
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A Retargetable Query-based Approach to Scaling Dataframes

Permalink
https://escholarship.org/uc/item/7qj4214z

Author
Sinthong, Phanwadee

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qj4214z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A Retargetable Query-based Approach to Scaling Dataframes

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Phanwadee Sinthong

Dissertation Committee:
Professor Michael J. Carey, Chair

Professor Chen Li
Professor Ramesh Jain

2021

Portions of Chapters 4 and 5 © 2019 IEEE
Portions of Chapter 6 © 2021 VLDB Endowment doi 10.14778/3476249.3476281

Portions of Chapter 7 © 2021 EDBT/ICDT Workshops
All other materials © 2021 Phanwadee Sinthong

DEDICATION

To my loving family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 Background 4
2.1 Pandas . 4
2.2 Eager vs. Lazy Evaluation . 5
2.3 Apache AsterixDB . 5

3 Related Work 7
3.1 Big Data Platforms . 7

3.1.1 Apache Spark . 7
3.1.2 Hive . 8

3.2 Scalable Dataframes . 8
3.2.1 Parallel Execution Frameworks . 9
3.2.2 Distributed Compute Engines . 9
3.2.3 Scaling Dataframes with Databases 10

3.3 Polystores . 10
3.4 Relationship to This Work . 11

4 AFrame 12
4.1 Introduction . 12
4.2 User Model . 13

4.2.1 Acquiring Data . 13
4.2.2 Operating on Data . 14
4.2.3 Support for Machine Learning Models 15
4.2.4 Result Persistence . 17

4.3 System Architecture . 18

iii

4.4 Incremental Query Formation . 19
4.5 Conclusion . 20

5 A Dataframe Benchmark 21
5.1 Introduction . 21
5.2 Benchmark Datasets . 22
5.3 Benchmark Queries . 24
5.4 Comparisons with Other Dataframe Libraries 25

5.4.1 Evaluated System Details . 25
5.4.2 Experimental Setup . 27
5.4.3 Preliminary Results . 30
5.4.4 Single-node Results . 32
5.4.5 Multi-node Results . 39
5.4.6 Result Discussion . 44

5.5 Conclusion . 46

6 PolyFrame 47
6.1 Introduction . 47
6.2 System Architecture . 49
6.3 Query Rewrite . 50

6.3.1 Supported Language Requirement . 52
6.3.2 Generic Rewrite Rules . 53
6.3.3 Language-specific Rewrite Rules . 53

6.4 Per-language Rewrite Examples . 55
6.5 Experimental Evaluation . 58

6.5.1 Experimental Setup . 58
6.5.2 Spark Comparison Results . 61
6.5.3 PolyFrame’s Heterogeneity Results: Single-node 64
6.5.4 PolyFrame’s Heterogeneity Results: Multi-node 71
6.5.5 Result Discussion . 72

6.6 Conclusion . 76

7 Case Studies 78
7.1 Introduction . 78
7.2 Classification Case Study . 79

7.2.1 Data Preparation . 80
7.2.2 Modeling . 81
7.2.3 Evaluation and Deployment . 85
7.2.4 Lessons Learned . 88

7.3 Exploratory Data Analysis Case Study . 88
7.3.1 Functionality Supported . 90
7.3.2 Data Acquisition . 92
7.3.3 Data Preparation . 93
7.3.4 Data Analysis . 97
7.3.5 Data Visualization . 100

iv

7.3.6 End-to-end Performance Comparison with Pandas 102
7.3.7 Evaluation Results . 105
7.3.8 Discussion of Experiments . 111

7.4 Conclusion . 113

8 Conclusion and Future Work 114
8.1 Conclusion . 114
8.2 Future Work . 115

Bibliography 117

Appendix A AsterixDB DDL 121

Appendix B PolyFrame Translated Queries and Rewrite Rules 123

Appendix C Benchmark Translated Queries 139

v

LIST OF FIGURES

Page

2.1 SQL++ queries . 6

4.1 Initializing AFrame Objects . 13
4.2 DataFrame expressions and underlying queries 15
4.3 Training a Scikit-Learn Pipeline . 16
4.4 Applying CoreNLP and Scikit-Learn models 17
4.5 Persist Sentiment Analysis Results . 18
4.6 Initializing AFrame Objects . 19
4.7 Incremental Query Formation . 20

5.1 XS Results of Single Node Evaluation . 31
5.2 Single Node Evaluation: Expression 1-3 Results (* = value where the bar ends) 34
5.3 Single Node Evaluation: Expression 4-6 Results (* = value where the bar ends) 35
5.4 Single Node Evaluation: Expression 7-9 Results (* = value where the bar ends) 36
5.5 Single Node Evaluation: Expression 10-12 Results (* = value where the bar

ends) . 37
5.6 Multi-Node Speedup Evaluation Results . 41
5.7 Multi-Node Speedup Evaluation Results (continued) 42
5.8 Multi-Node Scaleup Evaluation Results . 43
5.9 Multi-Node Scaleup Evaluation Results (continued) 44

6.1 AFrame’s New Architecture (PolyFrame) . 50
6.2 Flowchart of a query rewrite . 51
6.3 AFrame vs. PolyFrame query construction 52
6.4 Configuration Template Overview . 54
6.5 Sample Rewrite Rules . 55
6.6 Single-node Experiment with Spark on MongoDB 62
6.7 Selected single node Spark and PolyFrame comparisons (*=value where the

bar ends) . 63
6.8 Cluster Experiment with Spark on Vertica 64
6.9 XS Results of Single Node Evaluation . 65
6.10 Exp.1-4 Single Node Evaluation Results (*=value where the bar ends) 68
6.11 Exp.5-8 Single Node Evaluation Results (*=value where the bar ends) 69
6.12 Exp.9-12 Single Node Evaluation Results . 70
6.13 Exp.13 Single Node Evaluation Results . 71

vi

6.14 Speedup Evaluation Results . 73
6.15 Scale-up Evaluation Results . 74

7.1 Acquire data . 80
7.2 Data cleaning and exploration . 81
7.3 One-hot encodings . 82
7.4 Applying functions to create new columns 83
7.5 Preparing data for model training . 84
7.6 Model training and inferencing . 85
7.7 Calling the model using the function syntax 86
7.8 Persisting the transformation . 87
7.9 Model inferencing . 87
7.10 Data Acquisition . 94
7.11 Data Preparation . 95
7.12 Data Analysis . 98
7.13 Applying Machine Learning Model . 99
7.14 Data Visualization . 101
7.15 Overall Result . 106
7.16 End-to-end Scalability Result . 107
7.17 Data Acquisition Result . 108
7.18 Data Preparation Result . 109
7.19 Data Analysis Result . 110
7.20 Data Visualization Result . 111

vii

LIST OF TABLES

Page

5.1 Scalable Wisconsin benchmark: attributes [37] 23
5.2 Dataframe Benchmark Operations (df, df2 = DataFrame objects, x,y,z = vari-

ables representing random values within an attribute’s range) 24
5.3 Dataset Summary (mil = million) . 29
5.4 Speedup Experiment Setup . 29
5.5 Scaleup Experiment Setup . 30

6.1 PolyFrame’s Incremental Query Formation 56
6.2 Single Node’s Dataset Summary (mil = million) 59
6.3 Multi-Node Experiment Setup . 61

7.1 Functionality Support Levels . 91
7.2 Listings Dataset Summary . 103
7.3 Review Dataset Summary . 103

viii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance and support from my
advisor, Professor Michael Carey. He has been an excellent advisor and an understanding
teacher who I will always look up to. I still remember vividly our first meeting in his office
when I was still figuring out my research topic. Every meeting since then has been some of
the most valuable learning experiences for me. Throughout my Ph.D. journey, I have learned
from Professor Carey how to conduct research in the field of data management and more
importantly, how to grow as a Ph.D. student. I am fortunate to have him as my advisor. I
could not thank him enough for this remarkable opportunity.

I would like to thank Professor Chen Li and Professor Ramesh Jain for joining my dissertation
committee. The first data management class I took was with Professor Li. He has given
valuable and constructive feedback that has helped improve the quality of this dissertation
in terms of important system requirements. Professor Jain has inspired an important part of
the work in the last chapter of this dissertation. His expertise in usability analysis has guided
me to conduct performance comparisons that significantly strengthen this dissertation and
highlight its impact in a tangible and meaningful way.

I am very fortunate to have worked with Professor Heri Ramampiaro, Xikui Wang, Wail
Alkowaileet, and Glenn Galviso. I very much value our meetings, stimulating conversations,
and fruitful discussions. Their comprehensive observations and objective critiques have al-
ways inspired me to think outside the box and approach problems from different perspectives.
I would like to thank the AsterixDB team especially Ian Maxon, Dmitry Lychagin, and Till
Westmann for their insightful technical discussions and supports. I am tremendously grateful
for their collaboration.

My journey as a Ph.D. student would not have been rewarding without my friends and
colleagues. I am indebted to Praveen Venkateswaran, Shiva Jahangiri, Chen Luo, Taewoo
Kim, Jianfeng Jia, Sumaya Almanee, Sameera Ghayyur, and Norrathep Rattanavipanon for
their support and encouragement during the past few years. Our random conversations have
kept me entertained and provided moral support, which made it possible for me to soldier
through tough times and difficult moments.

I would like to thank Onnicha Krittayajaroenpong for her love, unwavering support, and
understanding over the past five years. My journey would not have been as enjoyable without
her.

Most importantly, I would like to thank my family for their unconditional love and support.
I would not have made it this far without their understanding, patience, and encouragement.

The work reported in this dissertation has been supported in part by a UCI/ICS Exploration
Award, by the Donald Bren Foundation (via a Bren Chair), and by NSF awards IIS-1954962
and CNS-1925610.

ix

VITA

Phanwadee Sinthong

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, California

Master of Science in Computer Science 2015
University of California, Los Angeles Los Angeles, California

Bachelor of Arts in Computer Science 2014
University of Virginia Charlottesville, Virginia

PUBLICATIONS

PolyFrame: A Retargetable Query-based Approach to Scaling 2021
Dataframes
Proceedings of the VLDB Endowment (PVLDB)

Scale-independent Data Analysis with Database-backed 2021
Dataframes: A Case Study
Workshop on Data Analytics and Machine Learning Made Simple @ EDBT

Scaling DNN-Based Video Analysis by Coarse-grained and 2020
Fine-grained Parallelism
IEEE International Conference on Multimedia and Expo (ICME)

AFrame: Extending DataFrames for Large-scale Modern Data Analysis 2019
IEEE International Conference on Big Data (Big Data)

End-to-End Machine Learning with Apache AsterixDB 2018
Workshop on Data Management for End-To-End Machine Learning @ SIGMOD

x

ABSTRACT OF THE DISSERTATION

A Retargetable Query-based Approach to Scaling Dataframes

By

Phanwadee Sinthong

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Michael J. Carey, Chair

In the last few years, the field of data science has been growing rapidly as various busi-

nesses have adopted statistical and machine learning techniques to empower their decision

makings and applications. Scaling up analysis, possibly including the application of custom

machine learning models, to large volumes of data, requires the utilization of distributed

frameworks which can introduce serious technical challenges to data analysts and reduce

their productivity.

In order to efficiently support the full Big Data analysis lifecycle without requiring extensive

distributed systems knowledge, we extend data scientists’ familiar tool, Pandas dataframe,

to operate on managed data at scale. We introduce AFrame, a new scalable analysis package

that integrates a Pandas-like user experience with data management systems to provide an-

alysts with a familiar working environment while scaling out the evaluation of the analytical

operations over a large data cluster to enable analysis on large-scale managed datasets.

There are four aspects involved in this dissertation: The first is constructing a new framework

(“AFrame”). We have implemented AFrame on top of Apache AsterixDB by transparently

converting dataframe operations to SQL++ queries. The second aspect is making AFrame

more flexible for deployment with other composable query languages by retargeting AFrame’s

incremental query formation to other query-based database systems. The third aspect is

xi

creating a benchmark to evaluate our framework’s performance. The fourth and final aspect

is to demonstrate the feasibility and efficacy of our framework through a case study analysis.

xii

Chapter 1

Introduction

In this era of big data, extracting useful patterns and intelligence for improved decision-

making is becoming a standard requirement for many businesses. The growing interest

in interpreting large volumes of user-generated content for purposes ranging from business

advantages to societal insights motivates the development of data analytic tools. As the

volume of data grows but little is known about the data, data scientists have to iteratively

perform analyses over large volumes of data. As a result, various libraries and frameworks

have been developed to ease the processing of big data. However, efficiently utilizing these

tools requires distributed system and data management knowledge from data scientists who

should only be focused on data modeling, selection of machine learning techniques, and data

exploration, which in turn lower their productivity. To address these limitations, in this

dissertation we propose a scalable data analytic framework that integrates a data scientists’

familiar tool, dataframe, with data management capabilities. There are four aspects involved

in this work.

First, constructing a scalable data analytics library, AFrame, that provides a Pandas-like

dataframe interface on top of Apache AsterixDB [3]. AFrame leverages distributed data

1

storage and management in order to accommodate the rapid rate and volume at which

modern data arrives. AFrame translates dataframe operations and incrementally constructs

SQL++ queries. It leverages lazy evaluation and only sends the queries for execution when

the results are required. This design decision allows AFrame to take advantage of Aster-

ixDB’s data management capabilities and optimizations to efficiently interact, transform,

and analyze large amounts of data efficiently, enabling much more interactive data manipu-

lation.

The second aspect is to make AFrame more flexible to enable a wider audience in the

data science community to leverage its scale-independent data analysis and data manage-

ment capabilities. This is achievable by abstracting AFrame’s existing language translation

layer and retargeting its incremental query formation mechanism to operate against other

database systems. We establish a set of rewrite rules to provide an easily extensible tem-

plate for supporting other composable query languages, thus allowing AFrame to operate

against other query-based database systems. As a proof-of-concept, we have applied our

language rewrite rules to four different query languages SQL++ [35], SQL [34], MongoDB’s

Query Language [23], and Cypher [40] to retarget AFrame to work against AsterixDB [3],

PostgreSQL [25], MongoDB [22], and Neo4j [24, 52] respectively.

The third aspect of this dissertation is a distributed dataframe benchmark for general data

analytics. The performance of a big data system is greatly affected by the characteristics

of its workload. Understanding these characteristics and being able to compare various sys-

tems’ performance on a set of related analytic tasks will lead to more effective tool selection.

Various benchmarks [10, 36, 38, 44, 50] have been developed for big data framework as-

sessment, but these benchmarks are either SQL-oriented benchmarks for OLTP or OLAP

operations or focus on end-to-end application-level performance. To our knowledge, there is

no standard dataframe benchmark yet for large-scale data analytic use cases.

Fourth, demonstrating the usability and performance benefits of using PolyFrame to perform

2

end-to-end data analysis on real datasets. The case study analysis is also helpful in identi-

fying the current limitations and potential future optimization opportunities of PolyFrame.

We present a performance comparison in each stage of an end-to-end exploratory data anal-

ysis and highlight the benefits of database-backed dataframes in comparison to a Pandas

dataframe baseline.

The rest of this dissertation is organized as follows: Chapter 2 explains the background for

this work. Chapter 3 discusses the related work. Chapter 4 presents our library (AFrame),

outlines its architecture, and describes a user model. Chapter 5 presents our Dataframe

benchmark and details AFrame experiments. Chapter 6 describes the design of the rearchi-

tected version of AFrame, PolyFrame. Chapter 7 illustrates the usability of PolyFrame

through two case studies. Finally, Chapter 8 concludes this dissertation and discusses po-

tential future research directions.

3

Chapter 2

Background

2.1 Pandas

Pandas [15] is a Python data analytics framework that reads data from various file formats

and creates a Python object, a DataFrame, with rows and columns similar to Excel. Pandas

works with Python machine learning libraries such as Scikit-Learn [53] and it can also be

integrated with scientific visualization tools such as Jupyter notebooks [43]. The rich set of

features that are available in Pandas makes it one of the most preferred and widely used

tools in data exploration. However, its limitation lies in its lack of scalability, as its strength

has typically been for in-memory computation on a single machine. In addition, Pandas’

internal data representation is inefficient; as Wes McKinney (Pandas’ creator) stated in [2]

that a “rule of thumb for pandas is that you should have 5 to 10 times as much RAM as the

size of your dataset”.

4

2.2 Eager vs. Lazy Evaluation

EDA frameworks such as Pandas target a local workstation environment and often rely on

in-memory processing. These frameworks require data to be loaded into memory before any

analysis operations can be performed on the data. Once the data is loaded into memory,

analysis operations are evaluated eagerly, meaning as soon as they are initiated. However,

a similar evaluation strategy is not efficient on large-scale ever-arriving data, as processing

every declared operation without any optimization would be expensive as it may result in

repetitive scans over massive data.

Eager and lazy evaluation are strategies used in programming languages to determine when

expressions should be evaluated [55]. While eager evaluation causes programs to evaluate

expressions as soon as they are assigned, lazy evaluation is the opposite and delays their

evaluation until their values are required. With eager evaluation, programmers are respon-

sible for ensuring code optimization to prevent performance degradation due to unnecessary

operations over large datasets. Lazy evaluation, on the other hand, delays execution until

values are required; it is employed to help with operation optimizations where multiple op-

erations can be chained together, extended, and a single iteration over the source collection

can be processed, e.g., as in LINQ [46]. As a result, lazy evaluation is more suitable for

exploratory operations on large-scale data. Its performance improvement becomes critical

as the size of the data grows.

2.3 Apache AsterixDB

Apache AsterixDB [3, 33] is a parallel open source Big Data Management System (BDMS)

that provides full distributed data management for large-scale, semi-structured data. Aster-

ixDB utilizes a NoSQL style data model (ADM) which is a superset of JSON. Before storing

5

data into AsterixDB, a user can create a Datatype, which describes known aspects of the

data being stored, and a Dataset, which is a collection of objects of a Datatype. Datatypes

are “open” by default, in that the description of the data does not need to be complete prior

to storing it; additional fields are permitted at runtime. This allows for uninterrupted in-

gestion of data with ever-changing data schemas. AsterixDB provides SQL++ [35], a highly

expressive semi-structured query language for users that are familiar with SQL, to explore

stored NoSQL data.

Figure 2.1 shows an example of creating an open datatype ‘Tweet’ with only the field ‘id’ be-

ing pre-defined and two datasets called ‘TrainingData’ and ‘LiveTweets’ which store records

of this Tweet datatype. The TrainingData dataset is populated by reading data from a local

file system. In this example, it is being populated using a labeled airline sentiment dataset.

AsterixDB also provides support for user-defined functions (UDFs) and built-in live social

media data acquisition through its data feed feature. The LiveTweets dataset is populated

by connecting a data feed called ‘TwitterFeed’ that continuously ingests Twitter data. (More

details on how to create a live Twitter feed can be found in [3], [28]). Figure 2.1 also creates

two indexes on the LiveTweets dataset.

CREATE TYPE Tweet AS{id: int64};

CREATE DATASET TrainingData(Tweet);

CREATE DATASET LiveTweets(Tweet);

LOAD DATASET TrainingData USING localfs

(("path"="1.1.1.1:/// airline_data.json"),

("format"="adm"));

CREATE FEED TwitterFeed WITH {...};

CONNECT FEED TwitterFeed TO LiveTweets;

START FEED TwitterFeed;

CREATE PRIMARY INDEX ON LiveTweets;

CREATE INDEX coordIdx ON LiveTweets(coordinate);

Figure 2.1: SQL++ queries

6

Chapter 3

Related Work

Limitations in Pandas’ dataframe facility has lead to the recent development of various

scalable frameworks. In this chapter, we categorize the existing systems into three main cat-

egories which are big data platforms, scalable dataframe technology, and polystore systems.

Here we briefly summarize each of the approaches and describe the relationship to our work.

3.1 Big Data Platforms

Here we consider frameworks that can operate on distributed data.

3.1.1 Apache Spark

Apache Spark [58] is a general-purpose cluster computing system that provides in-memory

parallel computation on a cluster with scalability and fault tolerance. SparkSQL [31] is a

module to simplify users’ interactions with structured data. SparkSQL integrates relational

processing with Spark’s functional programming. MLlib [47], which is built on top of Spark,

7

provides the capability of constructing and running machine learning models on large-scale

datasets. However, Spark does not provide data management and it requires the installation

and configuration tuning of a distributed file system like HDFS.

3.1.2 Hive

Apache Hive [4] is data warehouse software built on top of Apache Hadoop for providing data

summary, query, and analysis capabilities. The introduction of Hive reduced the complexity

of having to write pure MapReduce programs by providing a SQL-like interface and trans-

lating the input queries into MapReduce programs to be executed on the Hadoop platform.

Now Hive also includes Apache Tez [7] and Apache Spark [6] as alternative query runtimes.

However, to leverage Hive’s processing power, knowledge of SQL is essential in addition to

being able to install and appropriately configure and manage Hadoop and HDFS.

3.2 Scalable Dataframes

These libraries try to deliver a Pandas-like experience and scale operations onto large vol-

umes of file-based data using different methods. They either provide a similar Pandas-like

interface on a distributed compute engine, execute several Pandas dataFrames in parallel, or

use memory mapping to optimize the computation and speed up data access. More recent

efforts have been to develop a Pandas-like interface directly on top of database systems where

large volumes of data are stored. We categorize some of the well-known scalable dataframe

libraries into three categories: parallel execution frameworks, interfaces to distributed com-

pute engines, and interfaces to database systems. Here we mention some of the well-known

libraries in each category.

8

3.2.1 Parallel Execution Frameworks

Frameworks in this category address the scalability limitations in Pandas using parallel exe-

cution strategies. They execute multiple Pandas dataframes in parallel. Examples are Dask

and Modin. Dask[9] is a framework for scaling Python data analytic libraries like Pandas,

Scikit-learn [53], and NumPy [14] to run in a distributed environment. Dask offers a Pan-

das dataframe-based implementation that scales to multiple machines by segmenting large

datasets into multiple small Pandas dataframes and processing them in parallel. Modin [13]

scales Pandas by distributing the data and operations using a shared-memory framework

called Ray [49]. Modin is similar to Dask in the sense that it uses Pandas dataframes

internally, but its bottom-up scheduling policy where each worker submits tasks to be ex-

ecuted is different from Dask’s which uses a centralized scheduler. Modin also uses eager

evaluation, making it more like Pandas. Modin is now being extended to work on Dask in

a cluster environment and support for other distributed execution engines and other cus-

tom dataframe interfaces are also being considered. However, running Pandas dataframes

internally means that these frameworks lack query optimization, which is important when

operating on datasets at scale.

3.2.2 Distributed Compute Engines

Spark also provides DataFrames [30], an API built on top of Spark SQL [31] for distributed

structured data manipulation. However, Spark’s DataFrame syntax is different from Pandas’

in several respects. As a result, Koalas [21], a new open source project, was established to

allow for easier transitioning from Pandas to Spark. Koalas provides a Pandas-like Dataframe

API and uses Spark for evaluation. Koalas implements an intermediate data representation

in order to support Pandas features such as row ordering in the Spark environment, which

can result in performance trade-offs. Spark does not provide its own data storage, indexing,

9

or data management. Spark can, however, load data from sources including databases via its

Data Sources API [26] to create DataFrames, but it uses the database systems mainly as a

data store and continues to process most operations in its own runtime environment. Users

supply Spark with a database driver that implements support for read and write operations;

the API allows filter and projection pushdown for performance optimization.

3.2.3 Scaling Dataframes with Databases

Efforts to scale dataframes have started gaining traction in the database community. Re-

cently, Jindal et. al introduced Magpie [42], a system that provides a Pandas-like API and

automatically determines an optimal backend for query execution. Magpie in turn is built

on top of Ibis [20], a Python polystore-like engine that provides its own proprietary API and

is capable of interacting either eagerly or lazily with backends including Spark, Pandas, and

RDBMSs. A concurrent effort, Grizzly [39], introduced by Hagedorn et. al, translates the

Pandas API into nested SQL queries with additional feature support for lambda expressions

as UDFs and external file ingestion.

3.3 Polystores

Polystore systems (e.g., BigDAWG, BigIntegrator, and Polybase) provide integrated and

transparent access to multiple data stores with heterogeneous storage engines through a

common language. In [51], polystores are categorized into three different groups based on

the level of coupling with the underlying data stores: loosely coupled, tightly coupled, and

hybrid systems. These systems typically share a common mediator-wrapper architecture in

which a mediator process accepts input queries, interacts with data stores to obtain and

merge the results, and delivers the results to the user.

10

3.4 Relationship to This Work

Our work can be categorized as a database-backed dataframe library. We try to scale Pandas

dataframes by translating its operations into database queries. Our library is different from

the other libraries in this category as it does not maintain an intermediate representation

for the purpose of pre-optimizing the queries or selecting between different backends. We

focus on incrementally building queries by utilizing an identified set of mappings between

dataframe operations and database queries that can be applied to a wide variety of compos-

able query languages. The differences between our library and polystore systems are their

interactions and intended usages. We provide a common language of dataframe operations

for users to interact with a query-based database system of their choosing where their data

is stored. Our library does not aim to communicate or orchestrate queries across multiple

data stores.

11

Chapter 4

AFrame

4.1 Introduction

This chapter presents the first version of our library that provides a ‘scale-independent’ user

experience when moving from a local exploratory data analysis environment to a large-scale

distributed data environment. We present AFrame, an Apache AsterixDB [29] based ex-

tension of dataframe. AFrame is a data exploration library that provides a Pandas-like

dataframe [45] experience on top of a big data management platform that can support large-

scale semi-structured data exploration and analysis. AFrame differs from other dataframe

libraries by leveraging a complete big data management system and its query processing

capabilities to efficiently scale dataframe operations and optimize data access on large dis-

tributed datasets.

