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Abstract

Combinatorial Topology and Applications to Quantum Field Theory

by

Ryan George Thorngren

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vivek Shende, Chair

Topology has become increasingly important in the study of many-body
quantum mechanics, in both high energy and condensed matter applications.
While the importance of smooth topology has long been appreciated in this
context, especially with the rise of index theory, torsion phenomena and dis-
crete group symmetries are relatively new directions. In this thesis, I collect
some mathematical results and conjectures that I have encountered in the
exploration of these new topics. I also give an introduction to some quantum
field theory topics I hope will be accessible to topologists.
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Discrete Topology Toolbox
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Introduction

In this part we will develop some mathematical machinery for performing
topological computations using simplicial and cellular cochains. Our focus is
mainly on things that are useful for the physics applications discussed in part
II, but there is some novel mathematics here as well. For these purposes, we
will need formulas for manipulating cohomology operations and characteristic
classes on the cochain level. The approach is pitched at a mixed audience
of physicists and mathematicians. The mathematicians may find it a bit
pedantic, but hopefully they learn something new by the end.

Usually in topology we manipulate cohomology classes directly. In this
case they form a graded ring H∗(X,R), where X is a space and R is a coef-
ficient ring. Then, cohomology operations like Steenrod squares and Massey
products are added after the fact, and their origin can seem mysterious. By
working on the cochain level however, C∗(X,R) becomes an ∞-categorical
version of a graded ring, where the algebraic origin of these cohomology
operations is clear and they are computable, even manipulable with formu-
las. (Because of slippery foundations I won’t state what kind of “∞-ring”
C∗(X,R) is.)

Among the mathematical novelties in this part is a discrete Morse flow
(first developed by Robin Forman [1]) on the barycentric subdivision of a
CW complex X whose unstable cells are the original cells of X. This discrete
Morse flow gives a geometric picture of the cap product as the infinite time
flow from the dual complex which I don’t believe has appeared anywhere.
The usual geometric picture of the cup product as an intersection form also
follows.

This Morse flow also gives us a conjectural geometric formula for the ∪i
products [2, 3], whose geometry has remained confusing because of their com-
plicated combinatorial formula and that they don’t descend to a product on
cohomology. One can think of these formulas and their construction as a dis-
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crete version of the work of Fukaya, Oh, Ohto, and Ono [4], who used smooth
Morse theory to describe the A∞ structure of the usual Morse complex. Be-
ing finite, our approach is free of analytical difficulties and our formula for
∪i hides all of the combinatorics in the definition of the Morse flow. The
important properties of the ∪i products are obvious in this formulation.

We also use this Morse flow to give cocycles representing the Stiefel-
Whitney classes of vector bundles. These cocycles are priveleged among
their cohomology classes because they satisfy a cochain-level version of René
Thom’s theorem [5] (English translation in [6]) on Steenrod squares and
Stiefel-Whitney classes. While at the time Thom’s theorem elucidated the
geometry of the Steenrod squares and required the use of the Thom space,
for us it is completely apparent from our description of the ∪i products, of
which the Steenrod squares are a special case. I show that it is impossible
to give us a cocycle refinement of the Wu formula.

It seems likely that an analogous construction using discrete Morse flow
on the Grassmannian bundle Gr2(TX) will give rise to a cocycle representing
the Pontryagin classes with nice properties but we don’t attempt it here. It
seems likely a natural triangulation with branching structure on Gr2(TX)
would reproduce Israel Gelfand and Robert MacPherson’s cocycles [7].

Our Stiefel-Whitney cocycles can also be used to give simplicial and cel-
lular descriptions of tangent structures associated with the Whitehead tower
of BO. These descriptions have such a pleasant form that we hope it will
inspire mathematicians to make simpler and more functorial obstruction the-
ories. Indeed, for us a spin structure for the tangent bundle TX is simply
a 1-cochain η with dη = w2(TX). For surfaces, we show how the extra
structure on X which defines the cocycle w2(TX) gives a functorial cor-
respondence between such η and Kastelyn orientations, which have been
the go-to choice for describing discrete spin structures in two dimensions.
Our approach works in all dimensions, however, and for all Stiefel-Whitney
classes, most of whose associated geometric structure is yet to be explored.
Using it we describe spin structures in all dimensions using cellular data.
One can think of our approach as a discrete version of Mike Hopkins and
Isadore Singer’s construction of integral Wu structures on spin manifolds [8].
I hope that once the Pontryagin cocycles are worked out, there is an anal-
ogous construction of discrete differential Pontryagin structure. This would
be very valuable for physicists who wish to construct discrete versions of
gravitational Chern-Simons terms [9].
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Chapter 1

Basics

Introduction

This chapter contains some standard definitions in combinatorial and alge-
braic topology. A textbook reference is [10]. We also describe some aspects
of Forman’s discrete Morse theory [1]. We are especially concerned with sim-
plicial and cellular cochain-level aspects of duality, which in our discussion
we separate into Poincaré duality, Hodge duality, and a duality map derived
using discrete Morse theory. The main theorem in this chapter is the con-
struction of this duality map in terms of a particular discrete Morse flow
on the barycentric subdivision of a CW complex equipped with a branching
structure.

1.1 Discrete Spaces

In this section we introduce our basic combinatorial notion of space:

Definition 1. A CW complex (“closure-finite, weak topology”) or some-
times cell complex is a Hausdorff space X together with a decomposition of
X into open cells, such that each cell

• is homeomorphic to an open ball Bk for some k, in which case we call
it a k-cell;

• has boundary contained in the union of all j-cells for j < k. This union
is called the k − 1-skeleton and is denoted Xk−1.
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Figure 1.1: The relationship between a fine atlas or Cech covering and a CW
complex. Points are colored by the closest center of a patch. For a generic
choice of local metric, this CW complex is dual to a triangulation.

It is useful to construct CW complexes by specifying the collection of
k-cells for each k along with attaching maps f : ∂B̄k → Xk−1, where Bk is a
standard open k-ball, B̄k is the standard closed k-ball, and ∂B̄k is its bound-
ary. For example, the complex projective plane CP2 may be constructed by
taking a single 0-cell (so X0 = ?); no 1-cells (so X1 = X0 = ?); a 2-cell
attached to it by the constant map ∂B̄2 = S2 → X1 = ? (so X2 = S2); no
3-cells (so X3 = X2 = S2); and finally a single 4-cell attached by the Hopf
map ∂B̄4 = S3 → X3 = S2.

Often we will restrict our CW complexes to be combinatorial, meaning
that the attaching maps are injective and their image is itself a union of cells.
Note that any n-manifold may be given the structure of a combinatorial CW
complex by choosing an appropriately fine atlas. We can then choose a
metric and reduce each patch to its Voronoi cell. See Fig 1.1. Alternatively
we can take the nerve of this covering to construct a dual cell complex (the
Delauney cell complex). Note that the above CW complex for CP2 is not
combinatorial. The smallest known combinatorial CW complex for CP2 is
considerably more complicated. See [11] for example.

To manipulate expressions involving cells and their boundaries, we will
need to introduce some extra structure:

Definition 2. A k-cell together with an orientation of its interior is called an
oriented k-cell. A local orientation of a CW complex is a choice of orientation
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for each of its k-cells. If an oriented k-cell agrees with the local orientation
it is called positive while if it disagrees with the local orientation it is called
negative.

1.1.1 Cellular Maps and Cellular Approximation

A map f : X → Y between CW complexes is called weakly cellular if it
sends the k-skeleton of X into the k-skeleton of Y for every k. This means
that f sends 0-cells to 0-cells, but note this is not true for k > 0. Instead, f
sends 1-cells of X to paths between 0-cells in the 1-skeleton of Y , which may
consist of several 1-cells of Y . If the image of each k-cell of X is a union of
closures of k-cells of Y , then the map is called cellular.

A refinement or refinement X ′ of a CW complex X is a cellular home-
omorphism X → X ′. Thus we may rephrase the above to say that a map
f : X → Y is cellular if there is a refinement of X such that f ′ : X ′ → Y
cells k-cells to k-cells for all k. By definition, a PL homemorphism between
CW complexes X and Y is a common refinement of both:

X → Z ← Y.

An important theorem for us is the following, which can be found in many
standard references, for example [12, 10].

Theorem 1. Cellular Approximation Theorem If f : X → Y is a continuous
map of CW complexes, then f is homotopic to a cellular map.

Such a homotopy can be constructed inductively, starting by moving the
images of the 0-cells of X to some nearby 0-cells of Y and then proceeding
to move the image of X1 into Y1 cell-by-cell.

1.1.2 Triangulations and Barycentric Subdivision

Combinatorial CW complexes capture the most common notions of combina-
torial topological spaces, such as the hypercubic or other crystalline lattices,
but for writing algebraic expressions of cocycles, we will need something
whose combinatorics is based on the n-simplex:

Definition 3. The standard geometric n-simplex ∆n is convex hull of the
points e1, . . . , en+1 where e1, . . . , en+1 form an orthonormal basis of Rn+1. For
every k+1-subset {i0, . . . , ik}, we obtain a k-simplex denoted (i0 · · · ik) given
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by the convex hull of ei0 , . . . , eik . These simplices give ∆n the structure of a
combinatorial CW complex.

Definition 4. For a combinatorial CW complex of X, we define its face
poset to be the set of all closed cells of X with the partial ordering V < W
if V ⊂ ∂W .

We can now phrase our stronger notion of combinatorial space, that will
allow us to manipulate algebraic expressions:

Definition 5. A triangulation of a space X is a special combinatorial CW
structure on X in whose face poset the set of cells lying below any k-cell is
equivalent to the face poset of ∆k. To emphasize this we refer to the k-cells
as k-simplices. When X comes with a triangulation we call it a triangulated
space. Any combinatorial CW complex may be refined to a triangulation
without adding 0-cells just like any polytope may be triangulated.

Definition 6. A branching structure on a CW complex is a choice of partial
ordering of the 0-cells, such that on the boundary of any k-cell, the 0-cells
are totally ordered.

The branching structure gives us a cellular homeomorphism between each
k-cell and the standard k-simplex ∆k which glues appropriately across neigh-
boring k-simplices. In this way, a branching structure behaves much like an
atlas of local coordinate charts.

A branching structure is easily constructed on any triangulation by simply
choosing a total ordering of all the vertices. Note that a branching structure
determines a local orientation. Later we will see that a branching structure
determines a framing of the tangent bundle with singularities.

We include some other useful notions for us.

• The (open) star of a k-simplex σ is the union of all simplices τ with
σ ⊂ τ̄ .

• The link of a k-simplex is the boundary of the star.

• A k-chain is a sequence of simplices σj such that

σ̄0 ⊂ σ̄2 ⊂ · · · ⊂ σ̄k.

7



0

1

2

(12)<(012)

(0)<(02)<(012)

(01)

Figure 1.2: The barycentric subdivision of the triangle (012) with some sim-
plices labeled by their chains.

Finally, we describe the barycentric subdivision [10, 13]. Roughly, this
subdivision is constructed beginning with a 0-cell (a barycenter) for each
simplex and proceeding by joining them according to the face poset of X.
We denote this Xb. A picture is shown in Fig 1.2.

The face poset of the barycentric subdivision is most easily described
in terms of chains. The k-simplices of the barycentric subdivision are the
k-chains of X. The boundary of a k-chain (σ0, . . . , σk) is

(σ1, . . . , σk), (σ0, σ2, . . . , σk), . . . , (σ0, . . . , σk−1).

In particular the 1-simplices of the barycentric subdivision are inclusions

σ0 ⊂ σ̄1,

so the subdivision admits two natural branching structures, one where σ0

points to σ1, which we will call the ascending branching structure and its
opposite the descending branching structure. The fact that the face poset of
X has no ordered loops implies that these are indeed branching structures.

1.1.3 PL-Manifolds and Combinatorial Duality

Let X be a combinatorial CW complex. We wish to construct a CW complex
X∨ whose face poset is the opposite of the face poset of X. This is difficult
unless X is a manifold:
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Definition 7. A triangulated PL n-manifold is a triangulated space such
that the link of every k-simplex is PL homeomorphic to either an n− k− 1-
simplex or the boundary of an n− k-simplex. [12, 14]

For a triangulated PL n-manifold X, we may define the dual CW complex
X∨ whose 0-cells are the n-simplices ofX, whose 1-cells are junctions between
two n-simplices, whose 2-cells are junctions between several n− 1-simplices,
and so on. See [10, 13].

Theorem 2. Combinatorial Duality For a triangulated PL n-manifold X,
X and X∨ are PL-homeomorphic.

To prove this theorem, we need to exhibit a common refinement of both
X and X∨:

X → Z ← X∨.

It is clear that the barycentric subdivision is a common subdivision of both
X and X∨, proving the theorem.

If σ ∈ Xk, then σ∨ ∈ Xn−k admits a decomposition into n − k-simplices
in Xb

n−k given by n− k-chains

σ = σ0 < · · · < σn−k ∈ Xn.

1.1.4 Discrete Morse Flows

In this section we describe some aspects of Robin Forman’s discrete Morse
theory [1]. Our main application of the theory will be a Morse flow that lets
us return from the barycentric subdivision Xb of a cell complex X back to
X. I don’t believe this Morse flow has been constructed anywhere.

We define a discrete flow V to be a collection of pairs σk → τk+1 where σk
is a k-cell on the boundary of the k + 1-cell τk+1 such that each cell appears
in at most one pair. A V -path is a sequence of pairs

σ0
k → τ 0

k+1 > σ1
k → τ 1

k > · · · > τmk → σmk ,

such that σjk 6= σj+1
k (no backtracking). V is called a discrete Morse flow if

it has no cyclic V -paths, ie. σ0
k 6= σmk for all V -paths. In this case, one can

actually define V as a discrete gradient of a function. We will not pursue
this here, however.

Given a discrete Morse flow V , we define a critical cell to be any cell
which does not occur in one of the pairs of V . For each critical cell σ∗k of
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the original CW complex, we call the union of V -paths beginning on the
boundary of σ∗k the unstable manifold of σ∗k, while the union of all V -paths
ending on the boundary of σ∗k we call the stable manifold of σ∗k. X is both
a union of all unstable manifolds of critical cells and a union of all stable
manifolds of critical cells. That V has no cyclic paths implies that these cells
are all polyhedra. Thus, either of these unions define a CW coarsening of X.

Theorem 3. Branching Morse Flow A branching structure on a combina-
torial CW complex defines a Morse flow on its barycentric subdivision whose
unstable cells are the cells of the original triangulation.

Proof. For convenience we first describe the critical simplices, for simplicity
focusing on a triangulated space X. They correspond to the k-simplices of
X σk = (i0 · · · ik) of X by

(i0 · · · ik) 7→ ((i0) < (i0i1) < · · · < (i0 · · · ik)) (1.1)

where we use the branching structure to order i0 < · · · < ik. We denote a
subsequence of this kind, namely of the form

(i0 · · · im) < (i0 · · · im+1) < · · · < (i0 · · · im+l)

such that i0 < · · · < im+l a frozen sequence.
We extend a total ordering of vertices of X to a total ordering on all the

simplices of Xb by extending each k-simplex (i0 · · · ik) to a list of length n+1:
(i0 · · · ik) 7→ (ik, . . . , i0,∞, . . . ,∞) and then using lexicographical ordering.
We denote this ordering C and call it the simplex ordering. In this ordering,
the largest simplex is the vertex of highest degree, followed by other simplices
containing this vertex. Then it goes on to the vertex of next highest degree,
followed by all the simplices containing this one but not the highest one, and
so on.

Given a k-simplex
(σi0 < σi1 < · · · < σik),

we let j be the least j such that

σij+1
< · · · < σik

is frozen. We then look for simplices ρ which may be inserted in the initial
“unfrozen” subsequence

σi0 < · · · < σij

10



such that
σim C ρ

for all m ≤ j. We call these admissible insertions. We look for the largest
possible ρ with an admissible insertion and insert it to form a k + 1-simplex

(σi0 < · · · σil < ρ < σil+1
· · · < σik).

Note that the final frozen subsequence of this k + 1-simplex is the same as
our original k-simplex. Indeed, this is clear if l 6= j. However, if l = j, then
we have a situation like

ρ < (i0 · · · im) < · · · ,

where i0 < · · · < im and if ρ were to be added to the frozen subsequence
then we would necessarily have

ρ = (i0 · · · im−1),

but there are larger insertions. Thus, the final frozen subsequence stays the
same, and since there is no bigger admissible insertion than ρ in the intial
unfrozen subsequence, our k+1-simplex so constructed admits no admissible
insertions of its own. Therefore, the set of pairs

(σi0 < σi1 < · · · < σik)→ (σi0 < · · ·σil < ρ < σil+1
· · · < σik)

defines a discrete Morse flow on Xb.
Note that the last element of any k-simplex forms a frozen subsequence

of length 1, so ρ is always inserted to the left of σk. It follows that this Morse
flow pairs simplices of (Xm)b with other simplices of (Xm)b for all m. That
is, it preserves the skeleton of X, and can be considered as glued together
from this same Morse flow constructed n-simplex by n-simplex.

It remains to show that the k-simplices of (1.1) are precisely the critical
simplices of this Morse flow. These sequences are frozen and have no admis-
sible insertions so they are critical. We need only show that they are the
only critical simplices. Suppose a sequence

σi0 < · · · < σik

admits no admissible insertions. If this sequence is completely frozen, it must
be one of the k-simplices of (1.1), otherwise, σi0 is not a vertex and it admits
an insertion at the left.
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Otherwise, we let
σi0 < · · · < σim

be the initial unfrozen subsequence. Let σil be the largest in the simplex
ordering among these. Suppose if we drop σil from the sequence, that it
admits an admissible insertion of a ρ which is bigger than σil . The only way
this can be is if ρ < σil , in which case ρ is an admissible insertion in the
original sequence. Otherwise, σil is the largest admissible insertion of the
sequence obtained by dropping σil , so again the sequence is not critical.

For more general combinatorial CW complexes, a construction like the
above is also possible, except now the dimensions of the cells of X are not
fixed to their number of vertices (although they can still be described by
their set of vertices) and this makes the notation especially cumbersome. In
this more general case, the construction of the flow is identical except for the
definition of a frozen sequence. A frozen sequence is a sequence of cells

V1 < · · · < Vk

such that dimVj+1 = dimVj + 1 and Vj is the least cell of its dimension in
the cell ordering of Vj+1.

It’s also possible to derive our Morse flow from a Morse function on the
standard n-simplex ∆n, formed as the convex hull of orthonormal basis vec-
tors. Using that coordinate system we consider the linear function

f(x0, . . . , xn) = x0 + ax1 + a2x2 + · · ·+ anxn

for a a positive real number. We assign values to simplices of ∆n by the value
of f at their centroids. It is easy to check that for a � 1 the Morse flow of
this function as defined by Forman agrees with our combinatorial description
above.

Note that the barycentric subdivision Xb has a natural branching struc-
ture which defines a Morse flow on the second barycentric subdivision Xbb.
So Xbb has a natural Morse flow. This explains why some combinatorial
topology constructions use Xbb. Throughout however we will use the above
Morse flow to pass from Xb, which has many nice properties, back to X.

12
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Figure 1.3: A picture of the branching Morse flow on a triangle (012), with
critical simplices highlighted in blue.

1.2 Chains, Cycles, Cochains, Cocycles

1.2.1 Chains, Cycles, and Homology

Let X be a CW complex, A be an abelian group. We will construct an
abelian group Ck(X,A) spanned by symbols [V ] for each oriented k-cell V ,
such that if V op is its orientation-reversed counterpart, then [V op] = −[V ].
With a choice of local orientation, its oriented k-cells form a linear basis.

The elements of this group are called (cellular) A-valued k-chains in X.
A general element is an expression∑

i

ai[Vk,i],

where ai ∈ A and [Vk,i] is the symbol associated to the ith oriented k-cell in
the sum. For computational purposes we will often choose an ordering of all
the k-cells so that Vk,i refers to a specific oriented k-cell of X outside of the
context of a particular sum. The union of closures of the [Vi,k] with ai 6= 0 is
called the support of the k-chain.

These is an apparent group structure on k-chains by collecting terms:∑
i

ai[Vk,i] +
∑
i

bi[Vk,i] =
∑
i

(ai + bi)[Vk,i].

If X is a combinatorial CW complex, then the boundary of any k-cell V
is the union of closures of a set of k − 1-cells. Further, an orientation of this

13



k-cell will induce orientations of these boundary k − 1-cells. Thus we define
∂[V ] to be the sum of the symbols associated to these oriented boundary
k − 1-cells. Note that to put it into the positive basis defined by a local
orientation of X, we may need to flip some signs according to [W op] = −[W ].

We extend ∂ to the boundary map

∂ : Ck(X,A)→ Ck−1(X,A)

by linearity, meaning for a general k-chain,

∂
∑
i

ai[Vi] =
∑
i

ai∂[Vi].

If X is moreover a triangulation with branching structure, then the clo-
sure of any positive k-cell V is combinatorially a k-simplex with its vertices
identified with the numbers 0, 1, . . . , k. Each k − 1-cell on its boundary is
identified with a k-subset of this set, of which there are exactly k + 1, each
defined by their missing vertex. If we denote the symbol of the oriented
k − 1-cell associated to the ordered k-subset 0, . . . , i − 1, i + 1, . . . , k as [̂i]
(this is the k − 1-simplex opposite vertex i), then we have

∂[V ] =
∑

0≤i≤k

(−1)i [̂i].

For instance, for a 3-simplex (tetrahedron) (0123), we have

∂[0123] = [123]− [023] + [013]− [012].

A chain Γ satisfying ∂Γ = 0 is called a cycle. group of cycles is denoted
Zk(X,A) while the group of boundaries is denoted Bk(X,A).

The very important property of the boundary map ∂ is that two neigh-
boring oriented k-cells whose orientations agree induce opposite orientations
on their share boundary k − 1-cells. Thus,

∂2 = 0.

In other words, boundary of chains are cycles, Bk(X,A) ⊂ Zk(X,A). How-
ever, not all cycles are boundaries. The group that captures the obstructions
for a cycle to be a boundary is by definition the kth homology of X with
coefficients in A, defined as the quotient of the cycles by the boundaries:

Hk(X,A) = Zk(X,A)/Bk(X,A).
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It is an amazing fact, proved in any textbook on algebraic topology, that these
abelian groups Hk(X,A) are independent of the CW complex structure on
X. In particular, they are unchanged by refining or coarsening any given
CW complex. They are topological invariants of X.

As an example, we write out the groups of chains and boundary maps
(the “chain complex”) C∗(X,A) for the simple CW complex described above
for X = CP2 with A = Z coefficients

C5 = 0→ Z→ 0→ Z→ 0→ Z = C0,

where all of the boundary maps are zero because the boundary of each k-cell
contains no k − 1-cells. Thus,

H4(CP2,Z) = Z

H2(CP2,Z) = Z
H0(CP2,Z) = Z,

while the rest are zero. Often when the coefficients A = Z we will suppress
them in the notation.

1.2.2 Pushforward of Chains

Suppose f : X → Y is a cellular map of CW complexes. Rephrasing our
earlier definition, this means that the image of a k-cell Vk of X is the support
of a k-chain of Y . This allows us to define a pushforward of CW chains by
defining

f∗[Vk] =
∑

Uk∈f(Vk)

[Uk],

where we take care to note how the local orientation of Vk maps, taking the
Uk to have the orientation induced from f . We extend this to

f∗ : C∗(X,A)→ C∗(Y,A)

by linearity. It is clear that this definition satisfies

f∗∂ = ∂f∗.

Note that f(Vk) may be a union of j < k-dimensional cells, in which case we
say that f collapses Vk and by our definition

f∗[Vk] = 0.
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We may have f∗[Vk] = 0 even if f doesn’t collapse Vk. Indeed, f may fold
Vk in half, and it would assign opposite local orientations to the two halves,
which would cancel in the above sum.

1.2.3 Cochains, Cocycles, and Cohomology

Let X be a locally oriented combinatorial CW complex, A an abelian group.
If cellular chains are combinatorial analogues of integration cycles, cel-

lular cochains are combinatorial analogues of differential forms. To turn a
differential form into a finite piece of data, we keep only its integrals over
our cellular chains. Because integration is linear in the integration domain,
we thus define an A-valued k-cocycle as a linear map

α : Ck(X,Z)→ A

where its value on a k-chain Γ is written suggestively∫
Γ

α.

If Γ =
∑

i ni[Vk,i], ni ∈ Z, then by linearity∫
Γ

α =
∑
i

ni

∫
Vk,i

α,

so α is determined by its values on the positive k-cells of X. For this reason, it
is often said that an A-valued k-cochain is simply an assignment of elements
of A to each (positive) k-cell of X.

Like the chains, the set of cochains also forms a group, denoted Ck(X,A),
defined to mimic linearity in the integrand:∫

Γ

α + β =

∫
Γ

α +

∫
Γ

β.

Another important property of integration is the Stokes theorem. We
define the exterior derivative or coboundary map or just differential

d : Ck(X,A)→ Ck+1(X,A)

to satisfy the Stokes theorem: ∫
Γ

dα :=

∫
∂Γ

α,
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for any chain Γ. On a k-simplex of a triangulated CW complex with branch-
ing structure, we have∫

0...k

dα =

∫
1...k

α−
∫

02...k

α + · · ·+ (−)k
∫

0...k−1

α.

If we denote the value of α on a k−1-simplex opposite the ith vertex as α(̂i),
this can also be written

dα(0 . . . k) =
∑
i

(−1)iα(̂i).

A cochain α with dα = 0 is called a cocycle and is said to be closed, while
dβ for a k− 1 cochain β is called a coboundary and is said to be exact. The
group of k-cocycles is denoted Zk(X,A) while the group of k-coboundaries
is denoted Bk(X,A). One can check, either directly or using the Stokes
theorem and ∂2 = 0, that d2 = 0. Thus, Bk(X,A) ⊂ Zk(X,A). However, as
with the cycles, not every cocycle is a coboundary, and we may define the
obstruction group, the kth cohomology of X with coefficients in A as the
quotient

Hk(X,A) = Zk(X,A)/Bk(X,A).

As with homology, these groups are topological invariants, independent of
the specific CW complex we use to describe X.

If we have a map of CW complexes f : X → Y , we may dualize the
pushforward of chains f∗ : Ck(X,Z)→ Ck(Y,Z) to obtain the pullback map

f ∗ : Ck(Y,A)→ Ck(X,A)

given by ∫
Γ

f ∗α =

∫
f∗Γ

α.

Because d satisfies the Stokes theorem and f∗ intertwines ∂, we have

df ∗ = f ∗d.

Thus, the pullback also gives us a map on cohomology, denoted the same
way.

Note that if ∂U = Γ− Γ′ for k-cycles Γ, Γ′, then for any k-cochain α,∫
Γ

α−
∫

Γ′
α =

∫
U

dα,

17



so if α is closed, its value on any k-cycles depends only on the homology class
of that k-cycle. It therefore defines a map∫

−
α : Hk(X,Z)→ A.

1.2.4 Universal Coefficient Theorem

A very important observation about cohomology is that, while the group of
cochains is dual to the group of chains, the group of cocycles is not dual to
the group of cycles. In other words, the map above does not determine α.

There are “phantom k-cocycles”, which integrate to zero on every k-cycle
and yet are nonzero on some k-chains. One might assume that these values
are thus determined on the boundaries of these k-chains, and therefore that
the k-cycle is exact. However, there is the possibility for k − 1-chains Γ
which are not boundaries but which for some integer n, nΓ is a boundary.
For these, the k-cycle might assign to a k-chain whose boundary is nΓ a value
a ∈ A such that a/n /∈ A. In this case, there is no possible value in A that a
k − 1-chain could assign to Γ, so the k-cycle cannot be exact.

This intuition may be turned into a proof of the following:

Theorem 4. Universal Coefficient Sequence There is an exact sequence

0→ Ext(Hk−1(X), A)→ Hk(X,A)→ Hom(Hk(X), A)→ 0,

where all the homology coefficients are Z (the “universal coefficients”). On
the right hand side we have the cocycles evaluated just against the chains.
On the left hand side we have the group of abelian extensions of Hk−1(X)
by A, which precisely captures the divisibility obstruction we explained may
arise.

If Hk−1(X) is torsion-free, meaning it is isomorphic to a free abelian group
Zr for some r, then Hk(X,A) ' Hom(Hk(X), A). In general, we may split
the above sequence,

Hk(X,A) ∼ Hom(Hk(X), A)⊕ Ext(Hk−1(X), A),

but there is no canonical choice of isomorphism, meaning that there is no
way to choose a splitting for all spaces such that the pullback f ∗ factorizes
into block diagonal form for all maps f .
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1.2.5 Twisted Cohomology

There is a generalization of H1(X,G) for G a nonabelian group called non-
abelian cohomology (later we discuss a very broad generalization of this).
The 1-cochains are assignments of elements a(e) ∈ G to edges e ∈ X1. The
1-cocycle equation for a ∈ Z1(X,G) is that for every 2-cell with boundary
e1, . . . , en,

a(e1) · · · a(en) = 1.

A 0-cochain is an assignment f(x) ∈ G to vertices x ∈ X0. They act on
1-cochains by

a(01) 7→ af (01) = f(0)−1a(01)f(1).

The quotient of Z1(X,G) by this action is H1(X,G). Warning: when G is
nonabelian, H1(X,G) does not have a natural group structure.

