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The energy for driving turbulent flows in planetary fluid layers comes from a combination

of thermocompositional sources and the motion of the boundary in contact with the fluid

through mechanisms like precessional, tidal, and librational forcing. Characterizing the re-

sulting turbulent fluid motions are necessary for understanding many aspects of the planet’s

dynamics and evolution including the generation of magnetic fields in the electrically con-

ducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial

they are also strongly influenced by the Coriolis force whose source is in the rotation of

the body and tends to constrain the inertial effects and provide support for fluid instabili-

ties that might in-turn generate turbulence. Furthermore, the magnetic fields generated by

the electrically conducting fluids act back on the fluid through the Lorentz force that also

tends to constrain the flow. The goal of this dissertation is to investigate the characteristics

of turbulent flows under the influence of mechanical, convective, rotational and magnetic

forcing.

In order to investigate the response of the fluid to mechanical forcing, I have modified a

unique set of laboratory experiments that allows me to quantify the generation of turbulence

driven by the periodic oscillations of the fluid containing boundary through tides and libra-

tion. These laboratory experiments replicate the fundamental ingredients found in planetary

environments and are necessary for the excitation of instabilities that drive the turbulent

ii



fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of

isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for

tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate

while an independently rotating perturbance also flexes the elastic container. By varying the

strength and frequencies of these oscillations the characteristics of the resulting turbulence

are investigated using meridional views to identify the dominate modes and spatial location

of the turbulence. For the first time, measurements of the velocity in the equatorial plane

are coupled with high resolution numerical simulations of the full flow field in identical ge-

ometry to characterize the instability mechanism, energy deposited into the fluid layer, and

long-term evolution of the flow. The velocities determined through laboratory and numer-

ical simulations when extrapolated to planets allow me to argue that that the dynamics of

mechanical forcing in low viscosity fluids may an important role as new and potentially large

source of dissipation in planetary interiors.

To study convective forcing, I have modified and performed a set of rotating and non-

rotating hydrodynamic convection experiments using water as well as rotating and non-

rotating magnetohydrodynamic convection in gallium. These studies are performed in a

cylindrical geometry representing a model of high latitude planetary core style convection

wherein the axis of rotation and gravity are aligned. For the studies using water, the steady

columns that are characteristic of rotating convection and present in the dynamo models

are likely to destabilize at the more extreme planetary parameters giving way to transitions

to more complex styles of rotating turbulent flow. In the studies of liquid metal where the

viscosity is lower, the onset of rotating convection occurs through oscillatory columnar con-

vection well below the onset of steady columns. Such oscillatory modes are not represented

at the parameters used by current dynamo models. Furthermore a suite of laboratory exper-

iments shows that the imposition of rotational forces and magnetic forces both separately

and together generate zeroeth order flow transitions that change the fundamental convective

modes and heat transfer. Such regimes are more easily accessible to laboratory experiments

then to numerical simulations but demonstrate the need for a new generation of dynamo

simulations capable of including the fundamental properties of liquid metals as are relevant
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for understanding the dynamics of planetary interiors.
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CHAPTER 1

Introduction

1.1 Geophysical Context

Ground and space based measurements have improved and constrained our understanding

of many celestial bodies. These data allow us to infer, among various things, a body’s

interior structure, composition, and magnetic field. Through such observations, scientists

have confirmed that differentiated celestial bodies, bodies that have separated into distinct

solid and liquid layers, are ubiquitous. These include the liquid metal cores of our own

Earth, Mercury, Io, and Ganymede and the subsurface oceans found on Europa, Callisto,

and Enceladus [e.g., Margot et al. (2007); Anderson et al. (1996); Schubert et al. (2004);

Anderson et al. (1998, 2001); Cedak et al. (2016); Thomas et al. (2016)].

With the Earth as an example for which we know the most about its structure, the interior

is divided into a solid iron inner core, a liquid iron outer core, the mantle, and the outermost

layers containing the crust, oceans, and atmosphere. When considering the Earth’s dipolar

magnetic field, we search for its origins in the liquid metal outer core. Because the interior is

much hotter than the material’s Curie temperature, there cannot be permanent magnetiza-

tion [e.g., Stacy and Davis (2008)]. Furthermore, any ancient magnetic field originating from

the planet’s formation would have decayed on timescales much shorter then the evidence we

have for the duration of its existence, upwards of roughly 4 billion years [e.g., Tarduno et al.

(2015)]. The persistence of the dynamo as well as the presence of field variations, like polar

reversals on long timescales and secular variations on shorter time scales, suggest a field

of dynamic origins [e.g., Johnson et al. (2003); Finlay et al. (2012)]. It is widely believed

that the field is constantly being regenerated by the turbulent motions of the electrically

1



conducting liquid metal in the outer core. The process by which the kinetic energy of such

fluid motions is converted to electromagnetic energy is referred to as dynamo action.

(t)

Figure 1.1: The work carried out in this thesis is relevant for the study of the rotating
turbulence in the low viscosity oceans and atmosphere and in the liquid metal cores of the
Earth, Moon, and other planetary bodies subjected to thermocompositional and mechanical
forcing. Images modified from www.livescience.com/images, King and Aurnou (2015), and
www.space.com.

This dissertation will focus on the modeling of two ways that these turbulent fluid mo-

tions are driven as shown in Figure 1.1. The most common source, and the one generally

assumed for Earth, is from convective instability wherein the heat generated by planetary

formation, radioactive decay, and the growth of the inner core is released into the outer core

driving thermo-compositional convection [e.g., Jones (2011); Schubert and Soderlund (2011);
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O’Rourke and Stevenson (2016)]. Another important source of energy is from mechanical

forcing through precession and nutation, libration, tidal, and even impacts from small bodies

that lead to the oscillations of the boundary in contact with the liquid metal layers. The

role of mechanical forcing, while not generally considered in planetary fluid layers and not as

thoroughly studied as its convective counterpart, may have important consequences for the

thermal evolution, dissipation, and magnetic field generation in small bodies like the Moon

in Figure 1.1.

In order to address the role of mechanical forcing, I focus on tidal and librational forcing

whose schematics are shown in Figure 1.2.a and b. respectively. Many bodies are ellipsoidally

deformed either naturally or by gravitational forcing and rotate at an average angular ro-

tation rate, Ωspin. In Figure 1.2.a, a planet having low rigidity is deformed by an orbiting

attractor and generates tidal deformations that perturb the enclosed fluids. It is well known

that in Earth’s case, tidal forcing in the ocean is primarily responsible for dissipation [e.g.,

Egbert and Ray (2003)]. Despite its potential importance, tidal forcing processes are not

generally considered in the subsurface oceans and liquid metal cores on other bodies.

In addition to tidal forcing, many satellites also experience librational forcing as shown

in Figure 1.2.b. Librational forcing arises when a deformed body is in synchronous or nearly

synchronous orbit in that the orbital and spin rate are commensurate. The eccentricity of the

orbit leads to variations in the orbital rate following Kepler’s third law and creates a phase

lag between the equatorial bulge and the line connecting the centers of mass for the two

bodies as shown by the dashed and solid red arrows in Figure 1.2.b, respectively. Periodic

torques, shown as black arrows, are induced to restore this alignment, leading to oscillations

in the rotation rate, Ωspin(t), of the deformed boundary about the average spin rate Ωspin.

Both types of mechanical forcing have been shown to give rise to complex flows [e.g., Le

Bars et al. (2007, 2010); Cébron et al. (2012b); Noir et al. (2012)]. A primary objective of

this dissertation is to provide the first quantitative laboratory experimental analysis of the

onset of turbulence via tidal and librational forcing and effects of such flows on planetary

dynamics like dissipation and magnetic field generation.

The relationship between the turbulent flows generated by these forcing mechanisms and
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Figure 1.2: a) A polar-view of the model for a tidally deformed elastic body of amplitude
β with a fluid interior spinning at Ωspin. A virtual attractor orbits at Ωorbit. The deformed
body’s r.m.s radius is RB, the fluid radius is R, and the average distance between the two
bodies is D. b) A polar-view of the model for longitudinal libration of a rigid synchronous
planet with a fluid interior rotating at Ωspin(t), and orbiting at Ωorbit(t) where, when time-
averaged, Ωspin = Ωorbit. The solid red arrow denotes the direction toward the gravitational
partner. The dashed red arrow denotes the direction of the long axis of the deformed ellipsoid.
The misalignment between the two red arrows leads to restoring torques (black arrow) that
oscillate the deformed boundary. Schematics adapted from Le Bars et al. (2010); Noir et al.
(2012) and repeated from Grannan et al. (2017) and shown in Figure 5.1.

the resulting magnetic fields produced is complex and remains an important open question in

studying geophysics and astrophysics. One of the reasons for this is the material properties
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associated with the fluids participating in the magnetic field generation. For galaxies and

stars, the electrically conducting fluid is plasma while for terrestrial planets and asteroids

the working fluid is typically a liquid metal. The inverse thermal conductivity of the fluid is

characterized non-dimensionally by the Prandtl number,

Pr =
Viscous Diffusivity

Thermal Diffusivity
=
ν

κ
(1.1)

where ν is the viscous diffusivity and κ = k/ρCp is the thermal diffusivity with k being the

thermal conductivity, ρ being the density, and Cp being the specific heat of the fluid. For

typical liquid metals and plasmas where the thermal conductivity is high and the viscosity

is low, the Prandtl number typically ranges between 10−2 to 10−7. Similarly, the strength of

the electrical conductivity is described non-dimensionally by the magnetic Prandtl number,

Pm =
Viscous Diffusivity

Magnetic Diffusivity
=
ν

η
(1.2)

where η = 1/µoσ is the magnetic diffusivity with µo being the permeability of free space and

σ being the electrical conductivity. The magnetic Prandtl number ranges from 10−5 to 10−9

indicating high magnetic diffusivity relative to the viscous diffusivity. The scaling of these

diffusivities suggests that, for these fluids that are highly magnetically diffusive and highly

thermally diffusive, the length and time scales for the magnetic field are larger than those

of the thermal scales, which are larger than the viscous scales associated with the flow field.

To characterize the dynamic vigor of the underlying flow, we first look at the ratio of the

inertial forces to the viscous forces that dampen the flow. This ratio is encapsulated by the

Reynolds number,

Re =
Inertia

Viscous
=
UL

ν
, (1.3)

where U is a typical flow velocity. L is the typical lengthscale of the fluid layer, and ν

the viscous diffusivity of the fluid. For typical flows, Re & 1000 is called turbulent where

the advection dominates the effects of viscosity. Taking values for Earth’s outer core, the

kinematic viscosity for liquid metals is ν ∼ 10−7 m/s2, the length scale is L ∼ 106 m, and
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the velocity is taken as U ∼ 10−4m/s from observations of secular variation of the magnetic

field. These values give Re ∼ 109 indicating strongly turbulent fluid motions [e.g., Bloxham

and Jackson (1991)].

Another aspect needed to characterize flow in planetary layers is to account for the

importance of rotation. Rotation manifests its influence in the form of the Coriolis force

which acts to constrain the flow and align it with the axis of rotation. The ratio of the

viscous force to the Coriolis force is defined as the Ekman number,

E =
Viscous

Coriolis
=

ν

2ΩL2
. (1.4)

The rotation rate Ω is, for Earth, Ω = 7 × 10−5 rad/s. The Ekman number is taken to be

E � 1 in many geophysical flows, indicating that viscous forces are negligible compared to

rotational forces. The ratio of inertial forces to the Coriolis forces is encapsulated by the

Rossby number, Ro,

Ro =
Inertia

Coriolis
=
U

L

1

Ω
= 2ReE (1.5)

In planetary settings Ro� 1 indicating that rotational forces also dominate inertial forces.

For the electrically conducting liquid metal fluid in planetary interiors where the magnetic

field is generated, that magnetic field also acts back on the flow. The ratio of the Lorentz

force to viscous force is defined by the Chandrasehkar number,

Q =
Lorentz

Viscous
=
σB2

oL
2

ρν
, (1.6)

where Bo is the characteristic magnetic field strength, σ is the electrical conductivity of the

fluid, and ρ is the fluid density. Similar to the Rossby number in (1.5), a magnetic Rossby

number is defined as:

RoM =
Inertia

Lorentz
=
U

L

ρ

σB2
o

= ReQ−1 (1.7)

In planetary settings RoM � 1. In other texts, the magnetic Rossby number is also related to

the interaction number, N = 1/RoM. A summary of these parameters with their definitions

and values for the Earth are given in Table 1.1.
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1.2 Open Questions

Thus, taking all the parameters together, it is expected that in the low viscosity fluids of the

Earth and many planets, rotational forces are much stronger than both viscous (E � 1) and

inertial forces (Ro � 1). In the Earth’s core, it is also expected that Lorentz forces, which

also tend to constrain the flow, are much stronger than both viscous (Q � 1) and inertial

forces (RoM � 1). Despite such constraints, the inertial force greatly exceed the viscous force

rendering the fluid turbulent (Re � 1). Thus, for convectively- and mechanically-driven

flows, under the constraints just described, the important open questions are as follows:

• What is the nature of the turbulent flow constrained by strong and rota-

tion and magnetic fields? What are the characteristic frequencies and flow

structures?

• How do such flows evolve through time and how do they change as the

strength of mechanical forcing, convective forcing, rotational forcing, and

Lorentz forces ar varied?

• How can the findings from laboratory experiments and numerical simula-

tions be extended to planetary settings?

In this dissertation I will provide insights into these fundamental questions using a combi-

nation of laboratory experiments that I have performed coupled with numerical simulations.

1.3 Simulating Planetary Core Flows

1.3.1 Governing Equations

The equations that govern the complex flows present in planetary fluid layers are also quite

complex. For processes investigated in this thesis, the fluid is taken to be homogeneous and

incompressible with a Newtonian viscosity and spatially uniform diffusivities. Furthermore,

in implementing convective forcing, the Boussinesq approximation is used such that the
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Parameter Symbol Meaning Definition Earth’s core

Prandtl number Pr Viscous Diffusion
Thermal Diffusion

ν
κ

∼ 10−1

Magnetic Prandtl number Pm Viscous Diffusion
Magnetic Diffusion

ν
η

∼ 10−6

Reynolds number Re Inertia
Viscous

UL
ν

∼ 109

Magnetic Reynolds number Rm Magnetic Induction
Magnetic Diffusion

UL
η

= RePm ∼ 103

Ekman number E Viscous
Coriolis

ν
2ΩL2 ∼ 10−15

Rossby number Ro Inertia
Coriolis

U
ΩL

= 2ReE ∼ 10−6

Chandrasekhar number Q Lorentz
Viscous

σB2
oL

2

ρν
∼ 1015

Magnetic Rossby number Rom
Inertia
Lorentz

Uρ
LσB2

o
= ReQ−1 ∼ 10−6

Elsasser number Λ Lorentz
Coriolis

σB2
o

2ρΩ
= QE = Ro

2Rom
∼ 1

Flux Rayleigh number RaF
Buoyancy
Diffusion

αT gL
4qSA

kνκ
∼ 1027 − 1032

Nusselt number Nu Total Heat Transfer
Conduction

qSAL
k∆TSA

∼ 102 − 107

Rayleigh number Ra Buoyancy
Diffusion

αT g∆TSAL
3

νκ
= RaF

Nu
∼ 1020 − 1030

Table 1.1: Non-dimensional parameters that describe the properties of liquid metals in geo-
physical settings. The dimensional values used are the viscous diffusivity, ν [m2/s], thermal
diffusivity, κ [m2/s], magnetic diffusivity, η[m2/s], the characteristic velocity scale, U [m/s],
length scale of the system L [m], the average rotation rate of the fluid Ω [rad/s], the electri-
cal conductivity, σ [S/m] or σ [kg−1m−3s3A2] in standard SI units, mean density, ρ [kg/m3],
average background magnetic field, Bo [T], thermal expansivity, αT [K−1], gravitational ac-
celeration, g [m/s2], the superadiabatic heat flux, qSA [W/m2], the thermal conductivity
k [Wm−1K−1], and the superadatiabatic temperature contrast, ∆TSA [K].

density variations are only relevant in the gravitational and hence the buoyancy term. The

set of equations are:

∂u

∂t
+ u · ∇u + 2Ω× u = −1

ρ
∇P + αTTg +

1

ρ
J×B + ν∇2u− ∂Ω

∂t
× x (1.8)

∇ · u = 0 (1.9)

∂T

∂t
+ u · ∇T = κ∇2T (1.10)

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B (1.11)
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∇ ·B = 0 (1.12)

This coupled system of equations consist of the Navier-Stokes equation governing the evo-

lution of momentum in the rotating reference frame of a fluid, the continuity equation, the

temperature or energy equation, the induction equation that governs the evolution of the

magnetic field, and finally the divergence free condition of the magnetic field. The variables

in this system of equations are the velocity, u, the rotation rate, Ω, the density, ρ, the mod-

ified pressure, P = p+ φ+ Ω2s2/2, containing the centrifugal acceleration and gravitational

potential from the mean (hydrostatic) gravity term, the thermal expansivity, αT , tempera-

ture anomaly, T , the gravitational acceleration g, the magnetic field, B, the electric current

density, J = 1/µo∇×B, the kinematic viscosity, ν, the displacement vector, x, the thermal

diffusivity, κ, and the magnetic diffusivity, η.

The terms in (1.8) are the time rate of change of momentum, the advection term, Coriolis

acceleration, the modified pressure gradient, thermal bouyancy, Lorentz term, viscous diffu-

sion, and the change in rotation rate. In the thermal equation (1.10), the terms from left to

right are the time rate of change of thermal anomaly, advection, and the thermal diffusion.

For the induction equation given by (1.11), the terms from left to right are the time rate of

change of the magnetic field, advection, induction, and the magnetic diffusion term.

1.3.2 The effects of strong rotation

To examine the effects of strong rotation, the rotation is assumed to be constant and the

convective and Lorentz forces are not considered. In the limit that rotational forces dominate

both inertia and viscous forces such that Ro� 1 and E � 1, the primary balance is between

the Coriolis force and the pressure gradient terms such that,

2Ωẑ× u ∼ −1

ρ
∇P, (1.13)

where the axis of rotation is assume to be aligned with the ẑ axis. This balance is defined

as geostrophy. By taking the curl of (1.13), using vector identities, and implementing the
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incompressibility velocity condition, the resulting balance yields,

− 2Ωẑ · ∇u ∼ −∇×∇P = 0⇒ ∂u

∂z
= 0. (1.14)

This condition, where the velocity does not vary along the axial direction, is referred to as

the Taylor-Proudman theorem.

We consider small departures from geostrophic balance by including the effects of time

dependence on small velocity perturbations. By once again taking the curl of (1.13) with the

time derivative term and using the same vector identities as used to arrive at (1.14) gives:

∂

∂t
∇× u = 2Ωẑ · ∇u. (1.15)

By again taking the curl of (1.15) as well as a time derivative and by using the incompress-

ibility condition on the velocity, ∇ · u = 0, the term on the left side can be written as

∇× (∇× u) = −∇2u. A Poincaré equation for inertial waves is then given by,

∂2

∂t2
∇2u = −4Ω

∂2

∂z2
u. (1.16)

The properties for inertial waves can be determined by assuming plane wave solutions of the

form u = ũei(k·r+ωt). The dispersion relation for these inertial waves is found by plugging

this solution into (1.16) and is given from Tilgner (2007) as:

ω = ±2Ω(ẑ · k̂) = ±2Ω cos θ, (1.17)

where θ is the angle between the wave vector k and the axis of rotation, ẑ and the magnitude

of the frequency of the inertial wave varies between 0 and two times the rotation rate.

Furthermore, plugging the wave solution into the incompressibility condition on the velocity

reveals u ·k=0 indicating that motion of the fluid is transverse to the wave direction. Figure

1.3.a shows inertial waves excited in a rotating fluid by an oscillating sphere. The solid and

dashed lines designate the waves and crests inside a wavepacket with thick solid lines.

10



Λ8,1,7 (ω = 1.96)

-1 -0.5 0 0.5 1
r

-1

-0.5

0

0.5

1

z

Cg

Cph

a. Inertial wave b. Inertial mode

⇤8,1,7 (!/⌦ = 1.96)

Figure 1.3: (a) Schematic of inertial wave packet enclosed by thick lines in an infinite
rotating fluid layer generated by an oscillating sphere. The solid and dashed lines correspond
to the trough and crest of the wave (b) Inertial mode in a finite equatorially symmetric
container with frequency ω ∼ 2Ω such that the wavevector k and phase velocity Cph are
parallel to the rotation axis. Modified from images in Messio et al. (2008) and Favier et al.
(2015).

The phase velocity that describes the motion of the crests and troughs of the wave is

given from Messio et al. (2008) as,

Cph =
ω

|k| k̂ = ±2Ω

|k| cos θk̂. (1.18)

Because the phase speed of the inertial waves depends on both the direction and magnitude

of the wave vector, inertial waves are said to be both dispersive and anisotropic. The direction

of energy transport by the waves is described by the group velocity such that:

Cg = ∇kω = ±2Ω

|k| k̂× (k̂× ẑ) = ±2Ω

|k|
[
cos θk̂− ẑ

]
, (1.19)

where ∇k is the gradient in wavenumber space and the vector triple product identity given

by a×(b×c) = (a·c)b−(a·b)c has been used. In the limit that the frequency of the inertial

waves is very slow, ω � 2Ω, the angle θ → π/2 meaning the direction of the group velocity

tends toward the axis of rotation. Thus, the principle of the Taylor-Proudman theorem has

been recovered in that the slow motions of fluid in a rapidly rotating system move along the

axis of rotation. Another interesting property of inertial waves is that it can be shown that
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the phase velocity and group velocity are perpendicular,

Cph ·Cg = 0, (1.20)

meaning that the energy is focused and is not spread out in the direction of the wave packets

motion.

When rotating fluids are confined to finite volumes, the inertial waves reflected at the

boundaries preserve the angle, θ, between the wave vector and the rotational axis. The

waves and their reflections can interfere constructively leading to inertial modes. Analytical

solutions of inertial modes exist for the cylinder, cylindrical shell, spheroid, and a polynomial

description also exists for the ellipsoids considered in the majority of the mechanical forcing

experiments in this dissertation [e.g., Kerswell (1993); Herreman (2009); Zhang et al. (2004);

Vantieghem (2014). Such analytical descriptions cannot be extended to the more geophys-

ically relevant geometry of spherical shells due to the ill-posed nature of the well-known

Poincaré equation for inertial modes with non-penetrating boundary conditions. Numerical

studies, in this geometry, have shown that solutions converge to attractors [e.g., Rieutord

and Valdettaro (1997); Rieutord et al. (2001)].

1.3.3 Elliptical Instability in Mechanically-Forced Flows.

To understand how mechanical forcing can drive turbulent fluid motions through a fluid

instability, I will focus on librational forcing. This theoretical framework is also applicable

to tidal forcing as shown in Chapter 5. In librational forcing, we consider a homogenous

isothermal fluid enclosed inside an ellipsoid whose equatorial ellipticity is described by β =

(a2 − b2)/(a2 + b2) where a is the long equatorial axis, b is the short equatorial axis. The

rotation of the container is implemented by applying a constant rotation with a sinusoidal

oscillation such that the rate is:

Ω(t) = Ω0(1 + ε sin (ωlibt)) ẑ (1.21)
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Here, ε = ∆φf is the non-dimensional measure of the differential rotation of the ellipsoidal

distortion with respect to the background rotation where ∆φ [rad] is the angular amplitude of

libration and f = ωlib/Ω0 is the ratio of the libration frequency ωlib to the rotation rate of the

background container, Ω0. The momentum equation is then rewritten as a modified version

of (1.8) written in the frame fixed to the ellipsoidal container and without the presence of

thermal or magnetic forcing,

∂u

∂t
+ u · ∇u + 2(1 + ε sin(ft))ẑ× u = −∇P + E∇2u− εf cos(ωlibt)(ẑ× x̂). (1.22)

This equation has been non-dimenisionalized using the long axis a for the length scale and

Ω−1
0 as the time scale. In this formulation, the Ekman number is defined as E = ν/(Ω0a

2).

A solution of the inviscid form of (1.22) that satisfies the no penetration condition for the

fluid at the boundary is the libration-driven base flow given by Kerswell and Malkus (1998);

Cébron et al. (2012b) as:

UB = −ε sin(ft) [ẑ× x− β∇(xy)] , (1.23)

whose streamlines are ellipsoidal (having an azimuthal wavenumber, mlib = 2) reflecting

the equatorial ellipticity of the container. While this base flow oscillates back and forth,

satisfaction of the no-slip boundary condition for the velocity at the boundary leads to

steady zonal flows in the bulk which have been studied in detail by Wang (1970); Suess

(1971); Busse (2010); Calkins et al. (2010); Noir et al. (2010); Sauret et al. (2010); Chan

et al. (2011); Zhang et al. (2011)]. Of particular interest is the condition when small flow

perturbations, u′, may grow through an instability that may lead to turbulence. The first

order equation governing the evolution of the perturbation is given by,

∂u′

∂t
+ UB · ∇u′ + u′ · ∇UB + 2ẑ× u′ = −∇P ′ + E∇2u′. (1.24)

A complete theoretical description of the onset of elliptical instability based on a normal-

mode analysis is given in Section 3.2.4. For other problems like pipe flow, the onset of
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instability is better explained by non-normal mode growth rates that are larger than those of

normal mode growth and better explain experimental observations of the onset of turbulence

[Schmid (2007); Schmid and Henningson (2012)]. The techniques of non-normal mode growth

have not, to date, been applied to flows addressed in this work but may provide unique

insight into aspects of the transition to turbulence. In the current work, we thus omit

any non-normal mode analysis and focus on normal mode techniques that have successfully

predicted the observed growth rates and flow magnitudes generated by elliptical instability

[e.g., Le Bars et al. (2010); Cébron et al. (2012b); Noir et al. (2012)].

In brief, the librational forcing initiates the ellipsoidal base flow as well as noise (a sum

of all inertial modes). Assuming the perturbations can be written as a series of inertial

modes, an elliptical instability is possible if there exist two inertial modes that are related

to the base flow by the following instability conditions for the frequency and the azimuthal

wavenumber:

|ω1 − ω2| = ωlib, (1.25)

and for the azimuthal wavenumbers,

|m1 −m2| = mlib = 2. (1.26)

Thus, the difference in the frequencies of the inertial modes must be equal to the frequency

of the applied librational forcing and the difference of the azimuthal wavenumbers of the

inertial modes must equal the azimuthal wavenumber of the base flow mlib = 2. Crucially,

this instability acts as a conveyor that transmits a portion of the large reservoir of rotational

energy into the fluid layer.

The growth rate, σ is given from Cébron et al. (2012b); Grannan et al. (2014); Favier

et al. (2015); Grannan et al. (2017) as:

σ ∼ εβ −K
√
E, (1.27)
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where the first term, εβ, is a non-dimensional measure of the strength of the ellipsoidal

base flow and hence the strength of the librational forcing on the fluid. The second term,

K
√
E, represents the retarding effects of viscous dissipation that tends to stabilize fluid

motions and K is a dissipation factor with typical values K ∈ [1− 10]. The criteria for the

growth of the instability such that σ > 0 thus requires that εβ/
√
E > K.

The characteristics of tidal and librational forcing in bodies around the solar system are

compiled in Table 1.2. A first order estimate of the non-dimensional ellipsoidal distortion

of an incompressible, homogeneous, and non-spinning body that omits the heterogeneously

distributed densities and material rigidity for simplicity is given from Cébron et al. (2012a)

as:

β =
3

2

M2

M

R3
p

D3
, (1.28)

where M and Rp are the mass and radius of the distorted body. The mass of the body

responsible for the gravity field and the distance between it and the distorted body are M2

and D, respectively. The final column in Table 1.2 provides an estimate for the stability

of planetary fluid layers to mechanical forcing. Using these estimates, tidal forcing in the

Earth’s liquid metal core may be capable of generating intense flows while librational forcing

in the liquid metal core of Io and the subsurface oceans of Enceladus and Europa may also

generate turbulence.

1.3.4 The effects of strong magnetic fields

Under the influence of a strong magnetic field, a similar phenomenon to the aforementioned

Taylor-Proudman theorem occurs in that the velocity can act to constrain the flow to hor-

izontal directions perpendicular to that of the applied magnetic field. This setting may be

relevant for understanding the sun where the effects of rotation are negligible in compari-

son to those of a strong magnetic field. For a steady, uniform and vertical magnetic field,

B = Boẑ, the induction equation in (1.11) can be written as:

B · ∇u = Bo
∂u

∂z
= 0⇒ ∂u

∂z
= 0, (1.29)
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where the time and spatial derivatives of the magnetic field are zero and magnetic diffusion is

neglected. The result that the flow field is invariant of the direction of the applied magnetic

field is again analogous to that of the Taylor-Proudman theorem for strong rotation.

1.3.5 Magnetostrophic flows

While the effects of rotational and magnetic forces applied separately to the fluid tend to

constrain the fluid and suppress convection, when the two are applied simultaneously the

constraint is relaxed and the critical value at which the convection sets in is also decreased

[e.g., Chandrasekhar (1961)]. Such a state is referred to as magnetostrophy (Λ ∼ 1) and

is thought to be the state where planetary dynamos might naturally settle [e.g., Stevenson

(2003)]. This regime has been explored in laboratory experiments where maxima in the

dimensionless heat transfer were found around Λ ∼ 2 [e.g., King and Aurnou (2015)].

1.3.6 Heat Transfer

The primary method for investigating the convective flows in this thesis focuses on changes

in heat transfer efficiency (Nu) and modes of convective flow as a function of the buoyancy,

rotational, and magnetic strength (Ra, E, Q,) using thermal measurements. The Nusselt

number is defined as

Nu =
Total Heat Transfer

Conductive Hear Transfer
=

qL

k∆T
(1.30)

where q is the total (superadiabatic) heat flux, L is the height of the container, k is the

thermal conductivity of the fluid and ∆T is the temperature difference between the top and

bottom thermal horizontal fluid boundaries. Because q is the sum of the convective and

conductive heat fluxes, the lowest value for the Nusselt number is Nu = 1 corresponding to

the purely conductive state. Unlike for planets, the adiabatic thermal gradient in experiments

is negligible [e.g., dT/dz = αTTg/Cp ∼ 10−3 [K/m] using the properties of the liquid metal

gallium]. And, as the convective vigor increases, Nu increases.

The heat transfer behaviour changes under the influence of strong rotation and strong

magnetic fields. The difference between inertially dominated flow and constrained convection
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a. Rotating convection in water
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Figure 1.4: The transition in heat transfer from (a) rotationally constrained to inertially-
dominated convection with water as the fluid working fluid Pr ∼ 6 and (b) The transition
from magnetically-constrained convection to inertially-dominated convection in Pr = 0.025
liquid metals. Image in (a) modified from Cheng et al. (2015) and the data used in (b) is
from Ribeiro et al. (2015); Cioni et al. (1997, 2000)
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is shown in Figure 1.4. The upper bounding regime on the heat transfer corresponds to

Rayleigh-Bénard convection (RBC) where-in the flow is dominated by inertial forces and

has been studied in detail.

To begin, the heat transfer efficiency is greatly affected by the boundary layers. For

an idealized quasi-static boundary layer in which the heat transfer is purely conductive, the

total heat transfer must pass through the boundary layers such that qTotal = k∆T/2λκ where

λκ is the thickness of the thermal boundary layer. The conductive heat transfer across the

fluid layer is qcond = k∆T/L, therefore

Nu ≡ qTotal

qcond

=
L

2λκ
(1.31)

In the majority of studies, the heat transfer efficiency is found to scale with the strength

of buoyancy such that Nu ∼ Raα. A classical prediction for the heat transfer in Pr ∼ 1

is found where the interior is assumed to be well-mixed and the boundary layers do not

communicate with one another. The heat transfer efficiency is assumed to be independent

of the total fluid height such that

Nu ∼ Raα ⇒ L ∼ (L3)α, (1.32)

and hence it is necessary that α = 1/3 [e.g., Malkus (1954)]. This 1/3 scaling has been found

in several studies [e.g., Ahlers et al. (2009); Cheng et al. (2015)].

Another classical scaling law has been put forth for liquid metals where strong forcing

and low Prandtl numbers tend to generate strongly inertial flows. Such a scaling may be

derived by balancing the inertia terms with the buoyancy terms in the momentum equation

such that
U2

L
∼ αTg∆T (1.33)

The solution of (1.33) for the velocity gives U =
√
αTg∆TL. This velocity is referred to

as the free-fall velocity. From the thermal equation in (1.10), the scaling balance between

thermal advection in the bulk and diffusion that dominates the thermal boundary layer is
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given by
U∆T

L
∼ κ

∆T

λ2
κ

(1.34)

This balance can be rewritten using the definition of the Nusselt number in (1.31) and the

free-fall velocity from (1.33)

Nu ≡ L

2λκ
=

1

2
(RaPr)1/4 (1.35)

This α = 1/4 scaling has been found in RBC studies using the liquid metals mercury and

gallium as the working fluid [e.g., Rossby (1969); King and Aurnou (2013)]. Other studies

have found a scaling that lies between α = 1/4 = 0.25 and α = 1/3 = 0.33 notably

α = 2/7 = 0.29 [e.g., Castaing et al. (1989); Glazier et al. (1999); Ahlers and Xu (2001)].

Such a scaling can be derived assuming that a large scale circulation persists that allows for

communication between the boundary layers. By including a shear velocity in a theory of

the flow in the thermal boundary, a scaling law of α = 2/7 is derived [e.g., Shraiman and

Siggia (1990)].

As was discussed previously, the inclusion of strong rotation or strong magnetic fields

tends to suppress convective fluid motions. The convective forcing described by Ra must be

sufficiently strong to overcome the suppressing effects described by critical Rayleigh num-

bers, RaEc , that increase in proportion to the rotation rate RaEc ∼ Ω. The onset of steady

rotating convection for moderate Pr fluids in infinite plane layer analyses is determined from

Chandrasekhar (1961) as:

RaE,∞c,S = 8.7E−4/3. (1.36)

Figure 1.4.a shows with different colors how the heat transfer varies for different values of

the Ekman number. As the Ekman number decreases, the critical Rayleigh number in (1.36)

increases and, thus, the onset of convection requires that Ra > RaE,∞c,O which shifts the heat

transfer scaling to the right. In low Prandtl number fluids like liquid metal where Pr < 0.68,

the onset of convection occurs in the form of oscillatory columns and in a plane layer analysis
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the critical value is given by Chandrasekhar (1961) as:

RaE,∞c,O = 17.4

(
E

Pr

)−4/3

. (1.37)

While the heat transfer is well defined for RBC, the scaling for the heat transfer in the

presence of strong rotation or strong magnetic fields is still being debated and is the topic

of current research. One such scaling is derived from King et al. (2012) who modified the

boundary layer stability arguments from Malkus (1954). They assumed that the thermal

boundary layer of height, λκ, is marginally unstable such that Raλκ ∼ E
−4/3
λκ

and thus:

αg∆Tλκλ
3
κ

νκ
∼
(

ν

2Ωλ2
κ

)−4/3

⇒ Ra

(
λκ
L

)3

∼ E−4/3

(
λκ
L

)8/3

, (1.38)

where Ra and E are the Rayleigh and Ekman numbers for the whole fluid layer and the total

temperature drop is related to the temperature drop in the boundary layer by ∆T = 2∆Tλκ .

Using the definition for the Nusselt number from (1.31) then a scaling for the rotationally

constrained regime is given by

Nu ∼
(

Ra

E−4/3

)3

. (1.39)

This scaling helps to characterize the steep branch of heat transfer where rotation constrains

the flow. However, the asymptotic scaling for the has not been determined.

Several characterizations have been proposed for the transition from this steep branch to

the shallower RBC branch. The first is through a convective Rossby number defined as

Roc =
Buoyancy

Coriolis
=
Uff
ΩL

=

√
RaE2

Pr
= RecE, (1.40)

where Uff is the free fall velocity and Rec =
√
Ra/Pr is the convective Reynolds number.

It is generally assumed that for Roc < 1 rotation dominates the flow. While this transition

might be of interest for low Pr fluids, another transition is determined by assuming the

Ekman boundary layer is nested within the thermal boundary layer such that λκ = λE =
√
EL. Inserting this assumption into the Nusselt number of (1.31) and then the steep scaling
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in (1.39), a transition Rayleigh number can be determined such that

RaET ∼ E−3/2. (1.41)

This transition has been confirmed in the large Pr studies of King et al. (2012) and Cheng

et al. (2015).

The presence of strong magnetic fields also tends to suppress convection. Thus the critical

Rayleigh number is proportional to the magnetic field such that RaQc ∼ B2
o . The onset of

convection in the presence of strong magnetic fields is given by Chandrasekhar (1961) as:

RaQ,∞c = π2Q. (1.42)

Similar to the studies of rotating convection, magnetically-constrained convection as shown

in Figure 1.4.b also exhibits two distinct scalings. The colors indicate the different values

of Q. The data sets at larger values of Q require larger values of Ra > RaQ,∞c and thus

are shifted to the right. Following the marginal boundary layer arguments used to arrive at

(1.39), the critical Rayleigh number in the boundary layer Raλκ ∼ Qλκ and thus:

αg∆Tλκλ
3
κ

νκ
∼
(
σB2

oλ
2
κ

ρν

)
⇒ Ra

(
λκ
L

)3

∼ Q

(
λκ
L

)2

, (1.43)

and finally

Nu ∼ Ra

Q
. (1.44)

Although this scaling was found in Cioni et al. (2000), the robustness of this scaling remains

to be determined [c.f., Aurnou and Olson (2001)]. Transition arguments can be derived in

the same way as done using rotational arguments. A convective magnetic Rossby number

is given by Rom,c =
√
Ra/(PrQ2) = RecQ

−1 and a transition Rayleigh number is given by

RaQT ∼ Q3/2. To date, none of these transition arguments have been robustly verified.
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1.3.7 Characteristic flow length scales in planetary interiors

The three dimensional turbulence, as is relevant for the generation of planetary magnetic

fields, requires that the Taylor-Proudman theorem be broken. Such dynamics are then con-

sidered quasigeostrophic and the Taylor-Proudman theorem becomes the Taylor constraint

that becomes the leading order balance in strongly rotating geophysical fluid dynamics and

leads to coherent flow structures that are axially invariant.

While the extension of these structures along the axial length of the fluid layer is deter-

mined by the Taylor-Proudman constraint at zeroth order, the width of the flow structures is

determined by the first order balance that now includes the effects of viscous forces, ν∇2u.

With the inclusion of the viscous force in (1.13) and after taking the curl, the resulting

balance then becomes:

2Ω
∂u

∂z
∼ ν∇2 (∇× u) . (1.45)

Note that ∇×u = ω is the vorticity. The perpendicular component of the axial direction in

(1.45), ∂/∂z ∼ 1/L and `h is the typical horizontal length scale such that∇ ∼ 1/`h. Plugging

in these scalings and focusing on the horizontal component of the velocity, u⊥ ∼ U⊥ returns

2Ω
∂u⊥
∂z
∼ ν∇2 (∇× u)⊥ →

U⊥
L
∼ ν

2Ω

U⊥
`3
h

. (1.46)

Thus the aspect ratio for these structures can be written as:

`h/L ∼ E1/3. (1.47)

This scaling is shown to hold in models of quasigeostrophic convection and dynamo simula-

tions where the viscous forces are still playing an influential role in the first order dynamics.

In the core, the aspect ratio for convective core structures where E ∼ 10−15 is `h/L ∼ 10−5.

Such thin structures that extend across the axial direction of the fluid layer are likely fragile

and easily destroyed in this turbulent environment.

In mechanical forcing, the size of the typical flow structures of the perturbations can
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b. Convective Forcing 

a. Mechanical Forcing 

time

Figure 1.5: The development of system sized flow structures out of small-scale forcing in
rotating turbulence. (a) Three snapshots of the vertical vorticity in a local simulations of
tidal forcing in a Cartesian geometry. Image modified from Barker and Lithwick (2013). (b)
Three snapshots of the vertically averaged vertical vorticity in local simulations of rotating
convection. Image modified from Rubio et al. (2014).

be determined by equating the dimensional advection term from (1.24) in the bulk where

the base flow can drive the growth of the perturbation with diffusion term. In the frame

rotating with the fixed background rotation, Ω, the base flow may be scaled as UB ∼ βΩL

[e.g., Barker and Lithwick (2013) and Chapter 5]. The characteristic structure size is then,

UBu
′

L
∼ ν

u′

`2
⇒ `/L ∼ (E/β)1/2 , (1.48)

where, for simplicity, E = ν/(ΩL2). In planetary interiors, the characteristic flow structures

in mechanical forcing scale as `/L ∼ 10−6 for typical bodies with E ∼ 10−15 and β ∼ 10−3

and are also quite thin.

Figure 1.5 shows the presence of such thin structures at early times generated via (a)

mechanical forcing and (b) convective forcing. In these recent local studies performed in

Cartesian geometries where more extreme Ekman numbers can be reached, turbulent cas-
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cades transport energy from the small scales to large scale vortices (LSV) that may be crucial

for energy dissipation and the generation of the large scale magnetic fields present on many

bodies. Note that the existence of the LSV in Figure 1.5.a from Barker and Lithwick (2013)

tends to inhibit the elliptical instability. As such the LSV break down and the process for

the generation of the LSV persists in the form of cycles.

1.4 Summary of Chapters

In Chapter 2, a standard operating procedure, SOP, has been written for completeness

as well as for the edification of current and future lab members. This SOP describes the

major components of the librating experiment, how they are connected electrically, and the

steps necessary for performing fundamental operations like assembly, and the application of

rotation with superimposed sinusoidal oscillations.

By using the libration apparatus described in Chapter 2, the laboratory experimental

results presented in Chapter 3 demonstrate that the librational forcing of an ellipsoidal

water-filled container can produce intense motions through the mechanism of a libration

driven elliptical instability (LDEI). These libration studies are conducted using an ellipsoidal

acrylic container filled with water. I designed a support system for lasers in the librating

frame and implemented a non-intrusive particle image velocimetry measurement technique

that was used to measure flow in the equatorial frame in the fully assembled ellipsoid. In

doing so, I measured the 2D velocity field in the equatorial plane over hundreds libration

cycles for a fixed rotation rate. In doing so, I recover the libration induced base flow and

a time averaged zonal flow. Further, we show that LDEI in non-axisymmetric container

geometries is capable of driving both intermittent and saturated turbulent motions in the

bulk fluid. Additionally, we measure the growth rate and amplitude of the LDEI induced

excited flow in a fully ellipsoidal container at more extreme parameters than previously

studied. Excitation of bulk filling turbulence by librational forcing provides a mechanism for

transferring rotational energy into turbulent fluid motion and thus can play an important

role in the thermal evolution, interior dynamics, and magneto-hydrodynamics of librating
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bodies, as appear to be common in solar system settings.

Chapter 4 was a numerical study motivated by my laboratory experiments of libration

in ellipsoidal containers. In this study, I present the results from a combination of direct

numerical simulations and laboratory experiments, modeling this geophysically relevant me-

chanical forcing. To do so, I performed additional laboratory experiments and accompanying

analysis using the methods described in Chapter 3 and created a benchmark experimental

case that was compared with the numerical simulations. In doing so, we investigate the fluid

motions inside a longitudinally librating ellipsoidal container filled with an incompressible

fluid. The elliptical instability, which is a triadic resonance between two inertial modes and

the oscillating base flow with elliptical streamlines, is observed both numerically and exper-

imentally. The large-scale inertial modes eventually lead to small-scale turbulence, provided

that the Ekman number is small enough. The transition to turbulence is characterized by

additional triadic resonances develop while also investigating the properties of the turbulent

flow that displays both intermittent and sustained regimes. These turbulent flows may play

an important role in the thermal and magnetic evolution of bodies subject to mechanical

forcing, which is not considered in standard models of convectively driven magnetic field

generation.

Chapter 5 focuses on tidal forcing and was afforded by a nine month Chateaubriand

Fellowship in Marsille, France. I designed and built a support for a new wireless camera used

in the implementation of PIV system in the rotating frame. In this work, I model the response

of an enclosed constant density fluid to tidal forcing by combining laboratory equatorial

velocity measurements with selected high-resolution numerical simulations to show, for the

first time, the generation of bulk filling turbulence. The transition to saturated turbulence

is characterized by an elliptical instability that first excites primary inertial modes of the

system, then secondary inertial modes forced by the primary inertial modes, and then bulk

filling turbulence. The amplitude of this saturated turbulence scales with the bodys elliptical

distortion, while a time- and radially averaged azimuthal zonal flow scales with the square

of the ellipsoidal distortion.

The results of the current tidal experiments are compared with recent studies of the
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libration-driven turbulent flows our previous laboratory experimental and numerical studies

of libration. Tides and libration correspond to two end-member types of geophysical mechan-

ical forcings. For satellites dominated by tidal forcing, the ellipsoidal boundary enclosing

the internal fluid layers is elastically deformed while, for librational forcing, the core-mantle

boundary possesses an inherently rigid, frozen-in ellipsoidal shape.We find striking similar-

ities between tidally and librationally driven flow transitions to bulk turbulence and zonal

flows. This suggests a generic fluid response independent of the style of mechanical forcing.

Since the elliptical distortion is quite small O(10−4) in planetary bodies, it is often argued

that mechanically driven zonal velocities will be small. In contrast, our linear scaling for

mechanically driven bulk turbulence suggests geophysically significant velocities that can

play a significant role in planetary processes including tidal dissipation and magnetic field

generation.

In Chapter 6, I further modified the libration apparatus in Chapter 2 by designing and

building an adapter that rigidly supports an inner core, and designing and building an

adapter to mount a wireless camera into the librating frame. I investigate whether the

LDEI mechanism persists in an ellipsoidal shell, which is more geophysically relevant to

model planetary liquid layers, using both experimental and numerical approaches. I use an

ellipsoidal acrylic container filled with water and add five differently sized spherical inner

cores. Direct side-view visualizations of the flow were made in the librating frame using

Kalliroscope particles. A Fourier analysis of the light intensity extracted from the recorded

movies shows that LDEI persists for various libration frequencies, and allows an identification

of the mode coupling. Particle Image Velocimetry (PIV) and Direct Numerical Simulations

(DNS) are performed on selected cases to confirm the results.

The presence of the inner core does not prevent the instability mechanism from occurring

and leads to spatial inhomogeneities in the fluid response at high and low latitudes that

increase as the shell thickness decreases. Additionally, for a fixed forcing frequency and

variable Ekman number reveals that the libration amplitude at the threshold of the instability

varies as E0.63−0.72. This particular scaling is explained by the existence of a transition regime

between viscous dissipation in the bulk, which scales as O(E) for large Ekman numbers and
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viscous dissipation in the boundary layers that follows the classical scaling O(E1/2) relevant

for planetary setting where E ∼ 10−15. Furthermore, I hypothesize that for very thin

subsurface oceans like that of Enceladus, inhomogeneities in the response of LDEI may help

explain the first order ice thickness variations.

In order to carry out laboratory experiments of convective forcing, Chapter 7 is meant

to be used as a standard operating procedure for future lab members and as a companion

document to the description of the RoMag convective experiment and its capabilities as

outlined in Chapter 2 of King (2009). In this chapter, I detail the procedures for performing

various tasks associated with running the experiment as well as describing the modifications

that I have made to improve the device.

By using the RoMag experiment described above, I present, in Chapter 8, a study of

rotating and non-rotating convection experiments using a combined laboratory-numerical

approach that uses right cylindrical geometries in order to represent planetary core-style

convection in the high latitude of spherical shell layers. Using flow visualizations and heat

transfer measurements at more extreme parameters where viscous effects are weaker, we

study the axialized flows that occur near the onset of convection as well as three-dimensional

flows that develops as the buoyancy forcing is strengthened.

Using the working fluid water, in the rapidly rotating convection regime where axialized,

coherent columns exist, the heat transfer efficiency (Nusselt number) is found to scale more

steeply with the thermal forcing (Rayleigh number) than found in previous studies. Such

steep trends cannot currently be reached by the current numerical dynamo models and

indicate that that axialized structures associated with rotationally constrained have a narrow

range of stability. Consequently, convective motions in the core may not be related to the

columnar motions found in present day global-scale models. Instead, we hypothesize that

turbulent rotating convection cascades energy upwards from three dimensional motions to

large-scale quasi-two dimensional flow structures that are capable of efficiently generating

planetary-scale magnetic fields. We argue that the turbulent regimes of rapidly rotating

convection are essential aspects of core dynamics and will be necessary components of robust,

next-generation and multiscale dynamo models.
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In Chapter 9, I characterize rapidly rotating thermal convection in the liquid metal

gallium with a low Prandlt number, Pr ' 0.025. This is relevant for the study of liquid

metals akin to those in Earth’s outer core, and leads to fundamentally different flow regimes

than those found using water and the fluids used in numerical studies of dynamos where

Pr ∼ 1. The Ekman number varies from E = 5×10−5 to 5×10−6 and the Rayleigh number,

Ra varies from Ra = 2 × 105 to 1.5 × 107. Using measurements of heat transfer efficiency,

characterized by the Nusselt number Nu, as well as temperature at points within the fluid,

we characterize the different styles of low Pr rotating convective flow. The convection

threshold is first overcome in the form of a container scale inertial oscillatory mode. At

stronger forcing, sidewall-attached modes are identified for the first time in liquid metal

laboratory experiments. These wall modes coexist with the bulk oscillatory modes.

At Ra well below the values given in (1.36) where steady rotating columnar convection

occurs, the bulk flow in our experiments becomes turbulent while the wall modes remain

intact. Our results imply that rotating convective flows in liquid metals do not develop in

the form of quasi-steady columns, as in Pr ∼ 1 dynamo models, but in the form of oscil-

latory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr

geophysical and astrophysical fluids can differ substantively than those occuring in current-

day Pr ∼ 1 numerical models. Since oscillatory convection is significantly easier to excite

than steady convection, it may be that thermally-driven oscillatory motions will generate

dynamo action in planetary settings, well before steady convective flows are even actuated.

Furthermore, our experimental results suggest that relatively low wavenumber, wall-attached

modes may be dynamically important in rapidly-rotating convection in liquid metals.

Lastly, in the conclusion I summarize my work and discuss the future directions that have

been motivated by, and build upon, the work that I have performed in this dissertation.
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CHAPTER 2

Libration Experimental Anatomy

In this chapter I describe the major components and steps necessary for performing longitu-

dinal libration experiments at the UCLA Spinlab. In summary, this experiment supports an

acrylic ellipsoid or ellipsoidal shell filled with water. This fluid volume is then rotated at con-

stant rate provided by one motor and with a superimposed sinusoidal oscillation provided by

a separate servomotor. This document is meant as a Standard Operating Procedure (SOP),

for understanding and running the device. Films of the device in motion may be found on

Youtube. Web addresses, below, are clickable on the electronic version.

• https://www.youtube.com/watch?v=WGe-vLsm9Ho

• https://www.youtube.com/watch?v=VYxMjd5TsVo

In Section 2.1, I first describe the major structures and the major components related to

generating motion. In Section 2.2, I lay out the wiring diagram for the major components

and the method for filling the experimental volume in Section 2.3. Section 2.4, describes

how the major components and subsystems are controlled. The methods for making fluid

visualizations and running experiments are described in Sections 2.5 and 2.6, respectively.

2.1 Support Structure and Motor Systems

The libration experiment is composed of the mechanical structure, the two motors, the

control console, computer, and peripherals. The image on the left of Figure 2.1 shows a top

view of the layout for the room where the primary components of the libration experiment

are distributed. The image on the right in Figure 2.1 shows a side-view of the libration
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apparatus and the major components in the rotating frame.

Libration Room Layout 
Libration Apparatus Frame

Wall Power:
208VAC

Lower 
Motor 
Drive
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Table 
Motor
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Control 
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Main 
Panel

Libration 
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Volume 

Figure 2.1: Left A top-view image of the libration room and Right an accompanying
schematic view of the major components in the libration room. Note that the Main Lab
Fuse Box is outside of the libration room and the major wiring components for the servomotor
are shown in red while the major components and wiring for the lower motor are given in
blue.

2.1.1 Motor Control Pedestal

Figure 2.1 shows the pedestal, next to the door, where the controls for the two different

motors are located. The controls for the lower motor, as shown in Figure 2.8, are located

on the left side of the panel while the main system power and the servomotor control are

located on the right of the panel.

• Note that the panel is hinged and by removing the screws in the control panel there

may be wiring diagrams, documentation, or small electronic components associated

with libration controls.
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2.1.2 Libration Apparatus Frame

The largest part of the system is the libration apparatus frame, shown in Figure 2.2. The

lower frame is constructed from 6061-T6 Aluminum with welded joints and supports the

main bearing, lower motor, and wiring junction box. The lower platform is a 50 by 50 inch

square and is raised 24 inches off the ground by four legs. Mounted in the center is an

extreme capacity turntable bearing with a 14,000 lb capacity which is more than enough to

handle the load applied by the libration assembly. This bearing is bolted to a stainless steel

pulley. This pulley has a diameter of 12” and has a bead blasted surface to which the belt

connected to the lower motor drives the table.

Libration Apparatus

Libration 
Experimental 

Volume

Main 
Bearing 
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e

Servomotor Drive Panel

Oscillating 
Servomotor
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pp
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M
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e

Main 
Panel

Lower 
Motor 
Drive

Lower 
Table 
Motor

Rotating Frame 
Computer

Rotating Frame 
Camera

Figure 2.2: A layout of the major components on the libration apparatus. The red outlined
components are associated with the servomotor system. The blue outlined components are
related to the lower motor system.

The upper table is composed of the top and bottom plate assemblies. The bottom plate

assembly is a circle with a 38” diameter.
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• Note that at the outer edge of the bottom plate, tick marks etched with a one degree

separation.

Bolted to this table is attached the servomotor drive system and platform that protects the

servomotor drive system and allows for the attachment of peripherals including the rotating

frame computer. There are two sets of legs that can be used to connect the bottom plate

assembly with the top plate assembly. The legs typically used are in 20” long and the other

shorter set is 5”. The top plate assembly is also a 38” diameter plate.

Mounted onto the top plate is a frame constructed from Minitek rails. In addition to the

mounting bolts used to secure this frame to the top plate, a waterproof silicone is used at

the base to create a watertight seal in case of spills. Using Minitek braces and additional

rails, a mounting system is constructed to support larger cameras, and lasers.

2.1.3 Lower Table Motor System

The lower table motor provides a belt-driven constant rotation rate to the entire libration

assembly. A stainless steel pulley of diameter 2.95” connects the lower motor to the belt

that drives the libration assembly.

2.1.3.1 Lower Table Motor and Servo Drive

The lower table motor is a Marathon Black Max Y535 one horsepower DC motor with a

6:1 gear head reducer (Sumitomo CNFJ-6085Y). Thus, the total gear reduction between the

motor and the rotation of the libration table is approximately 24:1 meaning the the motor

rotates 24 times for every turn of the libration table. The librating table can rotate from 1

to 60 RPM and is stable to within ±0.5%.

The motor is driven by a Yaskawa CIMR-F7U20P71 inverter drive.
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2.1.4 Oscillating Servomotor System

The oscillating servomotor is attached to top plate assembly and is connected directly to the

librating experimental volume.

2.1.4.1 Servomotor

The servomotor is a 400W ring-style servomotor (Yaskawa SGMCS-10C3B11). The servo-

motor is capable of rotating at a constant rate or, as is it is typically used, oscillating with

an angular amplitude between 2.5o to 360o and with frequency fL = ωL/2π = [0.1− 4.5]Hz

with an error of ±0.25%.

• Note that as the amplitude increases the range of possible frequencies decreases. For

instance, at a frequency of 4.5 Hz that maximum angular amplitude is approximately

5 degrees. Oscillating at a high enough frequency for a given amplitude will generate

an error and the servomotor will stop. Power cycling (turning the device off and on)

will clear this error.

2.1.4.2 Servomotor Drive

The servomotor drive is a Yaskawa SGMPH enclosed in a box attached to the bottom plate

assembly. A motion control card (Trio MC202) is mounted in the motor control pedestal

and generates the signal for setting the sinusoidal oscillation.

2.1.5 Libration Experimental Volume

The libration experimental volume is composed of an adapter plate that connects the acrylic

volume to the oscillating servomotor, the two hemispheres of the acrylic container, and a set

of metal bands used to connect the two hemispheres. These parts are shown in Figure 2.3.
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2.1.5.1 Support Platforms

An aluminum adapter plate annulus is used to connect the oscillating servomotor to the

acrylic container. Metal rings placed on the flanges of the acrylic hemisphere are used to

distribute pressure so as not to crack the acrylic. Another set of rings have been modified

with vertical posts so that small cameras like GoPros and lasers can be placed in the librating

frame where the acrylic is stationary. A full stainless steel ring with through holes is placed

on the upper hemisphere flange while a set of two circular rings with threaded holes is placed

on the underside of the lower hemisphere flange.

• Note that the modified flanges that support the laser and the GoPro can flex slightly

as the container librates. It is recommended that, in the future, the aluminum adapter

plate used to connect the servomotor to the acrylic container be remade with a larger

diameter. Then custom mounts may be made that directly connect the lasers or

cameras rigidly to the adapter plate itself and not to the metal bands.

2.1.5.2 Acrylic Volumes

There are three sets of acrylic volumes that may be used. The experimental volumes have

been machined from the interior of cylindrical pieces with diameter 12” and cut in half to

separate the upper and lower hemispheres. The outside of this cylinder has been machined

with flanges that allow for the hemispheres to be fastened to one another and to the adapter

plate attached to the servomotor. There is a 0.5” diameter hole in the center of the upper

hemisphere that allows for filling the experimental volume with fluid and as a mounting

point for the inner core support rods. The acrylic containers include a sphere, an interme-

diate ellipsoidal container, and a strongly ellipsoidal container. They are defined by a long

equatorial axis of length a, a short equatorial axis of length b, and a short axial axis of length

c.

For all these containers b = c meaning that along the long equatorial axis, the ellipsoid is

axisymmetric which can help when modeling libration using some numerical schemes. The
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strength of the ellipsoidal distortion is defined non-dimensionally by,

β =
a2 − b2

a2 + b2
, (2.1)

and hence the three experimental volumes are described by β = 0.34, 0.06, 0. A more com-

plete list of the geometrical properties of the experimental volume are provided in Table 2.1.

Parameter Definition Values

a Long equatorial length 127mm
b Short equatorial length 89mm, 119mm, 127mm
c Short axial length 89mm, 119mm, 127mm
r Inner core radius 25.1mm, 38.2mm, 50.7mm, 61.2mm, 76.2mm

β a2−b2
a2+b2

0.34, 0.06, 0

χ r
cβ=0.34

0.28, 0.43, 0.57, 0.69, 0.86

Table 2.1: Geometry of acrylic ellipsoidal containers and inner cores. Note that the radius
ratio χ has been defined using c for the strongly ellipsoidal container cβ=0.34 = 89mm.

2.1.5.3 Inner Spheres and Supports

There are five spherical inner cores that may be used in the libration experiments. Their

radii are listed in Table 2.1. All of these cores are drilled and tapped such that the threads

are provided by a locking helicoil of size 5/16” − 18. The inner cores are threaded into

3/8” diameter stainless steel support rod that is used in tandem with a custom made delrin

adaptor and stainless steel clamping collar in order to support the inner core inside the

experimental volume.

2.1.5.4 Assembling the Experimental Volume

The parts of the experimental volume are shown in Figure 2.3. The instructions for assembly

the stack are described below.
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1. Make sure the interiors of the container have been cleaned to remove smudges and

debris that might obscure the visualizations or contaminate the water.

2. Set the lower hemisphere onto the adapter plate and place the two stainless rings with

thru-holes onto the lower flange so that all holes in the ring and acrylic flange are

aligned with the threaded holes in the adapter plate. These three pieces are secured

together using six 10-32×1” hex head screws. Take care when tightening these six

screws to make them snug but not too tight so as too avoid cracking or scratching

the acrylic. The order by which the screws are tightened should follow a star pattern

wherein the screws are at or nearly 180 degrees apart are screwed sequentially in order

to distribute pressure as uniformly as possible.

3. Place a large oring (Dash No. 275 Mcmaster #:9464K573) in the groove of the lower

hemisphere.

4. If there is an inner core then the inner core must be screwed into the support rod and

the support rod must be placed through the central hole in the upper hemisphere. The

delrin adapter and clamping collar, as shown in Figure 2.4, should also be assembled

and used to the support rod so that the inner core isn’t bouncing around during the

assembly process. Take care in placing this piece onto the lower hemisphere as the

entire assembly can be heavy. Additional helpers might be required with one person

standing on the lower frame.

5. If there is no inner core then place the upper hemisphere on top of the lower hemisphere

making sure the geometries and by extension the thru-holes in the acrylic flanges are

aligned.

6. If there is no inner core then place the upper hemisphere on top of the lower hemisphere

making sure the geometries and by extension the thru-holes in the acrylic flanges are

aligned.

7. The two hemispheres can now be secured using the stainless ring with counter-sinked

thru-holes facing up on the top of the central connecting flange and stainless steel
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Inner Core

Support Rod

Delrin Adaptor

Clamping Collar

Upper Hemisphere

Fill Port

Figure 2.4: Schematic of the inner core support rod being held in the the fill port with the
black Delrin adapter and clamping collar. A groove as been machined into the support rod
so that the filling tube shown in Figure 2.7 can pass through the groove to fill the volume
while the inner core is in position.

ring halves with threaded holes on the underside of the central flange. These parts

should be screwed snugly with six flathead 10-32×1” screws. Take care to use a star

pattern when tightening these six screws and make them snug but not too tight as to

avoid cracking the acrylic. Some small minor cracks are already present around the

thru-holes

8. Clean the outside of the container to remove any smudges or debris gathered during

assembly.
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2.2 Libration System Wiring

208VAC 
3ph: 30A

120VAC:
10A

Figure 2.5: Layout of the Main Lab Fuse Box located outside of the libration room. The
two circuit breakers for the libration room are indicated with the white outlined boxes in this
image and blue tape on the box itself. The 120VAC 10A breaker is currenlty being unused
in the libration room.

2.2.1 Laboratory Frame Wiring

The Main Lab Fuse Box provides 3 phase 208VAC power to the libration room and is shown

in Figure 2.5. In the Main Lab Fuse Box, blue tape indicates that the 208VAC 3 phase circuit
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breaker is located in sockets (37-39-41). The other 120VAC circuit is currently unused. The

3 phase power is transmitted via a wall outlet to the main panel box attached to the libration

table frame. The main panel is the main distribution center for all power, signals, and safety

controls is shown in Figure 2.6.a The main components in the main panel are:

• A red and yellow disconnect switch that should be activated once the main panel has

been closed. For safety reasons when this switch is activated the panel cannot be

opened.

• A red illuminated emergency stop that cuts power to the entire system when the

activated.

• PS1: A power supply that generates 24 VDC that is used to power many components

including the light inside the emergency switches in the main panel and in the motor

control pedestal and the controllers located and sub-components located in the motor

control pedestal.

• CB1: Circuit breaker also used to cut power in the main box.

• C1: Capacitors used for the lower motor servodrive.

• C2: Capacitors used for sending 220VAC to the servomotor drive in the rotating frame

The lower motor draws power from the main panel and takes in signal information from

the motor control pedestal.

The signals used to drive the servomotor in the rotating frame are input through the

Red Lion controller which sends signals into the rotating frame. This controller draws power

from the 24VDC line coming from the main panel.

2.2.2 Slip Ring

The slip ring is the mechanism that allows for the transfer of signals and power from the

laboratory frame to the rotating frame. The slip ring used in the libration experiment is a
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a. Laboratory Frame Wiring

b. Rotating Frame Wiring

Wall Power:
208VAC

Main Panel Motor/Power Control

GoPro Cameras

Oscillating 
Servomotor

220VAC-120VAC 
Transformer

Computer

Canon Cameras

LasersPower StripSlip Ring Servomotor Drive

Laboratory Frame 
Wiring

Lower Motor 
Drive

Lower Motor

Slip Ring

Servomotor Drive Panel

Disconnect 
Switch 

Emergency Switch
PS1

CB1

C1 C2

Servomotor  
Drive

Figure 2.6: (a) A layout of the major components in wiring system located in the laboratory
frame. (b) A layout of the major components in wiring system located in the rotating frame.
Note that the dashed box indicates the electronics in the librating frame.

MOOG AC6355-56. It contains 56 2 amp lines and runs through the center of the table’s

bearing. The primary signals passed are 220VAC power lines and the signals for oscillating

the servodrive.

2.2.3 Rotating Frame Wiring

As shown in Figure 2.6.b. After the signals are passed through the slip ring, the 220VAC

signal is converted to 120VAC by a transformer and the signal is then sent to a power strip

which is used to power cameras, lasers, computers, and other power strips placed on the top

plate assembly.