The remainder of this chapter is organized as follows: Section 4.2 describes the AFrame’s

user model and illustrates its basic functionalities. Section 4.3 summarizes the underly-

ing architecture of AFrame. Section 4.4 discusses AFrame’s incremental query formation

mechanism. Section 4.5 concludes the chapter.

12

4.2 User Model

Our goal in the AFrame project is to create a unified system that can efficiently support all of

the various stages [48] in data science projects, from data understanding to model deployment

and application, thus enabling very large-scale analysis and requiring little or no modification

to analysts’ existing local workflows. Here we illustrate AFrame’s basic functionality and its

user model through a small running example that shows how to perform a simple sentiment

analysis on ever-growing Twitter data.

4.2.1 Acquiring Data

AFrame is an API that provides a DataFrame syntax to interact with AsterixDB’s datasets;

it targets data scientists who are already familiar with Pandas DataFrames. AFrame works

on distributed data by connecting to AsterixDB’s webservice using its RESTful API. Fig-

ure 4.1 shows how users can use AFrame in a Jupyter notebook to access datasets stored in

AsterixDB. Input 2 (labeled “In [2]”) creates an AFrame object (trainingDF) from the Train-

ingData dataset initialized via the SQL++ statements in Chapter 2 in Figure 2.1. Input 3

creates another AFrame object (liveDF) from the LiveTweets dataset, which is connected

to a data feed that continuously ingests data from Twitter. Building on top of AsterixDB

allows AFrame to operate on such live data the same way as it does on a static dataset with-

out requiring additional knowledge about how to setup a streaming engine. Since Figure 2.1

created indexes on the LiveTweets dataset, the incoming data is also appropriately stored

and indexed for efficient data access.

Figure 4.1: Initializing AFrame Objects

13

4.2.2 Operating on Data

As most EDA tools are designed to work with in-memory data, the eager evaluation strategy

can suffice even when a session involves multiple scans over the entire dataset. However,

multiple scans over a large distributed dataset would be very costly and have a negative

effect on system performance.

AFrame leverages lazy evaluation. AFrame operations are incrementally translated into

SQL++ queries that are sent to AsterixDB (via its RESTful API) only when final results

are called for. Figure 4.2 shows an example of some expressions in AFrame when issuing

Pandas-like DataFrame expressions. Input 4 (labeled In [4]) issues a selection predicate on

the live dataset declared in Figure 4.1. Input 5 performs attribute projections. Neither

inputs 4 or 5 trigger query evaluation; they only modify an underlying AFrame query. Input

6 performs an action that requests the actual output of two records, so AFrame takes the

underlying query, appends a ‘LIMIT 2’ clause to it, sends it to AsterixDB for evaluation,

and displays the requested data. For debugging purposes, AFrame allows users to observe

the underlying query resulting from the incremental query formation process. Input 7 prints

the underlying query resulting from Input 4. Input 8 prints the underlying query of Input 5

(which adds projected attributes to the selection query). These are examples of queries that

correspond to simple DataFrame operations. However, even complex DataFrame expressions

that result in nested SQL++ queries are efficiently translated into optimized query plans

in order to minimize data access. This is another benefit of operating on AsterixDB and

utilizing its query optimizer.

Being in a relatively early development stage, AFrame today covers essential Pandas’ oper-

ations for exploratory analyses that are suitable for large-scale unordered data. Currently,

AFrame’s supported operations include column selection and projection, statistical opera-

tions (e.g., describe), arithmetic operations (e.g., addition, subtraction, etc.), applying func-

14

tions (both elementwise and tablewise), joining, categorizing data (sorting and ordering),

grouping (group by and aggregation), and persisting data.

Figure 4.2: DataFrame expressions and underlying queries

4.2.3 Support for Machine Learning Models

Following the data wrangling and hypothesis forming process, distributed systems are often

required to accommodate the development and usage of customized machine learning models.

The goal of the modeling step is to create an effective machine learning model that can

make accurate predictions. With AFrame, analysts can apply either a prepackaged model or

create a custom machine learning model from their local environment that can be applied

to a distributed dataset directly from within a Jupyter notebook.

Figure 4.3 illustrates a sentiment classifier training session using Python, Scikit-Learn [53],

Pandas, and AFrame. It trains a classifier on the training dataset from Figure 4.1. This

is a dataset, publicly available on Kaggle [12], containing Twitter posts related to users’

experiences with U.S. airlines released by CrowdFlower [8]. The dataset contains labeled

15

tweet sentiments which are positive, negative, and neutral. The first step in Figure 4.3

selects a subset of attributes from the training dataset. Since the subsetted training data is

small enough to fit in a single node’s memory1, here we convert it to a Pandas DataFrame

and use it to build and train a Scikit-Learn pipeline to classify sentiment values. The last

step after training the model saves it as an executable which can then be dropped into

AsterixDB and utilized as a UDF.

Figure 4.3: Training a Scikit-Learn Pipeline

In Figure 4.4, we show sample code for applying machine learning models in AFrame. We

first apply a pre-trained model (from Stanford CoreNLP) and then apply our custom Scikit-

Learn sentiment analysis model (created in Figure 4.3) using the Pandas-style map function

syntax on the ‘text’ column to get sentiment value predictions. Input 10 in the figure

displays a sample of the text column from the liveDF dataset created in Figure 4.1. Input 11

applies the pre-trained Stanford CoreNLP sentiment analysis model [57] to the text column

and displays two records. The CoreNLP sentiment annotator produces 5 sentiment classes

ranging from very negative to very positive (0-4). Input 12 applies our custom Scikit-Learn

sentiment analysis model to the same data.

Under the hood, AFrame utilizes AsterixDB’s UDF framework to enable users to import and

then apply their own machine learning models written in popular programming languages

(e.g., Java and Python) as functions.

1Scikit-Learn’s model training is required to take place on a single-node, but we are then able to utilize
its trained models in a distributed setting.

16

Figure 4.4: Applying CoreNLP and Scikit-Learn models

4.2.4 Result Persistence

After constructing a model, the next step would be to deploy the model and to apply it on real

data. Input 13 in Figure 4.5 shows an example of how to apply the previously-constructed

Scikit-Learn sentiment function to the ‘text’ field of a queried subset (coords) of the live

Twitter records resulting from the operations in Figure 4.2. It then saves the sentiment

prediction as a new field called ‘sentiment’. Input 14 selects only records with negative

sentiment for future root cause analysis. In AFrame, the result of an AFrame operation can

optionally be persisted as another dataset by issuing the ‘persist’ command and providing a

new dataset name, as shown by Input 15 in Figure 4.5. Persisting an analysis result is efficient

here, as the data has never left AsterixDB storage and the new dataset (demo.negTweets)

can be accessed right away without having to wait for data re-loading or a file scan. Input

16 displays sampled records from the new dataset created using AFrame; their sentiment is

negative and they only contain a subset of the attributes from the original dataset.

17

Figure 4.5: Persist Sentiment Analysis Results

4.3 System Architecture

Having seen its user model, we now turn to AFrame’s system architecture. Figure 4.6

displays an overview of AFrame’s internal working mechanism. When an AFrame object

is initialized, an initial SQL++ query is embedded as part of the object’s attributes. The

red dotted box highlights the incremental query formation process supported by AFrame.

Inspired partly by Spark, there are two types of operations in AFrame: transformation and

action. Transformations are operations that result in a new AFrame object with a new

underlying query resulted from the incremental query formation process. These operations

do not trigger query execution. Actions are operations that request for result visualization.

These operations trigger a query execution. The underlying query will be sent over to

AsterixDB for execution.

18

Qi

Qi+1

Qn

Create Transformation

Action

Result

AFrame

Query

= Incremental Query Formation

Figure 4.6: Initializing AFrame Objects

4.4 Incremental Query Formation

Internally, AFrame incrementally constructs queries in order to mimic Pandas’ eager evalu-

ation characteristics and record the order of operations. However, it utilizes lazy evaluation

to take advantage of databases’ query optimization. Figure 4.7 shows an example of six

SQL++ queries generated as a result of Pandas DataFrame operations. The Dataframe

operations are listed on top of each AFrame object (the numbered rectangles). The corre-

sponding SQL++ queries are listed below the objects. The first AFrame object (marked 1)

is created by passing in the dataverse and dataset name of an existing dataset in AsterixDB.

Notice how each subsequent SQL++ query is composed from the query resulting from the

previous operation. Operations 1 to 5 are transformations. For these types of operations,

AFrame does not load any data into memory nor execute any query. Operation 6 (which

is asking for a sample of 10 records) is an action that triggers the actual query evaluation.

For this operation, AFrame appends a ‘LIMIT 10’ clause to the underlying query and uses a

connection to a database (AsterixDB in this case) to send the underlying query and retrieve

its results.

19

1

af = AFrame('Test', 'Users')

2 3

af['lang'] af['lang'] == 'en'

SELECT VALUE t
FROM Users t

SELECT VALUE t.lang
FROM () t1

SELECT VALUE t = 'en'
FROM () t2

4 5

af[af['lang'] == 'en']]
af[af['lang'] == 'en’]]
[['name', 'address']]

SELECT VALUE t
FROM () t
WHERE t = 'en'

1
SELECT t.name,

t.address
FROM () t4

6

(af[af['lang'] == 'en’]]
[['name', 'address’]]).head(10)

LIMIT 10
5

Figure 4.7: Incremental Query Formation

4.5 Conclusion

In this chapter, we have shown the practicality of utilizing a distributed data management

system to scale data scientists’ familiar dataframe operations to work against modern data

at scale without requiring distributed data engineering expertise.

We have demonstrated through an example how to use AFrame to acquire live Twitter data,

manipulate the data, train and apply a custom Scikit-Learn model to get sentiments from the

data, and save an analysis result for further investigation. AFrame provides a Pandas-like

user experience without suffering from Pandas’ single-node and in-memory requirements. We

also described AFrame’s incremental query formulation architecture, which enables AFrame

to utilize database features to efficiently retrieve data and accelerate data manipulation on

large-scale distributed data. By offloading data management to a distributed database sys-

tem, AFrame remains a lightweight library that provides a scale-independent user experience

to data scientists with any level of expertise.

20

Chapter 5

A Dataframe Benchmark

5.1 Introduction

To our knowledge, there is no standard benchmark for evaluating dataframe libraries. In

order to evaluate our library and compare its performance to that of other distributed

DataFrame libraries, we have constructed a preliminary DataFrame benchmark. Inspired

by the early Wisconsin Benchmark [37] from the relational world, we propose a benchmark

that evaluates dataframes in several key dimensions that are important to conducting large-

scale data analyses. This is similar to how the Wisconsin Benchmark was used to assess

early relational database system performance. Our DataFrame benchmark provides a de-

tailed comparison of each analytic operation by separating the data preparation time (e.g.,

DataFrame creation) and expression execution time to give better insight into each system’s

performance and operation overheads. We also aim to provide members of the data science

community with a tool to help them select a framework that is best suited to their project.

Our Dataframe Benchmark is designed to evaluate the performance of dataframe libraries

against data of various sizes in both local and distributed environments. As an initial set

21

of evaluated systems, we selected the following dataframe frameworks: Pandas, PySpark,

Pandas on Ray (Modin), and AFrame. There are several factors that contributed to our

framework selection. First, since our goal is to support dataframe syntax on large-scale

data, it is appropriate to compare how systems perform with regard to the original Pandas

dataframes in a single node environment. Second, Apache Spark is a popular framework

for distributed processing of large-scale data, so comparing against Spark DataFrames gives

us a good understanding and comparison to a commercial and well-maintained dataframe

project. Pandas on Ray is another project that is trying to solve the same data scientists’

problem, but using a different approach, so we also include it in our initial set of platforms.

The rest of this chapter is organized as follows: Section 5.2 describes our benchmark dataset.

Section 5.3 details a set of our benchmark queries. Section 5.4 presents the AFrame’s bench-

mark results. Section 5.5 concludes the chapter.

5.2 Benchmark Datasets

In order to discover useful information from large volumes of modern data, most data science

projects rely on data exploration. Dataframes are one of the most popular data structures

used in data exploration and manipulation. A mature dataframe library must be able to han-

dle exploratory data manipulation operations on large volumes of data efficiently. The design

of our DataFrame micro benchmark aims at reflecting these expectations in its workload.

For our benchmark datasets, we have chosen to use a synthetically generated Wisconsin

benchmark dataset instead of using data from social media sites to allow us to precisely

control the selectivity percentages, to generate data with uniform value distributions, and to

broadly represent data for general analysis use cases (not just social media). A specification

of the attributes in the Wisconsin benchmark’s dataset is displayed in Figure 5.1. The

22

unique2 attribute is a declared key and is ordered sequentially, while the unique1 attribute

has 0 to (cardinality - 1) unique values that are randomly distributed. The two, four, ten

and twenty attributes have a random ordering of values which are derived by an appropriate

mod of the unique1 values. The onePercent, tenPercent, twentyPercent, and fiftyPercent

attributes are used to provide access to a known percentage of values in the dataset. The

dataset also contains three string attributes: stringu1, stringu2, and string4. The stringu1

and stringu2 attributes derive their values from the unique1 and unique2 values respectively.

The string 4 attribute takes on one of four unique values in a cyclic fashion; its unique values

are constructed by forcing the first four positions of a string to have the same value chosen

from a set of four letters: [A, H, O, V].

For our DataFrame benchmark, we used a JSON data generator [41] to generate Wisconsin

datasets of various sizes ranging from 1 GB (0.5 million records) to 40 GB (20 million

records). In addition to JSON, we also evaluate systems using other widely used input

formats, namely Parquet [5] and CSV.

Attribute name Attribute domain Attribute value
uniquel O..(MAX-1) unique, random
unique2 O..(MAX-1) unique, sequential
two 0..1 uniquel mod 2
four 0..3 uniquel mod 4
ten 0..9 uniquel mod 10
twenty 0..19 uniquel mod 20
onePercent 0..99 uniquel mod 100
tenPercent 0..9 uniquel mod 10
twentyPercent 0..4 uniquel mod 5
fiftyPercent 0..1 uniquel mod 2
unique3 O..(MAX-1) uniquel
evenOnePercent 0,2,4, ...,198 onePercent*2
oddOnePercent 1,3,5, ...,199 (onePercent *2)+ 1
stringul per template derived from uniquel
stringu2 per template derived from unique2
string4 per template cyclic: A, H, O, V

Table 5.1: Scalable Wisconsin benchmark: attributes [37]

23

5.3 Benchmark Queries

ID Operation DataFrame Expression

1 Total Count len(df)

2 Project df[[’two’,’four’]]. head()

3 Filter & Count
len(df[(df[’ten’] == x)

& (df[’twentyPercent ’] == y)

& (df[’two’] == z)])

4 Group By df.groupby(’oddOnePercent ’).agg(’count’)

5 Map Function df[’stringu1 ’].map(str.upper).head()

6 Max df[’unique1 ’].max()

7 Min df[’unique1 ’].min()

8 Group By & Max df.groupby(’twenty ’)[’four’].agg(’max’)

9 Sort df.sort_values(’unique1 ’,ascending=False).head()

10 Selection df[(df[’ten’] == x)]. head()

11 Range Selection len(df[(df[’onePercent ’] >= x)

& (df[’onePercent ’] <= y)])

12 Join & Count

len(pd.merge(df , df2 ,

left_on=’unique1 ’,

right_on=’unique1 ’,

how=’inner’,hint=’index’))

13 Count Missing Value len(df[df[’tenPercent ’].isna ()])

Table 5.2: Dataframe Benchmark Operations (df, df2 = DataFrame objects, x,y,z = variables
representing random values within an attribute’s range)

The essential characteristic that makes DataFrame an appealing choice for data scientists is

its stepwise syntax for exploratory tasks and data manipulation. As a result, we have de-

signed our benchmark queries to target a set of core exploratory operations and visualization

tasks. Table 5.2 summarizes the details of our initial DataFrame benchmark expressions.

Our initial set of expressions consist of analysis operations that include selection, projection,

grouping, sorting, aggregation, and join. For expressions 2, 5, 9, and 10, we only asked

for sampling because loading the entire dataset into memory would not be desirable in an

exploratory big data context. For the join expression, both datasets are of the same size

with the same number of records. When executing the benchmark, each expression is run

15 times, and the first five results were excluded from the calculation to account for any

JVM warm-up overheads. The recorded results are averaged over 10 runs. Our DataFrame

benchmark expressions are detailed in Table 5.2. It is important to note here that when we

first created our benchmark we had 12 benchmark expressions. Therefore, the first version

of our framework (AFrame) was evaluated using 12 benchmark expressions. The thirteenth

24

expression was added to evaluate PolyFrame on different database systems to compare their

performance when handling null values. We randomly generated values for the expression

predicates (e.g., df[‘ten’] == $x) that fall within the tested attributes’ range to reduce the

effect of any in-memory caching between runs.

5.4 Comparisons with Other Dataframe Libraries

Here we present the environmental setups and results of running our benchmark on various

dataframe libraries in both single node and multi-node settings.

5.4.1 Evaluated System Details

The details of each systems’ setup are provided below.

Pandas: Pandas DataFrame only works on a single machine environment and on data that

fits in memory. It is important to note that Pandas only utilizes a single core for processing

and that we use it with its default settings (without any additional configuration). It is

labeled “Pandas” in the experimental results presented in this section.

Spark: Spark indicates in its DataFrame API document that there is a significant difference

in its DataFrame creation time when reading from JSON files if a data schema is provided.

This performance benefit comes from eliminating its initial schema inference step. As a result,

a dataset schema was also included in our benchmark. For single node experiments, we used

Spark in its local standalone operating mode. In the distributed environment, we configured

HDFS as its distributed storage and used its standalone cluster manager. We evaluated

Spark’s DataFrame on both JSON and Parquet data using the default setup configurations.

The three evaluated Spark variations are labeled “Spark JSON”, “Spark JSON Schema”,

25

and “Spark Parquet” in the experimental results section.

AFrame: In order to evaluate AFrame, the benchmark datasets are expected to be resi-

dent in AsterixDB (as opposed, e.g., to HDFS) when running the operations. Similar to

the Wisconsin benchmark queries, some of the expressions can benefit from indexes, so we

executed the queries on both indexed and non-indexed data. Also, even though AsterixDB’s

default data typing is open, there is some benefit when a data schema is provided. Since we

also provided Spark with a schema, we decided to also evaluate AFrame on a closed data

type with the same pre-defined schema described in section A.2 of the appendix. AFrame’s

translated SQL++ queries for all benchmark expressions are presented in section C.2 of the

appendix. The three evaluated AFrame variations are labeled “AFrame”, “AFrame Schema”,

and “AFrame Index” in the experiments presented here.

Pandas on Ray: When we began evaluating the systems, Pandas on Ray had not yet

provided cluster installation instructions, so we executed the DataFrame benchmark only on

its single node setup. Notably, Pandas on Ray has implemented an impressive number of

Pandas’ operations to utilize all of the available cores in the given system. (For functions

that have not been parallelized, it defaults back to using the original Pandas’ operations.)

When we did a preliminary run of the benchmark to check supported expressions, we noticed

that Pandas on Ray had not yet parallelized Pandas’ load json method, so we decided to

evaluate Pandas on Ray using CSV files instead. Pandas on Ray is based on a shared,

in-memory architecture; its strength lies in in-memory computation. However, it is worth

mentioning that the project has started to implement support for large datasets using disk

as an overflow for in-memory DataFrames.

26

5.4.2 Experimental Setup

Our DataFrame benchmark provides a set of configurable parameters to enable both single-

node and cluster performance evaluations. The same suite of benchmark queries were applied

to both settings. Each evaluated framework handles DataFrame creation differently, and

some utilize an eager evaluation strategy while the others employ lazy evaluation. On top

of that, depending on the flow of an analysis session, data might or might not already

be available in memory, resulting in additional time to create a DataFrame before issuing

analytic operations. Sometimes, when only a small subset of the data is needed, DataFrame

creation time can dominate the overall actual operation time. As a result, we separately

consider expression-only run times and total run times (which include both the DataFrame

creation time and the DataFrame expression execution time). Each system’s timing point is

provided below.

• Pandas & Pandas on Ray Timing

DataFrame creation time

df = pd.read_json(file_path)

Expression -only time

df.head()

• Spark Timing

DataFrame creation time

df = sparkContext.read.json(file_path)

Expression -only time

df.head (5)

27

• AFrame Timing

DataFrame creation time

df = AFrame(dataverse , dataset)

Expression -only time

df.head()

In order to provide a reproducible environment for evaluating these systems, we set all of

the evaluated systems up and executed our benchmark on Amazon EC2 instances. For each

node, we selected the m4.large instance type with the Linux 16.04 operating system, 2 cores,

8 GB of memory, and 100 GB of SSD.

Single-Node Setup

We generated the Wisconsin benchmark as JSON data in various sizes ranging from 1 GB

(0.5 million records) to 10 GB (5 millions records). The Parquet and CSV datasets were

created by converting the JSON files; they contained the exact same logical records as the

JSON datasets. Table 6.2 shows the numbers of records and the byte sizes of each dataset for

all file formats. The sizes of the Parquet files are significantly smaller due to its compression

and its internal data representation. The JSON structure is based on key-value pairs. Each

JSON record contains all of the necessary information about its content, and in principle

each record could contain different fields in different orders. CSV is more compact than

JSON due to the facts that its schema is only declared once for the whole file and that each

record has an identical list of fields in the exact same order. Parquet is a column-oriented

binary file that contains metadata about its content. Parquet is the most compact file format

among the three formats tested.

28

Dataset Name
XS S M L XL

Number of Records 0.5 mil 1.25 mil 2.5 mil 3.75 mil 5 mil
JSON File Size 1 GB 2.5 GB 5 GB 7.5 GB 10 GB
Parquet File Size 43 MB 110 MB 217 MB 317 MB 426 MB
CSV File Size 715 MB 2.3 GB 4.6 GB 6.8 GB 9.3 GB

Table 5.3: Dataset Summary (mil = million)

Multi-Node Setup

For the multi-node setting, we only evaluated Spark and AFrame. The evaluated cluster

size ranged from 2-4 nodes, where each node is a worker except for one node that is also a

master. Speedup and scaleup are the two preferred and widely used metrics to evaluate the

processing performance of distributed systems, so we evaluated the two systems using these

two metrics.

Speedup Experiment: Ideal speedup is when increasing resources by a certain factor to

operate on a fixed amount of data results in the overall task processing time being reduced by

the same factor. As a result, speedup reduces the response time, which also makes resources

available sooner for other tasks. Linear speedup is not always achievable due to reasons

such as start up cost and system interference between parallel processes accessing shared

resources.

For our DataFrame benchmark, we conducted speedup experiments using a fixed size dataset

while increasing the number of machines from one up to four. The details are summarized in

Table 5.4, where aggregate memory is the sum of all of the available memory in the cluster.

1 node 2 nodes 3 nodes 4 nodes
Aggregate Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 10 GB 10GB 10 GB
Parquet File Size 426 MB 426 MB 426 MB 426 MB

Table 5.4: Speedup Experiment Setup

29

Scaleup Experiment Ideal scaleup is the system’s ability to maintain the same response

time when both the system resources and work (data) increase by the same factor.

For the scaleup experiments, we increased both the number of machines and the amount of

data proportionally, as summarized in Table 5.5, to measure each system’s performance.

1 node 2 nodes 3 nodes 4 nodes
Aggregated Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 20 GB 30GB 40 GB
Parquet File Size 426 MB 818 MB 1.33 GB 1.75 GB

Table 5.5: Scaleup Experiment Setup

5.4.3 Preliminary Results

For the single-node evaluations, we ran the test suite first on the XS Wisconsin dataset as a

preliminary test to determine the level of feature support in each framework and to observe

their relative performance across all twelve expressions. The XS results are displayed in

Figure 5.1. After the first round, we ran the benchmark on four other dataset sizes, S, M, L

and XL to evaluate the data scalability of each framework on a single node. As mentioned

in the experimental setup section, we present both the expression run times and the total

run times (which include the DataFrame creation times).

The XS results are presented in Figure 5.1. Figures 5.1a and 5.1b show the total run times

(including DataFrame creation). Figure 5.1a displays expression 1-6’s results and Figure 5.1b

displays expression 7-12’s results. Figures 5.1c and 5.1d show the expression-only execution

times. Figure 5.1c displays expression 1-6’s results, and Figure 5.1d displays expression 7-

12’s results. The differences between the total times and expression-only times indicate that

the DataFrame creation process can significantly impact system performance.

Pandas requires data to be loaded into memory before its operation evaluations. Since it

30

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB
T

IM
E

 (
S

E
C

.)
FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema *133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*134 *147*133 *146

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Spark JSON Spark JSON Schema

Spark Parquet AFrame AFrame Schema

Pandas on Ray AFrame Index

0.01

0.1

1

10

100

1 2 3 4 5 6

T
IM

E
 (

S
E

C
.)

EXPRESSION ID

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema AFrame Index

(a) Expression 1-6 total times

0.01

0.1

1

10

100

7 8 9 10 11 12

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

EXPRESSION ID

(b) Expression 7-12 total times

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1 2 3 4 5 6

T
IM

E
 (

S
E

C
.)

EXPRESSION ID

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema AFrame Index

(c) Expression 1-6 expression-only times

0.001

0.01

0.1

1

10

100

7 8 9 10 11 12

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

EXPRESSION ID

(d) Expression 7-12 expression-only times

Figure 5.1: XS Results of Single Node Evaluation

was not designed for parallel processing, the total run time including DataFrame creation

was high for Pandas in all of the test cases. However, once the data was loaded into memory,

as shown in Figures 5.1c and 5.1d, Pandas performed the best in 10 of the 12 expressions.

