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Abstract 
 

Stochastic Dynamic Analysis of Bridges 
Subjected to Spatially Varying Ground Motions 

 
by 

 
Aikaterini Konakli 

 
Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 
University of California, Berkeley 

 
Professor Armen Der Kiureghian, Chair 

 

Using response spectrum and time-history analysis methods, a thorough investigation of 
the response of bridges subjected to spatially varying support motions is performed. Three 
main causes of spatial variability are considered: the incoherence effect, which represents 
random differences in the amplitudes and phases of seismic waves due to reflections and 
refractions that occur during wave propagation in the heterogeneous medium of the 
ground and due to differential superposition of waves arriving from different parts of an 
extended source; the wave-passage effect, which describes the differences in the arrival 
times of waves at separate locations; and the site-response effect, which accounts for differ-
ences in the intensities and frequency contents of surface motions due to variable soil pro-
files underneath the supports. 

The multiple-support response spectrum (MSRS) method originally developed by Der Ki-
ureghian and Neuenhofer (1992) is generalized to allow consideration of response quanti-
ties that depend on the support degrees of freedom, and extended to account for quasi-
static contributions of truncated modes. Efficient algorithms and a computer code are de-
veloped for the implementation of the generalized and extended MSRS method. The code is 
used for comprehensive parametric analyses of four real bridge models with vastly differ-
ent characteristics. The analyses identify cases of ground motion spatial variability and 
types of bridges for which the effects of spatial variability are significant. 

Methods for simulation of spatially varying ground motion arrays incorporating the effects 
of incoherence, wave passage and differential site response are developed. The simulated 
motions inherit statistical characteristics of a specified acceleration record at a reference 
site. The conditional simulation approach preserves time-history characteristics of the spe-
cified record; however, the array of motions exhibits increasing variability with distance 
from the reference site. The unconditional simulation method generates an array of mo-
tions that preserve the overall temporal and spectral characteristics of the specified record 
and exhibit uniform variability at all locations. The simulated motions are validated by ex-
amining their physical compliance and by comparing their response spectra, coherency 
characteristics and power spectral densities with corresponding target models. 
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Sets of simulated support motions are used to investigate the effect of spatial variability on 
linear and non-linear bridge response by time-history analyses. Comparisons between li-
near and non-linear pier drifts are performed to assess the accuracy of the “equal dis-
placement” rule (Veletsos and Newmark, 1960) for spatially varying ground motions. Com-
parisons between mean peak responses obtained from linear time-history and MSRS ana-
lyses provide information on the range of errors induced by the approximations involved in 
the latter method. 

Finally, coherency analysis of a recorded array of near-fault ground motions is performed. 
The ability of commonly used models to describe the incoherence component of this array 
is assessed. 
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Chapter 1 -  Introduction 

1.1    MOTIVATION AND BACKGROUND 

Seismic design of extended structures, such as bridges, requires accounting for the spatial 
variability of the earthquake motion. Spatial variability of ground motions is mainly caused 
by three phenomena (Der Kiureghian 1996): (a) The incoherence effect, which arises from 
random differences in the amplitudes and phases of seismic waves due to reflections and 
refractions that occur during their propagation in the heterogeneous medium of the ground 
and also due to the super-positioning of waves arriving from different parts of an extended 
source; (b) The wave-passage effect, which arises due to the differences in the arrival times 
of seismic waves at separate stations; and (c) The differential site-response effect, which 
arises from differences in the intensity and frequency content of the surface motions due to 
propagation of seismic waves from the bedrock level to the ground surface through soil 
layers with different dynamic properties. We note that, under uniform soil conditions, spa-
tial variations in earthquake ground motions are only due to the incoherence and wave-
passage effects, and in this case, ground motions at separate surface locations are realiza-
tions of random processes characterized by the same intensity and frequency content. 

Under spatially varying support excitations, the response of a bridge can be expressed as 
the sum of two components: a pseudo-static component and a dynamic component. Simi-
larly to the case of uniform support excitations, the dynamic component is the response of 
the bridge to the dynamic inertia forces induced by the support motions. At each time in-
stant, the pseudo-static component is the static response of the bridge (neglecting inertia 
and damping forces) to the differential support displacements prescribed by the spatially 
varying ground motions. This component is zero in the case of uniform support excitations. 
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Under uniform soil conditions, the effects of incoherence and wave passage tend to de-
crease the dynamic response due to random cancellations. However, by inducing a pseudo-
static response component, these effects may increase or decrease the total bridge re-
sponse, depending on the structural characteristics and the ground motion field. Thus, even 
in the case of uniform soil conditions, accounting for the spatial variability of ground mo-
tion is important. The additional consideration of the differential site-response effect tends 
to increase the pseudo-static component, whereas the influence on the dynamic component 
depends on the types of soils considered. In all cases, neglecting the spatial variability of 
ground motion may or may not be on the safe side. Thus, incorporating all three effects of 
incoherence, wave passage and site response in the earthquake response analysis of 
bridges is necessary. 

The response of extended structures to differential support motions has been studied by 
various researchers using linear time-history analyses (e.g. Price and Eberhard, 1998; Lou 
and Zerva, 2005), non-linear time-history analysis (e.g. Saxena et al., 2000, Zanardo et al., 
2002; Kim and Feng, 2003; Sextos et al., 2004; Lou and Zerva, 2005; Lupoi et al., 2005), the 
methods of random vibration (e.g. Zerva, 1990; Heredia-Zavoni and Vanmarcke, 1994; Hao, 
1998; Dumanogluid and Soyluk, 2003; Zembaty and Rutenberg, 2004; Zhang et al., 2009) or 
response spectrum methods (e.g. Berrah and Kausel, 1992; Der Kiureghian and Neuenho-
fer, 1992). 

The random vibration approach is based on a statistical characterization of the support ex-
citations. Typically, the set of support motions is assumed to be jointly stationary and spe-
cified in terms of a matrix of auto- and cross-power spectral density (PSD) functions. The 
cross-PSDs are obtained in terms of the respective auto-PSDs and a coherency function that 
models the spatial variability of the ground motion random field in the frequency domain. 
The main advantage of this approach is that it provides a statistical measure of the re-
sponse, which is not controlled by a particular set of selected ground motions. However, it 
remains rather uncommon in engineering practice, which typically defines earthquake in-
put in terms of response spectra or ground motion time histories. Furthermore, the ran-
dom vibration approach used in previous studies is based on the strict assumption of sta-
tionarity. 

Response spectrum methods are based on the random vibration approach, but have the 
additional advantage of using a response spectrum characterization of the ground motion, 
which is particularly appealing from a design standpoint. Furthermore, response spectra 
inherently include the non-stationarity of the ground motion. The multiple-support re-
sponse spectrum (MSRS) method, developed by Der Kiureghian and Neuenhofer (1992), 
obtains the mean of the peak structural response in terms of the response spectra and peak 
ground displacements at the support points of the structure and the coherency function 
characterizing the spatial variability of the ground motion. This method properly accounts 
for cross-correlations that occur between the support motions and between modal res-
ponses. The MSRS rule has been used by a growing number of researchers to investigate 
seismic responses of bridges and other multiply-supported structures: Nakamura et al. 
(1993) used the MSRS method for the analysis of the Golden Gate Bridge; Kahan et al. 
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(1996) used the MSRS framework to perform sensitivity analysis of the bridge response 
and develop mode truncation criteria;  Der Kiureghian et al. (1997) performed parametric 
studies of example bridge models incorporating the site-response effect; Soyluk (2004) 
compared results from MSRS analysis with results from conventional random vibration 
analysis; Loh and Ku (1995) and Wang and Chen (2005) developed approximations of the 
correlation coefficient terms in the MSRS rule; and Yu and Zhou (2008) extended the MSRS 
method for analysis of non-classically damped structures. As a method employing modal 
superposition, the MSRS method is necessarily limited to linear analysis. However, under 
severe earthquake loading, bridges, as well as other extended structures, are expected to 
experience inelastic response.  

One way to account for non-linear behavior is to conduct response history analysis (RHA) 
for specified time histories of ground motions at support points of the structure. Since re-
cordings of closely spaced earthquake ground motions are rare, non-linear response histo-
ry analysis of multiply supported structures must rely on synthetic ground motions. Simu-
lation methods have been developed that use the coherency function in conjunction with 
theoretical target PSD functions. The resulting simulated stationary motions are then mod-
ulated in time to provide temporal non-stationarity (e.g. Hao et al. 1989, Saxena et al. 
2000). However, this approach cannot account for spectral non-stationarity of the ground 
motion, which can be critical in analysis of hysteretic structures. An earlier work by Deoda-
tis (1996) incorporates spectral non-stationarity, but requires specification of an evolutio-
nary PSD. No investigation of the physical compliance of the synthetic motions was carried 
out. An alternative approach to simulation of an array of synthetic ground motions with 
specified coherency function is to use probabilistic conditioning with a seed recorded or 
simulated motion at a reference site (Vanmarcke and Fenton, 1991; Kameda and Morikawa, 
1992; Liao and Zerva, 2006). Applying this approach on segmented records, Vanmarcke 
and Fenton (1991) and Liao and Zerva (2006) generated motions with temporal and spec-
tral non-stationarities. One disadvantage of generating ground motions by conditioning on 
a seed accelerogram is that the variance of the array of simulated motions increases with 
increasing distance from the site of the target motion. This is clearly an undesirable proper-
ty when performing statistical analysis of bridge response, say, by Monte Carlo simulation. 
This issue can be addressed by conditioning the simulated array of motions on the PSDs of 
the segmented seed accelerogram rather than its specific realization. Vanmarcke and Fen-
ton (1991) used this approach to simulate accelerograms, but did not examine the physical 
compliance of the simulated motions in terms of displacement time histories and response 
spectra. Furthermore, all previous studies using probabilistic conditioning are limited to 
the case of uniform soil conditions. 

Another way to account for non-linear behavior by avoiding the computationally costly 
non-linear time-history analysis is to relate non-linear displacement demands to corres-
ponding linear responses. In the so-called "displacement-based" design approach (Moehle, 
1992), elements of the structure are designed for a prescribed ductility ratio using seismic 
demands that are specified in terms of maximum displacement. One can show that, under 
certain conditions, the displacement computed for the linear structure provides a good ap-
proximation of the inelastic displacement demand (Veletsos and Newmark, 1960). This 
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finding, commonly known as the “equal displacement” rule, has been examined for the case 
of uniform excitations by a number of investigators, including Rahnama and Krawinkler 
(1993), Miranda and Bertero (1994), Vidic et al. (1994), Gupta and Krawinkler (2000) and 
Miranda (2000). However, to the author’s knowledge, the validity of the “equal displace-
ment” rule under varying support motions has not been investigated. 

In all analysis approaches discussed above, a coherency function is typically employed to 
describe the spatial variability of support motions. Because of the random nature of the in-
coherence component of this function, it is not possible to develop a theoretical model of 
this phenomenon solely based on physics. One approach to characterize the incoherence 
component is to use a probabilistic model employing parameters that can be determined 
through statistical inference. A general form for such a theoretical model has been derived 
by Der Kiureghian (1996) based on elementary principles, and a special case is the well-
known model by Luco and Wong (1986). Another approach to model the incoherence com-
ponent is to develop empirical models using data from recorded acceleration arrays (e.g. 
Harichandran and Vanmarcke, 1986; Abrahamson et al., 1991). Empirical models account 
for the complex phenomena that occur during wave propagation and are not captured by 
simplified mathematical models, but characterize only the specific rupture mechanisms 
and soil topographies present in the data. It is noted that the incoherence component for 
near-fault ground motions has not been properly examined. 

1.2    OBJECTIVES AND SCOPE 

In this study, we develop accurate and practical tools for the analysis of bridges subjected 
to spatially varying support motions considering both the response spectrum and the RHA 
approaches. These analysis tools are used for the investigation of the effects of several cas-
es of spatial variability on the responses of real bridge models with vastly different struc-
tural characteristics. In the RHA approach, both linear and non-linear responses are inves-
tigated with the aim of assessing the accuracy of the “equal displacement” rule. Compari-
sons of the responses obtained with the response spectrum and the RHA analysis ap-
proaches are performed. To make RHA possible, a method to generate synthetic arrays of 
ground motions is developed. An additional objective is the investigation of existing cohe-
rency models, commonly used to describe the spatial variability of ground motion, through 
comparisons with coherency estimates from an array of near-fault records. These objec-
tives are further described in the following subsections. 

Development of analysis tools 

Response spectrum approach 

Since its development in 1992, the MSRS rule has become popular as a method of analysis 
of extended structures under differential support motions. As in response spectrum analy-
sis under uniform excitation, use of the MSRS rule in practice involves truncation of modes 
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beyond a number usually far smaller than the total number of modes of the structure. In 
this study, we present a generalized and extended formulation of the original MSRS me-
thod. The original MSRS formulation only considered response quantities that could be ex-
pressed as linear combinations of the displacements at the unconstrained degrees of free-
dom (DOF) of the structure. The generalized formulation presented here also allows con-
sideration of response quantities that involve one or more support DOFs, e.g., drifts of 
bridge piers. The extended version of the MSRS rule accounts for the quasi-static contribu-
tion of the truncated modes. Furthermore, a computer algorithm for the implementation of 
the generalized and extended MSRS method is developed. In this algorithm, the evaluation 
of the cross-model, cross-support correlation coefficients is performed with a numerical 
integration method that accounts for the behavior of the integrand for specific modal quan-
tities. The computational efficiency achieved with this integration method is particularly 
important due to the large number of correlation coefficients involved in the MSRS analysis 
of typical bridge models. It is noted that computation of these coefficients with a general-
purpose integration algorithm quickly becomes impractical for a structure with a large 
number of modes and many support points. This problem, which has been noted by a num-
ber of investigators (see, e.g., Loh and Ku, 1995; Wang and Chen 2005), is now resolved 
with the specialized integration algorithm. Another advantage of the implemented algo-
rithm is the ability to evaluate the required response coefficients with a method that can be 
applied with any "black-box" structural analysis software with restricted access to the 
source code. 

Synthetic motions for RHA 

As discussed earlier, the main challenge in the time-history analysis of bridges under diffe-
rential support motions is the simulation of the input support motions. In this study, we 
develop methods for simulation of non-stationary spatially varying support motions ac-
counting for the effects of incoherence, wave passage and differential site response. Effi-
cient computer algorithms developed for the implementation of the simulation methods 
are described in detail. We consider two approaches: the unconditional approach, which 
generates support motion arrays consistent with the PSDs of a segmented accelerogram, 
and the conditional approach, which generates support motions by conditioning on the 
specific realization of the record. The simulation methods are validated by examining the 
physical compliance of the motions, by comparing the statistical properties of a sample of 
realizations, i.e., coherency characteristics and PSDs, with the corresponding target models 
and, also, by examining the corresponding response spectra. By incorporating the differen-
tial site-response effect, the present work provides an important enhancement of the pre-
viously developed methods of conditional simulation. Another contribution of this study is 
that it provides detailed discussions on the selection of various parameters involved in the 
process and their effects on the characteristics of the generated motions. 
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Parametric analyses of real bridge models 

Comparative response analyses of four real bridges allow insightful observations on the 
influence of differential support motions on the structural response for several cases of 
ground motion spatial variability. The bridges have been designed by the California De-
partment of Transportation (Caltrans) and the respective models are developed here based 
on the Caltrans blueprints and following Caltrans specifications. Analyses of the bridge 
models are performed using both the MSRS and the RHA approaches. When performing 
MSRS analyses, we also examine the effect of spatial variability of ground motion on modal 
contributions and assess the effectiveness of the extended rule to approximately account 
for the contributions of truncated modes. In the RHA approach, of special interest is the ef-
fect of spatial variability on the ratios of pier drifts obtained from non-linear and linear 
analyses. According to the “equal displacement” rule, for sufficiently flexible systems, these 
ratios are expected to be close to unity. In this study, we investigate the validity of this rule 
for several cases of varying support motions. Furthermore, we perform comparisons of the 
MSRS and RHA results for linear structures in order to assess the level of accuracy achieved 
by the MSRS method.  

Investigation of coherency models 

As described earlier, several models have been developed to describe the incoherence 
component of the coherency function. These are mostly based on far-field recordings. In 
this study, we perform a detailed coherency analysis of the near-fault recordings of the UP-
SAR array from the 2004 Parkfield (California) earthquake and determine if there is a sub-
stantial difference in the coherency characteristics of these near-fault records relative to 
the existing models.  

1.3    ORGANIZATION OF THE REPORT 

This dissertation is organized into 7 chapters. Chapter 2 discusses the derivation and im-
plementation of the generalized and extended MSRS method, which is used for the MSRS 
analysis of real bridge models in Chapter 3. Chapter 4 describes methods for simulation of 
spatially varying ground motions, which are used in Chapter 5 to investigate linear and 
non-linear RHA of bridge models under differential support motions. Chapter 6 develops 
models for the incoherence component of the coherency function using the UPSAR array of 
recordings. More details on the specific subjects covered in each chapter are presented be-
low.  

In Chapter 2, we first introduce a generalization of the original formulation of the MSRS 
method, which allows consideration of response quantities that involve the support DOFs. 
An example is drifts of bridge piers. This condition also applies to most response quantities 
of interest when the structural model has rotational DOFs that are condensed out. Follow-
ing an investigation of mode truncation criteria for the case of differential support motions, 
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the extended version of the MSRS rule is developed, which accounts for the quasi-static 
contributions of the truncated modes. A parametric study of additional cross-correlation 
coefficients introduced in the extended MSRS method is performed to gain insight into 
their behavior and identify cases of ground motion variability for which these terms are 
significant. Finally, an overview of the computer program developed for the implementa-
tion of the generalized and extended MSRS method is presented and the main computa-
tional issues are addressed.  

In Chapter 3, we apply the theory presented in Chapter 2 to investigate the effect of ground 
motion spatial variability on models of four real bridges designed by the California De-
partment of Transportation. The selected bridges have vastly different characteristics, e.g. 
length, number of spans, number of piers per bent, fundamental period. We perform a 
comprehensive response analysis of the four bridge models using the MSRS rule and inves-
tigate the total, pseudo-static and dynamic responses for three cases of excitation: uniform 
support motions, varying support motions due only to wave passage and incoherence, and 
varying support motions due to wave passage, incoherence and differential site effect. The 
response quantities examined are element forces along the deck and pier drifts. Finally, we 
compare the accuracies of the extended versus the original MSRS rules when only the first 
few modes are included and investigate conditions under which the extended rule provides 
improved approximations. 

In Chapter 4, we develop methods for simulation of non-stationary spatially varying sup-
port motions accounting for the effects of incoherence, wave passage and differential site 
response. Using the unconditional approach, we simulate arrays of support motions cha-
racterized by similar variability at all sites. Using the conditional approach, we simulate ar-
rays of motions for which the variance increases with increasing distance from the refer-
ence site with a specified motion. (The increase levels off after sufficient distance).  In the 
latter approach, we investigate a method that preserves the low-frequency content and, 
thus, the waveform of the displacement time history of the seed record. In an example ap-
plication, we simulate support motions for an existing bridge in California considering both 
simulation approaches and for both cases of uniform and variable soil conditions. The si-
mulation methods are validated by (i) examining the physical compliance of example simu-
lated time histories (e.g., zero acceleration, velocity and displacement residuals), (ii) com-
paring statistical characteristics of an ensemble of realizations with the corresponding tar-
get theoretical models, and (iii) examining the response spectra of the simulated motions. 
The selection of various parameters involved in the simulation methods and their effect on 
the characteristics of the generated motions are also investigated.  

In Chapter 5, we use arrays of motions simulated with the unconditional approach devel-
oped in Chapter 4 to investigate responses of bridge models under differential support ex-
citation through linear and non-linear RHA. For the bridges examined in Chapter 3, we con-
sider both linear and non-linear models, and investigate the effect of ground motion spatial 
variability on pier drifts, which are quantities particularly important in bridge design.  Ad-
ditionally, we examine the ratios of non-linear over linear drifts in order to investigate the 
effect of spatial variability on the accuracy of the commonly used “equal displacement” 
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rule. Another objective of this chapter is to assess the accuracy of the MSRS method by 
comparisons of the mean peak linear responses from RHA with corresponding MSRS esti-
mates. 

In Chapter 6, we examine spatial variations observed during the 2004 Parkfield (California) 
earthquake using the UPSAR array of closely spaced acceleration records and compare co-
herency estimates from these data with existing theoretical and empirical models. Since the 
distances of the UPSAR recordings from the fault rupture are shorter than those for most 
arrays used in previous studies, we examine if there is a substantial difference in the cohe-
rency characteristics of these near-fault records relative the existing models. It is noted 
that, though near-fault, the records used in this study do not exhibit directivity pulses. 

Finally, Chapter 7 summarizes the main results and conclusions of the study and provides 
recommendations for future studies.  
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Chapter 2 -  Generalized and ex-
tended MSRS rule 

 

2.1    INTRODUCTION 

The MSRS (Multiple-Support Response Spectrum) modal combination rule developed by 
Der Kiureghian and Neuenhofer (1992) evaluates the mean peak response of multiply-
supported linear structures subjected to spatially varying ground motions. Since its devel-
opment in 1992, this rule has become popular as a method of analysis and has been used 
by a growing number of researchers to investigate seismic responses of bridges and other 
multiply-supported structures (e.g., Kahan et al. 1996; Soyluk, 2004; Yu and Zhou, 2008). 
The original formulation of this method only considered responses that could be expressed 
as linear functions of the total displacements at unconstrained degrees of freedom (DOF) of 
the structure. In this chapter, the original formulation is generalized to account for re-
sponse quantities that depend not only on the displacements at the unconstrained degrees 
of freedom, but also on support motions. One example response in a multiply-supported 
structure that involves the support motion is the drift response of a pier of a bridge. Der 
Kiureghian and Neuenhofer (1992) suggested introducing an "unconstrained" DOF near 
the support point to allow computation of such a response. However, dependence on sup-
port motions is pervasive among response quantities of interest. In fact, when the structure 
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has rotational DOF that are condensed out in the analysis, most response quantities of in-
terest indirectly depend on the support motions.  

As in modal analysis of ordinary structures, when using the MSRS rule for multiply-
supported structures the analyst must truncate modes beyond a number far smaller than 
the total number of DOF of the structure. In this chapter, following a discussion of mode 
truncation criteria for the case of differential support motions, an extended version of the 
MSRS rule is developed to account for the quasi-static contribution of the truncated modes. 
This formulation introduces new terms in the MSRS formula, which include three new sets 
of cross-correlation coefficients. A parametric study of the newly introduced cross-
correlation coefficients is performed to gain insight into their behavior and identify cases of 
ground motion variability for which these terms are significant.  

Finally, an overview of the computer program developed for the implementation of the ge-
neralized and extended MSRS method is presented and the main computational issues are 
addressed.  

2.2    GENERALIZED FORMULATION OF THE MSRS RULE 

2.2.1    Equations of motion 

Consider a -DOF linear structural model subjected to motions at  support DOF. Let 
 be the -vector of total displacements at the unconstrained DOF and 
 be the -vector of prescribed support displacements. Both  and  may 

contain translational as well as rotational components.  The equations of motion for the 
model can be written in the matrix form (Der Kiureghian and Neuenhofer, 1992) 

 (2.1)  

where ,  and  are  mass, damping and stiffness matrices associated with the un-
constrained DOF, respectively; ,  and  are   matrices associated with the 
support DOF; ,  and  are   coupling matrices associated with both sets of 
DOF; and  is the -vector of reacting forces at the support DOF. 

The total displacement vector at the unconstrained DOF is decomposed into pseudo-static 
and dynamic components: . The pseudo-static component, , is the response of 
the system when dynamic effects are neglected and is obtained from the set of equations 
for unconstrained DOF in Eqn. (2.1) in terms of the support displacements as , 
where  is the influence matrix. The th column of the influence matrix, , can 
be interpreted as the displacements at the unconstrained DOF when the th support DOF is 
displaced by a unit amount, while all other support DOF remain fixed. Employing the above 
decomposition in Eqn. (2.1), the equation of motion for the dynamic component of the re-
sponse is obtained as  
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 (2.2)  

The damping forces on the right-hand side are usually much smaller than the inertia forces 
on the same side and can be neglected (Chopra, 2001). Thus, for a lumped mass model, i.e., 

, the dynamic component of the response is obtained in the differential form 

 (2.3)  

Assuming classical damping, let ,  and , , respectively de-
note the modal matrix, natural frequencies, and modal damping ratios of the fixed-base 
structure. Using the transformation , , in Eqn. (2.3) and employ-
ing the orthogonality of the mode shapes, the decoupled equations of motion are 

 (2.4)  

where  is the modal participation factor associated with mode  and 
support DOF . We can write 

 (2.5)  

where  is the normalized response of mode  to the th support motion, which is ob-
tained as the solution to  

 (2.6)  

Substituting for the pseudo-static component of  in terms of the support displacements 
and for the dynamic component in terms of the normalized modal responses, we obtain 

 (2.7)  

A generic response quantity of interest, , such as the relative displacement between 
two DOF or an internal force component, can be written as a linear combination of the sup-
port displacements and the displacements at the unconstrained DOF, i.e. 

 (2.8)  

where  and  are coefficient vectors. Eqn. (2.8) 
represents a generalization of the original formulation by Der Kiureghian and Neuenhofer 
(1992), which considered  a function of only  . This generalization allows consider-
ation of response quantities that are functions of displacements at both the constrained as 
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well as the support DOF, e.g., the drift of a bridge column or an internal force of a structural 
model with condensed rotational degrees of freedom. Eqn. (2.8) can be written as 

 (2.9)  

where  

 (2.10)  

is interpreted as the response quantity of interest when the th support DOF is statically 
displaced by a unit amount with all other support DOF remaining fixed, and  

 (2.11)  

called the effective modal participation factor (Der Kiureghian and Neuenhofer, 1992), is 
interpreted as the contribution of the th mode to the response  arising from the excita-
tion at the th support DOF when the normalized modal response  is equal to unity. 
The coefficients  and  depend only on the structural properties and the response 
quantity of interest and, as described in Section 2.6.1, can be computed by use of any con-
ventional static analysis program. Properties of these coefficients have been derived by Na-
kamura et al. (1993) for the original MSRS formulation and are given next for the genera-
lized formulation.  

The properties of the coefficients  remain the same, as in the original formulation: When 
the vector  contains only translational components, , if is a nodal transla-
tional displacement, and , if is a nodal rotational displacement or an inter-
nal force component. These identities are derived by employing the principle of superposi-
tion (which holds for the response of linear systems) and noticing that the sum of the  
coefficients represents the response quantity of interest when all support DOF are statical-
ly displaced by a unit amount, i.e., . Note that when the vector  contains only transla-
tional components, the state  corresponds to a rigid body motion, which causes no 
rotations or internal forces in the structure. 

However, for the generalized formulation, the identity  (Nakamura et al., 
1993) holds under the condition that the response quantity of interest depends only on the 
displacements at the unconstrained DOF and not on the support displacements, i.e., the 
case where  in Eqn. (2.8). This identity is derived by using the definition of  in 
conjunction with the orthogonality properties of the modal eigenvectors to obtain 

 and by multiplying both sides of the latter equation by . 

The above properties can be used to check the accuracy of the computed  and  coeffi-
cients under the specified conditions. The  coefficients do not necessarily decrease in 
magnitude with increasing mode number, and hence, the latter identity is useful only when 
all modes of the structure are included in the analysis.  
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2.2.2    The MSRS rule 

In earthquake engineering practice, it is common to specify the design ground motion in 
terms of response spectra. Hence, methods for computing structural response directly in 
terms of the response spectra defining input support motions are of interest. The MSRS 
rule provides a fundamental solution to this problem. Using Eqn. (2.9) and the principles of 
stationary random vibration theory, Der Kiureghian and Neuenhofer (1992) have shown 
that, for the case of translational support motions, the mean of the peak of the generic re-
sponse quantity  can be approximately obtained in the form 

 

(2.12)  

The preceding equation represents the MSRS combination rule. The first, double-sum term 
inside the square brackets is the pseudo-static component of the response, the third, 
quadruple-sum term is the dynamic component, and the second, triple-sum term is a cross 
term of the pseudo-static and dynamic components. The mean of the peak response is giv-
en in terms of the structural properties as reflected in the coefficients  and , the mean 
peak ground displacements, , the ordinates of the mean displacement response spec-
trum,  , for each support motion and each modal frequency and damping ratio, 
and three sets of cross correlation coefficients:  describing the correlation between 
the th and th support displacements, , describing the correlation between the th 
support displacement and the response of mode  to the th support motion, and , de-
scribing the correlation between the responses of modes  and  to the th and th support 
motions, respectively. These cross-correlation coefficients are given by 

 

(2.13)   
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where  denotes the cross-power spectral density (PSD) of processes  and , 
 represents the -th mode frequency response function 

(FRF) for relative displacement response with respect to the base acceleration; and  and 
 are the root-mean-squares of  and , respectively, given by 

 

(2.14)  

 

To circumvent the dependence of the cross-correlation coefficients on the PSDs of the sup-
port motions, we use the correspondence between the response spectrum and the PSD of a 
ground acceleration process. Der Kiureghian and Neuenhofer (1992) have derived the fol-
lowing approximate relation 

 (2.15)  

in which  and  are parameters selected by adjusting the PSD for low frequencies so that 
it is consistent with the peak ground displacement (the condition  satisfies the re-
quirement that the spectral density of the ground displacement approaches a finite or zero 
value as ),  is the duration of the strong motion phase of the ground motion,  is a 
reference damping ratio, and  is a peak factor associated with the response of an os-
cillator (Der Kiureghian, 1980). Der Kiureghian and Neuenhofer (1992) have shown that 
the correlation coefficients in Eqns. (2.13) are relatively insensitive to the selection of the 
parameters , ,  and . In the current study, we use ,  and . Accord-
ing to Der Kiureghian and Neuenhofer (1992), the value of   that is consistent with  
is . 

The cross-PSD of ground accelerations can be obtained in terms of the auto-PSDs and a co-
herency function that characterizes the spatial variability of ground motion, as described in 
the following section. All the other required PSDs can be evaluated using the well known 
relation for the PSD of a derivative process: 

 (2.16)  

where  denotes the r-th derivative of  The above analysis shows that the cross-
correlation coefficients  are only functions of the support excitations, whereas the 
cross-correlation coefficients  and  additionally depend on the modal frequen-
cies and damping ratios of the structure. The set of response spectra for all support DOF 
(including the limits at infinite period, which equal the respective peak ground displace-
ments) and the set of coherency functions for all pairs of support motions represent a com-
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plete specification of the input ground motions for the evaluation of the needed cross-
correlation coefficients. 

2.2.3    The coherency function 

The coherency function characterizes the spatial variability of the ground motion random 
field in the frequency domain. Spatial variations of earthquake-induced ground motions 
occur due to four distinct phenomena (Der Kiureghian, 1996). The first phenomenon, 
known as the incoherence effect, arises from the loss of coherency of the motion as a result 
of the propagation of seismic waves in a heterogeneous medium with numerous reflections 
and refractions, and of the differential super-positioning of waves arriving from different 
parts of an extended source. The second phenomenon, known as the wave-passage effect, 
arises due to the difference in the arrival times of waves at separate stations. The third is 
the site-response effect, i.e., the effect of the local soil profiles on the amplitude and frequen-
cy content of the bedrock motion as it propagates upward at each support location. Finally, 
the attenuation effect is the gradual decay of wave amplitudes with distance from the 
source of the earthquake. The latter effect is insignificant for the distances of interest and is 
neglected in the following analysis. 

