
UCLA
UCLA Electronic Theses and Dissertations

Title
Eccentric Planets around Evolved Stars

Permalink
https://escholarship.org/uc/item/7qx5n8fd

Author
Frewen, Shane Franklin Nishi

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qx5n8fd
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Eccentric Planets Around Evolved Stars

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Astronomy

by

Shane Franklin Nishi Frewen

2015



c© Copyright by

Shane Franklin Nishi Frewen

2015



Abstract of the Dissertation

Eccentric Planets Around Evolved Stars

by

Shane Franklin Nishi Frewen

Doctor of Philosophy in Astronomy

University of California, Los Angeles, 2015

Professor Bradley M. Hansen, Chair

Planets are now known to be near ubiquitous around main-sequence stars in our galaxy, as

evidenced by the results of radial velocity and transit surveys such as the Kepler mission.

In spite of this accomplishment, our understanding of how planetary systems form and are

affected by stellar evolution is far from complete. Observations of polluted white dwarfs,

which show evidence for planetesimal accretion in their atmospheres, indicate that planets

must be orbiting them in order to perturb planetesimals into their tidal radius. Yet no planets

have themselves been detected, leaving the population uncharacterized. Meanwhile, main-

sequence stars host a significant number of eccentric warm jupiters, massive planets orbiting

on 10- to 100-day periods, which are not observed around evolved stars. These planets were

likely born at much larger distances, but the mechanism by which they migrated inward

remains unclear.

This dissertation is composed of two projects, each investigating one of these populations.

In the first I use numerical simulations to test eccentric planets as the source of white dwarf

pollution, finding a strong relationship between planetary properties and the white dwarf

accretion rate. Small and eccentric planets prove to be the most efficient perturbers, capable

of producing the observed pollution levels so long as the surviving disk of planetesimals is

massive enough. In the second I test the hypothesis that warm jupiters are migrating as a

result of large oscillations in eccentricity caused by a more distant planet. Our numerical

simulations show that these oscillations lead to planetary removal earlier in the evolution of
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the host star than constant eccentricity, and can explain the observed lack of warm jupiters

around evolved stars.
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CHAPTER 1

Introduction

Planetary systems around other stars have now been studied for nearly twenty years; as a

result, a great deal of information has been collected regarding the nature of planets around

a wide variety of main-sequence (MS) stars. Surveys measuring stellar radial velocities

and planetary transits have detected over 1,800 planets, along with thousands of planetary

candidates (Mullally et al., 2015). Careful analysis of observations has also determined

planetary properties, including masses, sizes, and orbital parameters, proving that extrasolar

planets are a hugely diverse population. Perhaps somewhat surprisingly, a significant number

of these planets are different from anything that exists in our solar system. Arguably the

most dramatic example is the population of extrasolar planets first to be discovered: hot

jupiters (HJ). These massive planets orbit on periods under than 10 days, which is less than

10 percent that of Mercury (Mayor & Queloz, 1995; Butler et al., 1997). While HJs are far

from the most common type of extrasolar planet, having been detected first due to their

high detectability rather than ubiquity, their existence points to physical processes which do

not, or no longer, play a role in our own solar system.

The differences between extrasolar planets and our solar system extend outside of this

short-period regime as well. Warm jupiters (WJs) are an unexpected population of extrasolar

planets that, like HJs, are too near to their host to have formed in situ, but are distant

enough to retain a significant eccentric population. Notably, while the largest eccentricity

in our solar system is 0.21 (Mercury), radial velocity surveys have shown that exoplanets

with periods longer than 10 days have a wide range of eccentricities (Butler et al., 2006),

and a cursory examination of the current Exoplanet Orbit Database (Wright et al., 2011)

shows that over 50 percent of such planets have eccentricities larger than 0.2 (Figure 1.1).
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Figure 1.1 The distribution of eccentricities for planets with periods longer than 10 days,
from the Exoplanet Orbit Database (Wright et al., 2011). The substantial tail above at
eccentricities greater than 0.2 composes over 50 percent of the planets, highlighting the
importance of understanding planetary eccentricity in exoplanet systems.

This result has important implications for the formation of both exoplanets and exoplanet

systems, as well as their fate during and after stellar evolution.

Meanwhile, only recently have planet searches begun to probe the existence of planets

around evolved stars, so the manner in which stellar evolution affects planetary systems is

still far from understood (Johnson et al., 2007, 2011). While gradual expansion occurs during

the MS, stars increase in radius by more than an order of magnitude after core hydrogen

fusion is finished and they evolve onto the giant branch. This growth can have dramatic

effects on an orbiting planetary system, causing planets to be removed by engulfment or

inspiral via tides and stellar wind drag. Additionally, large amounts of mass loss occur near

the end of stellar evolution as the star evolves into a white dwarf (WD), leading to orbital
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expansion for surrounding material. Because of these effects, stellar evolution is likely to

play an important role in a range of planetary systems. This dissertation consists of two

projects, both investigating planetary systems where eccentricity and stellar evolution play

a major role.

As of 2015, no planet has been observed around a WD. The large surface gravity requires

massive, close-in planets to produce radial velocity signals that are detectable, and their

small size lowers the probability of a planet transit occuring. However, a significant fraction

of WDs are observed to be polluted with metals, in spite of having high surface gravities and

short settling times. The current model for this pollution is accretion of rocky bodies, which

are delivered to the WD through perturbations by orbiting planets. While these inferred

planets are believed to be orbiting a significant number of WDs, due to the high rate of

pollution, their physical and orbital properties are only very weakly constrained.

Chapter 2 is an examination of single planet systems around WDs and their effect on

a co-orbiting disc to better understand these properties. Using N–body simulations, we

examine the possibility that a single planet is the source of WD pollution. We determine the

stability of test particles on circular orbits in systems with a single planet located at 4 AU for

a range of masses and eccentricities, comparing the fractions that are ejected and accreted

by the star. In particular, we compare the instabilities that develop before and after the star

loses mass to form a WD, a process which causes the semi-major axes of orbiting bodies to

expand adiabatically. We determine that a planet must be eccentric (e > 0.02) to deliver

significant (> 0.5 per cent) amounts of material to the central body, and that the amount

increases with the planetary eccentricity. We also find that the efficiency of the pollution

is enhanced as planetary mass is reduced. We demonstrate that a 0.03 MJup planet with

substantial eccentricity (e > 0.4) can account for the observed levels of pollution for initial

disc masses of order 1 M⊕.

Chapter 3 is our study of migrating WJs undergoing eccentricity oscillations and the effect

of stellar expansion on their population (Frewen & Hansen, in prep.). We investigate Kozai-

Lidov oscillations as a cause for their absence around evolved stars, with the planets being

engulfed or dragged in by their host during tidal evolution. Using numerical simulations we
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determine the relationship between periapse distance and orbital migration rate for planets

0.1 to 10 Jupiter masses and and the period range 10 to 100 days. We find that Kozai-Lidov

oscillations effectively result in planetary removal early in the evolution of the host star,

possibly accounting for the observed deficit. While the observed eccentricity distribution is

inconsistent with the simulated distribution for and oscillating and migrating WJ population,

observational biases may explain the discrepancy.
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CHAPTER 2

Eccentric planets and stellar evolution as a cause of

polluted white dwarfs

Reproduced by permission of Oxford Journals

(Frewen, S. & Hansen, B. 2014, MNRAS, 439, 2442)

2.1 Introduction

Studies of hydrogen-dominated (DA) and helium-dominated (DB) WD spectra have found

that roughly 25 per cent of all WDs show weak metal lines, despite the theoretical prediction

that metals should gravitationally settle below the photosphere (Zuckerman et al., 2003;

Koester, 2009; Zuckerman et al., 2010). Given settling time-scales as small as days for the

more-common DAs and under 105 years for DBs, the rapid rate at which gravitational settling

occurs in these dense objects indicates the pollution must have occurred recently compared

to their cooling ages and is likely ongoing (Paquette et al., 1986; Koester & Wilken, 2006;

Koester, 2009). Furthermore, infrared excesses have been detected in a number of these

WD systems (Zuckerman & Becklin, 1987; von Hippel et al., 2007; Farihi et al., 2009; Xu &

Jura, 2012). The cause of these excesses appears to be debris disks near the WDs, which are

delivering the polluting material (Chary et al., 1999; Jura, 2003; Kilic et al., 2006). These

detections support the theory that the observed pollution is due to accreted orbiting bodies,

which are perturbed towards and tidally disrupted by the central WD (Jura, 2006). The

primary alternative, accretion of interstellar material, has been proven inconsistent with

elemental abundances determined from WD spectra (Jura, 2006; Klein et al., 2010; Farihi

et al., 2010a; Klein et al., 2011) as well as spectra of the debris disks (Reach et al., 2005;
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Jura et al., 2009). Estimates for total mass accreted by polluted WDs are on the order of

6 × 1023 g, which is similar to the mass of minor bodies in the solar system such as Ceres

(Zuckerman et al., 2010).

While the source of the pollution has become more clear in recent years, the mechanism for

delivering such material to the star is still uncertain. Early work investigated the possibility

that planetary systems close to instability during the main sequence (MS) can be destabilized

by stellar mass loss during post-MS evolution (Debes & Sigurdsson, 2002). Upon scattering,

the planets could settle into a new, dynamically-young configuration that would allow them

to perturb other orbiting bodies, such as asteroids or comets, that were previously stable.

However, the high frequency of polluted WDs means this mechanism would require a large

fraction of WD progenitors to have planetary systems on the edge of stability.

More recently, Bonsor et al. (2011) simulated planets on circular orbits interacting with

a Kuiper-Belt analog over the course of stellar evolution. To determine the ability of the

planet to pollute its host WD, the authors looked at the fraction of bodies scattered into the

inner solar system, interior to the orbit of the planet. They did not simulate impacts with

the WD; instead, they assumed additional planets in this region, which could further scatter

bodies. The authors found that a planet near 30 AU and a Kuiper Belt analog extending to

46.7 AU could match the observed frequency of polluted WDs as well as the distribution of

accretion rates as a function of cooling age. This result requires an inner planetary system

to cause secondary scatterings, which delivers the material the full distance to the WD; a

lone planet at 30 AU was unable to scatter particles on to stellar-collision orbits. Bonsor

et al. (2011) also found that the mass of the simulated planet had only a weak effect on

the amount of material delivered to the inner system. While massive planets removed more

bodies from the original belt, higher fractions were ejected relative to less-massive planets.

Another recent work, Debes et al. (2012), focused on rocky bodies interior to a planet as

source of pollution. The authors examined the ability of a single planet to deliver material

originating in the inner 2:1 Mean Motion Resonance (MMR) to a WD, through the increase

in resonance width with stellar evolution. Using Jupiter and the asteroids located near the

2:1 MMR as a test case, they found that a single planet is capable of delivering enough
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material to the star provided the interior debris belt is large enough. Assuming a similar

size distribution to the solar system asteroid belt, the authors determined that the total

mass of the debris belt would need to be between 4 times and 6×105 times larger to account

for WD observations. While massive debris disks have been observed, they often exist at

greater distances from their host star (Wyatt, 2008) and their incidence appears to drop off

rapidly with age (Rieke et al., 2005).

In a paper related to Debes & Sigurdsson (2002), Veras et al. (2013) examined the

stability of two-planet systems over the entirety of stellar evolution, including MS, post-MS

(including mass loss), and WD. The authors performed N-body integrations of the system for

stellar masses 3–8 M", with equal planetary masses of both MJup and M⊕. They found that

planetary interactions leading to ejection or accretion by the star primarily occurred after

∼ 107 years, supporting the possibility of planetary instability as a source of WD pollution.

However, in addition to selecting large stellar masses dissimilar to the progenitors of observed

polluted WDs (1–2.5 M"), the authors did not investigate the effect of the unstable planets

on planetesimals remaining in the system, which limits the applicability of their results to

WD pollution.

In this work we use N-body simulations of a single planet and massless test particles (TPs)

to systematically examine the degree to which planetary properties affect WD pollution. In

particular, we investigate the influence of planetary mass and eccentricity, which have largely

been neglected in this context until now. Radial velocity surveys have shown that exoplanets

orbiting beyond 0.1 AU have a wide range of eccentricities (Butler et al., 2006), and a cursory

examination of the current Exoplanet Orbit Database shows that over over 50 per cent of

such planets have eccentricities larger than 0.2 (Wright et al., 2011). Therefore, testing a

range of eccentricities for the perturbing planet gives us greater generality than before as

well as insight into the overlooked parameter space of eccentric planets. Additionally, high-

resolution spectroscopy has shown that the accreted material is more consistent with the

composition of solar-system asteroids or the rocky planets than comets (Zuckerman et al.,

2007; Klein et al., 2010). As a result, we investigate the region near to the star interior and

exterior to planetary orbit, as opposed to the distant planet and outer belt of material used
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in Bonsor et al. (2011). Furthermore, we simulate the entire region near the planet unlike

the very detailed, single-MMR approach of Debes et al. (2012). These simulations allow us

to better understand the ability of a single planet to account for observed WD pollution

rates, particularly as a function of planetary mass and eccentricity.

The layout of the paper is as follows: In Section 2 we review important features of the

dynamics we expect to occur in the systems simulated. In Section 3 we discuss the setup

and results of our initial simulation, and repeat that for a range of masses and eccentricities

in Section 4 where we find that smaller and more eccentric planets are more efficient at de-

livering material to the host star. Section 5 details the theoretical effects of stellar evolution,

and Section 6 presents the results of our WD simulations along with a comparison to the

MS simulations, which show that stellar evolution can result in a significant population of

newly unstable bodies. We finish with a discussion of results and comparison to other work

in Section 7 and a conclusion in Section 8.

2.2 System Dynamics

The classical orbit of a single body in the gravitational field of a star will be a Keplerian

ellipse, fixed in space. However, the orbit of a third, small body, such as an asteroid, will

be affected by both the star and the planet and as a result be non-integrable. The orbit

of such a body can be rapidly and dramatically changed upon close encounters with the

planet, leading to ejection or collision with the star. In the case of bodies much less massive

than the planet, the planetary orbit will remain unchanged. Beyond scattering, the orbits of

small bodies can be perturbed by planets through both global secular effects and localized

resonant effects. Through secular effects, orbits near an eccentric planet will slowly increase

in eccentricity. This contribution is called ‘forced eccentricity’: it is greatest for orbits near

the planet and drops off with distance. As eccentricity increases so does the likelihood of

scatterings, which further alters the orbit.

Resonant effects occur at MMRs, and result from repeated encounters between bodies

near the same location or locations over each orbit. These encounters can produce a rapid
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evolution of orbital elements such as eccentricity, or can act as a protection mechanism by

preventing closer encounters between two bodies for long periods of time. MMRs are highly-

localized and as such relatively small shifts in semi-major axis (SMA) can dramatically alter

the stability of orbiting bodies, as will be shown in Section 2.4. MMRs exist where the mean

motions of two bodies form an integer ratio:

n2

n1
=

p

p + q
(2.1)

Here n1 and n2 are the mean motions of the inner and outer bodies, respectively, while p and

q are integers. For orbits interior to the planet, the resonance is given by p+q : p (so that n1

is the mean motion of the planet), while for exterior orbits the resonance is p : p+ q, with n2

being the mean motion of the planet. The strength of the resonance is determined in part by

the order of the resonance, q: smaller q values generally correspond to stronger resonances.

However, at larger planetary eccentricities higher-order MMRs are no longer negligible, which

increases the number of trapping regions for small bodies. Particles located in resonances

have been shown to become unstable at late times (Wisdom, 1982; Debes et al., 2012),

indicating that unstable MMRs will not be immediately cleared of bodies and can function

as a source of material for the star even at late times.

2.2.1 The nominal chaotic zone

MMRs have a finite width that is determined by both the planet causing them, via its

eccentricity and planet-to-star mass ratio, as well as the location and order of the resonance

(Murray & Dermott, 2000). As described in Chirikov (1979), when resonances overlap in

a system it results in stochastic motion and orbital instability. In the context of planetary

systems, as p increases and the mean motion of the orbit approaches that of the planet, first-

order (q = 1) MMRs are spaced more closely and eventually overlap. This region of overlap

is known as the ‘chaotic zone’ (CZ) and within it orbits are chaotic, frequently becoming

unstable. Wisdom (1980) showed that for a planet on a circular orbit, nearby bodies become

unstable when the distance between them is
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ε =
a− ap
ap

< 1.3µ2/7 (2.2)

where a and ap are the SMAs of the nearby body and planet, respectively, and µ = MPl/M∗

is the mass ratio between the planet and the central star. Numerical work by Duncan et al.

