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ABSTRACT OF THE DISSERTATION

Extended Left-Right Supersymmetry with Radiative Neutrino Mass and
Multipartite Dark Matter

by
Daniel Wegman-Ostrosky

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2013
Dr. Ernest Ma , Chairperson

The extended left-right supersymmetric model (eLRSUSY) has the correct par-
ticle content to have gauge coupling unification, also three coexisting dark matter can-
didates; a neutral Fermion n in a SU(2)r doublet, an exotic Higgsino etar, with no
gaugino mixing, and the lightest neutralino x{ with MSSM-like behavior, the three can-
didates have different interactions. We study their possible phenomenological impact on
present and future experiments. The model also has a neutrino v that acquires a small

radiative Majorana mass from dark matter via a loop in a Ma-model.

v



Contents

I Description of the model

1 Introduction

2 eLRSUSY
2.1 Symmetries . . . ... e e
2.2 Particle content . . . . . ... L
2.3 eLRSUSY Lagrangian . . . . . . . . . . . . e
2.4 Superpotential . . . . . ..o
2.5 Soft Term . . . . . . . e

3 Scalar Sector

3.1 Scalar potential . . . . . ..
3. 1.1 Softterm . . . . . .. e
3.1.2 F-Term . . . . . e
3.1.3 D-Term . . . . . ...

3.2 Symmetry Breaking . . . .. .. Lo

3.3 Higgsmasses . . . . . . .

4 Gauge Sector

4.1 Lagrangian . . . . . . . . L e e
4.2 Mass of the Gauge particles . . . . . . . . . . . .
4.3 Gauge Bosons interactions with Fermions . . . . . . .. ... ... ... ... ... ....
4.4 BoundontheZ’ Mass . . . . . . . . . e e

4.4.1 Numerical values for the vevs . . . . . . . . . .. o

5 Neutralino and Chargino sector

5.1 Introduction . . . . . . . . . .

[o N L N

10
10
10
11
13
13
15

16
16
16
19
22
24

25



5.2 Neutralino massses . . . . . . . . . .

5.3 Is eLRSUSY an extension of the MSSM? . . . . . . . . . ... ... . . ... . ......
5.3.1 Higgsinos and g matrix . . . . . . ... oL Lo
532 MSSM BIno . . . . . . . e
5.3.3 Not MSSM Neutralinos . . . . . . ... .. ...

5.4 Numerical Analysis . . . . . . . ... e

5.5 Chargino mass matrix . . . . . . . . . ... L e e

IT Theoretical Implications of eLRSUSY
6 Radiative Neutrino Mass

7 Unification

7.1 RGE at 1100p . . . . . o o o e

7.1.1 by coefficients . . . . . .. L e
7.2 Running constants in the SM . . . . . . . .. L oL
7.3 2HSM (2 Higgs SM) . . . . . . . .
T4 MSSM . ..o

7.4.1 MSSM + 1 Higgs doublet . . . . . . . ...
7.5 eLRSUSY . . . . e

IIT Multi-partite Dark Matter in eLRSUSY

8 Pair Annihilation of 7z and n

8.1 Calculation of the scattering formand 7%. . . . . . . . ...
8.1.1 s-Chanel . . . . . . . . e
8.1.2 t-channel . . . . . . ...
8.1.3 Cross terms s-t channels . . . . . . . ... o L

8.2 Relic Density . . . . . . . o e

9 Direct Detection of 7z and n
9.1 Direct Detection of mand 7% . . . . . . ...

9.2 Results. . . . . . e

10 Relic Abundance and Direct detection of Wino type of Neutralino \{

10.1 MSSM neutralino X . . . . ...

vi



IV  Conclusions, Bibliography and Appendixes

11 Conclusions

11.1 Example . . . . . 0 o e

11.2 More work to be done . . . . . . . . . e e e

A Explicit Lagrangian Terms

B Masses of Higgs Particles

B.1 Masses of Neutral Higgs . . . . . . . . . . . .

B.2 Masses of the charged scalars . . . . . . . . ... L L

C Exotic scalar as Dark Matter candidate

vii

75

76
76
7

83

85
86
89

91



List of Figures

4.1
4.2
4.3
4.4

5.1

6.1
6.2

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2

10.1

10.2

Feynman rules for interactions of Fermions and Bosons . . . . . .. .. ... ... ..... 21
V-A Fermion-Boson couplings . . . . . . . . . . .. 22
Bound on Z/ mass . . . . . . ... e 23
Linear dependence of Mz and My, on the ratio of Higgs vevs r . . . . . . . ... .. .. 24
Examples of neutralino MSSM fractions . . . . . . . . .. .. ... ... ... 35
1loop neutrino mass . . . . . . . ..o e 37
Scotogenic Neutrino MAass . . . . . . . . ..o 38
SM Running constants . . . . . . . . . . .. e 44
2HSM Running constants . . . . . . . . ... 46
MSSM Running constant . . . . . . . . . . .. e 47
MSSM+2HDM . . . . . 48
Running constants in eLRSUSY . . . . . . . . . ... 50
Feynman Diagram for 773{2 annihilation to SM. . . . . . ... oo oL 53
Feynman Diagram for n annihilation to SM. . . . . . . ... ... 0oL 53
A 3-dim plot showing Qh? (z-axis) dependence on mass (x-axis) and r (y-axis) . . ... . 62
Qh? dependence for DM n and 7% on mass for r =25. . . . .. ... ... L. 63
m — r dependence of the DM component n and 7% . . . . . .. ... ... ... ... 64
mp-my [GEV L 65
Diagram for scattering with quarks for direct detection. . . . . .. . ... ... ... ... 67
Direct detection constraint for DM nor % . . . ... ... ... ... ... ... 68
limit when the lightest neutralino becomes predominantly a wino and the first chargino

becomes degenerate with LSP . . . . . . . .. ... o o 71

MSSM Neutralino and Chargino scattering (including co-annihilation) . . . . . . ... .. 72

viii



10.3 Relic Abundance of lightest neutralino when it is predominantly a wino . . . . . ... .. 73

10.4 Diagram for lightest neutralino XY scattering with quarks for direct detection. . . . . . . . 73
10.5 Direct detection constraint on neutralino DM mass when it is predominantly wino . . .. 74
11.1 Example of direct detection for three component DM . . . . . . . . . ... ... ... ... 78
C.1 Exotic scalar ng scattering via Z’ into DM . . . . . . .. ... o 91

ix



List of Tables

4.1 Fermion couplings to gauge Bosons . . . . . . . .. ... Lo 21
4.2 V-A couplings to gauge Bosons . . . . . . ... o 22
7.2 SM and 2HSM, particles with each symmetry . . . . . . .. ... ... L. 43
7.1 SM particle content . . . . . . . ... e 43
7.3 2HSM particle content . . . . . .. ..o 45
7.4 eLRSUSY, particles with each symmetry . . . . . . . . . . . . . ... ... ... ...... 49
11.1 Scattering contributions (>1%) . . . . . . . . . L 7



Part 1

Description of the model



Chapter 1

Introduction

This thesis was written as a practical application of a theoretical model, knowledge of quantum field
theory, the Standard Model (SM) and basics of supersymmetry (SUSY) have been assumed.

A good introduction to SUSY can be found in Martin’s ” A Supersymmetry Primer”( [1]) and another
good review of dark matter in the context of SUSY can be found in G. Jungman, M. Kamionkowski, K.
Griest’s ” Supersymmetric Dark Matter” [2].

Extended Left-Right Supersymmetry (eLRSUSY) is a supersymmetric extension to Left-Right model,
with a gauge symmetry SU(3). x SU(2)r x SU(2)r, x U(1)x, considered to be a subgroup of SO(10),
with X is no longer the hypercharge. Left-Right models have the benefits ( [3-9]), of allowing neutrinos
to acquire masses , give a Dark Matter candidate ( If a discrete symmetry is conserved), and with the
condition of no tree-level flavor changing neutral currents, will have a non SM Gauge Boson(Z’) in the
TeV scale.

In SUSY R-parity conservation allows for the possibility of a stable particle, including extra conserved
symmetries will increase the DM candidates. There are three conserved quantities in our model( [11]):
S, a global U(1) and the discrete Z; symmetries M and H. The usual R parity is then R = M H(—1)%.
Leading to three stable particles: the lightest neutralino x9, the lightest scotino n, and the exotic 7%
fermion.

This thesis is constructed in the following way:

In part I, the construction of model is explained, it is divided in 5 chapters. Chapter 1 is the introduction
written here, in chapter 2 the Lagrangian symmetries and particle content are introduced. Chapter 3 has
the scalar potential, in chapter 4 we calculate the masses of the gauge particles and some Z’ interactions
that would be required to calculate the scattering of DM. In chapter 5 we will study the neutralino and
chargino mass matrix, and find out that in this sector eLRSUSY is not an extention of the MSSM, but

with numerical calculation we can find parameters space where the lightest neutralino behaves MSSM-like.



Part II contains two important implications of the model, in chapter 6 we will calculate the neutrino
mass with 1 loop using the Ma-scotogenic model. And, in chapter 7 we will calculate the 1 loop RGEs
for gauge couplings, it will be shown that the model has the precise content to have unification a mass
scale ~ 1016 GeV.

In part III we will address the question of dark matter in the model, chapter 8 has the explicit calculations
of the cross sections and relic abundances for 2 of the DM candidates of the model, in chapter 9 the
direct detection of this candidates vs the experimental results of XENON. Chapter 10 we use computer
simulations to calculate the direct and indirect detection of the third DM candidate in the model, an
MSSM-like neutralino.

Finally, part IV holds the conclusions, including an example of one point in the parameter space of the

model, the bibliography and appendixes.



Chapter 2

eLRSUSY

2.1 Symmetries

Our model is a supersymmetric extension of dark left-right model (DLRM) [3], where the gauge symmetry
is an Left-Right extension of the Standard Model given by SU(3). x SU(2)g x SU(2), x U(1)x, which
as it will be seen in chapter 7 is assumed to be a subgroup of SO(10). Also, three extra symmetries
are used, S, a global U(1) symmetry two discrete Zy symmetries M and H. R parity (as defined in
supersymmetric theories) will be now a combination of M and H given by R = MH(—1)%. S x M x H
is used to differentiate some of the particles in our model, and have have the added benefit of giving one
DM candidate for every unbroken symmetry.

A new generalized unbroken ”lepton” number S’ = S + Tsg, will arise form the spontaneous breaking of

SU(2)r x S.

2.2 Particle content

In the Minimal Supersymmetric Standard Model (MSSM), two Higgs doublets are required [1], never-
theless in supersymmetric models with a bigger symmetry( i.e Fg or SO(10)) this number can increase,
and bidoublets and triplets might be added [12-16]. In our model we will follow ( [45]),where it was
found, that by adding extra particle content it’s possible to obtain gauge coupling unification. Therefor
our model will contain 8 Higgs doublets, 2 Higgs bidoublets, 2 charged singlets and and a neutral singlet
(all of this superfields) will be added. Also following DLRM there is new exotic quark ”h” and more
important for our study, an extra neutral Fermion ”n” which is NOT a Dirac partner of the SM neutrino.
If ’n” is a DM candidate, then it will be called a scotino [10], in addition in eLRSUSY we will also add a

heavy neutral fermion N, necessary for radiative neutrino masses [17-32]. Being a supersymmetric theory



all of these Fermions will have scalar superpartners.
Using the fields with the symmetry assignments SU(3), x SU(2)r x SU(2)r x U(1)x x S x H x M the

superfields are:

8 oy 93
A = ~(1,2,2,0;1/2,+, 4), (1,2,2,0;—1/2,+,+)
o 0 Oy 03,
11
b, = N(l 1/20++ Do = 1,2,1, 1/20++)
Pr1
1 @2
q)Rl = ~ (171721_1/27_1/2 + +) ¢32 (1717231/2a1/2)+7+)
Pr1
TIL1
ne1 = 172713 1/2707+7 7 N2 = 1 2 1 1/2705+7_)
U
7IR1
NR = (1,1,2,—1/2;1/2,+, ), 1r2 = 1,2,1/2;—1/2,+, —)
NR1
s1 = s7 ~(1,1,1,-1;0,+,-), s2=s5 ~(1,1,1,1;0,+,—), s3=s3~(1,1,1,0;0,+,—)
¢ = (Vv 6) (1727 1a 1/2705 ] +)a ¢c = (ec7nc) ~ (17 1727 1/21 _1/27 ) +)
N ~ (1»17170507_7_)7 n~ (1717170;17_a+)
Q = (u7 d) ~ (37 2’ 17 1/6; 07 _7+)7 QC = (hc’ uc) ~ (3*7 1727 _1/6; 1/27 —7+)
d ~ (3%,1,1,1/3;0,—,+), h~(311,-1/3;-1,—,+) (2.1)

2.3 eLRSUSY Lagrangian

Before writing the Lagrangian with all the possible interactions, first we should consider the fields that
we require, fermions fields v; will be written using left handed components (for right handed fields the
charge conjugate is used), ¢; is used for complex scalar fields (sfermions and squarks are included in this
category), the gauge Bosons are included in the field tensor given by, Fjj, = 0,47 — 0, A}, — g f“bCAZA,‘j
and in the covariant derivative D, = 0,, — ng“Gz), A, are the gauginos.

The Lagrangian is:

L = L"gauge—scalar + ﬁgauge—fermion + Lscalar—fermion + Egaugz’no—fermion—scalar (22)
+£gauginofgauge + £gauge + +V(¢7 ¢*) + £soft

5



The first term gives interactions between the scalar particles and the gauge Bosons, after symmetry

breaking the gauge Bosons will get a mass.

Egauge—scalar = |D,u¢|2 (23)

The second term has interactions between two fermions and a gauge particles,

ACgaugeffermion = ZJO-HD/,L'(/) (24)

the third teem has interactions between gauginos, fermions and scalars,

Egaugino—fermion—scalar = Z\/ig(b;k)\a’lpi (25)

the forth term has interactions between two fermions and a scalar, is clear that after symmetry breaking,

fermions will acquire mass.

F2a 1%
‘csca ar— fermion — 7\117,\11 h. 2.6
far—f 0600, T (2.6)

W is the superpotential, a function that in general, will contain all the square and cubic terms of the
superfields that can be written down as allowed by the symmetries imposed by the model ( linear terms
can also be written down, but they will not have an impact in the equations of motion, and can be
ignored).

the fifth term is the same as in the SM and has cubic and forth order interactions between Bosons.

Loauge = F, FHa (2.7)

the sixth interaction is between gauginos and gauge Bosons.

»Cgauginofgauge = ZXaO—NDy)\a (28)



V is the scalar potential, explicitly will be written as

] 1
V(9,¢7) =W;W'+ 53 DD =3 | o5 o |2 5D 9a(6"T)? (29)

Where W* = g;v and D% = —g(¢*T*¢) . The first term in the scalar potential will be called the F-term,

and the second the D-term.

The term Lg,y¢, is the soft breaking term, it will be explain in more detail in section 2.5.

2.4 Superpotential

The superpotential will be separated in two, it will make explicit the fact that the second term includes

the SM fermions, in this terms the Yukawa couplings will be used to give mass the the leptons and quarks.

