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Ion hydration is a central topic of discussion in the scientific community, given

the important role that solvated ions play in fields as biochemistry, electrochemistry, and

environmental chemistry. Despite the large amount of experimental and theoretical studies

that involve ions in aqueous solutions, a unified molecular description is still missing:

existing models fail to accurately capture the intricate ion-water interactions, leading

to inconsistencies between experimental and theoretical results. The surface propensity

of halide ions at the air/water interface has been debated for over a century, and the

recent introduction of new architectures for the description of molecular interactions
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allows for the development of accurate and efficient models to describe their behavior.

Advanced molecular modelling frameworks based on deep neural networks (DNNs) and

many-body expansion (MBE) of the energy are explored and their limitations analysed.

Data-driven MBE-based models as MB-nrg are able to provide chemical accuracy at great

computational efficiency when compared to classical force fields (FFs), DFT-based ab

initio molecular dynamics (AIMD), and modern DNN potentials. After developing an

efficient active learning (AL) framework for the generation of comprehensive training sets,

we proceed with the development of MB-nrg models for the description of the chloride,

bromide, and iodide ions; these provide great accuracy in the description of both gas-phase

clusters and bulk systems, by closely reproducing coupled cluster (CC) interaction energies

and the experimental x-ray absorption spectra. Lastly, we address the errors associated

with the use of semi-local exchange-correlation functionals in modeling hydrated ions within

density functional theory (DFT): the recent introduction of density-corrected (DC) SCAN

functionals provides a solution to the overdelocalization issue typically encountered in

semi-local density functional approximations (DFAs), leading to considerable improvements

in the energetics and structural features of hydrated ions. This dissertation presents a

significant advancement in the understanding of ion hydration, showcasing novel methods

for more precise theoretical predictions, and providing a solid foundation for future research

in this challenging field.
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Introduction

To gain an understanding of the fundamental processes occurring in aqueous systems,

it is crucial to quantitatively characterize molecular driving forces and mechanisms that

govern ion hydration. Such knowledge has far-reaching implications for various fields

of science and engineering: ions often serve as intermediates in chemical reactions and

catalytic processes,1,2 and they play a central role in the stabilization of biomolecules3–5 and

the mediation of protein-protein interactions.6,7 In atmospheric chemistry, hydrated ions

they have been shown to take part in the growth process of cloud condensation nuclei,8–11

and in electrochemistry, ionic solutions are a fundamental component of electrolytic cells,

capacitors, and batteries.12 The ubiquitous presence of hydrated ions and their central

role in mediating fundamental processes has led to a strong motivation for characterizing

them at a molecular level. Despite the significant experimental and theoretical efforts,

understanding ion hydration at a microscopic level remains a challenge due to conflicting

experimental results and the lack of accurate theoretical models.

In the gas phase at ambient conditions, Coulomb interactions prevent ions to exist

as isolated species; however, when they are dissolved in water, they can be individually

stabilized by the mediation of water molecules. The energetic contributions associated

with ion-water interactions counteract the Coulomb attraction between oppositely charged

ions, while entropic contributions arise from the reorganization of the hydrogen bond

(H-bond) network of water due to the cavity the ion generates. In chemistry, ions are

typically classified as “structure makers” or “structure breakers”, based on their ability to

facilitate or hinder the formation of H-bond networks around them.13 Structure makers
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are characterized by a small radius and high charge, which strengthens the surrounding

H-bonds due to their strong interactions. In contrast, structure breakers have a small,

diffuse charge that fails to counteract the disruptive effect of their size on the network

of water molecules. However, this well-established idea has been recently challenged by

various spectroscopic measurements, revealing the complexity of ion interactions.14–18

A significant example of the inadequacy of current models in representing the

intricate interactions of hydrated ions is their distribution at the air/water interface.