Now suppose G acts on an abelian group M and a ∈ Z1(X,G). We can
define the a-twisted differential:

Da : Ck(X,M)→ Ck+1(X,M)

(Daω)(0 · · · k+1) = a(01)·ω(1 · · · k+1)−ω(02 · · · k+1)+ω(013 · · · k+1)−· · ·

= (dω)(0 · · · k + 1) + (a(01)− ε(01)) · ω(1 · · · k + 1),

where ε(01) ∈ Z1(X,G) assigns the identity element of G to every edge. One
checks that the cocycle condition on a is equivalent to

(Da)2 = 0.

The cohomology of the twisted differential is denoted Hk(X,Ma) (this is a
group). Under the action of a 0-cochain f ∈ C0(X,G), there is a correspond-
ing natural transformation

Hk(X,Ma)→ Hk(X,Maf )

given by
ω(0 · · · k) 7→ f(0)−1ω(0 · · · k).
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1.3 Dualities

1.3.1 Intersection Number and Poincaré Duality

Much of the material in this section is standard and a textbook reference is
[10].

Let X be an oriented, closed PL n-manifold with branching structure.
We will describe an R-bilinear pairing

#(− ∩−) : Ck(X,R)⊗ Cn−k(X∨, R)→ R

For simple chains σ, τ∨, where σ and τ are k-simplices in X with σ oriented
and τ co-oriented (ie. τ∨ oriented), σ and τ∨ either don’t intersect or they
meet transversely in a single point x lying in the interior of both. In the
first case #(σ ∩ τ∨) = 0 and in the second #(σ ∩ τ∨) = ±1. The sign is
determined by comparing the orientation of Txσ ⊕ Txτ∨ = TxX induced by
the orientations of σ and τ∨ with the ambient orientation of X. We define
opposite intersection number #(τ∨ ∩ σ) likewise. It satisfies

#(τ∨ ∩ σ) = (−1)k(n−k)#(σ ∩ τ∨).

Clearly this pairing is nondegenerate.
We use the intersection number to construct an isomorphism

W : Ck(X,A)→ Cn−k(X
∨, A).

The notation comes from the concept of a domain wall of a gauge field,
which we will discuss in the second half of the thesis. We will define this
map on “indicator cochains”. Written Iσ, for σ ∈ Xk, Iσ is defined to be the
k-cochain which is 1 on σ (with its branching structure orientation) and 0
on other k-simplices. Ck(X,Z) is spanned by the indicator cochains. The
n− k-cells of X∨ are in bijection with the k-simplices of X. W is defined so
that

W (Iσ) = σ∨,

where σ∨ receives an orientation given an orientation of σ so that

#(σ ∩W (Iσ)) = 1.

Thus, for an arbitrary α ∈ Ck(X,A), we have

#(σ ∩W (α)) = α(σ)
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and
W (α) =

∑
#(σ∩σ∨)=1

α(σ)σ∨.

Using Stokes theorem, for σ ∈ Xk+1, we have

#(σ ∩W (dα)) = (dα)(σ) = α(∂σ) = #(∂σ ∩W (α)).

Then, since
#(∂A ∩B) = (−1)|A|#(A ∩ ∂B),

it follows
#(σ ∩ ∂W (α)) = (−1)k+1#(σ ∩W (dα)).

Since this holds for all σ and the intersection pairing is nondegenerate, we
have

W (dα) = (−1)k+1∂W (α).

The sign is annoying but unavoidable.
We also define an inverse map

δ− : Cn−k(X
∨, A)→ Ck(X,A)

such that
W (δΣ) = Σ.

For this we must have

δΣ(τ) = #(τ ∩W (δΣ)) = #(τ ∩ Σ).

By a similar argument as above, we find

dδΣ = (−1)k+1δ∂Σ.

The notation δ comes from the Dirac delta distributions. Indeed, given
a point x ∈ X∨ and a region R represented as a chain in Cn(X,Z) whose
coefficients on simplices are one or zero,∫

R

δx =

{
1 x ∈ R
0 x /∈ R

.

These maps together give isomorphisms

Hk(X,A) ' Hn−k(X
∨, A)
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for all k. These isomorphisms usual go by the name Poincaré duality [15],
especially when combined with the barycentric subdivision, which further
gives Hn−k(X

∨, A) ' Hn−k(X,A).
Sometimes Poincaré duality is phrased as a nondegenerate pairing be-

tween cochains α ∈ Ck(X,A) and β ∈ Cn−k(X∨, A), which we define by

(α, β) =

∫
W (α)

β =
∑

#(σ∩σ∨)=1

α(σ)β(σ∨).

1.3.2 Hodge Duality and the Laplacian

We describe an isomorphism called the Hodge star[16]:

? : Ck(X,A)→ Cn−k(X∨, A).

This map is very similar to the Poincaré duality map, except it maps cochains
to cochains. For α ∈ Ck(X,A) and σ ∈ Xk a k-simplex, we define

(?α)(σ∨) = α(σ), #(σ ∩ σ∨) = 1.

This is related to the indicator cochains:

?Iσ = δσ.

Unlike the Poincaré duality maps, ? does not give an isomorphism of
chain complexes. Indeed, it doesn’t commute with the differential d. In fact,
the degrees go the wrong way, and let us define a codifferential

d† := ?d? : Ck(X,A)→ Ck−1(X,A),

satisfying
(d†)2 = 0.

We also define the Laplacian

∆ :=
1

2
(dd† + d†d) : Ck(X,A)→ Ck(X,A).

One can check that this definition agrees with the usual definitions of the
discrete Laplacian by difference operators, for example with k = 0 it captures
the Kirchoff Laplacian [17, 18]. We say that a cochain α is harmonic if

∆α = 0.

By manipulating d and d†, one may easily prove the following:
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Theorem 5. Hodge-Helmholtz Decomposition Every cochain ω may be de-
composed uniquely as

ω = λ+ dα + d†β

where λ is harmonic. In particular, every cohomology class has a unique
harmonic representative.

1.3.3 Morse Flow of Chains and Duality

In this section we describe a map induced on chains by a Morse flow which
was described by Forman in [19]. Using the branching Morse flow we prove
a new duality theorem.

Suppose X is a CW complex equipped with a discrete Morse flow f . We
denote Xf the critical cells of X. We define a map

f̃∞ : Ck(X,A)→ Ck(X
f , A) ↪→ Ck(X,A).

We define this map when f consists of a single pair so that for different pairs
the f̃∞’s commute.

For a k-cell Vk there are 3 possibilities:

• Vk is critical and so f̃∞[Vk] is the symbol of the unstable k-cell of Vk.

• The Morse flow pairs Vk → Uk+1, from which we define f̃∞[Vk] to be
the sum of symbols of the unstable k-cells of the boundary k-cells of
Uk+1 other than Vk, which are all critical (with signs induced by the
boundary orientations of Uk+1).

• The Morse flow pairs Wk−1 → Vk. In this case f̃∞[Vk] = 0.

One can check that indeed this assembles into a map for general Morse flows.
Indeed, if our Morse flow consists of the single pair

Vk → Uk+1,

then we have isomorphisms

Ck(X,A)/∂[Uk+1] ' Ck(X
f , A)

Ck+1(X,A)/[Uk+1] ' Ck+1(Xf , A)

Cj(X,A) ' Cj(X
f , A) j 6= k, k + 1,
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where in the first we eliminate [Vk] in favor of [Vk] ± ∂[Uk+1] depending on
the orientation of Vk induced by the orientation of Uk+1. Meanwhile in the
second, the space occupied by Uk+1 is now accounted for by the unstable
cell of the k + 1 cell Wk+1 that flows into it, while Uk+1 collapses to a k-
dimensional cell, and may be set to zero. It is clear that these form a chain
isomorphism and that the quotient maps commute.

We may also define the trace of the flow f applied to Σ as the sum
of all Uk+1 encountered in the tree recursion which computes f̃∞Σ, with
appropriate sign. We denote this k + 1-chain f+Σ. By construction,

∂f+Σ = f̃∞Σ− Σ + f+∂f̃∞Σ− f+∂Σ. (1.2)

This motivates the definition of the flow map:

f∞ = f̃∞ + f+∂f̃∞,

which takes k-chains in X to k-chains whose coefficients are constant on
the unstable cells of the Morse flow. It’s equivalent to first performing f̃∞,
which lands on critical cells only, and then enlarging the critical cells to their
unstable cells. From (1.2) we now have

Lemma 1.
∂f+Σ = f∞Σ− Σ− f+∂Σ. (1.3)

Note that this means that f+ is a chain homotopy (see [20]) from the
identity map to f∞. Applying this relation twice to ∂Σ we find

∂f∞ = f∞∂.

Indeed, f∞∂ is the Morse complex differential of Forman [1], and

f∞∂f∞∂ = f 2
∞∂

2 = 0.

The flow map f∞ is a projector,

f 2
∞ = f∞,

while the trace of the flow is nilpotent,

f 2
+ = 0.
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In fact, the flow map fixes any chain whose coefficients are constant on the
unstable cells. This is witnessed by the useful relations

f+f∞ = f∞f+ = 0.

We will often use the flow map of the branching Morse flow, since it gives
us a map

Ck(X
∨, A) ↪→ Ck(X

b, A)
f∞−→ Ck(X,A).

This allows us to improve somewhat on Poincaré duality.

Theorem 6. Morse flow and Duality LetX be a PL manifold with branching
structure. By restricting f∞ to Ck(X

∨, A) we obtain a map

f∞ : Ck(X
∨, A)→ Ck(X,A)

which yields an isomorphism

Hk(X
∨, A) ' Hk(X,A).

Proof. Both the inclusion map Ck(X
∨, A) ↪→ Ck(X

b, A) and f∞ commute
with ∂ and both induce isomorphisms on homology, the first because it is a
refinement [10], the second because of the homotopy f+ [19]. Therefore, the
composition does as well.

Note that for a typical branching structure, f∞ may be neither surjective
nor injective. For example, the boundary ∂∆3 of a 3-simplex is a trian-
gulation of S3 and for any branching structure (they are all related by S4

symmetry) the map

f∞ : C0(∂∆∨,Z)→ C0(∂∆,Z)

has kernel and cokernel Z2. This is related to the difficulty of defining an
inverse flow map.

Suppose we have another branching structure, and we denote g∞ the
branching Morse flow obtained from this branching structure. Since the two
Morse flows have the same unstable cells,

f∞g∞ = g∞

and vice versa. Likewise

f+g∞ = g+f∞ = 0.

The interesting nonzero combinations are

f∞g+.
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1.3.4 Halperin-Toledo Vector Fields

In this section, we describe a framing with singularities that was constructed
on a barycentric subdivision of a PL n-manifold by Whitney [21] and Halperin
and Toledo [22], and explain how to extend it to an arbitrary PL n-manifold
with branching structure. This makes precise our intuition that a branching
structure plays the role of a local coordinate system in the world of combi-
natorial manifolds.

Let X be a PL n-manifold with branching structure. We choose a PL em-
bedding of X into some RN , meaning that all k-simplices of X are embedded
as simplices inside an affine k-subspace of RN . If x ∈ σ = (v0 . . . vk) ∈ Xk,
ordered using the branching structure, we can write

~x =
∑

0≤j≤k

λvj(x) ~vj,

where we use vector notation to emphasize that we are using the PL embed-
ding. For each vertex v ∈ X0 function λv can be extended to a continuous
function on X by λv(x) = 0 whenever x is not in the star of v.

Further, for every vertex v we can define a vector field on the star of v
called the radial vector field which points radially into v, vanishing only at
v. We denote this vector field Rv.

We define the Halperin-Toledo vector fields by

Fk(x) =
∑

(v0...vk)∈Xk

λv0(x) · · ·λvk(x) Rvk(x).

When X is a barycentric subdivision with the ascending branching structure,
this reduces to the definition of the “fundamental vector fields” of Halperin-
Toledo, but they are more general.

These have some important properties (see [22]):

Lemma 2. The Halperin-Toledo vector fields Fk satisfy the following prop-
erties:

• Fk are continuous vector fields on X, and smooth on each simplex.

• Fk(x) = 0 for all x in the k − 1-skeleton.

• For x in the interior of a k-simplex, F1(x), . . . , Fk(x) is a basis for TxX.
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Observe that F1 is our branching Morse flow. For instance, consider
the 1-simplex in RN with vertices ~v0 and ~v1. We can coordinatize this 1-
simplex along the branching structure using ~x(t) = (1− t)~v0 + t~v1. In these
coordinates, λv0(t) = 1 − t and λv1(t) = t. Further, we see that the radial
vector fields are

Rv0(t) = t(~v0 − ~v1)

Rv1(t) = (1− t)~v1 − ~v0.

We check indeed,

(1− t)Rv0(t) + tRv1(t) = 0 ∀t.

Now we see
F1(t) = t(1− t)(~v1 − ~v0)

describes a monotonic flow from v0 to v1 which fixes these points.
For a 2-simplex spanned by ~v0, ~v1, ~v2, we choose right triangle coordinates

~x(s, t) = (1− s− t)~v0 + s~v1 + t~v2,

so that
λv0(s, t) = 1− s− t

λv1(s, t) = s

λv2(s, t) = t.

For any coordinates, the radial vector fields are

Rv0(s, t) = λv1(s, t)(~v0 − ~v1) + λv2(s, t)(~v0 − ~v2)

Rv1(s, t) = λv0(s, t)(~v1 − ~v0) + λv2(s, t)(~v1 − ~v2)

Rv2(s, t) = λv0(s, t)(~v2 − ~v0) + λv1(s, t)(~v2 − ~v1),

and therefore

F1 = λv0λv1Rv1 + λv1λv2Rv2 + λv0λv1Rv2 .

For N = 2, v0 = (0, 0), v1 = (1, 0), v2 = (0, 1), we have

Rv0 = (−x,−y)

Rv1 = (1− x,−y)
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Rv2 = (−x, 1− y)

and

F1 = ((x+ y − 1)(x− 1)x+ x(y − 1)y, (x+ y − 1)xy + y(y − 1)2),

F2 = xy(x+ y − 1) · (x, y − 1).

Observe how F2 vanishes on the lines x + y = 1, x = 0, and y = 0 which
bound the 2-simplex. This vector field has appeared in the physics literature,
eg. [23] in the study of discrete spin structures. We will make the relation
precise in Chapter 3.

It is a corollary of the lemma that the Halperin-Toledo vector fields define
a trivialization of the tangent bundle away from the n − 1-skeleton. Along
the n − 1-skeleton, Fn vanishes and the rest are linearly indepedent away
from the n− 2-skeleton, and so on. In this way, a branching structure nicely
defines a “framing with singularities” of X, which justifies its ubiquity in the
theory.

Now we define what we call the discrete Halperin-Toledo Morse flows,
fk. Let X be a PL n-manifold with branching structure. f 1 is defined to
be the branching Morse flow. To define f 2, we will take the subflow f ′ ⊂ f 1

which is trivial on the 1-skeleton X1 ⊂ Xb. Then, in the interior of every
j-simplex, we will apply the permutation to f ′ which exchanges the 1st and
2nd vertex. This defines a discrete Morse flow on Xb. To construct fk, we
take the subflow of fk−1 which is trivial on the k−1-skeleton Xk−1 ⊂ Xb, and
in the interior of all higher simplices we apply the permutation exchanging
the k − 1st and kth vertices. We will phrase a precise conjecture that we
expect these vector fields to satisfy in Chapter 4.
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Chapter 2

Products and Intersections

In this chapter we will develop a product structure on cochains which is
related to the geometric intersection of chains by Poincaré duality. The basic
results relating the cup product to intersections were the original motivation
for the cup product and can be found in most older references, eg. [14]. We
will use our branching Morse flow to also give a geometric interpretation of
the cap product (a discrete Morse flow formula for the cup product appeared
in [19]) and the trace of the Morse flow to give geometric interpretation (and
pleasant formulas) for the ∪i products of Steenrod [2].

2.1 Basic Products

2.1.1 Cup Product

Let X be a combinatorial CW complex and let us study cohomlogy where
the coefficient group A = R is a ring.

Given a triangulation with branching structure of X it is possible to define
a product on the cochain complex C∗(X,R) =

⊕
k C

k(X,R) which imitates
the wedge product of differential forms. Given a j-cochain α and a k-cochain
β we construct a j+k cochain α∪β by assigning its value on a j+k-simplex:

(α ∪ β)(0 · · · j + k) = α(0 · · · j)β(j · · · j + k),

where on the right hand side we use the product in R. There are generaliza-
tions of this cup product when R has different sorts of products. For instance,
an important case for us with when the coefficients form a Lie algebra A = g.
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In this case one may define a cup product or “cup bracket”

(α ∪ β)(0 · · · j + k) = [α(0 · · · j), β(j · · · j + k)].

Something at first disturbing but later rather awe-inspiring is that the cup
product defined above is not graded-commutative like its cousin, the wedge
product. We will appreciate this phenomenon as part of the dependence of ∪
on the branching structure of the triangulation. Indeed, reversing the entire
branching structure exchanges α(0 · · · j)β(j · · · j+k) with β(0 · · · k)α(k · · · j+
k).

2.1.2 Cap Product and Morse Flow

We have discussed above an isomorphism for a PL n-manifold X between
Ck(X,A) and Cn−k(X

∨, A), where X∨ denotes the dual PL structure. In
this section we will describe a map, which depends on a choice of branching
structure,

− ∩X : Ck(X,A)→ Cn−k(X,A)

which depends on a fundamental cycle X ∈ Zn(X,Z) which depends on an
orientation. We will define the map in terms of the (left) cap “product”,

− ∩− : Ck(X,R)⊗ Ck+j(X,RM)→ Cj(X,RM),

which should really be thought of as not so much a product as a left action of
C∗ on C∗. To emphasize this, we write it in terms of a commutative ring R
and a left R-module RM . Indeed, the cap product will be defined to associate
with the cup product, meaning

(α ∪ β) ∩ Σ = α ∩ (β ∩ Σ).

Further, if j = 0, then the cap product α ∩ Σ ∈ C0(X,RM) is related to
integration. If we write

Σ =
∑

(0···k)∈Xk

Σ(0···k)[0 · · · k]

then

α ∩ Σ =
∑

(0···k)

(∫
(0···k)∈Xk

α

)
· Σ(0···k)[0].
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For general j, we define the map on a k + j-simplex by

α ∩ (0 · · · k + j) =

(∫
(j···k+j)

α

)
[0 · · · j]

and we extend to the whole domain by linearity. Note that this is supported
on the set of initial j-simplices.

We also define a right cap product

(0 · · · k + j) ∩ α = [j · · · j + k]

(∫
0···j

α

)
which is supported on the set of final j-simplices. Likewise, the right cap
product defines a second map

X ∩ − : Ck(X,A)→ Cn−k(X,A)

which we will show later is homotopic to the first map. The left and right
cap product commute with eachother:

α ∩ (Σ ∩ β) = (α ∩ Σ) ∩ β.

Indeed, if the coefficients of Σ are 1 or 0, then

α ∩ (Σ ∩ β) = α ∩ (
∑

(0···n)∈Σ

β(0 · · · j)[j · · ·n])

=
∑

(0···n)∈Σ

β(0 · · · j)[j · · ·n− k]α(k · · ·n)

= (
∑

(0···n)∈Σ

α(n− k · · ·n)[0 · · ·n− k]) ∩ β

= (α ∩ Σ) ∩ β.

The cap products also play well with the boundary map [10], for α ∈
Ck(X,R), we have

(−1)k∂(Σ ∩ α) = (∂Σ) ∩ α− Σ ∩ dα.

We can give a new interpretation of the cap product in terms of the
branching Morse flow:
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Theorem 7. Cap Product and Morse Flows Let α ∈ Ck(X,A) and denote
its Poincaré dual W (α) ∈ Cn−k(X∨, A). X∨ is a coarsening of the barycen-
tric subdivision Xb and so we may pushforward the Poincaré dual chain to
W (α) ∈ Cn−k(X

b, A). Then, denoting f the branching Morse flow of Xb,
defined by the branching structure of X in theorem 3, we have

f∞W (α) = X ∩ α.

f−∞W (α) = α ∩X.

Proof. Indeed, let us look at how X∨ is included in Xb, in particular focusing
on an n-simplex ∆n ∈ Xn and a k-simplex σk ∈ ∂∆n. Its dual n − k-cell
σ∨k is divided into several n− k-simplices in X∨. Those contained in ∆n are
labeled by n − k-sequences of simplicies of ∆n starting with σk and ending
with ∆n:

σk < σk+1 < · · · < σn = ∆n.

Of these, only one of them is in the stable cell of a critical n− k-simplex
of ∆nb, namely

(0 · · · k) < (0 · · · k + 1) < · · · < (0 · · ·n).

For this n− k-simplex the relevant part of the flow goes

((0 · · · k) < · · · < (0 · · ·n))

→ ((k) < (0 · · · k) < · · · < (0 · · ·n))

> ((k) < (0 · · · k + 1) < · · · < (0 · · ·n))

→ ((k) < (k k + 1) < (0 · · · k + 1) < · · · < (0 · · ·n)

> · · · > ((k) < (k k + 1) < · · · < (k · · ·n)),

landing on the critical n − k-simplex corresponding to the complementary
n− k-simplex (k · · ·n). Thus, we see that restricting f to those pairs which
lie in ∆nb ⊂ Xnb, we have

f∞W (α) = α(0 · · · k)[k · · ·n],

which proves the first equality. The second equality then follows by reversing
the branching structure.
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Corollary 1. If Σ ∈ Cj+k(X,R), α ∈ Ck(X,R) then because the branching
Morse flow on ∆n restricts to the branching Morse flow on its facets,

Σ ∩ α = f∞(Σ ∩W (α))

α ∩ Σ = f−∞(Σ ∩W (α)).

2.1.3 Intersections of Chains

In this section, we would like to give some more geometric context for the
previous theorem and also explain the geometry behind the combinatorial
definition of the cup product.

let Σ ∈ Ck(X,R), Ξ ∈ Cn−k(X∨, R) be chains of complementary dimen-
sion in a PL n-manifold X. Because each k-cell of X meets exactly one
n− k-cell of X∨ in exactly one point, Σ and Ξ are guaranteed to meet trans-
versely. This allowes us to define the intersection number

#(Σ ∩ Ξ) ∈ R.

Note that these intersection points occur at the vertices of Xb at the
barycenters of the k-simplices of X (but for k 6= 0, n these intersection points
lie in neither X nor X∨). We can refine the intersection number to a geo-
metric intersection pairing

Ck(X,R)⊗ Cn−j(X∨, R)→ Ck−j(X
b, R).

In the barycentric subdivision, a k-simplex σ ∈ Xk is refined to a collection
of p-simplices labelled by descending p-chains

ρ0 < · · · < ρp = σ,

while τ∨ for τ ∈ Xj is refined to q-simplices labelled by ascending q-chains

τ = ρ0 < · · · < ρq.

The geometric intersection between σ and τ∨ is thus given by the collection
of chains

τ = ρ0 < · · · < ρq = σ,
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of which the top dimensional ones have q = k − j. Thus we will define

σ ∩ τ∨ =
∑
±(τ = ρ0 < · · · < ρq = σ) ∈ Ck−j(Xb, R)

where the sign must be determined. To understand it, note that using the
ambient orientation, a tangent orientation of a submanifold is the same as
a normal orientation. Thus, we obtain a normal orientation of N(σ ∩ τ∨) =
Nσ⊕Nτ∨ and hence of T (σ∩ τ∨). We choose the signs above to give σ∩ τ∨
this orientation.

One way to present these signs is to write τ = (a0 · · · aj), a0 < · · · < aj,
σ = (b0 · · · bk), b0 < · · · < bk, {c0, · · · , cn−k} = {0, · · · , n} − {b0 · · · bk},
c0 < · · · < cn−k and extend each simplex in the sum to an n-simplex:

(a0) < (a0a1) < · · · < (a0 · · · aj) = τ = ρ0 < · · ·

< ρk−j = σ = (b0 · · · bk) < (b0 · · · bkc0) < · · · < (0 · · ·n).

This n-simplex receives an orientation from the orientation of X as well as
from the ascending branching structure of the barycentric subdivision. The
coefficient of the corresponding term in the sum is +1 if these agree, −1
otherwise.

Note that when j = k, we have

Σ ∩ Ξ∨ ∈ C0(X,R),

and the sum of the coefficients is the intersection number #(Σ ∩ Ξ∨).
There is also an intersection pairing that can be defined for chains on the

same CW complex. However, intersections of such chains are never transverse
if they are non-empty. In order to define the intersection numbers, we will
need to perturb the chains slightly so that the intersections are transverse.

A convenient way of doing this is to choose a vector field on X and let
one of the chains flow for a small time ε along the vector field. For a generic
vector field, the result will be transverse.

In fact, given a branching structure on a triangulated n-manifold X, we
can choose a very useful vector field, which we already considered in the
proof of the branching Morse flow theorem 3. On the standard n-simplex
embedded in Rn with coordinates x0, . . . , xn it is the gradient of

f(x0, . . . , xn) = x0 + ax1 + a2x2 + · · ·+ anxn,
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Figure 2.1: A 2-simplex of the triangulationX is drawn in black, with branch-
ing structure indicated by the directed edges. Part of the dual CW complex
X∨ is drawn in teal with its pushoff drawn in orange. We see that the in-
tersection between X∨ and its pushoff occurs between the teal edge dual to
(12) and the orange edge dual to (01). We recommend the reader to draw
the version for a 3-simplex.

projected onto the n-simplex

∆n = {~x | x0 + · · ·+ xn = 1}.

The branching structure gives us an identification of each n-simplex of X
with the standard n-simplex, but they may glue along n − 1-simplices cor-
responding to different n − 1-subsets of {0, . . . , n}. We are guaranteed that
the labels from each side form a monotonically increasing bijection between
these subsets though, which means there are j, k such that

fleft(ax0, . . . , axj, xj+1, . . . xn−1) = fright(ax0, . . . , axk, xk+1, . . . xn−1),

after using the branching structure to identify the n − 1-simplex with the
standard one. j, k are the “missing indices” from the n-simplices on either
side. This allows us to interpolate the vector fields by a diagonal transfor-
mation. This interpolation happens near the n − 1-skeleton and won’t be
important for computing intersection numbers of chains in X∨.

Let Σ ∈ Ck(X
∨, R),Ξ ∈ Cn−k(X

∨, R). We can define the pushoffs fεΣ
and fεΞ to be the small-time flows of Σ and Ξ respectively along this vector
field. The results are Whitney chains transverse to Xb. In particular, the
intersections Σ ∩ Ξ+ε and Σ+ε ∩ Ξ are both transverse.

35



Theorem 8. Intersection Theorem For Σ ∈ Ck(X∨, R),Ξ ∈ Cn−k(X∨, R), f
the branching Morse flow on X,

#(fεΞ ∩ Σ) = #(f∞Ξ ∩ Σ) =

∫
f∞Ξ

δΣ =

∫
X

δΞ ∪ δΣ,

further,
f∞(f∞Ξ ∩ Σ) = X ∩ (δΞ ∪ δΣ).

Equivalently, for α ∈ Ck(X,R), β ∈ Cj(X,R),

f∞(f∞W (α) ∩W (β)) = X ∩ (α ∪ β).

Proof. The first equality holds because

f∞(fεΞ ∩ Σ) = f∞((f∞fεΞ) ∩ Σ) = f∞((f∞Ξ) ∩ Σ) ∈ C0(X,R)

and f∞ does not affect the point count. The second equality follows from
our theorem on the cap product and f∞ of theorem 3, the third and the
last follow from the properties relating ∪ and ∩. The equivalent statements
follow from Poincaré duality.

The equality between the fourth and first expression is illustrated in Fig
2.1.

Corollary 2. By exchanging the branching structure with its reverse, we
obtain

#(f−∞Σ ∩ Ξ) = (−1)k(n−k)

∫
X

δΞ ∪ δΣ

as well as, for arbitrary α ∈ Cj(X,R), β ∈ Ck(X,R),

f∞(f∞W (α) ∩W (β))− f−∞(f−∞W (β) ∩W (α)) = (f∞ − f−∞)W (α ∪ β).

Indeed, while α∪ β is invariant under simultaneous exchange of α, β and
the branching structure with its reverse,

X ∩ (α ∪ β) 7→ (α ∪ β) ∩X.
There is an interesting symmetrical combination,

α ∩X ∩ β,
which places the intersection point between complementary dual simplices
(0 · · · j)∨ and (j · · ·n)∨ at vertex j. It can be written

f−∞(W (α) ∩ f∞W (β)) = f∞(f−∞W (α) ∩W (β)), (2.1)

where equality comes from the commutativity between left and right cap
product.
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2.2 (Non)-Commutativity

2.2.1 Cup-1 Product

The intersection theorem highlights the geometric difficulties in making a
commutative cup product on cochains, namely fixing the location of the
intersection points (which in either case geometrically lie disjoint from the
0-cells of either X or X∨), and the boundaries of the dual chains. The former
ambiguity does not contribute to the count of the intersection points, but the
latter does. Incredibly, both of these ambiguities have a common origin, and
can be quantified together algebraically by the definition of a new product
∪1 which satisfies

α∪β−(−)jkβ∪α = (−)j+k+1d(α∪1β)+(−)j+k(dα)∪1β+(−)kα∪1(dβ) (2.2)

for α ∈ Cj(X,R), β ∈ Ck(X,R),

α ∪1 β ∈ Cj+k−1(X,R).

