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ABSTRACT OF THE DISSERTATION

Towards Methods to Exploit Concurrent Data Structures on Heterogeneous CPU/iGPU
Processors

By

Joel Fuentes

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Isaac D. Scherson, Chair

Heterogeneous processors, consisting of CPU cores and an integrated GPU on the same die,

are currently the standard in desktop and mobile platforms. The number of CPU cores is

increased with every new generation, and integrated GPUs are constantly being improved in

performance and energy efficiency. This raises the importance of developing programming

methods and techniques to benefit general purpose applications on heterogeneous processors

as more parallelism can be achieved. This dissertation addresses this challenge by studying

new ways of exploiting parallelism on CPU cores as well as the integrated GPU, focusing on

blocking and non-blocking data structures.

A new thread synchronization mechanism for parallel geometric algorithms dubbed Spatial

Locks is first introduced. This synchronization mechanism ensures thread synchronization

on geometric algorithms that perform concurrent operations on geometric surfaces in two- or

three-dimensional spaces. A parallel algorithm for mesh simplification is chosen to illustrate

the Spatial Locks usefulness when parallelizing geometric algorithms with ease on multi-core

machines. Experimental results show the advantage of using this synchronization mecha-

nism where significant computational improvement can be achieved compared to alternative

approaches.

xi



Non-blocking data structures are commonly used by many multi-threaded applications, and

their implementation is based on the use of atomic operations. New computing architectures,

such as Intel CPU/iGPU processors, have incorporated data-parallel processing through

SIMD instructions, including in some cases support for atomic SIMD instructions and SIMT

processing on the integrated GPU. A new framework called SIMD-node Transformations

to implement non-blocking data structures using multi-threaded and SIMD processing is

proposed. As a result, it is shown that one- and multi-dimensional data structures, such

as skiplists, k-ary trees and multi-level lists, can embrace SIMD processing through these

transformations. Finally, important performance gains obtained when applying these trans-

formations to concrete data structures are reported.

xii



Chapter 1

Introduction

With the advent of heterogeneous computing systems that use silicon devices with many

CPU cores and an integrated GPU (iGPU) per chip, also known as Multi-Core CPU/iGPU

processors, new challenges are posed to programming applications that attempt to use paral-

lelism to achieve a significant computational improvement. Typical Multi-core CPU/iGPU

computers use chips that contain two, four or more cores each, and an iGPU with a few

dozens of GPU cores (Execution Units - EU). These heterogeneous processors also include

an on-chip hierarchical shared cache system that provides local and shared caches for the

CPU cores and iGPU’s EUs. An interface to a large common main DRAM storage completes

the solid state memory hierarchy. These systems are normally programmed using threads

that are managed by the operating system to execute in the available cores attempting to

use as much parallelism as possible. The main problem that arises is the management of

shared data structures in the shared hierarchical memory to guarantee synchronized access

to the data structures, avoiding deadlock and providing a correct access sequence as re-

quired by the program. Additionally, the inclusion of Data-Parallelism on these architecture

through SIMD (single instruction multiple data) instructions has brought a new dimension

of parallelism that has to be explored to exploit shared data structures.
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SIMD processing is a term introduced by Michael J. Flynn in 1966 [13]. It refers to a processor

architecture that executes a single instruction over multiple data items at the same time.

However, it is not straightforward to take advantage of this architecture. The programmer

requires to manually manage the data in arrays or vectors (SIMD-friendly format), so the

SIMD execution unit can act over them. New CPU/iGPU computing architectures, such as

Intel’s heterogeneous processors, have brought new processing capabilities such as SIMD and

SIMT processing on the iGPU. Along with the inclusion of GPU cores within the same CPU

die, the performance and programmability of the Intel’s integrated graphics processing unit

(GenX iGPU) has been significantly improved over earlier generation of integrated graphics

[40]. Besides providing specialized graphics hardware, GPU cores are also getting more

programmable as new generations are released, making them amenable to general-purpose

computing. In terms of use and presence, the GenX iGPU is massively used since it is present

in almost every processor Intel releases for desktop and mobile.

Maurice Erlihy and Nir Shavit wrote a book [35] that discusses the methodologies used to

properly program Multi-Core systems. Exploiting parallelism depends very much on the syn-

chronization mechanisms available to avoid shared data conflicts. Their book has become

a classic and has been adopted to teach Multi-core programming courses. Mutual exclu-

sion concepts and blocking properties discussed in their book, such as deadlock-freedom

and starvation-freedom, are fundamental when implementing new synchronization primi-

tives. On the other hand, non-blocking techniques and properties such as lock-freedom,

wait-freedom and obstruction-freedom, are essential for achieving correct non-blocking ex-

ecutions in concurrent programs. The authors also pioneered the linearization correctness

condition for non-blocking data structures, which became widely used for different authors

and researchers of new non-blocking designs.
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1.1 Multi-thread and Data Parallelism

The spread of multi-core CPU architectures along with the deceleration of Moore’s law have

shown a change on how we develop software. Until recently, advances in technology meant

advances in clock speed, so software would effectively “speed up” by itself over time. Now,

however, this free ride is over. Advances in technology will mean increased parallelism and

not increased clock speed, and exploiting such multi-thread parallelism is one of the out-

standing challenges of modern Computer Science. Therefore, with the advent of computing

systems with many CPUs per chip, well-known as multi-core and many-core machines, paral-

lelizing algorithms is an objective in order to achieve significant computational improvement.

Data parallelism refers to scenarios in which the same operation is performed in parallel on

elements in a source collection or vector. Accelerators targeting data-parallelism, such as

GPU, have become very popular for graphics applications, media, video game, and machine

learning. Notice that modern CPU architecture also support data-parallelism through vec-

tor operations; e.g. Advanced Vector Extensions (AVX, also known as Sandy Bridge New

Extensions) are extensions to the x86 instruction set architecture for microprocessors from

Intel and AMD.

1.2 Challenges in Heterogeneous Concurrent Program-

ming

In recent years, GPUs have become essential for many computer tasks and they are used

to accelerate applications in a wide variety of fields. They are well-known for having the

potential to accelerate many kinds of computations, especially if these computations involve

large number of data elements that can be executed in parallel. GPUs were initially created

3



as a discrete component for computer machines, but today they are also widely available as

System on a Chip (SoC) component in the same CPU die; as is the case of Intel processors.

Even when the use of these heterogeneous processors has become very common, especially

on data parallel algorithms such as graphics/media applications, machine learning, etc.,

applications with concurrent data structures have not been explored yet. There exists a big

group of data structures whose traversal algorithms can be improved by using data-parallel

processing.

In a system where a discrete GPU is present, the work flow involves transferring data from

main memory to GPU device memory, performing the computations on the GPU, and mov-

ing the results back to main memory. This data movement is done through the PCI express

bus, which is orders of magnitude slower than making copies within the main memory. Het-

erogenous platforms with an iGPU, on the other hand, offer an environment where memory

is shared between the CPU and the accelerator (in this case, iGPU). Thus, all the data move-

ment can be avoided. The use of this shared memory presents demanding challenges in terms

of thread synchronization when shared memory blocks from a concurrent data structures are

accessed/updated from both devices; i.e. how mutual exclusion and/or linearizability are

guaranteed.

In terms of programming languages, they need to provide an intuitive interface to express

data-parallelism at a high level of abstraction. Compilers for these heterogeneous archi-

tectures need to efficiently exploit the SIMD capability of the iGPU. Optimizations and

validations on data-parallel operations should be considered as well, especially when the

used is in charge of defining vector operations and SIMD sizes.

Most research in frameworks aimed at scheduling tasks on heterogeneous architectures, com-

posed of CPU’s and GPUs, has focussed on optimizing execution time without considering en-

ergy consumption. However, a CPU core and an iGPU exhibit different performance/energy
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trade-offs, this is, a workload can run faster on one device but consume less energy on the

other one. Thus, in order to benefit from the potential energy efficiency that the accelerators

can provide in these heterogeneous chips, the runtime scheduler also needs to consider the

performance/energy asymmetry when making a scheduling decision.

1.3 Contributions of the Thesis

The main contributions of this thesis are:

1. A thread synchronization mechanism dubbed Spatial Locks for parallel geometric al-

gorithms is presented. We show that Spatial Locks ensure thread synchronization

on geometric algorithms that perform concurrent operations on geometric surfaces in

two-dimensional or three- dimensional space. The proposed technique respects the fact

that these operations follow a certain order of processing, i.e. priorities. Parallelizing

these kinds of geometric algorithms using Spatial Locks requires only a simple pa-

rameter initialization, rather than modifying the algorithms themselves together with

their internal data structures. A parallel algorithm for mesh simplification is chosen to

show the Spatial Locks usefulness when parallelizing geometric algorithms with ease on

multi-core machines. Experimental results illustrate the advantage of using this syn-

chronization mechanism where significant computational improvement can be achieved

compared to alternative approaches.

2. We present a new framework called Θ-node Transformations to implement non-blocking

data structures using multi-threaded and SIMD processing. As a result, it is shown

that one- and multi-dimensional data structures, such as skiplists, k-ary trees and

multi-level lists, can embrace SIMD processing through these transformations and re-

main linearizable. Some guidelines to implement new Θ-node-based data structures

5



from scratch are also provided.

3. A lock-free skiplist based on Θ-node transformations is presented. It capitalizes on

the GenX iGPU computational model to accelerate its search and update operations.

It uses non-blocking techniques and all its operations are lock-free. To the best of

our knowledge, this is the first implementation of a lock- free data structure for iGPU.

Experimental results show that our proposal is more compute-efficient than an existing

discrete GPU implementation and outperforms state-of-the-art lock-free and lock-based

skiplists for multi-core CPU, achieving up to 3.5x speedup. Additionally, energy savings

of up to 300% are obtained when running different skiplist workloads on iGPU instead

of CPU cores, hence further improving energy efficiency.

4. A SIMT-based tree search algorithm is presented. It capitalizes on the fact that binary

search trees algorithms have low divergence and are simple. Experimental results show

that SIMT-based search achieve higher throughput for some tree structures than multi-

threaded algorithms for CPU.

6



Chapter 2

Preliminaries

2.1 Common Terms

• Mutual exclusion: It is the problem of making sure that only one thread at a time

can execute a particular block of code, and is one of the classic coordination problems

in multiprocessor programming.

• Atomic operation: Modern multiprocessor hardware provides special read-modify-

write instructions that allow threads to read, modify, and write a value to memory

in one atomic (i.e., indivisible) hardware step. In this thesis, we refer to the specific

atomic compare-and-exchange operation (CMPXCHG) as compare-and-swap operation

(CAS).

• ISA: Instruction set architecture.

• Kernel: A compute kernel is a routine compiled for high throughput accelerators

(such as graphics processing units (GPUs), digital signal processors (DSPs) or field-

programmable gate arrays (FPGAs)), separate from but used by a main program

(typically running on a central processing unit). They are sometimes called compute
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shaders, sharing execution units with vertex shaders and pixel shaders on GPUs, but

are not limited to execution on one class of device, or graphics APIs.

• GenX: Intel architects colloquially refer to Intel processor graphics architecture as

simply Gen, shorthand for Generation. A specific generation of the Intel processor

graphics architecture may be referred to as Gen9 for generation 9 [40].

• SISD: Single instruction, single data

• SIMD: Single instruction, multiple data

• SIMD Width: Size of the vector operation to be processed by a SIMD instruction.

• SIMT: Single instruction, multiple threads.

• Cache Coherency: In most modern multiprocessors, each processor has an attached

cache, a small, high-speed memory used to avoid communicating with large and slow

main memory. Each cache entry holds a group of neighboring words called a line,

and has some way of mapping addresses to lines. Each cache line has a tag, which

encodes state information. The cache coherence protocol detects synchronization con-

flicts among individual loads and stores, and ensures that different processors agree on

the state of the shared memory. When a processor loads or stores a memory address

a, it broadcasts the request on the bus, and the other processors and memory listen in

(sometimes called snooping).

• Exponential Backoff : It is an algorithm that uses feedback to multiplicatively de-

crease the rate of some process, in order to gradually find an acceptable rate.
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2.2 Formal definitions

Definition 2.1. Mutual exclusion is when critical sections of different threads do not

overlap. For threads A and B, and integers j and k, either CSk
A → CSj

B or CSj
B → CSk

A.

Definition 2.2. Deadlock-freedom guarantees that if some thread attempts to acquire

the lock,then some thread will succeed in acquiring the lock. If thread A calls lock() but

never acquires the lock, then other threads must be completing an infinite number of critical

sections.

Definition 2.3. Starvation-freedom guarantees that every thread that attempts to acquire

the lock eventually succeeds. Every call to lock() eventually returns. This property is some-

times called lockout freedom.

Definition 2.4. A method is lock-free if it guarantees that infinitely often some method

call finishes in a finite number of steps.

Definition 2.5. A method is wait-free if it guarantees that every call finishes its execution

in a finite number of steps.

Definition 2.6. A method is obstruction-free if, from any point after which it executes

in isolation, it finishes in a finite number of steps.

Definition 2.7. An execution of a concurrent system is modeled by a history H, a fi-

nite sequence of method invocation and response events. A subhistory of a history H is a

subsequence of the events of H.

Definition 2.8. A history H is linearizable if it has an extension H ′ and there is a legal

sequential history S such that

• L1. complete(H ′) is equivalent to S, and

• L2. if a method call m0 precedes method call m1 in H, then the same is true in S.
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We refer to S as a linearization of H (H may have multiple linearizations).

Definition 2.9. For implementations that do not use locks, the linearization point is

typically a single step where the effects of the method call become visible to other method

calls.

Definition 2.10. The ABA problem ocurrs especially in dynamic memory algorithms that

use conditional synchronization operations such as CAS operations. Typically, a reference

about to be modified by a CAS operation changes from a, to b, and back to a again. As

a result, the CAS operation call succeeds even though its effect on the data structure has

changed, and no longer has the desired effect.

2.3 Heterogeneous CPU/iGPU Architecture and Pro-

gramming Framework

2.3.1 Intel’s Multi-Core CPU/iGPU Processor

Intel introduced a few years ago the first heterogeneous processor that integrates GPU cores

along with the CPU cores on the same die. The integrated graphics processor that used to

be part of MCH (Memory Controller Hub) or North-Bridge is now placed inside the proces-

sor. This move further improved the performance of Intel iGPU by a significant amount.