Wi = —pur®ri®ro— pr®Pri®Pro — puaTr(A1Ay) (2.10)
—HL2ML17L2 — KR2TR1TR2 — Hs125152 — 4535353
+f1Pr182®PRro + foPr2A1 PRy
+f3np1Ainre + fanrelenrr + f5Prinpise + f6Primr1s2

+fr@ronrosi + fsPronr2s1 + foPrinraxs + fioPronriss

and

Wao = pnNN + L A© + [12QA:Q° + f13QPr1d° (2.11)

+  funy°®ri + fishQ®ro + fie¥ Nnre + fir“Nnm

A tree level neutrino mass would come for a term like ¥ ®o1¢, which is non-existent in the superpotential
( v° does not exist in the model). Nevertheless, a 1 loop neutrino mass can be generated as it will be
seen in Chapter 6.

The Superpotential can be rewritten explicitly in terms of the separate isospin components



Wi = —ur(@118hs — 61101n) — 1r(DR1 0% — OpiOFke) (2.12)
—pa (671095 — 671055 — 615051 + 01505;)
—pr2(N21022 = Npanis) — HR2 (i Nk — Mgy lie) — He1251 53 — Hs35355
(911091 Phe — 210210 hs — P110220R2 + 0710220R2)
+12(9220010%1 — L2011 0R1 — 07201 20 + OLs 502¢E1)
+f3 (05100 My — W21 011k — 121012 MRs + 1110727 Ro)
+f1(n22690 0%t — NE2021 %1 — M2032M g1 + M20% k1)
+f5(67an5153 — Oraniasy) + fo(Orinmss — Orinz1ss)
(012087 — BLaniast) + fs(Dlalipast — Sranfast)

+fo(@11m1258 — G11m1259) + f10($2an7153 — d1amy53)

Wy = Yo(ed) e — vy e — ediane + v6%an®) + Y (do9 h — udpy he — dogyu’ + ud9,uc)
+ Ya(ugp,d® — dp,d) + Yo(nedpy —nndny) + Yi(hhdhy — hup,) (2.13)

+ Yni(Nvniy — Nnfye) + Yna(Nnge® — Npgn©)

We have renamed the parameters fi; — fi7 in the equation above, to show this terms are Yukawas
responsible for the mass of the Fermions. From (2.6) the mass m. comes from (§9;) = uy, m, from
(6%,) = ug, mq from (#Y,) = vri, m, from (¢%,) = vry, and my from(¢%,) = vgy). Note that

(#Y,) = vro doesn’t contribute to fermion masses, but is involved in the scalar and vector masses. A

diagonal Yukawa structure guarantees the absence of tree-level flavor-changing neutral currents.

2.5 Soft Term

Supersymmetry must be broken, if not particles and their superpartners would have the same mass. This
mean the Lagrangian should include new terms have to be added that break SUSY, with the restriction
that the quadratic divergence needs to remain canceled, and these terms must also be renormalizable.

There are many ways to break SUSY, being the most common mechanisms ( [34-36]) : Gravity mediated
(SUGRA, mSUGRA, cMSSM), Anomaly Mediated and Gauge Mediated ( Although there are more), a

good review can be found in ( [33]).



It’s also possible to write the soft SUSY breaking terms without a theoretical explanation, this explicit
breaking will consist on the following terms:

1. Gauginos, in the eLRSUSY there will be 4 of these masses corresponding to the bino, left and right
winos and the gluino, be aware given the extended gauge symmetry the bino soft mass Mg will not be
the same as the one in the MSSM.

2. Scalars, this will be for all Higgs partcles and also the scalar superpartners of the fermions.

3. Bilinear, these are in the form B;;¢;¢;, and are included for every square term in the superpotential.

4. Trilinear, these are in the form A;;,¢;¢; ¢, and are included for every cubic term in the superpotential.



Chapter 3

Scalar Sector

The Higgs sector in the model is extremely rich, and therefor extremely non trivial. There are 2 charged
singlets, a neutral singlet, 8 complex doublets, and 2 bidoublets. Naively, for every complex singlet there
are 2 fields (If is neutral there will be a real and imaginary component, and if is charged there will be a
positive and a negative particle). For doublet there will be 2 neutral scalars and 2 charged ones, and for
the bidoublet twice as much than a doublet. This means that the model will have 26 neutral scalars and
28 charged ones. As mentioned this is a naive count since any charged scalar will have the same mass as
its conjugate, also only 6 of the neutral scalars will acquire a vacuum expectation value (vev), that will
make the real and imaginary components different. Over there will be then 21 neutral scalars and and

14 charged ones.

3.1 Scalar potential

As mention in the last chapter, the scalar potential will depend on three terms

Vscalar = V;aft +Vp+Vr (31)

3.1.1 Soft term

We will write the soft potential in two different terms, the first one will include only the Higgs particles,

while the second one will also include sfermions.

10



Vlsoft =

VYQsoft =

*mil(@éﬁ%l + ¢E1¢Z1) - m2LQ (¢TL2¢OL2 + ¢Zz¢zz) - m%l(ﬁmﬁﬁ%l + ¢I_{1¢El)

— My (0% Pho + Probha) — m%“ (Yania +npanty) — mfm (n99m70 + nranis)

_m727R1 (ﬂTmnom + 771_21771%1) - m72732 (UTMU?%Q + 771_{277;52) —m2 sy 57 —mZysy 5 — migs9sy
—mA; (69,001 + 071671 + 09500 + 65015) — mAa (69,09, + 63551 + 09565 + 53505,)
—BL($11612 — 011012) — Br(R1ORs — Or1Phe) — Ba(011835 — 01103 — 0{305 + 6750%)
=By (021122 = 12101s) = Bon (Ijan%e — i) — Ba2sy s3 — Biasiss

+AL(G71 0910 hy — 0710210 hy — 01103202 + 07105:0%2)

+A2(0720710R1 — DL2011 0k — $120120R1 + G120120R:1)

+A3(77£15(1)1771+22 - 77%1517177;%2 - ﬂ£151+277?%2 + 77%15?277%2)

+Ad(ML209 1 — NE2051MR1 — 1203251 + 12092751 )

+A5(07105153 — OLanLasy) + As (O m1s3 — PRiNR1Ss)

+A7(Pfam1257 — Gralfast) + As(PhanRasT — SRanfrst)

+A9(¢%177%23§ - ¢Z1772r25§) + A10(¢JLF277£13(3), - ¢JLF277£13g)

m}, (€€ + vir) + mj,. (e“e® + nen®) + m% NN +m2nn (3.2)
+m (@i + dd) + m3. (heh® + ueue) + mj.ded® + mjhh

+ Ao (66Y,6° — Do ¢ — e6iyme + 069yne) + Ay (d6 he — @y he — doguc + 1695u°)
+A(ad,d° — dd,d°) + Ap(ivdp, € — i n®) + An(hd'hah — ho fyuc) (3.3)

+AN1 (N7 — Nntyé) + Ana (N, €€ — Nphyn©)

3.1.2 F-Term

From eq. (2.9),

ow
Vi = Z |@|2 (3.4)

where ®; are the scalar superfields, explicitly

11



Vi

_|_

+ + + o+ + o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ 4+

| = dY, — prols + F1(=0510F + 0950%s) + fsnpixs + fonfaxsl?
| — NL¢%1 + f2(_5;r1¢1_%1 + 6?1¢(1)%1) - f777;2X1_ + f10ﬁ%1Xg|2
|JC{LYU + Ly + hi (531(1);2 — 03y0%a) — f51L1X3 — f9772—2><(3)|2
Ly + f2(82br) — 011 0R1) + frnaxy — frong,xsl?

| = Y + fo(=61,01, + 601072) — prORs + fongixs |
|h°hY), + fi(=055¢7, + 332071) — HROR — J0877§2X1_|2

EnY,, + f2(01201, — 011602) + 1rRORy — fonhixa [°

| = Yy + f1(03160) — 021601) + Hr®R + fsnkoxi |

€Y + fanpy iy — Ooaka + f20220% |

|G, + fanfongs — 0910a + [1011 0kl

| — &DYe — fanianfy + 0daiia — fodf 00 [

| = diYu = fananpy + s — fro7, 0kl

| - hewY, — f4772277??,1 + 0 A — f1¢%1¢J15,2|2

| = enYe — fanp ke + 0o 08 — f2dl0tR

AR Yo + fanont — 00apa + F167, 65l

[RDY, + fanlinpe — O1pa + foadybm |

|f3(_5ﬂn§2 + 5?277?{2) - 77%2/%2 - fsﬁbﬁxz+ + f10¢%2X§|2

INDY N1 + fa(=05mm + 69m%1) — nlinre + frdhaxt + fodriX8)?

| f3(80ynhe — 01in%e) + niakire + f5001X5 — f10072x3)7

| — ENYN1 + fa(0%9m5; — 051m1) + Mpatine — frd2ox1 — fodri XS

| - NiiYiys + f4(—55177{2 + 5817722) - 77?%2/132 - fG¢1§1X§r|2
| f3(=0f1mpy + 0%2mLn) = Npikre + fsdhaxy I
|écNYN2 + f4(532nf2 - 5;277%2) + mﬁzum + J06¢01—?,1X2+|2
|f3(6%1m71 — 00ni1) + Ngikre — fsbhaxi |

|f7(77%2¢22 - 7722¢%2) + f8(77%,2¢§2 - 77§2¢(1)?,2) - /J/812X2+|2
[fs(=nL1071 +121021) + fo(—1p1 PRy + Nridh1) — msr2xy 2

|f9(_772r2¢21 + 77%2¢%1) + flO(_7721¢z2 + ’7%1‘?5%2) - 2/‘53xg|2
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Ye(€°09) — 7°61,) — NYnaniy|? + [Ye(—007; +8601) + NYnang, + iYndpg, |
Yo (=%, + n°6%,y) + NYnind,|* + Yo (—e01; + 06%y) — NYNZW?ﬂ — Y P |?
Yo (h03) — @°655) — dYud 1| + [Yu(—065; + db3,) + hY) ol

Yo (=he85; +°0%) + dYudp, |* + |Yu(ior, —del,)1* + [Va(Edn, — i0%)[?

Vi (=, + hEGho)|? + |Yu(—dody + 16%,) — BYh(ﬁEzP

+ o+ o+ o+ o+ o+

[Yn1(—eénfy + imia) + Yaa(Enp, — nng)|?

3.1.3 D-Term

From eq. (2.9)

2
g, .
Vp = § ?j § |, T ®; | (3.6)
J a

Where T7 are the generators for the Group (i.e. Y for U(1), % for SU(2) )

2
Vo= % |=®, & + 0,80 — Oy + BhyPpo (3.7)
T 1 T T _9 I 9 T
NpiML1 + NpaNL2 — Np1MR1 + Nra"R2 5151 + 28552
. N R U SR S
Ot =T e e+ 2QTQ - 5Q0 Q0 — ShTh 4 Sdedef? (38)
2
+ % Z |<I>TLIU,1<I>L1 + (I)TL2O'G¢)L2 +Tr [AJ{UQAJ +Tr [A;UQAQ}
T T A P Yqr O2
FNp10aNL1 + Npa0anre + ¢ oa) + Q1o Q)|
2
+ %‘3 Z |<I>J1rﬂaa<I>R1 + q)k?aafl)Rg +Tr {AIUaAI} +Tr {A;UGAQ}

_ - - -
+77;r{1(7a77R1 + 77}{20'@7]1’?,2 + ¢c Ua'(/}c + Qcaan|2

3.2 Symmetry Breaking

The vevs are (¢9,) = vr1,(0%5) = vr2, (0%) = vr1, (Bhs) = vR2, (631) = u1, (63,) = w4

The potential minimum is given by,
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Vo g(meAlu% — 16Bpuiuy — 8magul — 8mpive, + 8fEusv?, + gvi,
—16BLvL1vne — 8Mravie + 8fautvi, — 2g50% 101 4+ 91207 5 + 16 AgugvrovR:
—8mp1vhy + 8f5ufviy + 201707 vk + 8301 a0k — 291707 50h + 9170
+16A1u4v11VR2 — 16 BRURIVR2 — 8Mpavhy + 8fEusvh, 4+ 8F20% 1 0he — 20507 0%,
+20307 200 — 297VR1 Vio + G310k + 97 (2u] + 2uf + (V1 — V7o) + (Vi1 — VRe)®
F2uf (=07, + Vi — Vi + Vo) — 2uF(2uf — v} + 0]y — VR + Vo))

—16 fousvrovRipa — 16 fruivpivropa + 8uipA + 8ujpA — 16 fourviivpipiL

—16f1uqvrovrair, + 8V7 1 p3 + 8viou7 — 16( fruavrivrr + fourviovre)pur + 8(Vh1 + Vho ) UE)

Using the conditions of minimum of the potential

gL u? 2 2 2 91 2 2 2 2/, 2 2
mi, = pi+ Z( —uj+viy — VL) + = 1 (Vi1 — vig + VR — VRe) + [T (U] + vFy)
n Ajugvpe — Brvre — faurvgriprn + fi(—uivgepia — uaVR1LR)
L1
g g
mi, = ui+ ZL(—uf +uj — i +vig) + 41 (—vi1 + Vi — VR + Vio) + f3 (0] + vFy)
i Asuivrr — Brvpt — fiugvgepir, — f2(usvripip + u1vr2piR)
VL2
g g
mh = pn+ ZR( — Ui + vk — Vio) + 41 (viy — Vig + VR — VRe) + f3(uf 4+ v35)
n Auivrs — Bruge — fruavpipir — fa(uavropp +uiveipir)
VR1
g g
mhy = ph+ ZR( U +uj — Vi + vio) + 41 (=7 +vig — VR + VRe) + fT(u] + 7))
+ Arugvry — Brugt — fouivropr — fl(UleluD + U4UL2ML)
VR2
g g
mi, = pph+ IL( T—uf i —vig) + f(ul — Ui + VR — Vio) + f3 (V2 + V)
n Agvrovr1 — Baug — fivpivrepip — fo(vLivpipin + vL2vRafiR)
uy
2
mhy = uh 4 L~} 4w = ofy + ofy) + TR (—ud 4w — vk + ) + SE (0] + vho)
n A1v1vRre — Baur — fovrovripp — fi1(4vpovrepir + VL1VRIKR)

Uy
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3.3 Higgs masses

The masses of all of the neutral Higgs are written in appendix B, needless to say the matrices are non

trivial, but we are able to see that the following basis are decoupled from each other.
L R(¢pr1), R(dr2), R(r1), R(Pr2), R(611), R(J22)
2. S(¢r1), 3(Pr2), S(BR1), S(PR2), I(611), I(d22)
3. R(ne1), R(nez), R(ss)
4. S(ne1), S(ne2), S(ss)
5. R(12), R(d21)
6. 3(d12), 3(d21)
7. R(nr1), R(nr2)

8. S(nr1), S(Nr2)

For the charged Higgs the decoupled basis are
L. @71 @12 011: 02
2. O o 01, 031

+ o+ 4+ 4+ + +
3. Mr1s M2y Mr1 MR2> S1 552

15



Chapter 4

Gauge Sector

4.1 Lagrangian

The terms in the Lagrangian that include interactions with the gauge Bosons are

N2 1 % iz 1 v
Lyauge = (D, ®)")(D*®) + Toy* D, W — 1 Fu " = 5 G G (4.1)

Where D, = 8, —1(g/2)0 - W, —1g'Y By, F\, = 8, W} — 0,W}, + €7*WIW} and G, = 0,B, — 9, B,.