For a pair of stationary ground acceleration processes  and , the complex-valued 
coherency function is a normalized version of their cross-PSD: 

 (2.17)  

Der Kiureghian (1996) has shown that the modulus of the coherency function characterizes 
the incoherency effect, whereas its phase angle characterizes the wave passage and varia-
ble site-response effects. Thus, the coherency function can be written in the form 

 (2.18)  

One form of the incoherence component that has been extensively used is (Luco and Wong , 
1986) 

 (2.19)  

in which  is the distance between the sites  and ,  is the average shear wave velocity 
of the ground medium along the wave travel path, and  is an incoherence coefficient that 
can be empirically estimated from data (Luco and Wong, 1986) or determined in terms of 
the soil properties and depth of the layers (Zerva and Harada, 1984). The phase shift due to 
the wave-passage effect is given by (Luco and Wong, 1986; Der Kiureghian, 1996) 
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 (2.20)  

where  is the projected algebraic horizontal distance in the longitudinal direction of 
propagation of waves and  is the surface apparent wave velocity. The phase shift due to 
the site-response effect is given by (Der Kiureghian, 1996) 

 (2.21)  

where , , is the FRF for the absolute acceleration response of the site asso-
ciated with the th support DOF. The derivation of Eqn. (2.21) is based on the assumptions 
of linear (or linearized) behavior of the soil column, vertical wave propagation at each site 
and neglect of dynamic interaction between sites. Further details on the modeling of the 
soil FRF are presented below. 

2.2.4    Modeling of the site response 

The FRF at each support point is required for two purposes: (a) to determine the response 
spectrum at the site when the input response spectrum is specified for only a reference 
site, (b) to evaluate the site-response component of the coherency function. The FRF of a 
site is also used later in this study to simulate arrays of coherent ground motions, see Chap-
ter 4. 

When a detailed description of the soil profile at a site is available, i.e., soil types, thick-
nesses and constitutive properties of the various layers, the site FRF can be determined as 
the Fourier transform of the unit-impulse response function of the soil column, which is 
obtained by time-domain analysis to an impulsive loading at the bedrock level. The impul-
sive load may be scaled to approximately account for nonlinear soil behavior (Der Kiureg-
hian et al., 1997). If down-hole recorded motions are available at the surface and bedrock 
levels, an empirical estimate of the FRF is given by the ratio of the cross-PSD of the surface 
and bedrock motions over the auto-PSD of the bedrock motion (see Der Kiureghian et al., 
1997, for example cases). Alternatively, the FRF of the soil layer can be described using 
theoretical models, as described below. 

A theoretical model that properly reflects the physics of vertical propagation of shear 
waves in an elastic medium is given by (Safak, 1995) 

 (2.22)  
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In the above expression, the subscript  refers to the th site,  is the time it takes for 
waves to travel from the bedrock to the ground surface,  is a quality factor,  is the ref-
lection coefficient of vertically propagating waves and   is the signum function. If the 
depth to bedrock is  and the shear wave velocity of the soil layer is , then 

. The quality factor is related to the damping of the soil layer, , through 
. Finally, the reflection coefficient is given by , in 

which the sets  and  represent the density and shear wave velocity of the 
bedrock and the soil layer at the th site, respectively. According to this model, the reso-
nant frequencies of the soil layer are  , . The rate of decay of 
the corresponding peaks in the modulus of the FRF depends on the  factor. We note that 
the  function in Eqn. (2.22) does not appear in the expression given by Safak (1995), 
but is introduced here to obtain an FRF consistent with rules in random vibration theory, 
where negative frequencies are also considered. 

When the behavior of the soil column is dominated by its first mode, or when high-
frequency components of the ground motion do not have significant contributions to the 
structural response, a single-degree-of-freedom (SDOF) filter idealization of the soil col-
umn can be used. In this case, the site FRF is given by (Clough and Penzien, 1993) 

 (2.23)  

where  and  represent the filter frequency and damping ratio. The frequency  can be 
approximated by the first resonant frequency of the soil layer, ,  where  
and  are the corresponding depth and effective shear wave velocity, respectively. The 
filter damping ratio, , primarily controls the bandwidth of the process and tends to be 
larger for firmer grounds. Values of this parameter for various soil types have been sug-
gested by Der Kiureghian  and Neuenhofer (1992). When the response spectrum at a site is 
known, one way to select these two parameters for the  site FRF is to fit the theoretical ac-
celeration PSD to the approximate PSD estimated through Eqn. (2.15), using, for example, 
least-squares minimization. Under the assumptions of linear (or linearized) behavior of the 
soil column and vertical wave propagation, a theoretical model that relates the acceleration 
PSD at the surface of site , , to the corresponding PSD at the bedrock level,  

, is 

 (2.24)  

Assuming for simplicity that the motion at the bedrock level is a white noise process, the 
theoretical PSD is given by the squared modulus of  factored by a constant. The pa-
rameters to estimate then are ,  and the scale parameter. 

Selection among the methods for modeling the site-response described above should be 
based on the available information. 
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2.3    MODE TRUNCATION CRITERIA FOR RESPONSE TO DIFFERENTIAL SUPPORT 
MOTIONS 

In practical application of the MSRS rule, it is often necessary to truncate the modal contri-
butions beyond a mode . Of course this truncation only affects the dynamic compo-
nent of the response, i.e., the triple- and quadruple-sum terms in Eqn. (2.12). For the sake 
of simplicity in developing criteria for modal truncation, we neglect the triple-sum cross 
term and the cross-modal contributions in the quadruple-sum term. We also consider the 
extreme cases of uniform support motions and totally incoherent (statistically indepen-
dent) support motions. In the case of uniform support motions,  for all ,  and, 
thus, the main term in Eqn. (2.12) affected by modal truncation is  

 . In the case of totally incoherent support motions,  

when  and  when  leading this term to  . Under 
the stated conditions, the th modal contribution in the case of uniform support motions is 

  , whereas in the case of totally in-
coherent support motions it is   . Thus, 
for a given response quantity and specified response spectra, the relation between the 
modal contributions in the two cases depends on the relation between  and 

. We note that if the modal participation factors of the th mode,  have the same 
sign for all , then  and the th modal contribution is the largest 
in the case of uniform support excitations among all cases of ground motion spatial varia-
bility. If the modal participation factors  have alternating signs so that  
then the th modal contribution is the smallest in the case of uniform support excitations 
among all other cases. 

The extreme cases of uniform and totally incoherent support motions, discussed above, can 
be used to provide simplified guidelines for mode truncation for intermediate cases of spa-
tial variability. In order to derive an expression for the modal contributions that is inde-
pendent of the input support motions, we assume the modal frequencies fall in the region 
of constant spectral pseudo-acceleration and that the modal damping ratios are all identic-
al. In that case, each   is proportional to . Using this simplification, in the case 
of uniform support motions, the contribution of the th mode is proportional to 

. Specializing for the total base shear, the latter expression becomes 
where  and  (Kahan et al., 1996). Employing the identity 

, where , the ratio 

 (2.25)  

is introduced, which provides a measure of the participating modal mass for the case of 
uniform support motions. This ratio is commonly used in engineering practice to deter-
mine the number of modes required in the dynamic analysis of ordinary structures. In the 
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case of totally incoherent support motions, the th modal contribution is proportional to 
 Kahan et al. (1996) have shown that for the total base shear the latter expres-

sion becomes . Accounting for the property  
(Kahan et al., 1996), the ratio 

 (2.26)  

is introduced, which provides a measure of the participating modal mass for the case of to-
tally incoherent support motions. This ratio is proposed by Kahan et al. (1996) as a meas-
ure of the number of modes required in the MSRS analysis. The ratios  and  have the 
advantages of being non-decreasing in  and not depending on the modal properties of the 
truncated modes. These ratios are indicative of the accuracy of the dynamic component on-
ly and not of the total response, since the latter also depends on the pseudo-static compo-
nent, not affected by mode truncation. Numerical examination of these ratios for example 
bridge models is presented in Chapter 3. 

2.4    EXTENDED MSRS RULE 

When high-frequency modes are truncated, an improved approximation of the response 
can be obtained by accounting for the quasi-static contributions of the truncated modes. 
This concept has been previously used for structures subjected to uniform support motions 
(Singh and McCown, 1986; Leger and Wilson, 1988; Der Kiureghian and Nakamura, 1993). 
Here, we apply the method to spatially varying support motions by extending the MSRS 
rule.  

When  is large relative to important frequencies of the input excitation, the last term in 
the left-hand side of Eqn. (2.6) is dominant and the th normalized modal response to the 

th support motion can be approximated as . Using this relation in Eqn. 
(2.7) for modes , we have 

 (2.27)  

The effective modal participation factors  for  can be eliminated from Eqn.(2.27) by 
employing the identity 

 (2.28)  

The right-hand side of this equality represents the response  when a static excitation 
defined by  and  for  is specified in Eqn. (2.3). The left-hand side is the 



20 

 

same response obtained by modal decomposition, i.e., from Eqn. (2.6) and the second term 
in Eqn. (2.9). Rearranging terms, one obtains 

 (2.29)  

Using the above identity, Eqn. (2.27) can be written in a form that involves the dynamic 
properties of only the first  modes: 

 (2.30)  

Note that this improved expression of the response now additionally involves the support 
accelerations, .  

Assuming jointly stationary, zero-mean support motions , and following the steps in-
volved in the derivation of the original MSRS rule (Der Kiureghian and Neuenhofer, 1992), 
we can obtain the mean of the extreme peak of the process  in Eqn. (2.30). The deriva-
tion involves (i) using Eqn. (2.30) to obtain the PSD of the generic response  in terms of 
the auto- and cross-PSDs of the processes ,  and , (ii) integrating over the 
frequency domain to obtain the mean-square of , , in terms of the 
mean-squares of ,  and  and their covariances, (iii) replacing the root-mean 
squares of ,  and  by respectively the mean peak ground displacement, the 
mean peak ground acceleration, and the mean response spectrum ordinate for mode , each 
divided by its corresponding peak factor (Der Kiureghian, 1980), (iv) multiplying the root-
mean square of  with its peak factor to obtain the mean of the extreme peak response, 
and (v) approximating the ratios of the peak factors by unity. The latter assumption is valid 
since the peak factors are only mildly dependent on the characteristics of each process (Der 
Kiureghian, 1980). This procedure leads to the following extended MSRS rule: 
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(2.31)  

In comparison to the original MSRS rule, the extended MSRS rule additionally involves the 
last three terms. The first of these terms represents the quasi-static contribution of the 
truncated modes. The second term arises from the covariances of the support displace-
ments and accelerations, and the last term arises from the covariances between the res-
ponses of the included modes and the quasi-static responses of the truncated modes. These 
terms involve three sets of new cross-correlation coefficients, ,  and , which, 
respectively, represent the correlation between the ground accelerations at support DOF  
and , the correlation between the ground displacement at support DOF  and the ground 
acceleration at support DOF , and the correlation between the th modal response to the 
excitation at support DOF  and the ground acceleration at support DOF . The newly intro-
duced cross-correlation coefficients are given by 

 

(2.32)   

 

In the above expression, the root-mean-squares  and  are given in Eqn. (2.14), whe-
reas the root mean square of  is given by 
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 (2.33)  

Recall that the PSDs in these expressions are all given in terms of the response spectra de-
fining the support motions, see Eqns. (2.15) and (2.16).  

The parametric study in the following section provides insight into the behavior of the 
three new cross-correlation coefficients. 

2.5    PARAMETRIC ANALYSIS OF THE NEW CROSS-CORRELATION COEFFICIENTS 

A parametric study of the cross-correlation coefficients ,  and  is presented 
in this section in order to determine the influences of various model parameters and eva-
luate the significances of the new cross-terms in the extended MSRS rule. For this purpose, 
we adopt the coherency model described in Section 2.2.3. Considering the range of values 
that might be of engineering interest, the parameter  of the coherency function (see 
Eqn. (2.19)) is varied between  and , and the parameter  (see Eqn. (2.20)) is 
given the values , , and . The case  neglects the incoherence effect, whe-
reas the case  neglects the wave passage effect. For the PSD of the ground ac-
celeration at each station  we consider a modified version of the Kanai-Tajimi spectral 
density (Clough and Penzien, 1993). The Kanai-Tajimi model assumes that the input acce-
leration at the bedrock level is a white noise and the soil layer behaves as a SDOF oscillator. 
This model implies an infinite power for ground displacement when . This problem is 
solved in the Clough-Penzien model by introducing a high-pass filter, such that the mod-
ified PSD is given by 

 (2.34)  

in which  is a scale factor,  and  are the filter parameters of the Kanai-Tajimi 
model representing, respectively, the natural frequency and damping of  the soil layer at 
station , and  and  are parameters of the high-pass filter. For , the 
second filter influences only the region of very low frequencies, since the second quotient 
quickly approaches unity with increasing . The filter parameter values for firm, medium 
and soft soils, as suggested by Der Kiureghian and Neuenhofer (1992), are listed in Table 
2.1. The corresponding PSDs for the ground acceleration and ground displacement are 
shown in Figure 2.1 and Figure 2.2, respectively. 
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2.5.1    Cross-correlation coefficient between ground accelerations at stations k and l 

Figure 2.3 shows plots of the cross-correlation coefficient  for pairs of sites with firm, 
medium and soft soil conditions. The charts on the left are for identical soil conditions at 
the two sites, while those on the right are for dissimilar soil conditions. In the top chart on 
the left, the ground motion spatial variability arises only from the incoherence effect. The 
correlation coefficient is consistently smaller for firmer soil conditions, for which the acce-
leration process is richer in high-frequency components. We note that waves with such 
frequencies tend to lose coherency faster than low-frequency waves. In the top right chart, 
the lack of perfect correlation when  is indicative of the differential site effect. 
In both the aforementioned charts,  takes only positive values. However, in the pres-
ence of the wave passage effect, the correlation coefficient can take on positive or negative 
values, typically smaller in magnitude than those in the cases without the wave passage ef-
fect. In all cases, the correlation between the two ground acceleration processes is nearly 
negligible for .  

Figure 4 in the paper by Der Kiureghian and Neuenhofer (1992) shows plots of the correla-
tion coefficient  between ground displacements for similar site conditions and cohe-
rency function parameters. A comparison of Figure 2.3 with that figure reveals that the cor-
relation coefficient  decays much faster with increasing incoherence and wave passage 
than  . This is due to the higher frequency content of the acceleration processes. 

2.5.2    Cross-correlation coefficient between ground displacement at station k and 
ground acceleration at station l 

Figure 2.4 shows plots of the cross-correlation coefficient   against the parameter 
 for the selected values of  and for identical (left) and variable (right) soil 

conditions. For the latter, we only consider the cases where station  (displacement) has 
firmer soil than station  (acceleration). In absence of the wave-passage effect, the ground 
displacement at station  is negatively correlated with the ground acceleration at station . 
(Note that the displacement and acceleration at a given site generally are negatively corre-
lated processes.) This correlation is generally more significant for softer soils and for cases 
where the soil for the acceleration site is softer than the soil for the displacement site. Both 
the incoherence and wave-passage effects tend to reduce the correlation between the two 
processes. For  or ,  is close to zero. 

2.5.3    Cross-correlation coefficient between oscillator response at station k and 
ground acceleration at station l 

Figures 2.5-2.8 show selected plots of the cross-correlation coefficient  against the os-
cillator frequency  when the oscillator damping ratio is . Sites with firm or soft 
soil conditions are considered. Figures 2.5 and 2.6 are for identical soil conditions at the 
two stations, whereas Figures 2.7 and 2.8 are for dissimilar soil conditions. Furthermore, 
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Figures 2.5 and 2.7 are for waves arriving first at station  and then at station , whereas 
Figures 2.6 and 2.8 are for waves travelling in the opposite direction. The charts from top 
to bottom are for increasing values of the magnitude of the wave passage parameter 

, which is varied from  to . The curves in each chart represent three different 
values of the incoherence parameter, ,  and . 

For , i.e., for an infinitely stiff oscillator,  and thus . If 
we additionally consider identical soil conditions and neglect the wave passage and incohe-
rence effects, the ground motions at the two stations would be perfectly correlated and 
hence . In Figures 2.5 and 2.6, for the cases with  and , 
when  is large,  assumes large negative values that approach  at a pace that is 
faster for softer than for firmer soils. The wave-passage effect and the wave direction 
strongly influence the correlation between the two processes. When the waves propagate 
from the oscillator site to the acceleration site (Figures 2.5 and 2.7), oscillates with  
at a period of approximately . This is because of the correlation of the oscillator 
response with the ground acceleration at an earlier time. When the direction of the wave 
passage is reversed (Figures 2.6 and 2.8), the correlation is practically zero for ground ac-
celerations on firm soil. This is because the oscillator response is independent of the later 
excitation when the excitation is broadband. 

2.6    COMPUTER IMPLEMENTATION OF THE EXTENDED MSRS RULE 

The MSRS rule evaluates the mean peak response in terms of the structural properties, re-
flected in the coefficients  and  for each response quantity of interest, the support mo-
tions as described in terms of the peak ground displacements and the response spectra, 
and three sets of cross-correlation coefficients. The extended MSRS rule additionally re-
quires the coefficients , which are functions of the structural properties, the peak ground 
accelerations, and three additional sets of cross-correlation coefficients. The cross-
correlation coefficients, in turn, involve the coherency function describing the spatial va-
riability of the ground motion random field. Once the support motions have been specified 
in terms of response spectra, peak ground displacements, peak ground accelerations, and a 
coherency function, the implementation of the extended MSRS rule only requires computa-
tion of the coefficients ,  and  and the cross-correlation coefficients. In the remaind-
er of this section we describe the computation of the latter quantities, as implemented in 
the computer code developed for this study. 

2.6.1    Computation of the ak, bki and dk

Any existing structural analysis code that allows specification of imposed nodal displace-
ments and forces can be used to compute the coefficients ,  and . For the present 
study, we have used the open-source software OpenSees; however, any ‘black-box’ struc-
tural analysis program that provides restricted access to the code can also be used. 

 coefficients 



25 

 

For a response quantity of interest, the coefficient  is computed as the response of the 
structure to a unit static displacement at the th support DOF, while all other support DOF 
remain fixed. Thus, the computation of the full set of the coefficients  for a set of desired 
response quantities requires  static analyses. 

Considering Eqns. (2.8) and (2.11), the coefficient  is interpreted as the response quanti-
ty of interest when the displacements at the support DOF are zero and the displacements at 
the unconstrained degrees of freedom are  . Hence, using the notion of equivalent 
static forces, the coefficient  is determined by static analysis of the fixed-base structure 
subjected to the set of forces  applied at the unconstrained de-
grees of freedom. Thus, once the natural frequencies and modal shapes of the fixed-base 
structure have been determined and provided the mass matrix is available, the set of n  
coefficients can be computed through  static analyses. 

Finally, the coefficient  is computed form Eqn. (2.29), in which the term  is ob-
tained as the static response of the fixed-base structure to the set of forces . Thus, the 
full set of the coefficients  is determined in terms of the  coefficients and the results 
from  static analyses. 

2.6.2    Computation of the cross-correlation coefficients 

Evaluation of the cross-correlation coefficients constitutes the main computational effort in 
the MSRS analysis. For a structure with many support points and a large number of contri-
buting modes, the number of coefficients to be computed can be very large. This has 
prompted several investigators to declare the MSRS rule as “impractical” and to develop 
further approximations (Loh and Ku, 1995; Wang and Chen, 2005). However, by careful 
consideration of the properties of these coefficients and the behavior of the integrands in-
volved, it is possible to develop highly efficient algorithms that perform the required com-
putations in a reasonable time. Below, we discuss computational aspects of the algorithm 
developed in this study, and specifically, the symmetries considered, the integration 
scheme and selection of the cuf-off frequency. This algorithm has been implemented in a 
MATLAB code.  

Symmetries 

In the original MSRS rule, the total number of cross-correlation coefficients is  
, where  is the number of modes considered and  the number of support motions. 

Accounting for the symmetries  and  and the identities 
 and , the number of distinct coefficients to be computed reduces to 

. The extended MSRS rule involves  additional 
coefficients. However, accounting for the symmetries  and   and 
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the identity , the number of additional coefficients to be computed is . 
Obviously, the additional computational effort required by the extended rule is small.  

The computational time can be further reduced by noticing that the integrands in Eqns. 
(2.13) and (2.32) have symmetric real and antisymmetric imaginary parts. Thus, the inte-
grals can be evaluated in the interval ) by neglecting the imaginary parts and doubling 
the real parts of the integrand quantities. The integrals in (2.14) and (2.33) have real and 
symmetric integrands and can also be evaluated over the interval ) and doubled. 

Integration method 

The integration scheme developed in this study is based on dividing the integration domain 
in frequency intervals  within which the integrands vary slowly. Assuming that 
within these intervals the integrand can be approximated by a low-degree polynomial, we 
evaluate the corresponding integral with an  point Gaussian quadrature rule, where  is 
selected according to the desired accuracy. As described next, the discretization along the 
frequency domain is determined by accounting for the behavior of the relevant integrand. 

Design response spectra are usually defined at discrete frequency points, denoted herein as  
. Eqn. (2.15) is used to determine the consistent auto-PSDs, , at these points, 

whereas linear interpolation is employed for intermediate points. These functions together 
with the coherency function are used to compute the cross-PSDs ,  and . 
Since both the auto-PSDs and the coherency function are smooth functions of frequency, all 
PSDs that appear in Eqns. (2.13)-(2.14) and (2.32)-(2.33) can be well described by low-
degree polynomials in the intervals . 

The integrands in the expressions for the root-mean-squares and  and the correla-
tion coefficients  and  only involve the PSDs of the support motions. In this case, 
the frequency points  define the discretization along the frequency axis for the evalua-
tion of the corresponding integrals. The integrands in the expressions for the root-mean-
squares  and the correlation coefficients ,  and  additionally involve one 
or two modal FRF and, thus, include sharp peaks around the corresponding modal frequen-
cies. To ensure accurate representation of the integrands in these cases, the discretization 
along the frequency axis, additionally to the points , includes closely spaced points in the 
neighbourhoods of the modal frequencies involved. 

As an example of the computational efficiency of the developed integration scheme, for a 
model with  and  (Auburn Ravine Bridge in the example application of Chap-
ter 3), computation of the required 23,436 correlation coefficients in the original MSRS rule 
(for one direction of excitation) with 3 significant-digit accuracy takes 489s with our MAT-
LAB code on an Intel Core2 Duo computer. The additional time for the extended MSRS rule 
is only 23s. It is noted that only one set of correlation coefficients is needed for all response 
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quantities of interest. However, new sets of correlation coefficients must be computed if 
the support response spectra or coherency function are altered.  

2.6.3    Cut-off frequency 

Eqns. (2.13)-(2.14) and (2.32)-(2.33) assume unbounded frequency content in the input 
excitation. However, an upper bound is implicitly assumed in most seismic analysis (Der 
Kiureghian and Nakamura, 1993). When the input excitation is described in terms of the 
time history of the ground motion, this upper bound is related to the size of the time step. 
When a design response spectrum is used, the upper bound is defined by the frequency 
beyond which the pseudo-spectral acceleration is effectively equal to the peak ground acce-
leration. In the current study, the cut-off frequency for each type of integral is selected such 
that the values of the integrand beyond this point are considered negligible. The cut-off 
frequency in the evaluation of the terms , , , and  depends only on the 
power of the input excitation, whereas the cut-off frequency for the evaluation of , 

, , and  additionally depends on the frequencies of the relevant modes. 

2.7    SUMMARY 

In this chapter, first, the MSRS method was generalized to allow consideration of response 
quantities that involve the support DOFs. Following an investigation of mode truncation 
criteria for the case of differential support motions, the MSRS rule was extended to account 
for the quasi-static contributions of the truncated modes. A parametric study of additional 
cross-correlation coefficients introduced in the extended MSRS method was performed to 
gain insight into their behavior. Finally, an overview of the computer program developed 
for the implementation of the generalized and extended MSRS method was presented and 
the main computational issues were addressed.  
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Table 2.1: PSD filter parameters for model soil types. 

soil type         
firm 15.0 0.6 1.5 0.6 

medium 10.0 0.4 1.0 0.6 
soft 5.0 0.2 0.5 0.6 
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Figure 2.1: Power spectral densities of ground accelerations for firm, medium and soft soils. 

 

 

Figure 2.2: Power spectral densities of ground displacements for firm, medium and soft soils. 
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Figure 2.3: Cross-correlation coefficient between ground accelerations at stations k and l. 
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Figure 2.4: Cross-correlation coefficient between ground displacement at station k and ground accele-
ration at station l. 
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Figure 2.5: Cross-correlation coefficient between oscillator response at station  k and ground accele-
ration at station l for similar soil conditions and wave direction k to l. 
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Figure 2.6: Cross-correlation coefficient between oscillator response at station k and ground accelera-
tion at station l for similar soil conditions and wave direction l to k. 
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Figure 2.7: Cross-correlation coefficient between oscillator response at station k and ground accelera-
tion at station l for dissimilar soil conditions and wave direction k to l. 
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Figure 2.8: Cross-correlation coefficient between oscillator response at station k and ground accelera-
tion at station l for dissimilar soil conditions and wave direction l to k. 
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Chapter 3 -  Application of ex-
tended MSRS rule to 
real bridge models 

3.1     INTRODUCTION 

In this chapter, we apply the theory presented in Chapter 2 to investigate the effect of 
ground motion spatial variability on four real bridges designed by the California Depart-
ment of Transportation (Caltrans). The bridges have been selected so that they have vastly 
different characteristics, e.g. length, number of spans, number of piers per bent, fundamen-
tal period. In Section 3.2, we describe the models developed for each bridge following Cal-
trans’ specifications (Caltrans Seismic Design Criteria, 2004). The bridge models are pre-
sented in order of increasing fundamental period, i.e. from the stiffest bridge to the most 
flexible bridge. In Section 3.3, we describe the earthquake input in terms of response spec-
tra and an assumed coherency function. We consider three cases: uniform support motions, 
varying support motions due to wave-passage and incoherence only, and varying support 
motions due to wave-passage, incoherence and site-effect. In Section 3.4, we select the 
number of modes considered for each bridge using the mode truncation criteria described 
in the previous chapter. Next, in Section 3.5, we perform a comprehensive response analy-
sis of the four bridge models using the MSRS rule and investigate the total, pseudo-static 
and dynamic responses for the three cases of excitation. The response quantities examined 
are element forces along the deck and pier drifts. Finally, in Section 3.6, we compare the 
accuracies of the extended versus the original MSRS rules when only the first few modes 
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are included and discuss conditions under which the extended rule provides improved ap-
proximations.    

In this section, we describe the models of four real bridges designed by Caltrans: the Au-
burn Ravine Bridge, the South Ingram Slough Bridge, the Big Rock Wash Bridge and the 
Penstock Bridge. The models were developed based on drawings provided by Caltrans.  

3.2    DESCRIPTION OF BRIDGE MODELS 

3.2.1    Auburn Ravine Bridge 

The Auburn Ravine Bridge is a reinforced-concrete, six-span bridge with two piers per 
bent. The elevation and plan of the bridge model are shown in Figure 3.1. The deck has a 
constant vertical grade of  and a horizontal curvature of radius . The box-
girder cross-section of the bridge is shown in Figure 3.2. The piers have circular cross sec-
tions of diameter . The concrete material of the bridge has a nominal compres-
sive strength of  for the piers and  for the girders. The reinforcing steel has a 
nominal yield strength of . The longitudinal reinforcement of each pier consists of 

 equally spaced bundles, with two  bars per bundle, whereas the transverse rein-
forcement consists of  hoops at a spacing of . Moment-curvature analysis indi-
cated that the flexural stiffness of the piers should be reduced to  of its initial value to 
account for cracking. Following Caltrans’ specifications, the effective torsional moment of 
inertia is taken to be  of its uncracked value.  

The piers are considered rigidly connected to the deck at the top, whereas the bottom sup-
ports are fixed in all translational directions and free in all rotational directions. The two 
ends of the bridge are supported on seat abutments. The abutment response is modeled 
through two translational springs, one longitudinal and one transverse. The stiffness values 
of these springs are calculated according to Caltrans’ specifications: The stiffness of the 
longitudinal spring, , is calculated by adjusting the initial embankment fill stiffness pro-
portional to the backwall height. The stiffness of the nominal transverse spring, , is equal 
to  of the transverse stiffness of the adjacent bent. These stiffness values are shown in 
Table 3.1. Vertical translations at the end supports are fully constrained.  

The finite element model of the bridge consists of  elements per pier and  elements per 
span. The longitudinal axis of the deck elements passes through the centroid of the girder 
cross-section. The top of each pier is connected with the deck through two rigid frame ele-
ments: one vertical and one in the direction of the line connecting the tops of the piers in 
the bent. Condensing out the rotational degrees of freedom and accounting for the con-
straints imposed by the rigid elements, the structure has  translational unconstrained 
degrees of freedom and  translational support degrees of freedom. The fundamental pe-
riod of the bridge model is . The first  modes, together with the corresponding 
natural frequencies, are shown in Figure 3.3. All modes are assumed to have  damping.  
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3.2.2    Big Rock Wash Bridge 

The Big Rock Wash Bridge is a prestressed-concrete, three-span bridge with three piers per 
bent. The elevation and plan of the bridge model are shown in Figure 3.4. In the elevation, 
two numbers are given for the pier height at each bent, denoting the height of the central 
pier (number on the left) and the common height of the side piers (number on the right). 
The longitudinal axis of the bridge, X, is a straight line. The deck is characterized by a con-
stant profile grade of . The box-girder cross-section of the bridge is shown in Figure 
3.5. The piers have circular cross sections of diameter . The concrete material 
throughout has a nominal compressive strength of . The reinforcing steel has a no-
minal yield strength of . The longitudinal reinforcement of each pier consists of  
equally spaced  bars, whereas the transverse reinforcement consists of  hoops at a 
spacing of  . Moment-curvature analysis indicated a reduction of  in the flexural 
stiffness of the piers to account for cracking. The effective torsional moment of inertia of 
the piers is  of its uncracked value. No stiffness reduction is required for the pre-
stressed concrete box girder (Caltrans Seismic Design Criteria, 2004).  

The piers are assumed to be rigidly connected to the deck at the top, whereas the bottom 
supports are fixed in all translational directions and free in all rotational directions. The 
two ends of the bridge are supported on seat abutments. The abutment response is mod-
eled through two translational springs, one longitudinal and one transverse. The stiffness 
values of these springs are calculated according to Caltrans’ specifications (see Section 
3.2.1) and listed in Table 3.1. Vertical translations at the end supports are fully constrained.  

The finite element model of the bridge consists of  elements per pier and  elements per 
span. The longitudinal axis of a girder element passes through the centroid of the box gird-
er cross-section. Vertical rigid frame elements are used for the connection of the upper col-
umn elements with the girder elements. Condensing out the rotational degrees of freedom 
and accounting for the constraints imposed by the rigid elements, the structure is modeled 
with  translational unconstrained degrees of freedom and  translational support de-
grees of freedom. The fundamental period of the structure is . The first  mode 
shapes and the corresponding natural frequencies are shown in Figure 3.6. All modes are 
assumed to have   modal damping. 

3.2.3    South Ingram Slough Bridge 

The South Ingram Slough Bridge is a prestressed-concrete, two-span bridge with two piers 
per bent. The elevation and plan of the bridge model are shown in Figure 3.7. In the eleva-
tion, two numbers describe the height of the bent, each corresponding to one of the piers. 
The deck has a vertical grade, varying from  to , and a constant horizontal 
curvature of radius . The box-girder cross-section of the bridge is shown in 
Figure 3.8. The piers have circular cross sections of diameter . The structure is 
made of concrete with a nominal compressive strength of  for the piers and  
for the girder. The reinforcing steel has a nominal yield strength of . The longitu-
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dinal reinforcement of each column consists of  equally spaced bundles, with two  
bars per bundle, whereas the transverse reinforcement consists of  hoops at a spacing 
of . Moment-curvature analysis indicated a reduction of  in the flexural stiffness 
of the piers to account for cracking. The effective torsional moment of inertia of the piers is 

 of its uncracked value. No stiffness reduction is required for the prestressed concrete 
box girder.  