The two cases where Pandas was not the fastest were operations 5 and 10, and the reason

was Pandas’ eager evaluation strategy. Expression 5 applies a function to a string column,

while expression 10 selects rows that satisfy a column predicate. However, in the end, both

expressions 5 and 10 require only a small subset (head()) of rows from the dataset. The

strict nature of Pandas’ eager evaluation caused both the function and the predicate to be

applied to the whole dataset before selecting only a few samples to return. On the other

hand, with lazy evaluation, the expressions can be applied to just the subset of data needed

31

to fulfill the result’s required size.

Pandas on Ray leverages parallel processing by utilizing all available cores in a system to

load and process the data. However, there are overheads associated with distributing a

DataFrame, as we can see from Figures 5.1c and 5.1d, where Pandas outperformed Pandas

on Ray on all but one expression. However, Pandas on Ray’s total run time was better than

Pandas’ due to parallel data loading. As the size of the data grows, so does the time taken

to process the data. Pandas on Ray outperforms Pandas when the task processing time

dominates its work distribution overheads.

Among the three Spark DataFrames, the Parquet-based DataFrame (Spark Parquet) outper-

formed the JSON-based DataFrame (Spark JSON) and the JSON-based DataFrame with a

pre-defined schema (Spark JSON Schema) in most of the tested cases for both the total and

expression-only evaluation metrics. Spark produces different runtime plans for the JSON-

based DataFrame and the Parquet-based DataFrame, resulting in the difference in their task

execution times even after the schema inferencing step.

AFrame was the fastest in terms of the total-time evaluation since its DataFrame creation

process does not involve first loading data into memory from a file. In addition, AFrame

also benefits from the presence of database indexes. Its performance results for the datasets

with indexes are an order of magnitude faster, as seen for Expressions 1, 11, and 12. Even

in terms of just the expression-only time, AFrame with an index on the range attribute

performed better than Spark Parquet on expression 11 (see Figure 5.1d).

5.4.4 Single-node Results

After the first evaluation round, we evaluated the systems’ single-node data scalability by

running each expression on all five different data sizes. As we can see from Figures 5.2 - 5.5

32

Pandas and Pandas on Ray were not able to complete the DataFrame creation process for

the M-XL datasets (5-10 GB) due to insufficient memory. A possible workaround would be

to load the data in smaller chunks; we did not consider applying this workaround because

it would result in customizing the data chunk size and that would directly affect the per-

formance evaluation. Pandas on Ray suffers from the same memory limitations as Pandas

since it uses Pandas internally.

The results of our single node scalability evaluation are largely consistent with those from

our first run of functionality checking. There are some interesting results in the cases of

running Spark on L and XL datasets, which are 7.5 and 10 GB of JSON data (e.g., Figures

5.2a, 5.2b, 5.2e, 5.2f, 5.3a,5.3b, etc.). These results are much slower than the other datasets

in terms of both the total and expression-only elapsed times. These results are explained by

Spark’s default settings and its memory management policy. By default, Spark reserves one

GB less than the available memory (MAX MEMORY - 1) for its executor’s memory. In our

case this results in 7 GBs of memory being reserved for the executor tasks. When working

with data that is larger than the available memory, Spark processes it in partitions and spills

data to disk if it has insufficient memory. The L and XL datasets require Spark to spill to

disk in order to complete the tasks, which results in long task execution times. In the Spark

JSON case, providing a schema when creating a DataFrame from JSON files allows Spark

to completely skips the schema inference step. This results in a lower total run time than

when a schema is not provided. However, excluding the DataFrame creation time, whether

or not the schema was provided, there was no significant performance difference between

Spark JSON and Spark JSON Schema across all expressions.

In contrast to JSON, Spark’s Parquet-based DataFrame performance results were consistent

throughout all data sizes because the Parquet files are much smaller than the JSON files used

to generate them. Since Parquet is supplied with a data schema and is a column-oriented

format, it is especially suitable for column-based queries such as attribute projections. One

33

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema *133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*134 *147*133 *146

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Spark JSON Spark JSON Schema

Spark Parquet AFrame AFrame Schema

Pandas on Ray AFrame Index

*262 *321*137 *190

0

20

40

60

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

 S
E

C
.)

FILE SIZE

Pandas Pandas on Ray
Spark JSON Spark JSON Schema
Spark Parquet AFrame

Exp. 1: len(df)

XS S M L XL
DATASET

(a) Expression 1 total times

*134 *187*133 *186

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

TI
M

E
 (S

E
C

.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema AFrame Index

Exp. 1: len(df)

XS S M L XL
DATASET

(b) Expression 1 expression-only times

0.0

0.1

1.0

10.0

100.0

1000.0

XS S M L XL

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

FILE SIZE

Exp. 2: df[[‘two’,‘four’]].head()

DATASET

(c) Expression 2 total times

*1.418 *1.522

0.0

0.1

0.2

0.3

0.4

0.5

XS S M L XL

TI
M

E
(S

EC
.)

FILE SIZE

Q2-wo

Exp. 2: df[[‘two’,‘four’]].head()

DATASET

(d) Expression 2 expression-only times

*261 *315*137 *184

0

10

20

30

40

50

1GB 2.5GB 5GB 7.5GB 10GB

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

XS S M
DATASET

L XL

(e) Expression 3 total times

*133 *180*133 *180

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

MSXS
DATASET

L XL

(f) Expression 3 expression-only times

Figure 5.2: Single Node Evaluation: Expression 1-3 Results (* = value where the bar ends)

factor to keep in mind is that even the Parquet-based DataFrame requires some DataFrame

creation overhead. Figure 5.2e displays the total elapsed time for expression 3, which asks

for the count of records that satisfy column conditions. We can see that for the XS and S

34

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema *133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*134 *147*133 *146

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Spark JSON Spark JSON Schema

Spark Parquet AFrame AFrame Schema

Pandas on Ray AFrame Index

*260 *317*137 *188

0

10

20

30

40

50

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 4: df.groupby(‘oddOnePercent’)
.agg(‘count’)

DATASET

(a) Expression 4 total times

*132 *183*133 *184

0

10

20

30

40

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 4:
df.groupby(‘oddOnePercent’).agg(‘count’)

DATASET

(b) Expression 4 expression-only times

0

0

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 5: df[‘stringu1’].map(str.upper).head()

DATASET

(c) Expression 5 total times

*1.41
*3.86

*7.689

0.0

0.5

1.0

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 5: df[‘stringu1’].map(str.upper).head()

DATASET

(d) Expression 5 expression-only times

*260 *315*133 *186

0

10

20

30

40

50

60

70

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 6: df[‘unique1’].max()

DATASET

(e) Expression 6 total times

*132 *180*129 *182

0

10

20

30

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 6: df[‘unique1’].max()

DATASET

(f) Expression 6 expression-only times

Figure 5.3: Single Node Evaluation: Expression 4-6 Results (* = value where the bar ends)

datasets, the Parquet-based DataFrame total time results were slower than AFrame. How-

ever, as the data size increases and the task processing time becomes more prominent,

the Parquet-based DataFrame starts to have a better run time than AFrame. The Spark

35

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema *133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*134 *147*133 *146

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Spark JSON Spark JSON Schema

Spark Parquet AFrame AFrame Schema

Pandas on Ray AFrame Index

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 7: df[‘unique1’].min()

DATASET

(a) Expression 7 total times

*133 *180*129 *182

0

10

20

30

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 7: df[‘unique1’].min()

DATASET

(b) Expression 7 expression-only times

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 8: df.groupby(‘twenty’)[‘four’].agg(‘max’)

DATASET

(c) Expression 8 total times

*133 *190*129 *181

0

10

20

30

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 8:
df.groupby(‘twenty’)[‘four’].agg(‘max’)

DATASET

(d) Expression 8 expression-only times

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 9: df.sort_values(‘unique1’, ascending=False).head()

DATASET

(e) Expression 9 total times

*133 *184*130 *181

0

10

20

30

XS S M L XL

TI
M

E
 (S

E
C

.)

FILE SIZE

Exp. 9:
df.sort_values(‘unique1’,
ascending=False).head()

DATASET

(f) Expression 9 expression-only times

Figure 5.4: Single Node Evaluation: Expression 7-9 Results (* = value where the bar ends)

Parquet-based DataFrame starts to benefit when the operation time exceeds the DataFrame

creation time. In turn, for the expressions that require access to whole records, such as

expressions 5 and 10, as seen in Figures 5.3d and 5.5b, Spark’s JSON-based DataFrame

36

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema *133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*133 *140*133 *140

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Pandas on Ray Spark JSON
Spark JSON Schema Spark Parquet AFrame
AFrame Schema

*134 *147*133 *146

0

5

10

15

1GB 2.5GB 5GB 7.5GB 10GB

T
IM

E
 (

S
E

C
.)

FILE SIZE

Pandas Spark JSON Spark JSON Schema

Spark Parquet AFrame AFrame Schema

Pandas on Ray AFrame Index

0.01

0.1

1

10

100

1000

1GB 2.5GB 5GB 7.5GB 10GB

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

FILE SIZE
0.01

0.1

1

10

100

1000

1GB 2.5GB 5GB 7.5GB 10GB

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

FILE SIZE

Pandas Pandas on Ray
Spark JSON Spark JSON Schema
Spark Parquet AFrame
AFrame Schema

Exp. 10: df[(df[‘ten’] == x)].head()

XS S M L XL
DATASET

(a) Expression 10 total times

*3.526 *4.339

0

0.05

0.1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

1GB 2.5GB 5GB 7.5GB 10GB

TI
M

E
(S

EC
.)

FILE SIZE

Exp. 10: df[(df[‘ten’] == x)].head()

XS S M L XL
DATASET

(b) Expression 10 expression-only times

0

1

9

90

900

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

DATASET

(c) Expression 11 total times

*131 *181*132 *181

0

10

20

30

XS S M L XL

TI
M

E
(S

EC
.)

FILE SIZE

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

DATASET

(d) Expression 11 expression-only times

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 12:
len(pd.merge(df, df2,
left_on=‘unique1’,
right_on=‘unique1’,
how=‘inner’))

DATASET

(e) Expression 12 total times

0

1

10

100

1000

XS S M L XL

TI
M

E
 (S

E
C

.)
-l

og
 s

ca
le

FILE SIZE

Exp. 12:
len(pd.merge(df, df2,
left_on=‘unique1’,
right_on=‘unique1’,
how=‘inner’))

DATASET

(f) Expression 12 expression-only times

Figure 5.5: Single Node Evaluation: Expression 10-12 Results (* = value where the bar
ends)

performed significantly better than its Parquet-based (columnar) DataFrame. Even in the

case that includes the DataFrame creation time, shown in Figures 5.3c and 5.5a, Spark’s

37

JSON-based DataFrame with a pre-defined schema was faster than Parquet for all data sizes

for expressions 5 and 10.

AFrame benefits from database optimizations like query planning and indexing. For expres-

sion 1, which asks for a total record count, AFrame with a primary key index performed

the best for all data sizes. Similary, in expression 11 as shown in Figures 5.5c and 5.5d,

AFrame with an index on the range attribute was the fastest in the total time case and was

competitive in the expression only case as well.

AFrame also benefits from having indexes on the join attributes (Expression 12), as shown

earlier in Figure 5.1b; also as the size of the dataset gets larger, the others suffer more

from long DataFrame creation times because they have to scan an additional dataset for

this expression. For this expression, both datasets are identical in content and size. As

we can see from Figures 5.5e and 5.5f, Pandas and Pandas on Ray even failed to complete

DataFrame creation on dataset S as they had to load twice as much data. It is important

to note that equality-based joins in AsterixDB default to use hybrid hash join algorithm (as

it has good cost characteristics when joining large datasets). For AFrames without index

(labeled AFrame and AFrame Schema), the join method used in expression 12 was a hash join

algorithm while AFrame Index benefited from index nested-loop join. Hash joins are more

efficient for large datasets, which is the reason why we started to see AFrame outperforming

AFrame Index on dataset XL as probing a hash table by scanning the dataset in its entirety

once could be faster than performing too many index lookups and traversing a b-tree index.

AFrame was faster than Spark’s JSON-based DataFrames in most of the test cases in Fig-

ure 5.1 and continued to be so as shown in Figures 5.2 - 5.5 for both expression-only and

total times evaluations. AFrame without indexes was slower than Spark Parquet in most of

the column-based expression-only times. However, for whole-row-based expressions, such as

expression 10 (Figures 5.5a and 5.5b), AFrame without indexes performed better than Spark

Parquet and were the best for both the expression-only and total run time evaluations.

38

5.4.5 Multi-node Results

For the distributed environment evaluation, as mentioned earlier, we have only evaluated

Spark and AFrame. We evaluated Spark on the same three DataFrame creation sources:

JSON, JSON with schema, and Parquet. Likewise, we evaluated AFrame on its same three

datasets, which are datasets with an open datatype, with a schema, and with an index.

For the multi-node evaluation, we evaluated the systems’ performance in a distributed envi-

ronment. As we observed in the single node evaluation, Spark spills to disk for both the L

and XL datasets (7.5 and 10 GB), which significantly affected its performance. In order to

observe the effect of clusters processing data that is larger than the available aggregate mem-

ory, we chose to start our multi-node evaluation with the 10-GB dataset. Here we evaluated

both systems according to both the speedup and scaleup metrics.

The multi-node evaluation was performed on ec2 machines with the same specifications as

the single node evaluation.

Speedup Results

The results for both Spark and AFrame are consistent with their single-node results in terms

of their performance rankings. Both systems processed the tasks faster when increasing the

number of processors while maintaining the same data size. Spark’s performance improved

drastically when the distributed data begin to fit in memory in the case of JSON DataFrames.

Figures 5.6 and 5.7 show that increasing the number of processing nodes reduces Spark

JSON-based DataFrame’s run time by an order of magnitude in the case of going from a

single node to a 2-node cluster. This is especially more visible in the total run time case.

However, once the data fits in memory, increasing the number of nodes no longer results in

such a drastic change (as we can see from the flatter lines for both of Spark’s JSON-based

39

DataFrames going from 2 nodes to 4 nodes).

For expression 1 (Figures 5.6a and 5.6b), AFrame with an index and Spark’s Parquet-based

DataFrame performed the best. AFrame operating on a dataset with a primary key index

was faster than Spark in the total time case, and Spark’s Parquet-based DataFrame was best

in terms of the expression-only time.

Similar to the single node results, the Parquet-based DataFrame was the slowest in expression-

only evaluation when access to the entire data record is required, as seen for expression 10

in Figure 5.7l across different numbers of nodes. AFrame with and without schema are the

fastest in both expression-only (5.7l) and total time (Figures 5.7k) for this expression. How-

ever, for expression 11 (Figures 5.7m and 5.7n), AFrame with an index on the range attribute

was the fastest in both expression-only and total time evaluations because Spark Parquet

incurred certain DataFrame creation overheads while AFrame translated this expression into

a query that was executed as an index-only query on AsterixDB.

For expression 12 (Figures 5.7o and 5.7p), the similar behavior from the single node eval-

uation is also visible here. AFrame was faster than Spark JSON-based DataFrames on all

cluster sizes but it was slower than Spark Parquet. AFrame and AFrame Schema display

results of hash join on the XL dataset (10 GB JSON data) with increasing number of pro-

cessing nodes while AFrame Index displays results of a broadcast-based index nested-loop

join.

40

0

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

Number of Nodes

Exp. 1: len(df)

(a) Expression 1: total
times

0

1

10

100

1000

1 2 3 4
T

IM
E

 (
S

E
C

.)
Number of Nodes

0.01

0.1

1

10

100

1000

1GB 2.5GB 5GB 7.5GB 10GB
T

IM
E

 (
S

E
C

.)
 -

lo
g

sc
al

e

FILE SIZE

Pandas Pandas on Ray
Spark JSON Spark JSON Schema
Spark Parquet AFrame
AFrame Schema

Exp. 1: len(df)

(b) Expression 1:
expression-only times

0.01

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 2: df[[‘two’,‘four’]].head()

(c) Expression 2: total
times

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

*132 *183*133 *184

0

10

20

30

40

XS S M L XL

T
IM

E
 (

S
E

C
.)

FILE SIZE

Exp. 2: df[[‘two’,‘four’]].head()

(d) Expression 2:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(e) Expression 3: total
times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(f) Expression 3:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 4:
df.groupby(‘oddOnePercent’)
.agg(‘count’)

(g) Expression 4: total
times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 4:
df.groupby(‘oddOnePercent’)
.agg(‘count’)

(h) Expression 4:
expression-only times

Figure 5.6: Multi-Node Speedup Evaluation Results

Scaleup Results

In Figures 5.8 and 5.9, scaleup results for Spark and AFrame are presented. No single system

performed the best across all tasks. Spark’s Parquet-based DataFrame was the fastest for

column-based expressions (e.g., expressions 6 and 7) and was consistently competitive, but

it also incurred an overhead for DataFrame creation. However, for row-based expressions

(e.g., expressions 5 and 10), AFrame continued to follow the same trend from the single node

case with the XL dataset, outperforming Spark Parquet.

As we saw in Figure 5.8, in the total time evaluations, by providing the JSON-based

DataFrames with a schema, the total time is reduced by an order of magnitude, especially

when only a subset of data is required. Expressions 2 (Figure 5.8c), 5 (Figure 5.8i), and

10 (Figure 5.9c) only sample a few records from a large dataset, which causes the schema

41

0.01

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 5:
df[‘stringu1’].map(
str.upper).head()

(a) Expression 5: total
times

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4

T
IM

E
 (

S
E

C
.)

Number of Nodes

Exp. 5:
df[‘stringu1’].map(
str.upper).head()

(b) Expression 5:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 6: df[‘unique1’].max()

(c) Expression 6: total
times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 6: df[‘unique1’].max()

(d) Expression 6:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 7: df[‘unique1’].min()

(e) Expression 7: total
times

0.01

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 7: df[‘unique1’].min()

(f) Expression 7:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 8:
df.groupby(‘twenty’)[‘four’]
.agg(‘max’)

(g) Expression 8: total
times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 8:
df.groupby(‘twenty’)[‘four’]
.agg(‘max’)

(h) Expression 8:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(i) Expression 9: total
times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(j) Expression 9:
expression-only times

0.01

0.10

1.00

10.00

100.00

1 2 3 4

T
IM

E
 (

S
E

C
.)

Number of Nodes

Exp. 10: df[(df[‘ten’] == x)].head()

(k) Expression 10: total
times

0.02

0.04

0.08

0.16

0.32

0.64

1 2 3 4

T
IM

E
 (

S
E

C
.)

Number of Nodes

Exp. 10: df[(df[‘ten’] == x)].head()

(l) Expression 10:
expression-only times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 11:
len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(m) Expression 11: to-
tal times

0.1

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 11:
len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(n) Expression 11:
expression-only times

1

10

100

1000

1 2 3 4

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes

Exp. 12: len(pd.merge(df, df2,
left_on=‘unique1’,right_on=‘unique1’,
how=‘inner’))

(o) Expression 12: total
times

1

10

100

1000

1 2 3 4

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

Number of Nodes

(p) Expression 12:
expression-only times

Figure 5.7: Multi-Node Speedup Evaluation Results (continued)

42

inference time to otherwise dominate the actual expression execution time.

0

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

TI
M

E
 (S

E
C

.)
-

lo
g

sc
al

e

Number of Nodes : Data SizeNumber of Nodes : JSON Data Size

Exp. 1: len(df)

(a) Expression 1: total
times

0

1

10

100

1,000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB
T

IM
E

 (
S

E
C

.)
 -

lo
g

sc
al

e

Number of Nodes : Data SizeNumber of Nodes : JSON Data Size

Exp. 1: len(df)

(b) Expression 1:
expression-only times

0.01

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 2: df[[‘two’,‘four’]].head()

(c) Expression 2: total
times

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

Number of Nodes : Data Size

Exp. 2: df[[‘two’,‘four’]].head()

(d) Expression 2:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(e) Expression 3: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(f) Expression 3:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 4:
df.groupby(‘oddOnePercent’)
.agg(‘count’)

(g) Expression 4: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 4:
df.groupby(‘oddOnePercent’)
.agg(‘count’)

(h) Expression 4:
expression-only times

0

0

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 5:
df[‘stringu1’].map(str.upper).head()

(i) Expression 5: total
times

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

Number of Nodes : Data Size

Exp. 5:
df[‘stringu1’].map(str.upper).head()

(j) Expression 5:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 6: df[‘unique1’].max()

(k) Expression 6: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 6: df[‘unique1’].max()

(l) Expression 6:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 7: df[‘unique1’].min()

(m) Expression 7: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 7: df[‘unique1’].min()

(n) Expression 7:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 8:
df.groupby(‘twenty’)[‘four’]
.agg(‘max’)

(o) Expression 8: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 8:
df.groupby(‘twenty’)[‘four’]
.agg(‘max’)

(p) Expression 8:
expression-only times

Figure 5.8: Multi-Node Scaleup Evaluation Results

43

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(a) Expression 9: total
times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB
T

IM
E

 (
S

E
C

.)
 -

lo
g

 s
ca

le
Number of Nodes : Data Size

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(b) Expression 9:
expression-only times

0.01

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

 S
E

C
.)

 -
lo

g
 s

ca
le

Number of Nodes : Data Size

Exp. 10: df[(df[‘ten’] == x)].head()

(c) Expression 10: total
times

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

Number of Nodes : Data Size

Exp. 10: df[(df[‘ten’] == x)].head()

(d) Expression 10:
expression-only times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes : Data Size

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(e) Expression 11: total
times

0.1

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes : Data Size

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(f) Expression 11:
expression-only times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes : Data Size

Exp. 12: len(pd.merge(df, df2,
left_on=‘unique1’,right_on=‘unique1’,
how=‘inner’))

(g) Expression 12: total
times

1

10

100

1000

1 : 10GB 2 : 20GB 3 : 30GB 4 : 40GB

T
IM

E
 (

S
E

C
.)

 -
lo

g
sc

al
e

Number of Nodes : Data Size

Exp. 12: len(pd.merge(df, df2,
left_on=‘unique1’,right_on=‘unique1’,
how=‘inner’))

(h) Expression 12:
expression-only times

Figure 5.9: Multi-Node Scaleup Evaluation Results (continued)

5.4.6 Result Discussion

Pandas performed competitively on all tasks for a single node when the data fits in memory.

However, its weaknesses lie in resource utilization and scalability. The memory requirement

for Pandas is large and it can only take advantage of a single processing core. In addition,

Pandas’ eager evaluation strategy has disadvantages when expressions involve potentially

repetitive tasks. Exploratory operations that only view a small subset of the data took

longer on Pandas than on frameworks that utilize parallel processing and/or lazy evaluation.

Pandas on Ray did an excellent job in functionally covering Pandas operations. It reroutes

operations to the default Pandas when its parallel work distribution has not been enabled for

an operation. While treating Pandas DataFrame as a black box does not solve the problem

of its memory requirement, it utilizes parallel processing for loading and processing data in

44

order to speed up the computation. Evaluating the system as-is reveals that there can be

significant overhead associated with work distribution for Pandas on Ray. This is a known

issue which is mentioned in the project’s own benchmarking results [16], where the authors

provide an explanation of the issues and give insights as to when the benefit of its work

distribution will be significant. Its experimental out-of-core support will be worth looking

into once it is enabled and distributed installation instructions are provided.

Spark DataFrame provides similar syntax to that of Pandas’ with the ability to operate

on data that exceeds the per-node memory limit; it provides a friendly interface to the

Apache Spark distributed compute engine. While Spark can operate on large datasets, its

performance drastically degrades when having to work with insufficient cluster memory as

its strength lies in in-memory computation. As a result, on large datasets, its JSON-based

DataFrame was an order of magnitude slower than AFrame. On the other hand, its Parquet-

based DataFrame performed quite competitively across all data sizes. Due to its compression,

a Parquet file is much smaller than a JSON file with the same logical data content. Finally,

Parquet is a columnar file format, which makes the Parquet-based DataFrame an excellent

fit for column-based operations but slower on tasks that require access to the entire payload

of each data record.

A unique characteristic that sets AFrame apart from other large-scale DataFrame libraries

is its ability to operate on managed and indexed data. AFrame benefits from its AsterixDB

backend in several ways. First, it can eliminate repetitive file scans during the DataFrame

creation process since datasets have been ingested and stored on disk in AsterixDB. Second,

it is able to operate on data larger than the available memory, seamlessly, without requiring

additional effort. It thus eliminates the disconnect between data-intensive analytical tools

(e.g., Pandas) and database management systems. Third, it eliminates issues that could

arise from manually managing large amounts of data from various sources. Flat file storage

requires effort to maintain and can be difficult to share between multiple users; modifying

45

data in traditional storage can be prone to corruption because of a lack of transactional

support. In addition, by having a distributed data management system as its backend,

complex DataFrame operations that would otherwise execute inefficiently can be optimized

by a database query optimizer. AsterixDB provides query plan optimization and indexing

that enable AFrame to perform competitively, especially in terms of the total time evaluations

(which arguably reflect the time from question to insight).

5.5 Conclusion

The DataFrame benchmark is preliminary work that has served a purpose by allowing us

to evaluate the feasibility of AFrame for analytic operations and to compare its initial per-

formance against other frameworks. Our benchmark can be used in both single-node and

distributed settings. Our experiments showed that AFrame can operate competitively in

both settings. We have also demonstrated that query optimizations can be crucial when

dealing with data at scale. Our DataFrame benchmark, even at this early stage, can help

data scientists better understand the performance of their workloads and understand dis-

tributed frameworks’ tradeoffs.