4.2 Mass of the Gauge particles

The masses of the gauge Bosons can be calculated from the first term in L4444 Explicitly,

1 1
L = T {auAl - %aa @ A, +A1%0a ;R} k (4.2)
gL a YR a
—+ T7"| |:8HA2 — EUGWHLAQ + AQ%O—U. ,uR:| |2

gL a g1

+ |<3u\/§‘7a uLﬂB/L>®L12

7 0 0
+ | (au - %UGWML + %Bu> Do

7 (3
b1 (0 Louwin - 5, ) el

JR g1 B

o (0= i Gy ) ot

The notation is obvious ¢; is the gauge coupling for U(1), while g7, and gr are the corresponding couplings
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for SU(2)r, and SU(2)g. Is important to keep in mind that giving to operation order of matrices, the
bidoublets A; and A, operate to the left of Wg.

With the expectation values,

<A1> = y <A2> = ) (43)
0 O 0 wuy
0 0
(pr1) = o . (¢r2) = , (Pr1y = o . (Ome) =
0 VL2 0 VR2

we can write the Lagragian, explicitly,

‘CGaugeflwass = (44)
gy (W VY (i 0) g o) [ VAW
V2 lvaw;  —wi ) \o o 2 o o) \vaw, —w3
7| - YL Wi vawg [0 o _wr (00 Wi V20 2
V2 vaw;y  —w? ) o 2 0 w) \vow, —w
1gr Wf \/iwzr Vi1 191 B 0 VL1 9
1 V |
Vew,  —wi 0 0 B 0
g [ WP VAW 0 Lo B 0 0 e
\/§ \/iWE —Wg VL2 \/5 0 B VL2

VR2

9R W]% \/EI/VIJ%r VR1 191 B 0 VR1 9
R R |
Vewy Wi 0 0 B 0
wr [ Wi V2WRE 0 wr (B0 01,
\/iWR —Wg VR2 0 B
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<
=t

= LA (W) +2W, W) + grgr(WEWE) + gh(W3)* + 2WL W)

[9L(WE)? +2W W) + gLgr(WEWR) + gR(WR)* + 2WE W)

+
§wl\3‘§wl\3‘

_|_
|

L ((WE) +2W W) + grg1(WEB) + 61 ((B)?)

<
SR

_|_
|

29 (WD) +2W L W) + g1g1 (WEB) + g1 ((B)?)

_|_
‘@
BN

HgR(WR)? + 2WE W) + grg1 (Wi B) + g3 ((B)?)

<
TN DO

2[9R((WE)? + 2WE W) + grg1 (WEB) + g1 ((B)?)

|

We will write the mass Lagrangian in matrix notation for that we will use the bases, G = {W?, W}%, B}

and W+ = {WLi, Wg}, for the neutral and charge Bosons

£G’auge—Mass = GM(Q;G + W+M3VW7 (45)

The mass matrices are

2
, %(uz + v%) 9L29R u2 912571, U%
2 %(UQ + U%) O 2 2
My, = r 0 ) , ME = grgn u? QTR(UQ +02) i v (4.6)
0 L(u*+v .
2 R 2
g1ét]L ,02 9151% 1}2 %(U% + ’U%)

Where we have defined the sum square of the vevs v? = v?, +v%,, v% = V%, + vk, and u = uf + uj.

The mass for the neutral charged Bosons is already diagonal and represents physical states. For the
neutral Bosons, when need to have a rotation to a physical basis A, Z, Z'.

Using the transformation G = U~1G’

WSL Sr, Cr, 0 A#
02 —82
Wir|=| s=r —sLsn L=k | | z, (4.7)

cL
/Z 5% s [Z s _sn /
By ‘L =Sk T VEL TSR cL Z
Where s;, = sinfy,, sg = sinfg and ¢;, = cosfy, are related to the couplings as g;, = e/sr, gr = €/sr

and g1 = e/+/c2 — s%.

The mass matrix after the transformation is,
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0 0 0

20,2, .2 2 24,2, 2,2
_ g7 (u"+v grLgr((sp—c7)u”+sgrv
M?=UMZU" = |0 gl ) ﬁpfgwg) oavL) (4.8)
"LV LT°R
0 99n(h—cp)uw’+shv]) _ gh((sh—ci)®u’+spv] +cjvf)
40%\/0%75% 2c; (s —ci)

The mass of the photon is zero, and the Z Boson is mixed with a new Z’ Boson. Since experimentally this
mixture has not been found [37]. We’ll assume no Z-Z’ mixing, that can be accomplished by requiring
the quantity Mzz /M2, to be very small. Or for simplicity, the off diagonal (Mzz/) terms should be

equal to zero, this assumption leads to the the condition:

2 % 2

CL*SR

Using the no Z-7’ mixing condition, the masses of the all the gauge Bosons can be calculated.

2 97 2, 2 9191
M; = “S(u+vi)=_75""5~ (4.10)
z 2¢2 L79(e2 — s%)
2 22,2
9L, 2 2 JLCLVL 2 2
M, = LwP4e?)= L L L — MZet (4.11)
P T 2c - 53)
2((a2 _ 2\2,2 4 A2 | 4,2
ML = _9r((sg — 1) u2 + 51;% + CLUR) (4.12)

20%(312 —ci)

2 2

2 2 2 2
iy = o vy -aiza (1o () (1)) (419

SR vr,

The mass of the Z and W, Bosons are part of the SM and have been experimentally measured (CITE),

while searches for Z’ and Wg have put bounds on the their possible masses.

4.3 Gauge Bosons interactions with Fermions

The interaction between a generic Fermion doublet X = (X7, X5) and the gauge Bosouns is given by
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L = 1 X"WD,X (4.14)

Lo W0 A oWt )
= (X1, X2) O 29 Wi + Y By ﬂ(g’W#i) Xui
I3 (9W,) Wy — 39:W0 + g1Yx By, | \ Xas

_ Gi ~ 9i
= ley“(zau + éWSl + 91YXBM)X1 + XQ’YH(Z w EWSl + 91YXBH)X2

1 — 1 —
+ =Xy (9 W, )Xo + *QXW"(%W,E)Xl

V2 V2

The chirality of the Fermions is given by ¢ = L, R. Using the transformations in eq.(4.7), we find the

interactions between Fermions and the physical neutral gauge Bosons.

L=(X+X) | Augrsi[lzr + g + Yx] (4.15)
2 2
+ | Zugrlerlsr — %2”1312 - %YXH
+ [ 20— [Ia( — sh) — shYx]]

cL\/C1 — Sk

We define the currents

9(L/R) /~—
= X{vH*X 4.1
JW&/R) V2 (X17"X2) (4.16)
Ja = eQ(X+"X)=grsLQ(X+"X)
J; = %(IM — $2Q)(Xy"X) (4.17)
JZ/ = gz [(C% - S%)IgR - S%YX](Y’}/“X) (418)

= gz(ciI3r + shlsp — s3Q) (X' X)

Where gz = m and YX = Q — IgL — I3R.

A quick examination of the currents shows that W connect two Fermions of the same doublet, while
A, 7Z and 7’ interact with a Fermion and antifermion of the same generation. Using these currents we
can calculate the couplings for some of the relevant particles of the model as seen in table 4.1, and the

Feynman rules in Fig. 4.1.
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. . . . 1—
Figure 4.1: Feynman rules for interactions of Fermions and Bosons. For X we use ~—5*

Z/

X, Xc

(1£vs)

= grsp [Isr + Isp + Yx |y 5

X, X¢
X, X

2
=gren[Isn — (SR) (I3g — YX)]’Y“%

X, X¢
X, X¢

cL

= 9z [Isr(c] — s%) — skYx ]y 050

X, X¢

1475
use —5°
Fermion | I3 | Isg | Yx | Coupling to A,(gz) | Coupling to Z,(gz) | Coupling to Z, (gz)
u 12| 0 | 1/6 21 L 4 SR _sh
3 2 T Bey 6
u 0 |-1/2|-1/6 -2 *h _y 2%
3 3cr 2 3
82 52
d 12| o | 1/6 L ST h
52 s2
de o | o | 1/3 sL n —n
; s2 $2
h 0 | 0 |-1/3 _ap sk 5
he 0 | 1/2 | -1/6 L _25h L sk
3 3ce 2 73
82 52
e 12 0 |-1/2 sy g gk %
e 0 | 172 12 sL 0 Lo 52
n 0 0 0 0 0 0
52 2
ne 0 |-1/2] 172 0 sh 4
, s 52
v 1/2 | 0 |-1/2 0 S &
e | 0 | 1/2 ] -1)2 0 "o e
) 0 |[-1/2| 1/2 0 sk 4
R2 cr 2
Table 4.1: Fermion couplings to gauge Bosons
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= gv*(cv — cas5)

f

Figure 4.2: V-A Fermion-Boson couplings

We can rewrite the current in the usual V-A structure, with the new couplings shown in table 4.2

AXA"X + BX ‘4" X¢

/1 5 1— 5 /1 5 1
() (e ()

5 o .5
= AX (1 - )X+BXC’y“ (1 - >Xc

- o 5
= AXyH (1 - )X—BXW (“‘27 )X

- e

A+BAB75)X
2 2

= Xy (cv — ca75) X

Where we have used the properties of charged conjugated fields X ey X¢

2

XyFys X
: A Z Z VA z'
Fermion | ¢ c; co cs co
" 2sr, crL + i cL s%{ SQR—ci —58%-&-30%
3 4 4CL 4 12CL 4 12
2 2 2 2
d —5L | L 4 SR cL _ SR —3s® SR
3 4 4eg, 4 12¢y, 12 12
h s _ Shm SR i 48%736%
3 2cy, 6cy, 4 12
e s |ieL _ Sk | _en _ Sk | Zshtel | 3sh=cl
L 4 dcy, 4 dcy, 4 4
2 2 2
n 0 SR S®k —c, L
QCL 2CL 4 4
2 2 2 2
v 0 cL _ Sr cL _ Sr SR SR
4 4cr, 4 dcy, 4 4
-0 o | _ 5 4 5]
QCL 2(!L 4 4

Table 4.2: V-A couplings to gauge Bosons

For A, and Z,, g = g = e/sy. For Z,, g = gz = e/(cLsrv\/c] — s%)

4.4 Bound on the Z’ Mass

-

5

) X¢  (4.19)

— XX and Xeyhys X¢ =

We want to evaluate the bound on the mass of Z’ in our model from LHC data. The data is shown in the

left side of Fig. 4.3, the figure is from ATLAS [38], with Fcpr = 8 TeV and integrated luminosity of 20
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fb=', where the bound was obtained for producing Z’ and subsequent decays to e*e¥ for some popular
Z' models. For example, The bound on SSM (the phenomenological Z’ model with SM coupling), the Z’
mass has been cross-checked to be around 2.8 TeV.

We use eq. (4.18) to find the current that Z’ couples with e*eT, and assume the unification requirements
of the model( we will examine in chapter 7), gr = gg which implies, sin g = sin 0y, = sin Oy .

We use event generator CalcHEP [39] for calculating the cross-section and use CTEQ6L parton distribution
function [40]. Cuts on the electron pr > 40 GeV and pseudorapidity |n| < 2.47 have been employed to
obtain the signal in our model. On the right hand side of Fig. 4.3 we show our model cross-sections in
blue and the bound from LHC data in red, as seen in the LHS of the figure. We obtain the bound on the
mass of Z', Mz = 2.045 TeV ~ 2 TeV.

M, bound from LHC at 8 TeV

= = I B e
= F ATLAS Preliminary _g,cccodimit 1 ‘ ‘ ‘
© 101 L Is=8TeV Expected+ 16|
E Z'—ee Expected+ 26
C — Observed limit 7
ol _
107 E o)
g E
L = T m
1% TREa N> W 3 S
4l
10 E JLdt:zofb"
10»5_”.I‘.‘.y..y............... e N
0.5 1 1.5 2 2.5 3 3.5 0.5 10 15 2.0 25 3.0 35

M,[TeV]

Figure 4.3: LHS: Bound on different Z’ masses at LHC from ATLAS with Ecjy; = 8 TeV and integrated
luminosity of 20 fb~. RHS: The limit is exploited to determine the bound on the Z’ mass of this model.

Defining the ratio between the right and left vev,

VR
= = 4.20
r UL ( )

And using the gauge coupling the unification condition, eqs. (4.10-4.13) for the masses of the gauge

Bosons can be rewritten,
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My, = gLvL (4.21)
2(1 — 2sin? Oyy)

MZ/ = MZ\/sin2 0W +’I“2 cos? GW

My, = Mg \/sin2 Ow + r2(cos? Oy — sin? Oy )

In Fig. 4.4, we show the linear dependence of the Z’ and Wgx mass on the ratio of Higgs vacuum
expectation values r following eq. 4.22. We note that mass of Z’ is bigger than W for for all values of

M/, > 30 GeV. The bound on M/, > 2 TeV from LHC eventually put a bound on r > 25 as shown.

M_and M,,, asafunction of r

8000
6000

4000/

M [GeV]

2000/

Figure 4.4: Linear dependence of Mz (Blue) and My, (Red) on the ratio of Higgs vevs r as defined in

eq. 4.20. A horizontal dotted line indicates the bound from LHC on Z’ mass at 2 TeV.

4.4.1 Numerical values for the vevs

After the calculations in this chapter, we are in liberty to assign numerical values to the vevs in the model
by using the no Z-Z’ condition, eq.(4.9), the mass of the Z, eq.(4.10) (SM vev is related to our model by
vsm = /u?+v?), and the bound on the higgs ratio r , eq. (4.20). In Chapter 7 will be seen that to
have GUT scale unification, the condition g;, = gr (5% = s2 =sinfy ~ 0.23) is needed. The values are:
(1 — 2sin? Oyy)
v = vy =~ 0.837 x vgpr ~ 145 GeV (4.22)
V1 —sin? Oy
sin? Oy

— A A ~ 0.653 ~ 95 GeV
“ \/(1—25in29w>vL UL ¢

vp > rx*xvp =25xvr ~ 3625 GeV
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Chapter 5

Neutralino and Chargino sector

5.1 Introduction

The neutralinos are a linear combination of the neutral Higgsinos and the gauginos, the first ones being
the superpartner of the neutral Higgs and the second ones being superpartners of the gauge Bosons,
neutralinos are then neutral Fermions. We can have a quick count; for every SU(2) or U(1) gauge
symmetry on the model there will be one neutralino ( called ”wino” and ”bino” respectively) and for
every neutral Higgs there will be another neutralino. In the simplest case (The MSSM) there will be 4
neutralinos (2 gauginos plus 2 higgsinos). In the eLRSUSY, then there will be 3 neutral gauginos and
13 neutral Higgsinos, giving a total of 16 neutralinos. As it will be shown in this chapter the Higgsinos
and the gauginos will have non trivial mixing. The charginos are a linear combination of the charged
Higgsinos and the gauginos. There will not be a chargino for a U(1) since the B Boson is neutral, but
there will be two charged winos for each SU(2) (a positive and a negative).

