending the equivalent control if such
sequence results in a lower cost. However, the control sequence

Uk =
[
u∗k . . . u∗k+N−1 ueq

k+N

]
(3.33)

analogous to (3.28) that uses the controls computed in the previous time-step along with the
equivalent control law can be used to initialize numerical routines effectively.
Remark 3.4. The first inequality sign in (3.30) becomes an equality if the sequence (3.33)
is applied directly, if a solution with lower associated cost is found, the inequality becomes
strict.

3.4 RHSC for MIMO Regulation Problems
This section extends the developments from the previous section to multi-input multi-output
systems. The fundamental ideas remain analogous to the previous section but the notation
is adjusted to account for the MIMO case.

3.4.1 Terminal Invariant Set
In the MIMO case, the equivalent control, ueq

k , is defined such that it solves the system of p
algebraic equations, sk+1 = 0p×1, that is

Ψ(f(xk,u
eq
k ), r) = 0p×1. (3.34)

For a given r the equivalent control depends on xk. Next, define the equivalent dynamics as

xk+1 = f(xk,u
eq
k ) =: f eq(xk) (3.35)

within the set

X eq :=
{
x : x ∈ X ,∃ueq ∈ U such that Ψ(f(x,ueq), r) = 0p×1

}
. (3.36)

The MIMO counterpart of (3.17) becomes

S :=
{
x : f eqk(x) ∈ X eq,∀k ≥ 0

}
. (3.37)

An n − p dimensional subset of S can be found as the invariant portion of the intersection
of the p sliding hypersurfaces. It reads as follows,

S̄ :=
{
x : Ψ(x, r) = 0p×1,f eqk(x) ∈ X eq,∀k ≥ 0

}
. (3.38)
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3.4.2 Controller Formulation
Consider the vector sliding variable over an N -step prediction horizon for a MIMO regulation
problem characterized by a constant reference, rk = r,

Sk+1 =
[
sk+1 . . . sk+N

]
. (3.39)

In (3.39), either (3.13) or (3.12) can be used as the sliding variable definition. In the first
case, the following state and input sequences are obtained,

Xk =
[
xk . . . xk+N

]
, (3.40)

Uk =
[
uk . . . uk+N−1

]
(3.41)

and the corresponding CFTOC problem reads

min
Xk,Uk

‖Sk+1‖2F (3.42)

s. t. si = Ψ(xi, r), i = k + 1, . . . , k +N

xi+1 = f(xi,ui), i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ S
xk = x(k).

In the case when (3.12) is used in (3.39), the slightly longer sequences

Xk =
[
xk . . . xk+N̄

]
, (3.43)

Uk =
[
uk . . . uk+N̄−1

]
(3.44)

are considered, where N̄ = N + l. The resulting CFTOC problem is

min
Xk,Uk

‖Sk+1‖2F (3.45)

s. t. si = D(e)i, i = k + 1, . . . , k +N

ei = h(xi)− r, i = k + 1, . . . , k + N̄

xi+1 = f(xi,ui), i = k, . . . , k + N̄ − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k + N̄ − 1

xk+N ∈ S
xk = x(k).

The receding horizon sliding control strategy for the MIMO case is analogous to the SISO
case and given in algorithm 3.
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Algorithm 3 On-line receding horizon sliding control for nonlinear MIMO regulation prob-
lems

1: repeat
2: measure x(k) at time-step k
3: solve (3.42) (or (3.45)) and obtain U ∗

k

4: extract first element u∗
k of U ∗

k and set u(k) = u∗
k

5: let the system evolve to x(k + 1) = f(x(k),u(k))
6: increase the time-step such that k ← k + 1

3.4.3 Analysis
Below, the MIMO counterpart of the persistent feasibility and stability theorems 3.1 and 3.2
are given.

Theorem 3.3. Given that the initial state, x0 = x(0), is feasible, the RHSC regulator given
in algorithm 3 is persistently feasible.

Proof. The proof is analogous to the proof of theorem 3.1 and follows from the invariance of
the set S.

Theorem 3.4. The output of the closed-loop system converges to its desired value, i. e.
limk→∞ yk = r, and the closed-loop system is asymptotically stable.

Proof. As before, a Lyapunov-like [6] argument is utilized. Define

V (x(k),Uk) = ‖Sk+1‖2F, (3.46)

where V ∗(x(k)) is the optimal value and the optimizers are X∗
k =

[
x∗
k . . . x∗

k+N

]
and

U ∗
k =

[
u∗
k . . . u∗

k+N−1

]
, respectively.

At the next time-step, k+1, the suboptimal sequence U ◦
k =

[
u∗
k+1 . . . u∗

k+N−1 ueq
k+N

]
yields

V ∗(x(k + 1)) ≤ V (x(k + 1),U ◦
k+1) = V ∗(x(k))− ‖sk+1‖22. (3.47)

note that analogously to the SISO case sk+N+1 = 0p×1 and hence this term does not appear
in the above equation. Since V ∗ is decreasing or otherwise sk+1 = 0p×1, it follows that

lim
k→∞
‖Sk+1‖2F = 0 (3.48)

and
lim
k→∞

ek = 0p×1. (3.49)

In addition to convergence from (3.49), the minimum phase property from assumption 3.2 en-
sures that the equilibrium point associated with the steady state output, r, is asymptotically
stable.
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u

x1
m

Figure 3.4: Schematic of a mass-spring-damper oscillator with spring force c exp(−x1)x1,
damping force dx2, and control force u

3.5 Illustrative Example
To illustrate the concepts presented in this chapter, a nonlinear mass-spring-damper oscil-
lator application is used in the following. First, the system model is introduced. Then, the
RHSC design work-flow is illustrated, and finally numerical simulation results are shown.

The considered mass-spring-damper oscillator is depicted in figure 3.4 and it features a
nonlinear spring stiffness. This is a popular example application used by several researchers
and it was originally treated in [69], where the discrete-time state transition model was
formulated as [

x1,k+1

x2,k+1

]
=

[
x1,k + Tsx2,k

x2,k +
Ts
m
(uk − c exp(−x1,k)x1,k − dx2,k)

]
. (3.50)

The nonlinear spring stiffness function is c exp(−x1), where x1 denotes the vertical position
of the mass measured from the static equilibrium configuration. The state x2 is the cor-
responding velocity. The applied control force is denoted by u and the output equation is
simply

yk = x1,k. (3.51)

The parameter values are m = 0.2, c = 3.2 and d = 0.65. The sampling time is set to
Ts = 0.1 and the prediction horizon length is N = 4. The system constrains are[

−1
−1

]
≤
[
x1
x2

]
≤
[
1
1

]
, (3.52)

0 ≤ u ≤ 5. (3.53)

Next, the RHSC design is discussed. The tracking error is simply ek = yk − r as in
(3.3), where the reference is held constant at the exemplary value r = 0.8. Since the relative
degree of the system is d = 2, a sliding surface is designed using a stable first order difference
operator,

sk = D(e)k = ρek − ek+1, (3.54)
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Note that sk ≡ 0 has two interpretations. Besides the interpretation as a stable difference
equation, substituting for ek+1 using the system dynamics, yields

sk = Ψ(xk) =
[
(1− ρ) Ts

] [x1,k
x2,k

]
− (1− ρ)r. (3.55)

From (3.55) it can be seen that sk ≡ 0 represents a hyperplane in x1, x2 space, which is the
so-called sliding surface.

Next, the cost function is defined as

Jk = ‖S>
k+1‖22 = Ek+1QE>

k+1. (3.56)

Along with the standard formulation of the cost, an alternative formulation is included in
(3.56). It involves

Ek+1 =
[
ek+1 . . . ek+N+1

]
(3.57)

and Q ∈ R(N+1)×(N+1) of the form

Q =


ρ2 −ρ 0 . . . 0

−ρ 1 + ρ2
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . 1 + ρ2 −ρ
0 . . . 0 −ρ 1

 . (3.58)

This latter formulation is more in the spirit of classical model predictive control and it can
be seen that the use of a sliding surface for design resulted in the introduction of off-diagonal
weights. Remembering the role of ρ in (3.54), it becomes obvious that the off-diagonal
weights are directly linked to stability as well as the speed of the system response. Only a
single tuning parameter 0 < ρ < 1 is involved in the controller design and it is chosen as
ρ = 0.8.

The equivalent control law is obtained by solving (3.14). The solution is unique in this
particular case and can be obtained in explicit form as

ueq
k =

m

Ts

(
ρ− 1

Ts
(x1,k −R) + (ρ− 2)x2,k

)
+ c exp(−x1,k)x1,k + dx2,k. (3.59)

The resulting equivalent dynamics from (3.15) are affine and read[
x1,k+1

x2,k+1

]
=

[
1 Ts
ρ−1
Ts

ρ− 1

] [
x1,k
x2,k

]
+

[
0

(1−ρ)R
Ts

]
(3.60)

within the set X eq as defined in (3.16).
The set S is the maximal positive invariant set of the autonomous system (3.60) within

the set X eq. The sets X , X eq, and S are shown in figure 3.5 along with the invariant part of
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Figure 3.5: The feasible set X (light gray), all states where the equivalent control is feasible
(red), the set X eq (magenta), the invariant set S (cyan), the invariant part of the sliding
surface (black, solid), and the corresponding equilibrium point (black, dot), where X ⊃
X eq ⊃ S ⊃ S̄

the sliding surface S̄ and the equilibrium point of (3.60). Invariant set computations were
performed using the multi-parametric toolbox 3 (MPT3) in MATLAB.

Simulations were carried out in the MATLAB/SIMULINK simulation environment. The
optimization problem was modeled and solved using YALMIP [68] in conjunction with the
nonlinear programming solver IPOPT [97]. The output tracking performance is shown in
figure 3.6. It can be seen that the output smoothly approaches the desired reference. More-
over, the figure shows that the control signal satisfies the constraints at all times indicating
persistent feasibility as proven.

3.6 Concluding Remarks
This chapter reviewed different combinations of model predictive control and sliding mode
control from the automatic control literature. The main contribution is the proposed receding
horizon sliding control scheme, which is more widely applicable than previously proposed
hybrid predictive/sliding control methods. From a mathematical point of view, RHSC is part
of the class of model predictive controllers, but the underlying design process is innovative.
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Figure 3.6: RHSC output tracking performance in terms of y(k) (blue, solid) and r (black,
dotted) as well as the commanded input signal u(k) (red, solid) and input bounds (black,
dash-dotted)

The role of a sliding surface for design is emphasized, which yields a suitable terminal
invariant set and an intuitive cost function. These are the key concepts for proving the
proposed method stable for a wide class of constrained nonlinear MIMO systems. From a
practical point of view, the tuning is reduced to defining desired error dynamics. A simple
motion control example is used to illustrate the presented ideas.
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Chapter 4

Tracking RHSC for Linear Systems

This chapter adapts the receding horizon sliding control technique introduced in chapter 3 for
constrained linear setpoint tracking. Section 2.3 of chapter 2 reviewed a standard approach
for guaranteeing persistent feasibility of predictive controllers during setpoint changes. This
approach adds an artificial reference variable, whereby allowing for reference offset at a
cost specified by an additional term in the cost function. Typically, this classical approach
employs a linear quadratic regulator parametrized by the artificial reference as a terminal
control law and hence requires invariant set computations in an augmented state/reference
space. In contrast, by exploiting the flatness property of sliding hyperplanes, this chapter
eliminates the artificial reference from the control scheme. Also, the terminal invariant set is
contained in the original dimensions of the state space only and hence it is generally of lower
complexity. The proposed dual mode receding horizon control design approach is proven
to maintain persistent feasibility and stability. This chapter has been published in slightly
modified form in [40].

4.1 Motivation and Literature Review
As demonstrated in chapter 2, a key benefit of model predictive control over other control
techniques is constraint satisfaction. However, this advantage comes at the expense of a
challenging persistent feasibility and stability analysis. As seen in section 2.2, for regulation
problems there is mature theory addressing the feasibility/stability issue by adding a suitable
terminal invariant set constraint and a terminal cost term to the MPC scheme [9]. However,
when target setpoint changes occur, MPC regulation schemes can still become infeasible.

The issue of changing setpoints was addressed in the literature by several authors [18,
83]. Predictive reference management for changing references is presented in [3]. A different
approach is taken in [88], where an optimization variable for terminal constraint scaling
is added in order to avoid infeasibility. Moreover, in a series of publications [66, 67, 23,
24] the authors develop the MPC scheme presented in section 2.3 that allows for changing
setpoints by adding an additional optimization variable which has the interpretation of an
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artificial reference. Moreover, an additional term in the cost function that penalizes the
deviation between the artificial reference and the actual reference is added. An extended
terminal invariant set constraint that is formulated in terms of the augmented state including
the artificial reference guarantees persistent feasibility. The authors also prove asymptotic
stability with respect to feasible desired setpoints and the local optimality property [24].

Extending the state vector with the reference state is necessary in the works [66, 67, 23,
24] because terminal sets corresponding to different setpoints would overlap otherwise, which
introduces ambiguity. This chapter exploits the flatness property of sliding hyperplanes
to eliminate the artificial reference, which results in an invariant set solely contained in
the original state space dimensions. Having a lower dimensional state space can reduce
the computational burden of invariant set computations in some applications and generally
reduces the number of constraints necessary to describe the set. The novel invariant set
for tracking introduced in this chapter is then incorporated in a receding horizon sliding
control scheme by adapting the approach from chapter 3. The controller presented in this
chapter maintains all of the key properties of the MPC from [66, 67, 23, 24] and allows for
eliminating the artificial reference from the control scheme resulting in a slightly reduced
number of optimization variables.

The remainder of this chapter is organized as follows. In section 4.2 the concept of
invariant sliding domains, i. e. invariant sets induced by sliding control laws, is derived for
the tracking case. Subsequently, in section 4.3 the invariant sliding domains from section
4.2 are included in a receding horizon control framework and feasibility and stability proofs
of the resulting schemes are provided. Section 4.4 contains illustrative examples and section
4.5 concludes this chapter.

4.2 Invariant Sliding Domains
It is well known that classical sliding control induces invariant sets in state space [91, 96].
This section formalizes these invariant sets in the presence of constraints. First, the con-
sidered control scenarios are presented. Then, terminal sliding control laws are derived.
Finally, two invariant sets of different complexity for receding horizon control applications
are defined.

4.2.1 Preliminaries
Consider square MIMO systems in state space form, where the state is denoted x(k) ∈ Rn

and u(k),y(k) ∈ Rm are the input and output at time-step k. Furthermore, assume an exact
prediction model of the form

xk+1 = Axk +Buk, (4.1)
yk = Cxk. (4.2)
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Standard notation is used, where the time-step is indicated by the subscript in order to
express that equations (4.1), (4.2) yield model-based predictions of the actual system signals.
The system matrices are A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n. Furthermore, the state and
input are constrained by

x ∈ X ⊆ Rn, (4.3)
u ∈ U ⊆ Rm. (4.4)

The sets X and U are restricted to have the origin in their interior and to be polyhedral.
Additionally, the following assumption is made on the system.