This was first realized by Norman Steenrod [2]. The first term above encodes
the first ambiguity mentioned above and the second two terms encode the
second. This formula implies that the cup product is graded-commutative on
cohomology, but actually we will see it has deep geometric content as well.

To facilitate the definition of the cup-1 product and further products, we
define an alternating l-spine of an n-simplex to be a sequence of l consecutive
subsets A1, B1, A2, B2, . . . of vertices of the n-simplex (0 · · ·n) such that con-
secutive subsets share first and last elements. For instance, we have already
seen alternating 2-spines A1, B1 in the definition of the cup product, which
involves evaluating the first cochain on the simplex spanned by A1 and the
second cochain on the simplex spanned by B1. Note that in [2], the pair
(A1 · · · ), (B1 · · · ) is called l − 2-regular.

Observe that under a reversal of the branching structure, we get a bijec-
tion on the set of alternating l-spines which for even l exchanges the A’s and
B’s and which for odd l preserves them. This will later give us a method
for constructing the ∪2i+1 products in terms of the ∪2i products, and in
particular for i = 0 will give us a geometric picture of the ∪1 product.

The ∪1 product of j and k cochains is defined on a j+k−1-simplex by a
sum over alternating 3-spines of that simplex A1, B1, A2 such that |B1| = k+1
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by

(α∪1 β)(0 · · · j+k− 1) = (−1)(j+1)(k+1)
∑

(A1,B1,A2)

(−1)|A1||B1|α(A1∪A2)β(B1).

(2.3)
As a baby example, for 1-cochains α, β, α ∪1 β is also a 1-cochain, and one
can check

(α ∪1 β)(01) = α(01)β(01).

As a second, slightly more complex example, for a 1-cochain α and a 2-
cochain γ, α ∪1 γ is a 2-cochain, and one can check

(α ∪1 γ)(012) = α(02)γ(012)

(γ ∪1 α)(012) = γ(012)(α(01) + α(12)).

With these in hand, we can understand the commutativity relation for the
cup product of 1-chains α and β by following #(Σt∩Ξ) through a homotopy
singularity-by-singularity from t = ε to t = −ε, from which we will show

α ∪ β + β ∪ α = −d(α ∪1 β) + (dα) ∪1 β − α ∪1 (dβ)

= −
(
α(01)β(01) + α(12)β(12)− α(02)β(02)

)
+dα(012)

(
β(01) + β(12)

)
− α(02)dβ(012).

Shown in the figures, each of these terms comes from a singularity encoun-
tered during this homotopy.

This will lead us to a geometric picture of the ∪1 product in general dimen-
sions. Again as a warm-up, let us focus for the moment on (α ∪1 β)(01) =
α(01)β(01). We can think of α and β as Poincaré dual to labelled points
W (α),W (β) each lying at the midpoint of the 1-simplex (01). Accordingly,
the intersection between these two points is not transverse and we must use
the branching structure on the edge to separate them. Whether we use the
positive flow or the negative flow along the vector field we get zero every
time:

#(W (α)+ε ∩W (β)) = #(W (α)−ε ∩W (β) = 0.

However, any homotopy W (α)t from W (α)−ε to W (α)+ε will have an un-
avoidable intersection with W (β), and we see

#(W (α)t ∩W (β)) = (α ∪1 β)(01) = (β ∪1 α)(01).
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Figure 2.2: In this figure the Poincaré dual of α is drawn in blue and that
of β is drawn in black. In the first step of the homotopy, the intersection
number changes by an amount equal to the integral of dβ over the blue disc,
times α(02), for a total contribution α(02)dβ(012) = α ∪1 dβ(012).
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Figure 2.3: Here the intersection changes by −dα(012)β(12).
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Figure 2.4: Here the intersection number changes by −dα(012)β(01).
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Figure 2.5: In the last step, intersection points are pushed to the boundary of
the 2-simplex, and we see a variation α(01)β(01)+α(12)β(12)−α(02)β(02) =
d(α∪1 β)(012). The remaining intersection is −β(01)α(12) = −(β∪α)(012),
finishing the proof of the commutativity relation.
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As a second exercise, consider the intersection of a 1-chain γ ∈ C1(X∨, R)
and a 0-chain x ∈ C0(X∨, R) inside a triangle of X. This intersection is
not transverse. The novelty in this situation is that there are two choices of
homotopies from x−ε to x+ε. From the figure, we see that these intersection of
γ with these two homotopies compute δx∪1δγ and δγ∪1δx. The reader versed
in the yoga of homotopy theory will guess that we will shortly understand the
difference between these two as a homotopy of homotopies, and this will lead
us to a geometric definition of a ∪2 product. For now, let us note that the
branching structure allows us to choose a preferred homotopy, namely one
which passes above the 0-cell of X∨ wrt to the branching flow. We denote
this homotopy xt+ and we see

#(xt+ ∩ γ) = δx ∪1 δγ

while for the other homotopy xt− we have

#(xt− ∩ γ) = −δγ ∪1 δx.

Let us also note that the alternating 3-spines of the 2-simplex (012), namely

(0)(012)(2), (0)(01)(12), (01)(12)(2)

are in correspondence with the edges of 2-simplex by which piece δγ gets
evaluated on. These edges coincide by duality with the 1-cells where the
homotopy crosses X∨.

2.2.2 Trace of the Morse Flow

On a manifold with branching structure, we can work instead with the in-
finite forward and backwards flows f±∞Σ instead of the infinitesimal flows.
Recallf−∞ is the Morse flow of the reversed branching structure. Likewise
we let f− be the trace of this ‘reverse’ Morse flow.

Consider for Σ ∈ Ck(Xb, A),

(f+ − f−)Σ.

Using (1.3) have

∂(f+ − f−)Σ = (f∞ − f−∞)Σ− (f+ − f−)∂Σ. (2.4)
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We define

h1(Σ) = f∞(f+ − f−)Σ = −f∞f− ∈ Ck+1(X,A).

For Σ ∈ Ck(X∨, A), which is especially when we’ll use it, this is a “bordism
with corners” from f−∞Σ to f∞Σ which has been pushed off from X∨ to X
to be transverse to Σ. One can think of it as a generic 1-parameter family of
pushoffs of Σ.

Rephrasing (2.4) with h1, we have

Theorem 9. For Σ ∈ Ck(Xb, A), we have

∂h1(Σ) + h1(∂Σ) = f∞Σ− f−∞Σ = X ∩ Σ− Σ ∩X. (2.5)

In other words, h1 gives a chain homotopy between the left and right cap
products.

Corollary 3. Let α ∈ Cj(X,R), β ∈ Ck(X,R) and consider

h1(W (β)) ∩ α ∈ Cn−j−k+1(X,R).

f∞(W (α) ∩ h1(W (β))) ∈ Cn−j−k+1(X,R).

We have
∂f∞(W (α) ∩ h1(W (β))

= X ∩ (α ∪ β − (−1)jkβ ∪ α) + f∞(W (dα) ∩W (β) +W (α) ∩W (dβ)).

Proof. Using the theorem,

∂(W (α) ∩ h1(W (β)))

= (∂W (α)) ∩ h1(W (β)) + (−1)jW (α) ∩ ∂h1(W (β))

= W (dα) ∩ h1(W (β))− (−1)jW (α) ∩ h1(W (dβ))

+(−1)jW (α) ∩ (f∞W (β)− f−∞W (β)).
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Corollary 4. Let Σ ∈ Cj(X∨, R) Ξ ∈ Ck(X∨, R). h1(Σ) and Ξ are transverse
so we can compute their intersection n− j − k-chain in Xb

∂(h1(Σ) ∩ Ξ) = ∂h1(Σ) ∩ Ξ− (−1)jh1(Σ) ∩ ∂Ξ (2.6)

= (f∞Σ− f−∞Σ) ∩ Ξ− h1(∂Σ) ∩ Ξ− (−1)jh1(Σ) ∩ Ξ

= f∞Σ ∩ Ξ− (−1)jkf∞Ξ ∩ Σ− h1(∂Σ) ∩ Ξ− (−1)jh1(Σ) ∩ Ξ.

Recalling from theorem 8 that∫
X

δΣ ∪ δΞ = f∞Σ ∩ Ξ

∫
X

δΞ ∪ δΣ = f∞Ξ ∩ Σ,

we see that (−1)j+k+1h1(Σ) ∩ Ξ satisfies a property completely analogous to
δΣ ∪1 δΞ in (2.2).

In fact, with a bit of combinatorics, one can prove the following theorem,
which gives a geometric interpretation of the ∪1 product:

Theorem 10. ∪1 theorem For Σ ∈ Ck(X
∨, A),Ξ ∈ Cj(X

∨, A) in a PL n-
manifold X with branching structure,

(−1)j+k+1f∞(Σ ∩ f∞f−Ξ) = X ∩ (δΣ ∪1 δΞ).

Equivalently, for σ ∈ Xj, τ ∈ Xk,

(−1)j+k+1f∞(σ∨ ∩ f∞f−τ∨) = X ∩ (Iσ ∪1 Iτ ).

Proof. The theorem follows from comparing with the “join formulas” of
Steenrod [2], which provide an inductive definition of ∪1.

Given a vertex v in the link of a k-simplex σ, we may define the join (σv)
to be the k + 1-simplex spanned by v and the vertices of σ, with orientation
induced by the branching structure of X. For a fixed vertex v, this defines a
pair of maps

−v : Ck(X,Z)→ Ck+1(X,Z),
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which on k-simplices σ is

σv =

{
(σv) v ∈ Link(σ)

0 otherwise
,

as well as
Jv : Ck(X,Z)→ Ck+1(X,Z)

which on indicator k-cochains is

Jv(σ) =

{
Iσv v ∈ Link(σ)

0 otherwise

From the rest of the proof we take X = ∆n.
One can easily verify from the definition of the Morse flow that if v is the

top vertex of an n-simplex and σ is a k-simplex in the “bottom facet”, that
is the n− 1-simplex opposite v, then

h1(σ)∨ = h1(σ)v.

Further, if τ is a j-simplex in the bottom facet, it is clear that if τ∨ and σ
intersect at the barycenter (ρ) that (τv)∨ and σv intersect at the barycenter
(ρv). If τ is a j-simplex in the bottom facet, it follows when n = j + k − 1
that

f∞((τv)∨ ∩ h1(σ∨)) = (−1)kf∞(τ∨ ∩ h1(σ∨))v, (2.7)

where the sign comes from the orientation of the join as we move the join to
the outside of the expression.

The second property is

h1(σv)∨ = (f∓∞σ)v.

The proof of this property is much like the proof of the cap product formula
since there is only one nonzero path through the Morse flow f∞f−. This
path occurs for σv = (n − k − 1 · · ·n). In the Poincaré dual, there is the
n− k-simplex

ρ0 = (n− k · · ·n) < (n− k − 1 · · ·n) < · · · < (0 · · ·n).

f− is computed as follows:

ρ0 → (n− k) < (n− k · · ·n) < · · · < (0 · · ·n)
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→ (n− k) < (n− k − 1, n− k) < (n− k − 1 · · ·n) < · · · < (0 · · ·n)

→ (n− k − 1) < (n− k − 1, n− k) < (n− k − 1 · · ·n)

→ · · · → (0) < (01) < · · · < (0 · · · k − 1) < (0 · · ·n).

Then f∞ is computed in a single step

(0) < (01) < · · · < (0 · · · k − 1) < (0 · · ·n)

→ (0) < (01) < · · · < (0 · · · k − 1) < (0 · · · k − 1, n),

which is the critical simplex in the join of f−∞(k · · ·n− 1)∨.
From this it follows

τ∨ ∩ h1((σv)∨) = 0 (2.8)

(τv)∨ ∩ h1((σv)∨) = (−1)kτ∨ ∩ f−∞(σ∨). (2.9)

The three “join formulas” (2.7), (2.8), (2.9) coincide with three inductive
properties of [2] which characterize ∪1 in terms of ∪. Matching the properties,
and using the intersection theorem as a base case, we derive the theorem.

2.2.3 ∪i Products and i-Parameter Families

One sees an obvious asymmetry in the definition of the ∪1 product (2.3).
This leads one to a whole tower of products

− ∪i − : Cj(X,R)× Ck(X,R)→ Cj+k−i(X,R)

which satisfy

d(α∪i β) = (dα)∪i β+ (−1)i+jα∪i (dβ) +α∪i−1 β+ (−)jk+iβ∪i−1α. (2.10)

One can define the ∪i product as a sum over alternating i + 2-spines of the
j + k − i-simplex as:

α ∪i β =
∑

(A1B2···Bi+2)=(0···j+k−i)

±α(A1A2 · · · )β(B1B2 · · · ) i = 0 mod 2,

α ∪i β =
∑

(A1B2···Ai+2)=(0···j+k−i)

±α(A1A2 · · · )β(B1B2 · · · ) i = 1 mod 2.
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Figure 2.6: Two different homotopies from x−ε to x+ε inside a 2-simplex of X
highlight the noncommutativity of the ∪1 product. Each time the homotopy
crosses a 1-cell of X∨, a term in the definition of the ∪1 product is generated.
Indeed, such crossings are in bijection with the alternating 3-spines of this
2-simplex.

See Steenrod [2], where such a pair (A1A2 · · · ), (B1B2 · · · ) is described as an
i-regular pair and the sign is described as the sign of a certain permutation.

Our goal is to understand this in a more geometric way. The simplest
case of this noncommutativity is encountered in computing the ∪1 product
of a 2-cochain α and a 1-cochain β on a 2-simplex (012). We find, according
to (2.3)

(α ∪1 β)(012) = α(012)(β(01) + β(02))

(β ∪1 α)(012) = β(02)α(012).

These correspond to the intersection numbers of the orange and blue homo-
topies of α∨ with β∨, respectively, depicted in Fig 2.6. The blue homotopy is
h1(012)∨ = f∞f−(012)∨ = f−∞f+(012)∨. Note that reversing the branching
structure fixes the two products rather than exchanging them, and equiv-
alently h1 is the same whether we compute it with the chosen branching
structure or with its reverse.

To describe the orange homotopy, we need to use a different discrete Morse
flow. We invoke the discrete Halperin-Toledo Morse flows we constructed at
the end of Chapter 1. We find f 2

∞(f 1
+−f 1

−)(012)∨ = (01)+(02). Summarizing,
we have

#(W (β) ∩ f 2
∞(f 1

+ − f 1
−)(012)∨) = (δ012 ∪1 β)(012),
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#(W (β) ∩ f 1
∞(f 1

+ − f 1
−)(012)∨) = (β ∪1 δ012)(012).

We find as well

#(W (dβ) ∩ f 1
∞(f 2

+ − f 1
+)(f 1

+ − f 1
−)(012)∨) = (dβ ∪2 δ012)(012) = dβ(012).

This leads us to the following conjecture:

Conjecture 1. ∪i Conjecture Given a PL n-manifold X with branching
structure, there exists a series of discrete Morse flows f 1, . . . , fn on the
barycentric subdivision Xb (the discrete Halperin-Toledo Morse flows we have
constructed), we have (schematically, neglecting signs)

X ∩ (α ∪i β) = f∞(W (α) ∩ f 1
∞(f i+ − f i−1

+ ) · · · (f 2
+ − f 1

+)(f 1
+ − f 1

−)W (β)).

The geometric intuition behind this conjecture is that

hiW (β) := f∞(f i+ − f i−1
+ ) · · · (f 2

+ − f 1
+)(f 1

+ − f 1
−)W (β)

is a generic i-parameter family of push-offs of W (β) ∈ X∨, expressing a
homotopy between homotopies implementing the ∪i property (2.10). Indeed,
if V is a k-cycle in X∨, then V is transverse to X and so does not intersect the
n− k − 1-skeleton. Thus, the Halperin-Toledo vector fields F1, . . . , Fn−k are
linearly independent on V . This allows us to define a generic n−k-parameter
family of push-offs of V by flowing along the Halperin-Toledo vector fields.
We may make the analogous ∪i conjecture in this setting by saying that the
∪i product is Poincaré dual to intersection with the trace of these push-offs.

2.2.4 Linking Pairing and Steenrod Squares

The geometric takeaway from the previous discussion is that for j and k
chains Σ,Ξ in a PL j + k + 1-manifold X∨, we have a quantity∫

X

δΣ ∪1 δΞ = #(h1(Σ) ∩ Ξ)

which can be thought of as a kind of linking number, because of the dimen-
sions of the chains involved.

However, while the intersection number, which is a point count, can be
computed by an integral of Poincaré duals, there is no such integral for-
mula for the global linking number, since there are no points that are being
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counted. Indeed, usually one has to fill in one of the chains, say Σ = ∂M , and
then one can compute the global linking number as an intersection number:

#(M ∩ Ξ).

We should think of h1(Σ) as a 1-dimensional thickening of Σ defined by
the branching structure. It is thus like a piece of a filling M , so when we
compute

h1(Σ) ∩ Ξ ⊂M ∩ Ξ

it’s like we’re counting the linking number only of pieces of Σ and Ξ which
are very close, in fact abutting the same n-simplex.

This all works out especially nicely when Σ = Ξ, since in this case, the
two 1-cycles are as nearby to eachother as it gets. Indeed in this case∫

X

δΣ ∪1 δΣ = #(h1(Σ) ∩ Σ)

is a proper count of the self-linking number of Σ. Indeed, let α ∈ Zk(X,R).
Under α 7→ α′ = α + df we have

α′∪1α
′ = α∪1α+ (1 + (−1)k)(f ∪df +α∪1 df) +d(f ∪1 df +f ∪f +α∪2 df).

Thus, in a closed manifold, the self-linking number is a well-defined element
of the coefficient ring R when k is odd, otherwise it is a well-defined element
mod 2R. In the case k = 1 of curves in a 3-manifold, this reflects the well-
known fact that the framed bordism group in one dimension is Z2 [24]:

Ωfr
1 = Z2.

Likewise, for Σ ∈ Ck(X,R) in a 2k+ i-manifold, we may define a “higher
self-linking number”

#(hi(Σ) ∩ Σ) =

∫
X

δΣ ∪i δΣ,

which according to the conjecture is computing the intersection number of Σ
with a transverse i-parameter families of pushoffs hi(Σ). These operators in
cohomology are called the Steenrod squares and are defined on cochains by

Sql : Ck(X,A)→ Ck+l(X,A),
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Sqk−iα = α ∪i α,∫
X

Sqk−iα = #(hi(W (α) ∩W (α)) conjectural.

Under α 7→ α+ df , Sqlα changes by an exact quantity mod 2. The Steenrod
squares thus descend to cohomology operations

Sql : Hk(−,Z2)→ Hk+l(−,Z2).

The algebra they generate, called the Steenrod algebra, is the algebra of all
stable Z2 cohomology operations [25]. This means that any natural transfor-
mation

Hk(−,Z2)→ Hk+l(−,Z2)

which is a group homomorphism is a sum of products of Steenrod squares of
total degree l. They are central to all things in topology modulo 2 and we
will even see them make some cameos in physics.

49



Chapter 3

∞-Groups
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Introduction

In this chapter, we explore some of the higher categorical aspects of simplicial
cohomology, with a view towards geometric tangent structures and higher
symmetries of quantum field theories.

At the center of the discussion is the concept of an∞-group. A wonderful
introduction to this subject is given by Baez and Shulman in [26]. In its most
elegant but perhaps most opaque definition, an ∞-group is an ∞-groupoid
with a single object, which is an ∞-category all of whose k-morphisms are
invertible. Intuitively, this single object is a thing, the 1-morphisms are
symmetry transformations of it, the 2-morphisms are transformations be-
tween transformations (or symmetries of symmetries), and so on. When the
k-morphisms above some n are all the identity, we call it an n-group. A
1-group is the same thing as an ordinary group, realized as the morphisms
of a category with one object.

A relevant example for us, the group of cochains Cn(X,A) may be given
the structure of an n-category. It’s objects are the n-cochains themselves,
while morphisms between n-cochains α1 → α2 are given by n− 1-cochains β
such that

dβ = α2 − α1.

2-morphisms β1 → β2 are given by n− 2-cochains γ with

dγ = β2 − β1,

and so on, until we reach the n-morphisms, which are 0-cochains, and we can
go no further. The identity k-morphisms are given by the zero n−k-cochains,
so every k-morphism β has an inverse −β, making Cn(X,A) an n-groupoid.
Restricting our attention to any particular object yields an n-group. We will
see that these n-groups act as symmetries of certain quantum field theories
later. Note that the additive structure of Cn(X,A) is on the level of objects,
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and is additional data on top of the n-groupoid structure1.
One can construct a triangulated space associated to an ∞-groupoid G

called its classifying space BG. The k-simplices of this space are diagrams
in the category in the shape of a k-simplex, meaning that the vertices are la-
belled with objects, the edges with 1-morphisms, the faces with 2-morphisms,
and so on, such that the labels create a sensible diagram (all morphisms are
composable).

The classifying space is extremely useful for translating algebraic data
about G into topological data about BG. For instance, a G action on an
object M in an∞-category C is a functor from G to C which sends the unique
object of G to M . To such an action we can form an “∞-bundle” over BG
which can be visualized intuitively in the “dual CW complex” of BG, which
has a single top cell σ0 (typically an infinite-dimensional polytope) associated
to the single vertex of BG, over which we have the trivial bundle σ0 ×M .
Then, facets of σ0 meet each other perpendicular to 1-simplices, which are
labelled with 1-morphisms in G, and whose action on M specifies how the
bundle glues. Where facets meet there are 2-morphisms specifying the gluing
of gluing functions, and so on. In fact, all of this data is equivalent to the
action of G on M , so bundles over BG with fiber M are the same as G
actions on M . See [27].

For ordinary 1-groups, this is a familiar situation. Representations of
G are equivalent to vector bundles over BG. The characteristic classes of
these vector bundles are cohomology classes in H∗(BG,A), which encode
algebraic information about the representation. Our approach will be to
study everything about the ∞-group using the classfying space.

3.1 The Postnikov Tower

For our purposes, we need a more compact way to describe an∞-group rather
than just its collection of objects, k-morphisms, and composition rules. First,
note that we can define a sequence of groups Πk, where Πk is the group of
k-morphisms modulo k + 1-morphisms over the unique object when k = 1
and over the identity k− 1-morphism when k > 1. Π1 can be any group, but
by the Eckman-Hilton argument [13] Π>1 are all abelian. One can also define
an action αk of Π1 on Πk, which generalizes the concept of conjugation (inner

1Later we will see it means that Cn(X,A) is the “loop category” of an n + 1-group
BCn(X,A).
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automorphism) of a 1-group, as well as a number of “associators”, which are
encoded in the Postnikov classes

βk ∈ Hk+1(BG<k,Πk) k ≥ 2,

where G<k is a k − 1-group obtained from G by discarding all non-identity
≥ k-morphisms. The data of the Πi, αj, and βk specify G up to isomorphism,
so we will often refer to this data as the ∞-group itself. Some references for
this are [28, 29, 13, 30, 27, 31].

From this data, we may obtain the classifying space BG as an iterated
fibration of Eilenberg-Maclane spaces BkΠk = K(Πk, k) called the Postnikov
tower:

BG

...

B3Π3 BG≤3

B2Π2 BG≤2

BΠ1.

Any connected CW complex X gives rise to such data where Πk = πkX.
This ∞-group is called the homotopy type of X, which is justified by the
following theorem (see [29]):

Theorem 11. Geometric Realization of Homotopy Types Any locally-finite
connected CW complex X is homotopy equivalent to the classifying space of
its homotopy type.

In [32], I used this theorem to draw an analogy between quantum field
theories which depend on a parameter space X and systems with a symmetry
given by the homotopy type of X. As far as adiabatic homotopy invariants
are concerned, these concepts are exactly equivalent.

53



3.2 Nonabelian Cohomology

There is a notion of cohomology with coefficients in an ∞-group G called
nonabelian cohomology. The nonabelian cohomology H1(X,G) is the ∞-
category of functors from the homotopy type of X to G. For example, when
G is a 1-group Π1 = G (which may be nonabelian), this is the category of
homomorphisms

π1X → G

and morphisms (natural transformations of functors) are labelled by G and
act on this map by conjugation. Thus, equivalence classes of objects in
H1(X,G) classify principal G-bundles.

This leads to another definition of nonabelian cohomology: H1(X,G) is
the homotopy type of the mapping space from X to BG. If X is a CW com-
plex, then using cellular approximation we may thus obtain a very concrete
cochain picture of the nonabelian cohomology. A map X → BG is equivalent
to a collection of cochains

aj ∈ Cj(X,Πj)

satisfying the nonabelian cocycle equations:

da1 = 1 (3.1)

Daa2 = β2(a1)

Daa3 = β3(a1, a2)

Daa4 = · · · ,

where the twisted differential Da (see section 1.2.5) is defined by the action
of Π1 on the Πj. Such data in physics is called a G gauge field [33, 34]. We
will use the shorthand a ∈ Z1(X,G) to discuss this data.

There also is a notion of cellular homotopy of such maps which is impor-
tant to discuss. In physics these are called G gauge transformations. They
are parametrized by fj ∈ Cj−1(X,Πj) and act by

ak 7→ ak k < j

aj 7→ aj +Dafj

ak 7→ ak + βk,1(fj; a1, . . . , ak−1) k > j,
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where βk,1 is a first descendant of βk (which we discuss below). We will
often use the shorthand f ∈ C0(X,G) to discuss the collection of fj. These
homotopies form the 1-morphisms ofH1(X,G), and one can imagine now how
the higher morphisms are defined, analogous to the n-groupoid structure of
Cn(X,A).

When G is stable (see below), there is also an associative, invertible, and
functorial multiplication on the elements of H1(X,G) which makes it the
loop category of an ∞-group we abusively denote BH1(X,G), meaning that
the homotopy type of the loop space of BH1(X,G) (typically disconnected)
is H1(X,G). This multiplication is component-wise in the aj, corrected by
certain descendants of the Postnikov classes βk. When G is not stable how-
ever, H1(X,G) has no natural group structure, just like nonabelian principal
G bundles have no group structure.

3.2.1 Higher Nonabelian Cohomology

Related to lack of group structure on H1(X,G), when Π1 is nonabelian,
there is no way to define H≥2(X,G). Even when Π1 is abelian, we also need
that the actions αk are trivial and that the Postnikov classes define stable
cohomology operations, meaning that they induce group homomorphisms on
nonabelian cohomology:

βk : H1(X,G<k)→ Hk+1(X,Πk).

In this case, we can define a delooping of G, abusively denoted BG. This is
an ∞-group with a single 1-morphism whose automorphism ∞-group is G.
It has

Π1(BG) = 0

Πk+1(BG) = Πk(G).

Because the Postnikov classes are stable operations, they may also be de-
looped, beginning with

β3(BG) = Bβ2(G) ∈ H4(B2Π1,Π2),

which has the property that under the loop map

H4(B2Π1,Π2)→ H3(BΠ1,Π2)
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it maps to β2(G). Then we may define

Hk(X,G) = H1(X,Bk−1G).

Such a G is called a stable∞-groups or a connective Ω spectrum and defines
a generalized cohomology theory. For more, see [35, 36, 37].

3.2.2 Twisted Nonabelian Cohomology

Given a bundle
BG E

X

We may define the twisted nonabelian cohomology H1(X,E) to be sections
of this bundle. Note that the data of this bundle is the same as the data of
an action of the homotopy type of X on BG [27].

When G is stable, we can make this relatively concrete. The action of
the homotopy type of X on BG is given by an action ρ of π1X on all the Πk

as well as a sequence
cj+1 ∈ Cj+1(X,Πj)

satisfying the twisted nonabelian cocycle conditions for c ∈ Z2(X,Gρ):

Dρc2 = 0

Dρc3 = Bβ3(c2)

Dρc4 = Bβ4(c2, c3)

Dρc5 = · · · ,

where Bβk are the Postnikov classes of the delooping BG.
For example, when X = BH and G = G is an abelian 1-group, then such

actions of H on BG are equivalent to group extensions, and are given by an
action ρ of H on G and an extension class c ∈ H2(BH,Gρ).

With this in hand, we can define a c-twisted nonabelian 1-cocyle a ∈
Z1(X,Gc) as a sequence

aj ∈ Cj(X,Πj)

satisfying
da1 = c2
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da2 = Bβ3,1(c2, a1) + c3

da3 = Bβ4,1(c3, c2, a2, a1) + c4

· · · .

Gauge transformations act by higher descendants (see section 3.4).

3.3 Maps Between ∞-Groups

If G and H are∞-groups, homomorphisms G→ H form an∞-group, in fact
Hom(G,H) may be taken to be the homotopy type of the space of continuous
maps

BG→ BH.

But this is exactly what is captured by nonabelian cohomology, so we may
write

Hom(G,H) = H1(BG,H).

Any element in this nonabelian cohomology defines a natural transformation
of cohomology functors:

H1(−,G)→ H1(−,H).

When we express the elements of Hom(G,H) using Z1(BG,H), then we get
a natural transformation on the level of cocycles:

Z1(−,G)→ Z1(−,H).

Concretely, describing the elements of the left hand side using the aj ∈
Ck(−,Πk(G)), this is equivalently a sequence of cochain operations

φk(a1, . . . , ak) ∈ Πk(H)

such that
dφk(a≤k) = βk(φ1(a1), φ2(a1, a2), . . . , φk−1(a<k)),

where βk are the Postnikov classes of H. Those of G appear when expanding
the left hand side of this relation.