The columns are considered rigidly connected to the deck at the top and fixed in all transla-
tional and rotational directions at the bottom. The two ends of the bridge are supported on 
seat abutments. The abutment response is modeled through two translational springs, one 
longitudinal and one transverse. The stiffness values of these springs are calculated accord-
ing to Caltrans’ specifications (see Section 3.2.1) and listed in Table 3.1. Vertical transla-
tions at the end supports are fully constrained.  

The finite element model of the bridge consists of  elements per pier and  elements in 
each span. The longitudinal axis of the girder elements passes through the centroid of the 
girder cross-section. Vertical rigid frame elements are used to connect the tops of the piers 
with the deck. Condensing out the rotational degrees of freedom and accounting for the 
constraints imposed by the rigid elements, the structure has  translational uncon-
strained degrees of freedom and  translational support degrees of freedom. The funda-
mental period of the bridge model is . The first  modes, together with the cor-
responding natural frequencies, are shown in Figure 3.9. All modes are assumed to have 

 damping.  

3.2.4    Penstock Bridge 

The Penstock bridge is a prestressed-concrete, four-span bridge with a single pier per bent. 
The elevation of the bridge model is shown in Figure 3.10. The deck has a vertical grade, 
varying from  to , and a constant horizontal curvature of radius . The 
box-girder cross-section of the bridge is shown in Figure 3.11. The piers have circular cross 
sections of diameter . The structure is made of concrete with a nominal com-
pressive strength of  for the piers and  for the girder. The reinforcing steel 
has a nominal yield strength of . The longitudinal reinforcement of each column 
consists of  equally spaced  bars, whereas the transverse reinforcement consists of 

 hoops at a spacing of . Moment-curvature analysis indicated a reduction of  
in the flexural stiffness of the piers to account for cracking. The effective torsional moment 
of inertia of the piers is  of its uncracked value. No stiffness reduction is required for 
the prestressed concrete box girder.  

The columns are considered rigidly connected to the deck at the top and fixed in all transla-
tional and rotational directions at the bottom. The two ends of the bridge are supported on 
seat abutments. The abutment response is modeled through two translational springs, one 
longitudinal and one transverse. The stiffness values of these springs are calculated accord-
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ing to Caltrans’ specifications (see Section 3.2.1) and listed in Table 3.1. Vertical transla-
tions at the end supports are fully constrained.  

The finite element model of the bridge consists of  elements per pier and , ,  and  
elements in spans , ,  and , respectively. The longitudinal axis of the girder elements 
passes through the centroid of the girder cross-section. Vertical rigid frame elements are 
used to connect the tops of the piers with the deck. Condensing out the rotational degrees 
of freedom and accounting for the constraints imposed by the rigid elements, the structure 
has  translational unconstrained degrees of freedom and  translational support de-
grees of freedom. The fundamental period of the bridge model is . The first  
modes, together with the corresponding natural frequencies, are shown in Figure 3.12. All 
modes are assumed to have  damping.  

3.3    DESCRIPTION OF INPUT EXCITATIONS THROUGH RESPONSE SPECTRA AND A 
COHERENCY FUNCTION 

The supports of each bridge are subjected to translational ground motions in the longitu-
dinal, , transverse, , and vertical, , directions. The three components of the ground mo-
tion are assumed to be statistically independent. In the response analysis of each bride, 
three cases of ground motion spatial variability are considered: uniform support motions 
(case 1), variable support motions with incoherency (  m/s) and wave passage 
( ) but uniform soil conditions (case 2), and case 2 but with varying soil 
conditions (case 3). For each bridge, the soil types at the supports for both uniform and va-
rying soil conditions are given in Table 3.2. Characteristics of the corresponding soil pro-
files according to Caltrans’ Seismic Design Criteria (2004) are listed in Table 3.3. For cases 
2 and 3, the waves are assumed to propagate in the opposite direction of the  axis; fur-
thermore, the incoherence in the  direction is considered negligible for the dimensions of 
the bridges examined. Thus, for the bridge models with multiple piers per bent, if the piers 
are aligned in the direction of the  axis, they all undergo the same support motion. This is 
the case for the Big Rock Wash Bridge and the South Ingram Slough Bridge. However, the 
piers of the bents of the Auburn Ravine Bridge are not aligned in the  direction; in this 
case, we assume they undergo the motion corresponding to the point midway between the 
two piers.  

The horizontal components of the support motions are described by Acceleration Response 
Spectra (ARS) provided by Caltrans Seismic Design Criteria (2004). The appropriate ARS 
curve is selected in terms of the peak rock acceleration and moment magnitude for the 
maximum credible earthquake and the soil type at the relevant support. The vertical com-
ponents are described by response spectra proposed by Bozorgnia and Campbell (2004). 
The proposed spectrum for the latter consists of a flat portion with amplitude , for pe-
riods , and a decaying portion described by , for periods 

. The amplitude of the flat portion, , is determined in terms of the horizontal 
spectral acceleration at , the source-to-site distance and the soil type. In our ana-
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lyses, a distance of  from the earthquake source is assumed in all cases. Both sets of 
spectra are defined for frequencies greater than . For lower frequencies, a spectral 
shape varying in proportion to the square of the frequency is assumed. To estimate the cor-
responding peak ground displacements, which occur at zero frequency, a reduction factor 
of  is applied to the peak spectral displacement (Newmark and Hall, 1969). 

The Auburn Ravine Bridge, the South Ingram Slough Bridge and the Penstock Bridge have 
all been designed for the same event magnitude of  and a peak rock acceleration 
of . Figure 3.13 shows the acceleration response spectra for soil types B, C and 
D, normalized by the corresponding Peak Ground Acceleration (PGA).  Figure 3.14 shows 
the corresponding consistent auto-PSDs obtained by the method described in Section 2.2.2. 
The latter, together with the coherency function, are used to compute the correlation coef-
ficients in the MSRS method. The Big Rock Wash Bridge has been designed for an event 
magnitude of  and a peak rock acceleration of . Figure 3.15 shows 
the acceleration response spectra for soil types B, C and D, normalized by the correspond-
ing PGA, whereas Figure 3.16 shows the corresponding consistent auto-PSDs. For each 
case, the PGAs for each soil type and direction of excitation are summarized in Table 3.4. 

The site response effect is modeled using the SDOF idealization of the soil layer, i.e., Eqn. 
(2.23) for the soil FRF in determining the corresponding phase angle of the coherency func-
tion (see Eqn. (2.21)). For each response spectrum, the values of  and  in Eqn. (2.23) 
are determined by fitting the Kanai-Tajimi PSD to the corresponding PSD in Figure 3.13 or 
Figure 3.15 by use of a non-linear least-squares minimization method. The resulting  
values are listed in Table 3.5. The resulting  values are  in all cases. 

3.4     MODE TRUNCATION BASED ON PARTICIPATING MODAL MASS 

In Section 2.3 we investigated criteria for mode truncation in dynamic analysis of struc-
tures subjected to differential support motions. In this section, we use these criteria to se-
lect the number of modes to include in the MSRS analysis of the bridge models described 
earlier.  

Figures 3.17 through 3.20 show how the ratios  and  (given by Eqn. (2.25) and Eqn. 
(2.26), respectively) vary with mode number for the four bridge models. The number of 
modes to be included in the response analysis of each bridge model (see the following sec-
tion) is selected so that both ratios have values greater than . For each bridge, the 
number of modes included and the corresponding values of  and  are given in Table 
3.6. In the following analysis, the mean peak responses computed with these numbers of 
modes are considered “exact”’. 
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3.5     INVESTIGATION OF THE EFFECTS OF GROUND MOTION SPATIAL VARIABILITY 

3.5.1    Auburn Ravine Bridge 

3.5.1.1    Total responses 

Figure 3.21 shows the mean peak responses, i.e., axial forces, , shear forces,  and , 
torques, , and bending moments,  and , along the deck for the three cases of ground 
motion spatial variability described in Section 3.3. The subscripts of these forces are con-
sistent with the local axes of the cross-section shown in Figure 3.2. Figure 3.21 allows com-
parison of the absolute values of the mean peak forces between the cases of uniform sup-
port excitations (case 1) and differential support excitations under uniform or varying soil 
conditions (cases 2 and 3, respectively). In order to elaborate on the effect of ground mo-
tion spatial variability on structural response, in Figure 3.22, we plot the same mean peak 
responses of cases 2 and 3, but normalized with respect to the corresponding mean peak 
responses of case 1.  Normalized responses smaller than unity indicate cases where the 
ground motion spatial variability has a beneficial effect, i.e. it reduces the demand imposed 
on the structure. When normalized responses exceed unity, the ground motion spatial va-
riability amplifies the response and its neglect may lead to non-conservative designs.  

First consider cases 1 and 2. Figure 3.22 shows that the ground motion spatial variability 
has a more severe effect on the axial forces and torques, for which the ratios of responses 
in case 2 over responses in case 1 can be as large as 12.7 or 3.0, respectively. These res-
ponses, however, are typically small in absolute magnitude and normally do not control the 
design. The effects on shear forces and bending moments, which are more critical in design, 
are smaller and the corresponding normalized responses vary in the range 0.7-1.9. The 
normalized values of a specified force along the deck can be smaller or larger than unity 
depending on the location of the cross section within the bridge. Now, comparing cases 2 
and 3 in Figure 3.22, it is seen that variation of soil conditions results in large amplifica-
tions of all response quantities with the exception of . We note that in order to assess the 
significance of the response amplifications from a design standpoint, Figure 3.22 should be 
examined in conjunction with Figure 3.21.  

Table 3.7 lists the mean peak values of the percent pier drifts (pier top displacement di-
vided by pier height) in the global X and Y directions for the three cases examined above. 
The ratios of responses in case 2 over responses in case 1 vary in the range 0.7-1.1 for the X 
drifts and in the range 0.6-1.0 for the Y drifts. Thus, for this bridge, the combined effect of 
wave passage and incoherence is more mild on pier drifts than on element forces along the 
deck. The effect of soil variation is significant only on piers located on softer (type D) soils. 
For these piers, the site-effect causes amplification of the response, which is more pro-
nounced in the X direction. 

As the MSRS rule in Eqn. (2.12) indicates, the total response is composed of pseudo-static 
and dynamic contributions as well as a cross term between them. In the following sections, 
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we separately examine the two contributions in order to gain insight into the nature of the 
effect of spatial variability on bridge response.  

3.5.1.2    Pseudo-static responses 

Figure 3.23 shows the pseudo-static contributions, i.e. the square-root of the first double-
sum in the MSRS rule in Eqn. (2.12), to the generalized element forces along the deck. Note 
that uniform support motions do not generate pseudo-static forces and, hence, all contribu-
tions for case 1 are zero. In case 2, the pseudo-static shear forces and bending moments in-
duced by the variability in the support motions tend to be balanced out by reductions in the 
corresponding dynamic forces, resulting in only small changes in the total response (see 
previous section and Figure 3.22). Comparison between cases 2 and 3 indicates that the 
variation of soil conditions largely amplifies the pseudo-static forces, except for . Figure 
3.24 shows the relative contributions of the pseudo-static forces to the total responses, 
represented by the ratio , where  is the double-sum term in the MSRS rule and  is 
the mean peak total response. This figure indicates that, under varying soil conditions (case 
3), most responses tend to be dominated by pseudo-static contributions. Also, comparison 
of Figure 3.24 with Figure 3.22 indicates that amplification of bridge responses is asso-
ciated with large pseudo-static contributions. 

Table 3.8 lists the relative pseudo-static contributions, , for pier drifts in global X and 
Y directions, and for cases 2 and 3. For both cases 2 and 3, these contributions are much 
larger in X direction, in which the bridge is stiffer. Soil variation largely increases pseudo-
static contributions for piers located on softer soil (type D), but has a smaller influence on 
other piers. 

3.5.1.3    Dynamic responses 

To investigate the effect of differential support motions on the dynamic component of the 
response, i.e. the quadruple-sum in the MSRS rule, we separately examine the individual 
modal contributions   , . For each mode, 
this term includes the correlations arising from the multiple support excitations, but neg-
lects the correlations between different modes. For the three cases of support motions de-
scribed above, Figure 3.25 shows the contributions of each of the first 10 modes to the ge-
neralized element forces at two locations along the deck of Auburn Ravine Bridge: the mid-
dle of span 3 and the left end of span 4. These example locations were selected because 
they are critical for the design of the bridge, as indicated by Figure 3.21. We observe that 
the modal contributions between cases 2 and 3 differ only slightly. However, comparison of 
these cases with case 1 indicates that modal responses to differential support motions can 
differ largely from modal responses to uniform excitation. For example, spatial variability 
significantly reduces the contributions of modes 1 and 2 and amplifies the contributions of 
modes 5 and 8. The latter observations are consistent with the analysis in Section 2.3, since 
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 for mode 1 in direction  and for mode 2 in direction , but 
 for modes 5 and 8, in direction .  

To assess the relative importance of modal contributions to the total responses, in Figure 
3.26 we plot the mean peak total values of the generalized element forces examined in Fig-
ure 3.25, computed by including  modes in the MSRS rule, , and normalized 
with the ‘exact’ mean peak total responses. Two main observations are: 1) Depending on 
the response quantity, variability of the support motions can make the contributions of 
higher modes more or less significant. 2) When differential support motions induce large 
pseudo-static contributions, only the first few modes are sufficient to obtain good approx-
imations of the total responses, even in cases when higher modes are important for a fairly 
accurate representation of the dynamic component. To gain insight, let us look at some rep-
resentative cases: For the torques at both locations, higher modes are more significant un-
der varying support motions. As a result, in case 2, despite the large contributions from 
pseudo-static forces, a certain level of accuracy requires a larger number of modes than in 
case 1. Next, we examine  in the middle of span 3. This response quantity is characte-
rized by small pseudo-static contributions in both cases 2 and 3. When 10 modes are in-
cluded in the MSRS rule, the approximation is fairly good in cases 2 and 3, but extremely 
poor in case 1, which indicates the large influence of the ground motion spatial variability 
on the dynamic component of the  response. Last, we look at the  response at the left 
end of span 4. Comparing cases 1 and 2, we observe that higher modes have larger contri-
butions under uniform support motions:  80% accuracy requires 9 modes in case 2, but 
more than 10 modes in case 1. We note that the same level of accuracy is achieved only 
with 1 mode in case 3, due to the large pseudo-static forces induced by the variation in soil 
conditions.  

Pier drifts are generally contributed by the first 2 or 3 modes and are not shown here. 

3.5.2    Big Rock Wash Bridge 

3.5.2.1    Total responses 

Figure 3.27 and Figure 3.28 show the mean peak responses and normalized mean peak 
responses with respect to the case of uniform excitations, respectively, for the generalized 
element forces along the deck of Big Rock Wash Bridge. The three cases of excitation de-
scribed in Section 3.3 are investigated. These figures suggest that ground motion spatial 
variability has a relatively mild effect on  and . In particular, the effect on  is benefi-
cial along the deck for both cases 2 and 3. The influence of spatial variability is more pro-
nounced on ,  and . (The large normalized values of  in Figure 3.28 are of no engi-
neering significance, since the corresponding absolute values are very small.)  To assess the 
significance of the large normalized values of   along the deck from a design viewpoint, 
we should examine in parallel the corresponding absolute values of the  mean peak re-
sponse. Variation of soil conditions significantly amplifies  and  at certain locations, 
but only slightly affects other responses.  
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Table 3.9 lists the mean peak values of the percent pier drifts in the global X and Y direc-
tions for the same three cases of excitation. The combined effect of wave passage and inco-
herence is reduction of all pier drifts. Soil variation increases all pier drifts in X direction, 
but has negligible influence on pier drifts in Y direction. 

3.5.2.2    Pseudo-static responses 

Figure 3.29 shows pseudo-static contributions to the mean peak generalized element 
forces along the deck (cases 2 and 3). Their relative importance can be assessed by examin-
ing the ratios of their squared values to the corresponding squared mean peak responses, 
shown in Figure 3.30.  In both cases 2 and 3, the pseudo-static components dominate the  
response. Under uniform soil conditions (case 2), pseudo-static contributions are particu-
larly large for  and  at certain locations. Variation of soil conditions (case 3) amplifies 
all pseudo-static responses except from . Similarly with the Auburn Ravine Bridge, when 
pseudo-static contributions are dominant, the corresponding total responses of Big Rock 
Wash Bridge tend to be amplified. However, we note that although the pseudo-static con-
tributions for  and  are significant at certain locations, the corresponding total res-
ponses are only slightly affected, which indicates that ground motion spatial variability re-
duces the corresponding dynamic responses. 

Table 3.10 lists the percent pseudo-static contributions for the pier drifts in the global X 
and Y directions for cases 2 and 3. These are much larger in X direction, in which the bridge 
is stiffer. Variation of soil conditions increases these contributions for all pier drifts in both 
directions. 

3.5.2.3    Dynamic responses 

Figure 3.31 shows the individual modal contributions (neglecting cross-modal correlations, 
but including cross-support and cross-support-modal correlations) for the generalized 
element forces at two example locations along the deck: the left end and the middle of span 
2.  The figure indicates that the combined effect of wave passage and incoherence on modal 
responses is significant, whereas the additional effect of soil variation is only slight. In par-
ticular, ground motion spatial variability (cases 2 and 3) largely amplifies the response of 
modes 3, 4, 8, 9 and 10, but significantly reduces the response of modes 1, 2 and 6.  

For the same response quantities, in Figure 3.32, we examine how the ground motion spa-
tial variability affects the level of accuracy of the total mean peak values when a certain 
number of modes is considered. This depends on the individual modal contributions and 
also, on the pseudo-static contributions. As a result, convergence can be faster under uni-
form or differential support motions, depending on the response quantity examined. 

Pier drifts are generally contributed by the first 2 or 3 modes and are not shown here. 
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3.5.3    South Ingram Slough Bridge 

3.5.3.1    Total responses 

Figure 3.33 shows the mean peak generalized element forces along the deck of South In-
gram Slough Bridge for the three cases of excitation described in Section 3.3. The figure in-
dicates that except for , the effect of ground motion variability on bridge response is mild 
and tends to be beneficial at locations that are critical for design. For , spatial variability 
significantly amplifies the response around the middle support resulting in a more uniform 
variation of axial forces along the deck. For cases 2 and 3, Figure 3.34 shows the same res-
ponses normalized with the responses in case 1. Except for , the normalized responses at 
most locations vary close to unity. Comparing with Figure 3.34 with Figure 3.33, we ob-
serve that the few locations where the normalized responses exceed unity are not critical in 
terms of design.  

Table 3.11 lists the mean peak pier drifts in the global X and Y directions for the three cases 
examined above. The combined effect of wave-passage and incoherence is reduction of all 
pier drifts. Additional variation of soil conditions has only slight influence. 

3.5.3.2    Pseudo-static responses 

Figure 3.35 shows pseudo-static contributions to the mean peak generalized element 
forces along the deck (cases 2 and 3). For all generalized element forces, soil variation am-
plifies the pseudo-static responses at all locations examined. To assess the relative impor-
tance of these responses, Figure 3.36 shows the ratios of their squared values to the cor-
responding squared mean peak responses. Similarly with the two bridges examined pre-
viously, the  response along the deck of South Ingram Slough Bridge is dominated by the 
pseudo-static forces. For the other response quantities, the pseudo-static contributions are 
very small, except for a few locations, at which the total response is not critical in terms of 
design (compare Figure 3.36 with Figure 3.33). 

Table 3.12 lists the percent pseudo-static contributions to pier drifts. These are much 
smaller than the pseudo-static contributions to pier drifts of the two stiffer bridges studied 
earlier. In direction Y, they are negligible for both cases 2 and 3. In direction X, they are 
amplified by variation of soil conditions. 

3.5.3.3    Dynamic responses 

Figure 3.37 shows how individual modal contributions vary in the three cases of excitation 
for the generalized element forces at the middle of span 1 and the left end of span 2. Again, 
the individual modal contributions are computed by neglecting correlations between dif-
ferent modes, but including the correlations between support motions and between sup-
port motions and modal responses. Compared to the case of uniform support motions, the 
modal responses under differential support motions are higher for modes 2 and 4, smaller 
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for modes 3 and 5 and vary closely for modes 1, 6, 7 and 10.  As for the bridges examined 
previously, variation of soil conditions is not significant for the individual modal contribu-
tions. 

For the same response quantities, Figure 3.38 shows the accuracy in the total mean peak 
values when  modes are considered.  Except for the axial force, the pseudo-
static contributions in case 2 are small, and thus, comparison of cases 1 and 2 is indicative 
of the effect of spatial variability on the convergence of the dynamic component with . We 
note that under differential support motions, the contribution of higher modes is more sig-
nificant for , among other responses. In case 3, increased pseudo-static contributions can 
make convergence faster. 

Pier drifts are contributed by the first 2 or 3 modes and are not shown here. 

3.5.4    Penstock Bridge 

3.5.4.1    Total responses 

Figure 3.39 shows the mean peak generalized element forces along the deck of Penstock 
Bridge. Figure 3.40 shows the responses under differential support motions normalized 
with the responses under uniform support motions. The combined effect of wave passage 
and incoherence is mild on ,  and , but more pronounced on ,  and . In case 2, 
the normalized  and  responses always exceed unity, whereas the other normalized 
responses are greater or smaller than unity depending on the location along the deck. Vari-
ation of soil conditions reduces ,  and  and amplifies  and . 

Table 3.13 lists the mean peak pier drifts in the global X and Y directions. The combined ef-
fect of wave passage and incoherence is a small reduction of the drifts in X direction and a 
small increase of the drifts in Y direction. In X direction, variation of soil conditions increas-
es the drift of the middle pier, which is located on softer (type D) soil, and has negligible 
effect on other pier drifts. In Y direction, variation of soil conditions decreases all pier 
drifts. 

3.5.4.2    Pseudo-static responses 

For the pseudo-static generalized element forces along the deck, Figure 3.41 and Figure 
3.42 show their mean peak values and relative contributions to the total response, respec-
tively. Under uniform soil conditions, the pseudo-static contributions are very small, except 
for the axial force. The variation of soil conditions is more critical for the  and  res-
ponses causing large amplifications of the pseudo-static contributions and also, of the total 
responses (compare Figure 3.42 with Figure 3.39). These responses have large contribu-
tions from excitation in the vertical direction, in which the bridge is stiffer and the support 
motions are richer in high-frequency components and thus, more incoherent.  
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Table 3.14 lists the pseudo-static contributions to pier drifts for cases 2 and 3. Similarly 
with the bridges examined previously, these contributions are much larger in X (than in Y) 
direction, in which the bridge is stiffer. For all responses examined herein, variation of soil 
conditions increases pseudo-static contributions. This increase is more pronounced in X 
direction. 

3.5.4.3    Dynamic responses 

In Figure 3.43, we examine the individual modal contributions to the element forces at the 
middle of span 2 and the left end of span 3, for the three cases of excitation. These are com-
puted as for the bridges studied earlier. However, in contrast with the results for the other 
bridges, herein, the modal responses are influenced not only by wave-passage and incohe-
rence, but also by variation of soil conditions. 

Next, we examine the convergence of the corresponding total responses as a function of the 
number of modes considered, shown in Figure 3.44 for the three cases of excitation. For 
this bridge an interesting observation is made for modes 7 and 8, which have closely 
spaced frequencies of  and , respectively. As can be seen in the charts 
for , when 7 modes are considered, the response can be largely overestimated. However, 
this overestimation is balanced when the 8th

Figure 3.43
 mode is also considered. The corresponding 

charts in  indicate that these two modes individually make significant contribu-
tions of nearly equal magnitude to the  responses at both locations. However, the cross 
term arising from these two modes has nearly twice the magnitude and a negative sign so 
that the total contribution of these two modes is rather small. This observation indicates 
the importance of cross-modal terms for closely spaced frequencies. It also highlights the 
importance of not truncating modes in the middle of a group of closely spaced modes. 

 The pier drifts are contributed from the first 2 or 3 modes and are not shown here. 

3.5.5    Summary of results 

The previous analysis demonstrated that ground motion spatial variability affects the 
bridge response in a rather complex way: Although differential support motions induce 
pseudo-static forces, which are not present in the case of uniform excitations, they can ei-
ther amplify or reduce the total response depending on their additional influence on the 
dynamic component of the response. The effect on the dynamic component is the additive 
effect on individual modal responses. Ground motion spatial variability reduces contribu-
tions of certain modes and amplifies contributions of others, and thus, the total effect on 
the dynamic component of a response quantity is often hard to predict. However, in cases 
when pseudo-static contributions are dominant, the dynamic component is of less impor-
tance, and ground motion spatial variability can cause large response amplifications. In this 
section, we summarize the effects of ground motion spatial variability, analyzed earlier for 
each individual model, and identify general trends.  



49 

 

In Table 3.15 we list the range of values for the ratio of responses in case 2 over responses 
in case 1 for each bridge model and each response quantity. Thus, this table provides a 
summary of the combined effect of incoherence and wave passage on bridge response. We 
note that wave passage together with incoherence amplify or reduce element forces de-
pending on the response quantity and the location along the deck examined. Their com-
bined effect tends to be more severe (larger ratios) on , ,  and , which have larger 
contributions from horizontal excitations, and more mild or beneficial (smaller ratios) on 

 and , which have larger contributions from the vertical excitation. Also, their effect is 
more pronounced for the two stiffer bridges, i.e. the Auburn Ravine Bridge and the Big 
Rock Wash Bridge. For pier drifts, wave passage and incoherence tend to reduce their 
mean peak values; only small amplifications occur in few cases. 

In Table 3.16 we list the range of values for the ratio of responses in case 3 over responses 
in case 2, for each bridge model and each response quantity. Thus, this table provides a 
summary of the additional effect of soil variation on bridge response. Previous analyses 
demonstrated that, except for a few cases, variation of soil conditions increased pseudo-
static responses. For the dynamic responses, the additional effect of soil variation was sig-
nificant only for the more flexible Penstock Bridge. Table 3.16 indicates that additional var-
iation of soil conditions has small influence on , but amplifies all other responses for the 
three stiffer bridges. The effect is more pronounced for the Auburn Ravine Bridge. Looking 
at pier drifts, variation of soil conditions is more significant in the X direction, causing am-
plification of the responses in all cases. 

3.6     ASSESSMENT OF EXTENDED MSRS RULE 

In this section, we compare the accuracy in the approximations of the mean peak total res-
ponses, with  modes included in the analysis, using the extended versus using 
the original MSRS rule. For each bridge model, we look into the same response quantities 
examined in the analyses of the dynamic components and we investigate cases 2 and 3 sep-
arately. In the assessment of the extended MSRS rule, consideration should be given to the 
modal frequencies of each bridge in conjunction with the normalized acceleration response 
spectra  in Figure 3.13 or Figure 3.15 (whichever applies). We expect that the 
extended MSRS rule significantly improves the results when truncated modes with signifi-
cant contributions have frequencies  such that . When truncated modes 
with large contributions have frequencies  such that , the extended MSRS 
rule may overestimate the response. Finally, when truncated modes with large contribu-
tions have frequencies  such that  , the extended rule provides smaller im-
provements. 
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3.6.1    Auburn Ravine Bridge  

We begin by examining the Auburn Ravine Bridge. Figure 3.45 and Figure 3.46 show the 
ratio of the response when  modes are included, , over the ‘exact’ response, , for the 
generalized element forces at the middle of span 3 and the left end of span 4, respectively. 
In each figure, the upper charts are for case 2 and the bottom charts for case 3. In each 
chart, the mean peak total response is evaluated with the original and also, with the ex-
tended MSRS rule. 

Let us first look into case 2, i.e. the upper charts in Figure 3.45 and Figure 3.46. In assessing 
the effectiveness of the extended MSRS rule,  in Figure 3.45, and  and  in Figure 3.46 
are not of interest, since they are almost perfectly approximated by only the 1st

Figure 3.45

 mode. Ex-
amining the other responses, we note that in some cases the extended MSRS rule provides 
small improvements in the approximation of the response ( ,  and  in ;  
in Figure 3.46), while in others, it provides significant improvements (  and  in Figure 
3.45; ,  and  in Figure 3.46). For the latter responses, the approximation with the 
extended MSRS rule is nearly perfect when only 1 or 2 modes are included, whereas the 
approximation of the original MSRS rule with the same number of modes is very poor. We 
also note that in some cases the extended MSRS rule converges to unity from larger values, 
i.e. can overestimate the responses. For the responses examined herein, this overestima-
tion is more pronounced for  in Figure 3.46, but is generally not significant. 

To interpret the above results, we need to examine the values of  in Figure 3.13 
for the modal frequencies of the Auburn Ravine Bridge. Let us examine these values for the 
first 8 modal frequencies, given in Figure 3.3: The curve that corresponds to horizontal ex-
citation and soil type C takes values between 1 and 2.5, but greater than 2 for . Thus, 
for the forces that are dominated from the response to horizontal excitation (in either  or 

 direction), we expect that the extended MSRS rule will provide only small improvements. 
The curve that corresponds to vertical excitation (same for all soil types) takes values  
for , but is close to unity for . Thus, for the forces that are dominated from the 
response to vertical excitation, the MSRS rule will generally provide much better approxi-
mations, but can also overestimate the response. The above analysis is consistent with the 
results shown in Figure 3.45 and Figure 3.46 if we consider the directions of excitation that 
contribute to each response: At the middle of span 3, ,  and  are mainly contributed 
from horizontal excitations,  from vertical excitation, and  has nearly equal contribu-
tions from horizontal and vertical excitations. At the left end of span 4,  is dominated 
from the bridge response to horizontal excitations,  from the response to vertical and  
and  have significant contributions from both. 

Now, let us look in case 3. Comparing the charts for case 3 with the corresponding ones for 
case 2, we note somewhat faster convergence of modal responses for case 3 for both the 
original and extended MSRS rules. This is due to larger contributions of the pseudo-static 
components in case 3 relative to case 2 (see Figure 3.24). 
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3.6.2    Big Rock Wash Bridge 

A similar analysis with the above is performed in this section for the Big Rock Wash Bridge. 
To understand the way the extended rule influences the approximation of the response 
with a certain number of modes, we first examine the values of the normalized pseudo-
acceleration in Figure 3.15 for the modal frequencies given in Figure 3.6. In the horizontal 
directions,  takes values larger than unity, which exceed 2 for modes 1 through 7. 
In the vertical direction, the values of  are very small ( ) for the first 4 mod-
es, but are close to unity or unity for . Also, we should note that the Big Rock Wash 
Bridge is not curved in the XY plan and thus, its response is uncoupled in the XZ and XY 
plans. As a result, ,  and  are entirely contributed from the bridge response to exci-
tation in  direction, whereas ,  and  are additively contributed from the bridge re-
sponse to excitations in  and  directions.  

Figure 3.47 and Figure 3.48 compare the approximations of the mean peak generalized 
element forces at the left end of span 2 and the middle of span 2, respectively, with the ex-
tended versus the original MSRS rule with  modes in the analysis. Again, we 
first examine analytically the results for case 2, i.e. the upper charts in these figures. The 
forces contributed only from the bridge response to excitation in the  direction are ,  
and . We note that the results for  are of no particular engineering interest, since the 
absolute values of  are very small. For  and , when the contributions of higher mod-
es are not negligible, use of the extended MSRS rule provides small improvements. The 
other forces are contributed additively from the bridge response to excitations in the  and 

 directions. Apparently,  is of no interest in our analysis. For the  and  responses, 
use of the extended MSRS rule results in smaller absolute error than the original rule, as 
long as 4 or more modes are considered. If fewer modes are considered, the MSRS rule can 
largely overestimate the response. Comparing the charts for case 2 with the corresponding 
charts for case 3, we observe that the higher pseudo-static contributions in case 3 (see Fig-
ure 3.30) results in improved approximations in all cases with the original or the extended 
MSRS rule. 