Besides providing specialized graphics hardware, GPU cores are also getting more and more

programmable making them amenable to general-purpose computing. GPU architecture,

however, evolved out of its need to support real-time computer graphics and video/image

processing with tremendous inherent parallelism. As a result their emphasis on through-

put optimization and expectation of explicit parallelism is much more aggressive than the

CPU cores. In other words, while the CPU cores are better suited for applications that
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are latency-sensitive and have implicit instruction-level parallelism, the GPU cores target

throughput-oriented workloads with abundant parallelism. iGPU architectures are named

GenX, where X is the number of a specific generation. In this thesis, all the computational

experiments were carried out using a Gen9 iGPU.

Figure 2.1: Architecture components layout for an Intel processor with Gen9 Integrated
Graphics Processor [40].

The Intel’s iGPU delivers a full complement of high-throughput floating-point and integer

compute capabilities, a layered high bandwidth memory hierarchy, and deep integration

with on-die CPUs. The communication between CPU cores, caches and the iGPU is done

through a bi-directional ring interconnect that has a 32-byte wide bus. Figure 2.1 illustrates

the architecture components of an Intel processor with Gen9 iGPU. Some configurations

include an embedded EDRAM exclusively for iGPU, along with coherence within its memory

hierarchy and the CPU cores through a shared Last Level Cache (LLC) [40]. When we have

both throughput-oriented and latency-oriented cores on the same die, it is but natural to

think of exploiting such cores operating in tandem to address heterogeneous workloads.

From a performance perspective, GPU cores placed inside the processor die get a boost from

cutting-edge CPU manufacturing process and access to large on-chip cache. Furthermore,

overhead of transferring data between CPU and GPU memory can virtually be eliminated
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as they share the same main memory.

Figure 2.2: Intel’s Gen9 Execution Unit (EU) [40].

The foundational building block of GenX iGPUs is the Execution Unit (EU). Figure 2.2 shows

the diagram of a Gen9’s EU. The architecture of an EU is a combination of simultaneous

multi-threading (SMT) and fine-grained interleaved multi-threading (IMT). Each EU has 7

threads, a total of 128 32-byte general purpose registers (GRF), and a pair of SIMD floating

point units (SIMD FPUs). Depending on the software workload, the hardware threads

within an EU may all be executing the same compute kernel code, or each EU thread could

be executing code from a completely different compute kernel. The execution state of each

thread, including its own instruction pointers, are held in thread-specific ARF registers. On

every cycle, an EU can co-issue up to four different instructions, which must be sourced from

four different threads. The EUs thread arbiter dispatches these instructions to one of four

functional units for execution.

The EU Instruction Set Architecture (ISA) and associated general purpose register file are

all designed to support a flexible SIMD width. Thus for 32-bit data types, the Gen9 FPUs

can be viewed as physically 4-wide. But the FPUs may be targeted with SIMD instructions

and registers that are logically 1-wide, 2-wide, 4-wide, 8-wide, 16-wide, or 32-wide.
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Subsequently, a subslice is an array of EUs that has its own local thread dispatcher and its

own supporting instruction caches. Finally, subslices are clustered into slices, that manage

thread dispatch routing, level-3 cache and atomic and barrier operations. Figure 2.3 illustrate

the organization of slices, subslices and EUs in Gen9. Notice that, similar to CPU cores, the

Gen9 iGPU includes a hierarchy of cache memory L3, L2 and L1.

Figure 2.3: Layout of the Intel’s Gen9 iGPU[40].

2.3.2 C for Media

C for Media (CM) is a high-level programming environment based on C/C++ that pro-

vides an efficient interface to utilize GenX iGPU. The CM toolset consists of two primary

components: 1) the compiler for the CM language, which is a subset of C++, for the GPU-

targeted code; and 2) the CM runtime, which provides an API to C++ programs, for setting

up the GPU to transfer data and execute GPU-targeted code. The CM project was recently

open-sourced [39].
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CM supports two basic component data types, matrix and vector, and two reference compo-

nent data types, matrix ref and vector ref, are defined as C++ template classes. Parameters

are the element type and size of matrix/vector, which must be compile-time constants. The

element type must be one of the basic types supported by CM. Following are examples of

matrix/vector declaration:

matrix<int, 4, 8> m; // a 4x8 integer matrix

vector<short, 8> v; // a vector with 8 short integers

Matrix ref and vector ref define references to basic matrix/vector objects. No memory space

is allocated to reference variables. For example,

vector_ref<int, 8> v_ref(m.row(2))

defines a vector referring to the second row of matrix m.

The primary goal of the CM platform is to allow programmers to keep their existing appli-

cations and delegate the data-parallel or massively-parallel segments of the application to

the on-die iGPU cores. The language was designed to efficiently leverage SIMD capability

of the iGPU, providing a syntax that facilitates implementing data-parallel applications. As

an example, 16-int vector operations can be easily expressed in CM as:

vector<int, 16> v1, v2, result;

...

result = v1 + v2;

Then, these 16-int vector operations are converted into SIMD operations by the CM com-

piler. Thus, the CM compiler generates optimized GenX instructions extracting as much

parallelism as possible from the underlying iGPU hardware.
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C structures are also supported. They can contain all the supported scalar data types and

vector/matrix object types, with the restriction that the structure data members must be

properly aligned. The reference object cannot be declared as a structure field. Mask for

SIMD comparison and merge operations has three kinds of representations in CM. It can be

an integer, or a vector/matrix of short integers

The iGPU functions, also termed as kernels, are instantiated into user-specified number of

threads. Each thread is then scheduled to run on an in-order EU. It is worth noting here

that, unlike OpenCL or CUDA, a CM thread is equivalent to a CUDA warp and it executes

SIMD instructions. SIMD computations over data blocks are expressed in CM via vector and

matrix operations and efficiently translated to GenX-EU ISA (Instruction Set Architecture)

by the CM compiler.

CM supports standard C++ operations for the allowed basic data types, with some deviation

for float type. For component data types, CM supports some overloaded operators, including

assignment, matrix/vector constructor, and component-wise arithmetic/shift/logic/comparison

operators following C++ standard. In addition, some new operators are supported for ma-

trix/vector manipulation.

• Read and write: reads data blocks from memory to registers and writes the computed

output from registers to memory respectively. A vector of indices (offsets) can be used

for scattered reads/writes. In order to reduce the load on the message gateway as well

as maximize bandwidth utilization of read operation bandwidth we attempt to utilize

the full capacity of the read operations (i.e. 32 dwords for linear block reads and 16

dwords for scattered reads) whenever possible.

• Select : CM provides a set of select functions for referencing a subset of the elements

of vector/matrix objects. Some of these operations return a reference to the elements

of matrix/vector objects, so they can be used as L-values in the statements.
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• Atomic read-modify-write: GenX supports up to SIMD16 atomic read-modify-write

operations on data block (contiguous data elements), i.e. it is guaranteed by GenX

to perform the read-modify-write operation atomically on the data block. Similar to

C++, it sup- ports the commonly used operations ADD, SUB, INC, COMPXCHG

(compare-and-swap, CAS), and so on.

• Format : CM supports reinterpreting the element type of a matrix/vector and change

the shape to another matrix/vector. As an example, format¡int, 4, 8¿(v) changes the

type of elements in vector v to int and returns a 4x8 integer matrix.

• Merge: It is used to model masked copy operation. There are two forms of merge,

v.merge(x, mask) and v.merge(x, y, mask). The elements in the file result are deter-

mined by the mask. The first one copies one element from x to v if the corresponding

bit in mask is true. The second one copies an element in x if the corresponding mask

bit is true; otherwise, it copies an element from y.

• Boolean reduction: it is applied to mask objects. Two operations are suppoted, any

and or. v.any() returns 1 if any of the elements of v is 1; otherwise it returns 0. V.all()

returns 1 if all of the elements of v is 1; otherwise it returns 0. rescheduling.

The CM toolset consist of a compiler, runtime and a few other components. The execution

model as follows: first, the GenX kernels are compiled by the CM compiler to an interme-

diate language (called Common-ISA) file. Common-ISA is a high-level, generic assembly

language that can be translated to run on any current or future GenX GPUs. At runtime,

CM JIT compiler translates the Common-ISA into GenX executable code. Next, the ap-

plication is compiled into an x86 binary with any C++ compiler of developers choice. At

runtime, the application calls the CM-runtime APIs to setup and execute on the GPUs. The

CM runtime provides the desired hardware abstraction layer to the application - it manages

device-creation, setting-up input and output buffers, kernel-creation, setting-up thread argu-
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ments, and dispatching kernels to the GPU. During kernel-creation, CM runtime invokes the

JIT compiler to generate GenX binary from Common-ISA. Subsequently, thread creation

and scheduling is performed entirely in hardware by the GPUs thread dispatcher.
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Chapter 3

Related Work

3.1 Synchronization Mechanisms for Multi-Core CPUs

Many synchronization mechanisms for shared-memory systems have been proposed over the

years. Locks, Semaphores, Monitors and many other variants are used by most of the multi-

threaded applications that require synchronization. Even though they were proposed several

years ago, the design of efficient multi-core locks is still a hot research topic [22, 47, 9],

considering also that the current trend is to include more CPU cores per chip.

Attempts to parallelize Geometric Algorithms have been focusing on partitioning the space

into sub-regions, computing a sub-solution for each sub-region, and finally merging all of

them into a final result. Some examples are the algorithms proposed in [7, 6] to solve the 3D

Delaunay Triangulation. Another well-known approach is acquiring exclusive access to the

containing sub-region and cells around it, as presented in [43] for the parallelization of ran-

domized incremental construction algorithms. Batista et al. presented in [3] a few strategies

to parallelize some geometric algorithms such as vertex-locking strategy, cell-locking strat-

egy and other variants. These strategies use additional variables within vertices and through
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atomic operations they guarantee synchronization. Additionally, priority locks are used to

avoid deadlock that occurs when a thread, that might already own other locks, waits for a

lock owned by another thread. Our proposal differs from related works by offering a sim-

pler approach that does not require modifications on geometric algorithms’ data structures

or surface information, in fact it only requires a simple initialization and the set of points

–minimum and maximum points to be precise– representing the surface being updated in

2D or 3D space to guarantee mutual exclusion. Moreover, it provides better performance

comparing with vertex-locking strategies, especially when the vertex degree of objects is

high.

3.2 Concurrent Data Structures for Multi-Core CPUs

Most of the concurrent data structures for CPU available in the literature focus on multi-

threaded programming only. The following subsections describe the main proposals with at

least lock-free and wait-free properties.

In terms of data-parallel processing, there have been some proposals for using SIMD instruc-

tions to accelerate data structures and indices on CPU and GPU (discrete and integrated).

The main focus is the use of SIMD instructions for traversals and search operations in dif-

ferent data structures and indices [58, 57, 42, 67]. However, non-blocking and linearizable

data structures with SIMD processing have not been explored yet. The main restriction for

implementing non-blocking data structures with SIMD processsing is the hardware support.

Currently, most of the modern CPUs and GPUs support SIMD instructions, however not

all of them support atomic SIMD instructions. There have been some proposals for adding

multi-word CAS (CASN) support to CPUs [24, 63, 12], but their performance decreases

considerably with high values of N.
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3.2.1 Stacks

A concurrent stack provides concurrent push and pop operations with LIFO semantics. Sev-

eral concurrent stacks have been proposed for shared memory systems. Lock-free implemen-

tations commonly support any number of concurrent operations, and some of them internally

implement exponential backoff to help deal with high load and so improve scalability. This

technique tackles the typical performance problem when implementing a concurrent stack,

which is high contention on the head pointer.

R. Treiber proposed the first lock-free concurrent stack implementation in 1986 [64]. Treiber’s

stack consists of a singly-linked list with a top pointer that is modified atomically by CAS

operations. Later proposals, such as [49], optimized Traiber’s stack by using non-blocking

techniques based on Herlihy’s work [30].

Hendler et al. introduced a more scalable lock-free stack in [29]. It is based on the elimi-

nation technique proposed in [61]. This techniques allows pairs of operations with reverse

semanticslike pushes and pops on a stackto complete without any central coordination, and

therefore substantially aids scalability. The idea is that if a pop operation can find a concur-

rent push operation to “partner” with, then the pop operation can take the push operation’s

value, and both operations can return immediately. The net effect of each pair is the same

as if the push operation was followed immediately by the pop operation, in other words,

they eliminate each other’s effect without the top of the stack involved. Elimination can be

achieved by adding a collision array from which each operation chooses a location at random,

and then attempts to coordinate with another operation that concurrently chose the same

location. The number of eliminations grows with concurrency, resulting in a high degree of

parallelism [51, 61].

Another technique to achieve scalable concurrent stack implementation is flat combining,

introduced by Hendler et al. in [27]. It is a very general approach that has been successfully
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extended to complex lock-free data structures and allows to combine different algorithms;

e.g. the elimination back-off. With this technique, if N threads access the stack at the

same time, just one of them will acquire a lock, and the rest will wait for its release. But

instead of passively waiting, the waiting threads could announce their operations. Thus, the

winner-thread (lock owner) could perform tasks from the other threads, in addition to its

own job.

3.2.2 Queues

A concurrent stack provides concurrent queue and dequeue operations with FIFO semantics.

Several concurrent queues have been proposed for shared memory systems. Lock-free im-

plementations commonly support any number of concurrent operations, and some of them

internally implement exponential backoff, helping techniques and flat combining.

Herlihy et al. introduced in [36] an array-based lock-free queue that considers unbounded

array sizes. A linked-list-based proposal was introduced in [28]. Michael and Scott present in

[49] a linearizable CAS-based lock-free queue with parallel access to both the head and tail.

The algorithm uses helping technique to ensure that the tail pointer (enqueue operations)

is always behind the end of the list by at most one element. In [44], the authors presented

an optimistic approach to lock-free queues, the key idea behind their algorithm is a way

of replacing the singly-linked list of Michael and Scott’s queue, whose pointers are inserted

using a costly compare-and-swap (CAS) operation, by an “optimistic” doubly-linked list

whose pointers are updated using a simple store, yet can be “fixed” if a bad ordering of

events causes them to be inconsistent.

Hoffman et al. [37] introduced a new approach called Basket, where instead of the traditional

ordered list of nodes, the queue consists of an ordered list of groups of nodes (logical baskets).

This produces a new form of parallelism among enqueue operations that creates baskets of
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mixed-order items instead of the standard totally ordered list. The operations in different

baskets can be executed in parallel, and this implementation results in a linearizable FIFO

queue.

An interesting new approach was introduced by Afek et al. in [1] for segment queues. The

general idea is that the queue maintains a linked list of segments, each segment is an array

of nodes in the size of the quasi factor, and each node has a deleted boolean marker, which

states if it has been dequeued. Based on the fact that most of the time threads do not add

or remove segments, most of the work is done in parallel on different cells in the segments.