(1989) showed the same mass dependence with a slightly different coefficient:

εcz = 1.5µ2/7 (2.3)

This equation indicates that larger planets produce larger CZs, for constant stellar mass.

However, a corresponding equation for planets with moderate eccentricity does not exist:

such a planet causes orbits of a third body to be non-integrable. Finally, this mass-ratio

dependence also has important implications for the system as the star evolves off the MS,

which will be covered in Section 2.5.

From the preceding paragraphs we can predict the general behavior of small bodies in

the presence of a massive planet: Those closest to the planet will start between planetary

periapse and apoapse, and will rapidly be removed from the system by a collision or scattering

in close encounter. Particles beyond the physical reach of the planet will be inside the CZ,

and will likely go unstable as orbits become chaotic. Beyond the CZ, most particles should

be stable with slight eccentricities, caused by secular effects. The exception is particles in

MMRs, which may show anomalous behavior both in the CZ, where they may be more stable

than their neighbors, and outside of the CZ, where they may be more unstable. Of those

that are removed from the system, particles inside the orbit of the planet should have a

higher likelihood of being accreted by the star, while those beyond the planet, being more

weakly bound, should show a greater preference for ejection.

2.3 The first simulation

Due to the non-integrable nature of planetary systems with an eccentric planet and other

bodies, we required numerical simulations to determine the orbital behavior of the small
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bodies. We began by simulating a MS star and a planet of moderate eccentricity, for the

purposes of comparing the results to our predictions from Section 2.2. While we are primarily

interested in the accretion rates around WDs, simulating a planet around both a MS and

WD star allowed us to compare the dynamics of the system and understand the effect of

stellar evolution.

2.3.1 Setup

Our first simulation was composed of a solar-mass star, a single 0.3 MJup planet orbiting

with ap = 4 AU and e = 0.2, and 500 massless TPs distributed throughout the system.

The stellar mass was selected due to the high frequency of solar-mass stars relative to more-

massive stars, as well as for consistency with prior papers on the subject, specifically Bonsor

et al. (2011) and Debes et al. (2012). The planetary parameters were chosen to match

theoretical predictions: exoplanets near to their host star will not survive post-MS evolution

(Rasio et al., 1996), but distant planets are unlikely to direct as much material to the star.

To balance each factor the SMA was chosen to be 4 AU, while the mass was selected to be

in the middle of the observed eccentric exoplanet population, similar to 0.27 MJup eccentric

Saturn-analog OGLE-2006-BLG-109L c (Gaudi et al., 2008; Bennett et al., 2010).

The TPs were spaced 0.02 AU apart from 0.06 AU to 10 AU, allowing us to determine

stability at a range of locations. While the planet was placed on an eccentric orbit, the

TPs were placed on circular orbits at random mean longitudes. This decision was made

for simplicity, and represents the case where secular effects have not had time pump the

eccentricities of small bodies. Such a situation could occur in a young disk recently void

of gas, or if the planet gained eccentricity impulsively (as would be the case in the model

of Debes & Sigurdsson (2002)). Non-zero initial eccentricities are discussed later in Section

2.4.5. In addition, each TP was assigned a random inclination within 0.5◦ of the planet

to avoid the artificial constraint of perfect coplanarity. The particles were assumed to be

massless because of the minute mass estimated to be accreted by polluted WDs (∼ 5× 10−7

MJup) compared to our planet size, indicating a negligible effect by polluting material on the
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planet.

We also ran separate simulations of the strongest MMRs in greater detail: three interior

to the planet at 3:1, 2:1, and 3:2; three exterior at 2:3, 1:2, and 1:3; and one co-orbital. We

populated these resonances over a width of 0.2 AU with a higher density of TPs, spacing

them 0.004 AU apart, and assigned them the same orbital properties as above. Additionally,

we simulated a second set in the same locations with the same spacing but with an initial

eccentricity of 0.2 to match the planet. The initial longitude of periapse of these remained

random for consistency between all simulations. These non-circular TPs allowed us to de-

termine the sensitivity of processes and results on initial eccentricity, particularly if it could

lead to increased stability over the duration of the simulation. Additionally, by comparing

these two very closely spaced populations we were able to test the dependence of the loss

mechanism on the initial mean longitude, which was random for all particles.

During the simulations TPs were removed via one of three mechanisms: ejection from

the system, occurring at 100 AU; collision with the planet, which had a radius of 0.65

RJup given the assumed planetary density of 1.33 g cm−3; or accretion by the central body,

occurring when particles approached within 0.005 AU. TPs that survived the ∼100 million

year duration of the simulation were considered stable. The ejection radius was chosen to

limit computation time, and it was found that increasing it to 1000 AU had a negligible effect

on the simulation results: the stability of particles was identical and the average lifetime in

log space increased by less than five per cent. It should be noted that the majority of polluted

WDs show cooling ages greater than the duration of our simulations, ranging from 107.5 to

1010 years (Debes et al., 2012). Such time-spans were computationally too expensive to run

for this work, so behavior late in the simulations (106–108 years) was used as a proxy.

2.3.2 Computation

We ran the simulation, as well as those in Sections 2.4 and 2.6, on the UCLA Institute for

Digital Research and Education (IDRE) Hoffman2 cluster using the Mercury integrator

package (Chambers, 1999). The package contains five N-body algorithms; we initially chose
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the hybrid symplectic integrator, which primarily uses a second-order mixed-variable sym-

plectic algorithm and switches to a Bulirsch-Stoer (BS) algorithm upon close encounters, in

our case 3 Hill radii. This combination has the advantage of shorter integration times than

non-symplectic algorithms (e.g. BS) while still allowing close encounters, which are crucial

for the scattering and accretion of TPs.

To test the accuracy of the hybrid integrator we repeated the simulation using the non-

symplectic BS integrator. We found that, while the former was faster and accurate in

determining the stability of TPs in our simulations, the loss mechanism for a given particle

was frequently inconsistent with the latter. The difference originates from the known issue

that the hybrid integrator has difficulty with very large eccentricities (Chambers, 1999),

as in the case of accreted particles. As a result, particles are ejected when they should be

accreted, as shown in Figure 2.1. Given the importance of the accretion fraction on the stellar

accretion rate, it was necessary for us to use the most accurate method available within the

constraints of computation time. Therefore we used the hybrid simulation to determine the

size of the unstable zone around the planet, which defined our eccentric chaotic zone (ECZ),

and followed with a simulation of the ECZ using the BS integrator. We defined the edges

of the ECZ as the region nearest to the planet having 19 out of 20 adjacent TPs stable

(corresponding to a 0.4 AU wide region with at least 95 per cent of small bodies stable), to

ideally include all major instabilities near the planet. We integrated the MMRs using only

the BS integrator, as they were narrow and unique in stability relative to the surrounding

region.

2.3.3 Results

Upon completion, the simulation returned the orbital elements as a function of time, the

loss mechanisms, and the lifetimes of each individual TP. As shown in Figure 2.1, TPs that

started near the planet rapidly went unstable, forming the ECZ between the range of ∼ 2.4

and ∼ 6.3 AU. Inside of this region some islands of stability existed, corresponding to low-

order MMRs such as 2:1 and 3:4 at 3.05 and 4.85 AU, respectively. The size of this ECZ
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was much larger than the predicted CZ for a planet on a circular orbit, which according to

Equation 2.3 should have extended from 3.4 to 4.6 AU.

Individual particle motion depended on interactions with the planet and varied not only

between TPs, but over the course of the simulation as well. One particle, representative

of many others, started at 5.3 AU and remained in the 2:3 MMR for nearly 400,000 years

before scattering and undergoing chaotic motion (Figure 2.2). This particle appeared to be

trapped in other MMRs during the remainder of the simulation, including the 1:2 resonance

at 425,000 years and the 2:1 resonance at 725,000 years, shortly before accretion. Many

unstable particles showed similar orbital motion that varied dramatically over the course

of the simulation, spending some time apparently trapped in MMRs between periods of

more chaotic motion, eventually being ejected or accreted as the eccentricity approached

unity. Particles that collided with the planet also showed such motion, but failed to reach

highly-eccentric orbits before being removed early in the simulation.

The final fates of particles were influenced by their starting locations: Particles that were

accreted generally retained an apoapse near the planet, increasing in eccentricity through

scattering until periapse reached the surface of the star. Particles that were ejected often

did so with a periapse near the planet, as both the SMA and eccentricity increased. Because

of this behavior, a larger fraction of unstable particles starting interior to the planet were

accreted (24 per cent) than exterior (14 per cent). However, particles were lost via all three

mechanisms in both starting regions due to chaotic motion.

The higher-density MMR simulations were analyzed separately and showed consistency

with the above results, including behaving as islands: particles starting very near to some

low-order MMRs, such as the 2:3 and 3:2 resonances, were much more stable than the

surrounding particles (Figure 2.3, top). Additionally, the 2:1 resonance was found to be a

major source of accreted particles at late times. Within 0.1 AU of the resonance, 15 out

of 16 unstable particles were accreted and 11 of those survived more than 1 million years.

The e = 0.2 populations in each MMR were also stable in some of the same locations, but

in general had shorter lifetimes. This result was evidence that such particles would be more

rapidly removed from a planetary system, and TPs that were started on circular orbits more
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Figure 2.1 Comparison of hybrid integrator (top) and BS integrator (bottom) results, showing
particle lifetime as a function of initial SMA. Note the similarity in stability of TPs (black
lines) around the planet (red point, error bars for periapse and apoapse), but the difference
in number of accreted particles (cyan points): 21 particles in the hybrid case and 31 in the
BS case. Simulations using the BS integrator were limited to regions with unstable particles
to reduce computation time, as described in Section 2.3.2.
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Figure 2.2 Individual particle motion for an accreted TP starting at 5.3 AU with e = 0,
showing periods of chaotic motion and apparent entrapment in MMRs. Also note the large
increase in inclination before accretion occurred, which was common for accreted particles
in the presence of the e = 0.2 planet.
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Figure 2.3 Lifetimes of the particles around the 2:3 MMR (dashed line), initially circular
orbits on top and initially eccentric orbits (e = 0.2) on bottom. The circular particles are
consistent with the results from the global simulations, while the eccentric particles were on
average shorter-lived; this result supported our use of the initially-circular TPs in the other
simulations.

accurately represented the material around a star that would exist at later times. Since our

primary interest was the behavior of TPs at late times, this result reinforced our decision to

use the particles on circular orbits for the large scale simulations.

2.4 Results for range of eccentricities and masses

To investigate the effect of planetary properties on the stability of surrounding bodies, we

repeated the previous simulation for each combination of four planetary masses and five

orbital eccentricities. We chose the mass values 0.03, 0.3, 1.0, and 4.0 MJup and the ec-

centricities 0.02, 0.2, 0.4, 0.6, 0.8 to probe the wide range in orbits of known exoplanets.

Aside from eccentricity and mass, all planets started with the same initial conditions in all

simulations, such as mean anomaly and argument of periapse. The SMA remained 4 AU for
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Figure 2.4 (top) Fraction of unstable TPs lost by each mechanism as a function of planetary
mass, Nmechanism/NLost, for each planetary eccentricity over 108 years. In all cases with e ≥ 0.2
the accretion fraction is a monotonically decreasing function of the mass. (bottom) Total
number of particles lost by each mechanism. Despite increasing the amounts of unstable
particles, increasing planetary mass resulted in fewer accreted particles.

all simulations as well, as probing a third dimension of parameter space would have been

too computationally expensive.

2.4.1 Mass Effects

Our simulations showed that the total number of particles accreted by the star decreased

with increasing planetary mass for all but the most eccentric planets (Figure 2.4, bottom,

blue lines). Two factors contributed to this weak dependence: the size of the unstable region

and the fraction of unstable particles accreted by the star. We found that while a larger

planetary mass corresponded to a larger ECZ and a higher total number of unstable particles

(black lines), it dramatically reduced the fraction accreted (Figure 2.4, top, blue lines). This

reduced fraction more than offset the increased ECZ size, reducing the total number of

particles accreted. The physical cause of this relationship is the strength of gravitational

interactions: while the ≥ 1 MJup planets rapidly ejected most particles, smaller planets

repeatedly interacted more weakly with the TPs and allowed them to slowly diffuse inward
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Figure 2.5 (top) Fraction of unstable TPs lost by each mechanism as a function of planetary
eccentricity, for each planetary mass over 108 years. The dramatic and monotonic increase
in accretion fraction with eccentricity is clear over all masses. (bottom) Total number of par-
ticles lost by each mechanism. Due to the growth of the ECZ, the increase with eccentricity
is even greater.

and be accreted by the star.

In addition to changing the fraction of TPs accreted and ejected, planetary mass also

affected the time-scale for instability to set in. Physically, more-massive planets are more

capable of removing small bodies after a single scattering event, while smaller planets depend

on the cumulative effect of multiple scatterings. As a result, the TPs in simulations with

massive planets had shorter lifetimes than those in simulations with small planets. Figure

2.6 illustrates this effect with the lifetimes of TPs perturbed by the most massive planet

(4 MJup) and a lower mass planet (0.3 MJup); Section 2.6.2.2 examines the characteristic

lifetimes of particles in greater detail.

2.4.2 Eccentricity Effects

The planetary eccentricity had an equally powerful effect on the TPs. As it increased the

periapse and apoapse of the planet shrank and grew, respectively, which widened the region

around the star that the planet probed and expanded the ECZ. As a result, the planet caused
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Figure 2.6 A comparison of the lifetimes for TPs lost in a system with a lower mass planet
(0.3 MJup, top) and a massive planet (4 MJup, bottom), both with planetary eccentricity
e = 0.2. The smaller planet resulted in longer lifetimes for unstable TPs as well as a larger
fraction lost via accretion (blue bars).
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a larger number of TPs to be destabilized and accreted (Figure 2.5, bottom, black lines). We

also found that the eccentricity affected the fraction of TPs accreted, in fact more strongly

than the planetary mass (Figure 2.5, top, blue lines). Physically, eccentric planets drive the

forced eccentricity of particles up to higher values, while simultaneously having more and

wider MMRs that can increase the eccentricity of the particles in them. Higher eccentricity

causes a higher accretion probability. Finally, increasing planetary eccentricity resulted in

the stellar accretion rate peaking earlier, as characterized by the mean accretion time in log

space. We discuss this effect in greater detail and with respect to WD accretion in Section

2.6.

In the nearly-circular (e = 0.02) runs, planet-TP collisions dominated the loss mechanism,

particularly at low mass. We were not hugely surprised by this behavior, as few TPs had

eccentricities pumped to values large enough to eject or accrete. In these simulations most

particles maintained a nearly constant Tisserand parameter, defined as

T =
1

a/ap
+ 2

√

a

ap
(1− e2) cos I (2.4)

Here a and ap are the SMAs of the particle and planet, respectively, while e and I are

the particle eccentricity and inclination relative to the planetary orbit (Murray & Dermott,

2000). For small inclinations, an increase in eccentricity requires the SMA to increase as well.

The Tisserand parameter determines the region of parameter space a particle can explore in

the presence of a planet with zero eccentricity, including a minimum periapse.

As described in Bonsor & Wyatt (2012), for an accretion distance of 0.005 AU and an

ejection distance of 100 AU only particles with T < 2.1 or T < 2.85 can be accreted or ejected,

respectively. With the initial conditions e = 0 and cos I ≈ 1, all TPs started out with T > 3

and were incapable of close approach with the central star. The small eccentricity of 0.02

was enough, however, for particles to deviate slightly from a constant Tisserand parameter

and be ejected. Ejections were most common in simulations with the more-massive planets,

which were capable of ejecting particles even when on circular orbits (Bonsor & Wyatt,

2012). For planetary eccentricities larger than 0.02, the Tisserand parameter was not a
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constant of motion (due to being derived from the restricted 3-body problem, where the

planet is on a circular orbit). As a result, particle eccentricity was frequently increased with

no corresponding growth in SMA.

2.4.3 ECZ width

In the case of a planet on a circular orbit, the interior and exterior edges of the CZ should be

equal and scale simply with µ2/7 as described in Section 2.2.1. In our simulations we found

that both mass and eccentricity served to increase the size of the ECZ, as shown by the points

in Figure 2.7. Additionally, we found that the influence of planetary eccentricity served to

produce interior and exterior edges at markedly different distances from the planet. To fit the

eccentricity-ECZ effect we needed a model with three properties: showed edge asymmetry;

increased with planetary eccentricity; and reduced to εchaos = 1.5µ2/7 for ep = 0.