46

Chapter 6

PolyFrame

6.1 Introduction

Depending on the nature of the analysis problem and environment at hand, large amounts

of data can be stored in different types of databases (e.g., document, time-series, or graph).

AFrame, however, is language-dependent. It relies on specific features of AsterixDB and

it is tightly-coupled with SQL++, limiting its adoption and usage. In this chapter, we

describe a new design that retargets AFrame’s incremental query formation to other query-

based database systems as well, making it more flexible for deployment against other data

management systems with composable query languages.

Instead of requiring data to be in a specific database system, PolyFrame enables users to

retarget their data manipulation operations to their existing data stores. PolyFrame makes

AFrame language-independent by creating a retargetable mapping between dataframe op-

erations and composable database queries. The language-independence of PolyFrame is

achieved by abstracting AFrame’s language translation layer and retargeting its incremental

query formation mechanism to operate against other database systems. We establish a set

47

of rewrite rules to provide an extensible template for supporting other query languages, thus

allowing AFrame to operate against other query-based database systems. As a proof-of-

concept, we have applied our language rewrite framework to four different query languages,

namely SQL++ [35], SQL [34], MongoDB Query Language [23], and Cypher [40], to re-

target AFrame against AsterixDB [3], PostgreSQL [25], MongoDB [22], and Neo4j [24, 52]

respectively. The contributions of the resulting PolyFrame system are the following:

1. We enable large-scale data analysis using a Pandas-like syntax on a variety of query-

based database systems of choice.

2. We identify common mapping rules between dataframe operations and database queries.

This allows the system to reuse any combinations of the rules to construct queries that

represent the supported dataframe operations.

3. We extract and separate generic and language-specific rules to make it easy to introduce

a new language, as the query composition mechanism is separated from the query

syntax.

4. We decompose complex Pandas dataframe operations (e.g., get dummies, describe) into

a sequence of simple operations via generic rewrite rules allows PolyFrame to utilize

subqueries, which provides a simple localized model for language-specific mappings.

5. We support user-defined rewrites to allow users to specify their own custom rewrite

rules to leverage a system’s language-specific optimizations.

The rest of this chapter is organized as follow: Section 6.2 provides an overview of our retar-

getable query-based design. Sections 6.3 and 6.4 discuss the details of our language rewrite

rules along with examples. Section 6.5 presents the experimental evaluation of PolyFrame.

We conclude in Section 6.6.

48

6.2 System Architecture

Here we briefly describe PolyFrame’s architecture and the new language rewrite compo-

nent which is an architectural extension to make AFrame extensible for deployment against

different widely used query-based database systems.

In order to make AFrame language-independent, PolyFrame separates the language syntax

from the original incremental query formation process. Figure 6.1 outlines the new AFrame

architecture (PolyFrame). An AFrame runtime object is created using a set of language-

specific rewrite rules by selecting from those that we provide (e.g., SQL++, SQL, Cypher,

MongoDB) or providing a set of custom rules. Inspired by Spark, each operation in AFrame

can be categorized as either a transformation or an action. Transformations are operations

that transform data. These operations are functions that take an underlying query (Qi) from

an AFrame object and produce a new AFrame object with a new query (Qi+1). Transfor-

matios will not trigger query evaluation, hence AFrame does not produce any intermediate

results. Actions are operations that trigger query evaluation. This is done through a database

connector that sends the underlying query (Qn) of an AFrame object to a database. The

database connector is an abstract class in AFrame that makes connections to database en-

gines. It also performs AFrame initialization, pre-processing of queries before sending them

to the database, and post processing of queries’ results from the database. A new database

connector can be added by providing an implementation of these three required methods.

Query’s results are returned as a Pandas Dataframe.

49

Pandas
DataFrame

Qi

Qi+1

Qn

AFrame

Transformation
DB

Database
Connector

Result

Query

Language
Rewrite
Rules

Action

Create
AFrame
Object

= Incremental query formation

Figure 6.1: AFrame’s New Architecture (PolyFrame)

6.3 Query Rewrite

In order to separate the language syntax from the query formation process, we re-architected

AFrame and established two sets of rewrite rules that govern how each query is constructed

for a particular dataframe operation. Figure 6.2 shows the sequence of steps in PolyFrame’s

query rewriting process. In PolyFrame, a language configuration file contains query map-

pings that the system uses during the query formation process. Each PolyFrame object

has an underlying query (Qi). When an operation is called on a PolyFrame object, the

underlying query is passed into the rewriting process. A dataframe operation is inspected,

and if possible, decomposed into multiple simple dataframe operations. Variables from each

dataframe operation will also be extracted. The system uses generic rewrite rules (described

in Section 6.3.2) to map each operation to one or multiple language-specific rules (described

in Section 6.3.3). Query rewriting is then performed on each identified language-specific rule

using string pattern matching to replace each token with the extracted common variables.

The result is a new database query (Qi+1) encapsulated in a new PolyFrame object.

50

Operation Translator

Rewrite Rule
Selector

Common Variable
Extractor

Query Rewriter

DF

Language
configuration

File

DF Generic Rewrite
Rules

Language-specific
Rules

DF Operations

Rewrite rules

Database Query (Q i+1)

DataFrame Operation (Qi)DF

DF Operations

Figure 6.2: Flowchart of a query rewrite

Originally in AFrame, a SQL++ query was hard-coded in each dataframe operation body,

while in PolyFrame, we use two levels of rewrite rules to create the operations’ queries.

Figure 6.3 shows two operation implementations (attribute projection and null value de-

tection) in AFrame in comparison to PolyFrame. In PolyFrame, each operation uses the

attribute-projection rule with three rewrite variables (‘attribute’, ‘alias’, ‘subquery’) that

are overwritten at runtime. The ‘isna’ operation uses the null-operator rewrite rule in ad-

dition to the attribute-projection rule to construct its query. The separation of the target

query language from the query construction allows PolyFrame to be easily extensible. The

two-level approach also helps reduce the number of rewrite mappings required since the

system can combine and reuse the rules to construct its queries.

51

def isna(self, key):
query = ‘SELECT $attribute IS NULL AS $alias’\

‘FROM ($subquery)’
…

attribute_projection

$subquery$attribute $alias

null comparison

$attribute IS NULL

SELECT $attribute IS NULL AS $alias FROM ($subquery) t

def __getitem__(self, key):
query = ‘SELECT $attribute AS $alias’\

‘FROM ($subquery)’
…

attribute_projection

SELECT $attribute AS $alias FROM ($subquery) t

$subquery$attribute $alias

AFrame

PolyFrame

Figure 6.3: AFrame vs. PolyFrame query construction

6.3.1 Supported Language Requirement

In order to preserve AFrame’s incremental query formation and subquery characteristics,

we target query languages that are composable. Another important requirement that any

of PolyFrame’s target database systems must satisfy is having an efficient query optimizer.

Executing subqueries without optimization could result in unnecessary data scans that would

affect performance. Fortunately, this latter requirement is already an important property of

many database systems and is an ongoing area of research.

Currently, we support rewrites of many relational algebra operations in Pandas dataframes

such as selection, projection, join, group by, aggregation, and sorting. Operations that re-

quire access to rows by indices are not supported because row ordering is not widely enforced

in database systems. A challenge in generating common rewrite rules for PolyFrame has been

distinguishing between configurable and general components across various languages. We

have established two main types of rewrite rules. One type is generic rules and the other

rule type is language-specific rules.

52

6.3.2 Generic Rewrite Rules

Generic rules are rewrite rules that are not explicitly defined in a system-specific PolyFrame

language configuration file. The purpose of our generic rules is to identify language-specific

rule(s) for each dataframe operation. For simple dataframe operations (e.g., projection,

unique), generic rules can map an operation directly to a language-specific rule. For com-

plex dataframe operations, generic rules decompose these operations into a sequence of simple

operations that can be translated via the existing language-specific rewrite rules. For exam-

ple, the function ‘describe()’ in Pandas displays statistics for each attribute in a Dataframe.

In PolyFrame, we construct this function by combining operations 1-7 in Figure 6.5 together

to form a query that asks for aggregate values (min, max, average, count, and standard de-

viation) of specified attributes. We chain together operations 3-7 according to a pre-defined

language-specific attribute rewrite rule and use them to rewrite operation 1 and 2. Thus,

instead of creating a rule for each function of Pandas Dataframe, these generic rules allow

PolyFrame to efficiently utilize common components to form more complex queries that

perform the desired function.

6.3.3 Language-specific Rewrite Rules

These rules are the rewrite rules for translating dataframe operations into (sub) queries

that have to be defined in a language configuration file due to the syntax differences across

various languages. We supply users with a language configuration template file to allow

adding a new query language or a similar query language with semantic variants. A sketch

of PolyFrame’s template file is displayed in Figure 6.4. The template file contains rewrite

variables that can be rearranged or omitted to represent the required query behavior. Its

pre-defined variables will be rewritten at runtime when a user interacts with PolyFrame

objects. These rules are defined in such a way that they can be combined to create complex

53

queries. In addition to the general dataframe operations that we support, we also require

rules for translating arithmetic operations (addition, subtraction, multiplication, division,

etc.), aggregation (e.g., sum, average, count, min, and max), comparison statements (equal,

not equal, greater than, less than, etc.), logical operations (and, or, and not), and attribute

aliases. A challenge in establishing a set of language-specific rewrite rules was identifying the

granularity of the rules while maintaining efficiency. Defining the granularity too fine would

yield rules that cannot be reused or combined to compose other methods and would require

too much effort to maintain. The rules need to be generalized across different languages and

not rely exclusively on system-specific optimizations. Our goal was to identify the common

components that are shared across query languages.

Figure 6.4: Configuration Template Overview

Figure 6.5 shows a few implementation examples of the language-specific rewrite rules from

Figure 6.4 in three query languages. The rule samples for Cypher and MQL including

handling of joins can be found in Appendices B.2 and B.3. For these particular examples,

SQL happens to share the same syntax as SQL++ for all operations except operation 1, so

we only show SQL++, MongoDB, and Cypher here. Operation 2, for example, requires the

language to return the aggregate value of an attribute. There are three rewrite variables

(italicized), ‘$subquery’, ‘$alias’, and ‘$func’. A previous operation’s underlying query will

replace the variable ‘$subquery’ and one of the aggregate functions (e.g., operations 3-7) will

replace the variables ‘$func’ and ‘$alias’. As also indicated in Figure 6.5, aggregate functions

54

ID Operation SQL++ MongoDB Cypher

1 Return all
records

SELECT VALUE t
FROM
$namespace.$collection t

{ "$match": {} } MATCH(t: $collection)

2
Return an
attribute

aggregate

SELECT $func AS $alias
FROM ($subquery) t

$subquery,
{"$group": {"_id": {},

"$alias": {$func}}},
{"$project": {"_id": 0 }}

$subquery
WITH {`$alias`: $func}
AS t

3 Minimum MIN($attribute) "$min": "$$attribute" min(t.$attribute)

4 Maximum MAX($attribute) "$max": "$$attribute" max(t.$attribute)

5 Average AVG($attribute) "$avg": "$$attribute" avg(t.$attribute)

6 Count COUNT($attribute) "$count": "$$attribute" count(t.$attribute)

7 Standard
deviation STDDEV($attribute) "$stdDevPop": "$$attribute" stDevP(t.$attribute)

Figure 6.5: Sample Rewrite Rules

require a rewrite for a variable labeled ‘$attribute’. This is the name of an attribute. For

example, to get the minimum value of ‘age’ from a dataset named ‘Users’ in a database

named ‘Test’, PolyFrame will combine the results of operations 1, 2, and 3. First it will

rewrite the variable ‘$namespace’ of operation 1 as ‘Test’ and the variable ‘$collection’ as

‘Users’. The result of operation 1 will replace the variable ‘$subquery of operation 2’. It will

then rewrite the variable ‘$attribute’ in operation 3 with the value ‘age’ and use operation

3 to replace the variable ‘$func’ in operation 2.

6.4 Per-language Rewrite Examples

To demonstrate the generality of our approach, we have implemented a first prototype of

PolyFrame that operates against AsterixDB, PostgreSQL [25], MongoDB [22] and Neo4j [24]

by translating Dataframe operations into SQL++, nested SQL queries, MongoDB aggrega-

tion pipeline stages, and Cypher queries using ‘WITH’ statements. Table 6.1 displays query

rewrites for SQL++, regular SQL, MongoDB, and Cypher that correspond to the AFrame

55

ID
AFrame

Operation
SQL++ SQL MongoDB Cypher

1 af = AFrame(‘Test’,‘Users’)
SELECT VALUE t
FROM Test.Users t

SELECT *
FROM Test.Users

{“$match”: {} } MATCH(t: Users)

2 af[‘lang’]
SELECT t. lang
FROM (1) t

SELECT t. lang
FROM (1) t

1,
{“$project”: { “ lang”: 1 } }

1
WITH t{` lang`: t. lang}

3 af[‘lang’] == ‘en’
SELECT VALUE
t. lang = “en”
FROM (2) t

SELECT
t. lang = “en”
FROM (2) t

2,
{“$project”: {“is eq”: {“$eq”: [“ lang”, “en”]}}}

2
WITH t{`is eq`: t. lang = ”en”}

4 af[af[‘lang’] == ‘en’]
SELECT VALUE t
FROM (1) t
WHERE t. lang = ”en”

SELECT t.*
FROM (1) t
WHERE t. lang = ”en”

1,
{”$match”: { ”$expr”: { ”$eq”: [” lang”, ”en”] } } }

1
WITH t WHERE t. lang = ”en”

5
af[af[‘lang’] == ‘en’]
[[‘name’, ‘address’]]

SELECT t.name ,
t. address
FROM (4) t

SELECT t.name ,
t. address
FROM (4) t

4,
{”$project”: { ”name”: 1, ”address”: 1} }

4
WITH t{`name`:t.name ,
‘ address`:t. address}

6
af[af[‘lang’] == ‘en’]
[[‘name’, ‘address’]].head(10)

5
LIMIT 10 ;

5
LIMIT 10 ;

5,
{ “$project”: { “ id”: 0 } },
{ “$limit” : 10 }

5
RETURN t
LIMIT 10

Table 6.1: PolyFrame’s Incremental Query Formation

operations from Chapter 4 in Figure 4.7. The highlighted parts of each query are generated

by PolyFrame’s query translation process, while the non-highlighted parts come directly from

the provided language-specific rewrite rules. The bold italicized numbers are operation IDs.

These IDs refer to query results from the indicated operation. We can see that SQL++ has

much in common with SQL, but some differences exist due to the different data models of

the two languages. The MongoDB and Cypher rewrites are very different, but the passed-in

operation parameters are the same across all four languages. The full finished products of

operation 6 rewritten in each of the languages are displayed in Listings 6.1 - 6.4.

Listing 6.1: SQL++ translation of operation 6

SELECT t.name , t.address

FROM (SELECT VALUE t

FROM (SELECT VALUE t

FROM Test.Users t) t

WHERE t.lang = ’en’) t

LIMIT 10;

56

Listing 6.2: SQL translation of operation 6

SELECT t.name , t.address

FROM (SELECT *

FROM (SELECT *

FROM Test.Users t) t

WHERE t.lang = ’en’) t

LIMIT 10;

Listing 6.3: MongoDB translation of operation 6

Test.Users.aggregate ([

{ "$match ": {} },

{ "$match ": {"$expr": {"$eq":["$lang", "en"]}}},

{ "$project ": { "name": 1, "address ": 1 } },

{ "$project ": { "_id": 0 } },

{ "$limit" : 10 }])

Listing 6.4: Cypher translation of operation 6

MATCH(t: Users)

WITH t WHERE t.lang = "en"

WITH t{‘name ‘:t.name , ‘address ‘:t.address}

RETURN t

LIMIT 10

For MongoDB, PolyFrame uses its aggregation pipeline language in order to obtain the incre-

mental query formation leveraged for AFrame. As a result, certain optimizations might be

limited for particular operations in a pipeline (as described in MongoDB’s documentation).

Operation 1 in Table 6.1 for MongoDB does not have any variable rewritten because our

MongoDB rewrite rules are pipeline stages and pipeline constructions are handled through

its database connector. Listing 6.3 displays a complete MongoDB aggregation pipeline for

operation 6 from Table 6.1. Notice here that we include a ‘{”$project”:{” id”:0}}’ statement

57

as part of the MongoDB’s rewrite rule to exclude the MongoDB object identifier attribute

‘ id’ from the final results. This attribute is the last attribute to be excluded in the pipeline

because its presence is needed to enable index usage.

6.5 Experimental Evaluation

In order to demonstrate the value of database-backed dataframes and to empirically validate

the generality of our language-rewrite approach working against different database systems,

we have conducted two sets of experiments. One set illustrates the performance differences

between a distributed data processing framework (Spark) that can consume the data from

database systems and a framework (PolyFrame) that uses a database system to process

the data. The other set of experiments illustrates our new architecture operating against

different database systems to compute results and compare that to Pandas Dataframes. We

conducted our experiments using the Dataframe benchmark detailed in Chapter 5. That

Dataframe benchmark was originally developed to evaluate AFrame and to compare its

performance with that of other Dataframe libraries. Note that we use the benchmark here

as a demonstration of our new architecture (not to compare the performance of the different

database systems).

6.5.1 Experimental Setup

In order to present a reproducible evaluation environment, we set up a benchmark cluster

using Amazon EC2 m4.large machines. Each machine has 8 GB of memory, 100 GB of SSD,

and the Ubuntu Linux operating system.

We used the Dataframe Benchmark detailed in Chapter 5 that used to evaluate AFrame

here. We also used the Wisconsin benchmark data generator [41] to generate the data in

58

JSON file format in 5 different sizes ranging from 1GB (0.5 million records) to 10 GB (5

million records). We labeled these as the XS through XL datasets as shown in Table 6.2.

The benchmark timing points for Pandas, Spark, and PolyFrame are listed in section C.1 of

the Appendix.

Dataset Name
XS S M L XL

Number of Records 0.5 mil 1.25 mil 2.5 mil 3.75 mil 5 mil
JSON File Size 1 GB 2.5 GB 5 GB 7.5 GB 10 GB

Table 6.2: Single Node’s Dataset Summary (mil = million)

Comparison with Spark (Single and Multi-Node)

These experiments are included for the benefit of readers who may wonder why Spark plus

its database connectivity are not the ultimate scaling answer.

On a single node, we used two different data access methods for PySpark dataframes reading

from a MongoDB instance. We used the MongoDB-Spark connector provided by MongoDB

to read the data. For the first data access method (labeled ‘Spark’), we used the connec-

tor to directly read the data from MongoDB. For the second data access method (labeled

‘Spark+MongoDB pipeline’), we directly provided the connector with MongoDB aggregation

pipelines. This is an optimization that Spark supports to push down a query and utilize

database optimizations to lower the amount of data transferred back. The pipelines that we

issued to Spark are the same ones that PolyFrame generated, and both Spark and PolyFrame

were connected to the same MongoDB instance.

On a three-node cluster, we set up Vertica Community Edition 10.1.0 [27] with Spark workers

co-located on the same nodes. For this cluster experiment, we ingested a 100 GB of real-

world data subsetted from the Criteo dataset [19] into Vertica. The attributes used for the

benchmark queries were changed to work with the underlying Criteo dataset. PolyFrame

59

and Spark both connected to the same Vertica cluster. However, unlike MongoDB, the

Vertica-Spark connector only supports projection and selection push-downs to the database.

PolyFrame Heterogeneity (Single and Multi-Node)

To assess the benefits and feasibility of PolyFrame, we ran the DataFrame benchmark on

Pandas and on PolyFrame operating on the four different database systems detailed below:

• AsterixDB: v.0.9.5 with data compression enabled

• PostgreSQL: v.12

• MongoDB: v.4.2 Community edition

• Neo4j: v.3.5.14 Community edition

For the multi-node benchmark, we ran the benchmark only on PolyFrame operating on top

of AsterixDB, MongoDB, and Greenplum (esentially parallel PostgreSQL). The community

version of Neo4j does not run on sharded clusters. Since Greenplum uses PostgreSQL v.9.5

(which is different from the PostgreSQL version that we used for the single node evaluation),

some of PostgreSQL’s latest optimizations were not available to it. As a result, we also ran

Greenplum on a single node before conducting its multi-node experiment. The evaluated

cluster sizes ranged from 2-4 nodes.

Speedup and scaleup are the two preferred and widely used metrics to evaluate the pro-

cessing performance of distributed systems, so we evaluated PolyFrame on each multi-node

system using these two metrics. Table 6.3 displays the dataset sizes that we used for each

of the cluster experiment evaluations. The aggregate memory listed is the sum of all of

the available memory in the cluster. We conducted speedup experiments using a fixed-size

dataset while increasing the number of processing machines from one up to four. For the

60

scaleup experiments, we increased both the number of processing machines and the amount

of data proportionally to measure each system’s performance.

1 node 2 nodes 3 nodes 4 nodes
Aggregate Memory 8 GB 16 GB 24 GB 32 GB
Speedup: JSON File Size 10 GB 10 GB 10GB 10 GB
Scaleup: JSON File Size 10 GB 20 GB 30GB 40 GB

Table 6.3: Multi-Node Experiment Setup

6.5.2 Spark Comparison Results

Here we present benchmark results on a single and a three-node cluster. On a single work-

station PolyFrame and Spark operated on the same MongoDB instace. On a three-node

cluster both systems operated on top of a Vertica cluster.

Single-node Results

For this experiment, we ran the benchmark on all the dataset sizes on a single node, we

will first present the results for the 10 GB dataset (which exceeds a single node memory

capacity) and then describe a few of the operations’ results in detail.

Figure 6.6 shows the results for PolyFrame and Spark for all of the dataframe benchmark’s

expressions. It is important to note that the plot is in log scale, which understates the

significant differences in runtimes. PolyFrame performed the best across all of the expressions

(lower is better). It was faster than both variants of Spark.

Spark was significantly slower than PolyFrame, even when operating on the same MongoDB

instance, partly due to the data transfer time between MongoDB and Spark. PolyFrame

sends queries to MongoDB directly, without first loading any data into memory for process-

ing. This lets MongoDB process the operations and only return the queries’ results. This

61

20

200

2,000
PolyFrame Spark+MongoDB pipeline Spark

0
3
6
9

12
15

1 2 3 4 5 6 7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID

Figure 6.6: Single-node Experiment with Spark on MongoDB

design allows PolyFrame to take advantage of MongoDB’s database optimizations (e.g., in-

dex) and to avoid loading large amounts of data into memory.

Spark with MongoDB pipelines had better performance than regular Spark because it reduces

the amount of data needed to be transferred from the database into the Spark environment

for processing. However, one can see that even with passed-down pipelines, Spark was still

slower than PolyFrame. This is because the MongoDB pipelines that are passed through the

connector are applied to each data partition, and not to the whole dataset. The number of

data partitions is determined by MongoDB’s partitioner in order to optimize data transfers

to multiple Spark workers1. Post-processing is then done at the Spark level. We will describe

some of the test cases and their results in more detail next.

Figure 6.7a displays the performance of expression 1 on all dataset sizes. This expression

asks for the count of records from the dataset. Spark was significantly slower than PolyFrame

here because it has to first load the data input into memory to perform the operation, and

the data size was larger than the available memory. When a pipeline is passed from Spark

1Spark spawns a worker per core on a single machine, so MongoDB’s connector defaults to partitioning
the data in order to achieve maximum parallelism with Spark.

62

*92.95

0

10

20

30

40

50

60

70

XS S M L XL

TI
M

E
(S

EC
.)

Dataset
PolyFrame Spark+MongoDB pipeline Spark

Exp. 1: len(df) *92.95

0

10

20

30

40

50

60

70

XS S M L XL

TI
M

E (
SE

C.
)

Dataset

(a) Expression 1

0.00

0.01

0.10

1.00

10.00

100.00

1,000.00

XS S M L XL

TI
M

E (
SE

C.
) -

lo
g s

ca
le

Dataset

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(b) Expression 9

Figure 6.7: Selected single node Spark and PolyFrame comparisons (*=value where the bar
ends)

to MongoDB, its performance was an order of magnitude faster. This is because MongoDB

then performed count operations and only sent the numbers of records from each of its data

partitions back to Spark to be aggregated. PolyFrame performed the best because it avoids

transferring any data and having to perform any aggregation outside the database.

Figure 6.7b displays the performance result for expression 9, which asks for the five records

with the highest values in a unique field. Because of this operation, we created an index

on the sort attribute at the database level. MongoDB was able to then use this index to

perform a backward index scan to retrieve the requested records. PolyFrame’s generated

MongoDB pipeline allows for such an optimization, which resulted in the best performance

across all data sizes. However, we can see that Spark even with the MongoDB pipeline was

still significantly slower than PolyFrame issuing the equivalent query. This is because, even

when using the index, the sorted records from all partitions have to be globally sorted again

in the Spark environment. However, the Spark+pipeline results were orders of magnitude

faster than when Spark read the entire data from MongoDB and performed the sort operation

itself.