This ensures a controlled contention depending on the segment size, which is quasi factor.

However, the segmented queue is an unfair queue since it violates the strong FIFO order but

no more than quasi factor. It means that the consumer dequeues any item from the current

first segment.

Similar to flat combining on lock-free stacks, the authors in [27] also presented a flat-

combining-based lock-free queue.

3.2.3 Lists

Linked list is a linear collection of data elements, whose order is not given by their physical

placement in memory. Instead, each element points supports insert, delete, and search

operations. The most popular lock-based approach is hand-over-hand locking [45]. In this

approach, each node has an associated lock. A thread traversing the linked list acquires and

releases a nodes lock to obtain exclusive access to the current node.

In terms of lock-free proposals, Valois introduced a lock-free linked list in [65]. Valoiss

algorithm is correct but this solution is not practical. Harris presented in [23] a lock-free list

that uses a special “deleted” bit that is accessed atomically with node pointers in order to
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signify that a node has been deleted. Michael [48] overcomed this disadvantage by modifying

Harriss algorithm to make it compatible with memory reclamation methods [51].

Heller et al. introduced in [26] a “lazy” list-based implementation of a concurrent set object.

It is based on an optimistic locking scheme for inserts and removes, eliminating the need

to use the equivalent of an atomically markable reference. It also has a novel wait-free

membership test operation that does not need to perform cleanup operations and is more

efficient than that of all previous algorithms.

3.2.4 Maps

A hash table is a resizable array of buckets, each holding an expected constant number

of elements, and thus requiring on average a constant time for insert, delete and search

operations [51].

Michael in [48] proposed a lock-free hash structure that performs well in multiprogrammed

environments: a fixed-sized array of hash buckets, each implemented as a lock-free list.

However, there it is not lock-free extensible on the array of lists. Greenwald showed how

to implement an extensible hash table using his two-handed emulation technique in [19].

However, this technique employs a DCAS (double CAS) synchronization operation, which is

not available on current architectures.

Shalev and Shavit [60] introduced a lock-free extensible hash table which works on current

architectures. Their key idea is to keep the items in a single lock-free linked list instead of

a list per bucket. To allow operations fast access to the appropriate part of the list, the

Shalev- Shavit algorithm maintains a resizable array of pointers into the list.

Feldman et al. introduced in [11] a wait-free hash map dbased on perfect hashing. Their

implementation makes use of a tree-like array-of-arrays structure, with data stored in single-
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element leaf arrays. Their design also includes dynamic hashing, the use of sub-arrays within

the hash map data structure; which, in combination with perfect hashing, means that each

element has a unique final, as well as current, position.

3.2.5 Trees

Some non-blocking implementations of balanced search trees have been achieved using Dy-

namic Software Transactional Memory mechanisms [14, 34]. These implementations use

transactions translated from sequential code that performs rebalancing work as part of reg-

ular operations.

Ellen et al. proposed the first practical lock-free algorithm for a concurrent binary search

tree in [10]. Their algorithm uses an external (or leaf-oriented) search tree in which only the

leaf nodes store the actual keys. Howley and Jones proposed another lock-free algorithm for

a concurrent binary search tree in [38]. Their algorithm uses an internal search tree in which

both the leaf nodes as well as the internal nodes store the actual keys.

Natarajan and Mittal proposed a lock-free algorithm for an external binary search tree

[53], which uses several ideas to reduce the contention among modify (insert and delete)

operations. As a result, modify operations in their algorithm have a smaller contention

window, allocate fewer objects and execute fewer atomic instructions than their counterparts

in other lock-free algorithms.

Ramachandran et al. introduced in [56] a new lock-free binary search tree. Their design

is based on the use internal representation of a search tree and is based on marking edges

instead of nodes. It also combines ideas from two existing lock-free algorithms, namely those

by Howley and Jones [38] and Natarajan and Mittal [53], and is especially optimized for the

conflict-free scenario.
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3.2.6 Skiplists

Skiplists, and concurrent data structures in general, have been mainly studied for CPU

architectures. Pugh introduced the skiplist data structure in [54], and then in [55] he de-

scribed highly concurrent implementation of skiplists using locks. Fraser in [14] discussed

various practical non-blocking programming abstractions, including the skiplist. Herlihy et

al. [32, 31] presented blocking skiplist implementations that are based on optimistic syn-

chronization. Herlihy et al. [33] also provided a simple and effective approach to design

non-blocking implementation of skiplists. Crain et al. proposed in [8] a non-blocking skiplist

that alleviates contention by localizing synchronization at the least contended part of the

structure. Guerraoui and Trigonakis introduced OPTIK in [21], a practical design pattern for

designing and implementing fast and scalable concurrent data structures. They implemented

a concurrent skiplist and modified Herlihy’s using OPTIK patterns.

3.3 Concurrent Data Structures for GPUs

Even though concurrent data structures have been relatively new on discrete GPUs, there ex-

ist proposals of concurrent queues, linked lists, hash tables and trees [66, 59, 42, 41, 2] . With

respect to skiplists, there exist two concurrent skiplist proposals for discrete GPU. Misra

and Chaudhuri [50] implemented several well-known lock-free data structure algorithms in

CUDA, including a lock-free skiplist. Their experimental results show important speedup

when comparing to CPU lock-free implementations. Moscovici et al. proposed in [52] a

fine-grained lock-based skiplist optimized for GPU that outperforms Misra and Chaudhuri’s

skiplist. Their implementation is based on chunked nodes and warp-cooperative functions

that take advantage of the CUDA programming model.
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Chapter 4

Exploiting Concurrent Data

Structures

Data structures can be classified according to their organization in memory and how traversal

operations can be performed. Figure 4.1 shows a classification of data structures according

their orgnization in memory.

Figure 4.1: Classification of data structures

Elements of one-dimensional data structures are stored in a linear or sequential order and
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there is only two ways of traversal: forward and backward. On the other side, elements

of multi-dimensional data structures are stored in a multi-dimensional organization, which

allows traversals in any manner based on the links between elements.

A common way to exploit concurrent data structures is by having several threads accessing

a shared data structure concurrently. Figure 4.2 illustrates how multi-thread parallelism

works on shared concurrent data structures. Notice that different kinds of operations are

performed on different memory addresses in parallel. The goal becomes challenging when

having operations from different threads being performed on the same memory address,

which can produce data race conditions and unexpected results.

Figure 4.2: Multi-thread parallelism

There exist two ways of implementing data structures: static implementation using arrays

and dynamic implementation using pointers. Parallelism on one-dimensional and multi-

dimensional data structures can be achieved by using blocking and non-blocking synchro-

nization techniques to make them thread-safe (without data race) in multi-threaded pro-

grams.

Even when non-blocking implementations can be designed for one-dimensional data struc-

tures, their performance suffers from high data contention when a large number of threads
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perform operations on similar memory locations. This is due to the fact that there is only one

dimension of elements and the parallelism is restricted to the linear organization of elements.

4.1 Synchronization techniques

Parallelism can be exploited on both one-dimensional and multi-dimensional structures.

There are five well-known techniques that allow multiple threads to access/update a sin-

gle object at the same time [35].

• Coarse-grain synchronization: A spin lock is used to provide mutual exclusion

in every access and update procedure. Each method call acquires and releases the

lock. Figure 4.3 shows an example of a locked-based execution on a shared data

structure over time. There are two threads performing concurrent operations on a

shared queue. As both threads can eventually update the same memory address –

inserting a new element at the end of the queue – there may be data race condition

during their execution. For this reason, both threads require a lock first, and then once

it is acquired their insertion can be safely performed. At the end, all the operations

performed within critical sections are serialized.

Figure 4.3: Lock-based synchronization
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• Fine-grained synchronization: Instead of using single lock to synchronize every

access to an object, the object is split into independently synchronized components,

ensuring that method calls interfere only when trying to access the same component

at the same time.

• Optimistic synchronization: A search without acquiring any locks is performed

first. Then, if the method finds the sought-after component, it locks it and checks that

the component has not changed in the interval between when it was inspected and

when it was locked. This technique is worthwhile only if it succeeds more often than

not.

• Lazy synchronization: Consist of postponing the hard work. For example, a re-

move operation will first remove logically a component by setting a tag bit, and later,

the component can be physically removed by unlinking it from the rest of the data

structure.

• Non-blocking synchronization: Instead of using locks, built-in atomic operations

such as compareAndSwap() are used directly in the update functions. By avoiding

locks, non-blocking synchronization does not exhibit problems from lock-based syn-

chronization such as deadlocks, blocking and priority inversion. Non-blocking shared

data objects also have a higher degree of fault-tolerance than lock-based ones since

they can tolerate any number of processes experiencing stop-failures [18].

Figure 4.4 depicts a non-blocking execution of the same example from Figure 4.3. In

this scenario, two threads perform the insertion of new elements in the queue without

the use of locks. The insertions are perform in atomic steps during the method calls

enq(x) and enq(y).

To verify the correctness of non-blocking executions, the linearizability property is

used [35]. In a linearizable execution each method call should appear to “take effect”

instantaneously at some moment between its invocation and response. So the approach
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Figure 4.4: Non-blocking synchronization

to verify linearizable executions of concurrent threads on concurrent data structures

is to identify the atomic step where an operation takes effect (linearization points) to

show that an implementation is linearizable.

– Lock-free: A lock-free algorithm guarantees that regardless of the contention

caused by concurrent operations and the interleaving of their steps, at each point

in time there is at least one operation which is able to make progress. How-

ever, as there is no fairness guarantee, some operation could be starved and take

unbounded time to finish.

– Wait-free: A wait-free algorithm is both lock-free and fair, it guarantees that

every operation finishes in a bounded number of its own steps, regardless of the

actions of other operations. This is a very strong property, as it decouples the

processes using the same shared data object from each other.
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4.2 Concurrent Data Structures with SIMD Process-

ing

To correctly implement concurrent data structures on SIMD architectures, support of atomic

operations is required. The goal of implementing concurrent or non-blocking data structures

is two-fold: to achieve higher thread concurrency by using non-blocking techniques and to

achieve data parallelism at instruction level through SIMD processing.

Figure 4.5 shows the execution of concurrent operations from different threads on a shared

data structures. Recall that in Figure 4.2 parallelism is achieved by having parallel threads

performing operations on single data items of the shared data structures. For this new

scenario, parallel threads are now able to perform concurrent operations on several data

items at a time (in one instruction). Thus, a new dimension of parallelism is achieved:

data-parallel processing.

Figure 4.5: Multi-thread + SIMD parallelism

Similarly to CPU programming, concurrent data structures on SIMD architectures can be

classified as blocking and non-blocking data structures. Additionaly, it is shown in this

paper that non-blocking data structures such as lock-free and wait-free can be implemented
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Table 4.1: Classification of concurrent data structures based on their implementation

Operation
Implemented

with
Concurrent

behavior per thread
Suitable concurrent

data structures

Search
SISD Nodes or data items

are traversed and pro-
cessed one a time.

Linked lists, queues,
stacks

SIMD Several nodes or data
items are traversed
and processed within
an instruction. Im-
provement in perfor-
mance is potentially
high.

k-ary trees, skiplists,
multi-level hash ta-
bles, indices and suc-
cinct structures.

Update
SISD CAS Nodes or data items

are updated one at a
time.

Linked lists, queues,
stacks

SIMD CAS Several nodes or data
items are updated
atomically if they are
contiguous memory
addresses.

k-ary trees, skiplists,
multi-level hash ta-
bles,

on SIMD architectures.

To efficiently exploit the SIMD capabilities within concurrent operations the organization of

internal data items and nodes is the most important design aspect. Achieving correctness,

non-blocking properties, and data parallelism requires a new abstraction when implementing

SIMD-friendly concurrent data structures from scratch or transforming existing ones.

Table 4.1 shows a classification of concurrent data structures based on their operation im-

plementations using SISD (Single Instruction Single Data – classical CPU instructions) and

SIMD. Atomic operations and specifically the compare-and-swap operation (CAS) are fun-

damental for implementing update operations in non-blocking data structures. SISD CAS

is supported in most multi-core CPU and GPU architectures. Differently, SIMD CAS is not

commonly supported on CPU architectures, nonetheless, modern iGPU on heterogeneous

CPU/iGPU architectures do support it [40].

32



A search operation, that traverse data structures, is typically the most common operation

in applications such as databases, search engines, file systems, etc. So it is important to

implement them efficiently. SIMD traversals are search operations where comparisons are

performed on several data items within a single instruction [42]. For example, chunk-based

nodes of a k-ary tree can contain several keys that serve as decision to continue the search

to their children nodes and whose search is performed using data-parallel comparisons with

SIMD instructions. Besides chunk-based trees, multi-dimensional data structures such as

skiplists, multi-level hash tables, and index structures are good candidates to be implemented

in such way and thus, take advantage of the SIMD processing. On the other hand, one-

dimensional data structures such as linked lists, queues, and stacks are not well-suited for

SIMD processing due to their nature of operations, i.e. in some cases data items are obtained

directly without search, or traversals are sequential.

4.2.1 SIMD-node transformations

In order to implement non-blocking data structures based on SIMD processing, a new ab-

straction is defined. This abstraction will serve as guideline for designing new SIMD-friendly

non-blocking data structures or transforming existing SISD non-blocking data structures to

SIMD-friendly ones.

Definition 4.1. Let ΘX denote a super node encapsulating single nodes or data items of a

data structure that can be processed by a SIMD instruction of size X (SIMD width). ΘX can

be updated atomically by SIMD CAS operations in concurrent executions and it is restricted

to have the X data items contiguously in memory.

Definition 4.2. Let S be a one- or multi-dimensional data structure, then a Θ-node trans-

formation SΘ can be attained such that
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Figure 4.6: Θ-node transformation from a one-dimensional (a) and multi-dimensional (b and
c) structures

• Every node in S is in some ΘX of SΘ.

∀r ∈ S, r ∈ SΘ ∧ |S| =
n∑

i=0

|Θi
X |

where |S| is the number of single nodes or data items in S.

• SΘ preserves the same S’s traversal structure and thus the complexity of all its opera-

tions.

• SΘ can be traversed using the orginal traversal algorithms of S (single node-based

traversal), and new traversal algorithms using SIMD instructions (ΘX-based traver-

sal).