From a physical standpoint, a particle can be removed from the system when it crosses

the path of the planet. Particles within the CZ in the zero-eccentricity case are simply those

that undergo chaotic motion, and can therefore enter the path of the planet. For a given

planet eccentricity and particle eccentricity, orbital crossing occurs at

ain = ap(1− ep)/(1 + e′in) (2.5)

aout = ap(1 + ep)/(1 + e′out) (2.6)

where ain (aout) is the inner (outer) edge of the ECZ, and e′in (e′out) is the characteristic

eccentricity leading to instability for the inner (outer) region. In this case,

εin =
ep + e′in
1 + e′in

, εout =
ep + e′out
1− e′out

(2.7)

To determine e′out and e′in, both edges were assumed to obey the condition ε(ep = 0) =

εcz = 1.5µ2/7, the size of the CZ as determined by Duncan et al. (1989) for a planet on a
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Figure 2.7 Scaled distance to the interior (squares) and exterior (circles) edges of the ECZ, as
a function of eccentricity and planetary mass. The lines represent our interior and exterior
model fits: εin = ep(1− εcz) + εcz and εout = ep(1 + εcz) + εcz.

circular orbit. Substituting for e′out and e′in, the edges of the ECZ are defined by

εin = ep(1− εcz) + εcz, εout = ep(1 + εcz) + εcz (2.8)

as shown by the lines in Figure 2.7. While this function does not match our results perfectly,

it does exhibit the asymmetry and expansion with eccentricity found in our simulation results,

and does so with physical motivation. Finally, this model does not explicitly include the

increase in resonance width with eccentricity and resulting change in resonance overlap, so

it is unsurprising to see deviations from the fit.
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2.4.4 Mean motion resonances

As described in Section 2.3.3, though many TPs that started in the vicinity of an MMR

behaved similarly to the adjacent regions, some were stable inside of the ECZ (islands) and

others were unstable outside of the ECZ (holes). Many of these holes became islands as the

eccentricity of the planet increased and the MMR went from outside the ECZ to inside of it.

In the case of 1 MJup, the 1:2 resonance at 6.4 AU changed from nearly the only unstable

location outside of the ECZ at e = 0.02 to the only region of instability inside the ECZ

at e = 0.4 (Figure 2.8). As a result, these holes were more rare in the higher-eccentricity

simulations, due to the fact that the nearly all first-order MMRs were contained within the

ECZ. Even so, they played an important role in delivering material to the star for some

planets. In the case of e = 0.2 and the largest masses, 4 MJup and 1 MJup, the 3:1 resonance

had a much higher fraction of TPs accreted by the star. In the 4 MJup case, 56 per cent of

unstable TPs near the MMR were accreted, significantly larger than the accreted fraction of

all unstable particle interior to the planet, 13 per cent.

We also found that the 1:1 resonance frequently retained TPs through the end of the

simulation, for planets of eccentricity of 0.02 and 0.2. Most of these particles were on stable

Trojan orbits. The mass of the planet determined the limiting eccentricity for Trojans. While

the smallest planet (0.03 MJup) had Trojans when the eccentricity was up to and including

0.4, the planets with mass 0.3 MJup and 1 MJup only saw Trojans for e = 0.2 and 0.02. The

most massive planet, 4 MJup, only had Trojans at the lowest eccentricity.

Finally, we again ran simulations with TP eccentricity matching planetary eccentricity.

These simulations, while generally less stable than those with circular TPs, exhibited the

same dependencies on planetary eccentricity and mass as those with TPs on circular orbits

in all cases. We therefore believe these relationships do not depend strongly on particle

eccentricity, though they may depend on particle inclination or longitude of periapse.
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Figure 2.8 Lifetimes of TPs for a 1 MJup planet for planetary eccentricity e = 0.02 (top) and
e = 0.4 (bottom). Note the change in the stability of the 1:2 MMR at 6.35 AU: in the low
eccentricity case particles in the MMR are short-lived and unstable, while in the case of high
eccentricity planet the MMR acts as a safe haven in a region of instability.
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2.4.5 Comparison with previous work

Other research has also found similar trends with respect to planetary mass, such as Bonsor

et al. (2011). In both cases, larger planets produced shorter TP lifetimes, higher ejection

fractions, and reduced fractions either in the inner system (for Bonsor et al. (2011)) or

accreted by the star (our result). While the total belt size differed in each case, we obtained

consistent results for the total number of particles accreted as a function of planetary mass:

where Bonsor et al. (2011) saw a weak decrease in the total mass scattered to the inner system

as the mass of the planet increased, we saw the analogous result of fewer TPs accreted as

the planet mass increased (at non-zero eccentricities).

Conversely, our results deviate from those of Quillen & Faber (2006), who found that

the size of the CZ is independent of planetary eccentricity up to values of 0.3 regardless of

planetary mass. By running our simulations with the TP initial conditions changed to those

of the prior authors (coplanar particles given the predicted forced eccentricity and planetary

longitude of periapse at their initial SMA), we matched their results and thus identified the

different starting conditions as the source of discrepancy. While our TPs began with random

longitude of periapse, Quillen & Faber (2006) used the expected forced eccentricity at that

location along with the same longitude of periapse as the planet. Given that our simulations

behaved similar for TPs with both planetary eccentricity and zero eccentricity, the difference

is likely the longitude of periapse in conjunction with the forced eccentricity, which can

prevent close encounters. Additionally, coplanarity prevents particles from reaching inclined

orbits, which often occurred for the unstable particles in our simulations.

We also found that even with the changed initial conditions, planetary eccentricity larger

than 0.2 still increased the size of the ECZ, albeit in a manner different from Figure 2.7.

While the external edge remained close to the value expected from Equation 2.3, the internal

edge changed dramatically, resulting in a much larger ECZ (Figure 2.9). This effect was only

noticeable in the larger eccentricities, which were not investigated in Quillen & Faber (2006).

Additionally, the effect of eccentricity on the number and fraction of accreted particles, as in

Figure 2.5, remained. The effect of planetary mass on accretion fraction remained as well,
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but was markedly weaker. As a result, the number of accreted particles was affected more

strongly by the wider ECZ for massive planets, and increased with larger planetary mass.

These simulations, along with the results described in Section 2.4.3, appear to indicate that

the initial conditions of the particles play an important role in the some aspects of the system

(such as size of ECZ), while other aspects are less affected (like the eccentricity-accretion

relation). Therefore the importance of planetary eccentricity on WD accretion cannot be

ignored.

2.5 Stellar Evolution

Until this point we have examined the stability of TPs in planetary systems around only an

unevolved MS star. However, to estimate the WD accretion rate we also need to account

for the reaction of the planetary system to the mass loss that occurs during post-MS evo-

lution. Research shows that stellar evolution can change the stability of some orbits in the

system due to the large amount of mass lost during the asymptotic giant branch and to a

lesser extent the red giant branch (Mustill et al., 2014; Veras et al., 2013). From a purely

gravitational standpoint, the ECZ dependence on the planet-to-star mass ratio (Equation

2.3) indicates that the ECZ will widen, due to the decrease in stellar mass. Additionally, the

mass dependence of the MMR widths causes them to grow as well, as was shown in Debes

et al. (2012).

The final mass of a WD can be estimated according to the equation for the empirical

initial-final mass relation from Wood (1992):

MWD = 0.49 exp[0.095MMS] (2.9)

Here MMS and MWD are the initial (MS) mass and final (WD) mass, respectively, of the star

in solar masses. For stars near a solar-mass star this equation gives a WD mass of 0.539

M", which is consistent with more recent work on the relation including Weidemann (2000)

and Kalirai et al. (2008).
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Figure 2.9 Particle lifetimes in the presence of a 0.3 MJup planet with eccentricity e = 0.02
(top) and e = 0.6 (bottom). In these simulations the TPs began on orbits with the forced
eccentricity at their starting location and the same argument of periapse as the planet. In
this case, the size of the ECZ changes, but the expansion is limited almost entirely to the
region interior the planet.
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Given adiabatic mass loss, conservation of angular momentum dictates the SMAs of

orbiting planets will increase by an amount determined by the initial-to-final mass ratio

(Debes & Sigurdsson, 2002):

af = a0

(

MMS

MWD

)

(2.10)

For a body around a solar-mass star the orbit will expand by a factor of 1.86. A planet

with an SMA of 4 AU will then reach a new orbit of 7.42 AU. Since this orbital expansion

affects all bodies in the system equally (ignoring non-gravitational effects), the period ratios

between them will remain the same and bodies already in MMR with a planet will remain

so. However, the larger planet-to-star mass ratio results in larger widths for MMRs, which

can result in new objects entering resonance. The change in central mass also affects the size

of the ECZ. From Equation 2.3 we can predict the magnitude of this increase in the case of

zero eccentricity:

εWD/εMS = (µWD/µMS)
2/7 = (MMS/MWD)

2/7 (2.11)

For our star the mass loss should produce a widening of 19 per cent. However, we saw

in Section 2.4.3 that eccentric planets do not follow this relation closely. Assuming the

edges of the ECZ are actually defined by Equation 2.8, which more closely matches our

MS simulations, the relative growth would drop with increasing planetary eccentricity. As

the eccentricity increases, the contribution from the classic CZ (εcz) to the size of the ECZ

decreases and the orbital excursions of the planet dominate. The ratio in that case is given

by

εWD/εMS =
ep(1± 1.5µ2/7

WD) + 1.5µ2/7
WD

ep(1± 1.5µ2/7
MS) + 1.5µ2/7

WD

(2.12)

As a result, more-eccentric planets with ECZs following this relation will have a relatively

smaller amount of expansion. However, the physical growth of the unstable region (εWD −

εMS) will increase with planetary eccentricity for the exterior edge, and the greater fraction

of TPs accreted in the presence of an eccentric planet still supports the latter as a better

source of pollution.
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2.5.1 Non-gravitational forces

Post-MS evolution can have further implications for the orbits of small bodies due to non-

gravitational effects. Wind drag during the giant branches can hinder the ability of small

bodies to move outward, causing them to move relative to the ECZ and MMRs of a planet

(Dong et al., 2010; Jura, 2008). Furthermore, the luminosity of the star increases dramati-

cally during the giant phases. This brightening can produce a non-negligible Yarkovsky force

on some small bodies (Bottke et al., 2006), moving them inwards or outwards. Both of these

effects result in rearrangement of previously stable particles, repopulating some unstable

regions and resulting in a new source of WD pollution.

The wind resulting from stellar mass loss can strongly affect small bodies, particularly

near the star. Dong et al. (2010) examined this effect on objects orbiting more massive stars

(3–4 M") at greater distances (> 10 AU) than our simulations, and found that wind drag can

change the final orbit of even moderately-sized bodies (1–10 km) as well as cause resonance

capture for a range of initial conditions. Using our own parameters, we analytically estimated

the effect of wind drag on bodies located at 7 AU around a 1 M" star. We found that at

this distance 250-m diameter objects moved AU-scale distances, and even 10-km diameter

objects showed significant changes to their final orbit: roughly 0.04 AU inwards compared

to the adiabatic case. Assuming a number distribution inversely proportional to size and a

disk spanning 7 to 9 AU, this wind drag results in approximately 1.5 per cent of the material

entering the ECZ. While it depends on the width (due to larger objects moving less) and

location of the disk, this order-of-magnitude calculation does indicate substantial amounts

of mass can change location for large disks.

The Yarkovsky effect depends heavily on the physical properties of the small bodies,

including size, shape, composition, and rotational state. However, by following prior research

into the topic we estimated the change in SMA through this mechanism. According to Spitale

& Greenberg (2001), 100-m objects around the Sun have da/dt ∼ 0.1 km yr−1 motion for

most eccentricities. While changes to the spin states of the object reduce the long-term

importance of the Yarkovsky effect during the MS (Farinella et al., 1998), the brief period
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over which the giant branches last should result in few (if any) reorientations for objects 1

km in diameter or larger. Smaller objects will likely move rapidly, allowing for large changes

in SMA even with reorientation.

If we assume this motion scales inversely with the size of the object, the SMA of a

10-km body will then change by 0.0037 to 0.18 km yr−1, or 2.4 × 10−11 to 1.2 × 10−9 AU

yr−1, around an RGB star (average luminosity L̄ ≈ 180L"), depending on the luminosity

dependence of this effect: an asteroid with poor heat conduction will see the Yarkovsky

effect increase linearly with the surface flux, but efficient heat conduction will reduce the

temperature difference between the hot and cold faces and weaken the effect. We account for

this uncertainty by considering a scaling of the strength of the effect with stellar luminosity

(L) or with stellar effective temperature (L0.25). Over the duration of the RGB branch, 80

Myr, the body would move a distance ∆a ≈0.002–0.1 AU. While this estimate ignores the

impact of mass loss (due to the complicated dependence on SMA), it nevertheless illustrates

the power of the Yarkovsky effect during periods of high luminosity.

Both of these effects also impact the eccentricity of surviving bodies. The Yarkovsky

effect is capable of pumping or damping it depending on the spin orientation of the body

(Spitale & Greenberg, 2002), while wind drag exclusively causes damping (Dong et al., 2010).

The latter affects eccentricity more strongly, causing the orbits of small bodies to become

more circular during stellar evolution. Meanwhile, neither wind drag nor the Yarkovsky effect

excite inclination (the latter as a result of orbital precession caused by the planet (Bottke

et al., 2000)), leaving low-inclination bodies particles to continue on roughly coplanar orbits.

Finally, it is important to note that the location and composition of the planet are crucial

for its survival during stellar evolution. Planets near the star will be engulfed, while those

just outside the envelope can still spiral in due to tidal effects (Rasio et al., 1996). For

massive planets farther out, the high flux received during and after the giant phases might

result in planetary evaporation and mass loss (Villaver & Livio, 2007).
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2.6 White dwarf simulations

To determine how stellar evolution affects the stability of orbiting TPs, we ran two sets of

simulations. The first used the final orbital elements of the planet and surviving TPs from

the MS simulations translated outward; the second used a new set of particles in the region

around the WD.

2.6.1 In situ evolved simulations

For the simulations that left particles in place during evolution, we first came up with a

model for the evolution itself. We used a simple transition in which we reduced the mass of

the star linearly over 2700 years, while leaving the planet and TPs in situ with the orbital

elements they had at the end of the MS simulations. We note that there are myriad ways

to model mass loss in post-MS stars, including various durations and time dependencies.

Additionally, a more accurate and complicated treatment would include the non-gravitational

forces described in Section 2.5.1. However, this evolution is not our focus and as such we did

not consider other, more-complicated models. Furthermore, the orbital expansion does not

depend on the time-scale for mass loss, as long as the latter is much longer than the orbital

periods (the adiabatic approximation).

We implemented the mass loss in our code again using the BS integrator, with the stellar

mass reduced by 5.61 × 10−6 M" after each 12-day time-step. We chose the duration of

the mass loss to minimize computation time while still being adiabatic, which is necessary

for Equation 2.10 to hold. In all the WD simulations the ejection and accretion distances

remained the same at 100 AU and 0.05 AU, respectively. While the radius of a WD is

dramatically smaller than that of a MS star, the Roche limit is approximately the same.

We also mention that while our MS simulations did not reach the actual MS lifetime of a

1 M" star (∼ 1010 years), the vast majority of unstable particles were removed by 108 years

(as illustrated by the number lost at late times in Figure 2.6). Using the change in loss rates

over time, we estimate approximately 30 per cent of the unstable particles in these evolved

systems were unstable in the MS system at times beyond 5 × 107 years. As such, we were
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Figure 2.10 Same plots as Figure 2.5, fraction lost (top) and number lost (bottom) for each
mechanism as a function of eccentricity, but for our evolved simulations. The eccentricity de-
pendence still remains in most cases, but disappears in the highest-mass, highest-eccentricity
cases due to the ECZ exceeding the bounds of the simulation.

able to approximately remove this contribution to the WD simulations and determine the

instabilities introduced by mass loss. The 0.03 MJup simulations were an exception to this

rule, due to longer particle lifetimes, and are addressed in Section 2.6.1.2.

2.6.1.1 Results

These simulations followed the same eccentricity–fraction-accreted relationship: increasing

planetary eccentricity resulted in a larger percentage of unstable particles accreted by the

star in all cases (Figure 2.10). Unlike the MS simulations, however, this relationship did not

correspond to a larger number of TPs accreted in every case. For the 1 and 4 Jup planets

at eccentricities of 0.6 and 0.8, the ECZ spanned nearly the entire 10 AU disk in the MS,

leading to fewer unstable particles in these simulations (Figure 2.10, bottom right panels).