The 220VAC and signals are sent from the slip ring into the servomotor drive box. The

power and signals are filtered and sent to the servodrive and the servodrive then sends

commands to the servomotor to rotate or oscillate.
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Pump

Hose

Water 
Jug

Figure 2.7: A layout of the pumping system used to move degassed water from the jug to
the experimental volume using a peristaltic pump and hose.

2.2.4 Librating Frame Wiring

The librating frame wiring, shown in the dashed box in Figure 2.6.b, primarily consists of

power lines used for running the laser during flow visualizations.

• Note that although a change in reference frame is occurring, there is no slip ring. Since

the motion of the rotating frame is primarily oscillatory it is sufficient to make the laser

power lines long enough so that lines themselves can move without being stretched or

strained.
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2.3 Filling the Experimental Volume

The process for filling the experimental volume, as shown in Figure 2.7, begins by filling

a container or jug of distilled or tap water and letting the container sit so that the fluid

is degassed for around a day. A peristaltic pump is used to transfer the water from this

container to the experimental volume after one end of the hose is placed in the storage tank

and the other hose is place inside the fill port in the upper hemisphere of the experimental

volume. The hose should be placed below the water level to prevent splashing. If necessary,

once the experimental volume is filled, it can be left to sit and degas further inside the

experimental volume.

If an inner core is present then the filling hose can be inserted into a machined groove in

the inner core support rod and the cavity can be filled without changing the changing the

setup.

2.3.1 Removing Bubbles

The presence of bubbles can hinder visualization of the flow. During the filling process, air

tends to get trapped in the thin space where the two hemispheres are attached. The air

is best removed by performing a particularly vigorous librational forcing experiment. One

such forcing that is referred to in the publication is the spin-over mode. The parameters for

such a flow are 30RPM on the lower table motor, frequency of 1.15Hz, and an input angular

amplitude of 70 degrees. Such a mode can be typically run for 5-10 minutes or until the

release of air bubbles is no longer seen. After this is done, the water level will be lower and

need to be refilled again.

If an inner core is also included there may be bubbles trapped in the southern hemisphere

of the inner core and may be removed also by rocking the inner core before it is permanently

affixed. Additionally, tiny bubbles may persist on the surface of the acrylic and degassing of

the water in the fluid volume can help to remove these bubbles.
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2.4 Libration System Controls

The control console for the librational apparatus is shown in Figure 2.8 and is composed of

three parts: the main table and motor power switches outlined in black, the control of the

oscillating servomotor is outlined in red, and the control pad of the motor that provides a

constant lower rotation is outlined in green.

Lower Motor Control
Servo Motor Control
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ot
or
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w
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Figure 2.8: Control console for the librational forcing experiment. The green outlined region
is the control pad for the lower table that provides a constant rotation rate. The red outlined
area is the control pad for the oscillating servomotor. The lower controls outlined in black
are the main power switches for the entire device.

2.4.1 Turning on the Power
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Figure 2.9: The power controls for the libration experiment.

To turn on the power to the libration apparatus, first switch the black Control On/Off
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knob and then press the green Reset button as shown in Figure 2.9. Upon doing so, make

sure the emergency stop button light, servo motor control screen, emergency stop light on

the main panel should be on. A high pitched noise should be emanating from the servomotor.

• Note: The main power must be on to operate the entire system. This can be inconve-

nient for several reasons:

– If the user wishes to make a minor modification or adjustment, the high pitched

whine from the servomotor can be unpleasant over long periods.

– None of the wired systems are independent so by turning off the power any com-

puter in the rotating frame will automatically lose power as well. It is tempting

to circumvent this by plugging components into the laboratory frame. However,

care must be taken so rotation isn’t begun with these wires in place.

– Another consequence of the dependencies in the system is that the servomotor is

enabled meaning it will not freely rotate by hand which can be helpful during the

assembly process.

2.4.2 Lower Table Control

The lower motor rotating the libration stucture is controlled using the console shown in

Figure 2.10 while the power switch for the lower motor is found on the Servo Motor Control.

First make sure the system has been turned on following the step in Section 2.4.1.

1. Press Fr 1 or F2 as it doesn’t matter for this step.

2. Turn the INVERT ON/OFF by pressing on F5 on the keypad in Figure 2.10.2. An

audible click should be heard from the lower motor and the lights on the Lower Motor

Control panel will be on.

3. Press DATA/ENTER to edit the frequency associated with the lower table rotation.

4. To change the speed of the motor use the UP and DOWN arrow buttons to change each

digit of the frequency, the right RESET arrow to move through the different digits,
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1. 2.

3. 4.

Figure 2.10: The lower table motor control steps for the libration experiment. These steps
are described in Section 2.4.2.

and the DATA/ENTER button to save the new frequency.

Note that the frequency is related to the RPM by:

Freq.(Hz) = 0.782RPM− 0.201. (2.2)

A table of frequencies vs. RPM are provided in a table located on the wall above the control

pedestal.

• Before turning on the rotation make sure that all the wires and devices are secure, that

there is nothing plugged into the laboratory frame, and that there are no loose tools
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on the table.

• To turn on/off the rotation use the gray RUN button and the red STOP button.

Before changing the direction make sure the the apparatus has come to a complete stop.

• To change the direction of the rotation press the FWD/REV button and note that the

light at the top of the pad will change from clockwise(CW) to counter-clockwise(CCW).

For all experiments the rotation is CCW to keep the rotation axis pointing upward.

2.4.3 Servomotor Control

Once the power is turned on to the system the screen should be lit as shown in Figure 2.11.

2.4.3.1 Setting Oscillations

1. Press F1 on the keypad for oscillations. Note that pressing the MENU button will

return you to this initial screen

2. Move to SETUP PROGRAM by pressing F2 on the keypad. The user should see the

screen shown in Figure 2.11.2.

3. Use the UP, DOWN, RIGHT, and LEFT arrows and the keypad to specify the fre-

quency in Hertz and the amplitude of the angle in degrees. Note that the system

requires you specify the peak to peak angle. For instance, if the angle of oscillation is

40 degrees (0.7 rad) then the necessary input is 80 degrees or the peak to peak am-

plitude of oscillation. Once the frequency and oscillation is specified, press the arrow

under RUN.

4. Use the arrows beneath the START and STOP to implement the oscillation. There

are several important notes before beginning oscillations.

• If lasers or other components affixed to the librating frame are wired in the ro-

tating frame then a safe method for determining whether the wires allow for the

48



1. 2.

3. 4.

Figure 2.11: The controls for the servomotor on the libration experiment.

movement of libration is to set the requested angle and librate at a slow frequency

first so as not to destroy the wires.

• The slower the libration frequency the slower the control program tends to respond

to changes. Thus it is necessary to hold the STOP arrow longer when slow

frequencies are required.

• The maximum possible frequency of libration decreases as the angle of libration

increases. If the frequency is too high for a given libration angle the servo drive

will return an error that requires cycling the power on and off to clear the error.

This is particularly inconvenient as cycling the power may also kill the computer

in the rotating frame.

5. The menu for changing the angle and frequency can be reached by pressing the arrow

under SETUP.
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1. 2.

3. 4.

Figure 2.12: The controls for the servomotor on the libration experiment.

2.4.3.2 Setting Constant Rotation

1. Press F2 on the keypad for Constant Rotation. Note that pressing the MENU button

will return you to this initial screen

2. Move to SETUP PROGRAM by pressing F2 on the keypad. The user should see the

screen shown in Figure 2.11.2.

3. Use the UP, DOWN, RIGHT, and LEFT arrows and the keypad to specify the rotation

rate in RPM Upper Table. Once the frequency and oscillation is specified press the

arrow under RUN. Note that the input for RPM Lower Table has no function.

4. Use the arrows beneath the CW(REV) and CCW(FWD) to implement the rotation

in the clockwise or counter-clockwise direction and press the same button to stop the

rotation.

5. A separate menu for changing the rotation rate can be reached by pressing the arrow

under SETUP. Note that returning to the setup screen also stops the rotation.
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2.4.4 Rotating Frame Computer Control

The computer in the rotating frame is controlled through a screen sharing program on a

separate computer or through a wireless mouse and monitor located on the table in the

libration room as indicated by the Libration Monitor Station in Figure 2.1. The cameras

affixed to the rotating frame are connected to the rotating frame computer and all light

intensity and filter settings are refined in-situ and recording is done remotely.

2.5 Visualizing Fluid Motions

In order to visualize fluid motions water is seeded with light reflecting particles, illuminated

by lasers affixed to the librating frame, and recorded using a Canon EOS 7D camera placed

in the rotating frame and/or a Gopro wireless camera placed in the librating frame.

Two types of flow visualization particles are well-mixed in the water as shown in Figure

2.13. The first, Kalliroscope solutions contains flake-like particles with a long axis such

that they tend to align with shear structures in the flow. The Kalliroscope concentration

can may be greatly increased such that ambient lighting can illuminate fluid flows near the

boundaries (2.13.a). In contrast, the Kalliroscope solution may be low enough such that

the laser illuminations can pass through the entire fluid layer (Figure 2.13.b). The second

type of particles are microspheres of varying sizes (Figure 2.13.c) that follow the path of the

fluid motions and are used in techniques like particle image velocimetry, PIV, to measure

the velocity of the flow.

• Note that by looking at snapshots of Kalliroscope vs. PIV particles in Figures 2.13:mid-

dle and right respectively, there is not much visual difference. However, the Kalliscope

is better able to visualize flow structures which are shown through differences in light

intensity. In contrast, PIV particles, are better suited for following the flow and thus

velocity information can be extracted using such particles.

These PIV particles and light Kalliroscope concentraitons are illuminated by lasers with

cylindrical lenses such that the laser casts a plane of light or laser light sheet. These light
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sheets are oriented parallel with the axis of rotation or horizontally through the equator.

Because of the ellipsoidal geometry, the laser light sheets can be strongly refracted and hence

their positions are limited to vertical or equatorial slices where the refraction is minimized.

Such refraction is unavoidable when inner cores are placed inside the fluid volume as is shown

in Figure 2.13:middle.

The visualizations are saved as movies with frequencies up to 60 frames per second. The

Canon cameras used are connected to a computer in the rotating frame and accessed re-

motely. The settings and recording for the Canon are controlled through the Canon EOS

Utility software while the GoPro camera can be controlled remotely through a GoPro appli-

cation. All movies are read into MATLAB and the individual frames are analyzed or saved

for additional processing including measuring light intensity variations and determining ve-

locities through an open source PIV program called DPIVSoft2010.

2.6 Running Cases

After the experimental volume has been assembled, seeded with particles, illuminated, and

the camera settings and filtering have been refined, data acquisition can commence. In order

to run a case, the lower table rotation and frequency and angular amplitude of the oscillations

are determined. The whole frame is set in motion at the table’s rotation rate until solid body

rotation has been reached. The typical spin-up time is determined by τspin ∼ Ω−1E−1/2 where

Ω is the rotation rate of the container in rad/s and E = ν/(2Ωa2) is the Ekman number

where a is the long axis of the container found in Table 2.1 and ν ∼ 10−6 is the kinematic

viscosity of water. For solid body-rotation to occur, it is necessary for rotation to occur for

approximately three to four spin-up times. If water is seeded and illuminated, the user can

wait until no fluid motions are visible.

After solid body rotation is reached and before the oscillations commences, recording is

begun to capture the onset of mechanically-forced motions. Typically the ambient lights

in the room are flashed on and off to indicate that the oscillations are about to begin.

The oscillations and the onset of instability are recorded for several spin up times, around
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approximately 10 minutes. This process is repeated in order to gather a broad survey of flow

information at varying parameters.
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CHAPTER 3

Experimental study of global-scale turbulence in a

librating ellipsoid

Reproduced from: A. M. Grannan, M. Le Bars, D. Cébron, and J. M. Aurnou. Phys.

Fluids, 26:126601, 2014.

In this work, I modified the libration device, described in Chapter 2, by designing a

support system for lasers in the librating frame and implemented a non-intrusive particle

image velocimetry measurement technique that was used to measure flow in the equatorial

frame in a fully assembled ellipsoid for the first time. I performed and analyzed a suite of

libration experiments by fixing the rotation rate and varying the strength and frequency

of libration. This work provides the first experimental verification of the characteristics of

the libration-driven elliptical instability that drives turbulence in the bulk fluid. I was the

primary author of the final document.

3.1 Introduction

The interactions between satellites and their primary gravitational partners distort the

shapes of both bodies and give rise to periodic mechanical forcings that, in turn, drive pre-

cessional, tidal, and librational motions [e.g., Comstock and Bills (2003)]. The current work

focuses specifically on the longitudinal libration in so-called synchronized systems where the

secondary body’s rotation rate undergoes periodic oscillations about its orbital rate. Ad-

ditionally, some librating bodies are differentiated and contain liquid metal cores such as

those of Mercury [e.g., Margot et al. (2007)], Io [e.g., Anderson et al. (1996)], Ganymede

[e.g., Schubert et al. (2004)], as well as subsurface oceans in Europa [e.g., Anderson et al.
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(1998)], Ganymede [e.g., Schubert et al. (2004)], and Enceladus [e.g., Anderson et al. (2001)].

The fluid layer response to the librational forcing through viscous [e.g., Noir et al. (2009);

Calkins et al. (2010); Sauret et al. (2010)], topographic [e.g., Noir et al. (2012); Calkins

et al. (2012a)], and electromagnetic coupling [e.g., Deleplace and Cardin (2006); Buffett and

Christensen (2007); Roberts and Aurnou (2012)] is important for understanding the ther-

mal, magnetic, and orbital evolution of the body. Importantly, while it is often assumed that

thermo-compositional convection drives the fluid motions responsible for dynamo generation

[e.g., Kagayama and Sato (1995); Glatzmeier and Roberts (1996); Schubert and Soderlund

(2011)] recent studies [e.g., Tilgner (2005); Wu and Roberts (2009, 2013); Cébron and Holler-

bach (2014)] have characterized how mechanical forcing can also drive dynamos by injecting

a portion of the vast quantity of rotational energy from primary-satellite orbital systems into

driving fluid motions.

The first studies of libration in spheres [e.g., Aldridge (1967); Aldridge and Toomre

(1969)] showed, using pressure measurements, that a resonant response occurs when the

forcing frequency matches an eigenfrequency of the system. While this excitation was in-

ferred to be an eigenmode of the system, a recent analytical study in the limit of small

viscosity found no resonant excitations and only anomalous pressure variations along the

axis of rotation [e.g., Zhang et al. (2013)]. Librational forcing also gives rise to centrifugal

instabilities that are confined to the boundary layers of cylinders and spheres [e.g., Noir et al.

(2009); Calkins et al. (2010)]. Additional theoretical, numerical, and experimental work has

verified the stationary zonal flow caused by non-linear interactions in the Ekman boundary

layers of cylinders, spheres, and spherical shl fiells [e.g., Wang (1970); Calkins et al. (2010);

Sauret et al. (2010); Noir et al. (2012); Sauret and Le Dizes (2013)].

Recent studies have focused on simulating librational effects in more realistic geometries

that reflect the non-axisymmetric shape of planetary interior fluid layers. Theoretical and

numerical studies of flows in non-axisymmetric containers have shown that longitudinal

librational forcing cannot, through a direct resonance, excite eigenmodes of the system [e.g.,

Chan et al. (2011); Zhang et al. (2011)]. Importantly, this does not preclude the resonance

of two inertial modes interacting with an elliptically-deformed base flow [e.g., Kerswell and
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Malkus (1998); Cébron et al. (2012a)]. Numerical simulations using finite element methods

at an Ekman number, E = 5 × 10−4, defined in Section 5.2, have shown that a triadic

resonance between two inertial modes and a librationally induced elliptically-deformed base

flow [e.g., Malkus (1989)] excites a LDEI. This instability gives rise to three-dimensional (3D)

motions in the bulk fluid that act to modify the base flow thus truncating the instability.

The base flow is then re-established and this cycle of growth and collapse continues [e.g.,

Cébron et al. (2012b)]. Experimental laser doppler velocimetry (LDV) measurements at a

single point attributed a growth and decay of the zonal flow strengths in a half-ellipsoid to

the existence of an LDEI [e.g., Noir et al. (2012)] The aspects of the mechanically forced

flows, described above, are thoroughly reviewed in Le Bars et al. (2015).

In this experimental work, a particle image velocimetry (PIV) method is used to measure

the libration induced base flow, time-averaged zonal flow, and fully turbulent libration driven

flow in the equatorial plane of an ellipsoidal container at a fixed E = 2× 10−5 more extreme

than currently possible through numerical simulations. In Section 5.2, the mathematical

framework is developed for libration driven flows as well as the resonant conditions and

growth rates associated with the LDEI. The experimental method is described in Section 3.3

and the results are discussed in Section 5.5. The conclusions are presented in Section 5.6.

3.2 Mathematical Background

In this experiment, we consider a homogenous, incompressible, Newtonian fluid that is en-

closed in an ellipsoidal container. The boundary of this shape is specified by the equation

for an ellipsoid, x2/a2 + y2/b2 + z2/c2 = 1, set in a Cartesian coordinate system affixed to

the librating container where x̂ is along the long equatorial axis of the ellipsoid with length

a, ŷ is the short equatorial axis with length b, and ẑ is along the axis of rotation with length

c. The equatorial ellipticity of the cavity is defined as β = (a2 − b2)/(a2 + b2). The rota-

tion rate Ω(t) for librational forcing is composed of a constant rotation Ω0 plus a sinusoidal

perturbation:

Ω(t) = Ω0 + ∆ϕ ωlib sin(ωlibt), (3.1)
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where ωlib [rad/s−1] is the angular frequency of libration and ∆ϕ [rad] is the amplitude of

libration. The equations of fluid motion and continuity, written in the librating frame and

non-dimensionalized using the long axis a for the length scale and Ω−1
0 as the time scale, are:

∂u

∂t
+ u · ∇u + 2

(
1 + ε sin(ft)

)
ẑ× u = −∇Π + E∇2u− εf cos(ft)(ẑ× r), (3.2)

∇ · u = 0. (3.3)

In (6.4), the first two terms on the left side are the inertial terms, and the third term

is the time-dependent Coriolis acceleration. The terms on the right side are the pressure

gradient, the viscous dissipation, and the Poincare force due to the time dependent rotation

rate respectively. The non-dimensional libration frequency is f = ωlib/Ω0, ε = f∆ϕ is the

dimensionless libration forcing amplitude, and Π is the modified pressure term containing

the time varying centrifugal acceleration. The Ekman number, E = ν/(Ω0a
2), characterizes

the ratio of viscous to Coriolis forces and r = (x, y, z) is the position vector in the librating

frame.

3.2.1 Base Flow

Making a perturbation expansion of (6.4), the flow is decomposed into u = U + u′ and

Π = Π0 + π′ where the perturbed flow u′(π′) is much smaller than the base flow U(Π0) i.e.,

|u′| � U and π′ � Π0. Focusing first on the the base flow and taking (6.4) in the limit

that E � 1, the flow is decomposed into U = Ulib + Ũ with an inviscid bulk component,

Ulib, and a flow in the viscous boundary layer of depth
√
E attached to the outer boundary,

|Ũ| ∝ ε, that is proportional to the libration forcing. An inviscid solution of (6.4) for the

bulk base flow velocity that satisfies the non-penetration condition in the librating frame of

reference is given by Kerswell and Malkus (1998):

Ulib = −ε sin(ft)
[
ẑ× r− β∇(xy)

]
, (3.4)
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with coordinates (x, y, z) and equatorial flow components (Ulib, Vlib). In the librating frame,

fluid parcels oscillate back and forth along elliptically deformed streamlines as shown in

a vector field snapshot of Figure 3.1.a. For the current analysis, this flow is transformed

to the steadily rotating frame of reference reflecting the same frame where experimental

measurements are performed. This base flow (Urot, Vrot) in the steadily rotating frame is

given in (3.5) with X and Y being the spatial coordinates fixed to this frame such that X is

aligned with the average location of the container’s long-axis. Figure 3.1.b shows a snapshot

of the oscillating velocity field exhibiting a strain field with an azimuthal wavenumber m = 2,

and an oscillating direction and amplitude:

Urot = εβ sin(ft)
[
Y cos

(
2ε(1− cos(ft))

f

)
−X sin

(
2ε(1− cos(ft))

f

) ]̂
i

Vrot = εβ sin(ft)
[
Y sin

(
2ε(1− cos(ft))

f

)
+X cos

(
2ε(1− cos(ft))

f

) ]̂
j (3.5)
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Figure 3.1: (a) Theoretical vector field snapshot (Ulib, Vlib) of the elliptically deformed
base flow in the librating frame, (x, y, z). (b) The same base flow transformed into the
steadily rotating reference frame, (X, Y, Z), where the current experimental measurements
are performed.
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3.2.2 Zonal Flow

In the librating frame, to satisfy the no-slip boundary conditions, viscous corrections in

the Ekman boundary layer generate a flow, Ũ, with axisymmetric and non-axisymmetric

components, Ũ0 and Ũ2 respectively, given as:

Ũ ∝ ε sin(ft)(Ũ0 + βŨ2e±2iφ), (3.6)

where φ is the azimuthal angle measured with respect to X̃. The non-linear self-interaction of

(3.6) leads to an axisymmetric stationary zonal flow in the boundary layer that, by continuity,

generates a flow in the interior fluid, as confirmed in axisymmetric containers [e.g., Wang

(1970); Busse (2010, 2011); Calkins et al. (2010); Noir et al. (2010); Sauret et al. (2010, 2012)].

This stationary flow scales as ε2 with an azimuthal wavenumber m = 0 and is expected in

the ellipsoidal container. Additional axisymmetric and non-axisymmetric stationary flows

arise due to the ellipsoidal geometry and scale as ε2β and ε2β2 with azimuthal wavenumbers

m = 2 and m = 0, 4 respectively [e.g., Sauret (2012)].

3.2.3 Inertial Modes

For rotating fluids in finite volumes, inertial waves reflected at boundaries conserve the angle

between the wave vector and the axis of rotation θ. Thus reflections and waves may, through

constructive interference, generate inertial modes of the form, u′j ∝ eiλjtΦj(r) that satisfy

the linearized inviscid equations motions given by Greenspan (1969),

∂u′

∂t
+ 2ẑ× u′ = −∇π′. (3.7)

The jth inertial mode is the solution of (3.7) such that

iλjΦj + 2ẑ×Φj = −∇π′j, (3.8)
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where Φj ∝ eimjφ with mj being the azimuthal wavenumber [e.g., Tilgner (2007)]. Addition-

ally, the inertial modes are orthogonal such that
∫

Φ∗kΦj dV = δj,k [e.g., Greenspan (1969)].

Analytical solutions of inertial modes exist for the cylinder [e.g., Kerswell (1993)], cylin-

drical shell [e.g., Herreman (2009)], spheroid [e.g., Zhang et al. (2004)], and a polynomial

description also exists for the ellipsoids [e.g., Vantieghem (2014)] considered in our experi-

ments. Although not considered here, such analytical descriptions can not be extended to

the more geophysically relevant geometry of spherical shells due to the ill-posed nature of the

well-known Poincaré equation for inertial modes with non-penetrating boundary conditions.

Numerical studies, in this geometry, have shown that solutions converge to attractors [e.g.,

Rieutord and Valdettaro (1997); Rieutord et al. (2001)].

3.2.4 Elliptical Instability

The elliptical instability arises due to the growth of perturbations induced by the inter-

action between a libration induced base flow from (3.4) and two inertial modes. Despite

the open questions regarding the completeness property of inertial modes whereby an ar-

bitrary velocity field may be expanded into a series of inertial modes [e.g., Greenspan

(1969)], the velocity and pressure perturbations are written as a linear combination of iner-

tial modes and later seek to identify the participating inertial modes experimentally. Then,

(u′, π′) =
∑

j aj(t)e
iλjt(Φj, πj) where aj(t)� 1 is a small time-dependent coefficient and the

evolution for the velocity perturbation in (6.4) is given by

∂u′

∂t
+ Ulib · ∇u′ + u′ · ∇Ulib + 2

(
1 + ε sin(ft)

)
ẑ× u′ = −∇π′ + E∇2u′. (3.9)

By substituting the solutions for (u′, π′) into (3.9) and analyzing the resulting equations, we

seek to determine the conditions that are required on the coefficients aj such that they grow
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through time.

∑
j

eiλjt
{
∂aj
∂t

Φj + aj
[
Ulib · ∇Φj + Φj · ∇Ulib + 2ε sin(ft)(ẑ×Φj)

]
+ aj

(
iλjΦj + 2ẑ×Φj = −∇πj

)}
.

(3.10)

Here we have neglected viscous dissipation for simplicity. The last expression in parentheses

of (3.10) is zero using (3.8). To isolate
∂aj
∂t

, (3.10) is multiplied by an inertial mode u′∗k ∝
e−iλktΦ∗k and integrated over the entire fluid volume. Using the orthogonality of inertial

modes, the evolution of the coefficient ak is:

∂ak
∂t

= −
∑
j

aje
i(λj−λk)t

∫
Φ∗k
(
Ulib · ∇Φj + Φj · ∇Ulib + 2ε sin(ft)(ẑ×Φj)

)
dV. (3.11)

The libration driven non-axisymmetric base flow at frequency f with an azimuthal wavenum-

ber mlib = 2 may be written as Ulib ∝ e±i(mlibφ+ft)Ũlib(r, z) and the inertial mode as

Φj ∝ eimjφΦ̃j(r, z). Substituting these dependencies into (3.11) gives for ak

∂a1

∂t
= a2ei(λ2−λ1±flib)t

∫
ei(m2−m1±mlib)φ

(
ŨB · ∇Φ̃j + Φ̃j · ∇ŨB

+ 2ε sin(ft)(ẑ× Φ̃j)
)
dV,

(3.12)

and for the coefficient aj

∂a2

∂t
= a1ei(λ1−λ2±f)t

∫
ei(m1−m2±mlib)φ

(
ŨB · ∇Φ̃j + Φ̃j · ∇ŨB

+ 2ε sin(ft)(ẑ× Φ̃j)
)
dV.

(3.13)

For the growth of ak and aj to occur, the periodicity in time is removed by setting λj−λk±f =

0. The integral over the fluid volume is only non-zero for mj−mk±mlib = 0. These resonant

conditions are summarized as:

|mj −mk| = mlib,

|λj − λk| = f. (3.14)
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Importantly, the coupled equations show that the interaction of one of the inertial modes

u′k, (u
′
j) with the base flow Ulib reinforces the other inertial mode u′j, (u

′
k). To solve for

ak, we can take the time derivative of (3.12) and plugging in (3.13) to get a second order

temporal equation for ak that admits exponential solutions [e.g., Cébron et al. (2012a, 2014)].

An analogous equation can be made for aj. Since inertial modes exist within a frequency

from [−2, 2], the resonance condition in (3.14) allows for the existence of elliptical instability

in flows from |f | = 0− 4.

3.2.5 Growth Rates

While these conditions on the frequency and azimuthal wavenumber form a portion of the

global analysis of the LDEI, a complete analytical description of the inertial modes is still

needed for the large β of our present ellipsoidal geometry. One such method characterizes

the inertial modes by assuming a polynomial spatial description of space coordinates for the

velocity and decomposes the flow field into a set of basis vectors that satisfy the continuity

equation and boundary conditions [e.g., Gledzer and Ponomarev (1992); Vantieghem (2014);

Wu and Roberts (2009)]. While this method may be extended to any polynomial degree

n and thus characterize any coupling of inertial modes, the analytical expressions involved

quickly become very complex (e.g. see npoly = 6 in Wu and Roberts (2009), especially for

small-scale modes.

Instead, local stability analyses are used to derive analytical expressions of the growth

rate for the LDEI. The first approach, using a Wentzel-Kramers-Brillouin (WKB) [e.g., Le

Dizes (2000)] method for ε, β � 1, gives an upper bound for the growth rate by assuming

that short wavelength plane wave perturbations characterized by the wave vector k whose

norm |k| � 1 are advected along streamlines. The inviscid growth rate σinv is found by

solving the inviscid equations of motion to the first order in εβ:

σinv =
16 + f 2

res

64
βε (3.15)

where fres is a resonant forcing frequency [e.g., Cébron et al. (2012a)]. This method was
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confirmed in numerical simulations of the LDEI in Cébron et al. (2012b).

A second local WKB method uses a multiple scale analysis [e.g., Kevorkian and Cole

(1996)] of a multipolar instability for any ε in the limit that εβ � 1. The inviscid growth

rate solution is then given by

σinv =
16 + (jfres)

2

64

∣∣Jj−1(n∆ϕ) + Jj+1(n∆ϕ)
∣∣βε (3.16)

where Jj is the Bessel function of the first kind with integer j and the resonance condition is

written as |λ1−λ2| = jf [e.g., Cébron et al. (2014)]. The degree n of multipolar deformation

is taken to be n = mlib = 2 for the ellipsoid. This method was confirmed in the multipolar

stability analysis in a librating deformed cylinder and sphere in Cébron et al. (2014). A

general formula of the typical growth rate for each calculation of σinv is given for f around

the resonant forcing frequency [e.g., Cébron et al. (2012a)],

σTheory =
√
σ2
inv − (fres − f)2 −K

√
E (3.17)

The first term on the right hand side is the band of unstable frequencies about fres, and the

second term is the viscous dissipation in the Ekman boundary layer scaling as E1/2 where

K is a viscous dissipation factor typically between [1− 10].

The goal of our work here is to quantitatively validate all of the theoretical predictions

presented above: [1] the existence of the two-dimensional libration induced base flow in (3.5),

[2] the zonal flow generated by the non-linear self interaction of the base flow correction in

(3.6), and [3] the three-dimensional destabilization via LDEI by making velocity measure-

ments in the equatorial plane of a full ellipsoidal container at Ekman, E = 2 × 10−5. Our

work complements and extends the three-dimensional numerical simulations of Cébron et al.

(2012b), performed at larger E = 5 × 10−4, and the experimental analysis of Noir et al.

(2012) that made point velocity measurements in the half-ellipsoid.
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3.3 Method

3.3.1 Experimental Approach

Camera mounted 
in rotating frame

4 Lasers mounted 
in librating frame

Rotating Table

Ellipsoidal acrylic 
container

Oscillation 
Platform

Wednesday, May 28, 2014

Figure 3.2: The libration experimental apparatus. The high definition camera is shown in
top view position for PIV. The camera is also used in side-view for Kalliroscope visualizations
of meridional flows.

The experimental setup used in the present work is adapted from the same apparatus

used previously in Noir et al. (2009, 2010, 2012). Librational forcing is replicated using two

motors. The first motor rotates the turntable and super-structure at a constant angular

velocity of Ω0 = 30 rpm corresponding to E = 2 × 10−5. The second, which is directly

coupled to the acrylic cavity, superimposes a sinusoidal oscillation whose parameter range

is [∆φ, f ] = [0.05 − 2.5, 0.5 − 9]. The container used for this experiment is made from two

non-axisymmetric hemispheres machined from solid cast acrylic cylinders and polished for

optical clarity. The enclosed fluid cavity is ellipsoidal with a long axis a = 127mm and short

axes b = c = 89mm. Axis c is aligned with the axis of rotation and the equatorial ellipticity

is fixed in all our experiments at β = 0.34.
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To characterize meridional fluid motions, direct flow visualizations are performed by using

a laser light sheet, oriented along a vertical plane that passes through the container’s origin,

to light KalliroscopeTM particles suspended in the water. A Canon EOS 7D digital camera

with a resolution of 1080 × 720 pixels is positioned on the rotating table to the side of the

container to record movies of the meridional flow field at 60 frames per second.

To make quantitative measurements, a particle image velocimetry (PIV) technique is

employed in the rotating reference frame. Nearly spherical, 100 µm diameter OptimageTM

particles of density (1± 0.02g/cm3) are added to the water. Four laser light sheets are fixed

in the librating frame several millimeters above the equatorial plane due to the presence of

the joining seam for the two acrylic hemispheres. The camera is fixed in the rotating frame,

positioned overhead (i.e., Figure 5.2) in order to acquire 1080 × 720 resolution movies of

the horizontal flow field. These movies are made only after solid body rotation has been

reached; they are initiated at the start of oscillatory motion and the recordings are typically

12 minutes in duration. The camera is connected directly to a computer in the rotating

frame, which, in turn, is controlled remotely from the lab frame.

Additionally, the camera settings were optimized and physical masks were implemented

to produce well-resolved movies that could yield accurate PIV results. These movies are

separated into their constituent frames and passed through an open source PIV software,

DPIVSoft2010 [e.g., Meunier and Lewecke (2003)], that has been successfully employed in

previous [e.g., Sauret et al. (2010); Morize et al. (2010)]. The velocity field for an entire

equatorial plane is resolved into a 23x40 grid with a typical spatial resolution of 8mm. All

velocity measurements presented below have been non-dimensionalized using the long axis

length, a, and the steady rotational period Ω−1
0 .

3.4 Results

3.4.1 Base Flow

Figure 3.3.a shows an instantaneous PIV vector field of the elliptically deformed base flow

in the fluid interior induced by the topographic coupling of the librating non-axisymmetric
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boundary for f = 1.46, ε = 0.73. This comparison provides a qualitative match to the

bulk interior inviscid solution of the base flow [e.g., Kerswell and Malkus (1998)] in the

steadily rotating reference frame shown in Figure 3.1.b. For a quantitative comparison,

Figure 3.3.b shows a profile of the magnitude of the base flow velocity, |U |(squares), along

the X-axis(dashed black line in Figure 3.3.a) compared to the theoretical base flow(solid

black line) in Figure 3.3.b at the same phase of libration. The experimental results in

Figure 3.3.b follow the base flow trend while the velocity magnitudes are slightly above the

theoretical flow with an increase near the boundaries. This deviation is associated with

the axisymmetric flow generated through viscous non-linear interactions in the boundaries

driving a zonal flow.
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Figure 3.3: PIV data for f = 1.46, ε = 0.73. (a) Snapshot showing the libration induced
base flow and (b) the snapshot profile of the velocity magnitude |U | (squares) along the
X-axis (dashed black line in (a) with the theoretical base flow from (3.5) (black line).

3.4.2 Zonal Flow

An analysis of the zonal flow is performed for fixed f = 1.46 and E = 2×10−5 for six values of

ε in the range [0.146−1.022]. We make use of continuous PIV measurements in the equatorial

plane averaged over at least 50 libration cycles. Figure 3.4.a shows a time-averaged azimuthal

velocity Uφ/ε
2 contour plot. Since the system rotation is counter-clockwise, a mean zonal

flow in the bulk is clockwise (retrograde) in all cases studied. Figure 3.4.b clearly shows the
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Figure 3.4: (a) Zonal flow azimuthal velocity Uφ/ε
2 and (b) zonal flow radial velocity compo-

nent Ur/ε
2 for (f = 1.46; ε = 0.73) normalized by ε2. (c) Radial profile of the normalized az-

imuthal velocity profile Uφ/ε
2. (d) Comparison of spatially averaged 〈|Uφ|/r〉 from r ∈ [0.1 ∼

0.35] as a function of ε with theoretical values 〈|Uφ|/r〉 = 0.156ε2 from Busse (2010) (dashed
black line) and 〈|Uφ|/r〉 = 0.192ε2 from Sauret and Le Dizes (2013) (solid black line). Experi-
mental results (squares) for E = 2×10−5, f = 1.46; ε = 0.146, 0.292, 0.438, 0.584, 0.73, 1.022.

m = 2 structure in the time-averaged radial velocity Ur/ε
2 reflecting the mlib = 2 ellipsoidal

container.

Figure 3.4.c shows a linear collapse of the radial profiles of Uφ when normalized by ε2

indicating the presence of the theoretically predicted solid body rotation between r = [0.1 ∼
0.35] whose magnitude scales as ε2. Theoretical zonal flow radial profiles are taken from

Busse (2010) (black dot-dash line) and from Sauret and Le Dizes (2013) (solid black line).

Both theoretical flows include singularities around the critical cylindrical radius [e.g., Bondi

and Lyttleton (1953)], sc =
√

1− f 2/4 due to the exclusion of inertial modes for f ≤ 2. For

a spherical geometry, Busse (2010) assumes f, ε� 1 with sc = 1 while Sauret and Le Dizes

(2013) assumes that ε � 1 and sc = 0.68 for f = 1.46. Inertial modes generate internal
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shear layers whose affect on the zonal flow is still poorly understood. Thus solid body zonal

flow is expected for r � sc where the profiles are nearly linear and may help explain the

deviation of the experimental velocity profiles with the theoretical trends.

The linear collapse of the velocities for all cases studied between r = [0.1 ∼ 0.35] is

indicative of the presence of the theoretically predicted solid body rotation whose magnitude

scales as ε2 such that |Uφ| = αε2r where α is a prefactor. Figure 3.4.d shows the average

experimental values of the 〈|Uφ|/r〉 between r = [0.1 ∼ 0.35] at each ε. The same averaging

is performed for the theoretical profiles yielding α = 0.156 from Busse (2010) (black dot-dash

line) and α = 0.192 from Sauret and Le Dizes (2013) (solid black line). The experimental

values scale with ε2 in good agreement with the theoretical values attained in the spherical

geometry despite the rather large ε and f , and the finite equatorial ellipticity of the container

used in the experiment. The scaling of the minimum flow velocity with ε2 is indicative of

the possibility for shear instability as shown for tidal forcing experiments [e.g., Sauret et al.

(2014)]. However, this instability was shown to generate local turbulence and does not

explain the bulk interior turbulence observed in our experiments.

The universal quadratic scaling of the axisymmetric component of the zonal flow helps

explain the lack of dependence on the geometry found from the LDV measurements in Noir

et al. (2012). Those point measurements, on time-average at a fixed radius, remove any

non-axisymmetric component. Importantly, this data includes a transition from laminar to

turbulent flow, determined through side view-visualizations, that will be discussed in the

following sections. This transition occurs around f = 1.46; ε = 0.71 (vertical dashed line in

Figure 3.4.d).

3.4.3 LDEI

3.4.3.1 Libration Regime Diagram

By varying f ∈ [0 − 9] and maximizing the range of ε for each f , a regime diagram of

laminar(red open squares) and turbulent flows(closed blue diamonds) in the [f, ε] parameter

space is constructed in Figure 3.5.a. Note that we focus on the range f ∈ [0 − 5] in Figure
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Figure 3.5: (a) Laminar(open red squares) where I shows the case f = 1.46; ε = 0.292 is used
in Figure 3.6.I. Turbulent cases(blue-filled symbols) are found from f = 0 to f = 4(dashed
black line) and up to f = 4 + εβ(solid black line). The non-dimensional velocity Roeq and
associated Reeq for cases II-V is shown in Figure 3.6.II-V while the associated flow structures,
shown in Figure 3.7.II-V, are used for LDEI confirmation. (b) A fine scale diagram of the
box where turbulent flows are distinguished by separate coupled modes associated with
fres = 1.5(blue squares) and fres ∼ 1.6(blue triangles).

3.5.a since no turbulent flows were found in the range f ∈ [5−9]. The rectangle in the regime

diagram is magnified in Figure 3.5.b where, by fine variations in [f, ε] space, two separate

turbulent cases are distinguished as well the threshold of stability. The verification of the

LDEI is performed using cases f = 1.46, 1.5, 1.6, 2.4, 4 with ε = 1.022, 1.05, 1.12, 1.68, 0.8

respectively.

As the librational forcing frequency f and strength ε are varied, the libration driven

flows are separated by side-view direct visualization into laminar and turbulent flows. From

equatorial PIV analysis, measurements of the spatially averaged magnitude of the velocity are

non-dimensionalized using the long axis length a and steady rotational period Ω−1
0 . Thus, we

define an equatorial Rossby number, Roeq = 〈|U |〉, as the ratio of inertial to Coriolis forces.

Additionally, for fixed E = 2 × 10−5, an equatorial Reynolds number, Reeq = Roeq/E,

provides a measure of equatorial flow turbulence.

A comparison of laminar and turbulent flows are shown in Figure 3.6 with Roeq on the left

axis and associated Reeq on the right axis using four measurements per libration cycle filtered

over a moving window average over 10 librational periods with a 90% overlap. In side-view,
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Figure 3.6: Time evolution of the non-dimensional spatially averaged velocity Roeq = 〈|U |〉
and associated Reeq = Roeq/E using four points per libration cycle over 500 librational
periods where τlib = 2π/ωlib. The data is filtered using a moving average window over
10 libration cycles with a 90% overlap. I. The laminar case (f = 1.46; ε = 0.292). The
intermittently turbulent flows of II. (f = 1.46; ε = 1.022) and III. (f = 1.6; ε = 1.12), and
saturated turbulent flows of IV. (f = 2.4; ε = 1.68) and V. (f = 4; ε = 0.8).

laminar flows exhibit calm flow in the bulk interior and do not exhibit any vertical motions.

Figure 3.6.I shows the steady flow at f = 1.46; ε = 0.292 with no clear growth phase.

Turbulent flows exhibit three-dimensional motions with either intermittent or saturated

turbulence in the bulk interior. First, intermittently turbulent flows, as seen in side-view

and from studies Noir et al. (2012); Cébron et al. (2012b), are characterized by the growth

of the LDEI until the flow collapses after some time, leading to relaminarization and the

re-establishment of the base flow and, by extension, the LDEI itself becomes cyclic. Figure

3.6.II and 3.6.III show the intermittent turbulence in cases f = 1.46; ε = 1.022 and f =

1.6; ε = 1.12. After an initial growth phase, the intermittently turbulent cases show large

cycles of growth and collapse. For these two cases Roeq = [0.249, 0.299] with variances [2.3×
10−3, 2.6×10−3]. The strength of the resulting turbulence is Reeq = [1.2×104, 1.4×104]� 1
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emphasizing the strong turbulence generated.

Figure 3.6.IV and 3.6.V show the saturated turbulence in cases f = 2.4; ε = 1.68 and

f = 4; ε = 0.8. For these cases, after an initial growth phase, the cycles are smaller than

for intermittent turbulence and side-view visualizations show that once the bulk turbulence

is initiated, no clear cycles are visible. As such, the corresponding variances in these cases

are an order of magnitude smaller [3.05 × 10−4, 1.88 × 10−4] while the strong turbulence

persists with Reeq = [1.65×104, 6.25×103]� 1. However, a comparison of intermittent and

saturated turbulent flows in Figures 3.6.III, and 3.6.V shows the existence of qualitatively

similar cycles above the base state despite the clear distinction in side-view visualization

discussed. A more quantitative distinction between flows as well as the long term turbulent

evolution will be the subject of future studies. Values for Roeq and the variance for each case

studied are given in the appendix.

The existence of these turbulent flows span from f = 0 to f = 4 (dashed vertical line

in Figure 3.5.a) in agreement with the range provided by the resonant conditions, (3.14),

for the LDEI. Specifically, even if a direct resonant forcing were to exist, there can be no

direct forcing mechanism causing excitations in the range f ∈ [2 − 4]. As f is increased,

the growth rate increases following the WKB formulation of (3.17) and thus the stability

threshold separating laminar and turbulent flows decreases to a minimum at f = 4. Figure

3.5.b shows a finer scan of the stability threshold around f = 1.46 with an intermingling of

laminar and turbulent flows. By comparing the symmetry of the excited flow at f = 1.46,

discussed further in the next section, we distinguish separate symmetry properties from

the LDEI of other cases around fres ∼ 1.6 and track the excited LDEI for f = 1.46 to a

minimum at f = 1.5. Since the growth rate in (3.17) attains a maximum when f = fres,

the associated stability threshold also attains a local minimum. Thus, we find that the

LDEI associated with f = 1.46 has its source at fres = 1.5. As a consequence of the rather

large Ekman number used in our experiment, only selected resonances can occur and, as

the Ekman number is reduced, more resonances may be excited leading to transition from

the intermingling of laminar and turbulent states to a sharper boundary between the two as

seen in studies of tidal instability in Le Bars et al. (2010).
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Furthermore, excitations beyond f = 4 are associated with a higher order solutions in εβ

at the large ellipticity β of the container and the large librational forcing ε [e.g., Le Dizes

(2000)]. The large ε and β limit of instability is f = 4 + εβ + O(ε2β2) and the black line

associated with the limit is show in Figure 3.5.a as ε = (f − 4)/β and is confirmed by the

data. Additionally, the existence of many novel turbulent flows including f = 1, ε = 1, builds

upon the previous experimental work in the half-ellipsoid of Noir et al. (2012) that prevented

the growth of turbulent flows via elliptical instability of equatorially antisymmetric inertial

modes.

3.4.3.2 Mode Coupling

II

IV

III

V
Λ6,2,1

Λ2,±1,1 Λ8,±1,7

Λ3,1,2

Friday, October 17, 2014

Figure 3.7: Direct side-view visualization snapshots of the turbulent flow cases indicated
in Figure 3.5.a and Figure 3.6.II-V with II. (f = 1.46, 1.5; ε = 1.022, 1.05) III. (f = 1.6; ε =
1.12), IV. (f = 2.4; ε = 1.68), and V. (f = 4; ε = 0.8). Representative inertial modes, Λn,m,k

are taken from polar flattened spheroid calculations in Kerswell (1994). Movies for these
individual cases are available as a supplement to this work online (multimedia view).

Here we seek to demonstrate that the presence of bulk turbulent flow in our system is due

to the LDEI, i.e. to the resonance of two inertial modes with a libration induced base flow.
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To do so, we combine several techniques including the identification of the inertial modes

from side-view direct visualizations using Kalliroscope, and via Fourier analysis of filtered

reconstructions of the velocity fields and growth rate measurements from the equatorial plane

PIV data. Figure 3.7 (multimedia view) shows snapshots from side-view movies for four of

the distinct modes observed during the amplitude growth of the inertial mode. [Movies for

these cases are available as a supplement online] We use spheroidal inviscid modes, Λn,m,k,

from Kerswell (1994) to both look for modes with similar flow structures and symmetries and

find the simplest mode couplings. Here n is the degree of the associated Legendre polynomial

that combines the radial and axial wavenumbers, m is the azimuthal wavenumber for the

mode, and k represents the kth eigenfrequency. The general schematic for the dominant

modes with the largest frequency is superimposed in white on Figure 3.7.

The clearest determination of the mode and frequency coupling is provided using the

f = 4 case at the extreme range of the instability where we expect the participating modes

with eigenfrequencies |λ1,2| = f/2 = 2. First, the side-view visualization in Figure 3.7.V

shows a large number of structures stacked horizontally as might be expected from the inertial

wave dispersion relation for |λ1,2| = 2 where the wave vector is parallel to the rotation axis.

Second, Figure 3.8 shows the power spectrum of the velocity magnitude for f = 4 where

the strongest peaks are associated with the librational forcing frequency at f = 4, steady

zonal flow around f = 0, and the inertial modes at |λ1,2| = f/2. The filtered reconstruction

at this frequency shows that the base flow in Figure 3.8.c is in good qualitative agreement

with the libration driven base flow of Figure 3.1.b. A retrograde zonal flow snapshot is

reconstructed around the zonal wind frequency, f = 0, in Figure 3.8.a. Finally, the flow in

Figure 3.8.b, filtered around f = 2, is identified as an |m| = 1 inertial mode and the side

view helps us identify the spherical modes Λ8,1,7 and Λ8,−1,7 that exhibit a similarly large

vertical wavenumber and |m| = 1 near the equator.

For the LDEI in the f = 1.46, 1.5, 1.6, 2.4 cases, such a complete confirmation of the

resonance conditions is more complicated for several reasons. Figure 3.9.a shows the temporal

FFT for the case of f = 1.5 where two distinct inertial mode frequencies are found only by

carefully choosing the area of the PIV field to perform the FFT. These distinct frequencies
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Figure 3.8: : Power spectrum of the velocity magnitude for f = 4; ε = 0.8. (a) Steady
component with snapshot of filtered steady component of flow. (b) Snapshot of the filtered
m1,2 = |1| inertial mode at half the driving frequency λ1,2 = |f/2| satisfying the resonance
conditions. (c) The filtered snapshot of the librational base flow at the driving frequency f .

are found around λ1 ∼ 1.62 close to the driving frequency f and the second inertial mode

with frequency λ2 ∼ 0.12 close to the zonal wind frequency. Figure 3.7.II shows that the

mode excited around f = 1.46 and f = 1.5 is symmetric across both the equator and

the meridional axis. The dominant excited flow structures, as seen from the vertical cross-

section, are qualitatively similar to the mode Λ6,2,1 with the frequency closer to the driving

frequency and azimuthal wavenumber m = 2. A second possible mode, coupled to form the

LDEI, is similar to the inertial mode, Λ8,4,2, with a frequency close to zero with m = 4.

This low frequency mode is not clear in the Kalliroscope movies that only show strong shear

structures. Filtered flow reconstruction around the driving frequency cannot distinguish an
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Figure 3.9: Power spectrum of the velocity magnitude for (a)f = 1.5; ε = 1.05 and (b)f =
1.6; ε = 1.12 showing the most prominent peaks at the forcing frequency f and for the steady
component f = 0.

m = 2 or m = 4 mode because of its superimposition with the base flow driven by the m = 2

librational forcing. At the low frequency, an inertial mode cannot be clearly distinguished

from the zonal flow. However, further arguments in favor of the LDEI triadic resonance in

this case will be given below using the growth rate calculations.
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Figure 3.10: Comparison of snapshots for (a) the equatorial plane of the theoretical spherical
inviscid mode Λ3,1,2 and (b) the filtered reconstruction of the experimental equatorial flow
around the driving frequency with the even m = 2 symmetry removed for (f = 1.6, ε = 1.12).

For the f = 1.6 case, analysis of the FFT spectrum in Figure 3.9.b does not yield any
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additional peak aside from the zonal flow and forcing frequency. The side-view visualization

in Figure 3.7.III shows that the coupled modes are symmetric across the equator and anti-

symmetric across the meridian. This description is similar to m = 1 inviscid modes Λ3,1,2

near the forcing frequency and the possible coupling of the m = 3 mode, Λ5,3,1, closer to zero.

Since the librational forcing, m = 2, is even and the proposed mode coupling is odd, the

even symmetry is subtracted around the forcing frequency indeed revealing an m=1 mode

as shown in Figure 3.10. Figure 3.10.a shows the theoretical spheroidal mode Λ3,1,2 while

Figure 3.10.b shows the subtraction of the even symmetry around f = 1.6 in the PIV data,

revealing a separate odd symmetry associated with the excited inertial mode. The similarity

between the two images provides a qualitative verification for m = 1 inertial mode near the

driving frequency. No additional low frequency mode can be distinguished from the steady

zonal flow.

Finally, side-view visualizations indicate that the triadic resonance at f = 2.4 are due

to a coupling of spinover modes. Each mode is characterized by rotation about an axis

perpendicular to the rotation axis as indicated in Figure 3.7.IV. Because the velocity at the

equator is dominated by vertical motion, the PIV data taken of the horizontal velocity does

not provide a clear insight into the excited spinover mode coupling. The spinover inviscid

mode descriptions Λ2,1,1 and Λ2,−1,1 provide a qualitative analytical structural comparison

with Figure 3.7.III, while a polynomial decomposition of the spinover mode in Vantieghem

(2014) gives the inviscid inertial mode frequencies at |λ1,2| = 1.15, yielding fres = 2.3. This

value is close to the observed frequency f = 2.4.

In general, we find that the coupling of a mode near the libration forcing frequency

with a low frequency mode is always associated with the intermittent turbulence whose

velocity magnitude is shown in Figure 3.6.II and 3.6.III while the coupling of inertial modes

with frequencies ±f/2, including the spinover mode coupling, is associated with saturated

turbulence from Figure 3.6.IV and 3.6.V. Furthermore, the coupling of large scale inertial

modes for f = 1.46 and f = 1.6 are promoted by the large Ekman number in our experiment.

As the Ekman number is decreased toward planetary values, more resonance couplings excite

smaller scale modes that are the most unstable through the WKB analysis of the growth
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f ε fres εThresh KThresh(a)
σTheory
σData

(a) KThresh(b)
σTheory
σData

(b)

1.46 0.876 1.5 0.69-0.73 12.0-13.1 0.95-1.2 7.3-9.2 0.59-1.2
1.46 1.022 1.5 0.69-0.73 12-13.1 0.65-1.3 7.1-7.8 0.83-1.1
1.5 1.05 1.5 0.61-0.64 13.2-13.9 0.95-1.2 8.3-9.9 0.74-0.96
1.6 1.12 1.6 0.48-0.61 10.9-13.5 0.71-1.0 3.4-5.1 0.55-0.78

Table 3.1: Growth rates for the LDEI in f = 1.46, 1.5, 1.6; ε = 1.022, 1.05, 1.12 taking fres
and εThresh from the regime diagram in Figure 3.5.b σData is extracted from a fit of the
spatially averaged magnitude of velocity 〈|U |〉 filtered through a moving window average
over 10 libration cycles with an overlap of 90% (a) The comparison with the WKB stability
analysis from (3.15). (b) The comparison with the asymptotic multipolar stability analysis
from (3.16).

rates [e.g., Lacaze et al. (2004); Le Bars et al. (2010)]. In this sense, the small scale inertial

modes with frequencies ±f/2 excited by f = 4 case may be more relevant to planetary

applications.

3.4.3.3 Growth Rates

To verify the LDEI growth rate we focus on the f = 1.46, 1.5 and f = 1.6 cases where the

excited modes have non-zero horizontal velocities and the Fourier analysis is unconvincing.

The regime diagram in Figure 3.5 provides upper and lower bounds for the stability threshold

at each f . A fine regime diagram of the boxed-in area is shown in Figure 3.5.b. Using side-

view visualizations, the laminar and the separated turbulent cases associated with f =

1.46, 1.5 and f = 1.6 can be distinguished. Finding the threshold in the fine regime diagram

at f = 1.5 verifies that the resonant frequency associated with the f = 1.46, 1.5 is fres = 1.5

around εthresh ∈ [0.61− 0.64] and εthresh ∈ [0.69− 0.73] for f = 1.46. The threshold around

the resonant frequency for f = fres = 1.6 is εthresh ∈ [0.48− 0.61].

At the threshold of instability where σ = 0, by using σinv(fres, εthresh) in (3.15), we solve

for the dissipation factor K to get a range for Kthresh = K. By plugging this range into (3.17),

a range of values for σtheory is created. Separately, σData is calculated after filtering spatially

averaged PIV velocity magnitude of four points for every libration cycle using running average

over 10 libration cycles with a 90% overlap. To compare the theoretical growth rate with the

data, the growth phase is fitted to an equation of the form 〈|U |〉 = A + B eσData(t−t0) where
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A and B are fitting coefficients.

Table 3.1 shows the value range σTheory/σData and its range for f = 1.46, 1.5, 1.6 using (a)

a local WKB analysis using plane wave perturbations of (3.15) and (b) a separate multiple

scale asymptotic WKB analysis using (3.16). This finds good agreement between the theo-

retical growth rates using the local approaches and the measured growth rates for f = 1.46,

f = 1.5, and f = 1.6 where for perfect agreement σTheory/σData = 1 despite discrepancies

that result since neither ε � 1 nor εβ � 1 hold at the large experiments values used. The

error associated with the growth rate ratios stems from the noise from PIV signal in mea-

suring σData and in the determination of εthresh using Figure 3.5.b that is used to deduce

Kthresh.

3.5 Discussion and Concluding Remarks

In the present experimental study we have used a combination of direct flow visualizations

and PIV measurements in the equatorial plane to prove the existence of the libration driven

elliptical instability, LDEI, as the cause of intermittent and saturated space filling turbulence

in the interiors of an ellipsoidal container. To do so, we have explored the flow regimes found

in longitudinal libration in the (f,ε)-parameter space at a fixed Ekman number E = 2×10−5.

Our results confirm that the librationally induced base flow is established in the bulk and

is in good quantitative agreement with the theoretical base flow when transformed into the

steadily rotating frame. We have been able to quantitatively distinguish between laminar

flows and intermittent or saturated turbulent flows in the bulk interior. By analyzing the

zonal flow induced by the non-linear interaction of the librational forcing, we recover a

|Uφ| ∼ ε2 scaling behavior. We have found the presence of turbulent fluid motions from

f ∈ [0−4] in accordance with the theoretical limits of the resonance condition for the LDEI.

By choosing the most representative examples of the turbulent flows, we have used the

f = 4 case to verify the spatial and temporal resonance conditions and the f = 1.46, 1.5, 1.6

to verify the theoretical growth rate calculations.

While we have identified the essential characteristics of LDEI, several important ques-
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tions remain. The first open question is the origin of the difference between the onset of

intermittent and saturated turbulence. The analysis indicates that intermittently turbulent

flows are the generated through an LDEI having inertial modes near driving frequency, f and

at a low frequency inertial mode that may be obscured by the zonal flow. For cases where

saturated turbulence persists, the participating inertial modes have frequencies at ±f/2.

Secondly, due to current experimental difficulties, we have only measured the velocity in the

nearly equatorial plane and, thus, it is not possible to fully measure the energy associated

with turbulent three-dimensional motion.

Although our experimental parameters are far from planetary values, we have confirmed

the characteristics of the LDEI mechanism by compensating for large Ekman number with

the exaggerated equatorial ellipticity of our experimental container. As such, we may extrap-

olate from our current work to planetary settings using the growth rate formula (3.17) and

planetary values to provide a critical value for the equatorial ellipticity needed to generate

a planetary LDEI following Cébron et al. (2012b). By requiring a positive growth rate and

assuming perfect resonance f = fres, (3.17) is rewritten as βc > 64K
√
E/(16 + f 2

res)ε. Using

parameters for longitudinal libration where f = 1, E ∼ 10−14, ε ∼ 10−4 and a minimum

dissipation factor K = 1, the critical ellipticity is βc > 10−3 indicating that Io, Europa, and

telluric exoplanets CoRoT-7b, GJ1214b, and 55CnCe can support turbulent interior fluid

motions generated by LDEI [e.g., Cébron et al. (2012a)].

Furthermore, we find a lower bound on the amount of rotational energy injected into

the fluid layer through equatorial plane measurements at E = 2 × 10−5. For the saturated

turbulence driven in f = 4; ε = 0.8, from Figure 3.6.V, the percentage of rotational energy

injected into the fluid is Roeq
2
/2 ∼ 1% generating strong turbulence where Reeq = 6.25×103.

For celestial bodies where E ∼ 10−14, only a small percentage of the tremendous amounts of

spin-orbital rotational energy must be transmitted into the fluid layer to drive strongly tur-

bulent motions. These turbulent flows can lead to energy dissipation [e.g., Rieutord (2003)]

that effects the orbital evolution of these bodies [e.g., Le Bars et al. (2010)] and may drive

dynamo processes. Convectively driven planetary magnetic field generation suffers from tight

budget constraints [e.g., Verhoogen (1973); Pozzo et al. (2012)]. Such energetic limitations
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become more severe in smaller bodies [e.g., Nimmo (2009)]. However, our results suggest that

mechanically-forced orbital systems can harvest significant amounts of spin-orbital energy

to drive turbulent processes without the need for convection. Together with recent numer-

ical findings showing that mechanically forced instabilities can drive dynamos in precessing

spheres [e.g., Tilgner (2005)], spheroids [e.g., Wu and Roberts (2009)], in longitudinally-

librating systems [e.g., Wu and Roberts (2013)], and in tidal forced systems [e.g., Cébron

and Hollerbach (2014)], our results support the possibility that mechanical forcing leads to

dynamo generation in smaller bodies, like the early Moon [e.g., Le Bars et al. (2011)] and

asteroids [e.g., Fu et al. (2012); Tarduno et al. (2012)], explaining data that do not presently

fit into the standard model for convective dynamos.

3.6 Appendix A: Experimental Parameters

Table 3.2: Physical and dimensionless parameter definitions and their range of values in the
experiment

Parameter Definition Experiment
a long axis along x̂ 127 mm
b short axis along ŷ 89 mm
c short axis along ẑ 89 mm

Ω0/2π Mean rotation frequency 0.5 Hz
ωlib/2π Libration frequency 0.25 - 5.0 Hz ±0.1%
ν Kinematic viscosity 10−6 m2s−1

E Ekman number ν/(Ω0a
2) 2× 10−5

f ωlib/Ω0 0.5 - 9.0
∆φ Angular displacement 0.5 - 2.5 rad
ε (∆φ)f 0.06 - 2.4

β a2−b2
a2+b2

0.34

c c√
(a2+b2)/2

0.812

3.7 Appendix B: Experimental Data
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Table 3.3: Mean velocity magnitude and variance for laminar and turbulent flows and zonal
flow data from Figure 3.4.d.

f ε 〈|Uφ|/r〉 〈|U |〉 = Roeq 〈|U |〉var Bulk Int. Flow

1.46 0.146 0.005 0.025 2.04× 10−6 Laminar
1.46 0.292 0.02 0.057 6.95× 10−5 Laminar
1.46 0.438 0.05 0.152 8.62× 10−4 Laminar
1.46 0.584 0.08 0.2459 8.86× 10−4 Laminar
1.46 0.73 0.15 0.1931 7.44× 10−4 Intermit.
1.46 0.876 — 0.1234 1.00× 10−3 Intermit.
1.46 1.022 0.3 0.2489 2.3× 10−3 Intermit.
1.5 1.05 — 0.1681 1.40× 10−3 Intermit.
1.6 1.12 — 0.299 2.6× 10−3 Intermit.
2.4 1.68 — 0.3305 3.05× 10−4 Saturat.
4.0 0.8 — 0.125 1.88× 10−4 Saturat.
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Table 3.4: Experimental data from Figure 3.5 laminar and turbulent flows. Laminar, in-
termittent turbulence, and saturated turbulence are determined through side-view direct
visualization

f ε Bulk Int. Flows f ε Bulk Int. Flows f ε Bulk Int. Flows
1 0.7 Laminar 1.38 0.58 Laminar 2 1.2 Intermit.
1 0.8 Laminar 1.3 0.58 Laminar 2 0.6 Intermit.
1 0.9 Laminar 1.3 0.46 Laminar 2 1 Intermit.

1.2 0.84 Laminar 1.38 0.46 Laminar 3 0.3 Saturat.
1.2 0.96 Laminar 1.46 0.46 Laminar 3.5 0.35 Saturat.
1.2 1.08 Laminar 1.46 0.64 Laminar 4 0.4 Saturat.
1.2 1.2 Laminar 1.42 0.73 Laminar 3.5 0.175 Saturat.
1.46 0.876 Laminar 1.54 0.73 Laminar 4.2 0.84 Saturat.
1.46 0.584 Laminar 1.44 0.73 Laminar 4.4 1.32 Saturat.
1.46 0.438 Laminar 1.46 0.69 Laminar 0.5 1.25 Saturat.
1.46 0.292 Laminar 1.54 0.69 Laminar 4 0.8 Saturat.
1.46 0.146 Laminar 1.54 0.64 Laminar 3 0.6 Saturat.
1.6 0.48 Laminar 1.48 0.73 Laminar 2.4 1.992 Saturat.
1.6 0.32 Laminar 1.48 0.69 Laminar 2.4 2.4 Saturat.
1.6 0.16 Laminar 1.34 0.876 Laminar 2.4 0.48 Saturat.
2 0.4 Laminar 1.34 0.82 Laminar 2.4 1.2 Saturat.
4 0.08 Laminar 1.38 0.82 Laminar 0.5 1.44 Saturat.

3.5 0.07 Laminar 1.42 0.78 Laminar 0.5 1.1 Saturat.
3 0.06 Laminar 1.6 0.48 Laminar 0.5 1 Saturat.
3 0.15 Laminar 1.52 0.69 Laminar 0.5 0.9 Saturat.

4.2 0.21 Laminar 1.52 0.64 Laminar 2 0.8 Intermit.
4.2 0.42 Laminar 1.56 0.64 Laminar 0.74 0.82 Saturat.
4.4 0.88 Laminar 1.58 0.64 Laminar 0.74 0.9768 Saturat.
4.4 0.44 Laminar 1.38 0.64 Laminar 1.5 1.05 Intermit.
4.4 0.22 Laminar 1.48 0.64 Laminar 1.46 0.73 Intermit.
4.6 0.23 Laminar 1.38 0.78 Laminar 2 1.2 Intermit.
5 0.25 Laminar 1.48 0.61 Laminar 1.5 0.73 Intermit.

5.5 0.275 Laminar 1.46 0.58 Laminar 1.38 0.876 Intermit.
6 0.3 Laminar 1.5 0.61 Laminar 1.5 0.64 Intermit.