In our physics applications of this theory, we are often interested in
computing the cohomology operations which take as input a “gauge field”
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A ∈ Z1(X,G) and produce a “Lagrangian” ω(A) ∈ Zn(X,R/Z). Thus we
are interested in computing

H1(BG, Bn−1R/Z) = Hn(BG,R/Z).

There is actually a nice technique for computing

Hn(BG, A)

for any abelian group A. This is interesting even beyond our physics appli-
cations: if G is the homotopy type of a locally-finite CW complex X, then
since cohomology is a homotopy invariant,

Hn(X,A) = Hn(BG, A),

so if we can do this, we can compute the cohomology of almost any space
whose homotopy type we already know.

The strategy is to consider first the cohomology of the product∏
k

BkΠk

and then “turn on” the Postnikov classes one by one. It is simple to see that
if we give

∏
k B

kΠk the product CW structure, then

C∗(
∏
k

BkΠk, A) =
∏
k

C∗(BkΠk, A).

The differential is computed in terms of the individual differentials by the
Leibniz rule:

d =
∑
k

dk,

where dk is the differential of C∗(BkΠk, A). The group of cochains on BG is
the same but now the differentials are the twisted differentials:

d′k = Da1
k − βk(a1, . . . , ak−1),

d′ =
∑
k

d′k.

The cohomology of d′ is the cohomology of BG. The degrees allows one to
solve the cocycle equations d′ω = 0 inductively. We will not spell out the
whole procedure here. It is equivalent to iterating the Serre spectral sequence
[38] for the Postnikov tower. Later we will see it used in an example.
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3.4 Descendants

In this section we delve deeper into the functorial properties of cocycles
ω ∈ Zn(BG, A). There is a very interesting general phenomenon, which is
that if we have a homomorphism

ω : Z1(X,G)→ Cn(X,A)

whose value on an n-cell ω(A)(σn) is determined by the retriction of A ∈
Z1(X,G) to σn, then the simple equation

dω(A) = 0 ∀A

means that ω gives an element in Hn(BG, A), which is a natural transfor-
mation of ∞-functors

H1(−,G)→ H1(−, Bn−1A),

with all of the attendant coherence relations. These various coherence rela-
tions are called the descendants of ω, and we wish to compute them.

To begin, we will show that the cocycle equation dω = 0 is equivalent to
the existence of a 1st descendant, ie. a natural transformation

ω1 : Z1(X,G)× C0(X,G)→ Cn−1(X,A)

satisfying
dω1(a, f) = ω(af )− ω(a), (3.2)

where af denotes the action of C0(X,G) on Z1(X,G).
To see that this implies the cocycle condition, let V be an n+ 1-cell. For

any a ∈ Z1(V,G), there is an f ∈ C0(V,G) such that a = 1f . Then the
descendant equation (3.2) implies∫

V

dω(a) =

∫
∂V

ω(a) =

∫
∂V

dω1(1, f) = 0.

Conversely, to construct the 1st descendant, we study the prism ∆n×[0, 1].
The prism has a cell complex divided into “horizontal cells”, which are the
cells of the n-simplices ∆n×1, ∆n×0 at the “top” and “bottom”, respectively;
and “vertical cells”, which are k + 1-cells of ∂∆n × [0, 1] formed by taking

59



the prism between a bottom k-simplex and a top k-simplex. There is one
vertical k + 1-cell for each k-simplex of ∆n.

We can define a G cocycle ã on ∆n× [0, 1] which restricts to ag on ∆n×1
and a on ∆n × 0 (the “horizontal facets”) and whose values on the vertical
k + 1-facets, associated to k-facets of ∆n, are fk. We now have

0 =

∫
∆n×[0,1]

dω(ã) =

∫
∆n×1

ω(ag)−
∫

∆n×0

ω(a)−
∫
∂∆n×[0,1]

ω(ã).

Since the values of ã on the vertical cells ∂∆n × [0, 1] are determined by a
and f , we may define

ω1(a, f)(V ) = ω(ã)(V × [0, 1])

for any n− 1-cell V . Then we will have∫
∂∆n×[0,1]

ω(ã) =

∫
∂∆n

ω1(a, f),

and the 1st descendant equation (3.2) follows.
The 1st descendant defined this way is functorial in ω. Meaning that if

we transform ω 7→ ω + dλ, ω1 transforms by

ω1(A, f) 7→ ω1(A, f) + λ(Af )− λ(A).

We consider stacking two prisms, with horizontal simplices labeled by
a,f1 a, and f2f1a. We have

0 =

∫
∆n×[0,2]

dω(ã) =

∫
∆n×2

ω(af1f2)−
∫

∆n×0

ω(a)

−
∫
∂∆n

ω1(a, f1) + ω1(af1 , f2)

=

∫
∂∆n

ω1(a, f1f2)− ω1(a, f1)− ω1(af1 , f2)

This indicates the existence of a 2nd descendant ω2(a, f1, f2), satisfying

ω1(a, f1) + ω1(af1 , f2) = ω1(a, f2f1) + dω2(a, f1, f2), (3.3)

which may be constructed by studying a biprism ∆n × [0, 1]2 which inter-
polates between two prisms. Still higher descendants may be computed by
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studying higher prisms. In practice, our ω(A) are polynomials in the aj made
from the ∪j products, so we can compute descendants algebraically, without
resorting to thinking about prisms.

We may even compute the cocycle in terms of its 1st descendant. Consider

α : Z1(X,G)× C0(X,G)→ Cn−1(X,A),

for which there exists a descendant α2 satisfying (3.3). Let A ∈ Z1(∆n,G)
for ∆n = (0 · · ·n). We can write

A = df

for some f ∈ C0(∆n,G) and define

ω(A)(∆n) = α(0, f)(∂∆n).

One checks that this is well-defined provided (3.3) holds. Thus, like the
existence of the 1st descendant is equivalent to the cocycle condition, the
existence of the 2nd descendant is equivalent to such a natural transformation
being a 1st descendant of a cocycle.
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Chapter 4

Obstruction Theory

In the previous chapters we have already begun to see how the combina-
torics of the cup product and related pairings are geometrically encoded in
the behavior of certain families of vector fields. In this section we will use
these constructions to give special cocycle representatives of some simple
characteristic classes of the tangent bundle and other vector bundles. We
especially focus on the Stiefel-Whitney classes of the tangent bundle, and
provide an extension of Halperin-Toledo’s construction of cocycle represen-
tatives for them on a barycentric subdivision to a general PL n-manifold with
branching structure. We also discuss the case with boundary.

The Stiefel-Whitney classes are closely related to the Steenrod squares
through Wu’s formula and Thom’s theorem. We discuss a conjectural con-
struction of cocycle representatives for the Stiefel-Whitney classes of an ar-
bitrary bundle and describe a conjectural extension of Thom’s theorem to a
cochain-level formula. On the other hand, we show that there is no cochain-
level refinement of the Wu formula, and the obstruction to this formula is an
interesting cochain operation.

We discuss the Whitehead tower of BO(n) and how the Stiefel-Whitney
classes act as obstructions to lifting the classifying map up this tower. This
is standard material in homotopy theory, but what we have developed in the
previous chapters allows us to do it on the level of simplicial cochains and
cocycles. The advantage is that we can describe things like a (tangent) spin
structure on a PL n-manifold X (with branching structure) as a 1-cochain η
with dη = w2(TX), where w2(TX) is our natural cocycle representative of the
2nd Stiefel-Whitney class. This is useful because it works in all dimensions,
while previously PL spin structures have only been adequately described in
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2d. In 2d, we show that this definition is equivalent to a Kastelyn orientation,
which is the traditional description of a spin structure on a PL surface.

While we only discuss tangent structure from the 2-torsion part of the
Whitehead tower, our generalized Halperin-Toledo vector fields appear to
give a natural construction of Pontryagin cocycles on a PL n-manifold which
thus define a PL version of “string” and higher structures. We leave the
investigation of this to further work.

4.1 Stiefel-Whitney Classes

4.1.1 General Smooth Version

Let X be a closed n-manifold with a real vector bundle π : E → X of rank
k and let there be j sections

si : X → E, πsi = id

which are generic, meaning that their convex hull:

B(s1, . . . , sj) = {
∑
i

tisi(x) | x ∈ X, ti ∈ [0, 1],
∑
i

ti = 1} ⊂ E

is transverse to X embedded in E as the zero section. In this case,

B(s1, . . . , sj) ∩X

is a Z2 Whitney n+k− j−1-cycle [39] in X (coefficients must be Z2 because
orientability cannot be guaranteed). It turns out that for different choices of
generic sections, these chains are all homologous, so the intersection defines
a homology class in Hn−k−j+1(X,Z2) which is Poincaré dual to the Stiefel-
Whitney class [40]

[wk+j−1(E)] ∈ Hk+j−1(X,Z2).

In terms of the sections, this intersection is precisely the locus where the
sections are linearly independent. For instance, with j = 1, the intersection
is the vanishing locus of s1, which has codimension k, representing the top
Stiefel-Whitney class [wk], which is thus equal to the Euler class mod 2 when
E is orientable.
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4.1.2 PL Version for the Tangent Bundle

Now we focus on the Stiefel-Whitney classes of the tangent bundle TX specif-
ically, where X in an n-dimensional closed PL manifold (we treat the case
with boundary below). Stiefel conjectured and Halperin-Toledo proved [22]
(see also Whitney [21] and Cheeger [41]) that the sum of all n− k simplices
of the first barycentric subdivision Xb of X, ie.

Wk(TX
b) :=

∑
σ∈Xb

n−k

σ ∈ Cn−k(Xb,Z)

is a Poincaré dual representative for [wk(TX)] ∈ Hk(X,Z2). We will later
give an obstruction-theoretic argument in support of this formula. For now,
let us discuss how we can use it to represent the Stiefel-Whitney classes of
the tangent bundle on an arbitrary triangulation.

Let us choose a branching structure on X. In Thm 3, we showed this
defines a discrete Morse flow f on Xb whose unstable cells are the simplices
of X. We therefore have a flow map

f∞ : Cn−k(X
b,Z2)→ Cn−k(X,Z2)

and we may define the Stiefel-Whitney cycles on X by

Wk(TX) := f∞Wk(TX
b) ∈ Zn−k(X,Z2).

Because f∞ induces the identity map on homology and cohomology, we ob-
tain

Theorem 12. Representation of Stiefel-Whitney Classes f∞Wk(TX
b) ∈

Zk(X,Z2) are Poincaré dual representatives of the Stiefel-Whitney classes
of TX.

We note that it is often useful to apply this construction to X∨ when
X is a triangulated PL manifold, since in this case we obtain a cocycle in
Z∗(X,Z2), which can be manipulated using the cup product, etc. In this case
we refer to the cycles and cocycles so constructed as Wk(TX

∨), wk(TX
∨),

respectively.
It is worthwhile to discuss W1, which is the obstruction to orienting X.

The natural branching structure on Xb defines a local orientation which flips
across every n−1-simplex. Thus, if there is a Σ ∈ C2(Xb,Z2) with ∂Σ = W1,
then we can flip the orientation of every n-simplex in Σ to obtain a consistent

64



orientation of Xb. This way, W1 represents a “natural obstruction” to an
orientation of Xb. We will discuss this concept in full generality later. For
now, let us argue f∞W1 does the same for X.

The idea is to let the local orientations of Xb “flow” along f . That is, we
assign a local orientation of a critical cell to its unstable cell. The branching
Morse flow is that combined with the natural orientation of Xb, this induces
the same local orientations onX as the branching structure does. This follows
from our characterization of the critical cells in the proof of the branching
Morse flow theorem.

As the local orientations flow along f , so do the n− 1-cells of Xb across
which the orientations are incompatible. f∞ precisely counts how these n−1-
cells pile up onto critical n − 1-cells of X. Thus, f∞W1 is also a natural
obstruction to an orientation of X.

4.1.3 Conjectural Version and Thom’s Theorem

Now let us make some speculation about a PL formula for the Stiefel-Whitney
classes of an arbitary bundle and Thom’s theorem.

Recall in the previous chapter we used the branching Morse flow and
its generalization to the discrete Halperin-Toledo Morse flows to define a
j-parameter family of pushoffs hj(Σ) ∈ Ck+j(X,A) which is transverse to
Σ ∈ Ck(X∨, A). When Σ is a simple cycle, that is, its coefficients are either
zero or one, or equivalently it is the pushforward of the fundamental class of
an immersed PL sub-k-manifold:

i : Y → X∨

Σ = i∗[Y ],

then we conjecture that the pushoff hj(i∗[Y ]) is a k + j-chain which is

i∗[B(s1, . . . , sj+1)]

for some j + 1 piecewise-linear sections si of the normal bundle of Y in X.
Thus, we have:

Conjecture 2. Representation of Stiefel-Whitney Classes By forming the
pullback of the Poincaré dual of the j-parameter pushoff,

wn−j−k(NY ) := i∗δ(hj(i∗[Y ])) ∈ Cn−j−k(Y,Z)
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wl(NY ) = i∗δ(hn−k−l(i∗[Y ])) ∈ C l(Y,Z)

represents [wn−j−k(NY )] when we reduce coefficients mod 2. Here δ(−) is
the Poincaré duality map elsewhere denoted δ−.

If X is a vector bundle E over Y and Y is embedded as the zero section,
NY = E so the above expression gives a cocycle representative of [wn−j−k(E)]
for any vector bundle, once we choose a triangulation of E such that the zero
section lives in the dual cell complex.

Combining this with the ∪i conjecture, we immediately obtain a chain
level refinement of Thom’s famous theorem [5]:

Conjecture 3. Thom’s Theorem, Chain Version We use the shorthand
i∗[Y ] = Y ∈ Ck(X,Z).

i!wl(NY ) := δ(i∗(Y ∩ wk(NY ))) = δ(i∗(hn−k−l(Y ) ∩ Y ))

= δY ∪n−k−l δY = SqlδY .

The tangent bundle is equivalent to the normal bundle of the diagonal
embedding

∆ : X → X ×X.

It is reasonable to expect that the branching structure can be used to define
a cellular approximation to this of the form

∆ : X → (X ×X)∨

which allows us to apply our construction to define

wn−j−l(TX)′ = ∆∗δ(hj(∆∗X)).

I expect it’s possible to construct ∆ so that the conjectural representation of
general Stiefel-Whitney classes coincides with the Halperin-Toledo represen-
tation for the tangent bundle of the previous section:

wk(TX)′ = wk(TX
∨) ∈ Ck(X,Z2).
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4.1.4 Relative Stiefel-Whitney Cocycles for the Tan-
gent Bundle

If X is a PL n-manifold with boundary, then the barycentric subdivision of X
restricts to the barycentric subdivision of ∂X. If we consider the barycentric
subdivision of the n-simplex ∆n, the link of each boundary k-simplex

(σ1 < · · · < σk) ∈ ∂∆nb
k

contains exactly one interior k + 1 simplex, namely

(σ1 < · · · < σk < ∆n) ∈ ∂∆nb
k+1.

Thus,
∂Wk(TX

b) = Wk−1(T∂Xb) mod 2.

Then, since f∞∂ = ∂f∞, we have the useful property

Theorem 13. Relative Stiefel-Whitney Cycles If X is a PL n-manifold with
boundary, then the Stiefel-Whitney chains defined by

Wk(TX) = f∞

 ∑
σ∈Xb

n−k

σ

 =
∑

σ∈Xb
n−k

f∞(σ)

Wk−1(T∂X) = f∞

 ∑
σ∈∂Xb

n−k−1

σ

 =
∑

σ∈∂Xb
n−k−1

f∞(σ)

satisfy the relation
∂Wk(TX) = Wk−1(T∂X).

Thus, the pair Wk(TX),Wk(T∂X) define a relative homology class in

Hk(X, ∂X,Z2)

which is Poincaré-Lefschetz dual inX to a Stiefel-Whitney cocycle wn−k(TX).
The restriction of this cocycle to the boundary is Poincaré dual in ∂X to
Wk−1(T∂X), and hence equals wn−k(T∂X), as the classes do. This is one
of the ways in which our cocycles are natural representatives of the Stiefel-
Whitney classes.
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4.1.5 Wu Classes

Let X be a closed PL n-manifold with branching structure. The Steenrod
squares give rise to homomorphisms

Sqk : Hn−k(X,Z2)→ Hn(X,Z2)

∫
X −−−−→ Z2.

Since Z2 is a field, these are represented in Poincaré duality by Wu classes
[uk]:

Sqk[α] = [uk] ∪ [α].

We wish to have a cocycle refinement of this, that is to represent the uk ∈
Zk(X,Z2) such that for every α ∈ Zn−k(X,Z2),

Sqkα = uk ∪ α mod 2.

Such a cocycle may be called a strong Wu cocycle.
It is known that these classes are polynomials in the Stiefel-Whitney

classes:
[uk] = Pk([w1(TX)], . . . , [wk(TX)]). (4.1)

See [42, 43]. For instance, [u1] = [w1(TX)]. It follows that

uk := Pk(w1(TX∨), . . . , wk(TX
∨))

represents the Wu class, but there may be a correction to the Wu formula

uk ∪ α− Sqkα = dUk(α) + 2Vk(α)

In fact no matter which representative of [uk] we choose, there is no way for
this correction to be identically zero. Indeed, for α, β ∈ Zn−k(X,Z2)

Sqk(α + β)− Sqkα− Sqkβ

= (1 + (−1)n−k) α ∪n−2k β ± dα ∪n−2k+1 β ± α ∪n−2k+1 dβ + d(α ∪n−2k+1 β)

= d(α ∪n−2k+1 β) mod 2.

while uk ∪ − is linear on the cocycle level. This means there are no strong
Wu cocycles! The best we have is the Wu cocycle uk above.

The Wu descendants Uk and Vj (see section 3.4) are very interesting
functions. For instance, we can rephrase the above formula as

d(Uk(α + β)− Uk(α)− Uk(β)) = d(α ∪2j−n+1 β) mod 2. (4.2)
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In this way, Uk is much like a quadratic form, at least up to closed pieces.
We define a Sqk-Wu structure on an n-manifold to be a function

Q : Zn−k(X,Z2)→ Z2

such that

Q(α + β)−Q(α)−Q(β) =

∫
X

α ∪n−k β mod 2.

Compare [8]. Thus, we cannot in general remove the d’s from the Wu de-
scendant formula (4.2). It is expected that these Wu structures are closely
related to spin structures [23], but we do not discuss it here.

4.2 Obstruction Theory and Tangent Struc-

tures

4.2.1 The Whitehead Tower of BO(n)

The tangent bundle of an n-manifold (or any rank n vector bundle) is de-
scribed up to homotopy by a map X → BO(n), where BO(n) is a classifying
space defined as the space of linear n-dimensional subspaces of R∞. (There
is a construction, suitable for topological ∞-groups, which presents BO(n)
analogously to the classifying space BG we described in the previous chapter,
for instance see [44], and by which O(n) bundles are classified by a version
of continuous nonabelian cohomology H1(X,O(n)).)

The classifying space BO(n), unlike BG for a discrete group G, has
nonzero homotopy groups in arbitrarily high degrees. To understand its
homotopy theory, a useful object is the Whitehead tower. This is a sequence
of spaces Wk such that π<kWk = 0 and π≥kWk = BO(k). These spaces sit
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in a tower of fibrations dual to the Postnikov tower:

...

BZ2 W2 = BSpin(n)

Z2 W1 = BSO(n)

W0 = BO(n).

Note the first three Whitehead spaces are classifying spaces of other Lie
groups, but the pattern does not continue. W3 = W2 and see [44] for a
discussion of W4 which has to do with a certain Lie 2-group called the “string
2-group”.

If we consider the tangent bundle as a map X → BO(n), we can ask for a
lift of this map to W1 = BSO(n). Such a lift is equivalent to an orientation.
Given an oriented tangent bundle as a map X → BSO(n) then, a spin
structure is equivalent to a lift of this map to W2 = BSpin(n). This way,
the Whitehead tower organizes an infinite sequence of interesting tangent
structures.

Of course, there are more tangent structures than these, for example
there is also a pair of BZ2 fibration over BO(n) given by the two pin groups
BPin±(n) [45]. A Pin±(n) structure on the tangent bundle is a lift of
the classifying map to these spaces. Further, a certain B2Z2 fibration over
BSO(n) appeared in my work on bosonization in 3+1D [46].

Essentially, by abstract nonsense [27], any cohomology class on BO(n)
defines a type of tangent structure that may be useful in some application.
In the following sections we will give a description of the corresponding PL
tangent structure for 2-torsion cohomology classes.

4.2.2 Orientations

Suppose we want to endow our PL n-manifold X with an orientation. That
is, we wish to lift the classifying map X → BO(n) to the double cover
BSO(n). We can pull back this “universal” double cover to obtain a double
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cover X. A lift of the classifying map is homotopically the same as a section
of this principal Z2 bundle.

We can speak about this in a more concrete way. Indeed, at any point
x, we can define two different orientations of the tangent space TxX = Rn.
These local orientations collect into a double cover of local orientations which
is equivalent to the one pulled back from the universal double cover of BO(n).
It is dubbed the orientation double cover of X. Now, clearly a section of this
Z2 bundle is exactly equivalent to an orientation, ie. it is a continuous choice
of local orientation at every point of X.

The basic idea of obstruction theory is that principal bundles like these
admit sections iff they are homotopically trivial. The homotopical classifica-
tion of these principal bundles is controlled by the (nonabelian) cohomology
of X. Thus, for any tangent structure defined by a lift of the classifying map,
there is a cohomology class which is zero iff such a structure exists.

For example, the orientation double cover is classified by an element
[w1(TX)] ∈ H1(X,Z2), which happens to coincide with the 1st Stiefel-
Whitney class. A manifold admits an orientation iff [w1(TX)] = 0.

We wish to improve on this basic obstruction theory in the following way.
Given a branching structure on X, we have defined in previous sections a
cocycle representative w1(TX) ∈ Z1(X∨,Z2). According to our definition,
w1(TX) is nonzero on precisely those 1-cells which are dual to n−1-simplices
separating two n-simplices which receive opposite local orientations from the
branching structure. Thus, if we have a 0-cochain ω with dω = w1(TX), or
equivalent an n-chain O with ∂O the union of these n− 1-simplices, then we
can reverse the local branching orientation on any n-simplex in the support
of O or equivalently dual to a 0-cell where ω is nonzero.

Further, the only choice in ω is a shift by a closed 0-cocycle ε, which
by its closedness must be locally constant. On components where ε = 1,
ω + ε is oppositely oriented to ω. Thus, the set of trivializations ω of the
obstruction cocycle w1(TX) is in H0(X,Z2)-equivariant bijection with the
set of orientations. We will refer to such a pleasant situation as a simplicial
cocycle obstruction theory, although let us refrain from attempting to state
a precise definition.

Most importantly, we would like to say that there is a functorial cor-
respondence between tangent structures and the trivialization of the cor-
responding obstruction cocycle. In practice this means that constructions
made with respect to an orientation can be adapted to depend on ω and the
branching structure. For example, to construct the fundamental cycle of X,
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we consider the action of C0(X∨,Z2) on Cn(X,Z) for which (recall section
1.2.5)

(f · σn) = (−1)f(σ∨n )σn.

If we let Xn be the sum of all n-simplices of X, given their local orientations
from the branching structure, then the fundamental cycle is

X = (ω ·Xn).

Topologically, what the branching structure allowed us to do is construct
a generic “section with singularities” of the orientation bundle by defining a
local orientation away from a codimension 1 set (which is the whole n − 1-
skeleton for a barycentric subdivision and its ascending or descending branch-
ing structure). This singular locus is Poincaré dual to the obstruction cocycle.
A trivialization of the cocycle amounts to a null bordism of the singular lo-
cus, and we have a cocycle obstruction theory when we can follow any such
null bordism by a deformation of the section with singularities to an honest
section, hence a structure.

The reason we like branching structures in general is that by our con-
struction in Chapter 1, they give rise to a (singular) framing of the tangent
bundle by Halperin-Toledo vector fields with whose codimension k singular-
ities occur only in the n− k-skeleton. Thus it is reasonable to expect that a
cocycle obstruction theory is available for all types of tangent structures. We
only consider structure associated to Stiefel-Whitney classes in this thesis,
but it would be interesting to construct such a cocycle obstruction theory for
the so-called String structures, having to do with the Pontryagin classes.

Finally, there is an important generalization which we don’t discuss here
of these concepts to differential cohomology. For example in [8], the authors
constructed a differential cocycle obstruction theory which classifies “differ-
ential integral Wu structures”. It would be very interesting to find a theory
which combines their work with the results on spin structures we now discuss.

4.2.3 2d Spin Structures and Kastelyn Orientations

Orientations are easy to understand, but now we turn our attention to spin
structures (see [47] for instance), using obstruction theory based around our
cocycle w2(TX), which depends on a branching structure of a PL n-manifold
X. By the yoga we outlined in the previous section, we simply define a
discrete spin structure as a 1-cochain η with dη = w2(TX). In this section, we

72



describe a correspondence between such trivializations and an existing notion
of a spin structure on an oriented PL surface called a Kastelyn orientation.

A Kastelyn orientation [48, 49, 50, 51] is an orientation of edges of X∨

such that around every face of X∨ there are an odd number of edges oriented
against the boundary orientation of that face (given by the global orientation
of TX). This definition is designed to imitate the fundamental property of
spin structures that for the two spin structures on a circle, periodic (P) and
anti-periodic (AP), it is the anti-periodic spin structure which extends to the
disc. In the string theory literature these are called the Ramond (R) and
Neveu-Schwarz (NS) spin structures, respectively.

For a circle γ embedded in a surface X and which bounds a disc, we can
think of a spin structure as a framing of TX|γ. In this case the framing has
a winding number, counted like so:

1. Choose a generic vector in TX at some point of γ.

2. Use the framing of TX|γ to extend this vector to a vector field over γ.

3. Form the pushoff γ̂.

4. The winding number of the framing is #(γ̂ ∩ γ)/2 mod 2.

The AP spin structure has odd winding number while the P spin structure
has even winding number.

In terms of the Kastelyn orientation, with γ ∈ X∨, the winding number
is the number of arrows encountered along γ, traversed according to the
orientation of X, which point against γ. Indeed, the Kastelyn orientation
may be extended to a framing of TX|γ using the right hand rule and gluing
the framing across vertices by rotating it counterclockwise [50] (both moves
defined by the orientation of X).

Now let us suppose X has a branching structure and an orientation and
we will attempt to construct a Kastelyn orientation from it. The edges of X∨

meet those of X at right angles, so the branching structure gives a normal
vector n̂ to each edge of X∨. We choose that edge to be oriented with
a tangent vector t̂ so that det(n̂t̂) > 0 with respect to the orientation of
X. One can check that the winding number of this framing of γ is simply
1
2

∫
X
δγ ∪ δγ.

Consider this on a barycentric subdivision Xb. The faces of Xb∨ corre-
spond to the vertices of Xb, which have degree 0, 1, or 2 depending on what

73



dimension of simplex they arise from in X. In the canonical branching struc-
ture of Xb, all the edges incident at a degree 0 (resp degree 2) vertex are
outgoing (resp incoming), while each degree 1 vertex has two incoming and
two outgoing edges. We compute the winding number of the boundary of
each dual face around these vertices and find that they are all even. That is,
the Kastelyn orientation condition fails at every cell of Xb∨!

This is actually exactly what we want, and coincides with what we saw
for the local orientations of Xb. Indeed, the Poincaré dual Stiefel-Whitney
cycle W2(TXb) is the sum of all the vertices. If we have an E ∈ C1(Xb,Z2)
with ∂E = W2(TXb), then we can produce a Kastelyn orientation of Xb∨ by
flipping the orientation t̂ of each edge e ∈ Xb∨

1 which crosses an edge of E.
Note that a complete dimerization of Xb gives rise to such an E, and these
have already been shown to have a special relationship to 2d spin structures
[50].

We can do the same thing on X given a branching structure by study-
ing the Morse flow of the Stiefel-Whitney cycle W2(TX) = f∞W2(TXb).
Explicitly,

W2(TX) =
∑

(0)∈X0

(0) +
∑

(01)∈X1

(1) +
∑

(012)∈X2

(2).

In terms of a vertex x, this is

1 + #(incoming arrows) + #(incoming adjacent pairs of arrows).

One sees that this equivalently counts 1+ the number of intervals of incoming
arrows, which is 1+ the number of times the arrows change from incoming
to outgoing, which is 1+ half of the self-intersection of the boundary of x∨,
or exactly where our orientation of (X∨)1 fails to be Kastelyn! Thus again
given an E with ∂E = W2(TX), we may flip the edge orientations across E
to obtain a Kastelyn orientation of X∨.

Furthermore, this correspondence is equivariant with respect to the action
of Z1(X,Z2), which acts by flipping the orientations of edges in (X∨)1. Thus
we have

Theorem 14. spin structure obstruction theory in 2d For a PL surface X
with branching structure, there is an equivalence of categories between trivi-
alizations of w2(TX) ∈ Z2(X∨,Z2) and Kastelyn orientations on X∨, which
is equivariant with respect to the action of Z1(X∨,Z2).
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4.2.4 Discrete Spin Structures in Dimensions ≥ 3

When n > 2, π1SO(n) = Z2, and a spin structure of an n-manifold is equiv-
alent to an assignment of ±1 to framed embedded circles which flips sign
when the framing is rotated by the nontrivial element of π1SO(n), which is
homotopy equivalent to a 2π rotation in any 2-plane. This is equivalent to a
choice of framing of TX|γ for any embedded circle γ, such that if γ extends
to a disc, then the framing extends as well.