Had the initial disk extended beyond 10 AU initially, it is likely that the more-eccentric

planets would have resulted in more unstable particles, similarly to planets with mass 0.03

and 0.3 MJup and as they did in the MS case.

For the simulations with ECZs that did not span the entire disk during the MS, the
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total number of unstable particles varied more strongly with planetary mass than during the

MS. As described in Section 2.5, the ECZ and MMRs widen as a result of mass loss, which

produces newly unstable particles. Both the fractional growth in the ECZ (Equation 2.11)

and absolute change in size depend on planetary mass. Therefore it is not surprising to see

this stronger mass dependence on total number of unstable particles. We observed the ECZ

expansion in the results of some simulations, but did not see it consistently between masses

or eccentricities as a result of small number statistics, particularly in the higher eccentricity

cases where few TPs survived from the MS.

2.6.1.2 Extended simulation

Due to the late onset of instability in the MS 0.03 MJup case, we expected a significant

fraction of unstable TPs to be unstable on time-scales greater than 108 years, resulting in

contamination to the evolved simulations. To combat this issue and the low number of TPs

noted above, we repeated the 0.03 MJup, e = 0.4 simulation with quintuple the TP resolution

(reducing the separation between TPs to 0.004 AU) and for a longer duration: 2× 108 years

for the MS and 1 × 109 years for the WD phase. Long computation times prevented us

from repeating this simulation for additional planetary masses and eccentricities. Such a

high density of TPs remedied the issue of few survivors in the post-evolution simulation,

allowing us to better test the potential of a single, ideal planet to pollute a WD without

non-gravitational forces.

The MS simulation behaved identically to the same planet in Section 2.4, with the ex-

ception of better statistics and an increased duration. The lost particles peaked near 5×106

years, and accretion dominated the unstable particles while collisions with the planet oc-

curred infrequently. The extra 100 Myr behaved similar to the prior 50 Myr, showing both

accretion events and ejections at a much reduced rate from the peak. Extrapolating from the

accretion rate as a function of time, we found that that only ∼ 25 particles were expected

to go unstable in the subsequent 1 Gyr, which allowed us to account for contamination in

our next simulation. Finally, as the number of TPs were not a limiting factor in the prior
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Figure 2.11 The lifetimes of unstable particles for the evolved system with 0.03 MJup, e = 0.4,
illustrating the late onset of instability and the large fraction of accreted particles.

MS simulation, these results do not gain us much more insight.

The evolved simulation, however, differed significantly: the increased number of surviving

particles and greater duration produced an obvious expansion of the ECZ (Figure 2.12). The

ECZ expanded by 10 per cent, less than expected in the circular case but larger than expected

from Equation 2.8, 3.1 per cent. This simulation also displayed the accretion and ejection

peaking near 108 years, as shown in Figure 2.11, with the 20-fold increase from MS peak due

to both fewer particles unstable on short time-scales (cleared out in the MS) and the larger

planetary SMA. Using the MS-simulation extrapolation, we found that that fewer than 25

per cent of lost particles were contaminants. Significant accretion continued to occur up to

the end of the simulation, indicating that a planetary system like this, given certain disk

properties, could account for the pollution observed in some polluted WDs. We discuss the

feasibility of this mechanism in further detail in Section 2.7.1.
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Figure 2.12 Lifetimes of TPs for the evolved extended simulation (0.03 MJup and e = 0.4,
initial spacing of 0.004 AU). The expansion of the ECZ due to stellar mass loss is apparent
as is the large fraction of accreted particles.

2.6.2 Repopulated simulations

The second set of WD simulations represented complete repopulation by non-gravitation

forces, and we populated these with a completely new set of TPs spaced 0.03 AU apart1

between 0.06 AU and 18.6 AU. For consistency with the MS simulations and the effects

described in Section 2.5.1, all particles started at random points on circular orbits. These

simulations were similar to the original MS simulations, but with all bodies at greater dis-

tances about a reduced stellar mass. As a result, they represented the change in stability

of locations within the system, as opposed to the change in stability of individual particles

(which showed some small amounts of motion within stable regions during the MS). While

complete repopulation of all unstable regions in a system is unrealistic, as much as 1.5 per

cent of the mass in a narrow annulus can be expected to move into them during stellar evo-

lution via non-gravitational forces (as described in Section 2.5.1). Alternatively, planetary

systems that are near instability would result in a planet ending up on a new orbit after

1The spacing was increased from 0.02 AU to allow us to probe the larger spatial scales with similar
computation time.

36



a scattering; the results of Veras et al. (2013) indicate that such scatterings are possible

around WDs at late times, and can result in highly-eccentric orbits.

2.6.2.1 Results

As illustrated in Figure 2.13, these simulations behaved similarly to those of Section 2.4,

. Increased eccentricity again dramatically increased both the total number of TPs that

went unstable as well as the fraction that were accreted by the star, and lower masses again

showed equivalent or greater numbers of accreted particles. We noted certain differences

between the two sets of simulations, however. Due to the increased distance from the star

and the reduced stellar mass, TPs were more weakly bound and a greater fraction ejected

in the WD setup. This change can be seen in a comparison of Figures 2.5 and 2.13, and

correspondingly led to a smaller accretion fraction.

Compared to the extended simulation, the repopulated 0.03 MJup, e = 0.4 simulation

peaked earlier and had a smaller unstable fraction at late times due to the large contribution

from TPs in repopulated regions, which rapidly went unstable. Even so, both the repopulated

and the extended models showed agreement in the fraction of particles accreted and ejected,

allowing us to extrapolate accretion rates to other masses and eccentricities from our single

extended simulation. Additionally, the location of the oldest particles remained the same:

the edge of the ECZ.

As a result of stellar mass loss and orbital expansion, the width of the ECZ should increase

according to Equation 2.8. We observed this expansion in our repopulated simulations,

illustrated in Figure 2.14 for a near-circular planet. The sizes of the ECZ were similar to

that shown in Figure 2.7, and are not plotted. As described in Section 2.5, the relative

increase in the size of the ECZ should decrease with eccentricity when it obeys Equation

2.8. We found that to be generally the case for the interior edge of the ECZ, which followed

Equation 2.8 closely in both the MS and the WD cases. Figure 2.15 illustrates this effect,

as larger eccentricities generally have ratios closer to one. Conversely, the exterior edge

deviated more so from Equation 2.8 in both cases, and thus displayed greater scatter about
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Figure 2.13 Same plots as Figure 2.5, fraction lost (top) and number lost (bottom) for each
mechanism as a function of eccentricity, but for our repopulated WD simulations. The same
characteristics as in the MS simulations are present (e.g. increase in accretion fraction with
planetary eccentricity) but the ejection fraction is systematically higher in all cases.

the expansion relation. Additionally, the full size of the ECZ may be larger than plotted,

particularly for the low mass simulations, as our extended simulation showed further particles

becoming unstable at the ECZ edge after 108 years.

Similar to the ECZ, the widths of MMRs should grow with mass loss and thus can

be a valuable source of unstable particles (Debes et al., 2012). Our results showed this

widening of MMRs in some of our simulations, particularly in the case of MMRs interior

to massive planets. The 3:1 resonance in our e = 0.2, 4 MJup simulation grew from 0.064

AU in the MS case to 0.141 AU in the WD case. While the physical width was expected to

increase due to the larger spacing between bodies, that effect would only result in a factor

of MMS/MWD = 1.85, not 2.2 as we saw. In both cases a large fraction of the unstable

particles were accreted (9 out of 16 for MS, 9 out of 19 for WD), despite a low fraction (13

per cent for both) of interior TPs accreted overall. Despite starting with fewer TPs than

Debes et al. (2012), these simulations support internal MMRs as another potential source

of WD pollution. Given the results of our extended simulation in Section 2.6.1.2, multiple

mechanisms may play a role in the pollution observed.
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Figure 2.14 A comparison of the MS and WD simulations for a planet with M = 1 MJup

and e = 0.02. Note the wider instability in the WD case, located between the 3:2 and 2:1
resonances and between the 1:2 and 2:3 resonances (grey dashed lines).
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Figure 2.15 Ratio of WD ECZ size to MS ECZ size, for the interior edge, with lines indicating
no change in size (black dashed) and a change characterized by Equation 2.8(colored solid).
Despite the scatter, the trend of less expansion with greater eccentricity is clear.
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2.6.2.2 Accretion at late times

While the relationship between planetary properties and the total number of particles ac-

creted over all time is interesting, it has little bearing on WD pollution unless that accretion

occurs at late times. The results from our WD simulations agreed with our findings in Sec-

tions 2.4.1 and 2.4.2 regarding particle lifetime: both higher masses and higher eccentricities

lead to earlier peak times, as shown in Figure 2.16. Because of this shift in peak time,

the maximum amount of accreted material at late times (above 106 and 107 years) did not

always occur in the simulations with the largest eccentricity, as shown in Figure 2.1. Larger

eccentricities increased the pollution at late times only up to a point, above which the pol-

lution was reduced. These peak eccentricities depended on planetary mass: e = 0.6 in the

case of 0.03 and 4 MJup, and e = 0.8 in the case of 0.3 and 1 MJup. Given such large peak

eccentricities, we confirm our previous results: in the vast majority of cases, larger planetary

eccentricities (and smaller masses) correspond to larger amounts of polluting material.

2.7 Discussion

These simulations clearly show that planetary mass and eccentricity play an important role

in the ability of a planet to pollute the central star. Given the mass dependence of both the

fraction and the total number of accreted TPs, it appears that planets do not need to be as

massive as Jupiter to be a potential source of WD pollution, and such massive planets may

in fact not be the prime candidates. The extended simulation of Section 2.6.1.2 supported

the result that small planets deliver as much material or more than massive planets, and at

later times, with a 0.03 MJup planet continuing to deliver material at Gyr time-scales. It

would not be unusual for an exoplanet to have these properties: small planets now appear

to be more common than large planets, both near the star (Batalha et al., 2013) and further

away (Gould et al., 2006; Sumi et al., 2010). Furthermore, a wide range of eccentricities have

been detected in exoplanet surveys (Butler et al., 2006), up to 0.4 for 0.03 MJup planets and

above 0.8 for 4 MJup planets. The planetary mass which produces maximum accretion is still

uncertain— the smallest of our planetary masses (0.03 MJup) produced the highest number of
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Figure 2.16 Median lifetime of ejected and accreted unstable particles in log space for each
planetary mass as a function of eccentricity, for our repopulated WD simulations. Very few
particles were accreted in all the e = 0.02 simulations (including zero for the 0.03 MJup

case), which accounts for the strange behavior and missing point at that eccentricity. All
of the planets show in a decrease in accreted-TP lifetime when the planetary eccentricity is
increased above 0.2.
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Figure 2.17 Number of particles accreted by the WD in the repopulated simulations after
106 and 107 years, as a function of mass and eccentricity (e = 0.02 not shown, as nearly
no particles were accreted in that case). The accretion amounts clearly increase with eccen-
tricity for both times through e = 0.6, across all masses, and decreases with mass across all
eccentricities.
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accretion events, but it is possible that even smaller masses would produce a higher number.

However, it is not clear theoretically or observationally whether sub-Neptune-mass planets

can form at several AU distances. Such simulations would also be more computationally

expensive, and possibly violate the massless-TP assumption.

2.7.1 The WD disk mass from accretion rates

While our simulations did not reach the times corresponding to the oldest cooling ages of

polluted WD (> 109 years, Farihi et al. (2010b)), our longest simulation did reach the time-

scales of average polluted WDs (108–109 years). Determining which planetary properties

best cause pollution in a star is only useful if such pollution can match observations, which

is set by the disk mass required in our simulations. To determine that mass, we assumed a

power law for the loss rate of particles:

dNlost

dt
= −

dNrem

dt
=

Nα
rem

t0
(2.13)

Here α and t0 are constants to be fit by our simulation results, and Nrem (Nlost) is the number

of particles remaining (lost). Solving this equation for Nrem gives

Nrem =
N0

[1 + (α− 1)Nα−1
0 t/t0]

1

α−1

=
N0

[1 + t/t∗]
1

α−1

(2.14)

where N0 is the initial number of unstable particles (Nrem = N0 − Nlost), another constant

to be fit, and

t∗ =
t0

(α− 1)Nα−1
0

(2.15)

is the characteristic time scale for losing particles. The loss rate as a function of time is then

dNlost

dt
= −

dNrem

dt
=

N0

(α− 1)t∗
(1 + t/t∗)

−α

α−1 (2.16)

We determined the values of α, t∗, and N0 by performing a least-squares fit to the

cumulative distribution of lost particles. We selected the evolved extended run (M= 0.03
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MJup, e = 0.4) for fitting due to the larger number of TPs and extended duration. This

simulation defined the ‘best-case’ planet, as higher masses resulted in shorter TP lifetimes

and greater ejection fractions while larger eccentricities have yet to be observed above 0.4

for low-mass planets. The best-fit values were α = 7.4, t∗ = 5.41× 106 years, and N0 = 196

particles. We also fit the cumulative distribution with bins in log10 space, which gave different

values: α = 19.6, t∗ = 2.64 × 106 years, and N0 = 405 particles. The data and the fits are

shown in Figure 2.18. Although the two sets of fitted constants differed greatly, the fits

themselves produced similar fractions of material accreted, differing by less than a factor of

two at any given time, allowing either fit to work in an estimate of the total unstable disk

mass.

For the linear-fit values and a time of 109 years, Equation 2.16 gives 1.35×10−9 particles

removed per year. Dividing by N0 gives the fractional loss rate, 6.87 × 10−11 per year. We

assume that the 25 per cent contamination from MS unstable material (Section 2.6.1.2)

affects both the particle loss rate and N0 equally, so the fraction is unaffected. Examining

each loss mechanism individually as a function of time (shown in Figure 2.11), we find that

the accretion rate equals roughly double the ejection rate after 107 years, and the planetary

collision rate is negligible. Therefore we assume the accretion rate is two-thirds of the total

loss rate, or ≈ 4.58 × 10−11 of the initial material per year. We can compare this to the

observed accretion rate of polluted WDs, roughly 108 g s−1 for WDs with cooling ages of

109 years (Farihi et al., 2010b), which gives an initial mass of unstable bodies in this system

equivalent to 6.9×1025 g. This mass is roughly 23 times that of the asteroid belt, ∼ 3×1024

g (Pitjeva, 2005), and one per cent the mass of the Earth (0.01 M⊕). While larger than

previous estimates of the total accreted material (Zuckerman et al., 2010), this mass is

negligible compared to that of our smallest planet and supports the use of massless TPs.

Using the results from Section 2.6.2, we repeated the calculation for our repopulated

simulation with the same mass and eccentricity and found a larger required disk mass—

the material in the repopulated regions reduced the fraction accreted at late times and thus

the total amount was necessarily larger. More-massive and lower-eccentricity planets, as

expected, required even greater initial disk masses, both due to the shorter lifetimes of small

45



Figure 2.18 The cumulative number of particles lost through all mechanisms, as a function of
time in log10 space (top) and linear space (bottom), with the power law fit to the log (linear)
distribution shown in as a dash-dotted (dashed) line. These fits allowed us to specify the loss
rate at 1 Gyr and beyond, which we compared to accretion rates around WDs to produce
an estimate of the initial unstable mass.

46



bodies (in the case of massive planets) and due to the reduced fraction of accreted material

relative to ejected material. Additionally, non-gravitational forces have only a minor effect

on the required mass, due to the limited amount of motion provided to large bodies. As such,

we conclude that for a planet orbiting at 7.42 AU about a 0.539 M" star with no external

companions, an accompanying disk must have at least 0.01 M⊕ in unstable material in order

to account for the observed levels of WD pollution even in the best case (lowest mass and

highest eccentricity) scenario.

2.7.2 Observational and dynamical disk constraints

To determine whether this result is reasonable in the context of observed debris-disk masses,

we extrapolate the total disk mass from the amount of unstable material. To do so, we

assume that the unstable material is localized to a region between 11.7 and 12.7 AU, beyond

which the objects are stable. We make this assumption based on the results of our extended-

duration simulation (Section 2.6.1.2), in which the majority of unstable particles exterior to

the planet were located in that region. We also assume the disk extends to 90 AU (expanded

from 50 AU, in analogy with the edge of our solar system (Trujillo & Brown, 2001)) and has

a surface density of the form Σ(r) = Σ0(r/r0)−3/2 (Kenyon & Bromley, 2004). Integrating

over the unstable part of the disk and equating that to the result of Section 2.7.1 allows

us to determine Σ0, from which we can calculate the total disk mass. Doing so, we find

that the total mass, in both stable and unstable regions, is 0.5 M⊕, 50 times the unstable

mass. This value is strongly dependent on the size of the disk as well as the presence of any

other planets, which would carve out additional ECZs and reduce the amount of material

remaining at the end of the MS.