6.6 0.33 Laminar 1.52 0.61 Laminar 1.5 0.69 Intermit.
7 0.35 Laminar 1.56 0.61 Laminar 1.46 0.876 Intermit.
8 0.4 Laminar 2.4 0.12 Laminar 1.5 0.82 Intermit.
9 0.45 Laminar 2.4 0.24 Laminar 1.42 0.876 Intermit.
5 0.5 Laminar 2.6 0.442 Saturat. 1.5 0.876 Intermit.
6 0.6 Laminar 2.76 0.4692 Saturat. 1.42 0.82 Intermit.
7 0.7 Laminar 3 0.51 Saturat. 1.46 0.78 Intermit.
5 1 Laminar 3.5 0.595 Saturat. 1.5 0.78 Intermit.

0.5 0.5 Laminar 4 0.68 Saturat. 1.52 0.73 Intermit.
0.5 0.45 Laminar 1.46 1.022 Intermit. 1.5 0.73 Intermit.
0.5 0.4 Laminar 1.6 1.12 Intermit. 1.38 0.876 Intermit.
0.5 0.35 Laminar 2 1.4 Intermit. 1.5 0.64 Intermit.
2.4 0.12 Laminar 2.4 1.68 Saturat. 1.5 0.69 Intermit.
2.4 0.24 Laminar 1.8 1.26 Intermit. 1.46 0.876 Intermit.
0.74 0.675 Laminar 1 1 Intermit. 1.5 0.82 Intermit.
1.38 0.73 Laminar 1.46 0.876 Intermit. 1.42 0.876 Intermit.
1.3 0.73 Laminar 1.6 0.96 Intermit. 1.5 0.876 Intermit.
1.26 0.73 Laminar 1.6 0.8 Intermit. 1.42 0.82 Intermit.
1.5 0.58 Laminar 1.6 0.64 Intermit. — — —
2.4 0.12 Laminar 4 0.16 Intermit. — — —
2.4 0.24 Laminar 1.46 0.73 Intermit. — — —
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CHAPTER 4

Generation and maintenance of bulk turbulence by

libration-driven elliptical instability

Reproduced from: B. Favier, A. M. Grannan, M. Le Bars, and J. M. Aurnou. Phys. Fluids,

27(6):066601, 2015.

In this work, I performed and analyzed the laboratory experiments used to compare with

high resolution numerical simulations, performed by Benjamin Favier, of LDEI in identical

ellipsoidal geometries. The onset of instability is described first by a discrete frequency

response of the base flow and excited inertial modes and culminates in a continuous energy

spectra as the strength of the viscous force is decreased and turbulence is generated. At

nearly identical values of the Ekman number, the numerical simulations verify the measured

flow velocities of the turbulent flow and the steady zonal flow enhanced by the LDEI described

in Chapter 3. I contributed to the writing of the experimental method in Section 4.4.

4.1 Introduction

The role of turbulence is critical in geophysical flows as it contributes to the mixing of

chemical species and temperature, can enhance the viscous dissipation of energy or lead to

dynamo action for example. A conventional approach to sustain turbulent motions in the

internal fluid layers of planets or satellites is to consider the continuous action of unstable

entropy or compositional gradients associated with secular cooling and solidification. While

this scenario has been very successful in explaining planetary magnetic fields [e.g., Jones

(2011)], some celestial objects might be too small for thermo-solutal convection to be the

only plausible source of motion (see for example Le Bars et al. (2011) and Dwyer et al. (2011)

84



for the Moon). A complementary mechanism has been proposed and relies on large-scale

mechanical forcings to drive intense turbulent motions in the interiors of planets or satellites

Kerswell and Malkus (1998). Gravitational interactions between an orbiting body and its

primary partner distort the shape of both bodies and give rise to periodic mechanical forcings

such as precession, tides, and libration[e.g., Le Bars et al. (2015)]. While several studies have

already demonstrated the dynamo capability of the flows resulting from these forcings [e.g.,

Tilgner (2005); Wu and Roberts (2013); Cébron and Hollerbach (2014)], our understanding

of the basic properties of these turbulent flows is still lacking.

This paper focuses on longitudinal libration, where the body’s rotation rate undergoes

periodic oscillations about its orbital rate [e.g., Comstock and Bills (2003)]. Early works

focused on the libration of axisymmetric containers such as cylinders or spheres, which can

lead to centrifugal instabilities [e.g., Noir et al. (2009); Calkins et al. (2010); Lopez and

Marques (2011)] and stationary zonal flows caused by non-linear interactions in the Ekman

boundary layers [e.g., Wang (1970); Sauret et al. (2010, 2012); Noir et al. (2012); Sauret

and Le Dizes (2013)]. In the case of non-axisymmetric containers, the coupling between

the solid boundaries and the fluid is not only viscous, as in axisymmetric cases, but also

of a topographic nature. Although librational forcing cannot directly excite eigenmodes

of the system through a direct resonance in the inviscid case [e.g., Zhang et al. (2011);

Chan et al. (2011)], it has been shown that three-dimensional flows can be driven by the

resonance of two inertial modes with an elliptically-deformed base flow [e.g., Kerswell and

Malkus (1998); Cébron et al. (2012a,b); Grannan et al. (2014)], the so-called libration-driven

elliptical instability (LDEI).

More generally, the elliptical instability [e.g., Kerswell (2002)] is a resonance mechanism

between a pair of normal modes of the system and the underlying strain field associated

with regions of two-dimensional, elliptical streamlines. Although it has been demonstrated

that the instability ultimately leads to small-scale disorder both experimentally [e.g.,Malkus

(1989)] and numerically [e.g., Lundgren and Mansour (1996); Schaeffer and Le Dizes (2010),

our theoretical understanding of this process is mostly limited to the initial exponential phase

of the instability mechanism [e.g., Mason and Kerswell (1999)]. The eventual collapse of the
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excited inertial modes and the properties of the small-scale flow resulting from it are still

not well understood. This turbulent regime in closed geometries has been barely considered

mainly for technical reasons: it is difficult to obtain reliable laboratory measurements of

the small-scale flow and numerical simulations are rare due to the difficulty in considering a

large-scale non-axisymmetric geometry and a small-scale turbulent flow at the same time.

In order to improve our understanding of the elliptical instability and its possible ap-

plications to geophysical flows, we focus on the properties of the turbulence generated by

such an instability driven by the libration of an ellipsoidal container. Our paper builds

upon the recent laboratory experimental work by Grannan et al. (2014), where quantitative

measurements were only available for the horizontal flow in the equatorial plane. We there-

fore complement their experimental results with high-resolution direct numerical simulations

(DNS), from which a complete three-dimensional description of the flow is available. The

paper is organized as follows. The model, numerical approach and experimental setup are

described in Sections 4.2, 4.3 and 4.4 respectively. Our results are discussed in Section 5.5,

where we focus on the transition to turbulence and the properties of the turbulence itself.

4.2 Model and equations

We consider the flow of an incompressible fluid with constant kinematic viscosity ν inside a

rigid ellipsoid whose surface is defined by the Cartesian equation

x2

a2
+
y2

b2
+
z2

c2
= 1 . (4.1)

The equatorial ellipticity of the container is defined as

β =
a2 − b2

a2 + b2
. (4.2)

The ellipsoid is rotating around the vertical axis ẑ with a time-dependent frequency Ω given

by

Ω(t) = Ω0 + ∆φ ωl sin(ωlt) (4.3)
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where Ω0 is the main rotation rate, ∆φ is the libration amplitude and ωl is the libration

frequency.

In this paper, we work in a frame of reference that is attached to the walls of the container,

referred to as the librating frame in the following. The solid boundaries of the ellipsoid are

fixed in that frame, which is advantageous from a numerical point of view. The equations of

motion in the librating frame are

∂u

∂t
+ u · ∇u+ 2

[
1 + ε sin (ft)

]
ẑ × u︸ ︷︷ ︸

Coriolis

= −∇Π + E∇2u−εf cos(ft)ẑ × r︸ ︷︷ ︸
Poincaré

(4.4)

∇ · u = 0 , (4.5)

where we use the semi-major axis a as a length scale and Ω−1
0 as a time scale. The librating

frame is a non-inertial frame so that two fictitious forces appear in equation (4.4): the

Coriolis force which depends on the total rotation vector Ω(t)ẑ and the Poincaré force which

depends on its time derivative. Π is the modified pressure taking into account the time-

dependent centrifugal acceleration. The Ekman number is E = ν/(Ω0a
2), f = ωl/Ω0 is the

dimensionless libration frequency and ε = ∆φ f is the libration forcing parameter. We only

consider the case of no-slip boundary conditions.

In this paper, we study this system using both experimental and numerical approaches.

Our geometrical parameters are similar to the ones considered by Grannan et al. (2014).

In particular, the ellipsoid is characterized by a fixed equatorial ellipticity of β = 0.34 (see

Section 4.5.6 though), which corresponds in our dimensionless units to a semi-major axis

a = 1 and b = 0.7 and the aspect ratio c/b is equal to one. We explore Ekman numbers

between 10−3 < E < 2× 10−5 and consider the librating frequencies f = 4 and f = 2.4. In

order to focus on the parametric excitation of inertial modes, we only consider cases where

f > 2 so that the direct excitation of inertial modes, for which the frequency of the forcing

matches the frequency of an inertial mode, is not possible. The different simulations and

experiments considered in this paper and the corresponding parameters are summarized in

Table 4.1.
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Table 4.1: Summary of the experimental (case Exp., corresponding to case V in Grannan
et al. (2014)) and numerical parameters considered in this study. E is the Ekman number, E
is the number of elements, N is the order of the Legendre polynomials, f is the normalized
libration frequency, ε is the libration amplitude, Urms is the root mean square velocity defined
by equation (4.11), l0 is the integral length scale defined by equation (4.14), ReL and Rel are
the large-scale and small-scale Reynolds numbers respectively defined by equations (4.13)
and (4.15), Ro is the small-scale Rossby number defined by equation (4.16). Case A1 is
stable whereas all other cases are unstable.

Case E E N f ε β Urms l0 ReL Rel Ro
Exp. 2× 10−5 − − 4 0.8 0.34 − − − − −

A1 10−3 1280 7 4 0.8 0.34 − − − − −
A2 5.5× 10−4 1280 11 4 0.8 0.34 0.060 0.16 110 18 0.19
A3 5× 10−4 1280 11 4 0.8 0.34 0.064 0.16 128 20 0.2
A4 3.5× 10−4 3200 7 4 0.8 0.34 0.067 0.13 191 25 0.26
A5 2× 10−4 3200 11 4 0.8 0.34 0.072 0.12 360 43 0.3
A6 10−4 3200 15 4 0.8 0.34 0.076 0.1 760 76 0.38
A7 5× 10−5 3200 23 4 0.8 0.34 0.085 0.08 1700 136 0.53

B1 10−4 3200 13 4 0.8 0.17 0.043 0.12 430 52 0.18
B2 10−4 3200 13 4 0.8 0.26 0.060 0.11 600 66 0.27

C1 10−4 3200 13 2.4 1.2 0.34 0.28 0.2 2800 560 0.7
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4.3 Numerical method

We solve the fully three-dimensional equations (4.4)-(4.5) in their weak variational form

[e.g., Fischer et al. (2007)] with the spectral element code Nek5000 (http://nek5000.mcs.

anl.gov) developed and supported by Paul Fischer and collaborators (see Fischer et al.

(2007), and references within). Since the spectral element method combines the geometric

flexibility of finite element methods with the accuracy of spectral methods, it is particularly

well adapted to our problem involving turbulent flows in complex non-axisymmetric geome-

tries. Nek5000 has for example already been used in the context of tidally-forced rotating

flows [e.g., Favier et al. (2014b)]. The computational domain is decomposed into E non-

overlapping hexahedral elements, and within each element, unknown velocity and pressure

are represented as the tensor-product Lagrange polynomials of the order N and N −2 based

at the Gauss-Lobatto-Legendre and Gauss-Legendre points respectively. The convergence is

algebraic with increasing number of elements E and exponential with increasing polynomial

order N . The number of degrees of freedom for each velocity component is scaling as N3E .

For all the simulations discussed in this paper, numerical convergence was checked by fixing

the number of elements E and increasing the degree N of the polynomial decomposition.

The temporal discretization in Nek5000 is based on a semi-implicit formulation in which the

nonlinear and rotation terms are treated explicitly in time and all remaining linear terms

are treated implicitly. Note that our solution is dealiased following the 3/2 rule for an exact

evaluation of quadrature of inner products for non-linear terms. The code is efficiently par-

allelized using MPI, and we use up to 480 processors for the highest resolution considered

in this paper.

The whole ellipsoid is discretized using 1280 or 3200 elements. The mesh is a combination

of a Cartesian mesh close to the origin and a spherical mesh close to the external boundary,

as shown in Figure 4.1. The boundary geometry is initially spherical with a unit external

radius centered around the origin and with a denser element distribution close to the external

boundary. This, in addition to the Gauss-Lobatto-Legendre points distribution close to the

element boundaries, ensures an appropriate resolution of the Ekman boundary layers with
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Figure 4.1: Cut through the complete three-dimensional ellipsoidal mesh with 3200 elements
and a polynomial order of N = 7 (left) and N = 23 (right). The equatorial deformation is
β = 0.34.

approximately ten grid points to describe them in all cases. Due to numerical limitations

in terms of resolution, we can only consider flows down to E = 5 × 10−5. The ellipsoidal

grid point positions (xe, ye, ze) are obtained from the initial spherical grid points (xs, ys, zs)

according to (xe, ye, ze) = (axs, bys, czs). Using this mapping approach, we can consider

values of the ellipticity up to β ≈ 0.5. Larger value of β would lead to overly stretched

elements with poor convergence properties, so that another type of mesh would have to be

used in that case. An example of the mesh for two different polynomial orders N is shown

in Figure 4.1.

4.4 Experimental setup

The experimental setup used in the present work is adapted from the same apparatus used

previously in several studies [e.g., Noir et al. (2009, 2010, 2012); Grannan et al. (2014)].

The fluid cavity, contained within a solid cast acrylic cylinder, is ellipsoidal with a long

axis a = 127mm and short axes b = c = 89mm, leading to a fixed equatorial ellipticity of

β = 0.34. A first motor rotates the turntable at a constant angular velocity Ω0 = 30 rpm

(corresponding to an Ekman number of E = 2×10−5 for water). The second motor, situated

on the turntable, is directly coupled to the acrylic container and superimposes a sinusoidal
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oscillation whose parameter range is [∆φ, f ] = [0.05− 2.5, 0.5− 9].

A particle image velocimetry (PIV) technique in the rotating reference frame is employed

to obtain quantitative measurements in a horizontal plane close to the equator. The laser

light sheet is horizontal and the camera is positioned above the system. PIV measurements

are made only after solid body rotation has been reached and the librating forcing is turned

on. The velocity field for an entire equatorial plane is resolved into a 23 × 40 grid with a

typical spatial resolution of 8mm. More details about the experimental setup and results

can be found in Grannan et al. (2014).

4.5 Results

In this paper, we focus mostly on the particular case where the librating frequency is f = 4

and the libration amplitude is ε = 0.8 for both the laboratory experiment and the simulations.

This corresponds to case V of Grannan et al. (2014). The reason why we focus on the case

f = 4 is the following. The simplest determination of the mode and frequency coupling

is provided by the f = 4 case at the extreme range of the instability where we expect the

participating modes to have an eigenfrequency |ω| ≈ f/2 = 2 (Although inertial modes with

|ω| = 2 exactly do not exist in the inviscid limit, viscous modes with frequency close to

but below 2 can be excited through imperfect resonances, as discussed into more details in

section 4.5.4). Inertial modes with a dimensionless frequency |ω| ≈ 2 are easy to identify

since their group velocity is nearly horizontal. Finally, it has been experimentally observed

that the case f = 4 leads to a sustained quasi-steady state of turbulence [e.g., Grannan et al.

(2014)], which is easier to characterize and is the main focus of this paper. Note however

that the intermittent regime is briefly discussed in Section 4.5.6 whereas other frequencies

are considered in Section 4.5.7.

For the numerical simulations, the Ekman number is varied from E = 10−3 down to E =

5× 10−5, whereas the experimental setup is characterized by E = 2× 10−5. The simulations

are initialized with a fluid at rest, but results are qualitatively the same with random velocity

perturbations of small amplitude. A summary of the numerical input parameters can be
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Figure 4.2: Left: time evolution of the volume-averaged squared vertical velocity given by
equations (4.7)-(4.8) for cases A1 to A7. Right: zoom on the early stage of the instability
shown by the dotted contour on the left panel. The inviscid theoretical growth rate ∝
exp(2σinvt) as defined by equation (4.9) is plotted as a dotted line. The arrows indicate
the times at which the enstrophy is visualized in Figure 4.3. In all cases, the results are
time-averaged over each libration period according to equation (4.8).

found in Table 4.1.

4.5.1 General properties

The general properties of the flows observed experimentally have already been discussed by

Grannan et al. (2014), so that we focus here on the new numerical results. The base flow,

driven by the Poincaré force and only accounting for the non-penetrative condition on the

solid boundaries, is [e.g., Kerswell and Malkus (1998); Cébron et al. (2012b)]

Ub = −ε sin (ft)
[
ẑ × r − β∇xy

]
. (4.6)

This flow is purely horizontal so that any departure from it, being due to viscous effects close

to the boundaries or due to instabilities, will be observable in the vertical component of the

velocity. We first consider the volume average of the squared vertical velocity component

defined as

Ez(t) =
1

2V

∫
V

u2
z dV (4.7)
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where V is the total volume of the ellipsoid and uz is the vertical velocity component. Note

that this quantity is not accessible in the experimental apparatus since the PIV measurements

are limited to the horizontal components of the flow in the equatorial plane only. In addition

to the volume average defined previously, we also consider quantities averaged over one

libration period according to

A(t) =
1

T

∫ t+T

t

A(τ) dτ , (4.8)

where T = 2π/f is the librating period. Because the statistics discussed here evolve over

hundreds of librating periods, looking at the time evolution of period-averaged quantities is

much clearer since the oscillating contribution from the base flow is removed.

We show in Figure 4.2 the time evolution of the volume- and period-averaged squared

vertical velocity Ez(t) for cases A1 to A7 as defined in Table 4.1. The only physical parameter

that is varied between these cases is the Ekman number E. At very early times, the very

low steady values (typically of order 10−5) of squared vertical velocity scaling as
√
E are

associated with the viscous corrections to the base flow given by equation (4.6) in order to

match the no-slip boundary condition. Note that for the smallest Ekman number considered

here (case A7, E = 5 × 10−5), we do not reach a steady base state before the instability

develops. For all cases apart from case A1 (E = 10−3), we then observe an exponential

growth rate followed by a nonlinear overshoot and a steady or quasi-steady saturation of

the squared vertical velocity. Case A1 is stable and we do not observe any modifications

of the base flow even after thousands of librating periods. It has been previously shown

that this exponential growth phase is associated with the elliptical instability [e.g., Cébron

et al. (2012b); Grannan et al. (2014)]. A Wentzel-Kramers-Brillouin local stability analysis,

valid in the regime ε � 1 and β � 1, leads to the following inviscid growth rate for the

libration-driven elliptical instability [e.g., Le Dizes (2000); Cébron et al. (2014)

σinv =
16 + f 2

res

64
εβ , (4.9)

where fres is the resonant forcing frequency at which the frequencies of the two inertial modes
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involved exactly follow the relation |ω1 − ω2| = fres. In the general viscous case and away

from perfect resonances (i.e. f 6= fres), the growth rate is reduced and given by Cébron et al.

(2012a),

σ =

√
σ2

inv − (fres − f)2 −K
√
E, (4.10)

where K is a constant factor of order unity. The last term on the right-hand side of equa-

tion (4.10) is due to viscous dissipation in the Ekman boundary layers, and is the reason why

we have to consider sufficiently large values of β and ε since we are limited to moderately low

values of the Ekman number. As expected from these theoretical predictions, the growth

rate of the instability observed in Figure 4.2 increases as the Ekman number decreases, and

eventually tends towards the inviscid growth rate (4.9) with fres = 4. The right panel in

Figure 4.2 shows this exponential phase and compares it against the inviscid growth rate

given by equation (4.9) (multiplied by two since we consider the squared vertical velocity).

A more detailed comparison between theoretical predictions and numerical simulations can

be found in Cébron et al. (2012b).

After the exponential phase, the nature of the saturation depends on the Ekman number.

For cases A2 and A3, the saturation leads to a steady-state characterized by a constant value

of the volume- and period-averaged squared vertical velocity. For cases A4 to A7, a quasi-

steady state is obtained but significant fluctuations are observed. We also observe a strong

overshoot, followed by a phase of gradual increase in the vertical energy until a quasi-steady

state is eventually reached. Apart for the large E cases A2 and A3, we also observe a low

frequency modulation of the signal with a typical period of 30 librating periods. The period

of these low-frequency oscillations does not depend on the Ekman number for the values

considered here. Finally, note that the amplitude of saturation of the instability increases

as the Ekman number decreases. This has already been discussed in Cébron et al. (2012b,

2014) and our results are consistent with their conclusions, where the amplitude A of the

saturation scales as the square-root of the distance to the threshold A ≈
√
Ec/E − 1 where

Ec is the critical Ekman number below which the elliptical instability grows.

A volume rendering of the enstrophy is shown in Figure 4.3 (multimedia view) for the
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Figure 4.3: Volume rendering of the enstrophy in the bulk of the ellipsoid (the boundary
layers are removed from the visualization) for case A6. We visualize the flow just during
the exponential growth of the instability (left, t = 68, see I in Figure 4.2), during the first
collapse (middle, t = 75, see II in Figure 4.2) and during the quasi-steady saturated state
(right, t = 200). A first movie is available as a supplement (multimedia view) showing the
collapse of the inertial modes from t ≈ 68 to t ≈ 78 in the librating frame. It can be compared
with a similar movie (presented in the frame rotating at constant rate Ω0 and not in the
librating frame)corresponding to case V in Grannan et al. (2014) (http//dx.doi.org/10.
1063/1.4903003.4). A second movie showing the quasi-steady regime (186 < t < 196) is
also available (multimedia view).

case A6 with E = 10−4. We consider three different times: an arbitrary time during the

exponential phase, just before the first overshoot and, finally, during the quasi-steady state.

During the exponential phase, the flow is characterized by three components: the base flow

given by equation (4.6), the zonal flow (discussed in Section 4.5.3 below) and the inertial

modes. The layered structures observed in the left panel of Figure 4.3 corresponds to the

dominant |ω| . 2, m = 1 inertial modes resonating with the base flow. When the instability

first saturates (see Figure 4.3 II), a sudden wave breaking event occurs, leading to intense

three dimensional motions. Finally, in the quasi-steady state, a sustained inhomogeneous

state of bulk turbulence is observed. The initial collapse of the inertial modes and the

quasi-steady saturated state are best visualized by the two movies in Figure 4.3 (multimedia

view).

We now define various dimensionless numbers to describe the nature of our solutions.

The typical velocity of the small-scale flow is estimated as

Urms =
√〈

(u−Ub)
2〉

bulk
(4.11)
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where Ub is the base flow defined by equation (4.6) and 〈.〉bulk denotes the volume average

over the bulk of the flow. Similarly to Cébron et al. (2014), the bulk is obtained by removing

the contribution from the viscous boundary layer by assuming that their thickness is of order

Wang (1970)

δ =

√
2E

f
. (4.12)

First, a large-scale Reynolds number, based on the semi-major axis of the ellipsoid and the

root-mean-square velocity, is defined using our dimensionless units as

ReL =
Urms

E
. (4.13)

In addition, we also quantify the small-scale Reynolds number based on the fluctuations

generated by the instability. In order to measure the typical length scales associated with

the fluctuations, we defined the correlation length scale of the vertical velocity in the bulk

of the domain as

l0 =

∫ r0

0

〈uz(x)uz(x+ rei)〉bulk

〈u2
z(x)〉bulk

dr (4.14)

where the integral of the correlation function is carried out up to the first zero-crossing

only. We only consider the transverse correlations (where we average over both horizontal

directions) of the vertical velocity since the horizontal components are dominated by the

presence of large-scale inertial modes (see Section 4.5.4 below). The small-scale Reynolds

number is then defined as

Rel =
Urmsl0
E

. (4.15)

Finally, the Rossby number associated with the instability is given in our dimensionless units

by

Ro =
Urms

2l0
. (4.16)

The values of these dimensionless numbers, time-averaged during the quasi-steady saturated

phase, are gathered in Table 4.1. In all cases, the large-scale Reynolds number is very large,

but note that for all cases considered in this section, we did not observe a destabilization of

96



Figure 4.4: (a) Time evolution of the power injected by the Poincaré force and the viscous
dissipation for case A6. Values are normalized by the averaged power input P0 before the
instability develops. (b) Viscous dissipation rate normalized by its value associated with the
base flow only.

the boundary layers due to centrifugal instabilities for example. The small-scale Reynolds

number is however much smaller, which explains why the unstable cases A2 and A3 remain

laminar even in the presence of the instability. As the Ekman number is decreasing further,

Rel is rapidly increasing up to 136 for case A7 which implies that the small-scale flow is in a

developed turbulent state. Finally, the Rossby number is gradually increasing as the Ekman

number decreases but is always smaller than unity. This indicates that the fluctuations

associated with the instability are significantly affected by rotation in all the cases considered

here.

4.5.2 Energetics

Taking the dot product of the velocity with equation (4.4) divided by two leads to the

equation for the total kinetic energy

∂K

∂t
= −εf cos (ft)

2

∫
V

u · (ẑ × r) dV︸ ︷︷ ︸
P

− E
2

∫
V

ω2dV︸ ︷︷ ︸
D

(4.17)

where K is the volume averaged kinetic energy, the first term on the right-hand side is

the power injected by the Poincaré force and the last term is the viscous dissipation. The
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advection term and the Coriolis terms do no work and the pressure contribution vanishes

since the normal component of the velocity is zero at the boundary in the librating frame.

In the frame rotating at constant rate Ω0, there is no Poincaré force since the frame rotation

vector is steady. The pressure term does not vanish however, since the external boundary

is moving. Figure 4.4 shows an example of the time evolution of both quantities P and D
for case A6, normalized by the averaged value of the power injected before the instability

develops and temporally averaged over each libration period. As expected, the steady base

flow is maintained by an exact balance between the power injected by the Poincaré force

and the viscous dissipation. As the instability develops, we first observe an increase in the

power injected, followed by an increase in the dissipation. The peak of viscous dissipation

occurs approximately 5 libration periods after the peak in power. This lag in the dissipation

remains the same as the instability saturates, and does not depend on the Ekman number

for the parameters considered here.

We now describe the effect of the instability on the overall viscous dissipation. The

volume-averaged viscous dissipation is first estimated before the instability develops. In

this case, the dissipation is mostly concentrated in boundary layers where the base flow is

forced to match the no-slip boundary condition on the ellipsoid surface. Again, we use the

period average defined by equation (4.8) to obtain the average dissipation over each librating

period. Figure 4.4(b) shows the time evolution of the viscous dissipation normalized by its

value during the initial state where the base flow is dominating the dynamics. The instability

is characterized by a significant increase in the volume-averaged viscous dissipation. This

additional dissipation takes place in the bulk of the fluid domain, and is not associated with

boundary layers. Again, the quasi-steady value of the viscous dissipation measured during

the saturated phase increases when the Ekman number is decreasing, as discussed in Cébron

et al. (2014).
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4.5.3 Enhanced zonal flows

Even without the presence of the elliptical instability, librating flows are known to drive

persistent zonal flows [e.g., Busse (2010); Calkins et al. (2010); Noir et al. (2012); Sauret

et al. (2013)]. The amplitude of this zonal flow does not depend on the Ekman number and

scales as ε2. Here, we discuss the effect of the libration-driven elliptical instability on such

zonal flows for the case f = 4.

We assume that the zonal flow is dominated by its azimuthal component in cylindrical

coordinates and that it is mostly varying in the cylindrically-radial direction. We therefore

define the zonal flow as

〈Uφ〉c (ρ) =
1

Nρ

∑
z

∑
φ

∑
ρ− dρ

2
<ρ<ρ+ dρ

2

Uφ(ρ, φ, z) , (4.18)

where Nρ is the total number of grid points lying inside the cylindrical shell and dρ is the

width of the cylindrical shell. Here we average the azimuthal flow over 30 different cylindrical

shell from ρ = 0 to ρ = 1 and over all vertical positions z. In addition, these zonal flows are

averaged over an arbitrary number of libration periods.

Figure 4.5(a) shows the radial profile of the zonal flow for different Ekman numbers. The

time average is performed over two different regimes, before and after the instability kicks

in. The zonal flow associated with the initial base state is shown in dotted lines, where we

average the zonal profile before the exponential phase (typically for t < 200, see Figure 4.2).

For cases A3 to A5 (5× 10−4 < E < 2× 10−4) we recover the zonal flow with an amplitude

independent of the Ekman number. For the cases with E ≤ 10−4 (including experimental

results), the initial transient phase before the base flow is established is very long and the

duration of the stable regime is too short to be able to obtain meaningful averages. As

observed in previous theoretical studies, the zonal flow is prograde close to the equatorial

boundary and retrograde in the bulk. The dotted-dash line corresponds to the theoretical

prediction of Sauret et al. (2013) in the case of the sphere for f = 4 and is shown for

reference. The departure between their result and our numerical simulations is attributed
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Figure 4.5: (a) Comparison between the zonal flow obtained experimentally and numerically
using equation (4.18) for various Ekman numbers. The dotted lines correspond to the initial
steady state before the instability grows whereas the solid lines correspond to the quasi-
steady state after the instability has saturated. Experimental results at E = 2 × 10−5 are
shown as empty symbols. The dash-dotted line correspond to theoretical results by Sauret
et al. (2013) for the same parameters but in spherical geometry and without instabilities.
Comparison of the equatorial zonal flows between the initial (b) and saturated (c) phases
for case A6 (E = 10−4). The streamlines are colored with the value of azimuthal velocity.
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to geometrical effects as we consider a non-axisymmetric container here. In particular, two

persistent recirculation cells are observed in the equatorial plane (see Figure 4.5(b)).

When the elliptical instability saturates, the zonal flow observed in numerical simulations

increases in amplitude and is now retrograde in all the bulk of the fluid (see solid lines in

Figure 4.5(a)). Very close to the threshold (i.e. for E > 2 × 10−4, cases A3 and A4), the

amplitude of this enhanced retrograde zonal flow does not scale with the Ekman number,

but for smaller Ekman numbers the amplitude of the zonal flow increases as the Ekman

number decreases. This is observed both numerically for E = 10−4 and E = 5 × 10−5 and

experimentally at E = 2× 10−5. Note in addition that the trend observed in the numerical

results at E = 5× 10−5 are consistent with the experimental results at E = 2× 10−5, shown

as empty symbols in Figure 4.5(a). As the Ekman number decreases, a strong anticyclonic

vortex flow develops close to axis of rotation (see Figure 4.5(c)), whereas its amplitude

decreases close to the boundaries and eventually becomes prograde again in the experiment.

Note that we observed similar behaviors for other librating frequencies such as f = 3, so

that it appears to be a generic result. Since the zonal flow associated with the base flow

scales as ε2 but does not depend on the Ekman number, the relevance of such libration-

driven zonal flows in geophysical systems has been questioned [e.g., Calkins et al. (2010);

Sauret et al. (2013)]. Here, we show that for the particular case f = 4, the saturation of

the elliptical instability leads to an enhanced zonal flow with an amplitude increasing as the

Ekman number decreases. This new nonlinearly driven zonal flow might be more relevant to

the geophysical regime characterized by very low Ekman numbers. We do not have enough

numerical or experimental data to provide a scaling for this mechanism at this stage, but all

of our results point towards a strong retrograde axial vortex driven by nonlinearities in the

turbulent bulk. Note that Mason and Kerswell (1999) also found a strong retrograde zonal

flow driven by the saturation of the elliptical instability.
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Figure 4.6: Amplitude |Q|, as defined by equation (2.30) in Kerswell (1994), of an inertial
mode Λn,m,κ for a spheroid with c = 0.7. Bright and dark colors correspond to large and low
amplitudes respectively. The results are shown in a meridional slice and we compare two
inertial modes with an azimuthal wave number m = 1 and an eigenfrequency ω close to 2.

4.5.4 Mode couplings and transition to turbulence

In this section, we explore the transition between a laminar base flow driven by the Poincaré

force and a bulk-filling turbulent flow initially driven by the elliptical instability as the

Ekman number is decreased. In this study, we only considered an Ekman number of E =

2×10−5 in the laboratory experiment so that the transition to turbulence occurring at larger

Ekman numbers is mainly discussed from a numerical point of view. A comparison between

numerical and experimental data is however presented below at the end of this section.

Before discussing the transition to turbulence in our system, let us briefly describe the

spatial structures and frequencies of the inertial modes that can resonate with the har-

monic forcing at f = 4. The case of the tri-axial ellipsoid has been recently considered by

Vantieghem (2014), but the libration frequency f = 4 primarily excites high wave number in-

ertial modes and this paper mostly focuses on inertial modes with linear or quadratic spatial

dependence. Following Grannan et al. (2014), we consider for simplicity the inviscid inertial

modes in cylindrical coordinates and for a spheroidal container defined by r2 + z2/c2 = 1 as
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derived by Kerswell (1994). The inertial modes are denoted Λn,m,κ where n is the order of

the associated Legendre polynomials that combines the radial and axial wavenumbers, m is

the azimuthal wavenumber and κ represents the κth eigenfrequency. For each couple (n,m)

there are n − |m| eigenfrequencies (or n − 1 if m = 0). For an elliptical deformation with

azimuthal wave number m = 2, the resonance condition imposes |m2 −m1| = 2 where m2

and m1 are the azimuthal wave numbers of the inertial modes. We focus here on the case

|m| = 1 shown to be relevant by Grannan et al. (2014). Since the frequency of the forcing

is f = 4, we expect inertial modes with eigenfrequencies |ω| . 2. As already mentioned,

the frequency of the inertial modes cannot be exactly equal to 2. However, an imperfect

resonance is possible provided that the frequency mismatch in order to satisfy the resonance

condition |ω1 − ω2| = f is less than the elliptical deformation β [e.g., Lacaze et al. (2004)].

Since we focus here on a large elliptic deformation β = 0.34, resonance bands are very broad

and many imperfect resonances can occur [e.g., Le Bars et al. (2010)]. Note finally that reso-

nances were observed experimentally [e.g., Grannan et al. (2014)] up to f = 4+εβ+O(ε2β2),

which is consistent with theoretical predictions in the large β and large ε regime [e.g., Le

Dizes (2000)]. Figure 4.6 shows the amplitude of modes with moderately large n, m = 1

and frequency close to ω = 2. As n increases, the largest eigenfrequency κ = n− |m| tends

towards ω = 2 [e.g., Lacaze et al. (2004)]. In the presence of viscosity, inertial modes with

large n will however be damped. Since these modes have a frequency close to ω = 2, their

group velocity is quasi-horizontal and they are characterized by a pancake-like structure.

We recall that such modes correspond to a spheroidal geometry, but we nevertheless expect

the results to be similar in the ellipsoidal case. Grannan et al. (2014) have, for example,

reported a mode with spatial structure very similar to the spheroidal mode Λ8,1,7 in their

laboratory apparatus for the case f = 4.

We now come back to the numerical results discussed in the previous sections. We place

100 numerical probes homogeneously distributed inside the bulk of the ellipsoid (i.e. outside

of the viscous boundary layers). The three components of the velocity and the pressure

are saved at these locations at every time step, and we perform a spectral analysis of these

signals. Since we use an adaptive time step method, the signals from the numerical simula-

103



Figure 4.7: Temporal power spectrum for cases A1 (E = 10−3), A2 (E = 5.5 × 10−4) and
A4 (E = 3.5 × 10−4). (a) Power spectra are averaged over 500 libration periods during
the saturated phase. The vertical dot-dash lines correspond to the theoretical predictions
of Vantieghem (2014) for the eigenfrequencies of linear and quadratic inertial modes in the
ellipsoid. Time evolution of the power spectrum with a sliding window of 50 libration periods
for cases A2 (b) and A4 (c).

tions need to be evaluated on a uniform grid which is done using a sixth order Lagrangian

interpolation scheme. For each of the three velocity components, we compute the discrete

Fourier transform of the signal during an arbitrary time interval. Note that the input signal

is not necessarily periodic so that we need to multiply it by a periodic window function to

avoid spectral leakage associated with the discontinuity between the start and the end of the

signal. Here, we use the Hanning window defined as

w(n) =
1

2

[
1− cos

(
2π

n

N − 1

)]
, 0 ≤ n ≤ N − 1 (4.19)

where N is the total number of samples. We checked that using other window functions does

not qualitatively change the results.

Figure 4.7(a) shows the resulting power spectra for cases A1, A2 and A4, where we only

used the signals obtained after the instability has saturated. For case A1, the flow is actually

stable so that we only observe two peaks, one corresponding to the base flow at ω = f = 4

and one corresponding to the zonal flow at ω = 0. Case A2 is unstable and the peaks

associated with the base and zonal flows are still present and unchanged, but we now see

a peak at ω = f/2 = 2 and subsequent harmonics at ω = 6, 8, .... We argue that these

peaks are associated with the two resonating inertial modes at the origin of the elliptical
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instability with frequencies |ω| . 2 which satisfied the resonance condition |ω2 − ω1| ≈ f .

Finally, the third spectrum corresponds to the case A4, where the Ekman number is reduced

even further to 3.5 × 10−4. In addition to the previous features, many additional peaks

are now clearly visible. A first indication that these are also inertial modes is that their

frequencies are comparable with eigenfrequencies of linear and quadratic inertial modes of

the full ellipsoid [e.g., Vantieghem (2014)] as shown in Figure 4.7(a) (additional theoretical

frequencies would be found by increasing the order of the polynomial expansion). These

additional frequencies we observed are, in decreasing order of amplitude, ω ≈ 1.6, 0.4, 1.2

and 0.8. These frequencies are therefore compatible with quadratic interactions between the

primary inertial modes at ω ≈ 2 and two of the daughter modes (i.e. 1.6 and 0.4 on the one

hand, 1.2 and 0.8 on the other hand), as further discussed below. Note that for the particular

simulations A2 to A4 considered here, the saturation of the elliptical instability does not lead

to turbulence, as the Ekman number is too large. The power spectrum remains quasi-discrete

since mode couplings are very limited for these viscously-dominated cases. The two right

panels in Figure 4.7 show the time evolution of the power spectra for cases A2 and A4. At

each time step, the Fourier analysis is performed over a window of 50 libration periods. The

chronology of the various resonances becomes clear. The libration forcing sustains the base

flow at f = 4 from the beginning of the simulation. We then observe a primary resonance

involving two inertial modes with frequencies ω ≈ ±2 and the base flow at ω = 4. As the

amplitude of these primary inertial modes becomes larger, and if the Ekman number is low

enough (i.e. E ≤ 4 × 10−4 in our case), secondary quadratic interactions are allowed with

two sets of daughter inertial modes whose frequencies are given by the resonance condition

|ω2 − ω1| = 2. Note that no further resonances are observed for case A4.

We now compare numerical and experimental data in order to confirm the quadratic

interactions observed numerically in the laminar regime. In particular, we focus on simulation

A6, for which E = 10−4, whereas we recall that E = 2× 10−5 for the experiment. Since the

Ekman numbers are different, we expect quantitative differences between the two approaches.

Note that both simulation A6 and the experiment are in the turbulent regime, but as we

show below, we can still distinguish between the dominant low-frequency interactions and the
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Figure 4.8: Comparison between experimental and numerical results. (a) Spectrograms
computed using horizontal velocity signals in the equatorial plane only. The top panel
corresponds to the experimental results at E = 2× 10−5 (case V in Grannan et al. (2014))
whereas the bottom panel corresponds to the numerical case A6 at E = 10−4. The white
arrow indicates the appearance of the particular frequency ω = 1.6 involved in the secondary
quadratic interactions. (b) Power spectra time-averaged during the saturated phase. We also
show the numerical power spectrum associated with the vertical component (not available
experimentally).

background turbulence noise. The frame rate of the camera used for the PIV is 23.9 frames

per second. In our dimensionless units, this leads to a maximum frequency of ω = 24 which

is not enough to compare with the high-frequency range available numerically. We note in

addition that experimental time spectra tend to be flat at high-frequencies, probably due to

uncertainties. For these reasons, we focus on the low frequencies ω ≤ 4. The behaviors of

the high frequencies in the numerical simulations will be discussed below in Section 4.5.5.

Numerical probes are placed at the same location as for the PIV measurements and the power

spectra are computed using a sliding window of 20 libration periods. Experimental and

numerical results are presented in Figure 4.8(a), where we show the spectrogram associated

with the equatorial horizontal flow only. In both cases, we see the dominant contribution

from the base flow at ω = 4 from the beginning of the experiment. As time is evolving, the

first resonance with the primordial inertial modes at ω = 2 occurs as already observed in the

laminar regime. Once the primary inertial modes have grown in amplitude, the secondary

resonance at ω = 1.6 is also visible in both cases and is indicated by a white arrow. This
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Figure 4.9: Velocity amplitude associated with filtered velocity fields at various frequencies
using equation (4.20) for case A3 (E = 5 × 10−4). Left: Base flow obtained by filtering at
ωf = f over 100 libration periods. Middle: Zonal flow obtained by time averaging. Right:
Inertial modes filtered at ωf = f/2.

secondary resonance occurs earlier in the experiment than in the numerical simulation due

to the lower Ekman number in this case (and therefore a larger growth rate for the elliptical

instability).

Interestingly, the frequency ω = 0.4, already observed numerically in Figure 4.7, is not

seen in the horizontal flow. However, when looking at the vertical component from the

numerics in the same equatorial plane, we recover the frequency ω = 0.4 required by the

resonance condition. This is visible in Figure 4.8(b), where we show the power spectra

averaged during the saturated phase for the numerical simulation (the vertical component

of the flow is not available experimentally). We also show in Figure 4.8(b) the horizontal

power spectra from both the experiment and the numerics. Note the excellent agreement

between both approaches in this frequency range. No rescaling has been applied.

In order to extract the spatial structure of the different components of the flow, we follow

the approach used by several authors [e.g., Hazewinkel et al. (2008); Grisouard et al. (2008);

Jouve and Ogilvie (2014)] in the context of internal gravity or inertial wave attractors. The

velocity field is filtered at a particular frequency ωf according to

û(ωf ,x) =
ωf
Nπ

∫ tf

ti

u(x)eiωf (t−ti)dt (4.20)

where the arbitrary times ti and tf are separated by N periods T = 2π/ωf . Here, we consider

the velocity fields filtered at ωf = f , ωf = 0 and ωf = f/2, which correspond respectively
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to the base flow, the zonal flow and the primordial inertial modes. Figure 4.9 shows the

amplitude of each of these filtered velocity fields. The base flow (4.6) is recovered in the bulk.

The zonal flow is averaged over the initial phase before the instability develops. We recover

the strong prograde circulation close the equatorial boundary and the weaker retrograde

interior jet, as already discussed in Section 4.5.3. Finally, the inertial modes correspond to

layered structures dominated by horizontal motions, and is very similar to the inertial modes

for a spheroid as shown in Figure 4.6. In particular, the structure observed in the rightmost

panel of Figure 4.9 corresponds to the inertial mode Λ7,1,6 with an eigenfrequency of ω = 1.95.

The wave number n of the inertial modes observed by this filtering approach increases as we

decrease the Ekman number. We indeed observe the inertial mode Λ8,1,7 for cases A6 and

A7, which is consistent with the experimental observation made by Grannan et al. (2014).

Although removed from Figure 4.9 by the averaging process defined in equation (4.20), the

inertial modes also have an azimuthal wave number m = 1 component, as expected due to

the resonance conditions with the elliptical base flow with m = 2.

Although the appearance of a mode at half the frequency of the forcing is a strong

indication of a parametric resonance, the power spectrum is not enough to conclude since the

phase information is lost. In order to explicitly show that quadratic couplings are responsible

for the growth of the ω ≈ 2 modes, one has to rely on higher-order spectral analysis. In

particular, we choose the consider the bicoherence defined as

B2(f1, f2) =

∣∣∣∑N
i=1 ui(f1)ui(f2)u∗i (f1 + f2)

∣∣∣2∑N
i=1 |ui(f1)ui(f2)|2∑N

i=1 |ui(f1 + f2)|2
(4.21)

where ui(f1) is the temporal Fourier mode of the velocity component i at frequency f1 and

the star denotes the complex conjugation. Time signals are split into N individual time

windows over which the Fourier components are calculated using the same approach as for

the power spectrum discussed previously. As N increases, the bicoherence B2(f1, f2) tends

to zero if the amplitude of the frequencies f1, f2 and f1 +f2 are zero, or if the phase of each of

these frequencies are uncorrelated. Values of the bicoherence close to unity indicate quadratic

phase coupling, where the signal phases φ1, φ2 and φ3 at frequencies f1, f2 and f3 = f1 + f2,
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Figure 4.10: Bicoherence as defined by equation (4.21) for cases A2 (left) and A4 (right).
Values close to unity indicates a near-perfect phase coherence between energetic modes at
frequencies f1, f2 and f1 + f2.

respectively, follow the relation φ3 = φ1 + φ2. We show in Figure 4.10 the bicoherence

map for cases A2 and A4. We average the results over 50 different probe signals, all three

components of the velocity and splitting each time signal into 30 smaller temporal windows.

For case A2 where only the inertial modes ω = 2 are excited, a clear peak in the bicoherence

is seen for f1 = f2 = 2 indicating coherent phases between modes at those frequencies.

As the Ekman number decreases, the other modes already discussed in Figure 4.7 are also

phase coherent, as indicated by large values of the bicoherence. This further confirms that

the observed frequencies ω < 2 are generated by quadratic interactions.

This small window of parameters where the primary elliptical instability saturates in a

laminar state is only obtained for 6 × 10−4 < E < 3 × 10−4. This is consistent with the

experimental results of Eloy et al. (2000) who observed a laminar saturation of the primary

elliptical instability for E > 2.5×10−4 and with the theoretical results of Kerswell (1999) who

predicted that the inertial mode should become linearly unstable to triadic interactions at

E ≤ 2.5× 10−4. In our case, smaller values of the Ekman number do not lead to additional

resonances but to small-scale disorder. Note that the detailed mechanism by which this

transition to turbulence initially occurs remains to be identified. We focus in the next

section on the statistical properties of the developed turbulent state.
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Figure 4.11: Turbulent kinetic energy K as defined by equation (4.22) plotted on the xy
equatorial plane (left), the yz meridional plane (middle) and the xz meridional plane (right).
Results at the top correspond to the laminar case A4 whereas results at the bottom corre-
spond to the turbulent case A6. In both cases, the average required in equation (4.22) is
performed over approximately 100 libration periods.

4.5.5 Fully-developed turbulent regime

We now focus our attention on simulations leading to a turbulent saturated regime: cases

A5 to A7. In all turbulent cases, the flow is far from being homogeneous due to the presence

of solid boundaries but also due to energy injection mechanism by the sudden breaking of

inertial modes. To identify the spatial region where turbulence is preferentially driven, we

compute the spatial distribution of the turbulent kinetic energy as follows

K =
1

2

〈(
u′ − 〈u′〉

)2
〉

(4.22)

where u′ = u−Ub is the fluctuating velocity around the base flow given by equation (4.6).

The brackets denotes here a temporal average performed over 100 libration periods during

the quasi-steady phase. A similar approach has been used to characterize the turbulence

driven in a precessing sphere [e.g., Goto et al. (2014)]. The spatial distribution of the

turbulent kinetic energy is shown in Figure 4.11 for cases A4 (top row) and A6 (bottom

row). Case A4 is still laminar and is shown for reference. In that case, the fluctuating flow is
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dominated by the primordial inertial modes Λ7,1,6, and their signature is clearly visible in the

fluctuating kinetic energy (compare with Figures 4.6 and 4.9 for example). Interestingly, the

overall layered structure of the inertial modes is also visible in the turbulent kinetic energy

distribution associated with the fully-turbulent case A6. Note that the average process used

in equation (4.22) converges after approximately 20 libration periods for case A4, whereas

case A6 requires averaging over more than 100 libration periods. The maximum of the

turbulent kinetic energy in the turbulent case occurs when the amplitude of the inertial

modes is maximum. This correlation between the structure of the inertial modes and the

turbulent kinetic energy indicates that the primordial inertial modes are still being excited

even after the instability saturates and remain of larger amplitude than the small-scale

turbulent flow. Even if turbulence is filling most of the ellipsoid, only motions generated

at the maximum of the inertial modes amplitudes are long-lived and continuously fed by

the instability whereas other fluctuating motions cascade to small-scales and are rapidly

dissipated by viscosity.

We now repeat the same spectral analysis as in Section 4.5.4, in order to extract the

temporal power spectra in the turbulent regime. The time signals are multiplied by a Hanning

window over 200 libration periods and we average the results over 100 different probes located

within the bulk of the ellipsoid. Figure 4.12(a) shows the corresponding spectra in log-log

scale, where we also plot the results corresponding to cases A2 and A4, already discussed

in Section 4.5.4. It is clear that, for E ≤ 2 × 10−4, the spectra are now continuous with a

large range of excited frequencies. The zonal flow (not visible in this logarithmic scale), the

base flow and primordial inertial modes are still clearly distinguishable and dominate the

spectra for all Ekman numbers considered. The secondary quadratic interactions involving

ω = 0.4 and ω = 1.6 are also still observable whereas the frequencies ω = 0.8 and ω = 1.2 are

now dominated by low-frequency components with a rather flat spectrum. As the Ekman

number decreases, the high-frequency part of the spectrum is more and more populated,

which further confirms that the flow is in a developed and sustained state of turbulence,

with small spatial scales and short time scales. The dash dot line shown in Figure 4.12(a)

corresponds to a slope ω−3 and is shown for reference. Note that from an energetic point
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Figure 4.12: (a) Temporal power spectrum averaged over 100 probes distributed within the
ellipsoid. The temporal spectral analysis is performed after the instability has saturated.
The dash dot line corresponds to the power law ω−3 and is shown for reference. (b) Spatial
power spectrum computed inside a cube centered around the origin. Velocity signals are
made spatially-periodic by using the window function (4.19) in all three directions and the
resulting energy spectra are time-averaged during the saturated phase. The vertical dashed
line indicates the Zeman scale as defined in the main text.

of view, the sustained turbulent regime is still dominated by the base flow, followed by the

primary inertial modes (which is consistent with the result presented in Figure 4.11), the

secondary inertial modes and finally the small-scale turbulent flow.

Additional information can be obtained by looking at the energy distribution among the

different spatial scales of the flow. As discussed above, the turbulent flow is inhomogeneous

but we nevertheless use a Fourier decomposition. We focus on a cube centered around the

origin and with side 0.8, fully enclosed inside the ellipsoid and outside of the boundary layers.

The velocity components are interpolated with spectral accuracy on a uniform Cartesian grid

and the periodicity is enforced using the window function (4.19) in all three directions. The

energy spectrum is then computed as

EK(k) =
∑

k−1/2<|k|<k+1/2

û(k) · û∗(k) (4.23)

where û(k) is the three-dimensional Fourier transform of u(x) and the star denotes complex
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conjugation. The resulting spatial energy spectra are shown in Figure 4.12(b), where the

results are further averaged over time during the saturated phase. As the Ekman number de-

creases, small spatial scales appear and a tendency toward a scaling E(k) ∝ k−3 is observed.

Such a scaling for the energy spectrum has also been observed in homogeneous simulations of

the elliptical instability using a shearing-box approximation and a tidal forcing [e.g., Barker

and Lithwick (2013)]. We recall that the small-scale Rossby number is below unity for all

our simulations (see Table 4.1). The exponent observed in our temporal and spatial energy

spectra could therefore be related to the effect of the background rotation on the small-scale

turbulence generated by the inertial mode breaking. In the case of homogeneous rotating

turbulence, a transition from the usual −5/3 scaling of Kolmogorov theory to the steeper

−3 scaling is associated with a reduction of the forward energy cascade due to Coriolis ef-

fects [e.g., Cambon et al. (1997)]. Note however that our Rossby number is close to unity

(Ro ≈ 0.5 for case A7 for example). We therefore expect the Kolmogorov scaling to reappear

at small scales as the effective Rossby number increases. The reisotropization of rotating

turbulence is usually associated with the so-called Zeman scale [e.g., Zeman (1994); Zhou

(1995)] defined as lΩ =
√
εt/Ω3

0, where εt is the dissipation rate and Ω0 the rotation rate.

Using the bulk dissipation rate from case A7, the critical wave number associated with this

Zeman scale is kΩ ≈ 80, which correspond to the end of the inertial range as indicated by

the vertical dashed line in Figure 4.12(b). It is therefore possible that for even lower Ekman

numbers, we would observe an isotropic state of turbulence at scales smaller than lΩ, as it has

already been reported in the case of homogeneous rotating turbulence [e.g., Mininni et al.

(2012); Delache et al. (2014)]. We cannot verify this claim at this stage since we are limited

in the range of spatial scales we can consider, having to solve for the large-scale elliptical

base flow responsible for the instability in addition to the small-scale turbulent flow.

4.5.6 Reducing the eccentricity

In order to compensate for the dissipation in the viscous boundary layers, we have to consider

sufficiently large values of the deformation β for the elliptical instability to be numerically

tractable (i.e. for the growth rate to be large enough). So far, the value we considered was
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β = 0.34, which was chosen to be the same as in the laboratory experiment of Grannan et al.

(2014). However, the eccentricity of celestial objects is usually much smaller [e.g., Noir et al.

(2009); Cébron et al. (2012a)] so that decreasing β and studying its effect on the resulting

flow is of interest.

In this section, we repeat simulation A6, but with a reduced equatorial deformation of

β = 0.17 and β = 0.26 (cases B1 and B2 respectively in Table 4.1). For all cases, the aspect

ratio c/b = 1 and the Ekman number E = 10−4 are kept constant. By reducing β, we reduce

the super-criticality and, thus, the growth rate σ of the instability (see the growth rate

defined by equation (4.10)). This means that our simulation are getting closer and closer to

the onset of the elliptical instability. One would like to keep reducing E as β is decreased

in order to keep the ratio E/Ec constant, but this is unfortunately not numerically feasible

with our current computing capabilities.

Figure 4.13: Volume averaged vertical kinetic energy for three different ellipticities of the
container (cases B1, B2 and A6). Apart from β, the parameters are the same for all three
cases. The arrows indicate the times at which the visualizations shown in Figure 4.14 are
realized.
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The time evolution of the volume averaged vertical kinetic energy is shown in Figure 4.13

for the three cases β = 0.17, 0.26 and 0.34. As expected, the growth rate of the instability

is reduced as β is decreasing. In addition, the final amplitude at which the instability

saturates is again decreasing as β decreases. The main difference between the three cases

lies in the transient phase before the eventual quasi-steady saturation. As already observed

in Section 4.5.1 for β = 0.34, the laminar state is never recovered after the instability grows.

The first saturation does lead to a decay in the vertical kinetic energy for a short time, but

another growth eventually takes place and a quasi-steady state is reached after a couple of

cycles. This is at odds with the case β = 0.17, where a complete relaminarisation of the flow

is observed after the first development of the instability (around t ≈ 500 in Figure 4.13 for

example). In addition, many cycles of growth and collapse are required to eventually reach

a quasi-steady phase. The saturated phase is still moderately turbulent, but the small-scale

Reynolds is much smaller than for β = 0.34. The case β = 0.26 is somewhere in between, with

alternation between intermittent phases (for t ≈ 300 or t ≈ 700 for example) and sustained

phases (for t ≈ 500). Note that in all cases, we still observe the same resonance mechanism

(primordial inertial modes excited by the elliptical instability followed by subsequent triadic

interactions) although the frequencies of the modes involved are slightly shifted due to the

change in geometry. As in Figures 4.7, 4.8 and 4.12, the inertial modes are still dominating

the spectrum in the frequency range 0 < ω < 2. This is, however, only true for our cases

in which E is fixed and β is varied. It might not be applicable to the geophysically relevant

regime where both E and β are reduced simultaneously in order to remain far from the

instability threshold.

This transition between a sustained level of turbulence and an intermittent regime has

already been observed in shearing-box simulations of the elliptical instability in a tidal forcing

context [e.g., Barker and Lithwick (2013)]. In that paper, the authors found a critical

value for the eccentricity of the streamlines of β ≈ 0.15 above which a sustained level of

turbulence activity is observed. While our setup is different due to the presence of solid

boundary conditions and the use of a librational forcing to excite the elliptical instability,

the transition observed in our simulations might be of similar nature. We indeed observe
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Figure 4.14: Vertical component of the velocity in the (x, z) meridional plane during the
saturated phase for (a) β = 0.17 (t ≈ 1000) and (b) β = 0.34 (t ≈ 500), as indicated by
arrows in Figure 4.13.

a very long intermittent transient when β = 0.17, so that it is possible that an even lower

value of the equatorial deformation would only lead to an intermittent behavior. However,

due to the stabilizing effect of viscous dissipation, it is not possible to further reduce β while

keeping the growth rate sufficiently large for the instability to be numerically tractable.

Barker and Lithwick (2013) argued that the presence of large-scale vortices invariant in

the vertical direction is responsible for the decay observed after the initial collapse. This

columnar flow is produced by the decay of the small-scale turbulence under the influence of

rotation and could damp the resonances required to sustain the small-scale turbulence. There

are indeed indications that such a vertically-invariant flow does develop in our simulations

as β is decreased, as can be seen in Figure 4.14, where we show the vertical velocity at

an arbitrary time during the saturated phase in a meridional plane for both β = 0.17 and

β = 0.34. We observe vertically-coherent structures for the case with β = 0.17 whereas the

flow appears to be more isotropic when β = 0.34. In addition, reducing β is also dramatically

increasing the importance of viscous effects as can be seen in Figure 4.13 where the growth

rate rapidly decreases with β. A detailed analysis of the interaction between these large-scale

coherent structures and the inertial modes excited by the elliptical instability is beyond the

scope of this paper. It therefore remains to be seen whether the elliptical instability saturates

in an intermittent or quasi-steady manner in the geophysical regime at low-β and low-E.

This is a crucial question since the efficiency of the elliptical instability in terms of energy
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Figure 4.15: Results for case C1 with f = 2.4, ε = 1.2 and E = 10−4. (a) Time evolution
of the vertical kinetic energy. (b) Phase diagram of the three components of the angu-
lar momentum. We show the two-dimensional projections (Lx(t), Ly(t)), (Lx(t), Lz(t)) and
(Ly(t), Lz(t)), on each side.

dissipation and dynamo action is at play.

4.5.7 Varying the librating frequency

In this section, we briefly discuss the behavior of the system for another librating frequency

f = 2.4. It was shown experimentally by Grannan et al. (2014) that varying the librating

frequency leads to a variety of behaviors as the resonant modes change. One of the reasons

why we focus on the f = 4 case so far is that it is very easy to obtain a turbulent regime

numerically since the critical Ekman number for instability is quite large. This might be

related to the peculiar spatial structure of the inertial modes with |ω| . 2, as shown in

Figure 4.6. As the librating frequency decreases, turbulence is only observed for more extreme

values of the control parameters. At the fixed experimental Ekman number of E = 2×10−5,

the critical libration amplitude ε to reach a turbulence regime is ε ≈ 0.12 for f = 4, whereas

it is ε ≈ 0.7 for f = 1.46 (see Figure 5 in Grannan et al. (2014)). For these reasons, numerical

simulations of the libration-driven elliptical instability at lower libration frequencies are only

turbulent for large values of the libration amplitude. This leads to numerical complications

as the boundary layers can then be unstable to centrifugal instabilities, eventually leading

to turbulence before the elliptical instability develops.
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As an example of other flows driven by the saturation of the elliptical instability, we

consider the case f = 2.4, ε = 1.2, β = 0.34 and E = 10−4. Figure 4.15(a) shows the

time evolution of the squared vertical velocity. Contrary to the case f = 4, the Ekman

boundary layers do not remain laminar during the initial phase of the instability. Taylor-

Görtler vortices are generated through a centrifugal instability in the equatorial boundary

regions [e.g., Calkins et al. (2010)]. This is a direct consequence of the large value of ε

considered here. The fluctuations associated with these vortices are visible in Figure 4.15(a)

for 0 < t < 100. The exponential growth phase is clearly visible for 100 < t < 150 and

is followed by the saturation of the instability. Note that the saturated phase corresponds

to a quasi-steady evolution of the kinetic energy, contrary to the case with f = 4, where a

strongly fluctuating regime with low frequency modulations is observed at E = 10−4. The

flow is not turbulent (as can be seen on the power spectrum or by direct visualization, not

shown), but dominated by a large-scale periodic flow. The amplitude of this large-scale flow

is much larger than the typical turbulent fluctuations observed for f = 4 (see the values of

Urms in Table 4.1 or the typical amplitude of Ez in Figures 4.15(a) and 4.2(a)).

The main difference with the case f = 4 is the angular momentum evolution. For f = 4,

the angular momentum remains purely vertical during the numerical experiment, even in

the saturated quasi-steady phase. This is not the case for f = 2.4 and the horizontal

components of the angular momentum grow in amplitude when the instability starts to

saturate. Figure 4.15(b) shows the phase diagram of the volume-averaged angular momentum

defined as

L =

∫
V

x× u dV . (4.24)

Initially (i.e. for t < 100), the Poincaré force generates a quasi-horizontal flow with dom-

inant vertical angular momentum. As the instability develops, the horizontal components

start to grow in amplitude while the periodic variations of the vertical component remain

nearly unchanged. Finally, in the quasi-steady saturated phase, the direction of the angular

momentum corresponds to the combination of a quasi-circular evolution of the horizontal

angular momentum and the oscillating vertical component driven by the Poincaré force. The
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generation of a significant horizontal angular momentum is related to the excitation of the

spin-over mode [e.g., Lacaze et al. (2004); Cébron et al. (2010a)] and is clearly visible when

looking at the streamlines during the saturated phase, as shown in Figure 4.16. Note that

such a large-scale flow does not remain laminar as the Ekman number decreases and it is

indeed turbulent according to case IV of Grannan et al. (2014) for which E = 2× 10−5, but

this turbulent regime is unfortunately not within reach of our numerical simulations. The

amplitude of the excited flow therefore crucially depends on the excitation of the spin-over

mode, and therefore on the libration frequency. When the spin-over mode is not excited (as

in the case f = 4), the amplitude of the fluctuations remains small when compared to the

initial base flow, whereas they can become comparable when the spin-over mode is excited.

More detailed studies about the excitation and saturation of the spin-over mode depending

on the geometry, boundary conditions and type of mechanical forcing are therefore needed.

Figure 4.16: Streamlines during the saturated phase colored with the flow speed for case C1
in Table 4.1 with f = 2.4, ε = 1.2 and E = 10−4.
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4.6 Conclusion

We have qualitatively and quantitatively compared numerical and laboratory measurements

of fluid motions inside a longitudinally-librating rigid ellipsoid. In order to reduce the large

number of control parameters, we have mostly focused on the interesting case f = 4 for a

fixed geometry β = 0.34 and c/b = 1, and for a fixed librating amplitude ε = 0.8. As the

Ekman number is reduced, the elliptical instability is excited and we observe a transition

from a laminar saturation to a fully-developed sustained turbulent state. We observed both

numerically and experimentally that the saturation of the elliptical instability drives an

enhanced zonal flow whose amplitude increases as the Ekman number decreases. This is at

odds with the zonal flow driven by nonlinearities in the Ekman boundary layers associated

with the base flow only, which does not depend on the Ekman number and is therefore not

relevant from a geophysical point of view.

The transition to turbulence is characterized by a succession of resonances between the

dominant inertial modes at half the frequency of the forcing and the base flow, followed by

additional triadic interactions between the dominant modes and other inertial modes of the

ellipsoid. For the parameters considered, the turbulent saturation is characterized by an

initial collapse of the primary inertial modes eventually leading to a sustained turbulent flow

provided that the Ekman number is low enough (typically E < 3×10−4). The resulting bulk

turbulence is best characterized as rotating turbulence with a spatial and temporal energy

spectra scaling approaching k−3 and ω−3 respectively. The turbulence is however strongly

inhomogeneous and is still being dominated by the primary inertial modes. As the eccen-

tricity is reduced, a more intermittent regime is observed, with a complete relaminarization

in some cases.

The current numerical and laboratory models are limited to large elliptical deformation

and moderately low Ekman numbers. We consider cases which have centrifugally stable

boundary layer flows in order to focus on the generation of bulk turbulence by the elliptical

instability alone, but the interplay between these two instabilities could be of interest [e.g.,

Sauret et al. (2013)]. We have focused our analyses on the particular case f = 4, for which
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turbulence is more easily observed than for other librating frequencies and for which the

spin-over mode is not excited. Finally, the fundamental difference between the sustained and

intermittent turbulence regimes, and their respective relevance for planetary flows, needs to

be addressed. Thus, further progress in understanding the generic features of the saturation

of the elliptical instability and its relevance to geophysical flows will require additional work.
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CHAPTER 5

Tidally-forced turbulence in planetary interiors

Reproduced from: A. M. Grannan, B. Favier, M. Le Bars, and J. M. Aurnou. Geophys.