Let X be a trianguled PL n-manifold with branching structure. The
branching structure gives a normal framing to every embedded circle in X∨,
given on an edge e by vectors parallel to the edges (i, i+1) of the n−1-simplex
e∨. It also defines a w2(TX) ∈ Z2(X∨,Z2). One can show w2(TX) is nonzero
on exactly those dual 2-cells whose boundary receives a non-bounding fram-
ing from the branching structure. This can be easily checked on a barycentric
subdivision either geometrically or algebraically. For the algebraic approach
using the mod 2 winding number computed using the Steenrod squares, the
key formula is

1

2
Sq1δ∂D + 1 =

∫
D

w2(TX) mod 2,

which is analogous to how we measured the violation of the Kastelyn condi-
tion on triangles of (X∨)2 where w2(TX) = 1 by computing 1

2
δγ ∪ δγ. Then,

given an n− 2-chain E ∈ Cn−1(X,Z2) with ∂E = W2(TX), we can rotate by
2π the framings of any curve passing through a facet of E. This will give us
a consistent framing of all embedded circles and hence a spin structure.

Geometrically this works because the Halperin-Toledo vector fields define
a framing on the barycentric subdivision with an odd singularity on every
simplex. If we have an orientation we have an n-chain Ω whose boundary is
the n−1-skeleton. Recall that Fn vanishes on the n−1-skeleton. Thus we can
flip the sign of Fn inside the support of Ω to obtain a framing F1, . . . , Fn−1, F

′
n

with singularities which defines a consistent orientation on all of X. Further,
this allows us to homotopy F ′n to F ′′n which vanishes only on the n−2-skeleton.

Thus we obtain a framing F1, . . . , Fn−1, F
′′
n away from the n− 2-skeleton.

By Halperin-Toledo, this framing has an odd singularity around every circle
linking an n − 2-simplex. Thus, if we have an n − 1-chain E with ∂E the
n−2-skeleton, then we can twist the framing by 2π in the normal coordinates
wherever it passes through E. Thus we obtain a framing with only even
singularities on n − 2-skeleton. This is precisely a spin structure. Applying
the Morse flow we obtain the result for an arbitrary triangulation.
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This is encoded in the following theorem:

Theorem 15. spin structure obstruction theory For a PL n-manifold X with
branching structure, there is an equivalence of categories between trivializa-
tions ∂E = W2(TX) ∈ Zn−2(X,Z2) and spin structures for TX given by
framing each embedded circle C (transverse to the cell structure) according
to the branching structure, but applying a 2π rotation when C crosses E.
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Part II

Physics Applications
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Introduction

In this part, we will discuss some physics applications of the mathematical
devices we’ve developed so far. These applications are the main thrust of my
research, but to keep the exposition palatable to a mathematical audience I
have chosen just a couple simple, but interesting topics, ones which appear
very close to admitting a purely mathematical formulation. I will focus on
a path integral approach to these topics, which as a formal manipulation
of symbols is totally rigorous. Unfortunately to really obtain the meat of
the physics we will have to make some reference to an underlying Hilbert
space associated to these formal path integrals, whose construction has been
acheived only in the simplest situations. I will talk about what is expected of
this Hilbert space and show that in two constructible situations, namely those
of finite gauge theories and conformal field theories, that these expectations
hold true.

To facilitate the discussion, let me outline a rough definition of a quantum
field theory (QFT). To first approximation, one can think of a QFT as a kind
of distribution which provides expectation values 〈O〉 of some specified set
of observables O, which form an algebra.

For us, a QFT always comes along with a spacetime X and observables
have a notion of support in X. The central principle of QFT is called cluster
decomposition, which says that observables with largely separated support
are uncorrelated. For point operators O(x), whose support is a single point
x in spacetime this means that for distant points x and y,

〈O(x)O(y)〉 ≈ 〈O(x)〉〈O(y)〉.
Our notion of support here is defined by the above condition, which is a
condition only on large distances. To emphasize this fuzziness, we will say
O(x) is supported “near” x.

The main way we know of constructing QFTs which satisfy cluster de-
composition is by the action principle of Feynman and Dirac [52]. It is very
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hard to state what this sort of thing is in general but I will do my best. To
define a QFT by the action principle we first specify a set of (dynamical)
fields φ on X, which are typically either functions on X or sections of some
kind of bundle over X. These are dynamical fields because we’re going to
integrate over them. Then one defines a Lagrangian density L(x) which is
a function of the fields and their derivatives at x, and background fields like
a metric gµν(x). These are background fields because we’re not going to
integrate over them (nobody knows how to integrate over a metric). Like-
wise we take as our observables any local functionals of this sort. Then the
expectation values of such observables are defined by

〈O(φ(x), . . .)〉 =
1

Z

∫
Dφ O(φ(x), . . .) exp i

∫
X

L,

where Dφ is some measure on the space of dynamical fields and Z is a nor-
malization constant called the partition function defined so that 〈1〉 = 1. It is
more or less clear that if the bare measure Dφ satisfies cluster decomposition,
so will these expectional values. Unfortunately, nothing comes for free, and
much sweat and many tears have been shed over the proper definition of Dφ
[53]. We will get around this issue either by discretization (see eg. [54]) or
by modifying established QFTs whose action principle has stood the test of
time if not yet yielded to pressure of proof. For mathematicians interested in
attempting to understand the construction of Dφ in more complicated cases
but unwilling to read physics textbooks I recommend the book [55] and the
MIT course by Pavel Etingof.

Among the QFTs we will study are those whose fields include a principal
G-bundle with connection, for some group G. Such fields are called gauge
fields, theories that have them are called G gauge theories, and G is called
the gauge group. Zn gauge theory will be the first theory we discuss. It can
be presented straightforwardly by an action principle, but even this theory
has some nontrivial physical applications.

We are interested in these theories because they have nontrivial oper-
ators which are supported along submanifolds of positive dimension. We
call a QFT with such operators an extended QFT, following Baez-Dolan
[56]. We will see that naive cluster decomposition fails for many extended
QFTs presented by action principles. This is nicely demonstrated in the Zn
gauge theory and seems to be a key feature of (irreducible) topological QFT
(TQFT), QFTs with only the identity point operator but nontrivial extended
operators whose correlation functions are all isotopy invariant.

79



We stress that this definition of TQFT differs from the Atiyah-Segal
TQFTs usually discussed in the mathematics literature. Such theories also
have a topological invariant partition function, which appears to be a stronger
condition than isotopy invariance of the correlation functions. However, we
will discuss how in three dimensions one can use knot surgery to define a
3-manifold invariant (the Reshitikhin-Turaev invariant) from the correlation
functions and how it relates a partition function that may or may not exist.

The main issue is that the path integral has a fundamental ambiguity.
Indeed, we can shift the Lagrangian density L above by anything independent
of the dynamical or background fields. We can phrase the locality condition
for L by saying that

∫
X
L glues along discs decorated by the germs of the

fields on their boundaries.
We will see this ambiguity can complicate matters of symmetry, leading

to so-called anomalies. Anomalous symmetry is a very important topic in
QFT since it tells us qualitative features of path integral QFTs whose cor-
relation functions we don’t know how to compute. For instance, it seriously
constrains the form of the standard model of particle physics [53, 57]. Re-
cently, anomalous symmetry has found important application in condensed
matter physics, especially in the classification of topological phases of mat-
ter [58, 59] and phase transitions [60, 61]. Most of my work on anomalies
has been exploring this direction. The study of anomalies turns out to be
equivalent to the study of boundary conditions of topological gauge theories
through a mechanism called anomaly in-flow [62].

We will also discuss how background structure modifies the construction
of topological gauge theories and their anomalies. We are especially inter-
ested in spin structures, since they arise in systems of fermions [53]. The
electron is a fermion, so almost everything we really care about in the end
depends on a spin structure and it’s important to find out how.

A tool that has been very effective for 1+1 dimensional systems is called
bosonization/fermionization [63], which allows one to trade spin structure
dependence for an extra gauge. Recently, it has become apparent that this
correspondence also works in higher dimensions, although one must consider
gauge ∞-groups and their anomalies [23, 46, 64].

In this thesis, we will consider for the first time how this works in the
presence of boundary conditions. We will show how to use fermionization to
construct spin Dijkgraaf-Witten theory in any dimension and describe the
anomalies associated with it. As a capstone, we will compute the action of
bosonization on the chiral anomaly of the 1+1D Dirac fermion.
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Chapter 5

Topological Gauge Theory

5.1 Zn Gauge Theory

The first gauge theory we will discuss is the topological Zn gauge theory. We
keep the spacetime dimension D = d+1 arbitrary (the notation is customary
for d space dimensions and 1 time dimension, although for us all manifolds
have Euclidean signature) and denote by X an oriented PL D-manifold,
which is our spacetime. Our approach will be overly pedantic for the benefit
of nonphysicists and to fix the terminology. In particular, we will try to define
the theory on the fly, so the reader can see where certain choices must be
made in the formulation of the path integral. We will try to imitate as much
as possible the approach one would take in analyzing a more complicated
QFT.

5.1.1 path integral of the quantum double

We begin by describing the Zn gauge theory in the “quantum double” formal-
ism, so called because it involves two (dynamical) fields, a ∈ C1(X,Z), b ∈
Cd−1(X∨,Z). The path integral formulation we present here is equivalent to
Turaev-Viro’s state-sum [65] applied to the Drinfeld double of Zn (see eg.
[66]), while Hamiltonian version of the formalism first appeared in [67].

The action functional is defined for a PL D-manifold X with finitely many
cells by

S(a, b) =

∫
X

1

n
(a, db) ∈ R/Z, (5.1)

where we have used the Poincaré duality pairing.
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Important observables whose expectation values and correlation functions
we are interested in calculating are the Wilson lines

W (q,Γ) = exp

(
2πiq

∫
Γ

a

)
where Γ ∈ C1(X,Z) and q ∈ R/Z is called the electric charge; as well as the
’t Hooft operators

H(m,Σ) = exp

(
2πim

∫
Σ

b

)
,

where Σ ∈ Cd−1(X∨,Z) and m ∈ R/Z is called the magnetic charge. We will
find that this theory violates a naive form of cluster decomposition when Σ
and Γ link each other.

To do this computation, we will need to define and evaluate

〈W (q,Γ)H(m,Σ)〉X =
N(X)

Z(X)

′∑
a,b

W (q,Γ, a)H(m,Σ, b) exp

(
2πiS(a, b)

)
,

where

Z(X) = N(X)
′∑
a,b

exp

(
2πiS(a, b)

)
is the partition function, andN(X) is a normalization factor we have included
for later convenience, on which the expectation values do not depend. The
prime above the sum indicates that these expressions are not yet defined,
since if we sum over all a, b, there are infinitely many of them.

To define the sums, first note that the bare partition sum in Z(X) has a
huge redundancy, since we may transform

a 7→ a+ df + nw (f, w) ∈ C0(X,Z)⊕ C1(X,Z)

b 7→ b+ dg + nh (g, h) ∈ Cd−2(X,Z)⊕ Cd−1(X,Z)

under which S(a, b) is invariant modulo fractional boundary terms and in-
teger bulk terms. The first set (f, w) are called the (small and large, resp.)
electric (local) transformations, while the second set (g, h) are called the .
Sometimes we will specify the degree of the parameter by calling them .

Under the large transformations, a, b have finitely many orbits, labelled
by their reduced values mod n:

(ā, b̄) ∈ C1(X,Zn)⊕ Cd−1(X,Zn).
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Thus, one solution to defining the partition sum is to take

′∑
a,b

=
∑

(ā,b̄)∈C1(X,Zn)⊕Cd−1(X,Zn)

. (5.2)

If we do this in all of our sums, including the ones in the correlation functions,
we are de facto considering all a, b related by the large transformations as
physically equivalent. Indeed, it will only make sense to consider correlation
functions of observables which are invariant under these transformations,
otherwise we will have to make an explicit choice of representatives (a, b)
for each mod n equivalence class (ā, b̄). In this case the transformations are
called gauge transformations.

Now we study the restrictions on the algebra of observables W (q,Γ) and
H(m,Σ) imposed by gauge invariance, so that we may make the same re-
placement of a finite sum in the correlation functions. First note that W (q,Γ)
(resp. H(m,Σ)) is automatically invariant under the magnetic (resp. elec-
tric) local transformations for arbitrary Γ and q (resp. Σ and m). For the
other transformations, we summarize below, along with the physical inter-
pretation, to be explained in more detail later.

• electric charge quantization: W (q,Γ) is invariant under the large elec-
tric local transformations parametrized by w ∈ C1(X,Z) iff q ∈ 1

n
Z.

• electric charge conservation: W (q,Γ) is invariant under the small elec-
tric local transformations parametrized by f ∈ C0(X,Z) iff ∂Γ = 0
mod n.

• magnetic charge quantization: H(m,Σ) is invariant under the large
magnetic local transformations parametrized by h ∈ Cd−1(X,Z) iff
m ∈ 1

n
Z.

• magnetic charge conservation: H(m,Σ) is invariant under the small
magnetic local transformations parametrized by g ∈ Cd−2(X,Z) iff
∂Σ = 0 mod n.

The relationship between conservation laws and quantization conditions,
small and large transformations, is a recurring theme in this work.

Our regulated sum
∑′ defined above only requires charge quantization,

but we will also require both conservation laws, meaning we will consider
also the small local transformations as gauge transformations.

Summarizing:
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Definition 8. The topological Zn gauge theory on a closed PL D-manifold
X is the QFT whose observables are defined by functions O(a, b), forming a
C-algebra generated by Wilson lines

W (q,Γ)

with q ∈ 1
n
Z, Γ ∈ Z1(X,Zn), and ’t Hooft operators

H(m,Σ)

with m ∈ 1
n
Z, Σ ∈ Zd−1(X,Zn), and whose correlation functions are given

by the path integral

〈O〉 =
N(X)

Z(X)

∑
a∈C1(X,Zn)

∑
b∈Cd−1(X∨,Zn)

O(a, b)e2πiS(a,b), (5.3)

where N(X) is an arbitrary normalization.

5.1.2 normalization of the partition function

Let us now perform a calculation of the partition function Z(X). We do the
sum by parts, first summing over b to obtain an effective action for a:

eiSeff (a) :=
∑

b∈Cd−1(X,Zn)

exp

(
2πi

n

∫
(da, b)

)
, (5.4)

where we have integrated S(a, b) by parts to rewrite the weight in this simple
form. We can write the exponentiated integral as a product over all triangles
(012), since (da, b) contributes exactly one term per triangle, namely

da(012)b(012)∨,

where (012)∨ is the dual d− 1-cell in X∨. Further, every d− 1-cell of X∨ is
the dual of exactly one triangle of X, so we can split the sum over b into a
sum over each b(012)∨’s. We obtain

eiSeff (a) =
∏

(012)∈X2

∑
b(012)∨∈Zn

exp

(
2πi

n
da(012)b(012)∨

)
=

∏
(012)∈X2

nδ(da(012))

= n|X2|δ(da mod n),

where the first δ is an indicator function which is 1 if the argument is 0 mod n
and 0 otherwise and the second δ is short-hand for indicating 0 in C2(X,Zn).
Since we use this trick so often we will state it in generality:
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Lemma 3. For X a closed oriented PL D-manifold, a ∈ Ck(X,Z), F ∈
Ck+1(X,Z):∑

b∈CD−k−1(X∨,Zn)

exp

(
2πi

n

∫
X

(da+ F, b)

)
= n|Xk+1|δ(da+ F mod n).

Proof. Exchange sum and product:∑
b∈CD−k−1(X∨,Zn)

exp

(
2πi

n

∫
X

(da+ F, b)

)

=
∑
b

∏
σ∈Xk+1

exp

(
2πi

n
(da(σ) + F (σ))b(σ)∨

)
=

∏
σ∈Xk+1

nδ(da(σ) + F (σ) mod n) = n|Xk+1|δ(da+ F mod n).

Thus we see that b acts as a Lagrange multiplier to impose the flatness
constraint a ∈ Z1(X,Zn). Some sources take this as the starting point for
describing the topological Zn gauge theory by declaring the fundamental field
to be a Zn 1-cocycle with trivial action principle Seff = 0. For example, see
[68].

Concluding the calculation, we have

Z(X) = N(X)
∑
a

eiSeff (a) = N(X)n|X2||Z1(X,Zn)|.

Recall we are free to choose the normalization function N(X) anyway we like,
so long as it is a local function of the lattice, meaning that N(X) receives a
multiplicative contribution from each cell, so that all j-cells contribute the
same amount. For instance, we will choose

N(X) = n−|X2|−|X0|

so that
Z(X) = |H1(X,Zn)|/|H0(X,Zn)|
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is a topological invariant (!). We will say a theory whose correlation functions
are topological invariant and admits a choice of normalization function so
that its partition functions are topological a strongly topological QFT.

Note that there is no way to choose N(X) locally so that Z(X) = 1.
In fact, our choice is the unique choice of normalization so that Z(SD) = 1
and Z(X) is a topological invariant. We will discuss later that while all
correlation functions are independent of N(X), there are interesting physical
interpretations of Z(X) when we can make a choice of normalization like this,
having to do with entanglement. For now, we just point it out as something
to ponder and move on to computing correlation functions.

Finally, note that we could’ve done the sum over a instead, and obtained
(using lemma 3 applied to X∨)

eiSeff (b) = n|X0|δ(db mod n),

which enforces the flatness constraint b ∈ Zd−1(X,Zn). Some sources de-
scribe something called Zn d− 1-form gauge theory, whose fundamental field
is a Zn d−1-cocycle and has trivial action principle Seff = 0. What we have
just derived is that a single parent action principle (the “quantum double”
(5.1)) gives rise to an equivalence between the partition functions of these
theories. This is a very simple manifestation of electric-magnetic duality,
which is incarnated in many forms.

5.1.3 some correlation functions and duality

First let us consider the expectation value of the unit Wilson line

W (Γ) = exp

(
2πi

n

∫
Γ

a

)
for Γ ∈ Z1(X,Z). Because W (Γ) is independent of b, we can do the sum over
b as we did for the partition function:

〈W (Γ)〉X =
N(X)

Z(X)

∑
a

exp

(
2πi

n

∫
Γ

a

)
eiSeff (a)

=
N(X)

Z(X)
n|X2|

∑
a∈Z1(X,Zn)

exp

(
2πi

n

∫
Γ

a

)
.
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We see that 〈W (Γ)〉X = 0 if Γ is nontrivial in Zn homology, and 1 otherwise.
If we think about Γ as the worldline of a particle described by the Wilson line,
when 〈W (Γ)〉 6= 0 for arbitrarily large (but nullhomologous) Γ, then we say
the particle is deconfined. Likewise, we find 〈H(Σ)〉X = 0 if Σ is nontrivial
in Zn homology, and 1 otherwise, so the object whose worldvolume is Σ is
also deconfined.

Now we consider the correlation function

〈W (Γ)H(Σ)〉X ,

which cannot be straightforwardly computed by simply summing over one of
the two gauge fields since the integrand depends on both a and b. However,
we can exploit a clever trick which illustrates the quantum nature of these
observables. Let δΣ ∈ Z2(X,Z) denote the Poincaré dual of Σ ∈ Zd−1(X∨,Z).
We can write

H(Σ) = exp

(
2πi

n

∫
Σ

b

)
= exp

(
2πi

n

∫
X

(δΣ, b)

)
.

Thus we can consolidate H(Σ) with the path integral weight and compute
the partial sum

eiSeff (a) =
∑

b∈Cd−1(X,Zn)

exp

(
2πi

n

∫
X

(da+ δΣ, b)

)
.

We see that summing over b in 〈W (Γ)H(Σ)〉 now yields the modified con-
straint (see lemma 3)

da = −δΣ mod n.

In particular we see that if [δΣ] 6= 0 ∈ H2(X,Zn) or equivalently [Σ] 6= 0 ∈
Hd−1(X,Zn), then 〈W (Γ)H(Σ)〉 vanishes. Further, if [Γ] 6= 0 ∈ H1(X,Zn)
the correlation function also vanishes. If both Γ and Σ are trivial in homology,
then there are two cases remaining. If they are unlinked, it is easy to see the
modified constraint doesn’t affect the remaining average∑

a

W (Γ)eiSeff (a).

On the other hand, if Γ and Σ are linked with linking number k, then the
modified constraint contributes

W (Γ) = exp

(
2πi

n

∫
Γ

a

)
= exp

(
2πi

n

∫
D

da

)

87



= exp

(
− 2πi

n

∫
D

δΣ

)
= e−2πik/n,

where D is a Zn 2-chain bounding Γ and we have used the definition of the
linking number

〈Γ,Σ〉 =

∫
D

δΣ = #(D ∩ Σ).

Summarizing,

〈W (Γ)H(Σ)〉 =


0 [Σ] 6= 0 ∈ Hd−1(X,Zn)

0 [Γ] 6= 0 ∈ H1(X,Zn)

e−2πik/n 〈Γ,Σ〉 = k

.

This illustrates that operators in a topological QFT can have a long range
effect on each other, in the sense that we have a minor violation of the cluster
decomposition principle. Indeed, even for well-separated operators W (Γ) and
H(Σ) (assume third case above), if they are linked, k 6= 0 mod n, then

〈W (Γ)H(Σ)〉X 6= 〈W (Γ)〉X〈H(Σ)〉X = 1.

When this is the case, it is often said that the two operators are not mutually
local.

Observe that the ’t Hooft operator H(Σ), once we integrated out b, acted
to modify the flatness constraint of the Zn gauge field a. In formulations of
the Zn gauge theory without b, where we declare our basic field to already
satisfy the constraint a ∈ Z1(X,Zn), the ’t Hooft operator must be defined
as a singularity along Σ for a. This can be discussed precisely by removing a
tubular neighborhood of Σ and specifying boundary conditions for a there.
To obtain the modified flatness constraint above, the appropriate bound-
ary condition has

∫
S1 a = −1/n around the small circular coordinate of the

boundary of the tubular neighborhood of Σ. One will often see such disorder
operators discussed this way in the literature, and one should imagine that
there is secretly some other field, in this case b, which has been integrated
out, and that if we include it in our analysis we can treat without discussing
singularities and removing pieces of spacetime. As always, which operators
should be included in the discussion should be specified at the beginning in
the definition of the QFT.

Note that when we integrate out a instead, the presence of W (Γ) modifies
the flatness constraint of b. In this way, electric-magnetic duality (see section
5.1.2) exchanges ordinary operators with disorder operators.
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5.2 Twisted Zn Gauge Theory in 2+1D and

Knot Invariants

5.2.1 twisted quantum double

In this section we discuss a “twisting” of the topological Zn gauge theory by
a Dijkgraaf-Witten term [68]. These terms come from the group cohomology
of the gauge group, in this case Zn. The relevant one for us is

H3(BZn,R/Z) = Zn.

Such classes define cohomology operations

H1(X,Zn)→ H3(X,R/Z)

[a] 7→ [ω(a)].

In other words, such classes give gauge invariant functions
∫
X
ω(a) ∈ R/Z

for a (flat) Zn gauge field a ∈ Z1(X,Zn). Thus, the Dijkgraaf-Witten term∫
X

ω(a)

is a possible term in the effective action (5.4).
We wish to modify the quantum double action (5.1) to obtain such a term

after integrating out the dual field b. To do so, we will need to express our
cohomology operation ω as a function on cochains

ω : C1(X,Z)→ C3(X,R/Z)

which reduces to ω on those a ∈ C1(X,Zn) with da = 0 mod n.
The cohomology of BZn is understood [69] and a complete basis of

H3(BZn,R/Z)

can be expressed as

a 7→ k

n2
a ∪ da,

where k ∈ Z. Note that this term is not a total derivative. For example, on
a Zn lens space L(n, 1) (RP3 for n = 2) [10], with a representing a generator
of H1(L(n, 1),Zn),

exp

(
2πi

n2

∫
L(n,1)

a ∪ da
)
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is a primitive nth root of unity.
This expression makes sense for cochains, not just cocycles, so we may

use it to define the “twisted quantum double” model:

S(a, b) =

∫
X

1

n
(a, db) +

k

n2
a ∪ da, (5.5)

where we choose a branching structure on X to define the cup product. The
QFT described by this action (with the operators we define below) is referred
to as Zn Dijkgraaf-Witten theory at level k.

This new term is not invariant under 1-form gauge transformations of a:

a 7→ a+ nw w ∈ C1(X,Z) (5.6)

instead it has a variation

S(a+ nw, b) =

∫
X

1

n
(a+ nw, db) +

k

n2
(a+ nw) ∪ d(a+ nw) (5.7)

=

∫
X

1

n
(a, db) + (w, db) +

k

n2
a ∪ da+

k

n
w ∪ da+

k

n
a ∪ dw + kw ∪ dw

= S(a, b) +
k

n

∫
X

w ∪ da+ a ∪ dw,

after discarding integer terms (recall the action only appears as e2πiS). How-
ever, the action is invariant under the restricted 1-form gauge transformations

a 7→ a+ n2w,

(as well as other gauge transformations) and this group has a finite orbit
space C1(X,Zn2). We therefore define the path integral for the twisted gauge
theory using

〈O〉 =
1

Z(X)
n−|X2|−2|X1|

∑
a∈C1(X,Zn2 )

b∈C1(X∨,Zn)

O(a, b) exp

(
2πiS

)
, (5.8)

where O(a, b) is a function of a and b such that

O(a+ dg, b+ df) = O(a, b) g, f ∈ C0(X,Z).
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In the path integral for the untwisted Zn gauge theory (5.3), the sum was
over a ∈ C1(X,Zn), so O(a, b) was automatically invariant under the 1-form
transformations (5.6). To define the twisted Zn gauge theory, we will have
to impose a constraint on O by hand, which is that after performing the sum
over b, we obtain a gauge invariant function of a:∑

b∈C1(X∨,Zn)

O(a+ nw, b)e2πiS(a+nw,b) =
∑

b∈C1(X∨,Zn)

O(a, b)e2πiS(a,b) (5.9)

for all a.
For example, consider the “fractional” Wilson line

W (Γ, q) = exp
2πiq

n2

∫
Γ

a,

for q ∈ Z, Γ ∈ Z1(X,Z). Though this function makes sense in the path
integral above for any q, once we perform the partial sum above, we obtain∑

b∈C1(X∨,Zn)

e2πiq
∫
Γ a/n

2

e2πiS(a,b) = n|X2|e2πiq
∫
Γ a/n

2

δ(da mod n),

which is invariant under the 1-form transformations only when q ∈ nZ. Thus,
with this choice of 1-form gauge invariance constraint, we obtain the same
quantization rule for Wilson lines as we had in the untwisted Zn gauge theory.
Note that even if we don’t impose this constraint, the fractional Wilson lines
are confined, in the sense that

〈W (Γ, q)〉 = 0

for all Γ (even contractible) and q /∈ nZ, since da/n is unconstrained by
integrating over b.

5.2.2 decorated ’t Hooft lines

We consider the “bare” ’t Hooft operator

H(Γ) = exp
2πi

n

∫
Γ

b
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where Γ ∈ Z1(X∨,Z). When we perform the sum over b, we obtain (see
lemma 3)∑
b∈C1(X∨,Zn)

H(Γ)e2πiS(a,b) = n|X2| exp

(
2πik

n2

∫
X

a ∪ da
)
δ(da+ δΓ mod n).

(5.10)
Let us denote this expression as H(Γ, a). Using (5.7) and da = −δΓ mod

n we obtain the variation

H(Γ, a+ nw) = H(Γ, a) exp

(
2πik

n

∫
X

−w ∪ δΓ − δΓ ∪ w
)
,

so the bare ’t Hooft operator is not gauge invariant (cf. (5.9)). However, we
may add fractional Wilson lines to it, defining the physical ’t Hooft line as
the decorated ’t Hooft line

H̃(Γ) = exp

(
2πi

n

∫
Γ

b+
2πik

n2

∫
f−∞Γ

a+
2πik

n2

∫
f+∞Γ

a

)
,

where we use the branching Morse flow of theorem 3 to define the pushoffs
f±∞Γ ∈ Z1(X,Z). These satisfy∫

X

δΓ ∪ a =

∫
f−∞Γ

a

∫
X

a ∪ δΓ =

∫
f+∞Γ

a,

from which one sees that H̃(Γ) is gauge invariant.
This leads us to the definition of the twisted Zn gauge theory:

Definition 9. The 2+1D Zn Dijkgraaf-Witten theory at level k on a closed
PL 3-manifold X is the QFT whose observables are defined by functions
O(a, b), generated as a C-algebra by the Wilson lines

W (Γ) = exp
2πi

n

∫
Γ

a, Γ ∈ Z1(X,Zn)

and the decorated ’t Hooft lines

H̃(Γ) = exp

(
2πi

n

∫
Γ

b+
2πik

n2

∫
f−∞Γ

a+
2πik

n2

∫
f+∞Γ

a

)
, Γ ∈ Z1(X∨,Zn)
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and whose correlation functions are given by

〈O〉 =
1

Z(X)
n−|X2|−2|X1|

∑
a∈C1(X,Zn2 )

b∈C1(X∨,Zn)

O(a, b) exp

(
2πiS

)
,

where we have normalized the sum so that the partition function is a topo-
logical invariant.

5.2.3 Framing Dependence

Let us compute the expectation value

〈H̃(Γ)〉.