Given the tools, computational time and energy that has been used on the MSSM, we will like to check
if eLRSUSY an extension of the MSSM, in section 5.3 we will address this question.

In particular we are interested in the lightest neutralino; is a DM candidate in our model and will be

examined in part III of this thesis.

5.2 Neutralino massses

The soft breaking term will give the gauginos SUSY masses, from Lscaiar—gaugino— fermion = z\/§g¢;‘Aa¢i
we can extract, after symmetry breaking, the interactions of the neutralinos that will give mixing between
the gauginos and the Higgsinos, while term L termion—scalar— = %\I/illlj will give mixing between
. 00,

different Higgsinos that will be proportional to the y and f; parameters.
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The neutral gauginos/Higgsinos will have the following bases and matrices basis

{Bv WL; inl, ¢227 WR; 51175;27 QS;%D QSINQQ}

)

‘I’;VZ())T = {TI%h 77%27 Sg}
)
)

{779-217 779?2}

= {00,,09,}

Mp 0 —um s 0 0 0 —autm am
0 My, gL\}%“ —9%2 0 —aa % 0 0
_91\%1 gL\}%m 0 —ur 0 0 fl';R2 0 %
Qb _gLgr oy 0 0 Lym Lo 0
Mny = 0 0 0 0 Mpg —9%1 g%“ gfi}g“ — i
0o o 0 fgm | o 0 —pa L% 0
0 fngs  fum 0 e L 0 froes
_91\751 0 0 fzzul gﬂ\ga fQTQJJ 0 0 —UR
fxtg 0 s 0 |- 0 hgm 0
0 —pr2  fiovre2
Myo=| —pups 0 fovr1 |, Mns = ’ e , Mpys= 0 e
—HR2 0 —HA 0
Jfiovre  fovri  —ps3

The horizontal and vertical lines in My are there to make the distinction that the upper left 4x4 matrix

looks like the MSSM neutralino mass matrix. Although, it’s important to keep in mind , that while, Wg

is the same as the MSSM Wino ( i.e, the SU(2)L gaugino), B is not the MSSM Bino. In this base B is

the superpartner of the SU(2)r x U(1)x Gauge boson , and not just U(1)y. Also the vevs vr; and vy

are not the same as in the MSSM, as explain in chapter 4.

5.3 Is eLRSUSY an extension of the MSSM?

We would like to write matrix (5.1) in a basis that would allow it to be written as
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Mprssm G

M, — (4x4) | (4x5) (5:3)
G Mheavy

(5x4) | (5x5)

Where Myrssar the neutralino mass matrix of the MSSM, Mp,¢q., contains the masses of the neutralinos
of the “extended” part, and G is a matrix with small parameters (compared to the ones in Mpequy), this
will allow us to claim that the matrix Massgar is decoupled from Mpeqyy (up to a small perturbation
given by the parameters in G ).

The method consist in two parts, first we will rotate the basis to a completely off diagonal Higgsino
matrix, secondly we will rotate the basis of the bino and the right wino, in this new basis we will have a

U(1) bino that is the same as the MSSM bino.

5.3.1 Higgsinos and p matrix

In the MSSM, if we only look at the higgsino mass matrix, it has a structure that looks like

(5.4)

If eLRSUSY is an extension of the MSSM, then it would be required to have ”u mass matrix” to looks
like this matrix. First, we will write the Higgsino mass matrix of (5.1). The basis will be (¥5)7 =

{¢%17 ¢%2’ 6?15 582¢(1)%17 QS(I)%2}7

0 —up | 0 hgm| g Lu

" 0 % 0 faua 0

0 f2vRr1 0 —pA 5 0

=
b
I
_
ot
&

% 0 —uA 0 0 flg#
0 f22u1 favre 0 0 —liR
f12u4 0 0 f1121L1 —liR 0

We rearrange the fields {(;Sﬁm, %2,5?1,5§2¢%1,¢%2} — {¢6L1,5‘~1)1, 6L2,5§2¢%1,¢%2}, the matrix changes

to,
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e el U
0 0 | Bpgmy, | By
v u
G e 0 v s e
home ——p 10 0 0o g
0 (L bm g 0 —ur
Lus g 0 Lol pup 0

g is much bigger than the vevs vp1, vro, w1 and uy, this tells us the right Higgsinos are already decoupled
from this matrix (up to a small perturbation); The right Higgsinos already have the structure we are

looking for. In the basis (\I/;I)T = {d)%l, 5?1, ¢6L2, (5?1}, the 4 x 4 remaining matrix is

0 0 " fl';RZ
0 0 fovr1 —ua
1= 2 (5.7)
—ur f2';R1 0 0
f1vRr2 —uA 0 0

Matrix (5.7) already has the structure of matrix (5.4); A linear combinations of (bgl with (5?1, and (b%
with 5?1, will give the answer we are looking for. To find this linear combination will be necessary to
rotate the 2 X 2 non zero matrix above, to a new base where the diagonal terms are zero. The rotated
non diagonal terms will be then the desired p parameter.

Explicilty the “u Lagrangian” for matrix (5.7) is

ﬁﬂ = (I;UL(I;Q + (I;Q/LT(Igl (58)

Where, &1 = {¢9,,09,} and &3 = {49,469, }.
To be able to make the necessary rotation to an off diagonal matrix, we need two unitary matrices (since
the p is not a symmetric matrix).

Explicitly
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0

- - cos|f sin|f 0
6 =04, — = o o o (5.9)
0y —sin[6;] cos[] 89,
~ - 0 cos|f sin|6 0
&, = Up®y — (bfl - 6] 2] L2 (5.10)
9, —sin[fs] cos[f2] 895
and (with z = fivge/2, y = fovr1/2)
0 - coslf1] —sinlf — x cos|f sin[6
W = U1MU{1 - 23 _ [01] [01] KL [02] [02] 5.11)
—ug 0 sin[f1]  cos[64] TEEEETIN —sin[fs] cos[bs]
The diagonal terms give the equations
sa(xer — s1pa + co(ysy —cipr) =0 (5.12)
—co(xs1 + crppa — s2(yer + s1up) =0 (5.13)
The angles 6, and 05 are given by the solution to the second order equations ( with ¢ = tan[f)])
2,2 2 _ 2
tf<x Yot KL “A>t11o (5.14)
TpA + YL
2 _ .2 2 _ 2
t§+<x YT EEA “L>t21—0 (5.15)
TpL +Ypua
With these solutions the rotated p parameters are
to) —t1(yt
T+2)1+8)
— to) —t1(@te —
_,UQ — (y /’LA 2) > 1(1; 22 .u’L) (5.17)
(14+t3)(14t3)

After the rotations matrix (5.5) will have the desired shape (5.3)
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Mg = (5.18)

5.3.2 MSSM Bino

In matrix (5.1) the MSSM bino Burssa should be a linear combination of B and VI}%.
Using the inverse transformations (5.9) and (5.10) we can rewrite the original 9 x 9 mass matrix (5.1) in

the base {B7 WL? ¢117 ¢;27 ¢~127 ¢;17 WR7 ¢;%17 (b;%Z}

Mg 0 Mpi1 Mpos | Mpia Mpa 0 Mpr1 Mpro
0 My  Mpin Mpa | Mpig Mpa 0 0 0
Mpi1 M 0 —p 0 0 Mpi11 0 0
Mpos Mo —m 0 0 0 Mg 0 0
My =| Mpi2 M2 0 0 0 —p2 Mgz Mugrr Miige (5.19)
Mpo1 Mra 0 0 — 2 0 Mpa1 0 0
0 0 Mpr11 Mpao | Mrp1t Mg21  Mgr  Mgri Mggr2
MpR1 0 0 0 MRR1 0 MprRr1 0 —UR
MpRo 0 0 0 MRR2 0 Mgr2 —pr 0
where,
viic VLS VLS
Mp = —gl\/L% L, Mpas = _91\;; = Bl2:791\;§1 3
Mpa = 911%027 Mpr1 = _791\751’ MpRro 91\7;
Mp,; = gL(lec\lﬁ U151)’ Mgy — gL(UL25\;§+ U462)7
gr(—vr1s1 —uicr) g1 (vr2ce + ugs2)
M = , M =
L12 73 21 /3
U1 S e uic U4S
Mpy = _91%\/1§ 17M322=gR\/4§ 27 Mmz——gR\/% I,Mml:gR\/%Q
v v v v
Mup = gL\/;lv Mi1r2 — QRWRQ, RR1 = 91271317 MRpo = 791;;2

The off diagonal matrix G ( as stated in eq (5.3)) still has large parameters ( i.e proportional to vg) given
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by the interactions between the bino and the right Higginos. Rotations in the fields are necessary.

The mass matrix for the "heavy” components is, in the basis (\I/heavy)T = {B, VI}I%, ¢(13%17 ¢%2}7

_q1v q1v
MB 0 1\/;31 1\/152
0 MR 9gRVR1 __9RVR2
Mheavy = j V2 el (520)
_ 91\;;}1 gli;JERl 0 —UR
gl\;g2 _ 913)252 —liR 0

Making a rotation of the gauginos, by defining two new fields By and W,

By | 1 gr 91 B (5.21)
Wo VIt IR\ g —gr Wr

Matrix (5.20) can be rewritten in the new base {B, W}%, qb(;)ﬂ, (;)%2} — {By, WY, (bgﬂ, (bgm}

giMp+9aMr 919r(MB—MEg) 0 0
91+9% 91 +9%
g1gr(Mp—Mpg) | giMp+giMr  \/9itdk Vaitay
2, 2 2.2 VUR1 VR2
M _ 9i+9% 9it+9n V2 V2 (5 22)
heavy — /79%_"_912? .
0 —TURl 0 —HR
2 2
9it9r _
0 7z UR2 HR 0

The bino (B}) will be decoupled from this sector if the off diagonal terms are small compared to the
diagonal term. This can easily be accomplish when Mp and My have close values. In the particular case

Mp = Mgp = My then By gets completely decoupled from the ”heavy” sector.

My 0 0 0
2 2 2 2
0 My _ Vettag VR1 VAT UR2
Mheauy = e V2 V2 (523)
0 |- \1/5 LUR1 0 —UR
/ 2+ 2
0 g\l/igR UR2 —HR 0

5.3.3 Not MSSM Neutralinos

Once matrix (5.1) has been rotated to look like (5.3) is possible to check if the neutralino sector of

eLRSUSY is an extension of the MSSM. The 4x4 upper left matrix is now
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My 0 _gigr(wricituisy)  gigr(uaca—vrasa)

V23 +9% Va2 +g%
gr(vpici—uisy) gr (vpasatugca)
M - 0 My V2 V2
light = (5.24)

_gigr(vpicituisy)  gr(vrici—uisi) 0 —

V2,/g2+g% V2
g1gRr(usca—vr282) gr(vpasatuaca) — 0

V2y/93+d% V2

Which clearly has NOT the same entries as the neutralino mass matrix of the MSSM.

My 0 —Mgz *swxcg Mz x*sw*sg
0 M, Mz xcwxcg —Mzxcw * sg
Myrssm = (5.25)
—Mzxsw*xcg Mzxcw *ca 0 —u
Mgz xsw*sg —Mgz*cw *sg —u 0

5.4 Numerical Analysis

The 9%x9 neutralino matrix (5.1) is to big to be possible to diagonalize in terms of the parameters,
nevertheless, if values are given to all the parameters, it is possible to get numerical values to the mass
eigenvalues and eigenvectors. The objective is still the same as in the last section, we will like to have
results that can be examined using the same calculations as in the MSSM.

From eq. (4.22), we can define the ratio between vgys and vy, R = v, /vsy = 0.837, also we define the

ratio tan 8, = vra/vr1. We rewrite the left vevs as,

2
vl = R*cgp % vgym = <\[>R*Mz*cﬂ,;*cw (5.26)
gL

2
vro = R * sgr x vspy = <\/>>R*Mz*SBL*CW
gr

This means that in the basis {By, W, QBLL(;;LQ}, (where W = % and By as defined in (5.21)), the 4x4

upper left matrix in (5.1) will be
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My 0 —Mg x swxcg, Mz *sw *sgL

0 My My x cy * ¢ —Mg xcw * s
2 BL Z * CW * SgL
Muyssy = (5.27)
—Myg xswxcgr, Mg *xcw *cgr, 0 —ur
Mz x sw *sgr,  —Mz *cw * sgr, — L 0

This is exactly the MSSM neutralino mass matrix (5.25), where My = My, ur, = p, B, = B,and % ~
1.43M1, = My (Where My, My,p and tan 8 the MSSM parameters ).

With " the mass eigenstates. The neutralino matrix gets diagonalized via

We will define the fraction of a neutralino that have an MSSM component f;); and the fraction that is

not vaM
4
five = Z (Nij)? (5.29)
=1
’ 9
finne =Y (Ny)? (5.30)
=5

As long as the lightest of this eigenstates has fiy; ~ 1, and a mass smaller (or degenerate) than the
lightest chargino, then this neutralino can be considered to be the same as the MSSM LSP (with the only
difference that the input for My be modified by a factor of 1.43 with respect to eLRSUSY), and we are
able to use the same results ( and computational simulations).

Figure 5.1 has some plots showing MSSM fractions for different random values in the parameter space,
for all the 9 neutralinos in ascending order for the mass. The lightest neutralino is plotted in black and
a dash line to make it easier differentiate it from the other neutralinos. From these plots we can observe
that in fact there is parameter space where the lightest neutralino is 100% MSSM.

For the numerical analysis we also defined the ratios tan Sr = vra/vgr1 and tan Sa = ug/ug.

Note that from the keeping the Yukawas in eq (2.13) with a value Y? < 47. will lead to the condition

-1 (5.31)
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where we use M = mg, me, m,, for vy, u,vg respectively. Given the smallness of m.and my compared to
the value of the vev then tanfy and tanfa are not by the perturbation of the Yukawa interaction, but

for a value of m,, ~ (1/3)vg ~ 1TeV then tan g < 10.