J. Int., 208(3): 1690-1703, 2017.

This work was performed at the IRPHE Laboratory in Marseille, France and was facili-

tated by a Chateaubriand Fellowship that funded me for a nine-month stay in Marseille. I

designed and built a support for a new wireless camera used to perform PIV in the rotating

frame. I performed and analyzed all of the laboratory experiments that were then compared

to high resolution numerical simulations performed by Benjamin Favier. This work provides

the first quantitative description of the tide-driven elliptical instability, TDEI. The math-

ematical formalism underpinning TDEI and LDEI and the resulting excited turbulence is

shown to be generic despite the fact that tides and libration represent end-member types

of planetary forcing. The velocity scaling when the TDEI saturates is shown to scale with

the ellipsoidal distortion β. In planetary bodies where β < 10−4, this scaling is significantly

larger than the β2 scaling found for zonal flows and thus may play a crucial role in planetary

processes. I am the principal author of this paper.

5.1 Introduction

Observations made from Earth and from spacecraft missions suggest the presence of liq-

uid metal cores in terrestrial bodies like Mercury [Stark et al. (2015)], Mars [Yoder et al.

(2003)], Io [Anderson et al. (1996)], and Ganymede [Schubert et al. (2004), as well as sub-

surface oceans in Europa [Anderson et al. (1998)], Ganymede [Schubert et al. (2004)], and

Enceladus [Cedak et al. (2016); Thomas et al. (2016)]. Gravitational interactions between a
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variety of celestial bodies, from stars and planets to satellites and asteroids, can periodically

perturb both a body’s shape and the direction and magnitude of its rotation vector. Such

perturbative effects can generate mechanical forcing of interior fluid motions through libra-

tion, tidal deformation, and precession/nutation [Comstock and Bills (2003); Van Hoolst

et al. (2013)].

Paleomagnetic measurements of rock samples from smaller terrestrial bodies reveal the

remnant signatures of self-generated dynamo fields [e.g., Garrick-Bethell et al. (2009), Tar-

duno et al. (2012); Fu et al. (2012); Johnson et al. (2015)]. The assumed driver for the

fluid motions responsible for dynamo generation is thermo-compositional convection [e.g.,

Jones (2011); Schubert and Soderlund (2011); O’Rourke and Stevenson (2016)]. However,

the existence of dynamos on smaller bodies is difficult to reconcile with our current un-

derstanding of the conditions necessary for magnetic field generation in terrestrial bodies

through thermo-compositional convection alone [e.g., Nimmo (2009); Pozzo et al. (2012);

Olson (2013); Zhang et al. (2015)]. Thus, recent numerical studies, [e.g., Tilgner (2005); Wu

and Roberts (2009, 2013); Cébron and Hollerbach (2014); Wei et al. (2014)] have begun to

address how mechanical forcing can also drive dynamos by injecting a portion of the vast

quantity of rotational energy from the primary-satellite orbital systems into the interior fluid

motions. However, even the basic properties of turbulence generated by mechanical forcing

are not yet well characterized.

The current work focuses on comparing new results from purely hydrodynamic analog

models of tidal forcing with previous studies of longitudinal librational forcing, referred here-

after as librational forcing. In order simulate the basic physics of such flows one important

ingredient is the shape of the planetary body and, by extension, the layers that bound a

fluid layer. This problem of determining the equilibrium shape of a body due to gravita-

tional forces, rotation, density distribution, material rigidity, and even internal dynamics is

generally referred to as the theory of figures [e.g., Chandrasekhar (1969); Kippenhang et al.

(1990); Van Hoolst et al. (2008); Cébron et al. (2012a); Kong et al. (2012)]. At the lowest

order, the rotation of the body leads to polar flattening and an equatorial bulge while gravi-

tational forcing from an orbiting attractor tends to deform the body into an ellipsoidal figure
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Figure 5.1: a) A polar-view of the model for a tidally deformed elastic body of amplitude β
with a fluid interior spinning at Ωspin. A virtual attractor orbiting at Ωorbit(t) is simulated
in experiments by using two symmetric rollers. The deformed body’s r.m.s radius is RB, the
fluid radius is R, and the average distance between the two bodies is D. b) A polar-view of
the model for longitudinal libration of a rigid synchronous planet with a fluid interior rotating
at Ωspin(t), and orbiting at Ωorbit(t) where, when time-averaged, Ωspin = Ωorbit. The solid red
arrow denotes the direction toward the gravitational partner. The dashed red arrow denotes
the direction of the long axis of the deformed ellipsoid. The misalignment between the two
red arrows leads to restoring torques (black arrow) that oscillate the deformed boundary.
Schematics adapted from Le Bars et al. (2010); Noir et al. (2012).

[e.g., Stacy and Davis (2008)]. As such, two methods are used simulate the motion of fluid

boundary in orderto investigate the flow driven by mechanical forcing. The first method is to

solve the linearized Laplace Tidal Equations where the gravitational forcing potential that

varies in time and space is the primary driver [e.g., Tyler (2008, 2014); Chen et al. (2014);

Matsuyama (2014); Kamata et al. (2015)].

The second method, used by Malkus (1989); Le Bars et al. (2010); Morize et al. (2010);

Sauret et al. (2014) and in the current work, imposes an ellipsoidally deformation and the

differential motion of the boundary relative to the fluid layer in order to investigate the

fully-nonlinear response to mechanical forcing. Models of tidal and librational forcing in

deformed bodies are shown in polar view in Figure 5.1.a and 5.1.b, respectively. For tides

and libration, the fluid enclosed by the gray-colored ellipsoidal shell is constrained by a

time-averaged angular rotation rate, Ωspin. In Figure 5.1.a, a planet having low rigidity and

hence a high tidal potential Love number k2, is deformed by an orbiting attractor [e.g., Suess

(1969); Greff-Lefftz et al. (2005)]. As such, the planet and boundary deformation rotate at
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separate rates Ωspin and Ωorb, respectively.

In librational forcing of a rigid (low k2), synchronized planet, the time-averaged spin and

orbital rates are equal, Ωspin = Ωorb [e.g., following the < � 1 limit in Goldreich and Mitchell

(2010)]. The model for this librational forcing is shown schematically in Figure 5.1.b The

eccentricity of the orbit leads to variations in the orbital rate following Kepler’s third law

and creates a phase lag between the equatorial bulge and the line connecting the centers

of mass for the two bodies as shown by the dashed and solid red arrows in Figure 5.1.b,

respectively. Periodic torques, shown as black arrows, are induced to restore this alignment,

leading to oscillations in the rotation rate, Ωspin(t), of the deformed boundary about the

average spin rate Ωspin.

Mechanical forcing through tides and libration is capable of generating laminar and tur-

bulent fluid motions in the bulk of the fluid. It has been well-established that a laminar

zonal flow is generated by the non-linear self interaction of the viscous flow in the boundary

layer [e.g., Wang (1970); Suess (1971); Busse (2010); Calkins et al. (2010); Noir et al. (2010);

Sauret et al. (2010); Chan et al. (2011); Zhang et al. (2011)]. However, at planetary settings,

these laminar flows are expected to be weak and we will focus instead on the generation of

turbulent flow.

The generation and characteristics of bulk turbulence driven by mechanical forcing is

less well understood but crucial for understanding many planetary processes including tidal

dissipation. It is well known that for the Earth, the ocean is primarily responsible for

tidal dissipation [e.g., Egbert and Ray (2003)]. However, considering other planetary bodies,

many previous studies have considered tidal dissipation in the solid planet and neglected any

contributions from lower viscosity fluid layers [e.g., Williams and Boggs (2015)]. More recent

studies have begun to consider the dynamic response of these fluid layers to directly forced

resonances from surface gravity waves, planetary Rossby waves where the Coriolis forces of

the rotating body provides a restoring force, and viscous drag at the fluid-solid interface

[e.g., Tyler (2008, 2014); Chen et al. (2014); Matsuyama (2014); Kamata et al. (2015)]. In

this work, we take a different approach by considering indirectly forced resonances where the

Coriolis force alone provides the restoring force and can drive turbulence in the entire fluid

125



layer.

A necessary ingredient for such indirectly forced turbulence is the presence of flows with

elliptically deformed streamlines that can then support elliptical instabilities. This insta-

bility is a parametric resonance between the elliptically deformed flow and two resonating

inertial modes of the system [e.g., Kerswell (2002)]. The instability was found in elliptically

deformed flows driven by tidal and librational forcing and referred to as tide- (libration-)

driven elliptical instability, TDEI (LDEI) [e.g., Kerswell and Malkus (1998); Le Bars et al.

(2007, 2010); Cébron et al. (2012b)]. In both TDEI and LDEI, the periodic forcing of an

ellipsoidal cavity can generate a triadic resonance between the inviscid elliptically deformed

base flow and two inertial modes of the system that can globally destabilize the layer leading

to bulk turbulence.
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TDEI experiments in a deformable sphere and cylinder have shown, through side-view

visualizations, that this triadic resonance between the base flow and two inertial modes can

generate either intermittent or saturated turbulence [e.g., Lacaze et al. (2004, 2005); Le

Bars et al. (2007, 2010)]. These works confirmed the instability regime, growth rates, and

the turbulent transition associated with the TDEI. Recent LDEI studies in rigid ellipsoids

have also shown both intermittent and saturated globally turbulent flows [e.g, Cébron et al.

(2012b); Noir et al. (2012); Grannan et al. (2014); Favier et al. (2015)]. The aspects of, and

instabilities related to, mechanically forced flows are reviewed in Le Bars et al. (2015).

We perform experiments here measuring, for the first time, the TDEI-driven flow veloc-

ities in the equatorial plane of a deformable spherical container. These results are coupled

with selected direct numerical simulations (DNS). For these studies, the Ekman number,

E = ν/(ΩspinR
2), is defined as the ratio of viscous to Coriolis forces where ν is the kine-

matic viscosity, Ωspin is the mean rotation rate, and R is the r.m.s elliptical boundary ra-

dius. For the laboratory experimental and numerical work, the Ekman number is fixed at

E = 1.5 × 10−5 and E = 5 × 10−5, respectively. Such efforts incorporate the more ex-

treme parameters available to experiments with the full flow field available to numerical

simulations.

We extend the previous experimental and numerical studies of libration in a rigid cavity

with a fixed deformation at the dimensionless frequency, flib = 4 [e.g., Grannan et al. (2014);

Favier et al. (2015)]. In our studies of TDEI, we fix the dimensionless frequency at ftide = 4.

This dimensionless frequency is outside the range for directly forced inertial resonances [e.g.,

Greenspan (1969)] and allows us then to focus only on the indirect forcing provided by TDEI

mechanism.

By comparing the tidal forcing results from the current work with the previous studies of

libration, strong similarities between tidal- and libration-driven flows are found, suggesting

a generic response of the fluid layer independent of the specific forcing. In Section 5.2, the

mathematical framework is developed for tide- and libration-driven flows, the experimental

method is described in Section 5.3, and the numerical method is outlined in Section 5.4. The

results for tide-driven flows and their comparison with libration-driven flows are provided in
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Section 5.5. Finally, our conclusions are summarized in Section 5.6.

5.2 Mathematical Background

In our tidal forcing scenario, we consider a homogenous, incompressible, Newtonian fluid

that is enclosed in an ellipsoidal container. The boundary of this ellipsoid is specified by,

x2/a2 + y2/b2 + z2/c2 = 1, set in a Cartesian coordinate system affixed to the ellipsoid with

the long axis, x̂, of length a. The short equatorial axis with length b is along ŷ while ẑ is

along the axis of rotation with length c. Non-dimensionalizing the ellipsoid equation using

the r.m.s. fluid layer length scale, R =
√

(a2 + b2)/2, yields:

x2

1 + β
+

y2

1− β +
z2

c∗2
= 1. (5.1)

The equatorial ellipticity of the cavity is defined as β = (a2 − b2)/(a2 + b2), while the axial

deformation is c∗ = c/R.

From a numerical perspective, it is advantageous to work in the reference frame fixed to

the elliptical distortion, termed the orbital frame rotating at Ωorb. The generalized equations

of motion:
∂u

∂t
+ u · ∇u + 2γ(t)ẑ× u = −∇Π + E∇2u− ∂γ(t)

∂t
ẑ× x, (5.2)

∇ · u = 0, (5.3)

are non-dimensionalized using R as the length scale and the mean spin rate of the fluid,

Ω
−1

spin, as the time scale. In (6.4), the first two terms on the left hand side are the inertial

terms, and the third term is the Coriolis acceleration. Here,

γtide =
Ωorb

Ωspin

, (5.4)

is the ratio of the elliptical distortion rotation rate to the mean spin rate of the fluid. The

forcing frequency felt by a fluid parcel, ωtide, due to the elliptical distortion is related to

the both rotation rates by ωtide = 2(Ωspin − Ωorb). The dimensionless forcing frequency due
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to the elliptical distortion is then ftide = ωtide/Ωspin = 2(1 − γtide). On the RHS of (6.4),

Π is the modified pressure term where the centrifugal acceleration, −γ(t)ẑ × γ(t)ẑ × x =

∇γ2(t)(x2 + y2)/2, is absorbed into the pressure gradient. The next term on the right is the

viscous diffusion term where E = ν/(ΩspinR
2) is the Ekman number defining the ratio of the

viscous forces to Coriolis forces where ν is the kinematic viscosity.

The final term on the RHS is the Poincaré acceleration associated with the time-dependent

elliptical distortion rotation rate. This term is zero for the current tidal forcing studies since

γtide is constant. For tidal forcing, an impermeable, no-slip boundary condition is imple-

mented with a horizontal tangential velocity given by:

ub.c. = (1− γtide)
√
a′2 + b′2

2
τ , (5.5)

where τ is the normalized tangent vector and [a′, b′] = [a, b]
√

1− z2/c2. More details are

provided in Appendix 5.7.

In the studies of longitudinal libration, the reference frame is fixed to the elliptical distor-

tion such that the equations of motion in (6.4) and (5.3) are still used. However, the ratio of

the elliptical distortion rotation rate to the mean spin rate of the fluid now takes the form:

γlib(t) =
Ωspin(t)

Ωspin

= (1 + εlib sin(flibt)) , (5.6)

where εlib = flib∆φ is the dimensionless amplitude of librational oscillation where the dimen-

sionless frequency ratio, flib = ωlib/Ωspin, is the ratio of the elliptical distortion frequency

to the mean rotation rate and ∆φ is the librational amplitude in radians [e.g., Cébron

et al. (2012b); Noir et al. (2012); Sauret (2012); Favier et al. (2015)]. Because of the time-

dependence in (5.6), the Poincaré term in (6.4) is now non-zero. Finally, an impermeable,

no-slip condition is implemented with ub.c. = 0.

An inviscid solution of (6.4), generalized for tidal or librational forcing in the orbital
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reference frame, is given in Cébron et al. (2012a) as:

UB = (1− γtide,lib)


0 −(1 + β) 0

1− β 0 0

0 0 0

x, (5.7)

where x = (x, y, z) is a general position vector and (1−γtide,lib) is the forcing amplitude. The

maximum amplitude of this forcing is defined as εtide,lib = (1− γtide,lib)max. The purely hor-

izontal base flow in (5.7) satisfies a non-penetration condition at the boundary and follows

the ellipsoidal shape of the container characterized by an azimuthal wavenumber in cylindri-

cal coordinates, mtide,lib = 2, and forced at the dimensionless frequency ftide,lib contained in

the forcing amplitude (1− γtide,lib). The total kinetic energy associated with this flow in the

orbital frame is:

EB =
4π

15
(1− γtide,lib)2 (1− β2

)3/2
c∗ . (5.8)

It is experimentally advantageous to work in the spin frame fixed at Ωspin and, as such, the

base flow is transformed into the spin frame where:

UBrot = (1− γtide,lib)β


− sin (2θ(t)) − cos (2θ(t)) 0

− cos (2θ(t)) sin (2θ(t)) 0

0 0 0

xrot. (5.9)

Here xrot = (X, Y, Z) is a general position vector in the spin frame and θ(t) =
∫ t

0
(1 −

γtide,lib(t
′))dt′ is the total angle between the axes of the spin frame and the orbital frame.

The total kinetic energy associated with this flow in the spin frame is:

EBrot =
4π

15
(1− γtide,lib)2 β2

(
1− β4

)
c∗. (5.10)

To satisfy the no-slip boundary conditions, viscous corrections in the Ekman boundary

layer generate a flow linear in β that connects the base flow with the no-slip boundary. The

non-linear self-interaction of this mtide,lib = 2 flow generates flows of azimuthal wavenumbers
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m = 4 and m = 0, the latter of which is associated with an axisymmetric, steady zonal flow

that scales with β2 in the boundary layer and is independent of the Ekman number [e.g.,

Sauret (2012)].

Perturbations in rotating fluids can generate inertial waves whose restoring force is the

Coriolis force and whose dimensionless frequency is given by the dispersion relation, λ =

ωtide,lib/Ωspin = ±2 cos θ, where θ is the angle between the wave-vector and the axis of

rotation. In closed cavities, reflections and constructive interference support inertial modes

with the same frequency range, namely −2 . λ . 2 [e.g. Greenspan (1969); Vantieghem

(2014)]. Mechanical forcing can excite these inertial modes, in addition to generating the

aforementioned elliptically deformed base flow (5.7). An elliptical instability, (EI) can be

generated when two inertial mode frequencies and azimuthal wavenumbers are related to

those of the base flow given in Kerswell (2002) by:

|λ1 − λ2| = ftide,lib, (5.11)

|m1 −m2| = mtide,lib = 2. (5.12)

Using the inertial mode frequency range, the maximum frequency for exciting EI is ftide,lib .

4. Uniquely for tides, since the tidal forcing frequency is given by ftide = 2(1 − γtide), this

unstable range can be written as −1 ≤ γtide ≤ 3 [e.g., Le Bars et al. (2010)]. In contrast,

for libration, γlib, in (5.6) can take any value to drive elliptical instability as long as the

elliptical distortion frequency ωlib is no greater than four times the mean rotation rate (i.e..,

ωlib/Ωspin = flib . 4).

To calculate the inviscid growth rates, local stability analyses were performed based on

the Wentzel-Kramers-Brillouin method in Le Dizes (2000). There it was shown, in the limit

of εtide,lib, β � 1, that the inviscid growth rates for TDEI and LDEI are given respectively

as:

σtideinv =
εtideβ

64
(4 + ftide)

2, (5.13)

σlibinv =
εlibβ

16
(16 + flib)

2. (5.14)
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Figure 5.2: Comparison of tide and libration experimental setups. a) The tidal deformation
experiment where the camera is fixed to a deformable container with equatorial ellipticity,
β, rotating at Ωspin. The two symmetric rollers rotate independently at Ωorb. b) The
libration experimental setup used in Grannan et al. (2014). A rigid ellipsoid with equatorial
ellipticity, β, rotates at a constant spin rate and oscillates using two motors such that
Ωspin(t) = Ωspin(1 + εlib sin(flibt)). Image from b) adapted from Grannan et al. (2014).

The similarity of the growth rates in (5.13) and (5.14) suggest that the response of a localized

fluid parcel away from the elliptical boundary is independent of the forcing mechanism.

The general form of the equation including viscous effects and the proximity of the forcing

frequency to some resonant frequency, fres, is given from Cébron et al. (2012a) as:

σ =
√
σ2
inv − (fres − f)2 −K

√
E. (5.15)

The second term on the right-hand side of (5.15) is due to viscous dissipation in the Ekman

boundary where K is a constant typically [1− 10]. Table 5.1 provides a comparison of tidal

and librational formulae.

5.3 Experimental Method

The experimental setup, shown in Figure 5.2.a is adapted from the same apparatus used

previously in Le Bars et al. (2010); Morize et al. (2010); Sauret et al. (2010, 2014). A

hollow sphere is enclosed in a cast cylinder of deformable semi-transparent silicone gel.
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Parameter Definition Tides Libration
a Long equatorial axis(cm) 10.05− 10.8 cm 12.7 cm
b Short equatorial axis(cm) 9.95− 9.2 cm 8.9 cm
c Short rotational axis(cm) 10 cm 8.9 cm

β a2−b2
a2+b2

0.01− 0.16 0.34

R
√

a2+b2

2
10 cm 10.97 cm

ν Kinematic viscosity 10−6 m2/s 10−6 m2/s

Ωspin/2π Mean rotation rate 1.05 Hz 0.5 Hz

Ωorbit/2π Elliptical distortion rotation rate −1.03 Hz 0.5(1 + 0.8 sin(4πt)) Hz

ωtide,lib/2π Elliptical distortion frequency 4.16 Hz 2.0 Hz

c∗ c
R

1 0.81

ftide,lib ωtide,lib/Ωspin 3.96 4.0

γtide,lib
Elliptical dist. rotation rate

Mean rotation rate
−0.98 1 + 0.8 sin(4πt)

εtide,lib (1− γtide,lib)max 1.98 0.8

E ν
ΩspinR2 1.5× 10−5 2.7× 10−5

Table 5.2: Comparison of laboratory experimental tidal and librational forcing parameters.
The definitions for equatorial ellipticity, β, mean rotation rate, Ωspin, and the Ekman num-
ber, E are shared by both types. The differences arise in how the mechanical forcing is
implemented at the boundary. However, in the current work, ftide,lib ' 4 is fixed allowing
for a comparison between both mechanisms.
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Tidal forcing is replicated using two motors. The first motor rotates the sphere about

the ẑ axis at a constant counter-clockwise rate, Ωspin/2π = 1.05 Hz. The second motor

generates the tidal deformation by rotating two symmetric axial rollers pressed radially into

the silicone at a fixed clockwise rate, Ωorb/2π = 1.03 Hz. The rotation rate ratio of the

two motors is fixed at γtide = Ωorb/Ωspin ' −1, indicating that the rates are nearly equal

and moving in opposite directions. The amplitude of the equatorial ellipticity in the tidal

forcing, the amount by which the orbiting rollers are pressed radially inward, is given by,

β = (a2−b2)/(a2 +b2) ∈ [0.01−0.09]. For completeness, the axial deformation c∗ = c/R ∼ 1,

where R =
√

(a2 + b2)/2 ∼ 10 cm for all cases. Finally, the Ekman number defining the

ratio of viscous forces to the Coriolis forces is fixed at E = 1.5× 10−5 using water, for which

ν ∼= 10−6m2/s.

For comparison, the libration setup used in Grannan et al. (2014) is included in Figure

5.2.b. In brief, two motors generate a constant background rotation, Ωspin, and superimposed

sinusoidal oscillations at a fixed Ekman number, E = ν/(ΩspinR
2) = 2.7 × 10−5. Details

of the experimental method are found in Grannan et al. (2014) and Table 5.2 provides a

comparison of laboratory experimental tidal and librational forcing parameters.

To make quantitative measurements in the tidal forcing laboratory experiments, a particle

image velocimetry (PIV) technique is employed in the Ωspin reference frame. Nearly spherical,

100µm diameter Optimage particles of density (1±0.02g/cm3) are added to the water. Two

oppositely faced laser light sheets are fixed in the laboratory frame several millimeters above

the equatorial plane due to the presence of the joining seam of the silicone hemispheres.

Mirrors are also implemented in the laboratory frame to create a more uniform laser light

sheet. A GoPro Hero3+ camera is fixed in the spin frame, in order to acquire 1920 × 1280

resolution movies of the horizontal flow field at 60 frames per second. These movies are

made only after solid body rotation has been reached; they are initiated at the start of tidal

forcing and the recordings are typically 10 minutes in duration. The camera is controlled

wirelessly using a GoPro smartphone application.

All movies are separated into their constituent frames and pre-processed to remove the

Go-Pro’s fish-eye distortion and to adjust the brightness and contrast. All adjusted images
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are passed through Meunier and Lewecke (2003)’s open source PIV software, DPIVSoft2010,

that has been successfully employed in previous studies [e.g., Sauret et al. (2010); Morize et al.

(2010); Sauret et al. (2014); Grannan et al. (2014)]. The velocity field for an entire equatorial

plane is resolved spatially into a 40x60 grid with a typical resolution of 3mm and the temporal

resolution of the PIV is 59Hz. The practical dimensional and non-dimensional temporal

frequency limit for our setup is ∼ 8Hz and f ∼ 8, respectively. For higher frequencies above

f > 8 where the power spectra falls below O(10−5), the noise is on the order of the signal.

This frequency cutoff is shown in Figure 5.8 and is discussed in Section 5.5.3.

All velocity measurements presented below are non-dimensionalized using the radius, R,

and spin period Ω
−1

spin. Thus, the dimensional velocity is found by multiplying the dimen-

sionless velocity by ΩspinR. The dimensional energy density is found by multiplying the

dimensionless energy by ρΩ
2

spinR
2.

5.4 Numerical Method

Numerical simulations were performed with the massively parallel spectral-element code

Nek5000 (http://nek5000.mcs.anl.gov) developed by Paul Fischer and collaborators (see Fis-

cher et al. (2007) and references within). Nek5000 solves the incompressible Navier-Stokes

equations via a Legendre polynomial based spectral element method which combines the

geometrical flexibility of finite element methods with the accuracy of spectral methods. It

is therefore particularly well adapted to our problem involving turbulent flows in complex

non-axisymmetric geometries and has been used previously in the context of tidally-forced

spheres and librationally-forced elliptical flows (e.g., Favier et al. (2014a, 2015); Barker et al.

(2016)).

5.5 Results

The laboratory experimental cases investigated in this work are denoted by L− while the

numerical cases are denoted by N−. The parameters for all the experimental and numerical
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Figure 5.3: Comparison of sideview visualizations showing the onset of the EI at ftide,lib = 4.
For all cases, from left to right, first the base flow is established in the bulk and axial flow
occurs in the boundary layer, followed by the stacked structures indicating the growing
inertial modes, and finally the breakdown to sustained bulk turbulence. For experiments,
Kalliroscope visualizations of the meridional flows illuminated by axial laser light sheets are
shown while the axial velocity is shown for the numerical simulations. a) Tidally forced flow
case L5 where β = 0.06 and E = 1.5×10−5 as seen in the laboratory frame. b) Excitation of
TDEI from case N4 where β = 0.09 and E = 5× 10−5. c) LDEI experimental case from V
in Grannan et al. (2014) with frequency flib = 4, equatorial ellipticity β = 0.34, and Ekman
number E = 2.7 × 10−5 seen in the rotating frame. d) Numerical simulation of case A6 in
Favier et al. (2015) showing the excitation of the LDEI where β = 0.34 and E = 10−4.
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cases studied are listed in Tables 5.3 and 5.4 respectively of Appendix 5.8.

5.5.1 General Properties

Figure 5.3 shows, for the first time, the strong similarities found between the TDEI excited

in the experiments and numerics of the current work with the LDEI found in the 0previous

works of Grannan et al. (2014); Favier et al. (2015). Kalliroscope visualizations are illumi-

nated by an axial laser light sheet in order to take high resolution movies of the experiments.

The tidal forcing images in Figure 5.3.a are taken from case L5, (β = 0.06, E = 1.5× 10−5)

in the laboratory frame while librational forcing images of Figure 5.3.c from case V, (β =

0.34, E = 2.7× 10−5) in Grannan et al. (2014) are taken in the rotating frame. Snapshots of

the numerical simulations in Figure 5.3.b and 5.3.d show the axial velocities from the TDEI

in case N4, (β = 0.09, E = 5 × 10−5) and the LDEI from case A6, (β = 0.34, E = 10−4) of

Favier et al. (2015) in the ellipsoidal frame.

Moving from left to right through the three time steps of Figure 5.3, after solid body

rotation has been reached, the forcing commences with no visible flow in the bulk. Since the

base flow is purely horizontal, the numerical simulations in Figure 5.3.b and 5.3.d show that

axial velocity is non-zero only in the thin boundary layer. After some time, for forcing above

a critical value such that the growth rate in (5.15) is positive, the excited inertial modes

participating in the instability grow and become visible. Since ftide,lib = 4 is at the limit

of elliptical instability, the coupled inertial modes are necessarily |λ1,2| = ftide,lib/2 ≈ 2 by

(5.11), and the wave crests are perpendicular to the rotation axis as indicated by the layered

structures. It is noted that inviscid inertial modes with |λ| = 2 exactly do not exist but may

be just below 2 due to viscous effects and imperfect resonances. On the right of Figure 5.3,

the growth of the inertial modes leads to a wave breaking event that transitions to sustained

bulk filling small-scale turbulence that does not return to the laminar base state found at

early times.

Side-view visualizations reveal that as the strength of tidal deformation is varied between

β ∈ [0.01− 0.16], the transition to bulk turbulence, shown in Figure 5.3, is seen in all cases
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except for β = 0.01 which remains laminar for all times. Using this critical value for tidal

deformation, fres = 4, and setting the growth rate in (5.15) equal to zero, the dissipation

constant is then K = 3 and 5 for DNS and experiments, respectively. These Kvalues are

within the typical range for K = [1− 10] also found in previous studies [e.g., Cébron et al.

(2012b); Noir et al. (2012)].

The onset of turbulence is quantified using the averaged axial kinetic energy defined as:

Ez =
1

2V

∫
V

u2
zdV, (5.16)

where V = 4/3πabc is the ellipsoidal volume and uz is the axial velocity component. This

diagnostic is a natural choice since the tide-induced base flow of (5.7) and (5.9) are purely

horizontal and any increase in the axial energy indicates the excitement of the TDEI.

Additionally, these flow quantities vary in time due to the oscillating base flow and may

be sufficiently smoothed by averaging over one spin period defined as:

A(t) =
1

τspin

∫ t+τspin

t

A(t′)dt′, (5.17)

where τspin = 2π/Ωspin.

The axial kinetic energy in (5.16) is not measurable in the experimental PIV which is

limited to only the horizontal energy. Since the experimental data is inherently more noisy,

the horizontal flows for experiments and DNS are computed by subtracting out the base flow

in (5.7) and (5.9), respectively. After the base flow is removed from the experimental data,

the horizontal energy in the bulk is integrated, in the rotating frame, over an equatorial

surface area with a maximum radius 0.5R where R =
√
a2 + b2/2:

ES
H =

1

2S

∫
S

(uHrot −UBrot)
2 dS. (5.18)

In comparison, the volume averaged horizontal energy of the DNS is computed in the ellip-
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soidal frame by:

EV
H =

1

2V

∫
V

(uH −UB)2 dV. (5.19)

Figure 5.4.a shows the transition from laminar to turbulent flow as the equatorial elliptic-

ity, β, is increased by plotting the unaveraged horizontal energy from (5.18) in gray and the

time average in color as a function of the number of spin periods τspin for the experiments.

The laminar case, β = 0.01, (blue line) shows no transition after the base flow is established

at early times.

For β ∈ [0.03 − 0.16], after the base flow is established, the energy grows exponentially

followed by an overshoot and then oscillations around a saturated phase. This is corroborated

in Figure 5.4.b where an analysis of the volume averaged horizontal energy computed in the

ellipsoidal frame of the DNS reveals the same transitions. Once the transition occurs we find

no evidence for relaminarization wherein the flow returns to the laminar base state found at

early times. For all cases, the energy of the unstable flow is quite small, O(10−3 − 10−2),

indicating that although the instability conveys just a small portion of the available kinetic

energy of the system, first order changes are generated in the flow.

To verify the characteristics of the EI mechanism, we focus on the transitions in the

axially-averaged energy of the DNS in Figures 5.4.c and 5.4.d. The growth rates for different

β are predicted using the theoretical growth rate given by (5.15) for fixed ftide = 4, E =

5 × 10−5, and K = 3 plotted using solid black lines of the form, e2σt, in Figure 5.4.c. The

slope of the exponential phase is well-matched with the theoretical prediction. Note that the

same analysis of the exponential growth rate of the horizontal energy shown in Figure 5.4.a

and 5.4.b is also in general agreement.

Because the base flow in (5.7) is purely horizontal, the non-zero axial energy for early

times in Figure 5.4.c is associated with viscous corrections in the boundary proportional to β2.

Thus, normalizing the axial energy by β2 collapses all the energy profiles to a constant value

as shown in Figure 5.4.d at early times. Unexpectedly, at later times after the exponential

growth of the flow energy, the amplitudes of the saturated turbulent energy also collapse to

oscillations around a constant value as shown by the black horizontal line and indicate that
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with the base flow removed, ES
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L1, β = 0.01, L3, β = 0.04, and L8, β = 0.09. b) For numerical simulations, the volume
averaged horizontal energy in the ellipsoidal frame with the base flow removed, EV

H , as
defined in (5.19). The cases shown are N1, β = 0.01, N3, β = 0.04, and N4, β = 0.09. c)
Time evolution of field-averaged axial kinetic energy Ez normalized by the kinetic energy
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the saturation energy also scales with β2. By extension, the saturation amplitude for the

turbulent velocity, UTDEI , is then:

UTDEI ∼ β. (5.20)

Note that since β � 1 in the current work and in planetary settings, this novel scaling for

the turbulent saturation velocity is larger than the amplitude associated with laminar zonal

flows that scale with β2. Note that a collapse of the saturation in the horizontal flows in

Figure 5.4.a and 5.4.b is also found, but is not shown for brevity.

In Figure 5.4 we also note a general increase in the frequency of the oscillations as β

increases during the saturated flow phase. This increase is expected because as the saturation

velocity scales with β, the oscillations after the exponential growth phase correspond to

a typical oscillation frequency that scales as UTDEI/` ∼ O(β) for a fixed length scale `.

The relation between these oscillations and the participating inertial modes requires a more

complete analysis of the long term evolution characteristics of the flow and is currently

being performed using numerical simulations in a local cartesian geometry [i.e., Barker and

Lithwick (2013)].

The response of the flow to TDEI and LDEI was also addressed in previous studies

examining kinetic energy dissipation. For turbulent flow, the dissipation is expected to scale

as u3, where u is the velocity [i.e., Kolmogorov (1941)]. In the numerical studies of the

current work, we also find that the dissipation in the bulk scales as U3
TDEI ∼ O(β3). A

scaling for boundary layer dissipation is given by β2E1/2 [i.e, Cébron et al. (2010b)]. For the

current work and in planetary setting where β � E1/2, the bulk dissipation is larger than

the boundary layer dissipation. The scaling for the turbulent bulk dissipation is also found

in numerical simulations of tidal forcing in a periodic box and in the ellipsoidal geometry

with a free surface [e.g., Barker and Lithwick (2013); Barker et al. (2016)]. This result is

expected since there are no boundaries and thus no viscous dissipation in the boundary.

In the study of turbulence generated by LDEI in ellipsoids where both bulk and viscous

boundary dissipation are present, the bulk dissipation is also found to be larger than the

viscous dissipation. [e.g., Favier et al. (2015)].
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5.5.2 Zonal Flows

Tide-driven forcing can generate steady zonal flows driven by non-linear self interactions

of the boundary flow that satisfy the no-slip boundary condition. The amplitude of the

typically retrograde zonal flows scales with β2 and is independent of the Ekman number.

However, as shown in recent numerical studies of libration by Favier et al. (2015) where the

Ekman number is varied, the zonal flow amplitude is increased by the presence of elliptical

instability. To look at the influence of the TDEI on the zonal flow, we assume the mean

velocity is strongly azimuthal and after subtracting the base flow in (5.7) and (5.9), we

decompose the flow into its mean azimuthal component in cylindrical coordinates:

〈
Uφ
〉

(r) =
1

Nr

∑
z

∑
φ

∑
r− dr

2
<r′<r+ dr

2

Uφ(r′, φ, z), (5.21)

where Nr is the number of points averaged in each radial ring. Note that z is fixed for the

experiments.

By separating the azimuthal flow into approximately 30 radial rings and averaging the

azimuthal velocity in each ring, radial profiles of the time-averaged azimuthal velocities are

shown in Figure 5.5.a where the symbols and dotted lines indicate the experimental and

DNS measurements respectively. Beginning with β = 0.01(blue), the retrograde azimuthal

flow velocity is quite small.

As β is increased the amplitude of the retrograde zonal flow grows as well. For all profiles,

the experimental data at E = 1.5 × 10−5 shows a larger magnitude and more centralized

peak than numerical studies at E = 5 × 10−5 for the same values of β. A transition to

a stronger more centralized geostrophic flow was also found in studies of LDEI enhanced

zonal flow where the Ekman number was decreased and β was held constant [i.e., Favier

et al. (2015)]. Thus we believe that the disparity found for zonal flow peaks and locations

in the current work may also be related to differences in Ekman number. More generally,

the presence of such strong zonal flows generated as the elliptical instability saturates [c.f.,

Favier et al. (2015)] may play a crucial role for the long term flow evolution and will be the
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Figure 5.5: Measurements of tidally-driven zonal flows. a) Radial profiles of the time-
averaged dimensionless azimuthal flow velocity, 〈Uφ〉, with normalized radius r. The exper-
imental data at E = 1.5 × 10−5 from cases L1, β = 0.01, L2, β = 0.03, L3, β = 0.04, and
L8, β = 0.09 are shown with symbols and the DNS cases at E = 5×10−5 with N1, β = 0.01,
N2, β = 0.03, N3, β = 0.04, and N4, β = 0.09 are shown with dotted lines. b) The maximum
velocities, |〈Uφ〉|max, are normalized by β2 and plotted as a function of β where triangles,
(4), indicate laboratory experiments and boxes, (�), denote DNS velocity peaks. The col-
ored symbols for the max values in b) match the profiles in a) from which they came. The
gray symbols denote additional cases whose profiles were not included in a). The size of
the symbols is inversely proportional to the Ekman number, E−1. The vertical dashed line
represents the transition from laminar to turbulent flows.

subject of future studies.

In previous studies of tidal forcing, zonal flow peak amplitudes were shown to scale with

β2 [e.g., Suess (1971); Morize et al. (2010); Sauret et al. (2014)]. As such, the maximum

values of the the azimuthal velocity in the radial profiles of Figure 5.5.a are shown as colored

points in Figure 5.5.b normalized by β2 as a function of β. The additional gray symbols

denote peaks from other profiles excluded in Figure 5.5.a only for clarity. Triangle and square

symbols denote experiments and DNS, respectively. The size of the symbols are inversely

proportional to the Ekman number, E−1, varied between E = [1.5× 10−5 − 5× 10−4].

The dotted vertical line denotes the transition between laminar and TDEI induced tur-

bulent flow around β ∼ 0.02. Below this threshold, no clear trend is revealed and the

experimental data at β = 0.01 and zonal flow peaks are on the order of the noise in the

system. Above the threshold, the bulk of experimental and numerical data are relatively flat
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around:

|〈Uφ〉|max/β2 ∼ 10, (5.22)

indicating that β2 normalization is well chosen. Additional numerical data at fixed β = 0.16

on the right side of Figure 5.5.b clearly reveal that the amplitude increases as the Ekman

number is decreased. However, it is not clear from the present study if this trend continues

or the zonal flow saturates at some critical value [c. f., Sauret et al. (2014)]. A summary of

the laboratory experimental and numerical zonal flow velocities shown in Figure 5.5.b are

compiled in Table 5.3 and Table 5.4 of Appendix 5.8.

5.5.3 Mode Coupling and the Transition to Turbulence

The transition to turbulence is explored by increasing the strength of the tidal deformation

from β ∈ [0.01 − 0.16] while keeping the tidal frequency fixed at ftide = 4 and the Ekman

numbers fixed at E = 1.5× 10−5, 5× 10−5 for experiments and DNS, respectively.

To characterize the turbulent transition, all velocity components are analyzed in the

rotating frame at probe points distributed homogeneously in the bulk of the ellipsoid for

DNS and in the equatorial plane for the experiments. Because an adaptive time stepping

method is used in the DNS, signals must be evaluated on a uniform grid formed using a

Langrangian interpolation method. For DNS and experiments, velocity signals are multiplied

by a time-periodic Hanning function to ensure all signals are periodic.

A comparison of the power spectrograms from experimental cases L1(β = 0.01), L3(β =

0.04) and L8(β = 0.09) and DNS cases N1(β = 0.01), N3(β = 0.04), and N4(β = 0.09)

are shown in Figure 5.6. Sliding window discrete Fourier transforms are performed on a

moving window of 10 spin periods with a 90% overlap. The first signal is the strong peak

at f = 4 corresponding to the ftide = 4 of the tidal forcing that drives the ellipsoidal base

flow and persists for all times. The second shared signal is the zonal flow at f = 0 whose

characteristics are discussed in Section 5.5.2.

From side-view visualizations and from the flow energetics provided in Figure 5.4, the case

β = 0.01 shown in Figure 5.6.a and 5.6.b is stable, exhibiting no signs of bulk turbulence
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L8, β = 0.09, and f.) N4, β = 0.09 where ftide = 4 and the Ekman number is fixed at
E = 1.5× 10−5, 5× 10−5 for the laboratory experiments and DNS, respectively.

for all times and one strong peak at the tidal forcing, ftide = 4. Figure 5.6.c and 5.6.d

show the spectrogram for β = 0.04. Following the onset of the tidal forcing, after a certain

amount of time that depends on the strength of the tidal forcing and Ekman number, a

strong persistent signal appears at f = 2, associated with the excitation of primary inertial

modes at half of the forcing frequency.

The existence of these inertial modes at f = 2 satisfies the temporal resonance condition

in (5.11). Spatially, the modes are identifiable by their axial pancake-like structures as shown

in the middle images of Figure 5.3.a and 5.3.b. Although we have not explicitly determined

the wavenumbers of these modes, nearly identical modes have also been found in laboratory

experiments and numerical simulations of LDEI [i.e., Grannan et al. (2014); Favier et al.

(2015)]. In those studies, the inertial modes have an eigenfrequency |ftide/2| . 2 and their

spatial structure is characterized by both an azimuthal wavenumber, m1,2 = 1, and a large
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number of stacked axial structures. Analytical descriptions of these ellipsoidal modes are

theoretically possible using a polynomial description of the modes but difficult in practice

because of the need to use high degree polynomials to resolve these high axial wavenumber

modes [i.e., Vantieghem (2014)]. Instead analytical solutions from the sphere and polar

flattened spheroid have been implemented and show the existence of m1,2 = 1 that satisfies

the spatial resonance condition in (5.12) and have high frequencies at λ ∼ 1.9 [i.e., Grannan

et al. (2014); Favier et al. (2015). Thus, we contend that similar inertial modes with the

same spatial description exist in the ellipsoidal geometry of the current work at an adjusted

frequency, |λ1,2| ∼ 2.

As the tidal deformation is increased again, the growth rate given by (5.15) also increases

and thus the TDEI for β = 0.09, shown in Figure 5.6.e and 5.6.f, occurs earlier in time. For

both cases β = 0.04, 0.09, after the amplitude of the primary inertial modes has grown,

secondary resonances can occur whose driving force is the primary inertial mode frequency

f = 2, instead of the tidal forcing at f = 4.

Evidence for these secondary resonances is seen more clearly in the full time-averaged

frequency spectrum shown for experiments and numerics in Figure 5.7.a and 5.7.b, respec-
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tively. We first note strong spectral peaks at frequencies f = 1, 2, 3 are found only in the

experiments, and non-existent in the DNS. For β = 0.01 in Figure 5.7.a, the signals at

f = 1, 2, 3 may have two causes. The first may be periodic light intensity changes occurring

as the camera, in the rotating frame, moves between different laser light sources and the

mirrors used for reflecting the light mounted in the lab frame.

The second cause may be a misalignment of the rotating container or the rollers replicat-

ing the tidal deformation. In any case, these signals are related to the harmonics associated

with the rotating frequencies |Ωspin,Ωorb| ∼ 1Hz and are found in all the experimental mea-

surements. However, the good agreement with the DNS suggests that these signals do not

appear to noticeably affect the results and the peaks are still quite small in comparison to

the primary forcing at ftide = 4 for cases above the stable one at β = 0.01.

Concerning the secondary modes excited by the primary inertial modes at f = 2, although

the spatial structures for these secondary modes have not been uniquely determined, peak

frequencies at f ∼ 1.5 and f ∼ 0.5 are still evident in Figure 5.7.b. The frequency condition

(5.11) is satisfied for a secondary resonance being driven by the primary inertial mode at

ftide/2 = 2. For the horizontal spectra from the experiments in Figure 5.7.a, the only clear

peak resides at f ∼ 1.5 while Figure 5.7.b shows a second peak at f ∼ 0.5. Similar to the

method used in libration simulations from Favier et al. (2015), a decomposition of the tidal

simulation spectra into axial and horizontal components (not shown) reveals that the mode

at f ∼ 0.5 is characterized by strong axial motions untraceable in the experimental data.

The mode at f ∼ 1.5 is composed of strong horizontal motions and visible by both methods.

Finally, a comparison of the full power spectra generated through TDEI and LDEI is

shown in Figure 5.8.a and 5.8.b respectively. Figure 5.8.a display cases L8(β = 0.09, E =

1.5× 10−5, blue) and N4(β = 0.09, E = 5× 10−5, red) from the current work. Figure 5.8.b

is reproduced from the experimental (blue) and DNS (red) spectra in the LDEI studies of

Favier et al. (2015) where flib = 4, εlib = 0.8, and β = 0.34 are fixed and E = 2.7× 10−5 and

E = 10−4 for the experiments and numerics, respectively. In both images the forcing, primary

inertial modes, secondary inertial modes, and high frequency tails are nearly identical. Note

that the experimental data has been cut at f ∼ 8 where the spectra is O(10−5). At greater

148



10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0.1 1 10
Frequency

Libration

Forcing

ω−3

Numerics
Experiments

Inertial
modes

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0.1 1 10

Po
w
er
sp
ec
tru
m

Frequency

Tides

Forcing

ω−3

Numerics
Experiments

Inertial
modes

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0.1 1 10
Frequency

Libration

Forcing

ω−3

Numerics
Experiments

Inertial
modes

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0.1 1 10
Frequency

Libration

Forcing

ω−3

Numerics
Experiments

Inertial
modes

DNS
Lab

DNS
Lab

f�3f�3

a. Tides b. Libration

Figure 5.8: a) The time-averaged power-spectrum of the saturated turbulent flow in the
current tidal studies where ftide = 4 and β = 0.09. The laboratory case, L8, where E =
1.5×10−5 is shown in blue. The numerical case, N4, where E = 5×10−5 is shown in red. b)
The time-averaged power-spectrum of the saturated turbulent flow in the libration studies
where εlib = 0.8 and flib = 4. The laboratory case V from Grannan et al. (2014) where
E = 2.7×10−5 is shown in blue. The DNS case A6 from Favier et al. (2015) where E = 10−4

is shown in red. The dashed line has an f−3 slope.

frequencies the signal to noise ratio is unity in the experimental data and only the numerical

spectra fills the high frequency tail.

For both tides and libration the majority of the energy is contained in the forcing and

excited inertial modes. The power in the higher frequency spectra more closely follows an f−3

scaling indicative of scalings for rotating turbulence wherein the presence of the Coriolis force

reduces the forward energy cascade. The same scalings were also found for the wavenumbers

in the spatial spectra of local models of tidal forcing and simulations of libration in ellipsoids

[i.e., Barker and Lithwick (2013); Favier et al. (2015); Barker et al. (2016)]

5.6 Conclusion

We have combined laboratory experiments with numerical simulations to show, for the first

time, that tides can mechanically drive bulk filling turbulence in an interior fluid region

via elliptical instability (see Figure 5.3.a,b). We find strong agreement with the theoretical
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prediction for the growth rate and the subsequent instability whose forcing and inertial mode

frequencies satisfy the resonance conditions for the TDEI (see Figure 5.4). The transition to

turbulence is characterized first by the growth of primary inertial modes, then the excitation

of additional secondary inertial modes, and finally saturated bulk turbulent flow (see Figure

5.6 and Figure 5.7). Furthermore, our tidal results have both qualitative and quantitative

similarities to librationally-driven flows (see Figure 5.3.c,d and Figure 5.8).

Tidal deformation of an elastically deformed ellipsoid and longitudinal libration of an

ellipsoid with a rigid boundary represent two end-member cases for the geophysically relevant

periodic mechanical forcings that many planetary bodies experience. Our tidal case better

describes a flexible icy shell, for instance, in a non-synchronous orbit, where the orbital

and spin rate of the body are unequal and the elastic boundary responds quickly to tidal

distortions. Our libration case is more relevant for planetary bodies whose shapes have some

degree of intrinsic ellipsoidal distortion [e.g., Vesta, Ermakov et al. (2014)], and/or are in

so-called synchronous orbits where the time-averaged tidal forcing generates the ellipsoidal

deformation.

Although tidal and librational forcing mechanisms are quite different, their mathematical

formulation can be generalized in the same way as shown in Section 5.2 and Tables 5.1 and

5.2. The strong agreement found between the transition to, and characteristics of, the bulk

turbulence driven by tides and libration hints at a generic response of the fluid interior to

elliptical instability as illustrated in Figures 5.3 and 5.8, showing side-view visualizations and

power spectra, respectively. Furthermore, the small-scale turbulence observed is more easily

excited as the Ekman number is decreased [e.g., Lacaze et al. (2004); Le Bars et al. (2010)]

and may be similar to the small-scale turbulence that might be generated in planetary fluid

interiors where E � 1.

We find that the saturated turbulent velocity induced by TDEI scales linearly with

UTDEI ∼ β. In comparison, a bulk azimuthal zonal flow is shown to scale with β2. In

planetary settings where β < 10−4 [e.g., Cébron et al. (2012a)], the turbulent velocity scal-

ing is therefore much larger than that of the zonal flow and may be of critical importance for

planetary processes like tidal dissipation in subsurface oceans and magnetic field generation
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in liquid metal cores.

To investigate the generation of turbulence in planetary bodies based on the velocity

scaling in (5.20), we define a Reynolds number that describes the strength of turbulence in

a flow, Re = UR/ν, where U is the dimensional turbulent velocity, R is the outer radius

of the fluid layer, and ν is the kinematic viscosity. Using (5.20) a dimensional velocity,

U ∼ UTDEIΩspinR, is formed. The Reynolds number can then be rewritten in terms of the

mechanical forcing parameters such that:

Re =
β

E
. (5.23)

For elliptical instability to occur, it is required that σ > 0 in (5.15) and thus

σinv√
E
∼ εtide,libβ√

E
≥ 1 (5.24)

This condition for elliptical instability in (5.24) can be rewritten in terms of the Reynolds

number in (5.23) forming a critical Reynolds number, Recr:

Recr =
1

εtide,lib
√
E
. (5.25)

Thus the condition for the onset of elliptical instability in (5.24) can be redefined asRe/Recr >

1. For the subsurface ocean on Europa, the parameters ε = 2 × 10−4, β = 9.7 × 10−4, and

E = 2× 10−14 are taken from Cébron et al. (2012a). Using the planetary values for Europa,

Recr ∼ 4 × 1010 while Re ∼ 5 × 1010 indicating that the body is marginally unstable and

mechanical forcing may be capable of generating turbulent flow that could play an important

geophysical role.

New observations of Enceladus have shown the presence of a large libration in addition

to a global subsurface ocean [i.e, Cedak et al. (2016); Thomas et al. (2016)]. For Enceladus,

εlib = 2 × 10−3, β = 9 × 10−3 following the formulation used in Cébron et al. (2012a), and

E = 3×10−13 revealing that Recr = 9×108 and Re = 3×1010 suggesting that the mechanical

response of the fluid may drive significant flows in a subsurface ocean.
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Currently, most models for tidal dissipation only consider visco-elastic dissipation in a

given body’s solid layers, such as icy shells. These models ignore the effects of dissipation

within lower viscosity fluid regions [e.g., Williams and Boggs (2015)]. Recent models have

now begun to include dissipation due to direct tidal resonances in subsurface oceans on

icy bodies[e.g., Tyler (2008, 2014); Chen et al. (2014); Matsuyama (2014); Kamata et al.

(2015)]. In the future we will extend our models to estimate how tidal and librational

elliptical instabilities can drive further dissipation in low viscosity planetary fluid layers [c.f.,

Ibragimov (2007) for Earth’s oceans].

In addition, advance laboratory experiments currently under construction and high res-

olution numerical simulations using full ellipsoids and local cartesian geometries will focus

on elliptical instability with the inclusion of inner cores, fluid stratification, and multiple

forcing frequencies at even more extreme ranges of forcing parameters. These studies will

aid in investigating whether the scaling for the velocity, like that proposed in (5.20), holds,

changes, or saturates at some critical value of the parameters used. Recent precession and

tidal studies at more extreme parameters [i.e., Barker and Lithwick (2013, 2014); Lin et al.

(2015)] have shown the formation of large scale structures similar to those being investi-

gated in convection [i.e., Julien et al. (2012b); Stellmach et al. (2014); Favier et al. (2014b);

Guervilly et al. (2014); Aurnou et al. (2015); Guervilly et al. (2015); Plumley et al. (2016)].

Furthermore, precession, nutation, tides, libration, and even small body impacts, do not

work in isolation but are experienced in varying degrees by all bodies. For instance, the

combined effect of tidal and precessional forcing, as seen in Morize et al. (2010), permits

rich dynamics. Thus, there may be many ways for mechanical forcing to perturb the fluid

motions in planetary interiors.

5.7 Appendix A: Boundary Condition in Tide Simulations

In the orbital frame, the elliptical distortion is fixed and the boundary maintains a constant

horizontal velocity tangent to the ellipsoidal surface. At any given height −c < z < c, the

152



horizontal shape of the container is given by

x2

a′2
+
y2

b′2
= 1, (5.26)

with a′ = a
√

1− z2/c2 and b′ = b
√

1− z2/c2. This curve can be parametrized by

X(s) =


x = a′ cos s

y = b′ sin s

z

 , with s ∈ [0− 2π] (5.27)

with a normalized tangent vector given by

τ =
Xs

|Xs|
=

1√
a′2 sin2 s+ b′2 cos2 s


−a′ cos s

b′ sin s

0

 (5.28)

=
1√

a2y2/b2 + b2x2/a2


−ay/b
bx/a

0

 .

The boundary condition for the velocity on the elliptical boundary is finally

ub.c. = (1− γ)

√
a′2 + b′2

2
τ . (5.29)
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5.8 Appendix B: Parameters from laboratory experimental and

numerical studies

Case β TDEI |Uφ|max
L1 0.01 No 0.0046
L2 0.03 Yes 0.0133
L3 0.04 Yes 0.0263
L4 0.05 Yes 0.0269
L5 0.06 Yes 0.0795
L6 0.07 Yes 0.0597
L7 0.08 Yes 0.0808
L8 0.09 Yes 0.1079

Table 5.3: Tidal laboratory experimental cases signified by (L−). For all cases, the Ekman
number, E = ν/(ΩspinR

2) = 1.5×10−5 and the ratio of orbital rate the spin rate, γtide = −1,
are fixed. The equatorial ellipticity is β = (a2 − b2)/(a2 + b2). Case L1 is TDEI stable (No)
and all other cases are TDEI unstable (Yes). |〈Uφ〉|max is the maximum absolute value for
the time and spatially averaged zonal flow defined in (5.21) and plotted in Figure 5.5.

Case E N β TDEI |〈Uφ〉|max
N1 5.0× 10−5 17 0.01 No 6.5e-5
N2 5.0× 10−5 17 0.03 Yes 0.0073
N3 5.0× 10−5 17 0.04 Yes 0.0202
N4 5.0× 10−5 17 0.09 Yes 0.0791
N5 5.0× 10−5 17 0.16 Yes 0.2290
N6 2.0× 10−4 13 0.16 Yes 0.1094
N7 5.0× 10−4 9 0.16 Yes 0.0101

Table 5.4: Tidal DNS cases signified by (N−). For all cases, the number of elements,
E = 3200, and the ratio of orbital rate to the spin rate, γtide = −1, are fixed. N is the
order of the Legendre polynomials used in the simulations, β = (a2 − b2)/(a2 + b2), and
E = ν/(ΩspinR

2) is the Ekman number. Case N1 is TDEI stable (No) and all other cases
are TDEI unstable (Yes). |〈Uφ〉|max is the absolute maximum value for the time and spatially
averaged zonal flow defined in (5.21) and plotted in Figure 5.5.
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CHAPTER 6

Libration Driven Elliptical Instability Experiments in

Ellipsoidal Shells

In this work, I modified the libration apparatus in Chapter 2 by designing and building

an adapter that rigidly supports an inner core, and designing and building an adapter to

mount a wireless camera into the librating frame. I made the first visualizations of the

presence of turbulence in the ellipsoidal shell for the smallest and largest inner cores at two

different Ekman numbers. I mentored a visiting student, Daphné Lemasquerier, on how to

the operate the experiment and acquire the data using the cameras and light intensity sensor.

I instructed her on using the particle image velocimetry software and provided Matlab scripts

used for pre-processing the movies. She gathered the majority of the data. I assisted in the

interpretation of the results that showed the existence of the LDEI could be extended to

the more geophysically relevant ellipsoidal sheIl geometry. While the onset of turbulence

through LDEI is similar to the ellipsoidal geometries investigated in Chapters 3 and 4, the

shell geometry promotes spatial heterogeneities in the flow response inside and outside the

tangent cylinder that may promote unique complexities in planetary interiors. I contributed

to the writing of the final document.

6.1 Introduction

6.1.1 Context

Planets and moons spin around their rotation axis at a given angular velocity. However,

they are subjected to several types of mechanical forcings that periodically perturb this
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rotation, such as precession and libration. This study focuses on longitudinal libration,

which physically corresponds to an oscillation of the axial rotation rate of a body that

results from gravitational interactions with an orbital partner.

The effects of these mechanical forcings on the dynamics of internal fluids are of major

interest for planetary bodies that have a liquid metal core (e.g. Mercury, the Moon, Io,

Ganymede), and for bodies that have subsurface oceans (e.g. Europa, Callisto, Ganymede,

Enceladus, Titan). In these bodies, internal flows are linked to the generation of magnetic

field, planetary heat fluxes, and energy dissipation. A better understanding of these flows

is thus important to consider relevant hydrodynamical effects in modelings. Furthermore,

since it has been proposed that life may be harbored within these subsurface oceans, their

internal structure and dynamics are of broad interest to the planetary science community

and beyond. The motivation here is thus to determine whether mechanical forcing can drive

strong global-scale flows by injecting energy into interior fluid layers.

One way to perform this exchange of energy is through a viscous coupling between the

solid and liquid layers. That is why the first studies of the fluid dynamical effects of li-

bration focused on spherical geometry (full sphere and spherical shell). In such geometries,

longitudinal libration excites inertial waves, which find their origin in the restoring effect

of the Coriolis force. These waves can then combine to form inertial modes (Aldridge and

Toomre, 1969; Noir et al., 2009), which are the eigenmodes of a rapidly rotating fluid cavity

(Greenspan, 1969). However no resonant response is expected in the limit of small Ekman

number and forcing amplitude (Zhang et al., 2013).

When longitudinal libration affects an elliptically deformed body (e.g. Cébron et al.,

2012b; Noir et al., 2012; Grannan et al., 2014; Favier et al., 2015), a topographic torque is

generated between the solid outer boundary (e.g. the mantle) and the interior fluid layer (e.g.

the liquid core). This mechanical forcing can excite a parametric fluid instability involving

two inertial modes of the rotating flow plus the elliptically deformed basic flow in response

to the harmonic forcing (Le Bars et al., 2015). This instability is called the libration-driven

elliptical instability (LDEI).
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6.1.2 Motivations

However, it is currently unclear whether the LDEI investigated in the full ellipsoidal cavity

can be extended to the more geophysically-relevant shell geometry. While the solutions

for inertial modes have been calculated for a full cylinder and cylindrical shells Herreman

et al. (2009), as well as in spheroidal (Zhang et al., 2004) and ellipsoidal (Vantieghem, 2014)

cavities, the complete spectrum of eigenfrequencies is unknown for spherical or ellipsoidal

shells. In such a configuration, and for very weak libration forcing, the only known regular

inviscid solutions are purely toroidal modes because of the new constraints imposed by the

inner boundary (Rieutord et al., 2001). Inertial modes are instead confined along singular

path of characteristics and form so-called attractors. When adding viscosity but remaining

in a regime where the Coriolis force largely dominates the viscous force (typically Ekman

number ∼ 10−8), the singularities take the form of thin shear layers localized around the

inviscid attractors (Rieutord and Valdettaro, 2010). This suggests that LDEI might be

significantly modified in ellipsoidal shells since inertial modes are not expected to robustly

and globally develop in such geometries. Following previous studies of the elliptical instability

in shell geometries (Seyed-Mahmoud et al., 2000, 2004; Lacaze et al., 2005; Cébron et al.,

2010b), the goal of this investigation is to experimentally and numerically demonstrate that

inertial mode resonances do indeed develop in librating ellipsoidal shells, and thus that LDEI

can exist in the subsurface oceans and liquid metal cores of librating bodies.

6.2 Theoretical Formalism

6.2.1 Model and Equations

We consider the flow u of an incompressible (∇·u = 0) fluid of uniform density and kinematic

viscosity ν. The fluid is enclosed between a rigid ellipsoidal outer container, whose surface,

in a reference frame fixed to the surface, is defined in Cartesian coordinates by

x2

a2
+
y2

b2
+
z2

c2
= 1, (6.1)
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where a, b, and c are the long equatorial axis, the short equatorial axis and the polar

axis, respectively. We define the mean external radius as R =
√

(a2 + b2 + c2)/3 and the

equatorial ellipticity as

β =
a2 − b2

a2 + b2
. (6.2)

The aspect ratio of the shell is χ = ri/R where ri is the radius of the spherical inner core.

The container (outer ellipsoid and inner core) is subjected to longitudinal libration, i.e.

rotates around the vertical axis ẑ with a time-dependent spin rate given by Ωspin(t) = Ω0 +

∆φ ωlib sin(ωlibt), where Ω0 is the mean spin rate, ∆φ is the libration amplitude and ωlib is

the angular libration frequency.

We work in the body frame attached with the walls of the librating container (librating

frame). The inner and outer boundaries are fixed in that frame. We choose Ω−1
0 as the time

scale and the shell thickness R(1− χ) as the length scale. The dimensionless spin rate is

Ω(t) = 1 + ε sin(ft), (6.3)

with ε = f ∆φ the dimensionless libration amplitude and f = ω lib/Ω0 the dimensionless

libration frequency. In the librating frame the momentum and continuity equations for the

velocity field u are

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Π + Eχ∇2u− dΩ

dt
× r︸ ︷︷ ︸

Poincaré

(6.4)

∇ · u = 0, (6.5)

with Eχ = ν/[Ω0R
2(1 − χ)2] the Ekman number (dimensionless viscosity), Π the reduced

pressure taking into account the centrifugal acceleration, and r the dimensionless position

vector. In equation (6.4) the last term on the right hand side is the Poincaré force generated

by the non-uniform rotation of the librating frame. Finally the velocity field satisfies the

no-slip boundary condition u = 0 at both the inner spherical and outer ellipsoidal surfaces.
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6.2.2 Basic flow

We consider first the equatorial plane (z = 0) of our system to determine the two-dimensional

base flow U bounded by an external elliptical boundary and an inner circular boundary. We

work in cylindrical coordinates (s, φ, z) in the librating frame. The flow is described by the

stream function ψ such that U = ∇× [−ε sin(ft)ψ ẑ]. In the inviscid limit Eχ = 0, the flow

satisfies the non-penetration conditions us = 0 at the inner and outer boundaries. Assuming

a small equatorial ellipticity β � 1, we expand the stream function as ψ = ψ0 + βψ1 where

ψ0 = (s2 − 1)/2 is the stream function of the solid body rotation and ψ1 is the first order

elliptical correction. With the ansatz ψ1 = F (s) cos(2φ)/2, the inviscid vorticity equation

reduces to the Laplace equation ∇2F = 0, yielding

ψ1 =

(
A1

s2
+B1s

2

)
β

2
cos(2φ) (6.6)

where A1 = −χ4/(1 − χ4) and B1 = 1/(1 − χ4) are fixed by the boundary conditions. The

complete stream function is thus

ψ =
s2 − 1

2
+

(
A1

s2
+B1s

2

)
β

2
cos(2φ) (6.7)

and the cylindrical flow components are reduced to

Us = ε sin(ft)

(
A1

s3
+B1s

)
β sin(2φ) , (6.8)

Uφ = ε sin(ft)

[
s+

(
−A1

s3
+B1s

)
β cos(2φ)

]
. (6.9)

In the librating frame, each fluid parcel thus oscillates back and forth along a part of an

elliptical streamline whose flattening depends on the distance from the inner core boundary.