63

Comparison with Spark (Multi-Node)

For the cluster experiments, we ran the benchmark on 100GB of data from the Criteo dataset

residing on a three-node Vertica cluster. We used the SQL language configuration file for

operation-to-query translation. The results in Figure 6.8 are consistent with the single node

results for MongoDB. However, unlike the MongoDB connector, the Vertica-Spark connector

(provided by Vertica) does not provide an option for manual query pass-down. For Vertica,

then, Spark can only take advantage of the database API’s selection and projection push-

down to limit the amount of data transferred. As a result, Spark and PolyFrame performance

is similar on expressions 3 and 11, which issue range and exact-match queries respectively.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID

10

100

1,000

10,000
PolyFrame
Spark

Figure 6.8: Cluster Experiment with Spark on Vertica

6.5.3 PolyFrame’s Heterogeneity Results: Single-node

An important point to note here is that we began with a single node evaluation primarily to

compare PolyFrame’s database system-based lazy evaluation with Pandas’ eager in-memory

evaluation approach. First, we executed the benchmark on the XS dataset as a preliminary

test before running it on the other bigger datasets. As mentioned, the DataFrame benchmark

64

separately presents the DataFrame creation time and the expression-only runtime. Figure 6.9

presents the XS results for the single node evaluation. 6.9a displays the total runtimes for

expressions 1-13, and 6.9b displays the expression-only runtimes for the expressions. The

total evaluation times of Pandas were significantly higher than all variants of PolyFrame

because Pandas has to load the entire dataset into memory to create its DataFrames. For

the expression-only times, Pandas was then the fastest to complete most of the operations

due to having the data already available in memory, except for expressions 5 and 10 where

Pandas suffered due to eagerly evaluating sub-components of the expressions. In contrast,

PolyFrame operating on top of the four database systems did not incur any DataFrame

creation times. The four PolyFrame variants were all able to execute all benchmark expres-

sions. The runtime results among these four database systems vary due to their each having

different optimizations (more on that shortly).

5

15

25

35

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AsterixDB MongoDB Neo4j PostgreSQL

(a) Expression 1-13 total times

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AsterixDB MongoDB Neo4j PostgreSQL

0.5

5.0

50.0

(b) Expression 1-13 expression-only times

Figure 6.9: XS Results of Single Node Evaluation

After the first XS round, we ran the benchmark on the four other dataset sizes, S, M, L and

XL, to evaluate the data scalability of Pandas and of PolyFrame on a single node. The single

node results are presented in Figures 6.10 to 6.13. The first thing to note here is that Pandas

threw an out-of-memory error on dataset sizes M, L, and XL, while all variants of PolyFrame

were able to complete all operations on all of the tested dataset sizes. A programmatic

workaround for Pandas could be to partition the data and then programmatically compute

and combine intermediate results. However, we did not consider this solution; a partition

65

size would need to be specified and that would directly affect the total runtime. Figure 6.10

displays the total runtimes and expression-only runtimes for expressions 1-4. Figure 6.11

displays the total and expression-only runtimes for expressions 5-8. Figure 6.12 displays the

total and expression-only runtimes for expressions 9-12 and Figure 6.13 displays expression

13 results. We discuss the results below; our discussion is based on having inspected the

query plans for each operation on each system.

For Expression 1, Figure 6.10b shows that PolyFrame operating on Neo4j was the fastest

across all data sizes. This is because Neo4j keeps separate data-stores specifically for its

nodes and its relationships metadata, so retrieving the count of records is an instant metadata

lookup. PolyFrame operating on AsterixDB was competitive and was able to take advantage

of a primary key index for this particular expression, while MongoDB and PostgreSQL

resorted to table scans.

Since we are targeting data analysis at scale, for relatively ‘small’ queries in terms of com-

putation such as expressions 2 and 10, whose timings are in the tens of millisecond range,

we also show results for the ‘Empty’ dataset as a baseline for consideration. Expression 2 is

asking for a projection of two attributes from a small subset of data (five records). As shown

by the ‘Empty’ results in Figure 6.10d, all of the evaluated database systems do have some

query preparation overhead, especially AsterixDB (which is designed to operate efficiently

on big data rather than being fast on ‘small’ queries).

Expressions 5 (Figure 6.11b) and 10 (Figure 6.12d) are good demonstrations of the advantage

of lazy evaluation. These two expressions involve the application of repetitive operations over

a small subset of data. For both of these expressions, even in the expression-only runtime

case, Pandas was slower than all variants of PolyFrame. This is because PolyFrame’s lazy

evaluation allows all of the evaluated database systems to take advantage of their indexes

and query optimizations to limit the amount of data needed for computation. However, Pan-

das suffered from eagerly evaluating these expressions and needed to compute intermediate

66

results.

For expressions 6, 7, and 13, PolyFrame running on PostgreSQL was as competitive as

Pandas in the case of its expression-only runtime as shown in Figures 6.11d, 6.11f and 6.13b,

respectively. This is because PostgreSQL evaluated expressions 6 and 7 using index-only

query plans. For expression 13, PostgreSQL was uniquely able to use an index on the

attribute. Even though this particular dataframe expression asks for null or missing data,

null and missing values are only recorded in the attribute’s index in PostgreSQL. On the

other hand, AsterixDB, Cypher and MongoDB do support data with missing attributes, but

missing values are not present in their indexes.

Figure 6.12b displays the expression-only runtime of Expression 9, which is asking for a

sample of records sorted in descending order on an attribute. Even when excluding the

DataFrame creation time, PolyFrame operating on MongoDB and PostgreSQL were both

faster than Pandas on the smallest dataset, and all variants of PolyFrame were competitive

with Pandas for dataset size S. For this expression, MongoDB and PostgreSQL were both

able to take advantage of backward index scans to efficiently retrieve the requested records.

The expression-only runtimes for expression 12 are displayed in Figure 6.12h. This expression

asks for the count of records resulting from a join of two identical datasets. PolyFrame

operating on AsterixDB was able to evaluate this expression using an index-only query,

while PostgreSQL, Neo4j, and MongoDB each used index nested loop joins followed by data

scans.

67

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*26.83 *45.83

0

2

4

6

8

10

XS S M L XL

TIM
E (

SE
C.

)

Dataset

Q1

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 1: len(df)

(a) Expression 1: total times

0

2

4

6

8

10

XS S M L XL

TIM
E (

SE
C.

)

Dataset

Q1

Pandas AsterixDB MongoDB Neo4j PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TIM
E (

SE
C.

)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

Exp. 1: len(df)

(b) Expression 1: expression-only times

*26.829 *45.832

0.00

0.02

0.04

0.06

0.08

0.10

Empty XS S M L XL

TI
M

E
(S

EC
.)

Dataset

Q2

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 2: df[[‘two’,‘four’]].head()

(c) Expression 2: total times

0.00

0.01

0.02

0.03

0.04

0.05

Empty XS S M L XL
TI

M
E (

SE
C.

)

DATASET

Q2

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 2: df[[‘two’,‘four’]].head()

(d) Expression 2: expression-only times

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q3

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(e) Expression 3: total times

0

2

4

6

8

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q3

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(f) Expression 3: expression-only times

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q4

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 4: df.groupby(‘oddOnePercent’).agg(‘count’)

(g) Expression 4: total times

0

2

4

6

8

10

12

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q4

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 4: df.groupby(‘oddOnePercent’).agg(‘count’)

(h) Expression 4: expression-only times

Figure 6.10: Exp.1-4 Single Node Evaluation Results (*=value where the bar ends)

68

*27.453 *47.435

0.00

0.02

0.04

0.06

0.08

0.10

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q5

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 5: df[‘stringu1’].map(str.upper).head()

(a) Expression 5: total times

*0.626 *1.608

0.00

0.02

0.04

0.06

0.08

0.10

XS S M L XL

Tim
e (

se
c.)

Dataset

Q5

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 5: df[‘stringu1’].map(str.upper).head()

(b) Expression 5: expression-only times

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q6

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 6: df[‘unique1’].max()

(c) Expression 6: total times

0

2

4

6

8

10

12

14

16

XS S M L XL
TIM

E (
SE

C.
)

DATASET

Q6

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 6: df[‘unique1’].max()

(d) Expression 6: expression-only times

0

10

20

30

40

50

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q7

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 7: df[‘unique1’].min()

(e) Expression 7: total times

0

2

4

6

8

10

12

14

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q7

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 7: df[‘unique1’].min()

(f) Expression 7: expression-only times

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q8

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 8: df.groupby(‘twenty’)[‘four’].agg(‘max’)

(g) Expression 8: total times

0

2

4

6

8

10

12

14

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q8

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 8: df.groupby(‘twenty’)[‘four’].agg(‘max’)

(h) Expression 8: expression-only times

Figure 6.11: Exp.5-8 Single Node Evaluation Results (*=value where the bar ends)

69

*27.043 *46.954

0

2

4

6

8

10

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q9

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 9: df.sort_values(‘unique1’,
ascending=False).head()

(a) Expression 9: total times

0

2

4

6

8

10

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q9

Pandas AsterixDB MongoDB Neo4j PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

Exp. 9: df.sort_values(‘unique1’, ascending=False).head()

(b) Expression 9: expression-only times

*26.851 *45.874

0.00

0.01

0.02

0.03

0.04

0.05

Empty XS S M L XL

TI
M

E
(S

EC
.)

DATASET

Q10

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 10: df[(df[‘ten’] == x)].head()

(c) Expression 10: total times

0.00

0.01

0.02

0.03

0.04

0.05

Empty XS S M L XL
TI

M
E (

SE
C.

)
DATASET

Q10

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 10: df[(df[‘ten’] == x)].head()

(d) Expression 10: expression-only times

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13
TI

M
E

(S
EC

.)
EXPRESSION ID

Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q11

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(e) Expression 11: total times

0

2

4

6

8

10

12

14

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q11

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 11: len(df[(df[‘onePercent’] >= x) & (df[‘onePercent’] <= y)])

(f) Expression 11: expression-only times

0

1

10

100

1,000

XS S M L XL

TI
M

E (
SE

C.
) -

lo
g s

ca
le

DATASET

Q12

Pandas AsterixDB MongoDB Neo4j PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E (
SE

C.
)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQLExp. 12: len(pd.merge(df,

df2, left_on=‘unique1’,
right_on=‘unique1’,
how=‘inner’))

(g) Expression 12: total times

0

1

10

100

1,000

XS S M L XL

TI
M

E (
SE

C.
) -

lo
g s

ca
le

DATASET

Q12

Pandas AsterixDB MongoDB Neo4j PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

*32.411 *13.219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7 8 9 10 11 12 13

TI
M

E
(S

EC
.)

EXPRESSION ID
Pandas AFrame-AsterixDB AFrame-MongoDB
AFrame-Neo4j AFrame-PostgreSQL

Exp. 12: len(pd.merge(df,
df2, left_on=‘unique1’,
right_on=‘unique1’,
how=‘inner’))

(h) Expression 12: expression-only times

Figure 6.12: Exp.9-12 Single Node Evaluation Results

70

0

10

20

30

40

50

XS S M L XL

TIM
E (

SE
C.

)

DATASET

Q13

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 13: len(df[‘tenPercent’].isna())

(a) Expression 13: total times

0

2

4

6

8

10

12

14

16

XS S M L XL

TI
M

E (
SE

C.
)

DATASET

Q13

Pandas AsterixDB MongoDB Neo4j PostgreSQL

Exp. 13: len(df[‘tenPercent’].isna())

(b) Expression 13: expression-only times

Figure 6.13: Exp.13 Single Node Evaluation Results

6.5.4 PolyFrame’s Heterogeneity Results: Multi-node

As mentioned in the experiment set up part of this chapter, we only performed cluster exper-

iments on PolyFrame. We conducted a multi-node evaluation to demonstrate PolyFrame’s

horizontal scalability on different database systems. We ran the benchmark on PolyFrame

operating on AsterixDB, MongoDB, and Greenplum (distributed PostgreSQL) because the

Neo4j community edition does not provide support for sharded multi-node clusters. In order

to observe the effect of clusters processing data that is larger than the available aggregate

memory, we chose to start our multi-node evaluation with the XL (10GB) dataset. Here we

evaluated PolyFrame according to both the speedup and scaleup metrics.

The multi-node evaluation was performed on EC2 machines with the same specifications as

the single node evaluation. Figures 6.14 and 6.15 display the multi-node speedup and scaleup

evaluation results respectively. We only display the total time results here since PolyFrame

operating on a database system does not require first loading the data into memory.

Speedup Results

Figure 6.14 displays the speedup results for expressions 1-13 running on cluster sizes ranging

from 1-4 machines. The speedup evaluation results for PolyFrame are mostly consistent with

the single node results on the XL dataset except for some of Greenplum’s performance. This

71

is due to database optimizations in the latest PostgreSQL version that were not present in the

version of PostgreSQL that Greenplum uses. As shown in Figure 6.14i’s times, Greenplum

was not able to use the backward-index scan that the latest PostgreSQL (version 12) used

in the single node evaluation; instead it did a table scan. Expressions 6 (Figure 6.14f) and

7 (Figure 6.14g), which ask for the maximum and minimum values of an attribute, were

evaluated as index-only queries in PostgreSQL version 12; however, for the version used in

Greenplum, this was not the case.

Scaleup Results

Figure 6.15a displays the scaleup results for expressions 1-13. No single system performed

the best across all tasks, but all systems were able to operate at scale when we increased

the workload in proportion to the number of processing machines. The scale-up evaluation

results for PolyFrame running on AsterixDB, MongoDB, and Greenplum are also consistent

with the single node evaluation on the XL dataset with the same exceptions discussed in the

speedup results section. Again, the exceptions are due to the older PostgreSQL version used

by Greenplum.

6.5.5 Result Discussion

We conducted the Spark experiments to show important differences between utilizing database

optimizations versus using an optimized compute engine to read and then process the data.

It is important to note that passing queries down to a database can significantly lower the

amount of transfer data. However, in Spark, doing so requires data scientists to be familiar

with the database’s query language in order to fully optimize Spark performance. Intu-

itively, if users can generate the needed database queries and then execute them directly on

a database system, that yields the most optimal execution results, as shown in our experi-

72

0
2
4
6
8

10
12
14
16

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q13

AsterixDB MongoDB Greenplum

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q1

AsterixDB

MongoDB

Greenplum

Exp. 1: len(df)

(a) Expression 1

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q2

AsterixDB
MongoDB
Greenplum

Exp. 2: df[[‘two’,‘four’]].head()

(b) Expression 2

0

2

4

6

8

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q3

AsterixDB

MongoDB

Greenplum

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(c) Expression 3

0

2

4

6

8

10

12

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q4

AsterixDB
MongoDB
Greenplum

Exp. 4: df.groupby(‘oddOnePercent’).agg(‘count’)

(d) Expression 4

0.00

0.01

0.02

0.03

0.04

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q5

Exp. 5: df[‘stringu1’].map(str.upper).head()

(e) Expression 5

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q6

AsterixDB
MongoDB
Greenplum

Exp. 6: df[‘unique1’].max()

(f) Expression 6

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q7

AsterixDB
MongoDB
Greenplum

Exp. 7: df[‘unique1’].min()

(g) Expression 7

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q8

AsterixDB
MongoDB
Greenplum

Exp. 8: df.groupby(‘twenty’)[‘four’].agg(‘max’)

(h) Expression 8

0

2

4

6

8

10

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q9

AsterixDB

MongoDB

Greenplum

Exp. 9: df.sort_values('unique1',
ascending=False).head()

(i) Expression 9

0.00

0.01

0.02

0.03

0.04

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q10

AsterixDB
MongoDB
Greenplum

Exp. 10: df[(df[‘ten’] == x)].head()

(j) Expression 10

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(s

ec
.)

Number of Nodes

Q11

AsterixDB

MongoDB

Greenplum

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(k) Expression 11

0

50

100

150

200

250

300

350

400

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q12

Exp. 12: len(df.merge(df2, left_on='unique1’,
right_on='unique1', how='inner')

(l) Expression 12

0

2

4

6

8

10

12

14

16

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q13

AsterixDB

MongoDB

Greenplum

Exp. 13: len(df[‘tenPercent’].isna())

(m) Expression 13

Figure 6.14: Speedup Evaluation Results

ments. However, it significantly reduces the benefits offered by the Dataframe abstraction.

Pandas performed competitively on all tasks when data fits in memory. However, due to its

eager evaluation approach, it needs to accommodate intermediate computation results, which

leads to higher memory consumption. In addition, Pandas suffered from under-resourced

utilization and scalability as it only utilizes a single processing core and only operates on a

73

0
2
4
6
8

10
12
14
16

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q13

AsterixDB MongoDB Greenplum

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q1

AsterixDB

MongoDB

Greenplum

Exp. 1: len(df)

(a) Expression 1

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q2

Exp. 2: df[[‘two’,‘four’]].head()

(b) Expression 2

0

2

4

6

8

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q3

Exp. 3: len(df[(df[‘ten’] == x) &
(df[‘twentyPercent’] == y) &
(df[‘two’] == z)])

(c) Expression 3

0

2

4

6

8

10

12

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q4

Exp. 4: df.groupby(‘oddOnePercent’).agg(‘count’)

(d) Expression 4

0.00

0.01

0.02

0.03

0.04

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q5

Exp. 5: df[‘stringu1’].map(str.upper).head()

(e) Expression 5

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q6

Exp. 6: df[‘unique1’].max()

(f) Expression 6

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q7

Exp. 7: df[‘unique1’].min()

(g) Expression 7

0

2

4

6

8

10

12

14

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q8

Exp. 8: df.groupby(‘twenty’)[‘four’].agg(‘max’)

(h) Expression 8

0

2

4

6

8

10

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q9

AsterixDB

MongoDB

Greenplum

Exp. 9: df.sort_values('unique1',
ascending=False).head()

(i) Expression 9

0.00

0.01

0.02

0.03

0.04

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q10

Exp. 10: df[(df[‘ten’] == x)].head()

(j) Expression 10

0

2

4

6

8

10

12

14

16

1 2 3 4

TI
M

E
(s

ec
.)

Number of Nodes

Q11

Exp. 11: len(df[(df[‘onePercent’] >= x)
& (df[‘onePercent’] <= y)])

(k) Expression 11

1

10

100

1,000

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q12

Exp. 12: len(df.merge(df2, left_on='unique1’,
right_on='unique1', how='inner')

(l) Expression 12

0

2

4

6

8

10

12

14

16

18

1 2 3 4

TI
M

E
(S

EC
.)

Number of Nodes

Q13

Exp. 13: len(df[‘tenPercent’].isna())

(m) Expression 13

Figure 6.15: Scale-up Evaluation Results

single machine. On repetitive tasks that return a small subset of larger data, Pandas did not

perform as well as PolyFrame operating on database systems that employ parallel processing

and that utilize indexes to retrieve only a small subset of the data.

PolyFrame utilizes lazy evaluation by only sending queries to an underlying database system

when an action is invoked. This allows PolyFrame to take advantage of database systems’

74

optimizations. As mentioned before, we conducted our single node evaluation to compare

PolyFrame’s lazy evaluation approach and Pandas’ eager in-memory evaluation approach

rather than comparing the performance of the different database systems. We demonstrated

that operating on top of the database systems allows PolyFrame to take advantage not only

of optimizations such as indexes and query optimization, but also of the data management

capabilities that go beyond memory limits. PolyFrame does not require loading data into

memory prior to computing expression results; this results in lower total runtimes across all

benchmark expressions. In terms of the expression-only runtime, lazy evaluation utilizing

database indexes and query optimization has better performance than eagerly evaluating

certain repetitive tasks. For the multi-node evaluation, we have demonstrated the horizontal

scalability of PolyFrame operating on three parallel database systems for both speedup and

scale up metrics.

By configuring PolyFrame to work against a sampling of significantly different database

systems and query languages, we have also demonstrated the generality and feasibility of

its language rewrite rules. The flexibility of our rewrite rules allows PolyFrame to take

advantage of each database system’s optimizations while maintaining efficiency. As a side

effect of our experimental study, we were also able to identify certain potentially effective

optimizations across the evaluated database systems, as discussed next.

PolyFrame operating on top of PostgreSQL was able to take advantage of index-only query

plans, backward index scans to retrieve a subset of records sorted in descending order, and

null value statistics using its indexes.

For Neo4j, apart from the usual database optimizations (e.g., index search, fast metadata

lookup), we found that its storage layout and record structure also contribute to its per-

formance, especially for this particular benchmark dataset. Neo4j stores attributes (node

properties) as a linked list of fixed-size records. It stores string attributes in a separate record

store, storing only pointers to these string attributes in the attribute linked list. Because of

75

this feature, Neo4j’s record structure is particularly suitable for the Wisconsin benchmark

dataset since it contains multiple long string attributes. Since only one of our benchmark

expressions required access to the string attributes, Neo4j had the advantage of scanning

shorter records than the other (row store based) database systems.

As mentioned before in the case of MongoDB, PolyFrame utilizes its aggregation pipeline

language in order to preserve AFrame’s incremental query formation and to support the

language rewriting process. As a result, certain query optimizations were not considered by

MongoDB. For example, MongoDB also supports a fast lookup of certain metadata (similar

to Neo4j) that includes the total count of records in a collection. However, this particular

optimization is not enabled as part of a MongoDB aggregation pipeline, so PolyFrame was

not able to take advantage of this optimization. Another limitation for MongoDB is related

to joins. MongoDB only supports the joining of unsharded data, which requires at least one

of the joined datasets to be stored on a single machine. As such, we could not run expression

12 on MongoDB in the distributed environment.

6.6 Conclusion

In this chapter, we have shown the practicality of retargeting AFrame’s incremental query for-

mation approach onto a variety of query-based database systems in order to scale dataframe

operations without requiring users to have distributed or database systems expertise. The

flexibility of our language rewrite rules enables database-specific optimizations and makes

extending the Pandas DataFrame API to custom languages and systems possible. We eval-

uated PolyFrame versus Pandas DataFrames through a set of analytical benchmark oper-

ations. As a result, we have also shown that lazy evaluation, which takes advantage of

database optimizations, is an efficient (and important) solution to data analysis at scale.

76

In its current stage, PolyFrame has already shown promising results for enabling a scale-

independent data analysis experience. Moving forward, we would like to extend the PolyFrame

framework’s support to cover the extensive list of Pandas operations. A recent paper [54]

has given a formal definition to dataframe operators. It may be worthwhile to incorporate

their dataframe algebra with our generic rewrite rules to provide an intermediate abstraction

for query language mapping.

77

Chapter 7

Case Studies

7.1 Introduction

Our goal for PolyFrame is to deliver a scale-independent data analysis experience. Data an-

alysts should be able to use PolyFrame interchangeably with Pandas dataframes and utilize

their favorite ML libraries to perform each of their analyses on large volumes of data with

minimum effort. In order to explore the usability, efficacy, and identify current limitations

of our framework, we present two separate case studies that use PolyFrame to perform end-

to-end data analysis on real-world datasets. The first case study is a usability assessment,

where we asked a user to use AFrame (PolyFrame on AsterixDB) to conduct a classification

analysis of a San Francisco police department historical incident report dataset [17] to pre-

dict the probability of incidents being resolved. The second case study uses PolyFrame on

PostgreSQL to try to mimic an existing EDA on Airbnb datasets and compare PolyFrame’s

performance against the Pandas dataframe baseline.

The rest of this chapter is organized as follows: Section 7.2 illustrates a usability assess-

ment of AFrame through a case study. Section 7.3 details an EDA that uses PolyFrame on

78

PostgreSQL. Section 7.4 concludes the chapter.

7.2 Classification Case Study

In this section, we illustrate the usability of AFrame (PolyFrame on AsterixDB) through

a case study that uses it to perform an end-to-end data analysis. We highlight some of

AFrame’s functionalities that help simplify Big Data analysis through each of the data

analytics lifecycle stages. The notebook that we use in this chapter is also available 1.

There are several methodologies that provide a guideline for the stages in a data science

lifecycle, such as the traditional method called CRISP DM for data mining and an emerging

methodology introduced by Microsoft called TDSP [48]. They have defined general phases

in a data analysis lifecycle that can be summarized as follows: business understanding, data

understanding and preparation, modeling, evaluation, and deployment.

In order to see if AFrame delivers up to our expectations, we conducted a case study by

asking a user to perform a data analysis using AFrame in places where Pandas DataFrames

would otherwise be used (with an exception of training machine learning models). We used

a running example of an analysis of a San Francisco police department historical incident

report dataset [17] to predict the probability of incidents being resolved.

We present the case study here through each of the previously mentioned data science life-

cycle stages.

1https://nbviewer.jupyter.org/github/psinthong/SF CRIME Notebook/blob/master/
sf crimes paper.ipynb

79

7.2.1 Data Preparation

The goal of this stage in the data science lifecycle is to obtain and clean the data to prepare

it for analysis. Figure 7.1 is a snapshot from a Jupyter notebook that shows a process of

creating an AFrame object and displaying two records from a dataset. Input line 2 labeled

‘In[2]’ shows how to create an AFrame object by utilizing AFrame’s AsterixDB connector

and providing a dataverse name and a dataset name. For this example, the dataset is called

‘Crimes sample’ and it is contained in a dataverse named ‘SF CRIMES’. The AsterixDB

server is running locally on port 19002. Input line 3 displays a sample of two records from

the dataset, and input line 4 displays the underlying SQL++ query that AFrame generated

and extended. More about AFrame’s incremental query formation process can be found

in [56].

Figure 7.1: Acquire data

Next, our user drops some columns from the dataset and explores the data values, as shown

80

in Figure 7.2. Input line 5 drops several columns using the Pandas’ ‘drop’ function and

prints out two records from the resulting data. Our user then prints out the unique values

from the columns ‘pdDistrict’ and ‘dayOfWeek’ as shown in input lines 6 and 7 respectively.

Figure 7.2: Data cleaning and exploration

7.2.2 Modeling

The next stage in a data science project lifecycle is to determine and optimize features

through feature engineering to facilitate machine learning model training. This stage also

includes machine learning model development, which is the process to construct and select a

model that can predict the target values most accurately considering their success metrics.

In Figure 7.3, the user applies one-hot encoding by utilizing the Pandas’ ‘get dummies’

function to create multiple features from the columns that he previously explored. Input

line 8 applies one-hot encoding to the ‘pdDistrict’ column and line 9 displays the resulting

81

data with ten new columns each indicating whether or not the record has that particular

feature. Input lines 10 and 11 perform the same operation on the ‘category’ and ‘dayOfWeek’

columns respectively. The user then appends all of their one-hot encodings to the original

data in input line 12.