Assumption 4.1. The system (4.1), (4.2)

• has relative degree (d1, . . . , dm);

• is minimum-phase, i. e. the system only has transmission zeros strictly inside the unit
circle of the complex plane.

This work uses the notion of relative degree from [47] that is explicitly formalized for linear
systems in [55, Definition 1]. Note that the minimum-phase assumption implies stabilizability
and detectability of (4.1), (4.2) [17]. The control goal is to let the system track a piecewise
constant desired output signal, rk, i. e. it is desired that the tracking error,

ek = yk − rk, (4.5)

is zero while accounting for the system constraints.

4.2.2 Terminal Sliding Controller
Sliding control is utilized for obtaining a terminal state feedback control law. Specifically,
a Schur polynomial [56] encoding the desired eigenvalues of the output error dynamics is
defined for each of the m output error components. The degree of these error dynamics is
li := di − 1, i = 1, . . . ,m. For invariant set computations, replace rk in (4.5) by an artificial
reference variable, r̃, and form ẽk = yk− r̃ [66]. With abuse of notation, the one-step ahead
operator z is introduced and a sliding variable is defined by following the standard approach
from [47, 89] as

sk :=



(
l1∑
j=0

α1,jz
j

)
ẽ1,k

...(
lm∑
j=0

αm,jz
j

)
ẽm,k


=

 α1,0ẽ1,k + · · ·+ α1,l1 ẽ1,k+l1
...

αm,0ẽm,k + · · ·+ αm,lm ẽm,k+lm

 . (4.6)
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There are two design restrictions. Firstly, for stability reasons the polynomials
∑li

j=0 αi,jz
j

with i = 1, . . . ,m are required to be chosen such that all roots are strictly inside of the unit
circle. Secondly, it is required that αi,li 6= 0, i = 1, . . . ,m. Farther, normalize without loss of
generality such that αi,li = 1, i = 1, . . . ,m.

By recursively substituting the system model (4.1), (4.2) in (4.6) the following represen-
tation for sk results,

sk =


c>1

l1∑
j=0

α1,jA
j

...

c>m
lm∑
j=0

αm,jA
j

xk −


l1∑
j=0

α1,j

. . .
lm∑
j=0

αm,j

 r̃ =: Gxk −Hr̃. (4.7)

The form of sk is standard, compare [92], with an added constant involving the reference to
account for reference tracking rather than regulation to the origin. In (4.7), all off-diagonal
entries of H are zero and c>1 , . . . , c

>
m denote the rows of C. It is important to note that the

specified design restrictions enforce c>i A
jB = 01×m, j = 0, . . . , li, i = 1, . . . ,m and hence

these terms do not feature in (4.7).
Given a certain reference r̃, from (4.7) it is easy to interpret {x : s = 0m×1} as the

intersection of m hyperplanes in state space. On this intersection, the specified desired error
dynamics αi,0ẽi,k+· · ·+αi,li ẽi,k+li = 0, i = 1, . . . ,m hold. For {x : s 6= 0m×1}, the components
si are a measure for the distance of x to the desired manifolds {x∗ : g>

i x
∗ − Hi,ir̃i = 0}

which is directly quantified by si/‖gi‖2, i = 1, . . . ,m, where g>
i is the ith row of G.

The so-called equivalent control law [96, 92], that enforces the state to be on the sliding
manifold in the subsequent time-step is found by setting sk+1 = 0m×1. Using (4.7) it results
that

ueq
k = − (GB)−1 (GAxk −Hr̃) =: Kxk +Lr̃, (4.8)

where existence of (GB)−1 is ensured by assumption 4.1 [55].

4.2.3 Invariant Sliding Domain for Tracking
Next, adapt the procedure from [66] for computing an invariant set for tracking when (4.8)
is used as a terminal controller. Therefore, extend the state vector to w =

[
x> r̃>]>. The

closed-loop dynamics obtained by application of (4.8) are

wk+1 =

[
A+BK BL
0m×n Im×m

]
wk =: Aeqwk (4.9)

subject to the polyhedral constraint w ∈ Weq, where

Weq :=
{
w :

[
In×n 0n×m

]
w ∈ X ,

[
K L

]
w ∈ U

}
. (4.10)
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Note that the matrix A+BK has all eigenvalues strictly inside the unit disc. In particular,
the gain matrix K places m eigenvalues at zero,

∑m
i=1 li eigenvalues come from the design of

(4.6), and the remaining eigenvalues, if any, are given by the transmission zeros and by the
uncontrollable or unobservable eigenvalues of A, all of which are strictly stable as a result
of assumption 4.1. Following [66], the invariant set for tracking is

T :=
{
w : Aeqkw ∈ Weq,∀k ≥ 0

}
. (4.11)

In the remainder, the notation S := projx (T ) is occasionally used for the projection of the
invariant sliding domain T on the original state space.

4.2.4 Reduced Invariant Sliding Domain for Tracking
A subset of S can be obtained with a lower complexity procedure compared to the approach
from section 4.2.3 by exploiting the following result.

Proposition 4.1. For every state xk there exists exactly one artificial reference value r̃,
such that xk lies in the affine space

{
x : s = 0m×1

}
with s parametrized by r̃.

Proof. By construction, exactly one r̃ is found for every xk

sk = 0m×1 ⇔ r̃ = H−1Gxk. (4.12)

It was used that the matrix H−1 always exists. This follows from the diagonal structure
of H as seen in (4.7) and the fact that the polynomials

∑li
j=0 αi,jz

j, i = 1, . . . ,m were
chosen to have no roots on or outside the unit circle. Hence z = 1 cannot be a root and∑li

j=0 αi,j 6= 0, i = 1, . . . ,m.

Substituting from (4.12) in (4.8) yields an alternative form of the equivalent control law.
Instead of driving the system to a surface parametrized by a specific r̃, this version of the
equivalent control keeps the state at time k+ 1 on exactly the same sliding manifold that it
is associated with at time k. In other words, set sk+1 = sk and find

ūeq
k = − (GB)−1G

(
A− In×n

)
xk =: K̄xk. (4.13)

Then, substituting (4.13) in (4.1) yields the equivalent dynamics

xk+1 =
(
A+BK̄

)
xk =: Āeqxk, (4.14)

which are constrained by x ∈ X̄ eq with

X̄ eq :=
{
x : x ∈ X , K̄x ∈ U

}
. (4.15)

Finally, the reduced invariant sliding domain is defined as

S̄ :=
{
x : Āeqkx ∈ X̄ eq, ∀k ≥ 0

}
. (4.16)
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Remark 4.1. Computing T and S̄ requires invariant set computations for autonomous sys-
tems subject to polyhedral constraints, which can be done with open source tools such as the
MPT3 for MATLAB [41]. An advantage of the reduced invariant sliding domain over the
original version is that its computation can be performed in Rn rather than Rn+m and hence
lower computational complexity is generally expected. A disadvantage is that the proposed
method only renders a subset of S invariant, i. e. S̄ ⊆ S.

4.2.5 Set of Equilibrium Points
Finally, also define the set of all feasible steady states [66]. Therefore, let q =

[
x> u> y>]>

and

Qss :=

{
q :

[
A− In×n B 0n×m

C 0m×m −Im×m

]
q =

[
0n×1

0m×1

]
,
[
In×n 0n×2m

]
q ∈ X ,

[
0m×n Im×m 0m×m] q ∈ U}. (4.17)

The sets of feasible steady states, inputs, and outputs can be obtained through projection
as X ss := projx (Qss), U ss := proju (Qss), and Yss := projy (Qss).

Given an arbitrary target output r̃ ∈ Yss, the associated steady state and input are
uniquely determined as[

x̃
ũ

]
=

[
A− In×n B

C 0m×m

]−1 [
0n×1

r̃

]
=:

[
N
M

]
r̃. (4.18)

The matrix inverse in (4.18) always exists for square systems satisfying assumption 4.1 [17].

4.3 Receding Horizon Sliding Tracking Control
This section incorporates invariant sliding domains in receding horizon tracking control
schemes originally proposed in [39]. First the controller formulations are presented and
subsequently feasibility and stability theorems follow.

4.3.1 Controller Formulations
Consider the quantity from (4.7) over an N -step prediction horizon,

Sk+1 :=
[
sk+1 . . . sk+N

]
, (4.19)

and rewrite state and input sequences similarly as

Xk :=
[
xk . . . xk+N

]
, (4.20)

Uk :=
[
uk . . . uk+N−1

]
. (4.21)
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Next, formulate the following optimization problem representing a constrained finite-time
optimal control problem

min
Xk,Uk,r̃k

‖Sk+1‖2F + ‖T (r̃k − rk) ‖1 (4.22)

s. t. si = Gxi −Hr̃k, i = k + 1, . . . , k +N

xi+1 = Axi +Bui, i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1[
x>
k+N r̃>

k

]> ∈ T
xk = x(k).

In (4.22), Sk+1 is minimized in the Frobenius norm and an offset cost ‖T (r̃k − rk) ‖1 penal-
izes deviations of r̃k from the desired rk.

An alternative optimization problem can be obtained by eliminating the artificial ref-
erence from (4.22) with the relation r̃k = H−1Gxk+N . Note that (4.23) does not contain
r̃k,

min
Xk,Uk

‖Sk+1‖2F + ‖T
(
H−1Gxk+N − rk

)
‖1 (4.23)

s. t. si = G (xi − xk+N) , i = k + 1, . . . , k +N

xi+1 = Axi +Bui, i = k, . . . , k +N − 1

xi ∈ X ,ui ∈ U , i = k, . . . , k +N − 1

xk+N ∈ S̄
xk = x(k).

The L1 norm is used for the offset cost in (4.22) and (4.23) to recover the local optimality
property [24].

Finally, a controller is obtained based on the standard receding horizon control principle
as summarized in algorithm 4 [9]. At every time-step, a sequence of future control actions is
obtained by solving the optimization problem (4.22) or (4.23), respectively. The first element
of the resulting control sequence is commanded to the plant and the procedure repeats at
the next time-step.

Algorithm 4 Online receding horizon sliding tracking control for linear systems
1: repeat
2: measure x(k) at time-step k
3: solve (4.23) (or (4.22)) and obtain U ∗

k

4: extract first column u∗
k of U ∗

k and set u(k) = u∗
k

5: let the system evolve to x(k + 1) = Ax(k) +Bu(k)
6: increase the time-step such that k ← k + 1
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Remark 4.2. Both optimization problems, (4.22) and (4.23), can be formulated as quadratic
programs [10]. If T = H is chosen in (4.23), then the offset cost becomes ‖Gxk+N −Hrk‖1.
This offset cost penalizes the distance of the terminal state from the desired intersection of
m sliding hyperplanes parametrized by the actual reference. Another sensible choice for T
is the identity matrix.

4.3.2 Analysis
The standard assumption 4.2 ensures feasibility at the initial time-step. Then, feasibility for
all future time-steps follows in theorem 4.1.

Assumption 4.2. The initial state x(0) is such that (4.22) (or (4.23)) is feasible.

Theorem 4.1. Algorithm 4 is persistently feasible.

Proof. The invariance property of the terminal sets T and S̄ immediately yields persistent
feasibility for the receding horizon control schemes. See [9] for further details.

Remark 4.3. Since S̄ ⊆ S, the feasibility domain for (4.22) is generally larger than that of
(4.23). Note that increasing N by 1 in scheme (4.23) results in both schemes having the
same feasibility set because for the target set S̄ the one-step controllable set of system (4.1),
(4.2) subject to state and input constraints [9] is actually given by S, i. e. S = K1(S̄).

Next, turn to the stability analysis. The stability proof relies on the following interme-
diate result.

Lemma 4.1 (From [66]). Let r̂ be a feasible target reference and x̂ = Nr̂, û = Mr̂ are
the corresponding target steady state and input. Let x̃ = Nr̃ ∈ X ss and ũ = Mr̃ ∈
U ss be a steady-state and input with x̃ ∈ int(X ), ũ ∈ int(U). Then there exists a λ ∈
[0, 1) and a corresponding reference r′ = λr̃ + (1 − λ)r̂ such that x̃ satisfies x̃ ∈ T|r′ :={
x :
[
x> r′>

]> ∈ T }.

Proof. Pick an arbitrary positive definite Q ∈ Rn×n and denote the unique positive definite
solution of the Lyapunov equation (A+BK)>P (A+BK)−P = −Q as P ∈ Rn×n. Let
a class of convex sublevel sets be denoted by E(x0, ε) :=

{
x : (x− x0)

>P (x− x0) ≤ ε
}

.
Furthermore, denote by x′ = Nr′ and u′ = Mr′ the steady state and input corresponding
to r′.

Given that x̃ ∈ int(X ), ũ ∈ int(U) lie in the interior of the feasible set, there exist
constants β > 0 and γ ∈ (0, 1) such that x ∈ γX and Kx + Lr̃ ∈ γU for all x in a
neighborhood of x̃ namely x ∈ E(x̃, β). Choose λ ∈ [0, 1) sufficiently close to 1 such that
L(r′− r̃) ∈ (1−γ)U and such that there exists a δ > 0 with x̃ ∈ E(x′, δ) ⊂ E(x̃, β). Finally,
find that for all x ∈ E(x′, δ) it results that x ∈ X and Kx+Lr′ = Kx+Lr̃+L(r′−r̃) ∈ U .
This proves x̃ ∈ E(x′, δ) ⊂ T|r′ .
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Theorem 4.2. Let rk be constant for all k ≥ k̄. Then algorithm 4 asymptotically drives the
closed-loop system to the feasible steady state output that minimizes the offset cost.

Proof. The proof follows the idea to show that the cost function is a Lyapunov-like function
[6]. Assume k ≥ k̄ and let rk = r∞ be arbitrary but constant. Denote the cost function
from (4.22) by

V (x(k), r∞,Uk, r̃k) := ‖Sk+1‖2F + ‖T (r̃k − r∞) ‖1 (4.24)

and its optimal value by V ∗(x(k), r∞). The corresponding minimizing arguments are denoted
by the symbols X∗

k :=
[
x∗
k . . . x∗

k+N

]
, U ∗

k :=
[
u∗
k . . . u∗

k+N−1

]
, and r̃∗

k.
At the subsequent time-step k + 1, consider the feasible but not necessarily optimal

control sequence U ◦
k+1 =

[
u∗
k+1 . . . u∗

k+N−1 Kx∗
k+N +Lr̃∗

k

]
and the artificial reference

r̃◦
k+1 = r̃∗

k. Then, it results that

V ∗(x(k + 1), r∞) ≤ V (x(k + 1), r∞,U
◦
k+1, r̃

◦
k+1) = V ∗(x(k), r∞)− ‖sk+1‖22. (4.25)

Inequality (4.25) implies that V ∗ is strictly decreasing from time-step k to k + 1 unless
sk+1 = 0m×1. But sk+1 = 0m×1 implies that the equivalent control u(k) = Kx(k) + Lr̃∗

k is
applied and hence exponential convergence x(k)→ x̃ = Nr̃∗

k follows. Hence, after elapsing
a finite number of time-steps, ∆, the system enters a neighborhood of x̃, where lemma 1
applies and x(κ) ∈ T|r′ with κ := k+∆. Then, using the feasible but not necessarily optimal
sequence Ū ◦

κ+1 consisting of repeatedly applying the equivalent control law Kx + Lr′ and
choosing r̃◦

κ+1 = r′ it follows that

V ∗(x(κ+ 1), r∞) ≤ V (x(κ+ 1), r∞, Ū
◦
κ+1, r̃

◦
κ+1)

= V ∗(x(κ), r∞) + ‖T (r′ − r∞) ‖1 − ‖T (r̃∗
k − r∞) ‖1

< V ∗(x(κ), r∞).