3.6.3    South Ingram Slough Bridge 

In a similar way as in the previous sections, Figure 3.49 and Figure 3.50 compare the origi-
nal and extended MSRS rules for the generalized element forces at the middle of span 1 and 
the left end of span 2, respectively, of the South Ingram Slough Bridge. We look into the 
modal frequencies in Figure 3.9 and the corresponding values of the relevant curves in Fig-
ure 3.13. For the first 8 modes, the curve for the horizontal excitations takes values in the 
range from  to . The curve for the vertical excitation, takes values  for the 
first 3 modes, but equal to unity for . The South Ingram Slough Bridge is characterized 
by only a small curvature in the XY plan which results in nearly uncoupled bridge response 
in the XZ and YZ plans. Again, we examine separately the groups of responses contributed 
by the excitation in Y direction or by excitations in X and Z directions. We note that the  
response is of no engineering significance, since the corresponding absolute values are very 
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small.  For the ,  and  responses, which are contributed  by excitation in ei-
ther X or Y direction, the extended MSRS rule is slightly better than the original rule, when 
higher mode contributions are not negligible. For the  and  responses, including fewer 
than 5 modes can result in large overestimation of the response. This overestimation is 
smaller in case 3. 

3.6.4    Penstock Bridge 

Figure 3.51 and Figure 3.52 compare the mean peak response estimates for the generalized 
element forces at the middle of span 2 and the left end of span 3, respectively. Penstock 
Bridge is the most flexible among the bridges considered in this study. For the horizontal 
direction of excitation, the normalized pseudo-acceleration curve for soil C in Figure 3.13 
takes values smaller than unity for the first 2 modes, but exceeds unity for the other modes. 
The maximum values of the curve occur at the modal frequencies of the closely-spaced 7th 
and 8th

Let us now use the above information to study 

 modes. For the excitation in vertical direction, the pseudo-acceleration curve takes 
values in the range 0.1-0.5 for the first 5 modes and in the range 0.5-0.7 for modes 6 
through 8.  

Figure 3.51 and Figure 3.52. We begin with 
case 2. In both figures, the  response is of no interest since it is almost perfectly estimated 
by only the 1st

3.7    SUMMARY 

 mode. The ,  and  responses are almost entirely due to horizontal ex-
citations. For these response quantities, the extended MSRS rule can provide significant 
improvements compared to the original rule for , and smaller improvements for larg-
er . The generalized forces  and  are mainly contributed from the bridge response to 
excitation in vertical direction. The corresponding charts demonstrate that when truncated 
modes have very small  values, i.e. for , the extended rule can result in very 
large overestimations, but when truncated modes have  values close to unity, i.e. 
for , the extended rule provides improved approximations. When variation of soil 
conditions significantly increases the pseudo-static contributions (  at middle of span 2, 

 at left end of span 3), both the original and the extended rules are more accurate in case 
3 than in case 2 for a certain number of modes considered. 

The MSRS analysis of four real bridge models demonstrated the complex way in which dif-
ferential support motions influence structural response. The analysis showed that neglect-
ing spatial variability of the support motions, in some cases leads to conservative design, 
but in other cases is highly non-conservative. The effect of spatial variability was, in gener-
al, more severe on element forces along the deck and milder on pier drifts. Also, for pier 
drifts it was beneficial, i.e. decreased the response, more often than for element forces. Un-
der varying support motions and except for Penstock Bridge (the most flexible among the 
bridges examined), variation of soil conditions, increased all responses except for  . 
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Compared to the original MSRS rule, the extended rule provided improved approximations 
of the responses, when truncated modes had nearly static responses, i.e. pseudo-
acceleration responses nearly equal to the corresponding peak ground acceleration.  
Another important result of this chapter is that a pair of closely-spaced modes should not 
be separated in the analysis, i.e. the modes should be either both included or both trun-
cated.  
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Table 3.1: Stiffness values of the springs used to model the abutment responses. 

bridge name left abutment right abutment 
        

Auburn Ravine Bridge 59,604 33,800 59,604 24,300 
Big Rock Wash Bridge 131,520 60,301 131,520 54,709 

South Ingram Slough Bridge 76,763 9,430 76,763 9,430 
Penstock Bridge 59,556  4,897 59,556 6,875 

 

Table 3.2: Soil types at each support for each case of ground motion spatial variability. 

bridge name case support number: soil type 
Auburn Ravine Bridge 1 & 2 all supports: C 

3  1: B, 2: C, 3: D, 4: C, 5: D, 6: C, 7: B  

Big Rock Wash Bridge 1 & 2 all supports: D 
3 1: C, 2: D, 3: D, 4: C  

South Ingram Slough Bridge 1 & 2 all supports: C 
3 1: B, 2: C, 3: D  

Penstock Bridge 1 & 2 all supports: C 
3 1: B, 2: C, 3: D, 4: C, 5: B  

 

Table 3.3: Soil type characteristics according to Caltrans specifications. 

soil type description shear wave velocity  
B rock   
C very dense soil/soft rock   
D stiff soil   

 

Table 3.4: Peak Ground Acceleration (PGA) for each soil-type and direction of excitation. 

soil type 
PGA (g)  

case: ,  case: ,  
horizontal vertical horizontal vertical 

B 0.30 0.51 0.60 1.06 
C 0.33 0.56 0.60 1.06 
D 0.36 0.75 0.60 1.30 
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Table 3.5: Frequencies of soil columns modeled with the SDOF-oscillator idealization. 

excitation direction: soil 
type 

  
case: ,  vase: ,  

horizontal: B 3.25 2.50 
horizontal: C 2.50 1.75 
horizontal: D 2.25 1.25 

vertical: B, C, D 7.50  7.50 
 

Table 3.6: Measures of participating modal mass, rn
U and rn

TI

Bridge name 

, for the number of modes, n, included in the 
analysis of each bridge model. 

      
Auburn Ravine Bridge 30 0.90 0.94 
Big Rock Wash Bridge 25 0.95 0.91 

South Ingram Slough Bridge 25 0.99 0.99 
Penstock Bridge 30 0.96 0.93 
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Table 3.7: Auburn Ravine Bridge: Mean peaks of pier drifts. 

pier location % drift in X direction % drift in Y direction 
case 1 case 2 case 3 case 1 case 2 case 3 

bent 2 left pier 0.77 0.72 0.73 0.53 0.54 0.54 
right pier 0.81 0.74 0.75 0.56 0.55 0.56 

bent 3 left pier 0.77 0.54 0.81 0.73 0.55 0.63 
right pier 0.79 0.55 0.82 0.77 0.57 0.64 

bent 4 left pier 0.73 0.48 0.48 0.88 0.57 0.65 
right pier 0.74 0.49 0.48 0.92 0.58 0.66 

bent 5 left pier 0.69 0.57 0.78 0.91 0.55 0.62 
right pier 0.68 0.56 0.79 0.93 0.56 0.63 

bent 6 left pier 0.72 0.79 0.80 0.93 0.60 0.62 
right pier 0.70 0.78 0.79 0.94 0.61 0.63 

 

Table 3.8 Auburn Ravine Bridge: Pseudo-static contributions to mean peaks of pier drifts (zs2/z2

pier location 

). 

% drift in X direction % drift in Y direction 
case 2 case 3 case 2 case 3 

bent 2 left pier 70.5 72.5 3.7 9.5 
right pier 69.6 71.4 4.7 9.7 

bent 3 left pier 50.0 87.7 6.7 36.8 
right pier 49.4 87.2 6.8 35.2 

bent 4 left pier 42.1 42.8 6.8 14.9 
right pier 42.7 43.8 6.6 14.3 

bent 5 left pier 59.6 85.4 6.9 33.6 
right pier 60.6 87.1 6.6 34.7 

bent 6 left pier 73.4 73.6 7.2 12.3 
right pier 74.4 75.3 7.2 12.7 
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Table 3.9: Big Rock Wash Bridge: Mean peaks of pier drifts. 

pier location % drift in X direction % drift in Y direction 
case 1 case 2 case 3 case 1 case 2 case 3 

bent 2 
middle pier 1.56 1.37 1.59 1.91 1.52 1.53 
side pier 1 1.60 1.49 1.68 1.97 1.57 1.57 
side pier 2 1.60 1.49 1.68 1.97 1.57 1.57 

bent 3 
middle pier 1.51 1.36 1.53 2.14 1.44 1.41 
side pier 1 1.55 1.48 1.63 2.20 1.48 1.45 
side pier 2 1.55 1.48 1.63 2.20 1.48 1.45 

 

Table 3.10: Big Rock Wash Bridge: Pseudo-static contributions to mean peaks of pier drifts (zs2/z2

pier location 

).  

% drift in X direction % drift in Y direction 
case 2 case 3 case 2 case 3 

bent 2 
middle pier 58.9 80.6 4.3 17.2 
side pier 1 59.8 79.4 4.3 17.2 
side pier 2 59.8 79.4 4.3 17.2 

bent 3 
middle pier 59.2 79.4 4.5 19.4 
side pier 1 60.2 78.2 4.5 19.4 
side pier 2 60.2 78.2 4.5 19.4 

 
  



58 

 

Table 3.11: South Ingram Slough Bridge: Mean peaks of pier drifts. 

pier location % drift in X direction % drift in Y direction 
case 1 case 2 case 3 case 1 case 2 case 3 

bent 2 pier 1 0.30 0.21 0.22 0.70 0.64 0.62 
pier 2 0.30 0.21 0.22 0.69 0.64 0.62 

 

Table 3.12: South Ingram Slough Bridge: Pseudo-static contributions to mean peaks of pier drifts 
(zs2/z2

pier location 

). 

% drift in X direction % drift in Y direction 
case 2 case 3 case 2 case 3 

bent 2 pier 1 9.5 19.7 0.3 0.8 
pier 2 9.7 20.2 0.3 0.8 

 

Table 3.13: Penstock Bridge: Mean peaks of pier drifts. 

pier location % drift in X direction % drift in Y direction 
case 1 case 2 case 3 case 1 case 2 case 3 

bent 2 0.38 0.31 0.30 0.88 0.95 0.76 
bent 3 0.39 0.29 0.37 0.81 0.84 0.69 
bent 4 0.43 0.34 0.33 0.72 0.78 0.62 

 

Table 3.14: Penstock Bridge: Pseudo-static contributions to mean peaks of pier drifts (zs2/z2

pier location 

). 

% drift in X direction % drift in Y direction 
case 2 case 3 case 2 case 3 

bent 2 33.1 67.3 6.3 7.7 
bent 3 25.3 87.0 9.0 20.7 
bent 4 31.9 66.1 6.9 10.5 
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Table 3.15: Range of values for ratios of responses in case 2 over responses in case 1. 

Bridge       X drift Y drift 
Auburn Ravine 1.3-12.7 0.7-1.9 0.7-1.0 0.9-3.0 0.7-1.1 0.8-1.5 0.7-1.1 0.6-1.0 
Big Rock Wash 1.8-43.0 0.7-3.1 0.7-0.9 2.6-2.6 0.7-1.3 0.9-3.7 0.9-1.0 0.7-0.8 

S. Ingram Slough 0.9-10.3 0.9-1.2 0.7-1.0 0.8-0.9 0.7-1.0 0.9-1.2 0.7-0.7 0.9-0.9 
Penstock 0.9-1.8 1.1-1.7 0.7-1.2 0.7-1.7 0.7-1.2 1.1-1.2 0.7-0.8 1.0-1.1 

 

Table 3.16: Range of values for ratios of responses in case 3 over responses in case 2. 

Bridge       X drift Y drift 
Auburn Ravine 0.9-1.1 1.1-2.1 1.1-3.4 1.1-2.6 1.1-3.3 1.3-2.1 1.0-1.5 1.0-1.1 
Big Rock Wash 0.9-0.9 1.0-2.1 1.0-1.2 1.0-1.0 1.0-1.2 1.2-2.1 1.1-1.2 1.0-1.0 

S. Ingram Slough 1.2-1.7 1.0-1.1 1.0-1.1 1.0-1.2 1.0-1.5 1.0-1.2 1.0-1.0 1.0-1.0 
Penstock 0.8-0.8 0.8-1.0 1.0-1.3 0.8-1.1 1.0-1.7 0.8-0.9 1.0-1.3 0.8-0.8 
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Figure 3.1: Auburn Ravine Bridge: Elevation and plan (Dimensions are in meters). 

 

 
Figure 3.2: Auburn Ravine Bridge: Box-girder cross section (Dimensions are in meters). 
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Figure 3.3: Auburn Ravine Bridge: First 8 mode shapes and modal frequencies. 
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Figure 3.4: Big Rock Wash Bridge: Elevation and plan (Dimensions are in meters). 

 

 
Figure 3.5: Big Rock Wash Bridge: Box-girder cross section (Dimensions are in meters). 
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Figure 3.6: Big Rock Wash Bridge: First 8 mode shapes and modal frequencies. 
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Figure 3.7: South Ingram Slough Bridge: Elevation and plan (Dimensions are in meters). 

 

 
Figure 3.8: South Ingram Slough Bridge: Box-girder cross section (Dimensions are in meters). 
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Figure 3.9: South Ingram Slough Bridge: First 8 mode shapes and modal frequencies. 
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Figure 3.10: Penstock Bridge: Elevation (Dimensions are in meters). 

 

 

 
Figure 3.11: Pensotck Bridge: Box-girder cross section (Dimensions are in meters). 
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Figure 3.12: Penstock Bridge: First 8 mode shapes and modal frequencies. 
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Figure 3.13: Normalized acceleration response spectra for an event of magnitude 6.5 and peak rock acce-
leration 0.3 g. 

 

 

 

Figure 3.14: Ground acceleration PSDs for an event of magnitude 6.5 and peak rock acceleration 0.3 g. 
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Figure 3.15: Normalized acceleration response spectra for an event of magnitude 8.0 and peak rock acce-
leration 0.6 g. 

 

 

 

Figure 3.16: Ground acceleration PSDs for an event of magnitude 8.0 and peak rock acceleration 0.6 g. 
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Figure 3.17: Auburn Ravine Bridge: Measures of mass participation. 

 

 

 

Figure 3.18: Big Rock Wash Bridge: Measures of mass participation. 
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Figure 3.19: South Ingram Slough Bridge: Measures of mass participation. 

 

 

 

Figure 3.20: Penstock Bridge: Measures of mass participation.  
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Figure 3.21: Auburn Ravine Bridge: Mean peak responses along the deck.  
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Figure 3.22: Auburn Ravine Bridge: Normalized mean peak responses with respect to the case of uni-
form excitation. 
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Figure 3.23: Auburn Ravine Bridge: Mean peak pseudo-static responses along the deck.  
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Figure 3.24: Auburn Ravine Bridge: Relative pseudo-static contributions to mean peak responses. 
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Middle of span 3 

 

Left end of span 4 

 

Figure 3.25: Auburn Ravine Bridge: Modal contributions to dynamic component of mean peak res-
ponses. 
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Middle of span 3 

 

Left end of span 4 

 

Figure 3.26: Auburn Ravine Bridge: Mean peak responses with n modes normalized with ‘exact’ mean 
peak responses. 
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Figure 3.27: Big Rock Wash Bridge: Mean peak responses along the deck.  
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Figure 3.28: Big Rock Wash Bridge: Normalized mean peak responses with respect to the case of uni-
form excitation. 
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Figure 3.29: Big Rock Wash Bridge: Mean peak pseudo-static responses along the deck. 
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Figure 3.30: Big Rock Wash  Bridge: Relative pseudo-static contributions to mean peak responses. 
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Left end of span 2 

 

Middle of span 2 

 

Figure 3.31: Big Rock Wash Bridge: Modal contributions to dynamic component of mean peak res-
ponses. 
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Left end of span 2 

 

Middle of span 2 

 

Figure 3.32: Big Rock Wash Bridge: Mean peak responses with n modes normalized with ‘exact’ mean 
peak responses. 
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Figure 3.33: South Ingram Slough Bridge: Mean peak responses along the deck. 
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Figure 3.34: South Ingram Slough Bridge: Normalized mean peak responses with respect to the case of 
uniform excitation. 
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Figure 3.35: South Ingram Slough Bridge: Mean peak pseudo-static responses along the deck.  
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Figure 3.36: South Ingram Slough Bridge: Relative pseudo-static contributions to mean peak res-
ponses. 

 
  

0

0.5

1
F x,

s2
/F

x2

 

 

case 2
case 3

0

0.5

1

F y,
s2
/F

y2

0

0.5

1

F z,
s2
/F

z2

0

0.5

1

M
x,

s2
/M

x2

0

0.5

1

M
y,

s2
/M

y2

abut1 bent2 abut3
0

0.5

1

M
z,

s2
/M

z2



88 

 

 
Middle of span 1 

 
Left end of span 2 

 
Figure 3.37: South Ingram Slough Bridge: Modal contributions to dynamic component of mean peak 

responses. 
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Middle of span 1 

 

Left end of span 2 

 

Figure 3.38: South Ingram Slough Bridge: Mean peak responses with n modes normalized with ‘exact’ 
mean peak responses. 
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Figure 3.39: Penstock Bridge: Mean peak responses along the deck. 
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Figure 3.40: Penstock Bridge: Normalized mean peak responses with respect to the case of uniform 

excitation. 
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Figure 3.41: Penstock Bridge: Mean peak pseudo-static responses along the deck.  
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Figure 3.42: Penstock Bridge: Relative pseudo-static contributions to mean peak responses. 
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Middle of span 2 

 

Left end of span 3 

 

Figure 3.43: Penstock Bridge: Modal contributions to dynamic component of mean peak responses.  
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Middle of span 2 

 

Left end of span 3 

 

Figure 3.44: Penstock Bridge: Mean peak responses with n modes normalized with ‘exact’ mean peak 
responses. 
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Middle of span 3: case 2 

 

Middle of span 3: case 3 

 

Figure 3.45: Auburn Ravine Bridge: Comparison of original and extended MSRS rules (middle of span 
3). 
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Left end of span 4: case 2 

 

Left end of span 4: case 3 

 

Figure 3.46: Auburn Ravine Bridge: Comparison of original and extended MSRS rules (left end of span 
4). 
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Left end of span 2: case 2 

 

Left end of span 2: case 3 

 

Figure 3.47: Big Rock Wash Bridge: Comparison of original and extended MSRS rules (left end of span 
2). 
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Middle of span 2: case 2 

 

Middle of span 2: case 3 

 

Figure 3.48: Big Rock Wash Bridge: Comparison of original and extended MSRS rules (middle of span 
2). 
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Middle of span 1: case 2 

 

Middle of span 1: case 3 

 

Figure 3.49: South Ingram Slough Bridge: Comparison of original and extended MSRS rules (middle of 
span 1). 
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Left end of span 2: case 2 

 

Left end of span 2: case 3 

 

Figure 3.50: South Ingram Slough Bridge: Comparison of original and extended MSRS rules (left end of 
span 2). 
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Middle of span 2: case 2 

 

Middle of span 2: case 3 

 

Figure 3.51: Penstock Bridge: Comparison of original and extended MSRS rules (middle of span 2). 
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Left end of span 3: case 2 

 

Left end of span 3: case 3 

 

Figure 3.52: Penstock Bridge: Comparison of original and extended MSRS rules (left end of span 3). 
 

  

5 10
0.4
0.6
0.8

1
1.2

F x,
n/F

x

5 10
0.4
0.6
0.8

1
1.2

F y,
n/F

y

5 10
0.4
0.6
0.8

1
1.2

F z,
n/F

z

5 10
0.4
0.6
0.8

1
1.2

M
x,

n/M
x

n
5 10

0.4
0.6
0.8

1
1.2

M
y,

n/M
y

n
5 10

0.4
0.6
0.8

1
1.2

M
z,

n/M
z

n

 

 

original
extended

5 10
0.4
0.6
0.8

1
1.2

F x,
n/F

x

5 10
0.4
0.6
0.8

1
1.2

F y,
n/F

y

5 10
0.4
0.6
0.8

1
1.2

F z,
n/F

z

5 10
0.4
0.6
0.8

1
1.2

M
x,

n/M
x

n
5 10

0.4
0.6
0.8

1
1.2

M
y,

n/M
y

n
5 10

0.4
0.6
0.8

1
1.2

M
z,

n/M
z

n

 

 

original
extended



104 

 

 

Chapter 4 -  Simulation of spatial-
ly varying ground 
motions 

4.1    INTRODUCTION 

In Chapter 3 we investigated the effect of differential support motions on bridge response 
using the Multiple Support Response Spectrum (MSRS) method. A main disadvantage of the 
response spectrum method is that it cannot account for non-linear behavior, the evaluation 
of which is fundamental in performance-based earthquake engineering. One way to ac-
count for nonlinear behavior is to conduct response history analysis for specified time his-
tories of ground motions at support points of the structure. Since recordings of closely-
spaced earthquake ground motions are rare, non-linear response history analysis of mul-
tiply supported structures must rely on generation of synthetic ground motions consistent 
with a prescribed spatial variability model for the region of interest. Synthetic arrays of 
ground motions are also needed when performing statistical analysis of structural re-
sponse by the Monte Carlo simulation approach.  

Simulation of spatially varying ground motions is based on the notion of coherency func-
tion, which models the ground motion variability in the frequency domain, under the as-
sumption of stationarity. Simulation methods have been developed that use the coherency 
function in conjunction with theoretical target power spectral density functions. The result-
ing simulated stationary motions are then modulated in time to provide temporal non-
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stationarity. However, this approach cannot account for spectral non-stationarity of the 
ground motion, which can be critical in analysis of hysteretic structures. An alternative ap-
proach to simulation of an array of ground motions with specified coherency function is to 
use probabilistic conditioning with a target recorded or simulated motion at a reference 
site (Vanmarcke and Fenton, 1991; Kameda and Morikawa, 1992; Liao and Zerva, 2006). 
Segmenting in the time domain is used to preserve the non-stationary character of the 
ground motion. However, for an ensemble of arrays of ground motions generated by condi-
tioning on a given accelerogram, the ensemble variance tends to increase with increasing 
distance from the site of the given motion. This is clearly an undesirable property when 
performing statistical analysis of bridge response by Monte Carlo simulation. This issue is 
addressed in the current study by conditioning the simulated array of motions on the Pow-
er Spectral Density (PSD) of the segmented target accelerogram rather than its specific rea-
lization. Vanmarcke and Fenton (1991) used this approach to simulate accelerograms, but 
did not examine the physical compliance of the simulated motions, e.g., the requirement 
that the velocity and displacement time series have zero residuals.  

Previous works on conditional simulation of ground motions have been limited to the case 
of uniform soil conditions. However, variations in local soil profiles can significantly contri-
bute to the spatial variability of ground motions and, therefore, influence the response of 
multiply supported structures. By incorporating the site effect, the present work provides 
an important extension of the previously developed methods of conditional simulation. 

This chapter begins by revisiting the theory of modeling ground motions using Gaussian 
processes. Following an overview of the conditional simulation method for stationary 
processes, the extension of the method to account for non-stationarity and varying soil 
conditions is described. In an example application, we simulate support motions for an ex-
isting bridge in California for both cases of uniform and variable soil conditions. The appli-
cation presents support motions generated by conditioning on a given segmented PSD and 
support motions generated by conditioning on a given record. The selection of various pa-
rameters involved in the simulation methods and their effect on the characteristics of the 
generated motions are discussed. To assess these methods, we compare statistical proper-
ties of the simulated motions from a sample of realizations with the corresponding target 
properties, as defined by theoretical models. The response spectra of the simulated mo-
tions are also examined, since they are quantities of particular interest in engineering prac-
tice.    

4.2    DISCRETE REPRESENTATION OF AN ARRAY OF STATIONARY GAUSSIAN 
PROCESSES 

Consider an array of zero-mean, jointly stationary Gaussian acceleration processes at  
sites on the ground defined by auto-PSDs , , and cross-PSDs , 

, . For each process, let  be the number of discrete observations sam-
pled at equal time intervals . We denote the corresponding time instants , 
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. To simplify the algebra, hereafter, we consider the case where  is even, 
but the analysis can be easily extended to the case when  is odd (see, e.g., Anderson, 
1971). It is well known that such an array of processes can be represented in terms of the 
finite Fourier series (see, e.g., Chatfield, 2004) 

 (4.1)  

in which  and  are the Fourier coefficients. We note that the above re-
presentation uses  parameters to describe  observations and, thus, can be made to ex-
actly fit the given realizations. 

The Fourier coefficients, , are zero-mean, jointly Gaussian random variables that 
are uncorrelated for different frequencies, i.e.  for 

. At frequency , the following relations hold: 

 
(4.2)  

 

in which . Thus, given the auto- and cross-PSDs, the variance/covariances of 
all Fourier coefficients can be determined. 

The cross-PSD between the acceleration processes at sites and  is related to the corres-
ponding auto-PSDs through the relation 

 (4.3)  

in which  is the coherency function, which is described in Section 2.2.3 of Chapter 2. 

4.3    ESTIMATION OF STATISTICAL PROPERTIES OF GIVEN REALIZATIONS 

Let ,  represent a realization of the ground acceleration process at location 
. Using orthogonality properties of the trigonometric terms, the Fourier coefficients in 

Eqn. (4.1) are evaluated as (Chatfield, 2004) 

,     (4.4)  
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,     

An estimator of the auto-PSD of the acceleration process at this location is the periodo-
gram, given by the expression (Chatfield, 2004) 

 
(4.5)  

In order to obtain a consistent estimator,  may be smoothed along the frequency 
axis with one of the various techniques available in the literature (see, e.g., Chatfield, 2004).  
The smoothed values at the ends are obtained by treating the periodogram as symmetric 
about  and .  

For a given pair of realizations,  and , a consistent estimator of the cross-PSD of 
the corresponding processes is the smoothed cross-periodogram, . The real and im-
aginary parts of the cross-periodogram are determined through the relations (Chatfield, 
2004) 

 
(4.6)  

 

In order to obtain the smoothed values at the ends, the real and imaginary parts are treated 
as being symmetric and anti-symmetric, respectively, about  and .  

4.4    SIMULATION OF ARRAY OF STATIONARY GROUND MOTIONS WITH VARYING 
SITE EFFECTS 

Earthquake ground motions in general have non-stationary characteristics in both time 
and frequency domains. However, most ground motions can be approximated with tem-
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poral segments that are nearly stationary. (An exception is the case of near-fault ground 
motions that contain directivity pulses. In this chapter we specifically exclude considera-
tion of such ground motions. A separate study addresses near-fault ground motions with 
directivity pulse.) For this reason, the case of stationary processes is studied first.  

Since ground motions result from the super-positioning of waves randomly arriving at a 
site from intermittent ruptures at the earthquake source, on the basis of the Central Limit 
Theorem, it is reasonable to assume that the ground motion process is Gaussian. This as-
sumption may not be valid at a soft soil site under intense motion, where the soil behavior 
is non-linear. For this reason, we limit our study to sites with moderate to stiff soils, where 
the Gaussian assumption remains approximately valid. For soft sites, ground motions may 
be generated by first simulating Gaussian motions at the bedrock level and then propagat-
ing them to the surface by non-linear time-history analysis. 

Next, we present two methods for generating realizations of an array of stationary Gaus-
sian ground acceleration processes. These methods were named by Vanmarcke and Fenton 
(1991) as "unconditioned simulation" and "conditioned simulation" methods. In the un-
conditioned simulation method, the array of motions is consistent with the PSD of a ran-
dom realization of the process at a given site. In the conditioned simulation method, the ar-
ray of motions is conditioned on an observed accelerogram at a given site. The uncondi-
tioned simulation method has the advantage that the variability observed in an ensemble of 
realizations of the array is uniform over the array, whereas in the conditioned simulation 
method the variability increases with distance from the site of the observed motion. Uni-
form variability in the array of ground motions is essential when the synthetic motions are 
used for statistical analysis of the response of a multiply supported structure.  

4.4.1    Unconditioned simulation 

In this section, we consider the problem of simulating arrays of zero-mean stationary Gaus-
sian acceleration processes at locations with known site conditions and for a specified spa-
tial variability model, when a random realization of the array at one site is given. The site 
conditions are described through the FRFs of the corresponding soil-columns (see Section 
2.2.4) and the ground motion spatial variability is described through a coherency function. 
The problem involves simulation of Fourier coefficients at separate frequencies and loca-
tions. At each location, the simulated Fourier coefficients are substituted in Eqn. (4.1) to 
obtain the corresponding realization of the acceleration time-history. The sets of Fourier 
coefficients at each frequency are obtained by sampling from a joint Gaussian distribution, 
which is fully defined in terms of the auto-PSD of the given realization, the site FRFs and 
the coherency function.  

To elaborate, let us consider simulating zero-mean acceleration processes at locations 
 with specified site FRFs, , and consistent with a coherency function and a 

given realization at a site sampled at  points. Let  denote 
the set of Fourier coefficients at frequency  for the  sites and let   denote the 
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covariance matrix of these coefficients. We note that the covariance matrix fully 
defines the joint distribution of the zero-mean Gaussian vector . The elements  of 
this matrix are determined using Eqns. (4.2). The latter equations involve the auto-PSDs 

, , and the cross-PSDs, , , . To determine the 
auto-PSDs, first, we estimate the auto-PSD of the given realization through the (optionally 
smoothed) periodogram given in Eqn. (4.5). Employing the expression for the PSD of the 
surface ground motion described in Eqn. (2.24) (in Section 2.2.4), and assuming that the 
bedrock motion has the same spectral density at all sites, the auto-PSDs at two separate lo-
cations  and  are related through 

 (4.7)  

Using the above equation, the full set of auto-PSDs is determined in terms of the estimated 
auto-PSD of the given realization and the site FRFs. Eqn. (4.3) is then used to determine the 
full set of cross-PSDs in terms of the auto-PSDs and the coherency function. Once the cova-
riance matrix is determined, sample vectors from the -dimensional zero-mean joint 
Gaussian distribution are obtained as , where  is an upper triangular matrix 
such that  and  is a vector of  uncorrelated standard normal variables. We 
note that a computationally efficient and stable method to obtain  is to write it as 

, where  is the diagonal matrix of standard deviations and  is the Cholesky 
decomposition of the correlation matrix. After sampling at all frequencies , 

, Eqn. (4.1) is used to obtain the acceleration time-histories at the  sites. 
We note that at  the ground motions are fully coherent and the Fourier coefficients 
have the same values at all locations. Thus, at , we only need to sample from a 1-
dimensional zero-mean Gaussian distribution with variance . According to Eqns. 
(4.4) and (4.5) the periodogram has zero value at , but the auto-PSD estimate at zero 
frequency may have a small non-zero value due to smoothing. 

The implemented algorithm used for unconditioned simulation is summarized as follows: 

Algorithm 1:  Unconditioned simulation of an array of stationary spatially varying ground ac-
celerations 

1. Estimate the auto-PSD of the given realization in terms of the periodogram in Eqn. (4.5). 
Smoothing of the periodogram is optional. 

2. Use Eqn. (4.7) to evaluate the auto-PSDs at all sites in terms of the respective soil col-
umn FRFs. 

3. Use Eqn. (4.3) to evaluate cross-PSDs for all pairs of sites in terms of the auto-PSDs and 
the coherency function. 

4. Repeat the following steps for each frequency , : 
a. Evaluate the elements of the covariance matrix , using Eqns (4.2) and the es-

timated auto- and cross-PSDs.  
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b. Simulate the -dimensional vector of Fourier coefficients by sampling from the 
zero-mean joint Gaussian distribution defined by the covariance matrix obtained 
in step 4a.  

For , sample from a 1-dimensional Gaussian distribution with variance 
, since at  the Fourier coefficients have identical values at all loca-

tions.   
5. For each of the sites , use Eqn. (4.1) to obtain the corresponding realization 

of the acceleration time-history. 

4.4.2    Conditioned simulation 

Consider now the case where the realization of the ground motion at one or more sites is 
given, and acceleration time histories at other sites that are consistent with a prescribed 
coherency function need to be generated. As in the case of unconditioned simulation, we 
assume that the site characteristics at all locations are described through the site FRFs. In 
this case, the Fourier coefficients of the acceleration processes at the target locations are 
sampled from a joint Gaussian distribution derived by probabilistic conditioning. 