Figure 4.6 depicts Θ-node transformations from three different data structures. Sub-figure

4.6a shows the layout of a simple linked list (one-dimensional structure) whose nodes have

been encapsulated by two ΘX . Sub-figures 4.6b and 4.6c illustrate the Θ-node transforma-

tions of two multi-dimensional structures, a multi-level list and a k-ary tree. Notice that

these examples illustrate pointer-based data structures, but Θ-node transformations can also
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be applied on to other kinds of data structure, e.g. array structures, where several data items

can be contained in X.

The manner that Θ-node transformation is applied depends mainly on the organization of the

data structure. In hierarchical data structures such as k-ary trees, Θ-node transformations

are to be performed in parent-children form, i.e. ΘX encapsulates a parent and all its children.

Therefore, the maximum size of X, which is defined by hardware, is the most important

factor when performing Θ-node transformations; it defines whether the transformation in a

hierarchical data structure is possible or not. In one-dimensional structures such as lists,

queues, etc., the only restriction is to encapsulate more than one node or data item in ΘX .

Theorem 4.1. A Θ-node transformation, applied on a one- or multi-dimensional data struc-

ture S, produces SΘ with the same traversal structure and complexity.

Proof. Assume that the produced SΘ has different traversal structure and complexity than

the original S. However, for this to happen, new pointers must have been added/removed

between nodes or data items during the Θ-node transformation. Then, by Definition 4.2, a

Θ-node transformation on one- or multi-dimensional structures only encapsulates contiguous

nodes or data items and no new pointers are added and no existing pointers are modified

outside each ΘX .

The concept linearizability, introduced in [36], is used to prove the correctness of a Θ-node

transformation from a concurrent data structure. Linearizability is a global property that

ensures that when two processes each execute a series of method calls on a shared object

there is a sequential ordering of these method calls that do not necessarily preserve the

program order (the order in which the programmer wrote them down), but each method

call does seem to happen instantly (i.e., invocation and response follow each other directly),

whilst maintaining the result of each method call individually and consequently the object

its state [35]. This definition of linearizability is equivalent to the following:
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• All function calls have a linearization point at some instant between their invocation

and their response.

• All functions appear to occur instantly at their linearization point, behaving as specified

by the sequential definition.

Conjecture 4.1. A Θ-node data structure SΘ can be linearizable.

Observation. As any ΘX can be updated atomically by Definition 4.1, SΘ can be proved

linearizable when all its functions hold the linearization properties in any ΘX of SΘ.

If we consider a data structure traversal as a graph traversal, after applying Θ-node trans-

formations we obtain a transformed graph with the same traversal by definition. In this

sense, the data structure traversal has not changed. However, the transformations refer to

the change of internal processing within nodes. So this change is reflected in the algorithm

to traverse the data structure by ΘX nodes instead of single nodes.

4.2.2 SIMD-node Traversals

Traversing a Θ-node-based concurrent data structure involves performing comparison oper-

ations on ΘX with single SIMD operations. Algorithm 1 illustrate a simple traversal for a

general Θ-node transformed tree where there are only two ways to finish: the key is found

or not (we reached the end of the structure).

Notice that all the operations on ΘX are performed using SIMD instructions. So not only

assignments and comparisons are SIMD (lines 2, 4, 7 and 10), but also the read operation

(line 11) is performed by reading the entire SIMD block from memory. This tree traversal

and its operations can be easily generalized to any Θ-node transformed structure.
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Algorithm 1 Traversal of a ΘX transformed tree

1: procedure treeTraversal(root, key)
2: ΘX ← root
3: while true do
4: if ΘX == null then
5: break . Key not found
6: end if
7: if ΘX == key then
8: break . Key found
9: end if

10: next← ΘX .children within key range
11: ΘX ← read(next) . Visit next Θ-node
12: end while
13: end procedure

4.2.3 Restrictions and Considerations

The main restriction for implementing non-blocking data structures with SIMD processsing

is the hardware support. Currently most of the modern CPUs and GPUs support SIMD

instructions, however not all of them support atomic SIMD instructions. There have been

some proposals for adding multi-word CAS (CASN) support to CPUs [24, 63, 12], but their

performance decreases considerably with high values of N.

The proposed framework also considers the availability of a memory allocator that is capable

of allocating contiguous memory addresses for each SIMD node. Recall that SIMD-node

transformations are based on data item encapsulation within contiguous memory addresses.

In terms of performance, defining a proper width of each SIMD node could impact the

performance significantly. SIMD instructions might have many performance implications

due to their width and interpretations from the compilers: under-utilization of the SIMD

block, incorrect SIMD width defined by user, unmatched cache line size, and so on.
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Chapter 5

Contributed Multi-threaded

Synchronization Mechanisms

5.1 Spatial Locks: A Specilized Synchronization mech-

anism for Geometric Algorithms

The parallelization of algorithms that update models in 2D or 3D space has been commonly

solved by dividing the model into sub-models, processing each sub-model with different

threads in parallel to finally merge the individual results, taking special care of the stitches.

Even though these algorithms are known to be embarrassingly parallel and show good per-

formance, they bogdown when the update operations must be performed in certain order or

with priorities. For example, in the simplification algorithm for triangulated meshes, paral-

lelizing the simplification by decomposing the mesh into submeshes and run the algorithm

sequentially on each part can lead to bad quality results [20].

Multi-threaded algorithms that perform a mixed set of operations in 3D space are also
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appealing. A well-known example is the 3D Delaunay triangulation, which is typically im-

plemented using shared containers for vertices and cells. Building a Delaunay triangulation

requires threads to perform efficient alternating addition and removal of new and old cells,

and addition of new vertices, updating the shared containers. These operations come out as

the algorithm runs based on the current properties of the mesh.

We introduce a new synchronization mechanism called Spatial Locks that allows thread

synchronization on shared-memory and multi-core architectures [16]. This synchronization

becomes very useful when the algorithm to be parallelized performs updates over objects in

2D or 3D space by following a certain order of processing. Even though the example problem

in this paper is the synchronization of concurrent updates done by geometric algorithms on

shared objects in 2D and 3D spaces, it can also be applied to other kinds of algorithms that

might need this type of synchronization.

The basic idea behind the proposed Spatial Locks mechanism is to protect 2D or 3D regions

by dividing them into space cells and using lock-protection for each acquired cell.

The novelty in Spatial Locks stems from the merging of two well-known concepts, namely

Spatial Hashing and Axis-aligned Bounding Box (AABB). Spatial hashing is the process by

which a 3D or 2D domain space is projected into a 1D hash table [25]. The hash function

takes any given 2D or 3D positional data and returns a unique grid cell that corresponds to

a 1D bucket in the hash table. The hash function for hashing 2D to 1D can be as simple as

hash = x ∗ conversion factor + y ∗ conversion factor ∗ width, where conversion factor is

computed by 1/cell size and width is the number of uniformly-sized cells per axis. The cell

size is defined by the user and will depend on the algorithm domain. It is called spatial hash

because the cell index of a data element can be obtained in constant time by its coordinates

(e.g., x, y and z) with the hash function. Evidently, a 2D or 3D matrix can be used instead of

the hash table and using a simplified hash function will be enough to get the corresponding

cell: grid[x ∗ conversion factor, y ∗ conversion factor]. The programmer has the option to
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manage this addresses himself or leave this work to the compiler by using matrices. Figure

1 shows the elementary use of spatial hashing, where geometric points are hashed into cells

placed in a 3D grid.

Figure 5.1: Spatial hashing where objects are mapped into uniformly-sized cells

An AABB is a rectanguloid whose faces are aligned with the coordinate axes of its parent

coordinate system. An AABB can be represented or constructed with just minimum and

maximum extents along each axis. For our purpose, AABBs will represent the building

boxes of geometric shapes, so Spatial Locks can be seen as AABBs placed in a 2D or 3D grid

indicating that threads are performing concurrent updates in them. Thus, the logic behind

Spatial Locks lies on protecting threads’ updates on sections of shapes or objects by placing

AABBs into the spatial hash table.

5.1.1 Paradigm and Interface

Many applications exist with geometric algorithms that update objects in 2D or 3D space.

The objective of using Spatial Locks is to allow safe parallelization of these algorithms by
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guaranteeing mutual exclusion. This synchronization mechanism works by protecting objects

being updated by one thread from other thread’s updates over the same object. It maintains

an internal spatial hash table that reflects the status of concurrent updates by threads,

identifying in which cells threads are performing concurrent updates. Synchronization can

be achieved from the user perspective by means of the Spatial Locks’ functions lock(object)

and unlock(object), where object corresponds to either a set of points defining a section of

a shape or an AABB of that section. The lock(object) and unlock(object) functions work

similarly to regular mutexes, i.e. the first function is blocking while the latter is not.

Synchronizing thread’s updates does not only mean locking subsections of the grid for ex-

clusive access, yet providing enough functionality to give different possibilities for thread

synchronization and achieve the best performance and parallelism. Hence, this primitive

also provides check(object) and tryToLock(object) functions which are not blocking. As its

name describes, check(object) returns a boolean value indicating whether the cell to which

object belongs is occupied or not. On the other hand, tryToLock(object) tries to acquire the

corresponding cell for object but only considering one attempt. A boolean value is returned

indicating whether the cell was acquired or not.

Imagine that an algorithm needs to perform updates to several parts of a 3D shape, and

these updates can be performed by any thread in any part of the shape, so dividing the

shape and assigning each part to each thread is not the best option –updates can be heavily

located on a certain section of the shape, overloading a single thread and as a result serial-

izing the entire execution–. Threads can perform their updates safely by using lock(object)

and unlock(object) as regular locks. However, better performance can be achieved by imple-

menting a less blocking technique if the updates do not require a specific order of processing.

For example, tryToLock(object) can be used instead of lock(object), and if the object’s cell

is already taken by another thread this update is enqueued to be tried later and a different

object update can be performed instead.
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5.1.2 Implementation

The implementation of Spatial Locks in this paper assumes hardware support for atomic

read-modify-write operations on a single memory location. The fundamental operation is

compare and swap (CAS), specified as int CAS(addr, old, new), which checks in one atomic

operation the equality between the value on addr and the value on old. If equal, it changes

the value of addr to new value and returns a flag when the change is successful.

The lock(object) operation is shown in Algorithm 1. It can be seen that the spatial hash table

is updated by using the compare and swap (CAS) atomic operation, which guarantees thread

safety and allows thread synchronization. The minimum and maximum indices obtained

from the AABB’s minimum and maximum points serve as guidelines for obtaining the cell

indices to be locked by the current thread. These cell indices are calculated by the function

getCell(point) that performs the hashing operations explained at the beginning of section

2. If the minimum and maximum cell indices are equal, only one cell has to be taken;

else 2 or 4 can be taken in 2D space and 2, 4 or 8 in 3D space. For the latter scenario,

thread synchronization and safety is achieved by using an internal mutex, otherwise deadlock-

freedom cannot be guaranteed even with CAS operations.

The situation when the minimum and maximum cell indices are not equal is handled as

follows: based on AABB’s minimum and maximum points, new 2D/3D points are cre-

ated to potentially lock additional cells. For instance, for an object in 2D space up to

4 cells can be locked when the coordinates (x, y) of its minimum and maximum AABB

points are different, and their two additional cell indices are obtained from the points

(max.x, min.y) and (min.x, max.y). A similar procedure is performed for objects in 3D

space, where the additional cell indices are obtained from the points (min.x, min.y, max.z),

(min.x, max.y, min.z), (max.x, min.y, min.z), (min.x, max.y, max.z), (max.x, min.y, max.z),

and (max.x, max.y, min.z). Observe that some of these new points can fall into the same
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cell index, and the average number of cells to be locked depends directly on the spatial hash

table’s cell size.

An alternative approach to handle lock conflict when a thread attempts to take multiple

cells is using priorities. So instead of using a mutex as in Algorithm 1, lock conflicts can be

handled by using priority locks where each thread is given a unique priority. If the acquiring

thread has a higher priority it simply waits for the lock to be released. Otherwise, it retreats,

releasing all previous cells and restarting the operation. This approach also avoids deadlocks

and guarantees progress.

Note that before performing the CAS operation in Algorithm 1, we first check if the cell

is available (if value is 0). It might seem redundant since the following CAS operation

also checks if the cell is 0, nonetheless this presents better performance than using only

CAS operations due to cache coherency and the costs of the atomic operations on modern

architectures [35].

The unlock(object) operation, shown in Algorithm 2, is very simple and also similar to

lock(object), however the internal mutex is not needed. Once the cell indices are obtained

from the AABB, these are immediately released by using CAS operations. It is guaranteed

that the thread that acquires a specific cell, is the same who releases it. It is also guaranteed

that the status of every cell that will be released by a thread is locked (value 1 of table in

Algorithm 1 and 2); so no additional verification is needed by the time of releasing cells

within this operation.

Lemma 5.1. Spatial Locks satisfy mutual exclusion when objects fall into the same unique

cell.

Proof. By contradiction. Suppose that 2 threads, A and B, are going to update the objects

X and Y respectively, which fall into the same cell S in 3D space. It means that both X’s

and Y’s minIndex and maxIndex are equal. These 2 threads first call lock(object), so the
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Algorithm 2 Lock object in Spatial Hash Table

1: procedure lock(aabb) . object represented as an AABB
2: minIndex ← getCell(aabb.minPoint)
3: maxIndex ← getCell(aabb.maxPoint)
4: if minIndex == maxIndex then
5: while true do
6: if spatialHashTable[minIndex] == 0 then
7: if CAS(spatialHashTable[minIndex], 0, 1) then
8: break
9: end if

10: end if
11: end while
12: end if
13: mutex.lock()
14: while true do
15: if table[minIndex] == 0 then
16: if CAS(spatialHashTable[minIndex], 0, 1) then
17: break
18: end if
19: end if
20: end while
21: while true do
22: if table[maxIndex] == 0 then
23: if CAS(spatialHashTable[maxIndex], 0, 1) then
24: break
25: end if
26: end if
27: end while

. Continue with other indices. AABB can be part of 2, 4 cells in 2D and 2, 4 or 8
in 3D

28: mutex.unlock()
29: end procedure

order of events from Algorithm 1 is:

readA(cellS = false)→ writeA(cellS = true)→ UpdateObjectA(X)

readB(cellS = false)→ writeB(cellS = true)→ UpdateObjectB(Y )

Without loss of generality, assume that A was the last thread to update the object X. Since

thread A still entered its critical section, it must be true that thread A reads cellS == false.