In our experimental setup the basic flow U is a priori three-dimensional. However for

z ∈ [−χ, χ], the base flow is enclosed between an ellipsoidal outer boundary and a spherical

inner core. We therefore neglect the vertical component and approximate the base flow U by

the horizontal components (6.8) and (6.9), replacing χ by
√
χ2 − z2 to calculate A1 and B1.
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For |z| > χ, the base flow is only enclosed within an ellipsoidal boundary and the horizontal

base flow reduces to (6.8) and (6.9) with A1 = 0 and B1 = 1.

6.2.3 Inertial Waves

A rotating fluid in an unbounded medium supports oscillatory motions called inertial waves.

The latter are solutions of (Greenspan, 1969)

∂u

∂t
+ 2ẑ× u = −∇Π , (6.10)

∇ · u = 0, (6.11)

which can be rearranged to give a single equation for the pressure field (the Poincaré equa-

tion). Equation (6.10) admits plane wave solutions u ∝ ei(k·r+ωt), where k is the dimen-

sionless wave vector and ω is the dimensionless frequency. These inertial waves satisfy the

dispersion relation

ω = ±2 cos θ , (6.12)

where θ is the angle between k and the axis of rotation ẑ. The dispersion relation in (6.12)

shows that |ω| ≤ 2 and that inertial waves are dispersive and anisotropic. For a finite fluid

volume, inertial waves reflect on solid walls, keeping θ constant according to (6.12), and can

generate global inertial modes through constructive interference.

Experimental (Aldridge and Toomre, 1969; Noir et al., 2009) and numerical (Rieutord,

1991; Tilgner, 1999; Calkins et al., 2010) studies show that longitudinal libration can excite

inertial modes, although a direct resonance mechanism is not predicted by theoretical studies

(Zhang et al., 2011, 2013). In viscous spherical shells, internal shear layers, i.e. superposition

of inertial waves (Kerswell, 1995) are spawned from the so-called critical latitude where the

energy of incoming inertial waves is reflected along the boundary (Phillips, 1963). Shear

layers are also associated with the breakdown of the Ekman boundary layer (Greenspan,

1969). For a given forcing frequency f , the critical latitude αc is determined by f = 2 sinαc.

Since inertial modes are the starting point for the stability analysis of libration, preces-
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sion or tidally-driven flows, their investigation is of interest. In Figure 6.1 we show direct

excitations of inertial waves using Kalliroscope visualizations for forcing frequencies f ≤ 2.

The shear layers are qualitatively observed at critical colatitudes in good agreement with

the theoretical predictions. However, the precise study of direct resonance of inertial waves

in ellipsoidal shells is beyond the scope of this study.

6.2.4 Elliptical Instability

The libration-driven elliptical instability (LDEI) is a linear instability mechanism that arises

from the resonant interaction of triads of waves, namely two inertial waves plus the elliptical

deformation of the fluid streamlines by the oscillating boundaries (Cébron et al., 2012a;

Vidal et al., 2017). Expanding velocity and pressure perturbations around the basic state

as a linear combination of inertial modes, one can show that the LDEI grows in time if the

following resonance conditions are satisfied (Grannan et al., 2014):

|m1 −m2| = mlib = 2, (6.13)

|ω1 − ω2| = f, (6.14)

where mi is the azimuthal wavenumber and ωi is the eigenfrequency of the ith inertial mode

of the triad. The azimuthal wavenumber mlib = 2 of the base flow U is a direct consequence

of the fact that the outer surface of the container is ellipsoidal. Because of the dispersion

relation (6.12), |ωi| ≤ 2. In the asymptotic limit of β, ε→ 0 (i.e. weak ellipticity and weak

libration amplitude, relevant for planets and moons), the elliptical instability exists only if

|f | < 4, whereas finite values of β and ε allow instabilities when |f | < 4 + εβ (see Grannan

et al., 2014, for details).

In this study, we realize a survey with a fixed frequency f = 4 for several reasons. First,

in this frequency regime, no inertial waves are directly excited by the forcing. It allows

us to focus only on the LDEI mechanism, i.e. on an indirect excitation of inertial modes.

Secondly, this case is the one where the determination of the modes and frequency coupling

is the simplest. Inertial modes with eigenfrequencies f1,2 ' f/2 = 2 meet the resonance
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conditions in (6.14), and are particularly easy to identify with a side-view visualization.

!=
#

!
=
$.
&

' = $.&( ' = $.)*

Figure 6.1: Kalliroscope visualizations of the shear layers formed by the direct excitation
of inertial waves for two different forcing frequencies (f = 1 and 0.4) and two different core
sizes (χ = 0.49 and 0.37). Each image is obtained by stacking instantaneous snapshots
extracted at t=n Tlib + Tlib/2, where Tlib is the libration period. From left to right and top
to bottom, the stacking is performed over 50, 50, 45 and 41 libration periods. Two images
are given for each parameter set: a raw image on the right, and the same image on the left
where we have superimposed dashed white lines representing the theoretical direction of the
shear layers (θ = arccos(f/2)) and dashed red lines pointing towards the critical latitude
(αc = arcsin(f/2)).

Indeed, k is, in this case, parallel to the rotation axis, implying that the group velocity of

the excited waves is horizontal. These were identified as the Λ8,±1,7 modes in the absence of

inner core (Grannan et al., 2014; Favier et al., 2015) using the description of inertial modes

in a rotating spheroid given by Kerswell (1994). Since the radial component of this mode

is not zero, by definition, it is not a purely toroidal mode. It is thus also a way to verify if

modes having a poloidal component can be excited in an ellipsoidal shell. Additional cases
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have also been done with the forcing frequency f = 2.4 to show that the spin-over mode

(solid-body rotation inclined with the rotation axis) is still excited.

6.2.5 Local Stability Analysis

Cébron et al. (2012a, 2014) performed the local stability analysis of libration-driven basic

flows valid in full ellipsoids. The local stability method probes the stability of the path-lines

of the basic flow, considering inviscid plane-wave perturbations of small wavelengths (Le

Dizes, 2000). The local inviscid growth rate σinv of LDEI is at first order in εβ (Cébron

et al., 2012a)

σinv =
16 + f 2

64
εβ . (6.15)

Using the same approach, the inviscid growth rate of LDEI upon the libration-driven base

flow in (6.8) and (6.9) is

σ′inv =
(16 + f 2)|3A1 +B1s

4|
64s4

εβ . (6.16)

The growth rate for the full ellipsoid in (6.15) is recovered from (6.16) when A1 = 0 and

B1 = 1. Note that because the streamline deformation is changing with s and z, the growth

rate (6.16) is spatially varying. However, for χ ∈ [0, 0.74], the spatial mean (along s) of σ′inv

is always smaller than σinv. The highest growth rate, given by (6.15), is the one used in this

study. This choice is later supported by the fact that the instability is seen to grow primarily

close to the poles where A1 = 0 and B1 = 1.

To include dissipative terms due to the no-slip boundary conditions, Cébron et al. (2012a)

assumed that dissipation mainly occurs in the Ekman boundary layer of thickness E
1/2
χ . The

viscously damped growth rate of LDEI is then

σ = σinv − α Ψ(χ)
√
Eχ, (6.17)

where α is a constant of order unity and Ψ a function taking into account the dependence of

the damping with the radius ratio of the shell χ. Hollerbach and Kerswell (1995) show that

the tilt-over mode, corresponding to the basic flow of a precessing shell, is damped viscously
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following Ψ = (1− χ)(1 + χ4)/(1− χ5). This tilt-over mode is similar to the so-called spin-

over mode of the TDEI (tidally-driven elliptical instability). No generic formula exists to

quantify Ψ for other modes of the elliptical instability excited by tides or libration.

6.3 Methods

6.3.1 Experimental Setup

6.3.1.1 Description of the experiment

The container used is a polished acrylic cavity made from two non-axisymmetric hemispheres.

The fluid cavity dimensions are a = 12.7 cm and b = c = 8.9 cm, which gives an equatorial

ellipticity of β = 0.34. A solid acrylic inner core is added inside the ellipsoidal cavity using

a metallic rod suspended from the top of the acrylic container. The radius of the inner cores

used are ri = [2.51, 3.82, 5.07, 6.12, 7.62] cm corresponding to χ = [0.24, 0.37, 0.49, 0.59, 0.74].

This container is fixed on the same device as the one used previously by Noir et al. (2009,

2010, 2012) and Grannan et al. (2014). Two motors are used to replicate a librational forcing.

The first one rotates a 1m-diameter turntable at a constant rotation rate Ω0 varying from 1

to 60 RPM (0.017 to 1 Hz). The second one, which is mounted on this turntable, is directly

coupled to the acrylic cavity and superimposes a sinusoidal oscillation ∆φ ωlib sin(ωlibt) (see

Figure 6.2). In this study, the container oscillations are characterized by an amplitude

2∆φ ∈ [0◦, 65◦] and a frequency ωlib/2π ∈ [0, 3.84 Hz]. Top-facing and side-facing cameras,

shown in Figure 6.2, are used to perform visualizations described in section 6.3.2.

6.3.1.2 Cases realized

Figure 6.3 shows the Ekman number as a function of the background rotation rate Ω0, using

colored curves for the six different values of χ. The upper x-axis shows the dimensional

frequency of libration for a fixed non-dimensional frequency f = 4. The horizontal dot-

dash lines show the six Ekman numbers used in the experiments and the black dots show
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Figure 6.2: (a) Side-view image and (b,c) schematic representations of the laboratory ex-
periment used to perform visualizations on vertical and horizontal planes. The inner core is
spherical, even if it appears ellipsoidal in (a) due to optical distortions.

the intersection of these fixed Ekman values with the solid curves. Each experiment is

conducted the same way. A constant rotation is applied for several minutes until the fluid

reaches solid body rotation. The two cameras start recording movies simultaneously and the

oscillation of the acrylic container is then activated. For each set of parameters (Eχ, χ) (black

dots in figure 6.3), ∆φ is adjusted to determine an approximate amplitude threshold for the

instability. To determine whether a case is stable or unstable, we wait for five predicted

growth times using (6.17) with Ψ ≈ (1 − χ) and visually check whether a turbulent flow

develops or not. For some unstable cases, we record longer movies (∼ 10 min) to be able
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to perform a signal analysis on both the growing and the fully-turbulent phases. Table 6.1

recapitulates the experimental parameters, definitions, and ranges explored. A complete

table of all the cases realized is available in the Supplementary Information (Table S1).
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Figure 6.3: Evolution of the Ekman number with the rotation rate of the turntable for
various shell ratios. The black dots represent the cases realized for a dimensionless libration
frequency f = 4.

6.3.2 Flow Analysis Methods

6.3.2.1 Kalliroscope and PIV

Direct side-view visualizations of the flow are performed by seeding the water with Kalliro-

scope particles, and illuminating the tank with a meridional laser plane. These particles are
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Parameter Definition Range of values

a Long equatorial axis 127 mm
b Short equatorial axis 89 mm
c Rotational axis 89 mm

β Ellipticity a2−b2
a2+b2

0.34

ri Inner core radius [0, 25.1, 38.2, 50.7, 61.2, 76.2] mm

R Mean radius of the ellipsoid
√

a2+b2+c2

3 103.2 mm

χ Radius ratio of the shell ri/R [0, 0.243, 0.370, 0.491, 0.593, 0.738]
Ω0/2π Mean fluid rotation rate 0.017-1 Hz
ωlib/2π Libration frequency 0.067-4 Hz
∆φ Angular displacement 0.05-1 rad
ν Kinematic viscosity 10−6 m2/s
f Dimensionless libration frequency ωlib/Ω0 4, 2.4 and f ≤ 2
Eχ Shell Ekman number ν

Ω0R2(1−χ)2
4 · 10−5 - 9 · 10−4

E Ekman number ν
Ω0R2 1.6 · 10−5 - 9 · 10−4

Table 6.1: Laboratory experimental librational forcing parameters.

thin plates that reflect light preferentially along the direction of their short-axis and orient

themselves with the shear of the flow. Their collective reflectance thus gives a visual indi-

cation of their orientation, and thereby, of the flow behavior (Hecht et al., 2010). The two

lasers used to create the light sheet are attached to the librating frame. Two cameras are

used to acquire 1920 x 1280 resolution movies of the flow at 30 frames per second. A GoPro

Hero4 Silver camera is fixed in the librating frame and acquires movies in the narrow mode

to avoid optical distortion. The second camera is a Canon EOS 7D digital camera fixed in

the rotating frame. The GoPro angle of view focuses on one quadrant of the cavity, whereas

the Canon EOS 7D allows to visualize the whole shell.

To evaluate the information obtained from Kalliroscope visualizations, a selected case

is chosen and analyzed using both Kalliroscope particles and Particle Image Velocimetry

(PIV) in a vertical plane and in a horizontal plane located at approximately 4.6 cm above

the equatorial plane (0.51 c). PIV is performed by seeding the water with 100 µm diameter

OptimageTM particles. Movies are acquired with the GoPro camera attached to the librat-

ing frame in a top-view or side-view position as shown by Figure 6.2.b and Figure 6.2.c,

respectively. Note that, as for Kalliroscope visualizations, the GoPro camera focuses on a

given quadrant of both the vertical and the horizontal planes. Frames are then extracted,
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converted to black and white images, and their contrast is adjusted for an optimal treat-

ment. Computation of the instantaneous velocity fields is performed using the open source

software DPIVSoft2010 (Meunier and Lewecke, 2003). The spatial resolution of the obtained

velocity fields is approximatively 2.5 mm and 2 mm for the horizontal and vertical planes

respectively. A comparison between the results given by PIV and Kalliroscope visualizations

is conducted in Section 6.3.2.3.

6.3.2.2 Analysis Methods

To verify if the bulk turbulence appearing in our system is generated by the LDEI, we choose

to perform a Fourier analysis on the direct side-view visualizations. The movie analysis is

performed using GoPro movies in the librating frame and Matlab. First, a window of

typically 300 × 300 pixels is chosen in the movie. This wide window is then typically

subdivided into 36 sub-windows of 50 × 50 pixels for which the mean intensity is calculated

for each frame. This method partially removes the noise that is present when considering the

signal from a single pixel. A Fast Fourier Transform is then performed on these 36 signals,

either over a sliding average of typically 90 libration periods to see temporal changes, or

over larger parts of the signal to have a better frequency resolution and conduct a global

analysis. We use a Hanning window to avoid spectral leakage. Finally, all these 36 spectra

are stacked, once again to reduce the noise.

A similar approach is used to analyze and compare PIV with light intensity results. For

each box of the PIV located inside the same window as the one defined for the Kalliro-

scope movies, a Fast Fourier Transform is performed on both the horizontal and vertical

components of the velocity. The spectra corresponding to each box are then stacked.

6.3.2.3 Kalliroscope-PIV comparison

One of the objectives of our study is to develop a method that allows for quick and easy

identification the presence of the elliptical instability. Thus, the PIV method is used to verify

the results of the light intensity analysis. Figure 6.13 in the Appendix shows the results of
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the spectral analysis performed on both PIV and light measurements, in both vertical and

horizontal planes. A direct comparison between the predominant frequency peaks shows

that the analysis of the Kalliroscope visualizations can capture, qualitatively, the spectral

content provided by the PIV results. Therefore, this analysis is sufficient to characterize the

frequency signature of the LDEI. In the subsequent analysis, all temporal spectra are thus

obtained using Kalliroscope visualizations.

6.3.3 Numerical simulations

To complement experimental measurements, we also perform Direct Numerical Simulations

(DNS) in the librating frame, where both the spherical inner and ellipsoidal outer bound-

aries satisfy a no-slip velocity condition. We solve the equations of motion in (6.4) and (6.5)

using the spectral element solver Nek5000 developed and supported by Paul Fischer and

collaborators (Fischer et al. (2007, 2008)). This method has already been used to study

longitudinal libration and tides in ellipsoidal container (Favier et al. (2015); Barker (2016);

Grannan et al. (2017)). Spectral element methods have excellent convergence properties,

required to simulate turbulent flows, while being able to consider complex geometries. The

mesh is an unstructured array of E deformed hexahedral elements. Inside each element, the

spectral element mesh is structured, with the variables expressed as sums of N -th order La-

grange polynomials on tensor-products of Gauss-Lobatto-Legendre (GLL) quadrature points.

In this paper, all the simulations are performed using a third order explicit extrapolation

scheme for the nonlinear convective terms and the linear inertial forces, and a third-order

implicit Backward Difference scheme for the linear diffusive term. Convergence was checked

by increasing the order of the polynomial decomposition within each element.

We first perform a simulation to qualitatively confirm and compare with the experimental

results. The geometry is identical to the experiment with β = 0.34. We focus on a case with

χ = 0.491, f = 4 and ε = 0.35. For this relatively weak librational forcing, we are able

to reach the same Ekman number as in the experiment, Eχ = 10−4 (or equivalently E =

Eχ(1−χ)2 = 2.6×10−5). For this simulation, the mesh is composed of E = 18432 hexahedral
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elements with a polynomial decomposition of order N = 10. For the spectral analysis

discussed in section 6.4.2.1, we store the velocity components at 200 random positions within

the ellipsoid, both inside and outside the tangent cylinder. The velocity is interpolated from

the grid to the probe position with spectral accuracy.

Additionally, we run several simulations to study the instability close to threshold. The

objective is to confirm the experimental results discussed in section 6.4.3. To do so, we choose

the following set of parameters: χ = 0.37, f = 4 and we vary both the Ekman number and

the libration amplitude ε in order to determine empirically the instability threshold. We

start the simulations with a low amplitude random initial condition and we wait for the

perturbations to vary exponentially with time. For these simulations, the mesh is composed

of E = 3840 elements with a polynomial decomposition of order N = 11.

6.4 Results

6.4.1 Basic flow

The theoretical basic flow (6.8)-(6.9) is compared to the experimental basic flow measured

using PIV analysis. Figure 6.4(a) compares the amplitude of the theoretical basic flow

with the experimentally measured basic flow while the vector plots of the theoretical and

experimental base flows are shown in Figure 6.4(b). Note that in the relative error panel,

the large errors located at the right of the core are due to a reflection creating a large bright

patch which prevents the computation of the particle displacements. The general trend

of the velocity amplitude along s, indicated by the black arrow in Figure 6.4(b) is found

to be in good agreement in Figure 6.4(c). Large discrepancies occur at the viscous layers

close to the inner and outer rigid boundaries, which are not accounted for in the theoretical

base flow. The fact that the experimental velocity amplitude is slightly lower than the one

theoretically-predicted may also be due to the viscous corrections that drive weak zonal flows

in the bulk.
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Figure 6.4: Comparison between the theoretical base flow in (6.8) and (6.9) and the PIV
measurements. (a) Velocity amplitude. (b) Velocity field. (c) Evolution of the velocity
amplitude in the y direction for x=0.

6.4.2 Flow Visualizations and Fourier Analysis

6.4.2.1 Mode coupling and spatial heterogeneity

For all the unstable cases, the flow visualizations show a strong similarity between the full

ellipsoid case and the shell case, as illustrated by the snapshots and the spectra in Figures

6.5 and 6.6. Note that snapshots for other core sizes are provided in the appendix (Figure

6.14). Additionally, a video demonstration showing the early stages of the instability with

and without an inner core as well as the corresponding numerical simulation is given in

Lemasquerier et al. (2016).

We focus on the unstable cases with f = 4 shown in Figure 6.5. In Figure 6.5(a), the

growth of the instability is shown in three snapshots over approximately 400 librational

periods. The red and blue windows on the far right image in Figure 6.5(a) demarcate

the areas where the light intensity fluctuations are analyzed outside and inside the tangent

cylinder respectively, and shown in Figure 6.5(b). The resulting frequency spectrograms

from outside and inside the tangent cylinder are shown in Figure 6.5(c). Advancing through

time from left to right in Figure 6.5, after the libration is activated, a tangent cylinder forms
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Figure 6.5: Light intensity analysis results for the case χ = 0.37, Eχ = 6 × 10−5, ∆φ = 5◦

and f = 4 (ε = 0.35). (a) Snapshots extracted at different times from the movie recorded
by the Canon camera. (b) Light intensity signal extracted from one of the submatrices of
the wide windows drawn on the last snapshot. (c) Successive power spectra performed over
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the signal.
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(a) Laboratory: power spectra of the light intensity extracted from t = 200 to 1400 Tlib on
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spectra from numerical velocity signals both inside and outside the tangent cylinder. The
vertical dotted lines correspond to the frequencies of the main peaks. (c) Vertical component
of the velocity during the saturated phase shown on three slices across the ellipsoidal shell (see
also Figure 6.7 for the early stages of the instability and a comparison with the experiment).
The vertical dashed lines correspond to the intersection between the tangent cylinder and
the meridional plane.

around the inner core and the light intensity signal is dominated by oscillations at the forcing

frequency f = 4 corresponding to the base flow. The tangent cylinder is a particular shear

layer corresponding to a frequency f = 0 for which the cone defined by the wave packet takes

the form of a cylinder (θ = π/2) reminiscent of a Taylor column (Messio et al., 2008). Then,

we see the development of the pancake-like shearing structures similar to those observed

by Grannan et al. (2014) and Favier et al. (2015). Its similarity with the inertial modes

found in the full ellipsoid case is confirmed by the appearance of an ω = 2 peak as seen

in the frequency spectrograms in Figure 6.5(c) between ∼ 100 − 150 Tlib. This frequency

meets the first resonance condition |ω1 − ω2| = 4. Finally, when the instability saturates, a

wave-breaking event occurs and three-dimensional motions develop. After this breaking, the

observed state of bulk turbulence is similar to the intermittent turbulence found by Grannan

et al. (2014); Favier et al. (2015) with columnar structures that are sheared by the ω = 2

modes as seen on the last snapshot of Figure 6.5(a). When the quasi-steady state is reached,

the ω = 2 peak remains, but additional frequencies ≤ 2 appear as seen in Figure 6.5(c)

around 200 Tlib. These secondary peaks, namely the couples [1,1], [0.5,1.5], [0.25, 1.75] match
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a resonance condition we can write as | ω1 − ω2 | = 2. They could thus be the result of a

secondary resonance with the primary inertial modes at ω ∼ 2. Such a secondary resonance

has already been observed in full ellipsoids (Grannan et al., 2014; Favier et al., 2015).

This general behavior is common to every unstable cases considered here. The more

supercritical the insability is, the less efficient the re-laminarization. However, a spatial

discrimination seems to appear and becomes more obvious as the shell gets thinner. We

observe that the ω = 2 layered structures appear above and under the inner core and extent

horizontally until they reach the outer boundary. For large inner cores, the wave-breaking

event always occurs primarily at the poles inside the tangent cylinder resulting in strong

turbulence whereas it does not occur as strongly in the equatorial regions outside the tangent

cylinder. However, the instability still seems to grow everywhere in the bulk as seen in the

second panel of Figure 6.5(a).

To confirm these flow differences, we performed a Fourier analysis on two different win-

dows in the shell as represented on the last snapshot of Figure 6.5(a). Performing a spectral

analysis during the turbulent phase at these two different locations directly shows differences

in terms of frequency content, as seen experimentally and numerically in Figure 6.6 for a

shell of radius ratio χ = 0.49. The major difference, visible in both Kalliroscope or PIV

results (Figures 6.6 and 6.13), relates to the frequencies previously identified as secondary

inertial modes. Spectra computed outside of the tangent cylinder show the two couples

|ω1,2| ≈[0.25,1.75] and [0.5, 1.5], the first one being predominant. On the contrary, inside

of the tangent cylinder, the couple ∼[0.25,1.75] seems, if not absent, far dominated by the

couple [0.5, 1.5]. This difference is observed on all our unstable cases, except for the smallest

inner core (χ = 0.24).

Let us mention here that despite the peaks that we attribute to LDEI, the spectra shows

other important peaks. Namely, the presence of a peak at ω = 0.25 is almost systematically

associated with peaks at ω = 2 ± 0.25 and 4 ± 0.25, and the same coupling is observed for

the peak at ω = 0.5. This may be due to non-linear interactions (non-resonant) between the

secondary inertial modes and the base flow or the primary inertial mode.
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The same analysis is conducted in the Appendix for f = 2.4 (spin-over mode, see appendix

6.6.3). It shows the persistence of the LDEI at this particular forcing frequency.
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Figure 6.7: Comparison of the onset of LDEI for laboratory experimental and numerical
simulations through meridional side-view visualizations at Eχ = 10−4, f = 4, ε = 0.35,
and χ = 0.49. (a) Experiments: Kalliroscope visualizations made in the rotating frame.
(b) Numerical simulations: the vertical velocity is shown through snapshots made in the
librating frame.

We confirm these results with a DNS for the particular case χ = 0.49, ε = 0.35 and

Eχ = 10−4. First, Figure 6.7 shows a qualitative comparison of the onset of LDEI visualized

experimentally and numerically in a meridional plane. Then, the results on inertial modes

couplings are confirmed by an analysis on the numerical simulation. Velocity signals are

extracted at 100 random locations during the saturated phase, both inside and outside the

tangent cylinder. Figure 6.6(b) shows the corresponding power spectra, averaged over all

three velocity components and over all probes, where the forcing frequency at ω = 4 and

primary resonating inertial modes at ω = 2 are the dominant contributions in both regions.

Outside the tangent cylinder, the two dominant frequency couples are |ω1,2| ≈[0.25,1.75]

and |ω1,2| ≈[0.5,1.5], as observed in the experimental Kalliroscope data. Inside the tangent

cylinder however, the only resonant frequencies are |ω1,2| ≈[0.5,1.5]. Note that the kinetic

energy is typically larger inside the tangent cylinder than outside, which is confirmed by the

visualization of the vertical velocity shown in Figure 6.6(c). Intense overturning structures
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are observed above and below the inner core whereas a relatively smooth wave field is ob-

served outside the tangent cylinder. Another interpretation is related to the heterogeneity in

the effective ellipticity of the streamlines. Above and below the inner core (i.e. for |z| > χ),

the base flow is only weakly affected by the presence of the inner core so that the elliptic-

ity is approximately uniform and equal to β. When |z| ≤ χ however, the ellipticity of the

streamlines is decreasing as they get closer to the inner core (see the base flow properties in

section 6.2.2), leading to smaller growth rates (see (6.16)) and presumably less intense flows

at saturation. To conclude, our results show that the presence of the inner core leads to

significant spatial heterogeneities, both in terms of resonant frequencies but also in terms of

fluid motion amplitudes.

6.4.2.2 Influence of the radius ratio of the shell and of the Ekman number

Figure 6.8 represents spectra realized over the turbulent phase of laboratory cases involving

different inner core radii. When there is no core inside the ellipsoidal cavity, the temporal

spectra are less rich and only the forcing frequency f = 4 and the primary inertial modes

|ω1,2| = 2 are clearly present. The spectra are richer when a core is added, with typical

frequencies around ω ∼ 0.25, 0.5, 1.5 and 1.75 as previously discussed. More interestingly,

these ω < 2 peaks do not correspond to the exact same frequencies when comparing

different χ values. For instance, the ω ∼ 0.25 peak is broad, spanning from ω1 = 0.16 to 0.3,

together with its companion of frequency ω2 = 2−ω1. This is reminiscent of the behavior of

forced inertial modes in the spherical shell observed by Ogilvie (2009), where the dissipation

at a given frequency strongly depends on the shell aspect ratio. The question remains open

whether this change is due to variation in the inviscid eigenfrequency of the resonant mode

or due to changes in its viscous damping.

Figure 6.9 compares the frequency content of two cases for which the Ekman number

is significantly different. Visually, the two cases become turbulent, beginning at the poles.

The |ω| = 2 inertial modes always remain even during the turbulent phase. The low-Ekman

case, which is less viscously dominated shows additional peaks compared to the high-Ekman
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ε = 0.35], [χ = 0.37, Eχ = 4 × 10−5, ε = 0.28], [χ = 0.49, Eχ = 1 × 10−4, ε = 0.35],
[χ = 0.59, Eχ = 4 × 10−5, ε = 0.28] and [χ = 0.74, Eχ = 6 × 10−4, ε = 0.70]. The power
spectra are arbitrarily shifted vertically for clarity.

case. This observation is compatible with the results of Le Reun et al. (2017), showing that

an inertial wave turbulence regime - i.e. a turbulence made of the superimposition of many

low-amplitude inertial waves excited by successive triadic resonances - is expected in the

limit of small Ekman number.

6.4.3 Instability Threshold

Results of the libration amplitude threshold for each case are plotted in Figure 6.10(a).

Neglecting bulk dissipation, the threshold of instability is defined as the condition for which

σinv > K
√
Eχ. Since f and β are constant, formula (6.17) shows that, in our case, the

libration amplitude at the threshold ∆φthres is a function of E
1/2
χ only (for a given χ).

177



ou
ts

id
e 

th
e 

TC
in

si
de

 th
e 

TC

t/Tlib

f

 

 

60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

−0.5

0

0.5

t/Tlib

f

 

 

60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

−0.5

0

0.5
t/Tlib

f
 

 

100 150 200 250 300

0

1

2

3

4

5

−0.5

0

0.5

t/Tlib

f

 

 

100 150 200 250 300

0

1

2

3

4

5

−0.5

0

0.5

Power spectrum (log)

(Comparison between 2 different Ekman numbers for 
the same core.)

t/Tlib

f

 

 

60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

−0.5

0

0.5

t/Tlib

f

 

 

60 80 100 120 140 160 180 200 220 240

0

1

2

3

4

5

−0.5

0

0.5

?
'
= ) ⋅ #$

G&
HHHHI = 0.37HHH, = 8° ?

'
= O ⋅ #$

GP
HHHHI = 0.37HHH, = 5°

Figure 6.9: Successive power spectra performed over a sliding window of 90 Tlib, both inside
and outside the tangent cylinder (TC). The two cases correspond to the same shell and
forcing parameters but at two different Ekman numbers (Ω0 = 37.6 RPM on the right-hand
panel, and 7.5 RPM on the left).

Figure 6.10 (a) shows that for all our cores, and even in the case of a full ellipsoid (χ = 0),

this scaling is not verified. The critical libration amplitude instead varies as ∼ [E0.63
χ −E0.72

χ ],

with slight variations depending on the core considered. The numerical results represented

on the same figure confirm this for the particular case χ = 0.37. Note that the numerical

simulations predict a slightly lower critical libration amplitude compared to the experimental

observations. This might be due to the presence of the shaft holding the inner sphere and

interfering with large-scale inertial modes while also adding extra dissipation into the system.

Assuming a mean scaling of E0.65
χ , we deduce the corresponding dissipating factor is from

formula (6.17)

αΨ(χ) =
16 + f 2

64
εthresβE

−0.65
χ . (6.18)
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Figure 6.10: (a) Libration amplitudes at the threshold determined experimentally (full lines)
and numerically (dashed green line) (b) Dissipation factors K determined using the ∆φthres

values from (a) and (6.18). The black line shows the main dependence with the radius ratio.

The result is represented as a function of χ in Figure 6.10(b). The dependence with the

radius ratio of the shell seems to follow (1 − χ) with a slope α ∼ 25. Nevertheless, we do

not claim here that this new estimate for the threshold is universally valid: we rather think

that it is valid only for the range of Ekman number explored in this study, corresponding

to a transition between the regime at large Ekman number dominated by bulk dissipation

(threshold scaling as E−1
χ ) and the regime at low Ekman number dominated by boundary

dissipation (threshold scaling as E
−1/2
χ ). This will be further discussed below in section 6.5.2.

6.5 Discussion and perspectives

In this study, we first qualitatively show that longitudinal libration can directly excite inertial

waves in an ellipsoidally deformed shell. Then, we used direct Kalliroscope visualizations of

the flow as well as PIV to confirm the existence of the libration-driven elliptical instability

(LDEI) in a deformed shell geometry when the libration frequency is 4 and 2.4 times the

rotation rate. The presence of an inner core does not strongly modify the structure of the

unstable mode compared to the full ellipsoid case, at least for those two forcing frequencies.
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We recover the participation of inertial modes at frequencies ±f/2 and Fourier analysis

suggests that we might also be able to see secondary inertial modes excited by the primary

inertial modes, whose frequencies only slightly depend on the radius ratio of the shell.

However, in all our cases, the turbulence that develops in the bulk is never homogeneously

distributed. Outside the tangent cylinder, a quick re-laminarization occurs after the growth

of the instability, but no LDEI cycle is clearly visible. Instead, the flow is dominated by

geostrophic shear layers on which the inertial modes are superimposed. Besides, we notice

that the growth of the instability always occurs first at the poles. The fact that the spectral

content is different from the rest of the bulk suggests that the resonating inertial modes do

not extend uniformly in the whole shell and may be locally stronger in the polar regions.

The elliptical instability may thus induce significant spatial differences of the flow in the

bulk interior, especially for a large inner core (see Figure 6.14 in Appendix). These differ-

ent behaviors inside and outside the tangent cylinder are reminiscent of the two regimes of

non-linear saturation described by Le Reun et al. (2017). In this study, the authors perform

local numerical simulations of highly turbulent flows driven by elliptical instability, consid-

ering only a small parcel of the ellipsoidal core. They adjust the amplitude of the boundary

dissipation through Ekman friction, depending on the aspect ratio of the excited geostrophic

structures. For large aspect ratios corresponding in our case to the region outside the tan-

gent cylinder, boundary dissipation is relatively small, and the non-linear saturation of the

elliptical instability gives rise to large scale geostrophic structures concentrating most of the

kinetic energy through an inverse cascade mechanism (see e.g. Barker and Lithwick (2013)).

On the contrary, for small aspect ratio corresponding in our case to the region inside the

tangent cylinder, the non-linear saturation of the elliptical instability gives rise to small-scale

bulk filling turbulence following successive triadic resonances of inertial waves: a so-called

inertial wave turbulence might be expected asymptotically at low Ekman numbers.
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6.5.1 Inertial modes of a shell

The theoretical results concerning inertial modes in a spherical shell derived by Rieutord

et al. (2001); Rieutord and Valdettaro (2010) are obtained under the assumption of a very

weak forcing (ε� 1) whereas it is not the case in our experiments (ε ∈ [0.1, 2]). While we do

observe localized shear layers generated at the inner boundary (see Figure 6.1), the instability

discussed in this paper shares many similarities with the case of a full ellipsoidal container,

where resonances between regular global inertial modes are responsible for the instability

(Favier et al., 2015). In addition the experiments and numerical simulations are currently

limited to much higher values of the Ekman number than those used in theoretical studies.

Thus, the relative importance between localized shear layers and global inertial modes re-

mains to be clarified, especially when both the forcing and the Ekman number are decreased.

The fact that only localized polar areas seem to resonate (see the heterogeneous nature of

the resulting turbulent flow in Figure 6.6(c) for example) may suggest that regular inertial

modes can exist locally and that the elliptical instability can locally develop independently

of the global geometry. This is reminiscent of high-frequencies equatorially-trapped inertial

waves (Zhang, 1993) which are not affected by the presence of an inner core, although the

possible link between these two problems remains to be explored. Further studies are there-

fore needed to assess the relevance of extending the present results to planetary conditions

where the Ekman number is vanishing and the forcing is very small.

6.5.2 Apparent discrepancy between observed viscous damping and theory

In our experimental and numerical results shown in Figure 6.10 (a) we do not recover the

expected scaling law in E1/2 for the Ekman numbers we consider in this study (Eχ = 10−5−
10−3). Instead, we predict for a libration frequency f = 4 that the linear viscous growth

rate is

σ ≈ 16 + f 2

64
εβ − α(1− χ)E0.65

χ , (6.19)

with α ∼ 25. The origin of this scaling in E0.65 needs to be addressed. Since it is also

observed in the full ellipsoid (χ = 0), the underlying mechanism is not specific to the shell
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geometry. Moreover, it is in apparent disagreement with previous studies of the viscous

damping of the spin-over mode in full ellipsoids (Lacaze et al., 2004; Cébron et al., 2010a).

Focusing on the full ellipsoid case below (where the inertial modes problem is well-posed),

we provide a theoretical argument that the scaling in E0.65 is possible but only for large

Ekman numbers.

Since the inertial modes form a complete basis in full ellipsoids (Backus and Rieutord,

2016), we can expand the velocity perturbation u(r, t) solution of the momentum equation

(6.4) onto inertial modes. Using the boundary layer theory, we can determine the leading

order viscous effect on each inertial mode from the inviscid solutions. Following Greenspan

(1969), we expand the perturbation solution of the initial-value problem as

u(r, t) =
∑
i

αi(t)Qi(r) exp([iωi + τi]t), (6.20)

where (Qi(r), ωi) are eigenvector-eigenfrequency solutions of the inertial mode problem

(6.10)-(6.11), αi(t) the modal coefficients and τi the viscous corrections of the inviscid eigen-

frequencies ωi. Greenspan (1969) introduces the theory up to order E1/2, considering only

dissipation in the Ekman boundary layer and neglecting bulk dissipation which appears at

the next order E. One can support this truncation with the fact that inviscid inertial modes

satisfy the intriguing property (Zhang et al., 2004; Vantieghem, 2014)

E

∫
V

Qi
∗ · ∇2Qi dV = 0, (6.21)

with ∗ indicating the complex conjugate. This volume integral is often associated with the

viscous dissipation of inertial modes. However, as explained by Liao and Zhang (2008),

property (6.21) is not physically realistic and is due to the unrealistic inviscid boundary

conditions. Thus we take into account viscous dissipation up to order E to be accurate in

the asymptotic expansion, extending the theory of Liao and Zhang (2008) from spheres to

triaxial ellipsoids. We expand the viscous correction τi as

τi = E1/2si + Eλi, (6.22)
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where si is the viscous correction due to the surface Ekman layer, introduced by equation

(2.9.12) of Greenspan (1969), and λi < 0 is the leading order volume viscous damping. The

former is a complex number whose real part <e(si) < 0 is the viscous decay rate of the mode

and the imaginary part =m(si) is the viscous shift in frequency of the mode. Finally the

volume damping λi < 0 is proportional to the vorticity of the inviscid mode.

We have computed the first 1480 inviscid inertial modes of our ellipsoidal configuration

as described by Vidal et al. (2016, 2017). Then, in figure 6.11, we show the absolute value of

the viscous damping as a function of the Ekman number. Only the spin-over mode (dashed

back line) and modes of absolutes frequencies |ωi| > 1.8 (blue shading) are represented, the

latter being the most excited modes for the libration frequency f = 4. For all the modes,

two limiting cases are observed: a viscous damping scaling as E for large Ekman number

and as E1/2 for low Ekman numbers. Between these two limits there is a transition zone

where surface dissipation and bulk dissipation are of the same order of magnitude. For a

given inertial mode, the Ekman number of transition depends on the spatial complexity of

the flow. Results for the spin-over mode shows that the damping in E1/2 overcomes the

damping in E when E ≤ 3.10−2 (vertical dashed line). It is in agreement with previous

studies (Lacaze et al., 2004; Cébron et al., 2010a), which considered the spin-over mode at

Ekman numbers E ≤ 10−3. However, the scaling observed in the present study (E0.65, red

solid line) lies in the transition zone where the two dampings play a role (depending on the

excited mode). The E0.65 scaling is due to a competition between surface dissipation and

bulk dissipation. Finally, we observe in practice that the lowest Ekman number of transition

depends on the number of considered modes. However, from Figure 6.11 we expect that the

E1/2 scaling may be observable for Ekman numbers E � 10−7.

6.5.3 Extrapolation to planetary interiors conditions

Apart from the question of the existence and the form of inertial modes in a given geometry,

local stability analysis can be used to evaluate the presence of the elliptical instability in

terrestrial bodies. In terms of stability analysis, in the regimes experimentally and numeri-
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Figure 6.11: Viscous damping of inertial modes as a function of the Ekman number E for
the first 1480 inertial modes of our full ellipsoid. The viscous damping is a combination of
the surface Ekman layer damping <e(s)E1/2 and the bulk viscous damping λE. We only
show the spin-over mode (dashed back thick line) and the first 140 modes of frequencies
|ωi| > 1.8 (blue shading), which are the most excited modes for f = 4. The vertical dashed
line shows the Ekman number for which volume and surface dampings of the spin-over mode
are equal. Slopes of asymptotic behaviors associated with surface and volume dampings are
also shown. The surface damping only dominates when E � 10−7.

cally explored in this study the usual scaling
√
E is not verified because of bulk dissipation.

However, it holds when extrapolating to planetary conditions. Thus, for f = 4, and in the

range of parameters of this study, the growth rate σ is

σ ≈ 16 + f 2

64
εβ − α(1− χ)E0.65

χ (6.23)

with α ∼ 25, whereas for E � 10−7,

σ ≈ 16 + f 2

64
εβ − α

√
E (6.24)

with α ∼ 3. The criterion of instability σ > 0 is plotted as a function of E on Figure 6.12.
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Knowing the parameters involved in these equations for a given interior layer of a body

thus allows to estimate whether it is theoretically unstable or not (criterion σ > 0). We apply

this criterion to the four Galilean moons (Io, Europa, Ganymede and Callisto), two moons

of Saturn (Titan and Enceladus) and three Super-Earths expected to be telluric (55 CnC

e, CoRoT-7b and GJ 1214b). All the bodies considered here are in synchronous rotation,

their mean rotation period being equal to their orbital period (librations of dimensionless

frequency f = 1).

The maximum amplitude of libration is theoretically equal to the amplitude of the vari-

ations of the orbital velocity, i.e. 2e, where e is the orbital eccentricity. However, this is an

optimal case which implies that the spin rate of the body is so slow or the body is so elastic

that it has the time to completely adapt to the gravitational constraints. This maximal li-

bration is called the optical libration. However, because of the rigidity of the outer boundary

of the shell and of the spin rate, the amplitude of the differential rotation ε between the fluid

and the librating static bulge is smaller than 2e.

Finally, because the equatorial ellipticity β of the considered fluid layer is generally

unknown, Cébron et al. (2012a) estimate it by assuming an hydrostatic equilibrium shape,

which gives

β =
3

2
(1 + k2)

M

m

R3

D3
(6.25)

where m and R are respectively the mass and the mean radius of the considered body with

a potential Love number k2, D the distance between the body and its attractor of mass M .

Table 6.2 gives the values used to calculate εβ for each body. Figure 6.12 represents the

position of these bodies compared to the theoretical threshold extrapolated from our results

when assuming an E0.5 scaling for E � 10−7.

This scaling shows that Enceladus ocean is expected to be unstable with a good level of

confidence. Besides, since χ = 0.78 (calculated from Cedak et al. (2016)), we expect strong

spatial heterogeneities for the LDEI between the poles and the equator, as seen when varying

the size of the inner cores used in our experiments. This might help to explain the variations

of Enceladus ice shell thickness, which is modeled by Cedak et al. (2016) to be 18-22 km
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thick in average, but reduced at the poles (up to 5 km at the South Pole).

E
10-16 10-14 10-12 10-10 10-8 10-6 10-4

ϵ 
β

10-10

10-8

10-6

10-4

10-2

100
!"

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

Io core
Callisto ocean
Titan ocean

Europa ocean Ganymede core
Ganymede ocean

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0

.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

E
10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /
 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

E
10-16 10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0

.3

10-10

10-8

10-6

10-4

10-2

100

Enceladus ocean

E
10-16 10-14 10-12 10-10 10-8 10-6 10-4

0 
-
 /

 (
1-@)
-0

.3

10-10

10-8

10-6

10-4

10-2

100

1: 55 CnC e core
2: GJ-1214b core
3: CoRot-7b core

1

2
3

# = 1 − ' (#)

E
10-15 10-10 10-5

0 -
 /

 (
1-@)
-0
.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E
10-14 10-12 10-10 10-8 10-6 10-4

0 -
 /
 (
1-@)
-0

.4

10-10

10-8

10-6

10-4

10-2

100

.

.

.

.

.

.

.

.

.

.

.

.

Black: ! = physical libration amplitude
Blue-green: ! = 2+, maximum libration amplitude possible

Mercury core

, ∝ #..01
, ∝ #� 333

E
10-5 10-4 10-3

ϵ 
β

10-1

100
Experimental data for χ = 0.37

• Unstable case
• Stable case

Unstable

Stable

Figure 6.12: LDEI stability diagram. For each body, the vertical line represents the range
from a libration amplitude equals to the physical libration up to the optimal libration am-
plitude 2e. The bodies for which LDEI is likely absent are plotted in light gray. The oblique
lines represent the criterion σ > 0, using equation (6.23) for E � 10−7 and equation (6.24)
for E � 10−7. The E0.5 scaling is justified by the hypothesis that the dissipation occurs
mainly in the Ekman boundary layer. In our experimental survey (up-right corner), the
E0.65 scaling is due to a transition towards a regime for which bulk dissipation becomes
more important. Note that for the regimes explored experimentally, the value of εβ at the
threshold depends on χ (see Eq.(6.23)). That is why it is only represented for χ = 0.37. The
dashed lines represent two extreme values for εβ at the threshold, using α = [1, 10]. The
gray space is the unstable region.

Then, an elliptical instability is possible but uncertain for other fluid layers like Io core

and Europa ocean since they are near the threshold when considering their physical libration

amplitude. However, the libration amplitude of the icy shell of Europa is taken from Van

Hoolst et al. (2008) but has not been measured yet with accuracy. That is why for Europa’s
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ocean, the whole range of values has to be considered, and it has a non-negligible chance to be

unstable. It is improbable that the core of Ganymede and the subsurface oceans of Callisto

and Ganymede are unstable, considering their proximity with the threshold. The same

uncertainty is observed for the subsurface ocean of Titan, which is nevertheless more likely

unstable. Finally, the (supposed) liquid cores of the three exoplanets considered are likely

unstable because of their close orbit around their stars. The physical libration amplitude is

here arbitrary taken as 3 orders of magnitude lower than the optical libration.

6.5.4 Perspectives and open questions

Our study focuses on the particular case for which the librating forcing (f = 4) indirectly

excites inertial waves propagating quasi-horizontally. However, a look at 12 different forcing

frequencies shows that this also excites f ≤ 2 inertial waves, observed via the formation of

oblique shear layers in the flow (Figure 6.1). Besides, we observe that an instability develops

at the poles where the characteristics converge and that differential rotations are generated

in the bulk (geostrophic shear layers). It may thus be of interest to conduct quantitative

studies in this regime to estimate, for instance, dissipation rate, to verify the width of the

shear layers and its scaling with Ekman, to measure the amplitude of the flow and to qualify

the associated non-linearities such as the generation of zonal flows (Favier et al., 2014a).

It is now of primary importance to determine whether the elliptical instability persists

for other forcing frequencies. Theoretically, all forcing frequencies between 0 and 4 should

give rise to LDEI, in the limit of small Ekman. For now, we have simply verified that it was

the case for f = 4 and f = 2.4 (Figures 6.5 and 6.15), and our analysis suggests the same

conclusion for f = 1.6 for which we identify at least a coupling between inertial modes of

frequencies ω1,2 = [0.35, 1.25] (not shown). Quantitative studies are also needed for a fine

characterization of the non-linear turbulence following the growth of the instability and to

verify and interpret the flow spatial differences observed in the bulk (e.g. Le Reun et al.,

2017).

Finally, we show that the elliptical instability occurs in ellipsoidal shells. The associated
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instability criterion has been described in this study in the case of longitudinal libration.

Further studies are needed to define the instability criteria of latitudinal libration (e.g.

Vantieghem et al. (2015) in the case of a full ellipsoid) as well as tidally-driven elliptical

instability in ellipsoidal shells (Lacaze et al., 2005; Grannan et al., 2017), which may be

less restrictive. Moreover, it has been recently observed that the orbital eccentricity favors

elliptical instabilities (Vidal et al., 2017).

More generally, if they exist, the importance of these mechanically driven turbulent

motions needs to be addressed. They may be of geophysical relevance for the following:

• Energy dissipation. The dissipation induced by direct and indirect tidal or libra-

tional resonances of fluid layers may play a role in the rotational or orbital dynamics

of the considered planetary system (Le Bars et al., 2015). The relative importance of

direct forcing compared to the elliptical instability also needs to be investigated.

• Ocean Stratification. Turbulent mixing may indeed lead us to question the stratifi-

cation of subsurface oceans and the possibility for hosting life there.

• Core Stratification. It has been proposed that the supposed stratified layer at the

top of Earth’s core is the result of the Moon-forming impact (Landeau et al., 2016).

However, after impacts, the strong perturbations of rotation may be able to mechan-

ically mix out chemical stratification. The relative importance of such a mechanical

mixing compared to a possible convective mixing (see e.g. Levy and Fernando (2002))

also needs to be determined.

• Dynamo Action. This type of instability may provide an important piece that ex-

plains how dynamos are sustained when the thermo-solutal convection models are

insufficient. See for instance Wu and Roberts (2013) for dynamo driven by longitudi-

nal libration, Le Bars et al. (2011) and Dwyer et al. (2011) for the past dynamo of the

Moon and Arkani-Hamed et al. (2008) for Mars.
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6.6 Appendix

6.6.1 Additional side-view visualizations for f = 4

6.6.2 Validation of Kalliroscope results by PIV analysis

PIV method is used here to verify the information content of light intensity analysis. Figure

6.13 shows the result of the spectral analysis performed on PIV and light measurements,

both in vertical and horizontal planes. The FFT was applied on the signal from the moment

when the flow becomes turbulent until the end of the acquisition. The interpretation of the

observed peaks is conducted in section 6.4.2.1.

The main difference concerns the relative peak sizes, the PIV data being far dominated

by the base flow whereas it is not the case for the light intensity signal. This is not surprising

since the base flow is a coherent flow which does not generate any strong velocity gradient

nor shearing zone. Thus, it does not create important light contrast in a flow seeded by

Kalliroscope particles. Also, the base flow is at rather high frequency, and is intrinsically

less obvious from Kalliroscope particles that need time to align with a given shear. The only

source of this signal is thus due to the periodic reorientation of the Kalliroscope particles

which generates slight light intensity variations. On the contrary, in terms of velocity am-

plitude, the base flow is very strong and predominates the velocity signal, particularly on a

horizontal plane. We conclude from this that one has to be very careful on the relative peak

intensity seen in spectra extracted from a light intensity analysis because it depends on the

geometry of the flow considered. The Kalliroscope data also shows a strong component at

zero frequency, due to the ambient light intensity even in the absence of motion (see e.g.

Figure 6.5). That being said, Figure 6.13 shows that the relative amplitudes of the peaks

are qualitatively similar for both methods.

The last main difference is that light intensity signals show an artifactual ω = 1 frequency

(and its harmonic at ω = 3), which corresponds to the rotation rate Ω0. This is probably the

consequence of light variations due to the non-uniformity of the environment surrounding

the experimental setup, or to an external source of light in the experimental room.
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(a) ! = 0

(b) ! = 0.24

(c) ! = 0.37

(e) ! = 0.59

(d) ! = 0.49

time

(f) ! = 0.74

Figure 6.14: Typical flows observed in unstable cases. For each χ, the three snapshots are
in the chronological order. The first snapshot shows the development of the f1,2 = 2 inertial
modes. The second snapshot shows moments where strong turbulence is observed. This
state can be very short since the relaminarization occurs quickly, that is why the turbulence
is shown at moments when it is not yet uniform in the whole shell. The last snapshot
illustrates the saturation state, with dominant columnar sheared flow outside the tangent
cylinder and turbulence inside. These frames are extracted from the Canon EOS 7D movies.
(a) Eχ = 6× 10−5, ∆φ = 10◦ (b) Eχ = 6× 10−5, ∆φ = 5◦ (c) Eχ = 6× 10−5, ∆φ = 5◦ (d)
Eχ = 1× 10−4, ∆φ = 7.5◦ (e) Eχ = 3× 10−4, ∆φ = 12.5◦ (f) Eχ = 9× 10−4, ∆φ = 10◦.
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6.6.3 Excitation of the Spin-over Mode (f = 2.4)

No survey has been realized for a libration forcing f = 2.4. However, we show here the

persistence of the LDEI at this forcing frequency. Figure 6.15 shows the light intensity

analysis results for a typical unstable case. When the periodic forcing is activated, the

tangent cylinder appears as well as inertial shear layer, as can be seen on the first snapshot

of Figure 6.15(a). Figure 6.15(c) shows that in terms of frequency, inertial modes of frequency

ω/2 = ±1.2 are indirectly excited. Such a frequency would give shear layers emitted from

a critical latitude θc ≈ 37◦ with an angle αH ≈ 53◦ from the horizontal, which is in

good agreement with the geometry of the observed shear layers. Visually, the first instability

develops at the two poles. This instability spreads slowly and the sides also becomes unstable

(second snapshot of Figure 6.15(a)) before the classical ”S” shape of the spin-over mode

becomes clearly recognizable (third snapshot) and the whole fluid becomes unstable. As

observed in the full ellipsoid case by Grannan et al. (2014), the triadic resonance at f = 2.4

involves a coupling of spin-over modes, which are characterized by a solid body rotation

around an axis perpendicular to the rotation axis (Lacaze et al., 2005). The frequency

content is surprisingly clear in this case, and we identify with good confidence the excitation

of (probable) modes of frequencies ω = f/2 = 1.2, followed by the secondary couples of

peaks |ω| = [0.3, 0.9], |ω| = [0.33, 0.87], |ω| = [0.58, 0.62]. Figure 6.15(c) shows that the

spatial difference is now more subtle. The same peaks are present in both spectra, but on

the side of the core, the two couples |ω| = [0.33, 0.87] and |ω| = [0.58, 0.62] are attenuated

in comparison to the others.

Another case at f = 2.4 has been realized, with a larger core (χ = 0.49) and farther

from the threshold of the instability. The same succession of phases is observed, but the

flow becomes more turbulent compared to the previous case. The associated spectra are

then less clean, still dominated by the ω = 1.2 frequency, but with less evident secondary

resonances, the only one identified with certainty being the couple ω = [0.42, 0.78], which

was not present in the first case described. This result supports the previously mentioned

idea that the excited modes change according to the radius ratio of the shell.
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Figure 6.15: Light intensity analysis results for the case χ = 0.37, Eχ = 1× 10−4, ∆φ = 15◦

and f = 2.4 (ε = 0.63). (a) Snapshots extracted at different times from the movie recorded
by the Canon camera. (b) Light intensity signal extracted from one of the submatrices. (c)
Successive power spectra performed over a sliding window of 90 Tlib to illustrate the temporal
variations of the frequency content of the signal.

6.7 Physical characteristics used for the stability analysis
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CHAPTER 7

The Rotating Magnetoconvection Device

In this chapter, I provide more detail about how the plumbing, wiring, and gallium cleaning

system is laid out and detailed steps for for understanding, operating, and maintaining

the rotating magnetoconvection device, RoMag. This device serves as a reduced model for

understanding rotating and non-rotating convection in water and rotating and non-rotating

magnetoconvection in the liquid metal gallium. This chapter is a supplement to Chapter 2

of E. King. An Investigation of Planetary Convection: The Role of Boundary Layers. PhD

thesis, University of California-Los Angeles, 2009.

A quick glimpse of the RoMag device in motion is provided through several Youtube

films. Web addresses, below, are clickable on the electronic version.

• https://www.youtube.com/watch?v=G1qwMHkboDY

• https://www.youtube.com/watch?v=PFzpei8Qgxw

7.1 Rooftop Chiller

The rooftop chiller, shown in Figure 7.2, is an air cooled General Air recirculating water

chiller. It has been installed on the roof, directly above the laboratory and is plumbed to

cool three thermal loads. These loads are: the lab chiller, the magnet power supply, and the

magnet itself. The rooftop chiller’s internal pump is capable of delivering cool water at the

necessary 3 gallons per minute (GPM) to each load. The returning, warmer water is cooled

by a compressor, releasing the heat from the three thermal loads into the atmosphere. The

roof top chiller is controlled manually on it’s front panel and requires little maintenance as
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Figure 7.1: The full RoMag experimental apparatus. Image modified from King (2009).

the cooling system is closed and reservoir is auto-filled using the building’s water supply.

The laboratory chiller, shown in Figure 7.3, is a Thermo NESLAB HX300 precision chiller,

referred to hereafter as the lab chiller. This lab chiller is capable of extracting ∼10kW of

heat from the the experimental device. This chiller is water-cooled from the rooftop chiller

and has a thermostated temperature set range from 5-35oC with an accuracy of ±0.1oC. This

chiller contains a 15 gallon water storage reservoir that is circulated by a CP-75 centrifugal

pump with a flow rate at the outlet up to ∼15 gallons per minute.

• Note that the laboratory chiller contains an auto refill valve that is capable of delivering

water from a storage tank to the chiller when the reservoir is low. However this function

does not currently work.
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FRONT PANEL

Rooftop Chiller

Display

Schematic for Alarm 
Locations

Refrigerant Pressure

High Side Low SideWater Supply 
Pressure

AlarmsAdjust 
Parameters

On/Off

Compressor Status

Display Segment 
Control

FRONT PANEL

Facility Water to 
Rooftop Chiller

Supply (Cold)

Return (Hot)

Figure 7.2: The rooftop chiller located on the roof above the lab and it’s front panel. Image
contributed by Ashna Aggarwal.

7.2 The Heat Pad and Power Supply

The heater is a silicone rubber heater manufactured by OEM. The heaters resistive elements

are non-inductively wound, i.e. arranged such that they induce negligible magnetic field.

This is important in maintaining a uniform magnetic field within the convection tank. The

heater has an electrical resistance of ∼ 18Ω. A direct current is passed through the heater

by way of an Argantix XDS 300-17 power supply, whose front panel is shown in Figure 7.4.

This power supply is capable of delivering up to 300 V at 17A, or up to 5100 W of power.

With the power supply, we control the voltage output. The heater’s power supply, which is

powered by three-phase 208 VAC facility power, is in the stationary lab frame. The heat

pad, however, is in the rotating experimental frame.
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MAIN
GROUND BUS

Duff 
Norton

LIFT 
CONTROL

Argantix
HEAT PAD 

POWER 
SUPPLY

LAB 
CHILLER

Kollmorgan
SERVO-
DRIVE

PLUGS FROM 
FACILITY POWER

Figure 7.3: Layout of major components located along the north wall. These are: the
electrical plugs and grounding bus, the Agrantix heat pad power supply, Walker Scientific
magnet power supply, Duff-Norton magnet lift drive and Kollmorgen servo drive , and the
lab chiller. The rooftop chiller, not shown, is located directly above the lab chiller on the
roof.

Lab Chiller

Heat Pad Power 
On/Off Voltage Current

Figure 7.4: The front panel of the Argantix heat pad power supply. The on/off switch is the
most commonly used and the displays for the voltage and current are checked constantly
but not controlled by the knobs on the front panel
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7.3 The Heat Exchanger

The heat exchanger is a cylinder of aluminum with a diameter of 13 inches that is machined

with a double spiral in order for the cooled water to pass through and efficiently remove the

heat input by the heatpad from the convection tank while maintaining a strong degree of

isothermality in the boundary. The amount of heat extracted from the cooling block is given

by,

Pcool = ρCp∆TcoolΦH2O, (7.1)

where ρ and Cp are the density and specific heat of the water flowing through the heat

exchange at a volume flow rate, ΦH2O. As the water extracts heat, its temperature is raised

by ∆Tcool. The heat exchanger has top and bottom aluminum lids

• Note: the heat exchanger requires two of the following oring: Dash No. 277 and

McMaster #:9452K376.

• Note: the flow rate of the water through the heat exchanger is not currently measured.

7.4 Wiring System

In order to understand the layout of the wiring and plumbing system, I describe how the

major components are wired together in the laboratory frame and the rotating frame.

7.4.1 Laboratory Frame Wiring

The wiring layout in the laboratory frame, shown in Figure 7.5, consists of the connections

between the major components starting at the Main Lab Fuse Box where all the circuit

breakers are located and ending at the Slip Ring where the signal are passed to the rotating

frame. In broad terms, the RoMag device is situated in the center of the lab while the major

components to be discussed are located along the North Wall. The majority of the wiring that

connects the major components are located in conduits on the North Wall and distributed

along the west side and south side of the RoMag device using wire guides suspended from
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the ceiling.

The Main Lab Fuse Box contains all the circuit breakers for the Romag components in

the laboratory and rotating frame as shown in Figure 7.6. The breakers are indicated in

several ways. The breakers specifically used for RoMag are color coded with green tape.

Paper labels are also affixed to the front of the breaker, and listing of the breakers functions

are located on the inside of the panel door. The power for nearly all the components is

208VAC 3 phase power except for the rotating frame power, indicated in bright orange in

Figures 7.5 and 7.6 is the standard 120VAC single phase power. In general the 208VAC

3 phase power consists of a bundle (cable) of four lines: one grounding line (usually green

colored) and three AC power lines each out of phase by 120 degrees. For the standard single

phase 120VAC power line, the bundle of cables contains a grounding line (usually green

colored), a neutral line (usually white colored), and a hot power line (usually black colored).
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• Note: that when performing any maintenance or making wiring adjustments, it is

necessary to turn off power both on the device where possible and at the Main Lab

Fuse Box.

The layout of the major plugs attached to the North Wall are shown in Figure 7.7. Moving

 Walker Scientific 
MAGNET POWER 

SUPPLY

Lab Chiller

Kollmorgan 
SERVO-
DRIVE

Rooftop 
Chiller

ROTATING FRAME
POWER

DDC Alarm Panel

Duff Norton
LIFT CONTROL

Argantix
HEAT PAD POWER 

SUPPLY

Chiller Pumps

RoMag Components in Main Lab Fuse Box

Figure 7.6: Positions of the circuit breakers in the main lab fuse box that must be on for
operation of RoMag to occur.

from left to right, these plugs are to the Duff Norton magnet lift, Argantix plug for the heat

pad power supply, Servo plug for the Kollmorgen Servo drive, the Thermo Neslab plug for

the laboratory chiller, magnet power supply (not plugged in), and set of normal 120VAC

plugs providing standard power for the devices in the rotating frame.

The position of the major components positioned in the laboratory frame are shown in

Figure 7.3 facing the North Wall. At the top of the image are set of electrical plugs shown in

Figure 7.7. Although not shown, the rooftop chiller is located directly above the laboratory
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ROTATING 
FRAME

POWER PLUG

MAGNET 
POWER
PLUG

THERMO 
NESLAB

PLUG
SERVO
PLUG

ARGANTIX
PLUG 

DUFF NORTON 
PLUG

North Wall Electrical Plugs 

Figure 7.7: The electrical plugs located on the North wall that power the major RoMag
devices. Image contributed by Ashna Aggarwal.

chiller on the roof. Also shown on the top left of Figure 7.3 is the main ground bus labeled

in green. The Servo-Drive Box where the Kollmorgen servo-drive is kept, also houses an

Omega system used to send signals that control the output of the heatpad and lab chiller.

All major wires connected to the wall or major componets on the North Wall are carried

via wire support guides suspended from the ceiling. These wires are terminated on the east

side of the RoMag device and attach directly to the Lab Frame Rail shown in Figure 7.8

that is used to cleanly separate the power and signal lines in order to pass them into the

rotating frame.

To the left of the Lab Frame Rail is a ground bus. Moving from left to right, the ground

wires are: a large 6 gauge ground wiring that connects this ground bus to back to the main

ground bus located on the North Wall, the ground cable for the heatpad, the ground cable for

the 120VAC rotating frame power, the ground cable for the ethernet over power system, and

the cable connecting the ground bus to the Lab Frame Rail. There are six major components

to the Lab Frame Rail and they are:

1. A terminal with a built-in fuse for the six gauge ground cable.

2. A terminal for the two neutral legs from the Rotating Frame Power cable and from the

Ethernet over power cable.

3. A terminal with a built-in fuse for voltage from the heatpad power supply.
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GROUND BUS LAB FRAME RAIL
1 2 3 4 5 6

Wire from Main 
Ground Bus

NETGEAR ETHERNET/
ROTATING FRAME POWER

N

ARGANTIX HEAT PAD 
POWER SUPPLY

V+
Ground IN

NETGEAR ETHERNET/
ROTATING FRAME POWER

Hot

NETGEAR 
ETHER/ 

ROTATING 
FRAME POWER 

Ground

ARGANTIX HEAT 
PAD POWER 

SUPPLY 
Ground

INTO ROTATING FRAME VIA 
POLY SCIENTIFIC SLIP RINGS

Figure 7.8: The Lab Frame Rail located on the east side of the RoMag device from the layout
in Figure 7.5. This rail passes AC Power, DC power , and ethernet signals into the slip ring
and thus into the rotating frame wiring system. Image contributed by Ashna Aggarwal.

4. Empty terminal

5. Empty terminal

6. A terminal with a built-in fuse for the hot legs from the Rotating Frame Power cable

and from the Ethernet over power cable.

On the underside of the Lab Frame Rail, six heavy gauge wires are directed into the slip

ring to pass the high current signals into the rotating frame.