5.5 Chargino mass matrix

We can extract then chargino mass matrices in the same manner we did for the neutralinos. In the bases

(UNT = W W, 015,05, o, 01
(‘I’I)T = {WL_7 V~V§7 ¢Z17 51_1, ¢1_«21a 52_1}
(\IJQL)T = {ﬁfz,ﬁﬁza«?f}
(\112_)T = {77;17 77}_%1’ S~17}

the matrices are

My, 0 gLirz aLls 0 0
O MR O 9R2U4 gR;RZ O
gryry 0 L *f VR 0 0
Mys=| °2 : e (5.32)
9L2u1 91%',211«1 _fQURl /J'A O 0
0 9RZRL 0 0 LR —favre
0 0 0 0 —f1’UL1 HA
L2 faur  fsvra
Moy= = | faua kr2  feUR1 (5.33)

—frvre  —fsVURr2  Ms12

The chargino mass matrix is not symmetric a and will require two unitary matrices to be diagonalized.
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Figure 5.1: Examples of neutralino MSSM fractions
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Chapter 6

Radiative Neutrino Mass

One loop neutrino masses have been studied in detail [17-32,41-43]. In our model we will has the correct
particle content that will allow it to follow the Scotogenic-Ma model [10]. Starting with the Lagrangian

for a massive Dirac particle

L =Pl —m) — Smot (6.1)

Where dmg = m — mg = X(p?), is the one loop correction to the mass, as seen in Fig. 6

d*k (F+ M)
Sir(p?) = _/ (271_)4 hik k2 — M?

o (6.2)

(p—k)? —m?%

This integral can be solved exactly, first by noting that the part proportional to § is zero, secondly we

set p? = 0,since the bare mass of the neutrino will not depend on its momentum.

LR LTS TEEY T
1% N N 14

Figure 6.1: 1 loop neutrino mass
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d*k 1 1
Sip=M hy h .
1 JjR k/ (27{)4 ka — Mk2 Ik k2 — m% (6 3)
_ haxhgx Mk my m% 2
B 1672 [m% - M2 I M2 e (64)

This integral diverges, since ¥ — oo as € — 0, never the less we still need to concider the contribution
of the ny. Given the the result is complex, then ¥;; = ¥;;r — ¥;;r, The infinities will cancel, and we

achieved a mass given by,

haxhgx Mk m?2 m2 m2 m2
(Moo = 3= |t o (38 — b o (5 (65
K

Note that for this mechanism to work a Majorana mass for N. should exist which violates lepton number
by two units AL = 2.

In our model the radiative neutrino mass will have two contributions seen in Fig. 6.2. We have to take
into account that 7%, and 7%, are not mass eigenstates, the neutrino mass can be calculated in the similar

manner as shown in eq. (6.4) with the generalization,

¢>0 0 0 0
L1~ B _ L1 L:L L1
. 53 S3 ’ . 3. ... 58 .
oo Xtel
’ -~ 4
’ X
k4 A
, .
T1L2 L2y <'1L2
I A )
] 1
---<---X---)--- ( ) L ( ‘x ) 1 (
v N N v v N N v

Figure 6.2: Scotogenic neutrino mass

haihgi Mni Z m; M mi; m;
( )@ﬁ zl: 1672 - ( R)lj m%j — M]%h " MJQW ( I)lj m%j - M]2Vz‘ ! MJ2Vz

Where Ugr (Ur) is the unitary matrix that makes mp(my) mass eigenstates ( This matrices have been
worked in chapters 3 and 5) and h is the parameter for the interactions ¥N79, and vNnio°.

A simple method to find an approximate solution can be achived by first noticing that it is required that
mp # mr or M, will be zero, in a non-SUSY theory this is accomplished by a A5 term (i.e (®n)24(n®)?).

Then m% — m? = 2\5v%, with v the vev of the scalar introduced with the external lines.
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We will make the approximations M3 > m3 > 2A5v%, where m} = (m% + m?%)/2. The first one just
stated that N is very heavy, the second that the masses of ng and 7n; are very split.

The mass of the neutrinos is reduced to,

(M= 25 S e (28] o)

In the next chapter it will be seen that the requirement for gauge coupling unification makes the mass of

s3 very heavy (~ 10° GeV), this will allow us to use of an effective potential; reducing the propagator by
2

means of the exchange \5 — (MLS) , with f being the coupling for ¢%,7%,s9, and in general could be it

breaking term.

_f2U%1 haKhﬁK m?

s - S 110 (3]
8m2 Mg = My

In Fig. 6 we can observe the right diagram needs the A term ¢%,7%,s3 twice and the B term s3s3 once

whereas the one on the left requires only the B term NN once. We expect thus the latter diagram to be

much more important. We estimate its contribution to be given by

i

T VR (6.7)

where h is the diagonal Yukawa coupling, f is the supersymmetry breaking B term, and Ms; ~ My
has been assumed. Using vy ~ 100 GeV, f2 ~ 1 TeV2, and My ~ 10° GeV, and h? ~ 103, we find
m, ~ 0.1 eV.
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Chapter 7

Unification

7.1 RGE at 1 loop

The 1 loop evolution of the gauge couplings is given by,

do b o?

dlnQ? ~ ‘4rm (7.1)

With o; = g2 /47 being the gauge coupling constant and b; the coefficient of the 8 function, whereb; is
the coefficient for U(1), and by is for an SU(N) symmetry. The solution to this equation gives the one

loop RGE equations,

1 bi . (M
a;i(My) — oi(Mz) Eln (]\4%) (7.2)

We conciser that there is a larger symmetry at for which unification of the gauge coupling constants

exists at a given scale My, then GUT unification means,

a(MU) =Qyu = Oég(MU) = OéQ(MU) =N % Oél(MU) (73)

Where the factor N comes for the normalization

Tr [VZ]

e = Y (7.4)
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It’s value depends on the GUT symmetry, being the most common SU(5) and SO(10), with values for N
of 5/3 and 2/3 respectively.

The experimental values of the gauge coupling constants are [44],

sin?0w (Mz) = 023116459 x 1073 (7.5)

Q
e
3o
5

I

127.953 £ 0.049

as(Mz) = 01184423 x107°

In the SM the Weinberg angle is defined as tan 6, = ¢'/g, where ¢’ being the U(1)y coupling and g the
coupling for SU(2). Or making the connection with the EM constant, is possible to write, i = % + % .

And is easy to see that at the EM breaking scale, the gauge couplings are related by,

o
oy, = om (76)
)
sin“ Oy
a a@m
y =
cos 0%,

In the simple case where the model has only two scales( i.e Mzand My ), using (7.2) explicitly, is possible

to calculate mass scale for unification My,

" (]\AZ> N b12jb2 (041(}\42) B 042(11\42)> (7.7)

It’s also possible to combine the 3 RGE equations by eliminating the My dependance, then there will be

a mandatory correlation between the coupling constants,

1 bs—bs\ 1 (by—b) 1
ag(Mz) (1 Ty - bl) az(Mz) <b2 - b1> a1 (Mz) (78)

This simplification shows an important characteristic of this unifying models, clearly is the difference

between the b; coefficients will lead to unification, and not the individual values.

7.1.1 b; coefficients

Explicitly the value of the coefficients b; will depend on the particle content by,
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b= y(@) + 2 S THR) + é SOTU(R) (7.9)
f s

C3(@Q) is the quadratic Casimir with a value of N for SU(N) and zero for U(1), T(R) is the Dynkin index
has a value of 1/2 for SU(N), Y2 for U(1) and N for the adjoint of an SU(N). The subindex f(s) stands

for fermion(scalar). For a non-SUSY theory the coefficients can be written as,

2 o 1 2
Nxb = ggf Yf—f—ggs Y; (7.10)
1IN n n
by = -t

Y is the hypercharge, n the number of particles in the SU(N) group, n4 is the number of fermions in the
adjoint.
For the SUSY theories there will be 2 gauginos for SU(2) and 3 gluinos for SU(3), also for every scalar

there will be a fermion superpartner and vice versa, eqs.(7.9) will be rewritten as,

b=—3C(G)+ > Tr(R)+ Y _ Tu(R) (7.11)
f s

or explicitly,

Nxby = > YP+) V] (7.12)
ny Ng
by = -3N+4+-L4==
N + B + 5

7.2 Running constants in the SM

First, let’s remember than in the SM the particle assignments are given by table 7.1
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| Field [ Doublet? | 3 Colors? | 3 Flavors? || U(1) Particles | SU(2) Particles | SU(3) Particles

Q v v v 2x3x3=18 3x3=9 2x3=6
u’ v v 1x3x3=9 0 1x3=3
de v v 1x3%x3=9 0 1x3=3
UL v v 2x1x3=6 1x3=3 0
e v Ix1x3=3 0 0
H, v 2x1x1=2 1 0

| H, [ v ] \ [ 2x1x1=2] 1 0

Table 7.2: SM and 2HSM, particles with each symmetry

Field | SU®3) | SU(2) | U(1)
u

Q= 3 2 1/6
d

ue 3 1| -2/3

de 3 1 1/3
14

Pr, = 1 2 | -1/2
e

e 1 1 1
0

| ? 1 2 1/2
.

Table 7.1: SM particle content

In table 7.2 we show the particle content per each of the gauge symmetries (Note that Hsis not a part of
the SM, it was included in the last line to avoid writing the table again in the next section).

Assuming an SU(5) GUT symmetry, the coeflicients are,

G = 2is (é)Z 49 <—§>2 g (;)2 6 (-5)2 £37] g

o(3)]-4% o

11 1 1 19
b, = ——2+- (1) =——
L 2245 (9+3)+ (1) = —
11 6+3+3
by = ——34+4-——T"__7
) 3 * 3

Egs. (7.2) become,
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Figure 7.1: SM Running constants

@ =0 - @ i B (Afvg) 1

-
OzL(MU) OzL(Mz) 127 MZ

1 1 N 7 ( My
= — In _—
aS(MU) O[S(Mz) 2 MZ

From eq. (7.8) then,

1 333 1 115 1
as(Mz) ~ (218) ar(Mz) (218) () =1 (7.15)

This disagrees with the experimental value of as(Mz) ~1/8.5
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7.3 2HSM (2 Higgs SM)

In 2HSM, the particle content is almost the same as the SM with the difference that there is one more

Higgs doublet. As seen in table 7.3.

Field | SU(3) | sU(2) | U(1)
0 3 2 | 1/6
ue 3 1| -2/3
de 3 1| 1/3
YL 1 2 -1/2 7
e 1 1 1
H, 1 2 | 1/2
H, 1 2 | 12

Table 7.3: 2HSM particle content

Using table 7.2, we can see that the coefficients change to,

(5/3)by = % [18 ((15>2 +9 (_§

2 2
1 1 1
1, 1 1
= 24 - —(1+1)=—
by, 32+3(9+3)+6(+) 3
11, 6+3+3
by = ——3+—-—=-T7
30T T3

with the 1 loop RGEs,

() wom = () aom 2 (r)

1 1 N 3, (MU>
= — In e
aL(MU) aL(Mz) 2 MZ

1 1 N 7 ( My
= —In[| —
aS(MU) Ozs(Mz) 2 MZ

But once again we can see in Fig. 7.2, GUT unification is not achieved.
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Figure 7.2: 2HSM Running constants

7.4 MSSM

In supersymmetric theories there will be one more scale (i.e the energy where SUSY breaks Mg).

The particle content is the same as in table 7.3, with the difference that the fields are supefields. Using

JORSICN B

eq. (7.12) for the MSSM above Mg,

(5/3)by = [18 (é>2+9(—§>2+9(;)24—6(—;)2—#3(1)2} -

1 1

by = 73(2)+§(9+3)+§(1+1):1
6

by, = _3(3)+#:_3

The 1 Loop RGEs

3 1 3 1 41 1 Mg 33 ! My (7.21)
| — = - | ——————hh|{— ) ——In| — .
5 ay(Mg) 5 Oéy(Mz) 207 z 107 MS
1 1 N 19 (Ms L ( My
= — n{— | ——In{—
OzL(MU) OzL(Mz) 127 MZ 2m MS
1 1 7 Mg 3 My
s (My) () 2t (MZ> ot <M5>
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Figure 7.3: MSSM Running constant

Solving the equations we get a solution with My ~ 3. x 10716GeV, Mg ~ Mz GeV and az(My) =
OéQ(MU) = (3/5)0[1(MU) = Qy ~ 0.04245 .
For the MSSM eq. (7.8) takes the form,

This is very close to the experimental value of a, which implies that to a good approximation the MSSM
gauge couplings unify atMy. In Fig. 7.3, we can see the evolution of the couplings. In the upper left
corner there is a “zoom” of the plot at the unification scale, it shows that the unification is nor perfect
and there is a small difference, which can be reduced by using 2 Loop RGEs [46], and/or also if there is

an extra scale.

7.4.1 MSSM + 1 Higgs doublet

The MSSM is simplest supersymmetric extension to the SM, but since 2 Higgs doublets are required, it

makes sense to write the 1 loop RGEs with two Higgs doublets even below the SUSY breaking scale.
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Figure 7.4: MSSM+2HDM

(7.23)

Given the Mg is so small, then the plot is the same as MSSM and the solutions are going to be extremely

similar oy = 0.0413734 , My ~ 3. x 106 GeV , Mg ~ My

7.5

eLRSUSY

Let’s assume that our model is a consequence of an SO(10) supersymetric model that breaks at a My

scale into SU(3)s x SU(2)r x SU(2)g x U(1),, same as in reference [45]. At Mg SUSY gets broken and

at Mp it breaks into the SM with SU(3)s x SU(2)r x U(1)y. Also we can assume the s; singlets are

much heavier than the rest of the particles with a mass~ Mx.
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| Field | Doublet? | N. | Ny [ # ] U(l)x | SU(2)L,SU22)r | SUB). |

Q, Q° v 3 3 2 2x2x3x3=36| 1x3x3=9 |2x2x3=12
dc ,h 3 3 2 2x1x3x3=18 0 2x1x3=6
Y, P°© v 3 2 2x2x1x3=12 1x1x3=3 0

vén 3 2 2x1x1x3=6 0 0
D1, v 8 8x2x1x1=16 4x1x1=4 0

A v (%x2) 2(x2) | 4x2x1x1=36| 4x1x1=4 0
51, 82 2 2x1x1x1=2 0 0

53 1 Ix1x1lx1l=1 0 0

Table 7.4: eLRSUSY, particles with each symmetry

Table 7.4 shows the counting of the particles per each gauge symmetry.

Note that the above Mg the gauge symmetries SU(2);, and SU(2)g are unified with the coupling oy g,

and given particle content of SU(2)rand SU(2)gis exactly the same, their gauge constants will run the

same after the symmetry breaking (i.e az (Mg) = agr(Mg)). Also, a;'(Mg) = a3 (Mg) +a;*(Mg) (ie

the coupling ay doesn’t exist above Mg and becomes ay )

The b;coefficients are (below My )

2 2 2 2
(2/3)b, = 36 Y s () +2(d) +16(2) =10
¢ 6 3 2 2
1
bLr = —3(2)+§(9+3+4+4):4

b = —3(3)+ 5(1246) =0

And above Mx the coefficient b;get modified so

(2/3)b, = 36 ((13)2 +18 (;)2 +12 (;)2 + 16 (;)2 +2(1)° =12

Eqgs. 7.2 are below Mg

() aom = () aom 2 (i)

Lo o (M)
OtL(MR) Oég(Mz) 2 MZ
1 1 7 Mpg
= + —In| —
Oés(MR) Oés(Mz) 27 MZ
Above Mg
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eLRSUSY
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i (GeV)
Figure 7.5: Running constants in eLRSUSY
1 3 1 15 M 18 M
Sy Lo 3y L Dy (Mx) 18, (M (7.27)
2 Otw(MU) 2 Ozx(MR) 2w MR 2w MX
B (MU)
OZLR(MU) aL(MR) 21 MR
1 B 1
OzS(MU) Ozs(MR)

These equations can be combined

8 (@) - g (Oéz(fl\/fz) - as(Jl\/Iz)> (7.28)
l (ng‘%/~’§> - (042(?\/12) - a2(11\24z) - a3(17\/jz)> (7.29)

If Mr = Mx then eqgs. (7.28) and (7.29) would be exactly the same as the solutions for section 7.4.1
These equations have the solutions My ~ 2 x 1016, and (MIZC/M)B()U‘1 = 53.28 GeV, and Mg ~ 1TeV.
Plot 7.5shows the evolution of the constants, with a dashed line included to make clear the change of

behavior of o, at Mx ~ 50 TeV
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Chapter 8

Pair Annihilation of 7p and n

For simplicity we will assume the following scenario scenario, the masses m,,, my, m, of the three stable
dark-matter particles X9, n, ﬁ% to be arranged in ascending order. Now, ﬁ% has I3, = 0, so it couples
only to Z’. Hence the annihilation of 7%7% to Z’ to particles with masses less than m,, will determine
its relic abundance. Once 7}% freezes out, we need to consider the interactions of n. Again n has I3, = 0,
so it couples to Z’, and also has the interaction en°Wj . Hence the annihilation of nn occurs through 2’
to particles with mass less than m,, as well as to ete™ through Wj%t exchange. This will determine the
relic abundance of n. After n freezes out, the remaining particles are presumably those of the MSSM,
and the annihilation of %} will determine its relic abundance.