This mass is not unreasonable, as observed debris disks show dust masses of 10−2− 10−1

M⊕ around stars older than 1 Gyr (Wyatt, 2008). Due to the fact that large bodies dominate

the mass while small bodies dominate the surface area for most planetesimal size distributions

(Wyatt et al., 2007), the total mass of these observed disks can be as much as 103 − 105

times larger (Löhne et al., 2008), well above our requirement. Furthermore, while this mass
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is much larger than the asteroid belt, the latter may have been substantially thinned out

by the peculiarities of Solar System evolution (e.g. Walsh et al. (2011)), making such a

comparison unnecessarily restrictive. Minimum mass solar nebula estimates yield original

masses ∼ 100 times larger than the present value (Weidenschilling, 1977), more than enough

to meet pollution requirements if concentrated in a narrow region similar to the current

asteroid belt.

However, while massive disks are not uncommon around MS stars, the question of whether

they survive near the star and at late times arises, due to the effect of collisional evolution

and radiative forces depleting much of the material over the stellar lifetime. Assuming an

infinite collisional cascade, Wyatt et al. (2007) show that such forces result in a maximum

disk mass for a given age. This maximum depends on the physical properties of the disk

such as width, distance from the star, and the properties of the constituent particles.

To determine if our required mass can exist in a disk 10 Gyr old, we calculated the

maximum disk mass for both the unstable region and the total disk using the Wyatt et al.

(2007) model. At the end of MS, the material will not have moved outward due to mass loss,

so the unstable region will span 6.3 to 6.8 AU with the entire disk reaching 50 AU. Using

these disk dimensions, a largest object size of 2000 km, and an assumed particle eccentricity

of 0.25 (the forced eccentricity at 6.5 AU), we find that the maximum amounts of unstable

and total material are 6×10−5 M⊕ and 0.16 M⊕, respectively. While our parameter selections

can affect these values and increase the maximum total mass above our 0.5 M⊕ requirement,

the amount of unstable material is dramatically smaller than what needs to exist to account

for WD pollution regardless.

The assumption of collision equilibrium holding for all mass sizes has been challenged by

Löhne et al. (2008), who argue that it is valid only at very late ages and show that massive

disks can exist even at 10 Gyr for a range of parameters. We repeated the mass-remaining

calculation using their formalism and the same disk parameters, and found that although

the total disk mass was relatively unconstrained, the mass in the unstable region was limited

to 10−3 M⊕. These results (shown in Figure 2.19) indicate that, while the disk mass can

reach larger values at 10 Gyr than in the Wyatt et al. (2007) case, the masses still fall
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Figure 2.19 Evolution of disk mass as a function of time, for the total mass (blue) and
the unstable mass (red). While the total mass is large enough to match the mass required
by WD accretion rates, the unstable mass is over an order-of-magnitude smaller than our
requirement (0.01 M⊕).

short of what is required to match observed pollution rates when the disk is near the star.

Therefore, we determine that collisional evolution prevents a planet with a narrow unstable

region from being a major source of WD pollution, unless it is significantly more distant than

4 AU during the MS or the star loses a significantly larger mass fraction. Alternatively, if

collisional evolution of the material progresses differently from what current models predict,

the original reservoirs could be massive enough to supply polluting material, depending on

the planetary properties. We should mention that this collisional evolution may prevent

the MMR-based mechanism discussed in Debes et al. (2012) from being a viable source of

pollution as well, due to the massive asteroid belt required (0.35 M⊕) in their simulations.
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2.7.3 Other system parameters

While we examined the effects of some planetary-system properties on WD accretion rates

in detail, it is useful to consider the impact of other parameters as well. One such parameter

is the initial SMA of the planet, which remained constant at 4 AU between all our cases.

We ran a single simulation to investigate this effect, using a 0.03 MJup, e = 0.4 planet with

an SMA of 10 AU. We found a small decrease in the fraction of particles accreted (from 83

per cent to 78 per cent) but a substantial increase in the fraction of TPs accreted in the

last 50 Myr of the simulation, resulting from the increased orbital time-scale. That fraction

increased from 3 per cent in the 4 AU case to 8 per cent in the 10 AU case, indicating that a

smaller disk mass (both total and unstable) may be required for planets at larger distances.

Farther from the star the maximum disk mass should be greater, potentially allowing

a single planet to be a source of WD pollution. As a test, we repeated our calculations to

determine the maximum unstable mass in a disk scaled outward by a factor of 2.5. We found

that, in a disk located from 15.75 to 17 AU with the same eccentricity and maximum object

sizes as before, the Wyatt et al. (2007) and Löhne et al. (2008) approaches predict 10−3

M⊕ and 0.015 M⊕, respectively. Given the potentially-lower disk-mass requirement due to

increased late-time accretion, these results indicate that more distant planets and disks may

serve as a more-likely source of pollution.

The initial stellar mass also plays a major role in system dynamics, determining the

orbital expansion experienced by the planet and other bodies. More-massive stars undergo

greater mass loss, resulting in a larger expansion and potentially longer lifetimes as described

above. The results of Wisdom (1980) predict that this larger expansion would have a corre-

spondingly larger increase in the unstable region, which could result in a larger population

of small bodies accreting on to the star. Furthermore, more-massive stars have shorter life-

times, allowing them to retain more planetesimals. However, the larger separation from the

central star would likely reduce the accretion fraction relative to our results, as we saw in

the lower fraction for TPs around the WD compared to the MS star.

Doubling the stellar mass for some MS simulations, we saw a small increase in the fraction
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of particles accreted along with a decrease in ECZ size, resulting in fewer total accreted. As

a result of the shorter planetary period, the average lifetime of TPs shrank and thus even

fewer particles accreted after 107 years. While we did not simulate the evolved case of this

increased stellar mass, we can assume, from the two prior results, that the particle lifetimes

would be longer and the accretion fraction less. The magnitude of the accretion reduction

would depend on the total mass loss of the star, and therefore the initial stellar mass.

2.8 Conclusion

In this work we have simulated single-planet systems through stellar evolution, allowing us to

detail the effect of planetary parameters on the WD accretion rate and determine that, when

started in a disk initially at zero eccentricity, planets of mass ≤ 0.03 MJup and eccentricity

e ≥ 0.4 are the most-efficient perturbers. We find that more-massive planets deliver less

material to their host star due to ejecting a much larger fraction of unstable particles, while

smaller eccentricities also produce a lower accretion fraction in addition to fewer unstable

particles. The mass in planetesimals, while found to be negligible for Jupiter-mass planets,

can have dynamical consequences if the mass of the scatterer is too small; the use of massless

TPs in simulations thus limits our results to planetary scatterers larger than several Earth

masses. Particle lifetime varies inversely with both planetary mass and eccentricity, but

the latter relationship is weak relative to the variation in overall accretion amount. These

relationships remain for non-zero particle eccentricity, but are significantly weakened when

particle longitude of periapse matches that of the planet.

We further find that stellar evolution has an impact as well, widening planetary and

particle orbits thus causing an increase in the fraction of particles ejected and a decrease

in the overall accretion amount. Longer orbital periods translate into later peak accretion

times, which partially offset the latter effect. Additionally, while non-gravitational forces

become stronger during stellar giant phases, they play a negligible role in the amount of

stellar accretion due to strong dependence on planetesimal size.

Most importantly, we have demonstrated that single-planet systems within 8 AU of their
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host WD can deliver the amount of material observed in polluted-WD atmospheres through

the scattering of small bodies from reservoirs similar in mass to that which existed early in

our own planetary system. These small bodies were assumed to be at random points on

circular orbits at the beginning of the MS. For a low-mass, high-eccentricity planet (0.03

MJup, e = 0.4) at an SMA of 7.42 AU, 10−2 M⊕ of unstable material would be required in a

disk annulus 1 AU wide, which is within observational amounts. However, current models of

collisional evolution predict that the accompanying disk cannot retain an adequate reservoir

of material, as much of it is ground down to dust and lost from the system. If these collisional

models are correct, more distant planets (where disk evolution progresses more slowly) or

planets that are scattered to other portions of the disk (as described in Debes & Sigurdsson

(2002)) remain a possible source of pollution.

We finish by mentioning that, so far, no planets have been discovered orbiting a WD,

regardless of metal pollution or infrared excess (Faedi et al., 2011; Hogan et al., 2009). This

is unsurprising in the context of our results, given the low mass of a planet necessary to

destabilize small bodies and the current difficulty in detecting exoplanets around any star

at 7 AU. With radial-velocity detections limited to greater than ∼ 1 km s−1 due to pressure

broadening of spectral lines (Maxted et al., 2000), even massive planets are unlikely to be

detected in that manner. If planets such as super-Earths and Neptunes are significantly more

common than more-massive planets as sources of pollution, then it would further reduce the

possibility of detecting them in the future through methods such as direct detection and

astrometry.
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CHAPTER 3

The Effect of Stellar Evolution on Migrating Warm

Jupiters

3.1 Introduction

Arguably the biggest surprise in the field of exoplanets was the discovery of HJs, those

extrasolar planets with orbital periods less than 10 days but masses near that of Jupiter

(MJ) (Mayor & Queloz, 1995; Butler et al., 1997). The proximity of these planets to their

host precludes them from forming at their observed location (Bodenheimer et al., 2000),

indicating that they must have migrated after formation. A range of migration mechanisms

have been proposed, including disk migration (Lin et al., 1996) and planet-planet scattering

(Rasio & Ford, 1996; Weidenschilling & Marzari, 1996), but the existence of HJs that are

inclined relative to the spin of their host star (Hébrard et al., 2008; Winn et al., 2010; Triaud

et al., 2010; Albrecht et al., 2012) indicates that at least some migrated via a mechanism

that excites the planetary inclination to high values. One of these is the Kozai-Lidov (KL)

mechanism (Kozai, 1962; Lidov, 1962), in which an inner body oscillates between highly

eccentric and highly inclined modes due to an inclined, external perturber. Recent results

have shown that the KL mechanism naturally leads to misaligned and flipped planetary

orbits, indicating it may contribute significantly to the formation of HJs (Naoz et al., 2011,

2012, 2013a; Li et al., 2014a; Teyssandier et al., 2013; Petrovich, 2015).

Orbital decay and circularization do not occur instantaneously during high-eccentricity

migration, which results in the related population of WJs. These planets are similar to

HJs but orbit at larger periods of 10 to 100 days. The existence of eccentric WJs implies

a migration mechanism that increases planetary eccentricity, which is consistent with KL

53



oscillations. The dominant migration mechanism has important implications for the WJ

population around evolving stars. As stars evolve off the main sequence and increase in

size, they can tidally drag in and engulf planets orbiting too closely (Rasio et al., 1996;

Passy et al., 2012; Nordhaus & Spiegel, 2013; Li et al., 2014b). The eccentricity of a planet

plays an important role in its survival, as tidal effects are dramatically increased for highly

eccentric planets. For planets undergoing KL oscillations, the evolution of their orbits would

be determined by their maximum rather than current or observed eccentricity. An observed

population (or lack thereof) of WJs around evolved stars can then give us insight into

whether the population is made up of planets with constant eccentricities, or if most go

through phases of significantly larger eccentricity. This process may explain the lack of HJs

and WJs observed around subgiant stars (Johnson et al., 2007, 2010; Schlaufman & Winn,

2013), as shown in Figure 1.

In this paper we examine how a population of migrating and oscillating WJs would

be affected by the evolution of their host stars compared to an observationally identical

population with constant eccentricities, and determine how it compares to observations. To

do so, we run numerical simulations of a WJ and a perturber over the full period range and

determine the relationship between system properties, the closest approach of the planet,

and how rapidly the planets move inward. With this data we calculate at what size the

star removes migrating WJs, for the oscillating population and the analogous non-oscillating

systems. We find that KL oscillations do cause planets to be removed much earlier in stellar

evolution, in line with the observed distribution of stellar sizes for WJ hosts. The oscillations

required to induce inward migration also result in planets spending a significant amount of

time at eccentricities higher than that seen in the observed WJ population, but the latter

may be subject to observational biases.

The structure of the paper is as follows: In Section 3.2 we estimate the number of WJs

predicted around evolved stars relative to the number observed. In Section 3.3 we review

the relevant dynamics taking place in systems undergoing KL oscillations. In Section 3.4 we

setup our numerical simulations of migrating, oscillating WJs. In section 3.5 we discuss our

numerical results, and examine the relative effect of stellar expansion on oscillating and non-
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Figure 3.1 Confirmed exoplanets from Exoplanet Orbit Database with Mp sin i > 0.1MJ or
Rp > 0.5RJ. Few WJs are observed around stars larger than 2R".

oscillating populations in Section 3.6. In Section 3.7 we compare our results to observations

and discuss the possibility that observational bias explains the discrepancy between the

observed and simulated eccentricity distributions. In Section 3.8 we review our conclusions.

3.2 The missing warm jupiters

The lack of HJs and WJs around stars larger than 2R" is apparent from a cursory exam-

ination of Figure 3.1. While the small (∼< 10 days) orbits of HJs naturally lead to their

engulfment early on in stellar evolution, the lack of WJs at similar stellar sizes in spite of

orbits ∼ 10 times larger is surprising. However, the number of WJs around stars of all sizes,
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and the number of exoplanets around evolved stars at all periods, are both significantly lower

than in other regions of exoplanet period–stellar-radius parameter space. This contrast raises

the question of whether the number of WJs around larger stars is genuinely below obser-

vational predictions, or if they simply reside in a particularly barren region of parameter

space. We answer this question using the observed number of WJs around main-sequence

stars (R∗ = 1−2R") and their observed periapse values, combined with the observed number

of lukewarm Jupiters (LJs, periods of 100− 1000 days).

The number of planets observed around evolved stars of a radius R∗ is

Np,obs(R∗) = N∗,obs(R∗)fp,0fp,S(R∗) (3.1)

where N∗,obs(R∗) is the number of stars observed at a given stellar radius, fp,0 is the initial

frequency of planets around the stars, and fp,S(R∗) is the fraction of planets that have

survived prior stellar evolution.

For WJs and LJs around unevolved (R∗ = 1− 2R") stars, we get

NWJ(1− 2R") = N∗,obs(1− 2R")fWJ,0fWJ,S(1− 2R") (3.2)

NLJ(1− 2R") = N∗,obs(1− 2R")fLJ,0fLJ,S(1− 2R") (3.3)

Assuming survival rates are similar without stellar evolution, the relative fraction of stars

with WJs and LJs is:

fWJ,0

fLJ,0
=

NWJ(1− 2R")

NLJ(1− 2R")
(3.4)

Equation 3.1 holds for larger stellar radii as well:

NWJ(> 2R") = N∗,obs(> 2R")fWJ,0fWJ,S(> 2R") (3.5)

NLJ(> 2R") = N∗,obs(> 2R")fLJ,0fLJ,S(> 2R") (3.6)
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Dividing these two equations, we get the predicted number of WJs around evolved stars

based on their observed number around main-sequence stars and observed number of HJs:

NWJ(> 2R") =
NWJ(1− 2R")

NLJ(1− 2R")

fWJ,S(> 2R")

fLJ,S(> 2R")
NLJ(> 2R") (3.7)

Assuming all LJs survive (fLJ,S(> 2R") = 1) gives the most conservative estimate for

the number of WJs. Observations provide values for NWJ(1 − 2R"), NLJ(1 − 2R"), and

NLJ(R∗ > 2R"), as detailed below, so an estimate for fWJ,S(> 2R") allowed us to calculate

the predicted number of WJs around evolved stars, NWJ(R∗ > 2R"). To do so we assumed

the observed periapse distribution for WJs around unevolved stars is representative of the

true periapse distribution. We also assumed that exoplanets are removed when their periapse

comes within 2.5 stellar radii of their host (based on the smallest observed periapse-to-stellar-

radius ratio, 2.7, in the case of WASP-12b as reported by Maciejewski et al. 2011).

The data for this estimation came from Exoplanet Orbit Database (Wright et al., 2011).