(4.26)

Hence, conclude that
lim
k→∞
‖Sk+1‖2F = 0 (4.27)

and the artificial setpoint converges to the closest value within the set of feasible outputs,

lim
k→∞
‖T (r̃k − r∞) ‖1 = min

r̃∞∈Yss
‖T (r̃∞ − r∞) ‖1. (4.28)

Consequently, referring back to (4.6), the result (4.27), (4.28) yields limk→∞ yk− r̃∞ = 0m×1

and asymptotic convergence of the tracking error to any feasible reference setpoint can be
concluded.

Notice that (4.23) can be obtained from (4.22) by adding the constraint sk+N = 0m×1 ⇔
r̃k = H−1Gxk+N which also yields

{
x :
[
x> r̃>]> ∈ T , r̃ = H−1Gx

}
= S̄. The stabil-

ity proof remains unchanged by adding the constraint sk+N = 0m×1, hence the stability
argument for scheme (4.22) also applies for (4.23).
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4.4 Illustrative Examples
This section contains two examples. One example applies the proposed method to a single-
input single-output system and the other example considers a multi-input multi-output sys-
tem.

4.4.1 A SISO System
As a first example to illustrate the ideas presented in this chapter, consider the SISO system

xk+1 =

[
0.7 0.5
−0.8 1.6

]
︸ ︷︷ ︸

A

xk +

[
0
0.7

]
︸ ︷︷ ︸

B

uk, (4.29)

yk =
[
1 0

]︸ ︷︷ ︸
C

xk. (4.30)

Since u and y are scalar in this scenario, they are denoted by u and y, respectively. The
sets of feasible states and inputs are

X =

{
x :

[
−1
−1

]
≤ x ≤

[
1
1

]}
, (4.31)

U = {u : −1 ≤ u ≤ 1} . (4.32)

Since the relative degree of y is d = 2, the sliding variable is designed as

sk = −ρẽk + ẽk+1, (4.33)

where the component indices have been dropped because all quantities are scalar. The tuning
parameter ρ is selected to be ρ = 0.6. The quantities G and H in (4.7) can be evaluated as

G =
[
0.1 0.5

]
, H = 0.4, (4.34)

where H is used to denote the quantity H because it is scalar in this particular example.
The computed sets T and S̄ are shown in figures 4.1 and 4.2, respectively. The sets were

computed with the MPT3 [41] in MATLAB. Besides the set T , figure 4.1 also shows slices of
T , the corresponding sliding surfaces, and equilibrium points for three exemplary values of
the desired reference. On the other hand, figure 4.2 shows the sets S̄ and S along with sliding
surfaces and equilibrium points for the same exemplary reference values. Comparing figures
4.1 and 4.2, the dimensionality reduction obtained with the developed method is obvious as
the set T is a subset of R3 and described by 12 inequalities or 20 vertices whereas S̄ is a
subset of R2 and described by 6 inequalities or 6 vertices.
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Figure 4.1: The set T ⊂ R3 (light cyan) as well as slices of T (dark cyan), sliding surfaces
(black, solid), and equilibrium points (black, dot) for the desired output values 0 and ±0.5
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Figure 4.2: The sets S̄ ⊂ R2 (blue) and S ⊂ R2 (cyan) with S̄ ⊂ S as well as sliding surfaces
(black, solid), and equilibrium points (black, dot) for the desired output values 0 and ±0.5
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Closed-loop simulations of control algorithm 4 with both (4.23) and (4.22) in line 3 were
completed. MATLAB/SIMULINK was used as the simulation environment and YALMIP
[68] and GUROBI [36] were utilized for formulating and repeatedly solving the optimization
problems involved in the respective controller formulation. The horizon length was set to
N = 5 steps. The reference is designed to drive the system output to the exemplary values
that were also used in figures 4.1 and 4.2, namely 0 and ±0.5. Tracking results are shown in
figure 4.3 and the associated control signals are plotted in figure 4.4. The simulation confirms
that the closed-loop control system remains persistently feasible and asymptotically stable
with respect to the given setpoints. Furthermore, the results from both control algorithms
are virtually identical, indicating that the complexity reduction obtained with the proposed
approach of using (4.23) in line 3 of algorithm 4 does not lead to a noticeable performance
degradation in this particular example.

4.4.2 A MIMO System
As a second example, consider the unstable system

xk+1 =

 0 1 0
0.9 −1.6 0.3
0.4 −0.2 1.5


︸ ︷︷ ︸

A

xk +

0 0
1 0
0 1


︸ ︷︷ ︸

B

uk, (4.35)

yk =

[
1 0 0
0 0 1

]
︸ ︷︷ ︸

C

xk. (4.36)

The sets of feasible states and inputs are

X =

x :

−1−1
−1

 ≤ x ≤

11
1

 , (4.37)

U =

{
u :

[
−1
−1

]
≤ u ≤

[
1
1

]}
. (4.38)

Since the relative degrees of y1 and y2 are d1 = 2 and d2 = 1, respectively, design the
sliding variables as

s1,k = −ρẽ1,k + ẽ1,k+1, (4.39)
s2,k = ẽ2,k (4.40)

with ρ = 0.3. Then the matrices G and H in (4.7) become

G =

[
−0.3 1 0
0 0 1

]
, H =

[
0.7 0
0 1

]
. (4.41)
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Figure 4.3: Tracking performance in terms of the desired reference rk (black, dotted) and
the controlled output y(k) when using algorithm 4 with (4.23) (blue, solid) and (4.22) (cyan,
dashed) in line 3
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Figure 4.4: Control signal u(k) obtained with algorithm 4 with (4.23) (red, solid) and (4.22)
(green, dashed) in line 3 as well as bounds on the control signals (black, dash-dotted)

The sets S and S̄ as defined in sections 4.2.3 and 4.2.4 are again computed with the MPT3
in MATLAB and are plotted in figure 4.5 along with X and X ss. It can be clearly seen that
S ⊃ S̄, indicating that the control scheme (4.22) will have a larger feasibility set compared
to scheme (4.23). The set S̄ is determined by 8 constraints, on the other hand, the set T
requires a larger number of 16 constraints.

Closed-loop simulations are performed using control algorithm 4 with (4.23) in line 3. The
simulations were performed in MATLAB/SIMULINK using YALMIP [68] and GUROBI [36]
for formulating and repeatedly solving optimization problem (4.23). The horizon length was
set to N = 10 steps. For an exemplary reference signal, the controller’s tracking performance
is shown in figure 4.6 and the corresponding control signals are shown in figure 4.7. The
simulation demonstrates that the closed-loop system remains persistently feasible and that
it is asymptotically stable with respect to feasible setpoints. For infeasible setpoints, the
state converges to the best feasible setpoint as seen between k = 50 and k = 75, where an
input constraint is active. In conclusion, simulations confirm the result that the artificial
reference can safely be removed by utilizing the method proposed in this chapter.
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Figure 4.5: Feasible set, X (light gray), invariant sliding domains, S (cyan) and S̄ (blue), as
well as the set of feasible steady states X ss (dark gray) with X ⊃ S ⊃ S̄ ⊃ X ss

4.5 Concluding Remarks
This chapter has developed receding horizon sliding control for setpoint tracking. In par-
ticular, for square linear MIMO systems it is shown that the invariant sliding domain is a
suitable terminal invariant set for receding horizon tracking control. By exploiting the flat-
ness property of sliding surfaces, an approach of lower complexity when compared to classical
methods in the literature can be derived. It is proven that the proposed dual-mode control
scheme maintains the persistent feasibility and stability properties. Examples illustrate the
simplicity and effectiveness of the proposed approach.
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Figure 4.6: Tracking performance of algorithm 4 with (4.23) in line 3 in terms of the desired
reference components r1,k, r2,k (black, dotted) and the controlled outputs y1(k), y2(k) (blue,
solid)
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Figure 4.7: Control signal components u1(k), u2(k) (red, solid) obtained with algorithm 4
with (4.23) in line 3 and bounds on the control signals (black, dash-dotted)
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Part III

Applications



50

Chapter 5

Path Tracking with
Micro-Underwater Vehicles

Autonomous underwater vehicles (AUVs) are advancing the state of the art in numerous
scientific and commercial aquatic applications including oceanography and environmental
monitoring. The current surge in micro-aerial vehicles enables the development of low-cost,
small micro AUVs and it is expected that underwater vehicles will gain increasing popularity
in the near future. Given the high potential of AUVs, in this chapter a waypoint path
following autopilot for underwater vehicles is developed utilizing the receding horizon sliding
control method proposed in this dissertation. It is shown that the receding horizon sliding
control cost function is an adequate choice from a practical point of view. In particular, the
presented results confirm that the designed algorithm yields excellent tracking performance
while accounting for actuator constraints on the AUV’s propellers. Moreover, the system is
found to be robust with respect to the most common sources of uncertainty in underwater
robotics such as uncertain hydrodynamic forces and localization errors.

5.1 Motivation
Over the time span of the past ten years, the deployment of autonomous underwater vehi-
cles has rapidly increased. Popular applications for AUVs include environmental sampling,
seafloor mapping, monitoring of offshore sites, as well as exploration. The current surge in
AUVs is directly linked to recent advances in the area of micro-aerial vehicles, which led
to a miniaturization and cost decrease of hardware, such as motor controllers and sensor
kits. Beyond single vehicle operation, the recent trends also enable the development of mi-
cro AUVs for multi-vehicle operations, e. g. the HippoCampus vehicle from [37]. Figure 5.1
depicts a computer-aided design (CAD) drawing of HippoCampus.

One of the most important tasks for AUV operations is path following. The challenge
of the path following control problem for AUVs is due to the underactuated, nonlinear, and
uncertain system dynamics [59, 5]. Moreover, since micro AUVs are increasingly popular for
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Figure 5.1: CAD drawing of the HippoCampus [37] micro-autonomous underwater vehicle

operations in confined environments such as nuclear storage ponds [35], path following sys-
tems have to enable highly agile AUV maneuvering. This motivates research on autonomous
waypoint path following for underactuated agile AUVs.

A common architecture for path tracking systems assumes that a path planning algorithm
generates a set of waypoints depending on the specific AUV application at hand. Then, by
connecting these waypoints with line segments a path is derived and fed into a path tracking
control system. Unlike trajectory tracking, path following does not include time constraints
[74]. Different control methodologies can be applied to achieve path following, e. g. explicit
feedback-based control or model predictive control. The line of sight (LOS) method from
[26] is a widely used feedback-based control framework for path following. The LOS method
is based on a geometric relationship where a LOS vector from the vehicle position to the
path is defined. Using the LOS vector a desired reference can be computed and tracked
using an explicit feedback controller. Despite the fact that LOS methods have been studied
extensively in the last ten years and have been successfully applied to 3 degree of freedom
(DOF) underactuated surface vessels [7, 62], contributions in this area rarely consider the full
underactuated AUV dynamics for waypoint path following. An alternative approach that is
often used instead decomposes the LOS path following problem in space into a vertical and
a horizontal part, where a 3 DOF system is assumed [61] in either plane. In [8], a complete
description of the AUV dynamics is considered for guiding an AUV along a single line path.
While the model is similar to the one presented in this work, no abrupt directional changes
of the path are considered in [8] which usually pose a great challenge in path following,
especially in confined test tanks.

MPC based methods explicitly allow for the incorporation of physical constraints such
as actuator limits. Furthermore, MPC’s anticipatory behavior allows accounting for time
delays and future errors which is beneficial for achieving agile vehicle motion. Different
MPC implementations have been reported for marine vessels, mostly for surface vessels with
planar dynamics [72] or for AUVs with decoupled dynamics [93]. MPC has also been applied
to station keeping operations of underwater vehicles [22]. However, overall MPC based path
following approaches for AUVs operating in all three dimensions are still rare.
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As a case study, this chapter designs an RHSC for waypoint tracking of micro AUVs.
The result is a unified approach for waypoint path following in 3-D for underactuated AUVs
and the presented control framework is in principle suitable to run on resource constrained
micro AUVs. As in most complex applications, the invariant set constraint is not used and
stability is concluded from simulations. Furthermore, uncertainties are often ignored in the
classical MPC design phase due to computational complexity issues. Instead, one relies on
the capability of the nominal controller to manage disturbances, i. e. one uses a property
often referred to as the inherent robustness of the controller [1]. As pointed out in [32], MPC
usually achieves higher levels of inherent robustness, when changes in the control signal are
penalized. However, high input rate penalties also yield a sluggish controller that does not
fully exploit the actuator potentials. Note that RHSC bypasses the tradeoff between control
effort and tracking accuracy by introducing desired error dynamics. This chapter shows that
the error dynamics involved in the RHSC design can be tuned to yield an inherently robust
controller without restricting control action at all. Hence, this chapter confirms that the
RHSC cost function is not only theoretically sound but that it can also be a sensible choice
from a practical point of view.

The remainder of this chapter is organized as follows. Section 5.2 introduces the AUV
model utilized in this work. Receding horizon sliding control design for the particular appli-
cation at hand is carried out in section 5.3. Section 5.4 presents numerical experiments of
the closed-loop control system. Closing remarks are given in section 5.5.

5.2 Modeling
This section introduces an AUV model that is used for control design [25] in latter parts
of this chapter. Define η =

[
X Y Z ε0 ε1 ε2 ε3

]> to describe position and orien-
tation with respect to an inertial frame, where a unit quaternion q =

[
ε0 ε1 ε2 ε3

]>
is used to parametrize orientation in order to avoid gimbal lock. Furthermore, let ν =[
ẋ ẏ ż φ̇ θ̇ ψ̇

]> denote translational and angular velocities in the body fixed frame.
The AUV dynamics equations can be formulated as

η̇ = J(η)ν, (5.1)
Mν̇ +C(ν)ν +MAν̇ +CA(ν)ν +DA(ν)ν + g(η) = k, (5.2)

where J is the transformation matrix between body fixed and inertial reference frames, M
is the mass matrix, MA is the hydrodynamic added mass matrix, DA is the hydrodynamic
damping matrix, C and CA are the rigid body and hydrodynamic Coriolis and centripetal
matrix, respectively. The sum MAν̇+CA(ν)ν+DA(ν)ν collectively models hydrodynamic
loads. The weight and hydrostatic loads are considered through g(η), which depends on the
vehicle orientation. The force vector k includes the system inputs for thrust, roll, pitch, as
well as yaw and it reads k = (M +MA)

[
τẋ 0 0 τφ̇ τθ̇ τψ̇

]>. It is assumed that the
motor controllers are able to drive the motors to generate the desired thrust and moments.
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Note that all quantities are understood to be measured in SI units and hence units are
dropped in the remainder of this chapter.