Because of the constraint da = −δΓ mod n in the partial sum (5.10), the
expectation value vanishes unless Γ = ∂D for some 2-chain D. In Poincaré
duals we have dδD = δΓ. We can use δD to define a new field variable

a = c− δD

for which the constraint da+ δΓ = 0 mod n reads

dc = 0 mod n.

In terms of c, the sum simplifies considerably:

〈H̃(Γ)〉 =
1

Z(X)
n|X2|

∑
c∈C1(X,Zn2 )
dc=0 mod n

exp

(
2πi

∫
X

k

n
c ∪ dc

n
− k

n2
δD ∪ δΓ

)

= exp

(
− 2πik

n2

∫
X

δΓ ∪ δD
)
,

where the sum over c and n|X2| exactly cancel the partition function Z(X)−1.
We recognize this integral as that which computes the self-linking of Γ

with respect to the branching structure on X. This is remarkable for two
reasons. The first is that this TQFT computes a (simple) knot invariant
of Γ, one which has no formula as a local integral involving just δΓ, as we
discussed in section 2.2.4.
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The second comment about this expectation value is that it depends on
the branching structure, as∫

X

δΓ ∪ δD = #(Γ∞ ∩D).

This is interesting because the effective action for a in the absence of any
’t Hooft operators is independent of the branching structure on a closed 3-
manifold X. In a continuum quantum field theory describing this system,
such as a Chern-Simons theory [70], the bare ’t Hooft line is a disorder
operator, where A has a singularity and is undefined. Therefore, one must
define any decoration of it by Wilson lines using a normal framing, since we
cannot evaluate the Wilson line on the singularity [71].

5.2.4 fusion rules and modular tensor category

By forgetting that the fractional Wilson lines decorating the physical ’t Hooft
are slightly displaced from each other, and from the “core” where a is singu-
lar, we can say that the unit ’t Hooft line carries electric charge 2k/n mod n
as well as its magnetic charge 1 mod n. This may be expressed symbolically
as “fusion rules”:

Hn = W 2k

W n = 1,

where H represents any ’t Hooft line near a fixed 1-cycle, and W represents
any Wilson line near that fixed 1-cycle.

In 2+1D, the fusion rules and correlation functions of the line operators
can be encoded in a structure called a modular tensor category [72], a braided
monoidal category whose simple objects are the unit line operators, whose
monoidal structure is the fusion product, and whose braiding comes from the
linking phases. A complete description of this formalism would take us too
far afield, since we wish to focus on path integrals, but it is important to
mention because many mathematicians and even physicists think about 3D
TQFT in these terms. Let it suffice to claim that it is simple to construct
the modular tensor category from the path integral with slightly more work
along the same lines as above.
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5.3 Higher Dijkgraaf-Witten Theory

Now we consider one of the most general sorts of topological gauge theories:
a theory whose gauge group is an n-group G, which we describe in terms
of the Postnikov tower of its classifying space, whose homotopy groups we
denote Π1, . . . ,Πn and Postnikov classes β2, . . . , βn. The case of a 1-group
was first discussed in [68], while examples implicitly using 2-groups appeared
in [73]. The general theory was outlined in [33], while a description like the
one I present here first appeared in my paper with Anton Kapustin [34] for
2-groups.

A G gauge field on a CW complex is a nonabelian 1-cocycle a ∈ Z1(X,G)
(see section 3.2 of part I) meaning a collection of cochains

aj ∈ Cj(X,Πj)

satisfying the cocycle condition for nonabelian cohomology Z1(X,G) :

da1 = 1

Daa2 = β2(a1)

Daa3 = β3(a1, a2)

Daa4 = · · · ,
where the covariant derivative for twisted cochains is defined by the action of
Π1 on the Πj (see section 1.2.5). Note that we only consider the case n ≤ D,
since the a>D don’t appear anywhere in the CW complex of a D-manifold.

Gauge transformations are parametrized by fj ∈ Cj−1(X,Πj) and act by

ak 7→ ak k < j

aj 7→ aj +Dafj

ak 7→ ak + βk,1(fj; a1, . . . , ak−1) k > j,

where βk,1 is a first descendant of βk (see section 3.4).
Higher Dijkgraaf-Witten theory is defined by G as well as a cocycle

ω ∈ ZD(BG,R/Z).

So long as all the Πj are finite (so Z1(X,G) is finite), this defines a TQFT
via the path integral

N(X)
∑

a∈Z1(X,G)

exp 2πi

∫
X

ω(a),

completely analogously to the original paper [68].
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5.3.1 Electric and Magnetic Operators

The effect of the Postnikov classes is to modify the spectrum of Wilson op-
erators. Besides the usual Wilson line for a1, which remains gauge invariant,
there are also higher Wilson operators

Wk(Σk, χk) = exp 2πi

∫
Σk

χk(ak),

where Σk ∈ Ck(X,Z) and χk : Πk → R/Z is the logarithm of a 1D repre-
sentation of Πk which is the charge of the Wilson operator. However, the
Postnikov classes spoil the gauge invariance of these bare Wilson operators.

This can be resolved when βk is in the kernel of the coefficient map
χk : Hk+1(Bτ<kG,Πk)→ Hk+1(Bτ<kG, U(1)), meaning there is a

γk(a1, . . . , ak−1) ∈ U(1)

such that
dγk(a1, . . . , ak−1) = χk(βk(a1, . . . , ak−1)).

For these restricted charges, we may decorate the Wilson operator by

W̃k(Σk, χk, γk) = exp 2πi

∫
Σk

χk(ak)− γk(a1, . . . , ak−1)

and this operator is gauge invariant. This works for any Σk.
We can phrase this all very neatly in terms of extended k-dimensional

Wilson operators, of which those of Dijkgraaf-Witten type are classified by
Hk(BG, U(1). Indeed, χk defines a class in Hk(BΠk, U(1)) and we wish to
extend it to a class in Hk(BG, U(1)). BG is an iterated fibration and there is
no problem with extending χk to those pieces fibered above BΠk. However,
the pieces below BΠk may form a problem. Thus we study the Serre spectral
sequence for BΠk → Bτ≤kG→ Bτ<kG. The only differential comes from the
Postnikov class βk, and this yields our description above.

One can also define codimension k ’t Hooft operators which create sin-
gularities in the ak. This requires extending the Postnikov classes to be
functions of cochains, not just cocycles. However, the choices of extensions
don’t matter for correlation functions, and the Postnikov classes don’t cre-
ate any strange selection rules for the ’t Hooft operators as they do for the
Wilson operators.
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5.3.2 Quantum Double and Duality

In a precise sense, the physics of the Postnikov classes is dual to the physics
of mixed Dijkgraaf-Witten terms. For instance, consider the n = 2 case
with Postnikov class β ∈ H3(BΠ1,Π2). We can define the path integral by
introducing a Lagrange multiplier λ and writing∑

(a1,a2)∈Z1(X,G)

∼
∑

a1∈Z1(X,Π1)

∑
a2∈C2(X,Π2)

∑
λ∈CD−3(X∨,Π∨2 )

exp

(
2πi

∫
X

(λ,Da1a2 − β(a1))

)
.

To dualize, we now sum over a2 instead of λ to obtain∑
(a1,a2)∈Z1(X,G)

∼
∑

a1∈Z1(X,Π1)

∑
λ∈ZD−3(X∨,Π

∨,a1
2 )

exp

(
2πi

∫
X

−(λ, β(a1))

)

∼
∑

a1∈Z1(X,Π1)

∑
λ∨∈ZD−3(X,Π

∨,a1
2 )

exp

(
2πi

∫
X

−λ∨ ∪ β(a1)

)
,

where in the last step we have used the cocycle conditions for λ, β, and a1

to relate the intersection pairing to the cup product. Here ∼ means up to a
normalization.

Under this duality, the Wilson surface operator for a2 transforms into the
’t Hooft operator for λ. To see this, note that the bare Wilson surface may
be written

exp

(
2πi

∫
X

(δΣ, χ(a2))

)
,

which when we insert in the sum above and integrate out a2 we find modified
constraints for the Lagrange multiplier and dual field

dλ = χδΣ,

dλ∨ = χδΣ−∞ ,

where we consider χ ∈ Π∨2 an element of the group of 1D characters, which
is the coefficient group of λ, λ∨.

There are two cases to consider for this operator. The first case is that
β is in the kernel of the coefficient map defined by χ, and we have chosen a
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decoration γ(a1) ∈ C2(BΠ1, U(1)) as above. The decoration is independent
of a2 and so it passes through the duality to become a decoration of the λ ’t
Hooft operator, whose necessity may be derived by studying gauge invariance
of the topological term λ∨ ∪ β(a1) in the presence of this operator, as we did
for the Zn gauge theory. The second case is that β is not in the kernel of
the coefficient map defined by χ. In thise case, there is no way to choose a
decoration which makes the operator gauge invariant.

In general we can produce a quantum double formulation of higher DW
theory as follows. Let G be a stable n-group. We can invent a family of
Lagrange multiplier fields

bj ∈ CD−j(X∨,Π∨j )

and an action

S(a, b) =
∑
j

∫
X

(bj, daj + βj(a<j)).

Clearly integrating out bj yields the cocycle conditions of (3.1). Integrating
out the aj however is difficult because of the βj’s. In general only the last
one, an, may be integrated out, since it is guaranteed not to occur in any βj.
In that case we get a cocycle condition dbn = 0 and a Dijkgraaf-Witten term
(bn, βn(a1, . . . , an−1)). The duality properties of these theories were studied
by Anton Kapustin and myself in [74].

5.4 Coupling to Background Gravity

In this section we study how finite gauge theories may be coupled explicitly
to the tangent bundle of spacetime.

5.4.1 Stiefel-Whitney Terms

Recall (see section 4.1) with a choice of branching structure on a triangulated
PL D-manifold X we have a family of Stiefel-Whitney cocycles wj(TX) ∈
Zj(X∨,Z2). These may be coupled to our gauge field a ∈ Z1(X,G) by a
choice of cocycle ΩD−j ∈ ZD−j(BG,Z2), which defines a term in the action:

1

2

∫
X

(wj,ΩD−j(a)),
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or more generally we can take a degree j polynomial P (w1, . . . , wj) in the
Stiefel-Whitney classes and consider

1

2

∫
X

(P (w1, . . . , wj),ΩD−j(a)).

These are the most general cobordism invariants in

ΩD
O(BG, U(1)) = HD(BG,ΩO),

since ΩO has vanishing Postnikov classes [24].
Because of the Wu formula (4.1), some of these terms are expressible in

the Steenrod squares of ΩD−j(a). These are the classes in the image of the
map

HD(BG, U(1))→ ΩD
O(BG, U(1)),

but there are classes not in the image of this map which are beyond the usual
Dijkgraaf-Witten theory. Like the Dijkgraaf-Witten terms they generalize,
these Stiefel-Whitney terms have interesting effects on the extended ’t Hooft
operators of a.

w2 and emergent spinors

For instance, we consider the topological Z2 gauge theory in the quantum
double formalism with a ∈ C1(X∨,Z2), b ∈ CD−2(X,Z2) with an extra w2

term:

S(a, b) =
1

2

∫
X

(b, da+ w2(TX)).

When we integrate out a, we get the topological D − 2-form gauge theory
with (b, w2) topological term. However, when we integrate out b, we see that
w2 sources ’t Hooft operators for a. This means that Wilson lines for a will
detect the tangent bundle of X:

〈W (Γ)〉 =


undefined [w2(TX)] 6= 0 ∈ H2(X,Z2)

0 [Γ] 6= 0 ∈ H1(X,Z2), X spin

(−1)
∫
D w2(TX) ∂D = Γ, X spin

.

The first case is undefined because the partition function vanishes when X
is not a spin manifold, so our path integral yields 0/0.
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This means that our path integral yields a QFT only defined on spin
manifolds. This is surprising because the action principle did not have any
explicit dependence on a spin structure. This is a simple example of a “grav-
itational anomaly” which we will discuss in great detail later.

For now we note that this theory is equivalent to one whose (dynamical)
fields themselves are spin structures. Indeed, once we integrate out b, we have
da = w2 mod 2, and using our obstruction theory we can identify a with a
spin structure η. This identification depends on the choice of branching
structure.

To define the Wilson line in terms of η, we use the fact that a spin
structure assigns a mod 2 invariant Qη(Γ) to a curve Γ carrying a framing of
its normal bundle. The obstruction theory is such that this mod 2 invariant
is precisely

∫
Γ
a when the curve is Γ ∈ Z1(X∨,Z), given the normal framing

induced by the branching structure. See section 4.2.4.
Thus, as we are now familiar, the proper definition of the Wilson line re-

quires us to keep track of this normal framing. And above we were implicitly
using the branching structure to define such a framing for Γ ∈ Z1(X∨,Z).
Indeed, the expectation value 〈W (Γ)〉 depends on the branching structure
through the cocycle w2. This expectation value (and Qη(Γ)) has the prop-
erty that it changes sign when the normal framing is rotated by 2π. In this
sense, we say that the Wilson line describes a fermionic particle or more
precisely a spinor particle. Because the degrees of freedom that went into
the theory were purely “bosonic”, meaning there was no explicit spin struc-
ture dependence, we sometimes say that these are “emergent” spinors [75].
The existence of the above theories, being topological bosonic theories in
any dimensions with a deconfined emergent fermion, has important physical
consequences we will see later in chapter 7.

A related version of this theory is

S(a, b) =
1

2

∫
X

(b, a) + b ∪ w2(TX∨),

which is almost the same except that integration over b enforces the constraint

∂W (a) = f∨∞W2(TX∨).

This is also only possible if X is a spin manifold, as

δf∨∞W2(TX∨) ∈ Z2(X∨,Z2)

is another representative of [w2(TX)], defined using a branching structure
on X∨ rather than X.
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Chapter 6

Higher Symmetries and
Anomalies
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Introduction

Let G be a finite ∞-group, ie. one whose Πk are finite for all k. We say that
a path integral QFT in D spacetime dimensions has a global G symmetry if
it has an action of H0(X,G) on the field space, written

f : fields(X)→ fields(X)

f : φ 7→ φf

such that
S(X,φ) = S(X,φf ).

We say the symmetry can be extended to act locally if there is a way of
defining a field space which includes twisted sectors fields(X, [A]), depending
on a gauge-equivalence class of background G gauge field, ie. an element
[A] ∈ H1(X,G), as well as an extension of the action S(X, [A], φ) to include
these twisted sectors. We require the action of H0(X,G) to also extend to
the twisted sectors. In this case the symmetry is called anomaly free. When
G is not finite but still compact, then the same can be done using nonabelian
differential cohomology (see [76] and references therein).

Often in defining the twisted sectors, it is not clear how to define the
extended field space and action in a way that explicitly only depends on the
cohomology class [A] ∈ H1(X,G). Indeed, we have to make sure S(X, [A], φ)
is consistent with locality, which is most easy to do using a local representa-
tive A of the cohomology class. What happens in practice then is we end up
choosing a cochain theory Z1(X,G) where A lives and constructing an action
S(X,A, φ) which is local, and then checking how the action transforms under
gauge transformations:

δfS = S(X,Af , φf )− S(X,A, φ).
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If we cannot choose such an action to be gauge invariant, then we say the
symmetry has an anomaly. Intuitively, an anomaly is an unavoidable tension
between symmetry and locality.

To be as precise as possible, we will discuss anomalies which satisfy
anomaly in-flow. Actually all known anomalies satisfy some form of anomaly
in-flow, but there is no proof. See for instance the discussion in [77] of a pos-
sible counterexample which turned out to satisfy anomaly in-flow only after
extending the symmetry group to a 2-group.

Anomaly in-flow is a situation where a D-dimensional QFT with a G sym-
metry is defined on the boundary of an D + 1-dimensional invertible TQFT
with a G symmetry (the “bulk”). In this case, the bulk action may include
a topological term whose boundary variation under a gauge transformation
cancels δfS from the boundary action. When the bulk theory may be taken
to be trivial, this is equivalent to being anomaly free. Thus, we may think of
the D + 1-dimensional TQFT with G symmetry as actually labelling some
equivalence class of the anomaly. For this reason we will refer to it as the
anomaly theory associated with the symmetry. Meanwhile the theory with
the anomaly is the anomalous theory.

Invertible TQFTs describe short-range entangled (SRE) phases of matter
[78]. Invertible TQFTs for manifolds equipped with a G bundle describe
symmetry protected topological (SPT) phases of matter [59]. The study of
anomalies in the anomaly in-flow situation is equivalent to the study of these
systems and their boundary conditions [79].

The first sort of anomalies we will discuss are those whose anomaly the-
ory is a (higher) Dijkgraaf-Witten theory (where the gauge field is kept as a
background field). Because of their relationship to group cohomology, these
are called group cohomology anomalies. Indeed, there is a nice correspon-
dence: the projective representations classified by the group cohomology
classes actually appear in the Hilbert space of the anomalous theory via the
descendants. We will construct some examples of these in 2+1D, which is
important because until Anton Kapustin and I constructed an example, it
was thought that theories in odd spacetime dimensions were always free of
anomalies. This is because most familiar anomalies appear because of chiral
fermions [80] or chiral gauge theories [81, 8]. In our example, the chirality is
due to the presence of a Dijkgraaf-Witten term, which creates an asymmetry
between electric and magnetic operators, as we saw in section 5.2.

Then we will discuss some more exotic anomalies, sometimes called grav-
itational anomalies [81] whose anomaly theories depend on the topology of
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the bulk even when the G background is trivial. While in the case of anoma-
lous G-symmetry we can point to the gauge variance δfS of the boundary
action as a symptom of the anomaly, gravitational anomalies tend to occur
when the boundary theory depends on a choice of coordinate chart. In our
discrete gauge theories we will see this as a dependence on a choice of branch-
ing structure. This is closely related to the framing anomaly of [71] but isn’t
quite the same.

6.1 Boundary Partition Functions and States

Suppose we have a path integral quantum field theory for D + 1-manifolds
X with boundary, such that the fields come in two families: bulk fields
supported everywhere on X and boundary fields supported only near ∂X,
such that the total space of fields is a fibration over the bulk fields with
fiber the boundary fields. We can use the path integral to define a boundary
partition function, which takes as argument a bulk field φ and returns the
integrated path integral weight over all boundary fields with φ fixed:

Z(X,φ) :=

∫
fields(∂X,φ)

Dψ eiS(X,φ,ψ).

If the action S is local, then we can rewrite this as a usual partition function
of a D-dimensional theory, where the φ restricted to the boundary act as
background fields:

Z(X,φ) = Z(∂X, φ) =

∫
fields(∂X,φ)

Dψ eiS
′(∂X,φ|∂X ,ψ).

Intuitively, this has the form of a wavefunction in the D + 1-dimensional
theory, and so we obtain a state in some Hilbert space, which is (very)
schematically

|Z(∂X)〉 =

∫
fields(X)

Dφ

∫
fields(∂X,φ)

eiS
′(φ|∂X ,φ)|φ〉. (6.1)

In Dan Freed and Constantin Teleman’s relative QFT [79] (see also Anton
Kapustin’s ICM lecture [82]), this is phrased by saying that the theory on
the boundary defines a morphism from the trivial D + 1-QFT to the bulk
QFT. In particular, on the level of Hilbert spaces we have a map

C→ HY ,
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where HY is the Hilbert space of bulk states on some D-manifold Y . The im-
age of 1 ∈ C under this map is supposed to be |Z(Y )〉. Note that states in the
Hilbert space and partition functions have similar normalization ambiguities.

We will see this is a powerful tool for studying D-dimensional QFTs
coupled to background gauge fields. In this case we will attempt to derive
which D + 1-dimensional gauge theory contains the state

|Z〉 =
∑

A∈Z1(Y,G)

Z(Y,A)|A〉

in its Hilbert space. To do so we will need an understanding of the Hilbert
space of some of the gauge theories

The presentation of these Hilbert spaces will depend on a choice of trian-
gulation on Y and the background gauge field A will be defined as a 1-cocycle
on this triangulation. Intuitively, we can couple a path integral QFT to such
an object as follow. This triangulation gives rise to a decomposition of Y
into dual polyhedral D-cells of Y ∨. One can consider the path integral on
each D-cell where the boundary fields are fixed. This gives a sum of parti-
tion functions, one for each D-cell, which is a function of all of the boundary
values. We use the G action on the fields and the 1-cocycle A ∈ Z1(Y,G)
to form a half dimensional subspace of these boundary values. To do so, we
look along the boundarys (01)∨ where D-cells (0)∨ and (1)∨ meet and fix a
diagonal subspace of boundary values by

A(01) · φ0|(01)∨ = φ1|(01)∨ ,

using the action of A(01) ∈ G on the fields φ, where φ0 are those fields in
(0)∨ and φ1 are those in (1)∨. The cocycle condition on A ensures that this
is consistent across triple and higher junctions. Integrating over this half
dimension subspace defines a state |Z〉.

6.2 Hilbert Spaces of Topological Gauge The-

ories

6.2.1 Higher Dijkgraaf-Witten Hilbert Space

Fix a finite (∞-)group G, a cocycle ω ∈ ZD(BG, U(1)), and a first de-
scendant ω1. To a d = D − 1 manifold Y we may associate a Hilbert
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space HY , spanned by an orthonormal basis of “classical states” |A〉, where
A ∈ Z1(Y,G). Within this Hilbert space is a subspace of “physical states”
Hphys
Y , which are linear combinations of the |A〉’s invariant under the local

gauge transformations

Ug|A〉 7→ e−i
∫
Y ω1(A,g)|Ag〉

for all g ∈ C0(Y,G). Orbits of the classical states under these transforma-
tions,

|[A]〉 =
|H0(Y,G)|
|C0(Y,G)|

∑
g∈C0(Y,G)

e−i
∫
Y ω1(A,g)|Ag〉

with this normalization form an orthonormal basis for the physical Hilbert
space and are labelled by the (nonabelian) cohomology classes [A] ∈ H1(Y,G).

It turns out that one can give an Atiyah-Segal description of higher
Dijkgraaf-Witten theory which associates this Hilbert space Hphys

Y to Y [83,
84]. To a D-manifold X with boundary we associate the state |X〉 ∈ Hphys

∂X

defined in the basis above by

〈[A]|X〉 =
∑

[Â]∈H1(X,G)

[Â]|∂X=[A]

exp i

∫
X

ω(Â).

For this reason we refer to Hphys
Y as the (higher) Dijkgraaf-Witten Hilbert

space.

Abelian Examples

When G is an abelian 1-group, for instance G = Zn, then it is useful to
write the background gauge field as in integer cochain A ∈ C1(X,Z). In this
case we have two kinds of gauge transformations, 0-form, f ∈ C0(X,Z), and
1-form w ∈ C1(X,Z) which act by

A 7→ A+ df + nw.

In this case the 1st descendant will be a function of both parameters:

δf,wω(A) = dω1(A, f, w).

Similar resolutions can be made for stable ∞-groups, although we won’t use
them here.
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For the generator of H3(BZn, U(1)) given by

ω(A) =
1

n2
A ∪ dA,

we can compute the descendant by inspection:

ω(A+ df + nw)− ω(A) =
1

n2
df ∪ (dA+ ndw) +

1

n
(w ∪ dA+ A ∪ dw)

= d

(
1

n2
f ∪ (dA+ ndw)− 1

n
A ∪ w

)
.

ω1(A, f, w) =
1

n2
f ∪ (dA+ ndw)− 1

n
A ∪ w.

Thus a 1+1D theory that lives on the boundary of the 2+1D Zn Dijkgraaf-
Witten theory with twist ω will have a partition function which transforms
this way.

To extract some physical content from this expression, consider the first
term, which comes about from the 0-form variation when w = 0:

Z(Y,A+ df) = exp

(
2πi

n2

∫
Y

f ∪ dA
)
Z(Y,A),

where Z(Y,A) is the partition function of the anomalous boundary theory
on a closed surface Y coupled to background gauge field A ∈ Z1(Y,A). Let
us suppose we insert a 2D ’t Hooft operator through a triangle (012) of Y ,
modifying the cocycle condition for A at that face to dA(012) = 1. We see
that the transformation law above is now

Z(Y,A+ df) = exp

(
2πi

n2

∫
Y

f ∪ δ012

)
Z(Y,A) = e

2πi
n2 f(0)Z(Y,A).

This is the same transformation rule we would have if there was an A Wilson
line with fractional charge 1/n is ending at vertex 0. One says that the
boundary A flux carries fractional A charge, and this fraction characterizes
the anomaly.

In QFTs whose quantum mechanical structure is understood, this frac-
tional charge shows up in the twisted sectors of the Hilbert space. That is,
the 1+1D theory has a Hilbert space on a circle where the boundary condi-
tions of the fields are periodic up to an application of a fixed element m ∈ Zn.
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These are the boundary conditions for fields restricted to a circle enclosing a
region R where

∫
R
dA = m, so we can relate it to the above. What happens

is that when m = 0, the charges of states in the Hilbert space form the lattice
of integer charges, while when m = 1, because of the anomaly, this charge
lattice is shifted by a fractional amount 1/n, in order to be consistent with
the above transformation rule. This allows us to characterize the anomaly
precisely. We will see 1+1D examples of this when we discuss some conformal
field theories in section 7.3.

6.2.2 Hilbert Space of a Simple Topological Gravity
Theory

As we have discussed, it’s reasonable to use Stiefel-Whitney and other charac-
teristic classes of the tangent bundle in the construction of action principles,
and this leads to some interesting geometric effects, like the appearance of
spin structure. Now we investigate the meaning of topological terms made
entirely from the Stiefel-Whitney classes, in fact where such a term is the
only contribution to the action, and there may as well be no other fields.

For instance, there is a 3+1D unoriented TQFT with the partition func-
tion

Z(X) = (−1)
∫
X w2(TX)2

.

If X is a closed PL 4-manifold with branching structure, then we can give a
cocycle defining w2(TX) ∈ Z2(X∨,Z2). If X∨ is a triangulation then given
it a branching structure as well we can define a Lagrangian density

1

2
w2(TX) ∪ w2(TX).

When we change the branching structure, w2(TX) 7→ w2(TX) + dα+ 2β for
some α ∈ C1(X,Z), β ∈ C2(X,Z). If X has boundary (and still X∨ is a
triangulation), then the action has a boundary variation∫

∂X

1

2
α ∪ w2(TX) +

1

2
w2(TX) ∪ α +

1

2
α ∪ dα. (6.2)

Write ∂X = Y . We choose to consider only branching structures for which
the edges with exactly one vertex in ∂X are oriented towards ∂X. With this
convention the branching structure near ∂X depends only on the branching
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structure on Y . Further, w2(TX)|Y is determined by this branching struc-
ture. We denote it w2(TY ⊕ NY ), since it represents this Stiefel-Whitney
class.

Thus we can define a Hilbert space associated to Y which has an or-
thonormal basis labelled by branching structures of Y . An efficient way of
encoding this is to give the vertices of Y a total ordering. The physical
states are sums of these which are invariant under a combined change of the
branching structure (a re-ordering of the vertices) and multiplication by

(−1)
∫
Y α∪w2(TY⊕NY )+w2(TY⊕NY )∪α+α∪α,

where α is the 1-form transformation of w2(TY ⊕ NY ) in caused by this
change in branching structure.

Let us note that w2(TX)2 integrates to the signature of X modulot 2.
It follows from Gauss sum formulas (see eg. [34]) that this theory is equiv-
alent to a Crane-Yetter-Walker-Wang model [73, 85] with four dynamical
2-form gauge fields Bi ∈ Z2(X,Z2) and an action which is the sum of their
Pontryagin squares:

S =
∑
i

1

4
Bi ∪Bi +

1

4
Bi ∪1 dBi.

6.3 Two Anomalous Topological Gauge The-

ories

6.3.1 Higher Symmetries of Topological Gauge Theo-
ries

The global symmetries of Dijkgraaf-Witten theory are symmetry transforma-
tions of BG which preserve the Dijkgraaf-Witten class [ω] ∈ HD(BG,U(1)).
As we discussed around the classifying space, H-group actions on BG are
the same as BG-bundles over BH. In turn, this is equivalent to group exten-
sions of H by G. When G is abelian (or more generally a stable ∞-group),
then this is the same as an action ρ of H on G, together with a (ρ-twisted)
2-cocycle

c ∈ H2(BH,Gρ)

which controls all possible anomalies of these symmetries.
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Note that even when ρ is trivial, that is, when H doesn’t action G, there
still may be nontrival extension cocycles c. A puzzle in this case is that the
global H symmetries (gauge transformations in Z0(X,H)) may not act on
the G gauge field at all. However, in a local formulation of the G Dijkgraaf-
Witten theory with no constraints, such as the quantum double, in this case
we will see a nontrival action on the dual variables. Physically, gauge theories
always come with charged matter, and in the action of the globalH symmetry
on this charged matter, we will see the cocycle c. We don’t discuss this here,
but it is discussed in [86, 77].

6.3.2 2+1D 0-form Gauge Anomaly

The example in this section was first discussed by Anton Kapustin and myself
in [86, 87] and is the first known example of an anomalous global internal
symmetry in an odd spacetime dimension.

Derivation of the Anomaly Theory

We consider Z3×Z3 global symmetries of topological Z3 gauge theory where
the global symmetry group is extended by the gauge group. In particular we
consider the subgroup H(3, 3) of GL(3,C) generated by

X =

1 0 0
0 e2πi/3 0
0 0 e4πi/3

 Y =

0 0 1
1 0 0
0 1 0

 .
This group is sometimes called the discrete Heisenberg group. These gener-
ators satisfy the group algebra X3 = Y 3 = 1,

XYXY −1 = e2πi/3 = Z.