• Note that the first terminal in the Lab Frame Rail is necessary for holding the large

gauge ground cable. However, it should not be fused as it would prohibit the flow of

excessive currents to the ground thus preventing the main role of the grounding cable.

This terminal should be replaced with a fuseless one in the future.
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7.4.2 Slip-Ring

All signals and power must be passed through electrical slip-rings into the rotating frame.

The slip-rings are manufactured by Poly-Scientific (of Northrup Grumman), model AC6098-

24. The slip rings have a 0.2m outer diameter, and a 0.1m diameter hollow inner bore. This

allows the slip-rings to be situated outside the rotating shaft, between the lower rotating

table and the main bearing. The solid state slip-rings can maintain connection at up to 250

RPM. They consist of six power rings that can each carry up to 50 A, and 54 additional

signal rings that carry no more than 10 A, and are meant for low-voltage sensor signals.

Monitor Out 
(DVI)

Ethernet In

USB IN

OMEGA 
ANTENNA 

NI PXI-8105 Front End

PXI TO SCXI 
CONNECTION

Figure 7.10: Front panel of the RoMag PXI acquisition computer where the ethernet cable,
Omega antenna, and the PXI to SCXI cables are plugged in. Image contributed by Ashna
Aggarwal.
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7.4.3 Rotating Frame Wiring

The layout for the components and wiring on the lower table in the rotating frame are shown

in Figure 7.9. All signals and power that is transmitted through the slip-ring arrive at the

Rotating Frame Rail. This rail is a mirror image of the Lab Frame Rail shown in Figure 7.8.

The major components found on the lower table in the rotating frame are:

• a power strip from which all the following components are plugged in.

• a ground bus identical to the ground bus located next to the Lab Frame Rail.

• the National Instruments (NI) PXI-8105 computer shown in Figure 7.10. This com-

puter is center of data acquisition and control for the RoMag experiment

• the NI SCXI-1000 data acquisition center shown in Figure 7.11 where the terminals

for most of the data probes are gathered.

• two signal conditioners for the two Hall probes capable of measuring the strength of

the magnetic fields.

• a Gefen Wireless Communication device for transmitting video signals from the PXI

to the laboratory frame monitor

• a Netgear XEB1004 powerline ethernet adaptor used primarily for connecting the PXI

to the internet.

• a power management unit (PMU), shown in Figure 7.13, used to measure the power

being sent to the heatpad.

7.4.3.1 Data Acquisition Components and Layout

In the rotating frame, the data acquisition system, shown in Figure 7.12, consists of the PXI,

which takes in the signals gathered by the SCXI. The signals being sent to the SCXI come

from the thermal, voltage, and magnetic field data.
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NI SCXI-1000 Front End

MOD 1/ Current 
Excitation

MOD 2/ Voltage 
Input 

MOD 3/ Voltage 
Input 

RIBBON 
CABLE 1

RIBBON 
CABLE 2

*Yellow 
Thermocouple

Wires not Shown 

Figure 7.11: The front face of the SCXI box where all data signals are gathered using three
pairs of modules and terminal blocks. Image contributed by Ashna Aggarwal.

The front end of the PXI in Figure 7.10 shows an Omega Antenna on the right that sends

signals to an identical Omega Antenna found on the Servo-drive Box. The Omega system

is then used to change the power to the heat pad and the lab chiller set temperature. The

large blue plug on the lower part of the PXI connects the PXI to the SCXI.

The SCXI, whose front panel is shown in Figure 7.11, contains three input modules

connected to three terminal blocks used for securing wire of all data probes. The three input

modules are

• SCXI-1581 current excitation module attached to a SCXI-1300 terminal block. This

module, referred to as MOD1, provides a fixed excitation current of 100µA to up to

32 thermistors.

• SCXI-1102B voltage input module attached to a SCXI-1303 terminal block. This

module, referred to as MOD2, measures the resulting voltage in up to 32 thermistors
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Power In                                            

NI-SCXI-1000                                                   
                                                          
SCXI-PXI 
Communication      

SCXI - 1303 (MOD 3) SCXI- 1102B 
(Voltage Input) 

SCXI- 1102B 
(Voltage Input) 

SCXI-1581  
(Current Excitation)

RoMag Data Acquisition System

RCA 
Connection Box 

32 Channels for 
Thermistor 

Measurements

Ribbon 
Cable 2

Bundled 
Yellow Wires

Lower Table    Pedestal

THERMOCOUPLES

Ribbon 
Cable 1 THERMISTORS

HALL 
PROBE 1

HALL 
PROBE 2

Two 12 Channel 
Terminal Blocks

for Thermocouple 
MeasurementsBearing 

Shaft
SCXI - 1303 (MOD 2) 

SCXI - 1300 (MOD 1) 

            NI PXI-8105

Ethernet 

Monitor (DVI) 

SCXI-PXI 
Communication

POWER IN

Convection 
Experiment

HALL PROBE 
SIGNAL 

CONDITIONER
2

HALL PROBE 
SIGNAL 

CONDITIONER 
1

Figure 7.12: The data acquisition system consists of the thermistors, thermocouples, and
Hall Probe signal conditioners connected to the SCXI. The SCXI is connected to the PXI
computer. Image contributed by Ashna Aggarwal.

whose resistance changes with temperature.

• SCXI-1102B voltage input module attached to a SCXI-1303 terminal block. This

module, referred to as MOD3, measures the resulting voltage in up to 32 channels.

Ribbon cables are used to connect MOD1 and MOD2 and then past through the bearing

shaft up to the pedestal that supports the convection experiment. On the pedestal is a

32 port RCA connection box to which thermistors used in the experiment can be plugged.

In MOD3, screw in terminals are used to connect up to 32 individual wires. Table 7.1

provides a schematic showing where the different probes are terminated. There are twenty

thermocouple (TC) probes, two Hall probes, three wired terminals that are currently unused,

and two voltages from the PMU.

• Note that it is difficult to pass wires through the bearing shaft. Thus, although not

included, a set of additional wires have been added. These include five BNC cables that

may be used for the Doppler probes that can be used to measure velocity signals, three

pairs of wires that may be used for miscellaneous purposes, and a pair of additional
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Channel Probe Channel Probe Channel Probe Channel Probe

0 - 8 TC 16 Misc. 24 TC
1 TC 9 TC 17 Misc. 25 TC
2 TC 10 TC 18 Misc. 26 TC
3 TC 11 PMU-VoltDiv 19 Hall Probe 27 TC
4 TC 12 - 20 Hall Probe 28 TC
5 TC 13 - 21 TC 29 TC
6 TC 14 - 22 TC 30 TC
7 TC 15 - 23 TC 31 PMU-Shunt

Table 7.1: The SCXI Module 3 contains 32 channels that are currently assigned to acquire 20
K-type thermocouple (TC) signals, two hall probe measurements, signals from the voltage
divider and the shunt on the PMU, and three Misc. terminals that contain wires that are
unused. The remaining terminals are both unwired and unused.

ribbon cables that may be used if the thermocouples are ever replaced.

Figure 7.12 shows the passage of ribbon cables for the thermistors, a bundle of individual

thermocouple wires, and the hall probes passing from the bearing shaft that connects the

lower table up to pedestal and convection experiment.

7.4.3.2 Power Managment Unit (PMU)

The power managment unit (PMU) is the device, shown schematically in Figure 7.13, for

measuring the power being applied to the heat pad. Because the PXI and SCXI can only

measure small voltages, it necessary to reduce the voltage going to the heat pad to a readable

level, and it is necessary to use a shunt resistor with a small but well-known resistance so as

to measure a small voltage drop across the shunt resistor and compute the resulting current

going through the shunt resistor and thus the heat pad. The measurements of the resistors

in the voltage divider are R1 = 300kΩ, R2 = 10kΩ. The current shunt is rated for a 50mV

drop at 15A and thus its resistance is small known quantity Rshunt = 0.0033Ω. With the

PMU circuit, the voltage is given by

Vheatpad =
R1 +R2

R1

VCh. 11 = 31VCh. 11, (7.2)
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PMU Circuit

Heat 
Pad

R1 = 300k⌦ R2 = 10k⌦

Rheatpad ⇠ 18⌦
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Rotating Frame Rail

1
2
3
4
5
6
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Shunt
Rotating Frame 
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+ (Ch.11)
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0.
00

33
⌦

Figure 7.13: The wiring diagram for the power management unit. Image contributed by
Ashna Aggarwal.

and the current through the heatpad is given by

Iheatpad =
VCh. 31

Rshunt

= 300VCh. 31. (7.3)

• Based on a previous calibration, the multiplicative coefficient for the shunt voltage that

is used in post-processing is 297 not 300.

The total power input to the heatpad is thus Pheatpad = IheatpadVheatpad. The power may also

be calculated using only the voltage such that Pheatpad = V 2
heatpad/Rheatpad. However, this

calculation assume the heatpad resistance is fixed. The resistance may, in fact, have some

temperature dependence especially at high wattages and thus may be inaccurate at high

temperatures.
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Facility Water to 
Rooftop Chiller

Supply (Cold)

Return (Hot)

Figure 7.14: Two different views of the rooftop chiller showing hard lines associated with the
facility water (white lines) that automatically refills the chillers’ reservoir, the supply water
lines distributing cool water (blue lines) and the return lines bringing back warm water (red
lines). Image contributed by Ashna Aggarwal.

7.5 Plumbing System

The plumbing system is necessary for transporting cooled water in order to remove heat

from the three thermal loads in the RoMag system: the power injected by the heat pad into

the convection tank, the high currents generating heat in the magnet’s power supply, and

the high currents generating heat in the coils of the magnet itself.

The beginning and end of the plumbing system is the rooftop chiller where heat from all

three thermal loads is eventually released to the atmosphere. Figure 7.14 shows several views

of the hard plumbing lines going to and from the rooftop chiller. A facility water supply line,

shown in white, automatically refills the rooftop chiller’s reservoir. The supply and return

lines, shown in blue and red, respectively, distributes the cold water to the thermal loads and

returns the warm water. Supply, return, and facility water lines are passed through through

the ceiling and split at the plumbing manifold shown in Figure 7.15. At the plumbing

manifold, the supply and return lines for each of the thermal loads can be shut off using the

ball valves at all inlets and outlets.
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The plumbing manifold is shown in the context of the schematic for the entire plumbing

system in the laboratory frame as shown in Figure 7.16. A system of ball valves denoted by

black squares allow for different segments of the plumbing to be isolated.

LAB CHILLER

MAGNET

MAGNET  
POWER

Facility Water to 
Rooftop Chiller

Supply (Cold)

Return (Hot)

Plumbing Manifold

Figure 7.15: The plumbing manifold located above the lab chiller is the distribution point
for the hoses going to the the three thermal loads.
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7.5.1 Rotary Union

As in the case of the heater power supply, here we have to deliver chilled water from a

source in the lab frame to the cooling block, which resides in the rotating frame. In order

to accomplish this, we utilize a fluid rotary union. We use a two-channel rotary union

manufactured by Rotary Systems.

The rotating frame plumbing emanates from two hard lines coming out of the rotary

union. The hard lines pass through the same bearing shaft, shown in Figure 7.9 and Figure

7.12, where the ribbon cables and thermocouple wire also. After passing through the bearing

shaft, soft rubber tubing connects the hard lines to the heat exchanger. Bleed valves are

located above the heat exchanger in order to let any air in the lines escape.

Flow Control 
Valves

Bleed Valves
Return Line
Supply Line

RoMag Rotating Frame Plumbing

Rotary Union
Rotating Frame

Laboratory Frame

Figure 7.17: Layout of the plumbing components in the rotating frame not shown to scale.
Bleed valves are located on top of the heat exchanger. Image is modified from King (2009).
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7.5.2 Filling and Draining the Laboratory Chiller

The lab chiller is filled by removing panel found on top of the lab chiller as shown in Figure

7.18. The lab chiller reservoir can be filled using hose connected to the water storage tank

placed along the West wall as shown in Figure 7.16 or simply by using a bottle that is filled

from a lab sink. The lab chiller reservoir should be filled to about one centimeter below the

top of the reservoir.

• Note: There is an autorefill feature on the lab chiller that does not function. However,

if the water level drops below a given limit, a clicking is audible that is associated with

the autorefill system. The water level should be checked every day.

The lab chiller is drained by placing a bucket under the spigot located at the back of the lab

chiller as shown in Figure 7.19. Alternatively, a hose can be connected from the spigot the

lab floor drain as shown in Figure 7.16.

7.5.3 Filling and Draining the Heat Exchanger

The following are steps necessary for filling the heat exchanger and associated plumbing

lines.

1. Check that ball valves are open except for the lab chiller flow rate valve, shown in

Figure 7.18, and the drain valve, shown in Figure 7.20 which should be closed.

2. Check that the hose connected to the heat exchanger have also been secured.

3. Check that all the bleed valves shown in Figure 7.16 and Figure 7.17 are also closed.

4. Place a flexible line from the drain ball valve on the heat exchanger at the bottom of

the RoMag device to the lab drain as shown in Figure 7.20.

5. Turn on the rooftop chiller and lab chiller.

6. Open the lab chiller flow valve slightly so that a small amount of water is flowing and

check that: by feeling that the heat exchanger supply/return lines are vibrating to
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Filled to 1cm below the top

Filling the Lab Chiller

Figure 7.18: The lab chiller is filled by removing the two panels at the top of the lab chiller.

indicate the flow of water, bubbles can be seen moving through the filter, one may here

bubbles passing through the lines back into the lab chiller, and that there are no leaks.

• Note: If there is a leak then shut off flow at the lab chiller and open the drain

valve to drain the lines.

• Note: Ball valves are generally poor at flow control. The shaded area by the

flow rate valve in Figure 7.19 indicates the narrow range where the valve actually

controls the flow. The flow rate for a ball valve open at 50% is generally the same

as a ball valve open at 100%.

7. Open bleeder valves on the heat exchanger and at the filter one at a time. The bleeder

valves may bubble as air and water are released.

8. Move the lab chiller flow rate valve to the fully on position.
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Heat Exchanger 
Supply/Return

Rooftop Chiller 
Supply/Return

Lab Chiller 
Drain

Flow Rate 
Electrovalve

Flow Rate 
Ball Valve

Flow Rate 
Pressure 
Gauge

Figure 7.19: The full RoMag experimental apparatus.

During the normal operation of the experiment, the flow valve is fully open and the

flexible hose going to the lab drain can be removed to allow for moving safely around the

lab. To drain the heat exchanger, re-place the hose to the lab drain as shown in Figure 7.20

and close the flow rate valve at the lab chiller. Note that by opening the drain valve, only

the supply side of the plumbing system is drained. The draining process can be sped up by

opening up the bleeder valves on top of the heat exchanger.

7.6 Description of the Convective Volume.

This section provides an update to the fluid properties used for gallium and description of

the major modifications made to the expansion tank and internal thermistor holders. This

section concludes by describing the steps for assembling the convective volume from the

heatpad at the bottom to the heat exchanger and expansion tank at the top.
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Drain Ball Valve

Floor Drain

Figure 7.20: A flexible connects the drain ball valve at the bottom of the RoMag device to
the lab drain.

7.6.0.1 Fluid Properties of Gallium

The properties for gallium have been updated following the experimental studies of con-

vection in gallium performed in King and Aurnou (2013, 2015); Bertin et al. (2017). The

necessary material properties that describe the thermal expansivity, αT , the density, ρ, the

specific heat, Cp, thermal conductivity, k, thermal diffusivity, κ, and dynamic viscosity, µ

are given respectively as:

αT [K−1] = 1.25× 10−4, (7.4)

ρ[kgm−3] = ρmp (1− αT (T − Tmp)) , (7.5)

Cp[Jkg−1K−1] = 397.6, (7.6)

k[Wm−1K−1] = 31.3, (7.7)

κ[m2s−1] =
k

ρCp
, (7.8)

µ[kgm−1s−1] = νρ = µoexp

(
Ea
RTab

)
. (7.9)

In (7.5) the density of the gallium at the melting point, ρmp [kgm−3] = 6.09× 103, and the

melting point temperature is Tmp [oC] = 29.8. The reference dynamic viscosity in (7.9) is

219



µo [Pa s] = 4.359× 10−4 and Ea [Jmol−1] = 4000 are held as constant. The gas constant is

given by R [JK−1mol−1] = 8.3144 and Tab [K] is the absolute temperature of the gallium in

Kelvin.

7.6.0.2 The Expansion Tank

The expansion tank is a stainless steel tank that I have constructed that is attached to the

top thermal block of the convecting volume by stainless steel tubing. The purpose of the

tank is to allow the gallium to expand and contract thermally so the convecting volume

remains full but does not develop excessive pressures as a result of the thermal expansion.

The major advantage of this redesigned expansion tank is that it can be deconstructed and

cleaned after experiments have been concluded. The top and bottom end caps are each

secured with three screws. There are six holes drilled into the outer edge of the each end

cap. Three of the holes are through holes that the bolts go through to secure the end cap to

the cylindrical container. The three remaining holes are threaded and used with the same

screws to push the end caps out without damaging the edges. Th top and bottom end caps

both contain central holes threaded for 1/4” pipe fittings. The top end cap also has an

additional hole to support internal thermistor holders for monitoring the temperature of the

gallium inside the expansion tank.

• The o-rings placed in the expansion tank end caps is Dash No. 139, McMaster #:

9452K145

7.6.0.3 Internal Thermistor Holders

I have re-designed the internal thermistor holders, shown in Figure 7.21. the previously used

internal thermistor holders had two separate thicknesses and did not have a long shaft, shown

in Figure 7.21.a that sits flush with the copper blocks fluid surface shown in Figure 7.21.c.

By standardizing the size of the thermistor holders, the three screws that secure the holder,

shown in Figure 7.21.b, to the thermal block are all the same size. Having the thermistor

holders sit flush with the copper-fluid interface helps to reduce the potential that bubbles
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a b

c d

Figure 7.21: (a) The internal thermistor holders are made of created from Delrin material.
(b) These holders are secured to the top thermal block with three screws. (c) The top
thermal block can support up to eight thermistor holders. Note that the holder in the center
can hold two thermistors. (d) Silicone (shown), plumber’s putty, or a combination of the
two are used as redundancies to prevent leaks in the thermistor holders.

are trapped during the filling process and affect the heat transfer during experiments. The

steps for putting the internal thermistor holders into the top thermal block are as follows:

1. A very small ring is placed around the internal thermistor and is compressed when

the internal thermistor is inserted into the thermistor holder. Oring Dash No. 101

McMaster #:9452K111

2. The internal thermistor is inserted into the thermistor holder such that oring around

the thermistor is compressed held in place with a set screw as shown in Figure 7.21.a

3. Two orings are placed around the thermistor holder shaft of the thermistor holder as

shown in Figure 7.21.a. The round oring goes on first and the x shaped oring goes on

second. Round oring: Dash No. 903, McMaster #:9751K113, x oring: Dash No. 010,

McMaster #:90025K133
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4. This assembly is inserted into the thermal block and secured using three screws as

shown in Figure 7.21.b. The screws are tightened until the thermistor holder is flush

with the copper-fluid interface as shown in Figure 7.21.c.

5. To further prevent the possibility of leaks, silicone (shown), plumbers putty, or a

combination of the two are used to further seal the thermistor holders as shown in

Figure 7.21.d.

7.7 Gallium Cleaning System

Fume Hood

Fume Hood 
Monitoring Station

Argon Tank

Gallium 
Waste 

Trash Can

Chemical 
Cabinet

Figure 7.22: The fumehood on the left contains the gallium cleaning and storage components.
The fumehood monitoring computer is located to the right. The compressed argon is used
during maintenance and gallium storage and all waste contaminated with gallium is placed
in the trash can.

The gallium cleaning system, shown in Figure 7.22, is designed to povide a safe and

efficient means for circulating gallium and removing gallium-oxide that is generated when

gallium is in contact with the air and leads to impurities in the gallium that can change its
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fundamental properties.

• NOTE: While gallium is non-toxic, the use of personal protective equipment (PPE)

which includes a face mask, safety glasses, latex gloves, and lab coat is encouraged

during all activities associated with working on the cleaning system.

The major components of the system are the fumehood where the major components of the

gallium cleaning and storage system are kept, the computer used to monitor temperatures in

the fume hood, a cylinder of compressed argon, the cabinet of chemicals located underneath

the fume hood where the hydrochloric acid (HCl) is kept, and a trash can where gallium

contaminated materials are discarded.

Space Heater

Gallium Storage Tank

Peristaltic pump

HCl:Water 
Tank

Cleaning Tank

Hot Plate

Band Heater

Figure 7.23: The major components of the fume hood are the main gallium storage tank
with its band heater, peristaltic pump, cleaning and HCl-water storage tanks, hot plate, and
space heater.

The fume hood is a confined semi-sealed compartment where the gallium is stored and
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cleaned. The major components of the fume hood are shown in Figure 7.23. These are:

• Binks stainless steel storage tank that is capable of holding approximately 20 liters of

gallium.

• Band heater used to heat the main storage tank

• Masterflex I/P Easyload Peristaltic Pump (model #:77601-00) used for transferring

the gallium between separate tanks.

• Tank used for holding a water-HCl mixture that is used in the cleaning of the gallium.

• Cleaning tank where the gallium and water-HCl mixture is combined and stirred by

the hot plate.

• A hot plate with magnetic stirrer used for stirring the gallium in the cleaning tank.

• Space heater used to keep the entire fume hood warm and maintain the gallium in its

liquid phase during cleaning.

In the following set of steps, I discuss the process for cleaning the gallium and for main-

taining the cleaning system. The sequence of steps begins by assuming that the fume hood is

at room temperature and has been for a long time. The plumbing system used for circulating

the gallium must also be assembled as shown schematically in Figure 7.24. The material

that is constantly in contact with the gallium is exclusively stainless steel or laboratory

grade white polyethylene containers that resists corrosion with gallium. Upon assembling

the plumbing system, all the ball valves, shown in yellow in Figure 7.24, should be closed.

The band heater and the space heater should be plugged into 208 VAC single phase

outlets located on the right side of the fume hood outer shroud.

• NOTE: While the user should be able to feel the heat coming from the band heater

and the space heater when they are on, one should be able to see the fan on the space

heater spinning. If it is not the fan may need knocked in order to get it started.
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Figure 7.24: A schematic of the fume hood plumbing system. The supply line (blue) starts
at the bottom of the main storage tank and arrives at the top of the cleaning tank. The
return (red) begins at the bottom of the cleaning tank and arrives at the top of the main
storage tank. The hose clamps (gray) connected the stainless steel tubing to the rubber
tubing that is used in the peristaltic pump. The ball valves (yellow) allow the user isolate
sections of tubing and the quick-connects (green) allow section of plumbing to be modular.

The band heater has a thermostat attached to the storage tank just above the band heater

that activates at 105oF or 41oC. The space heater has a thermostat connected to its front

face and is set at 80oC. Over the course of a cleaning campaign, temperatures in the fume

hood equilibrate at around 45oC so the space heater rarely shuts off. The fume hood should

stay closed and above 30oC for a day in order to make sure all the gallium has melted.

Once the gallium has melted, the cleaning process can begin by plugging the hot plate

and peristaltic pump into the standard 120VAC outlet located on the left side of the fume

hood outer shroud. The hot plate is turned on by setting the temperature to 45oC and the
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stirrer speed to 12. The peristaltic pump is turned on by flipping the power switch located

on the back of the pump. If the pump and hot plate are on and functioning, their respective

displays will be lit. The cleaning process is performed using the following steps that make

Return Line

Supply Line

Pressure Adjustment

Pipe Clamp

Pumping Direction

Pump Speed

Pump Stop/Start

Pump Direction

Display

Figure 7.25: The major components at the front of the peristaltic pump. The pump power
switch is located on the back of the pump. The pump always rotates in the counter-clockwise
direction and the speed and pressure adjustments control the flow of gallium.

use of the numbered ball valves in Figure 7.24.

1. The front panel of the pump is shown in Figure 7.25. The rubber supply line hose

should be secured by tightening the supply side pipe clamp.

2. Ball valve 1 needs to be opened and valve 3 needs to be in the vertical position so that

gallium will be directed into the cleaning tank.

3. The pump speed should be set to ∼ 13 and by pressing the start button, as shown in

Figure 7.25, gallium should begin flowing into the cleaning tank.
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4. By the time the cleaning tank is half-filled to the point where the supply side inlet

is submerged in the gallium, the user can stop the pump and prepare the return side

plumbing. To do so, the quick connect at valve 7 is released and a separate tank is

set up as shown in Figure 7.26. Although the final leg of the gallium return line is

ordinarily vertical, as indicated by a solid line, in order to prime the return lines, this

leg is placed horizontal as indicated by the dashed line.

Priming Path

Cleaning Path

Figure 7.26: In order to prime the gallium return line, the ordinarily vertical return pipe
(solid line) is place horizontal (dashed line) in order to fill the line with gallium before
reinstalling.

5. The return side rubber hose is secured and clamped on the return side of the pump.

Ball valves 4 and 5 in Figure 7.24 can now be opened and the pump can be restarted

227



with valve 7 initially closed in order for pressure to build up. After 10-20 seconds, valve

7 can be opened. Allow the gallium to flow and fill the spare tank for approximately

5-10 seconds or until satisfied that the flow is steady. Close valve 7, stop the pump,

and replace the tubing to its original position has shown by the solid line in Figure

7.26. Re-open valve 7.

6. A solution of hydrochloric acid and water is made. The ratio of HCl to water is 1:10

and typically 10 ml of HCl. This solution is poured into the storage tank, shown in

Figure 7.27, and the drip valve is used to allow a thin layer (0.5 cm) of the solution to

completely cover the gallium and then shut off.

HCl:Water Tank 
Ratio 1:10

Cleaning Tank

Hot Plate
Temperature: 45C

Stir Speed: 12

Drip Valve

Figure 7.27: A HCl-water solution of concentration is poured onto the liquid gallium forming
a thin layer in the cleaning tank. The temperature of the hotplate is set at 45oC and the
stir speed is 12.
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7. Check that valves 1, 3, 4, 5, 7, and 8 are open. Turn on the pump.

8. The level of the gallium needs to be checked by eye. To adjust the flow rate, the

pressure adjustment knobs, shown in Figure 7.25, need to be turned. The knobs are

printed with numbers 1-5 indicating a range from weak to strong pressure, with default

values set midway at 3. If the level of gallium in the fume hood drops one can increase

(decrease) the supply (return) pressure. Typically, with the added pressure head of

the gallium in the storage tank, the supply pressure adjustment is usually set more

weakly. The user needs to check the level of the gallium every few minutes until the

level of the gallium becomes roughly constant. This can be difficult to achieve so the

level should be checked every 5-10 minutes until the settings are perfected.

After this final step is completed, the gallium is in the cleaning phase. The phase is typically

run for several hours with the user periodically checking (every 10 minutes or as necessary)

that the supply tube in the cleaning tank is submerged, that the thin layer of HCl-water

solution is maintained over the gallium.

In order to store the gallium, it must be transferred to main storage tank and the plumb-

ing lines must be cleared and flushed with argon. This process is outlined in the following

steps.

1. At the end of cleaning phase allow the HCl solution on the gallium to dissolve or

evaporate as the solution should not be placed in the storage tank with the gallium.

2. The supply side pump is released and valve is 1 is closed. With the pump on, the

return side will continue to drain the cleaning tank until the level of the gallium drops

below that level of the outlet.

3. The quick connect for the argon gas line is disconnected at valve 9 and placed at valve

2 and argon is flushed through this line the gallium is cleared from the tubing into the

cleaning tank. Close valve 2 and the argon supply and disconnect the argon supply.

4. Connect the argon supply to the quick connect at valve 6. Open the return side pump

clamp and close valve 5 with valve 7 open. Open the argon supply at valve 10 and
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valve 6 to clear the leg of the return line going to the storage tank. The user may hear

the gallium bubbling in the storage tank.

5. Flush the remaining legs of the return line by opening valve 4 and 5. The user may see

the gallium in the cleaning tank bubbling. After flushing has occurred for 2 minutes

all valves can be closed to trap the argon in the lines.

6. The cleaning tank is then disconnected from the system to pour the remaining gallium

into the storage tank. The cleaning tank can then be cleaned in a bucket with warm

water. After cleaning is done the tank can be reconnected and the valves can be closed.

7. As a final step, the argon supply is returned to the quick connect at valve 9 so that the

main storage tank can be flushed with argon. By closing valve 8 and releasing argon

into the storage tank the pressure inside the vessel can be raised to 5 PSI and then

slowly released via valve 8. This is done 3-5 times and at the end all valves are closed.

7.8 RoMag Acquisition System

The signals from all the probes are acquired through the PXI and displayed and analyzed

using the interface program, Labview 2013. All the necessary Labview programs are found

on the PXI in files on the desktop. The monitoring program is found on the desktop at the

following location:

• RoMag Data Acquisition Program:

C:Desktop/Romag Controls Acquisition/Romag Monitoring.vi

To open the program click on it’s icon and wait for it to load all necessary dependencies.

The monitoring program will load and appear as shown in Figure 7.28. To run the program:

1. Click on the white arrow in the top left corner (arrow turns black as shown in Figure

7.28 when running).
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2. A dialog window appears where the user can name the file and location to which all the

data will be saved. NOTE: a timestamp is automatically appended to the file name.

3. If the user does not wish to save a file then hit cancel.

4. Another dialog box appears where the user specifies the sampling frequency and

whether the data is to be saved.

5. The monitoring program, shown in Figure 7.28, should now be running with updates

occurring to the values and graphs displayed .

7.8.1 Labview Monitoring System: Front Panel

The monitoring/acquisition program is used to display thermal signals coming from the

thermistors and thermocouples, measurements of the magnetic field coming from the hall

probes, and voltages from measurements of the heatpad. In addition, this program also

analyzes these signals and generates relevant dimensional and non-dimensional estimates of

the fluid and flow properties.

The front panel, shown in Figure 7.28, contains the time-series visualization of different

flow metrics as well as the output of the dimensional and non-dimensional parameters. The

monitoring program’s front panel can be separated into three distinct parts. The left side

provides of Figure 7.28 contains the “Essentials”: a quick summary of the dimensional

properties of the current experiment. It contains the elapsed time that the monitoring

program has been running, the power generated by the heatpad, temperature measurements

of the top and bottom lid, the mean fluid, and the room temperature.

On the top left of the monitoring program are “Set Parameters” controlled directly by

the user. These include the height of the tank, rotation rate, strength of the magnetic field,

and the name of the file where all the data is saved. In the top middle and top right panels

of Figure 7.28 the user can also control the interval that monitoring and alarm emails are

sent and the recipients to whom the emails are sent. The monitoring emails contain general

information (power, top and bottom lid temperatures, and the expansion tank temperatures)

232



sent every 30 minutes by default. The alarm emails are sent every two minutes, by default,

if the power and/or temperatures are outside a specified range.

The tabbed section that composes the central and largest part of the monitoring program

contain information and graphs for: Temperature, Power, Rotation, B-field, Dimensional

Estimates, and Non-Dimensional Estimates. These graphs are useful for seeing trends and

waves in the flow and provide a means for determining whether the experimental case is

equilibrated to the point that the signals do not show any visible trends over several thermal

diffusion time scales.

The Temperature tab contains:

• Graph of the six thermistors in the top lid along with the spatially-averaged top lid

temperature.

• Graph of the six thermistors in the bottom lid along with the spatially-averaged bottom

lid temperature.

• Graph of up to nine internal thermistors in the interior of the fluid.

• Graph of an array of sidewall thermocouples.

• Graph of the temperature drop across a layer of insulation. Such a temperature drop

can be used to make estimates of the sidewall heat losses.

• Graph showing the temperatures used to monitor the expansion tank and tubing.

• Graph showing room temperature changes.

• On the right are schematics showing where the thermal probes described above are

located in the convection experiment.

The Power tab contains:

• Graphs of the power through the heatpad calculated using P = IV generated from the

PMU and P = V 2/R which assumes that the measured heatpad resistance is fixed.
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These values are generally quite similar except at large wattage where the temperature

dependent properties of the heatpad resistance starts to play a role.

• The instantaneous measurements of the the voltage divider and shunt measurements

from the PMU and the the resulting calculated current and voltage of the heatpad.

The Rotation tab is currently unused as the rotation rate is not actively measured. The

B-field tab contains:

• Graphs of the two Hall probes

• instantaneous signals of the raw voltages from the Hall probes. Theses values are not

currently calibrated.

The Dimensional Estimates tab contains:

• Instantaneous values of the fluid properties (ρ, Cp, αT , ν, κ, k, η) described in Section

7.6.0.1

• Instantaneous values of timescales including thermal diffusion time, τκ = H2/κ, the

viscous diffusion time, τν = H2/ν, the magnetic diffusion time, τη = H2/η, the rota-

tional timescale, τΩ = 1/Ω, free fall timescale, τff = H/Uff , where Uff =
√
αg∆TH,

and the Alfvén time, τA = H/UA, where UA = B/
√
µoρ.

The Non-Dimensional tab contains

• Graphs showing the temporal variations in the Nusselt and Rayleigh numbers.

• Instantaneous values of the, Nusselt, Prandtl, Rayleigh, Interaction, convective In-

teraction, convective Reynolds, convective Rossby, Chandrasekhar, magnetic Prandtl,

etc.

• Instantaneous values for the supercriticality of the flows, Ra/Rac, based on the es-

timates of the critical Rayleigh numbers for steady rotating convection, oscillatory

rotating convection, wall-mode rotating convection, and for the magnetic field.
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7.8.2 Labview Monitoring System: Back Panel

The back panel of the monitoring program contains a view of the underlying code and the

calls to the various sub-programs used to perform various tasks.

7.8.2.1 Gathering Channel Information

Figure 7.29 provides a flow chart of how signals are acquired in the monitoring program. A

single channel is acquired by using a built-in data aquisition (DAQ) program where the user

decides, the specific type of measurement to make, the physical address of the numbered

module and terminal where the signal is to be read, the range for the values to be read, and

the units of the measurement. Although a standard analog voltage measurement is shown

at the top of Figure 7.29,the DAQ program used to measure temperatures from thermistors

and thermocouples are quite similar. At the next level, the different channels are wired

together to form longer chains as shown in the middle of Figure 7.29. In principal, these

chains can be as long as is necessary but they are separated for organizational purposes

into the signals associated with the top lid temperatures, bottom lid temperatures, etc. All

channel acquisition is performed in sub-program Combined Data Channel.vi.

7.8.2.2 Displaying Data

One of primary function of the RoMag monitoring program is to display signals using graphs.

An excerpt of the typical code used to perform this function is shown in Figure 7.30. This

code contains several parts:

• The blue signal lines on the left of Figure 7.30 contain all the the available signals

gathered as shown ar the bottom of Figure 7.29.

• The signals of interest are selected from the full list using a built-in Labview program.

• These signals are then displayed using a built-in waveform chart.

• Instantaneous mean quantities may also be determined and displayed at other locations
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on the front panel like the “Essentials” section.

RoMag Data Display
Signal Selection Graphs Mean Quantities

Signal Line

Figure 7.30: Example of the Labview code used to select the data from the signal lines, in
blue, to be graphed and instantaneously averaged.

7.8.2.3 Labview Sub-Programs

Table 7.2 provides a list of the primary Labview sub-programs that are utilized by the main

monitoring program, the program that calls them, and a short description of the function

that the program performs.

7.9 RoMag Controls Program

The major components on RoMag that are varied during normal operation are controlled in

three ways.

• The heatpad output and lab chiller set temperature are controlled using the Labview

Program on the PXI : C:Desktop/Romag_Controls_Acquisition/Romag_Controls.vi.

• The rotational control is carried out using a separate computer also used for monitoring

the fumehood.

• The magnet lifting system, magnetic field strength, and heat exchanger flow rate are

controlled manually.
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Filename Calling File Program description
Combined Data Chan-
nel.vi

RoMag Monitoring.vi Contains all SubVIs used to gather data
probe information.

Top Lid Measure.vi Combined Data Channel.vi Gather all channels for measuring the tem-
peratures in the top thermal lid.

Bottom Lid Measure.vi Combined Data Channel.vi Gather all channels for measuring the tem-
peratures in the bottom thermal lid.

InternalTemp Measure.vi Combined Data Channel.vi Gather all channels for measuring the tem-
peratures inside the convection tank.

Power Measurement
Unit Measure.vi

Combined Data Channel.vi Gather the two channels for measuring the
voltages from the PMU as discussed in Sec-
tion 7.4.3.2.

Rotation Measure.vi Combined Data Channel.vi Gather signals for measuring rotation.
(Currently unused).

MagneticField Measure.vi Combined Data Channel.vi Gather signals from two Hall probes used
to measure the strength of the magnetic
field.

ExpTank Measure.vi Combined Data Channel.vi Gather temperature signals from Expan-
sion Tank and tubing.

OutsideTemp Measure.vi Combined Data Channel.vi Gather temperature signals from probes
around the sidewall.

RoomTemp Measure.vi Combined Data Channel.vi Gather room temperature signals from
probes.

RomagMonitor User-
Prompt.vi

RoMag Monitoring.vi Request user to save data and specify the
frequency of data acquisition.

PMU Measurement.vi RoMag Monitoring.vi Calculates the power in the heatpad fol-
lowing the equations in Section 7.4.3.2.

Temperature Dependent
Fluid Properties.vi

RoMag Monitoring.vi Calculates fluid properties of the flow given
the temperature.

Dimensional Calcula-
tions EH 0516.vi

RoMag Monitoring.vi Calculates dimensional timescales and ve-
locities of the flow given the temperature
and container geometry

Dimensionless Calcula-
tions EH 0516.vi

RoMag Monitoring.vi Calculates non-dimensional properties of
the flow given the temperature, rotation,
magnetic field strength, and container ge-
ometry

Primary Monitor Mes-
sage.vi

RoMag Monitoring.vi Sends regular emails containing tempera-
ture and power present in the experimental
device.

Temperature Alarms
SubVI.vi

RoMag Monitoring.vi Warns user if temperatures and power are
outside a prescribed range.

TempAlarm EmailSend.vi Temperature Alarms SubVI.vi Determines if value is outside prescribed
range and sends an email alerting the user.

Table 7.2: List of programs and sub-programs found in the main RoMag monitoring program.

7.9.1 Heat Pad and Lab Chiller Control

Before controlling the heat pad and lab chiller it is necessary that they be switched on.

The front panel of the lab chiller is shown in Figure 7.31 with an inset of the wall power
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Lab Chiller 
On/Off

Display 
Mode

Display

Lab Chiller 
On/Off

Roof Chiller 
On/Off

Servo 
Enable

Lab Chiller Front Panel

Wall Switch

Figure 7.31: The front panel of the lab chiller. Inset is a separate set of switches for enabling
the servo drive, and powering the rooftop and lab chillers. Image contributed by Ashna
Aggarwal.

switches. The on/off switches for the rooftop chiller and lab chiller must be on at the wall

switch and the on.off switch on the lab chiller’s front panel must also be on. Changing

the heat pad power and lab chiller set temperature is done using the Labview program

Romag_Controls.vi whose front panel is shown in Figure 7.32.

1. The user inputs the desired power (0-5100W) and lab chiller set temperature (5-35oC),

indicated by row 1 in Figure 7.32.

2. The program is run by clicking on the white arrow in the top left corner of the program.

In the underlying code found on the back panel, the desired wattage and set temperature

are first converted to a voltage. The Argantix power supply is configured to receive 0-10

volts and the conversion from the desired wattage to voltage is given by

VArgantix ∼ 0.1
√

Wattage. (7.10)

For example the voltage required for 1000W is VArgantix ∼ 1V. The exact formula may require

re-calibration if the heat pad resistance changes. The conversion from temperature to the
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Figure 7.32: The Labview program used to control the heatpad and lab chiller set temper-
ature. The user inputs values in the first row and runs the program by pressing the white
arrow in the top left of the screen.

voltage used for controlling the lab chiller set temperature is given by

VLab Chiller =
Set Temp.

100
. (7.11)

The voltages, VArgantix and VLab Chiller are then converted to a 4 digit and carriage return

syntax, 00.00\r and shown in row 2 of Figure 7.32. This syntax is associated with standard

VISA protocol commands used to control experiments and is appended to a longer string

that also includes address information for communicating with pre-assigned Omega modules

located in the Servo-Drive box that output the desired voltage. For instance, if the set

temperature is 15oC and then a portion of the string with the voltage value that is sent

is given by 00.15\r. Once received, the command is acknowledged and an asterisk (*) is

returned (shown in row 4 of Figure 7.32).

• NOTE: In some instances, it is necessary that the maximum requested wattage be

lower than the 5100W max that is capable of the power supply. For instance, stainless

steel cylinders are appropriate for use at all wattages while acrylic cylinders will lose
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structural integrity if the the temperature of the container is ∼ 100oC.

ON

OFF

Figure 7.33: The servo drive front panel with the main power switch located on the right
side. An RS232 plug is also located on the top left of the front panel and shown inset. The
RS232 cable runs from the fumehood computer where the rotation is controlled to the servo
drive box where the servo drive is kept.

For completeness, the program is also configured for controlling the rotation rate (0-60RPM

input) and the flow rate to the heat exchanger (0-100% input). The servo-drive is configured

to receive voltages from 0-10V such that the conversion is

VServo =
RPM

6
. (7.12)

The electrovalve shown in Figure 7.19 is configured to receive voltages from 2-10V such that

the conversion is

VValve = 8
Percentage

100
+ 2. (7.13)

However, the Omega modules for the servo and electrovalve are not currently operational.
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7.9.2 Rotational Control

The control of rotation is done using the Servostar Motionlink software located on the Fume-

hood computer. The first assumption is that the circuit breaker controlling the servo in

Figure 7.6 is on and that the Servo Box, shown in Figure 7.33, is also switched on. The

Fumehood computer is connected to the servo drive via a standard RS232 cable.

• Note: Communication to the servo with a standard 9pin RS232 connector only requires

3 lines: Data in, Data out, and Ground which corresponds to pin 2, pin 3, and pin

5 respectively on a standard RS232 connector. However the Data in/out is flipped

for the servo so going from the computer to the servo, jumper wires, shown in the

inset image of Figure 7.33, must connect pin 2 from the computer to pin 3 on the

servo, pin 3 on the computer to pin 2 on the servo, and pin 5 on the computer to pin

5 on the servo. If not wired correctly then the servo will not be recognized by the

communication software.

1. Click on the Servostar Motionlink shortcut located on the desktop as shown in Figure

7.34.1

2. Click YES on the Controller detection panel in Figure 7.34.2

3. In the Start MOTIONLINK window, initiate communication with the servodrive by

clicking on the COM SETUP in Figure 7.34.3

4. Set up the parameters for communicating with servodrive by moving to the RS-232 tab

in Figure 7.34.4. Communicate with the COM1 port using a 9600 Baud Rate. Click

the SCAN button which will detect the servo-drive.

5. Enable the Servo on the main switch as shown in the left on Figure 7.31. After doing

so the RoMag device is locked in position and will not turn by hand.

6. Click OK to move back to the screen shown in Figure 7.34.3 and click START.
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1.

2.

3.

4.

Figure 7.34: Screenshots showing the major steps for setting up the communication from
the servo control program, Servostar Motionlink, to the servo drive. The icons or buttons
that need clicked are outlined with black boxes.

Having set up the communication and detection parameters of the servodrive it is now

possible to control the rotation rate as outlined in the following steps and in Figure 7.35.

1. The control panel can be reached by clicking on the Command Generator in Figure

7.35.1. The status of the servo at the top of the panel should be white. If it is red

then the wall switch located above the lab chiller as shown in Figure 7.31 should be

switched into the Enabled positon. NOTE: that when enabled, the RoMag device is

locked into position and will not rotate hand.

2. Input the desired motor speed as shown in Figure 7.35.2 Note that the speed of the

motor is 1/40th the speed of the Romag device using a gear reduction system (i.e., An

input of 800 RPM corresponds to 20 RPM on the RoMag device. Initiate or modify
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1.

2.

Figure 7.35: Panels from the Servostar Motionlink program used to adjust the rotation rate
of the RoMag device. The wall switch is located above the lab chiller in Figure 7.31. Image
contributed by Ashna Aggarwal.

the counter-clockwise (clockwise) rotation by pressing the “−” (“+”). Press STOP to

stop rotation.

The true rotation rate of the RoMag device has been calibrated such that

Ωreal
RPM = 1.0206

Ωrequested
RPM

40
+ 0.0011, (7.14)

where Ωrequested
RPM is the rotation, in RPM, of the RoMag device as input by the user.

7.9.3 Raising and Lowering the Magnet

Before performing the below steps for raising and lowering the magnet, it may be necessary

to redistribute any build-up of grease to the threads in order to provide adequate lubrication
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ON

OFF

RAISE

LOWER

Figure 7.36: Front panel of the Duff-Norton control box used to raise and lower the magnet
using the raising and lowering buttons.

during movement. Also make sure that the RoMag convection tank is level and that the

threaded rods used to hold the convection tank together are centered so that the magnet is

not scratched or gouged during the raising and lowering process.

1. Locate the lab’s fuse box and move the circuit breaker labeled “Duff-Norton.” Move

to the “ON” position.

2. Move to the Duff-Norton box, and rotate the large knob to give power to the Duff-

Norton system.

3. Press the button labeled “Raise” or “Lower”. Make certain that all the acme threads

are rotating. As the magnet is moving downwards, inspect the experimental com-
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ponents on the convection tanks (wires, pipes, etc.) and ensure that they are not

obstructing the magnet’s path. Light contact of the magnet with insulation or plastic

wrap is acceptable.

4. The magnet has an upper and lower limit and will stop automatically when these

positions are reached.

5. When experimentation is complete, push the “Raise” button to lift the magnet to its

original position. It will automatically stop at the top.
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CHAPTER 8

Laboratory-numerical models of rapidly rotating

convection in planetary cores

Modified from: J. S. Cheng, S. Stellmach, A. Ribeiro, A. Grannan, E. M. King, J. M.

Aurnou. Geophys. J. Int. (2015) 201, 1-17

In this work, I developed a thermal loss model used to determine the amount of heat

lost through the sidewalls of rotating and non-rotating laboratory convection experiments.

By better accounting for sidewall heat losses, we were able to better constrain the amount

of heat transferred through the fluid layer and hence determine the Nusselt number more

accurately determined. Our results showed that the heat transfer scaling in rotating convec-

tion continues to increase with decreasing Ekman numbers. This effectively invalidates the

essential arguments of King et al. (2012) and lead to the papers by Stellmach et al. (2014)

and Julien et al. (2016) which both invoked Ekman pumping to explain the high scaling

exponents first identified here.

8.1 Introduction

In the investigation of planetary core physics, the current methodological paradigm depends

primarily upon numerical dynamo models. These models strive to simulate the global scale

processes occurring in planetary interiors by solving the governing equations of magnetohy-

drodynamic flow in a rotating spherical shell of electrically-conductive fluid [e.g., Kagayama

and Sato (1995); Glatzmeier and Roberts (1996); Christensen and Aubert (2006)]. The

strength of these models is that they are capable of reproducing some major features of

the geomagnetic field, including the dipolar morphology, flux patches at high latitudes, and
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polarity reversals [e.g., Christensen (2010); Olson et al. (2011)]

However, these models are limited because they require overly strong viscous diffusive

effects. Over ten orders of magnitude larger than estimates for Earth’s core, the viscous

diffusion in current numerical dynamo models ultimately removes all but the largest scale

motions in the system [e.g. Soderlund et al. (2012)]. Small-scale turbulence and turbulent

fluxes between large- and small-scale processes cannot exist in these models [cf. Braginsky

and Meytlis (1990)]. As such, the models are effectively laminar [e.g., Glatzmaier (2002)].

However, turbulent fluid systems, such as exist in planetary cores, are inherently multi-

scale: a wide range of flow scales are expected to be active and interrelated [e.g., Nataf and

Schaeffer (2015)]. For example, convective energy is likely injected at very small scales into

the core fluid, whereas magnetic fields are likely generated by larger-scale flows. In the long

term, in order to make accurate predictions of global scale observables, we must understand

the path by which small-scale convective energy is transferred to the large-scale flows that

effectively induce magnetic fields. To investigate the behavior of rapidly-rotating convection

toward the limit of core-style turbulence, we have used laboratory simulations of rapidly

rotating convection and high-resolution numerical models in a complementary fashion. Here

we present the results of the combined approaches, which have allowed us to access the

axialized flows that exist near the onset of convection, as well as the three-dimensional

(3D) turbulent flows that develop with stronger forcing. Together our combined laboratory-

numerical approach provides a broad view of the regimes that likely describe core-style

rotating convective motions. We do not include the effects of magnetic fields on convection

[cf. Aurnou and Olson (2001); Cioni et al. (2000); Stellmach and Hansen (2004); Gillet et al.

(2007); Hori et al. (2010); King and Aurnou (2015); Ribeiro et al. (2015)]. In addition, we use

simplified geometries. Right cylinders are used in the laboratory experiments and Cartesian

domains are used in the numerical simulations, both of which remove the effects of spherical

shell curvature. In these reduced geometries, we are able to reach more extreme parameter

values than are accessible in current global-scale dynamo models.

Our study then differs from the geophysical problem of rotating magnetoconvection in a

spherical shell. However, understanding the reduced problem serves as an essential prereq-
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Figure 8.1: Image showing the conceptual relationship between a parcel of core fluid and our
laboratory rotating convection experiments. Gravitational acceleration is represented by g
and the angular rotation vector is represented by Ω. In addition, the adverse density gradient
is qualitatively represented by the background color scheme. Violet represents higher density
fluid while pink represents lower density fluid.

uisite to understanding planetary convection. In addition, our systematic approach provides

the opportunity to contextualize core fluid dynamics, using the predictions derived in the

well-established body of convection physics literature [e.g., Malkus (1954); Kraichnan (1962);

Julien et al. (1996); Grossmann and Lohse (2000); Sprague et al. (2006); Ahlers et al. (2009);

Grooms and Whitehead (2015)]

In the next section of this paper, we introduce the nondimensional parameters necessary

to discuss the theoretically-predicted behaviors of (non-rotating) Rayleigh-Bénard convec-

tion and rotating convection. These simplified systems articulate the underlying physical

processes that are the basis of all convectively-driven dynamo models. In section 8.3, we

present our laboratory and numerical set-ups, with which we make detailed measurements
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of the convective heat transfer across a fluid layer and qualitative measurements of the as-

sociated flow patterns. Our results are provided in section 8.4. In section 8.5, we discuss

the regime transitions that exist in our heat transfer data, which provide important in-

sight about rotating convection systems: we find that axially-invariant rotating convection

columns exist only over a very limited range of parameter space. In section 8.6, we consider

the extrapolation of our results to planetary core settings. Finally, in section 9.5, we discuss

how our findings better tie next-generation dynamo modeling results to established theories

of turbulent convection.

8.2 System Parameters and Scaling Behaviors

8.2.1 Rayleigh-Bénard Convection (RBC)

In order to investigate rotating convection systems, we first consider the analogous non-

rotating system. This non-rotating style of convection, known as Rayleigh-Bénard convec-

tion (RBC), describes the thermally-induced overturning of fluid in a plane layer geometry.

Non-rotating convection is relevant to planetary systems because it represents the limiting

behavior when convection overcomes rotational effects. We find that convective heat transfer

in RBC systems provides upper bounding values on those that will be observed in rotating

convection systems.

The effective strength of the thermal buoyancy force in RBC systems is denoted by the

Rayleigh number. This nondimensional number represents the ratio between thermally-

induced buoyancy and the viscous and thermal diffusive effects:

Ra =
Buoyancy

Diffusion
=
γg∆TL3

νκ
, (8.1)

where γ is the thermal expansivity, g is gravitational acceleration, ∆T is the temperature

difference between the top and bottom horizontal boundaries of the fluid layer, L is the

distance between these boundaries, ν is the viscous diffusivity, and κ is the thermal diffusivity.

At a sufficiently high value of Ra, denoted as the critical Rayleigh number RaC , buoyancy
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effects overcome diffusion and the fluid layer becomes unstable to convective fluid motions.

For an infinite plane layer with rigid, non-slip boundaries, the critical Rayleigh number in

RBC has a constant value of RaC = 1708 [e.g., Pellew and Southwell (1940)].

The other parameter describing RBC systems is the thermal Prandtl number, Pr. This

number is the ratio of the thermal and viscous diffusion time scales in the system,

Pr =
ν

κ
, (8.2)

and, thus, describes the thermophysical properties of the working fluid. For instance, in

water, the working fluid used in our laboratory experiments, Pr has a value of ' 7. Present-

day dynamo studies typically use a Prandtl number of' 1 [e.g. Olson et al. (2011); Soderlund

et al. (2013)]. In contrast, it is estimated that the Pr ∼ 10−2 in the liquid metal that makes

up Earth’s outer core [e.g., Pozzo et al. (2012); de Koker et al. (2012)].

For any given set of Ra and Pr input parameters in an RBC system, the nondimensional

heat transfer is expressed in terms of the Nusselt number, Nu. The Nusselt number is the

ratio of the total heat flux through the system normalized by the conductive heat flux in the

absence of convection:

Nu =
Total heat flux

conductive heat flux
=

qL

k∆T
. (8.3)

where q is the total heat flux and k is the working fluid’s thermal conductivity. Because

the total (superadiabatic) heat flux is the sum of convective and conductive components,

the Nusselt number will have a fixed value of unity in the absence of convective motions,

and will reach higher values as the convective heat flux increases in strength. (Unlike in

planets, the adiabatic heat flux is zero in our experiments.) In our laboratory-numerical RBC

experiments, the Nusselt number ranges from values of unity to just over 103, demonstrating

that we can study the full range of behaviors that exist between the onset of convection and

fully-developed, convection-dominated heat transfer.

The Nusselt number provides a globally-integrated description of the vigor of convective

motions. As such, trends in the Nusselt number reveal fundamental behaviors of the un-
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derlying convection system [e.g. Spiegel (1971); Glazier et al. (1999)]. In the literature on

convective turbulence, heat transfer in RBC systems follows several well known scaling laws

of the form Nu ∼ RaαPrχ [e.g., Ahlers et al. (2009)]. However, since we use a fixed Prandtl

number in our experiments, we will consider RBC scalings of the simpler form

Nu = c1Ra
α , (8.4)

where c1 is the prefactor and α is the scaling exponent. Such scalings have been predicted

theoretically and confirmed experimentally over wide ranges of parameter space [e.g., Rossby

(1969); Castaing et al. (1989); Glazier et al. (1999); Funfschilling et al. (2005)].

There are two well-known Nu ∼ Raα scaling regimes of RBC heat transfer that are

accessible with our experiments. One classical prediction, first theorized by Malkus (1954),

is the α = 1/3 relation. Malkus’ arguments apply to systems containing vigorous convec-

tive mixing, where the bulk fluid becomes isothermal and the time-averaged temperature

gradients are localized to thin thermal boundary layers adjacent to the top and bottom of

the fluid layer. Conductive heat transport dominates in these quasi-static boundary layers.

The α = 1/3 law arises under conditions in which the opposing boundary layers do not

interact, and the fluid layer height therefore does not enter into the heat transfer scaling.

This depth-independent heat transfer then leads to the following scaling law:

Nu ∼ (Ra/RaC)1/3 (8.5)

This scaling law has been verified in a number of experiments carried out at Ra & 1010 [e.g.,

Ahlers et al. (2009)]. It is often argued that the α = 1/3 law is appropriate for geophysical

systems in which the boundary layers act in relative isolation, such as when they are much

thinner than the total thickness of the fluid layer [e.g., Castaing et al. (1989)].

In RBC laboratory and numerical experiments at moderate buoyancy forcings (Ra .

1010), characteristic of values used in current-day dynamo models, the α = 1/3 law is not

typically observed. Instead, experiments in this moderate Ra range find that the RBC
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heat transfer follows a law closer to Nu ∼ Ra2/7 [e.g., Chillá et al. (1993); Glazier et al.

(1999); Ahlers and Xu (2001)]. In most Ra & 105 laboratory and numerical experiments,

a container scale overturning circulation occurs in the bulk fluid, providing a shear flow

across the boundaries. The presence of this circulation implies communication between the

boundary layers and that the depth of the fluid layer is a critical characteristic of the system.

By including the effects of a shear flow across the thermal boundary layers, Shraiman and

Siggia (1990) argue that an α = 2/7 heat transfer scaling develops.

At extremely high Ra, which presently exceed laboratory and numerical experimental

capabilities, an α = 1/2 scaling law has been hypothesized [e.g., Kraichnan (1962); Spiegel

(1971)]. In this regime, the thermal boundary layers become fully turbulent. In the absence

of quasi-static boundary layers, the heat flux will be controlled solely by turbulent flows

occurring within the fluid bulk and the microscopic, molecular properties of the fluid may

cease to play a role. This RBC heat transfer regime is represented by the scaling law

Nu ∼ (RaPr)1/2 . (8.6)

Although this scaling has yet to be observed experimentally (e.g., Roche (2010)), it may

ultimately apply to buoyancy-dominated planetary and astrophysical convection systems.

In our present laboratory and numerical experiments, we are able to access the α ' 2/7 and

1/3 regimes.

8.2.2 Rotating Convection

With the inclusion of rotation in a given system, new modes of convection can develop, asso-

ciated with alternate regimes of convective heat transfer. A new nondimensional parameter,

the Ekman number E, is required to characterize the effect of the system’s rotation. This

parameter is defined by the ratio between the system-scale viscous force and the Coriolis

force:

E =
Viscosity

Coriolis
=

ν

2ΩL2
(8.7)
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where Ω is the system’s angular rotation rate. In many geophysical settings, the Ekman

number is extremely small, implying that rotational effects massively overwhelm global-scale

viscous forces. For instance, the Ekman number is estimated to be of order 10−15 in Earth’s

core [e.g., Schubert and Soderlund (2011)]. At such low values, the system-scale flows are

expected to be essentially unaffected by fluid viscosity [e.g. Roberts and King (2013)].

The effect of rotation is strongly constraining and has the effect of suppressing the onset of

convection [e.g., Nakagawa and Frenzen (1955)]. The critical Rayleigh number in a rotating

convection system is no longer a constant for a given geometry. Instead, RaC grows with

the system’s rotation rate:

RaC = c2E
−4/3 , (8.8)

where c2 is 8.696 for the onset of steady rotating convection as E → 0 (Chandrasekhar

(1961)). At the onset of rotating convection, fluid motions occur in the form of long, thin

columns that are aligned with the rotation axis [e.g., Grooms et al. (2010); King and Aurnou

(2012)]. The narrow horizontal width of these columns, `, results in viscous forces that

locally relax the rotational constraint on fluid flow. The width of the columns at the onset

of convection scales as:

` = c3E
1/3L , (8.9)

where c3 = 4.8 as E → 0 [e.g., Julien and Knobloch (1998)]. This E1/3 scaling result appears

to hold well past onset and thus likely characterizes flow scales in a broad array of rapidly

rotating convection settings [e.g., Zhang and Schubert (2000); Stellmach and Hansen (2004);

King and Buffett (2013)].

In spheres and spherical shells (with inner radius less than 3/4 of the outer shell ra-

dius), most of the fluid volume exists outside of the tangent cylinder. These lower latitude

convection columns are generated by thermal Rossby waves and are not fully equivalent to

our Cartesian cases, which better simulate convection at higher latitudes within the tangent

cylinder [e.g., Busse and Cuong (1977); Sreenivasan and Jones (2006a); Takehiro (2008);

Calkins et al. (2013)]. Because the vorticity changes sign across the mid-layer only in high

latitude columns, they have differing topologies (Chandrasekhar (1961)), differing heat trans-
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fer behaviors (e.g. Aurnou (2007)) and their vortex-vortex interactions are likely different.

However, they have some important similarities. In particular, they represent strongly axi-

alized vortices that have ` = O(E1/3) length scales [e.g., Zhang and Schubert (2000); King

and Buffett (2013)].

The vast majority of planetary dynamo models are carried out in the vicinity of E ∼
10−4 (e.g., King and Buffett (2013)) where these axial columns, forming near the onset of

convection, are the dominant flow structures. The columns in these models typically have

widths that are large, in fact, close to the scale of the system, `/L ∼ E1/3 ' 0.1, and have

been argued to be an essential feature of Earth-like models (e.g. Christensen and Aubert

(2006); Christensen (2010)). The highly coherent axial flow structures are responsible for

generating dipolar magnetic fields that are well-aligned with the rotation axis. In fact, typical

E ∼ 10−4 models cannot generate Earth-like magnetic fields without the presence of axially

coherent columns (e.g. Sreenivasan and Jones (2006b); Christensen (2010); Miyagoshi et al.

(2010); Soderlund et al. (2012, 2013)).

Even though dynamo models depend on columns as an essential building block, the

width of those that exist in present-day models fundamentally differ from the columns that

are presumed to exist in the core. For instance, in Earth’s core, columns are not predicted

to be the system-scale in width, but instead are likely to be extremely narrow with `/L ∼
E1/3 ' 10−5. This corresponds to core columns of order 1000 km high by 10 m wide. It

is unlikely that such structures can induce magnetic fields or remain stable under turbulent

core conditions (e.g. Glatzmaier (2002)). Thus, lower E realizations of rotating convection

are necessary to determine the stability range of columnar-style rotating convective flows as

core-like parameters are approached. Furthermore, accurate models of global heat transfer

(eventually, in spherical shell geometries) are also required in the regime in which coherent

rotating convection columns exist. By comparing the heat flux estimates from a given

planetary core, it should then be possible to infer whether coherent columns will stably exist

in a given geophysical system (e.g., King and Aurnou (2012); Soderlund et al. (2014)).

King et al. (2012) argue that boundary layer physics controls rotating convective heat

transfer in water. By assuming that the Malkus (1954) marginal boundary layer arguments
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hold in a rapidly rotating system, they develop theoretical arguments predicting that rotating

convective heat transfer scales steeply:

Nu = (Ra/RaC)3 . (8.10)

This steep, cubic scaling (8.10) is argued to hold from near the onset of convection until

the Ra value at which the thermal boundary layer becomes nested within the mechanical

Ekman layer:

RaT ∼ E−3/2 . (8.11)

Furthermore, it is hypothesized that the columns will lose their axial coherency in the vicinity

of Ra/RaT ∼ 1. The Pr ' 7, E ' 10−7 numerical experiments carried out in this study

reach lower values of Ra/RaT than any previous studies and, thus, are the first to clearly

test the King et al. (2012) predictions.

8.3 Methods

Our investigation involves both laboratory experiments and numerical simulations of con-

vection in non-rotating and rotating systems.

8.3.1 Laboratory Experiments

We perform Rayleigh-Bénard convection (RBC) and rotating convection experiments in an

axially-aligned cylindrical container with water as the working fluid. The top and bottom of

the container are made of aluminum, which provides nearly isothermal boundary conditions

in all our laboratory experiments. We maintain a Biot number Bi ≤ 0.1, implying that

thermal gradients in the boundaries are negligible compared to those in the fluid. The cylin-

drical sidewall is made of Reynolds Polymer acrylic, which has a low thermal conductivity

of k = 0.19 Wm-1K-1 and is optically clear. The sidewall has a thickness of 0.635 cm and

an inner diameter of 19 cm. We are able to vary the height of the container, here using 40,

80 or 160 cm tall sidewalls (Figure 8.2). A brushless servomotor rotates the device at rates
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Figure 8.2: Experimental set-up. a) A schematized image of the 40 cm high by 20 cm wide
tank. An electrical heater provides a constant heat flux q to the base of the experiment.
A water-cooled heat exchanger maintains a fixed temperature at the top of the system. A
servomotor rotates the tank about a vertical axis at up to 60 revolutions per minute (rpm).
All laboratory experiments have a fixed diameter of 20 cm. However, the heights of the
tanks can be varied. b) Preceding laboratory studies have employed 5, 10, and 20 cm high
tanks (King et al. (2009, 2012); King and Aurnou (2012, 2013)). c) In the present study,
laboratory experiments are carried out in 40, 80, and 160 cm high tanks in order to reach
more extreme ranges of parameter space. For example, in a 160 cm high tank of water it is
possible to attain E & 3× 10−8 and Ra . 1013.
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between 0 and 60 revolutions per minute (rpm).

The fluid layer is heated from below by a non-inductively wound, electrical resistance

element that applies between 10 and 600 W of power. Following Rossby (1969), the ex-

periment is cooled from above via a double-spiral wound heat exchanger maintained at a

constant temperature by a precision thermal bath. Temperature measurements are made by

12 temperature sensors located within 2 mm of the top and bottom boundaries of the fluid

layer, providing accurate measurement of the vertical temperature difference across the fluid

layer, ∆T . The minimum ∆T that can be measured is approximately 0.25 K, which sets the

minimum Ra that we can access with any given tank. The combination of applied heating

power and resultant temperature drop measured across the fluid layer allows us to calculate

the Nusselt and Rayleigh numbers for each experimental case.