Adopting the notation of the previous section, we consider the set of zero-mean Fourier 
coefficients  at frequency  for all  sites, and the 

covariance matrix  of these coefficients. We partition  into two subsets, 
,  and , 

where  are the sites with known ground motions. It is well known that the con-
ditional distribution of  given  is jointly normal with mean 

 (4.8)  

and covariance matrix 

 (4.9)  

where  denotes the sub-matrix of  giving the covariance of vectors  and .  

In this study, we only consider the case where the acceleration process at location  is 
specified at  points in time and conditioned acceleration time-histories are simulated for 
locations . The -dimensional joint Gaussian distribution of the Fourier 
coefficients for the target locations is defined through the mean vector and cova-
riance matrix in Eqns. (4.8) and (4.9), respectively. In these equations,  is 
the set of Fourier coefficients of the given realization determined from Eqns. (4.4). The co-
variance matrix , is obtained as described in Section 4.4.1, i.e., using Steps 1-4a of Algo-
rithm 1. At each frequency, , , a sample-set of Fourier coefficients for 
the target locations is obtained as  , where  is an upper triangular 
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matrix such that  and  is a vector of  uncorrelated standard 
normal variables. As in the previous section, , where  is the diagonal matrix of 
standard deviations and  is the Cholesky decomposition of the correlation matrix. We 
note that sampling is not required for , because at  the ground motions are ful-
ly coherent and the Fourier coefficients have the same values at all locations. (If one is giv-
en time-histories at more than one location, Eqns (4.4) and (4.6) indicate that they auto-
matically satisfy this condition as long as their temporal averages are zero.) After the vec-
tors   at all frequencies are obtained, Eqn. (4.1) is used to assemble the realizations of 
acceleration time-histories at the target locations.  

The implemented algorithm used for conditioned simulation is summarized as follows: 

Algorithm 2:  Conditioned simulation of an array of stationary spatially varying ground acce-
lerations 

1. Estimate the auto-PSD of the given realization in terms of the periodogram in Eqn. (4.5). 
Smoothing of the periodogram is optional. 

2. Use Eqn. (4.7) to evaluate the auto-PSDs at all sites in terms of their respective soil col-
umn FRFs. 

3. Use Eqn. (4.3) to evaluate cross-PSDs for all pairs of sites in terms of the auto-PSDs and 
the coherency function. 

4. Repeat the following steps for each frequency , : 
a. Evaluate the elements of the covariance matrix  using Eqns (4.2) and the es-

timated auto- and cross-PSDs.  
b. Determine the Fourier coefficients of the given realization at site  using 

Equation (4.4). 
c. Using Eqns. (4.8) and (4.9), determine the conditional mean vector and cova-

riance matrix of the Fourier coefficients at locations . 
d. Simulate a -dimensional vector of conditioned Fourier coefficients by 

sampling from a joint Gaussian distribution with the mean and covariance de-
termined in step 4c. 

For , only apply step 4b, since at   the Fourier coefficients have identical 
values at all locations.  

5. For each of the sites , use Eqn. (4.1) to obtain the corresponding realization 
of the acceleration time-history. 

4.5    EXTENSION TO NON-STATIONARY MOTIONS 

In Section 4.4, we developed a method for simulating stationary ground motions consistent 
with a given accelerogram or the PSD of a given accelerogram, and for a prescribed spatial 
variability model and specified site conditions. The methods described were based on the 
assumption of stationarity, which is unrealistic for earthquake motions. However, typical 
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earthquake ground motions that do not contain a directivity pulse can be seen as consisting 
of nearly-stationary segments. Each segment can then be treated as a stationary process in 
the manner described in the preceding section. Vanmarcke and Fenton (1991) used an ar-
bitrary division of a given accelerogram into stationary segments to simulate non-
stationary acceleration time-histories. Liao and Zerva (2006) further investigated the prob-
lem of conditioned simulation with segmentation and incorporated necessary post-
processing to obtain physically compliant motions. 

In this study, the original accelerogram is divided into segments that maintain nearly time-
invariant statistical characteristics. The characteristics considered are the variance, the 
predominant frequency and the bandwidth of the ground acceleration process. Following 
the work of Rezaeian and Der Kiureghian (2008), instantaneous values of these characte-
ristics are respectively measured as the slopes of the integral of the squared acceleration in 
time, the cumulative count of zero-level up-crossings, and the cumulative count of negative 
maxima or positive minima. As an illustrative example, consider the fault normal compo-
nent of the Izmit record of the 1999 Kocaeli earthquake. Figure 4.1 shows the correspond-
ing acceleration time history and the evolving integral measures of the variance, the pre-
dominant frequency and the bandwidth, respectively denoted ,  and . The vertical 
dashed lines demarcate the segments where the slopes of all three curves are more or less 
constant and, hence, the process can be considered nearly stationary. Although the afore-
mentioned measures provide guidance, selection of the segment bounds ultimately in-
volves some judgment. It is important to note that a denser segmentation leads to a more 
accurate representation of the non-stationary nature and the high-frequency content of the 
original record, but alters the low-frequency content of the motion to a larger extent.  

In the following, we employ the concept of segmentation to extend the simulation methods 
described in Section 4.4 to non-stationary motions. 

4.5.1    Unconditioned simulation 

The basic idea of the non-stationary extension of the unconditioned simulation method is 
to apply the algorithm in Section 4.4.1 to each "stationary" segment of the given accelero-
gram and then, for each location, assemble the entire realization by joining together the 
corresponding simulated time-history segments. To avoid shifting the segments for differ-
ent sites, the wave-passage effect is separately applied as a deterministic time-shift on the 
entire realization. Further details on the implementation of the method are described be-
low. 

Following the segmentation of the given accelerogram, both ends of each segment are ta-
pered with appropriate functions to avoid introducing fake high-frequency components in 
the Fourier series. In this study, the tapering is done with cosine-type functions that evolve 
from  to  at the left end and from  to  at the right end.  Each tapered segment is used as 
the given realization for the unconditioned simulation of acceleration segments at all loca-
tions, employing Algorithm 1 in Section 4.4.1, but without the wave-passage effect in the 
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coherency function. The simulated time-history segments extend beyond the time window 
defined by the original segment by 1-5% of the latter on each side. The overlapping regions 
of neighboring segments are then combined using cosine weighting functions. To account 
for the wave-passage effect, the resulting accelerograms are shifted in time by , 
where  is the horizontal projection of the distance of the relevant station from the loca-
tion with  along the direction of propagation of waves and  is the apparent wave 
velocity. Finally, the shifted accelerograms are further processed following standard tech-
niques in earthquake engineering (e.g., Boore et al, 2002; Liao and Zerva, 2006). In this 
study, the post-processing involves subtracting the mean value of the entire acceleration 
time history, application of a short cosine taper function to set the initial value to zero and, 
finally, application of a high-pass filter to ensure zero residual velocity and displacement 
values at the end of the record. The filter selected herein is the critically-damped oscillator 
described by the equation 

 (4.10)  

where  is the selected corner frequency of the filter and  and  are the input (un-
filtered) and output (filtered) acceleration time-histories, respectively. The resulting acce-
leration time-histories are integrated to obtain the corresponding realizations of velocity 
and displacement time histories. 

The steps involved in the non-stationary extension of the unconditioned simulation method 
are summarized in the following algorithm. 

Algorithm 3: Unconditioned simulation of array of non-stationary spatially varying ground 
accelerations 

1. Apply segmentation of the given accelerogram. Slopes of the integral of squared accele-
ration, the cumulative count of zero-level up-crossings, and the cumulative count of 
negative maxima and positive minima may be used to guide the selection of the seg-
ment boundaries.  

2. Repeat steps 2a-2b for each segment: 
a. Taper both ends of the segment with cosine-type functions. 
b. Apply Algorithm 1 in Section 4.4.1 to simulate acceleration time-histories at lo-

cations  for a time window that extends beyond the time-window of 
the original segment by 1-5% of the latter on each side. Disregard the wave-
passage component of the coherency function for this analysis. 

3. Join the simulated time-histories in step 2 using cosine-type weighting functions over 
the extended overlapping intervals. 

4. Make deterministic time-shift of the simulated time-histories at locations  by 
, where  is the horizontal projection of the distance of the relevant station 

from the location with  along the direction of propagation of waves and  is the 
apparent wave velocity, to account for the wave-passage effect. 

5. Repeat steps 5a-5d for each location: 
a. Subtract the mean of the entire acceleration time-history. 
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b. Apply a cosine-type taper function to set the initial value to zero. 
c. Apply a high-pass filter (e.g., the critically-damped oscillator) to enforce zero re-

sidual velocity and displacement values.  
d. Integrate the filtered accelerograms to obtain corresponding velocity and dis-

placement time-histories. 

4.5.2    Conditioned simulation 

The non-stationary extension for the conditioned simulation is performed with an algo-
rithm similar to Algorithm 3 in Section 4.5.1, in which the first sentence in step 2b is mod-
ified to read:  

"Apply Algorithm 2 in Section 4.4.2 to simulate acceleration time-histories at locations 
 for a time window that extends beyond the time-window of the original 

segment by 1-5% of the latter on each side."  

To obtain a consistent set of ground motions, the given acceleration time history at location 
1 must be slightly modified. Specifically, we join together tapered segments of the accelero-
gram and perform post-processing in a manner identical to the simulated motions. The re-
sulting simulated motion at location 1 does not have any random characteristics but is 
slightly different from the given record. 

The segmentation and post-processing mainly influence the low-frequency content of the 
motion, which is more apparent in the displacement waveform. As a result, the displace-
ment time history of the original record can differ somewhat from the simulated displace-
ment time history at zero distance. If accurate representation of the displacement time his-
tory of the original record is important, the following alternative procedure can be applied: 
(a) Separate the low-frequency content of the original record, e.g., by use of a high-pass fil-
ter and subtracting from the original record; (b) generate conditioned non-stationary simu-
lations using the remaining motion; (c) assuming the low-frequency contents at different 
sites are perfectly coherent,  add it back to the simulated time-histories after it has been 
deterministically modified to account for the wave-passage effect and, optionally, for the 
site-response effect. More details are given below.   

Two different filters are investigated in this study for the separation of the low-frequency 
content of a given accelerogram: a 4th

Figure 4.1

-order causal Butterworth filter (see e.g., Rabiner and 
Gold, 1975) and the critically damped SDOF oscillator in Eqn. (4.10), both having a corner 
frequency of . To investigate criteria for the choice of the initial filter, we 
consider again the Izmit record shown in . Figure 4.2 compares the original dis-
placement time history with the simulated ones at zero distance for the two choices of the 
initial filter. The differences between the simulated time histories and the original one are 
due to the segmentation, the tapering and subsequent joining of the segments, and the 
post-processing of the resulting time-history. For the two filters, the left graph of Figure 4.3 
compares the ratio of the PSD of the remainder motion (after extracting the low-frequency 
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content) over the PSD of the initial accelerogram. Ideally, this ratio should be close to a 
step-function that evolves from  to  at the corner frequency . The right graph of Figure 
4.3 compares the corresponding acceleration auto-PSDs of the separated low-frequency 
components. It is evident from Figure 4.2 that the critically damped oscillator is a more 
suitable filter in terms of preserving the initial displacement time-history. However, as in-
dicated in Figure 4.3, the Butterworth filter has the advantage of leaving less high-
frequency power in the separated "coherent" component. Thus, the choice of filter depends 
on the criterion that is more important in the specific analysis: preserving the initial dis-
placement waveform or excluding high-frequency power from the remainder motion.  

As stated earlier, the low-frequency separated component of the motion is assumed to be 
perfectly coherent. This is reasonable since long period waves are less affected by hetero-
geneity of the ground medium. Thus, when uniform soil conditions are considered, it is only 
necessary to shift the separated waveform in time to account for the wave-passage effect 
and then add it back to the simulated time-histories at all sites. When varying soil condi-
tions are present, the low-frequency separated waveform may need to be further modified. 
We suggest two approaches. In the first approach, one assumes that, for small frequencies, 
the site FRFs have values close to unity, i.e., the soil columns do not alter the low-frequency 
component of the ground motion. In that case no further modification of the low-frequency 
component is necessary. In the second approach, we additionally account for the site-
response effect by applying a filter on the low-frequency component. The filter is applied in 
the frequency domain and only the steady-state response is considered; thus, it is fully de-
scribed in terms of its FRF. The latter is given by the ratio of the FRF of the soil-column at 
the target site over the FRF of the soil-column at location . This filtering models an 
inverse propagation of the low-frequency component through the soil-column at location 

 to obtain the motion at the bedrock level and propagation of the latter to the ground 
surface at the location of the target site. The filter is applied to the Fourier transform of the 
low-frequency component, which is then transformed back to time domain and shifted in 
time to account for the wave passage effect. 

The steps involved in the non-stationary extension of the conditioned simulation method, 
as described above, are summarized in the following algorithm. 

Algorithm 4: Conditioned simulation of non-stationary spatially varying ground accelerations 
with deterministic treatment of the low-frequency content 

1. Separate the low frequency content using a 4th

2. Apply segmentation of the remaining acceleration time-history. Slopes of the integral of 
squared acceleration, the cumulative count of zero-level up-crossings, and the cumula-
tive count of negative maxima and positive minima may be used to guide the selection 
of the segment boundaries. 

-order causal Buterworth filter or a criti-
cally damped SDOF oscillator.  

3. Repeat steps 3a-3b for each segment: 
a. Taper both ends of the segment with cosine-type functions. 
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b. Apply Algorithm 2 in Section 4.4.2 to simulate acceleration time histories at loca-
tions  for a time window that extends beyond the time-window of the 
original segment by 1-5% of the latter on each side. Disregard the wave-passage 
component of the coherency function for this analysis. 

4. Join the simulated time-histories in step 3 using cosine-type weighting functions over 
the extended overlapping intervals. 

5. Make deterministic time-shift of the simulated time-histories at locations  ac-
cording to the formula   to account for the wave-passage effect. 

6. Repeat steps 6a-6f for each location: 
a. Subtract the mean of the entire acceleration time history. 
b. Apply a cosine-type taper function to set the initial value to zero. 
c. Apply a high-pass filter (e.g., the critically-damped oscillator) to enforce zero re-

sidual velocity and displacement values.  
d. Make deterministic time-shift of the separated low-frequency component to ac-

count for the wave-passage effect and optionally, apply an additional filter to ac-
count for the site effect. 

e.  Add back the modified low-frequency component. 
f. Integrate the resulting accelerograms to obtain corresponding velocity and dis-

placement time-histories. 

4.6    EXAMPLE APPLICATIONS 

As an example application, we simulate support motions for the Penstock Bridge, described 
in Section 3.2.4. The elevation of the bridge is shown in Figure 3.10. We consider abutment 
1 to be the location corresponding to site . The Izmit record, introduced in the analy-
sis of Section 4.5, is used as the original motion for the simulation of unconditioned and 
conditioned support motions. The segments considered stationary are the ones shown in 
Figure 4.1. We assume that the waves propagate in the direction from abutment 1 to abut-
ment 5. The incoherence is modeled as in Eqn. (2.19) with the parameter values  
and . The time-lag caused by the wave-passage effect is determined using 

. We examine both cases of uniform and varying soil conditions. 

4.6.1    Uniform soil conditions 

In this section, we generate sets of support motions under the assumption that soil condi-
tions at all sites are identical with those at the site of the given record. We analyze sets of 
motions simulated with the unconditioned and the conditioned methods. Unless stated 
otherwise, the non-smoothed periodogram of each stationary segment is used. In the con-
ditioned method, we examine both cases of no initial filtering and initial filtering to sepa-
rate the low-frequency content. Based on the analysis in Section 4.5, only the 4th order 
causal Butterworth filter is used for this purpose. To validate the simulation method, we 
compare the coherency estimates from the simulated motions with the corresponding 
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theoretical models. The coherency estimates are obtained by averaging the estimates from 
20 realizations, where the estimate for each realization is obtained by dividing the cross-
PSD estimate from Eqns. (4.6) by the square roots of the corresponding auto-PSDs esti-
mated from Eqns. (4.5). Although the time histories have been generated in segments, the 
entire realizations are used in the above equations. An 11-point Hamming window is ap-
plied to smooth the periodograms and cross-periodograms in evaluating the coherency es-
timates. The response spectra of the simulated motions are also examined. 

Unconditioned simulations 

An example set of unconditioned simulations of the support motions is shown in Figure 4.4. 
Acceleration, velocity and displacement time histories for all support points are shown. The 
corner frequency of the post-processing filter used is . Observe that the simula-
tion method preserves the non-stationary nature of the ground motion, and that all records 
approach zero with increasing time (i.e., have zero residuals). The wave passage effect is 
clearly visible. Figure 4.5 and Figure 4.6 compare coherency estimates of the simulated 
support accelerations and displacements, respectively, with the corresponding theoretical 
models. Two example support pairs are considered: bents 3 and 4, and abutments 1 and 5. 
We note that, according to the theory of stationary processes, the coherency function for a 
process must be invariant of differentiation. Hence, the theoretical coherency models for 
accelerations and displacements in the two figures are the same. For the acceleration time-
histories, the coherency estimates are in excellent agreement with the theoretical models 
over the entire range of frequencies shown in Figure 4.5. For the displacement time-
histories, the coherency estimates diverge from the theoretical models for frequencies 
greater than about 2.5Hz. However, this is inconsequential, since the auto-PSDs of the cor-
responding displacement processes are practically zero for these frequencies. Figure 4.7 
shows 5% damped pseudo-acceleration response spectra for 20 realizations at each sup-
port point. It is clear that the variances at all support points are similar, a desirable charac-
teristic for ground motions to be used in statistical analyses of bridge response under diffe-
rential support motions. Figure 4.8 shows the corresponding median spectra of the five 
support points, which are in excellent agreement over the entire frequency range consi-
dered. Compared with the spectrum of the recorded motion, which should be regarded as 
just one realization of the underlying random process, the median response spectra of the 
simulated motions are smoother and have slightly smaller values in the lower frequency 
range. Even smoother median response spectra are obtained by using smoothed periodo-
grams of the stationary segments.  The smoothed periodograms tend to have more power 
than the non-smoothed ones at frequencies close to zero. This results in larger variances 
for the low-frequency components of the simulated motions compared to the case with no 
smoothing and, thus, a higher level of post-processing is required to enforce zero velocity 
and displacement residuals in about the same time length. Figure 4.9 shows the median 5% 
damped pseudo-acceleration response spectra when the periodograms are smoothed with 
a 7-point Hamming window. A filter with a corner frequency  of was used for the 
post-processing of the corresponding simulations. 
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 Conditioned simulations 

Next, we examine support motions generated with the conditioned simulation method. We 
first consider the case of simulation without separation of the low-frequency content. (The 
corresponding algorithm is described at the beginning of Section 4.5.2). In this case, for all 
sets of simulations, the motion at abutment 1 is the same and the displacement time history 
is identical with that shown as a dashed line in the upper chart of Figure 4.2. Figure 4.10 
shows an example set of simulations for this case. Note again the non-stationary nature of 
the motions, the zero velocity and displacement residuals, and the time shift due to the 
wave-passage effect. The coherency estimates for accelerations and displacements for the 
selected pairs of support motions are compared with the corresponding theoretical models 
in Figure 4.11 and Figure 4.12, respectively. Again, the acceleration coherency estimates 
are in excellent agreement with the corresponding theoretical models, while the displace-
ment estimates diverge for frequencies greater than about 3Hz. Figure 4.13 shows 5% 
damped pseudo-acceleration response spectra of 20 realizations at each support. We ob-
serve increasing variance of the spectral amplitudes with increasing distance from location 

 (abutment 1), at which the variance is zero. This inconsistent variability of the sup-
port motions obviously is problematic if the simulations are to be used for statistical analy-
sis of structural response. The median response spectra for the conditioned simulations, 
shown in Figure 4.14, are jagged and closely follow the response spectrum of the recorded 
motion, except for a range of frequencies close to the corner frequency of the post-
processing filter, which is taken as  for the present case. A lower level of filtering 
is required in this case, since the conditioned simulation results in smaller variations over 
the array than in the unconditioned case. The jagged behavior is, of course, due to the small 
variance of the simulated motions for locations close to the site with the specified accelero-
gram. 

Next, we examine conditioned simulations with deterministic treatment of the low-
frequency content, which is separated from the original motion with a 4th

Figure 4.15

 order causal But-
terworth filter. In this case, a lower level of filtering is required in the post-processing to 
ensure zero-residual velocities and displacements. The employed corner frequency for this 
case is . An example set of support motions (accelerations, velocities, dis-
placements) is shown in . The displacement time history at abutment 1, same in 
all simulations, is identical to that shown as a dashed line in the middle chart of Figure 4.2. 
Figure 4.16 and Figure 4.17 respectively compare the acceleration and displacement cohe-
rency estimates with the corresponding theoretical models for the selected pairs of sup-
ports. The acceleration coherency estimates are in excellent agreement with the theoretical 
models in the whole range of frequencies considered. The displacement coherency esti-
mates are satisfactory for frequencies less than about 2Hz. This range of frequencies is 
smaller than that in the case of conditioned simulations without initial filtering (see Figure 
4.12), but is still inclusive of the important frequencies of the displacement processes. In 
Figure 4.18, we observe increasing variance of the acceleration response spectra of the si-
mulated motions with increasing distance from abutment 1, similar to that in Figure 4.13. 
Finally, Figure 4.19 shows the corresponding median acceleration response spectra, which 
are jagged and slightly diverge from the response spectrum of the original record for fre-
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quencies less than about 1Hz. We note that in this range of frequencies, the low-frequency 
separated component has significant power, as indicated by Figure 4.3. 

Concluding this section, we note that the decision to initially separate or not separate the 
low-frequency component of the motion depends on the relative importance of the target 
characteristics of the simulated motions, e.g., preserving the original displacement wave-
form, matching the target response spectrum and/or the coherency characteristics in a cer-
tain frequency range. 

4.6.2    Varying soil conditions 

In this section, we generate sets of support motions under the assumption of varying soil 
conditions. In modeling the soil profiles, we consider two approaches. In the first approach, 
each soil-column is modeled as a SDOF system using the FRF in Eqn. (2.23). In the second 
approach, each soil-column is modeled as a continuous elastic medium using the FRF in 
Eqn. (2.22). Again, we consider both cases of unconditioned and conditioned simulations, 
using Algorithms 3 and 4 in Sections 4.5.1 and 4.5.2, respectively. For the conditioned si-
mulations, we only examine the case with initial Butterworth filtering, i.e. we only examine 
conditioned simulations that preserve the original low-frequency content. In all cases, the 
unsmoothed periodogram is used in the simulation process. To validate these proposed 
methods, in addition to the coherency estimates, we examine ratios of acceleration auto-
PSD estimates for support points with different soil conditions. The latter are compared 
with the corresponding theoretical values, determined through the site FRFs, using Equa-
tion (4.7). The auto-PSD estimates are obtained by averaging the periodograms of 20 reali-
zations, each smoothed with an 11-point Hamming window.   

4.6.2.1    Modeling the soil columns using the SDOF idealization 

Description of the site FRF by the SDPF model in Eqn. (2.23) requires specification of the 
soil-column frequency, , and damping ratio, . At abutment 1, we assume that the site 
conditions are identical to those at the site of the given record.  To determine the frequency 
and damping ratio of the soil-column at this location ( , we employ the method de-
scribed in Section 2.2.4, i.e., we assume a white-noise excitation at the bedrock level and fit 
the theoretical PSD of the acceleration response at the ground surface to the smoothed pe-
riodogram of the record. Non-linear least-squares minimization with MATLAB results in 

 and , when the periodogram of the record is smoothed with a 41-
point Hamming window. Comparison of the acceleration auto-PSD estimate (smoothed pe-
riodogram) of the recorded motion and the fitted theoretical model is shown in Figure 4.20. 
A higher-level of smoothing of the periodogram results in a higher damping value, but val-
ues larger than  are not typically used (Zembaty and Rutenberg, 2002). For the other 
support points, the selected frequencies and damping ratios of the soil-columns are listed 
in Table 4.1. Note that identical soil conditions have been assumed for abutments 1 and 5 
and for bents 2 and 4. 
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Unconditioned simulations 

Figure 4.21 shows an example set of realizations of the support motions obtained with the 
unconditioned simulation method. Acceleration, velocity and displacement time-histories 
at all support points are shown. The motions in each pair of abutments 1 and 5 and of bents 
3 and 4 differ only due to the incoherence and wave passage effects, and thus, have the 
same spectral contents. For any other pair of support motions, the variability is due to in-
coherence, wave-passage and, additionally, the effect of differential site response. The lat-
ter effect also causes variations in the frequency contents of the motions, e.g., supports lo-
cated on softer soils are richer in lower frequency components. The differences in frequen-
cy contents are more apparent in the acceleration time histories than in the velocity and 
displacement time histories. This is because different soil FRFs differ more strongly at high 
frequencies. In Figure 4.22 and Figure 4.23 we examine the coherency characteristics and 
the acceleration auto-PSD ratios for two example support pairs, each pair consisting of 
support points with dissimilar soil conditions. These are the pair of abutment 1 and bent 3 
and the pair of bent 3 and bent 4. Excellent agreement of the estimates with the theoretical 
values validates the simulation method. Figure 4.24 shows the median 5% damped pseudo-
acceleration response spectra of 20 simulations. Response spectra at sites with similar soil 
conditions, i.e. for abutments 1 and 5 and for bents 2 and 4, are in excellent agreement.  

Conditioned simulations 

Next, we present a similar analysis with the method of conditioned simulation with separa-
tion of the low-frequency content with a Butterworth filter and modification of the low-
frequency component to account for the wave-passage effect only (see step 6d of Algorithm 
4 Section 4.5.2). Figure 4.25 shows an example set of simulations. In all simulated arrays, 
the displacement at abutment 1 is identical with the dashed line in the middle chart of Fig-
ure 4.2. Figure 4.26 and Figure 4.27 show the estimates of the acceleration coherency and 
ratio of acceleration PSDs, respectively. These estimates are in good agreement with the 
theoretical models. Figure 4.28 shows the corresponding median pseudo-acceleration re-
sponse spectra. It can be seen that sites with similar soil conditions have nearly identical 
median response spectra.  

Next we apply modification of the extracted low-frequency component for both the wave-
passage and the site-response effects. The coherency estimates and ratios of auto-PSDs for 
this case are shown in Figure 4.29 and Figure 4.30, respectively. Comparison of Figure 4.26 
with Figure 4.29 and of Figure 4.27 with Figure 4.30 indicates that the modification of the 
separated low-frequency component to account for the site response effect degrades the 
agreement with the theoretical results. We suspect that the assumption of steady-state re-
sponse for the low-frequency component of the motion, which is implicit in the frequency-
domain modification, introduces an error. On the other hand, the close agreements ob-
served in Figure 4.26 and Figure 4.27 suggest that the effect of site response on the low-
frequency component of the motion is insignificant and can be neglected.  
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4.6.2.2    Modeling the soil columns using the theory of wave propagation through elas-
tic media 

We now consider the case where the FRF of each soil-column is given by Eqn. (2.22). With 
this model, the site characteristics at the th location are fully described in terms of the 
damping ratio, , the depth to bedrock, , the shear-wave velocity, , and the reflection 
coefficient, . Assuming the typical values  for the shear-wave velocity and 

 for the density at the bedrock level, evaluation of the reflection coefficient 
only requires additional specification of the soil-column density, . Again, we assume 
that the site conditions at abutment 1 are identical to those at the site of the given record. 
The shear-wave velocity for the Izmit record is known, . The depth to bedrock, 

, is selected such that the first resonant frequency of the soil-layer coincides with the fre-
quency of the site under the SDOF idealization in Section 4.6.2.1. Assuming the bedrock is 
horizontal, the values of  at the other support points are selected such that the variation 
of the depths of the soil-layers is consistent with the (known) variation of the elevations of 
the bridge supports. The value of  at each support is then determined so that the first 
resonant frequency matches the corresponding frequency considered in Section 4.6.2.1. 
Finally, typical values are selected for the soil-column densities . Parameter values that 
describe the site characteristics at all support points for this model are listed in Table 4.2. 

Unconditioned simulations 

For the unconditioned simulation method, an example set of support motions is shown in 
Figure 4.31. Figure 4.32 and Figure 4.33 validate the method by examining the coherency 
characteristics and auto-PSDs ratios, respectively, and Figure 4.34 shows the median pseu-
do-acceleration response spectra. Observe that because of the multi-modal site effect, the 
coherency function is a lot more complicated than in the case with a SDOF idealization of 
the soil column. Comparisons with the theoretical models again confirm validity of the si-
mulation method. 

Conditioned simulations 

Here we only consider the case of conditioned simulation with initial Butterworth filtering 
and only the wave-passage effect accounted for in the deterministic modification of the 
low-frequency component. Figure 4.35 shows an example set of simulations, Figure 4.36 
examines the coherency estimates, Figure 4.37 examines the acceleration auto-PSDs ratios 
and Figure 4.38 presents the median pseudo-acceleration response spectra. Once again the 
results confirm validity of the simulation approach. The reader must, however, recall that 
this conditioned simulation will yield realizations with non-uniform variance for different 
sites. 
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4.7    SUMMARY 

In this chapter, we developed methods for simulating an array of non-stationary differen-
tial support motions by probabilistic conditioning. Non-stationarity is achieved by consi-
dering the process as composed of stationary segments. The arrays of simulated motions 
properly account for the effects of incoherence, wave passage and spatially varying soil 
conditions. We considered two approaches: In the first, we simulated support motions cha-
racterized by uniform variance with distance by conditioning on a specified set of PSDs, 
which are obtained as the periodograms of "stationary" segments of a recorded motion. In 
the second, we simulated support motions characterized by increasing variance with dis-
tance, by conditioning on a specified realization. In the latter approach, we investigated a 
method that preserves the low-frequency content, and thus, the waveform of the displace-
ment time history of the original motion. The method involves deterministic treatment of 
the low-frequency content of the motion, which is extracted from the original motion 
through high-pass filtering. The simulation methods were validated by (i) examining the 
physical compliance of example simulated time histories, (ii) comparing statistical charac-
teristics of an ensemble of realizations with the corresponding target theoretical models, 
and (iii) investigating the response spectra of the simulated motions.  
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Table 4.1: Variation of soil-column properties for the SDOF model. 

 abutment 1 bent 2 bent 3 bent 4 abutment 5 
, rad/s 2.07 1.75 1.43 1.75 2.07 
ζ 0.6 k 0.5 0.4 0.5 0.6 

 

Table 4.2: Variation of soil-column properties for the elastic-medium model. 

 abutment 1 bent 2 bent 3 bent 4 abutment 5 
vs,k 811 , cm/s 556 459 584 835 

hk 98 , m 79 80 83 101 
ρs,k, g/cm 2.2 3 2 1.8 2.0 1.8 
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Figure 4.1: "Stationary" segments of an accelerogram selected based on integral measures of evolving 
cumulative energy, predominant frequency and bandwidth. 
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Figure 4.2: Comparison of displacement time history of the original record with conditioned simu-

lated displacement time histories at zero distance. 

 

  

Figure 4.3: Comparison of ratios of PSDs of the remainder motion over the original motion for two 
filters (left) and of acceleration auto-PSDs of the corresponding low-frequency extracted motions 

(right). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.4: Example set of unconditioned simulations (uniform soil conditions) 
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Accelerations at bent 3 and bent 4 

 
Accelerations at abutment 1 and abutment 5 

 
Figure 4.5: Acceleration coherency estimates from 20 unconditioned simulations (uniform soil condi-

tions). 
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Figure 4.6: Displacement coherency estimates from 20 unconditioned simulations (uniform soil con-

ditions). 
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Figure 4.7: Acceleration response spectra of 20 unconditioned simulations (uniform soil conditions). 
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Figure 4.8: Median acceleration response spectra of 20 unconditioned simulations  

(uniform soil conditions). 