In 1910, Heydweiller discovered that the surface tension of salt solutions at varying

concentrations was greater than that of pure water.19 The increase in surface tension was

found to be largely independent of the cation but varied significantly when comparing

different anions, following an inverse Hofmeister series. Wagner initially proposed a theory

that was later developed by Onsager and Samaras, suggesting that hydrated ions have

different interfacial distributions due to interactions with their image charge, leading to

surface depletion and different surface tensions.20,21 This theory was later contradicted

by measuring the electrostatic potential difference for solutions of halide salts; in fact,

the anionic concentration (with the exception of fluoride) at the air/water interface was

higher than expected.22 Since then, subsequent analyses have been conducted using various

experimental techniques, but these have produced conflicting results.23–25

In the most striking example, vibrational sum-frequency generation (vSFG) spec-

troscopy has been used in the study of the distribution of anions at the air/water interface,

by exploiting its high sensitivity to changes in the water H-bond network. A first study

using this technique has shown a considerable difference in the vSFG spectra of NaBr and

NaI aqueous solutions with respect to pure water and to analogous solutions containing

NaF and NaCl, suggesting an increased concentration of heavier halides at the interface.23

A study that used a similar experimental setup, however, found a diminished concentration

of the same ions at the interface, in clear opposition to the findings of the first work.24

From a theoretical perspective, molecular dynamics (MD) simulations have been
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carried out for halide-water clusters using nonpolarizable26,27 and polarizable28–32 FFs.

While nonpolarizable FFs depict the halide ion (chloride) away from the interface, polariz-

able FFs showed an increased concentration of all halides (excluding fluoride) preferentially

at the interface, highlighting the importance of many-body effects for the description of

hydrated halide ions. MD simulations of salt solutions and single-ion potentials of mean

force (PMFs) calculated using polarizable FFs demonstrated that the concentration of

halide ions at the air/water interface increases with ion size (from chloride to iodide, with

fluoride being repelled from the interface).33–37 An extended dielectric continuum (DC)

theory predicted lower surface propensity of halide ions compared to previous theoretical

findings.38,39 Evidently, despite considerable efforts towards accurately characterizing

ionic properties in aqueous systems, both experimental and theoretical results remain

inconclusive. A unified ion hydration theory requires a quantitative description of the

entirety of interactions at the molecular level. In the past decade, many-body potential

energy functions (PEFs) have shown promise in describing aqueous systems, from small

clusters to bulk solutions and interfaces.40–44 Further research and development of these

techniques may provide the necessary insight to resolve the complex behavior of hydrated

ions in various environments.

Theoretical framework

Generally speaking, it is extremely challenging to model the behavior of chemical

systems. Not only do we have to deal with the complex requirements of a quantum

mechanical explanation of subatomic particles, but we also need to address the complexities

of many-body systems consisting of particles that interact with each other.

Modern quantum chemistry methods are capable of providing a reliable description

of the energetics of molecular systems. While explicitly correlated ab initio methods as

CC45,46 or configuration interaction (CI)47 currently recover the most accurate energies and
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structural features, their use is limited to systems with a handful of atoms, due to the large

set of nonlinear equations to be solved and intermediate calculations required. Methods

as second-order Møller-Plesset perturbation theory (MP2)48,49 and density functional

theory DFT50–52 are widely used alternatives that provide balance between accuracy and

computational efficiency. While these methods allow the treatment of systems comprising

a few hundred atoms, the accuracy of the results is highly dependent on the choice of basis

set and exchange-correlation functional, and errors in predicting energies can be in the

order of 10 kcal/mol.53 The computational cost of ab initio approaches makes it difficult

or impossible to achieve chemical accuracy in the study of large molecular systems and

long time-scale events.