In terms of Z3 gauge fields A,B, c governing the X, Y, Z twists, respectively,
the relations above imply

dA = dB = 0 mod 3,

dc = A ∪B mod 3. (6.3)

This last expression means that under A,B gauge transformations, c must
transform. One choice of 0-form transformation rule is

A 7→ A+ df (6.4)
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B 7→ B + dg

c 7→ c+ f ∪B + A ∪ g + f ∪ dg.
Consider now a 2+1D Dijkgraaf-Witten term for c, which are all propor-

tional to

S0(c) =

∫
Y

1

9
c ∪ dc.

We wish to modify this action by “counterterms”
∫
Y

Λ(A,B, c), Λ(A,B, c) ∈
C3(X,R/Z) which vanish when A = B = 0, ie. Λ(0, 0, c) = 0, such that

S0(c) +

∫
Y

Λ(A,B, c)

is gauge invariant. From the theory of descendants, this is equivalent to the
condition

d(
1

9
c ∪ dc+ Λ(A,B, c)) = 0.

In fact we will find that this is an impossible request, although there is an
ω(A,B) for which

d(
1

9
c ∪ dc+ Λ(A,B, c)) = ω(A,B).

This ω ∈ Z4(B(Z3 × Z3), U(1)) will define the 3+1D anomaly theory for us.
The situation is familiar to mathematicians. Indeed, the action of BZ3×

BZ3 on BZ3 defines a fibration

BZ3 BH(3, 3)

BZ3 ×BZ3.

We begin with a cohomology class on the fiber, namely the Dijkgraaf-Witten
Lagrangian, and we wish to extend it to the total space BH(3, 3). There are
a series of obstructions encoded in the Serre spectral sequence. Λ(A,B, c) is
built up “page by page” (equivalently order by order in A,B) by trivializing
the differentials. In our case, all but the last differential is trivializable, and
it is ω(A,B).

We take

Λ0(A,B, c) =
1

9
(A ∪B ∪ c− c ∪ A ∪B)− 1

9
c ∪1 d(A ∪B)
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and compute

d(
1

9
c ∪ dc+ Λ0(A,B, c)) =

2

3
d(A ∪B) ∪ c+ · · · ,

where · · · are terms independent of c. This 2
3
d(A∪B) is the first differential

we encounter in the Serre spectral sequence of the above fibration. In order
to proceed, we need to find a λ1 ∈ C2(B(Z3)2,Z3) such that

dλ1(A,B) =
2

3
d(A ∪B).

In fact, 2
3
d(A ∪ B) represents a trivial class in H2(B(Z3)2,Z3), so we may

indeed find such a λ1. This lets us construct the next counterterm

Λ1(A,B, c) =
1

3
λ1(A,B) ∪ c.

Now we compute

d(
1

9
c ∪ dc+ Λ0(A,B, c) + Λ1(A,B, c))

= −1

9
A ∪B ∪ A ∪B +

1

9
A ∪B ∪ d(A ∪B) +

1

3
λ1(A,B) ∪ A ∪B,

which represents a nontrivial class [ω(A,B)] ∈ H4(B(Z3)2, U(1)) called the
Pontryagin square of A ∪B [88].

This class defines a 3+1D Dijkgraaf-Witten theory with gauge group
Z3 × Z3. Our 2+1D theory (with counterterms) forms an extension of this
TQFT to 4 manifolds whose boundary admits a c satisfying (6.3) (cf. open-
closed TQFT [89, 90]) by

−
∫
X

ω(A,B) +

∫
∂X

1

9
c ∪ dc+ Λ0(A,B, c) + Λ1(A,B, c).

Note that Stokes’ theorem does not imply this is zero unless c can be ex-
tended into X. However, our calculation does imply that this combination
is invariant under all gauge transformations.

This construction of the theory depends nontrivially on the filling (X,A,B).
We can demonstrate this by exhibiting a single nontrivial

∫
X
ω(A,B) on a

closed 4-manifold X. We can take a torus X = T 4 with one vertex and four 1-
cycles Γ1, . . . ,Γ4,

∫
1,2
A = 1 and

∫
3,4
B = 1, zero otherwise. These are closed
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as integer cochains, not just modulo 3, so d(A ∪B) = 0 and the second and
third terms of ω(A,B) vanish. The first term yields

∫
T 4 ω(A,B) = −1/9.

This implies a nontrivial dependence on the filling and therefore that the
symmetry is indeed anomalous.

A result of combined bulk-boundary gauge invariance is that when we
compute the 1st descendant of ω(A,B) under the gauge transformations
(6.4), we have∫

Y

ω1(A,B, f, g) = δf,g

∫
Y

1

9
c ∪ dc+ Λ0(A,B, c) + Λ1(A,B, c).

Therefore, the boundary partition function (cf. (6.1))

|Z〉 =
∑

A,B∈Z1(Y,Z3)

∑
dc=AB

exp 2πi

(∫
Y

1

9
c∪dc+Λ0(A,B, c)+Λ1(A,B, c)

)
|A,B〉

is a state in the Hilbert space of the ω(A,B) Dijkgraaf-Witten theory.

6.3.3 2+1D Gravity Anomaly

A version of this theory was discussed in [91].
Let Y be a triangulated PL 3-manifold with branching structure, possibly

unorientable. Recall we defined w2(TY ⊕ NY ) in section 6.2.2. Briefly, we
compute w2(T (Y × [0, 1])) where the prism Y × [0, 1] is given a branching
structure extending that of Y so that all the internal edges point from Y × 0
to Y ×1. Then we restrict w2(T (Y × [0, 1])) to Y ×1. We use this to write an
action functional for a pair of dynamical fields a ∈ C1(Y ∨,Z2), b ∈ C1(Y,Z2):

S(a, b) =
1

2

∫
Y

(a, db− w2(TY ⊕NY )) + b ∪ w2(TY ⊕NY ).

Integration over a enforces the constraint

db = w2(TY ⊕NY ) mod 2.

This constraint depends on the branching structure of Y , as w2(TY ⊕NY )
does. When we change the branching structure, we may have

w2(TY ⊕NY ) 7→ w2(TY ⊕NY ) + dα
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for some α ∈ C1(Y,Z2). In order for the above constraint to be invariant, we
need to impose a transformation rule

b 7→ b+ α.

Like we discussed in section 5.4.1 and 4.2.4, this means b is a spin structure
and its Wilson lines are spinors.

Under this transformation, the remaining term

1

2
b ∪ w2(TY ⊕NY )

transforms exactly like the boundary variation (6.2). Thus, we can define an
action on 4-manifolds X with boundary ∂X = Y∫
X

1

2
w2(TX) ∪w2(TX) +

1

2

∫
Y

(a, db−w2(TY ⊕NY )) + b ∪w2(TY ⊕NY ).

This bulk-boundary action is independent of the branching structure but it
depends nontrivially on the filling X. For instance,

∫
CP2 w2(TCP2)2 = 1.

This means it is impossible to modify S(a, b) so that it is a, b-gauge invariant
and independent of a choice of branching structure without adding more
background structure. In this sense there is an anomaly.

This is very similar to the framing anomaly of 2+1D Chern-Simons theory
[71]. Indeed, this anomaly has been related to the chiral central charge mod 4
[92] and the theory is equivalent to a Walker-Wang theory, which is known to
carry chiral Chern-Simons theories as a boundary condition [85]. However, it
is slightly different because this anomaly requires us to consider unorientable
3-manifolds, meaning physically that it is only relevant when there is time-
reversal, reflection, or some other orientation-reversing spacetime symmetries
[93] (Dominic Else and I discussed symmetries which act on spacetime in
[94]). Indeed, if we only consider oriented manifolds, then since

ΩSO
3 = 0,

we can always choose the filling X to be oriented. For oriented closed 4-
manifolds it’s still possible to have a nontrivial partition function of the
anomaly theory (eg. CP2), but this 3+1D TQFT is continuously connected
to the trivial one through a family whose partition functions are

Z(X) = eiθ
∫
X w2(TX)2

, θ ∈ R.
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We can only use the anomaly in-flow argument when the bulk theory is dis-
connected from the trivial theory in the space of TQFTs [93, 78]. Intuitively,
we could otherwise define our theory on a slab Y × [0, 1] with our theory on
Y ×0, the trivial theory on Y ×1, and θ varying continuously from π to 0 along
the interior direction, and this would be invariant under all transformation.

As we discussed in section 5.4.1, a consequence of the action S(a, b) is that
the b-charge, b-flux, and b-charge/flux bound state are all spinors. For this
reason the theory is called the all fermion Z2 gauge theory. These braiding
relations define a modular tensor category with an anomalous anti-unitary
symmetry [92]. In 3+1D, one can study electrodynamics with a fermionic
electron, fermionic monopole, and fermionic dyon, and I showed in [95] (see
also [96]) that this theory has an anomaly whose anomaly theory has partition
function

Z(X5) = (−1)
∫
X w2(TX)∪w3(TX),

by reduction to a theory of the form

1

2

∫
Y

(a, db− w2(TY ⊕NY )) + b ∪ w3(TY ⊕NY ),

where now a ∈ C2(X∨,Z2) and b ∈ C1(X,Z2) is descended from the elec-
trodynamic gauge field upon condensing cooper pairs [97]. Interestingly,
this anomaly theory is not connected to the trivial TQFT for oriented 5-
manifolds. Indeed,

ΩSO
5 = Z2,

characterized by the de Rham invariant of the linking form [98], which com-
putes w2w3.
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Chapter 7

Bosonization/Fermionization
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Introduction

In this chapter we will descibe a number of correspondences between D-
dimensional QFTs of oriented manifolds (ie. bosonic QFTs) with an action
of a special stable ∞-group ED, related to the spin cobordism spectrum,
with a “canonical” anomaly, and D-dimensional QFTs of spin manifolds (ie.
fermionic QFTs). These correspondences are called bosonization going from
the latter to the former and fermionization going from the former to the
latter.

Bosonization/fermionization is an old subject, going at least as far back as
Lars Onsager’s computation of the critical Ising model correlation functions
[99], and forming the foundation of much of the theory of integrable systems.
For example, see [51]. Recently, pushed forward by new understanding of
topological aspects of field theories and spin structures [100, 23, 46, 101],
we are beginning to understand how to push these techniques into higher
dimensions. For instance, see [102, 64].

The most simple form of bosonization can be performed on any fermionic
QFT with expectation value

O 7→ 〈O〉FX,η

on a closed D-manifold with spin structure η by simply summing over the
spin structures, which form a finite set:

〈O〉BX :=
∑
η

〈O〉FX,η.

Because spin structures are locally indistinguishable, the resulting expecta-
tion value satisfies cluster decomposition and defines a bosonic QFT. This
can be proven rigorously if one has a path integral description of the expec-
tation values and is expected to hold in general. The CPT transformations
are more subtle and we will not discuss them here. However, see [103].
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We would like to improve this bosonization map to be invertible. We
use a trick similar to constructing the Fourier transform, introducing probe
charges which see the spin structure. The simplest sort of probe charge is a
fermionic particle, which is a sort of Wilson loop for the spin structure. We
write it (the bare Wilson loop)

(−1)
∫
γ η,

where η ∈ C1(X∨,Z2) is the spin structure and γ ∈ Z1(X∨,Z2) is the world-
line of the particle. We can use Poincaré duality to realize this probe particle
instead as a Z2 D− 1-form gauge field B ∈ ZD−1(X,Z2). Thus, in the pres-
ence of the probe, we have

〈O〉bX,B :=
∑
η

〈O〉fX,η(−1)
∫
X(B,η). (7.1)

This transformation has an inverse transformation where we use a spin struc-
ture η to probe the B field:

〈O〉fX,η =
∑
B

〈O〉bX,B(−1)
∫
X(B,η). (7.2)

This works because ∑
B∈ZD−1(X,Z2)

(−1)
∫
X(B,η−η′) = δ(η − η′).

We would like to think about B as a gauge field associated to a D−2-form
Z2 symmetry of the bosonic theory, and not have to work with simplicial
cocycles, especially if the QFTs in question are defined in the continuum.
There is a problem, since under a gauge transformation

B 7→ B + dλ,

we have
(−1)

∫
X(B+dλ,η) = (−1)

∫
X(B,η)+(λ,w2),

the second term of which pulls out of the sum over η and so

〈O〉bX,B+dλ = 〈O〉bX,B(−1)
∫
X(λ,w2). (7.3)

This means that the BD−1Z2 symmetry of the theory 〈−〉bX,B is anomalous.
Only after the introduction of the spin factor in (7.2) can the sum be made
over [B] ∈ HD−1(X,Z2).
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7.1 Spin Dijkgraaf-Witten Theory

As an example of the bosonization procedure we discuss the construction of
a topological G gauge theory in 2+1D which depends on a spin structure.

We begin with a bosonic theory whose fields are a ∈ Z1(X,G), b ∈
C1(X,Z), c ∈ C1(X∨,Z) and action is

S0(a, b, c) =

∫
X

1

2
b ∪ db+

1

2
(c, db− ν2(a)) + ν3(a), (7.4)

where ν2(a) ∈ C2(X,Z2) and ν3(a) ∈ C3(X,R/Z) are functions of a.
One can think of ν3(a) as a Dijkgraaf-Witten type topological term for a,

although we will soon see it satisfies an interesting conservation law which
is unlike the usual dν3 = 0. On the other hand we will find dν2 = 0. Indeed
upon integrating out c the second term imposes a constraint that says that
b and a together combine into a single gauge field for a central extension

Ω1
spin = Z2 → Ĝ→ G,

where for later convenience we identify the gauge group of b with the spin
cobordism group of 1-manifolds. Equivalently ν2 describes how the G gauge
field sources b flux. Finally, roughly speaking the first term indicates that
these (bare) b-fluxes carry unit b-charge, and are thus fermionic particles.
The presence of these fermionic particles is a clue that we may be able to
fermionize this theory.

7.1.1 Gauge Invariance and the Gu-Wen Equation

The action is invariant under gauge transformations of b after integrating by
parts. It is invariant under gauge transformations c 7→ c+df up to boundary
terms iff

dν2(a) = 0 mod 2.

Meanwhile, under a gauge transformation of

a 7→ af ,

in order for the constraint imposed by integrating out c:

db = ν2(a) mod 2
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to be gauge invariant, we must have a transformation rule for b:

b 7→ b+ ν2,1(a, f) mod 2,

where ν2,1(a, f) is a first descendant of ν2. This creates a variation in the
first term: ∫

X

1

2
ν2,1(a, f) ∪ (ν2(af )− ν2(a)).

We wish this variation to cancel the variation of ν3, ie. we need to choose ν3

so that∫
X

1

2
ν2,1(a, f) ∪ (ν2(af )− ν2(a)) + ν3(af )− ν3(a) = 0 mod 1

up to boundary terms. To do this, we will assume a relation called the
Gu-Wen equation:

1

2
ν2 ∪ ν2 = dν3 mod 1.

This implies that both

ν2,1(a, f) ∪ (ν2(af )− ν2(a)) and ν3(af )− ν3(a)

are first descendants of ν2
2 . Since the first descendants are defined up to exact

terms, it follows given the Gu-Wen equation that the action S0 is invariant
under gauge transformations of a, b, and c.

7.1.2 1-form Anomaly

We couple this to a background gauge field B ∈ Z2(X,Z2), for which a small
gauge transformation λ ∈ C1(X,Z) acts by

B 7→ B + dλ

b 7→ b+ λ.

And a large gauge transformation β ∈ C2(X,Z) by

B 7→ B + 2β.

We add to the action some extra terms

S1 =

∫
X

1

2
(B, c) +

1

2
B ∪1 db.
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There is no β variation, and the total λ variation is

δλ(S0 + S1) =

∫
X

1

2
λdb+

1

2
bdλ+

1

2
dλ ∪1 db+

1

2
B ∪1 dλ+

1

2
λdλ

=

∫
X

1

2
B ∪1 dλ+

1

2
λdλ+

1

2
d(· · · ).

If X = ∂Z, then this is a boundary variation of∫
Z

1

2
B ∪B,

which forms a nontrivial 4D TQFT for oriented manifolds equipped with an
equivalence class of BZ2 gauge field [B] ∈ H2(Z,Z2). Furthermore, by the
Wu formula

[w2(TZ)] ∪ [B] = [B] ∪ [B] ∈ H4(Z,Z2),

this theory has the same partition function on every closed, orientable 4-
manifold as the theory with action∫

Z

1

2
(w2(TZ), B)

we discussed in the introduction. It is thus reasonable to assume there is a
correspondence between their boundary conditions. In particular, we hope
to cancel the anomaly (7.3) given a spin structure η ∈ C1(X,Z2) on X.

7.1.3 A Special Quadratic Form and Fermionization

To do so, we will construct a function

Qη : Z2(X,Z2)→ Z2

which satisfies

Qη(B + dλ) = Qη(B) +

∫
X

1

2
λdλ+

1

2
B ∪1 dλ.

Then the combined action
S0 + S1 +Qη

will be completely gauge invariant, and define the spin Dijkgraaf-Witten
theory associated to the Gu-Wen data (ν2, ν3).
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We will construct Qη first in terms of a filling ∂Z = X which carries an
extension of B (as a cocycle). This is always possible since

ΩSO
3 (B2Z2) = 0.

Recall from the relative Stiefel-Whitney cycle theorem that

∂W2(TZ) = W2(TX).

If we have a spin structure η ∈ C1(X∨,Z2) on the PL 3-manifold X, we can
Poincaré dualize it to E ∈ C2(X,Z2) with ∂E = W2(TX). In particular,

∂(W2(TZ) + E) = 0

so we define the relative Stiefel-Whitney cycle as

W2(TZ, η) := W2(TZ) + E ∈ Z2(Z,Z2).

This cycle represents the obstruction to extending E to a spin structure on
Z. We write

Qη(B,Z) =

∫
Z

B ∪B + (w2(TZ, η), B).

If we have a second filling Z ′, we can glue them together and find

Qη(B,Z)−Qη(B,Z
′) =

∫
Z∪Z′

B∪B+

∫
Z

(w2(TZ, η), B)+

∫
Z′

(w2(TZ ′, η), B)

=

∫
Z∪Z′

B ∪B + (w2(T (Z ∪ Z ′)), B) = 0 mod 2,

using the Wu relation. Thus, Qη(B) = Qη(B,Z) is independent of the fill-
ing Z. This argument shows it is a cobordism invariant of PL 3-manifolds
equipped with a B ∈ Z2(X,Z2).

However, it is not invariant under gauge transformations B 7→ B + dλ.
Instead,

Qη(B + dλ) =

∫
Z

dλ ∪B +B ∪ dλ+ dλ ∪ dλ+ (w2(TZ, η), dλ).

Using
∂(W2(TZ, η) ∩ λ) = W2(TZ, η) ∩ dλ,
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this becomes the required variation:

Qη(B + dλ) =

∫
X

λdλ+B ∪1 λ.

Therefore
Sf = S0(a, b, c) + S1(b, c, B) +Qη(B)

is invariant under all gauge transformations.

7.1.4 Generalization To Higher Dimensions

There is a simple generalization to higher dimensions, where we take a ∈
Z1(X,G), b ∈ CD−2(X,Z2), c ∈ C1(X,Z2), νD−1 ∈ ZD−1(BG,Ω1), νD ∈
CD(BG,R/Z) and consider

S(a, b, c) =

∫
X

1

2
b ∪D−3 db+

1

2
(c, db− νD−1(a)) + νD(a),

satisfying the higher Gu-Wen equation

dνD = Sq2νD−1 = νD−1 ∪D−3 νD−1

and where b transforms under a gauge transformations by the 1st descendant
of νD−1. One may check that under the BD−2Z2 symmetry transformation

b 7→ b+ λ,

this theory has an anomaly
Sq2B.

Then using the Wu formula∫
Z

Sq2B + (w2(TZ), B) = 0 mod 2

which holds on closed, orientable D + 1-manifolds, we may define a

Qη(X,B) =

∫
Z

B2 + (w2(TZ, η), B)

as before, relative to a filling, and this is independent of the filling. The
variation of Qη cancels the anomalous variation of the action, given suitable
counterterms as above.
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A caveat is that ΩSO
D (BD−1Z2) may be nonzero, and in this case our

definition of Qη becomes difficult to apply since we cannot find a filling for
(X,B). We can improve this definition by relaxing the orientability condition
on the filling. In this case, the Wu formula is

Sq2[B] = ([w2] + Sq1[w1]) ∪ [B] ∈ HD+1(Z,Z2)

for closed D + 1-manifolds Z, not necessarily orientable. We can give a
cocycle representative of Sq1[w1] using the realization of Sq1 as the Bockstein
operation:

Sq1w1 = dw1/2.

Recall our Poincaré dual cycle W1 is defined first on the barycentric sub-
division as the sum of all D − 1-simplices mod 2. We can endow these
D−1-simplices with local orientations induced from the canonical branching
structure on the barycentric subdivision to define an integer-valued chain
which by abuse of notation we also call W1(TXb) and which reduces to
the usual chain mod 2. Then using the Morse flow we obtain W1(TX) =
f∞W1(TXb) ∈ CD−1(X,Z) and

∂W1/2 ∈ ZD−2(X,Z)

is a Poincaré dual representative of Sq1[w1]. Then we may define a pin−

structure as a chain E ∈ CD−1(X,Z2) with

∂E = W2(TX) + ∂W1(TX)/2.

These chains behave well with respect to boundaries, in particular, for a
(nonorientable) filling Z and a pin− structure on its boundary, X, we have

∂(W2(TZ) + ∂W1(TZ)/2 + E) = 0.

This allows us to define a quadratic form

QE(B,Z) =

∫
Z

B ∪B + (W2(TZ) + ∂W1(TZ)/2 + E) ∩B

which can be used to cancel the anomalous variation (7.3) and which one
may check only depends on the boundary X and not the filling Z.

This allows us to use more general nonorientable fillings, but still the
relevant bordism group ΩO

D(BD−1Z2) may be nonzero. The advantage is that
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this bordism group is 2-torsion. Indeed, the nonorientable bordism spectrum
is a product of BkZ2’s with no Postnikov invariants [24]. Instead, we can use
a trick. If (X,B) does not admit a filling, then two copies (X,B) t (X,B)
admits a filling Z and we define

QE(B,X) =
1

2
QE(B,Z).

This finishes the construction of the general spin Dijkgraaf-Witten theory on
arbitrary spin manifolds.

7.1.5 Comments on the Partition Function and More
General G-SPT Phases

We can construct the partition function of our theory, where a and η are
kept as backgrounds but all other fields are summed over:

Z(X, a, η) = N(X)
∑

b∈C1(X,Z2)
c∈C1(X∨,Z2)

∑
B∈C2(X,Z2)

B∨∈C0(X∨,Z2)

e2πiSf (a,b,c,B,η)+πi
∫
X(B∨,dB),

where we have introduced a Lagrange multiplier for B which sets the con-
straint dB = 0. With proper normalization

N(X) = 2−2|X1|−2|X2|

this is a cobordism invariant of (X, [a], [η]),

Z ∈ Hom(Ω3
spin(BG), U(1)).

This means that it defines a unitary invertible Atiyah-Segal TQFT for spin
3-manifolds over BG, ie. the TQFT associated to a fermionic G-SPT phase
[104].

However, it is not the most general cobordism invariant nor the most
general such TQFT. The most general sort also admits a description by
bosonization, as showed by Gaiotto-Kapustin [23], but the bosonization is a
nonabelian TQFT carrying Majorana quasiparticles. The description of these
more general theories requires describing how the spin structure responds
to extended fermionic probes. Beyond simple fermionic particles, the first
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extended fermionic probe is a string carrying a Kitaev wire [46], a fermionic
SRE phase described by

Ω2
spin = Z2.

The partition function of this SRE phase on a surface with spin structure is
the Arf invariant [104]. The Arf invariant is not an integral of a local quantity
over the surface, since it is not multiplicative over covering spaces [45]. For
this reason one needs to consider these extended objects to carry nontrivial
degrees of freedom of their own, which does not fit into any tranditional
gauge theory or cocycle framework. To describe these in such a way appears
possible, but one must consider “quantum” 1-cycles labeled by elements of a
monoidal category. We leave this for future work.

For now we consider that just as ν2 described how fermionic particles are
sourced by the G-gauge field a, these extended objects may also be sourced
by the G-gauge field, and this should be described by a

ν1(a) ∈ Z1(BG,Ω2
spin).

The total data describing the most general fermionic G-SPT in 2+1D [23] is

ν1 ∈ Z1(BG,Ω2), ν2 ∈ Z2(BG,Ω1), ν3 ∈ C3(BG,R/Z)

satisfying the Gu-Wen equation

dν3 = ν2 ∪ ν2.

Presumably in higher dimensions the G gauge field can source even higher
dimensional extended fermionic objects, for example the topological super-
conductors in 2+1D, which are classified by an integer invariant [104], mean-
ing we will have to include a cocycle

νD−3 ∈ HD−3(BG,Z).

In the case D = 3 we’ve been discussing, this is

ν0 ∈ H0(BG,Z) = Z,

which amounts to adding a number of decoupled topological superconductor
to the theory and should change the fermionization procedure accordingly.

In work of Anton Kapustin, and later in collaboration with myself and
Alex Turzillo and Zitao Wang, we proposed that the group of fermionic SRE
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phases in each dimension assemble into a version of the spin cobordism spec-
trum called the (1-shifted) Anderson dual spin bordism spectrum we denote
Ωspin,∨
n = Ωn

spin(−, U(1)), which in torsion parts computes spin cobordism
invariants valued in U(1) and in nontorision parts computes “gravitational
Chern-Simons terms” so that there is a sort of universal coefficient sequence:

Ωspin,∨
n = Hom(Ωspin,tors

n , U(1))⊕ Ωspin,free
n+1

or equivalently

Ext(Ωspin
n ,Z)→ Ωspin,∨

n → Hom(Ωspin
n+1,Z),

which splits but not canonically. Dan Freed and Mike Hopkins later proved
[78] (using the Baez-Dolan-Lurie cobordism hypothesis and an assumption
about the Madsen-Tillman spectrum) that the Anderson dual of the sphere
spectrum forms a good target category for unitary invertible TQFTs and
that these TQFTs are determined by their partition functions, and are thus
classified by Ωspin,∨

n , verifying our physically-motivated conjecture.
This spectrum Ωspin,∨

n defines a cohomology theory and the physical intu-
ition about gauge fields sourcing fermionic SRE phases is precisely captured
by the Atiyah-Hirzebruch spectral sequence which computes

Ωn
spin(BG,U(1)).

Indeed the νj are the cocycles which appear on the E2 page

[νj] ∈ Hj(BG,Ωk
spin(?, U(1))), j + k = n.

The differentials in this spectral sequence are precisely the Gu-Wen equations
are their higher-dimensional analogues. In later work of Anton Kapustin’s
and my own, we argued that these differentials have topological significance
and ensure that the singular cycles of the gauge field, that is, those Poincaré
dual to the νj, have precisely the topological conditions one needs for these
singular cycles to be homologous to immersed submanifolds and for the spin
structure on X to restrict to tangent structure on these submanifolds. A
remaining mystery is to understand why sometimes this tangent structure
must be more general than a spin structure. For example, on RP3, the
unique nontrivial homology class is represented by RP2, which inherits a
pin− structure from a spin structure on RP3 but there is no way to represent
this cycle with an orientable manifold since Sq1 of the Poincaré dual class is
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nonzero (cf. Thom’s theorem in section 4.1). Indeed, Sq1 does not appear
as a differential in the spectral sequence, so nonorientable cycles are bound
to appear. This seems intricately related to the extension problem in the
spectral sequence and I hope that eventually a concrete understanding of it
will be possible.

As far as bosonization may be generalized to include extended probes, we
will need to include gauge fields

bj ∈ Cj(X,ΩD−j
spin (?, U(1)))

which assemble into a map b : X → BF for some ∞-group F associated
with the spin cobordism spectrum such that the νj assemble into a map

ν : G→ F

of ∞-groups. One can think of F as the group of extended invertible
fermionic charges.

For this to work we will need to treat νD ∈ CD(X,U(1)) slightly differ-
ently. The coefficient of νD comes from

Ω0
spin(?, U(1)) = U(1)

and if we included this piece in F we would have a bD ∈ CD(X,U(1)), which is
problematic because the form degree is the same as the spacetime dimension,
and physically it does not really correspond to any fermionic probe. Instead
we consider this “top” U(1) where the anomaly of the F symmetry of the
bosonic system lives. Indeed, in the Atiyah-Hirzebruch spectral sequence,
there is a differential which lands there and that differential is precisely the
anomaly of the F symmetry of the bosonized theory (which is the same
among all bosonizations).

When there is also a global G symmetry of the fermionic theory, the
G symmetry of the bosonization is embedded diagonally in G × F using
ν : G→ F such that the anomaly restricted to this G is cancelled by a local
counterterm νD. Meanwhile the anomaly of the F symmetry is cancelled
by a spin factor generalizing Qη. To form the fermionization we couple to a
dynamical F gauge field. We hope in future work to construct an explicit
formula for this generalized spin factor.
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7.2 Fermionic Anomalies

7.2.1 Hilbert Space of Spin Dijkgraaf-Witten Theory

To understand the Hilbert space spin Dijkgraaf-Witten theory associates to
a spin D− 1-manifold, we study its bosonization (7.4). We will focus on the
case D = 3. The other cases are a straightforward generalization.