These geometrically narrow tanks require careful treatment of potential thermal losses

through the sidewalls. To minimize these losses, the temperature of the room is set as closely

as possible to the mean temperature of the working fluid. Furthermore, the device is wrapped

in a 10 cm thick layer of Insulfrax insulation. The room and mean fluid temperatures are

continually measured, allowing us to estimate horizontal conductive, convective and radiative

heat losses from the device. For all cases above 30 W of input heating power, sidewall heat

losses account for less than 5% of the total.

In every Nu-Ra case, the experiment is allowed to equilibrate until the mean temperature

on each thermal sensor does not change by more than ∼ 1% over the course of two hours.

This process usually takes approximately 8-12 hours. We then collect data for 2-3 hours per

case at a data rate of 10 samples per second.

A suite of experiments that omit the sidewall insulation has also been made in order to

make qualitative optical characterizations of the flow fields in our experiments. Without

sidewall insulation, it is possible to pass a vertical laser light sheet through the optically

clear sidewalls. By seeding the working fluid with reflective Kalliroscope flakes, we are able

to visualize the pattern of differential shear within the fluid. These patterns are recorded

with the use of a digital camera situated in the laboratory frame.
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8.3.2 Thermal losses model

Not all of the applied heat flux in our experiments is transferred vertically through the fluid

layer. Even with a 10 cm thick layer of insulation, some of the heating power escapes through

the sidewalls of the tank. Our data presented in Figures 8.4 and 8.5 are corrected for thermal

losses using a theoretical model outlined here.

This model assumes conductive, convective and radiative forms of heat loss following

Fourier’s law, q = −k∇T where k is the thermal conductivity. There are two layers of solid

material, the tank sidewall and the insulation. Thus, the conductive components are placed

in series with each other while the convective and radiative components are in parallel with

the outer layer. This gives an overall form of:

Qloss =
Tfluid − Troom

xcond,acrylic + xcond,insul + xconv+rad

, (8.12)

where xcond,acrylic, xcond,insul, xconv represent the non-∆T component for conduction through

acrylic, conduction through insulation, and convection and radiation together.

Each layer has an individual k value and the total conductive heat loss over a single layer

is given by:
Tfluid − Troom

ln(r2/r1)
2πlk

. (8.13)

where r2 is the radius of the outer layer, r1 is the radius of the inner layer, and l is the

thickness of the layer.

The convective heat loss from the outside of the insulation is given by:

NuairkairA/l (Tmid − Troom) , (8.14)

where Tmid is the temperature at the interface of the acrylic and insulation and A is the

total surface area in contact with the air. The Nusselt number estimate for the air, Nuair, is

different for nonrotating and rotating cases. We use a nonrotating estimate from Churchill

and Chu (1975) and a rotating estimate from Kendoush (1996).
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The radiative component is given by:

Qloss,rad = σεA
(
T 4
mid − T 4

room

)
(8.15)

We can combine this with the convective and conductive components to write:

Qloss =
Tfluid − Troom

ln(r2/r1)
2πlkinsul

+ ln(r2/r1)
2πlkacrylic

+ 1
NuairkairA/l+σεA(Tmid+Troom)(T 2

mid+T 2
room)

. (8.16)

This heat loss estimate manifests as a correction to the Nusselt number in the data:

Nucorrected =
(qraw − qloss)L

k∆T
, (8.17)

where qraw is the uncorrected heat flux per unit area of heating and qloss is Qloss per unit

area of heating.

Applying our heat losses model to our data shows that the losses are more significant at

lower heat fluxes and less significant at higher heat fluxes. For example, in the nonrotating

160 cm tank case with 10 W of applied heat flux, about 14% of the power is lost through the

sidewalls. In contrast, in the same tank with 300 W of applied heat flux, only 4% of applied

power is lost through the sidewalls. Taking the data as a whole, the effect of sidewall heat

loss on our Nu-Ra scaling results is minimal: for Rayleigh-Bénard convection, the difference

in best-fit slopes between the raw data and data corrected for losses is less than 2%.

8.3.3 Numerical Simulations

While laboratory experiments enable us to characterize rapidly rotating turbulent convection

at high Rayleigh and low Ekman numbers (5 . Ra/RaC . 60 at E = 10−7), our laboratory

system cannot reach low enough Ra values to investigate the physics between RaC and RaT

for E . 3 × 10−4. Numerical simulations, in contrast, allow us to study the behavior of

rotating convection at the low Ra values inaccessible in the laboratory. The combination

of laboratory and numerical methods provides a complementary characterization of rotating
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convection physics, accessing the full range from weakly supercritical to fully turbulent flows.

The numerical models solve the Boussinesq momentum, energy, and mass conservation

equations in a rotating, Cartesian fluid layer. The top and bottom fluid layer boundaries

are isothermal, rigid and non-slip. The solutions are periodic in the horizontal directions.

Chebyshev polynomials are employed in the vertical direction and Fourier expansions in the

horizontal directions. The vertical resolution is set in order to maintain at least ten grid

points within the Ekman boundary layer. The code has been validated in prior studies by

Stellmach and Hansen (2008) and King et al. (2012).

8.4 Results

Here, we briefly summarize our essential findings. First, we find in RBC experiments that

a Nu-Ra scaling of α = 0.284 describes the heat transfer for Ra . 1010 and a scaling

of α = 0.322 develops at roughly Ra & 1010, corresponding closely to the predicted 1/3

law. In rotating convection experiments, we find a steep heat transfer scaling law in the

region where coherent convection columns exist. By comparing laboratory visualizations

and heat transfer measurements, we show that this steep heat transfer scaling manifests

when convection occurs in the form of axially-invariant columns; when the columns become

unstable to three-dimensional motions, the heat transfer becomes less efficient, trending back

toward the nonrotating scaling. These results indicate that rotating convection columns,

which form the conceptual underpinning for current Earth-like planetary dynamo models,

exist only over a limited range of parameter space.
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8.4.1 Laboratory Flow Visualizations

Figure 8.3 shows Kalliroscope images of shear patterns in an 80 cm high tank of convecting

water for a fixed heating power of 10 W, corresponding to a fixed flux-based Rayleigh number

RaF = RaNu =
γgL4q

ρCpκ2ν
= 4.0× 1012 . (8.18)

In each experiment we test a different rate of rotation, ranging from 60 rpm down to 0 rpm.

As the rotation rate is decreased, we see the organizing effect of Coriolis force weaken and

give way to small-scale turbulence in the bulk fluid. The image in Figure 8.3a, displaying

a snapshot of the cylinder rotating at 60 rpm, shows the columnar convective regime. The

strongly coherent columns extend between the bottom to the top boundary with almost no

variation along the axial direction. Figure 8.3b shows the flow field in a case rotating at 10

rpm (E = 7.5 × 10−7). With this decrease in rotation rate, the columns become wavy and

begin to lose their axial invariance. Figure 8.3c shows the development of 3D, anisotropic

flows. Figure 8.3d and e show 3D turbulence that appears to be isotropic in nature and is

likely unaffected by rotation.

In addition, in Figure 8.3, we estimate the strength of buoyancy effects for each of the five

cases, but normalized in different ways. The first row gives the Rayleigh number normalized

by the value at which bulk convection onsets, Ra/RaC (following (8.8)). The second row

gives the Rayleigh number normalized by the boundary layer transition value, RaT , predicted

in King et al. (2012). The third row gives the system-scale buoyancy force normalized by

the Coriolis force, called the convective Rossby number Roc. The convective Rossby number

can be written as:

Roc =
Buoyancy

Coriolis
=

(
RaE2

Pr

)1/2

(8.19)

where the buoyancy and inertial terms have been set equal, and the inertial term can then be

written in terms of the convective free-fall velocity, Uf ∼
√
γg∆TL. The convective Rossby

number is related to the modified Rayleigh number Ra∗ defined in Christensen (2002) by

RoC = Ra∗2.
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We argue that the case visualized in Figure 8.3c corresponds to the geostrophic turbulence

regime, where flows exhibit small-scale 3D structure at convective Rossby number Roc � 1

(cf. Sprague et al. (2006); Julien et al. (2012b)). The flows in Figure 8.3a, b and c, then, are

in good agreement with the convective Taylor column, plume, and geostrophic turbulence

regimes, respectively, found in asymptotically-reduced rotating convection models of Julien

et al. (2012b) and in direct numerical simulations conducted by Stellmach et al. (2014).

8.4.2 Rayleigh-Bénard Convection

Figure 8.4: Laboratory Rayleigh-Bénard convection (RBC) heat transfer data alongside
earlier data from Rossby (1969); Funfschilling et al. (2005), and King et al. (2012). The
black-bordered yellow star denotes case V shown in Figure 8.3, made at RaF = NuRa =
4× 1012. For our present experiments (4 . Pr . 7) in 80 and 160 cm tall tanks, the best-fit
heat transfer trend is Nu = (0.075 ± 0.005)Ra0.322±0.003, in approximate agreement with
the theoretically predicted Nu ∼ Ra1/3 law of Malkus (1954). At lower Rayleigh number
experiments (4 . Pr . 10) the best-fit trend is Nu = (0.162 ± 0.006)Ra0.284±0.002, in
agreement with the Nu ∼ Ra2/7 law theorized in Shraiman and Siggia (1990) and observed
in other laboratory experiments (e.g. Wu and Libchaber (1992); Chillá et al. (1993); Liu
and Ecke (1997); Glazier et al. (1999)).

Figure 8.4 shows Rayleigh-Bénard convective heat transfer data. The effective buoyancy

force, Ra, is plotted on the x-axis; the resulting convective heat transfer, Nu, is plotted on
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the y-axis. Data from our 80 cm and 160 cm tall tank experiments are shown as purple-

filled circles and diamonds, respectively, and are shown in comparison with data sets from

previous RBC studies of Rossby (1969), Funfschilling et al. (2005), and King et al. (2012).

The dashed green line

Nu = (0.162± 0.006)Ra0.284 ± 0.002 (8.20)

is the best-fit to the Rossby (1969) and King et al. (2012) data in the range 105 < Ra < 1010.

This scaling exponent of α = 0.284 is in good agreement with a 2/7 law.

Beyond Ra = 1010, the data from the 80 cm and 160 cm tanks and Funfschilling et al.

(2005) rise more sharply than the α ' 2/7 green-dashed line. Instead, our 80 cm and 160

cm tank data then give a best-fit scaling law of

Nu = (0.075± 0.005)Ra0.322 ± 0.003 , (8.21)

which is statistically well outside the range of the 2/7 law, and in better agreement with

Malkus (1954) α = 1/3 law. This scaling is robust over several decades, from Ra ∼ 1010 to

1013. Thus, we argue that the α = 1/3 law is affirmed in our laboratory RBC experiments.

8.4.3 Rotating Convection

Figure 8.5 shows rotating convection heat transfer data from our current laboratory and

numerical experiments as well as the laboratory data from Rossby (1969) and the laboratory-

numerical data from King et al. (2012). The color coding denotes the Ekman number used

in each experiment. Filled-in symbols indicate laboratory experiments, and open symbols

indicate numerical simulations. The data show that, at each given rotation rate, convection

onsets at different Rayleigh numbers, in good agreement with the prediction for the onset of

convection in a rotating fluid layer (8.8). Once convection onsets, Nu increases more steeply

with Ra than in non-rotating convection experiments (we refer to this steeper slope as β).

However, at high enough Ra, the rotating heat transfer data conforms to the non-rotating

2/7 scaling trend.
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Figure 8.5: Laboratory (Pr ' 7) and numerical (Pr = 7) rotating convection heat transfer
data from the present study, Rossby (1969) and King et al. (2012). The black-bordered
yellow stars denote cases I-IV shown in Figure 8.3, made at fixed RaF = NuRa = 4× 1012.
This RaF value is denoted by the grey dashed line behind the stars. Critical Rayleigh number
values from Table 8.5 are plotted as colored stars along the x-axis. The best-fit heat transfer
trend of Nu ' (Ra/RaC)3.6 is plotted for E ∼ 10−7. For comparison, Nu = (Ra/RaC)3

(King et al. (2012)) is plotted for E ∼ 10−5 and Nu = (Ra/RaC)6/5 (King et al. (2009,
2010)) for E ∼ 10−3. Note that with each study at lower E, the scaling exponent becomes
larger. This implies that the behavior of rotating convection is not yet asymptotic in the
presently accessible range of Nu-Ra-E space.

Thus, RBC scalings provide the effective upper bounds for heat transfer in rotating

convection systems. The RBC heat transfer data acts as a ceiling, which the rotating heat

transfer data either meets or falls beneath. There is a slight overshoot of rotating heat

transfer beyond the RBC scalings for Ra & RaT (cf. Niiler and Bisshop (1965); Julien et al.

(1996); Kunnen et al. (2008)). However, this effect is strong only at relatively high E. In

fact, our data shows that the overshoot becomes small for E . 10−5. The slope of the steep

scaling regime changes as a function of E. At the highest E values (E ' 10−3), the data

conform to a β ' 6/5 law (Christensen (2002); Aurnou (2007); Schmitz and Tilgner (2009);

King et al. (2009, 2010). At lower E values in the vicinity of 10−5, the data fit a steeper,

roughly cubic scaling law in agreement with King et al. (2012). However, for even more
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Table 8.1: Critical Rayleigh number estimates for no-slip boundaries, following Chan-
drasekhar (1961), § 27 (b).

E RaC
10−3 7.159× 104

10−4 1.544× 106

10−5 3.482× 107

10−6 7.825× 108

10−7 1.741× 1010

rapidly rotating cases, with data lying in the range 1010 . Ra . 1011, the best-fit trend to

the predominantly numerical E = 10−7 data is:

Nu = (0.71± 0.09)(Ra/RaC)3.56 ± 0.08 . (8.22)

Here, RaC is estimated following Chandrasekhar (1961) (see Table 8.1). This β ' 3.6 trend

is significantly steeper than any previous rotating convection experiments, exceeding even

the cubic heat transfer scaling of King et al. (2012). Although we have carried out a limited

number of numerical simulations in this low E, steep scaling regime, the best-fit trend is

statistically distinct from a cubic law. Julien et al. (2012a) argue that the β = 3 law is among

a family of plausible solutions for rapidly-rotating convection, found to contain marginally

unstable thermal boundary layers. However, our β = 3.6 result implies that the marginal

rotating boundary layer mechanism put forth in King et al. (2012) does not control the

convective heat transfer at very low E. Clearly, though, the robustness of this β ' 3.6

trend must be confirmed with more Ra � RaT data (see data Tables 8.4 and 8.5 in the

Appendix). Figure 8.6 shows the best-fit values for β as a function of the inverse Ekman

number. Data points below Nu = 1.3 are not considered in these fits, as they correspond to

a shallower Nu-Ra near onset (e.g. Julien et al. (2012a)). For the steep scaling regime, we

find that β monotonically increases with decreasing E, with a roughly linear trend between

log(E) and β. This suggests that in the presence of no-slip boundaries the heat transfer

scaling will continue to steepen as E is further decreased towards geophysically realistic

values (cf. Grooms and Whitehead (2015)). Our heat transfer measurements show that no

clear asymptotic behavior has been found in the rapidly rotating, steep scaling regime.
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Figure 8.6: Heat transfer scaling exponents as a function of Ekman number. a) Solid lines
show the best-fit Nu ∼ Raβ trends to combined laboratory and numerical datasets at E =
10−3, 10−4, 10−5, 10−6 and 10−7 in the steep heat transfer scaling regime. Data points used
in the fits are selected to lie above Nu = 1.3, represented by the grey dashed line, and below
the RBC trend of Nu = 0.16Ra0.284, represented by the green dashed line. Symbols are as
defined in Figure 8.5. b) Plot of β versus inverse E from the fits shown in panel a). No clear
asymptotic scaling behavior has been found in our experiments: the values of β continually
increases as a function of E−1 (cf. Julien et al. (2012a); Grooms and Whitehead (2015)).
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In rotating convection experiments, we find a shallow RBC-style heat transfer scaling

(independent of E) with α ' 2/7 at our highest Ra values (cf. Liu and Ecke (1997)). In

contrast, we find an α ' 1/3 scaling in the RBC experiments for Ra & 1010. We postulate

that this high Ra rotating 2/7 scaling is a byproduct of finite centrifugation effects in our

present laboratory set-up. In our 80 cm tank experiments, the Froude number, which is the

ratio of centrifugal force and laboratory gravity, Fr = Ω2r/g, is approximately 0.4 in the

E ' 10−7 experiments. The strong centrifugal buoyancy in these cases likely drives a mean

meridional circulation across the tank boundaries (e.g. Marques et al. (2007)) which we argue

modifies the heat transfer to a 2/7 scaling, in accordance with the arguments of Shraiman

and Siggia (1990). To test this hypothesis, we doubled the height of the tank (160 cm) while

fixing the Ekman number (E ' 10−7), which decreases the strength of centrifugation by a

factor of 16. This yields a Froude number of 0.025. In Figure 8.5, we show that the highest

Ra data in the 160 cm tank have higher Nu values that appear to be trending toward a 1/3

law. The effects of centrifugation will be studied in detail in a following suite of experiments.

In our rotating convection experiments, the RBC scaling—in particular, the 2/7 law—is

observed to form the upper bound for heat transfer. Thus, the RBC and rotating convection

(RC) scaling behaviors are deeply connected; knowledge of the RBC scalings is pertinent

to our understanding of both systems. We hypothesize then that rotating convection and

dynamo studies, carried out at sufficiently extreme parameter values, will also be able to

access theoretically-predicted regimes of behavior (e.g. Soderlund et al. (2012). In particular,

asymptotically-reduced rotating convection models by Julien et al. (2012b) predict distinct

heat transfer scalings corresponding to each of the regimes visualized in Figure 8.3b-d. In our

E ≥ 3× 10−8 data, we can unambiguously detect a steep and a shallow Nu-Ra scaling, but

even lower values of E are required to differentiate the independent scalings for intermediate

regimes (cf. Ecke and Niemela (2014)).
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8.5 Comparing Regime Transition Hypotheses

Our rotating convective heat transfer data shows a clear transition from a steep scaling regime

near the onset of convection to a shallower heat transfer scaling at strongly supercritical

Rayleigh numbers. The data appears to deviate away from the steep scaling law near to

where rotating convection columns lose their strong axial coherence. This is relevant to

our understanding of present-day (E ∼ 10−4) planetary dynamo models because Earth-like

dipolar dynamo action has been shown to fail in the vicinity of the heat transfer transition

in these models (King et al. (2012)), where rotating convection columns also lose their axial

coherency (Soderlund et al. (2012)). Thus, we hypothesize that the heat transfer transition

in our extreme rotating convection data will provide a proxy for behavioral transitions in

more extreme dynamo models.

The transition Rayleigh number, RaT , is defined empirically here to be the intersection

between the steep heat transfer scaling Nu = (Ra/RaC)β, and the shallow, RBC-style scaling

Nu = c1Ra
α. Setting these heat transfer trends equal and using (8.8) yields:

RaT = c
1/(β−α)
1 Ra

β/(β−α)
C = c

1/(β−α)
1 c

β/(β−α)
2 E4β/3(α−β) . (8.23)

The supercriticality at which this transition occurs can then be written as:

RaT
RaC

= c
1/(β−α)
1 c

α/(β−α)
2 E4α/3(α−β) . (8.24)

By applying (8.23) to the best-fit scaling laws (8.21) and (8.22), we find:

RaT = (5.4± 0.1)E−1.466 ± 0.005 . (8.25)

The steep heat transfer scaling exponent β = 3.6 differs from a cubic law by about 16%.

However, the exponent in RaT differs from (8.11) by only about 2%. This small 2% difference
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Figure 8.7: Test of the heat transfer transition argument based on our most extreme data.
Data are from laboratory (Pr ' 7) and numerical (Pr = 7) rotating convection experiments
with E ≤ 10−4. Symbols are as defined in Figure 8.5. The y-axis is the nondimensional heat
transfer normalized by the nonrotating scaling Nu/Nu0, where Nu0 = 0.16Ra0.284 (8.20).
The x-axis is the Rayleigh number normalized by the transition value RaT . This transition
is empirically defined here as the intersection between the nonrotating heat transfer trend,
Nu = 0.075Ra0.32, and the rapidly rotating trend, Nu = 0.71 (Ra/RaC)3.6, and occurs at
RaT = 5.4E−1.47 (8.25). The data from Figure 8.3 have been included as black-bordered
yellow stars in the collapse. These demonstrate that only the 60 rpm case (I) with coherent
axial columns is found to plot within the steep heat transfer scaling regime.

arises because of the limited range between RaC and RaT :

RaT
RaC

= 144E−0.14 ∼ E−1/7 (8.26)

at E = 10−7. At presently accessible Ekman numbers, the β = 3.6 slope and the cubic slope

correspond to very similar intersections with the RBC trend. The weak E−1/7 dependence in

(8.26) also implies that the steep scaling regime occupies a limited range of parameter space

even when extrapolated to planetary conditions. In Figure 8.7, we collapse the laboratory-

numerical data from the present study and King et al. (2012) using the best-fit scaling for
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the majority of the nonrotating data, (8.20), to compensate the Nusselt number data on the

y-axis and using our best-fit transition scaling (8.25) to compensate the Rayleigh number

on the x-axis. The mean Prandtl number in laboratory cases is 6.8 and the numerical

cases employ a Prandtl number of 7. The black-bordered yellow stars correspond to the

visualization cases shown in Figure 8.3. The locations of the black-bordered yellow stars

demonstrate that columnar flows are associated solely with the steep heat transfer scaling:

only the E = 1.2× 10−7 visualization case (I) has a Rayleigh number value that is less than

RaT . This shows, in our Pr ' 7 experiments, that the efficiency of heat transfer greatly

lessens and transitions over to the RBC scaling trend once convection columns lose their

axial coherency.

In Figure 8.8, we test the ability of a number of mechanistic (non-empirical) rotating

convection transition hypotheses available in the literature to collapse our heat transfer

data. In panel 8.8a, the x-axis is normalized by the convective Rossby number (8.19). It

has been argued that the convection regime dominated by rotation extends from the onset

of rotating convection at RaC near to where the convective Rossby number is of order unity,

Roc . 1 (e.g. Gilman (1977); Aurnou (2007); Zhong and Ahlers (2010); Gastine et al. (2013);

Stevens et al. (2013); Gastine et al. (2014)). This predicts that the steep heat transfer scaling

regime will extend over the range RaC . Ra . E−2Pr. This Rayleigh number range has a

width of ∼ E−2/3Pr. However, Figure 8.8a shows that the Roc normalization greatly spreads

our heat transfer data and, therefore, does not correctly define the transition. Our results

from Figure 8.7 instead imply that the steep scaling regime – where we find that columns

are stable – is a factor of ∼ E3/5 narrower than the Roc ∼ 1 prediction.

It should be noted, however, that Roc ∼ 1 does provide an adequate transition prediction

for zonal flow behavior in rotating spherical shells because these flows occur on the system’s

global scale (e.g. Aurnou (2007); Gastine et al. (2013, 2014)). However, in our rotating

convection experiments, in which convective heat transfer is controlled by distinctly smaller

scale motions, the data are not well-collapsed by this system-scale parameter. Figure 8.8b

shows a test of the local convective Rossby number, Ro`. This parameter has been proposed

in a number of previous dynamo studies (e.g. Sreenivasan and Jones (2006b); Christensen
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Figure 8.8: Tests of various heat transfer transition arguments. Data are from laboratory
(Pr ' 7) and numerical (Pr = 7) rotating convection experiments with E ≤ 10−4. Symbols
are as defined in Figure 8.5. The nondimensional heat transfer, normalized by the weakly
rotating trend Nu0 = 0.16Ra0.284, is plotted against several proposed transition parameters.
a) Convective Rossby transition, RoC = (RaE2/Pr)1/2. b) Local Rossby transition (e.g.

Sreenivasan and Jones (2006b)) estimated using heat transfer parameters, R̃o` = c−1
3 R̃eE2/3

based upon the velocity scaling from King et al. (2013) (see text for details). The inset
figure tests a different estimate for local Rossby, Ro∗` = (γg∆T )/(ΩL1/2), where the free-fall
velocity scaling is assumed. c) Boundary layer crossing transition proposed by King et al.
(2009), RaE7/4. d) Boundary layer crossing transition proposed by King et al. (2012).
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and Aubert (2006)) to control the transition between dipolar and multipolar magnetic field

generation, with a critical value of Ro` ' 0.1. Here we write Ro` as

Ro` =
U

2Ω`
=
UL

ν

ν

2ΩL2

L

`
= ReE

L

`
(8.27)

where the Reynolds number, Re, is defined as:

Re =
Inertia

Viscosity
=
UL

ν
(8.28)

We cannot directly measure velocities in our laboratory experiments. In order, then, to

express the local Rossby number in terms of our heat transfer data, we must make two

assumptions. First, we replace L/` with (c3E
1/3)−1 using (8.9), an approximation relevant

to present-day dynamo studies following the arguments of King and Buffett (2013). Second,

we give an approximate value of the Reynolds number, R̃e, using the visco-Archimedean-

Coriolis (VAC) second-order balance arguments in King et al. (2013):

R̃e =
c3(Nu− 1)1/2Ra1/2E1/3

Pr
. (8.29)

Substituting R̃e into (8.27), gives

R̃o` = c−1
3 R̃eE2/3 . (8.30)

We find that the Ro` parametrization adequately collapses our Pr ' 7 heat transfer data.

The inset in Figure 8.8b tests another estimate for the local Rossby number, Ro∗` =

(γg∆T )/(ΩL1/2), based on the free-fall velocity Uf . This estimate does not collapse the data

as well as the Ro` estimate derived from the VAC balance arguments presented in (8.29) and

(8.30).

In Figure 8.8c, we test the transition arguments of King et al. (2009), which rely on

the empirical Nu ∼ (Ra/RaC)6/5 steep scaling regime and the Nu ∼ Ra2/7 shallow scaling

regime. The resulting transition scaling, RaT ∼ E−7/4, does not strongly collapse our present,
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lower E heat transfer data. However, the essential concept posited in King et al. (2009) –that

boundary layer processes underly the heat transfer transition – are not refuted (Niemela and

Sreenivasan (2006); Cébron et al. (2010b); Julien et al. (2012a)).

Figures 8.8d tests the RaT ∼ E−3/2 transition argument from King et al. (2012). This

transition parametrization collapses the data comparably well to that of Figure 8.7. This

agreement is expected since the present best-fit transition scaling and King et al.’s transition

scaling differ only by a factor of ∼ E1/50.

In sum, there is great variance in the mechanistic arguments which seek to parameterize

the behavioral regimes of rotating convective heat transfer, implying that our understanding

of this system is still far from complete. Thus, further data sets that extend well below

E = 10−7 are needed to determine an unambiguous, asymptotically robust, mechanistic

transition argument that may be extrapolated to planetary conditions with confidence.

8.6 Extrapolation to Planetary Core Settings

Our mixed heat transfer-visualization data, shown in Figure 8.7, forms the basis of our as-

sumption that axially-coherent columns exist in rotating convection over the range RaC <

Ra < RaT . Figure 8.9 graphically represents this by plotting RaT/RaC as a function of

inverse E for various transition scalings. Table 8.2 lists values of RaT and RaT/RaC extrap-

olated to E = 10−15. The classical transition estimate of Roc ∼ 1 suggests that convection

columns will be stable over 8 orders of magnitude in Ra. However, this scaling fails to

meaningfully collapse the available data, as shown in Figure 8.8. Our present results and

other recent studies all estimate significantly smaller RaC < Ra < RaT ranges under which

columns will be stable in the core. The RaT/RaC estimates in Table 8.2 show that, irrespec-

tive of the convection column breakdown mechanism, it is likely that traditional columns are

unstable in core-like environments. Figure 8.10 displays, in the lower left-hand corner, all

the rotating convection data from Figure 8.5. On the right side of the figure, we extrapolate

our most extreme, steep heat transfer scaling, β = 3.6, from E = 10−7 to the typical estimate

for the Ekman number in the Earth’s core, E = 10−15. Here, we do not consider magnetic
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Figure 8.9: Estimated values of RaT/RaC for E ranging from 10−3 to 10−15. These values
approximate the range, RaC < Ra < RaT , over which different models predict the existence
of axially coherent convection columns. For E & 10−6, the King et al. (2012) transition of
RaT ∼ E−3/2 is nearly indistinguishable from the present fit of RaT ∼ E−1.47. The light
blue curve is terminated above E = 10−6 because the asymptotic model from Julien et al.
(2012a) is valid in the limit of low E. In calculating the Roc ∼ 1 and R̃o` ∼ 1 curves, we
assume Pr = 10−1 (see Table 8.3).

Table 8.2: Estimates under Earth-like conditions (E = 10−15; Pr = 10−1) for the transition
Rayleigh number (RaT ) at which columns become unstable as well as the predicted range of
column stability (RaT/RaC).

Transition Argument Reference RaT RaT/RaC
Roc ∼ 1 Gilman (1977) ∼ 1029 ∼ 108

R̃o` ∼ 1 Sreenivasan and Jones (2006b) ∼ 1025 ∼ 104

RaE8/5 ∼ 1 Julien et al. (2012a) ∼ 1024 ' 1100
RaE3/2 ∼ 1 King et al. (2012) ∼ 1023 ' 120
RaE1.47 ∼ 1 Present study ∼ 1023 ' 60
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Figure 8.10: Comparison between laboratory-numerical heat transfer data (predominantly
at Pr ' 7) and estimated ranges of heat transfer parameters in Earth’s core (Pr ' 10−1

to 10−2). In the lower left hand corner of this figure, we plot all our Nu-Ra data as well
as the best-fit trends discussed in Figures 8.4 and 8.5. Here, we show the Nu ∼ Ra1/3 and
Nu ∼ Ra1/2 scalings for Ra & 1013 since centrifugal effects are not relevant in the core. The
range of accessible Nu-Ra space for convection in Earth’s core is denoted by the diagonal
grey stripe on the figure’s right side. The bounds on this diagonal stripe are defined by
the maximum and minimum possible values of the superadiabatic flux Rayleigh number in
Earth’s core, 6 × 1027 . RaF . 3 × 1032 (see text for details). Extrapolating our lowest
available Ekman number results to core conditions, we find that our heat transfer scalings
(thick dashed lines) intersect core Nu-Ra estimates predominantly in the vicinity of and
beyond the transition Rayleigh number, RaT . Since columnar convection breaks down near
RaT , we hypothesize that local-scale columnar convection structures are not likely to exist
in Earth’s core.

field effects, geometrical effects and differences in fluid Pr values. We also extrapolate our

best-fit RBC scaling law, Nu = 0.075Ra0.322, to represent an upper bound for the rapidly ro-

tating regime at planetary conditions. Another RBC scaling that may apply at such extreme

Nu-Ra values is the Nu = c4Ra
1/2 law (Kraichnan (1962)), where c4 is an undetermined

prefactor. Here we suppose that the 1/2 law branches off from the 1/3 law at Ra & 1017

(cf. Niemela et al. (2000)), giving c4 = 1.1 × 10−4. From (8.24), columnar convection is

estimated to be stable for RaT1 . 60RaC using the α = 1/3 RBC law and RaT2 . 150RaC

using the α = 1/2 RBC law.
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Figure 8.10 shows both of these transition estimates in the context of Nu-Ra approxima-

tions for the Earth’s core. The values of RaT/RaC presented here may represent an upper

bound on the extent of the columnar regime. First, the slope of the rapidly rotating regime

continues to steepen with decreasing Ekman number for our available data (see Figure 8.6).

If this trend continues, then the columnar regime is stable for an even smaller region than

indicated on Figure 8.10. Second, the E → 0 models of Julien et al. (2012a,b) show that

columnar convection can break down into geostrophic turbulence well before the intersection

of the steep scaling trend with the RBC trend, further implying a limited range of stability

for columns.

Although experimental studies utilize Ra and Nu to characterize rotating convection sys-

tems, these quantities are nearly impossible to accurately determine in Earth’s core. Typical

estimates of the core Rayleigh number range between 1020 . Ra . 1030 (e.g. Gubbins

(2001); Kono and Roberts (2002); Aurnou et al. (2003); Schubert and Soderlund (2011);

Roberts and King (2013)). However, some estimates are as low as 1015 (Roberts and Aurnou

(2012)) while others are as high as 1038 (Gubbins (2001)). The (superadiabatic) Nusselt

number in the core is also very poorly constrained. In contrast, the flux Rayleigh number,

RaF = RaNu =
γgL4qsa
kκν

, (8.31)

can be directly estimated in Earth’s core, because it depends only on physical and chemical

properties and the superadiabatic heat flux from the core, qsa. These values can, in turn, be

estimated based on observable quantities. A broad range of upper and lower bound estimates

for each of these quantities are given in Table 8.3.
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The associated range of RaF is far more tightly constrained than estimates of Ra in

Earth’s core: 6 × 1027 . RaF . 3 × 1032. This RaF range is shown as the diagonal grey

stripe on the figure’s right side in Figure 8.10. Using only the recent thermal conductivity

estimate from Pozzo et al. (2012) would yield a slightly lower upper bounding value for RaF

of 2×1031. The dashed line connecting RaC ' 1021 to RaT1 ' 6×1022 and RaT2 ' 1.5×1023

is the extrapolation of our laboratory-numerical findings to Earth’s core parameters. We find

that our heat transfer extrapolations predominantly intersect core RaF estimates such that

Ra & RaT , suggesting that rotating convective flows in the core will not be columnar and

are instead likely to be comprised of more complex motions.

8.7 Discussion

The results of our suite of laboratory-numerical Rayleigh-Bénard and rotating convection

experiments show the overarching behaviors of Boussinesq convection in right cylindrical

tanks (laboratory) and in doubly-periodic Cartesian domains (numerical).

We find that Rayleigh-Bénard convection physics is essential to our understanding of

rotating convection systems. At low Ekman numbers, as are relevant to planets and stars,

the RBC trend provides the upper bound for heat transfer in our rotating convection ex-

periments. In addition, at high Ra, our results show that the RBC heat transfer follows

predictions from turbulent convection theory (e.g. Malkus (1954); Ahlers et al. (2009)) pro-

viding an important tie between RBC and the behavioral regimes of rotating convection and

convection-driven dynamo systems.

Our experiments show that rotating convection columns carry heat with great efficiency.

In particular, our Pr ' 7, E ' 10−7 data provides a heat transfer scaling exponent of

β ' 3.6, which exceeds even the cubic predictions of King et al. (2012). Furthermore, Figure

8.6 yields an ever-steepening β value as Ekman is decreased, suggesting that the convection

physics of rapidly rotating systems has not yet been fully described. An open question

remains whether, and to what extent, the scaling exponent in the steep scaling regime will

continue to steepen with decreasing E (cf. Grooms and Whitehead (2015); Stellmach et al.
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(2014)).

The question also remains how the change in heat transfer scalings and the breakdown

in coherent columns are mechanistically connected. For instance, do boundary layer nesting

phenomena break the columns or vice versa? Further, does the steep heat transfer scaling

break down due to the boundary layer physics (e.g. King et al. (2012)) or due to changes in

the interior flow patterns (e.g. Julien et al. (2012a))?

Our present study only considers the hydrodynamic behavior of core-style convection.

Theoretical studies predict that the presence of magnetic fields will destabilize columnar

convective flows (Chandrasekhar (1961); Eltayeb and Roberts (1970); Roberts and King

(2013)). In that case, our present hydrodynamic results may provide an upper bound on the

stability range of local-scale columns. However, it still remains to be directly determined

how strong magnetic fields affect the heat transfer and stability of high Ra flows in low E,

low Pr core settings (cf. Aurnou and Olson (2001); Jones et al. (2003); Gillet et al. (2007)).

In spherical shell geometries, low latitude convection columns (outside the tangent cylin-

der) substantively differ from columnar flows at high latitudes (as simulated in our cylindrical

and Cartesian experiments) (e.g. Busse and Cuong (1977); Calkins et al. (2013)). While

specific heat transfer scalings will likely differ at lower latitudes, we predict the same funda-

mental physical behaviors as found here: a regime of steep convective heat transfer affiliated

with the existence of coherent, axial columns that merges with the RBC heat transfer trend

at high Ra, where rotating fluid motions lose their axial coherency. The specific differences

between high and low latitude rotating convection behaviors provide an open topic for future

research.

Our combination of laboratory-numerical and theoretical models affords a novel view of

rapidly-rotating (non-magnetic) convection as planetary conditions are approached. As the

Ekman number is decreased through larger-scale laboratory experiments and better-resolved

computations, the parameter space in which coherent convection columns exist is found to

dwindle. Because columns exist only in a limited range of Ra before they break down,

coherent columns as found in present-day models may not be stable at core conditions.
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We hypothesize, then, that large-scale flow structures in planetary cores, such as system-

scale columns, are not a direct result of rotating convection. Instead, we hypothesize that

convection occurs in the form of 3D geostrophic turbulence on smaller scales, whose energy

then cascades upwards to larger-scale quasi-2D flows (e.g. Mininni and Pouquet (2010);

Käpylä et al. (2011); Chan and Mayr (2013); Favier et al. (2014b); Guervilly et al. (2014);

Nataf and Schaeffer (2015); Rubio et al. (2014); Stellmach et al. (2014)), which are capable

of efficiently generating observable magnetic fields. Ultimately, our findings suggest the

need to revise current planetary dynamo models to include the effects of multi-scale rotating

convection dynamics and to determine how such flows produce planetary dynamo action.

8.8 Data

Table 8.4: Laboratory convection data. Here, τ denotes the averaging time in thermal
diffusion time scale units L2/κ. Note that τ � 1 in all our experiments. However, the time
series data have reached a statistical steady state prior to the start of data acquisition in all
the cases. Before acquisition, each case is allowed to equilibrate for approximately 12 hours
until the variation in mean temperature is less than 1%. Data is then acquired for at least
2 hours per case (see Section 8.3.1).

height (m) rpm Power (W) Mean T (oC) ∆T (oC) Pr E Ra Nu τ̄
0.798 0 9.58 23.31 2.88 6.338 ∞ 2.626× 1010 166.85 2.25× 10−3

0.798 0 9.83 23.12 2.60 6.370 ∞ 2.341× 1010 166.89 1.31× 10−3

0.798 0 14.87 23.52 3.82 6.301 ∞ 3.529× 1010 176.49 2.29× 10−3

0.798 0 19.72 24.39 4.56 6.159 ∞ 4.430× 1010 193.42 8.72× 10−4

0.798 0 30.05 23.14 6.49 6.365 ∞ 5.851× 1010 210.89 1.44× 10−3

0.798 0 39.18 22.81 7.76 6.422 ∞ 6.847× 1010 230.07 1.51× 10−3

0.798 0 49.42 22.87 9.32 6.412 ∞ 8.260× 1010 242.17 1.66× 10−3

0.798 0 69.10 23.60 11.75 6.288 ∞ 1.090× 1011 264.23 1.70× 10−3

0.798 0 98.52 24.57 14.90 6.129 ∞ 1.464× 1011 294.33 2.07× 10−3

0.798 0 149.26 23.15 21.17 6.365 ∞ 1.908× 1011 316.30 1.04× 10−3

0.798 0 197.37 26.12 24.60 5.889 ∞ 2.639× 1011 353.37 1.54× 10−3

0.798 0 244.96 26.30 29.11 5.861 ∞ 3.155× 1011 374.03 1.71× 10−3

0.798 0 294.56 28.60 31.94 5.531 ∞ 3.905× 1011 401.58 1.20× 10−3

0.798 0 341.22 31.01 35.02 5.214 ∞ 4.807× 1011 424.39 1.64× 10−3

0.798 0 394.31 33.40 37.72 4.926 ∞ 5.757× 1011 448.27 1.17× 10−3

0.798 0 495.68 39.41 41.57 4.299 ∞ 8.047× 1011 503.15 1.77× 10−3

0.798 0 495.56 39.42 41.58 4.298 ∞ 8.053× 1011 503.19 1.61× 10−3

0.798 0 543.07 41.51 43.61 4.108 ∞ 9.100× 1011 520.14 1.87× 10−3

0.798 2 14.70 23.47 3.24 6.311 3.43× 10−6 2.976× 1010 200.34 1.91× 10−3

0.798 2 19.76 23.92 3.95 6.235 3.39× 10−6 3.739× 1010 210.25 1.74× 10−3

0.798 2 29.41 25.01 5.58 6.060 3.31× 10−6 5.628× 1010 233.18 1.58× 10−3

0.798 2 49.60 24.13 8.78 6.201 3.37× 10−6 8.405× 1010 253.79 1.52× 10−3

0.798 2 68.94 24.01 11.52 6.221 3.38× 10−6 1.095× 1011 269.80 1.43× 10−3

0.798 2 99.61 23.81 15.54 6.254 3.40× 10−6 1.459× 1011 287.72 1.74× 10−3

0.798 2 149.13 23.34 20.07 6.332 3.44× 10−6 1.831× 1011 331.53 1.41× 10−3

0.798 2 248.44 26.96 28.07 5.764 3.16× 10−6 3.152× 1011 386.23 1.89× 10−3

0.798 2 493.03 39.39 41.63 4.301 2.44× 10−6 8.053× 1011 499.11 1.88× 10−3
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height (m) rpm Power (W) Mean T (oC) ∆T (oC) Pr E Ra Nu τ̄
0.798 2 543.30 41.59 43.86 4.101 2.34× 10−6 9.178× 1011 516.85 1.90× 10−3

0.798 2 495.68 39.41 41.57 4.299 2.44× 10−6 8.047× 1011 503.15 1.87× 10−3

0.798 60 9.80 24.95 6.19 6.069 1.10× 10−7 6.215× 1010 69.62 1.41× 10−3

0.798 60 20.09 26.77 8.66 5.792 1.06× 10−7 9.629× 1010 105.48 1.92× 10−3

0.798 60 49.76 24.16 13.79 6.197 1.12× 10−7 1.322× 1011 163.69 1.30× 10−3

0.798 60 69.74 24.78 16.41 6.096 1.11× 10−7 1.633× 1011 190.77 1.93× 10−3

0.798 60 98.31 26.25 19.95 5.868 1.07× 10−7 2.157× 1011 220.40 1.93× 10−3

0.798 60 147.93 25.27 26.04 6.018 1.10× 10−7 2.666× 1011 254.53 1.79× 10−3

0.798 60 201.56 28.36 31.47 5.565 1.02× 10−7 3.801× 1011 284.21 1.79× 10−3

0.798 60 244.13 29.41 35.80 5.421 9.99× 10−8 4.556× 1011 301.29 1.79× 10−3

0.798 60 297.83 32.56 39.86 5.024 9.34× 10−8 5.868× 1011 325.33 1.80× 10−3

0.798 60 491.88 42.77 52.19 4.000 7.64× 10−8 1.137× 1012 395.55 1.80× 10−3

0.798 60 347.30 38.06 41.70 4.429 8.36× 10−8 7.677× 1011 350.05 1.80× 10−3

0.798 60 394.65 40.79 44.51 4.172 7.93× 10−8 9.056× 1011 369.48 1.79× 10−3

0.798 60 544.15 46.43 53.95 3.708 7.14× 10−8 1.326× 1012 416.00 1.77× 10−3

0.798 60 544.12 46.47 54.07 3.705 7.13× 10−8 1.330× 1012 414.93 1.58× 10−3

0.798 60 597.12 48.42 55.80 3.563 6.89× 10−8 1.459× 1012 438.69 1.61× 10−3

0.798 60 597.11 48.52 56.16 3.556 6.88× 10−8 1.473× 1012 435.82 1.63× 10−3

1.595 0 29.56 24.71 5.92 6.107 ∞ 4.689× 1011 406.83 4.54× 10−4

1.595 0 49.74 23.88 9.18 6.241 ∞ 6.913× 1011 466.58 3.20× 10−4

1.595 0 70.12 23.80 11.91 6.255 ∞ 8.930× 1011 544.63 4.52× 10−4

1.595 0 98.01 23.56 15.68 6.295 ∞ 1.158× 1012 598.38 4.52× 10−4

1.595 0 98.12 23.53 15.68 6.301 ∞ 1.155× 1012 597.24 4.51× 10−4

1.595 0 149.08 23.66 21.25 6.278 ∞ 1.579× 1012 654.58 4.52× 10−4

1.595 0 149.18 23.66 21.31 6.279 ∞ 1.583× 1012 647.18 4.51× 10−4

1.595 0 198.79 24.53 26.16 6.136 ∞ 2.048× 1012 693.79 4.54× 10−4

1.595 0 198.82 24.37 26.36 6.163 ∞ 2.044× 1012 689.03 4.52× 10−4

1.595 0 248.39 27.33 29.61 5.710 ∞ 2.708× 1012 753.64 4.57× 10−4

1.595 0 247.77 27.24 29.54 5.723 ∞ 2.689× 1012 747.77 4.55× 10−4

1.595 0 299.24 30.14 32.77 5.326 ∞ 3.448× 1012 794.43 4.61× 10−4

1.595 0 299.26 29.97 32.91 5.347 ∞ 3.435× 1012 790.69 4.60× 10−4

1.595 0 299.30 29.91 32.91 5.355 ∞ 3.425× 1012 790.40 4.59× 10−4

1.595 0 346.29 32.48 35.27 5.034 ∞ 4.130× 1012 848.01 4.65× 10−4

1.595 0 346.28 32.47 35.23 5.035 ∞ 4.125× 1012 847.02 4.64× 10−4

1.595 0 397.08 35.17 38.35 4.727 ∞ 5.033× 1012 884.01 4.69× 10−4

1.595 0 396.82 35.17 38.28 4.728 ∞ 5.023× 1012 885.88 4.26× 10−4

1.595 0 495.21 39.79 43.07 4.264 ∞ 6.749× 1012 969.87 4.73× 10−4

1.595 0 495.15 39.87 43.20 4.256 ∞ 6.789× 1012 965.78 3.83× 10−4

1.595 15 9.98 23.27 3.79 6.344 1.15× 10−7 2.750× 1011 250.91 2.92× 10−4

1.595 15 19.61 24.30 5.46 6.174 1.12× 10−7 4.215× 1011 298.44 4.53× 10−4

1.595 15 19.62 24.28 5.43 6.177 1.12× 10−7 4.188× 1011 288.29 4.54× 10−4

1.595 15 19.62 24.23 5.34 6.185 1.12× 10−7 4.107× 1011 290.43 4.53× 10−4

1.595 15 19.64 24.25 5.37 6.182 1.12× 10−7 4.134× 1011 289.31 1.67× 10−4

1.595 15 29.87 25.20 6.86 6.031 1.10× 10−7 5.578× 1011 355.63 4.55× 10−4

1.595 15 50.04 24.39 10.15 6.159 1.12× 10−7 7.879× 1011 433.43 4.51× 10−4

1.595 15 98.90 24.04 16.96 6.216 1.13× 10−7 1.290× 1012 529.05 4.51× 10−4

1.595 15 150.02 24.46 23.17 6.148 1.12× 10−7 1.806× 1012 581.76 4.54× 10−4

1.595 15 199.44 25.78 28.82 5.940 1.08× 10−7 2.424× 1012 628.86 4.55× 10−4

1.595 15 249.44 28.55 32.39 5.538 1.02× 10−7 3.154× 1012 669.95 4.59× 10−4

1.595 15 249.22 28.59 32.41 5.533 1.02× 10−7 3.162× 1012 671.16 4.57× 10−4

1.595 15 296.54 31.46 35.83 5.157 9.57× 10−8 4.009× 1012 713.01 4.63× 10−4

1.595 15 393.91 36.72 41.65 4.564 8.59× 10−8 5.816× 1012 792.88 4.68× 10−4

1.595 15 481.66 40.87 45.97 4.165 7.93× 10−8 7.489× 1012 868.14 4.73× 10−4

1.595 60 9.88 24.89 6.94 6.079 2.77× 10−8 5.545× 1011 142.27 4.56× 10−4

1.595 60 20.54 26.13 9.09 5.888 2.69× 10−8 7.792× 1011 189.83 2.37× 10−4

1.595 60 29.55 26.82 10.33 5.784 2.65× 10−8 9.201× 1011 233.33 4.41× 10−4

1.595 60 49.54 26.87 15.27 5.777 2.65× 10−8 1.362× 1012 279.36 1.66× 10−4

1.595 60 68.79 27.18 18.93 5.732 2.63× 10−8 1.717× 1012 312.75 2.27× 10−4

1.595 60 148.93 28.27 31.03 5.577 2.56× 10−8 2.979× 1012 421.33 1.92× 10−4

1.595 60 248.21 32.28 40.44 5.058 2.35× 10−8 4.695× 1012 526.35 2.32× 10−4

1.595 60 247.53 32.32 40.44 5.053 2.35× 10−8 4.703× 1012 523.84 2.32× 10−4

1.595 60 395.75 41.11 51.11 4.143 1.97× 10−8 8.398× 1012 636.53 2.38× 10−4

1.595 60 488.78 46.37 57.66 3.713 1.79× 10−8 1.129× 1013 686.70 2.41× 10−4
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Table 8.5: Numerical rotating convection data. Here, τ denotes the time over which the
diagnostics have been averaged in thermal diffusion time scale units L2/κ. Even though
millions of time steps were performed, τ < 1 in all our simulations, such that the quoted
temporal averages may not be fully accurate (see e.g. Julien et al 2012a for a discussion of the
broad range of time scales involved in rapidly rotating convection). In general however, the
averaging times are comparable to or even exceed those used in the laboratory experiments
(Table 8.4).

Pr E Ra Nu τ̄
7 1.00× 10−5 4.18× 107 1.73 1.05
7 1.00× 10−5 4.64× 107 2.51 5.31× 10−1

7 1.00× 10−5 5.57× 107 5.17 3.42× 10−1

7 1.00× 10−5 6.96× 107 9.75 1.85× 10−1

7 1.00× 10−5 9.28× 107 16.1 1.06× 10−1

7 1.00× 10−5 1.16× 108 21.9 7.69× 10−2

7 1.00× 10−5 1.39× 108 27.1 6.17× 10−2

7 1.00× 10−5 1.86× 108 35.7 4.56× 10−2

7 1.00× 10−5 2.32× 108 42.2 3.66× 10−2

7 1.00× 10−5 3.25× 108 50.7 2.82× 10−2

7 1.00× 10−6 9.00× 108 1.44 1.79× 10−1

7 1.00× 10−6 1.00× 109 1.94 4.30× 10−1

7 1.00× 10−6 1.20× 109 3.81 1.15× 10−1

7 1.00× 10−6 1.50× 109 8.90 8.73× 10−2

7 1.00× 10−6 2.00× 109 18.6 4.07× 10−2

7 1.00× 10−6 2.50× 109 28.7 2.39× 10−2

7 1.00× 10−6 3.00× 109 39.7 1.92× 10−2

7 1.00× 10−6 4.00× 109 58.5 1.28× 10−2

7 1.00× 10−6 5.00× 109 71.9 1.00× 10−2

7 1.00× 10−6 7.00× 109 88.0 7.30× 10−3

7 1.00× 10−7 2.15× 1010 16.8 7.09× 10−2

7 1.00× 10−7 2.59× 1010 27.6 6.90× 10−2

7 1.00× 10−7 3.23× 1010 58.4 3.64× 10−2

7 1.00× 10−7 4.31× 1010 16.9 1.06× 10−2

7 1.00× 10−7 5.39× 1010 42.2 1.05× 10−2

7 1.00× 10−7 6.46× 1010 72.9 4.95× 10−3

7 1.00× 10−7 8.62× 1010 77.1 2.79× 10−3

7 1.00× 10−7 1.08× 1011 88.4 1.24× 10−3

7 1.00× 10−7 1.51× 1011 122.0 9.65× 10−4
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CHAPTER 9

Rotating thermal convection in liquid gallium:

Multi-modal flow absent steady columns

In this work, I made several modifications to the experiment. First, I redesigned and built the

internal thermistor holders in order to prevent the leakage of gallium throughout the duration

of the experimental campaign. I also redesigned and built the external reservoir that allows

the gallium to expand and contract with temperature changes and can be cleaned at the

end of the experimental campaign in order to avoid contamination of gallium through the

build-up of oxide residue. I first set up and performed the experiments and then analyzed a

portion of the laboratory experiments. Then, I instructed a visiting student, Vincent Bertin,

on running the experiment and the steps required for analyzing a majority of the data. We

show that, in rotating convection of liquid metals, the quasi-steady columns that exist in

high Prandtl number dynamo simulations do not exist in the low Prandtl liquid metals.

Further, we show that the onset values for rotating convection in liquid metals is roughly

two orders of magnitude lower than the onset for high Prandtl fluids. Lastly, we find the

coexistence of wall-modes with the oscillatory convection in the bulk. These all suggest that

core convection in metals can greatly differ from the what is presently simulated in most

quasi-laminar, high Prandtl, present day dynamo models. I also contributed to the writing

of the final document.

9.1 Introduction

Palaeomagnetic data have shown that the Earth’s magnetic field has existed for more than

3 billion years (e.g., Tarduno et al., 2015). Thermocompositional convection is the primary
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driver of the dynamo generation processes that occur in Earth’s liquid metal core (Buffett

et al., 1996; Roberts and King, 2013). Prior to the nucleation of the solid inner core, most

evolution models find that thermally-buoyancy anomalies drove core convection, whereas

compositionally-fueled core flow has dominated since the formation of the inner core (e.g.,

Davies et al., 2015, cf. O’Rourke and Stevenson (2016)). In order to accurately models

dynamo action driven by present day thermo-compositional core convection as well as by

thermal convection prior to inner core nucleation, it is essential to understand the underlying

convection dynamics. However, the detailed dynamics of convective flows in planetary core-

like liquid metals still remain largely unknown (e.g. Guervilly and Cardin, 2017).

In order to address this deficit, this laboratory experimental study focuses on thermally-

driven, rotating convection in the liquid metal gallium. The characterization of the thermally-

driven flows provide an essential step in order to fully understand the thermocompositionally-

driven, turbulent rotating magnetoconvection which fuels the dynamo in Earth’s outer

core. Such convective flows underly thermally-driven, quasi-geostrophic dynamo action (e.g.,

Calkins et al., 2015; Nataf and Schaeffer, 2015), as likely occurs in a number of solar system

planetary dynamos and the majority of present day numerical dynamo models (e.g., Soder-

lund et al., 2015; Aurnou and King, 2017). Furthermore, it is necessary that we quantify the

behaviors of thermally-driven rotating convection in liquid metals in order to understand the

changes that occur to the flow field in the largely unexplored magnetostrophic regime (e.g.,

Roberts and King, 2013; King and Aurnou, 2015; Yadav et al., 2016).

The paper is organized as follows. In the following introductory section 9.2, we present the

dimensionless parameters that characterize the rotating Rayleigh Bénard convection system

as well as the basic scaling results for the threshold of the convective instability. In section

9.3, we present our laboratory set-up and the material properties of liquid gallium. The

laboratory experimental results are given in section 9.4. Finally, in section 9.5, comparisons

are made between the novel liquid metal rotating convective flows found here with non-

metallic rotating convective flows and extrapolate our results to extreme planetary core

settings.
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9.2 Parameter Definitions and Scaling Predictions

9.2.1 Nondimensional parameters

In thermal convection systems, the molecular properties of the fluid are non-dimensionally

characterized by the thermal Prandtl number:

Pr = ν/κ . (9.1)

This is the ratio of the thermal diffusion time τκ = H2/κ and the viscous diffusion time

τν = H2/ν, whereH is the fluid layer depth, κ is the thermal diffusivity and ν is the kinematic

viscosity. In thermally conductive metals, κ typically exceeds ν. The Prandtl number is

0.025 in liquid gallium and, similarly, estimates give Pr ∼ 0.1 to 0.01 in planetary core

fluids (e.g., Davies et al., 2015). However, if we consider only compositional buoyancy, then

the compositional Prandtl number in planetary core fluids is estimated to be of order 102 to

103 (e.g., Calkins et al., 2012b; Manglik et al., 2010). In the majority of current-day dynamo

models, the Prandtl number is taken to have a value of unity (e.g., see Table 1 in Aurnou

and King, 2017). This value is computationally the least demanding to simulate. Further,

the Prandtl hypothesis claims that strong turbulence will render all the Prandtl numbers to

have effective values near unity (Roberts and Aurnou, 2012). Little evidence exists, though,

in clear support of this claim in convection systems (e.g., Emran and Schumacher, 2015).

The cylindrical geometry of the experimental device is described by the aspect ratio

Γ = D/H, (9.2)

which is the ratio of the working fluid’s diameter D to its height H. In the present study,

this value is fixed at Γ = 1.94.

The thermal buoyancy forcing is charaterized by the Rayleigh number:

Ra =
τκ τν
τ 2
ff

=
αg∆TH3

ν κ
, (9.3)
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which is the ratio of the thermo-viscous diffusion times and the square of the buoyant free-fall

time across the layer, τff = H/Uff =
√
H/(αg∆T ). Here, α is the thermal expansivity, g is

the gravitational acceleration, ∆T is the (superadiabatic) temperature difference across the

fluid layer, and Uff =
√
αg∆TH is the free-fall velocity. The value of the Rayleigh number

in Earth’s core is very poorly constrained, likely ranging between 1020 to 1030 (e.g., Gubbins,

2001; Cheng et al., 2015; Aurnou et al., 2003; Roberts and King, 2013). In the experiments

carried out here, Ra varies over approximately two orders of magnitude, 2 × 105 . Ra .

2× 107.

In rotating systems, the (inverse) strength of rotational effects are typically characterized

via the Ekman number E, which is the ratio of the characteristic rotation time scale τΩ =

1/(2Ω) and the viscous diffusion time τν :

E =
τΩ

τν
=

ν

2ΩH2
, (9.4)

where Ω = 2π/TΩ is the angular rotation rate, fΩ = 1/TΩ = ν/(4πEH2) is the angular rota-

tion frequency, and TΩ is the system’s rotation period. In Earth’s core, E ' 10−15, whereas

E & 10−7 in present day direct numerical simulations of core processes (e.g., Stellmach et al.,

2014; Cheng et al., 2015; Aubert et al., 2017; Schaeffer et al., 2017). The laboratory experi-

ments are performed at four different rotations rates corresponding to approximate Ekman

number values of E = 5 × 10−5, 2 × 10−5, 1 × 10−5, and 5 × 10−6. (See Table 9.6.3 in the

Appendix for precise E values.)

The convective Rossby number, RoC , is used to characterized the strengh of the Coriolis

force relative to the buoyancy forcing (e.g., Julien et al., 1996). This number is the ratio

between the typical rotation time and the free fall time:

RoC =
τΩ

τff
=

√
αg∆T

4Ω2H
=

√
RaE2

Pr
. (9.5)

The convective Rossby number can also be interpretated, in the free-fall limit, as the ratio

of the inertial force (|~u · ~∇|~u |' U2
ff/H ∼ α g∆T ) and the Coriolis force (|2 ~Ω×~u| ' 2 ΩUff ).
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The low Pr values in liquid metals act to increase RoC , showing that inertial effects are

amplified in low Pr flows. It is often argued that substantive changes in the large-scale

structure of rotating convective flow will occur in the vicinity of RoC ∼ 1 (Gilman, 1977;

King and Aurnou, 2013; Stevens et al., 2013; Zhong et al., 2009; Gastine et al., 2013, 2014;

Soderlund et al., 2013, 2014; Horn and Shishkina, 2015; Featherstone and Miesch, 2015;

Mabuchi et al., 2015).

When the convective flow structures are smaller than the system scale H, it can be argued

that a locally-defined version of the convective Rossby number will better describe dynamical

changes in local flow behaviors (Christensen and Aubert, 2006; Sprague et al., 2006; Julien

et al., 2012b; Cheng et al., 2015). This parameter is defined as

Ro` =

√
αg∆T

4 Ω2 L =

√
RaE2

Pr `
(9.6)

where L is the local horizontal scale of flow structures and ` = L/H is its non-dimensional

value. (Alternatively, ` can be thought of as the aspect ratio of the flow structures.) This

local Rossby number will be defined more precisely later in the text, where it is used in

Figure 9.8b.

9.2.2 Theoretical Scaling Predictions

In planar, non-rotating, non-magnetic systems, Rayleigh-Bénard convection (RBC) first de-

velops, or onsets, via steady flow at a fixed critical value of Rayleigh number of order 103

where buoyancy first overcomes diffusive losses (Chandrasekhar, 1961). Since inertial effects

are enhanced in low Pr fluids, RBC flows in low Pr fluids tend to attain free-fall scaling

relatively soon after convective onset (e.g., Tsuji et al., 2005). Such flows often manifest in

the form of system-scale turbulent overturning rolls, called large-scale circulations (LSCs).
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9.2.2.1 Steady Convection

In rotating convection systems, thermal buoyancy primarily has to overcome the constraining

effects of rotation (e.g., Zhang and Schubert, 2000). Theoretical analyses in a horizontally

infinite plane layer (∞) subject to isothermal boundaries yield that steady (S) rotating

convection onsets in the small E limit when the Rayleigh number exceeds the critical value

Ra∞S =
3π4

(2π4)2/3
E−4/3 ' 8.7 E−4/3 , (9.7)

and occurs in the form of axially elongated structures with non-dimensional horizontal flow

scales

`∞S =
π

(1
2
π2)1/6

E1/3 ' 2.4E1/3 (9.8)

(e.g., Chandrasekhar, 1961; Julien and Knobloch, 1998; Clune and Knobloch, 1993).

9.2.2.2 Oscillatory Convection

In rapidly rotating systems with Pr < 0.68, convection firsts occurs in the form of thermally

driven inertial oscillations (e.g., Chandrasekhar, 1961; Julien et al., 1999; Zhang and Liao,

2009). In contrast to steady rotating convection, which is controlled by E, this oscillatory

mode is controlled by the value of the thermal Ekman number E/Pr (Julien et al., 1999;

Gillet et al., 2007). Oscillatory (O) convection is predicted to onset in a horizontally infinite

plane (∞) at

Ra∞O ' 6
(1

2
π2)2/3

(1 + Pr)1/3

(
E

Pr

)−4/3

' 17.4

(
E

Pr

)−4/3

, (9.9)

with a larger horizontal length scale than that of steady convection

`∞O ' (1 + Pr)1/3 π

(1
2
π2)1/6

(
E

Pr

)1/3

' 2.4

(
E

Pr

)1/3

. (9.10)
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Figure 9.1: Rayleigh numbers at convective onset plotted as a function of the Ekman number
for parameters of our laboratory experiments, aspect ratio Γ = 1.94 and Prandtl number
Pr ' 0.025. The solid blue and black lines, respectively, denote the plane layer theoretical
estimates for the oscillatory convection Ra∞O and steady convection Ra∞S . The dot-dashed
yellow line denotes the onset estimates for the wall modes in a semi-infinite layer Ra∞W and
the dot-dashed yellow line marks the exact solutions in a cylinder RacylO , both taken from
(Zhang and Liao, 2009).

The oscillation frequency at the onset of convective motions, normalized by fΩ, is estimated

to be:

f∞O ' 4π
(2− 3Pr2)1/2

(1 + Pr2)1/3

(
1

2
π2

)1/3(
E

Pr

)1/3

' 4.8

(
E

Pr

)1/3

. (9.11)

The right hand expressions in (9.9) - (9.11) hold for Pr � 1.

Comparing the linear theoretical predictions for steady and oscillatory low Pr convection

yields

Ra∞O /Ra
∞
S ' 2Pr4/3 and `∞O /`

∞
S ' Pr−1/3 . (9.12)
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E Ra∞O f∞O RacylO f cylO Ra∞W f∞W Ra∞s
5× 10−5 6.91× 104 0.61 2.15× 105 0.455 6.71× 105 0.210 4.72× 106

2× 10−5 2.34× 105 0.45 6.42× 105 0.366 1.65× 106 0.0898 1.60× 107

1× 10−5 5.90× 105 0.35 1.48× 106 0.281 3.28× 106 0.0465 4.04× 107

5× 10−6 1.49× 106 0.28 3.45× 106 0.232 6.52× 106 0.0239 1.02× 108

Table 9.1: Asymptotic estimates of liquid gallium (Pr ' 0.025) onset parameter values in
a horizontally infinite plane layer geometry (∞) subject to isothermal boundary conditions,
and in cylindrical geometry (cyl) with no-slip boundaries and aspect ratio Γ = 1.94 = D/H.
Column 1: Experimental Ekman number values. Columns 2 and 3: Rayleigh number and
frequency at the onset of oscillatory convection. Columns 4 and 5: Oscillatory bulk onset
values in a finite cylinder from Zhang and Liao (2009). Columns 6 and 7: Onset values for
sidewall modes in a semi-infinite layer with non-slip vertical wall (Liao et al., 2006). Column
8: Rayleigh number at the onset of steady convection. All frequencies reported here, and
throughout this study, are normalized by fΩ.