The matrix J(η) involved in equation (5.1) relates quantities in the inertial and body
fixed reference frames and it is given by

J(η) =

[
J1(η) 03×3

04×3 J2(η)

]
, (5.3)

where

J1(η) =

1− 2(ε22 + ε23) 2(ε1ε2 − ε3ε0) 2(ε1ε3 + ε2ε0)
2(ε1ε2 + ε3ε0) 1− 2(ε21 + ε23) 2(ε2ε3 − ε1ε0)
2(ε1ε3 − ε2ε0) 2(ε2ε3 + ε1ε0) 1− 2(ε21 + ε22)

 , (5.4)

J2(η) =
1

2


−ε1 −ε2 −ε3
ε0 −ε3 ε2
ε3 ε0 −ε1
−ε2 ε1 ε0

 . (5.5)

By rearranging equation (5.2), the equations of motion can be derived in compact non-
linear state space form as

ẋ = f̄c(x, ū), (5.6)

where x =
[
η> ν>]> is the state vector and ū =

[
τẋ τφ̇ τθ̇ τψ̇

]> contains the input
variables.

5.3 Control System Design
In this section the path following control system is developed. First, the control objective
is defined. Subsequently, auxiliary control laws for roll angle and speed error regulation are
given. Finally, the core path following logic is synthesized based on the RHSC method.

5.3.1 Control Objective
Given a set of waypoints for navigation purposes, define a path by connecting successive
waypoints, e. g. wj and wj+1, with a line segment denoted lj as illustrated in figure 5.2. The
cross-track error ej is the distance between the closest line segment lj and the center of mass
of the AUV, p =

[
X Y Z

]>, within the plane perpendicular to the path. Since the path
is non-smooth and the vehicle dynamics underactuated, it is important to clarify the desired
path following objective. Either tracking of the Dubins path, i. e. exact passing through
all waypoints, can be seeked or the cross-track error can be minimized while approaching
the waypoints as closely as possible, which is referred to as the approximating path in [60].
The focus of this work is on approximating paths. For a given set of waypoints the control
objective is to minimize ej while maintaining a prescribed surge velocity.
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Figure 5.2: Waypoint-based path definition and parametrization of the cross-track error

As a preliminary for expressing the cross-track error with respect to the jth line segment,
a line segment’s unit tangent vector is introduced as

tj =
wj+1 −wj

‖wj+1 −wj‖2
. (5.7)

Then, exploiting the geometric relations involved in defining the cross track error, it follows
that

ej = ‖(p− xj,0)× tj‖2 , (5.8)

where xj,0 is an arbitrary point on the line segment lj. Since the unit tangent vector, tj, is
constant along each line segment the cross-track error can be evaluated relatively efficiently
within an optimization routine.

5.3.2 Speed Error and Roll Regulation
In addition to a desired waypoint path, a prescribed surge velocity is assumed to be given
for executing the desired maneuver. Moreover, notice that the system model is symmetric
with respect to the longitudinal vehicle axis. The roll angle introduces arbitrariness in the
control problem, hence, the roll angle is desired to vanish when possible. The AUV plant is
augmented with proportional (P) and proportional-derivative (PD) feedback control loops
for speed error and roll angle regulation

τẋ = kp,ẋ(ẋ− ẋdes), (5.9)
τφ̇ = kp,φ̇φ+ kd,φ̇φ̇. (5.10)
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The parameters kp,ẋ, kp,φ̇, kd,φ̇ are the control gains. In (5.9), ẋdes represents the desired
vehicle speed. The roll angle φ in (5.10) can be recovered from the quaternion representation
using the four quadrant inverse tangent function,

φ = atan2
(
2(ε2ε3 + ε1ε0)), 1− 2(ε21 + ε22)

)
. (5.11)

A manipulated system model follows by substituting (5.9), (5.10) in (5.6) and can be
written as

ẋ = fc(x,u). (5.12)

The model (5.12) is parametrized by ẋdes as well as the control gains. The remaining control
inputs for navigating the AUV are the yaw and pitch moments, i. e. u =

[
τθ̇ τψ̇

]>. The
receding horizon sliding control strategy will be used for computing these inputs.

5.3.3 RHSC Steering Algorithm
The receding horizon sliding control framework used in this work was developed in chapter
3. The method builds on a discrete-time representation of the system dynamics, which is
obtained from (5.12) through Euler discretization [77],

xk+1 = f(xk,uk). (5.13)

The time-step is indicated by subscripts, representing the system’s signals at times kTs and
(k + 1)Ts, respectively, where Ts is the sampling time.

Further following chapter 3, the first step of the RHSC design procedure is the definition
of a sliding variable [39]. Notice that the relative degree of the cross track error from (5.8) is
equal to two, which is a common characteristic of mechanical systems. Hence, a first order
difference operator is applied to ej,k in order to obtain a sliding variable as

sk = ej,k+1 − ρej,k =: D(e)k. (5.14)

The tuning parameter ρ is chosen such that 0 < ρ < 1. Intuitively, the control goal is now
reduced to driving sk to zero and exploiting the fact that desired error dynamics are resulting
when sk ≡ 0. The index j in (5.14) corresponds to the line segment that is closest to the
AUV position at time-step k.

Formally, RHSC minimizes sk over an N -step prediction horizon. For notational simplic-
ity, define

Sk+1 =
[
sk+1 . . . sk+N

]
. (5.15)

Likewise, the state and control vector sequences are abbreviated as follows,

Xk =
[
xk . . . xk+N+1

]
, (5.16)

Uk =
[
uk . . . uk+N

]
. (5.17)
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The explicit form of the CFTOC problem, that the RHSC solves at every sampling-instant
reads as follows,

min
Xk,Uk

‖S>
k+1‖22 (5.18)

s. t. si = D(ej)i, i = k, . . . , k +N (5.19)
xi+1 = f(xi,ui), i = k, . . . , k +N

ul ≤ ui ≤ uu, i = k, . . . , k +N

xk = x(k).

The problem is subject to the system dynamics and input constraints. Lower and upper
bounds on the controls are denoted by ul and uu. The problem is initialized with the
current state that is assumed to be measurable. Once problem (5.18) is solved, the first
element of the solution sequence is applied to the AUV and the same problem is solved after
letting time elapse and reaching the next sampling-instant.

5.4 Results
This section presents the utilized simulation setup and evaluates the control system perfor-
mance based on the obtained numerical results.

5.4.1 Simulation Setup
The closed-loop control system is simulated in MATLAB/SIMULINK. The controller is
written in a C code-based S-function involving the nonlinear programming solver NPSOL
[34]. The sampling time of the RHSC is set to Ts = 100 ms and the prediction horizon
length is N = 8 steps. The plant dynamics are integrated with a 10 ms step-length Runge-
Kutta 4 scheme emulating continuous time. The low complexity P and PD control laws
are also updated every 10 ms. Path following in R3 is considered, where the path is defined
by straight line segments that connect waypoints. The RHSC is analyzed in two different
scenarios. First, a nominal case is considered, where the controller uses the exact model
parameters and the discretization inaccuracy involved in finding (5.13) from (5.12) is the
only considered uncertainty source. Second, a perturbed scenario is considered, where the
controller model differs significantly from the simulation model. In the perturbed case, the
controller model is such that the hydrodynamic added Coriolis matrix CA vanishes and the
hydrodynamic damping DA has an error of 50%. Furthermore, the position measurement
is corrupted by zero-mean white Gaussian measurement noise with a standard deviation of
0.1 m which is a realistic assumption in confined test tanks [33]. Also, actuator bounds were
multiplied by a factor of 2.5 for the nominal case and are kept realistic in the perturbed case.
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Identifier A B C D E

Location
[
1 1 0

]> [
9 9 0

]> [
10 10 4

]> [
17 10 5

]> [
18 9 8

]>
Table 5.1: Waypoint identifiers and locations for numerical simulation scenarios

5.4.2 Results
A sample path is defined by five waypoints A, B, C, D, E with coordinates as listed in table
5.1. The chosen system parameters correspond to the ones of the HippoCampus micro AUV
shown in figure 5.1 [37]. The dry mass of the robot is 2 kg and the mass matrix reads

M = diag(2, 2, 2, 0.1, 0.4, 0.4).

The hydrodynamic added mass is

MA = diag(1, 2, 2, 0.1, 0.5, 0.5)

and the hydrodynamic added damping is

DA = diag(2, 5, 5, 3, 8, 8).

Cross-diagonal damping elements are not included, because additional entries in DA will
lead to more stable dynamics due to the passivity of damping. The hydrodynamic Coriolis
matrix is chosen to be

CA =



0 0 0 0 −2ż 2ẏ
0 0 0 2ż 0 −0.4ẋ
0 0 0 −2ẏ 0.4ẋ 0

0 −2ż 2ẏ 0 −0.5ψ̇ 0.5θ̇

2ż 0 −0.4ẋ 0.5ψ̇ 0 −0.1φ̇
−2ẏ 0.4ẋ 0 −0.5θ̇ 0.1φ̇ 0

 . (5.20)

The micro AUV starts at rest at the initial position
[
1 0 0

]>. Simulations are carried out
with a total simulation time length of 30 seconds.

Five different values for the tuning parameter ρ are considered and the root mean square
tracking error for all five cases are given in table 5.2 for the nominal and perturbed scenario.
For the nominal case, the table shows that a smaller ρ value leads to smaller root mean
square errors. This is expected since a smaller ρ implies faster desired error convergence
and a more aggressive controller. Furthermore, comparing the root mean square error of
the nominal and perturbed simulations for ρ = 0.975, ρ = 0.95, ρ = 0.9 unveils that the
controller performance is only slightly affected by the introduced uncertainty and noise.
However, for smaller ρ values, the AUV fails at completing the path following task, i. e. the
AUV does not reach segment D–E within the 30 second simulation time. This indicates that
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Tuning ρ = 0.975 ρ = 0.95 ρ = 0.9 ρ = 0.8 ρ = 0.6

Nominal case 0.3020 0.2404 0.1976 0.1877 0.1793
Perturbed case 0.3096 0.2522 0.2034 fail fail

Table 5.2: Root mean square cross track errors from simulations of the nominal and the
perturbed closed-loop system; failure means that the AUV did not reach segment D–E
within the simulation time window due to swerving motions
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Figure 5.3: Simulated position of AUV’s center of mass and the desired path (black, dotted)
defined by waypoints in 3-D for nominal case using a tuning of ρ = 0.975 (blue, dashed),
ρ = 0.9 (magenta, solid), and ρ = 0.6 (red, dash-dotted); the initial vehicle position at rest
is X = 1, Y = 0, Z = 0

the controller is rather robust with respect to noise as long as gains are not tuned to be
exceedingly aggressive.

More details on the simulations are given next for the tuning values ρ = 0.975, ρ = 0.9,
ρ = 0.6. For the nominal case, figure 5.3 shows the path tracking performance in space for
the three selected parameter values. It can be seen that the controller succeeds at stabilizing
the AUV on the desired path for all tuning values. As expected, the error decreases faster
when ρ is chosen smaller which is also confirmed by figure 5.4, where the simulated cross-
track errors are shown. Note, since the path is defined by waypoints connected with line
segments and the cross-track error is computed with regard to line segments, jumps in the
cross-track error are unavoidable. This is a direct consequence of the so-called approximating
path following approach described in section 5.3.1, for which the vehicle trajectory does not
necessarily pass through the waypoints. The computed control actions in terms of the yaw
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Figure 5.4: Cross-track error of the AUV over simulation time for the nominal case using a
tuning of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6 (red, dash-dotted)
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Figure 5.5: Pitch and yaw moments over simulation time applied to the AUV for the nominal
case using a tuning of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6 (red,
dash-dotted)

and pitch moments as obtained with the RHSC are given in figure 5.5. Figure, 5.6 shows
the performance of the roll stabilization control loop.

The deviations from the path are smaller for the nominal case. However, as seen in
figure 5.7 even for the perturbed case, the vehicle converges to the desired path as long as
the tuning is not chosen to be overly aggressive. For ρ = 0.6, the vehicle does not reliably
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Figure 5.6: Roll angle of the AUV over simulation time for the nominal case using a tuning
of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6 (red, dash-dotted)

converge to the desired trajectory from the initial position, indicating that the control system
poorly recovers from positions far off of the desired trajectory and the vehicle does not reach
segment D–E within the simulation time window. However, for ρ = 0.975 and ρ = 0.9, the
tracking performance is very good and robust to noise and uncertainty. The corresponding
cross-track errors are given in figure 5.8. The control signals are given in figure 5.9. It is
evident that due to the noise in the position signal the actuator signals exhibit noise as
well. However, tuning ρ to be larger yields less aggressive and therefore less noisy actuator
commands that are still agile enough to stabilize the vehicle successfully. The roll angle is
shown in figure 5.10.

The presented results were obtained on a Quadcore-CPU with 2.66 GHz and 8 GB RAM,
where the simulation including the RHSC routine runs twice as fast as real-time. Hence,
current resource constrained micro AUVs should possess enough computing power to run the
presented RHSC.

5.5 Concluding Remarks
In summary, this chapter proposed a waypoint path following system for underactuated
AUVs which is based on the receding horizon sliding control framework discussed in this
dissertation. The controller combines the robustness of nonlinear feedback control methods
with the advantages of MPC such as explicit handling of constraints and anticipatory control
action. Simulation results show that an AUV equipped with the proposed path following
system is able to follow paths with sudden directional changes in the presence of modeling
uncertainties, actuator saturation, and measurement noise. The computational load remains
manageable for the hardware of current micro AUVs.
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Figure 5.7: Simulated position of AUV’s center of mass and the desired path (black, dotted)
defined by waypoints in 3-D for perturbed case using a tuning of ρ = 0.975 (blue, dashed),
ρ = 0.9 (magenta, solid), and ρ = 0.6 (red, dash-dotted); the initial vehicle position at rest
is X = 1, Y = 0, Z = 0
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Figure 5.8: Cross-track error of the AUV over simulation time for the perturbed simulation
case using a tuning of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6 (red,
dash-dotted)
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Figure 5.9: Pitch and yaw moments applied to the AUV over simulation time for the per-
turbed case using a tuning of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6
(red, dash-dotted)
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Figure 5.10: Roll angle of the AUV over simulation time for the perturbed case using a
tuning of ρ = 0.975 (blue, dashed), ρ = 0.9 (magenta, solid), and ρ = 0.6 (red, dash-dotted)
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Chapter 6

Engine Cold-Start Control

This chapter presents a performance assessment of the receding horizon sliding control algo-
rithm. The RHSC strategy is evaluated using a classical model predictive control approach
as a benchmark. The focus of this investigation is on comparing performance in terms of
computational characteristics and output-tracking between the two control strategies. The
case study for evaluation is a nonlinear automotive engine cold-start emissions system. It
is shown that RHSC can improve the level of tracking accuracy when compared to classical
MPC. At the same time, it is on average more computationally efficient for the particular
application discussed in this chapter. Beyond this specific case study, the results imply that
the RHSC cost function does not generally affect performance negatively compared to more
established methods like MPC. Hence, RHSC can be a viable alternative to classical MPC
for practical control systems. This chapter has been published in slightly modified form in
[94].