Thus it follows that readB(cellS = false)→ writeB(cellS = true)→ UpdateObjectB(Y ) readA(cellS =

false)→ writeA(cellS = true)→ UpdateObjectA(X)
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Algorithm 3 Unlock object in Spatial Hash Table

1: procedure unlock(aabb) . object represented as an AABB
2: minIndex ← getCell(aabb.minPoint)
3: maxIndex ← getCell(aabb.maxPoint)
4: if minIndex == maxIndex then
5: spatialHashTable[minIndex].store(0);
6: else
7: spatialHashTable[minIndex].store(0);
8: spatialHashTable[maxIndex].store(0);

. Continue with other indices. AABB can be part of 2, 4 cells in 2D and 2, 4 or 8
in 3D

9: end if
10: end procedure

This is impossible because there is no other write false to cellS between writeB(cellS = true)

and readA(cellS = false). Contradiction.

Lemma 5.2. Spatial Locks satisfy mutual exclusion when objects fall into multiple cells,

having or not common cells between them.

Proof. Suppose that 2 threads, A and B, are going to update the objects X and Y respec-

tively in 3D space. Object X falls into the cells S1 and S2, and object Y falls into S2 and

S3. These 2 threads first call lock(object), so the order of events from Algorithm 1 is:

mutex.lock()→ readA(cellS1 = false)→ writeA(cellS1 = true)→ readA(cellS2 = false)→

writeA(cellS2 = true)→ mutex.unlock()→ UpdateObjectA(X)

mutex.lock()→ readB(cellS2 = false)→ writeB(cellS2 = true)→ readB(cellS3 = false)→

writeB(cellS3 = true)→ mutex.unlock()→ UpdateObjectB(Y )

By simply holding the mutual exclusion property of the shared mutex, both sequences of

events A and B are sequentialized.

Theorem 5.1. Spatial Locks (Algorithm 1 and 2) satisfy mutual exclusion.

Proof. Follows from Lemma 1 and 2.

Theorem 5.2. Spatial Locks (Algorithm 1 and 2) satisfy deadlock-freedom
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Proof. By contradiction. Without loss of generality, suppose thread A waits forever in the

lock(object) function. Particularly, it runs while() forever waiting cellS becomes false. If

thread B also got stuck in its while() loop, then it must have read true from cellS. But

since cellS cannot be true from the beginning, the hypothesis that thread B also got stuck

in its lockObject() method is impossible. Thus, thread B must be able to enter its critical

section. Then after thread B finishes its critical section and calls unlock() method, cellS

becomes false, and this triggers thread A to enter its own critical section. Hence, thread A

must not wait forever at its while() loop.

The check(object) operation can be implemented by using load operations on the atomic cells

from the spatial hash table. If all the cells are available, the object is reported as available to

be updated. On the other hand, the tryToLock(object) operation works by doing something

very similar to Algorithm 1, but instead of waiting until the cell is available, it returns

immediately. In the scenario of having multiples cells to be acquired, when there is one that

is not available along the way it rolls back by releasing the ones already acquired.

5.1.3 Settings and restrictions

The use of Spatial Locks requires initial settings according to the set of objects to be updated

and the algorithm itself. Let S be the set of objects or sub-shapes that will be updated by the

algorithm. In geometric terms every object s ∈ S corresponds to a set of 2D or 3D points.

The following invariants must be held when using Spatial Locks to synchronize concurrent

updates over S; where the Γ operator returns the size of an object’s AABB:

• The dimension of the spatial hash table T covers all the objects in S:

Γ(T ) ≥ Γ(
n⋃

i=1

Si)
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• Let c be the cell size of the spatial hash table. Then,

Γ(c) > Γ(s),∀s ∈ S

Since the performance of a concurrent algorithm using Spatial Locks depends directly on

the chosen value c, the spatial hash table can be re-built with a new c′ any time during

the execution of the algorithm. However, these invariants must preserve with the remaining

objects in S and the new T ′.

5.1.4 Parallel Mesh Simplification using Spatial Locks

Surface mesh simplification is the process of reducing the number of faces used in a surface

mesh while keeping the overall shape, volume and boundaries preserved as much as possible

[5]. It can be considered as the opposite of the subdivision or mesh refinement. Models

are usually represented as triangulated meshes and their simplification algorithms can be

used to automatically generate them in different resolutions, so that designers only need to

model the finest level. The size of models are reduced dramatically, so they are also used

in streaming and network applications. Figure 2 shows different levels of simplifications of a

hand obtained with this algorithm.

Due to the considerable processing time, simplification algorithms are normally used as a

preprocessing step. Considering that the average performance of computing edge-collapse

simplification with quadric error metrics, one the most common methods for mesh simpli-

fication, is about 50,000 operations per second [20]. Although the parallelization of this

algorithm seems to be simple, most of the edge-collapsing simplification algorithms work

sequentially due mainly to the large neighborhood information required for the computation

of optimally ordering of operations, where triangles are simplified following priorities and

costs.
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Figure 5.2: Surface mesh simplification algorithm applied to a mesh with different simplifi-
cation levels [5].

For our study we chose the mesh simplification algorithm presented in [46, 17, 5]. The

algorithm proceeds in two stages. In the first stage, called collection stage, an initial collapse

cost is assigned to each and every edge in the surface mesh and maintained in a priority

queue. In the second stage, called collapsing stage, edges are processed in order of increasing

cost. Some processed edges are collapsed while some are just discarded. Collapsed edges are

replaced by a vertex and the collapse cost of all the edges now incident on the replacement

vertex is recalculated, affecting the order of the remaining unprocessed edges. The process

ends when a desired number of triangles is reached or the collapse cost is over a specific

threshold. Notice that processing edges by their collapse costs has been proven to provide

better quality results than any other ordering.

Figure 3 illustrates the edge-collapse operation over the edge (v, vu). This operation takes

the edge (v, vu) and substitutes its two vertices v and vu with a new vertex v. In this process,

the triangles tl and tr are collapsed to edges, and are discarded. The remaining edges and

triangles incident upon v and vu, e.g., tn0, tn1, tn2, tn3, tn4, tn5 and tn6 respectively, are

modified such that all occurrences of v and vu are substituted with v. The computation

involved on this process can be summarized as: computing the cost of collapsing the edge
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Figure 5.3: Contraction of the edge (v, vu) into a single vertex. The shaded triangles become
degenerate and are removed during the contraction.

e, choosing the position of the vertex v that replaces the edge, and updating the adjacent

triangles.

Parallelizing the Mesh Simplification Algorithm implies synchronizing all the threads’ up-

dates on the shared mesh. The specific region to synchronize on every update is given by

the edge to be collapsed and its adjacent triangles, as it is shown in Figure 3. Even though

the external edges of adjacent triangles (tn0, tn1, and so on) are not modified during the

edge-collapse operation, their vertices are part of several edges being updated, so they can-

not be collapsed by another thread at the same time. However, these external edges can be

borderline of two parallel edge-collapse operations.

The parallelization of the aforementioned algorithm is explained as follows:

• A concurrent priority queue P is used to store all the edges with their costs as priorities.

If priorities are relaxed a concurrent vector can be used instead.

• Every thread takes an edge e from P and analyzes its quadratic errors.

• If an edge is set to be collapsed, the corresponding AABB given by the edge’s adjacent

triangles is locked in the spatial hash table.
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• Once the edge is collapsed and the shaded triangles removed, the corresponding AABB

is removed safely from the spatial hash table.

A simplified version of the parallel mesh simplification algorithm (PMS ) is shown in Al-

gorithm 3. Note that the use of parallel for does not mean the subdivision of range for

every thread, but the parallelization for obtaining an edge from the priority queue at every

iteration. If two threads are attempting to update adjacent triangles, only one will succeed

locking the triangle given by its AABB and the other must wait.

The complete mesh simplification process can be done on several iterations depending on

the level of simplification desired by the user. After every iteration, triangles have become

bigger, so the rebuil() function re-builds the spatial hash table with a greater cell size, as

explained in section 2.3. The new cell size is calculated similarly to its initial value at the

beginning of the process: it must be greater than every remaining triangle’s AABB in the

mesh.

Algorithm 4 Parallel Mesh Simplification using Spatial Lock

1: procedure SIMPLIFY(edges) . Input: Set of edges
2: for every iteration do
3: parallel for every edge e do
4: err ← calculateError(e)
5: if err > threshold then
6: continue
7: else
8: aabb ← createAABB(getTriangle(e))
9: spatialLocks.lock(aabb)

10: collapseEdge(e)
11: spatialLocks.unlock(aabb)
12: end if
13: end parallel for
14: spatialLocks.rebuild();
15: end for
16: return edges . Reduced set of edges
17: end procedure

Recall that processing edge-collapse operations based on their costs as priorities is very
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crucial for the quality of the resulting mesh. Therefore, the property is maintained even

when there could be threads that might reflect their results later than others due to the

operating system scheduler. Under normal conditions, once a thread acquires a Spatial Lock

for an edge-collapse operation, it is guaranteed to perform this operation in a finite number

of steps.

Two other variants of the parallel mesh simplification algorithm were implemented. In the

first variant, called PMS-RP, the cost priorities are relaxed and threads attempt to acquire

Spatial Locks by using the non-blocking function tryToLock(object). If the corresponding

cell is taken by another thread, the next edge is taken from the queue and the same process is

tried again. The second variant, called PMS-MBB, allows having bigger cells and multiples

AABBs per cell. For this purpose an AABB tree [4] (which provides add, remove and

intersection operations) with a regular mutex are used in every cell, so the protection of

an edge-collapse operation is given by the presence of its AABB in the tree rather than a

specific flag within the cell.

Experimental Results

A set of experiments were carried out in order to evaluate the performance of the PMS

algorithm using Spatial Locks and to compare it to its sequential version as well as the

parallel variants PMS-RS, PMS-MBB and one using internal locks in vertices. Algorithms

were implemented in the C++11 programming language. The experiments were carried out

on a Dual 14 Core Intel(R) Xeon(R) CPU E5-2695 v3, with a total of 28 physical cores

running at 2.30GHz. Hyperthreading was disabled. The computer runs Linux 3.19.0-26-

generic, in 64-bit mode. This machine has per-core L1 and L2 caches of sizes 32KB and

256KB, respectively and a per-processor shared L3 cache of 35MB, with a 32GB DDR RAM

memory and 1TB SSD. Algorithms were compared in terms of running times using the usual

high-resolution (nanosecond) C functions in time.h.
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Table 5.1: Performance of the PMS algorithm implemented with Spatial Locks

Model # triangles
# removed
triangles

1 thr
(sec.)

2 thr
(sec.)

4 thr
(sec.)

6 thr
(sec.)

8 thr
(sec.)

Bunny 69,664 34,832 0.3 0.26 0.23 0.20 0.20
Head 281,724 140,862 1.4 1.3 1.1 1.0 0.9
Wall 651,923 325,961 3.3 2.8 2.5 2.2 2.0
Einstein 674,038 337,018 4.1 3.7 3.5 3.0 2.7
Motors 1,516,759 758,360 13.5 9.1 5.5 4.4 3.8
Facew 2,402,732 1,001,364 22.1 18.4 14.2 7.2 5.9
Castle 3,136,234 1,218,116 32.1 25.8 17.2 9.1 7.4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  500000  1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

T
im

e
 (

s
e
c
o
n
d
s
)

Number of Triangles

8 threads
6 threads
4 threads
2 threads
1 thread

Figure 5.4: Total time spent by the parallel mesh simplification algorithm in simplifying
surface meshes with up to 3,136,234 triangles.

Table 1 shows detailed information of mesh simplifications using the original algorithm (se-

quential with one single thread) and PMS using Spatial Locks with up to 8 threads. Meshes

with more than 1 million of triangles are particularly of our interest, since their simplifica-

tions require a big amount of edge-collapse operations. These meshes, which have from 60K

to 3.2M triangles, were simplified using a 0.5 simplification ratio with both algorithms. All

the surface meshes were obtained from [68].
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It can be seen that as the number of triangles in the surface mesh increases, the runtime for

all variants also increases. However, the increment of PMS’ runtime with several threads is

slower than its sequential counterpart, getting much better performance with bigger meshes.

It is due to the fact that with bigger meshes threads have less probabilities to interfere

each other within the same spatial hash table’s cell, getting parallelism benefits. Figure

4 shows the runtime trend of all the variants when the number of triangles increases. It

turned out that for some experiments, specifically those with small meshes (under 100K

triangles), the sequential algorithm showed better or very similar performance than our

parallel implementation. This observation can be used as a key factor when deciding whether

to implement a parallel geometric algorithms with Spatial Locks or avoid its use.

We also counted the number of cells that lock(object) operations occupied with different

configurations for the spatial hash table. As it can be anticipated, with greater cell size the

number of occupied cells by one lock operation is smaller. i.e. with a cell size of 4 times the

average of edge size, the lock operations that occupied only 1 cell was over 89%, and the

percentage of lock operations using 8 cells was only 2%. The trade-off is given by adjusting

the cell size to have less lock operations falling on 8 cells (worst case), but as the cell size

is increased there is less parallelism due to the fact of having cells covering more space and

threads spending more time in the locking phase. For this specific algorithm, we obtained

the best performance with a cell size of 3 times the average of the edge size, where the

lock operations occupying 1 cell were around 86% of the total, and those falling on 8 cells

represented only 2% of the total.

To make the comparison fair, we implemented a parallel mesh simplification algorithm with

internal locks using a similar approach to the one proposed in [3] (called fine-grained locks).

To guarantee thread safety when collapsing edges, the internal locks are managed in vertices.

A lock conflict occurs when a thread attempts to acquire a lock already owned by another

thread. Systematically waiting for the lock to be released is not an option since a thread
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may already own other locks, potentially leading to a deadlock. Therefore, lock conflicts are

handled by priority locks where each thread is given a unique priority (totally ordered). If the

acquiring thread has a higher priority it simply waits for the lock to be released. Otherwise,

it retreats, releasing all its locks and restarting an insertion operation.

Table 5.2: Performance of mesh simplification algorithms using internal locks and Spatial
Locks

Model # triangles
# removed
triangles

PMS Internal
Locks (sec.)

PMS Spatial
Locks (sec.)

Bunny 69,664 34,832 0.3 0.2
Head 281,724 140,862 1.4 0.9
Wall 651,923 325,961 3.3 2.0
Einstein 674,038 337,018 4.1 2.7
Motors Car 1,516,759 758,360 11.5 3.8
Facew 2,402,732 1,001,364 26.7 5.9
Castle 3,136,234 1,218,116 20.1 7.4

Similarly to previous experiments, we carried out several simplifications on different models.