Gauge Transformations and Modified Gauss Law

To proceed, we must study the gauge transformations of the action on a
manifold X with boundary ∂X = Y . First we have

c 7→ c+ dh

δS =

∫
Y

(h, db− ν2(a)),

which indicates that the physical Hilbert space of Y lies in the constrained
Hilbert space spanned by classical states

|a, b, c〉

satisfying
db = ν2(a). (7.5)

Indeed, this is the constraint equivalently obtained by integrating out c.
Next we study

b 7→ b+ df

∂S =

∫
Y

1

2
f ∪ db.

This indicates a modification of the usual Gauss law which forbids the ter-
mination of a Wilson line:

W (Γ) = (−1)
∫
Γ b, Γ ∈ C1(Y,Z2).

That is, instead of gauge invariance of this operator requiring ∂Γ = 0 (cf.
section 5.2), it requires that∫

∂Γ

f =

∫
Y

f ∪ db ∀f ∈ C0(X,Z2),
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ie.
f−∞W (db) = ∂Γ. (7.6)

This means that an isolated triangle (012) where db(012) = 1 mod 2 must
have a Wilson line ending at the vertex (0). Warning: it’s not guaranteed
that all vertices can be end points of Wilson lines because the image of f−∞
might not be surjective. This sensitive framing dependence is a feature of
framing anomaly. The proper way to say it is that bare b-fluxes are decorated
with b-charges, much like in our analysis of the Zn Dijkgraaf-Witten theory
in section 5.2. These are both bosons with a mutual braiding phase −1, so
the composite object is a statistical fermion, which we distinguish from a
spin fermion because there is no spin structure dependence yet.

Finally we consider
a 7→ ag

b 7→ b+ ν2,1(a, g).

The variation of the action comes from two pieces,

δ(
1

2

∫
X

bdb) =
1

2

∫
X

ν2,1(a, g)db+ bdν2,1(a, g) + ν2,1(a, g)dν2,1(a, g)

=

∫
X

1

2
ν2(a) ∪ ν2,1(a, g) +

1

2
ν2,1(a, g) ∪ ν2(ag) +

∫
Y

1

2
b ∪ ν2,1(a, g),

δ(

∫
X

ν3(a)) =

∫
X

ν3(ag)− ν3(a).

Setting aside the boundary term involving b, these are both 1st descendants
of ν2(a) ∪ ν2(a), and accordingly there is a 2-cochain satisfying

dχ(a, g) =
1

2
ν2(a) ∪ ν2,1(a, g) +

1

2
ν2,1(a, g) ∪ ν2(ag) + ν3(ag)− ν3(a).

Thus, the total variation of the action is∫
Y

χ(a, g) +
1

2
b ∪ ν2,1(a, g).

Therefore, the Hilbert space associated to Y shall be considered to be
spanned by “classical states” |a, b, c〉 with a ∈ C1(Y,G), b ∈ C1(Y,Z2),
c ∈ C1(Y ∨,Z2) which are invariant under the gauge transformations

|a, b, c〉 7→
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exp

(
2πi

∫
Y

−χ(a, f) +
1

2
b ∪ ν2,1(a, f) +

1

2
f ∪ db+

1

2
(h, db− ν2(a))

)
×|ag, b+ df, c+ dh〉.

1-form Symmetry Action

There is also the action of the global 1-form symmetry to consider

b 7→ b+ λ, λ ∈ Z1(X,Z2).

This produces a boundary variation

1

2

∫
Y

λ ∪ b.

Eigenvectors of this symmetry are labelled by gauge-invariant functions

q : Z1(X,Z2)→ Z2

satisfying

q(α + β) = q(α) +

∫
Y

α ∪ β + q(β)

by

|q, [b]〉 =
∑

λ∈Z1(X,Z2)

(−1)q(λ)|b+ λ〉.

Such functions are in 1-to-1 correspondence with spin structures [45], where
given a spin structure η we may define

η 7→ qη(b)

for each Z2 cohomology class b by choosing a Poincaré dual representative of
b by disjoint circles, and counting -1 to the number of periodic spin structures
in the restriction of η to these circles.

Examples

The simplest example is G = Z2. We consider a ∈ C1(X,Z) with

da = 0 mod 2
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and gauge transformations

a 7→ a+ df f ∈ C0(X,Z)

a 7→ a+ 2w w ∈ C1(X,Z).

We choose the Atiyah-Hirzebruch data

ν2(a) =
1

2
da,

ν3(a) = ±1

8
a ∪ da,

and one easily checks the Gu-Wen equations

dν2(a) = 0,

dν3(a) = ±1

8
da ∪ da =

1

2
ν2(a) ∪ ν2(a).

We find the descendant

dν2,1(a, f, w) = ν2(a+ 2w + df)− ν2(a) = dw

ν2,1(a, f, w) = w.

This gives us the transformation rule

b 7→ b+ w

under the G gauge transformation. Because of the form of ν3(a), this theory
is sometimes referred to as level ±1/2 Z2 Dijkgraaf-Witten theory. It is
closely related to the spin Chern-Simons theory of [70]. Indeed, these theories
are obtained from U(1)±1 by a Higgs mechanism where the gauge group is
reduced to Z2 ⊂ U(1).

The resulting theory is actually equivalent to Z4 gauge theory with a
Dijkgraaf-Witten level ±2. Indeed, we can rewrite the constraint db = da/2
as,

d(a+ 2b) = 0 mod 4,

so â = a+ 2b is a Z4 cocycle. Further, the level 2 Dijkgraaf-Witten term is

±1

2
â ∪ dâ

4
= ±1

8
a ∪ da+

1

2
b ∪ db,
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up to boundary tersm, which accounts for both topological terms in the
action (7.4). Thus, the Hilbert space of this theory can be understood also
according to section 6.2.1. The boundary variation of the level 2 Dijkgraaf-
Witten term under

a 7→ a+ 2w + dg

b 7→ b+ w + df

is

δS =

∫
∂X

1

2
a ∪ w ± 1

8
(g + 2f) ∪ d(a+ 2b).

The term

±1

8
g ∪ da ∈ δS

tells us that the boundary G-flux must carry G charge ∓1/4 to balance this
variation. This is analogous to how the bulk ’t Hooft line is decorated with
a fractional Wilson line (see section 5.2). When the bulk ’t Hooft line meets
the boundary, its magnetic charge is automatically conserved by the flatness
condition dâ = 0, but for the electric charge to be conserved, it must be met
by a charge density on the boundary.

7.2.2 Anomaly In-Flow and Bosonization

Let us consider a situation where a spin QFT sits at the boundary of an
invertible spin TQFT and both are coupled to a background G gauge field.
As before (cf. 6.1), when the bulk TQFT has nontrivial response to this G
gauge field, then we say the boundary theory has anomalous G symmetry.
The novelty now is that the bulk spin structure restricts to a spin structure
on the boundary, and their mutual dependence on this structure leads to
more intricate anomalies. For instance, we can now have in-flow of not just
gauge charges but also fermionic charges or extended fermionic objects.

In terms of partition functions, the situation is much the same. The bulk
theory associates a 1-dimensional Hilbert space to a D-manifold X with
spin structure η and gauge background A and the partition function of the
boundary theory |Z(X, η,A)〉 defines a vector in this Hilbert space.

We wish to bosonize this setup, coupling the boundary theory to a back-
ground BdΩ1

spin = BdZ2 gauge field B. Assuming that the fermionic nature
of the bulk theory is captured by probe particles, its bosonization is de-
scribed by a class νd+1 ∈ Hd+1(BG,Z2) which describes a central extension
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of ∞-groups
BdZ2 → Ĝ→ G.

For instance when D = d + 1 = 2, we assume the bulk theory is of spin
Dijkgraaf-Witten type and then ν2 ∈ H2(BG,Z2) describes a group extension

Z2 → Ĝ→ G.

As we’ve seen, the background fields A and B combine into a Ĝ gauge field
Â when we bosonize.

7.3 1+1D CFT and the Chiral Anomaly

We will use the following bosonization/fermionization relations:

2−(χ+1)
∑
α

(−1)qη(α)+qη′ (α) = δ(η − η′) (7.7)

2−(χ+1)
∑
η

(−1)qη(α) = δ(α).

These imply the following inverse transformations for arbitrary partition
functions

Zf (η) = 2−(χ+1)/2
∑
α

(−1)qη(α)Zb(α)

Zb(α) = 2−(χ+1)/2
∑
η

(−1)qη(α)Zf (η).

Note that the normalization of the partition functions is arbitrary up to
exponential factors of the Euler characteristic. We have simply chosen the
normalization symmetrically between the bosonic and fermionic transforma-
tion. Further, in this form the Ising ferromagnet Zb(α) = δ(α) is dual to the
trivial fermionic SRE phase while the Ising paramagnet Zb(α) = 1 is dual to
the Kitaev fermionic SRE phase, by the relation

2−(χ+1)
∑
α

(−1)qη(α) = Arf(η).

Furthermore, one can show that these transformations are equivariant with
respect to the mapping class group action of the surface on its spin structures
and H1(Σ,Z2).
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We will apply these transformations to some well known partition func-
tions of 1+1D conformal field theories (CFTs). To describe these theories
from first principles is beyond the scope of this work. As a stop-gap, one can
think of a CFT in terms of Segal’s axioms [105]. In particular, a 2D CFT has
a partition function associated to a closed surface with conformal structure.
The space of conformal surfaces forms a complex manifold, and one of the
hallmarks of 2D CFT is that these partition functions admit a factorization

Z(Σ) =
∑
µν

χ̄µ(τ)Mµνχν(τ), (7.8)

where χµ(τ) are certain special holomorphic functions of the coordinates τ
on the moduli space of conformal structures, called the conformal blocks and
M is some (constant!) complex matrix. For instance, when Σ is a torus, τ is
the shape parameter, valued in the complex upper half-plane, and the χ are
called Virasoro characters.

Indeed, the form of the torus partition function reflects the structure of
the CFT Hilbert space, which is a direct sum of representations of two ten-
sored copies of the Virasoro algebra (one acting on holomorphic degrees of
freedom, the other on antiholomorphic degrees of freedom), a certain infi-
nite dimensional algebra, basically a central extension of the Lie algebra of
Diff(S1). The matrix Mµν tells us which representations Vµ ⊗ V̄ν appear in
the Hilbert space.

There is an action of the (pointed) mapping class group on the vector
space of conformal blocks. In particular for Σ a torus we have a representation
of SL(2,Z), generated by the usual transformations S, T , under which Z(Σ)
is invariant, meaning S†MS = M and T †MT = M . For the torus this is
called modular invariance This places serious constraints on the form of the
partition functions, and can often be used to compute them exactly. As
usual, there is an overall normalization that may or may not be meaningful
depending on the theory and is chosen to preserve conformal invariance of
Z(Σ).

We will also allow for CFTs with extra background structure. For in-
stance, a 2D G-CFT for us will be a 2D Segal CFT for conformal surfaces
equipped with a background G gauge field. Similarly, a 2D spin-CFT will be
such for conformal surfaces equipped with a spin structure. Thus, we get a
partition function for every closed conformal surface with a choice of back-
ground structure. The mapping class group acts on the background, and the
partition functions must transform equivariantly under this action. For the
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torus we call this modular equivariance. Thus we will use the bosoniza-
tion/fermionization relations to form a correspondence between partition
functions of spin-CFTs and those of Z2-CFTs.

The twisted torus partition functions of these more general theories may
also be decomposed as a bilinear form of Virasoro characters. The matrix M
then tells us also about the G charges and fermion parity of the representa-
tions which appear in the Hilbert space, via the identities

Z(1/g) = TrgqL0−c/24q̄L̄0−c/24

Z(AP/P ) = Tr(−1)F qL0−c/24q̄L̄0−c/24,

where q = e2πiτ , L0, L̄0 are the Hamiltonians in the holomorphic and anti-
holomorphic sectors, respectively, c is a number characterizing which central
extension of Diff(S1) appears in the construction of the Virasoro algebra,
and 1/g indicates no twist around the spatial cycle, but a g twist around
the time cycle, and likewise AP/P indicates anti-periodic (periodic) spin
structure around space (time). Furthermore, partition functions with the
opposite twists, trivial around time but nontrivial around space, reveal the
structure of the Hilbert space in twisted sectors, in the presence of G flux or
with periodic spin structure or both.

As far as I know, a complete definition at the level of detail of [106] has not
yet appeared in the literature for either spin-CFT or G-CFT. However, there
are definitions of G-crossed modular tensor category [107] and spin modular
tensor category [108] which are sufficient to describe the space of (G- or spin-
)conformal blocks and the action of the mapping class groups on them for
many CFTs of interest (namely the “rational” ones). For more about the
correspondence between conformal blocks and modular tensor categories/3D
TQFT, see [109, 72].

7.3.1 Ising/Majorana Correspondence

Partition Functions

This section follows the conventions of [110].
We study the partition functions of the Ising Z2-CFT (the Z2 acts by

the usual spin-flipping operation) and the Majorana spin-CFT on a torus.
The Majorana has a partition function for each of the four spin structures
on the torus, labeled antiperiodic (AP) or periodic (P). Writing the cycles
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as space/time ([110] uses the opposite convention) wrt the usual definition
for the Virasoro characters (indexed by their position in the Kac table), by
a standard calculation, we have

Zf (AP/AP ) = |χ1,1(q) + χ2,1(q)|2

Zf (P/AP ) = |χ1,1(q)− χ2,1(q)|2

Zf (AP/P ) = 2|χ1,2(q)|2

Zf (P/P ) = 0.

The last partition vanishes because of a gravitational anomaly.
The pointed mapping class group SL(2,Z) acts on these via its generators

S : AP/AP 7→ AP/AP

P/AP 7→ AP/P

AP/P 7→ P/AP

P/P 7→ P/P,

T : AP/AP 7→ AP/P

P/AP 7→ P/AP

AP/P 7→ AP/AP

P/P 7→ P/P.

Note that the only SL(2,Z)-invariant partition function among them is
Zf (P/P ) = 0.

Now we compute the Ising partition functions in the four symmetry twists,
labeled ±/± for the space/time. The untwisted partition function is a “di-
agonal” modular invariant M = 1 (compare (7.8)):

Zb(+/+) = |χ1,1(q)|2 + |χ2,1(q)|2 + |χ1,2(q)|2.

These correspond to the superselection sectors 1, ψ, σ, respectively of the
Ising TQFT [109]. Only the third is charged under the Z2 symmetry, so we
find

Zb(+/−) = |χ1,1(q)|2 + |χ2,1(q)|2 − |χ1,2(q)|2.
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This is summarized by taking M (of Eqn. (7.8)) to be the charge matrix

C =

1 0 0
0 1 0
0 0 −1

 .
We obtain the partition function Z(−/+) from Z(+/−) by applying the S
transformation

S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −

√
2 0

 ,
which defines the flux matrix

F = S†CS =

0 1 0
1 0 0
0 0 1

 .
Therefore

Zb(−/+) = χ̄1,1(q̄)χ2,1(q) + χ̄2,1(q̄)χ1,1(q) + |χ1,2(q)|2.

We can also derive the remaining twisted partition function Z(−/−) from
Z(−/+) by applying the T transformation

T =

exp(−2πi/48) 0 0
0 − exp(−2πi/48) 0
0 0 exp(2πi/24)

 ,
from which we obtain the charge-flux matrix

T †FT =

 0 −1 0
−1 0 0
0 0 1

 = −CF,

and so

Zb(−/−) = −χ̄1,1(q̄)χ2,1(q)− χ̄2,1(q̄)χ1,1(q) + |χ1,2(q)|2.

One checks that these partition functions are reproduced by the bosoniza-
tion/fermionization formulas:

Zb(+/+) =
1

2
(Zf (AP/AP ) + Zf (P/AP ) + Zf (AP/P ) + Zf (P/P ))

138



Zb(−/+) =
1

2
(Zf (AP/AP )− Zf (P/AP ) + Zf (AP/P )− Zf (P/P ))

Zb(+/−) =
1

2
(Zf (AP/AP ) + Zf (P/AP )− Zf (AP/P )− Zf (P/P ))

Zb(−/−) =
1

2
(−Zf (AP/AP ) + Zf (P/AP ) + Zf (AP/P )− Zf (P/P ))

Or in summary:

~Zb =
1

2


1 1 1 −1
1 −1 1 1
1 1 −1 1
1 −1 −1 −1

 ~Zf .
In the inverse form we have

Zf (AP/AP ) =
1

2
(Zb(+/+) + Zb(−/+) + Zb(+/−)− Zb(−/−))

Zf (P/AP ) =
1

2
(Zb(+/+)− Zb(−/+) + Zb(+/−) + Zb(−/−))

Zf (AP/P ) =
1

2
(Zb(+/+) + Zb(−/+)− Zb(+/−) + Zb(−/−))

Zf (P/P ) =
1

2
(Zb(+/+)− Zb(−/+)− Zb(+/−)− Zb(−/−))

or

~Zf =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1

 ~Zb.
Note that these two matrices are transpose, and the column (row) sums are
the Arf invariant. We refer to these as the bosonization and fermionization
matrices for the torus, respectively. They are simply the matrix elements of
the kernel 2−(χ+1)/2(−1)qη(α).

Chiral Anomaly of the Majorana CFT

The Majorana CFT has a chiral anomaly [111, 80, 110], which can be seen by
studying the chiral fermion parity, a Z2 symmetry under which only the left
moving fermion, ie. the holomorphic sector, is charged. A precise description
of this anomaly requires the use of the (nonabelian) Ising TQFT [104, 23, 46]
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and is beyond the scope of our exposition here. However for completeness
we give an intuitive description of what happens.

One can show that at the Z2 domain wall there is a Majorana zero mode,
that is an edge mode of the fermionic SRE phase generating

Ω2
spin(?, U(1)) = Z2.

This means that the theory sits at the boundary of a fermionic Z2 gauge
theory with the generating

ν1 ∈ H1(BZ2,Z2) = Z2.

As we have briefly discussed, such Z2 gauge theories are generators of the
group of invertible Z2 fermionic SPT phases:

Ω3
spin(BZ2, U(1)) = Z8.

Another meaning of ν1 is that an application of the global Z2 symmetry is
like tensoring with a Kitaev phase. The presence of this symmetry is the
reason why Zf (P/P ) = 0. Meanwhile one can also check ν2 and ν3 are both
zero.

When we bosonize the Majorana CFT, we obtain the Ising CFT, and this
Z2 symmetry acts not as the chiral spin-flip symmetry (which has an order
2 anomaly described by bosonic Z2 gauge theory at Dijkgraaf-Witten level
1) but as Kramers-Wannier duality [51], which maps the Ising CFT to the
Ising CFT with spin-flip symmetry gauged. This is not really a Z2 symmetry
of the Ising CFT since it squares to a projection operator, a fact which is
apparent from the fusion rules

σ ⊗ σ = 1⊕ ψ.

This projection operator preserves all spin-flip-symmetric states, so Kramers-
Wannier duality becomes a symmetry when we couple to background Z2

gauge field, but only then. This is apparently a way that a global symmetry
may be extended by a gauge symmetry without having an actual extension
of symmetry groups.

7.3.2 Compact Boson/Dirac Fermion Correspondence

Partition Functions

This section follows the conventions of [110].
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Now we investigate the correspondence between the Dirac fermion (mass-
less Thirring model) and the compact boson.

The compact boson at radius R has a torus partition function which is a
bilinear combination of infinitely many Virasoro characters:

Z =
1

|η(τ)|2
∑
m,n∈Z

q
1
2

(n/R+mR/2)2

q̄
1
2

(n/R−mR/2)2

, (7.9)

where η(τ) is the Dedekind η function. It is known that at the radius R = 2
the theory is equivalent to a free Dirac fermion, itself equivalent to two de-
coupled Majorana fermions. At this special radius, the (untwisted) partition
function is

Zb(+/+) =
1

|η(τ)|2
∑
m,n∈Z

q
1
2

(n/2+m)2

q̄
1
2

(n/2−m)2

.

Meanwhile, the partition functions of the Dirac fermion are made from the
Jacobi theta functions:

Zf (AP/AP ) = |χ1,1(q) + χ2,1(q)|4 =
1

|η(τ)|2
∑
a,b∈Z

q
1
2
a2

q̄
1
2
b2 =

∣∣∣∣θ3(τ)

η(τ)

∣∣∣∣2

Zf (AP/P ) = 4|χ1,2(q)|4 =
1

|η(τ)|2
∑
a,b∈Z

(−1)a+bq
1
2
a2

q̄
1
2
b2 =

∣∣∣∣θ4(τ)

η(τ)

∣∣∣∣2

Zf (P/AP ) = |χ1,1(q)− χ2,1(q)|4 =
1

|η(τ)|2
∑

r,s∈Z+ 1
2

q
1
2
r2

q̄
1
2
s2 =

∣∣∣∣θ2(τ)

η(τ)

∣∣∣∣2

Zf (P/P ) =
1

|η(τ)|2
∑

r,s∈Z+ 1
2

(−1)r−sq
1
2
r2

q̄
1
2
s2 = 0.

As an example of the bosonization procedure, let us verify the untwisted
relation

Zb(+/+) =
1

2

(
Zf (AP/AP ) + Zf (AP/P ) + Zf (P/AP ) + Zf (P/P )

)
.

We can write

Zf (AP/AP ) + Zf (AP/P ) =
2

|η(τ)|2
∑
a,b∈Z

a=b mod 2

q
1
2
a2

q̄
1
2
b2 ,
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which we recognize as the subset n = 0 mod 2 in the sum Zb(+/+). Likewise

Z(P/AP ) + Z(P/P ) =
2

|η(τ)|2
∑

r,s∈Z+ 1
2

r=s mod 2

q
1
2
r2

q̄
1
2
s2

which we recognize as the subset n = 1 mod 2 in the sum Zb(+/+).
We wish to identify the Ω1

spin symmetry Q of the compact boson which
allows us to invert the bosonization transformation by (7.7). To do so, we
can study the partition function

Tr(−1)QqL0−1/24q̄L̄0−1/24 ∼ Zb(+/−) (7.10)

=
1

2

(
Zf (AP/AP ) + Zf (AP/P )− Zf (P/AP )− Zf (P/P )

)
=

1

|η(τ)|2
∑
m,n∈Z

(−1)nq
1
2

(n/2+m)2

q̄
1
2

(n/2−m)2

.

We are also interested in the twisted partition functions

Zb(−/+) =
1

2

(
Zf (AP/AP )− Zf (AP/P ) + Zf (P/AP )− Zf (P/P )

)

=
1

|η(τ)|2
∑
a,b∈Z

a−b=1 mod 2

q
1
2
a2

q̄
1
2
b2 +

1

|η(τ)|2
∑

r,s∈Z+ 1
2

r−s=1 mod 2

q
1
2
r2

q̄
1
2
s2

=
1

|η(τ)|2
∑
m,n∈Z

q
1
2

(n/2+m+1)2

q̄
1
2

(n/2−m)2

,

Zb(−/−) =
1

2

(
− Zf (AP/AP ) + Zf (AP/P ) + Zf (P/AP )− Zf (P/P )

)
=

1

|η(τ)|2
∑
m,n∈Z

(−1)n+1q
1
2

(n/2+m+1)2

q̄
1
2

(n/2−m)2

.

We can summarize, writing B ∈ Z1(X,Z2) as the background Ω1
spin gauge

field, with x, t as the space and time cycles:

Zb(B) =
1

|η(τ)|2
∑
n,m∈Z

exp

[
πi

(∫
t

B

)(
n+

∫
x

B

)]
q

1
2

(n/2+m+
∫
xB)2

q̄
1
2

(n/2−m)2

.
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We note that under a shift
∫
x
B 7→

∫
x
B + 2, we can compensate by a redefi-

nition of the dummy variables n 7→ n−2, m 7→ m−1. These are also clearly
invariant under B 7→ B + df , so each of these Zb(B) defines a state in the
untwisted 2+1D Z2 gauge theory.

Hilbert Space and Chiral Anomaly of the Compact Boson

The structure of the Hilbert space H this CFT assigns to S1 (see [105]) is
encoded in the torus partition function through the formula

TrHq
L0−1/24q̄L̄0−1/24 = Zb(+/+),

where L0 and L̄0 are special elements of the holomorphic (ie. left moving
by the identification z = x + it) and antiholomorphic (right moving) Vira-
soro algebras, and the normalization factor q−1/24q̄−1/24 is chosen to preserve
conformal invariance, analogous to how we chose N(X) to have topological
invariance for the Zn gauge theory of section 5.2.

Characters of the Virasoro algebra for c = 1 have the form [112]

TrqL0 =
qh

η(τ)
,

and are irreducible so long as h is not of the form l2/4 for l ∈ Z. The ones
that appear in the torus partition function are

h =
1

2
(n/2 +m)2

and

h̄ =
1

2
(n/2−m)2

for the antiholomorphic sector. Denoting these modules as V (h), V̄ (h̄), re-
spectively, we find

H =
⊕
m,n∈Z

V (
1

2
(n/2 +m)2)⊗ V̄ (

1

2
(n/2−m)2).

We denote the highest weight states of these modules as

|h, h̄〉,
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and define

|m,n〉 := |1
2

(n/2 +m)2,
1

2
(n/2−m)2〉.

The action of the special Z2 = Ω1
spin symmetry Q commutes with the

Virasoro actions and can be read off from (7.10):

(−1)Q|m,n〉 = (−1)n|m,n〉.

It can be factored (nonuniquely) into a tensor product of operators acting
on the holomorphic and anti-holomorphic sectors, by

Q = QL +QR.

For instance, we may take

eπiQL|m,n〉 = eπi(n/2+m)|m,n〉 = eπi
√

2h|m,n〉

eπiQR |m,n〉 = eπi(n/2−m)|m,n〉 = eπi
√

2h̄|m,n〉.

We will show QL, QR are anomalous Z2 symmetries whose anomaly theory
is level 1 Z2 Dijgraaf-Witten theory. To this end, we first consider

Chiral Anomaly of the Dirac Fermion by Bosonization

Like the Majorana fermion, the Dirac fermion has an anomalous symmetry
(−1)FL which counts the fermion parity of the left-moving (holomorphic)
states and acts trivial on the right-moving (antiholomorphic) states. For
example, the twisted partition function

TrAP (−1)FLqL0+1/24q̄L̄0+1/24 ∼ Zf (AP/AP, 1/(−1)FL)

=
1

|η(τ)|2
∑
a,b∈Z

(−1)aq
1
2
a2

q̄
1
2
b2 ,

where in the second argument of Zf we indicate the space/time twists by
the chiral symmetry. In the P/? sectors we choose (−1)FL = eπir. There is
another choice e−πir = −eπir which works just as well, and we will see they
derive the same anomaly.

In order to describe the anomaly by bosonization, we need to find a
corresponding symmetry U of the compact boson such that the bosoniza-
tion/fermionization relations (7.7) map U -twisted partition functions on the
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bosonic side to (−1)FL-twisted partition functions on the fermionic side. The
first partition function to investigate is:

Zb(+/+, 1/U) =
1

2

(
Zf (AP/AP, 1/i) + Zf (P/AP, 1/i)

+Zf (AP/P, 1/i) + Zf (P/P, 1/i)

)
=

1

|η(τ)|2
∑
m,n∈Z

eπi(n/2+m)q
1
2

(n/2+m)2

q̄
1
2

(n/2−m)2

.

Then using Poisson resummation we can obtain from this its S transformed
partition function

Zb(+/+, U/1) =
1

|η(τ)|2
∑
m,n∈Z

q
1
2

(n/2+m+1/2)2

q̄
1
2

(n/2−m)2

.

Then using T :

Zb(+/+, U/U) =
1

|η(τ)|2
∑
m,n∈Z

eπi(n/2+m+1/4)q
1
2

(n/2+m+1/2)2

q̄
1
2

(n/2−m)2

.

Observe from Zb(+/+, 1/U) that the U charge of the |n,m〉 state is half
that of its Q charge. Thus, at least in the untwisted sectors,

U2 = Q,

which indicates that the bosonic anomalous Z2 symmetry U is extended by
the Ω1

spin = Z2 symmetry! This indicates that the anomaly theory has a
nontrivial [ν2] ∈ H2(BZ2,Ω

1
spin), in the notation of (7.4). If A is the Z2

background and B is the Ω1
spin background, then we have

dB = ν2(A) = dA/2.

There are two choices of ν3 which satisfy the Gu-Wen equations, namely

ν3(A) = ±1

8
AdA.

To fully characterize the anomaly we need to determine which of these arises
from (−1)FL .
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Unfortunately this can’t be seen so easily from the torus partition func-
tions without thinking about the Hilbert space of the compact boson in the
presence of A fluxes. However, from the prefactor

expπi(n/2 +m+ 1/4)

in Zb(+/+, U/U), compared with

exp πi(n/2 +m)

in Zb(+/+, 1/U), we see that the A flux carries a 1/4 Z2 charge, meaning (see
section 6.2.1) that the theory sits at the boundary of spin Dijkgraaf-Witten
theory with ν3 = −AdA/8. In the classification, this anomaly is referred to
as the ν = 2 mod 8 anomaly.

Note that had we used exp−πi instead of exp πi, we would have obtained
the same result, since this amounts to a difference of (−1)n in the definition
of U . This is an automorphism of the spin Z2 Dijkgraaf-Witten theory B 7→
B + A, which does not change the level.
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