6.1 Motivation
Control systems in the automotive powertrain field are becoming more and more complex
and feature increasingly advanced functionality [79]. At the same time, regulations on vehic-
ular emissions and engine safety are growing stricter annually [44]. From a control system
design perspective, this motivates employing powerful control methodologies that are gen-
eral enough to handle nonlinear engine dynamics, assure constraint satisfaction and yield
good performance in the presence of uncertainty and noise. Receding horizon control is by
far the most popular methodology that can address all of the above challenges. Therefore,
it is currently of high interest to the automotive powertrain industry [44]. However, the
extremely small sampling times required for engine operation are a main challenge. More-
over, the solution of nonlinear programming problems involved in MPC heavily relies on the
performance of the employed iterative solvers, which is problematic from a verification and
validation point of view [50].

The receding horizon sliding control method proposed in chapters 3 and 4 of this disserta-
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tion is a variant of classical MPC. Sliding surfaces can be viewed as a notational simplification
[91]. By introducing a manifold with assured stability, higher dimensional tracking control
problems are simplified to lower dimensional stabilization problems. RHSC adopts this sim-
plification and combines it with a receding horizon approach. As explained in chapters 3
and 4, it minimizes the deviation of the system state from sliding surfaces in a receding
horizon fashion, while accounting for system constraints. This chapter compares RHSC to
classical MPC, i. e. a receding horizon controller with a conventional cost function. It is
investigated whether the inclusion of sliding manifolds in a receding horizon control frame-
work can help achieve higher algorithmic performance. Performance is measured in terms of
output-tracking accuracy as well as solver characteristics such as the number of iterations
and the computation time.

As a case study for comparing different receding horizon control strategies, automotive
emission reduction shortly after igniting the engine is considered. Most automobiles powered
by an internal combustion engine employ emissions mitigation using catalytic converters.
Catalytic converters can operate at high efficiency within their operating temperature range.
However, the particular focus on cold-start control is motivated by the fact that catalytic
converters are largely ineffective during this initial phase of engine operation and the majority
of harmful emissions occur here [13]. In order to minimize emissions, it is desirable to achieve
the catalytic converter’s working temperature rapidly without using excessive amounts of fuel
[45]. Moreover, to avoid further emission aggravation, the engine control unit (ECU) has to
carefully stabilize air-fuel-ratio while the engine temperature increases. Effectively, the fast
dynamics, strong nonlinearities, as well as the physically motivated operating constraints in
an automotive engine during the cold-start phase make this system a suitable case study for
comparing receding horizon control algorithms.

The remainder of this chapter is structured as follows. Section 6.2 introduces a nonlinear
MIMO discrete-time model of the dynamics of engine cold-start. Section 6.3 describes the
application of RHSC and classical MPC to automotive emission reduction. Based on com-
puter simulations of the engine control loop, section 6.4 evaluates and compares the RHSC
and MPC control schemes. Concluding remarks are given in section 6.5.

6.2 Modeling
The mathematical engine model used in this chapter follows [45]. Relevant states for this
application are the rotational engine speed, ωe, the air mass in the intake manifold, ma, the
exhaust gas temperature, Texh, and the mass flow rate of fuel into the cylinders, ṁf. The
system inputs are the ignition spark timing angle, ∆, the commanded mass flow rate of fuel,
ṁfc, and the mass flow rate of air through the throttle, ṁai. A schematic representation of
the system is given in figure 6.1.

The rate of change of intake manifold air is defined by the mass flow rate of air entering
the intake through the throttle, ṁai, and the air exiting the manifold into the cylinders, ṁao.
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Conservation of mass yields
ṁa = ṁai − ṁao(ma, ωe). (6.1)

The relation describing ṁao is given by

ṁao = 0.0254maωeηvol, (6.2)

where

ηvol =m2
a(−0.1636ω2

e − 7.093ωe − 1750) +ma(0.0029ω
2
e − 0.4033ωe + 85.38)

− (1.06× 10−5ω2
e − 0.0021ωe − 0.2719).

(6.3)

The engine’s rotational acceleration is set by its moment of inertia, J = 0.1454, and the
engine torque, Te. Engine torque is obtained by fitting a polynomial approximation function
of engine speed and intake air mass to a torque map. See (6.4) for balance of angular
momentum,

ω̇e =
1

J
Te(ma, ωe). (6.4)

The rate of change of the fuel as it evaporates in the cylinders is modeled with a first
order lag and evaporation time constant τf = 0.06,

m̈f =
1

τf
(ṁfc − ṁf). (6.5)

Exhaust gas temperature is predominantly influenced by spark timing, ∆, and air-fuel
ratio, AFR, which is approximated by the mass flow rate ratio of air exiting the intake
manifold to fuel entering the cylinder,

AFR =
ṁao

ṁf
. (6.6)

The functions SI and AI read

SI = 7.5∆ + 600, (6.7)
AI = 0.13 (cos (0.13 (AFR− 13.5))) (6.8)

and define the impact of ∆ and AFR on exhaust temperature, respectively. In (6.9), τe
incorporates the time delay between ignition and valve opening,

Ṫexh =
1

τe(ωe)
(SI(∆)AI(ma, ωe, ṁf)− Texh). (6.9)

Desired trajectories similar to those in [38] and [19] are used for ωe, AFR, and Texh as they
were found to minimize hydrocarbon emissions. The target is to track AFR to a desired
trajectory, but ṁf is easier to control, so a trajectory for ṁdes

f = ṁao/AFR
des is derived from

the desired air-fuel ratio.
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Figure 6.1: Schematic of internal combustion engine adapted from [85]

The input, state, and output vectors of the engine model at time-step k are represented
by

xk =
[
ma,k ωe,k ṁf,k Texh,k

]>
, (6.10)

uk =
[
ṁai,k ṁfc,k ∆k

]>
, (6.11)

yk =
[
ωe,k ṁf,k Texh,k

]>
. (6.12)

The control methodology developed in this dissertation requires discrete-time plant models.
A forward Euler discretization scheme with sampling time Ts is applied to (6.1), (6.4), (6.5),
and (6.9) in order to find discrete-time state equations of the form

xk+1 = f(xk,uk), (6.13)
yk = h(xk), (6.14)

compare [75]. The measurement function h is linear and implied by (6.12).
The input constraints provide safety bounds based on physical restrictions such as ignition

timing and opening time and size of the fuel and air intake valves. These lower and upper
bounds on the control input are denoted by

ul ≤ uk ≤ uu. (6.15)

The following slew rate constraints in (6.16) were placed on the system to avoid overly
rapid changes in the control signals. Similar to the input constraints, these rate bounds are
evaluated at each time-step. Note that uk−1 is the control applied at the previous time-step,

− ur ≤ uk − uk−1 ≤ ur. (6.16)
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The exact values for the input bounds are

ul =

 0
0
−10

 uu =

0.00630.0041
40

 ur =

 0.012
0.04099

5

 (6.17)

.

6.3 Control System Design
This section presents the application of the RHSC and classical MPC methodologies to the
problem of automotive cold-start emission control.

6.3.1 RHSC Design
With the cold-start model defined, a specific RHSC control strategy can now be formulated.
First, specify an error vector, ek, as

ek =
[
ωe,k − ωdes

e,k ṁf,k − ṁdes
f,k Texh,k − T des

exh,k
]>
. (6.18)

Let a sliding variable vector be defined as

sk =
[
ρe1,k − e1,k+1 e2,k e3,k

]>
. (6.19)

Note that the outputs Texh and ṁf have relative degree equal to one, whereas ωe has a
relative degree of two. Therefore, the engine speed output error dynamics require a first
order difference operator to ensure that s1,k+1 is an explicit function of a control input. The
tuning parameter is restricted to the range 0 < ρ < 1.

As usual, define the shorthand notation

Sk+1 =
[
sk+1 . . . sk+N

]
(6.20)

and let

Xk =
[
xk . . . xk+N+1

]
, (6.21)

Uk =
[
uk . . . uk+N

]
. (6.22)
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A suitable CFTOC problem for the seeked cold-start RHSC can then be formulated as

min
Xk,Uk

‖WSk+1‖2F (6.23)

s. t. si = D(ei), i = k + 1, . . . , k +N

ei = h(xi)− ydes
i , i = k + 1, . . . , k +N + 1

xi+1 = f(xi,ui), i = k, . . . , k +N

− ur ≤ ui − ui−1 ≤ ur, , i = k, . . . , k +N

ul ≤ ui ≤ uu, i = k, . . . , k +N

xk = x(k) (6.24)
uk−1 = u(k − 1),

where an additional diagonal weighting matrix, W ∈ R3×3, was introduced. Hence, the total
number of tuning parameters specific to this control scheme is 4.

6.3.2 Classical MPC Design
As a benchmark, the delta input formulation introduced in section 2.4 is applied to the
cold-start problem. A classical choice for the MPC objective function is used, where input
changes and tracking errors are penalized with quadratic functionals. The resulting CFTOC
problem reads as follows,

min
Xk,Uk

‖yk+N − ydes
k+N‖2Q +

N−1∑
i=0

‖yk+i − ydes
k+i‖2Q + ‖uk+i − uk+i−1‖2R (6.25)

s. t. xi+1 = f(xi,ui), i = k, . . . , k +N − 1

yi = h(xi,ui), i = k, . . . , k +N

− ur ≤ ui − ui−1 ≤ ur, , i = k, . . . , k +N − 1

ul ≤ ui ≤ uu, i = k, . . . , k +N − 1

xk = x(k)

uk−1 = u(k − 1).

Now, Q ∈ R3×3 and R ∈ R3×3 in (6.25) can be selected in order to prioritize output tracking
and incorporate input penalties. This study is restricted to the standard case where Q and
R are diagonal matrices leading to 6 tuning parameters specific to this MPC scheme.

6.4 Results
Implementation details and simulation results related to the above controller synthesis’ are
presented and evaluated in the following.
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6.4.1 Implementation
Both closed-loop systems were simulated in MATLAB/SIMULINK using C code based S-
functions for implementing the two considered predictive control schemes. In particular,
the algorithms used the solver NPSOL [34] for the discrete-time controllers with a sampling
time of Ts = 16 ms. Likewise, the discrete-time plant dynamics were integrated with fixed
integration time-steps of 16 ms. A prediction horizon length of N = 4 steps was used in both
control strategies.

6.4.2 Tuning
Tuning substantially affects algorithmic performance. To obtain a fair comparison, the two
considered control algorithms were tuned using a joint performance index that considers
tracking performance and computational characteristics. A numerical routine was used to
obtain optimal tuning for both controllers with respect to this joint performance metric.
The tuning parameter ρ and the weights W , Q, and R for the respective approaches were
determined with the aid of a genetic algorithm solver.

6.4.3 Numerical Simulations
Both closed-loop systems were simulated using the aforementioned desired output trajecto-
ries to produce the tracking performance seen in figure 6.2. The figure shows the tracking
responses of all three outputs for the RHSC and MPC schemes. All three outputs contain
initial tracking inaccuracies that are more pronounced in the MPC case, especially exhaust
temperature and air-fuel ratio. For engine speed, the receding horizon sliding control method
appears to eliminate the initial decaying oscillations visible in the MPC approach. For air-
fuel ratio the RHSC approach avoids a large overshoot initially present in the MPC case. The
exhaust temperature also rises to the desired value of 650◦C faster with the RHSC method
than with the classical MPC strategy.

The comparative error tracking performances are also reflected in table 6.4.3. The track-
ing error statistics show a clear and promising decrease in average and cumulative errors for
engine speed, air-fuel ratio, and exhaust temperature tracking. The tracking errors are also
significantly more consistent for all three outputs as seen by the standard deviations for MPC
and RHSC. The exhaust temperature tracking error in RHSC outperforms that of MPC in
average error, standard deviation, and cumulative error in spite of an initial overshoot.

Figure 6.3 shows the simulated control inputs for both control strategies. All control
inputs for each case follow a smooth response, but the inputs of ṁai and ṁfc in the MPC case
oscillate initially. The ṁai signal from the MPC reaches saturation during these oscillations
whereas the respective RHSC input changes less abruptly. For spark timing, the signal from
RHSC briefly oscillates well below saturation but then smoothly approaches a steady value.

The computational performance of both controllers is displayed in figure 6.4. The solver
flag status indicates a diagnostic result after the NPSOL solver has been called. A flag of
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Figure 6.2: Reference signals (black, dotted) and engine outputs from closed-loop simulations
using MPC (blue, solid) and RHSC (red, dashed) over simulation time

0 indicates no warnings from the solver. The only nonzero flags during the RHSC-based
simulation occur during the beginning of the simulation and are all 4, indicating a jump to
the maximum number of solver iterations at that time-step [34]. The sequential quadratic
programming (SQP) iterations plot for both control methods shows RHSC predominantly
requires less iterations, except for the infrequent case where the iteration limit is reached.
Similarly for NPSOL CPU time, the RHSC solver time is shorter on average compared to
MPC solver time.

These aforementioned general trends are also reflected in table 6.4.3. The table shows
a clear decrease in average and cumulative solver times and iterations with RHSC. The
RHSC method uses 33.333% less CPU time for NPSOL and solver iterations are decreased
by 32.093% when compared to MPC.
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Table 6.1: Comparison of the mean absolute tracking errors, the corresponding standard
deviations, and the cumulative error values for engine speed, air-fuel ratio, and exhaust
temperature for the MPC and RHSC schemes

Error Signal Controller
Average
Absolute

Error

Standard
Deviation

Cumulative
Error

Engine Speed MPC 0.2871 2.3171 538.57
RHSC 0.0765 0.8850 143.46

Air-fuel Ratio MPC 0.0641 1.1278 120.32
RHSC 0.0008 0.0255 1.6074

Exhaust Temperature MPC 10.971 48.527 20583
RHSC 6.7075 46.904 12583

Table 6.2: Comparison of the mean values, the corresponding standard deviations, and the
cumulative values for the NPSOL CPU time and iteration numbers for the MPC and RHSC
schemes

Solver
Feature

Controller Average
Value

Standard
Deviation

Cumulative
Value

CPU Time MPC 0.0027 0.0001 5.0765
RHSC 0.0018 0.0003 3.4470

Iterations MPC 25.055 1.7600 47004
RHSC 17.014 6.1069 31920

6.5 Concluding Remarks
In this chapter, the RHSC method has been compared to a standard model predictive control
approach for a practical multi-input multi-output system. The case of engine cold-start
emissions has been chosen due to its nonlinearity, fast dynamics, and physical constraints.
Evidently, the novel method improves tracking for all three outputs while requiring less
tuning parameters, computation time and solver iterations. To conclude, depending on the
control system at hand, RHSC can be a viable alternative to MPC that potentially yields
better tracking performance without compromising computational efficiency.
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Figure 6.3: Control inputs from closed-loop simulations using MPC (blue, solid) and RHSC
(red, dashed) and corresponding upper and lower bounds (black, dash-dotted) over simula-
tion time
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Chapter 7

Severe Autonomous Driving
Maneuvers

This chapter implements RHSC on a real-world test vehicle for autonomously performing
the severe obstacle avoidance double lane change according to the ISO 3888-2 standard. The
vehicle is equipped with light detection and ranging (LIDAR) sensors as well as a global
positioning system (GPS) and an inertial measurement unit (IMU). The RHSC algorithm
is complemented with an unscented Kalman filter (UKF) for estimating the vehicle state
and performing simultaneous localization and mapping (SLAM) of the environment online
based on the sensor data. Since RHSC inherits simple tuning rules from sliding control, the
tuning effort of the resulting controller developed in this chapter is minimal. A sequential
quadratic programming solver is utilized for repeatedly solving the nonlinear program arising
from the RHSC design. This case study confirms the effectiveness, practicality, and real-time
capabilities of RHSC with simulations and full-scale experiments.