Table 2 and Figure 5 summarizes and plots respectively the running times of the mesh

simplification algorithms using internal locks and Spatial Locks. Similar to previous setup,

both algorithms were tested with 8 threads. As it can be seen, the alternative with Spatial

Locks performs all the simplifications in less time, being approximately 3 times faster than

the alternative with internal locks. Additionally, it is not only a better alternative in terms

of performance, but its use is also much less invasive since there is no need to modify internal

data structures as we did with internal locks approach.

There are several other synchronization alternatives that can be created from the concept

of Spatial Hashing. We also measured a couple of them explained in the previous section.

Figure 5 illustrates the throughput (number of removed triangles per second) by PMS and

its two variants: PMS-RP and PMS-MBB. In this scenario PMS-RP obtains the highest

throughput since waits for available cells are avoided by relaxing priorities when choosing

edges to collapse. Recall that this variant might lead to worse quality results for their
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Figure 5.5: Total time spent by the mesh simplification algorithm using internal locks and
Spatial Locks.

resulting meshes. On the other hand PMS-MBB, that allows more than one AABB per cell,

presents lower throughput than PMS. It can be explained by the use of local mutexes as well

as the complex operations that imply using the AABB-tree with insertions and removals.
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Chapter 6

Contributed Concurrent Data

Structures with SIMD Processing

This chapter presents two new concurrent data structures based on SIMD-node transfor-

mations: a k-ary tree and a lock-free skiplist. Additionally, a SIMT-based algorithm for

data-parallel traversals on tree structures is introduced.

6.1 k-ary Tree based on SIMD-node transformations

The k-ary tree is a rooted tree in which each node has no more than k children. A binary

tree is the special case where k = 2, and a ternary tree is another case with k = 3 that

limits its children to three. Traversing a k-ary tree is very similar to binary tree traversal.

The pre-order traversal goes to parent, left subtree and the right subtree, and for traversing

post-order it goes by left subtree, right subtree, and parent node. For traversing in-order,

since there are more than two children per node for k > 2, one must define the notion of left

and right subtrees.
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Consider a SISD non-blocking k-ary tree S that maintains non-duplicated keys and has

O(logk(n)) complexity for its operations. A Θ-based non-blocking k-ary tree SΘ results from

the Θ-node transformation where the k children and parent nodes of every subsequent level

are encapsulated in a ΘX (similar to Figure 4.6.c). S and SΘ have the same properties

and data items, and they represent the set abstraction. This can be generalized to any

similar non-blocking hierarchical data structure, and more simple multi- or one-dimensional

structures. Linearizability of S and SΘ is proved as follows:

Lemma 6.1. The successful insertion of a children node in some ΘX of SΘ with less than

k children is linearizable with any other search/update operation.

Proof. The precondition is that there is no node with the key to be inserted in SΘ. The

post-condition is a valid SΘ with the new key in some children node in ΘX . Notice that there

is available space in ΘX to insert the new key, so the linearization point is the successful

SIMD CAS operation inserting the key in ΘX .

Lemma 6.2. The successful insertion of a new node in some ΘX of SΘ with k children is

linearizable with any other search/update operation.

Proof. Similar to the previous case, the precondition is that there is no node with the key to

be inserted in SΘ. The post-condition is a valid SΘ with the new key in some ΘX . Observe

that ΘX has k children, so it is full. A new ΘX is created with the new key as parent node.

Here the linearization point is the successful SIMD CAS updating one of the children node’s

next pointer of the current ΘX to the new ΘX with the new key.

Lemma 6.3. The successful remove operation of a node in some ΘX of SΘ with more than

one child node is linearizable with any other search/update operation.

Proof. This operation has a precondition that there exists a ΘX in the SΘ with a key to

be removed. The post-condition is having the same ΘX in the tree without the key. The
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linearization point is the successful SIMD CAS removing the key from ΘX . The successful

SIMD CAS ensures the post-condition of ΘX without the key along with Definition 4.6 that

the tree is still valid after the removal. Additionally, whether the key to be removed is the

parent or one of the children nodes, the succesful SIMD CAS updates the nodes internally

when necessary.

Lemma 6.4. The successful remove operation of a parent node in any ΘX of SΘ with no

children is linearizable with any other search/update operation.

Proof. Similar to previous case, this operation has a precondition that there exists a ΘX

in SΘ with a key to be removed. Furthermore, the key is in a parent node in ΘX with no

children, so it corresponds to a leaf of the tree. The post-condition is having SΘ without

the key and its ΘX since it only had the parent key at the time of linearization point. The

linearization point is the successful SIMD CAS removing the entire ΘX by updating its

parent’s next pointer. The successful SIMD CAS ensures the post-condition of SΘ without

the key along with Definition 4.6 that SΘ is still valid after the removal.

Theorem 6.1. SΘ maintains the linearizability of S.

Proof. This follows from lemmata 6.1, 6.2, 6.3, and 6.4.

Notice that other transformations from similar non-blocking data structures can be directly

derived from the lemmata described above. For example, non-blocking linked list, queues,

skiplists, and multi-level hash tables.

There are two main benefits from adding SIMD instructions to concurrent data structures

like the k-ary tree. The obvious benefit of SIMD instructions is the data parallelism available

in each SIMD instruction, e.g. traversing several data items within one instruction. Second,

in multi-dimensional and hierarchical structures, the use of SIMD instructions reduces the

number of conditional branches needed to select the next data item from next levels (children
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nodes), which are difficult to foresee in the branch predictor of the processors for random

data inputs; therefore, the overhead of branch misprediction can be reduced.

Regarding data structures operations. Not only search operations can be significantly speed

up. Update operations, e.g. insertions or removals, can also benefit from SIMD instructions.

Consider the case of an insertion operation that involves several updates of the neighbor

nodes. If a Θ-node encapsulates correctly the data items to be updated, all the update

operations can be done in a single atomic SIMD operation.

6.2 Lock-free Skiplist based on SIMD-node transfor-

mations

Skiplists are popular in concurrent algorithms, as they offer a probabilistic alternative to

balanced search trees without costly balancing operations and still providing O(logn) for

search and update operations. We capitalize on the fundamental SIMD instructions of the

Intel’s GenX architecture to design a skiplist, named CMSL, based on chunked lists [15]. So

instead of having nodes and individual updates when inserting or deleting keys, entire chunks

are updated using SIMD atomic operations. Thus, the parallelism of this data structure is

achieved at thread level, within multiple EUs, and instruction level, through SIMD within

each FPU. A detailed proof of correctness using linearization points establishes that CMSL

guarantees the lock-freedom property for the insert and delete operations, and wait-free

property for its search operation.
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6.2.1 Structure details

As mentioned above, the proposed skiplist takes advantage of the GenX architecture and its

instruction set by keeping its levels and sorted keys in chunked lists instead of individual

nodes. This allows to perform SIMD operations on entire chunks rather than single nodes

every time there are search or update operations involved. Furthermore, the support of

atomic SIMD16 operations by CM and GenX allows atomic updates of an entire chunk with

one single instruction.

(a) A 6-level skiplist (b) A Θ-node 6-level skiplist

Figure 6.1: Skiplists before and after Θ-node transformation

Figure 6.1a and 6.1b illustrates the layout of the original skiplist and the Θ-node transformed

skiplist.

Figure 6.2: Skiplist structure

Figure 6.2 details the sizes of every ΘX and their internal organization. the Every chunk of

levels can be a 8-, 16-, 24- or 32-dword vector which stores the offset to pointed lists. On
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the other side, every chunk of keys is a 16-dword vector which maintains up to 15 sorted

keys, and has one dword reserved for a pointer to next chunk of keys. Recall that the

skiplist’s maximum level is directly related to the total number of keys that it can store

while maintaining its logarithmic complexity. As the CMSL can keep up to 32 levels in

its main list, only one chunk is enough to maintain up to 232 sorted keys with logarithmic

running times for search operations and p = 1/2.

A major consideration to improve the performance of CMSL on GenX is memory access.

The number of global memory reads should be minimized and every read should use full

bandwidth by reading 32 elements (dwords) at a time. This is the reason why every main

vertical list is read as 32-dword vector, with half of it being for levels and the other half

sorted keys. If more levels or keys are required during the search, additional read operations

might be necessary. An additional optimization following this idea is allocating two 16-dword

chunks of keys together. So that when searching for a key within a list, every single read

operation will return two attached chunks.

One could think of a drawback of CMSL as its space complexity or unused space in chunks.

While CMSL does save space by having different SIMD width for the chunks of levels, it

only allocates 16-dword chunks of keys. This comes from the logic of the key distribution

set by p, where there are twice as many nodes (uniformly balanced) at level l than at its

upper level l + 1. Even when the chunks of keys store keys for all the levels, its worst case

comes from level 0, storing 50% of the total number of keys. Additionally, a 16-dword chunk

matches with the hardware support for atomic SIMD16 CAS operations. So that a single

SIMD operation is preferred rather than multiple reads and comparison operations when

having smaller chunks.
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6.2.2 Implementation considerations

CM supports standard C++ operations and specialized operations for graphics applications

aimed to exploit data parallelism. CM can be considered as a vector/matrix language ori-

ented, so that it allows working with vector operations with ease. Operations such as reading

data elements from memory into vectors, selecting a subset of elements from a vector, arith-

metic and boolean operations between vectors, boolean reductions, etc. are optimized and

translated into SIMD instructions by the CM compiler. For further details of the CM lan-

guage, refer to its documentation at [39].

The main CM operations used by CMSL are:

a. Read and write: reads data blocks from memory to registers and writes the computed

output from registers to memory respectively. A vector of indices (offsets) can be used

for scattered reads/writes. In order to reduce the load on the message gateway as well

as maximize bandwidth utilization of read operation bandwidth we attempt to utilize

the full capacity of the read operations (i.e. 32 dwords for linear block reads and 16

dwords for scattered reads) whenever possible.

b. Atomic read-modify-write: GenX supports up to SIMD16 atomic read-modify-write

operations on data block (contiguous data elements), i.e. it is guaranteed by GenX

to perform the read-modify-write operation atomically on the data block. Similar

to C++, it supports the commonly used operations ADD, SUB, INC, COMPXCHG

(compare-and-swap, CAS), and so on.

c. Select: references a subset of the elements of vector/matrix objects. Some of these

operations return a reference to the elements of matrix/vector objects, so they can be

used as L-values in the statements.

d. Boolean reduction: it is applied to mask objects. Two operations are supported, any
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and all. v.any() returns 1 if any of the elements of v is 1; otherwise it returns 0. V.all()

returns 1 if all the elements of v are 1; otherwise it returns 0.

Even when GenX supports Shared Virtual Memory and atomic operations, the current im-

plementation of CMSL is based on pre-allocated buffers. These buffers are managed by the

CM runtime internally.

6.2.3 Data structure operations

CMSL provides three main operations: searchKey, insertKey and deleteKey. The source

code (adapted CM pseudocode) of the skiplist implementation is described in the following

subsections.

To express instruction level parallelism through SIMD operations, lines are highlighted in Al-

gorithms 5, 6, 7, 8 and 9. For example, the highlighted line in Algorithm 5 mask ←− (k ≥ keys)

reflects that the comparison between the vector keys and the value k has been performed in

one SIMD instruction, storing the result in mask.

The compare-and-swap operation (CAS) in Algorithms 8 and 9 follows the standard format

bool CAS(addr, old, new) but considering it as SIMD CAS. It checks in one atomic operation

the equality between the values on addr and the values on old. If equal, it changes the values

of addr to new values and returns true when the change is successful.

Search

The search operation is typically the most common operation in skiplist workloads, so it is

important to traverse the skiplist as fast as possible.

Following the original skiplist algorithm, the searchKey operation searches for the key’s
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range first and then performs a linear search within the list found. Considering the skiplist

structure from Figure 6.2 as reference, Algorithm 5 and 6 illustrate the search operation in

two dimensions: findList performs the search within the chunk of levels horizontally, while

searchKey (starting from line 4) performs the search within the chunks of keys vertically.

Algorithm 5 Find list

1: procedure findList(skiplist, k)
2: offset← 0 . Root of skiplist
3: next list:
4: offsets← read(skiplist, offset)

5: keys← read(skiplist, offsets) . Scattered read of minimum keys

6: mask ← (k ≥ keys)

7: if mask.any() then

8: i← getIndex(mask) . Index of the furthest list

9: offset← list[i]
10: goto next list
11: else
12: return list
13: end if
14: end procedure

The findList procedure begins by selecting the offsets of the pointed lists from the current

list. Then, on line 5 it performs a scattered read of the minimum keys from the pointed

lists whose offsets were just selected. Notice that the minimum key of each pointed list

corresponds to the first key within the list (offset to the pointed list + index of first key),

so if the pointed list exists, it will have a minimum key that indicates the range’s beginning

for that list. As we are interested in finding the list that contains k, the horizontal traversal

continues while k ≥ keys, so that it gets to the list where no minimum keys from its pointed

lists smaller than k exist. Finally, it returns the last list found in the traversal and whose

minimum key is the closest to k.

The searchKey procedure in Algorithm 6 begins by calling findList. Once it gets the list

that might contain k, it starts the SIMD linear search by comparing each attached chunk of

keys with k. When the boolean reduction on line 6 is true, it returns the key from its chunk
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Algorithm 6 Search key

1: procedure searchKey(skiplist, k)
2: list← findList(skiplist, k)
3: keys← list.keys
4: next chunk:
5: mask ← (keys == k)

6: if mask.any() then

7: i← getIndex(mask) . Index of the key

8: return keys[i]
9: else

10: if keys.next == null || keys[0] > key then
11: return null
12: end if
13: keys← read(skiplist, keys.next)
14: goto next chunk
15: end if
16: end procedure

or object associated to it; otherwise, it checks if there is another attached chunk and if it is

still in the k ’s range to continue the search.

While traversing lists and chunks in the searchKey procedure, there might exist the case

where the algorithm encounters lists or chunks marked as removed. These marked lists and

chunks are logically removed by the deleteKey procedure and correspond to lists or chunks

that became empty at some point. The algorithm simple ignores them by continuing the

lateral search following the pointed lists in findList, or continuing the down search following

the pointer to the next chunk of keys.

Insert

The insert operation receives a key k to be inserted in the skiplist. The insertion is successful

only if the key does not exist in the data structure. The procedure follows the same steps

from searchKey in order to find the right chunk and position for the new key. Once they are

found, atomic operations are performed to guarantee synchronization and the correct state
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of the structure at every phase of the algorithm.