Figure 7.3: One-hot encodings

In order to extract important features from the data, users can also apply AsterixDB’s

builtin functions directly on the entire data or part of the data. This is done through the

‘map’ and ‘apply’ functions. The complete list of all available builtin functions can be found

at [3]. Figure 7.4 shows an example of using the map operation on a subset of the data

attributes. Input line 13 creates two new columns, ‘month’ and ‘hour’. For ‘month’, the

user applies AsterixDB’s ‘parse date’ to the ‘date’ column to generate a date object and

then applies the ‘get month’ function to extract only the month before appending it as a

new column called ‘month’. Similarly, for the ‘hour’ column, ‘parse time’ is applied to the

82

‘time’ column followed by the ‘get hour’ function to extract the hour of day from the data

before appending it as a new column. Finally, to finish up the feature engineering process,

the target column ‘resolution’ is converted into a binary value column called ‘resolved’ using

AsterixDB’s ‘to number’ function.

Figure 7.4: Applying functions to create new columns

Once the feature engineering process is done, the data is split into training and testing sets

for use in training and evaluating machine learning models. Figure 7.5 shows the process of

splitting the data. Input line 19 converts the data referenced by an AFrame object into a

Pandas DataFrame. Currently, feeding data into existing Scikit-learn models from a database

system is not supported. As such, AFrame provides an operation called ‘toPandas’ which

converts data into Pandas DataFrame objects2. On input line 20, ‘Y’ is the binary encoded

2The resulting data is required by Pandas to fit in memory. This currently limits the training dataset
size, but there is no limit to the amount of data to which the model may be applied (see Section 3.3).

83

‘resolved’ column and the remaining columns will be used to train the models. Input line 22

splits the data into an 80% training set and a 20% testing set.

Figure 7.5: Preparing data for model training

Input lines 23 - 26 in Figure 7.6 are standard Scikit-learn model training steps that take a

Pandas DataFrame as their input. Input line 23 trains a Logistic Regression model on the

training data, while input line 24 calls the ‘predict’ function on the test data and displays

a subset of the results. Instead of returning binary results indicating whether or not a

particular incident will get resolved, users can utilize Scikit-learn’s ‘predict proba’ method

to get the raw probability values that the model outputs for each of the prediction labels (0

and 1 in our case). Input line 25 shows the probability values that the model outputs for

each of the labels in order (0 followed by 1) on a subset of the records. Our user decided to

use the ‘predict proba’ function and output the probability of an incident getting resolved

as shown in line 26.

84

Figure 7.6: Model training and inferencing

7.2.3 Evaluation and Deployment

In order to deploy the model into a production environment and apply it to large datasets at

full scale, users can export and package their models using Python’s pickle and then deposit

them into AsterixDB for use as external user-defined functions (UDFs). In our example, the

user deposited their model and created a function called ‘getResolution’ in AsterixDB that

invokes the trained model’s ‘predict proba’ function on a data record. We omit the steps to

deposit the model into AsterixDB and create a new UDF to call it as the required steps are

explained in detail in [3]. After creating a UDF, users can then utilize their model using

AFrame in the same way that they would use a builtin function. Figure 7.7 shows the user

applying their Python UDF ‘getResolution’ on an AFrame object. Line 37 uses the ‘apply’

operation to apply the Python UDF on the previously transformed data. The results of the

function are the probabilities of crime incidents getting resolved, as displayed in line 38.

85

Figure 7.7: Calling the model using the function syntax

At this point in the analysis, our user is done with the training and evaluation process and

wants to apply the model to other larger sets of data. However, to apply the model to a

different dataset, that dataset has to have the same features arranged in the same order

as the training data. To simplify the model inferencing process, AFrame allows users to

save their data transformation as a function that can then be applied to other datasets

effortlessly. Line 40 in Figure 7.8 displays the persist-transformation syntax. The user has

named the resulting function ‘is resolvable’. The underlying SQL++ query that transforms

and appends their engineered features to a data record before calling the trained model on

it is shown in input line 41.

Finally, applying the data transformation and the ML model on a large distributed dataset

can be done through AFrame using the apply function. Figure 7.9 shows the user accessing

a different dataset, called ‘Crimes’, from AsterixDB and applying the ‘is resolvable’ function

to it. In input line 43, our user filters only the crime incidents that happened in the Central

district, possibly assisted under the hood by an index on ‘pdDistrict’, before applying the

trained ML model. The model’s prediction results are appended to the dataset as a new

column called ‘is resolvable’ in line 44. These results can be used to do further analysis or

to visualize them using Pandas’ compatible visualization libraries by converting the AFrame

object into a Pandas DataFrame.

86

Figure 7.8: Persisting the transformation

Figure 7.9: Model inferencing

87

7.2.4 Lessons Learned

The case study was not only helpful in proving the usability of AFrame but it also helped

us identify useful and missing features. For example, the transformation saving mode was

created to record the data transformation steps as a function so that they can easily be

applied to other datasets using the existing function syntax. Unique Pandas’ functions (e.g.,

describe, get dummies) are now implemented in AFrame by internally calling multiple simple

operations in a sequence. This design decision was influenced by the engineered features that

the user manually created.

7.3 Exploratory Data Analysis Case Study

In the first case study we asked a user to use PolyFrame to perform an analysis in order

to assess PolyFrame’s usability and identify the missing features. After that, we decided

to conduct another case study where we applied PolyFrame to an existing exploratory data

analysis on real-world datasets that originally used Pandas dataframes.

Exploratory Data Analysis (EDA) is a process to identify patterns, explore relations, and

extract information from unfamiliar datasets. The process is iterative, as data scientists

often begin with limited knowledge about the data and its structure. During an EDA, data

scientists perform a wide range of data preparation and cleaning steps such as identifying

outliers, normalizing value ranges, and eliminating or filling null attributes to align the

data with the goals of the analysis. The end goal can also evolve over the course of the

analysis as meaningful patterns begin to be drawn from the data. Efficiently processing

large amounts of data usually requires establishing a complex computational infrastructure.

As a result, performing EDA operations on large amounts of data today is a challenging and

time-consuming task for data scientists, as the language that is used to query the data in a

88

data store is typically different from the descriptive language used in analyses.

Here we investigate the usability and efficacy of PolyFrame through a detailed case study.

In our end-to-end case study analysis, we highlight PolyFrame’s functionality through each

of the stages in the data science project lifecycle [48], from data retrieval to data cleaning

and through to deployment. We model our case study after an online Jupyter notebook [1]

outlining an EDA on an Airbnb dataset. Our case study analysis notebooks are avail-

able here3. We evaluate the performance of PolyFrame by measuring the runtime of the

dataframe operations throughout the analysis over increasingly large datasets and compare

that to Pandas’ dataframe performance. The performance comparison is not only helpful

in illustrating PolyFrame’s optimization benefits, but it also reveals Pandas’ limitations in

eagerly evaluating dataframe expressions. Pandas was not able to complete the analysis

even when operating on moderate-sized data. On the other hand, PolyFrame running on

the same datasets was able to reduce the amount of data materialization due to operating

on a database system with an effective query optimizer. The objectives of this exercise are

the following:

1. Empirically investigate the usability and performance benefits of PolyFrame, a database-

backed dataframe library, through an end-to-end case study analysis.

2. Identify PolyFrame’s current limitations and potential future optimization opportuni-

ties.

The rest of this section is organized as follows: Subsection 7.3.1 describes functionality

supported in PolyFrame. Subsections 7.3.2 - 7.3.5 provide detail of our case study analysis.

Subsection 7.3.6 describes a series of performance measurements obtained from running

PolyFrame and Pandas on PostgreSQL.

3https://github.com/psinthong/PolyFrame Case Study

89

We have selected the case study presented here as an example for exploratory data analysis

using PolyFrame. We model this case study after an online Jupyter notebook that tries to

answer a set of questions about vacation rentals in Seattle using Airbnb datasets [1]. Some

of the questions that its author is trying to address are the average price per night, time to

rent to maximize revenue, the off-peak season for maintenance, the common group size of

Seattle travelers, bedroom configurations to maximize booking rates, and factors that affect

ratings and listing prices.

The author’s notebook provides details about the datasets used, which are listings and

reviews. The datasets are obtained from ‘Inside Airbnb’ [11], an online website that collects

Airbnb data. The author cleans both datasets of any anomalies, generates data summaries,

and applies machine learning models to extract information from the data. First, we describe

the dataframe functions used in our own notebooks. After that, we present our case study

and how we scale it and discuss PolyFrame’s support through each of the stages in this

analysis, which are data acquisition, data preparation, data analysis, and data visualization.

7.3.1 Functionality Supported

Petersohn et al [54] have identified three types of functions in the Pandas dataframe library -

relational algebra, linear algebra, and spreadsheet functions. PolyFrame focuses on support

for the relational algebra portion of the library, as it relies on general features supported by

database systems. PolyFrame provides a data conversion mechanism to Pandas dataframe

for other non-supported functions.

It is worth noting that the Pandas library contains over hundreds of dataframe functions

for data transformations. As stated in [32], given a specific input data and an expected

output, there can be multiple sequences of functions that can be invoked to generate such

a result. Therefore, we try to utilize a different PolyFrame supported dataframe function

90

or a sequence of functions in places in the original notebook where the requested function

cannot be directly implemented. However, if similar functions are not present, we convert

the PolyFrame objects into Pandas dataframes and then proceed.

Table 7.1 displays the functionality supported in PolyFrame for each of the functions used

in the case study notebook. The table indicates PolyFrame’s support for each function in

one of three modes: First, the function is fully supported. Second, the function is partially

supported or a similar function is used to achieve the same result. Third, the function is not

supported and an object conversion from PolyFrame to Pandas dataframe is required.

Operation
Functionality Support Levels

Supported
Use similar
operation

Not supported

Data acquisition
Load listing dataset
Load review dataset

Data preparation
Describe (aggregate functions)
Column projections
Check null/missing values
Fill null/missing data
Type conversion
String manipulation
Rename columns

Data analysis
Left join
Inner join
Group and get aggregate values
Sort
Correlation
One-hot encodings
Linear regression model
Decision tree model

Data visualization
Bar plot
Location plot
Heatmap

Table 7.1: Functionality Support Levels

As indicated in the table, all of the data acquisition and preparation operations used can

be performed using PolyFrame. There are some data preparation functions that are not

identically supported in PolyFrame so we used other dataframe functions that produce the

91

same results instead. Operations such as type conversions and string manipulations rely

on specific built-in functions, which are different for each database system. During the

data analysis stage, the relational algebra and statistical functions are fully supported, but

machine learning models (linear regression and decision tree) are not supported. Pandas

dataframe object conversion is applied in that case. Similarly, visualization functions are

also applied to converted dataframe objects because the Scikit-learn and matplotlib functions

that are used in this notebook cannot operate on database-resident data.

Next, we highlight some of the operations and their usages as supported in Pandas and

PolyFrame in each of the stages in the analysis in detail. We implemented the case study

using two different Jupyter notebooks; one entirely using Pandas and the other one using

PolyFrame.

7.3.2 Data Acquisition

Pandas dataframes can be created by reading a file from a local file system or by reading

from a table in a database system. For this case study analysis, we set up a PostgreSQL

database to store the data. Pandas dataframes in this analysis are created by providing the

PostgreSQL’s server address. There are two datasets used in the original notebook, ‘listings’

and ‘reviews’. We created listings and reviews tables prior to starting the analysis.

In PolyFrame, a dataframe object can be created by providing a connecter to a table in a

database system. As shown in the last import statement in line 1 in Figure 7.10b, PolyFrame

provides SQLConnector class which internally uses SQLAlchemy [18] to connect to various

SQL database systems. PolyFrame also provides an easily extensible database connector

interface to allow users to implement their own socket connection to an underlying database

system. PolyFrame also supports dataframe creation from external CSV or JSON files. The

file content will then be used to create a table in the database.

92

Figure 7.10 displays snippets from two notebooks. Figure 7.10a shows Airbnb’s data loading

using Pandas dataframes, and Figure 7.10b shows the same process using PolyFrame. Both

PolyFrame and pandas made a connection to the same PostgreSQL instance running locally.

Input lines 2 and 4 show the syntax of creating dataframe objects from the listings table and

reviews table respectively. Pandas uses the read_sql_table method given a table name and

a SQLAlchemy connection string. PolyFrame requires both database and table names with

a SQLAlchemy connection string. Line 3 in each figure displays two sample records from the

listings table.

It is worth pointing out that when a Pandas dataframe object is created the entire table

is loaded into memory. In PolyFrame, only a connection is made to the database system

to check for the existence of the indicated table and an initial query is generated but not

executed. The data is thus not loaded into memory for PolyFrame’s dataframe object ini-

tialization.

7.3.3 Data Preparation

In preparing the Airbnb data for analysis, several data transformations are applied. Fig-

ure 7.11 displays examples from the data preparation process that are applied to the dataframes.

Figure 7.11a shows a subset of the data transformation steps in Pandas dataframe and Fig-

ure 7.11b shows the same steps applied in PolyFrame.

Line 9 converts the data type of attribute ‘price’ from string to a numerical data type using

a string regular expression format to match the indicated pattern. It removes the dollar sign

and gets rid of commas. Line 10 fills null values in selected attributes with zeroes. Line

11 renames an attribute. Lines 12 and 13 clean the reviews dataset and generate bookings

data.

93

(a) Data Acquisition in Pandas

(b) Data Acquisition in PolyFrame

Figure 7.10: Data Acquisition

As stated before, not all functions can be directly supported in PolyFrame. String ma-

nipulation functions are functions that depend on specific database features. Line 9 in

Figure 7.11b shows the utilization of the map function to apply regular expression pattern

matching by calling the database’s built-in function (regex replace) on the attribute ‘price’.

94

(a) Data Preparation in Pandas

(b) Data Preparation in PolyFrame

Figure 7.11: Data Preparation

95

PolyFrame enables built-in function application through the dataframe’s map and apply

functions. Function parameters can be passed in as arguments.

In line 10 in Figure 7.11a the author applies Pandas’ at function, which accesses data by

row to find rows with null values and replace them with zeroes. The at function cannot

be supported in PolyFrame because row indexes are not generally supported in database

systems since most database collections are unordered. However, in Pandas there is another

function, fillna, which can do the same thing in one function call. As a result, we use

fillna instead in line 10 in Figure 7.11b given the target attributes as an argument.

PolyFrame and Pandas have the same syntax for line 11. In line 12, the attribute ‘date’ has

been converted from the data type string into the datetime type in both Pandas dataframe

and PolyFrame. However, datetime object conversion is a database-specific feature, so it is

supported in PolyFrame through the ‘map’ function call as shown in line 12 in Figure 7.11b.

In PostgreSQL, we call the to_date function and give it a date format.

In line 13, an estimated revenue for each booking is calculated using the number of minimum

nights (contained in the listings dataset) multiplied by the price of each listing. This is only

an estimate since the actual length of stay is not available in the datasets. The total estimated

revenue for each listing is calculated by grouping the bookings with the same ‘listing id’ and

summing all of the estimated revenue from all of the bookings in the same group. The

total estimated revenue is then appended back to the listings dataset. This is achieved by

left-joining listings with the aggregated bookings on the ‘listing id’ attribute.

In these example snippets, PolyFrame took advantage of lazy evaluation and did not send

any queries to the database system for execution. This is because there are no actual results

requested in this particular example. PolyFrame thus only generated nested SQL queries

resulting from the data transformation functions applied to the dataframe object. On the

other hand, Pandas executed the declared functions and materialized all of the results in

96

memory at each step.

An important feature in PolyFrame is the ability to persist analysis results. Similar to

how Pandas allows saving data as a file or a pickled object, PolyFrame allows data to be

persisted as a new dataset (which can be temporary), a view, or a function to capture data

transformation steps that can be applied to new records. Line 14 in Figure 7.11b is optional,

but we included it here to show the syntax for PolyFrame’s result persistence as a new

dataset. We allow users to specify a new dataset name that they can then use in subsequent

sessions if they would like to apply further analysis to previously prepared data.

7.3.4 Data Analysis

In analyzing the prepared data, the author of [1] groups the data and applies various aggre-

gate functions along with a couple of machine learning models to extract important features

that affect users’ ratings. Figures 7.12 and 7.13 show a subset of functions applied dur-

ing the data analysis stage. Figure 7.12a displays data analysis steps performed in Pandas

dataframes and Figure 7.12b displays the same functions in PolyFrame. Figure 7.13 shows

a part of the analysis that applies a machine learning model.

Line 15 in Figure 7.12 applies the sort_values function to the transformed listings dataset,

and both PolyFrame and Pandas have the same syntax for this function.

As stated earlier, functions that cannot be implemented in PolyFrame will require data

conversion to Pandas dataframes. In line 19 of Figure 7.12a the author applies the correlation

function to compute the pairwise correlation between the ‘minimum nights’ attribute and the

‘estimated revenue’ attribute. This function is not supported in PolyFrame, so we converted

the PolyFrame object to Pandas dataframe and applied the corr function to it to get the

result in Figure 7.12b.

97

.

.

.

(a) Data Analysis in Pandas

.

.

.

(b) Data Analysis in PolyFrame

Figure 7.12: Data Analysis

98

In line 21, the author groups the data and applies aggregate functions. Prior to applying the

group_by method, the ‘date’ attribute was converted to type datetime as shown earlier in

line 12 in Figure 7.11. The month information is then extracted to be the grouping value .

In PolyFrame, we utilize the map function to call PostgreSQL’s built-in function date_part

to extract the month from the datetime objects. The extracted month values were appended

back as a new attribute called ‘month’. At this point, we can then group the data on the

‘month’ attribute and apply the aggregate functions. Notice here that we also apply the

toPandas method to initiate query execution and retrieve the values.

Figure 7.13: Applying Machine Learning Model

Figure 7.13 shows a snippet of the PolyFrame code for applying a linear regression model

from Scikit-learn. First, the PolyFrame object is converted to Pandas dataframe. Line 22

shows two Pandas dataframe objects (data x, data y) being created by calling the ‘toPandas’

function on PolyFrame objects. The training data contains a subset of attributes projected

from the original listings dataset and the target attribute is ‘price’. After training the model,

line 23 prints out the model’s most important features that affect the listing price in sorted

descending order of importance score.

99

During the data analysis stage, PolyFrame not only generated queries, but it also sent them

to PostgreSQL for execution and returned results to the user. If the results from the data

preparation stage had not been persisted as shown in line 14 in Figure 7.11b, all of the

preparation functions applied earlier would also be part of the queries run in this analysis

stage. Therefore, every operation that requires results would also have an overhead carried

over from the data preparation stage. It is thus a good idea to persist the prepared data

before proceeding with the analysis because the analysis process can be iterative and the

overhead can be reduced significantly. In contrast, Pandas materializes results for each

operation so the results from the data preparation stage are already available in memory

prior to starting the analysis stage.

7.3.5 Data Visualization

In the data visualization stage, the analyzed data is visualized using various techniques such

as bar plots, heatmaps, and coordinate maps. Figure 7.14 shows two plots from the notebook

that apply matplotlib library functions to the previously analyzed dataframes. There are

two main types of visualizations performed in this case study.

The first type is a summary visualization, which is performed on the summary of a dataset.

Figure 7.14a shows three bar plots using data contained in the dataframes resulting from

the data analysis step shown in Figure 7.12 line 21. The leftmost plot shows the number

of bookings per month. The middle plot shows the total revenue per month. The last plot

displays the average booking price per month calculated based on the previous two results.

There are only twelve data points per plot, and those can be computed by the database

system on any dataset regardless of its size. As a result, even when the visualization library

does not work directly on PolyFrame, thus requiring Pandas materialization, the aggregated

(materialized) results can fit comfortably in memory.

100

(a) Bar Plot

(b) Heat Map

Figure 7.14: Data Visualization

101

The other type of visualization is performed on a subset of the data. Figure 7.14b dis-

plays a code snippet that generates a heatmap. Line 31 creates a function that generates

a heatmap given a dataframe and a target attribute. It computes and outputs the most

correlated attributes from the dataframe and their correlation values to the target attribute.

Line 32 projects 7 out of 106 attributes from the original listings dataset. All of the pro-

jected attributes only contain numerical values. In this case study, the target attribute is

‘review score rating’.

Even though we have to convert from PolyFrame to Pandas dataframes and the data has to

be transferred from the database system into memory for data visualization, utilizing data

slicing (projection) is still more space and runtime-efficient than loading an entire dataset

into memory. PolyFrame is able to take advantage of the database system’s query processor

still to lower the amount of transferred data.

7.3.6 End-to-end Performance Comparison with Pandas

In addition to evaluating the usability of PolyFrame by examining its functionality support

through different stages in an analysis use case, a performance comparison is also important

when choosing between different frameworks. Our goal for PolyFrame is not to replace

Pandas dataframe but to work along side it to provide much needed scalability and ease-of-

use when operating on large datasets. As a result, PolyFrame-to-Pandas conversion can be

applied for operations that cannot be completed when using PolyFrame alone, as we have

seen. The goal of this experiment is to illustrate the performance efficiency of PolyFrame

when applying to a real analysis use case. We use Pandas as our baseline comparison.

In order to present a reproducible evaluation environment, we set up our experiments on an

Amazon m4.large EC2 machine with 8 GB of memory and 200 GB of SSD. The data used for

this experiment is obtained from [11]. We use the same two datasets that were used in the

102

case study notebook, but instead of using one city (seattle) we obtained data from multiple

cities to evaluate the scalability of our framework. In this way we conducted the experiment

over datasets with an increasing number of records. The number of records in the listings

and reviews datasets are displayed in Tables 7.2 and 7.3, respectively, and are summarized

below.

• Listings: The dataset has 106 attributes and it contains data from 1 - 60 different

cities. The total csv file size of the dataset ranges from 30 MB - 3 GB. The listings

dataset has attribute ‘id’ as its primary key.

• Reviews: The dataset has 6 attributes and it contains data ranging from 1 - 60

different cities. The total csv file size of the dataset ranges from 250 MB - 6.8 GB.

The reviews dataset has attribute ‘id’ as its primary key and attribute ‘listing id’ that

refers to a particular property in the listings dataset.

Number of cities CSV file size Number of records
1 87 MB 36,905
10 489 MB 191,205
20 932 MB 389,227
30 1.1 GB 456,300
40 1.5 GB 632,277
50 2 GB 827,411
60 3.1 GB 988,451

Table 7.2: Listings Dataset Summary

Number of city CSV file size Number of records
1 271 MB 836,586
10 1.3 GB 4,194,878
20 2.4 GB 8,319,765
30 3 GB 9,881,517
40 4.1 GB 13,503,629
50 5.5 GB 17,863,880
60 6.8 GB 21,602,632

Table 7.3: Review Dataset Summary

103

We conducted the experiment on a single ec2 machine and on datasets with increasing

number of records. Since the website provides downloadable data in a form of CSV files

labeled by city names, we obtained the data by increasing the number of cities that we

downloaded. As a result, the sizes of the datasets in each incremental evaluation are not

equivalent, as each city contains different numbers of listings and reviews. We used a database

system to ingest the data like to mimic a real-world data ingestion and storage scenario.

Storing large amounts of data as files in a file system is not efficient because selecting even a

small subset of the data would require a complete file scan. In addition, Pandas also supports

creating dataframes from data stored in SQL database systems via SQLAlchemy [18]. We

choose PostgreSQL v.12 as our database to ingest the data because PostgreSQL is a readily-

available and popular single node database system that can be installed easily. We created

Pandas dataframes by connecting it to the tables in PostgreSQL, so both PolyFrame and

Pandas consumed data from the same database system.

In Pandas, users can persist analysis data as a new file, which can be inefficient and incon-

venient when the dataset is large. In PolyFrame, analysis data can be persisted as a new

dataset, a temporary dataset, or as a view. These result persistence modes are provided to

meet flexible application requirements. Depending on the nature of the analysis, it can be

beneficial to persist prepared data as a new data collection if the data will be analyzed using

different methods. It can also be convenient and efficient to save the data preparation steps

as a view, if the analysis is often done on live data, to get the most up-to-date results. To

provide insights into the different persistence modes, we conducted variations of our exper-

iment on three variants of PolyFrame. Regular PolyFrame operations performed on the fly

without any result persistence are labeled ‘PolyFrame’. ‘PolyFrame-view’ refers to persist-

ing the prepared data as a view prior to starting the data analysis stage. ‘PolyFrame-table’

refers to persisting the prepared data as a new table prior to starting the data analysis stage.

(This point in the end-to-end use case is where the variations occurred.)

104

7.3.7 Evaluation Results

Here we present the results from our end-to-end performance evaluation. First, we present

the overall case study performance followed by the scalability result from each of the data

analysis stages. We then discuss the results in detail.

Overall

We setup timing points in each of the analysis stages and executed the case study analysis in

its entirety. The overall performance evaluation of both PolyFrame and Pandas is displayed

in Figure 7.15. For this experiment we executed the stages on the datasets that contain

information for 20 cities. This was the largest number of cities that can be analyze using

Pandas dataframes on the hardware that we used.

In both data acquisition and preparation stages, Pandas suffered from eagerly evaluating

all of the operations and materializing intermediate results in memory. On the other hand,

PolyFrame benefited from lazy evaluation and was able to delay the execution of operations

until results are required.

During the data analysis stage, Pandas performed better than PolyFrame because data from

the data preparation stage was already available in memory, while PolyFrame had to send

queries for execution and retrieve results. However, not all variants of PolyFrame have the

same runtime. This is because persisting the data from the data preparation stage as a table

(PolyFrame-table) prior to starting the analysis can significantly reduce the runtime when

performing the analysis steps.