The annihilation cross-sections for DM 773);é to the SM particles eventually goes through s-channel diagram
exchanging Z’, while the cross-section for DM n has an additional piece through a t-channel diagram to

eﬁ through Wpx exchange.

The total abundance will be a sum of the three DM components, i.e.
QD]V[mthQ = thQ + th2 + QX?hQ (81)

The strategy then is clear, we will separate the study of the relic abundance into two parts, first we will
calculate the scattering of n and n% into SM particles using the Feynman diagrams shown in fig. 8.1
and 8.1. Secondly, we will study the neutralino XN‘f assuming it is the same as the MSSM neutralino as

explained in section 5.4.

8.1 Calculation of the scattering for n and 7}%.

For a 2 — 2 scattering process,

92



Z/

R f

Figure 8.2: Feynman Diagram for n annihilation to SM.

da_(1)2(|/\/l|2p_f>| (8:2)

dQ ~ \8v) (Ei+E»)?|p;|

Using E as the center of mass energy £ = E; = Fy, M the mass of the initial particles and m the mass

of the final particles, then

(1)2 M2 VEZ —m?
oc=4r | —

Assuming the final particles are lighter than the initial ones and a non relativistic limit v — 0, then

E=yM=—-2_~ M, and E,M > m,

1—v2

T 64w vM?

1M 1_(m)2N 1M

7= 6 o2 M

> (8.4)

In general then ov = a+bv?+O(v*). Where a would be the biggest contribution given the non relativistic
nature.

In the rest of this section the square of the amplitude M, and the scattering will be calculated explicitly.
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8.1.1 s-Chanel

As shown in figures (8.1) and (8.2), both the scotino n and the Higgsino 7jg, will annihilate via a Z’. For
this calculation we will use the scotino, but we should keep in mid that the calculation will be the same
for the Higgsino 7%.

For in — Z' — ff the amplitude for the s-channel is given by

Guw — kpky /M2

M= 9%/ *TITR’Y”(CM - Cal’YS)TfR <k2—]\422> T’YV(CM - Ca275)f (8.5)
Z/

Note that we can separate the amplitude in two terms

2 —
My = <k2€z‘7/\42> Yy (e — Cal’Ys)n(guu)f’Yy(cﬂ - ca275)f (8:6)
Z/
2
9z — FAV
IMy = (M) n’Y“(Cvl - Ca1'75)n (_kuku) f7 (Cv2 - Ca2'75)f

The amplitude square will be given then by

IMJ? = My + Mo = My + [Maof? + MyMj + MM, (8.7)

Using Dirac’s equations (y#p, — m)u = 0, (y*p, + m)v = 0 the fact that fields anticommute, and

Y = ~v%(c, — ca¥%), T® = (¢, — ca¥®) we can write these terms explicitly,

WMy~ A(p2)Ln(p1)gas f(a2)T f(q1) (8.8)

My~ A(p2)Y°Tin(p1)kaks f(a2)7° TS f (1) (8.9)
= n(p2)kin(p1) f(a2) K5 f (q1)
= (A(p2)pan(p1)LT + n(p2)pgen(p)TY) (f (g2)gh f(a1)T5 + f(a2)ge.f (p1)T3)

= (2M)(2m)((p2)Lin(p1) f(q2)T5f (p1))

Notice that M; and My have the same structure.

Calculating the squares,
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IMi2 ~ [fa(p2)T 56 (p1) gap Fola2)Dheg fa(ar)] [fe(@)T5, ¢ f(aa) 9 Tg (p1)T T g nn (p2)]
= (=1)"gapguw [[Tapms (01)7g (01)T g1k (p2) 0 (2)] (8.10)
X [D5eafala)Fela)The p fr(a2) To(a2)]

= Tr[0¥(p + M)Tpi(pp — M)] x Tr(Taz(gh + m)T% (gh — m)]

i

|M;|? (16M°m?) [Ma (p2) T3 apyme (01) fe(@2)T3eafa(ar)] [Fo(ar) D5 s f £ (qa)Tig (p1)T3 g (p2))]
= (=1)"™A6M*m?)[T3 1 (p1)Tg (1)L g1 (P2) T (P2)] (8.11)
X [Fgcdfd((h )?e((h)rgefff (Q2)?c(q2)]

= (W6M*m*)Tr[] (g + M)TS(pp — M)] x Tr[D3(gh + m)T3(gh —m)]

And the cross terms,

MyMs ~ (AMm) [T (p2) Dm0 (91)gap Fe(02) T 5eq fa(q0)] [Fe(an)T5es 1 (a4)Rg (01T g (p2)]
= (=1)"(AMm)gas [Liapnms(p1)Tg (01)L7 g 1n (p2)70a (p2)] (8.12)
X [Dafalan)To(a)T5ep fr(a) Telae)]
= (AMm)Tr[T¢(ph + M)LS (o — M)] x Tr[Taz(gh +m)I5(gh — m)]

~ MoM:

We can find the mass dependence of the amplitude by choosing a center of mass coordinate system for

the four-momentums, and doing some simple algebra, with a non relativistic approximation,

no= (£0.0p) (8.13)
p2 = (F,0,0,—p)
¢1 = (F,qsin6,0,qcosb)
@1 = (F,—qsiné,0,—qcosb)
k = pi+p2=(2E,0,0,0)
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My,

pr-pe = E*+p*P=FE*+(F* - M?)=2E% - M2~ M2
qG1-qa = E2+q2:E2+(E2—m?):2E2—m§-f:QMfL
M
k= 4E2=472M§=41_ S =AM (140> +...) ~4M},
E-pr = k-pp=k-q=Fk-q=2E?~2M?>

Using FeynCalc [48] we can calculate the traces, the total amplitude will be given by,

64gZ,M4 9 /9 9
|'/\/l|2 = ( 2cv1(cv2 + ca2) (815)
A2 — M2,)?
+ ( ) Coo — Chg) + Coa(Coy — 012;1)]

+

M,, 2 me \?
e [(MZ,) ety — )+ (75 ) ety + ik

All contributions with my # 0 come from My as expected.

From table 4.2 we can extract the coupling of the scotino and Z’ (since is the same as for ﬁ% the results
2
remain valid for both particles). Using c,1 = ¢q1 = &, 9% = g%/c2(c2 — s%) and taking the average

over the initial spins (a factor of is 1/4 added for 2 particles with 2 spins), we get,

IMP) = 5 3 IMP (3.16)

spins

295 M, (c2y + o) 14 m2 1 oy — Cog
m
(4M2 — M%/)Z(C% - 5%%)2 ! 2M7 oo+ 2o

M, 2 2 2 2 2 1 2
) (Br)+ () Bon)+(we) (B32))]] e
Mz, Cya T Cqo Mz, Cya T Coo 2Mz, Cya T Coo

For scattering into SM particles, we will use the approximation my ~ 0 this means that we will use a

_|_

prefactor of 9 for the up and down quarks (3 colors x 3 families) and 3 for leptons and neutrinos (3
families),

For n +n — SM + SM, the scattering cross section times the relative speed will be then,

gk M? (10s%, — 9s%c2 + 3ct)

JR 8.18
6o A2 - MR (G ) (8.18)

(ov)spm =~
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With the unification condition gr = g;, then (Using g7 =~ 0.427 and cos? Oy ~ .77),

91 M? (10 — 29¢%, + 22¢fy,) (222 x 1073) M2
64m (4M2 — M2,)? (2¢3, — 1)2 T (4M2 - M3Z,)?

<O”U>SM =~ (819)

8.1.2 t-channel

Only the scotino will have t-channel scattering into SM Fermions as seen in fig. 8.1, even more given that
this interaction is via the SU(2)r charged Boson, the end result can only be the partner of the soctiono

in a SU(2)g doublet (i.e. e°). This interaction then will only have right handed helicity and be given by,

2 5 — M?2 1 5
_ gR — I 1+’Y g/“’ tﬂty/ Wgr — v +7 2
WM 5 KT ( 5 e ER Ve e =5 ) (8.20)

Following the same procedure as in 8.1.1 by separating the amplitude in two,

2
My = (M) #y" (14+9°) £ (gu) 7 (1497) n (8.21)

2 —_ j—
<8M3VR (tng_ Mng)> sy (L4+9°) f (=tuts) fr" (1+97) n (8.22)

_ g?%(Mn + mf)2
SJMI%VR(t2 — MI%VR)

>*ﬁ(1+'y5)ff(l+75)n

Using FeynCalc the square of the amplitudes (and the cross terms) are,

M~ (PP o (01)gapFe(@2)Doegna(pe)] [Me(p2)T5, £ f1(42) 91 F o (@) T grn (p1)]

= (=1)"gasguw [T fo(@1) f o (@)T g n (p1)70a (p1)] (8.23)
[T 5eana(p2)ic(p2)Th,  £(q2) Fo(a2)]
= Tr[T$(gh +mp)TY(h + My)] x Tr[Tas(ph — My)Toa(ge —my)]

4
(64@25]?\43%)2) 256(p1 - ¢2)(p2 - q1)

494 M,
M2+ M3, —m3)?

X

12
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2 2 2
2 _ gr(My, +my)
IMal® = (SMsz = Mng)) (8.24)

Tr((14+7")(gh +mp)(1+7")(0h + M) Tr[(1+7°) (e — M) (1 +7°)(gh — my)]

B gR(My +my)* M2am3
o\ My, (M2 + M, —m3)?

*

(8.25)

4 2

6403, (12 — M3, )?

Trv*(1+9°)(gh +mg) (1 +7°)(ph + M) | Tr[vu(L+7°) (o — Mn)(1+7°)(gp — my)]
(_ i (M, + mp)>Mmy

B MI%VR(M%JFMI%VR fm?)

*

2) >~ ./\/12./\/11k

The total amplitude for the t-channel is then given by,

1 4g4RM4
= IMP? =1 2 (8.26)
12 M0 =0 o, S
2 2 4
1— 1(fmy My, +my + 1 (fmy My + my (8.27)
2 \ M, ‘Z\4WR 4 \ M, MWR .
The only interaction in this channel is between W; ,n and e. we include a prefactor of 3( 3 families)
3 1 495 M} 39 M?2 0.00272M 2
(ov)sar = { 4 2 2 2 2 )~ 2 2 2 ) = (A2 2 2 (8.28)
4 64w M2 (M2 + MWR) 64m(M?2 + MWR) (M2 + MWR)

8.1.3 Cross terms s-t channels

There is a cross term between the s-channel and the t-channel

./\/l,s-/\/l;:k = Mserl + MSIM:Q + MSQM;H + MSQM?Q (829)

Using the definitions
LY = (c2/47*(1 =), I =7%(cv — ca?”), I§ =T =*(1 +7°),
Y =(c1/4)(1—=7°), T3 = (cv —ca?”), T3 =T% = (1 +7°)

We can write these terms explicitly,
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12

1

12

M Miy (8.30)
T (pl)F(fab”b(m)gaﬁﬁ(%)Fgcdfd((h)] 7 (pz)Fgefff((D)gW?g(m)Fzghnh(pl)]
(=" gap g Tr L5 (g — Mu)Th (g — mp)T5 (gh + mp)T (ph + M,)]

16c%M2(2m?«(ca +cp) + (o — Ca)q1 - q2) =~ 1602L(m?M,2L(30a +¢y) — 2M2(co — c))

Mo M, (8.31)
(M, +mp)? [Tia (p1) T Sapn0 (P2) Gap Fo(@2) Do fa(a1)] [Fie(p2)Dae p £1(a2) F o (1) TS grrn (p1)]

(—1)" (M, + my)2gasTr TS (g — Ma)T3(gh — myp)Ts (gh + my)D5(ph + My,)]

=81, (My +myp)*my My ((ca + co)p2 - @1 +2(cy — ca)p2 - ¢2)

8¢t (M,, +my)>mpM2(c, — 3c,)

Mo My (8.32)
AMym g [0 (p1)T7 0pm (D2) Fe(02) T eqfa(ar) ] [e (p2)Th, ¢ f1(42) gy F o (@) Tigrnn(p1)]

(=) 4Mymp g, Tr (T3 (e — Mi)T5 (gh — mp)T3(gh + mp)T5 (3 + Ma)]

=323 mE M ((ca — co)p1 - @1 + (ca + 0)p1 - G2)

—64c%m?«Méca

MMy (8.33)
AMm g (M, + 1m5)? [0 (p1) D] o (p2) fe(02)T3cafa(ar)] [Te(p2) T3 s fr (a2) f o (@) Dagnmn (p1)]

(=) aMymyg (My + my)*Tr 03 (g — Mp)T3(ge — myp)T3(gh +mp)D3(h + My)]

—16¢3 Mymyp (M, +my)*(pr - p2(mF(ca — o) + (Ca + ¢o)q1 - @2) — (Ca + ¢0)(P1 - @2D2 @1 — P1 - @1D2 * 42))

32¢3 Mymy (M, +mg)*(—Mpa(cq + ¢p) + m?Mchv)
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Mp My (8.34)
~ [T fo( @) g Fela2) T gna(p2)] [Fo(@1) T £7(a2) g5aTig (02)T 5 mn (p1)]
~ (1" 9509 Tr [T (gh +mp)T5 (g — mp)T% (g — M)TS (ph + M,,)]

~  16¢] My (2mF(ca + c) + (co = ca)ar - 42))

1R

16¢7 (m3 M2 (3cq + co) — 2Mt(ca — )

Mo M, (8.35)
~ AMymy Mo (p) ey fo(@1) Gupfe(a2)Thgna(p2)] [Fo(q1)T5e s £ (a2)Tg (p2)T3 g (p1))]
~  (=1)"4Mumypg,, TrTE(gh +mp)T5 (g — mp)T5 (g — Mi)T3 (i + M)

~ _32C%M2m?((ca +co)p2 - q1 + (ca — co)p2 - q2)

12

—64c2mecM;fca

MMy (8.36)
~ My +mp) [T (p1)T 50 fol 1) Fe(g2)T5eana(p2)] [ (00)T5, 1 £1(a2)Tg (p2)T g nn (p1)]
~ (=1)™(M,, 4 mp)?gaaTr (T3 (gh +mp)TS (g — mp)T5(ph — Mp)TS (i + M,)]

~ _8CQL(M7’L + mf)meMn((ca + Cv)pl cq2 — Z(Ca - Cv)p1q1)

12

SCi(Mn + mf)meMf{(ca — 3¢y)

MM, (8.37)
~ 4Mnmf (Mn + mf)2 [ﬁa (pl)Fiabfb(Q1)ﬁ(qQ)Fgcdnd(pQ):l [?e (ql)rgefff (qQ)ﬁg (pQ)F?ghnh (pl)]
~ ()M AMymy (M +mp)*Tr [D3(gh + mp)T3(gh — mp)T5 (g — Ma)T3 (0 + M)

~  —16c; Mymy(My, +my)?(p1 - pa(m(ca — ¢o) + (Ca + ¢o)q1 - 2)) — (Ca + o) (1 G2p2 - 1 — P1 - (12 - 42))

1

320%Mnmf(Mn + mf)Q(—M;l(ca +ey) + m?Mﬁcv)

The total amplitude for this cross terms is then,
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¢

* * M4

A

() (M) a4 0) 22 )

- 4 (%)2 (3¢, + cv)}
when my ~ 0
; > MM+ MM~ ( 2¢a — co)giMy > (8.39)
4 i (3 — s3) (M2 + MZ, —m?)(4M2 — M%)

for scattering into SM.

grM? 3(c? —2s%) N 0.00156 M2
Gdm | (AME — M7 ) (M7 + M, )(cf — sk) | (4M7 — MZ,) (MG + Mg,

<O’U>SM = (8.40)

8.2 Relic Density

As a reminder, the annihilation cross-sections for DM 7% to SM particles goes through s-channel diagram
exchanging Z’, while n has an additional piece through a t-channel diagram to eﬁ through Wﬁ exchange.
The Feynman diagrams are shown in Figs. 8.1 and 8.2.