Algorithm 7 Insert key

1: procedure InsertKey(skiplist, k)
2: level← randomLevel()
3: restart:
4: list← findList(skiplist, k)
5: chunk ← list.keys
6: next chunk:
7: mask ← (chunk ≥ k) | (chunk == 0)

8: if mask.any() then

9: i← getIndex(mask) . Index of current match

10: if chunk[i] == key then
11: return false . Key already exists
12: end if
13: if !insertInChunk(chunk, level, k, i) then
14: goto restart
15: end if
16: else
17: if chunk.next == null then
18: if !insertInChunk(chunk, level, k,−1) then
19: goto restart
20: end if
21: else
22: chunk ← read(skiplist, chunk.next)
23: goto next chunk
24: end if
25: end if
26: return true
27: end procedure

Algorithm 7 describes the insertKey procedure. It begins by obtaining a random value to

define the level for the current insertion, which is within the range 0 ≤ level ≤ 31. On line 4

it calls findList and obtains the list whose range corresponds to the new key. Then, on line

7 it searches for the right position for k, which can be at the position where a key greater or

equal than k exists or a vector cell is available (zero in the cell). When a position is found, a

final check needs to be done: whether it corresponds to the same key or not. If it is not the

same key, it finally calls the subroutine insertInChunk to perform the insertion. In the case

that the current chunk has no keys greater than k or cells available, the algorithm continues
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by checking if there exists an attached chunk. When there is no attached chunk, it means

that the new key corresponds to the greatest key in the current list and must be placed in

a new chunk since there is no space available in the last one. Line 18 reflects this situation

by calling insertInChunk with no position for the new key, which will be interpreted as a

insertion in a new chunk.

As the thread synchronization in CMSL is managed by CAS atomic operations directly

within its operations, whenever a thread fails to insert a new key because of the failing CAS

operation, it will try the insertion again until it gets successfully completed. This is valid

for the two cases explained above, whether the insertion fails on lines 13 or 18 the process is

restarted.

Algorithm 8 Insert in Chunk

1: procedure insertInChunk(chunk, level, k, i)
2: if level == 0 then
3: newChunk ← insert(chunk, k, i)

4: return CAS(offset, chunk, newChunk)
5: else
6: newList← allocate()
7: newList.keys[0]← key

8: newList.keys← stealKeys(chunk, i)

9: newChunk ← removeKeys(chunk, i)
10: newChunk.next← newList.chunk.offset
11: if !CAS(offset, chunk, newChunk) then
12: return false
13: end if
14: updateLinks()
15: end if
16: return true
17: end procedure

The subroutine insertInChunk, in Algorithm 8, is responsible for doing all the atomic updates

needed to insert new keys in existing chunks, new chunks or new lists. It receives the chunk

where the insertion will be done, the level for this insertion, the key k, and the position i.

There are basically two cases depending on level when performing the final step of insertion:
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a. level is equal to zero, k is inserted in current chunk: a new vector representing the

chunk is created, and k is inserted at position i. When the position i is occupied

by another key, it and greater keys are shifted to the right. Finally, the SIMD CAS

operation is performed as shown on line 4.

b. level is greater than zero, k is inserted in a new list with the given level: a new list is

allocated. k is inserted at the first position of the new list’s chunk of keys. Keys greater

than k from the current chunk are copied to the new list’s chunk of keys starting at

position 1 (line 8); in case that an attached chunk exists, its offset is also copied. Then,

a new vector representing the chunk without the stolen keys is prepared: all the stolen

keys are removed (line 9) and the pointer to attached chunk is updated to a pointer

to the new list’s chunk of keys (line 10). This last step ensures that the state of the

structure remains correct even if there are threads traversing the current chunk when

the insertion has been partially completed (without updating the pointers in the chunk

of levels yet). Finally, on line 11 the current chunk is updated through a SIMD CAS

operation. If the CAS operation fails, the subroutine returns false and the insertion

is restarted; otherwise, the algorithms proceeds by updating the offsets to the new list

in the chunk of levels from the current list and previous ones until the desired level is

reached (line 14).

Observe that when updating offsets in chunks of levels there might exist the case of

moving to previous lists in order to achieve the desired level. For this case, a traversal

path obtained from the findList procedure is used.

Example 6.1. Inserting a key with level 0 in a chunk that is full. Consider that in-

sertKey(67) is called and the procedure already found the list and the chunk where the key

should be inserted. Figure 6.3 shows the current state of the chunk of keys where 67 should

be inserted.

As the current chunk of keys is full, the algorithm proceeds by creating a new chunk with the
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new key 67 and some keys stolen from the current chunk. It also includes the pointer to the

next attached chunk. Finally, it performs the SIMD CAS operation on the current chunk to

remove the already copied keys and update the next pointer to the new chunk.

Figure 6.3: Insertion of key 67

Example 6.2. Inserting a key with level 1. Consider that insertKey(21) is called and the

procedure already found the list and its chunk where the new key should be inserted (current

list and current chunk in this example). Figure 6.4 shows the state of the skiplist before and

after inserting 21. As it can be seen in Figure 6.4a, the current list with minimum key 5 is

the one used for this insertion.

Notice that the insertion procedure has level 1, so all the keys greater than 21 must be moved

to the new list with level 1. The algorithm begins by allocating a new list (shown in the middle

of Figure 6.4b), and copying the following elements to it: offset of the pointed list from the

current list, key 21 at the first position of the new list’s chunk keys, keys greater than 21,

and the attached chunk of keys with keys that are also greater than 21. Finally, a new chunk

that reflects the changes in the current chunk of keys is prepared: copied keys greater than

21 are removed and the pointer to next chunk is updated to a pointer to the new list’s chunk

of keys.

By this time everything is prepared to perform the SIMD CAS operation safely on the current

chunk of keys. This update will guarantee that if any thread traverses the current chunk

looking for a key greater than 21, it will follow to the new list’s chunk of keys just created.

Hence a SIMD CAS operation is performed on the current chunk of keys to remove copied
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(a) Original skiplist (b) Updated skiplist

Figure 6.4: Insertion of key 21

keys and update the next pointer to the new list’s chunk of keys as shown in Figure 6.4b.

Notice that the pointer (green arrow) to the new list’s chunk of keys is temporal and allows to

maintain the correct status of the structure while the insert operation has not been finished.

Finally, the algorithm performs another CAS operation on the current list to update the

pointer to the new list (blue arrow in Figure 6.4b). At this moment, the new list can be

reached by the search operation through horizontal traversals.

Observe that if the level of key 21 were greater than the level of the current list (level 3), the

algorithm proceeds by updating levels from previous lists in a bottom-up fashion.

Delete

The delete operation is similar to the insert operation. Algorithm 9 describes the deleteKey

procedure. It begins by searching the key to be deleted, k. If k exists in the skiplist, line 7 of

Algorithm 9, it prepares a new chunk by removing k and shifting greater keys one position

to the left.

Notice that at this point the current chunk can become empty. If that is the case, it is
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marked as removed (line 11). Additionally, the current list can be also marked as removed

if the chunk being marked is the last chunk of the list. This first step can be considered as

a logical removal. Marked lists and chunks are omitted by threads traversing horizontally

through lists and vertically through chunks respectively. Insert and delete operations on

the previous list and chunk will eventually perform a physical removal of marked lists and

chunks by updating their next pointers.

Algorithm 9 Delete key

1: procedure deleteKey(skiplist, k)
2: restart:
3: list← findList(skiplist, k)
4: chunk ← list.keys
5: next chunk:
6: mask ← (chunk == k)

7: if mask.any() then

8: i← getIndex(mask) . Index of the match

9: updatedChunk ← removeKey(chunk, i)

10: if updatedChunk.isEmpty() then

11: maskAsRemoved(updatedChunk)
12: end if
13: if !CAS(offset, chunk, updatedChunk) then
14: goto restart
15: end if
16: else
17: if chunk.next == null || chunk[0] > k then
18: return false . Key not found
19: end if
20: chunk ← read(skiplist, chunk.next)
21: goto next chunk
22: end if
23: return true
24: end procedure

Ultimately, the algorithm performs the SIMD CAS operation on the current chunk (line

13); if it fails the process is restarted. The rest of the cases are analogous to the insertKey

procedure.
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6.2.4 Correctness

The proposed skiplist represents a set data structure. A key k is in the set if there is a path

from the first list to a chunk of keys that contains k, otherwise it is not in the set.

A valid skiplist has the following properties:

• The keys in the skiplist are sorted by their ascending order

• There are no duplicated keys

• Every key has a path to it from the first list

Support for the atomic SIMD16 CAS operation by the GenX hardware is assumed. We

use the concept linearizability [36, 35] to prove the correctness of CMSL. Linearizability is a

global property that ensures that when two processes each execute a series of method calls on

a shared object there is a sequential ordering of these method calls that does not necessarily

preserve program order (the order in which the programmer wrote them down), but each

method call does seem to happen instantly (i.e., invocation and response follow each other

directly), whilst maintaining the result of each method call individually and consequently

the object its state. This definition of linearizability is equivalent to the following:

• All function calls have a linearization point at some instant between their invocation

and their response.

• All functions appear to occur instantly at their linearization point, behaving as specified

by the sequential definition.

The following fundamental lemma is derived from the properties of a valid skiplist:

Lemma 6.5. For any list l, key k ∈ l and 0 < i ≤ l.level
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l[i].minKey 6= null⇒ k < l[i].minKey

Where l[i].minKey represents the minimum key of the pointed list from l at level i.

Proof. Line 7 in insertKey ensures that new keys are inserted at the corresponding position

(ascending order) in the chunk of keys. On the other hand, lines 6 and 7 in findList ensure

that always the right list l is found such that l.keys[0] ≤ k < l[0].minKey.

Lemma 6.6. The successful searchKey and failed insertKey of an existing key operations on

a valid skiplist are linearizable.

Proof. First note that neither of these operations make modifications to the skiplist so they

result in a valid skiplist. For these operations we must have a chunk with key k at the point

of linearization. The linearization point is when the chunk is read on line 13 in searchKey

and line 22 in insertKey. The check in the following step ensures that this is the right chunk

and it contains k. Finally, lemma 6.5 ensures that the skiplist is valid and it is the only list

with a chunk containing key k.

Lemma 6.7. The failed searchKey and failed delete operations on a valid list are linearizable.

Proof. Firstly, note that neither of these operations make modifications to the skiplist so

they result in a valid skiplist. We must have no key k in the skiplist at the linearization

point. After locating the list where the key could have been located (whose first key is

smaller or equal than k), the linearization point is where the last chunk of keys is read, line

13 in searchKey and 20 in deleteKey. Later, on line 10 in searchKey and 6 in deleteKey the

entire chunk is compared with k which must not have a key equal to k. Observe that even

though chunk of levels maintains pointers to every next list, the findList operation always

goes to the actual list that contains the chunk with the key. So in the case of a lists marked

as deleted, they are discarded.
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Lemma 6.8. The successful insert operations on a valid list are linearizable.

Proof. The precondition is that there is no key equal to k in the skiplist. The post-condition

is a valid skiplist with the key k in some list’s chunk. There are two cases of linearization

point. The first linearization point is the successful CAS operation inserting k in a chunk of

keys on line 4 in insertInChunk, in this case there is available space to insert the new key in

the chunk. The second case is when a chunk is full of keys or a new list is created due to a

level greater than 0, here the linearization point is the successful CAS changing chunk’s next

pointer on line 4 for the first scenario and on line 11 for the latter. Notice that for the case

of creating a new list with level greater than 0, there is at least one more CAS operation on

the previous list that updates the pointer to the new list (line 14). Even when the key was

already inserted and the skiplist is still valid, the post-processing step on line 14 to update

upper levels is necessary to achieve the probabilistic assignment of levels on new lists.

Lemma 6.9. The successful delete operations on a valid list are linearizable.

Proof. This operation has a precondition that there exists a chunk of keys in the skiplist

with key k. The post-condition is having the same chunk in the skiplist without the key

k or without the entire chunk if it only had the key k at the time of linearization point.

The linearization point is the successful CAS removing the key from the chunk on line 13

and removing the entire chunk on line 11 and 13. The existence of k for the precondition

is ensured by the CAS on line 13 along with line 7. The CAS ensures the post-condition of

chunk without k along with lemma 6.6 and that the skiplist is still valid.

Theorem 6.2. CMSL satisfies linearizability for the set abstraction.

Proof. This follows from lemmata 6.6, 6.7, 6.8 and 6.9.

Notice that other combinations of operations and their linearization points can be directly

derived from the lemmata described above.
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A similar proof can be extended for Θ-node transformations on CMSL.

Lemma 6.10. The successful searchKey and failed insertKey of an existing key operations

on a valid skiplist are linearizable.

Proof. First note that neither of these operations make modifications to the skiplist so they

result in a valid skiplist. For these operations we must have a ΘX with key k at the point

of linearization. The linearization point is when Θx is read in searchKey and in insertKey.

The check in the following step ensures that this is the right ΘX and it contains k. Finally,

lemma 6.5 ensures that the skiplist is valid and it is the only list with a ΘX containing key

k.

Lemma 6.11. The failed searchKey and failed delete operations on a valid list are lineariz-

able.

Proof. Firstly, note that neither of these operations make modifications to the skiplist so

they result in a valid skiplist. We must have no key k in the skiplist at the linearization

point. After locating the list where the key could have been located (whose first key is smaller

or equal than k), the linearization point is where the last ΘX of keys is read in searchKey

and deleteKey. Later, in both procedures, the entire ΘX is compared with k which must not

have a key equal to k. Observe that even though ΘX of levels maintains pointers to every

next list, the findList operation always goes to the actual list that contains the chunk with

the key. So in the case of a lists marked as deleted, they are discarded.

Lemma 6.12. The successful insert operations on a valid list are linearizable.

Proof. The precondition is that there is no key equal to k in the skiplist. The post-condition

is a valid skiplist with the key k in some list’s ΘX . There are two cases of linearization point.

The first linearization point is the successful SIMD CAS operation inserting k in a Θ of keys

in insertInChunk, in this case there is available space to insert the new key in the chunk. The
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second case is when a ΘX is full of keys or a new list is created due to a level greater than

0, here the linearization point is the successful SIMD CAS changing ThetaX ’s next pointer.

Notice that for the case of creating a new list with level greater than 0, there is at least one

more SIMD CAS operation on the previous list that updates the pointer to the new list.

Even when the key was already inserted and the skiplist is still valid, the post-processing

step on line 14 to update upper levels is necessary to achieve the probabilistic assignment of

levels on new lists.

Lemma 6.13. The successful delete operations on a valid list are linearizable.

Proof. This operation has a precondition that there exists a Θx of keys in the skiplist with

key k. The post-condition is having the same ΘX in the skiplist without the key k or without

the entire ΘX if it only had the key k at the time of linearization point. The linearization

point is the successful SIMD CAS removing the key from ΘX or removing the entire ΘX .