In the last step the materialized results from the analysis stage are plotted using different

techniques to visualize the data summary. At this stage, all of PolyFrame’s results are

converted to Pandas dataframes for use by the visualization package. As a result, the

105

runtimes of all variants of PolyFrame in the data visualization stage are comparable to

that of Pandas.

0
2
4
6
8

10
12
14

Data Acquisition Data Preparation Data Analysis Data Visualization

Ti
m

e
(s

ec
.)

Operation

15

35

55

75

95

Pandas

PolyFrame

PolyFrame-view

PolyFrame-table

Figure 7.15: Overall Result

Scalability Evaluation

In order to evaluate PolyFrame’s scalibility benefits, we also measured the total runtime of

this end-to-end case study over datasets with increasing numbers of records. Figure 7.16

displays the end-to-end scalability timing results for both PolyFrame and Pandas. Pandas

performed the best on the smallest dataset size. However, after increasing the number of

records in the datasets, Pandas performed worse than all variants of PolyFrame. This is

because the time required to load both datasets into memory and transform the data in the

data preparation stage surpassed the time that it takes to perform the actual data analysis

steps. On the 20-cities datasets, PolyFrame began having a better runtime than Pandas,

and when PolyFrame’s data was persisted (PolyFrame-table) before starting the analysis,

the runtime difference between Pandas and PolyFrame is even more evident. On datasets

that contain data from more than 20 cities, Pandas failed to join the two datasets, as it was

not able to materialize the joined results in memory. As a result, we do not have Pandas

106

evaluation runtimes on subsequent dataset sizes. In contrast, PolyFrame was able to finish

the end-to-end analysis on all of the tested dataset sizes.

0

100

200

300

400

500

600

700

1 10 20 30 40 50 60

Ti
m

e
(s

ec
.)

Number of Cities

PolyFrame PolyFrame-view PolyFrame-table Pandas

Figure 7.16: End-to-end Scalability Result

Next, we examine the scalability evaluation results in each of the stages in the analysis from

data acquisition through to data visualization.

Data Acquisition : Figure 7.17 displays the runtime comparisons between PolyFrame

and Pandas dataframes during the data acquisition stage of the analysis. In this experiment,

both frameworks were connected to the same PostgreSQL instance. For this case study, both

frameworks have to load two datasets: listings and reviews. Pandas performed worse than

all variants of PolyFrame due to having to eagerly read the entire datasets into memory.

PolyFrame only had to make a connection to the underlying database system to check for

the existence of the indicated tables and then build (but not run) the initial query. As

a result, PolyFrame’s runtime is constant across all dataset sizes because it does not load

any data into memory during object initialization, while Pandas’ runtime increases when

increasing the size of the datasets. Pandas also ran out of memory on moderate-sized data,

e.g., when the experiment reached 40 cities with the combined data size of 5.6GB as indicated

107

in Tables 7.2 and 7.3.

0.00

0.01

0.10

1.00

10.00

100.00

1 10 20 30 40 50 60

Ti
m

e
(s

ec
.)

–
lo

g
sc

al
e

Number of Cities

Pandas PolyFrame PolyFrame-view PolyFrame-table

Figure 7.17: Data Acquisition Result

Data Preparation : During the data preparation stage, the case study author’s notebook

examines values in both datasets by calling aggregate functions on some of the attributes

before performing multiple data transformation steps on both datasets. The example oper-

ations involve selecting a subset of attributes from the listings and reviews datasets, filling

null values, formatting values in some of the selected attributes, and joining listings with

reviews to create booking data and calculate total revenue.

Figure 7.18 shows the data preparation performance of PolyFrame and Pandas. Pandas

failed to join the two datasets when we increased the number of cities to 30 and threw an

out-of-memory error. PolyFrame was able to take advantage of lazy evaluation for most

of the data transformation operations and only sent the queries to PostgreSQL for the

operations where the user requests results. As shown in Figure 7.11, the data transformation

steps listed there do not trigger query execution in PolyFrame. Only nested SQL queries

were generated as a result of these operations. In addition, PolyFrame was able to take

108

advantage of PostgreSQL’s query optimizer and the ability to join data larger than the

available memory. As a result, PolyFrame’s performance was much better than Pandas’ and

it was able to complete the preparation steps on all of the dataset sizes tested.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 10 20 30 40 50 60

Ti
m

e
(s

ec
.)

Number of Cities

Pandas PolyFrame PolyFrame-view PolyFrame-table

Figure 7.18: Data Preparation Result

Data Analysis : In the data analysis stage, several aggregate functions are performed

on different grouping attributes to answer questions that the author listed as objectives.

The operations performed during the analysis stage triggered query execution in PolyFrame

and had to return results. In order to provide users with analysis flexibility, PolyFrame

provides multiple result persistence options, as previously mentioned. Here we evaluated

two alternative result persistence modes. We persisted the data resulting from the data

preparation stage as a view (PolyFrame-view) and also as a new table (PolyFrame-table)

prior to starting the analysis.

Figure 7.19 shows the runtime results during data analysis for Pandas and PolyFrame. Since

Pandas was not able to complete the data preparation steps on datasets with more than 20

cities, it was not able to deliver results in the subsequent stages including the analysis stage.

109

Regular PolyFrame (no result persistence) and PolyFrame operating on a view (PolyFrame-

view) have the same runtime in this experiment, and both are slower than Pandas on all of the

dataset sizes that Pandas was able to operate on. However, if we persist the prepared data

resulting from the data preparation steps as a new table (PolyFrame-table), the PolyFrame

runtime results are comparable to Pandas. Also, even though PolyFrame’s performance was

initially slower than Pandas, it was able to complete the experiment on all of the dataset

sizes, including a combined data size (60 cities) that is larger than the available memory.

0

100

200

300

400

500

600

700

1 10 20 30 40 50 60

Ti
m

e
(s

ec
.)

Number of Cities

PolyFrame PolyFrame-view PolyFrame-table PandasPandas PolyFrame PolyFrame-view PolyFrame-table

Figure 7.19: Data Analysis Result

Data Visualization : Results from the data analysis steps are visualized using various

plots such as bar graphs, heat maps, and location maps. All of the visualization steps are

performed after the PolyFrame objects have been converted to Pandas dataframes in the

data analysis stage.

Figure 7.20 displays the experiment results comparing PolyFrame with Pandas dataframe

during the data visualization portion of the case study. As mentioned before, Pandas was

not able to complete the data preparation steps on the dataset containing more than 20

cities. As a result, there was no data to be analyzed or visualized in the later stages of the

110

analysis. In contrast, even though the PolyFrame objects have to be converted to Pandas

dataframes in order to apply the visualization functions, it was then able to complete the

visualization stage successfully. This is because the visualization functions are either applied

to an aggregated summary of the datasets or to a subset (slice) of the datasets’ attributes.

Since PolyFrame uses lazy evaluation it was able to utilize PostgreSQL’s query processor to

avoid complete table loading into memory and efficiently to compute data summaries even

on source data that is larger than the available memory. It was also able to project only the

attributes that were required for analysis and visualization.

0.00
1.00

1 10 20 30 40 50 60Number of Cities

Pandas PolyFrame PolyFrame-view PolyFrame-table

0

5

10

15

20

25

30

1 10 20 30 40 50 60

Ti
m

e
(s

ec
.)

Number of Cities

Figure 7.20: Data Visualization Result

7.3.8 Discussion of Experiments

We conducted these performance evaluation experiments on Pandas to get a performance

baseline and to better understand the benefits and limitations of PolyFrame in comparison

to Pandas. We measured the end-to-end EDA runtime needed to complete an exploratory

data analysis and also separately measure the runtime in each of the analysis stages.

111

In the data acquisition and preparation processes, the benefit of PolyFrame’s lazy evaluation

is prominent. In the data acquisition stage, we did not have to wait for the data to be loaded

entirely into memory prior to starting the analysis. The exact syntax of PolyFrame object

creation is different from Pandas, but the database connection string provided is essentially

the same. During data preparation, PolyFrame not only benefitted from lazy evaluation,

but it was also able to take advantage of a query optimizer, allowing it to use an index to

efficiently join the datasets and to avoid materializing intermediate results in memory. As a

result, PolyFrame was able to operate on large datasets efficiently.

Exploratory data analysis is often iterative and sequential in terms of the stages in the project

lifecycle. As a result, when a framework cannot complete one of the steps in the early stages,

it cannot proceed to the subsequent stages. In this case study, Pandas failed to complete

data preparation on moderate-sized data because it cannot accommodate the materialization

of joined results in memory. This in turn prevented it from completing the data analysis

and visualization because the analysis stage relies on the data having been transformed. In

contrast, PolyFrame operating on PostgreSQL was able to take advantage of the database

query optimizer avoided having to materialize a complete join result in memory. It was

thus able to complete the analysis process on all data sizes. Even in the data visualization

stage, in which PolyFrame objects have to be converted into Pandas dataframes, it was

still possible for PolyFrame to complete the EDA use case on data larger than the available

memory. This is because the visualization functions are applied to data summaries and a

subset of the attributes, not to the whole dataset.

Although our experiments were only performed using a single machine for processing, the

scalability results in each of the analysis stages have shown that PolyFrame is able to operate

on data larger than the available memory.

112

7.4 Conclusion

In this chapter, we have demonstrated the practicality of using PolyFrame to perform two

data analyses and examined its performance in each of the stages in the analysis life cycle.

These case studies have helped us identify missing features that help simplify end-to-end data

analysis on large datasets such as result persistence. PolyFrame’s ability to communicate

with a diverse set of database systems (e.g., RDBMS, NoSQL, and graph) while delivering

the data scientists’ familiar dataframe syntax allows it to accommodate big data analyses

on various types of data efficiently without requiring extensive distributed system knowledge

from end users.

We have compared PolyFrame’s performance against the Pandas dataframe baseline. The

results clearly show that lazy evaluation and a query optimizer can play an important role in

the analysis of large datasets even in a local setting. Also, even in a case when Pandas data

conversion is needed to apply a data visualization library, PolyFrame continued to efficiently

deliver needed results and completed the analysis. This is because result visualization is

often applied on data summaries that can be efficiently computed by database systems.

Finally, while our focus here has been on PolyFrame, we expect that the benefits illustrated

in this chapter also apply to other database-backed dataframe libraries that rely on database

systems’ data management capabilities.

113

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we have presented a query-based approach to scale dataframe operations

to large volumes of data by utilizing lazy evaluation and incrementally constructing database

queries.

We began by briefly examining the benefits and drawbacks of existing approaches to scaling

Pandas dataframes in Chapter 3.

Chapter 4 explained our design of AFrame, a scalable data analytic library that provides a

Pandas-like interface on top of a big data management system. We have outlined the archi-

tecture of AFrame and described its incremental query formation process in detail through

each of the stages in a data analysis lifecycle. We have demonstrated through our experi-

mental evaluation that AFrame’s lazy evaluation is beneficial in allowing it to take advantage

of AsterixDB’s query optimizer and indexes to efficiently operate on data at scale.

Chapter 5 outlined our dataframe benchmark that we used to evaluate AFrame performance.

114

We have shown that our benchmark can be used in both local and distributed settings. We

compared AFrame with multiple dataframe libraries. The evaluation results showed that

AFrame can operate competitively in both settings. We have also demonstrated that query

optimizations can be crucial when dealing with data at scale.

In Chapter 6, we have described the language-independent version of AFrame, PolyFrame.

PolyFrame retargets AFrame’s incremental query formation process to operate on other

query-based database systems. We explained its two-level query rewriting process and how

the implementation supports additional composable query languages through a configuration

template and regular expression pattern matching. We compared PolyFrame versus Spark

reading from the same database systems through a set of analytical benchmark operations.

The experimental results highlighted the benefits of deferring to database systems for query

processing over utilizing an external compute engine.

In Chapter 7, we illustrated the usability and efficacy of using PolyFrame to perform two end-

to-end data analyses. We explained the different result persistence modes in PolyFrame and

how it could play an important role in reducing the system’s runtime during data analysis.

By comparing PolyFrame’s performance against the Pandas dataframe baseline, we have

highlighted the general benefits of database-backed dataframes during data preparation,

analysis, and visualization.

8.2 Future Work

PolyFrame still has a lot of room for improvement. In its current state, PolyFrame has shown

promising results in allowing data scientists to interact with large datasets without requiring

extensive distributed systems knowledge. Future studies in partial result caching could allow

database-backed dataframes to avoid recomputation on frequently used operations especially

115

during exploratory data analyses where operations are often performed iteratively on the

same datasets.

In order to support more of the large number of functions available in Pandas dataframe,

the important notion of row index in Pandas dataframe needs to be addressed. An impor-

tant research question being explored in other similar dataframe libraries is how to support

Pandas’ notion of index-based row labeling efficiently in a distributed environment. There is

not yet an efficient solution to enable row-indexing on unordered data. Currently, an order

is required in the form of either system-generated internal identifiers or sorted data to enable

such a capability in a distributed environment. This results in a performance trade-off that

we would like to eliminate if possible.

Last but not least, recall that Petersohn et al. [54] identified three types of functions in

the Pandas dataframe library - relational algebra, linear algebra, and spreadsheet functions.

PolyFrame’s focus has been on support for the relational algebra portion of the library, as

it relies on general features supported by database systems under the hood. An interesting

longer term question would be how one could perhaps expand the PolyFrame system to cover

additional areas of Pandas’ functionality.

116

Bibliography

[1] Airbnb in Seattle. https://towardsdatascience.com/airbnb-in-seattle-data-analysis-
8222207579d7.

[2] Apache Arrow and the 10 Things I Hate About pandas.
https://wesmckinney.com/blog/apache-arrow-pandas-internals/.

[3] Apache asterixdb. https://asterixdb.apache.org/.

[4] Apache Hive. https://hive.apache.org/.

[5] Apache Parquet. https://parquet.apache.org/.

[6] Apache Spark. http://spark.apache.org/.

[7] Apache Tez. http://tez.apache.org/.

[8] CrowdFlower. http://www.crowdflower.com/.

[9] Dask. http://dask.org/.

[10] GraySort benchmark. http://sortbenchmark.org/.

[11] Inside airbnb. http://insideairbnb.com/get-the-data.html.

[12] Kaggle. http://www.kaggle.com/crowdflower/twitter-airline-sentiment/.

[13] Modin. https://modin.readthedocs.io/en/latest/.

[14] Numpy. http://numpy.org/.

[15] Pandas. http://pandas.pydata.org/.

[16] Pandas on Ray. https://rise.cs.berkeley.edu/blog/pandas-on-ray-early-lessons/.

[17] Police department incident reports. http://data.sfgov.org/.

[18] SQLAlchemy. https://www.sqlalchemy.org/.

[19] Criteo 1TB Click Logs dataset. https://ailab.criteo.com/

download-criteo-1tb-click-logs-dataset/, 2021.

117

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/

[20] IBIS. https://ibis-project.org/, 2021.

[21] Koalas. http://koalas.readthedocs.io, 2021.

[22] Mongodb. http://mongodb.com/, 2021.

[23] Mongodb aggregation. https://docs.mongodb.com/manual/aggregation/, 2021.

[24] Neo4j. http://neo4j.com/, 2021.

[25] PostgreSQL. http://www.postgresql.org/, 2021.

[26] Spark data sources. https://spark.apache.org/docs/latest/sql-data-sources.

html, 2021.

[27] Vertica. https://www.vertica.com, 2021.

[28] W. Alkowaileet et al. End-to-end machine learning with Apache AsterixDB. In Proceed-
ings of the Second Workshop on Data Management for End-To-End Machine Learning,
page 6. ACM, 2018.

[29] S. Alsubaiee et al. AsterixDB: a scalable, open source BDMS. PVLDB, 7(14):1905–1916,
2014.

[30] M. Armbrust et al. Scaling Spark in the real world: performance and usability. PVLDB,
8(12):1840–1843, 2015.

[31] M. Armbrust et al. Spark SQL: Relational data processing in Spark. In SIGMOD, pages
1383–1394, 2015.

[32] R. Bavishi, C. Lemieux, R. Fox, K. Sen, and I. Stoica. Autopandas: neural-backed
generators for program synthesis. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–27, 2019.

[33] M. J. Carey. AsterixDB mid-flight: A case study in building systems in academia. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 1–12.
IEEE, 2019.

[34] D. Chamberlin. SQL++ for SQL Users: A Tutorial. September 2018. Available via
Amazon.com.

[35] D. Chamberlin. SQL++ for SQL Users: A Tutorial. September 2018. Available via
Amazon.com, 2018.

[36] B. F. Cooper et al. Benchmarking cloud serving systems with YCSB. In ACM SoCC,
pages 143–154, 2010.

[37] D. J. DeWitt. The Wisconsin benchmark: Past, present, and future. In J. Gray, editor,
The Benchmark Handbook. Morgan Kaufmann, 1993.

118

https://ibis-project.org/
http://koalas.readthedocs.io
http://mongodb.com/
https://docs.mongodb.com/manual/aggregation/
http://neo4j.com/
http://www.postgresql.org/
https://spark.apache.org/docs/latest/sql-data-sources.html
https://spark.apache.org/docs/latest/sql-data-sources.html
https://www.vertica.com

[38] A. Ghazal et al. BigBench: towards an industry standard benchmark for big data
analytics. In SIGMOD, pages 1197–1208, 2013.

[39] S. Hagedorn, S. Kläbe, and K.-U. Sattler. Putting pandas in a box. In Conference on
Innovative Data Systems Research (CIDR), 2021.

[40] F. Holzschuher and R. Peinl. Performance of graph query languages: comparison of
cypher, gremlin and native access in neo4j. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, pages 195–204, 2013.

[41] S. Jahangiri. shivajah/JSON-Wisconsin-Data-Generator, Dec. 2020.

[42] A. Jindal, K. V. Emani, M. Daum, O. Poppe, B. Haynes, A. Pavlenko, A. Gupta,
K. Ramachandra, C. Curino, A. Mueller, et al. Magpie: Python at speed and scale
using cloud backends. In Conference on Innovative Data Systems Research (CIDR),
2021.

[43] T. Kluyver et al. Jupyter Notebooks-a publishing format for reproducible computational
workflows. In Proceedings of the 20th International Conference on Electronic Publishing
(ELPUB), pages 87–90, 2016.

[44] X. Liu et al. Smart meter data analytics: systems, algorithms, and benchmarking. ACM
Transactions on Database Systems (TODS), 42(1):2, 2017.

[45] W. McKinney et al. Data structures for statistical computing in Python. In Proceedings
of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

[46] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling objects, relations and XML
in the .NET framework. In SIGMOD, pages 706–706, 2006.

[47] X. Meng et al. MLlib: machine learning in Apache Spark. Journal of Machine Learning
Research, 17(1):1235–1241, 2016.

[48] Microsoft. TDSP: Team Data Science Process. 2017.

[49] P. Moritz et al. Ray: A distributed framework for emerging AI applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
561–577, 2018.

[50] R. O. Nambiar and M. Poess. The making of TPC-DS. In PVLDB, pages 1049–1058,
2006.

[51] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Springer
Publishing Company, Incorporated, 4th edition, 2019.

[52] J. Partner, A. Vukotic, and N. Watt. Neo4j in action. Manning Publications Co., 2013.

[53] F. Pedregosa et al. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research, 12(10):2825–2830, 2011.

119

[54] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonzalez, J. M. Hellerstein,
A. D. Joseph, and A. Parameswaran. Towards scalable dataframe systems. Proceedings
of the VLDB Endowment (PVLDB), 13(12):2033–2046, 2020.

[55] D. A. Schmidt. The structure of typed programming languages. MIT press, 1994.

[56] P. Sinthong and M. J. Carey. AFrame: Extending DataFrames for large-scale modern
data analysis. In IEEE International Conference on Big Data (Big Data), pages 359–
371, 2019.

[57] R. Socher et al. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1631–1642, 2013.

[58] M. Zaharia et al. Apache Spark: a unified engine for big data processing. Communica-
tions of the ACM, 59(11):56–65, 2016.

120

Appendix A

AsterixDB DDL

A.1 AsterixDB Twitter Feed

CREATE FEED TwitterFeed with {

"adapter -name" : "push_twitter",

"type -name" : "Tweet",

"format" : "twitter -status",

"consumer.key" : "***",

"access.token" : "***",

"access.token.secret" : "***"

};

CONNECT FEED TwitterFeed TO LiveTweets;

START FEED TwitterFeed;

Figure A.1: Create a Twitter feed to collect tweets.

121

A.2 AsterixDB Dataframe Benchmark DDL

CREATE TYPE ClosedType AS CLOSED{

unique1: int64 ,

unique2: int64 ,

unique3: int64 ,

two: int64 ,

four: int64 ,

ten: int64 ,

twenty: int64 ,

onePercent: int64 ,

tenPercent: int64 ,

twentyPercent: int64 ,

fiftyPercent: int64 ,

evenOnePercent: int64 ,

oddOnePercent: int64 ,

stringu1: string ,

stringu2: string ,

string4: string

};

CREATE TYPE OpenType AS {unique2: int64};

CREATE DATASET ClosedData(ClosedType)

PRIMARY KEY unique2

WITH {"storage -block -compression":

{"scheme": "snappy"}};

CREATE DATASET OpenData(OpenType)

PRIMARY KEY unique2

WITH {"storage -block -compression":

{"scheme": "snappy"}};

Figure A.2: Create datatypes and datasets to use for benchmarking

122

Appendix B

PolyFrame Translated Queries and

Rewrite Rules

B.1 PolyFrame Translated Queries

Pandas Dataframe Expression

df[df[‘lang’] == ‘en’][[‘name’, ‘address ’]]. head (10)

SQL++ Translation

SELECT t.name , t.address

FROM (SELECT VALUE t

FROM (SELECT VALUE t

FROM Test.Users t) t

WHERE t.lang = ’en’) t

LIMIT 10;

123

SQL Translation

SELECT t.name , t.address

FROM (SELECT *

FROM (SELECT *

FROM Test.Users t) t

WHERE t.lang = ’en’) t

LIMIT 10;

MongoDB Query Language Translation

Test.Users.aggregate ([

{ "$match ": {} },

{ "$match ": {"$expr": {"$eq":["$lang", "en"]}}},

{ "$project ": { "name": 1, "address ": 1 } },

{ "$project ": { "_id": 0 } },

{ "$limit" : 10 }

])

Cypher Translation

MATCH(t: Users)

WITH t WHERE t.lang = "en"

WITH t{‘name ‘:t.name , ‘address ‘:t.address}

RETURN t

LIMIT 10

B.2 Sample Language-specific Rewrite Rules for Cypher

;Below are query explanations

;q1: select all records from a collection

;q2: project an attribute

;q3: return boolean statement (e.g., id > 5)

124

;q4: return total count of records

;q5: sort records based on an attribute in descending order

;q6: sort records based on an attribute in ascending order

;q7: group records based on an attribute ($grp_by_attribute)

;q8: return an aggregate value ($agg_func) of each group

;q9: return all attributes with one new added attribute

;q10: return distinct values of an attribute

;q11: drop an attribute

;q12: inner join with another collection

;q13: left outer join with another collection

;q14: return an aggregate value of an attribute

;q15: select all records from a view

;q16: return one record from each group

;q17: return records from groups that have only one record

;q18: return an unnest attribute along with other existing attributes

[QUERIES]

q1 = MATCH(t: $collection)

q2 = $subquery

WITH t{$attribute_alias}

q3 = $subquery

WITH t WHERE $statement

q4 = $subquery

RETURN COUNT(*) AS t

q5 = $subquery

WITH t ORDER BY $sort_desc_attr DESC

q6 = $subquery

WITH t ORDER BY $sort_asc_attr

q7 =

q8 = $subquery

WITH {$grp_by_attribute, $agg_value} AS t

q9 = $subquery

WITH t{.*, $attribute_alias}

125

q10 = $subquery

WITH DISTINCT($attribute) AS t

RETURN t

q11 = $subquery

WITH apoc.map.removeKeys(t {.*}, [$attribute_remove]) AS t

q12 = $subquery

MATCH (t),($r_alias:$other)

WHERE t.$left_on = $r_alias.$right_on

WITH t{.*, $r_alias}

q13 = $subquery

OPTIONAL MATCH (t),($r_alias:$other)

WHERE t.$left_on = $r_alias.$right_on

WITH t{.*, $r_alias}

q14 = $subquery

WITH {$agg_value} AS t

q15 =

q16 = $subquery

WITH {$grp_by_attribute} as grp_key , collect(t) as t

WITH t[0] AS t

q17 = $subquery

WITH {$grp_by_attribute} as grp_key , collect(t) as t

WHERE length(t) = 1

WITH t[0] AS t

q18 = $subquery

UNWIND t.$attribute AS $alias

WITH t{.*, $alias:$alias}

[ATTRIBUTE ALIAS]

single_attribute = t.$attribute

attribute_remove = ‘$attribute’

attribute_alias = ‘$alias‘: $attribute

attribute_project = ‘$attribute‘:t.$attribute

rename = ‘$new_attribute‘: $old_attribute

126

agg_value = ‘$agg_func_$attribute‘: $func

attribute_separator = $left, $right

sort_asc_attr = t.$attribute

sort_desc_attr = t.$attribute

grp_by_attribute = ‘$attribute‘: t.$attribute

grp_value = ‘$attribute‘

str_format = "$value"