The expressions for thermally averaged cross-section ({cv)) for these two DM components annihilating

to SM are indicated in eq. (8.41) and eq. (8.43).

4,2
(o0}, ~ grLma o 1053y — 9s%,¢ + 3¢ty (8.41)
K 64 [ (4m2 | — MZ,)2(chy — siy)?
(ov)y  ~ gim2 [ 10sy, — 9s¥,c, + 3¢y (8.42)
64m | (4m2 — MZ,)%(c3, — s%,)?

3 3(cky —2s%,)
(

- -
(m2 4 M3, )2 (4m — MZ)(m3 + M,) (G — s)
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With the unification condition, 9123 = g2 ~0.427 and sin? By = 0.23, numerically, we obtain:

0.00222m 4 2
"r

(o), =~ J—— Vi (8.43)
n% z

(v}, = 0.00222m,,%  0.00272m,,2 0.001561m,,2
T Amy? — ]\/[/22 mp? + MWR2 (4mn2 - M/ZQ)(an + MWRZ)

(8.44)

If we assume the decoupling of 7%, n and Y from the hot soup of SM particles are independent of

interactions with each other, relic density for each DM component can be approximated as

0.1pb

Qih? ~ 8.45
' (ov) , (8.45)
The total abundance will be a sum of the three DM components, i.e.

Qpar, h? = Quh? + Quh? + Qoh? (8.46)

11, 1" as a function of m,, and r 0% asa function of my, andr

Figure 8.3: A 3-dim plot showing Qh? (z-axis) dependence on mass (x-axis) and r (y-axis). LHS: n and
RHS: 7%

With this assumption, we evaluate relic abundance for each of the DM component and look for the

parameter space where they add up to the constraint from WMAP [49] 1.
0.094 < Qpas,,, h? < 0.130 (8.47)

In Fig. 8.3, we show a 3-dimensional plot with Qh? along z-axis, DM mass m along x-axis and the ratio

IPLANCK [50] data essentially indicates a very similar range, though more stringent, almost indistinguishable from
WMAP in present context.
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Figure 8.4: Qh? dependence for DM n and 7% on mass for r =25.

of Higgs vevs r defined in eq. (4.20) along y-axis for the DM component n on LHS and 7% on RHS. We
use eq. (8.43), eq. (8.44) and eq. (8.45) to draw them. Both of the DMs show similar behavior. A cut
along the r-axis at 25, shows the dependence of Qh? on DM mass m which is shown in Fig 8.4. The
difference in n and 7% annihilation is clear from here.

In the three component DM framework, we study a scenario where the two components n and 7% dominate
in relic abundance leaving a very tiny space for neutralino x{. We will discuss neutralino DM shortly.

For example, we focus on a region of parameter space, where,
Q,h? +Q,h* =0.1 (8.48)

In such a case, if we assume in addition that each of the components contribute equally, then we end
up getting Fig. 8.2. This indicates that we obtain two possible masses for a given value of r and Qh?
and the difference in n and 7% annihilation doesn’t matter in the range of r and Qh? we are interested.
This is shown in the top panel of Fig. 8.2, for n (left) and 7% (right). They look exactly the same,
where DM mass is plotted with r. In the bottom panel, we show the case when one of the components
contribute fully to relic abundance with ;4% = 0.1. In that case both allowed region of r and mpy
shrinks significantly.

Eq. (8.48) is appropriately depicted in Fig. 8.6 for different Z’ masses. They represent as three circles
(The circular shape is understandable from looking at Fig. 8.4) in m,, and mgo plane for M, = 2,3
and 4 TeV around m, = myo = M7, /2. The reason is simple to understand; the s-channel diagram
is proportional to ~ 1/(4m2 — M2,), it will have a resonance region that contributes greatly for relic

abundance. We highlight the case for M}, = 2 TeV in the RHS of Fig. 8.6. The whole region in green

becomes allowed when we have the condition thz +Q,h% <0.12 (i.e. the contour shrinks for smaller
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my, asafunction of r with 0,h?=0.05 m, as afunction of r with ,,h*=0.05
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Figure 8.5: Top: m — r dependence when each of the DM component n (left) and 7% (right) DM

contributing equally to the relic density with Q;h? =0.05. Bottom: When one component dominates, i.e.
Q;h? =0.1. Masses are in GeVs.
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M= 2 TeV.

abundance). We also note that, if we adhere to the assumption made initially that m, > m,,, then only
half of the circle above the diagonal line is allowed for relic abundance. Given that the plot is close to a

perfect circle, Q,h% > ,h? in this limit.
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Chapter 9
Direct Detection of 7jp and n

9.1 Direct Detection of n and 7%

Direct detection of n and ﬁ% takes place through t-channel Z’ interaction with quarks. The Feynman
graph is shown in Fig. 9.1. Due to only this contribution, the spin-independent (SI) cross-section is very
small.

We use MicrOMEGAs [51] to calculate the effective SI nucleon scattering cross-section. The parton-level
interaction is converted to the nucleon level by using effective nucleon qu (N = p,n) couplings defined

as [51]
(Nlmghgq|N) = fo" M, (9-1)

where My is the nucleon mass and we use the default form factorsin [51] as f? = 0.033, f7 =0.023, fP =
0.26, for the proton; f;} = 0.042, f7 = 0.018, fI' = 0.26 for the neutron; while for the heavy quarks the

fév are generated by gluon exchange with the nucleon and are given by

2
fgzﬁ 1= > V| Q=ctb (9.2)

q=u,d,s

Then, the nucleon scattering can be written as (with A, the amplitude),
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Figure 9.1: Diagram for scattering with quarks for direct detection.

A A
N =mn Z fcjvmt;+227 1- Z 1 Z miz (9.4)

q=u,d,s q=c,b,t q=u,d,s

We calculate the amplitude using

) <9W — tuty /M2,

M = g%+ iy (o1 =V Vin | =5 ) 77" (o2 — ca27”)q (9.5)
P}

t = pr—q = (0,gsin6,0,p+ gsinb) (9.6)
t? = —¢*sin®0 —p? — ¢*cos® O — pgcosf = —(p* + ¢* + pqcosh)

= —2(E* = M2)(1+cosf) ~0

The amplitude has the same form as the one for the s-channel for relic abundance with the only difference
being the denominator of the propagator.

Taking my << Mﬁ,MZ/

6497, M3
M = (]\/[4] {2012;1(012;24‘032)] (9.7)
Z/
Looki ble 4.2 f — Shecl o= ZBSREBL idford, ey = =B, ¢y = S& and for 7, ¢y = ¢2 /4
ooking at table 4.2 for u, ¢, = %, ¢, = 1L, and ford, ¢, = —%, ¢, = 75, and for 7}, ¢, = ¢}/
5 M
IMu> = <992M4" {c‘i(Qci 240%5%+175%%)} (9.8)
Z/
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Figure 9.2: Direct detection constraint for DM n or ﬁ%. The upper curve is for XENON100 and the lower
one is for XENONI1T. Points in the blue box represents spin-independent effective nucleon cross-section
for n or 7% contributing from 1-90 % (bottom to top).

9.2 Results

The results are shown in Fig. 9.2. The bounds from XENON100 (above) and XENONIT (below) are
shown in two continuous lines in purple and red respectively. Any points above the XENON100 lines
will be discarded by the direct search experiments. In Fig. 9.2, points in blue shows the results of SI
direct detection cross-section for ﬁ% with M/,,= 2 TeV and those in green represent n within the allowed
mass range to obtain correct relic density; m,, between 866-1100 GeV and for m,, between 915-1163 GeV.
Although n and ﬁ% have same quark interaction as in Fig. 9.1 and have same direct detection cross-
section, given the mass hierarchy m,, > m,, n contributes more than ﬁ% to the dark matter density. Due

to multi-component nature of the dark matter, the effective direct detection cross-section is multiplied by

the fraction of DM-density for each component 7;51‘5 with the nucleon cross-section oy (assuming that

all of the DMs are accessible to the detector).

npm Qpah?
o = ON ™~ o 9.10
Neff Toor N Oyt 2 N ( )

68



The thickness of the direct detection cross-section essentially comes from the fraction T;fzf , which has
been varied between 1-45 % for 7% (in blue) and 45-90% for n (in green). Hence, points at the bottom
of the blue box constitute only 1% while those at the top in green constitute 90% of the total DM. The
unequal thickness in blue and green box is due to the logarithmic scale of the effective cross-section.

The direct detection cross-section also doesn’t depend on DM mass, while it depends on the Z’ mass very
much. With higher M/, they go down even below to make it harder for direct search. Possibility of early
discovery of these DMs in near-future experiments seems to be small, although they are surely allowed

by the exclusion limits set by XENON.
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Chapter 10

Relic Abundance and Direct

detection of Wino type of Neutralino
%

10.1 MSSM neutralino Y

Let us now discuss the lightest neutralino (xV) as the third DM candidates in this three-component DM
set up. The neutralino sector in this extended LR SUSY model is non-trivial and constitutes of three
gauginos (Mp, M, Mg) and thirteen Higgsinos. Seven out of them, which are superpartners of the
scalar fields that do not have a vev, do not mix with the gauginos or the rest of the Higgsinos. This
yields to a nine dimensional neutralino mass matrix.

For simplicity, we take a limit where the neutralino DM is predominantly a wino. In this limit, the
neutralino of this model can easily mimic minimal supersymmetric Standard Model (MSSM) neutralino,
with My = My, ur, = u, 8 = 8, and 1.43M;, = M. This is explicitly shown in Chapter 5. In Fig. 10.1,
we show as an example, that when pj, (x-axis) is larger than M, (which we set at 0.7 TeV), fraction of
bino and Higgsino components in lightest neutralino, in black thick line goes to almost zero; giving rise
to a wino DM with the red line reaching 1. We also show that the lightest chargino (in blue, called LC)
becomes degenerate with the lightest neutralino (in green) and both have mass around 600 GeV in this
particular point in parameter space. This degeneracy is a very well known feature of wino dominated

neutralino in MSSM. Note that in order to achieve this limit in this model, we kept Mr ~ Mp and other
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Figure 10.1: Plot showing a limit when the lightest neutralino becomes predominantly a wino and the
first chargino becomes degenerate with LSP.

non-MSSM parts heavy, ug, ua = 5 TeV.

It is also known that when lightest chargino is degenerate with neutralino DM, co-annihilation occurs [52],
making ¥ annihilation cross-section much larger to yield very small abundance. In table 10.2 extracted
verbatim from [53], shows all possible scattering interactions relevant for relic abundance including coan-
nihilations with degenerate lightest neutralino and chargino, (H; and Hs are the CP-even higgs Bosons,
Hj is the CP-odd Higgs), from this table is clear the reason we have chosen an MSSM neutralino (where
computer simulations can be used) there are 162 possible diagrams. The degeneracy has been crafted
in different ways [54-58] to make wino a viable DM candidate by having moduli decay in anomaly me-
diated SUSY breaking [55] or by non-thermal productions [58] etc. Wino DM has been studied also to
justify PAMELA data [59]. However, the under-abundance works perfectly fine for us with the other
two components to make up. Of course, other regions of neutralino DM parameter space where it is an
admixture of Higgsino-wino-bino that yields under-abundance is also allowed for the model. We show a
sample scan of wino dominated neutralino for relic density and direct detection. The MSSM parameter
space scanned here: M; between 800-1200 GeV, My ~ 1.43M,, between 200-775 GeV, and the Higgsino
parameter p between 600-1000 GeV (with u, My > Ms). In Fig 10.3, we show that the neutralino-DM
under abundance for QX(l)hQ is not larger than 0.02 if we keep mgo < 800 GeV (This is following the
assumption that neutralino is the lightest of the three DMs and the limit can be increased for higher Z’
mass). The neutralino DM constitutes only 1%-20% of the total DM density making eq. (8.48) a good
benchmark. Note that the scan yields a pre-dominantly wino, but with some Higgsino component in it.