7.1 Motivation
As summarized in chapter 3, combining model predictive control and sliding mode control
in one control scheme has attracted the interest of several researchers. Different approaches
for merging both methodologies have been proposed in the automatic control literature and
were outlined in chapter 3, e. g. [102, 101, 98, 78, 65, 64]. Furthermore, the application of
hybrid MPC/SMC methodologies to physical systems was previously studied in the literature
referenced in chapter 3. For instance, in [16] generalized predictive control is combined with
sliding mode control for linear plants and the application of a chemical process is considered
in simulation trials. The works [76, 31] present hybrid MPC/SMC schemes for linear plus
dead time systems as well as experimental results of their application to a distributed solar
collector field and a solar air conditioning plant, respectively. In both experiments the
sampling intervals were several seconds long.

Along a similar line of thought, the receding horizon sliding control technique has been
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proposed in this dissertation. The developments in chapters 3 and 4 show that RHSC
translates an output tracking objective into a desired state space objective by designing
sliding surfaces. Sliding surfaces directly encode smooth error dynamics and the control
is used to minimize the distance of the system state to these manifolds. The performance
of RHSC was compared against classical MPC in chapter 6 and [94], respectively, for an
automotive combustion engine application and in [63] for an electric vehicle powertrain
transmission. It was shown that RHSC can yield superior performance while using less
computational effort for these specific applications. Also, in [63] it is stated that the tuning
of RHSC appears to be simplified versus classical MPC due to the intuitive interpretation
of the tuning parameters.

Experimental testing of RHSC is beyond the scope of the previous chapters 5, 6 and
the papers [39, 40, 63, 94]. Therefore, it is yet to be shown that RHSC yields acceptable
performance in real-world experiments. In fact, to the author’s knowledge there is no study
where hybrid MPC/SMC schemes were applied to high speed systems with sampling times
of the order of fractions of seconds. In order to fill this gap, this chapter implements RHSC
within an observer-based control loop for the fast dynamics of autonomous vehicle handling.
As a test case, the ISO 3888-2 double lane change is utilized [48]. Traditionally, this ISO
standard is used to evaluate the handling capabilities of human-steered passenger cars. A
severe obstacle avoidance course is set up with cones and a professional test driver performs
the test at incrementally higher speeds up to a point where it cannot be completed without
failure anymore. While it is current engineering practice to evaluate a vehicle’s handling
performance with a human test driver, using a control system yields far more objective and
reproducible results on the ISO 3888-2 test. For this purpose, for example the company
VEHICO currently offers commercial steering robots for standardized vehicle tests.

Farther, research in the area of autonomous vehicles is motivated by the enormous po-
tential of such systems to increase traffic safety and efficiency, hence, autonomous driving is
considered one of the high-impact research challenges in systems and control at this time [57].
More specifically, predictive control is of interest because it can compensate for feasibility
deficiencies of motion plans generated higher up in the autonomous vehicle decision-making
hierarchy [74]. In [27] it is emphasized that autonomous vehicles have to be capable of react-
ing intelligently and safely in emergency scenarios. Emergency scenarios can occur due to
several reasons including unforeseen changes in the environment, spurious sensor readings,
or temporary control system failures. Safe control during emergency scenarios may require
maneuvering the vehicle at the limits of handling where nonlinear effects such as tire dy-
namics have a significant influence on the vehicle dynamics [30]. One way of ensuring the
stability of autonomous vehicles during severe maneuvers is the classical double lane change
test as utilized in [20], where a fixed reference trajectory is tracked on slippery roads. Hence,
it can be concluded that automation of standardized test scenarios is not only of interest for
the development of traditional human-steered vehicles but it is also essential for evaluating
the agility and stability of self-driving vehicles.

In summary, using the ISO 3888-2 standard, this is the first work that validates the func-
tionality of RHSC in real-world experiments using an observer-based control strategy that
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includes environment perception. The structure of this chapter is such that nonlinear vehicle
and environment modeling is addressed in section 7.2. Subsequently, section 7.3 discusses
the core algorithms for path following control, RHSC, as well as localization and environ-
ment mapping, UKF-SLAM, as utilized in this work. Section 7.4 describes the application of
the developments from sections 7.2 and 7.3 for the specific case of the severe obstacle avoid-
ance double lane change maneuver. Section 7.5 presents simulations as well as experimental
results. Finally, conclusions are drawn in section 7.6.

7.2 Modeling
This section introduces a vehicle model, a simple model for the surrounding environment, as
well as measurement models that will be utilized throughout the remainder of this chapter.

7.2.1 States and Transition Model
Figure 7.1 illustrates the considered vehicle and the environment. The inertial coordinate
system is O(XO, YO, ZO). Planar motion perpendicular to the ZO axis is assumed. The
velocity of the vehicle’s center of gravity (COG) in inertial coordinates is described by

dX
dt

= ẋ cos(ψ)− ẏ sin(ψ), (7.1)

dY
dt

= ẋ sin(ψ) + ẏ cos(ψ), (7.2)

where ψ is the yaw angle with respect to the inertial coordinate system. In (7.1), (7.2) the
symbols ẏ and ẋ denote the lateral and longitudinal velocity, respectively.

The yaw, lateral, and longitudinal dynamics are modeled using a dynamic bicycle model
[80, 42],

dψ
dt

= ψ̇, (7.3)

dψ̇
dt

=
1

Iz
(cos(δ)lfFyf − lrFyr) , (7.4)

dẋ
dt

=
1

M
(Fx − sin(δ)Fyf ) + ẏψ̇ + a, (7.5)

dẏ
dt

=
1

M
(cos(δ)Fyf + Fyr)− ẋψ̇. (7.6)

The vehicle mass is symbolized by M and Iz is the rotational inertia around the yaw axis.
The lengths lf and lr denote the longitudinal distance of the front and rear axles from the
vehicle’s COG. The lateral acceleration is ÿ and the yaw rate and acceleration are ψ̇ and ψ̈,
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Figure 7.1: Illustration of geometric quantities involved in modeling the considered vehicle
control scenarios

respectively. The steering angle is represented by δ and the vehicle acceleration input is a.
The front and rear tire cornering forces, Fyf and Fyr, are modeled using the magic formula
[73]

Fyl = 2Dl sin (Cl arctan ((1− El)Blαl + El arctan(Blαl))) . (7.7)
The index l is either f or r representing the front or rear tire. Moreover, Bl, Cl, Dl, and El
are empirical constants that characterize the respective tire. Finally, the relations

αf = δ − ẏ + lf ψ̇

ẋ
, (7.8)

αr = −
ẏ − lrψ̇
ẋ

, (7.9)

determine the tire slip angles in (7.7). Finally, the longitudinal force Fx is modeled with the
equation

Fx = −
1

2
daCdAf ẋ

2 −Rx, (7.10)

where da is the air density, Cd is the drag coefficient, Af is the frontal area of the vehicle,
and Rx denotes the vehicle’s rolling resistance [80].

Applying Euler discretization, i. e. approximating time-derivatives by forward finite dif-
ferences, equations (7.1), (7.2), (7.3), (7.4), (7.5), (7.6) can be transformed into a discrete-
time state space model of the form

xk+1 = f(xk,uk) + θk, (7.11)

where the state vector of dimension n = 6 is

xk =
[
Xk Yk ψk ψ̇k ẋk ẏk

]> (7.12)

and the control vector is
uk =

[
ak δk

]>
. (7.13)
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In (7.11) the discrete time-step is indicated by the subscript k or k + 1, respectively, and
the sampling time is Ts. An n component zero-mean white Gaussian noise term θk with
covariance Θk was added to the state equation to represent system uncertainty.

The environment is modeled with nm point landmarks. The environment model or map
is denoted by

mk =
[
Xm1,k Ym1,k . . . Xmnm,k Ymnm,k

]>
, (7.14)

where the Xmj,k and Ymj,k denote the locations of landmark j at time k with respect to
O(XO, YO, ZO). Assume there is an environment motion model of the form mk+1 = p(mk)+
ξk available, where ξk is white Gaussian noise with covariance Ξk. If the environment is static
as in this work, this model reduces to mk+1 = mk. A detailed discussion of environment
prediction is beyond the scope of this work, for more details see e. g. [21] or the motion
prediction survey [58].

Finally, similar to [95], define the overall state by concatenating the vehicle and environ-
ment states as x̄k =

[
x>
k m>

k

]>. The length of the overall state vector is n̄ = n + 2nm.
Note that the dynamics of the environment and vehicle are modeled under the approximate
assumption that both evolve independently.

7.2.2 Observation Models
The vehicle measurement or observation model relates the vehicle state xk to a measurement
yk. It can be formulated as

yk = g(xk) + φk. (7.15)
A zero mean white Gaussian noise term, φk, with covariance matrix Φk is added to model
sensor noise. In the ideal case where all state variables can be measured directly, the mea-
surement function simplifies to the linear relation g(xk) = xk.

Furthermore, it is assumed that the vehicle is equipped with sensory equipment to per-
ceive the environment. In particular, the relative distances ∆x, ∆y of landmarks/features
are assumed to be measurable. Assuming there is a large number of those measurements,
they are indexed by i. By indexing the features by j, the measurement function can be easily
written as the following geometric relation[

∆xik
∆yik

]
=

[
cos(ψk) sin(ψk)
− sin(ψk) cos(ψk)

] [
Xmj,k −Xk

Ymj,k − Yk

]
. (7.16)

By letting zik =
[
∆xik ∆yik

]>, equation (7.16) can be compactly rewritten as

zik = hj(x̄k) + ωk, (7.17)

representing a measurement model with an added zero mean white Gaussian noise term,
ωk, with covariance Ωk depending on the vehicle sensor equipment. It should be noted that
equations (7.16) and (7.17) assume that the correspondence of measurement i to landmark j
is known. However, in practice for a given measurement it is a priori unknown which object
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it corresponds to. This correspondence issue will be resolved in section 7.3 as part of the
UKF-SLAM algorithm.

7.3 Algorithm Design
This section discusses path following control and perception. The presented RHSC and
UKF-SLAM algorithms constitute the core of the autonomous vehicle control system that
will be further detailed in section 7.4.

7.3.1 RHSC for Path Following
The focus of this section is on deriving a path following controller by utilizing the RHSC
design approach proposed in this dissertation. To recapitulate, the main design concept
in RHSC are sliding surfaces, which are manifolds in state space where predefined desired
error dynamics hold. The RHSC design phase and tuning is quite similar to the classical
discrete-time sliding control technique. This chapter exploits the fact that the combination
of sliding control concepts and receding horizon control enables the controller to account for
constraints and to effectively use future reference information, while the design and tuning
remain similar to discrete sliding control.

The main control actuator for path following control is the steering wheel. Since lon-
gitudinal velocity control is secondary, for the remainder of this section it is assumed that
there is an explicit state feedback law of the form a = c(xk) available for speed control,
this control law will be further detailed in section 7.4.3. Furthermore, assume the vehicle
is traveling primarily in the XO direction. On curved roads, this may require reorientation
of the coordinate system O(XO, YO, ZO) at successive time-steps depending on the current
orientation of the road. In practice, for instance lane markers can be utilized for properly
orienting coordinates.

With the above assumptions in place, sliding surface design is the next step and the
development in this chapter is similar to [39, 14]. Figure 7.2 illustrates the path following
problem. First, define the desired trajectory in terms of desired YO-location and heading as

rk =
[
Y des
k ψdes

k

]>
. (7.18)

Next, using the shorthand notation b(xk, rk), define an error as a weighted sum of the
position errors, eY,k = Yk − Y des

k , and the yaw angle error, eψ,k = ψk − ψdes
k , as

ek = eY,k + ηeψ,k =: b(xk, rk). (7.19)

The weighting parameter η > 0 is used for tuning and it determines the relative weight on
the position and yaw error.

Second, following [47, 89, 39] a sliding variable, sk, with relative degree [55] equal to one
is defined using a stable difference operator on the tracking error. The difference operator
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Figure 7.2: Illustration of the vehicle path following problem as well as the position and yaw
errors

is denoted by the shorthand notation D(e)k. Like many mechanical systems, the problem
at hand has a relative degree of two. Hence, a first order difference operator is defined as
required in chapter 3,

sk = ρek − ek+1 =: D(e)k. (7.20)

The tuning parameter ρ determines the desired error convergence rate on the sliding surface
and a reasonable range is 0 < ρ < 1. Note that stability of the difference operator ensures
that sk ≡ 0 implies ek → 0 as k → ∞, i. e. driving the sliding variable to zero yields
asymptotic error convergence to zero. Moreover, as in classical discrete sliding control, sk+1

is an explicit function of the control δk after substituting the system equations recursively
[40].

The goal of RHSC is to drive the system to the possibly nonlinear and time-varying sliding
surface by using a receding horizon approach. Therefore, define a vector that contains the s
quantity over a receding prediction horizon that reaches N steps into the future,

Sk+1 =
[
sk+1 . . . sk+N

]
. (7.21)

Similarly, the following shorthand notation is used to represent the sequences of future states,
steering controls, and reference values

Xk =
[
xk . . . xk+N+1

]
, (7.22)

∆k =
[
δk . . . δk+N

]
, (7.23)

Rk =
[
rk+1 . . . rk+N+1

]
. (7.24)
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Then, the following constrained finite-time optimal control problem can be defined,

min
Xk,∆k

‖S>
k+1‖22 (7.25)

s. t. si = D(e)i, i = k + 1, . . . , k +N

ei = b(xi, ri), i = k + 1, . . . , k +N + 1

xi+1 = f
(
xi,
[
c(xi) δi

]>)
, i = k, . . . , k +N

− ¯̇δ ≤ δi − δi−1 ≤ ¯̇δ, i = k, . . . , k +N

− δ̄ ≤ δi ≤ δ̄, i = k, . . . , k +N

xk = x̂k

δk−1 = δ(k − 1). (7.26)

This optimization problem is initialized with an estimate of the vehicle state, x̂k. It includes
input and input rate constraints on the steering angle. The problem is solved at every time-
instant, the first element of the resulting control sequence is implemented and the procedure
is repeated at the next time-step with the horizon shifted by one step as usual.