[ARITHMETIC STATEMENTS]

add = $left + $right

sub = $left - $right

mul = $left * $right

div = $left / $right

mod = $left %% $right

pow = $left ^ $right

[LOGICAL STATEMENTS]

and = $left AND $right

or = $left OR $right

not = NOT $left

[COMPARISON STATEMENTS]

eq = $left = $right

ne = $left != $right

gt = $left > $right

lt = $left < $right

ge = $left >= $right

le = $left <= $right

isna = $left IS NULL

notna = $left IS NOT NULL

isin = $left IN [$right]

[TYPE CONVERSION]

127

to_str = apoc.convert.toInteger($statement)

to_int = apoc.convert.toInteger($statement)

to_float = apoc.convert.toFloat($statement)

[LIMIT]

limit = $subquery

RETURN t

LIMIT $num

return_all = $subquery

RETURN t

sample_size = 1000

[ESCAPE CHARACTERS]

escape = [‘"]

[FUNCTIONS]

min = min(t.$attribute)

max = max(t.$attribute)

avg = avg(t.$attribute)

std = stDevP(t.$attribute)

count = count

sum = sum(t.$attribute)

abs = abs(t.$attribute)

fillna = CASE $attribute WHEN NULL THEN $value ELSE $attribute END

replace = CASE $statement WHEN TRUE THEN $to_replace ELSE $attribute END

function_format = $function($attribute)

function_arg_format = $function($attribute, $argument)

[SAVE RESULTS]

to_collection = $subquery

CREATE (n:$collection)

SET n = t

to_view =

128

drop_collection = MATCH(t: $collection)

DELETE t

B.3 Sample Language-specific Rewrite Rules for Mon-

goDB

[QUERIES]

q1 = { "$match": {} }

q2 = $subquery,

{ "$project": { $attribute_alias } }

q3 = $subquery,

{ "$match": { "$expr": { $statement } } }

q4 = $subquery,

{ "$count": "count" }

q5 = $subquery,

{ "$sort": { $sort_desc_attr } }

q6 = $subquery,

{ "$sort": { $sort_asc_attr } }

q7 = $subquery,

{ "$group": { "_id": { $grp_by_attribute } } }

q8 = $subquery,

{ "$group": { "_id": { $grp_by_attribute }, $agg_value } },

{ "$addFields": { $grp_value } }

q9 = $subquery,

{ "$set": { $attribute_alias } }

q10 = $subquery,

{ "$group" : { "_id" : "$$attribute" } }

q11 = $subquery,

{ "$project": { $attribute_remove } }

q12 = $subquery,

{ "$lookup" : { "from" : "$other", "as" : "$other", "let": {"left": "$$left_on"},

129

"pipeline": [$right_query, { "$match": { "$expr":

{ "$eq": ["$$right_on", "$$left"] } } }] } },

{ "$unwind" : { "path" : "$$other", "preserveNullAndEmptyArrays" : false } },

{ "$replaceRoot" : { "newRoot" : { "$mergeObjects" : ["$$other", "$$ROOT"] } } },

{ "$project": { "$other": 0 } }

q13 = $subquery,

{ "$lookup" : { "from" : "$other", "as" : "$other", "let": {"left": "$$left_on"},

"pipeline": [$right_query, { "$match": { "$expr":

{ "$eq": ["$$right_on", "$$left"] } } }] } },

{ "$unwind" : { "path" : "$$other", "preserveNullAndEmptyArrays" : true } },

{ "$replaceRoot" : { "newRoot" : { "$mergeObjects" : ["$$other", "$$ROOT"] } } },

{ "$project": { "$other": 0 } }

q14 = $subquery,

{ "$group": { "_id": {}, $agg_value } },

{ "$project": {"_id": 0 } }

q15 = { "$project": { "_id": 0 } }

q16 = $subquery,

{ "$group": { "_id": { $grp_by_attribute }, "first": {"$first": "$$ROOT"} } },

{ "$replaceRoot": { "newRoot": "$first" } }

q17 = $subquery,

{ "$group": { "_id": { $grp_by_attribute }, "cnt": {"$sum": 1},

"first": {"$first": "$$ROOT"} } },

{ "$match": { "$expr": { "$eq": ["$cnt", 1] } } },

{ "$replaceRoot": { "newRoot": "$first" } }

q18 = $subquery,

{ "$set": { "$attribute_alias": "$$attribute" } },

{ "$unwind": { "path": "$$attribute_alias", "preserveNullAndEmptyArrays": true } }

[ATTRIBUTES]

single_attribute = $attribute

attribute_alias = "$alias": { $attribute }

attribute_remove = "$attribute": 0

attribute_project = "$attribute": 1

130

sort_asc_attr = "$attribute": 1

sort_desc_attr = "$attribute": -1

rename = "$new_attribute": "$$old_attribute"

agg_value = "$agg_func_$attribute": { $func }

attribute_separator = $left, $right

grp_by_attribute = "$attribute": "$$attribute"

grp_value = "$attribute": "$_id.$attribute"

str_format = "$value"

[ARITHMETIC STATEMENTS]

add = "$add": ["$$left", $right]

sub = "$subtract": ["$$left", $right]

mul = "$multiply": ["$$left", $right]

div = "$divide": ["$$left", $right]

mod = "$mod": ["$$left", $right]

pow = "$pow": ["$$left", $right]

norm_div = $left

[LOGICAL STATEMENTS]

and = "$and": [{ $left }, { $right }]

or = "$or": [{ $left }, { $right }]

not = "$not": [{ $left }]

[COMPARISON STATEMENTS]

eq = "$eq": ["$$left", $right]

ne = "$ne": ["$$left", $right]

gt = "$gt": ["$$left", $right]

lt = "$lt": ["$$left", $right]

ge = "$gte": ["$$left", $right]

le = "$lte": ["$$left", $right]

isna = "$lt": ["$$left", null]

notna = "$gt": ["$$left", null]

isin = "$in": ["$$left",[$right]]

131

[TYPE CONVERSION]

to_int32 = "$toInt": { $statement }

to_int64 = "$toLong": { $statement }

to_str = "$toString": { $statement }

to_double = "$toDouble": { $statement }

[LIMIT]

limit = $subquery,

{ "$project": { "_id": 0 } },

{ "$limit" : $num }

return_all = $subquery

sample_size = 1000

[FUNCTIONS]

min = "$min": "$$attribute"

max = "$max": "$$attribute"

avg = "$avg": "$$attribute"

std = "$stdDevSamp": "$$attribute"

abs = "abs": "$$attribute"

count = "$sum": 1

sum = "$sum": "$$attribute"

fillna = "$ifNull": ["$$attribute", $value]

replace = "$cond": { "if": { $statement }, "then": $to_replace, "else": "$$attribute" }

function_format = "$$function": "$$attribute"

function_arg_format = "$$function": {"input": "$$attribute", $argument}

kwarg = "$$key": $value

[SAVE RESULTS]

to_collection = $subquery,

{ "$out": "$collection" }

to_view = CREATE FUNCTION $namespace.$collection()

{$subquery};

132

B.4 Sample Language-specific Rewrite Rules for SQL

[QUERIES]

q1 = SELECT * FROM $collection

q2 = SELECT $attribute_alias FROM ($subquery) t

q3 = SELECT * FROM ($subquery) t WHERE $statement

q4 = SELECT COUNT(*) FROM ($subquery) t

q5 = SELECT * FROM ($subquery) t ORDER BY $sort_desc_attr DESC

q6 = SELECT * FROM ($subquery) t ORDER BY $sort_asc_attr ASC

q7 = SELECT * FROM ($subquery) t GROUP BY $grp_by_attribute

q8 = SELECT $grp_by_attribute, $agg_value FROM ($subquery) t GROUP BY $grp_by_attribute

q9 = SELECT t.*, $attribute_alias FROM ($subquery) t

q10 = SELECT DISTINCT $attribute FROM ($subquery) t

q11 =

q12 = SELECT * FROM ($subquery) AS l INNER JOIN ($right_query) AS r ON

l.$left_on = r.$right_on

q13 = SELECT * FROM ($subquery) AS l LEFT OUTER JOIN ($right_query) AS r ON

l.$left_on = r.$right_on

q14 = SELECT $agg_value FROM ($subquery) t

q15 = SELECT * FROM $view

q16 = SELECT (t).* FROM (SELECT t, ROW_NUMBER() OVER (PARTITION BY $grp_by_attribute)

AS row_number FROM ($subquery) t) t WHERE row_number = 1

q17 = SELECT (t).* FROM (SELECT t, COUNT(*) OVER (PARTITION BY $grp_by_attribute) AS cnt

FROM ($subquery) t) t WHERE cnt = 1

q18 = SELECT t.*, n.i AS $alias FROM ($subquery) t LEFT JOIN LATERAL UNNEST(referredTopics)

AS n(i) ON true

[ATTRIBUTE ALIAS]

single_attribute = $attribute

attribute_remove = ’$attribute’

attribute_project = "$attribute"

attribute_alias = $attribute AS "$alias"

attribute_name = "$attribute"

133

rename = $old_attribute AS "$new_attribute"

agg_value = $func AS "$agg_func_$attribute"

attribute_separator = $left, $right

sort_asc_attr = $attribute

sort_desc_attr = $attribute

grp_by_attribute = "$attribute"

grp_value = $attribute

str_format = ’$value’

[ARITHMETIC STATEMENTS]

add = $left + $right

sub = $left - $right

mul = $left * $right

div = $left / $right

mod = $left %% $right

pow = $left ^ $right

[LOGICAL STATEMENTS]

and = $left AND $right

or = $left OR $right

not = NOT $left

[COMPARISON STATEMENTS]

eq = $left = $right

ne = $left != $right

gt = $left > $right

lt = $left < $right

ge = $left >= $right

le = $left <= $right

isna = $left IS NULL

notna = $left IS NOT NULL

isin = $left IN ($right)

134

[TYPE CONVERSION]

to_int32 = (($statement) :: INTEGER)

to_int64 = to_bigint($statement)

to_double = (($statement) :: DOUBLE PRECISION)

[LIMIT]

limit = $subquery LIMIT $num

return_all = $subquery

sample_size = 1000

[ESCAPE CHARACTERS]

escape = "

[FUNCTIONS]

min = MIN("$attribute")

max = MAX("$attribute")

avg = AVG("$attribute")

std = STDDEV("$attribute")

count = COUNT("$attribute")

sum = SUM($attribute)

var = VAR_SAMP("$attribute")

abs = ABS($attribute)

fillna = CASE $attribute IS NULL WHEN True THEN $value ELSE $attribute END

replace = CASE WHEN $statement THEN $to_replace ELSE $attribute END

function_format = $function($attribute)

function_arg_format = $function($attribute, $argument)

kwarg = $key=$value

135

B.5 Sample Language-specific Rewrite Rules for SQL++

[QUERIES]

q1 = SELECT VALUE t FROM $namespace.$collection t

q2 = SELECT $attribute_alias FROM ($subquery) t

q3 = SELECT VALUE t FROM ($subquery) t WHERE $statement

q4 = SELECT VALUE COUNT(*) FROM ($subquery) t

q5 = SELECT VALUE t FROM ($subquery) t ORDER BY $sort_desc_attr DESC

q6 = SELECT VALUE t FROM ($subquery) t ORDER BY $sort_asc_attr ASC

q7 = SELECT * FROM ($subquery) t GROUP BY $grp_by_attribute

q8 = SELECT $grp_by_attribute, $agg_value FROM ($subquery) t GROUP BY $grp_by_attribute

q9 = SELECT t.*, $attribute_alias FROM ($subquery) t

q10 = SELECT DISTINCT ‘$attribute‘ FROM ($subquery) t

q11 = SELECT VALUE OBJECT_REMOVE(t, $attribute_remove) FROM ($subquery) t

q12 = SELECT $l_alias.*, $r_alias.* FROM ($subquery) AS $l_alias INNER JOIN ($right_query)

AS $r_alias ON $l_alias.$left_on = $r_alias.$right_on

q13 = SELECT $l_alias.*, $r_alias.* FROM ($subquery) AS $l_alias LEFT OUTER JOIN

($right_query) AS $r_alias ON $l_alias.$left_on = $r_alias.$right_on

q14 = SELECT $agg_value FROM ($subquery) t

q15 = SELECT VALUE t FROM $namespace.$view t

q16 = SELECT VALUE grp[0].t FROM ($subquery) t GROUP BY $grp_by_attribute GROUP AS grp

q17 = SELECT VALUE grp[0].t FROM ($subquery) t GROUP BY $grp_by_attribute GROUP AS grp

HAVING COUNT(t)=1

q18 = SELECT t.*, n AS $alias FROM ($subquery) t LEFT OUTER UNNEST t.$attribute AS n

[ATTRIBUTE ALIAS]

single_attribute = $attribute

attribute_remove = ’$attribute’

attribute_project = ‘$attribute‘

attribute_alias = $attribute AS ‘$alias‘

attribute_name = ‘$attribute‘

rename = ‘$old_attribute‘ AS ‘$new_attribute‘

agg_value = $func AS $agg_func_$attribute

136

attribute_separator = $left, $right

sort_asc_attr = $attribute

sort_desc_attr = $attribute

grp_by_attribute = $attribute

grp_value = $attribute

str_format = "$value"

[ARITHMETIC STATEMENTS]

add = $left + $right

sub = $left - $right

mul = $left * $right

div = $left / $right

mod = $left %% $right

pow = $left ^ $right

[LOGICAL STATEMENTS]

and = $left AND $right

or = $left OR $right

not = NOT $left

[COMPARISON STATEMENTS]

eq = $left = $right

ne = $left != $right

gt = $left > $right

lt = $left < $right

ge = $left >= $right

le = $left <= $right

isna = $left IS UNKNOWN

notna = $left IS KNOWN

isin = $left IN [$right]

[TYPE CONVERSION]

to_int32 = to_number($statement)

137

to_int64 = to_bigint($statement)

to_double = to_double($statement)

[LIMIT]

limit = $subquery LIMIT $num

return_all = $subquery

sample_size = 1000

[ESCAPE CHARACTERS]

escape = [‘]

[FUNCTIONS]

min = MIN($attribute)

max = MAX($attribute)

avg = AVG($attribute)

std = STDDEV($attribute)

count = COUNT($attribute)

sum = SUM($attribute)

var = VARIANCE($attribute)

abs = ABS($attribute)

fillna = CASE WHEN $attribute IS UNKNOWN THEN $value ELSE $attribute END

replace = CASE WHEN $statement THEN $to_replace ELSE $attribute END

function_format = $function(‘$attribute‘)

function_arg_format = $function(‘$attribute‘, $argument)

kwarg = $key=$value

[SAVE RESULTS]

to_collection = CREATE TYPE $namespace.TempType IF NOT EXISTS AS OPEN{ _uuid: uuid};

CREATE DATASET $namespace.$collection(TempType) PRIMARY KEY _uuid autogenerated;

INSERT INTO $namespace.$collection SELECT VALUE ($subquery);

to_view = CREATE VIEW $namespace.$collection AS $subquery;

138

Appendix C

Benchmark Translated Queries

C.1 Benchmark Timing Points

• Pandas Timing

DataFrame creation time

df = pd.read_json(file_path)

Expression -only time

df.head()

• Spark Timing

DataFrame creation time

df = spark.read.format("mongo")

.option("uri", "mongodb ://x.x.x.x")

...

.load()

Expression -only time

df.head (5)

139

• PolyFrame Timing

DataFrame creation time

df = AFrame(namespace , collection , DBConnector)

Expression -only time

df.head()

C.2 Benchmark Translated SQL++ Queries

1. SELECT VALUE COUNT (*) FROM data;

2. SELECT two , four

FROM (SELECT VALUE t FROM data t) t

LIMIT 5;

3. SELECT VALUE COUNT (*)

FROM (SELECT VALUE t

FROM (SELECT VALUE t FROM data t) t

WHERE ten = x

AND twentyPercent = y

AND two = z) t;

4. SELECT oddOnePercent ,

COUNT(oddOnePercent) AS cnt

FROM (SELECT VALUE t FROM data) t

GROUP BY oddOnePercent;

5. SELECT VALUE UPPER(stringu1)

FROM (SELECT VALUE t FROM data) t

LIMIT 5;

6. SELECT MAX(unique1)

FROM (SELECT unique1

FROM (SELECT VALUE t FROM data) t) t;

7. SELECT MIN(unique1)

FROM (SELECT unique1

FROM (SELECT VALUE t FROM data) t) t;

140

8. SELECT twenty , MAX(four) AS max_four

FROM (SELECT VALUE t FROM data) t

GROUP BY twenty;

9. SELECT VALUE t

FROM (SELECT VALUE t FROM data) t

ORDER BY unique1 DESC

LIMIT 5;

10. SELECT VALUE t

FROM (SELECT VALUE t FROM data) t

WHERE ten = x

LIMIT 5;

11. SELECT VALUE COUNT (*)

FROM (SELECT VALUE t

FROM (SELECT VALUE t FROM data) t

WHERE onePercent >= x

AND onePercent <= y) t;

12. SELECT VALUE COUNT (*)

FROM (SELECT l,r

FROM leftData l JOIN rightData r

ON l.unique1 = r.unique1) t;

13. SELECT VALUE COUNT (*)

FROM (SELECT VALUE t

FROM (SELECT VALUE t FROM data) t

WHERE tenPercent IS UNKNOWN) t;

x,y,z = random values within range

C.3 Benchmark Translated SQL Queries

1. SELECT COUNT (*) FROM (SELECT * FROM data) t;

2. SELECT "two", "four"

FROM (SELECT * FROM data) t LIMIT 5;

141

3. SELECT COUNT (*)

FROM (SELECT *

FROM (SELECT * FROM data) t

WHERE "ten" = x

AND "twentyPercent" = y

AND "two" = z) t;

4. SELECT "oddOnePercent",

COUNT("oddOnePercent") AS cnt

FROM (SELECT * FROM data) t

GROUP BY "oddOnePercent";

5. SELECT upper("stringu1")

FROM (SELECT stringu1

FROM (SELECT * FROM data) t) t

LIMIT 5;

6. SELECT MAX("unique1")

FROM (SELECT unique1

FROM (SELECT * FROM data) t) t;

7. SELECT MIN("unique1")

FROM (SELECT unique1

FROM (SELECT * FROM data) t) t;

8. SELECT "twenty", MAX("four")

FROM (SELECT * FROM data) t

GROUP BY "twenty";

9. SELECT *

FROM (SELECT * FROM data) t

ORDER BY unique1 DESC

LIMIT 5;

10. SELECT *

FROM (SELECT * FROM data) t

WHERE "ten" = x

LIMIT 5

142

11. SELECT COUNT (*)

FROM (SELECT *

FROM (SELECT * FROM data t) t

WHERE "onePercent" >= x

AND "onePercent" <= y) t;

12. SELECT COUNT (*)

FROM (SELECT l.*,r.*

FROM (SELECT * FROM left) l

INNER JOIN (SELECT * FROM right) r

ON l.unique1 = r.unique1) t;

13. SELECT COUNT (*)

FROM (SELECT *

FROM (SELECT * FROM data) t

WHERE "tenPercent" IS NULL) t;

x,y,z = variables representing random values within range

C.4 Benchmark Translated Cypher Queries

1. MATCH(t: data)

RETURN COUNT (*) AS t

2. MATCH(t: data)

WITH t{‘two ‘:t.two , ‘four ‘:t.four}

RETURN t

3. MATCH(t: data)

WITH t WHERE t.ten = x

AND t.twentyPercent = y

AND t.two = z

RETURN COUNT (*) AS t

143

4. MATCH(t: data)

WITH {‘oddOnePercent ‘: t.oddOnePercent ,

‘count ‘: count(t.oddOnePercent)} AS t

RETURN t

5. MATCH(t: data)

WITH t{‘stringu1 ‘:t.stringu1}

WITH t{‘upper(t.stringu1)‘:upper(t.stringu1)}

RETURN t

LIMIT 5

6. MATCH(t: data)

WITH t{‘unique1 ‘:t.unique1}

WITH {‘max_unique1 ‘: max(t.unique1)} AS t

RETURN t

7. MATCH(t: data)

WITH t{‘unique1 ‘:t.unique1}

WITH {‘min_unique1 ‘: min(t.unique1)} AS t

8. MATCH(t: data)

WITH {‘twenty ‘: t.twenty ,

‘max_four ‘: max(t.four)} AS t

RETURN t

9. MATCH(t: data)

WITH t ORDER BY t.unique1 DESC

RETURN t

LIMIT 5

10. MATCH(t: data)

WITH t WHERE t.ten = x

RETURN t

LIMIT 5

11. MATCH(t: data)

WITH t WHERE t.onePercent >= x

AND t.onePercent <= y

RETURN COUNT (*) AS t

144

12. MATCH(t: data)

MATCH (t),(r:wisconsin2)

WHERE t.unique1 = r.unique1

WITH t{.*, r}

RETURN COUNT (*) AS t

13. MATCH(t: data)

WITH t WHERE t.tenPercent IS NULL

RETURN COUNT (*) AS t

x,y,z = random values within range

C.5 Benchmark Translated MongoDB Queries

1. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$count ":" count "}

])

2. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$project ":{" two":1," four ":1}},

{"$project ":{ "_id ":0}},

{"$limit ":5}

])

3. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$match ":{"$expr ":{"$and ":[{"$and":[

{"$eq":["$ten",x]},

{"$eq":["$twentyPercent", y]}]},

{"$eq":["$two",z]}]}}} ,

{"$count ":" count "}])

145

4. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$group ":{" _id":{ "oddOnePercent ":"$oddOnePercent" },

"count _oddOnePercent ":{"$sum ":1}}} ,

{"$addFields ": { "oddOnePercent ": "$_id.oddOnePercent "} },

{"$project ": {"_id": 0 } }

])

5. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$project ":{" stringu1 ":1}},

{"$project ":{" stringu1 :{"$toUpper ":"$stringu1 "}}},

{"$project ":{" _id ":0}},

{"$limit ":5}

])

6. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$project ":{" unique1 ":1}},

{"$group ":{" _id":{},"max ":{"$max":"$unique1 "}}},

{"$project ":{" _id ":0}}

])

7. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$project ":{" unique1 ":1}},

{"$group ":{" _id":{},"min ":{"$min":"$unique1 "}}},

{"$project ":{" _id ":0}}

])

8. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$group ":{" _id ":{" twenty ":"$twenty"}, "max ":{"$max":"$four "}}},

{"$addFields ":{" twenty ":"$_id.twenty "}},

{"$project ":{" _id ":0}}

])

146

9. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$sort ":{" unique1 ":-1}},

{"$project ":{" _id ":0}},

{"$limit ":5}

])

10. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$match ":{"$expr ":{"$eq":["$ten",x]}}},

{"$project ":{" _id ":0}},

{"$limit ":5}

])

11. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$match ":{"$expr ":{"$and ":[{"$gte ":["$onePercent",x]},

{"$lte ":["$onePercent",y]}]}}} ,

{"$count ":" count "}

])

12. namespace.collection.aggregate ([

{"$lookup ":{" from ":" collection2", "as":" collection2",

"let ":{" left ":"$unique1"},

"pipeline ":[{"$match ":{}} ,

{"$match ":{"$expr ":{"$eq":["$unique1","$$left "]}}}]}} ,

{"$unwind ":{" path ":"$collection2 "," preserveNullAndEmptyArrays ":false}},

{"$count ":" count "}

])

13. namespace.collection.aggregate ([

{"$match ":{}} ,

{"$match ":{"$expr ":{"$lt":["$tenPercent",null]}}},

{"$count ":" count "}

])

x,y,z = variables representing random values within range

147

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Pandas
	Eager vs. Lazy Evaluation
	Apache AsterixDB

	Related Work
	Big Data Platforms
	Apache Spark
	Hive

	Scalable Dataframes
	Parallel Execution Frameworks
	Distributed Compute Engines
	Scaling Dataframes with Databases

	Polystores
	Relationship to This Work

	AFrame
	Introduction
	User Model
	Acquiring Data
	Operating on Data
	Support for Machine Learning Models
	Result Persistence

	System Architecture
	Incremental Query Formation
	Conclusion

	A Dataframe Benchmark
	Introduction
	Benchmark Datasets
	Benchmark Queries
	Comparisons with Other Dataframe Libraries
	Evaluated System Details
	Experimental Setup
	Preliminary Results
	Single-node Results
	Multi-node Results
	Result Discussion

	Conclusion

	PolyFrame
	Introduction
	System Architecture
	Query Rewrite
	Supported Language Requirement
	Generic Rewrite Rules
	Language-specific Rewrite Rules

	Per-language Rewrite Examples
	Experimental Evaluation
	Experimental Setup
	Spark Comparison Results
	PolyFrame’s Heterogeneity Results: Single-node
	PolyFrame’s Heterogeneity Results: Multi-node
	Result Discussion

	Conclusion

	Case Studies
	Introduction
	Classification Case Study
	Data Preparation
	Modeling
	Evaluation and Deployment
	Lessons Learned

	Exploratory Data Analysis Case Study
	Functionality Supported
	Data Acquisition
	Data Preparation
	Data Analysis
	Data Visualization
	End-to-end Performance Comparison with Pandas
	Evaluation Results
	Discussion of Experiments

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix AsterixDB DDL
	AsterixDB Twitter Feed
	AsterixDB Dataframe Benchmark DDL

	Appendix PolyFrame Translated Queries and Rewrite Rules
	PolyFrame Translated Queries
	Sample Language-specific Rewrite Rules for Cypher
	Sample Language-specific Rewrite Rules for MongoDB
	Sample Language-specific Rewrite Rules for SQL
	Sample Language-specific Rewrite Rules for SQL++

	Appendix Benchmark Translated Queries
	Benchmark Timing Points
	Benchmark Translated SQL++ Queries
	Benchmark Translated SQL Queries
	Benchmark Translated Cypher Queries
	Benchmark Translated MongoDB Queries