 

 
Figure 4.9: Median acceleration response spectra of 20 unconditioned simulations using smoothed 

periodograms (uniform soil conditions). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.10: Example set of conditioned simulations without initial filtering (uniform soil conditions). 
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Accelerations at bent 3 and bent 4 

 

Accelerations at abutment 1 and abutment 5 

 
Figure 4.11: Acceleration coherency estimates from 20 conditioned simulations without initial filter-

ing (uniform soil conditions). 
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Figure 4.12: Displacement coherency estimates from 20 conditioned simulations without initial filter-

ing (uniform soil conditions). 
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Figure 4.13: Acceleration response spectra of 20 conditioned simulations without initial filtering (uni-
form soil conditions). 
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Figure 4.14: Median acceleration response spectra of 20 conditioned simulations without initial filter-

ing (uniform soil conditions). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.15: Example set of conditioned simulations with initial Butterworth filtering (uniform soil 

conditions). 
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Accelerations at bent 3 and bent 4 

 

Accelerations at abutment 1 and abutment 5 

 
Figure 4.16: Acceleration coherency estimates from 20 conditioned simulations with initial Butter-

worth filtering (uniform soil conditions). 

 
Displacements at bent 3 and bent 4 

 

Displacements at abutment 1 and abutment 5 

 
Figure 4.17: Displacement coherency estimates from 20 conditioned simulations with initial Butter-

worth filtering (uniform soil conditions). 
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Figure 4.18: Acceleration response spectra of 20 conditioned simulations with initial Butterworth fil-
tering (uniform soil conditions). 
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Figure 4.19: Median acceleration response spectra of 20 conditioned simulations with initial Butter-

worth filtering (uniform soil conditions). 
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Figure 4.20: Comparison of the PSD of the recorded motion and the fitted theoretical model under the 

SDOF idealization. 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.21: Example set of unconditioned simulations (varying soil conditions: SDOF model). 
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Accelerations at abutment 1 and bent 3 

 

Accelerations at bent 3 and bent 4 

 
Figure 4.22: Acceleration coherency estimates from 20 unconditioned simulations (varying soil condi-

tions: SDOF model). 

 

  
Figure 4.23: Ratios of estimated acceleration auto-PSDs  from 20 unconditioned simulations (varying 

soil conditions: SDOF model). 
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Figure 4.24: Median acceleration response spectra of 20 unconditioned simulations (varying soil con-

ditions: SDOF model). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 

Figure 4.25: Example set of conditioned simulations with initial Butterworth filtering (varying soil 
conditions: SDOF model, only wave passage accounted for in low-frequency component). 
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Accelerations at abutment 1 and bent 3 

 

Accelerations at bent 3 and bent 4 

 
Figure 4.26: Acceleration coherency estimates from 20 conditioned simulations with initial Butter-

worth filtering (varying soil conditions: SDOF model, only wave passage accounted for in low-
frequency component). 

 

  
Figure 4.27: Ratios of estimated acceleration auto-PSDs from 20 conditioned simulations with initial 
Butterworth filtering (varying soil conditions: SDOF model, only wave passage accounted for in low-

frequency component). 
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Figure 4.28: Median acceleration response spectra of 20 conditioned simulations with initial Butter-

worth filtering (varying soil conditions: SDOF model, only wave passage accounted for in low-
frequency component). 
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Accelerations at abutment 1 and bent 3 

 

Accelerations at bent 3 and bent 4 

 
Figure 4.29: Acceleration coherency estimates from 20 conditioned simulations with initial Butter-
worth filtering (varying soil conditions: SDOF model, wave passage and site effect accounted for in 

low-frequency component). 

 

  
Figure 4.30: Ratios of estimated acceleration auto-PSDs from 20 simulations with initial Butterworth 

filtering (varying soil conditions: SDOF oscillator model, wave-passage and site effect accounted for in 
low-frequency component). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.31: Example set of unconditioned simulations (varying soil conditions: elastic-medium mod-

el). 
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Accelerations at abutment 1 and bent 3 

 

Accelerations at bent 3 and bent 4 

 
Figure 4.32: Acceleration coherency estimates from 20 unconditioned simulations (varying soil condi-

tions: elastic-medium model). 

 

  
Figure 4.33: Ratios of estimated acceleration  auto-PSDs from 20 unconditioned simulations (varying 

soil conditions: elastic-medium model). 
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Figure 4.34: Median acceleration response spectra of 20 unconditioned simulations (varying soil con-

ditions: elastic-medium model). 

 
  

10-2 10-1 100 101
10-5

10-4

10-3

10-2

10-1

100

ω/2π, Hz

Sa
, g

 

 

abut1
bent2
bent3
bent4
abut5
recorded



149 

 

Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 4.35: Example set of conditioned simulations with initial Butterworth filtering (varying soil 
conditions: elastic-medium model, only wave passage accounted for in low-frequency component). 
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Accelerations at abutment 1 and bent 3 

 

Accelerations at bent 3 and bent 4 

 
Figure 4.36: Acceleration coherency estimates from 20 conditioned simulations with initial Butter-
worth filtering (varying soil conditions, elastic-medium model, only wave passage accounted for in 

low-frequency component). 

 

  
Figure 4.37: Ratios of estimated acceleration auto-PSDs from 20 conditioned simulations with initial 
Butterworth filtering (varying soil conditions, elastic-medium model, only wave passage accounted 

for in low-frequency component). 
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Figure 4.38: Median acceleration response spectra of 20 conditioned simulations with initial Butter-
worth filtering (varying soil conditions, elastic-medium model, only wave passage accounted for in 

the low-frequency component). 
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Chapter 5 -  Linear and non-
linear time-history 
analysis using simu-
lated differential 
support motions and 
comparison with 
MSRS estimates 

5.1    INTRODUCTION 

In Chapter 3, we used the MSRS method to investigate the effect of spatial variability of 
ground motions on the mean peak linear responses of four real bridge models with vastly 
different structural characteristics. In this chapter, we investigate responses of the same 
bridge models under differential support motions using time-history analysis methods. 
Specifically, we perform linear and non-linear response history analyses (RHA) to evaluate 
the mean peak responses to ensembles of support motion arrays generated with the un-
conditioned simulation method described in Chapter 4. The responses examined are pier 
drifts, which are quantities particularly important in bridge design. We investigate the ef-



153 

 

fect of ground motion spatial variability on the mean peak linear and non-linear drifts, and 
also on the ratios of non-linear over linear drifts. According to the “equal displacement” 
rule, for sufficiently flexible systems, these ratios are expected to be close to unity. This rule 
is commonly used in practice to evaluate the non-linear drift demand from linear analyses. 
Another objective of this chapter is to assess the accuracy of the MSRS method by compar-
ing mean peak linear responses obtained from RHA with corresponding MSRS estimates.   

5.2    DESCRIPTION OF BRIDGE MODELS 

In Chapter 3 (Section 3.2), we described the linear models used in MSRS analysis of the four 
bridges, namely the Auburn Ravine Bridge, the Big Rock Wash Bridge, the South Ingram 
Slough Bridge, and the Penstock Bridge. In these models, both the piers and the deck were 
modeled using linear elastic elements. For the piers, we used effective stiffness properties 
determined through moment-curvature analyses and consistent with the Caltrans specifi-
cations (Caltrans SDC, 2004). The same models are used in the linear RHA in this chapter. 
The models used in the non-linear RHA differ from the corresponding linear ones only in 
the modeling of the piers.  

Similar to the linear models, in the non-linear finite-element models we use three elements 
along each bridge pier. The elements are force-based with distributed plasticity. For the 
piers of the Penstock Bridge and the South Ingram Slough Bridge, we define 5 integration 
points for each element (i.e., a total of 15 integration points along each pier), whereas for 
the shorter piers of the Big Rock Wash Bridge and the Auburn Ravine Bridge we define 3 
integration points for each element (i.e., a total of 9 integration points along pier). For all 
four bridges, the pier elements are modeled as having fiber sections with 12 subdivisions in 
the circumferential direction and 8 and 4 subdivisions in the radial direction for the core 
and the cover, respectively. The reinforcing steel bars are specified as additional layers. 
The properties of the unconfined concrete and the reinforcing steel are selected as the ex-
pected material properties defined in Caltrans SDC, whereas the properties of the confined 
concrete are determined according to Mander's model (Mander et al., 1988). See Section 
3.2 in Chapter 3 for information on the steel reinforcement and the type of material in the 
piers of each bridge. The fiber model of the pier section accounts for interaction between 
axial force and bending moment. The shear and torsional behaviors are described by ag-
gregated uniaxial models (OpenSees manual, accessed in April 2011). The yield force for 
the shear model is determined from Caltrans specifications, whereas the yield force for the 
torsional model is evaluated according to the theory of strength of materials (e.g. 
Hjelmstad, 2005) . 

Pier ductility 

Ductility characterizes the ability of structural components to undergo several cycles of in-
elastic deformation without significant degradation of strength or stiffness. The ductility 
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capacity of structural elements is quantified through the ductility factor, defined as the ra-
tio of maximum deformation (e.g. strain, displacement, rotation, curvature) over the de-
formation at yield.  

The notion of ductility is fundamental in the displacement-based design, which focuses on 
evaluating the displacement demands imposed by the earthquake excitation. In Caltrans 
design, of main interest is the displacement ductility capacity of bridge piers. In this study, 
we evaluate the displacement ductility ratios of the bridge piers as the ratios of maximum 
pier drifts obtained from non-linear time-history analysis over pier drifts at yield. Follow-
ing Caltrans’ specifications, the yield drifts are obtained by double integration of the curva-
ture along the pier height, assuming that the section with the largest curvature (i.e., with 
the largest bending moment) has just yielded. The yield curvature is determined from mo-
ment-curvature analysis at the section level. However, determining the yield point in a 
moment-curvature relationship involves some subjectivity.  Furthermore, the yield drift 
evaluated by exact integration over the pier height may differ slightly from the yield drift 
evaluated with the numerical integration method used in the non-linear analysis. Thus, in 
determining the yield curvature, we check to make sure that displacement ductility factors 
close to 1.0 correspond to similar values of the strain ductility factors for the most critical 
fiber. For the bridges examined in this study, all piers of the bridge have identical diameter 
and reinforcement and thus, identical yield curvature. For each bridge, the yield curvature 
and the corresponding yield displacements of the piers are listed in Table 5.1-Table 5.4. 

Damping 

In the RHA analysis, we use Rayleigh damping with the parameters adjusted so that the 
damping ratios of the lower modes are close to 5%. The corresponding damping values for 
the first three modes of each bridge are listed in Table 5.5. 

5.3    GROUND MOTION INPUT 

The support excitations used for the subsequent time-history analyses are synthetic 
ground motions generated with the unconditioned simulation method (non-stationary 
case) described in Section 4.5.1.  As we pointed out in Chapter 4, the arrays of motions gen-
erated with this method exhibit similar variability at all support points and, thus, are ap-
propriate as input in statistical analyses of bridge response. This simulation method re-
quires specification of a seed accelerogram, a coherency function that describes the spatial 
variability of the ground motion random field, and in the case of varying soil conditions, 
additionally, the FRFs of the soil columns underneath the supports. In this section, we si-
mulate ensembles of ground motion arrays for the four bridge models considering two 
seed accelerograms and several cases of spatial variability, as described next.  

The two seed accelerograms are the fault-normal components of the Hollister South & Pine 
(HSP) record from the 1989 Loma Prieta earthquake and the Pacoima Dam (PUL) record 
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from the 1971 San Fernando earthquake. Figure 5.1 and Figure 5.2 show the corresponding 
acceleration time histories and the evolving integral measures of the variance, the predo-
minant frequency and the bandwidth, denoted ,  and , respectively (see Section 4.5 
for more details). The vertical dashed lines demarcate the nearly stationary segments of 
the accelerograms. 

To model the ground motion spatial variability, we use the coherency function in Eqn. 
(2.18) with its components given by Eqns. (2.19)-(2.21) in Chapter 2. To describe varia-
tions in the soil conditions, we employ the SDOF idealization of the soil-columns and use 
the FRF in Eqn. (2.23). In all cases, we assume waves propagate in the direction from abut-
ment 1 to the abutment at the other end of the deck. We consider four cases of spatial va-
riability as listed in Table 5.6: Case 1 is uniform support excitations. Cases 2 and 3 include 
the effects of incoherence and wave passage and represent two different levels of incohe-
rence. Case 4 is case 2 plus spatially varying site effects. In all cases, the values of the shear 
wave velocity and the apparent wave velocity are taken to be  and 

, respectively. The same values of   and  were used in the parametric 
analyses in Chapter 3. However, the values of the incoherence parameter considered here 
( ) are smaller than the value used in Chapter 3 ( ). Smaller values of the 
incoherence parameter represent a slower decay of the incoherence component, i.e. more 
coherent motions. Analyses of recorded arrays of motions (e.g. Harichandran and Van-
marcke, 1986;, Abrahamson et al., 1991) have shown that the rate of decay of the incohe-
rence component can vary significantly between different arrays. (See Chapter 6 for more 
details on this subject.)  

For the Penstock Bridge, the support excitations in case 1 are the ground motion at bent 3 
for case 2. For the South Ingram Slough Bridge, the support excitations in case 1 are the 
ground motion at bent 2 for case 2. For the Big Rock Wash Bridge, the support excitations 
in case 1 are the ground motion at bent 2 for case 2. For the Auburn Ravine Bridge, the 
support excitations in case 1 are the ground motion at bent 4 for case 2. 

The case of varying soil conditions, i.e. case 4, is investigated only for the HSP record as 
seed. To determine the frequency and damping ratio of the FRF model idealizing the soil-
column at the site of the record, we use the method described in Section 2.2.4 and em-
ployed in Section 4.6.2, i.e., we assume white-noise excitation at the bedrock level and fit 
the theoretical PSD of the acceleration at the ground surface to the smoothed periodogram 
of the record. Non-linear least-squares minimization with MATLAB gives  
and , when the periodogram of the record is smoothed with a 101-point Hamming 
window. (For this specific accelerogram, the level of smoothing only slightly affects these 
least-squares estimates.) These values represent the characteristics of the soil at abutment 
1. Comparison between the acceleration PSD estimate of the recorded motion and the fitted 
theoretical model is shown in Figure 5.3. For case 4, we consider three soil types with idea-
lized SDOF frequencies and damping ratios as listed in Table 5.7. Soil type 1 represents the 
site of the record, as described above. For each bridge, the assumed variation of soil condi-
tions in case 4 is given in Table 5.8. 
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We now present samples of simulated support motion arrays from the generated ensem-
bles used in the subsequent time-history analyses. (In all simulations, we have used the 
non-smoothed periodograms and a corner frequency of  for the post-
processing filter.) Figure 5.4 shows a sample set of acceleration, velocity and displacement 
time histories simulated for the Penstock Bridge, using the PUL record as seed and for case 
2 of spatial variability (only incoherence and wave-passage effects). For the same case of 
spatial variability but for the HSP record as seed, Figure 5.5 shows a sample set of accelera-
tion, velocity and displacement time histories for the South Ingram Slough Bridge. Figure 
5.6 shows similar time histories simulated for the Big Rock Wash Bridge, using the HSP 
record as seed and for case 4 of spatial variability (site effect in addition to incoherence and 
wave-passage effects). In this figure, we note the differences in the frequency contents of 
the motions at locations with different soil conditions. These differences are more apparent 
in the acceleration time histories, which are richer in high–frequency contents. Finally, Fig-
ure 5.7 shows a sample set of acceleration, velocity and displacement time-histories simu-
lated for the Auburn Ravine Bridge, using the HSP record as seed and for case 3 of spatial 
variability (higher level of incoherence than in case 2 and wave-passage effect). We note 
that all velocity and displacement time-histories have zero or nearly-zero residual values 
after the high-pass filtering.  

For each bridge and each case of ground motion spatial variability described above (see 
Table 5.6), we now validate the simulations of support motions by examining the corres-
ponding response spectra and coherency estimates for samples of 20 simulated arrays. In 
Figure 5.8-Figure 5.11, we present the median 5% damped pseudo-acceleration response 
spectra. Each of these figures shows the median response spectra at each support of the 
relevant bridge and also, the response spectrum of the original seed record. The median 
spectra of the simulated motions are a smoother version of the spectrum of the corres-
ponding recorded seed motion. Differences between the spectra of the simulated motions 
and the recorded motions also arise from the segmentation and post-processing of the si-
mulation procedure. We note that the median response spectra at support points with 
similar soil conditions are nearly identical, i.e. spectra at all support points in Figure 5.8, 
Figure 5.9 and Figure 5.11, and spectra at abutments 1 and 4 in Figure 5.10. These observa-
tions indicate that the simulated motions are realistic. In Figure 5.12-Figure 5.15, we com-
pare coherency estimates of the simulated support motions with the corresponding target 
models. One example support pair for each bridge model is examined. The real and imagi-
nary parts of the coherency function are shown in the left and right charts, respectively. 
The figures demonstrate excellent agreement between the estimated and theoretical cohe-
rency, which further validates the simulations. 

We note that for the Auburn Ravine Bridge, which has relatively short spans, the Cholesky 
decomposition of the correlation matrix (required in the simulation algorithm, see Section 
4.4.1), was problematic for the lower frequencies at which the motions are nearly coherent. 
(MATLAB returned the message that the correlation matrix is not positive definite). To 
overcome this problem, which arises from numerical instability due to a near-singular co-
variance matrix at low frequencies, we considered the support motions perfectly coherent 
at the first 2 or 3 frequency points in each segment (depending on the case), and at these 
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frequencies, we used the Fourier coefficients simulated at location  for all support 
points. As indicated by the coherency estimates in Figure 5.15, this approximation is justi-
fied. (Similar good agreement between the estimates and the target coherency model justi-
fied the approximation for other cases, not shown here.) 

5.4    ANALYSIS OF BRGDE RESPONSE 

In this section, we investigate the mean peak responses of the bridge models described in 
Section 5.2 to the ensembles of simulated support motions described in Section 5.3. Specifi-
cally, we consider cases 1-4 using the HSP record as seed and cases 1-2 using the PUL 
record as seed. For each case of spatial variability, each ensemble consists of 20 simulated 
support motion arrays.  To achieve non-linear behavior, the motions simulated using the 
HSP record as seed are scaled with a factor of 1.5. (No scaling is applied to the motions si-
mulated using the stronger PUL record as seed.) The support excitations are applied in the 
transverse direction. Software OpenSees is used to perform linear and non-linear RHA of 
the corresponding bridge models. The response quantities of interest are the transverse 
pier drifts. First, we investigate the effect of ground motion spatial variability on their mean 
peak values for both the linear and the non-linear models. Additionally, we examine how 
the ratios of non-linear over linear drifts vary for each bridge model and case of spatial va-
riability. The latter analysis aims to assess the “equivalent displacement” rule, commonly 
used in engineering practice to approximately evaluate non-linear drifts from linear analy-
sis for sufficiently flexible systems. Finally, we assess the accuracy of the MSRS rule by 
comparisons between the mean peak responses evaluated with the MSRS method and 
those obtained from linear RHA. 

For each type of analysis, we present the results by ordering the bridges according to their 
fundamental periods. We start with the more flexible Penstock Bridge ( , fol-
lowed by the South Ingram Slough Bridge ( , then the Big Rock Wash Bridge 
( ) and, finally, the Auburn Ravine Bridge ( ). We note that for all bridge 
models, the first mode is largely transverse displacement.  

5.4.1    Effect of ground motion spatial variability on peak linear and non-linear pier 
drifts 

In this section, for each bridge model, we examine the effect of spatial variability on the 
peak linear and non-linear drifts and on the displacement ductilities of the piers. Drifts are 
specified as percent ratios of the pier heights. The displacement ductility is calculated as 
the ratio of the peak non-linear drift over the corresponding yield drift. The latter are listed 
in Table 5.1-Table 5.4. 

First, we consider the Penstock Bridge. Table 5.9 and Table 5.10 list the means and stan-
dard deviations of the peak linear and non-linear pier drifts, respectively. Table 5.11 lists 
the means and standard deviations of the displacement ductilities. Let us first examine the 
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results for the HSP record as seed. Comparing cases 2 and 3 with case 1, we note that the 
presence of wave passage and incoherence may increase or decrease pier drifts of the li-
near model, but tends to decrease pier drifts of the non-linear model. Comparing cases 2 
and 3, increasing level of incoherence may increase or decrease pier drifts of the linear 
model, but increases all pier drifts of the non-linear model. When the site-effect is also in-
cluded, i.e. in case 4, pier drifts are the largest among all cases for both the linear and the 
non-linear models. With the exception of pier 4 (the stiffest among the three piers) in case 
1, non-linear drifts are smaller than the corresponding linear ones. For motions simulated 
using the PUL record as seed, trends are similar to those observed with the HSP record as 
seed in cases 1 and 2. Ductilities follow similar trends with non-linear drifts and their 
means are in the range 1.44-1.99 for the HSP record (cases 1-4) and in the range 1.39-1.81 
for the PUL record (cases 1-2). 

Next, we examine the South Ingram Slough Bridge. Table 5.12 and Table 5.13 list the means 
and standard deviations of peak linear and non-linear pier drifts, respectively. Table 5.14 
lists the means and standard deviations of the displacement ductilities. First, we examine 
the results for the HSP record as seed. For both the linear and the non-linear models, mean 
peak drifts under spatially varying ground motions (cases 2, 3 and 4) are smaller than 
those under uniform support motions (case 1). For both models, increasing level of incohe-
rence (compare cases 2 and 3) or the additional differential-site effect (compare cases 2 
and 4) decrease pier drifts. In all cases, the mean peak non-linear response is slightly 
smaller than the linear response. Results for the PUL record follow similar trends as for the 
HSP record for the corresponding cases, but are slightly larger. We note that, overall, the 
effect of spatial variability on pier drifts of the South Ingram Slough Bridge is mild. Ductili-
ties follow similar trends with non-linear drifts and their means are in the range 1.87-2.06 
for the HSP record (cases 1-4) and in the range 2.43-2.56 for the PUL record (cases 1-2). 

Let us now examine Big Rock Wash Bridge. Table 5.15 and Table 5.16 list the means and 
standard deviations of peak linear and non-linear pier drifts, respectively. Table 5.17 lists 
the means and standard deviations of the displacement ductilities. First, we examine the 
results for the HSP record as seed. We note that in case 4, there was one set of motions (in 
the ensemble of 20 sets) for which convergence in the non-linear time-history analysis with 
Opensees was not achieved. This set of motions was not considered in the statistics pre-
sented herein i.e., the results for case 4 are from 19 simulations.  For both the linear and the 
non-linear models, mean peak drifts under spatially varying ground motions (cases 2, 3 and 
4) are significantly smaller than those under uniform support motions (case 1), particularly 
for the piers of bent 2, which are shorter and thus, stiffer. For both models, increasing level 
of incoherence (compare cases 2 and 3) increases pier drifts, but the effect is mild. For both 
models, the additional differential-site effect (compare cases 2 and 4) decreases pier drifts, 
but again, the effect is mild. Looking at the results for the PUL record as seed, spatial varia-
bility significantly decreases linear and non-linear pier drifts in bent 2, but has a relatively 
mild effect on pier drifts in bent 3. Mean peak non-linear drifts can be smaller or larger 
than mean peak linear drifts, depending on the seed record, the case of spatial variability 
and the location of the pier. Ductilities follow similar trends with non-linear drifts. Their 
means are in the range 1.90-3.81 for the HSP record (cases 1-4) and in the range 2.67-3.92 
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for the PUL record (cases 1-2), i.e. larger than the ductilities of the two bridges examined 
earlier. 

Finally, we examine the responses of the Auburn Ravine Bridge. Table 5.18 and Table 5.19 
list the means and standard deviations of peak linear and non-linear pier drifts, respective-
ly. Table 5.20 lists the means and standard deviations of the displacement ductilities. First, 
we examine the results for the HSP record as seed. Again, in case 4, there was one set of 
motions for which convergence in the non-linear time-history analysis was not achieved, 
and the statistics for this case are from 19 simulations.  For both the linear and the non-
linear models, mean peak drifts under spatially varying ground motions (cases 2, 3 and 4) 
are smaller than those under uniform support motions (case 1) for all piers. The differenc-
es are more pronounced for the piers in bents 3, 4 and 5 that are located further away from 
the abutments. For both models, increasing level of incoherence (compare cases 2 and 3) 
increases all pier drifts, but the effect is relatively mild. The additional differential-site ef-
fect (compare cases 2 and 4) may decrease or increase pier drifts. Looking at the results for 
the PUL record as seed, spatial variability significantly decreases linear and non-linear pier 
drifts for bents 3, 4 and 5, but tends to slightly increase pier drifts for other bents. Mean 
peak non-linear drifts are always smaller than mean peak linear drifts. Ductility ratios fol-
low trends similar to the non-linear drifts. Their means are in the range 0.74-2.13 for the 
HSP record (cases 1-4) and in the range 1.09-2.75 for the PUL record (cases 1-2). 

Summarizing the above results, the effect of spatial variability is found to be more pro-
nounced for the two stiffer bridges, i.e., the Big Rock Wash Bridge and the Auburn Ravine 
Bridge. In all cases for the Big Rock Wash Bridge and in almost all cases for the Auburn Ra-
vine Bridge, spatial variability decreased pier drifts. For certain cases and piers, the reduc-
tions were very significant. Over all bridges and cases examined, whenever spatial variabil-
ity increased pier drifts, the increase was relatively mild. These trends are true for both the 
linear and the non-linear models and are consistent with the results of the MSRS analysis 
reported in Chapter 3.  

For the linear models, we further interpret the above results by considering the decompo-
sition of the total response into dynamic and pseudo-static components (the latter are zero 
in the case of uniform excitation), and the decomposition of the dynamic response into 
modal responses. For the cases with uniform soil conditions, the spatial variability of 
ground motion generally induces pseudo-static responses; however, for transverse pier 
drifts, these have small contributions to the total response. For the bridge models consi-
dered, the dynamic responses of the pier drifts are mainly contributed by the first two 
transverse modes (see Section 3.2 for the modes of the four bridges). Under differential 
support motions, the contribution of the second transverse mode becomes larger.  For the 
two more flexible bridges (Penstock and South Ingram Slough) and for both records used 
as seed, the displacement spectral values for the first two transverse modes do not differ 
significantly. As a result, the effect of spatial variability on the corresponding pier drifts is 
relatively mild. For the two stiffer bridges and for both records used as seed, displacement 
spectral values decrease fast with increasing modal frequency. As a result,  spatial variabili-
ty results in significant reductions of the dynamic component and, consequently, of the to-
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tal responses. The additional effect from differential site-response tends to increase pseu-
do-static responses, whereas the effect on the dynamic responses depends on the differ-
ences between the spectral amplitudes for different soils at the modal frequencies of the 
bridge (see Figure 5.10). Thus, the total response may increase or decrease. 

A detailed comparison of non-linear and linear responses is performed in the following sec-
tion. 

5.4.2    Investigation of the “equal displacement” rule 

In Caltrans design practice, the displacement demands of a bridge with fundamental period 
within the range 0.7s and 3s are estimated from linear elastic response spectrum analysis 
using the effective element stiffnesses of the bridge. Estimating inelastic displacements 
with elastic analysis is based on the observation that the inelastic displacement of an SDOF 
oscillator with a bilinear force-deformation relationship is approximately equal to the dis-
placement of a corresponding linear oscillator, provided that the period of the system is 
larger than the predominant site period (Veletsos and Newmark. 1960). The applicability 
of the “equal displacement” rule has been investigated by several researchers, including 
Rahnama and Krawinkler, 1993; Miranda and Bertero, 1994; Vidic et al., 1994; Gupta and 
Krawinkler, 2000; and Miranda, 2000. These studies have demonstrated that the equal dis-
placement rule is a reasonable approximation for structures on firm sites, with fundamen-
tal periods in the medium (velocity-controlled) or long (displacement-controlled) period 
range, with relatively stable and full hysteretic loops. In general, a slightly conservative es-
timate of the mean value of the inelastic displacement may be obtained under these condi-
tions. (According to Gupta and Krawinkler, the mean inelastic to elastic displacement ratio 
is around 0.85.) Miranda (2000) investigated the dispersion of the results and found that 
the coefficient of variation is below 0.3 for a ductility factor of 3 and that it tends to in-
crease as the inelastic deformation increases. The transition period below which the “equal 
displacement” rule is unconservative depends on the frequency content of the ground mo-
tion and the ductility factor. It tends to increase (decrease) with increasing (decreasing) 
ductility factor (Vivic et al. , 1994; Miranda, 2000).  

In this section, we examine the applicability of the equivalent displacement rule to bridges 
under spatially varying ground motions. Adopting Caltrans’ notation, in the following anal-
ysis, we denote the ratio of non-linear over linear drifts as .  

Table 5.21 lists the means and standard deviations of the ratio  for each pier of the Pens-
tock Bridge. For the HSP record as seed, the means vary in the range 0.87-1.06 in case 1, 
and in the range 0.82-0.93 in cases 2-4. For the PUL record as seed, the means vary in the 
range 0.87-1.07 in case 1, and in the range 0.78-0.90 in case 2. In all cases, spatial variabili-
ty reduces the mean  values and slightly deteriorates the approximation of the equal dis-
placement rule, but on the conservative side. The effect of spatial variability is more pro-
nounced for pier 4, which is the stiffest among the three piers. Comparing cases 2 and 4, we 
note that under varying soil conditions, mean  values are slightly larger. For each case in 
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Table 5.21, Figure 5.16-Figure 5.17 show plots of   versus the ductility for each of the 20 
simulations. Note that the ductility ratios for individual simulations exceed 3 in many cases 
and reach as high as 4 when spatially varying site effects are included (e.g., see case 4 in 
Figure 5.16). 

Table 5.22 lists the means and standard deviations of  for each pier of the South Ingram 
Slough Bridge. In all cases, the means for the two piers are the same: For the HSP record, 
they are equal to 0.92 in cases 1-3 and 0.94 in case 4. For the PUL record, they are equal to 
0.97 in case 1 and 0.98 in case 2. Thus, in all cases, the approximation of the “equal dis-
placement” rule is very good and the effect of spatial variability is negligible. For the cases 
in Table 5.22, Figure 5.18-Figure 5.19 show plots of  versus the ductility for each of the 
20 simulations. Note again that the ductility is higher than 3 in many cases and reaches as 
high as 4 or 5 for the HSP or the PUL record as seed, respectively. 

Table 5.23 lists the means and standard deviations of  for each pier of the Big Rock Wash 
Bridge. For the HSP record as seed, the means vary in the range 1.13-1.15 in case 1 (slightly 
on the unconservative side), and in the range 0.94-1.00 in cases 2-4. For the PUL record as 
seed, the means vary in the range 1.04-1.05 in case 1, and in the range 0.91-1.04 in case 2. 
Spatial variability reduces the mean  values, and in all cases of spatial variability the ap-
proximation of the “equal displacement” rule is fairly good. Comparing cases 2 and 4, we 
note that under varying soil conditions, mean  values are slightly larger. For each case in 
Table 5.23, Figure 5.20-Figure 5.21 show plots of  versus the ductility ratio for each simu-
lation (19 simulations for case 4 in Figure 5.20 and 20 simulations in other cases). Under 
uniform support motions (case 1), ductility reaches as high as 6 for the HSP record as seed 
and as high as 8 for the PUL record as seed. Spatial variability of ground motions signifi-
cantly reduces ductility ratios. 

Table 5.24 lists the means and standard deviations of  for each pier of the Auburn Ravine 
Bridge. For the HSP record as seed, the means vary in the range 0.72-0.82 in case 1, and in 
the range 0.61-0.92 in cases 2-4. For the PUL record as seed, the means vary in the range 
0.79-0.94 in case 1, and in the range 0.82-0.93 in case 2. Let us first consider uniform soil 
conditions, i.e., cases 1-3. For bents 2 and 6, which are located further away from the abut-
ments, the effect of spatial variability is mild. For other bents, spatial variability always de-
creases mean  values, and this effect is more pronounced for the HSP record. In general, 
for the PUL record as seed, the approximation of the “equivalent” displacement rule is bet-
ter for both cases 1 and 2. Now, Comparing cases 2 and 4 (for the HSP record as seed), un-
der varying soil conditions, mean  values are larger, particularly for bents 3 and 5 which 
are located on softer soils. For each case in Table 5.24, Figure 5.22-Figure 5.23 show plots 
of  versus the ductility ratio for each simulation (19 simulations for case 4 in Figure 5.20 
and 20 simulations in other cases). Ductility reaches as high as 4 for the HSP record as seed, 
and in some cases exceeds 4 for the PUL record as seed. 