7.3.2 State Estimation with UKF-SLAM
This work deploys unscented Kalman filtering [95] for simultaneous localization and mapping.
UKF-SLAM was previously addressed in [70] and [86], but overall the method has gained
little attention in the literature. This is surprising given that UKF is shown to behave well
under some of the typical nonlinearities found in vehicle dynamics and robotics such as
rotations [52]. The filter for estimating the vehicle state and the state of the environment
follows the standard predictor (pred.)/corrector (corr.) scheme [95]. Algorithm 5 summarizes
the individual steps of the procedure that will be further detailed in the following.

First, line 3 of algorithm 5 is discussed in detail. This UKF prediction step uses the
vehicle model and the control signal to predict the value of the vehicle state at the current
time-step, given information from the previous time-step. Consider the following partition
of the overall mean and covariance matrix from the previous time-step

ˆ̄xk−1 =

[
x̂k−1

m̂k−1

]
, Σ̄k−1 =

[
Σxx
k−1 Σxm

k−1

Σmx
k−1 Σmm

k−1

]
. (7.27)

The estimate, x̂k−1, of the vehicle state vector, xk−1, the corresponding covariance matrix,
Σxx
k−1, and the control, uk−1, can then be utilized to evaluate the following standard UKF
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Algorithm 5 Online simultaneous localization and mapping
1: initialize vehicle state vector estimate and covariance matrix
2: repeat
3: UKF pred.: update vehicle state and covariance with vehicle dynamics model
4: UKF pred.: update environment state and covariance with environment model
5: UKF corr.: update vehicle state and covariance with vehicle output measurement
6: for i = 0, ...,m− 1 do
7: if ith environment measurement corresponds to existing feature then
8: set j equal to index of existing feature that ith measurement corresponds to
9: else

10: extend state vector and covariance matrix
11: initialize new state and covariance components using ith measurement
12: set j equal to index of new feature that ith measurement corresponds to
13: UKF corr.: update state and covariance with ith environment measurement
14: let system evolve for one sampling instant

update equations [87, 51]

X̂k−1 = x̂k−11
1×(2n+1) + γx

[
0n×1 Lxx

k−1 −Lxx
k−1

]
, (7.28)

X̂ ′
k = f(X̂k−1,uk−1), (7.29)
x̂′
k = X̂ ′

kw
x
m, (7.30)

Σ′xx
k =

(
X̂ ′

k − x̂′
k1

1×(2n+1)
)
W x

c

(
X̂ ′

k − x̂′
k1

1×(2n+1)
)>

+Θk. (7.31)

The above equations contain the symbols 1 and 0 representing matrices of size as speci-
fied, where all elements equal one or zero, respectively. The matrix Lxx

k−1 is found from a
Cholesky decomposition of the corresponding covariance matrix, Σxx

k−1 = Lxx
k−1L

xx
k−1

>, and
γx = α

√
n+ κ with the tuning parameters α and κ. Conceptually, equation (7.28) generates

a matrix, X̂k−1, containing 2n+ 1 so-called sigma points in its columns that approximately
describe the probability distribution of xk−1 as a Gaussian distribution. The vehicle model
from (7.11) is used in (7.29) to propagate these sigma points, where a common shorthand
notation is used to indicate the evaluation of f column by column for each individual sigma
point. The propagated sigma points contained in the matrix X̂ ′

k are then used in equations
(7.30) and (7.31) to update the mean and covariance estimates of the vehicle state. The
column vector of weights wx

m and the weighting matrix W x
c = diag(wx

c ) are chosen in the
usual way involving the additional tuning parameter β, see [95].

In line 4 of algorithm 5 an analogous update to the environment state estimate, m̂k−1,
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is applied for the general case of a time-varying environment map,

M̂k−1 = m̂k−11
1×(4nm+1) + γm

[
02nm×1 Lmm

k−1 −Lmm
k−1

]
, (7.32)

M̂ ′
k = p(M̂k−1), (7.33)

m̂′
k = M̂ ′

kw
m
m , (7.34)

Σ′mm
k =

(
M̂ ′

k − m̂′
k1

1×(4nm+1)
)
Wm

c

(
M̂ ′

k − m̂′
k1

1×(4nm+1)
)>

+Ξk. (7.35)

In the above equations, set γm = α
√
2nm + κ and wm

m and Wm
c are again chosen in the

standard way [95]. As above, Σmm
k−1 = Lmm

k−1 L
mm
k−1

> can be found from a Cholesky decompo-
sition.

The next step in line 5 of algorithm 5 is concerned with applying a UKF correction
update to the vehicle state by using the measurement information yk. Again, Cholesky
decomposition is deployed to obtain Σ′xx

k = L′xx
k L′xx

k
>and the standard UKF correction

update reads

X̂ ′′
k = x̂′

k1
1×(2n+1) + γx

[
0n×1 L′xx

k −L′xx
k

]
, (7.36)

Ŷk = g(X̂ ′′
k ), (7.37)

ŷk = Ŷkw
x
m, (7.38)

Σyy
k =

(
Ŷk − ŷk1

1×(2n+1)
)
W x

c

(
Ŷk − ŷk1

1×(2n+1)
)>

+Φk, (7.39)

Σxy
k =

(
X̂ ′′

k − x̂′
k1

1×(2n+1)
)
W x

c

(
Ŷk − ŷk1

1×(2n+1)
)>

, (7.40)

x̂′′
k = x̂′

k +Σxy
k (Σyy

k )
−1

(yk − ŷk), (7.41)
Σ′′xx
k = Σ′xx

k −Σxy
k (Σyy

k )
−1

(Σxy
k )

>
. (7.42)

Above, sigma points are generated in (7.36) and propagated through the measurement func-
tion in (7.37). Subsequently, in (7.38) and (7.39) the expected output value and its covariance
are computed using the propagated sigma points. Additionally, in (7.40) the generated sigma
points are utilized to approximate the cross-covariance between vehicle state and measure-
ment output. Finally, equations (7.41) and (7.42) update the vehicle state estimate and its
covariance using the actual measurement, yk, as well as the computed covariance matrices.

So far, the vehicle state was updated based on its dynamics model and its output mea-
surement. On the other hand, the map was updated with its prediction model if applicable.
Hence, the overall mean and covariance at this point can be composed as follows.

ˆ̄x0
k =

[
x̂′′
k

m̂′
k

]
, Σ̄

0
k =

[
Σ′′xx
k Σxm

k−1

Σmx
k−1 Σ′mm

k

]
. (7.43)

Note that the operations so far have no influence on the cross-covariances, therefore these
off diagonal blocks still have the time index k − 1.
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As a next step, the environment sensor measurements are indexed by i and incorporated
into the estimation one measurement at a time. In order to resolve the data association
issue [95], the following approach as summarized in lines 7 to 12 of algorithm 5 is chosen.
If the measurement, zik, detects an object, a hypothetical landmark is introduced. The
hypothetical landmark location is computed by inverting equation (7.16) and solving for
the landmark location given the measurement and by approximating the vehicle state by
its current estimate. Subsequently, the distance between the new hypothetical landmark
and all existing landmarks is computed and the measurement is associated with the closest
landmark. However, if the closest landmark is further away than a certain threshold, a new
landmark is introduced and the state vector and covariance matrix are extended accordingly.

After addressing the issue of data association, the measurement zik corresponds to the
jth landmark. Next, a UKF measurement update based on this measurement information is
performed as follows,

ˆ̄X i
k = ˆ̄xik1

1×(2n̄+1) + γ̄
[
0n̄×1 L̄i

k −L̄i
k

]
, (7.44)

Ẑi
k = hj( ˆ̄X i

k), (7.45)
ẑik = Ẑi

kw̄m, (7.46)

Σ̄
zz,i
k =

(
Ẑi
k − ẑik1

1×(2n̄+1)
)
W̄c

(
Ẑi
k − ẑik1

1×(2n̄+1)
)>

+Ωk, (7.47)

Σ̄
x̄z,i
k =

(
ˆ̄X i
k − ˆ̄xik1

1×(2n̄+1)
)
W̄c

(
Ẑi
k − ẑik1

1×(2n̄+1)
)>

, (7.48)

ˆ̄xi+1
k = ˆ̄xik + Σ̄

x̄z,i
k

(
Σ̄

zz,i
k

)−1

(zik − ẑik), (7.49)

Σ̄
i+1
k = Σ̄

i
k − Σ̄

x̄z,i
k

(
Σ̄

zz,i
k

)−1 (
Σ̄

x̄z,i
k

)>
. (7.50)

Analogous to the previous UKF updates, Σ̄
xx,i
k = L̄i

kL̄
i
k
> is used. The setting for γ̄ is

γ̄ = α
√
n̄+ κ and w̄m, W̄c are chosen as usual [95]. As indicated by line 6 of algorithm 5,

the above equations are repeatedly applied. After the last loop iteration, set ˆ̄xk = ˆ̄xmk and
Σ̄k = Σ̄

m
k .

In summary, the filtering algorithm consists of a standard UKF applied to the vehicle state
that performs a dynamics update and a measurement update using measurements related
to the vehicle state. Also, the environment state estimate is updated if an environment
prediction model is available. Subsequently, measurements from environment sensors are
considered. For each measurement it is checked whether it corresponds to an existing or
a new, previously unseen, landmark. The state and the covariance matrix are extended
if necessary and a UKF measurement update is performed to include the measurement
information.
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Figure 7.3: Experimental setup consisting of cones and the test vehicle entering the final
segment of the test course

7.4 Experimental Setup
In the following, the application of the path following control and environment perception
algorithms from section 7.3 for autonomously performing the ISO 3888-2 double lane change
is discussed. Firstly, the considered test maneuver as well as the experimental vehicle are
detailed. Subsequently, the overall control system architecture is explained.

7.4.1 Test Maneuver
The considered test scenario is the severe obstacle avoidance double lane change as given in
the ISO 3888-2 norm [48]. The track consists of five segments, where the first, third and
fifth are straight segments marked by five cones on each side of the track. The third segment
has an offset with respect to sections one and five. The vehicle is required to change lanes
within sections two and four. Furthermore, the vehicle is restricted to enter the course with
a constant longitudinal velocity and the throttle is released 2 m after the beginning of the
first cone segment. Figure 7.3 illustrates the experimental setup consisting of the cone course
and the test vehicle, the latter will be described in more detail next.

7.4.2 Vehicle and Sensor Equipment
The test vehicle is a 5th generation Hyundai Grandeur, also marketed under the name
Hyundai Azera. The vehicle is equipped with an aftermarket differential GPS with real
time kinematic (RTK) precision enhancement, which yields position and heading informa-
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GPS/IMU
sensor type Oxford RT3000
position accuracy 2× 10−2 m
heading accuracy 1× 10−1 deg
angular rate accuracy 0.2%
velocity accuracy 0.1%

LIDAR
sensor type IBEO LUX model 2010
range 200 m
accuracy 1× 10−1 m
distance resolution 4× 10−2 m
angular resolution 1.25× 10−1 deg
max. scanning angle 45 deg
min. scanning angle −45 deg

Table 7.1: Specifications for the considered inertial and GPS measurement system as well as
the LIDAR sensors

tion with respect to a global reference frame. Velocities in the body fixed reference frame
and angular rates are obtained from an inertial measurement unit. Details on the accuracy
of the utilized Oxford RT3000 sensor unit are given in table 7.1.

The vehicle surroundings are perceived with six LIDAR sensors that are distributed on
the perimeter of the vehicle. In particular, the sensor configuration is such that it gives a
full 360 deg view of the environment. There is one front-facing and one rear-facing sensor,
respectively, as well as side-facing sensors mounted in the front and rear on either side of the
vehicle. Details of the utilized IBEO LUX model 2010 sensor are also included in table 7.1.

The experimental setup enables control authority over the steering angle and longitudinal
acceleration. In particular, the power steering motor is utilized as an actuator for setting
the desired steering angle. Note that a first order hold filter is applied to the desired steering
signal before it is commanded to the actuator in order to avoid jerkily motion of the steering
wheel. The desired acceleration is commanded through the factory adaptive cruise control
interface. Online computations are performed on a DSPACE MicroAutoBox II real-time
computer. This in-vehicle prototyping unit has a 900 MHz processor.

7.4.3 Control System Architecture
Figure 7.4 contains a schematic of the designed feedback control system. As shown in the
figure, the control loop is closed around the plant, where the system boundary is chosen such
that the plant contains the test vehicle, its sensor equipment, as well as the environment.
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Control System Architecture

State
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Figure 7.4: Block diagram of the autonomous vehicle feedback control loop with focus on
the control system architecture

The overall control algorithm involves a perception, a path generation, as well as control
modules. More details on each of these modules is given in the following.

Perception is performed in the UKF-SLAM block that contains the algorithm presented
in section 7.3.2 using the models presented in section 7.2. In particular, since the test
course is static in the considered case, set mk+1 = mk as the environment model. Since the
environment is static, line 4 in algorithm 5, is unnecessary and therefore skipped for efficiency.
Moreover, note that the stated UKF-SLAM equations (7.36) to (7.42) that correspond to
line 5 of algorithm 5 hold for the general case when the measurement function g is nonlinear.
However, the experimental setup allows direct measurement of all vehicle states and therefore
the linear relation g(xk) = xk can be used and equations (7.36)-(7.42) are equivalently
replaced with the standard Kalman filter measurement update to increase computational
efficiency. The input to the UKF-SLAM algorithm are the measurements y and z0, . . . , zm−1

and the block computes an estimate of the overall state vector, ˆ̄x, that contains the vehicle
state estimate and a map of point landmarks representing cones.

Given a probabilistic map of the environment from the UKF-SLAM algorithm, a path is
generated utilizing the following logic. Gates consisting of two cones are detected in the map
and for each gate the middle point between the two cones is added to a list of waypoints. The
waypoints are ordered in increasing XO-direction as the vehicle is primarily moving in the
XO-direction. Then, a piecewise affine reference path through those waypoints is generated.
Based on the planned control sequence from the previous time-step, future vehicle locations
are computed and used together with the reference path for finding the reference sequence
R. This desired reference sequence and the estimated vehicle state vector are then passed
to the path following RHSC and the speed controller.

The RHSC block computes the steering angle, δ, for following the desired reference
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sequence as specified by R. The block involves solving the constrained finite-time optimal
control problem (7.25) from section 7.3.1, where the models from section 7.2 are used for the
vehicle dynamics and the nonlinear program is initialized with the current state estimate, x̂.

Longitudinal speed is controlled with a proportional-integral (PI) controller of the fol-
lowing form,

ak =

{
kp(ẋk − ẋdes

k ) + ki
∑k−1

κ=0(ẋκ − ẋdes
κ ), if Xk ≤ 2 m

0, otherwise.
=: c(xk).

(7.51)

The speed controller accelerates the vehicle to a desired target speed ẋdes, subsequently, 2 m
after entering the cone course the controller is turned off, which corresponds to releasing the
throttle as required by the ISO standard [48].

7.5 Results
This section first presents parameter identification and tuning. Subsequently, the perfor-
mance of the designed control system is evaluated with simulations and real-world experi-
ments.