We limited our dataset to massive planets1 with listed eccentricity2 values. We also excluded

possible brown dwarfs3, as such massive bodies may have formed via a different mechanism

than exoplanets. Finally, we used the periapse distribution for planets around stars with

radii 1 − 2R", rather than including planets around smaller or larger stars4. From these

values we calculated the predicted number of observed WJs as a function of stellar radius.

As illustrated by Figure 3.2, this calculation predicted a significant population (15) of

observed WJs around evolved stars, which is inconsistent with the observed number (2). If,

however, each WJ is oscillating between some minimum and maximum value of eccentricity,

then fewer will survive stellar expansion as they are removed at their minimum periapse (at

maximum eccentricity), rather than the value currently observed. By assuming all WJs are

undergoing these oscillations up to a maximum eccentricity of emax = 0.85, we calculated a

predicted number (2) that equals the value from observations (Figure 3.3).

1Due to some anomalously low values in the MASS keyword, we included planets with either MSINI > 0.1

or R > 0.5.
2To avoid excluding planets on circular orbits, we used the filter ECC > -1.
3using the limit MASS < 10.
4The periapse dataset used RSTAR >= 1.0 and RSTAR < 2.0.
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Figure 3.2 The number of observed LJs, WJs, and predicted WJs as a function of stellar
radius. Only planets with listed eccentricity values are included. The predicted number is
the result of a constant ratio between LJs and WJs along with exoplanet removal for periapse
within 2.5Rstar.
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Figure 3.3 Similar to Figure 3.2, but including the predicted number of WJs when they are
all assumed to be oscillating up to a maximum eccentricity of 0.85. While the match is not
perfect, it dramatically reduces the discrepancy between observed and predicted at stellar
radii above 2R" compared to the observed eccentricity distribution.
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Figure 3.4 The observed number of LJs and the observed and predicted number of very hot
jupiters (Period< 3 days) as a function of stellar radius. Unlike the predicted number WJs,
the predicted number of these planets matches observations without any variation in the
periapse distribution.

We make a similar estimate of the number of missing HJs using planets on periods

< 3 days, which are very unlikely to be oscillating given the strong tidal interactions at

such short periods. Figure 3.4 shows that the observed number of planets agrees with

the number predicted by the current eccentricity distribution and does not benefit from a

periapse distribution shifted to lower values.

This brief calculation illustrates that the lack of WJs is unlikely to be a simple statistical

fluctuation, and necessitates an explanation. We note that it does include a number of

assumptions, foremost being that the relative frequency of WJs to LJs is independent of

stellar radius outside of removal via tides. However, the purpose of this calculation is not

to determine the precise number of WJs removed to due stellar evolution, but rather to
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demonstrate that an absence exists and can be accounted for they are oscillating to higher

eccentricity values, as would be required for migration via tides. A more detailed analysis

follows in Section 3.6, with further discussion of assumptions in Section 3.7.

3.3 Dynamical effects

3.3.1 The Kozai-Lidov mechanism

The KL mechanism results from secular (long-term) interactions between an inner and outer

body when their mutual inclination exceeds some nominal value, or if both bodies have

significant eccentricity while coplanar (Li et al., 2014a). In the simplest case, where the

inner body has negligible mass and the outer body is on a circular orbit, the z-component

of the angular momentum is constant for the inner body:

cos iin

√

1− e2in = Const (3.8)

where iin is the inclination of the inner body (identical to the mutual inclination in the

massless case) and ein is its eccentricity.

This relationship requires that a decrease in mutual inclination between the two bodies

is accompanied by an increase in the eccentricity of the inner body. As a result, the inner

body undergoes oscillations in eccentricity and inclination as it is forced by the outer com-

panion. In this simple case these oscillations are characterised by their timescale (PKozai)

and maximum eccentricity (Lidov, 1962; Kiseleva et al., 1998):

PKozai =
2

3π

P 2
out

Pin

Mtot

M3
(1− e2out)

3/2 (3.9)

ecalc =
√

1− (5/3) cos2 i0 (3.10)

where Pin and Pout are the inner and outer periods, respectively; M3 and Mtot are perturber

mass and total mass of all the bodies, respectively; eout is the perturber eccentricity; i0 is

61



the minimum value of iin; and ecalc is the calculated maximum eccentricity. The maximum

eccentricity has a more complicated, non-linear form when the inner body is massive. Naoz

et al. (2013a) derive the equation in the case of no initial eccentricity and a perturber on a

circular orbit:

(

L1

L2

)4

e2calc +

(

3 + 4
L1

L2
cos i0 +

(

L1

2L2

)2
)

e2calc

+
L1

L2
cos i0 − 3 + 5 cos2 i0 = 0 (3.11)

where L1 and L2 are the scaled angular momenta of the inner and outer orbit, respectively.

These are defined as:

L1 =
M1M2

M1 +M2

√

G(M1 +M2)ain (3.12)

L2 =
M3(M1 +M2)

M1 +M2 +M3

√

G(M1 +M2 +M3)aout (3.13)

where M1, M2, and M3 are the masses of the central body, inner body, and perturber,

respectively, and ain and aout are the inner and outer SMA. Including the initial eccentricities

of both orbits modifies the calculation only slightly and gives a value that differs at most by

a few percent.

The KL mechanism has been covered extensively in the literature in a number of contexts,

including asteroids (Fang & Margot, 2012), exoplanet systems (Naoz et al., 2011; Petrovich,

2015), the dynamics of the Galactic Center (Löckmann et al., 2008), and stellar triple systems

(Eggleton & Kiseleva-Eggleton, 2001; Fabrycky & Tremaine, 2007; Thompson, 2011; Prodan

et al., 2013; Naoz & Fabrycky, 2014). Recently it has been shown that the inclusion of

higher-order terms can dramatically alter the oscillations induced by the KL mechanism.

These octupole terms, which are non-zero if the inner body is not massless or the outer

body has a non-zero eccentricity, can result in larger eccentricities, flips of the inner orbit,

and chaotic behavior (Katz et al., 2011; Lithwick & Naoz, 2011; Naoz et al., 2013a). The

full equations have no analytical solution for the maximum eccentricity of the inner orbit.

However, Equation 3.11 still provides an adequate first-order estimate of emax, which we
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use in Section 3.4 to limit our parameter space to those systems that could be capable of

migrating inward.

In the absence of any other effects, oscillating bodies can approach within an arbitrary

distance of the surface of the star as long as they avoid collision. However, two effects prevent

that from happening: general relativity (GR) and tides.

3.3.2 General relativistic precession

For short-period orbits, GR causes a precession of apsides on a timescale that depends on

the properties of the orbit and the host star:

PGR =
P 5/3
in c2(1− e2in)

3(2π5/3)(GM1)2/3
(3.14)

If PKozai is longer than this timescale, GR precession can damp and eliminate KL oscil-

lations. For this reason, orbits with shorter periods require stronger perturbers to undergo

oscillations: those that are more massive, closer, and/or more eccentric. As shown in Dong

et al. (2014), WJs need perturbers within 10 AU to undergo the high eccentricity migra-

tion discussed here. This constraint is due in part to the eccentricity dependence of the

GR timescale. Without a strong enough perturber, oscillating bodies that reach very high

eccentricities can be stranded at their maximum eccentricity. When tides are taken into

account, that can lead to rapid evolution into a HJ. While the detailed effects of GR are

significantly more complicated (Naoz et al., 2013b), the damping interpretation is adequate

for our purposes.
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3.3.3 Tides

3.3.3.1 Tidal decay

Both the KL mechanism and GR conserve orbital energy, ensuring that the SMA of the

inner orbit is constant. WJs can only migrate when under the influence of a dissipative

force, which takes the form of tidal friction. The existence of WJs at their current periods,

as well as their non-zero eccentricities, indicate that they must have large circularization and

tidal decay timescales as a result of weak tidal forces. In this section we describe tidal forces

that hold for two bodies in general, but in our simulations apply specifically to the planet

and star.

The effects of tidal forces on orbital evolution (first investigated in the context of planets

and satellites, see Darwin 1880) have been investigated in detail for stars, showing that tides

reduce orbital energy and lead to smaller and more circular orbits (Hut, 1981; Eggleton et al.,

1998; Kiseleva et al., 1998). For two tidally interacting bodies, whether massive planets or

stars, the strength of tides raised on an object 1 by an object 2 is characterised by the

tidal friction timescale, as described in Eggleton & Kiseleva-Eggleton (2001) and Fabrycky

& Tremaine (2007):

tF1 =
tV 1

9

a8

R8
1

M2
1

(M1 +M2)M2
(1−Q1)

2 (3.15)

where a is the SMA of the orbit and R1 is the radius of object 1. The internal structure

of object 1 is included by way of k, the classical apsidal motion constant, which represents

the quadrupolar deformability of the star or planet, and tV , the viscous timescale, which

is a parametrization of internal dissipation in the star (Zahn, 1977). The physical values

parametrizing tidal evolution are still not fully understood, although they have been investi-

gated by a number of authors. The planetary k is frequently set to kP = 0.25, the result for a

n = 1 polytrope representing gas giants. Recent research has gone into matching tV to obser-

vations, including the Jupiter-Io system, the eccentricity distribution of hot Jupiters, and the

existence of high eccentricity exoplanets. Hansen (2010) calibrated tidal models to observa-
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tions of massive exoplanets (0.3-3MJ ) around solar-type stars using a single tidal dissipation

constant for each population, and found that tV for a Jupiter-mass planet with moderate

eccentricity is tV p = 150 years. More recently, Socrates et al. (2012) determined that plan-

ets undergoing high-eccentricity migration require significantly stronger tides, equivalent to

tV p = 1 year. It is this value we use in the numerical simulations of Section 3.5.

Hansen (2010) also found that tides raised on the solar-type host stars by Jovian-mass

planets were a factor of 50 weaker than those raised on the planets by the stars, allowing

us to ignore stellar tides for our numerical simulations. However, this inequality does not

hold as stars evolve. The strong radius dependence of tF∗ indicates that as a star leaves

the main sequence it will increase its contribution to the planet’s orbital evolution until

stellar tides dominate or the star engulfs the planet. Once the star dominates tidal effects

the strong radius dependence will rapidly accelerate the inward migration of the planet.

Whether this increase in migration rate occurs before direct collision with the star depends

on the migration rate due to planetary tides alone, as discussed in greater detail in Section

3.6.2. When stellar tides are included, we use the values k∗ = 0.014, based on an n = 3

polytrope, and tV ∗ = 50 years, from the equation provided in Eggleton & Kiseleva-Eggleton

(2001). Stellar tides are likely weaker than this value, as seen by the results of Hansen (2010),

but our choice of tV ∗ does not affect our conclusion as long as it is longer than tV p.

3.3.3.2 Rotational effects

Tidal forces also exert a torque on a planet, changing its spin and aligning it on timescales

much shorter than those required to circularize the orbit or move the planet inward. Plan-

etary systems residing in the WJ period range as a result of migration should have reached

an equilibrium in their spin as a result of this effect. In the case of planets not undergoing

oscillations in eccentricity, the equilibrium spin can be determined by the value which results

in no torque, or pseudo-synchronous (PS) spin (Hut, 1981). In the case of low eccentricity,

the planetary spin period is the same as its orbital period (synchronous rotation). For large

values of eccentricity, the planet is moving much more rapidly at periapse, where tidal forces
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are strongest, and as a result the planet rotation period can be less than 1 percent of the

orbital period. Those planets rotating faster than the PS value will have angular momentum

transferred from its rotation to its orbit, which can result in a modest increase in SMA.

3.3.4 Stability

Finally, for these three-body systems to exist they must be stable. While KL oscillations

require a strong perturber to avoid damping by GR, a perturber that is too near to the inner

orbit will destabilize the system. The limit for stability in mutually inclined systems with

an eccentric perturber was calculated by Mardling & Aarseth (2001):

aout
ain

> 2.8(1 + q)2/5
(1 + eout)2/5

(1− eout)6/5

(

1− 0.3
itot
180◦

)

(3.16)

where q = M3/(M∗ +Mp).

With these effects in mind, the planetary systems we want to investigate are those that

are undergoing KL oscillations, requiring PKozai < PGR over the full range of eccentricities

that the planet reaches. The maximum eccentricity due to oscillations should be large enough

to induce tidal decay, but over a timescale large enough that a population of WJs would be

detectable.

3.4 Numerical simulations

The orbital evolution of an oscillating planet depends on both the maximum eccentricity

and the distribution of eccentricity values over time. These properties of the system do

not have an analytical form; the maximum eccentricity deviates from ecalc in Equation 3.11

due to octupole terms, while the eccentricity distribution has no analytic form even without

octupole terms. In order to understand the orbital evolution of migrating WJs, we need

to use numerical simulations spanning the parameter space of interesting systems. These

simulations allow us to determine the orbital decay as a function of initial period, mass, and

eccentricity, as well as determine the relationship between calculated (ecalc) and true maxi-
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mum eccentricity. In our simulations we used S. Naoz secular code (private communications)

which integrates the three-body secular equations up to the octupole level of approximation

(Naoz et al., 2013a), including GR effects for the inner and outer orbits (Naoz et al., 2013b)

and tidal effects following Eggleton & Kiseleva-Eggleton (2001) and Fabrycky & Tremaine

(2007). This code has been used extensively in numerous calculations e.g. Naoz et al. (2011,

2012); Naoz & Fabrycky (2014); Li et al. (2014b, 2015).

3.4.1 Creating a population

Each system is composed of a central star, an inner body (hereafter referred to as “planet”),

and an outer body (hereafter referred to as “perturber”). For our star, we selected a mass

of 1.2 M" and ignored the contribution of tides raised on the star to the tidal evolution of

our planetary orbit (see Section 3.3.3.1). The other properties of our systems were chosen

to produce all three of the following properties in the planet:

1. Warm (P = 10− 100 days) Jupiters (Mp = 0.1− 10MJ)

2. Undergoing KL oscillations

3. Experiencing migration

Each of these qualities introduces constraints onto the population: 1) constrains the mass

and period of the planets, 2) constrains the perturber such that GR timescale is longer than

the KL timescale, and 3) constrains the planet to reach high eccentricities during oscillations.

Our choice in perturber and planet properties are discussed below.

3.4.1.1 Perturber properties

We limited the parameter space of our primary simulations by keeping the perturber constant

across them. We selected its properties such that it caused KL oscillations in the systems at

∼ 0.1 AU, which were most sensitive to quenching by GR (Section 3.3.2, constraint 2 above),

while avoiding system instability in the largest orbits (0.45 AU). We arrived at a 4 MJ body

at 2 AU with an eccentricity of 0.13, similar to the planets that appear to be common
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companions to HJs (Knutson et al., 2014). Plugging these numbers into Equation 3.16, we

find that the limit for stability is aout/ain > 3.5. Our systems have aout/ain = 4.4−20, clearly

in the stable regime. Additionally, we ran two other sets of simulations: one with simply a

larger eccentricity (0.35), and one with a larger (30MJ), more eccentric (e = 0.64) perturber

at a larger distance (10 AU), both discussed in Section 3.5.3.2. These simulations showed

that while the perturber plays a pivotal role in the planetary oscillations and migration, the

perturber properties did not impact our general results.

3.4.1.2 Inner planet properties

We defined our population of WJs to be 0.1 − 10MJ and 10 − 100 days, or 0.1 − 0.45 AU.

For simplicity, we set the size of all planets to 1 Jupiter radius, with kp = 0.25 and tV = 1

year as described in Section 3.3.3.1. While planets at the low-mass end of our population are

unlikely to be this large, there is not a firm mass-radius relationship for extrasolar planets

at this point. We discuss the impact of this assumption in Section 3.5.2.2. To generate

the properties of our planet, we first randomly sampled the mass range, initial eccentricity,

and mutual inclination. We did so logarithmically in mass and uniformly in eccentricity

and inclination, limiting the latter to 0 − 0.1 and the former to 70◦ − 90◦. We chose these

boundaries with the goal of matching the high number of observed WJs with near-circular

orbits while still allowing planets to reach large eccentricities and migrate inward.

From these properties and those of the perturber, we calculated ecalc for all samples using

Equation 3.11. We then selected a uniform distribution in initial eccentricity and ecalc by

dividing the parameter space up into a grid and selecting systems from each grid box, as

shown in Figure 3.5. This approach allowed us to probe the wide range of behavior caused by

different minimum periapse values while still limiting computation time. We constrained the

initial eccentricity to between 0 and 0.1 and ecalc between 0.75 and 1.0 to produce oscillating

systems that eccentricity values enabling migration. While ecalc is only accurate for systems

without any contribution from octupole terms, it gave us a first approximation and allowed

us to exclude systems that are unlikely to migrate. We also set both arguments of periapse
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Figure 3.5 A randomly generated distribution of planets based on our limits (black points),
along with the bins (blue lines), and a set of selected systems (red dots). This approach
ensured we simulated a wide range of systems rather than be dominated by the portions of
parameter space with the majority of points.

to zero in order to limit our parameter space, as other groups have done (Teyssandier et al.,

2013). Generally speaking, this assumption is equivalent to maximizing the effect of the

companion, leading to the largest peak eccentricity.