From a theoretical standpoint, the total energy of a molecular system can be exactly

decomposed into its n-body terms through the MBE of the energy as54

EN =
N∑
i=1

v1B(i) +
N∑
i>j

v2B(i, j) +
N∑

i>j>k

v3B(i, j, k) + . . .+ vNB, (1)

where the first term in Eq. (1), v1B(i) = E(i)− Eeq(i), is the deformation energy required

to recover each monomer in the expansion from the equilibrium geometry. The remaining

terms in the expansion are recursively defined as54

vnB = EN −
N∑
i=1

v1B(i)−
N∑
i>j

v2B(i, j)−
N∑

i>j>k

v3B(i, j, k)− . . .− v(n−1)B. (2)

Traditional FFs truncate Eq. (1) at the two-body (2B) term and account for many-body

contributions implementing effective pairwise potentials.55–66 The use of simple point-charge

models, together with the efficient use of pairwise interactions, allowed molecular dynamics

MD to establish itself as the workhorse in computational chemistry. In the modelling of

aqueous systems, it was soon realized that pairwise potentials do not provide a faithful
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representation of both gas and condensed phase properties.67 Technical advancement

in computing has enabled the development of more rigorous and reliable interaction

potentials: state-of-the-art PEFs take advantage of efficient regression algorithms to shape

large parametric models onto the multidimensional energy landscape of the underlying

system. A first approach takes advantage of ab initio calculations to include short-range

quantum mechanical effects by fitting large n-body polynomials within the MBE of the

energy. More recently, the advancement in machine learning (ML) and the design of

performant ad hoc computational architectures has allowed deep neural networks to

emerge as a new approach to the development of modern PEFs. Despite their extensive

use for modelling molecular systems,68–92 current-state DNN potentials have recently been

shown to provide limited accuracy and transferability across phases.93

Many-Body Models and the MB-nrg Framework

To model water-water interaction, several many-body models have been proposed

in the last two decades, as CC-pol,94 WHBB,95 HBB2-pol,96 and MB-pol;97–99 these

PEFs provide accurate prediction of the structural and dynamical properties, and the

thermodynamics of water, from gas-phase to bulk and interfaces.43,44,94–110 The MB-nrg

framework has been built upon the MB-pol water model to describe generic molecular

systems and ionic species.111–116 Since the expansion of Eq. (1) converges rapidly for

localized and non-metallic systems, the MBE of the energy is generally written, within the

MB-nrg framework, as

EN = V 1B + V 2B + V 3B + V NB
pol . (3)

The first term on the right side of Eq. (3) is trivially the sum of the distortion energy of

each monomer in the system, V 1B =
∑
v1B(i). The remaining lower terms in the expansion

5



are approximated as

V 2B =
N∑
i>j

ε2Bsr (i, j) + V 2B
elec + V 2B

disp

V 3B =
N∑

i>j>k

ε3Bsr (i, j, k),

(4)

where V 2B
elec represents the permanent electrostatic energy, which includes charge-charge,

charge-dipole, and dipole-dipole interactions, and V 2B
disp is the classical two-body dispersion,

which employs Tang-Toennies damping functions and contains dispersion coefficients

calculated using the exchange-hole dipole model (XDM) developed by Becke and John-

son.107,108 ε2Bsr (i, j) and ε3Bsr (i, j, k) are correction terms, usually implemented in the form

of permutationally invariant polynomials (PIPs), to model electronic quantum mechanical

effects at short-range. Lastly, the V NB
pol represents the classical many-body polarization

due to the remaining n-body terms in the expansion. Since the short-range correction

terms become negligible as n increases, it usually suffices to include corrections up to

the three-body term. The general MB-nrg framework allows to exploit the accuracy of

ab initio electronic structure methods in the training of the PIPs by limiting expensive

calculations to small gas-phase clusters: labels are often calculated at the coupled cluster

level, with single, double, and perturbative triple excitations, i.e. CCSD(T), the “gold

standard” for chemical accuracy.117

Summary

In Chapter 1, we present an in-depth analysis of the new generation of DNN-

based PEFs.93 As a proof of concept, water-water interaction is modeled through the

state-of-the-art and award-winning DeePMD framework,76,118,119 using MB-pol reference

energies.97,98,106 Usually, DNN potentials require training sets of condensed-phase con-

figurations to allow for long-range effects to be taken into account; due to the large
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number of molecules considered, DFT is usually employed, rather than CC methods, to