The existence of k for the precondition is ensured by the SIMD CAS itself (it would fail

otherwise). The CAS ensures the post-condition of ΘX without k along with lemma 6.10

and that the skiplist is still valid.

Theorem 6.3. Θ-node based CMSL satisfies linearizability for the set abstraction.

Proof. This follows from lemmata 6.10, 6.11, 6.12 and 6.13.

CMSL is lock-free. It only uses CAS operations (atomic SIMD1, SIMD8 and SIMD16) as

a synchronization technique for update operations and no synchronization during search

operations. The only way for an operation to not exit the main loop (line 3 in Algorithm 7

and line 2 in Algorithm 9) is to have its CAS interfere with another CAS executed by another

thread on the same memory location. Note that this guarantees that each time a CAS fails,

another thread succeeds and thus the whole system always makes progress, satisfying the

lock-freedom property.
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6.2.5 Experimental Results

A set of experiments were carried out in order to evaluate the performance of the proposed

skiplist and to compare it to CPU and discrete GPU state-of-the-art implementations.

Algorithms were implemented in CM for GenX and in C++11 for CPU. The experiments

were carried out on a Intel(R) Core i7-8670HQ CPU, with a total of 4 physical cores and

8 logical processors running at 2.70GHz. This machine has per-core L1 and L2 caches of

sizes 32KB and 256KB, respectively and a shared L3 cache of 8MB, with a 16GB DDR

RAM memory. In terms of graphics, it has an Intel(R) Iris Pro Graphics 580, dubbed GT4e

version and Gen9 microarchitecture, with 128MB of dedicated eDRAM memory and features

72 Execution Units (EUs) running at 350 - 1100 (Boost) MHz. Algorithms were compared in

terms of running times using the usual high-resolution (nanosecond) C functions in time.h.

Power consumption is calculated by using energy counters between two time samples and

converting to power for that time sample.

The initial size of CMSL is 1 million keys for all the experiments in Sections 6.2.5, 6.2.5

and 6.2.5. The same initial size is used for the rest of the skiplist implementations used for

comparison.

Comparison with CPU

Use cases to test concurrent data structures are typically lists of combined concurrent oper-

ations distrbuted among all the threads. We defined a set of combined operations by ratios,

i.e. from the total amount of operations performed by a thread, percentages of them that

correspond to search, insert and delete. These use cases were measured using CMSL and

state-of-the-art concurrent Skiplist for CPU [21, 62, 14, 54].
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Figure 6.5: Throughput of different Skiplists on GenX and CPU

Figure 6.5 shows the number of operations per second (in millions) that are achieved by

different skiplists on CPU and our proposal on iGPU. The x − axis depicts the ratio of

[search, insert, delete] operations, i.e. the leftmost data item corresponds to insert-only

operations, while the rightmost data item corresponds to search-only operations.

The skiplists tested on CPU are: a) Herlihy’s, update operations are optimistic, so it finds

the node to update and then acquires the locks at all levels, validates the nodes, and performs

the update. Searches simply traverse the multiple levels of lists; b) Herlihy-Optik’s, optimized

version of Herlihy’s skiplist using Optik patterns; c) Optik’s, skiplist implementation using

Optik pattens; d) Pugh’s, optimized implementation of the first skiplist proposal by Pugh,

it maintains several levels of lists where locks are used to perform update operations; e)

Fraser’s, optimistically searches/parses the list and then does CAS at each level (for updates).

A search/parse restarts if a marked element is met when switching levels. The same applies

if a CAS fails.

Notice that the concurrent skiplists tested on CPU are mainly designed for many-core CPUs.

They scale well for multiple threads (e.g. over 16). However, when testing up to 8-thread on
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a 4-core CPU their performance is not scalable. In contrast, CMSL scales well on the iGPU

of the same 4-core processor.
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Figure 6.6: Speedup of CMSL on GenX over Fraser’s skiplist for CPU

CMSL achieves higher number of operations for all the scenarios, and its best performance

is when all the operations are search with up to 3.1x speedup. When all the operations

are updates, it still presents 1.2-1.5x speedup. We chose the Fraser’s skiplist to perform an

individual comparison in terms of GPU speedup and energy savings. Figure 6.6 illustrates

the speedup of CMSL over Fraser’s skiplist. CMSL achieves up to 3.5x speedup when all

the operations are search and 1.3x speedup when all the operations are insert; the rest of

mixture operations present speedups between these numbers. Similarly, it also shows the

energy savings for all the experiments, achieving of up to 300% when all the operations were

search.

It is noteworthy where the performance gains of CMSL come from. All the CPU imple-

mentations are based on single-node design; e.g, traversals on levels are done through node

pointers one at a time, comparison operations within the bottom level are performed one

by one, and so on. In contrast, CMSL performs traversals on levels through 8, 16, 24 or 32

levels at a time, and comparisons at the bottom levels are performed every 16 elements with
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one single SIMD operation.

Comparison with discrete GPU

Even though CMSL is the first proposal for iGPU, there exists a skiplist implementation

for discrete GPU using CUDA. Misra and Chaudhuri (M&C) in [50] ported several concur-

rent data structures to GPU, including a lock-free skiplist. The main difference between

CMSL and M&C is that the latter is pointer-based, so physical updates within the lists are

performed by single-word CAS operations.

It is evident that a direct comparison cannot be done since they are executed on different

graphics processors, which vary in architecture, area of architecture components, power,

etc. However, we measured efficiency e in terms of measured performance (1/time) per

compute-power (peak GFLOPS – pG), which is calculated as

e =
1

time ∗ pG
(6.1)

Thus we can characterize and compare algorithms in terms of efficiency running on different

kind of graphics processors.

A Nvidia GTX 970 GPU was used to run different workloads of the M&C skiplist. This

graphics card has 13 active streaming multiprocessors, a total of 1,664 cores, and 4GB of

GDDR5 memory capacity. In terms of GFlops, the Nvidia GTX 970 has a peak GFlops of

3,920, while the Intel’s GT4 Gen9 has a peak GFlops of 1,152.

Table 6.1 shows the running times of each skiplist when executing 1 million operations. The

operation ratios are the same used in the comparison with CPU algorithms. The relative

efficiency in the rightmost column of the table provides the efficiency of CMSL divided by
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Operations
[search,
insert,
delete]

CMSL
on

iGPU
(in ms)

M&C
on

dGPU
(in ms)

Relative
efficiency
of CMSL

[0, 100, 0] 243 110 1.5
[0, 50, 50] 211 109 1.6
[60, 20, 20] 141 69 1.7
[80, 10, 10] 93 48 1.8
[90, 5, 5] 71 42 2.0
[100, 0, 0] 61 44 2.5

Table 6.1: Performance comparison between CMSL and M&C skiplists. Relative efficiency
of CMSL is calculated by eCMSL

eM&C
from equation (1). Tests on 1M keys.

the efficiency of M&C – in a sense, this measures how much more performance CMSL is able

to extract from the iGPU with the same compute-power.

As the column on relative efficiency depicts, in all the cases CMSL is capable of achieving

more performance on a CM-GenX than the M&C skiplist on CUDA-GPU with the same

compute-power. The performance of CMSL is significantly more efficient in search-dominant

scenarios due to effective utilization of varying SIMD width within a kernel and usage of CM

intrinsic functions to make use of the GenX hardware features. When having mostly updates

operations, efficiency of CMSL is slightly more than M&C with a performance of 50% higher.

Scalability

In this experiment, a predefined number of threads is set before dispatching the kernel on the

iGPU. Then, each thread performs a randomly-generated list of operations in the skiplist.

As the skiplist data structure is mainly used for queries, the ratio of operations chosen is

defined as: 90% search, 5% insert, and 5% delete.

Figure 6.7 shows the performance in milliseconds of CMSL considering different amount of

operations and varying the number of threads. It can be seen that the performance improves
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considerably as the number of threads increases for the three scenarios. The best performance

is achieved between 256 and 512 threads, which is consistent with the GT4 Gen9 hardware

capabilities where the experiments run on. The Gen9 iGPU features 72 EUs with a total

of 504 hardware threads. Note that increasing the number of threads to 1024 produces

degradation of the performance due to higher data contention and bandwidth limits.

6.3 SIMT-friendly Data Structures

In SIMT architectures, threads are created, managed, scheduled, and executed in groups

of parallel threads called warps (CUDA) or thread group (CM). Comparing with SIMD

architecture, SIMT and SIMD are both architectures are similar, the difference relies on

how the instruction is applied. While SIMD applies one instruction to multiple data, SIMT

applies one instruction to multiple independent threads in parallel. In contrast to SIMD

architectures, SIMT enables programmers to write thread level parallel code for independent

threads and they can essentially ignore the attributes such as warps. On the other hand,

SIMD architectures require to manually manage the data in vectors (SIMD-friendly format).
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Figure 6.8 illustrates the same example presented in previous sections but with SIMT pro-

cessing. A shared data structure is available to be accessed from multiples threads. Each

computational unit performs SIMD instruction, however every data item belongs to a dif-

ferent thread. Every thread can be seen as a light thread, and every thread group or wrap

can share common instructions that are performed in a data-parallel fashion.

Figure 6.8: SIMT processing

Data structures operations that have low divergence are good candidates to be implemented

with SIMT processing. Update operations often have a high number of branches and non-

blocking techniques, such as trying to update until succeeding, might produce a high number

of cache misses. Search operations, on the other hand, are candidates for SIMT processing

as long as they have a reduced number of branches.

The general idea of implementing search operation using SIMT processing is that multiple

threads perform traversals in groups or warps. Each thread group executes the same in-

struction but on different data, i.e. different thread of the same group might be at different

nodes in a search tree a at certain moment.
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6.3.1 SIMT Tree Search

Algorithm 10 shows the general SIMT algorithm for searching keys in tree structures. It

is noteworthy to point out that this implementation represents a node-based tree structure

with 2 children (left and right), but it can be generalized to any tree structure with an

arbitrary number of children. Line 12 in Algorithm 10 defines the decision to continue the

traversal to a next node, so this line can be changed in order to define the number of paths

(children) to new nodes.

Algorithm 10 General SIMT tree search

1: procedure treeSearch(root, keys)
2: nodes← root
3: while true do
4: if nodes == null then
5: break . Key not found
6: end if
7: vals← scatter read(nodes)
8: if vals == keys then
9: break . Key found

10: end if
11: offsets← 0 . Stores next node’s offset
12: if keys is within a range then . Condition for traversing the structure
13: offsets← node1 offset
14: else
15: offsets← node2 offset
16: end if
17: nodes← scatter read(offset) . Visit next node
18: end while
19: end procedure

The search starts by defining the starting point for the thread group (line 2 in Algorithm

10) which is the root of the structure. Then each thread enters the while loop that will end

whenever the key is found or not. Notice that the live range of every thread is independent,

i.e. a thread that finds its key earlier will break the while loop and finish its operation. All

the results will be synchronized and returned once all threads finish their search.

It is expected that more parallelism can be achieved in SIMT processing versus CPU multi-
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threaded processing if algorithms have low divergence. In terms of data structures, tree

structures are good candidates to be implemented with SIMT processing as long as they

present low divergence and keys are stored in external nodes, e.g. external binary search

trees.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Modern heterogeneous CPU/iGPU architectures present new programming challenges to

programmers. First, the inclusion of more CPU cores per chip requires the efficient imple-

mentation of new synchronization primitives that allows thread-safe execution of concurrent

programs with shared data structures. On the other hand, the new capabilities on Data-

Parallelism on these architectures open new a dimension for exploiting parallelism on existing

multi-threaded data structures.

Spatial Locks constitute a useful synchronization mechanism that allows to make parallel

geometric algorithms thread-safe. Based on Spatial Hashing and Axis-aligned Bounding

Boxes (AABB), they provide constant-time lock/unlock operations when updating an ob-

ject in 2D or 3D space. It has been proven that this synchronization mechanism satisfies

mutual exclusion and deadlock-freedom, fundamental properties for any thread synchroniza-

tion mechanism. Many geometric algorithms can benefit from Spatial Locks given that its

use does not require significant changes on the implementation of the geometric algorithms
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themselves. Our experiments show that highly parallel executions with important speed-up

can be obtained when using this synchronization mechanism for mesh simplification processes

and big meshes.

A new framework called SIMD-node Transformations to implement non-blocking and lin-

earizable data structures using multi-threaded and SIMD processing was proposed. One-

and multi-dimensional data structures, such as skiplists, k-ary trees and multi-level lists,

can benefit from new SIMD computing capabilities available in accelerators such as iGPUs

by applying these transformations. Ex- perimental results show important performance gains

obtained when applying these transformations to a lock-free skiplist. In the future, we plan

to implement more non-blocking data structures using SIMD-node transformations.

A lock-free skiplist for iGPU was introduced to show the usefulness of Θ-node transforma-

tion on an existing non-blocking data structure. CMSL design is based on chunked lists

which helps the effective utilization of SIMD width on GenX and its implementation was

proven linearizable. Experimental results show important speedups and energy savings over

CPU proposals as well as a more compute-efficient implementation when compared to a

discrete GPU proposal. We believe that other array-based concurrent data structures can

be implemented using similar design considerations for iGPU.

7.2 Future Work

There is important work to be explored on new applications that benefit from heterogeneous

CPU/iGPU processors. This thesis work opens new research in the field of concurrent data

structures with SIMD processing as well as using heterogeneous CPU/iGPU processors for

general purpose processing. Potential future works are:

• Study how compilers can optimize data structures with SIMD processing. Compilers
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play an important role when optimizing implementations of data structures with SIMD

processing. As in the proposed framework Θ-node transformations, it is the user

who defines the sizes of ΘX , validations should be done in order to avoid impact

in performance.

• Extend Θ-node transformations for specific and stronger non-blocking properties, such

as lock-free, wait-free, etc., will be useful for application-specific scenarios. Addi-

tionally, identifying and implementing more data structures with embedded data-

parallelism is an important future step.

• In terms of the Intel CPU/iGPU architecture, it is interesting to study the performance

impact of allocating data structures in the Last Level of Cache (LLC) memory, that

is shared between the CPU cores and iGPU. An important challenge is to study how

mutual exclusion and/or synchronization when updating concurrent data structures

from CPU and iGPU is guaranteed. The implementation concurrent data structures

allocated in LLC is possible since current the architecture Gen9 supports atomic op-

erations from the executions units on this memory as well as from the CPU cores.

• Extend this work to discrete accelerators such as discrete GPUs. This would allow to

implement scalable algorithms for data centers and super computers.
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