3.4.1.3 Planetary rotation

As described in Section 3.3.3.2, planetary rotation can have a significant effect on orbital

evolution via tides. We tested this by running a set of simulations with a range of planetary

rotation rates and found that as expected planets spinning faster than the equilibrium (PS)

rate migrated more slowly, or in some cases migrated outwards. Because these systems are
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assumed to be migrating WJs, which originated beyond periods of 100 days, they should

have already reached PS rotation. For our main simulations, we used ecalc to estimate the PS

rotation period. However, the planets nearest to the star (10 and 20 days) reached maximum

eccentricity values significantly different from ecalc, resulting in planets spinning too rapidly.

To correct for this, we performed a linear fit between the calculated and simulated maximum

eccentricity, and used the derived eccentricity value to set the correct rotation rate. We also

set a lower limit on the spin period by capping the eccentricity used in its calculation to

1−2R"/a, the value that brings the planetary periapse to 2R". This limit avoided spin rates

that were unreasonably fast, exceeding the maximum physical rotation rate of a Jupiter-mass

planet.

3.4.2 The full population

We ran a total of 1,320 simulations across 6 period values: 10, 20, 30, 50, 70 and 100

days. We also ran another 384 with different perturbers and 192 with reduced viscous

timescale, both across the same period range. The number of simulations was chosen based

on computational constraints, but effectively probed the parameter space (see Figure ??). All

simulations lasted 106 years or until the orbit of the planet decayed by 10 percent, whichever

occurred first. While this is not enough time for most systems to complete migration, we

are only interested in finding systems that have some measurable change in SMA and do not

need to simulate the actual transition from WJ to HJ.

For comparison to systems not undergoing oscillations, we also ran an additional set of 192

simulations over the same period bins without the effects of a perturber. These simulations

spanned both the same mass range (3 bins: 0.1, 1, 10 MJ) and the full eccentricity range (19

bins from 0 to 0.95), and began with the theoretical value for PS rotation at their eccentricity.
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3.5 The results

3.5.1 A single system

As a case study, we selected a system with Mp = 0.6MJ at 50 days (0.28 AU), with an initial

eccentricity of e = 0.08 and an initial mutual inclination of i0 = 72.3◦. Using Equation 3.11

we determined ecalc = 0.91, which is large enough to induce inward migration as long as the

planet is not spinning extremely rapidly. This eccentricity corresponds to 5R" at closest

approach, well outside of the 2R" limit we set for PS rotation calculations in Section 3.4.1.3.

We set the rotation period to the calculated value of Prot/Porb = 42, or Prot = 1.2 days.

Simulating this planet for 106 years, we found that it peaked at an eccentricity of 0.93,

slightly larger than our calculation (Figure 3.6). Additionally, the difference between the full

106 year distribution and the distribution in the last 105 years (thick line) showed that the

minimum eccentricity during oscillations increased slightly over time. Given the distribution

of eccentricity as a function of time, a system with these properties would most likely be

observed with e < 0.4, but would be detected 25 percent of the time with e > 0.7. Migrating

inward at 3 AU per Gyr, such a planet would survive for significantly less than the migration

timescale a/ȧ = 0.094 Gyr, due the increase in the strength of tides as the SMA gets smaller.

A migration timescale of this duration is short compared to the ages of WJ host stars,

indicating that this type of system could have migrated to its current location from farther

out.

3.5.2 All systems

Repeating this process on all 1,320 systems produces the results shown in Figure ??: migra-

tion rate (∆a/∆t) as a function of minimum periapse/maximum eccentricity and planetary

mass. These plots illustrate the extremely strong dependence of migration rate on maxi-

mum eccentricity, as expected. In all simulations with planet periods longer than 10 days,

orbital migration only took place when the maximum eccentricity exceeded 0.8. This re-

sult is significant, as all observed WJs have eccentricities below this value (see Figure 3.19),
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Figure 3.6 Eccentricity distribution of our 50-day case study planet, migrating inwards with
∆a/∆t = −3 AU/Gyr, during the full 106 year simulation (thin line) and the final 105 years
(thick line). The vertical lines show the distribution of observed WJ eccentricities (dashed,
from the Exoplanet Orbit Database) and the simulated eccentricity distribution (dotted) at
cumulative fractions of 0.75, 0.9, and 0.98.
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Figure 3.7 The largest minimum periapse that resulted in the planet migrating at a given
rate, for each orbital period. The systems used in Section 3.6 fall between the dotted and
dashed lines.

which will be discussed in Section 3.7. Notably, the same periapse distance results in similar

migration rates regardless of period (Figure 3.7). This result plays an important role when

determining how the population of WJs is affected by stellar evolution in Section 3.6. The

partial exception to this phenomenon are those planets at 10 day periods, which are near

enough to their host to experience tidal effects with even moderate eccentricity.

Additionally, some systems at larger periods migrated outward rather than inward. In

these cases our estimate for the rotation rate was too high, possibly due to the effect of

octupole terms in the KL oscillations or tidal effects, and they experienced outward migration

due to their spin down. The relative symmetry between the outward and inward moving

planets is due to the magnitude of migration being set primarily by the product of the tidal

friction timescale (Equation 3.15) and a function of eccentricity dominated by a (1−e2)−13/2
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Figure 3.8 The change in semi-major axis over the duration of the simulation, for planets at
10- and 20-day periods. The x-axis is minimum periapse/maximum eccentricity while the
color of the scatter points gives the mass of planet. Probable migration rates for the observed
population of WJs are indicated by the region between the dotted and dashed black lines,
while the blue dotted line indicates the tidal disruption radius.
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Figure 3.9 Same as Figure 3.8, for inner planets with periods of 30 and 50 days.
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Figure 3.10 Same as Figure 3.8, for inner planets with periods of 70 and 100 days.
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coefficient. We also note that none of our systems spent any time on retrograde orbits. This

result is in line with the findings of Teyssandier et al. (2013), which showed that highly

inclined systems are significantly poorer at causing flips in the planet. In our simulations

only highly inclined systems produce large eccentricities, and as a result all stayed prograde.

3.5.2.1 Eccentricity frequency distributions

The eccentricity distributions of individual planets, along with the setup of the system, de-

termined the magnitude of migration. Systems rapidly migrating (da/dt > 102 AU/Gyr)

tended to peak more strongly at the high-eccentricity value, as seen in Figure 3.11. Systems

migrating on smaller timescales (10−1−102 AU/Gyr) generally peaked near e = 0−0.2 with

a smaller additional peak between 0.8 and 1.0 (Figure 3.6). Those systems not migrating

generally appeared similar to the latter distributions but peaked at a lower maximum ec-

centricity due to our choice of initial conditions. Finally, some systems had their minimum

eccentricity increase, leading to small oscillation magnitudes (Figure 3.12). In a small mi-

nority of simulations, the maximum eccentricity deviated significantly from Equation 3.11,

due to the effect of octupole terms or, for short-period planets, tides.

3.5.2.2 Planetary mass effects

The relationship between mass and migration rate, with more massive planets migrating

slower and less massive planets migrating rapidly, showed up in all periods (Figures 3.8

– 3.10) as a result of Equation 3.15. The strength of tides depends on planetary mass

and radius, with more massive planets having stronger surface gravity and correspondingly

weaker tides. Massive planets do produce larger tides in their host star, but our simulations

ignored stellar tides due to their relative weakness, even with large planetary mass. As

a result of keeping a constant perturber and planetary radius, small planets migrated the

fastest and larger planets the slowest.
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Figure 3.11 Eccentricity distribution of a rapidly migrating planet at 30 days (da/dt =
−4 × 102 AU/Gyr), illustrating that the majority of time is spent at high eccentricities
during the last 10 percent of simulation time.

Figure 3.12 Eccentricity distribution of a planet at 10 days with damped eccentricity oscil-
lations, where the KL timescale is roughly equal to the GR timescale.
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Figure 3.13 Same as Figure 3.7, but in the case of a much smaller (0.01) viscous timescale.
Note the larger scale on the y-axis due to smaller maximum eccentricity at similar migration
rates.

3.5.3 Other effects

3.5.3.1 Changing the viscous timescale

A viscous timescale of 0.01 year resulted in planets with higher migration rates and smaller

maximum eccentricities than our primary (tv = 1 year) simulations (Figure 3.13). Planets on

10-day periods did not require any eccentricity to migrate inward, and reached much smaller

maximum eccentricities than other periods due to their rapid circularization. This shorter

viscous timescale led to fewer planets reaching very high eccentricities, which is more similar

to what is seen in observations (Figure 3.19). However, the smaller maximum eccentricities

result in larger periapse distances, which results in a larger population surviving to larger

stellar radii. Comparison to observations will be discussed more thoroughly in Section 3.7.
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Figure 3.14 Eccentricity frequency distribution of a 30-day period planet (in arbitrary units),
for both the default perturber eccentricity (0.133) and the larger value (0.35). The more
eccentric perturber produces marginally higher eccentricities on average.

3.5.3.2 Changing the perturber

As described in Section 3.4.1.1, our simulations also included two smaller samples with al-

tered perturbers for comparison. In the first of these, we increased the perturber eccentricity

to near the limit of stability, 0.35, while leaving the other properties (period and mass) the

same. The increase in eccentricity resulted in a small shift to larger maximum eccentricities

and a resulting slight increase in the overall inward migration rate. The effect was extremely

minor, as seen in Figure 3.14.

The second sample had a dramatically different perturber, one on a significantly larger

orbit (10 AU = 104 day period), with a larger mass (30 MJ), and greater eccentricity

(e2 = 0.6380). The eccentricity value was chosen so that it was also near the limit of

stability for the system. For some systems, the larger period resulted in weaker or nonexistent

oscillations compared to the closer perturber. This was the case in many of short-period

systems through 30 days; the larger period systems averaged more moderate migration rates.

Fewer had da/dt = 0 than with the close in perturber, due to larger maximum eccentricities,
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but fewer reached very high migration rates.

Regardless of perturber or planetary properties, significant da/dt required the planet

to reach very large eccentricity values in the vast majority of those with periods longer

than 10 days. Additionally, of those undergoing migration without reaching large maximum

eccentricity, the majority did so due to a minimum eccentricity above 0.2, a value higher

than most observed WJs.

3.5.4 Migration rates in the absence of a perturber

Those planets without a perturber behaved as expected, migrating by much larger amounts

as compared to oscillating systems of equal maximum eccentricity. As shown by the lines in

Figure 3.15, the migration magnitude is well fit by an analytical formula of the form

da

dt
= −4× 10−4fe(e

2)
( ap
0.1 AU

)−8
(

Mp

1MJ

)−2.4

AU/Gyr (3.17)

where fe(e2) is a function of eccentricity derived from the tidal equations in the case of PS

rotation (see Equation 3.29). Direct calculation of the migration rate leads to a different

dependence on SMA and planetary mass (see Equation 3.31). The discrepancy is likely due

to the planet rotating slightly faster in our simulations. Similar to the oscillating systems,

the larger planets migrated less due to experiencing weaker tides from the star, and the

larger periods required correspondingly larger eccentricities.

3.6 Stellar evolution effect

To test if KL oscillations can account for the missing WJs around evolved stars, we must

determine the stellar size required to remove each of our simulated planets in the case of

both oscillating and constant eccentricity. Here we focus on the planetary systems that could

be observed around other stars. For this reason, we limit the migration rate to 10−1 − 102

AU/Gyr as indicated by the lines in Figures 3.7, ??, and 3.15. This rate is rapid enough that

WJs can have entered the 10− 100 day-period regime in the lifetime of their star, but long
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Figure 3.15 Migration rate as a function of periapse distance/eccentricity for 100-day planets
without a perturber, and thus non-oscillating eccentricity. The dependence of migration rate
on planetary mass and maximum eccentricity is apparent.
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Figure 3.16 The period distribution of observed WJs, binned according to our simulation
periods. This distribution informed us how many eccentricity samples to draw from each
period.

enough that a significant number are observed there. Furthermore, we limit the planet mass

to 0.3− 3MJ . This limit is to avoid being influenced both by both low-mass planets, whose

large migration rates may be inaccurate due to our choice of uniform planetary radius, and

massive planets, which are more likely to be affected by tides raised on the star that we did

not include.

65 systems across the six orbital periods meet these criteria. We create a population

of planets for comparison by drawing from the period bins according to the observed WJ

distribution (Figure 3.16). With each draw from a given period, we randomly select one of the

systems and a value from its eccentricity distribution. We repeat this process until we obtain
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a final set of 848 planets, each with an eccentricity, period, and planet mass, which match the

observed period distribution. These systems represent what the oscillating systems, or an

analogous population with constant eccentricity, would look like in observations. With our

population of oscillating- and constant-eccentricity planets, we then determine the criteria

for removal.

3.6.1 Evolution timescale

It is only only appropriate to assume the planet is removed at its maximum eccentricity if

the evolution timescale of the star (R∗/Ṙ∗) is significantly longer than the KL timescale.

In the case of very brief evolution timescales, the WJ eccentricity would remain relatively

constant and the planets would be removed at whatever eccentricity they happened to have

at that point in stellar evolution. Using MESA (Paxton et al., 2011, 2013) models, we

calculated the expansion timescale of the host star to be > 107 years through R∗ = 40R", or

roughly half the size of our largest planetary orbits. The KL timescale for our simulations

ranged from 7× 103− 8× 104 years, depending on the period of the planet, which are orders

of magnitude shorter than the stellar evolution time. As a result, we safely assume the

maximum eccentricity determines when the planet is removed via contact. In addition, this

portion of stellar evolution occurs without any measurable change in mass, so we can safely

ignore the effect of mass loss on the planetary orbits.

3.6.2 Planetary removal mechanism

A WJ can be removed in one of two ways: First, the planet can come into direct contact

with the star, being disrupted as it collides with the stellar surface: R∗ = a(1 − emax).

Alternatively, the planet can migrate interior to 10 days, becoming a HJ until it is removed

via direct contact. This migration occurs more quickly as the star evolves than during the

main sequence because the star expands to the point where stellar tides dominate the tidal

decay (Villaver et al., 2014). Once this occurs, inward migration increases dramatically

with continued stellar expansion due to the R8 dependence in the tidal friction timescale

84



(Equation 3.15). A planet will migrate out of the WJ period space on a timescale of roughly

PT = −a/(da/dt).

The value of da/dt caused by tides in the planet, paired with some assumptions about

stellar and planetary tides, allow us to quantify the increase in migration rate due to stellar

expansion. We take the contribution from the star to be

PT =
PTp

1 + (R∗/R∗,eq)8
(3.18)

where PTp
is the migration timescale before stellar evolution (due only to planetary tides)

and R∗,eq is the size of the star at which stellar tides match planetary tides. The value of PTp

for oscillating systems comes from our simulation results, while PTp
for constant eccentricity

systems comes from Equation 3.17. Importantly, f(0) = 10−3 in Equation 3.17, so that even

planets on circular orbits are migrating slowly inward.

To determine the value of R∗,eq, we set the tidal timescales of the star equal to that

of the planet times a coefficient, which accounts for the different spins between the two:

tF∗
= fstFp

. We assume viscous timescales of tV∗
= 50 years based the planet-to-star

strength from Hansen (2010), and fs = 0.2 based on calculations of f(e2,Ω), our function

f(e2) with a non-PS spin value.

R∗,eq = Rp

(

fs
tV∗

tVp

)1/8 (M∗

Mp

)3/8

(3.19)

We note that this equation assumes the viscous timescale for the star stays constant over

stellar evolution, which is not strictly true. However, the very weak dependence on tV∗

means it should not have a significant effect. Using the calculation from Zahn (1977),

tV∗
∝ (L/R2)−4/3 ∝ T−4/3

eff . For our stellar model, the surface temperature drops from 6300K

to 3200K as the star grows to 50R", corresponding to an increase in viscous timescale by a

factor of 2.5, or a 12% increase in R∗,eq at its largest.