We use MicrOMEGAS [51] to evaluate relic abundance and direct detection cross-sections for neutralino

71



Initial state | Final state | channel (intermediate) ‘

HyHy, HiHy, HyHy, HyHs [ t(x), u(x}), s(H12)
HyHj3, HyH3 t(x3), ulx ) s(Hj), s(Z2°)
HO’H+ ] t(Xg)v u(x;), s(H12), s(Z2°)
s Z"H\, Z°H, txg)> wlx ) s(Hs), s(Z2°)

Xi X5 Z"Hj t(X%)v u(xy), s(Hi2)
W7H+» WJrH? t(Xj)v U(Xj)v S(Hl,Q,S)
A t(X(I;)v U(X2)7 S(Hl,Q)
W H0) e )s (o), S(Z9)
I t(fr.r), u(fL.r), s(Hi23), 5(Z2°)
HYH,, H H, txp), uxg), s(H™), s(W+)
H¥H; txp), ulxd), s(WH)
WTH,, W H, t(x3), u(xd), s(H), s(WH)
W+H3 t(X2)7 U(Xj)v S(H+)

XiX? H+fo tEX%—))’ U((Xj-i?; S(H+)
vyH t(x2), s(H
WHZ0 t0R), ulxa), s(WT)
Sls H ), s
U{i t(dL,R)v u(aL,R)v S(HJr)a S(W+)
vl t(lr.r), w(vL), s(H), s(WT)
H\H\, H Hy, HyH>, HsHs | t(x}), u(x7), s(Hi2)
H{H3, HyH3 t(Xj)v U(Xj)v s(Hs), s(Z27)
HYH- t(xY), s(Hi,2), s(Z%,7)
Z"Hy, Z"H txd), ulxd), s(Hs), s(2°)
Z"Hj txa), ulxa), s(Hi2)
H+W7, WJrHi t(Xj), 5(H1,273

XjX; Z°7° t(X?% U(X;r)7 S(HI,Z)
WIw- t(x?), s(Hi2), s(Z2°,7)
vy (only for ¢ = d) txa), ulxd)
Z0% txa), ulxd)
uu t(dL,R), S(H1’2’3)7 8(207’7)
147 t(£L,R), S(ZO)
dd t(ﬂL,R , S(Hl,gﬁg), S(Z ,’}/)
66 t(~L), S(Hl’g_’g), S(Z ,")/)
HYH* ), u(xy)

Xaxg HTWT t0), u(xy)
WIwT tx3), ux)

Figure 10.2: MSSM Neutralino and Chargino scattering (including co-annihilation)

72



Neutralino Relic Abundance
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Figure 10.3: Relic Abundance of lightest neutralino as a function of mass when it is predominantly a
wino. The scanned parameter space here ranges Mj: (800-1200) GeV, My: (200-775) GeV, u: (600-1000)
GeV with N,A11>>A4é.
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Figure 10.4: Diagram for lightest neutralino ¥{ scattering with quarks for direct detection.

DM which mimics MSSM in the parameter space mentioned above. The direct detection cross-section for
neutralino goes through t-channel processes as in Fig. 10.4. The squark contribution is negligible as they
are heavy ~ 2 TeV. Also, for pure wino, there is no Higgs channel and the Z-channel contributes more
to spin- dependent cross-section. Hence, having some Higgsino fraction in the neutralino enhance direct
detection. in Fig. 10.5, we see that the neutralino can be accessible to direct detection experiments in
near future with points close to XENON100 and XENONIT limit. Points in blue have relic abundance
contribution with more than 10% and they have a early detection possibility while points in green have
relic density less than 10% and direct detection for them may be delayed depending on the mass and
composition. While higher order calculations for direct detection of purely wino DM has been studied [60]
to boost direct detection, we are not using them, since we are exploiting a small Higgsino fraction in the
neutralino, that increases direct detection while having co-annihilations to yield under-abundance.

The mass range and the wino content in neutralino studied here is consistent with the indirect detection
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Figure 10.5: Direct detection constraint on neutralino DM mass when it is predominantly wino. The
upper curve is for XENON100 and the lower one is for XENONI1T. Points in blue have relic abundance
more than 10% and those in green have less. Scanned parameter space ranges: Mj: (800-1200) GeV,
My: (200-775) GeV, u: (600-1000) GeV with p, My > M.

constraints from Fermi Gamma-Ray space telescope or the High Energy Spectroscopic System (H.E.S.S.)
[61].

We also note that the MSSM parameter space scan performed here, doesn’t correspond to a specific
high-scale SUSY breaking pattern. So, the bounds on the chargino or neutralino masses obtained from
LHC [44], which mostly assumes some specific high-scale pattern like minimal Supergravity (mSUGRA)

[62], are not applicable here.
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Chapter 11

Conclusions

11.1 Example

We show an example of indirect and direct detection for one point in the parameter space, we will use the
central value for relic density of Q;,:h? = 0.112. Using the MSSM parameters M; = 1200 GeV, My = 625
GeV, u = 1000 GeV, tan 8 = 10, we find the mass for the lightest neutralino to be m, = 644.3 GeV,
with it we find the relic density Q,h? = 0.012, then we choose the relic abundance for the other to DM
candidates to be thQ = 0.03 and ,,h? = 0.07, which can be accomplished with the masses my, = 939
GeV and m,, = 912 GeV .

With the parameters chosen the MSSM neutralino has the composition
X} = 0.009B — 0.986W + 0.138H; — 0.096 H (11.1)

This corresponds to to a neutralino composed of 97.2% wino, 1.9% Higgsinol and 0.9% Higgsino2. With
this small percentage of Higgsino, the direct detection of the neutralino es enhanced.

Channels which contribute to scattering more than 1% are shown in table 11.1,
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Contribution | Initial final
9% Xixt | wEwe
9% xXIxi sc
9% xXIxi ud
9% xixi | wrw
8% XX tb
7% xIxi | 2wt
5% xixi | 2z
5% Xixy | WHw-
3% XIxy 1
3% XXy | eve
3% XIi | niL
3% Xixi | Az
2% X1 Xy cc
2% Xixp | um
2% XXy 55
2% Xixp | dd
2% Xt | AWt
2% XXy tt
2% XXy bb

Table 11.1: Scattering contributions (> 1%)

We show a plot of the three components and their direct detection scatting in Fig. 11.1, where the

percentages correspond to their contribution to relic abundance.

11.2 More work to be done

In extended LR SUSY model three DM components can co-exist together: the lightest neutralino x9, the
lightest scotino n, and the exotic 7% Higgsino. We show that in the limit of wino dominated x¢, thanks to
the co-annihilation with chargino to yield under-abundance, the other two components contribute heavily
to relic abundance, with masses m,, and m,, around 1 TeV that corresponds to the resonance annihilation
with mpps ~ M7 /2. We found a bound on Z’ from LHC to be at 2.045 TeV. With this value of M7, the

direct detection cross-section for n and 7% is calculated to lie between 10747 — 1079 (cm?)(depending on
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Figure 11.1: Example of direct detection for three component DM

the fraction in which it contributes to total DM density). This is at least an order of magnitude smaller
than XENONI1T detection limits. Nevertheless, in such a multicomponent set up, a large wino dominated
neutralino region becomes allowed without much complications while still obeying the existing limits and
constraints; with appropriate parameters, x| does lie within the direct detection limits.

It is worthy to mention that the situation studied in this article is a simplification in the thermal his-
tory of three component DM set-up. Interaction of DM components (between n and 7%, which have
been neglected given the specific mass hierarchy), can make the general situation more complicated and
one needs to solve the coupled Boltzman equations corresponding to n, 7% and Y? to study the exact
decoupling of each DM component depending on their relative masses and coupling strength.

The rich particle spectrum of this model with the right handed sector, makes it very likely to have
interesting collider signatures at LHC by producing these new excitations. They also open up new decay
channels that may alter the final state event rates in the lepton or jet-rich final states with missing energy.
This can serve as a distinctive feature of this model from MSSM and change the bounds on sparticle
masses at LHC. We plan to elaborate on this in a future work, where also, is possible to study a more

complicated neutralino.
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Appendix A

Explicit Lagrangian Terms

gL a 9Rr a
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1 1
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1 (3
+ 1(9 - PouWin + VB )
YR g1
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gr g1 =02
+ 0, — —=0c WV + Y 1B )
|( iz \/§ nL \/g L1Pp Ql
gr a g1 = o
+ 0y — —=04 + =—=Y.B, |V
|( iz \/5 uL \/Q L2 M) |
YR a 91 502
+ Oy — —=0 Wo + —=Yr B ¢
| ( iz \/5 R \/5 R1 IL) Q |
1 1 ~
10 - oW+ TLVea, ) 0P
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Lrrg = ZEO’MD#'l/) = Tr |:A~1TO'# {8# — @ga SL — wlda ﬁR:| Al]

Lrgr

With

V2 V2
c T g a g a N\

+ Tr|Ay o, {@L - 720(1 P 7;”0@ uR] Ag]
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~ 4 T 7 " -
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% (‘DTM(QL%)\% + 91YL1>\1)&)L1) + \% (‘I)TLQ(QL%AGL + 91YL2>\1)§)L2)
% (‘DE(QR%)\% + 91YR1>\1)§’R1) + \% (‘ﬂzz(nga}\% + 91YR2)\1)&)R2)
75 (ha(onowhi + 90 ) + 7 (nhaloroaXi + on¥iod)ins)
% (77};1 (grOAR + 91YR1)\1)77121> + \% (77;[32(9120@)\‘}3 + 91YRQ>\1)77122)
% (5];(915/1)\1)51) + % (55(915/2)\1)52)

Q1 [ggaa ¢+ %YQM] Q +10f {%aa ¢+ \g/%Yq,)\l} N

ZQCT [3}%0@ %+ %YQCM} Q° + 20t [f/gaa)\% + \g/liY\I,c/\l} W€+ h.c.

1 (3
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Va i g

(A.2)

(A4)

Note that there is one exception in the covariant derivative D,, when it operates over the bidoublets A;.

D,A

tgr a YR a
GMA — EUGWP«LA — ﬁAO’a uR
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Where €7, = 1 If the field transforms under SU(2)z, eg = 1 If the field transforms under SU(2)g, and Y;
is the U(1)y hypercharge of each field.

There is no sz term in Lpgy since Y3 = 0.
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Appendix B

Masses of Higgs Particles

B.1 Masses of Neutral Higgs

MpeigmiRelon] = L/A(=4mE, + 45 (u] +v75) + 67 (vF1 — vig + 3vF — ko)
+gh(uf — ul + 9k + 3uRy) + 4pk)

MRe[¢pi|Relpra) = —2BR — (g7 — 39?{)11121”122

MRe(g o) Relpns) = L/A(=4mpo + 417 (uf +011) — g7 (vF1 — 0o + V5 — 3Uo)
R (uf — uf + vk + k) + 4uk)

MRe(pmRelor,] = 91vL10R1 — 2(faurpr + fruapr)
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+97 (3011 — viy + 0y — Vho) + 4S7 (U] + vhy) + 4p7)

MRe(gr]Relora] = 2A2u1 + 4f3vL2vR1 — gT0L20R1 — 2fouapin

Mpe(pno]Re[érs] = 91VL2VR2 — 2(fruapr + fouipr)
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Mim[pgo)im(si,) = —2(fivnipa + fovrepr)

Mimip,0imisn) = —2(f1vrapa + favripir)

Mim(gro)imis,) = —2A20R1 + 2fovRapir

Mmisya)imisry) = 1/A(—4mA, + g7 (uf — uj +v7, + viy)
+gh(uf — ui + vy + vRe) + 4(f3(vig + vR1) + HA))
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Mmipr)Im(sss) = —2(foviepa + fivripr)

Mim(ppa)tm(s50) = —241001 + 2f1vL2pr

Mimipri]Im(sss) = —2A1VR2 + 2f1VR11R

Mimigro)iml62s) = —2(fovr1pA + f1UR2/L)

M5, 1m[522) = 2Ba

M sy Imisea) = 1/4(=4mA, — g7 (uf — uf + 07, +075)

—gR(uf — Ui + vy + Vh) + 40T (VD1 + vRo) + 4A))

MRefs,o)Refs1a] = 1/4(—=4mA; — g7 (uf — uj + v}, + 7o) — gr(uf — uf + vhy + Vo) + 4pA)
MRe[s,5]Rels21] = —2Ba

Mpefsa)refsar) = 1/2(=4mA, + g7 (uf — uf + vy +v1y) + gR(uf — uf + viy + Vo) + 4p3)
Mipmfs,5)rmis,) = 1/2(=4mAs — g7 (uf — uf +viy +vis) — gR(uf — uf + vhy + Vo) + 44)
M5, Im[6:1) = 2Ba

M5, rmfs2) = L/A(=4mAy + g7 (uf — uf +viy +vis) + gk (uf — uf + vhy + Vo) + 443)
MRe[n,i)Relna) = 1/4(—4mps + 9124(“% - UAZL + 3(”%1 + U%z))

+97 (071 — vFp + VR — Vho) + 4(fTov72 + HT2))

MReniRelne) = —2Br2 + 2f10fovrivre
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Mpefnpi]Relnm] = 1/2(—4mps + g%(“il - U%z + ’U?ﬂ - U1222)
+gh(ui — i + 3k + Vo)) + 4k
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B.2 Masses of the charged scalars
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Appendix C

Exotic scalar as Dark Matter

candidate

A possible Dark Matter candidate is the exotic scalar ng. It will contribute to the relic abundance via
only one channel, ngp + nr — Z — SM+ SM

The amplitude for the annihilation of into fermions is given by,

> 7" (co — ca?®) f (C.1)

2
WM = g2 (C% - 2512%) iy 0 <9W — Kk /M5

5 n% () — Py )Nk R yey

Notice that (p; — p2) - k = 0, the term proportional to k,k, does not contribute to the amplitude.

4 __ 2
g — 2
M? = W g (Y *Plf)??%} [f’Y”(Cv - Ca’YS)f] (C.2)
n. SM
~F~ Z,
’;T'
n’ SM

Figure C.1: Exotic scalar ng scattering via Z’ into DM
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[Fr(eo —car®)f]" = 7(eo — ca?®)(O Fa) @)y (eo — car®) (O Fa2)F(g2))

[n% (p!

= T [7(eo = ca?®) g, +mp)y*(eo = car®)dy — my))
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— 8ucyCa(qirges )€ — AmF (el — c2)g")

(P1p — P2u) (P1v — P2v)

Some algebra
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q1
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q1 - q2
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k- p1

(E,0,0,p)

(E,0,0,—p)
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(E, —qsinf,0, —qcosb)

p1+p2 = (2E,0,0,0)
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M
2 _ 42772 n__ 2 2 ~ 2
4F* = 4~ Mn_41_U2_4Mn(1+U +...) = 4M,

kp2:kq1:kq2:2E2’:2Ms

(p1) — P2u) (P1v — P2v) g™ = (p1 — p2)* = pi + 3 — 2p1 - po

_ 2 2 2\ __ 2 2\ __ 2 2
— M2 —2(2E% — M2) = 4(M? — E?) = 4M2(1 — 7°)

= 4M?

2
—v _ 22 2 4 -~ 2 2
<> =-—Mjv (1 +v"+0" +..) = =Myv
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PP A1AG20 €™ = Poppauqingeo ™ =0

P1uD2 Q1020 € + D2uP1yQix G20 €N
= D12 qirG20 €' + D1uP2uqirG2o €

A A
= PruP2virG20 €T — prup2uqingae €’ =0

(plu - pQAA)(plv - pzy)(qfqu + qlllqg)

= 2[(p1 —p2) - @] [(p1 — p2) - @] = p°¢* cos® O

1

4M$v2 cos? 6
the only non zero terms in the amplitude are the ones proportional to g"”

4g* M20? m?2
|IM? ~ —(4M2 — 7]7\/[% E 2(c +c2)(1 +2cos? 0) + (2 — ¢2) —Mfz
n 4 n

The amplitude is proportional to v?

approximations that has been done. ng is not a good candidate for non relativistic DM.
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. The term proportional to v° is explicitly zero even without the