In assessing the above results, we note that the two more flexible bridges, i.e., the Penstock 
Bridge and the South Ingram Slough Bridge, have fundamental periods (  and 
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, respectively) within the range 0.7s-3.0s, in which the “equal displacement” rule 
is employed by Caltrans. For these bridges, under uniform excitation, the equal displace-
ment approximation is fairly good, mostly on the conservative side. The two stiffer bridges 
i.e. the Big Rock Wash Bridge and the Auburn Ravine Bridge, have fundamental periods 
(  and , respectively) slightly lower than the lower bound considered 
by Caltrans. These periods are smaller than the predominant period of the site of the HSP 
record ( ), but larger than the predominant period of the site of the PUL record 
( ). For the HSP record, under uniform excitation, the “equal displacement” rule is 
slightly unconservative for the Big Rock Wash Bridge, with corresponding ductility factors 
in the range of 3.54-3.81, but significantly conservative for the Auburn Ravine Bridge, with 
ductility factors in the range of 1.12-2.13. For the PUL record, under uniform excitation, the 
equal displacement rule gives fairly good approximations, particularly for the Big Rock 
Wash Bridge, which experienced larger ductilities. These results are consistent with find-
ings by Vivic et al. (1994) and Miranda (2000) that, in the short period range,  values de-
pend on the frequency content of the ground motion and the ductility factor. Under uni-
form soil conditions, spatial variability decreases mean  values in almost all cases. Com-
paring cases 2 and 4, which differ only in the site conditions, locating piers on softer sites 
increases  values for all bridges. Finally, the dispersion of the results is consistent with 
the finding by Miranda (2000): The coefficient of variation of  tends to increase with in-
creasing ductility factor, and is below 0.3 for ductility factors smaller than 3. This can be 
verified by examining the ratio of the standard deviation to mean of   in Table 5.21-Table 
5.24. 

5.4.3    Assessment of the MSRS rule by comparisons with RHA results 

In this section, we assess the accuracy of the MSRS method by comparing MSRS estimates 
with the corresponding mean peak responses obtained from linear RHA. For a fair evalua-
tion of the MSRS method, we compare mean peak responses from MSRS analysis using Eqn. 
2.12 with mean peak responses from linear RHA using the decomposition formula in Eqn. 
2.9, by employing the same integration method for the evaluation of the th modal time-
history response, , as the th-mode spectral value,  . We note that OpenSees 
does not use the decomposition approach in RHA, but performs integration of the system of 
equations in matrix form. 

We consider the ensembles of simulations described in Section 5.3 for cases 1 and 3 and for 
the HSP record as seed. In our MSRS analysis, the mean response spectra are obtained by 
averaging 5% damped spectra for all simulations in case 1, and for all simulations and all 
support points in case 3. (In case 3, we average over all support points because, under uni-
form soil conditions, the response spectra at all support points should be the same. Indeed, 
in Section 5.3, we saw that the median response spectra at support points with similar soil 
conditions were in good agreement). Response spectra values for damping ratios other 
than 5% are evaluated by adjusting the 5% damped spectral values according to Caltrans 
specifications (Caltrans SDC, 2004). We note that in case 1 the MSRS rule reduces to the 
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square-root of the quadruple-sum term (see Eqn. (2.12)) representing the dynamic com-
ponent of the response. This has the same form as the well known CQC rule (Der Kiureg-
hian, 1981), but with a more accurate approximation of the cross-modal correlation coeffi-
cients. (Evaluation of the modal cross-correlation coefficient in the MSRS rule employs the 
response-spectrum-compatible power spectral density shape, whereas in the CQC rule it 
employs a white-noise idealization.)  

Preliminary analysis has indicated that, for pier drifts, considering the first 4 modes in the 
analysis is sufficient for the four bridges examined. Table 5.25-Table 5.28 list the mean 
peak values of pier drifts of the four bridge models (absolute values, not drift ratios) from 
RHA with OpenSees, RHA with Eqn. 2.9 considering the first 4 modes, MSRS analysis with 
the first 4 modes, and the percent errors of the MSRS results relative to the results of RHA 
with Eqn. 2.9.  The results from RHA with OpenSees are the same as those in Section 5.4.1 
for the linear models and the corresponding cases, but now given in absolute values, not 
ratios. In all cases, the differences between the two RHA results are small, which validates 
our analyses. Note that the two RHA analysis methods are vastly different, the one with 
OpenSees involving integration of matrix equations with Rayleigh damping, while the one 
with Eqn. 2.9 involving modal superposition considering only the first 4 modes.  

Considering the absolute values of the MSRS errors, the maximum error observed is 8.5% 
in case 1 (Auburn Ravine Bridge, bent 2: pier 2) and 12.5% in case 3 (Auburn Ravine 
Bridge, bent 4: pier 1). Recall that the MSRS method is intended for use in conjunction with 
smooth response spectra that represent broadband excitations and a smooth coherency 
function. In our analysis, jagged response spectra from a relatively narrowband excitation 
were used. Furthermore, the smooth coherency function used for evaluation of the correla-
tion coefficients in the MSRS analysis differs from the actual coherency values for pairs of 
simulated support motions, which can exhibit large fluctuations around the theoretical 
model. Thus, considering these difference, the results of the MSRS analysis are found to be 
remarkably accurate.  

5.5    SUMMARY 

In this chapter, we performed linear and non-linear analyses of four bridge models with 
vastly different structural characteristics to several ensembles of support motion arrays 
simulated with the unconditioned method introduced in Chapter 4, for different cases of 
spatial variability of ground motions. For each ensemble of motions, we evaluated the 
means and standard deviations of the peak linear and non-linear drifts, the ductility values 
and the ratios of non-linear over linear drifts. The effects of spatial variability on the linear 
and non-linear mean peak drifts followed similar trends. These effects were more pro-
nounced for the stiffer bridges. For these bridges, spatial variability reduced pier drifts. The 
approximation based on the “equivalent displacement” rule was found to perform fairly 
well for the more flexible bridges. For the stiffer bridges, the results were sensitive to the 
frequency content of the support motions and the ductility factors. When the predominant 
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period of the site was smaller than the fundamental period of the bridge, the approxima-
tions were again fairly good; otherwise, the “equivalent displacement” rule was slightly 
non-conservative for large ductility rations, or overly conservative for small ductility ratios. 
Finally, we performed comparisons of the mean peak linear drifts with results from consis-
tent MSRS analysis. The good agreement between the two methods validates that MSRS 
method provides an accurate analysis tool for the analysis of bridges under differential 
support motions. 
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Table 5.1: Yield drifts of the piers of Penstock Bridge. 

yield curvature at section level = 0.0035 
 bent 2 bent 3 bent 4 

 yield drift (m) 0.263 0.260 0.210 
 

Table 5.2: Yield drifts of the piers of South Ingram Slough Bridge. 

yield curvature at section level = 0.0031 
 bent 2 
 pier 1 pier 2 

 yield drift (m) 0.146 0.149 
 

Table 5.3: Yield drifts of the piers of Big Rock Wash Bridge. 

yield curvature at section level = 0.0024 
 bent 2 bent 3 
 middle pier side pier middle pier side pier 

 yield drift (m) 0.031 0.029 0.033 0.031 
 

Table 5.4: Yield drifts of the piers of Auburn Ravine Bridge. 

yield curvature at section level = 0.0035 
 yield 
drift 
(m) 

bent 2 bent 3 bent 4 bent 5 bent 6 
pier 1 pier 2 pier 1 pier 2 pier 1 pier 2 pier 1 pier 2 pier 1 pier 2 
0.037 0.039 0.038 0.040 0.043 0.045 0.051 0.053 0.046 0.048 
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Table 5.5: Modal damping ratios (%) for the first 3 modes. 

 bridge name 
mode number Penstock South Ingram Slough Big Rock Wash Auburn Ravine 

1 5.0 5.0 5.0 5.0 
2 3.8 4.3 4.6 4.9 
3 3.4 3.5 4.6 4.9 

 

Table 5.6: Considered cases of ground motions spatial variability. 

 Description of support motions variability 
case 1 uniform motions 
case 2 variable motions with incoherence ( ) and wave passage 
case 3 variable motions with strong incoherence ( ) and wave passage 
case 4 variable motions with  incoherence ( ), wave passage and site effect 

 

Table 5.7: Variation of soil-column properties for each soil-type. 

soil type 1 2 3 
  1.19 1.03 0.80 

  0.60 0.50 0.40 
 

Table 5.8: Variation of soil types underneath supports in case 4. 

Penstock Bridge 
support abutment 1 bent 2 bent 3 bent 4 abutment 5 
soil type 1 2 3 2 1 

South Ingram Slough Bridge 
support abutment 1 bent 2 abutment 3 
soil type 1 3 1 

Big Rock Wash Bridge 
support abutment 1 bent 2 bent 3 abutment 4 
soil type 1 2 3 1 

Auburn Ravine Bridge 
support abutment 1 bent 2 bent 3 bent 4 bent 5 bent 6 abutment 7 
soil type 1 2 3 2 3 2 1 
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Table 5.9: Penstock Bridge: Mean (standard deviation) peak linear drifts as % of pier height.  

 bent 2 bent 3 bent 4 
HSP record, scaling factor = 1.5 

case 1 2.33 (0.63) 2.18 (0.57) 1.95 (0.51) 
case 2 2.17 (0.61) 2.05 (0.55) 2.48 (0.74) 
case 3 2.38 (0.93) 2.17 (0.83) 2.43 (0.76) 
case 4 2.50 (0.99) 2.39 (0.91) 2.55 (0.77) 

PUL record, scaling factor =1.0 
case 1 2.24 (0.89) 2.08 (0.83) 1.89 (0.69) 
case 2 2.20 (0.86) 1.98 (0.74) 2.42 (0.90) 

 

Table 5.10: Penstock Bridge: Mean (standard deviation) peak non-linear drifts as % of pier height.  

 bent 2 bent 3 bent 4 
HSP record, scaling factor = 1.5 

case 1 2.01 (0.55) 2.04 (0.55) 2.04 (0.50) 
case 2 1.78 (0.45) 1.88 (0.49) 1.98 (0.53) 
case 3 1.98 (0.79) 2.00 (0.75) 2.04 (0.71) 
case 4 2.09 (0.84) 2.22 (0.86) 2.20 (0.79) 

PUL record, scaling factor =1.0 
case 1 1.95 (0.83) 1.99 (0.82) 2.00 (0.75) 
case 2 1.72 (0.69) 1.80 (0.76) 2.00 (0.79) 

 
Table 5.11: Penstock Bridge: Mean (standard deviation) ductility ratios.  

 bent 2 bent 3 bent 4 
HSP record, scaling factor =1.5 

case 1 1.63 (0.44) 1.65 (0.44) 1.84 (0.46) 
case 2 1.44 (0.37) 1.53 (0.40) 1.79 (0.48) 
case 3 1.59 (0.64) 1.62 (0.61) 1.84 (0.65) 
case 4 1.69 (0.68) 1.80 (0.71) 1.99 (0.72) 

PUL record, scaling factor =1.0 
case 1 1.58 (0.67) 1.61 (0.67) 1.81 (0.68) 
case 2 1.39 (0.55) 1.46 (0.62) 1.81 (0.71) 
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Table 5.12: South Ingram Slough Bridge: Mean (standard deviation) peak linear pier drifts as % of 
pier height. 

 bent 2: pier 1 bent 2: pier 2 
HSP record, scaling factor =1.5 

case 1 1.97 (0.70) 1.95 (0.69) 
case 2 1.89 (0.66) 1.88 (0.66) 
case 3 1.80 (0.54) 1.79 (0.53) 
case 4 1.81 (0.71) 1.79 (0.70) 

PUL record, scaling factor =1.0 
case 1 2.34 (0.86) 2.32 (0.85) 
case 2 2.25 (0.82) 2.23 (0.81) 

 

Table 5.13: South Ingram Slough Bridge: Mean (standard deviation) peak non-linear pier drifts as % 
of pier height. 

 bent 2: pier 1 bent 2: pier 2 
HSP record, scaling factor =1.5 

case 1 1.79 (0.61) 1.77 (0.61) 
case 2 1.72 (0.59) 1.70 (0.58) 
case 3 1.65 (0.52) 1.64 (0.51) 
case 4 1.66 (0.57) 1.65 (0.57) 

PUL record, scaling factor =1.0 
case 1 2.22 (0.77) 2.21 (0.77) 
case 2 2.15 (0.74) 2.13 (0.74) 

 

Table 5.14: South Ingram Slough Bridge: Mean (standard deviation) ductility ratios. 

 bent 2: pier 1 bent 2: pier 2 
HSP record, scaling factor =1.5 

case 1 2.06 (0.71) 2.02 (0.69) 
case 2 1.98 (0.68) 1.95 (0.66) 
case 3 1.90 (0.60) 1.87 (0.59) 
case 4 1.92 (0.66) 1.88 (0.65) 

PUL record, scaling factor =1.0 
case 1 2.56 (0.89) 2.52 (0.87) 
case 2 2.47 (0.86) 2.43 (0.84) 
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Table 5.15: Big Rock Wash Bridge: Mean (standard deviation) peak linear pier drifts as % of pier 
height. 

 bent 2: middle pier bent 2: side pier bent 3: middle pier bent 3: side pier 
HSP record, scaling factor =1.5 

case 1 1.55 (0.46) 1.60 (0.48) 1.68 (0.55) 1.72 (0.57) 
case 2 1.06 (0.24) 1.09 (0.24) 1.43 (0.35) 1.47 (0.36)  
case 3 1.16 (0.29) 1.19 (0.29) 1.52 (0.38) 1.56 (0.39) 
case 4 0.96 (0.24) 0.99 (0.25) 1.33 (0.35) 1.36 (0.36) 

PUL record, scaling factor =1.0 
case 1 1.86 (0.67) 1.91 (0.69) 1.95 (0.74) 2.00 (0.76) 
case 2 1.28 (0.33) 1.32 (0.34) 1.97 (0.76) 2.02 (0.79) 

 

Table 5.16: Big Rock Wash Bridge: Mean (standard deviation) peak non-linear pier drifts as % of pier 
height. 

 bent 2: middle pier bent 2: side pier bent 3: middle pier bent 3: side pier 
HSP record, scaling factor =1.5 

case 1 1.75 (0.53) 1.81 (0.55) 1.84 (0.53) 1.89 (0.55) 
case 2 1.02 (0.25) 1.05 (0.26) 1.36 (0.34) 1.40 (0.35) 
case 3 1.08 (0.28) 1.11 (0.29) 1.44 (0.33) 1.49 (0.34) 
case 4 0.94 (0.28) 0.97 (0.29) 1.34 (0.42) 1.38 (0.43) 

PUL record, scaling factor =1.0 
case 1 1.83 (0.82) 1.89 (0.84) 1.88 (0.84) 1.93 (0.86) 
case 2 1.32 (0.36) 1.36 (0.37) 1.67 (0.42) 1.72 (0.43) 

 

Table 5.17: Big Rock Wash Bridge: Mean (standard deviation) ductility ratios. 

 bent 2: middle pier bent 2: side pier bent 3: middle pier bent 3: side pier 
HSP record, scaling factor =1.5 

case 1 3.54 (1.07) 3.75 (1.14) 3.60 (1.04) 3.81 (1.10) 
case 2 2.06 (0.50) 2.19 (0.53) 2.67 (0.63) 2.82 (0.71) 
case 3 2.17 (0.57) 2.30 (0.61) 2.83 (0.65) 2.99 (0.69) 
case 4 1.90 (0.57) 2.02 (0.60) 2.62 (0.82) 2.77 (0.87) 

PUL record, scaling factor =1.0 
case 1 3.70 (1.65) 3.92 (1.75) 3.67 (1.64) 3.88 (1.73) 
case 2 2.67 (0.73) 2.83 (0.78) 3.26 (0.82) 3.46 (0.87) 

  



170 

 

Table 5.18: Auburn Ravine Bridge: Mean (standard deviation) peak linear pier drifts as % of pier 
height.  

HSP record, scaling factor =1.5 
 case 1 case 2 case 3 case 4 

bent 2: pier 1 1.12 (0.29) 0.95 (0.27) 0.96 (0.17) 1.00 (0.26) 
bent 2: pier 2 1.05 (0.27) 0.93 (0.27) 0.94 (0.18) 0.98 (0.26) 
bent 3: pier 1 1.57 (0.42) 0.86 (0.16) 0.99 (0.22) 1.25 (0.32) 
bent 3: pier 2 1.48 (0.40) 0.80 (0.16) 0.92 (0.21) 1.18 (0.30) 
bent 4: pier 1 1.85 (0.53) 0.90 (0.25) 1.10 (0.29) 0.87 (0.16) 
bent 4: pier 2 1.78 (0.51) 0.85 (0.22) 1.04 (0.25) 0.88 (0.18) 
bent 5: pier 1 1.89 (0.56) 1.14 (0.32) 1.26 (0.32) 1.09 (0.20) 
bent 5: pier 2 1.84 (0.54) 1.06 (0.30) 1.19 (0.32) 0.98 (0.19) 
bent 6: pier 1 1.92 (0.56) 1.53 (0.40) 1.57 (0.47) 1.15 (0.29) 
bent 6: pier 2 1.90 (0.55) 1.46 (0.37) 1.50 (0.45) 1.12 (0.27) 

PUL record, scaling factor =1.0 
 case 1 case 2 

 

bent 2: pier 1 1.45 (0.53) 1.62 (0.75) 
bent 2: pier 2 1.39 (0.51) 1.63 (0.74) 
bent 3: pier 1 1.88 (0.73) 1.32 (0.50) 
bent 3: pier 2 1.79 (0.69) 1.28 (0.51) 
bent 4: pier 1 2.13 (0.85) 1.01 (0.27) 
bent 4: pier 2 2.06 (0.82) 0.99 (0.27) 
bent 5: pier 1 2.02 (0.79) 1.11 (0.44) 
bent 5: pier 2 1.99 (0.78) 1.03 (0.39) 
bent 6: pier 1 1.94 (0.74) 1.95 (0.81) 
bent 6: pier 2 1.91 (0.72) 1.78 (0.76) 

 
  



171 

 

Table 5.19: Auburn Ravine Bridge: Mean (standard deviation) peak non-linear pier drifts as % of pier 
height.  

HSP record, scaling factor =1.5 
 case 1 case 2 case 3 case 4 

bent 2: pier 1 0.80 (0.20) 0.69 (0.20) 0.71 (0.13) 0.75 (0.21) 
bent 2: pier 2 0.75 (0.19) 0.67 (0.20) 0.69 (0.15) 0.74 (0.20) 
bent 3: pier 1 1.17 (0.35) 0.54 (0.13) 0.59 (0.11) 1.15 (0.42) 
bent 3: pier 2 1.10 (0.32) 0.50 (0.12) 0.55 (0.10) 1.08 (0.40) 
bent 4: pier 1 1.46 (0.48) 0.58 (0.17) 0.69 (0.18) 0.70 (0.15) 
bent 4: pier 2 1.39 (0.45) 0.53 (0.15) 0.63 (0.16) 0.70 (0.14) 
bent 5: pier 1 1.52 (0.49) 0.73 (0.21) 0.87 (0.29) 1.01 (0.30) 
bent 5: pier 2 1.48 (0.48) 0.66 (0.18) 0.81 (0.28) 0.90 (0.27) 
bent 6: pier 1 1.56 (0.47) 1.07 (0.33) 1.22 (0.38) 0.84 (0.24) 
bent 6: pier 2 1.54 (0.47) 1.00 (0.30) 1.14 (0.35) 0.81 (0.23) 

PUL record, scaling factor =1.0 
 case 1 case 2  

bent 2: pier 1 1.30 (0.37) 1.40 (0.37) 

 

bent 2: pier 2 1.24 (0.35) 1.36 (0.35) 
bent 3: pier 1 1.73 (0.59) 1.18 (0.36) 
bent 3: pier 2 1.64 (0.56) 1.13 (0.35) 
bent 4: pier 1 1.95 (0.66) 0.83 (0.26) 
bent 4: pier 2 1.89 (0.65) 0.79 (0.23) 
bent 5: pier 1 1.70 (0.58) 0.95 (0.42) 
bent 5: pier 2 1.70 (0.58) 0.87 (0.36) 
bent 6: pier 1 1.45 (0.41) 1.70 (0.68) 
bent 6: pier 2 1.46 (0.43) 1.55 (0.63) 
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Table 5.20: Auburn Ravine Bridge: Mean (standard deviation) ductility ratios. 

HSP record, scaling factor =1.5 
 case 1 case 2 case 3 case 4 

bent 2: pier 1 1.22 (0.31) 1.06 (0.30) 1.08 (0.20) 1.15 (0.32) 
bent 2: pier 2 1.12 (0.28) 1.00 (0.30) 1.03 (0.22) 1.10 (0.30) 
bent 3: pier 1 1.76 (0.53) 0.80 (0.19) 0.89 (0.16) 1.74 (0.64) 
bent 3: pier 2 1.61 (0.48) 0.74 (0.18) 0.80 (0.15) 1.59 (0.59) 
bent 4: pier 1 2.05 (0.67) 0.82 (0.24) 0.98 (0.25) 0.98 (0.21) 
bent 4: pier 2 1.92 (0.63) 0.74 (0.20) 0.87 (0.22) 0.97 (0.20) 
bent 5: pier 1 1.98 (0.64) 0.95 (0.27) 1.14 (0.37) 1.32 (0.39) 
bent 5: pier 2 1.89 (0.62) 0.84 (0.23) 1.03 (0.35) 1.15 (0.34) 
bent 6: pier 1 2.13 (0.64) 1.47 (0.45) 1.67 (0.52) 1.15 (0.33) 
bent 6: pier 2 2.06 (0.63) 1.34 (0.40) 1.52 (0.47) 1.09 (0.31) 

PUL record, scaling factor =1.0 
 case 1 case 2  

bent 2: pier 1 1.99 (0.57) 2.14 (0.57) 

 

bent 2: pier 2 1.85 (0.52) 2.03 (0.52) 
bent 3: pier 1 2.60 (0.89) 1.78 (0.54) 
bent 3: pier 2 2.41 (0.82) 1.66 (0.51) 
bent 4: pier 1 2.75 (0.93) 1.16 (0.36) 
bent 4: pier 2 2.60 (0.89) 1.09 (0.32) 
bent 5: pier 1 2.22 (0.75) 1.23 (0.55) 
bent 5: pier 2 2.17 (0.73) 1.11 (0.46) 
bent 6: pier 1 1.98 (0.56) 2.32 (0.93) 
bent 6: pier 2 1.95 (0.57) 2.07 (0.84) 
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Table 5.21: Penstock Bridge: Mean (standard deviation) values of Cµ

 

 ratios.  

bent 2 bent 3 bent 4 
HSP record, scaling factor =1.5 

case 1 0.87 (0.09) 0.94 (0.10) 1.06 (0.13) 
case 2 0.83 (0.12) 0.92 (0.10) 0.82 (0.15) 
case 3 0.84 (0.12) 0.93 (0.13) 0.85 (0.16) 
case 4 0.85 (0.09) 0.93 (0.11) 0.86 (0.16) 

PUL record, scaling factor =1.0 
case 1 0.87 (0.14) 0.96 (0.14) 1.07 (0.17) 
case 2 0.78 (0.13) 0.90 (0.14) 0.83 (0.19) 

 

Table 5.22: South Ingram Slough Bridge: Mean (standard deviation) values of Cµ

 

 ratios.  

bent 2: pier 1 bent 2: pier 2 
HSP record, scaling factor =1.5 

case 1 0.92 (0.11) 0.92 (0.11) 
case 2 0.92 (0.11) 0.92 (0.11) 
case 3 0.92 (0.10) 0.92 (0.10) 
case 4 0.94 (0.14) 0.94 (0.14) 

PUL record, scaling factor =1.0 
case 1 0.97 (0.15) 0.97 (0.15) 
case 2 0.98 (0.14) 0.98 (0.14) 

 

Table 5.23: Big Rock Wash Bridge: Mean (standard deviation) values of Cµ

 

 ratios.  

bent 2: middle pier bent 2: side pier bent 3: middle pier bent 3: side pier 
HSP record, scaling factor =1.5 

case 1 1.15 (0.26) 1.15 (0.26) 1.13 (0.26) 1.13 (0.26) 
case 2 0.97 (0.14) 0.97 (0.14) 0.96 (0.12) 0.96 (0.12) 
case 3 0.94 (0.17) 0.94 (0.17) 0.96 (0.14) 0.96 (0.14) 
case 4 0.98 (0.13) 0.98 (0.13) 1.00 (0.14) 1.00 (0.14) 

PUL record, scaling factor =1.0 
case 1 1.05 (0.54) 1.05 (0.54) 1.04 (0.53) 1.04 (0.53) 
case 2 1.04 (0.19) 1.04 (0.19) 0.91 (0.24) 0.91 (0.24) 
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Table 5.24: Auburn Ravine Bridge: Mean (standard deviation) values of Cµ

HSP record, scaling factor =1.5 

 ratios.  

 case 1 case 2 case 3 case 4 
bent 2: pier 1 0.72 (0.10) 0.74 (0.16) 0.74 (0.11) 0.76 (0.13) 
bent 2: pier 2 0.72 (0.10) 0.73 (0.16) 0.74 (0.08) 0.76 (0.12) 
bent 3: pier 1 0.75 (0.11) 0.63 (0.11) 0.61 (0.09) 0.92 (0.13) 
bent 3: pier 2 0.74 (0.11) 0.63 (0.13) 0.61 (0.11) 0.91 (0.13) 
bent 4: pier 1 0.79 (0.13) 0.66 (0.14) 0.64 (0.08) 0.81 (0.13) 
bent 4: pier 2 0.79 (0.13) 0.64 (0.15) 0.61 (0.09) 0.81 (0.13) 
bent 5: pier 1 0.81 (0.12) 0.65 (0.12) 0.69 (0.11) 0.92 (0.16) 
bent 5: pier 2 0.81 (0.12) 0.63 (0.13) 0.67 (0.11) 0.92 (0.16) 
bent 6: pier 1 0.82 (0.11) 0.70 (0.11) 0.79 (0.13) 0.74 (0.09) 
bent 6: pier 2 0.82 (0.11) 0.69 (0.11) 0.76 (0.13) 0.73 (0.09) 

PUL record, scaling factor =1.0 
 case 1 case 2 

 

bent 2: pier 1 0.92 (0.14) 0.92 (0.17) 
bent 2: pier 2 0.92 (0.15) 0.89 (0.16) 
bent 3: pier 1 0.94 (0.12) 0.93 (0.14) 
bent 3: pier 2 0.94 (0.12) 0.92 (0.15) 
bent 4: pier 1 0.94 (0.13) 0.83 (0.17) 
bent 4: pier 2 0.94 (0.12) 0.82 (0.16) 
bent 5: pier 1 0.87 (0.13) 0.85 (0.11) 
bent 5: pier 2 0.88 (0.13) 0.85 (0.11) 
bent 6: pier 1 0.79 (0.15) 0.88 (0.09) 
bent 6: pier 2 0.80 (0.14) 0.88 (0.09) 
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Table 5.25: Penstock Bridge: Comparison of RHA and MSRS mean peak pier drift estimates. 

case 1 
location RHA with 

OpenSees (m) 
RHA witEqn. 

(2.9) (m) MSRS (m) error (%) 
bent 2 0.494 0.484 0.482 −0.4 
bent 3 0.460 0.452 0.444 −1.8 
bent 4 0.370 0.362 0.345 −4.7 

case 3 
location RHA with 

OpenSees (m) 
RHA witEqn. 

(2.9) (m) MSRS (m) error (%) 
bent 2 0.505 0.487 0.480 −1.4 
bent 3 0.459 0.449 0.452 0.7 
bent 4 0.460 0.442 0.410 −7.2 

 

Table 5.26: South Ingram Slough Bridge: Comparison of RHA and MSRS mean peak pier drift esti-
mates.  

case 1 
location RHA with 

OpenSees (m) 
RHA witEqn. 

(2.9) (m) MSRS (m) error (%) 
bent 2: pier 1 0.331 0.325 0.325 0.0 
bent 2: pier 2 0.331 0.325 0.325 0.0 

case 3 
location RHA with 

OpenSees (m) 
RHA witEqn. 

(2.9) (m) MSRS (m) error (%) 
bent 2: pier 1 0.303 0.295 0.294 −0.3 
bent 2: pier 2 0.303 0.295 0.294 −0.3 
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Table 5.27: Big Rock Wash Bridge: Comparison of RHA and MSRS mean peak pier drift estimates . 

case 1 
location RHA with 

OpenSees (m) 
RHA witEqn. 

(2.9) (m) MSRS (m) error (%) 
bent 2: middle 0.096 0.094 0.092 −2.1 

bent 2: side 0.096 0.094 0.092 −2.1 
bent 3: middle 0.107 0.105 0.106 1.0 

bent 3: side 0.107 0.105 0.106 1.0 
case 3 

location RHA with 
OpenSees (m) 

RHA witEqn. 
(2.9) (m) MSRS (m) error (%) 

bent 2: middle 0.072 0.067 0.063 −6.0 
bent 2: side 0.072 0.067 0.063 −6.0 

bent 3: middle 0.097 0.093 0.088 −5.4 
bent 3: side 0.097 0.093 0.088 −5.4 
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Table 5.28: Auburn Ravine Bridge: Comparison of RHA and MSRS mean peak pier drift estimates. 

case 1 
location RHA with 

OpenSees (m) 
RHA with  

Eqn. (2.9) (m) MSRS (m) error (%) 
bent 2: pier 1 0.063 0.062 0.057 −8.1 
bent 2: pier 2 0.061 0.059 0.054 −8.5 
bent 3: pier 1 0.089 0.088 0.085 −3.4 
bent 3: pier 2 0.087 0.086 0.082 −4.7 
bent 4: pier 1 0.113 0.111 0.110 −0.9 
bent 4: pier 2 0.111 0.109 0.108 −0.9 
bent 5: pier 1 0.124 0.121 0.122 0.8 
bent 5: pier 2 0.124 0.121 0.122 0.8 
bent 6: pier 1 0.120 0.116 0.117 0.9 
bent 6: pier 2 0.122 0.117 0.119 1.7 

case 3 

 RHA with 
OpenSees (m) 

RHA witEqn. 
(2.9) (m) MSRS (m) error (%) 

bent 2: pier 1 0.054 0.050 0.049 −2.0 
bent 2: pier 2 0.054 0.050 0.049 −2.0 
bent 3: pier 1 0.057 0.052 0.046 −11.5 
bent 3: pier 2 0.054 0.050 0.045 −10.0 
bent 4: pier 1 0.067 0.064 0.056 −12.5 
bent 4: pier 2 0.065 0.061 0.054 −11.5 
bent 5: pier 1 0.083 0.078 0.071 −9.0 
bent 5: pier 2 0.080 0.077 0.069 −10.4 
bent 6: pier 1 0.098 0.093 0.086 −7.5 
bent 6: pier 2 0.096 0.092 0.084 −8.7 
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Figure 5.1: "Stationary"  segments of the HSP accelerogram selected based on integral measures of 

evolving cumulative energy, predominant frequency and bandwidth. 
 