We consider a planet with a migration timescale PT < Pshort = 106 years to be removed,

due to the comparatively brief period of stellar evolution relative to the main sequence
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e a(1− e) da/dt Rrem

(R") (AU/yr) (R")
0.07− 0.93 53− 4.0 -3.0e-9 4.0

0.11 50 -5.4e-17 38
0.22 44 -1.4e-16 33
0.25 42 -1.9e-16 32
0.46 30 -4.2e-15 22
0.15 48 -7.0e-17 37
0.67 19 -3.6e-13 13
0.25 42 -2.0e-16 32
0.56 25 -2.4e-14 18
0.91 5.0 -4.1e-8 2.9
0.46 30 -4.1e-15 22

Table 3.1 Migration values and stellar size at planetary engulfment (Rrem) for a simulated
oscillating planet and 10 constant-eccentricity realisations. The da/dt values for the latter
group were calculated using Equation 3.17.

lifetime. Rearranging Equation 3.18, we can solve for Rshort as a function of migration

timescales and R∗,eq:

Rshort = R∗,eq

(

PTp

Prem
− 1

)1/8

(3.20)

Therefore we define a planet to be removed when the size of the star reaches Rrem, the smaller

of a(1− emax) and Rshort.

3.6.3 Stellar expansion results

As an example, we draw 10 random samples from the eccentricity distribution of our case

study (Figure 3.6) and calculate the size of the star when the planet is removed assuming the

eccentricity is constant. Table 3.1 lists these values along with the periapsides and migration

rate. The oscillating eccentricity is listed for comparison, showing that only in that case is the

planet removed via collision; the constant-eccentricity planets are all removed via migration

out of the WJ region, caused by stellar tides.

We perform the same analysis on all eligible systems, scaling the contribution from sys-

tems of each period according to the observed period distribution. Our results are shown
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in Figure 3.17: the oscillating population drops off as soon as the star exceeds 3R", remov-

ing all but a handful of planets by 5R". By requiring these planets to have a measurable

migration rate (10−1 − 102 AU/Gyr), we required them to have small periapsides as well.

As a result, those systems are removed almost exclusively by collision with the star. The

constant-eccentricity population drops off much more slowly, with some planets surviving

until the star is over 50R". A small fraction of these planets are on very eccentric orbits due

to the oscillating systems reaching large maximum eccentricities. As a result, those planets

are removed by collision with the star. In general, however, most had low or moderate ec-

centricity (as seen in Figure 3.18) and are removed when the star dominates their migration

rate. We note that varying tV ∗ does have an effect for those systems, but only serves to shift

the constant-eccentricity population to stellar sizes larger by a factor of 2− 3.

The discrete periods of our simulations are identifiable in the constant eccentricity pop-

ulation as small, steep drops at specific stellar radii. This effect results from the minimum

da/dt at a given period: all low-eccentricity planets of a given period have similar da/dt val-

ues and are removed at similar stellar radii. When the minimum migration rate is removed,

the bumps are smoothed out. The 100-day population between 50 and 60 R" is negligible,

due to the small number of such planets in the observed WJ period distribution.

3.7 Comparison to observations

The model described here is motivated by the claimed deficit of WJs around moderately

evolved stars (Johnson et al., 2007, 2011), as seen in Figure 3.1 and Section 3.2. We postulate

that the reason for this deficit is that the observed eccentricity distribution of WJs around

main sequence stars is really a snapshot of a population whose eccentricities are oscillating

via the KL mechanism while they migrate inwards due to tidal friction. The fact that the

oscillation timescale is short compared to the characteristic timescale for the stellar evolution

means that planets are removed from the observed sample when their periapsides oscillate

to the minimum value and interact with the host star. Figure 15 shows the result of such

a model and demonstrates that, under these conditions, a pre-existing WJ population will
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Figure 3.17 The fraction of oscillating and constant-eccentricity WJs that survive as a func-
tion of stellar radius. While the fraction of oscillating planets drops off dramatically above
3R", the fraction with constant eccentricity is significant even as the stellar radius exceeds
20R", which indicates that the lack of WJs around evolved stars can be effectively explained
by eccentricity oscillations.
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Figure 3.18 The distribution of eccentricity values drawn from our simulated oscillating sys-
tems, with the same period distribution as observed (grey). The detection efficiency of 100-
day planets with signal-to-noise of 10 (dashed line), obtained from Cumming (2004), drops
off dramatically at high eccentricities and produces the eccentricity distribution predicted in
observations (dark grey).

be largely removed by the time the stars evolve to 4 R", in contrast to the case where the

eccentricities of the observed population do not oscillate. The exact location of WJ removal

depends on the details of tidal forces and the perturber, but the general behavior is well

described by Figure 3.17.

However, our results do not match all observations. Figures 3.18 and 3.19 show the

distribution of eccentricities for our simulated systems and observed WJs (from the Exoplanet

Orbit Database), respectively, with our simulated population drawn from the same period

distribution. In both cases the systems are restricted to the Jupiter mass range (0.3-3)
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Figure 3.19 The eccentricity distribution for observed WJs, taken from the Exoplanet Or-
bit Database. The small number of highly eccentric planets differs significantly from the
oscillating distribution, but that may be a result of low detection efficiency..
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and the period range of 10 − 100 days. Comparison of these two populations using the

Kolmogorov–Smirnov (KS) test gives a p-value of 1 × 10−4, indicating they are unlikely

to be drawn from the same underlying population. The discrepancy is primarily due to

the significant fraction (15%) of simulated WJs with high eccentricity (e > 0.8), while no

observed WJs have such high values. The lack of high-eccentricity WJs has also been noted

by Dawson et al. (2015).

The observed population also includes an excess number of low-eccentricity planets, which

is difficult to reconcile with the orbital behavior of our planets. Many of the simulated

planets, even those started with eccentricity of 0.05, had a minimum eccentricity peak above

0.1, similar to the eccentricity distribution shown in Figure 3.6. This figure also shows the

cumulative distribution of eccentricity values; blue, green, and red dashed lines indicate

the cumulative observed distribution at 75, 90, and 98 percent of WJs, respectively, for

the simulated planet (dotted lines) and eccentricity distribution of all observed WJs (dashed

lines). While tidal effects can cause circularisation, the accompanying orbital decay produces

HJs, not WJs, on circular orbits.

3.7.1 Observational biases

One of the two major discrepancies between the eccentricity distribution of our simulated

population and that of observed WJs lies at the highest eccentricities. In order for host

stars to remove their orbiting WJs early on in stellar evolution, as observations imply, the

minimum periapsides must be quite small. As a result planets must undergo KL oscillations

to large eccentricities, leading to a small but significant fraction of WJs inhabiting that

portion of the eccentricity distribution at any given time. Even oscillating systems peaking

strongly near e = 0 have a significant tail at high eccentricities, in conflict with observations.

However, if eccentric planets are more difficult to detect than low-eccentricity or circular

planets, then the dearth of high-eccentricity systems could be an observational effect, not a

physical one. Studies of exoplanet detectability in radial velocity surveys (Cumming, 2004;

O’Toole et al., 2009) have shown that that appears to be the case above eccentricities ∼ 0.5,
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where the largest difference between observed and simulated populations exists. To test

how much this effect can improve the fit between our results and observations, we apply the

detection efficiency (DE) of Figure 4 in Cumming (2004) to our eccentricity distribution.

We use the DE found for fitting to a Lomb-Scargle periodogram with N = 39 observations

short-period (100 day) planets, with a signal-to-noise ratio of 10, shown in Figure 3.18. After

application, the KS test gives a p-value of 4 × 10−4, somewhat improved compared to the

distribution without correcting for DE. Including an additional 10 percent of the population

in circular planets leads to a p-value of 0.03, indication a population primarily oscillating

is consistent with observations. A population of circular WJs this small would not have a

high probability of being detected around evolved stars even if they existed, and could have

originated via an alternative migration mechanism, such as disk migration.

Given the specificity of this detection efficiency function and the inclusion of a separate,

distinct population, we do not claim that this calculation proves that our population matches

that of observations. An in-depth examination of the detection efficiency of WJs around

evolved stars is outside the scope of our work. However, this calculation does show that

the difference in eccentricity distributions may not be as insurmountable as would appear

from direct comparison. As more eccentricities are determined in systems detected via the

transit method, these biases may be reduced, allowing us a better view of the underlying

eccentricity distribution. We finish by noting that our DE-corrected distribution predicts

that ∼ 1 percent of observed WJs should have eccentricities greater than 0.8. Given that

there are currently only 63 WJs listed in the Exoplanet Orbit Database, it is unsurprising

that none has high eccentricity. As the number of confirmed WJs increases and improved

methods of analyzing data are implemented (see O’Toole et al. 2009), the high eccentricity

population, if it exists, should become apparent.

3.7.2 Assumptions of physical effects

Our simulations ignored the effect of stellar tides, which were only included in the evolved star

calculations. Larger stellar tides would increase the tidal decay for a planet with a smaller
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maximum eccentricity and strengthen that decay as the star evolved. However, limits can be

placed on the strength of tides in stars from the population of WJs (Hansen, 2012). Stellar

tides must be weak enough that planets can exist on orbits shorter than one day for an

observationally significant amount of time. For that reason, it is unlikely that stellar tides

can dominate the evolution of most planets except for the most massive ones. As a test, we

simulated 32 systems at 50 days with identical properties to our primary simulations, but

with the stellar tidal timescale set to 50 years. The simulations were qualitatively identical

to those without stellar tides, indicating they would need to be significantly stronger than

the current limits in order to account for the lack of observed eccentric WJs.

Our simulations also assumed the equilibrium model for tides, which is an approximation.

Tidal effects may differ significantly, both in the star and in the planet, when they are forced

on an eccentric orbit. The existence of HJs would not constrain such effects due to their

uniformly near-circular orbits. Additionally, we ignored the size difference between 1 MJ

planets and 0.1 MJ planets. Correcting for this would likely reduce the migration rate for

low-mass planets, leading to a larger population in our defined migrating region. However,

many WJs are Jupiter-mass and above, and the issue of a large periapse preventing prompt

removal remains.

3.8 Conclusion

A number of planets have been found around evolved stars, but there appears to be a lack of

massive planets interior to 0.6 AU (Johnson et al., 2007; Bowler et al., 2010; Johnson et al.,

2011). Two possibilities exist: either the underlying population of planets differs around the

unevolved progenitors of these generally more massive (> 1.5M") stars, or stellar evolution

has led to their removal. The results of Lloyd (2011, 2013) have called into question whether

the evolved stars truly originate from a more massive population, supporting the latter

reason for the absence of WJs. Additionally, Schlaufman & Winn (2013) showed that some

evolved stars have a different population of planets than their unevolved progenitors of the

same mass, indicating that stellar evolution is a cause in at least some cases. Most recently,
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Johnson et al. (2014) showed that at least one evolved star in the disputed population has

a mass truly greater than 1.5 M", as they claimed in prior works. Taken together, these

results leave considerable ambiguity as to the explanation of missing WJs.

Here we have simulated planets undergoing KL oscillations as part of their migration

inward and examined how the population decays with stellar evolution. By using a model

population of WJs and their perturbing companions, we have shown that KL oscillating

WJs explain the observed absence around evolved stars better than a constant-eccentricity

population. A population of migrating, KL oscillating WJs is almost entirely removed around

an evolving star by the time it reaches 5R", while an observationally identical population

with constant eccentricity survives stellar expansion beyond 40R". Finally, although we have

adopted a stellar mass of 1.2M" in our simulations, it should be noted that the rapid removal

of WJs migrating via KL oscillations is applicable regardless of stellar mass. Therefore the

absence observed by Johnson et al. (2007) and related works need not indicate that WJs are

absent around more massive stars in general.

3.9 APPENDIX: Planetary migration during pseudo-synchronous

rotation

The orbital evolution of a planet due to tides is given by

da/dt

a
= −2

[

Wp +W∗ +
e2

1− e2
(Vp + V∗)

]

(3.21)

where the subscripts p and ∗ correspond to the planet and host star, respectively. V and W

are given in Eggleton & Kiseleva-Eggleton (2001):

V =
9

tF

[

1 + (15/4)e2 + (15/8)e4 + (5/64)e6

(1− e2)13/2
−

11Ω

18n

1 + (3/2)e2 + (1/8)e4

(1− e2)5

]

(3.22)

W =
1

tF

[

1 + (15/2)e2 + (45/8)e4 + (5/16)e6

(1− e2)13/2
−

Ω

n

1 + 3e2 + (3/8)e4

(1− e2)5

]

(3.23)
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where n is the mean motion of the orbit and Ω is the rotation rate of the body. A migrating

WJ will have already reached pseudo-synchronous rotation, which occurs when Wp = 0 (Hut,

1981). The rotation rate in that case is given by

Ωps

n
=

1 + (15/2)e2 + (45/8)e4 + (5/16)e6

(1 + 3e2 + (3/8)e4)(1− e2)3/2)
(3.24)

Plugging in Ωps, we get the strength of tides for a pseudo-synchronous planet:

Vp(Ωps) =
9

tFp

[

1792 + 5760e2 + 14336e4 + 5480e6 + 1020e8 + 25e10

4608(1− e2)15/2

]

(3.25)

Assuming planetary tides dominate during the main sequence (Vp >> V∗) and that the

planet is in PS rotation (Wp = 0), we can simplify the tidal decay equation:

da/dt

a
= −2

[

W∗ +
e2

1− e2
(Vp)

]

(3.26)

= −2

[

W∗ +
e2

1− e2
9

tFp

(

1792 + 5760e2 + 14336e4 + 5480e6 + 1020e8 + 25e10

4608(1− e2)15/2

)]

(3.27)

= −
2fe(e2)

tFp
(3.28)

where

fe(e
2) = tFpW∗ +

(

1792e2 + 5760e4 + 14336e6 + 5480e8 + 1020e10 + 25e12

512(1− e2)17/2

)

(3.29)

We have retained W∗ because it tends to t−1
F∗

as e → 0, assuming the star is rotating slowly,

while the remainder of the expression tends to 0. The limits for fe(e2) are therefore tFp/tF∗

near e = 0 and 3.5(1− e2)17/2 for e ∼ 1. From the definition of tF , Equation 3.15:

tFp

tF∗

=
tV p

tV ∗

(

Rp

R∗

)−8(Mp

M∗

)3(1 + 2kp
1 + 2k∗

)−2

(3.30)

In Section 3.3.3.1 we assume the following values for the planetary systems: tV p = 1 year,

tV ∗ = 50 years, M∗ = 1.2M", Mp = 0.1 − 10MJ , kp = 0.25, and k∗ = 0.014. Entering these
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values, we we get a ratio ranging from 10−6 − 1. For the subset in Sections 3.6 and 3.7,

0.3− 3MJ , the values range from 2.7× 10−5 − 2.6× 10−2. We assume tFp/tF∗ = 10−3 in all

cases for simplicity, and note that it is a small correction in all cases.

Plugging in for tFp using Equation 3.15, we get the expected value for tidal migration:

da

dt
= −18fe(e

2)
a

tV p

(

Rp

a

)8(M∗

Mp

)2 1

(1 + 2kp)2
(3.31)
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Kubas, D., Gould, A., Macintosh, B., Cook, K., Dong, S., Skuljan, L., Cassan, A., Abe, F.,

Botzler, C. S., Fukui, A., Furusawa, K., Hearnshaw, J. B., Itow, Y., Kamiya, K., Kilmartin,

P. M., Korpela, A., Lin, W., Ling, C. H., Masuda, K., Matsubara, Y., Miyake, N., Muraki,

Y., Nagaya, M., Nagayama, T., Ohnishi, K., Okumura, T., Perrott, Y. C., Rattenbury,

N., Saito, T., Sako, T., Sullivan, D. J., Sweatman, W. L., Tristram, P. J., Yock, P. C. M.,

MOA Collaboration, Beaulieu, J. P., Cole, A., Coutures, C., Duran, M. F., Greenhill,

J., Jablonski, F., Marboeuf, U., Martioli, E., Pedretti, E., Pejcha, O., Rojo, P., Albrow,

M. D., Brillant, S., Bode, M., Bramich, D. M., Burgdorf, M. J., Caldwell, J. A. R., Calitz,

H., Corrales, E., Dieters, S., Dominis Prester, D., Donatowicz, J., Hill, K., Hoffman, M.,

Horne, K., Jørgensen, U. G., Kains, N., Kane, S., Marquette, J. B., Martin, R., Meintjes,

P., Menzies, J., Pollard, K. R., Sahu, K. C., Snodgrass, C., Steele, I., Street, R., Tsapras,

Y., Wambsganss, J., Williams, A., Zub, M., PLANET Collaboration, Szymański, M. K.,
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