7.5.1 Parameter Identification and Tuning
The identified model parameters are given in table 7.2. The tire parameters were obtained
using experimental data. Similarly, the air drag coefficient and the rolling resistance were
determined experimentally using the coast down test [80]. Steering and steering rate con-
straints are chosen based on the physical limitations of the steering system and are also
quantified in table 7.2.

In addition, table 7.2 contains the control system tuning. Note that the receding horizon
sliding controller is tuned with the generic values η = 1 m/rad and ρ = 0.9. The prediction
horizon is chosen to be N = 15 steps long, at a sampling time of Ts = 100 ms this results in
a 1.5 s long preview window. The initial longitudinal speed upon entering the cone course is
controlled to track ẋdes = 10 m/s. Finally, also the UKF-SLAM tuning is given in the table.

7.5.2 Simulations
Simulations were carried out in MATLAB/SIMULINK. More specifically, the controller is
implemented in a C code S-function using the NPSOL software package [34] for nonlinear
programming. The overall control logic consisting of SLAM, path generation, as well as speed
and steering control is evaluated at a sampling time of Ts = 100 ms. At the simulation stage
the dynamics of the vehicle are emulated using the continuous-time equations (7.1), (7.2),
(7.3), (7.4), (7.5), (7.6) and LIDAR measurements were emulated based on the geometry
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Vehicle and Tire Parameters
vehicle mass M 1830.59 kg
vehicle rotational inertia Iz 3477 kgm2

distance from COG to front axle lf 1.1521 m
distance from COG to rear axle lr 1.6929 m
air density da 1.225
air drag coefficient Cd 0.2838
frontal area of vehicle Af 2.348
rolling resistance Rx 186.8897
front tire coefficient Bf 6.3846
front tire coefficient Cf 1.5606
front tire coefficient Df 4.5385× 103

front tire coefficient Ef −0.56
rear tire coefficient Br 13.2436
rear tire coefficient Cr 1.5749
rear tire coefficient Dr 3.2485× 103

rear tire coefficient Er 0.4480
tire steering angle bound δ̄ 0.4333 rad
tire steering rate bound ¯̇δ 0.0433 rad/s

Control System Parameters
sampling time Ts 100 ms
RHSC error dynamics parameter ρ 0.9
RHSC error weight η 1 m/rad
RHSC prediction horizon length N 15
PI proportional gain kp 0.8
PI integral gain ki 0.02
UKF-SLAM parameter α 0.5
UKF-SLAM parameter β 2
UKF-SLAM parameter κ -1

Table 7.2: Identified vehicle parameters and chosen control system tuning
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Figure 7.5: Exact cone locations (black, square), estimated cone locations (red, cross) and
corresponding covariance ellipses (red, solid), generated waypoints (black, circle) and path
(black, solid), vehicle location (blue, cross) and corresponding uncertainty ellipse (blue, solid)
from a simulation scenario without process/measurement noise with the vehicle located at
X ≈ −9 m, X ≈ 19 m, and X ≈ 65 m

of the vehicle scenario. The noise terms θk, φk, and ωk were set to zero at the simulation
stage. The Runge-Kutta 4 method with a fixed time-step of 10 ms is utilizes for numerically
simulating the vehicle dynamics.

Figure 7.5 illustrates the performance of the UKF-SLAM filter. The figure shows the
exact cone locations as well as their estimates and the covariance ellipses for snapshots
taken at three different time-steps. The figure also includes the desired path, which was
generated based on the estimated cone locations. The position of the vehicle’s COG and
the corresponding covariance ellipse is also included in the figure. It can be seen that the
perception system performs well in simulations and objects are detected reliably.
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Figure 7.6: Commanded steering signal, residual cost after optimization, and utilized number
of SQP iterations over simulation time from a scenario without process/measurement noise

While figure 7.5 shows performance of the UKF-SLAM algorithm, figure 7.6 shows char-
acteristics of the RHSC logic. The computed steering signal along with the residual cost
after minimization and the utilized number of sequential quadratic programming iterations
is shown. It can be seen that the severity of the double lane change maneuver forces the
RHSC to change the control signal rapidly and the steering rate constraint is frequently
active. The figure also shows that the controller succeeds at keeping the cost close to zero
throughout the simulation run. The relatively low number of less than ten SQP iterations
per time-step causes the algorithm to execute very fast.

Figure 7.7 shows the closed-loop tracking performance of the designed control system.
The true desired trajectory determined by the actual cone locations and the true vehicle
location are plotted. Figure 7.8 gives more insight into the position and yaw tracking errors.
It can be seen that the controller succeeds at keeping both errors close to zero. Note that
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Figure 7.7: Desired path generated from the true cone locations (black, solid) and path trav-
eled by the vehicle (magenta, solid) from a simulation scenario without process/measurement
noise
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Figure 7.8: Position error and yaw tracking error over time from simulation without pro-
cess/measurement noise

the non-smoothness/discontinuity of the plotted signals is a result of the non-smooth/dis-
continuous position and yaw references.

7.5.3 Experiments
Real-world experiments were carried out at the Hyundai-Kia Motors California Proving
Grounds in California City, CA, USA. Automatic code generation is utilized to obtain the
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Figure 7.9: Estimated cone locations (red, cross) and corresponding covariance ellipses (red,
solid), generated waypoints (black, circle) and path (black, solid), vehicle location (blue,
cross) and corresponding uncertainty ellipse (blue, solid) from real-world experiments when
the vehicle is roughly at X ≈ −9 m, X ≈ 19 m, and X ≈ 64 m

controller software for the utilized DSPACE prototyping unit from the MATLAB/SIMU-
LINK and C files described in the previous section. The tuning parameters are identical to
those used in the simulation trials above.

Figure 7.9 illustrates the performance of the UKF-SLAM filter during experimental test-
ing. Comparing the figure to the simulation results in figure 7.5 unveils that the distance
range for reliable object detection with the LIDAR sensor is smaller than assumed in sim-
ulations. However, the algorithm still performs well enough to build a map and generate a
path in time such that the overall control task is completed successfully.

Figure 7.10 shows the controller characteristics and it can be compared to figure 7.6 in the
simulation case. The cost is slightly higher indicating slightly worse tracking performance
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Figure 7.10: Commanded steering signal, residual cost after optimization, and utilized num-
ber of SQP iterations over time from real-world experiments

compared to the simulation case. This is expected due to the imperfection of the vehicle
and sensor models yielding degraded performance in experiments. Similar to the simulation
scenario iterations are rather low leading to fast evaluation of the controller software in
real-time.

Figure 7.11 shows the path traveled by the vehicle in XO, YO coordinates. It can be seen
that there is a slight overshoot in section 5 of the cone course which was not present in the
simulation case. However, the magnitude of the overshoot is small enough such that the
maneuver can still be completed without collision with any of the cones.

In summary, the experimental results confirm the performance of RHSC in real-world
experiments. Note that reference generation based on noisy feature locations yields a dy-
namically infeasible path. However, through its predictive control framework RHSC success-
fully compensates for this limitation making it an alternative to classical model predictive
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Figure 7.11: Path traveled by the vehicle (magenta, solid) from real-world experiments

control. The work shows that the use of desired error dynamics in the cost function, which is
an uncommon choice in classical MPC, leads to good tracking performance. The eigenvalues
of the error dynamics can be chosen to tune the aggressiveness of the controller while keeping
the steering input as agile as possible by not penalizing it during the presented emergency
maneuvers.

7.6 Concluding Remarks
This chapter deploys the receding horizon sliding control method for autonomously per-
forming the severe obstacle avoidance lane change according to the ISO 3888-2 standard.
Successful experiments show that the novel RHSC control method performs well in practical
experiments and it is confirmed that the nonlinear programming solver can be executed in
real-time despite the fast sampling time necessary for highly dynamic vehicle maneuvers.
It is remarkable, that the controller tuning is extremely simple, there are only two tuning
parameters involved and generic values lead to good performance both in simulations and
real-world experiments. Results from this work imply that RHSC can be an alternative de-
sign approach to classical model predictive control for tracking references generated by high
level motion planners in autonomous vehicles. Farther, the results confirm that it is possible
to replace human test drivers by a control system in order to obtain objective and repro-
ducible results in standardized tests. Hence, this work is relevant for ensuring that both
autonomous vehicles as well as traditional human-driven vehicles meet sufficient stability
levels even during severe maneuvers.
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Part IV

Conclusion
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Chapter 8

Closing Remarks

To close this dissertation, a summary of the presented work is provided in this chapter.
Additionally, related results as well as potential future research paths are pointed out.

8.1 Summary of Results
This dissertation develops the receding horizon sliding control method, by merging model
predictive control and sliding control. In particular, the resulting controller’s objective is
to minimize the deviation of the system state to sliding hypersurfaces using the receding
horizon control framework. Sliding surfaces have desirable invariance properties, that are
exploited for obtaining theoretical advancements related to state-of-the-art predictive con-
trol. Moreover, it is shown that the novel objective function yields good performance in
practical case studies drawn from vehicle dynamics.

In particular, this dissertation first summarizes state-of-the-art model predictive control
methodologies including predictive control for regulation problems for both linear and non-
linear systems. The relevance of invariant sets for guaranteeing persistent feasibility and
stability is emphasized. Also, popular variants such as the delta input formulation are in-
troduced. Moreover, it is explained how augmenting the state space by additional reference
dimensions can be utilized for deriving provably stable and persistently feasible predictive
controllers that allow for changing setpoints online.

Subsequently, this dissertation summarizes existing literature on combining model pre-
dictive control and sliding control. Then, the receding horizon sliding control method is
developed for a wide class of constrained nonlinear systems. It is shown that the result-
ing cost function is a suitable Lyapunov-like function. Moreover, the well-known invariance
property of sliding hyperplanes is revisited in a constrained setting, where a subset of the
sliding surface remains invariant. Based on these two key observations, persistent feasibility
and asymptotic stability are proven for the newly developed nonlinear predictive control
scheme.

Furthermore, receding horizon sliding control is developed for linear tracking control
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with changing setpoints. State-of-the-art model predictive tracking controllers require an
augmented state that includes a reference dimension in order to provide persistent feasibility
and asymptotic stability. However, by exploiting the flatness property of sliding hyperplanes,
it is shown that receding horizon sliding control can reduce the complexity of predictive track-
ing control to virtually the same complexity of predictive control for regulation problems.

The first application considered in this dissertation is a micro-underwater robot. This
system’s dynamic equations are high dimensional, nonlinear, and uncertain in practice. Ap-
plying receding horizon sliding control to the considered underwater robot yields a path
following autopilot that achieves accurate tracking in the presence of model uncertainty and
measurement noise. It is shown that the aggressiveness of the controller can be adjusted in
an intuitive way to appropriately account for the uncertainty level.

Next, using an automotive cold-start control example, receding horizon sliding control
is compared to the more established delta input formulation of classical model predictive
control. A joint meta-cost function that takes into account tracking performance and com-
putational characteristics is utilized to automatically tune both controllers. It is shown that
receding horizon sliding control is of comparable computational complexity compared to
classical predictive control and does not require additional computational resources. Hence,
it is a viable alternative to classical predictive control that can potentially outperform its
classical counterpart depending on the application at hand.

The practicality of receding horizon sliding control is further demonstrated by imple-
menting it for steering control of an autonomous car. Specifically, receding horizon sliding
control is integrated in a control-loop consisting of environment perception, path generation,
and acceleration control for performing severe autonomous vehicle maneuvers. The compu-
tational effort remains manageable and allows application to the fast autonomous vehicle
dynamics that require sampling times of the order of fractions of seconds. It is shown that
the tuning effort of the designed receding horizon sliding controller is minimal and that it
behaves well in simulations and real-world experiments of the ISO 3888-2 double lane change
scenario.

8.2 Related Results
In addition to the results presented in this work, there have been additional studies that
utilize receding horizon sliding control concepts [15, 71, 99]. A work that is particularly
closely related to this dissertation is [63]. In this study, receding horizon sliding control is
applied to an electric powertrain transmission. The system is described using a piecewise
affine model that accounts not only for the contact mode but also for the backlash phase. A
receding horizon sliding controller is designed for this hybrid system and the paper compares
its performance to state-of-the-art predictive control strategies from the literature. The
results indicate that the performance of the novel receding horizon sliding control approach
is superior to classical predictive control for this particular electric vehicle transmission
application. In particular, target wheel speed tracking accuracy is improved and the use
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of desired error dynamics in the controller formulation helps with smoothly re-establishing
contact between the transmission elements after traversing the backlash mode. The latter
point results in a considerable reduction of longitudinal vehicle jerk leading to enhanced ride
comfort. Moreover, while the general structure of the optimization problems involved in
both predictive controller formulations is similar, an average computation time reduction of
roughly 16% is observed.

8.3 Outlook
The scope of this dissertation is relatively broad and spans the basic idea of receding horizon
sliding control, the investigation of certain theoretical characteristics, and its application to
selected real-world example applications including full-scale experiments. However, naturally
there are still several aspects that are beyond the scope of this work that will be outlined in
the following. These aspects can serve as potential future research directions.

Firstly, from a theoretical point of view the stability proofs presented in chapter 3 apply
to a wide class of nonlinear systems. However, in practice the applicability of these results
still depends on whether certain invariant set computations are tractable for a given system.
This is a standard issue in nonlinear model predictive control. Further advancements in
the area of invariant set computations for general nonlinear systems would be a seminal
contribution to the nonlinear model predictive control field in general and would increase
the impact of chapter 3 in particular.

Another potential research direction is the development of explicit receding horizon slid-
ing control. Specifically for linear systems similar to those presented in chapter 4, multi-
parametric programming [4] can be readily applied to obtain explicit receding horizon sliding
controllers. It is an open question how receding horizon sliding control behaves in this con-
text in terms of complexity and scalability when compared to classical model predictive
control.

Furthermore, it was seen in chapters 5 and 7 that receding horizon sliding control keeps
some of the desirable robustness properties of discrete sliding control. This is intuitive given
that the controller attempts to minimize the distance of the system state to the sliding
surface at every time-step. However, a complete analysis of the controller’s robustness is
beyond the scope of this work. It would be beneficial to gain further insight into the inherent
robustness properties of the nominal receding horizon sliding controller and develop advanced
formulations that are provably stable and persistently feasible in the presence of uncertainty.

The most pressing issue from a control practitioner point of view is a guideline on when
the receding horizon sliding control method is preferable over classical model predictive
control. At this point it is recommended to apply both methodologies and decide on a
case-by-case basis which one performs better. For instance, in the engine control study
presented in chapter 6 and in the transmission control paper [63] that was summarized in
section 8.2, receding horizon sliding control outperforms classical model predictive control.
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However, making reliable recommendations on which control methodology is superior in a
given scenario, requires a far larger volume of case studies.

Similarly, it is desirable to gain deeper insight into the influence that the reshaped RHSC
cost function has on different solver types and solver settings. While the general class of
optimization problems solved is the same in both the RHSC and the MPC case, one control
scheme may outperform the other in certain scenarios. For instance, in the case studies
presented in chapter 6 and in [63] it was observed that RHSC resulted in lower computational
complexity on average. A detailed analysis for the root cause for the tentatively lower
computational load of RHSC, if one exists, would be worthwhile.
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