 

 
Figure 5.2: Stationary"  segments of the PUL accelerogram selected based on integral measures of 

evolving cumulative energy, predominant frequency and bandwidth. 
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Figure 5.3: Comparison of estimated and fitted theoretical PSD for the HSP record. 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 5.4: Example set of simulated support motions for Penstock Bridge (PUL record as seed, case 

2). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 5.5: Example set of simulated support motions for South Ingram Slough Bridge (HSP record as 

seed, case 2). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 

 
Displacement time-histories (cm) 

 
Figure 5.6: Example set of simulated support motions for Big Rock Wash bridge (HSP record as seed, 

case 4). 
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Acceleration time-histories (g) 

 
Velocity time-histories (cm/sec) 
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Displacement time-histories (cm) 

 
Figure 5.7: Example set of simulated support motions for Auburn Ravine bridge (HSP record as seed, 

case 3). 
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Figure 5.8: Median acceleration response spectra for support motions of Penstock Bridge (PUL record 
as seed, case 2). 

 
 

 

Figure 5.9: Median acceleration response spectra for support motions of South Ingram Slough Bridge 
(HSP record as seed, case 2). 
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Figure 5.10: Median acceleration response spectra for support motions of Big Rock Wash bridge (HSP 
record as seed, case 4). 

 
 

 

Figure 5.11: Median acceleration response spectra for support motions of Auburn Ravine bridge (HSP 
record as seed, case 3). 
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k = bent 2, l = bent 4 

 

Figure 5.12: Coherency estimates for support motions of Penstock Bridge (PUL record as seed, case 2). 

 

 
k = bent 2, l = bent 3 

 

Figure 5.13: Coherency estimates for support motions of South Ingram Slough Bridge (HSP record as 
seed, case 2). 

 

 
k = bent 1, l = bent 3 

 

Figure 5.14: Coherency estimates for support motions of Big Rock Wash bridge (HSP record as seed, 
case 4). 
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k = bent 2, l = bent 6 

 

Figure 5.15: Coherency estimates for support motions of Auburn Ravine bridge (HSP record as seed, 
case 3). 
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Figure 5.16: Cµ
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       case 1 

 
      case 2 

 
Figure 5.17: Cµ

 

  

 ratio versus ductility for Penstock Bridge (PUL record as seed, scaling factor = 1.0). 
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    case 1 

 
    case 2 

 
    case 3 

 
    case 4 

 
Figure 5.18: Cµ
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 ratio versus ductility for South Ingram Slough Bridge (HSP record as seed, scaling fac-
tor = 1.5). 
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     case 1 

 
     case 2 

 
Figure 5.19: Cµ

 

 

  

 ratio versus ductility for South Ingram Slough Bridge (PUL record as seed, scaling fac-
tor = 1.0). 
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case 3 

 
case 4 

 
Figure 5.20: Cµ

 

 ratio versus ductility for Big Rock Wash Bridge (HSP record as seed, scaling factor = 
1.5). 
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 case 1 

 
     case 2 

 
Figure 5.21: Cµ

 

 ratio versus ductility for Big Rock Wash Bridge (PUL record as seed, scaling factor = 
1.0). 
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case 2 
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case 3 
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case 4 

 
Figure 5.22: Cµ

 

 ratio versus ductility for Auburn Ravine Bridge (HSP record as seed, scaling factor = 
1.5). 
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     case 1 
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     case 2 

 
Figure 5.23: Cµ

 

 ratio versus ductility for Auburn Ravine Bridge (PUL record as seed, scaling factor = 
1.0). 
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Chapter 6 -  Coherency analysis 
of accelerations rec-
orded by the UPSAR 
array 

6.1    INTRODUCTION 

In previous chapters, we used the notion of coherency function to evaluate the cross-
correlation coefficients required in response spectrum analysis of multiply supported 
structures (Chapters 2 and 3). We also used the coherency function to determine distribu-
tions of Fourier coefficients in simulating arrays of spatially varying ground motions (Chap-
ter 4). The complex valued coherency function was defined in Chapter 2 and models that 
describe its components, i.e. the incoherence, wave-passage and site-response effects, were 
introduced. We saw that the modulus of the coherency function represents the incoherence 
component, whereas the phase angle is associated with the wave-passage and site-
response effects. The phase angle caused by wave-passage is evaluated in terms of the pro-
jected algebraic inter-station distance in the direction of propagation of waves and the ap-
parent wave velocity. The phase angle caused by differential site-response is determined in 
terms of the frequency response functions (FRFs) of soil columns under certain simplifying 
assumption of upward propagating of waves. However, due to the completely random na-
ture of the incoherence effect, it is not possible to determine a specific form for the mod-
ulus of the coherency function. 
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One approach to model the incoherence component is to use a theoretical model employing 
parameters that can be determined through statistical inference. A general form for such a 
theoretical model has been derived by Der Kiureghian (1996) by using a probabilistic ap-
proach. A special case is the model by Luco and Wong (1986), which we have adopted in 
our analysis so far.  This model is based on the theory of wave propagation and describes 
the incoherence component in terms of the inter-station distance, the shear-wave velocity 
and an incoherence parameter. The incoherence parameter is estimated empirically (Luco 
and Wong, 1986) or determined in terms of the soil properties and depth of soil layers 
(Zerva and Harada, 1984). Another approach to model the incoherence component is to 
develop empirical models using data from recorded acceleration arrays (e.g. Harichandran 
and Vanmarcke, 1986; Abrahamson et al., 1991). Empirical models account for the complex 
phenomena that occur during wave propagation and are not captured by simplified ma-
thematical models, but characterize only the specific rupture mechanisms and soil topo-
graphies. 

In this chapter, we examine spatial variations observed during the 2004 Parkfield (Califor-
nia) earthquake using the UPSAR array of closely spaced acceleration records (Fletcher et 
al., 2006; Kim and Dreger, 2008) and compare coherency estimates from these data with 
existing theoretical and empirical models. The recording sites are at approximately 12km 
from the fault rupture, which is a shorter distance than those for most arrays used in pre-
vious studies (see, e.g., Harichandran and Vanmarcke, 1986; Abrahamson et al. 1991). 
Therefore, one objective of this study is to determine if there is a substantial difference in 
the coherency characteristics of these near-fault records relative the existing models. It is 
noted that, though near-fault, the records used in this study do not exhibit directivity 
pulses.      

6.2    DESCRIPTION OF DATA 

The data analyzed in this chapter consist of the acceleration time-histories recorded at 12 
stations of the UPSAR array during the 2004 Parkfield earthquake of magnitude  
(Fletcher et al., 2006; Kim and Dreger, 2008). The array is located approximately 12 km 
away from the fault rupture. The geometry of the station locations is shown in Figure 6.1, 
where each station is identified by the letter S followed by a number in the range 1-12. The 
horizontal and vertical axes indicate the E-W and N-S orientations, respectively. The earth-
quake source is located to the east of the recording sites. For the coherency analysis, sta-
tion 5 is selected as the point with zero coordinates. This choice does not affect the results 
since we are only interested in relative station distances. The inter-station distances of all 
66 station pairs vary in the range 25.0-951.9m. In the following analysis, we only consider 
inter-station distances in the range 0-500m and separate those in ten 50m bins. Table 6.1 
lists the number of station pairs and the mean inter-station distance for each bin.  

For each station, recordings of the acceleration components in the N-S, the E-W and the 
vertical directions are available. Each acceleration time history has a total duration of   
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and is sampled at  points with a time step of . The acceleration time 
histories for the first 20s, which include the strong shaking phase, are shown in Figure 6.2 
and Figure 6.3 for the N-S and E-W components, respectively, and in Figure 6.4 for the ver-
tical components. A common scale for the vertical axis is selected for all horizontal compo-
nents and another for all vertical components to facilitate comparison of the intensities. 
The peak ground accelerations (PGAs) for all components and stations are listed in Table 
6.2. 

6.3    POWER SPECTRAL DENSITY ESTIMATES 

The acceleration time-histories in Figure 6.2 to Figure 6.4 indicate spatial variations in both 
intensities and frequency contents. To gain insight, we plot the acceleration PSD estimates 
of the N-S and E-W components in Figure 6.5 and Figure 6.6, respectively, and the PSD es-
timates of the vertical components in Figure 6.7. These estimates are obtained by smooth-
ing the corresponding periodograms (see Eqn. (4.5) in Chapter 4) with a Hamming window 
of 0.5Hz width. Note that a common scale for the vertical axis is used for all horizontal 
components and another for all vertical components. In general, vertical accelerations are 
characterized by smaller intensities than the horizontal ones. 

The PSD of surface ground acceleration at a site is influenced by the characteristics of the 
local soil layers. For stiffer soils, the acceleration PSD tends to be broader and richer in 
high-frequency components, whereas for softer soils, it tends to be narrow-band and richer 
in low-frequency content, sometimes exhibiting a predominant resonant frequency.  Com-
paring Figure 6.4 with Figure 6.2, and Figure 6.4 with Figure 6.3, it appears that the vertical 
accelerations are more broad-band processes than the horizontal ones, suggesting that the 
soil is stiffer in the vertical direction. Several of the stations show predominant peaks, 
which may be due to local soil effects or topology. These effects are naturally included in 
the coherency estimates described below. 

6.4    COHERENCY ESTIMATES 

In this section, we present coherency estimates from the accelerograms recorded by the 
UPSAR array. Specifically, we examine estimates of the modulus of the coherency function, 

, its real and imaginary parts,  and , respectively, and the coherency 
phase angle, . See Section 2.2.3 for the definitions of these quantities. Estimates of these 
coherency measures are obtained as functions of frequency for each inter-station distance 
bin and for the horizontal and vertical components separately. In estimating the coherency 
of the horizontal components, we do not account for any directional dependence, i.e., we 
combine the results for the N-S and E-W components. 

The steps involved in estimating each of the above functions for a given inter-station dis-
tance bin and pair of acceleration components (or horizontal  or vertical) are the following: 
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1. For each pair of accelerograms in the inter-station distance bin and for the component 
direction considered:  
a. Evaluate the real and imaginary parts of the cross-periodogram using Eqns. (4.6) (in 

Chapter 4) and smooth them using a Hamming window of a selected width. This 
represents an estimate of the cross-PSD of the pair of accelerograms.  

b. Evaluate the periodogram for each component of the pair and smooth it using a 
Hamming window having the same width as that used in step 1a. This represents an 
estimate of the auto-PSD of the accelerogram. 

c. Use the estimates of the auto- and cross-PSDs to evaluate  and , 
where  is defined as in Eqn. (2.17) of Chapter 2. 

d. Use the estimates of   and  from step 1c to evaluate 

  and . 
2. For each of the functions , ,  and , we average the estimates ob-

tained in steps 1c-1d for all pairs in the bin for the considered component. For the hori-
zontal components, we average the estimates in both N-S and E-W directions. We note 
that each considered pair consists of records in the same direction.  

Estimation of auto- and cross-PSDs through the cross-periodograms and periodograms is 
valid for stationary processes, but is applied here under the assumption that the strong-
motion segment of the accelerograms, which accounts for most of the power in the fre-
quency domain, is nearly stationary. The results of the analysis are shown in Figure 6.8 to 
Figure 6.15. In these figures, each inter-station distance bin is represented by the middle 
point of the corresponding range and is denoted as .  

Figure 6.8 and Figure 6.9 show estimates of the modulus of the coherency function, , 
for the horizontal and vertical components, respectively, and for three levels of smoothing 
corresponding to Hamming-window widths of 0.25 Hz, 0.50 Hz and 1 Hz. We note that, for 
a given window width, the smoothness of the coherency estimate varies depending on the 
number of station pairs in the inter-station distance bin. As expected, both the vertical and 
horizontal estimates for bin 7 (inter-station distances 300-350m) are smoothest because 
that bin has the largest number of records (13), see Table 6.1. 

Consider the estimates in Figure 6.8 and Figure 6.9 for the horizontal and vertical compo-
nents, respectively, which are produced for three levels of the Hamming window widths. In 
general, the wider the smoothing window, the more biased the coherency estimates is. As a 
result, for the higher level of smoothing considered, i.e. for the 1Hz window width, esti-
mates of the modulus of coherency deviate from the theoretical unity value at zero fre-
quency. On the other hand, for the lower level of smoothing considered, i.e. for the 0.25Hz 
window width, the estimates are too jagged, which makes it difficult to interpret the results 
and identify trends. Thus, we select the 0.50Hz Hamming window width as the most ap-
propriate for our analysis. In the following, we only examine coherency estimates for this 
level of smoothing. 



206 

 

Figure 6.8 and Figure 6.9 indicate decay of the modulus of the coherency function with in-
creasing frequency and increasing inter-station distance. We note a slightly faster decay of 
the coherency modulus for the vertical components relative to that of the horizontal com-
ponents, except for the 1st bin. At high frequencies, the estimate of the coherency modulus 
does not approach zero, even for large distance bins. The value approached represents the 
coherency of the random noise in the recorded motions.   

Figure 6.10 and Figure 6.11 show estimates of the real part of the coherency function, 
, for the horizontal and vertical components, respectively. In the absence of wave 

passage and for similar soil conditions,  and  are identical. Thus, the differences 
between the estimates in Figure 6.8 and Figure 6.10 and between the estimates in Figure 
6.9 and Figure 6.11 are indicative of the wave-passage and site-response effects. These dif-
ferences are greater when the actual coherency approaches zero. In these regions, the es-
timates of the real parts tend to be scattered on either side of zero, whereas the estimates 
of the coherency modulus are always positive. Thus, smoothing with a wider window 
would result in nearly zero estimates for the real parts, but not for the modulus. 

Figure 6.12 and Figure 6.13 show estimates of the imaginary part of the coherency func-
tion, , for the horizontal and vertical components, respectively. These figures are 
rather hard to interpret because of the small values of the imaginary parts of the coherency 
function and the large scatter due to noise when the actual coherency is small. However, for 
each bin, we can identify the frequency ranges dominated by noise by comparison with the 
corresponding graphs in Figure 6.8 and Figure 6.9, in which these ranges are more appar-
ent. 

Figure 6.14 and Figure 6.15 show estimates of the coherency phase angle function, , 
which is wrapped within the interval , for the horizontal and vertical com-
ponents, respectively. Again, we can identify the frequency ranges that are dominated by 
noise by comparing with the graphs in Figure 6.8 and Figure 6.9, respectively. For other 
frequencies, phase angles tend to increase with increasing frequency and separation dis-
tance. 

6.5    COMPARISON OF COHERENCY ESTIMATES WITH EXISTING MODELS 

6.5.1    Comparison with theoretical model 

In this section, we examine how the coherency estimates from the UPSAR recordings com-
pare with the theoretical model by Luco and Wong (1986). This model was introduced in 
Chapter 2 (see Eqn. (2.19)) and describes the incoherence component in terms of the inter-
station distance, , the shear-wave velocity, , and a single incoherence parameter, . Lu-
co and Wong suggested that typical values of the ratio  are in the range  . 
In the following, we determine values of the ratio  that fit the estimates of the modulus 
of the coherency function obtained for the UPSAR data.  
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First consider the coherency estimates of the horizontal components. We apply the MAT-
LAB non-linear least-squares minimization algorithm on the variance-stabilizing transfor-
mation of the coherency modulus,  (Brillinger, 2001). Estimates of   
are obtained by applying the procedure described in Section 6.4, but for  instead 
of  in step 1d. In Section 6.4, we saw that for large frequencies, the coherency estimates 
tend to be dominated by noise. This is not captured by the Luco and Wong model which 
gives asymptotically zero values for large frequencies. Thus, we expect that the range of 
frequencies considered in the least-squares minimization process may affect the results. In 
Table 6.3, for each inter-station distance bin, we list the values of  obtained by fitting in 
the range of frequencies , with  taking the values 2, 4 and 8Hz. We note 
that, with the exception of the first bin, the results are not affected or are only slightly af-
fected by the choice of . Figure 6.16 compares the estimates of  with the fit-
ted Luco and Wong model for the  values obtained when . For the same 
values of , Figure 6.17 compares the estimated and fitted curves for . 

A similar analysis is repeated for the coherency of the vertical components. Table 6.4 
shows the values of  obtained by fitting in the same ranges of frequencies considered 
for the horizontal components. We note that the choice of  affects the results in the 
first three bins. Figure 6.18 compares the estimates of  with the fitted Luco and 
Wong model for the  values obtained when . For the same values of 

, Figure 6.19 compares the estimated and fitted curves for . 

We note that if we were to fit  instead of  , the results would be largely af-
fected by the choice of , which should be carefully selected so that the region dominat-
ed by noise is excluded. This would obviously involve more subjectivity. It is also noted that 
the estimated values of  in Table 6.3 and Table 6.4 are somewhat larger than the range 
suggested by Luco and Wong (1986). This could be due the topology of the recording sites, 
or due to the near-source nature of the recordings. Comparing Table 6.3 and Table 6.4,  it is 
clear that the decay of coherency with frequency is faster for the vertical components than 
the horizontal components. 

6.5.2    Comparison with empirical models 

In this section, we compare the estimates of the coherency modulus from the UPSAR data 
with two well-known empirical models: the model by Harichandran and Vanmarcke (1986) 
and the model by Abrahamson et al. (1991).  

Harichandran and Vanmarcke developed a coherency model using horizontal recordings 
from SMART 1 array in Taiwan, which is characterized by a minimum station spacing of 
100m.  This model is based on data from one far-field event and describes the modulus of 
coherency as 

 (6.1) 
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where , , , , and 
 Abrahamson et al. used data from fifteen earthquakes recorded by the Lotung 

LSST array, which is a dense array located within the SMART 1 array. The set of data in-
cludes both near-fault and far-field records. The model was derived from analysis of the 
horizontal components only and for separation distances . According to this model, 

 is given by 

+0.35 (6.2) 

where .  

In Figure 6.20, we compare the estimates of the coherency modulus from the horizontal 
UPSAR accelerograms with the model by Harichandran and Vanmarcke for distances 

, i.e. for the inter-station distance bins 3-10. The coherency estimates from the UP-
SAR data differ significantly from the coherency described by this model. We note that for 
frequencies close to zero, the model by Harichandran and Vanmarcke gives values smaller 
than unity, which is not reasonable. Earlier, we saw that the estimated coherency for zero 
values depends on the level of smoothing (see Figure 6.8 and Figure 6.9). But, on physical 
grounds, the modulus of coherency function must approach 1 at zero frequency since 
waves of infinite wavelength are perfectly coherent. Figure 6.20 shows that for small fre-
quencies, the coherency of the UPSAR accelerograms decays at a much faster rate than the 
coherency described by the Harichandran and Vanmarcke model. However, for larger fre-
quencies, when noise is dominant, the model by Harichandran and Vanmarcke gives small-
er coherency values. 

In Figure 6.21, we compare the estimates of   from the horizontal UPSAR accele-
rograms with the model of Abrahamson et al. for distances , i.e. for the first two in-
ter-station distance bins. In Figure 6.22, we plot the corresponding curves for the modulus 
of coherency, . In contrast with the model by Harichandran and Vanmarcke, the model 
of Abrahamson et al. describes perfectly coherent motions at zero frequency. However, in 
the range of frequencies of interest (when noise is not dominant), the coherency of the UP-
SAR accelerograms decays at a much slower rate than the coherency represented by the 
Abrahamson et al. model.  This empirical model also corrects for the effect of noise on the 
coherency at large frequencies. 

6.6    SUMMARY 

In this chapter, we investigated spatial variations in the accelerograms recorded by the UP-
SAR array during the 2004 Parkfield earthquake. The recordings indicate significant varia-
tions in the acceleration intensities and frequency contents. The coherency estimates ob-
tained from these recordings were fitted to the theoretical model by Luco and Wong (1986) 
compared with commonly used empirical models by Harichandran and Vanmarcke (1986) 
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for distances  , and by Abrahamson et al. (1991) for distances  . The cohe-
rency modulus estimated from the UPSAR array diverged significantly from those given by 
both empirical models in the range of frequencies of interest. The model by Harichandran 
and Vanmarcke described a slower decay of the coherency modulus than that estimated 
from the UPSAR array, whereas the model by Abrahamson et al. described a much faster 
decay. The theoretical model by Luco and Wong (1986), when fitted to the estimated mod-
ulus of coherency provided a fairly good approximation of the incoherence component of 
the UPSAR recordings, but for larger values of the incoherence parameter  than rec-
ommended values. This can be attributed to the particularly anomalous topography of the 
site of the UPSAR array, or to near-source effects. Further analysis with near-source array 
recordings need to be conducted to determine if this phenomenon is indeed a near-source 
effect. Finally, the UPSAR recordings suggest a faster decay of coherency with frequency for 
vertical components than for horizontal components   
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Table 6.1: Distance bins for station pairs. 

Bin number Distance range (m) Number of station pairs Mean distance (m) 
1 0-50 3 31.1 
2 50-100 1 88.7 
3 100-150 5 129.8 
4 150-200 3 183.7 
5 200-250 5 222.7 
6 250-300 4 274.8 
7 300-350 13 334.4 
8 350-400 4 377.6 
9 400-450 4 422.3 

10 450-500 5 478.2 
 

Table 6.2: PGA (in units of g) for each component and station. 

Component Station number 
1 2 3 4 5 6 7 8 9 10 11 12 

N-S 0.14 0.17 0.15 0.24 0.23 0.38 0.18 0.20 0.28 0.36 0.25 0.23 
E-W 0.18 0.31 0.25 0.37 0.25 0.33 0.26 0.28 0.31 0.47 0.22 0.30 

Vertical 0.09 0.09 0.11 0.18 0.11 0.19 0.13 0.14 0.17 0.24 0.11 0.16 
 

Table 6.3: Estimated values of  (α/vs)*10-4

 
(Hz) 

 for horizontal components. 

 (m) 
25 75  125 175 225 275 325 375 425 475 

2 8 8 5 5 4 4 4 4 3 3 
4 11 6 4 4 3 3 3 4 3 3 
8 9 5 3 3 3 3 3 4 3 3 

 

Table 6.4: Estimated values of (α/vs)*10-4

 
(Hz) 

 for vertical components. 

 (m) 
25 75 125 175 225 275 325 375 425 475 

2 11 10 6 5 5 6 5 5 5 5 
4 10 10 5 4 5 5 5 5 5 5 
8 9 9 4 4 5 5 5 5 5 5 
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Figure 6.1: Geometry of UPSAR array. 
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Figure 6.2: Acceleration time histories of the N-S components. 
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Figure 6.3: Acceleration time histories of the E-W components. 

 



214 

 

 
Figure 6.4: Acceleration time histories of the vertical components. 
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Figure 6.5: Estimated acceleration PSDs of N-S components. 
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Figure 6.6: Estimated acceleration PSDs of E-W components. 
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Figure 6.7: Estimated acceleration PSDs of vertical components. 
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Figure 6.8: Estimates of coherency modulus for the horizontal components for 3 levels of smoothing. 

 



219 

 

 
Figure 6.9: Estimates of coherency modulus for the vertical components for 3 levels of smoothing. 
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Figure 6.10: Estimates of the real part of coherency for horizontal components. 
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Figure 6.11: Estimates of the real part of coherency for vertical components. 
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Figure 6.12 Estimates of the imaginary part of coherency for horizontal components. 
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Figure 6.13: Estimates of the imaginary part of coherency for vertical components. 
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Figure 6.14: : Estimates of coherency phase angle for the horizontal components. 
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Figure 6.15: Estimates of coherency phase angle for the vertical components. 
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Figure 6.16: Comparison of horizontal coherency estimates (tanh-1|γkl|) with fitted Luco & Wong mod-

el. 
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Figure 6.17: Comparison of horizontal coherency estimates  (|γkl|) with fitted Luco & Wong model.  
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Figure 6.18: Comparison of vertical coherency estimates (tanh-1|γkl|) with fitted Luco & Wong model.  
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Figure 6.19: Comparison of vertical coherency estimates  (|γkl|) with fitted Luco & Wong model. 
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Figure 6.20: Comparison of horizontal coherency estimates  (|γkl

 

 

 

|)   with Harichandran and Van-
marcke model. 
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Figure 6.21: Comparison of horizontal coherency estimates (tanh-1|γkl

 

|) with with Abrahamson et al. 
model. 

 

Figure 6.22: Comparison of horizontal coherency estimates (|γkl

 

  

|) with Abrahamson et al. model. 
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Chapter 7 -  Summary, conclu-
sions and further 
studies 

7.1    MAJOR DEVELOPMENTS AND FINDINGS 

In this dissertation, we investigated the response of bridges under differential support exci-
tations employing response spectrum and time-history analysis methods. Spatial variability 
of ground motions due to incoherence, wave-passage and site-response effects was consi-
dered. New analysis tools were developed and comprehensive parametric studies of real 
bridge models under varying conditions were performed. The main developments and 
findings of the study are summarized below: 

 The MSRS method was generalized to account for response quantities that depend on 
the support DOF, e.g., bridge pier drifts, element forces when rotational DOF are con-
densed out. 

 The MSRS method was extended to account for quasi-static contributions of truncated 
high-frequency modes. A parametric analysis of the newly introduced cross-correlation 
coefficients identified cases in which these terms are important. 

 The generalized and extended MSRS method was implemented in an efficient computer 
code. For the computation of the correlation coefficients, a fast and accurate numerical 
integration method was developed by accounting for the properties of the specific inte-
grand quantities. Another advantage of this code is that it computes the required struc-
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tural properties using an algorithm that is applicable to any ‘black-box’ structural anal-
ysis software. 

 MSRS analysis of four real bridge models with vastly different structural characteristics 
indicated that spatial variability can significantly influence bridge response, even under 
uniform soil conditions. Among the four bridges, the effect of spatial variability was 
more pronounced for stiffer bridges, and between bridges with similar fundamental pe-
riods the effect was more pronounced in longer bridges. In general, the effect of spatial 
variability was found to be more significant on element forces along the deck and to be 
relatively mild on pier drifts. For pier drifts, in most cases, spatial variability reduced 
the response. For the stiffer bridges, additional variation of support soil properties 
caused large amplifications of many pseudo-static responses and, consequently, of the 
respective total responses. When soil conditions rapidly vary in space, the effect of dif-
ferential site-response on the bridge performance can be more significant than the ef-
fect of incoherence and wave passage. 

 Comparisons between the original and the extended MSRS methods indicated that 
when high-frequency truncated modes have significant contributions to the response, 
the extended rule provides improved approximations with small additional computa-
tional effort. 

 Methods for simulation of arrays of non-stationary spatially varying ground motions 
were developed. These methods generate arrays of motions that are consistent with a 
prescribed coherency model and inherit temporal and spectral characteristics of a spe-
cified reference record. The simulation methods account for all three effects of incohe-
rence, wave passage and differential site response. Two approaches were considered: 
a. In the conditional approach, the variability of the motions increases with increasing 

distance from the location of the specified record. A method that preserves the low-
frequency content and thus the displacement waveform of the reference record was 
investigated. 

b. In the unconditional approach, the arrays of motions are characterized by uniform 
variability with distance and, thus, are appropriate as input for statistical analysis of 
bridge response through Monte Carlo simulation analysis.  

Example simulated arrays for both approaches and for both cases of uniform and vary-
ing soil conditions were presented. For the case of varying soil conditions, two different 
methods of modeling the varying soil profiles were considered. The simulation methods 
were validated by examining the physical compliance of individual time histories, and 
also by examining median response spectra, coherency characteristics, and PSDs of en-
sembles of simulated arrays.  

 Time-history analyses of the same four bridge models used in the MSRS analysis were 
performed using as input ensembles of support motion arrays simulated with the un-
conditional approach. Mean peak pier drifts from linear and non-linear analyses were 
examined for several cases of spatial variability. For both linear and non-linear res-
ponses, the effect of spatial variability was more pronounced for the stiffer bridges. For 



234 

 

these bridges, spatial variability reduced pier drifts. These trends are consistent with 
the results from the MSRS analysis.  

 The effect of spatial variability on the “equal displacement” rule was investigated by ex-
amining the means and standard deviations of the ratios of peak non-linear over peak 
linear drifts from time-history analyses. It was shown that under uniform soil condi-
tions, spatial variability tends to decrease these ratios. The effect was more pronounced 
for stiffer bridges and smaller ductility ratios. When softer soils were considered, these 
ratios were increased. Similar to the case of uniform support excitations, the “equiva-
lent displacement” rule gave fairly good approximations of the non-linear pier drifts for 
cases when the fundamental period of the bridge was larger than the predominant pe-
riod of the site. Otherwise, the results depended on the ductility. For small ductility ra-
tios, the “equal displacement” rule was conservative. 

 Comparisons between mean peak responses from linear time-history analyses and the 
corresponding MSRS estimates demonstrated that the MSRS method is an accurate tool 
for the analysis of bridges under differential support excitations. This rule is ideal for 
parametric studies required in the design stage. 

 Coherency analysis of the UPSAR array of near-fault motions recorded during the 2004 
Parkfield earthquake was performed and estimates of the incoherence components 
were compared with commonly used models. First, the model by Luco and Wong 
(1986) was considered. This model is based on the physics of wave propagation, but in-
cludes a parameter that must be empirically estimated. Fitting the model to estimates 
from the UPSAR array yielded smaller values of the incoherence parameter than those 
previously recommended. The commonly used empirical models by Harichandran and 
Vanmarcke (1986) and by Abrahamson et al. (1991), which are based on recordings 
from earthquakes in Taiwan, did not describe well the incoherence component of the 
UPSAR array. 

7.2    RECOMMENDATIONS FOR FURTHER STUDIES 

Recommended topics for future studies in the area of bridge response under differential 
support excitations are the following: 

Implementation of MSRS method in commercial codes 

This study has demonstrated the accuracy of the MSRS method and its advantages for re-
sponse analysis of multiply-supported structures subjected to spatially varying ground mo-
tions, particularly in the design stage where parametric analysis is often needed. For this 
method to be adopted in practice, it is necessary that it be implemented in commercial 
codes, such as SAP2000. The material in Chapter 2 provides all the details that are needed 
for such implementation. 
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Extension of the MSRS method to account for spatially correlated orthogonal compo-
nents 

Studies dealing with spatial variability of ground motions, including this dissertation, as-
sume that the components of ground motion in orthogonal directions are statistically inde-
pendent. This assumption is based on the work of Penzien and Watabe (1975), who inves-
tigated correlations between orthogonal components at a single point. However, consider-
ing the propagation pattern of surface waves, it is possible that orthogonal components of 
ground motions at separate locations are correlated. These correlations may influence 
structural response and, thus, their presence and effects need to be investigated to fully ac-
count for the effect of spatial variability of ground motion on multiply-supported struc-
tures. Thus, we recommend investigation of the cross-correlation between orthogonal 
components of ground motion at different locations and extension of the MSRS method to 
account for this effect, if it is found to be significant. 

Extension of the MSRS method to account for directional dependencies 

In this dissertation, we examined pier drifts in the longitudinal and transverse directions of 
each bridge. However, the actual displacement demand on a pier is the vectorial sum of the 
drifts in two orthogonal directions. For the case of uniform support motions, a response 
spectrum method for evaluation of vectorial response quantities was developed by Menum 
and Der Kiureghian (2000). This method needs to be extended for application in the case of 
differential support motions. 

Investigation of the influence of the direction of propagation of seismic waves 

In the parametric studies of bridge responses in Chapters 3 and 5, a single direction of 
propagation of seismic waves was considered. However, preliminary studies have indi-
cated that the direction of wave propagation can have an important influence on bridge re-
sponse. Further studies on the influence of this phenomenon are recommended. 

Development of analysis tools for bridges in the near-fault regions 

Near-fault ground motions often include strong directivity pulses that can have significant 
influence on the bridge response. Such motions are strongly non-stationary and narrow-
band and, thus, violate the fundamental assumptions behind the MSRS method and the si-
mulation methods developed in Chapter 4. Investigation of possible modifications of the 
MSRS method to incorporate near-fault effects is recommended. Simulating arrays of near-
fault ground motions requires examination of the spatial variability of the directivity pulse. 
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Incorporation of the effect of soil-structure interaction 

The MSRS method does not explicitly account for the effect of soil-structure interaction. An 
approximate method to account for this effect for multiply-supported structures, applicable 
to linear/linearized systems, was developed by Keshishian and DerKiureghian (2001) em-
ploying the sub-structuring technique. Further investigations of the issue are recommend-
ed. 
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