The left-hand ratio in (9.12) implies that, at a given E, the value of Ra∞O will be roughly 70

times smaller than Ra∞S in gallium (Pr ' 0.025). In conjunction with oscillatory convection’s

lower critical Rayleigh number, the asymptotic predictions for the characteristic horizontal

length scale of oscillatory motions in gallium are approximately 3.4 times larger than the

corresponding scale for steady rotating convective flows. This likely explains the differences

in characteristic flow scale found in the low and high Pr simulations shown in (Calkins et al.,

2012b).

Our experiments are carried out, not in an laterally infinite fluid layer, but instead in a

finite-volume Γ = 1.94 cylindrical container. It is expected then that fluid layer geometrical

effects have to be taken into account to accurately predict the convective onset parameter

values (e.g., Goldstein et al., 1994). To do so, we employ the theoretical results of Zhang

and Liao (2009), which predict that low Pr rotating convection cylindrical systems (cyl)

first occurs as container-scale oscillatory inertial modes. We use their small E asymptotic

analyses to estimate the Rayleigh number, oscillation frequency and modal structure at onset

by minimizing equations (4.21) and (4.22) in Zhang and Liao (2009). This critical Rayleigh

number is denoted RacylO and the oscillation frequency, normalized by fΩ, is denoted f cylO .
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E Ra∞O/RacylO RacylO Ra∞W/RacylO Ra∞s /RacylO
5× 10−5 0.321 2.15× 105 3.12 22.0
2× 10−5 0.365 6.42× 105 2.57 24.9
1× 10−5 0.399 1.48× 106 2.23 27.3
5× 10−6 0.432 3.45× 106 1.90 29.6

Table 9.2: Onset Rayleigh numbers relative to RacylO from Zhang and Liao (2009).

9.2.2.3 Wall Modes

The existence of vertical boundaries can help release the rotational constraint on the fluid.

In this case, so-called ‘wall modes’ develop in the form of precessing thermal waves that

travel around the periphery of the tank (e.g., Zhong et al., 1991; Herrmann and Busse, 1993;

Bajaj et al., 2002). Following Liao et al. (2006) and Zhang and Liao (2009), wall modes

are predicted to first develop in a semi-infinite channel with a non-slip, thermally-insulating

wall at

Ra∞W ' 31.8E−1 + 46.5E−2/3 (9.13)

with azimuthal wavenumber

m∞W =
2πH

2`∞W
' Γ

(
3.03− 17.5E1/3

)
, (9.14)

where we take 2`∞W as the wall mode wavelength and note that (9.14) applies at the tank’s

periphery where the wall modes are localized. Furthermore, (9.14) is formally valid in the

limit of low E and, practically, remains a positive quantity only for E . 5×10−3. Normalizing

by fΩ, the wall modes precess in azimuth around the sidewall of the tank with a retrograde

drift frequency of

f∞W ' 131.8

(
E

Pr

)
− 1464.5

(
E4/3

Pr

)
. (9.15)

Figure 9.1 shows the Rayleigh number predictions (9.7), (9.9), (9.13) and the computed

values of RacylO , all plotted as a function of the Ekman number and employing our experi-

mentally fixed values of Γ = 1.94 and Pr ' 0.025. The thin vertical colored lines mark the

four E values that are investigated here.
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The factor of ∼70 offset between Ra∞S (solid black line) and Ra∞O (solid blue line) holds

for all E values. The computed values of RacylO (dashed green line) are approximately three

times greater than Ra∞O at high E values where boundary dissipation effects are strongest.

However, RacylO trends towards Ra∞O with decreasing E, as expected.

The dot-dashed yellow line in Figure 9.1 denotes the critical Rayleigh number for wall

modes, based on (9.13). Due to gallium’s low Pr value, oscillatory convective motions

develop before wall modes for E & 5× 10−7. Thus, the regime in which wall modes are the

onset mode cannot be investigated here since all our experiments are performed at E > 10−6.

The theoretical onset parameter predictions are given in Table 9.1 for the four Ekman

numbers of our survey. Table 9.2 contains ratios of the critical Rayleigh numbers relative

to the RacylO predictions from Zhang and Liao (2009). In particular, we point out that

Ra∞S /Ra
cyl
O ' 20 to 30 in the rightmost column of Table 9.2. In all the laboratory exper-

iments, however, the values of Ra/RacylO . 12, which implies that none of the behaviors

found in our experiments are the result of steady rotating convective flow processes. Thus,

the quasi-steady columnar convection modes that dominate models of Pr & 1 rotating con-

vection (e.g., Grooms et al., 2010; King and Aurnou, 2012; Gastine et al., 2016) and dynamo

action (e.g., Jones, 2011; Christensen, 2011; Schaeffer et al., 2017) do not exist in the exper-

imental simulations carried out here.

9.3 Experimental set-up

The laboratory set-up consists of a Rayleigh Bénard convection (RBC) device that is seated

on a rotating pedestal, as shown in Figure 9.2. In this study, we use this device to perform

15 non-rotating, RBC cases and more than 60 rotating convection (RC) cases. All the

experiments are carried out in a axially aligned cylinder container with a height H = 10.0

cm, and an inner diameter D = 19.4 cm, such that the aspect ratio is fixed at Γ = 1.94. The

cylindrical sidewall is made of Reynolds R-Cast acrylic, which has a thermal conductivity of

k = 0.2 W/(m K), which is less than 1% that of gallium. The fluid is heated from below by

a non-inductively wound, electrical resistance element. The input power in our experiments
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Figure 9.2: a) Schematic of the experimental set-up, adapted from King et al. (2012). b)
Image of the experimental set-up, while the tank is being filled with gallium. For scale, the
acrylic sidewall outer diameter is 20.0 cm. c) Top view schematic of the positions of the
thermistors in and below the top thermal block. d) Oblique view of the top thermal block
showing internal thermistors T1 through T9.
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varies from 10 W to 2 kW. This heater is placed below a copper bottom thermal block of

1.5 cm thickness. Heat is removed from the system by a double-spiral wound heat exchanger

maintained at a constant temperature by a Thermo-NESLab HX-300 precision thermal bath.

This heat exchanger is placed above a copper top thermal block of 4 cm thickness. The

vertical temperature difference across the fluid layer, ∆T , is measured using two arrays of

six thermistors located 2 mm above and below the fluid layer, respectively, in the top and

bottom thermal block. The temperature drop from the bottom to the top of the tank varies

from 1◦C to 50◦C and the mean fluid temperature varies from 36◦C to 55◦C. For example,

the green lines in Figure 9.2c show the locations of the 6 thermistors that are embedded

in the top thermal block. In addition, 9 thermistors are placed inside the fluid layer, as

shown in Figure 9.2c and Figure 9.2d. The exact location of these internal thermistors are

given in Appendix 9.6.1. Temperatures and heating rate are via a National Instruments data

acquisition system that is located in the rotating frame and acquires data typically at 10

samples per second. We assume the system to be equilibrated when the mean temperature,

T , on each thermistor does not change by more than 1% during the previous 30 minutes.

We then record equilibrated data for up to 10 hours (∼ 45τκ). The tank is insulated on

all sides by two layers of thermal insulating materials. The outer layer is a ∼ 5 cm thick

of Insulfrax fiberous insulation and the second layer is a ∼ 10 cm thick layer of closed cell

foam. K-type thermocouples placed within the two insulation layers enable us to estimate

the sidewall heat losses. The motion of the rotating pedestal is controlled by a belt-driven

brushless servomotor. The rotation rate varies from 0 to 60 revolution per minutes (rpm).

In this study, four rotation rates were investigated: 3.06, 8.17, 16.33 and 32.66 rpm.

For further device details, see the supplementary material in King et al. (2012).

9.3.1 Gallium properties

The density of liquid gallium is taken to vary with temperature as

ρ(T ) = ρmp(1− α(T − Tmp)) (9.16)
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where ρmp = 6.09× 103 kg/m3 is the density at the melting point and α = 1.25× 10−4 K−1

is the thermal expansion coefficient and Tmp = 29.8◦ C is the melting point. These values

are in good agreement with Assael et al. (2012); Spells (1936); Brandes and Brook (1992).

Gallium’s specific heat capacity, Cp, is only weakly temperature dependent and these

variations are usually smaller than the accuracy of the measurement over the temperature

range of our experiments. Thus, we chose a constant value of

Cp = 397.6 J/(kg K) (9.17)

as reported in Brandes and Brook (1992) and used in prior studies with this device (e.g.,

King and Aurnou, 2015).

Figure 9.3: Vertical temperature difference, ∆T , measured versus the input power, P , for the
four thermal conduction experiments realized. The dashed blue line shows the best linear
fit ∆T = 0.1079P − 0.067. These data are reported in Appendix 9.6.2.
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9.3.1.1 Thermal conductivity measurements

In relatively high rotation rate, low thermal forcing cases, the fluid is convectively stable

and the heat tranfered across the gallium conductively. These conduction cases allow us to

make in situ measurement of the thermal conductivity, k, of the gallium within our set-up.

Figure 9.3 shows the temperature difference between the top and the bottom of the tank,

∆T [K], plotted versus the input power, P [W], for the four conduction cases carried out.

The dashed line is a linear regression ∆T = β P + b. In conjunction with Fourier’s law of

conduction, the value of the slope, β = 0.1079 K/W, gives a thermal conductivity value

k = H/(πR2
i β) = 31.3± 0.1 W/(m K) (9.18)

where Ri = D/2 = 0.097 m is the inner radius of the acrylic cylinder. The coefficient of

determination of this linear fit is R2 = 0.9999. Further, the intercept of the linear regression,

b = −0.067 K, is close to zero and is small compared to the temperature differences in

these conduction cases (. 1%). This suggests that our thermal conductivity measurement is

relatively accurate. In addition, it agrees well with other, independent laboratory estimations

(Aurnou and Olson, 2001; King and Aurnou, 2013).

9.3.1.2 Viscosity measurements

The viscosity of liquid gallium is difficult to precisely measure for a number of reasons,

including its affinity to oxygen. As soon as liquid gallium comes in contact with the at-

mosphere, gallium oxides form on its free surface and then populate the bulk fluid. These

oxides can affect the measurement of the viscosity. To minimize this phenomenon, our entire

experimental system is flushed with argon. Following Brito et al. (2001), we cycle our 99.99%

purity liquid gallium through a 5% hydrochloric acid solution before filling the tank (e.g.,

https://www.youtube.com/watch?v=G1qwMHkboDY).

Even under well-controlled conditions, however, measurements of liquid gallium’s dy-

namic viscosity, η = ρν, vary by as much 30% between differing studies (Spells, 1936; Grosse,
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Figure 9.4: Acoustic Doppler velocimetry measurement (black line) of a spin-up experiment
carried out at T = 35.8◦ C. The data shows the temporal evolution of the midplane azimuthal
velocity, uφ, normalized by the maximum predicted spin-up velocity, (∆Ω rmp). Here ∆Ω
is the impulsive change in rotation rate occurring at time to, and rmp is the radial position
at the mid-point along the Doppler chord (inset). We denote the spin-up time, τsu, as the
point in the time series where the normalized velocity reaches a value of 1/e (dashed purple
lines). The blue line shows a plot of an exponential fall off with characteristic time scale τsu.

1961; Genrikh et al., 1972; Assael et al., 2012; Xu et al., 2012; Brandes and Brook, 1992; Iida

et al., 1975, 2006). To address this issue, we have carried out a suite set of experiments in

which we use acoustic Doppler velocimetry to measure linear spin up in our tank of gallium

under nearly isothermal conditions (cf. Brito et al., 2004). In these experiments, the tank

is spun-up in less than 1 second (fixed 4 rpm/s ramp) from an initial rotation rate Ωi to

Ωi + ∆Ω. Azimuthal velocity, uφ, measurements are made along a mid-plane chord (inset,

Figure 9.4). The velocity data are averaged around the mid-point (mp) of the chord, which

is located 73 to 77 mm from the ultrasonic transducer and at a radial position rmp ' 0.70Ri.

Figure 9.4 shows normalized Doppler velocity measurements, uφ/∆Ωrmp, versus time

shifted relative to to, the instant of peak measured velocity. The fluid temperature is T =

35.8◦ C here and the spin-up goes from 40.0 rpm to 44.0 rpm (∆Ω/Ωi = 0.1). The fluid

responds via an exponential temporal adjustment to the new solid-body rotation rate. This
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Figure 9.5: In situ dynamic viscosity estimates made from spin-up experiments. a) Esti-
mates for fluid at T ' 35◦ C as a function of spin-up amplitude ∆Ω/Ωi. The hollow circles
(triangles) denote data acquired roughly 1 week (2 months) after the container was filled with
gallium. b) Viscosity extrapolations to zero forcing amplitude at different fluid temperatures.
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occurs on the spin-up time scale:

τsu = (8E)−1/2 Ω−1
i = H/(2

√
νΩi) (9.19)

(Greenspan and Howard, 1963; Greenspan, 1969; Warn-Varnas et al., 1978). We estimate

τsu here as the time at which the uφ/∆Ωrmp = exp(−1). From τsu, the dynamic viscosity is

found by recasting (9.19) as

η = ρH2/
(
4Ωiτ

2
su

)
. (9.20)

Figure 9.5a shows spin-up measurements of η for fluid at T ' 35◦ C and for a range of

Ωi and ∆Ω/Ωi values. The hollow circles correspond to spin-up measurements acquired the

same week that we filled the tank with cleaned gallium. The hollow triangles correspond

to measurements made two months later. The fluid viscosity increases over this 2 month

time window. This is caused by the existence of an intermetallic phase that develops on the

tank’s horizontal boundaries. Although relatively thin (. 1 mm thick), this heterogeneous

layer increases the mechanical coupling relative to the initially smooth walls present at the

time of the fill. This layer does not, however, change the bulk properties of the fluid; heat

transfer measurements were repeatable over the 2 month window for RBC cases made with

the same input heating.

For each suite of experiments made at a fixed time, the viscosity estimates in Figure

9.5a increase with increasing spin-up amplitude ∆Ω/Ωi. We account for this by linearly

extrapolating the viscosity data to ∆Ω/Ωi = 0 (filled symbols with red outlines). These

extrapolated values, which we take to be working viscosity of the fluid, are plotted in Figure

9.5b. Four different temperatures were measured two months after the tank was filled,

whereas measurements were only made at near 35◦ C just after the tank was filled.

We best fit our gallium viscosity data as a function of temperature using the Andrade

(1934) formulation,

η = η0 exp(Ea/RT ) , (9.21)

where the activation energy is Ea = 4000 J/mol, the gas constant is R = 8.3144 J/(mol
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K) and T is the absolute temperature in degrees Kelvin. This functional form was first

employed by Grosse (1961) to fit the gallium viscosity data of Spells (1936), and has been

used broadly since (Brandes and Brook, 1992; Braunsfurth et al., 1997; King and Aurnou,

2013). We argue here that our ‘2 month’ data is reasonably well fit by (9.21) with a viscosity

coefficient of ηo = 0.56 mPa s (dashed line in Figure 9.5b). However, we believe the T = 35◦

C data acquired just after filling the tank more accurately characterizes the bulk viscosity of

the fluid. This data yields a viscosity coefficient value of η0 = 0.46 mPa s (solid line in Figure

9.5b), in adequate agreement with the values of Spells (1936); Iida et al. (1975); Brandes

and Brook (1992); King and Aurnou (2013). Thus, we use η0 = 0.46 mPa s in (9.21) in all

the ensuing viscosity estimates employed in this study.

9.4 Results

9.4.1 Heat Transfer

We first present heat transfer measurements from non-rotating (E = ∞) Rayleigh-Bénard

convection (RBC) cases. These provide a baseline for comparison with other low Pr RBC

studies (e.g., Scheel and Schumacher, 2016). In addition, heat transfer in RBC cases ap-

proximates the upper bounding values for RC datasets (Cheng et al., 2015; Gastine et al.,

2016).

The temperature drop across the tank varied with the heat power as ∆T = 0.602 ±
0.02P 0.794±0.007. This power law is in good quantitative agreement with prior RBC data

taken with this device by King and Aurnou (2013) using a Γ = 0.97 stainless steel sidewall

tank. The exponents agree to within the uncertainties of the measurements whereas the

coefficients differ by roughly 8%. This variation in the coefficient may be due to the different

aspect ratios and sidewall materials employed.

The efficiency of heat transfer is expressed nondimensionally in terms of the Nusselt

number,

Nu =
Qtot

Qcond

=
P H

k∆TA
, (9.22)
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which is the ratio of the total vertical heat flux Qtot = P/A through the fluid layer of

horizontal cross-sectional area A = πR2
i , and the conductive flux Qcond = k∆T/H. This

parameter equals unity when thermal conduction is the sole heat transport process and

exceeds unity whenever convective motions also take part in fluxing heat across the fluid

layer.

Figure 9.6 shows Nu plotted as a function of the buoyancy forcing, Ra. The red-filled

circles mark the RBC cases. The best-fit power law to this RBC data gives Nu = (0.151±
0.02)Ra0.256±0.01. The power law exponent value is in good agreement with those reported in

the laboratory studies of Rossby (1969) and King and Aurnou (2013), as well as in the high

resolution Pr = 0.021 numerical simulations of Scheel and Schumacher (2016). However, the

coefficient is nearly 20% smaller than the value found in King and Aurnou (2013). In addition

to aspect ratio (Bailon-Cuba et al., 2010) and sidewall conductivity differences (e.g., Ahlers,

2000), the coefficient may also be affected by small differences in our material properties

parameterizations and in the mean fluid temperature values at a given Ra.

Rotating convective heat transfer data is also displayed in Figure 9.6. Mustard coloured

filled symbols mark the E = 5 × 10−5 cases. Green, blue and magneta symbols mark

E = 2 × 10−5, E = 10−5 and E = 5 × 10−6 cases, respectively, corresponding to respective

tank rotation rates of close to 3, 8, 16 and 32 rpm. The onset of convection occurs when

Nu increases beyond unity in each E-dataset. As expected from (9.9), the convective onset

occurs at successively higher Ra values with decreasing values of the Ekman number. The

supercritical data shows a region of relatively weak convective heat transfer in the E =

2 × 10−5, 10−5 and 5 × 10−6 datasets. A regime of weak heat transfer scaling also exists

in RBC in metals near onset (Chiffaudel et al., 1987; Kek and Müller, 1993). However, in

low Pr RBC, the weak heat transfer regimes arises due to a balance between viscous and

weak thermal buoyancy forces. In contrast, in our RC data, this weak heat transfer regime

arises because the inertially-dominated, oscillatory convection that develops just past onset

transfers no net mass across the fluid layer, and, thus, is inefficient at transferring heat.

Figure 9.7 shows the Nusselt number plotted versus the Rayleigh number normalized by

its critical value in a cylinder, Ra/RacylO . The values of RacylO are given in third column of
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Figure 9.6: The Nusselt number, Nu, plotted versus the Rayleigh number, Ra, for all the
rotating (RC) and non-rotating (RBC) cases. The corresponding Ekman number is indicated
with the symbol color. The cases denoted A through F (star symbols) are considered in detail
in the following sections.

Table 9.2. The Nu-(Ra/RacylO ) data collapse well, which implies that RacylO as formulated

by Zhang and Liao (2009) adequately describes the onset of convection in our laboratory

experiments. If Ra∞O better described the onset of convection, then the Nu data would first

depart from unity at values of Ra/RacylO ' 0.3 (second column in Table 9.2). The results in

Figure 9.7 shows that is not the case (cf. Ribeiro et al., 2015).

The triangles in Figure 9.7 denote cases at or just after the onset of sidewall convection,

whereas the rhombi denote cases where the wall modes are the dominant signal in the

spectra. The wall modes come to dominate the heat transfer, causing the increased heat

transfer scaling at Ra/RacylO & 2. In the precessing frame of the wall modes, the wall modes

provide a steadily transfer mass vertically across the fluid layer. These mean flows (in the

precessing frame) are far more efficient at fluxing heat than the oscillatory bulk motions
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Figure 9.7: Nusselt number plotted versus supercriticality Ra/RacylO for rotating convection
in gallium. Four main regimes are found: subcritical to convection; oscillatory convection
in the fluid bulk; wall mode dominated convection; and broad band turbulence. In the
turbulent regime, the best fit is Nu ∼ (Ra/RacylO )0.9 for Ra/RacylO ≥ 6, shown as the blue
solid line. The star symbols mark cases ‘A’ through ‘F’ shown in Figure 9.6 and listed in
Appendix 9.6.3.

that develop first in our experiments. The critical Rayleigh number for sidewall convection

decreases with decreasing E. This effect can be seen in Figure 9.7 in two ways. First, the

triangles move to the right in the figure as E is lowered. Second, the Nu values are ‘layered’

in the range 2 . Ra/RacylO . 4 with the magenta E = 5 × 10−6 rhombi on top and the

mustard E = 5× 10−5 rhombi below. The trends of each ‘layer’ appear to be similar, which

suggests that this layering is due to the decreasing value of Ra∞W as a function of decreasing

E.

Broad band spectra are measured on our internal thermistors in the range 4 . Ra/RacylO .

12, as discussed in Section 9.4.2. We interpret these broad band spectral signatures to imply

that rotating convective turbulence develops atRa/RacylO ' 4. Turbulent convection develops

then in gallium well before steady columnar-style convection even onsets (Ra∞S /Ra
cyl
O & 20;
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Figure 9.8: Using the same color code as in Figure 9.6, the Nusselt number is plotted versus
a) the convective Rossby number, RoC , and b) the local convective Rossby number, Ro`,
defined in (9.23). Supercriticality, Ra/RacylO , collapses the heat transfer data better than
either of these dynamical re-scalings.

Table 9.2), in basic agreement with Julien et al. (2012b). This behavior differs sharply

from convection in Pr > 1 fluids, where quasi-steady rotating convection columns can exist

over a significant range of supercriticalities before breaking down into geostrophic turbu-

lence (Julien et al., 2012b; King and Aurnou, 2012; Aurnou et al., 2015; Cheng et al., 2015;

Sprague et al., 2006; Horn and Shishkina, 2014; Stellmach et al., 2014; Gastine et al., 2016;

Yadav et al., 2016). Thus, the path to turbulence in low Prandtl number fluids differs from

that in higher Pr fluids. Further, this raises the question (which is not addressed here) as

to whether the regimes of rotating convective turbulence in low Pr fluids differs in nature

from those in Pr & 1 fluids (e.g., Julien et al., 2012b).

The blue solid line in Figure 9.7 shows the best fit power-law, Nu = 0.40 (Ra/RacylO )0.91,

to all the data with Ra/RacylO ≥ 6. This scaling differs significantly from the Nu ∼
(RaE4/3Pr−1/3)3/2 scaling that was found in 0.3 ≤ Pr ≤ 1 fluids (Julien et al., 2012a).

This Ra3/2 scaling is argued to hold in the limit of low Ro geostrophic turbulence. Our Ra0.9

scaling differs from the prediction, but likely for good reasons: i) our data is still close to
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onset and does not exhibit any asymptotic behaviors; ii) we are fitting less than a decade

of data in terms of supercriticality; iii) and, as shown in Figure 9.8, the global and local

convective Rossby numbers are all above 0.1 for the ‘broad band’ data and thus is unlikely

to be in the geostrophic turbulence regime.

Using a tall tank and higher heat fluxes, King and Aurnou (2013) found that rotationally-

influenced heat transfer in gallium transitioned to the RBC trend at RoC ∼ 1. Figure 9.8a

shows our lower Ra heat transfer data plotted versus RoC . Our present data is not well

collapsed by RoC . Figure 9.8b shows Nu plotted versus a local convective Rossby, where we

have chosen (9.10) as the characteristic length scale estimate, yielding

Ro` =

√
αg∆T

4Ω2`∞O
=

√
RaE5/3

2.4Pr2/3
. (9.23)

This local parameter, which has been proposed in several dynamo studies to control the

transition between dipolar and multipolar dynamo action (e.g., Christensen and Aubert,

2006), does not seem to collapse our heat transfer data either. Thus, our relatively low Ra

heat transfer data are best collapsed by their supercriticality Ra/RacylO , whereas the heat

transfer behavior of the more strongly supercritical data in King and Aurnou (2013) appears

to be better collapsed by the convective Rossby number, RoC .

9.4.2 Spectral analysis

Figures 9.9a, c, e, g show respective temperature time series measurements from cases A, B,

C and F in Figure 9.6, each plotted for 200 rotational time units. Figures 9.9b, d, f, h show

the respective temperature spectra from their equilibrated time series (typically & 2 hours

in length). The blue lines correspond to data from thermistor T8, which is located at the

center of the cylinder. The red lines corresponds to thermistor T4, which is located relatively

close to the side wall (r/Ri = 0.70) and slightly below the mid-plane (z/H = 0.43).

The time series in the left hand column of Figure 9.9 show strongly coherent oscillations

for case A and become increasingly broad band in each successive case. The spectra shown in
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Figure 9.9: Left Column: Temperature time series recorded on thermistors T4 (red) and
T8 (blue) in cases A, B, C, F for 200 rotation periods of the tank. Right Column: The
Fourier transform of the temperature signals computed over 290 TΩ for case A, over 1152 TΩ

for case B, over 3580 TΩ for case C and over 853 tΩ for case F. Frequencies are normalized
by the rotation frequency fΩ. The green (yellow) dashed lines corresponds to the onset
frequency of the bulk oscillatory mode (wall mode).

the right hand column images are more revealing. In case A, carried out at Ra/RacylO ' 1.2,

oscillations exist in a finite band around the predicted value f cylO on both thermistors. In

case B, carried out at Ra/RacylO ' 1.9, the width of the frequency band around f cylO has

expanded. Furthermore, there is also evidence for a wall mode on thermistor T4, located at

0.7Ri. In case C, carried out at Ra/RacylO ' 1.95, the T4 wall mode signal on is now the

dominant spectral peak, reaching up to an amplitude value of 0.087. In addition, the wall

mode frequency has shifted to f = 0.0406 fΩ, which is nearly twice the predicted wall mode

frequency f∞W = 0.0239 fΩ, suggesting a possible change in wall mode structure. Lastly, in

case F at Ra/RacylO ' 4, the coherent oscillatory signals are no longer apparent. However, the

spectrum of the side thermistor T4 has more power near the theoretical wall mode frequency

than the central thermistor T8, which has slightly more power closer to the bulk oscillation

frequency. This suggests that the near onset modes may still be intact, but are harder to
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Figure 9.10: Band-pass filtering of the case C, T4 temperature data (E = 5 × 10−6;
Ra/RacylO = 1.99). Red lines show raw T4 data; black lines show filtered data. The left
hand column shows time series data, whereas the right hand column shows spectra. Top
row: raw T4 data. Middle row: band-pass filtering around f expO . Bottom row: band-pass
filtering around f exp

W .

decipher in the broad band spectra generated on both sensors at these higher Ra/RacylO

values.

Our laboratory data provide the first experimental evidence of multi-modal flow in low Pr

rotating convection. To demonstrate this unequivocally, Figure 9.10 shows a more detailed

analysis of the case C, T4 temperature data shown in Figures 9.9e,f. The top row shows

the raw T4 data, similar to that of Figure 9.9. The middle and bottom rows show the

data, respectively, band-pass filtered around f cylO and f∞W . Red lines represent the raw data,

whereas black lines show the band-passed signals. The band-pass operation was accomplished

by convolving the T4 signal with a transfer function, H(f), defined as

H(f) =

[
1 + i

(
f

fc
− fc
f

)3
]−1

(9.24)
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with fc = 0.25fΩ in the middle row and fc = 0.041fΩ in the lower row. This filter was chosen

so that the band-pass region was wide enough to keep the relevant oscillatory modes.

Figure 9.11: Dominant spectral frequency normalized by the rotation frequency, fp, plotted

versus Ra/RacylO . a) E = 2 × 10−5; b) E = 1 × 10−5 and c) E = 5 × 10−6. The red (blue)
symbols correspond to T4 (T8) data. The dashed green and yellow lines denote the onset
frequencies f cylO and f∞W , whereas the green and yellow x’s mark RacylO and Ra∞W , respectively.

The filtered signal around f expO shows the same qualitative characteristics as the signal in

Figure 9.9a. The time series is oscillatory within a lower frequency envelope, as expected for

a finite range of frequencies centered around f expO . The filtered signal around f expW shows the

impact of the wall mode on the temperature field relatively far from the the sidewall. This

wall mode signal is recorded on T4 because of the large-amplitude of the thermal oscillations
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and due to the high thermal diffusivity of liquid gallium. Here a single coherent thermal

oscillation dominates the band-passed signal, implying the existence of one dominant wall

mode in this case. Lastly, note in comparing the two filtered time series that the wall mode

signal (recorded at 0.7Ri) is comparable in amplitude to that of the bulk oscillatory signal.

Figure 9.11 shows the frequency of the peak amplitude of the Fourier spectra, fp, plotted

as a function of Ra/RacylO for each of the convection experiments carried out at a) E =

2 × 10−5; b) E = 1 × 10−5 and c) E = 5 × 10−6. Blue symbols correspond to the spectral

peaks on thermistor T8 located at the tank’s center. Red symbols correspond to thermistor

T4 located at roughly 2/3 radius and near the mid-plane. The dashed green and yellow

horizontal lines are the onset frequency predictions for f cylO and f∞W , respectively. Green and

yellow x’s mark the left-hand endpoints of the horizontal dashed lines. These x’s demarcate

the estimated values of RacylO and Ra∞W . Thus, the green x stays fixed at Ra/RacylO = 1 in

all three panels, whereas the yellow x moves to successively lower values with decreasing E

(cf. Figure 9.1). All frequencies are normalized by fΩ (throughout this study).

We interpret Figure 9.11 as showing the dominant processes occurring in a given exper-

imental case. All cases with Ra . 0.8Ra∞W have fp ' f cylO on both T4 and T8, indicating

that the bulk oscillatory convection is indeed dominant over this range. At values slightly

below Ra∞W , fp on T4 changes to values relatively close to f∞W . Note further that this change

in T4 fp does not specify the onset value of wall mode convection. For instance, the T4

spectrum in Figure 9.9d (case B) shows significant power at f∞W , but the peak amplitude in

the spectrum still resides just above f cylO .

A non-trivial very low frequency fp value is found to develop on both the T4 and T8

sensors in several E = 5 × 10−6 cases (e.g., case D). This phenomenon will be considered

further in section 9.4.4.

9.4.3 Onset Estimates

Table 9.3 shows experimentally-determined onset parameter estimates for the two main

modes observed, the bulk oscillatory mode and the wall mode. The onset values are found
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E RaexpO /RacylO fexpO /fcylO
RaexpW /Ra∞W fexpW /f∞W

2× 10−5 1.08 ± 0.05 0.96 ± 0.03 0.78 ± 0.05 0.98 ± 0.05
1× 10−5 1.10 ± 0.03 1.00 ± 0.03 0.81 ± 0.02 1.10 ± 0.05
5× 10−6 1.05 ± 0.02 0.94 ± 0.01 0.85 ± 0.01 1.17 ± 0.01

Table 9.3: Ratios of onset parameter values with theoretical predictions. Superscript “exp”
means experimental measurement, “cyl” means theoretical prediction in a cylinder and “∞”
means theoretical prediction of the plane layer theory. The data at E = 5 × 10−5 are not
presented due to a lack of data sufficiently near onset.

via bifurcations in Nu to values above unity and also via detection and characterization of

thermal oscillations on the internal thermistors.

The experimentally-determined Rayleigh numbers for the onset of oscillatory convection

in the bulk fluid, RaexpO , are 5% to 10% higher than the asymptotic estimates from Zhang

and Liao (2009). The frequencies measured at the onset of bulk oscillatory convection are

in good agreement with the theoretical predictions. Interestingly, Zhang and Liao (2009)

provide some onset values from their linear stability solver. For the case at E = 5 × 10−5,

Pr = 0.025 and Gamma = 2, they find a critical Rayleigh number for oscillatory convection

that is about 5% higher than their asymptotic RacylO predictions. Further, they find nearly

exact agreement between the onset frequencies in their linear solutions and their asymptotics.

Thus, we argue that our onset values are reasonably accurate. Further, this (circularly)

suggests that our determination of fluid viscosity is accurate as well.

The wall modes have onset Ra estimates that are approximately 20% below theoretical

predictions in a semi-infinite layer (Liao et al., 2006). The frequencies measured for the

wall modes are near to the theoretical values for E = 2 × 10−5 and 1 × 10−5. In the

E = 5 × 10−6 experiments, the measured frequency is roughly 20% greater than expected.

These discrepancies in the wall mode onset values could arise for a number of reasons. They

could be due to finite geometry effects in our Γ = 1.94 container, or from imperfect sidewall

thermal boundary conditions. Lastly, maybe the active bulk oscillatory convective motions

affect the system near the sidewalls, such that the onset properties are altered (Geoff Vasil,

private communication).
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Figure 9.12: Nusselt number plotted versus time in thermal diffusion time scale units. a)
case C; b) case D; c) case E.

9.4.4 Bimodal, Low-Frequency Regime

Figure 9.13: Temperature spectra from a) case C (E = 5.09 10−6 and Ra/RacylO = 1.99)
and b) case D (E = 5.01 × 10−6 and Ra/RacylO = 2.28). Frequencies f are normalized by
the rotation frequency and are plotted in log-scale. The spectra for case E (not show) are
qualitatively similar to those in case ’C’.

The very low fp ' 10−3 result for case D in Figure 9.11c implies the existence of a
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bimodal or multimodal heat transfer regime and demonstrates the broad range of disparate

time scales that can arise in low Pr rotating convection. Figure 9.12 shows Nusselt number

time series from a) case C, b) case D and c) case E, each plotted for roughly 9 thermal

diffusion time scales, τκ. The rotation rate is the same for these three cases, whereas the

thermal forcing is increased successively from C through E. The time variations of the Nusselt

numbers in cases C and E occur on the fluctuation time scales of the oscillatory convective

flows, qualitatively similar to the time series fluctuations in Figure 9.9. In contrast, case D

features much longer time scale, large amplitude swings in Nu. Here the characteristic time

scale of the Nu fluctuations is close to τκ.

Figure 9.13 shows spectra for the T4 and T8 thermistor time series from a) case C and

b) case D. The low frequency ranges of the spectra differ significantly. Case D has significant

spectral power at f ∼ 10−3 on both internal thermistors. In addition, the two cases differ in

the spectral range of the wall modes. Only a single dominant wall mode peak exists in case

C, whereas a broader range of wall mode frequencies are excited in case D. This allows for

a number of possible explanations for the low frequency heat transfer variability in case D.

One possibility is that multiple wall modes are interfering to give a low frequency beating

phenonmenon that manifests in the global heat transfer dynamics. Alternatively, there may

be different wall modes that are dominating at different times, each with different convective

heat transfer capabilities. In addition, it could be that wall modes and oscillatory modes

are interacting and resonating, such that energy is driven to low frequencies, and possible

to large scales (cf. Favier et al., 2014b; Plumley et al., 2016). Future experiments will also

include a high spatial resolution sidewall sensor array that I have built in order to better

map the wall mode dynamics in these cases. Irrespective of the precise explanation, the

case D results illustrate the propensity for multi-modal, scale-separated dynamics in low Pr,

rotating convection systems.
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9.5 Discussion

9.5.1 Experimental Summary

Our experimental results demonstrate that different convective modes can co-habitate within

the same fluid domain in low Pr rotating convection, as predicted by Goldstein et al. (1994).

Convection first onsets via bulk oscillatory modes, in good agreement with the theoretical

analysis of Zhang and Liao (2009) (Table 9.3). Wall modes are identified for the first time in

liquid gallium, developing at Ra ' 2RacylO (e.g., Figures 9.9d,f). The wall mode frequencies

are in adequate agreement with the linear asymptotic analysis made in Liao et al. (2006).

However, it is possible that the wall modes are developing at lower onset Ra values than

predicted by plane layer analyses. Experimental case C, shown in detail in Figure 9.10,

demonstrates that high frequency inertial oscillatory modes can dominate the fluid bulk,

while lower frequency wall modes can simultaneously precess around the container’s periph-

ery. Further, a number of cases in Figure 9.11 have low frequency heat transfer variability

that occurs not on the inertial time scales, but on thermal diffusion time scales. A broad-

band, turbulent regime is found at still stronger forcings such that Ra & 4RacylO (Figure

9.9.g,h). However, since the convective Rossby numbers are relatively close to unity in these

turbulent cases (RoC & 0.1), it is not likely that our experiments directly sample the low

Pr, geostrophic turbulence regime.

9.5.2 Geophysical Considerations

Broadly, we find rather different rotating convective flows in liquid metals in comparison

to those that develop in current day models of planetary core dynamics (cf. Christensen,

2011; Jones, 2011). In particular, no regime with steady columnar convection is found to

exist in liquid metal. This differs from convective flows in current non-metal-based dynamo

models, in which a finite regime of steady columnar convective flows exists and appears to be

important for the generation of Earth-like magnetic fields (Sreenivasan, 2010; Christensen,

2011; Soderlund et al., 2012). Our liquid metal rotating thermal convection results imply then
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that the quasi-geostrophic induction processes (Calkins et al., 2015) that occur in current

dynamo models (e.g., Yadav et al., 2016; Schaeffer et al., 2017) may differ significantly from

those occurring in planetary cores especially during epochs when thermal buoyancy is the

prime driver of fluid motions.

Similarly, in asymptotically reduced models of low Pr rotating convection, oscillatory

convection gives way to geostrophic turbulence without ever forming steady columns (e.g.,

see the Ra = Ra∞S , Pr = 0.0235 case in Figure 14 of Aurnou et al., 2015). Thus, steady

convection columns do not form in laboratory-numerical, low Pr models made at finite E,

nor do they form in reduced models made in the asymptotically-reduced, low E, low Ro

limit (Julien et al., 2012b). This suggests that steady columnar motions will not be excited

by low Pr thermal convection in planetary core settings as well. Our liquid gallium results

lead us to hypothesize that, as models become capable of simulating lower, more realistic

values of E and Pr, the steady local-scale convection column-based paradigm for planetary

dynamo generation will not prove to be robust.

Flows dominated by small-scale (e.g., `O ∼ (E/Pr)1/3) inertial oscillations have been

shown to be capable of generating dynamo action (e.g., Davidson and Ranjan, 2015; Calkins

et al., 2016). However, it has been argued that oscillatory modes cannot underly quasi-

steady dynamo action in planetary core settings since oscillatory convection tends to drive

oscillatory dynamo action (Roberts and King, 2013). Hypothetically, purely oscillatory local-

scale convection that is modulated on much larger scales should be capable of generating

Earth-like magnetic fields (Calkins et al., 2015). If this proves not to be the case, then

we must address how oscillatory flows can generate large-scale quasi-steady dynamo action.

One answer may be that the inertial nature of low Pr flows will tend to drive upscale,

inverse energy cascades, which generate large-scale barotropic axial columns (e.g., Julien

et al., 2012b; Favier et al., 2014b; Rubio et al., 2014; Stellmach et al., 2014; Aurnou et al.,

2015). Then it would be these larger-scale quasi-steady barotropic structures that support

the quasi-steady dynamo field (Guervilly et al., 2015). However, such a multi-scale, low Pr

dynamo system has yet to be realized in a global scale, spherical model.

The arguments above assume that thermal driving dominates the convection occurring
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in planetary cores. For Earth, this may be a reasonable argument prior to the formation of

the solid inner core (cf. O’Rourke and Stevenson, 2016). In contrast, we hypothesize here

that it may even be possible for oscillatory convection to dominate the local-scale, thermo-

compositional convection occurring in the present-day Earth. Since Ra∞O ∼ 10−2Ra∞S , it

is plausible that thermally-driven oscillatory flows will develop more easily and destabi-

lize compositionally-driven quasi-steady flows, even if the compositional buoyancy forcing

exceeds the thermal forcing. Alternatively, the admixture of these two buoyancy sources

may directly drive a broad-band quasi-geostrophic convective turbulence. To address these

zeroth-order dynamical questions, strongly-nonlinear models of thermo-compositional con-

vection must be developed that use realistic diffusivity values for the dynamically active

components.

Lastly, our experimental results demonstrate that wave modes naturally develop adjacent

to the container’s boundary, even in a fully convective fluid layer. These convective wall

modes should be the onset mode at Ekman numbers below about 10−7 (see Figure 9.1).

These types of modes should be easily excited in planetary core settings (Zhang, 1994; Vidal

and Schaeffer, 2015), given that Ra∞W ∼ 10−3Ra∞O ∼ 10−5Ra∞S . Thus, our findings can

provide support for scenarios in which planetary dynamo action is driven by multi-modal

turbulent convective flows, whilst the secular variation of the magnetic field is controlled by

the dynamics of larger-scale, slow wave modes localized near the core-mantle boundary (e.g.,

Zhang, 1994; Finlay and Jackson, 2003; Buffett, 2014).

9.6 Appendix

9.6.1 Internal Thermistors

9.6.2 Thermal Conductivity Data
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Sensor r/Ri φ [deg.] z/H
T1 0.70 60 0.838
T2 0.70 120 0.763
T3 0.70 180 0.673
T4 0.70 240 0.431
T5 0.70 300 0.007
T6 0.70 0 0.903
T7 0.35 0 0.836
T8 0.01 0 0.487
T9 0.01 180 0.902

Table 9.4: Positions of the internal thermistors T1 through T9 (column 1) shown in Figures
9.2c and 9.2d. The radial position of thermistors is shown in column 2, normalized by the
inner radius of the container Ri = D/2 = 9.7 cm. The azimuthal positions, φ, are reported in
degrees in column 3 (also see Figure 9.2c). Column 4 gives the thermistors’ axial coordinates
z measured upwards from the base of the fluid layer and normalized by the height of the fluid
layer H = 10.0 cm. The rows for T4 and T8 are shown in bold, as their data are compared
in detail throughout our study.

∆T P rpm Ra/RaexpO

2.01 19.55 8.17 0.80
3.15 29.52 30.6 0.26
5.28 49.44 30.6 0.43
12.88 120.06 32.7 0.96

Table 9.5: Conduction measurements of the thermal conductivity of liquid gallium. Col-
umn 1: temperature difference, ∆T , across the tank in degrees Kelvin. Column 2: power
input to the heat pad, P , in Watts. The heat flux is equal to this power divided by the
area of the tank (i.e., (πD2)/4) with D = 0.194 m. Column 3: angular rotation rate re-
ported in revolutions per minute (rpm). Column 4: Ratio of the Rayleigh number and the
experimentally-determined Rayleigh number at the onset of convection, RaexpO , given in Table
9.3.

9.6.3 Convection Data
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Case rpm P (W) ∆T (◦C) T (◦C) 105E 10−6Ra 102 Pr Ra/Racyl
O Nu Regime

0 49.0 1.32 36.83 ∞ 0.349 2.76 – 3.99 RBC
0 78.1 1.93 37.55 ∞ 0.510 2.75 – 4.42 RBC
0 151.2 3.22 39.16 ∞ 0.859 2.72 – 5.07 RBC
0 201.1 4.03 40.24 ∞ 1.08 2.71 – 5.38 RBC
0 249.1 4.75 41.26 ∞ 1.28 2.70 – 5.65 RBC
0 349.4 6.21 40.60 ∞ 1.67 2.71 – 6.07 RBC
0 498.2 8.18 46.37 ∞ 2.25 2.64 – 6.57 RBC
0 601.0 9.55 38.85 ∞ 2.54 2.73 – 6.79 RBC
0 696.9 10.64 47.52 ∞ 2.95 2.62 – 7.07 RBC
0 995.4 14.05 41.81 ∞ 3.79 2.69 – 7.64 RBC
0 1195 16.30 43.59 ∞ 4.44 2.67 – 7.91 RBC
0 1388 18.40 46.35 ∞ 5.07 2.64 – 8.14 RBC
0 1586 20.12 46.36 ∞ 5.54 2.64 – 8.50 RBC

3.06 9.6 1.03 36.15 5.60 0.272 2.77 1.26 1.00 BO
3.06 14.5 1.46 36.43 5.60 0.384 2.77 1.79 1.07 BO
3.06 19.7 1.83 36.68 5.59 0.483 2.76 2.25 1.16 OW
3.06 24.8 2.17 36.92 5.58 0.574 2.76 2.67 1.23 WM
3.06 29.2 2.4 37.09 5.58 0.635 2.76 2.95 1.31 WM
3.06 38.9 2.9 37.49 5.57 0.767 2.75 3.57 1.45 T
3.06 59.4 3.7 38.13 5.55 0.983 2.74 4.57 1.73 T
3.06 98.8 4.93 39.25 5.52 1.32 2.73 6.12 2.16 T
3.06 199.2 7.06 39.93 5.50 1.89 2.72 8.79 3.04 T
8.17 19.6 2.10 36.81 2.10 0.553 2.76 0.86 1.01 Sub
8.17 24.7 2.63 37.13 2.09 0.694 2.76 1.08 1.01 BO
8.17 29.0 3.01 37.39 2.09 0.796 2.75 1.24 1.04 BO
8.17 38.8 3.92 37.96 2.08 1.04 2.74 1.62 1.07 BO
8.17 48.9 4.82 38.47 2.08 1.28 2.74 1.99 1.09 OW
8.17 59.2 5.38 38.97 2.07 1.43 2.73 2.23 1.19 WM
8.17 69.2 6.10 39.44 2.07 1.63 2.72 2.54 1.22 WM
8.17 78.9 6.72 39.89 2.07 1.80 2.72 2.80 1.27 WM
8.17 98.6 7.79 39.88 2.07 2.08 2.72 3.25 1.37 WM

F 8.17 147.6 10.0 40.67 2.06 2.68 2.71 4.18 1.59 T
8.17 198.8 11.93 40.35 2.06 3.20 2.71 4.99 1.80 T
8.17 248.3 13.56 40.87 2.06 3.64 2.71 5.68 1.98 T
8.17 248.1 13.53 45.54 2.01 3.71 2.65 5.78 1.98 T
8.17 323.1 15.56 40.89 2.06 4.18 2.71 6.52 2.24 T
8.17 396.4 17.34 40.86 2.06 4.68 2.71 7.30 2.45 T
8.17 395.2 17.43 49.38 1.98 4.85 2.60 7.55 2.46 T
8.17 498.2 19.57 42.33 2.04 5.30 2.69 8.25 2.75 T
8.17 597.9 21.51 43.70 2.03 5.86 2.67 9.12 3.0 T
8.17 695.7 23.26 44.95 2.01 6.37 2.65 9.92 3.23 T
8.17 796.3 24.84 46.08 2.01 6.84 2.64 9.65 3.46 T
8.17 991.8 27.92 47.44 2.00 7.73 2.62 12.04 3.83 T

Table 9.6: Convection data. Applied heating power is P ; vertical temperature difference is
∆T ; mean fluid temperature is T . Ekman number is E; Rayleigh number is Ra; Prandtl
number is Pr; supercriticality is Ra/RacylO ; and Nusselt number is Nu. Regimes: subcritical
cases are “Sub”; bulk oscillatory convection is “BO”; first detection (onset) of wall modes
is denoted “OW”; wall mode cases are “WM”; broad band spectra are interpreted to be
turbulent convection “T”.
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Case rpm P (W) ∆T (◦C) T (◦C) 105E 10−6Ra 102 Pr Ra/Racyl
O Nu Regime

16.33 56.6 6.11 39.29 1.04 1.63 2.73 1.10 1.00 BO
A 16.33 59.6 6.24 39.40 1.04 1.67 2.73 1.13 1.03 BO

16.33 79.2 8.08 40.60 1.03 2.17 2.71 1.47 1.06 BO
16.33 89.6 9.15 41.24 1.03 2.46 2.70 1.66 1.06 BO
16.33 93.6 9.57 40.70 1.03 2.57 2.71 1.74 1.06 BO

B 16.33 99.1 9.99 40.05 1.03 2.67 2.72 1.81 1.07 OW
16.33 119.4 11.47 40.05 1.03 3.07 2.72 2.07 1.12 WM
16.33 148.4 12.94 40.15 1.03 3.47 2.72 2.34 1.24 WM
16.33 199.7 16.06 40.44 1.03 4.31 2.71 2.91 1.34 WM
16.33 249.3 18.66 41.42 1.03 5.03 2.70 3.40 1.44 WM
16.33 349.3 23.30 44.10 1.01 6.36 2.66 4.30 1.62 WM
16.33 421.8 26.01 45.47 1.01 7.14 2.65 4.82 1.75 WM
16.33 498.9 28.79 46.89 1.00 7.96 2.63 5.38 1.87 T
16.33 597.8 31.86 48.81 0.991 8.88 2.61 6.00 2.02 T
16.33 597.8 31.56 48.52 0.993 8.78 2.61 5.93 2.04 T
16.33 695.6 34.47 50.35 0.985 9.67 2.59 6.53 2.18 T
16.33 796.4 37.22 51.17 0.981 10.5 2.58 7.08 2.31 T
32.66 120.1 12.88 40.72 0.515 3.46 2.71 1.00 1.01 Sub
32.66 124.6 13.48 40.10 0.516 3.61 2.72 1.05 1.00 BO
32.66 159.4 16.56 40.13 0.516 4.44 2.72 1.29 1.04 BO
32.66 190.3 19.51 41.06 0.514 5.25 2.70 1.52 1.05 BO
32.66 199.8 20.43 41.64 0.512 5.51 2.70 1.60 1.06 BO
32.66 203.7 20.61 41.76 0.512 5.56 2.69 1.61 1.07 OW
32.66 230.1 22.55 43.11 0.509 6.12 2.68 1.77 1.10 WM

C 32.66 258.3 24.02 43.22 0.509 6.53 2.68 1.89 1.16 WM
D 32.66 299.7 27.03 46.32 0.501 7.45 2.64 2.16 1.20 WM
E 32.66 348.7 30.10 47.46 0.499 8.34 2.62 2.42 1.25 WM

32.66 397.1 32.80 49.46 0.494 9.16 2.60 2.66 1.31 WM
32.66 498.3 38.05 52.45 0.488 10.8 2.56 3.12 1.41 WM
32.66 597.5 43.13 55.29 0.482 12.4 2.53 3.58 1.49 WM
32.66 694.8 47.58 54.98 0.482 13.6 2.53 3.95 1.58 T

Table 9.7: Convection data, continued. Applied heating power is P ; vertical temperature
difference is ∆T ; mean fluid temperature is T . Ekman number is E; Rayleigh number is Ra;
Prandtl number is Pr; supercriticality is Ra/RacylO ; and Nusselt number is Nu. Regimes:
subcritical cases are “Sub”; bulk oscillatory convection is “BO”; first detection (onset) of
wall modes is denoted “OW”; wall mode cases are “WM”; broad band spectra are interpreted
to be turbulent convection “T”.
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Conclusion

I have conducted laboratory experiments to study the characteristics of mechanical- and

convective-forcing as is relevant for understanding the turbulent flows generated in the low

viscosity oceans and liquid metal cores of planetary interiors. To carry out such experiments,

I have used three unique devices that are capable of modeling the fundamental ingredients

needed to understand two types of mechanical forcing: libration and tides in the geophysi-

cally relevant ellipsoids and ellipsoidal shells and convection in right cylindrical geometries

characterizing high latitude planetary core style convection. Laboratory experiments cur-

rently provide the best means for investigating these turbulent flows at extreme parameters

that are closer to those expected in planetary settings. Although laboratory experiments

offer more extreme parameters, the spatial and temporal resolution of the diagnostics used

are generally limited and thus these studies are accompanied by direct numerical simulations

capable of resolving the entire flow field albeit at generally lower parameters.

I have presented laboratory experimental results demonstrating that librational forcing

of an ellipsoidal container of water can produce intense motions through the mechanism of a

libration driven elliptical instability (LDEI). These libration studies are conducted using an

ellipsoidal acrylic container filled with water. A particle image velocimetry method is used

to measure the 2D velocity field in the equatorial plane over hundreds libration cycles for a

fixed Ekman number, E = 2× 10−5. In doing so, we recover the libration induced base flow

and a time averaged zonal flow. Further, we show that LDEI in non-axisymmetric container

geometries is capable of driving both intermittent and saturated turbulent motions in the

bulk fluid. Additionally, we measure the growth rate and amplitude of the LDEI induced

excited flow in a fully ellipsoidal container at more extreme parameters than previously

studied.

By combining laboratory experiments with high resolution numerical simulations in iden-

tical geometries, the LDEI is observed both numerically and experimentally. As the Ekman

number is varied from over nearly an order of magnitude from E ≤ 5.5× 10−4, the elliptical

instability is characterized by discrete temporal spectra with signals at the forcing frequency
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and at half the forcing frequency. The decrease of the Ekman number and hence a decrease in

the strength of the viscous forces allows the excitation of additional triadic resonances finally

resulting in the transition to turbulence and a continuous frequency spectra characterized as

rotating turbulence.

A combined laboratory experimental and numerical approach was adapted to investigate

the response of an fluid to tidal forcing by combining laboratory equatorial velocity mea-

surements with selected high-resolution numerical simulations to show, for the first time, the

generation of bulk filling turbulence. The mathematical formulation used for librational forc-

ing is generalized to model tidal effects. The transition to saturated turbulence, analogous

to librational forcing, is characterized by an elliptical instability that first excites primary

inertial modes of the system, then secondary inertial modes forced by the primary inertial

modes, and then bulk filling turbulence. The amplitude of this saturated turbulence scales

with the bodys elliptical distortion, U ∼ β, while a time- and radially averaged azimuthal

zonal flow scales with β2. The striking similarities between tidally and librationally driven

flow transitions to bulk turbulence and zonal flows suggest a generic fluid response indepen-

dent of the style of mechanical forcing. Since β ≤ 10−4 in planetary bodies, it is often argued

that mechanically driven zonal velocities will be small. In contrast, our linear scaling for me-

chanically driven bulk turbulence, U ∼ β, suggests geophysically significant velocities that

can play a significant role in planetary processes including tidal dissipation and magnetic

field generation.

The persistence of the LDEI is confirmed in the more geophysically relevant ellipsoidal

shells using a combined laboratory experimental and numerical approach even though the ex-

istence of inertial modes in such a geometry was previously uncertain. By using five different

spherical inner cores of varying sizes, χ = 0− 0.74, librational forcing in the ellipsoidal shell

supports the direct excitation of inertial modes and LDEI that is spatially inhomogeneous

as χ increases. The different responses at high latitudes and low latitudes indicates that in

addition to the necessity for understanding the turbulence and resulting dissipation at more

extreme parameters, E ∼ O(10−15), it may also be necessary to understand the geometric

effects for such an instability where χ→ 1 as is the case for subsurface oceans.
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For rotating convection in moderate Prandtl number (Pr ∼ 7) fluids, the Nu − Ra

scaling slope increase as the Ekman number decreases. For E = 10−7, the heat transfer

scaling is given by Nu ∼ (Ra/Racrit)
3.6, which is the steepest slope observed in any rotating

convection setting. Such increasingly steep scalings that correspond, structurally, to coher-

ent axialized convective columns that play fundamental roles for the dynamo generation in

current numerical models are found in a shrinking parameter space. Once Ra passes a tran-

sition value RaT , the data follows a shallower slope corresponding to the nonrotating scaling

slope, Nu ∼ Ra0.322. The transition from the columnar regime to the inertial dominated

regime depends on rotation such that RaT ∼ E3/2 and estimates for supercriticality in the

Earth’s core suggest that the convective flows are not comprised of columns but may be

more accurately described by a geostrophic turbulence not encompassed by current dynamo

models.

While the laboratory experimental results at moderate Pr suggest that for large su-

percriticality, far from onset, the existence of coherent convective columns is unlikely, the

laboratory experimental results for rotating convection of a low Pr liquid metal suggest that

such structures are also not likely near the onset of convection. Analysis of thermal signals

inside the fluid layer reveal that the convection threshold is first overcome in the form of a

container scale inertial oscillatory modes. This oscillatory mode sets in at values of Ra well

below the critical Rayleigh numbers where steady rotating columnar convection occurs. At

stronger forcing, sidewall-attached modes are generated that coexist with the bulk oscillatory

modes.

Since oscillatory convection is significantly easier to excite than the steady convection that

takes place in many dynamo models, it may be that thermally-driven oscillatory motions

will generate dynamo action in planetary settings, well before steady convective flows are

generated. While the simulation of rotating convection and dynamos in liquid metals is

not currently computationally feasible, our findings highlight the need for combining theory

and simulations with coupled laboratory experiments in order to understand the unique

combination of strongly turbulent yet strongly constrained planetary core-style turbulence

in liquid metals
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The success of the combined laboratory experimental and numerical studies discussed in

this dissertation challenges the current understanding of planetary dynamics. The studies

of Christensen and Aubert (2006) and Aubert et al. (2017) have suggested that the path

that connects the fundamental behaviors of the current dynamo models with the underlying

dynamics of planetary dynamos is clear despite the large strength of diffusion and unrealistic

material properties used in those current models. The work in this dissertation has shown

the existence of new behaviors found in realistic fluids at more extreme parameters that

are not represented in the current dynamo models and are likely relevant for understand-

ing planetary dynamos. To better address the asymptotic behaviors of turbulent dynamos

constrained by strong rotation and magnetic fields, a new generation of larger experiments

and higher resolution numerical simulations that can access more extreme parameters and

capture more realistic types of planetary turbulence. For mechanical forcing, a larger li-

bration device is currently being designed in the IRPHE Laboratory in Marseille, France,

while the most extreme numerical simulations at E ∼ 10−6 and β ∼ 10−2 are disentangling

the characteristics of wave turbulence generated by elliptical instability [e.g., Le Reun et al.

(2017)]. The theoretical framework for this turbulence is currently being investigated by R.

Kerswell who helped generalize the theoretical foundation for the elliptical instability [e.g.,

Kerswell (2002)].

An understanding of mechanically-forced turbulence will also help to foster a new genera-

tion of studies assessing the dynamo capabilities of such flows. Mechanically forced dynamos

have already been demonstrated through precession in spherical geometries (Tilgner (2005);

Lin (2015)) as well as in oblate spheroids (Wu and Roberts (2009)). Tidally-forced dynamos

have been studied in spheres (Cébron and Hollerbach (2014)) and in local Cartesian mod-

els (Barker and Lithwick (2014)) where the tidal deformation is represented as a body force

that imposes a base flow. Librationally-forced dynamos have also been investigated in oblate

spheroidal geometries (Wu and Roberts (2013)) with stress-free boundaries. However, the

secondary flow generated in the boundary to satisfy the stress-free condition was capable of

generating a dynamo when no instability in the bulk was present. More realistic librationally-

driven dynamos require a geometry that is ellipsoidal about the axis of rotation. However,

324



the governing equations are challenging to solve efficiently in such geometries with accurate

velocity and magnetic boundary conditions. To this end, my colleague Benjamin Favier is

currently working on developing more efficient numerical methods using the spectral element

code, Nek5000, whose hydrodynamic results were used in Chapters 4, 5, and 6.

In addition, mechanically-forced dynamo experiments have been, and currently are being,

designed and constructed. The first and largest experiment is the three meter outer diameter,

χ = 0.3, spherical shell filled with liquid sodium and located at the University of Maryland

[e.g., Zimmerman et al. (2014)]. The mechanical forcing is generated through differential

rotation of the inner core relative to the outer core that then generates flow through viscous

coupling. The lack of dynamo action in the experiment to date emphasizes the inefficiency of

viscous coupling to generate bulk turbulence. As such, the experiment is being modified with

baffles attached to the inner core in order to provide a stronger topographic coupling and,

in turn, more efficiently generate turbulence. A separate precessionally-driven cylindrical

experiment using liquid sodium is being designed and constructed in Germany [e.g., Stefani

et al. (2014)]. The cylindrical container has a unit aspect ratio with a height of two meters.

Proof-of-concept, 1:6 scaled, hydrodynamic experiments have shown that this precessional

forcing is indeed capable of generating unstable flow so the full scale experiment holds promise

for generating mechanically-forced turbulence capable of sustaining dynamo action [e.g.,

Herault et al. (2015)].

For studies of rotating thermal convection, new, larger device are currently being de-

signed, built, and run at UCLA, the Netherlands, Italy, and Germany [e.g., Cheng et al.

(2017)]. These laboratory experiments can access a wide range of parameters and investi-

gate turbulent flow transitions and asymptotically predicted regimes. These tools will also

be able to explore new regimes where the turbulence, likely driven at small scales, cascades to

larger scale structures that are an ultimate regime in rapidly rotating yet turbulent systems

and can be generated in both mechanically forced and convectively-forced systems [e.g.,

Mininni and Pouquet (2010); Käpylä et al. (2011); Julien et al. (2012b); Chan and Mayr

(2013); Barker and Lithwick (2013); Guervilly et al. (2015); Lin et al. (2015); Le Reun et al.

(2017)].
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Fluid motions in planetary interiors and the forces acting on them are more complex

than the simplified representation provided by the reduced models used in this work. It is

well understood that many forces, thermochemical convection or stratification, librational

forcing, tidal forcing etc., are acting on the planetary fluid layers simultaneously over a

variety of length and time scales. While some might argue that the intraforce interactions

can stifle planetary processes like dynamo action, it is also possible that such processes are

enhanced by intraforce interactions creating new instabilities and enhancing others. As a

simple analog, the interaction of libration and tidal forcing in stratified fluid layers that

are ubiquitous in planets is worth investigating as it may generate, not an inertial wave

elliptical instability as was discussed in this dissertation, but a gravito-inertial wave elliptical

instability. Instead, by showing that the turbulent response of fluids to tides and libration is

equivalent (Chapter 5), I hypothesize that multi-frequency librational forcing might act as

a proxy for a combined tidal-librational forcing. This forcing can be more easily realized by

making minor modifications to the libration experiment described in Chapter 2.

For convective forcing, we are beginning to understand fundamental differences in the

convective response of rotationally constrained low Prandtl fluids with moderate Prandtl

flows. Additionally, I am also in the process of investigating the zeroth order flow responses

and transitions that take place when magnetic forces are applied separately and then to-

gether with rotation in order to investigate theories of magnetostrophy in comparison with

those of rotating convection and magnetoconvection. Furthermore, it is likely that thermal

and chemical processes related to the release of light elements from inner core cooling and

solidification and from exsolution of material from the mantle may contribute to convection.

To date, few studies have investigated thermochemical convection and the effects that it has

on flows structures and other dynamics. Qualitative experimental work by Cardin and Olson

(1992) found similarities between the flow structures generated by thermal convection and

thermochemical convection in moderate Prandtl number fluids. It is then useful to apply

the tools used in this dissertation to measure flow velocities and temperatures of such flows

and to investigate how thermochemical convection might be studied in low Prandtl number

fluids as are more geophysically relevant for modeling core flows but certainly a challenge
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experimentally.
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M. Pozzo, C. Davies, D. Gubbins, and D. Alfé. Thermal and electrical conductivity of iron

at Earth’s core conditions. Nature, 485:355–358, 2012.

347



A. Ribeiro, G. Fabre, J.-L. Guermond, and J. M. Aurnou. Canonical models of geophysical

and astrophysical flows: Turbulent convection experiments in liquid metals. Metals, 5:

289–335, 2015.

M. Rieutord. Linear theory of rotating fluids using spherical harmonics part II, time-periodic

flows. Geophys. & Astrophys. Fluid Dyn., 59:185–208, 1991.

M. Rieutord. Evolution of rotation in binaries: physical processes. Stellar Rotation, Proc.

IAU Symp., 215:394–403, 2003.

M. Rieutord and L. Valdettaro. Inertial waves in a rotating spherical shell. J. Fluid Mech.,

341:77–99, 1997.

M. Rieutord and L. Valdettaro. Viscous dissipation by tidally forced inertial modes in a

rotating spherical shell. J. Fluid Mech., 643:363–394, 2010.

M. Rieutord, B. Georgeot, and L. Valdettaro. Inertial waves in a rotating spherical shell:

attractors and asymptotic spectrum. J. Fluid Mech., 435:103–144, 2001.

P. Roberts and J. M. Aurnou. On the theory of core-mantle coupling. Geophys. Astrophys.

Fluid Dyn., 106:157–230, 2012.

P. H. Roberts and E. M. King. On the genesis of the Earth’s magnetism. Rep. Prog. Phys.,

76(9):096801, 2013.

P. Roche. On triggering of the ultimate regime of convection. New J. Phys., 12:085014, 2010.

H. T. Rossby. A study of Bénard convection with and without rotation. J. Fluid Mech., 36

(2):309–335, 1969.

A. M. Rubio, K. Julien, E. Knobloch, and J. B. Weiss. Upscale energy transfer in three-

dimensional rapidly rotating turbulent convection. Phys. Rev. Lett., 112:144501, 2014.
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