retrieve reference energies. In principle, training on MB-pol labels allows to circumvent

this limitation and to exploit the computational efficiency of DeePMD, extending MD

simulations to larger systems or kinetically inaccessible states. The results presented show

that, while training using bulk configurations provides accurate values of bulk properties,

this accuracy is not transferred when considering vapor-liquid equilibrium (VLE) configu-

rations; moreover, the predicted energy appears to be the result of error compensation in

the single many-body energies of the system. Correcting for this behavior by extending

the training set to comprise VLE or gas-phase cluster configurations inevitably introduces

errors in the prediction of bulk configuration properties, suggesting that current DNN

architectures are not suitable for a general and unified representation of molecular systems.

The generation of representative training set plays a central role in the development of

accurate potentials for MD simulations. As the number of particles of the system N

increases, the 3N − 3 independent degrees of freedom do not allow to perform grid search

methods for selecting new configurations and retrieve their labels. Scans along specific

axes and normal mode sampling can mitigate the computational expense but introduce

bias in the selection process. Chapter 2 goes over this delicate process, and introduces an

AL framework for the selection of configurations relevant to the training of many-body

models.120 The new methodology shows great efficiency, selecting configurations that

introduce the largest error during the training procedure. This work is lies the foundations

for the development of halide-water PEFs. Chapter 3 introduces a general methodology for

the development of halide-water MB-nrg potentials, accounting for MB correction terms

up to the 3-body.113 After generating chloride-water MB-nrg PEFs, we first presents MB

analyses of gas-phase clusters, then the structural determination and EXAFS predictions of

chloride-water solvation shells in bulk phase are compared with experiments. Our MB-nrg

PEFs show a significant improve in accuracy with respect to other interaction potentials

extensively employed in the field. Analogously, bromide- and iodide-water potentials are
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introduced in Chapter 4.114 Chapter 5 dives into the analysis of density-driven errors in the

modelling of hydrated ions using semi-local exchange-correlation functionals to determine

training labels through DFT. Building upon previous research,121 DFT reference energies

calculated with the strongly-constrained SCAN functional are used to train MB-DFT

models of sodium- and chloride-water PEFs; these are compared with analogous PEFs

built upon DC-SCAN reference energies that make use of the Hartree-Fock density to

correct the overdelocalization typically experienced by semi-local DFAs. DC-DFT shows

great improvements in the energetics and in the determination of the structural features

of the hydrated ions. Lastly, Chapter 6 summarizes our findings and conclusions.
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Chapter 1

A “short blanket” dilemma for a state-
of-the-art neural network potential for
water: Reproducing experimental prop-
erties or the underlying many-body
physics?

1.1 Introduction

Molecular mechanics (MM) force fields (FFs)122,123 have been the workhorse in com-

putational chemistry since the early days of Monte Carlo (MC)124 and molecular dynamics

(MD) simulations.125 Continued progress in hardware technologies,126 accompanied by the

development of more realistic representations of electrostatic interactions, has enabled not

only molecular simulations of progressively larger systems but also the use of more rigorous

polarizable FFs127–131 that go beyond the pairwise additive approximation adopted by

conventional fixed-charge FFs.132–135

At the same time, the development of efficient algorithms for correlated electronic

structure methods, such as coupled cluster theory,136–138 has enabled routine calculations

of interaction energies for molecular clusters with chemical accuracy.139–141 This has led to

the emergence of a new class of analytical potentials that quantitatively reproduce each

individual term of the many-body expansion (MBE) of the energy142 calculated using corre-
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lated electronic structure methods. When applied to aqueous systems94–98,100–103,105–109 and

molecular fluids,143–145 these many-body (MB) potentials exhibit unprecedented accuracy,

enabling predictive simulations from the gas to the condensed phases.110 Concurrently,

machine learning (ML) approaches have gained popularity in computational molecular

sciences mainly due to the rapid evolution of GPU and TPU architectures.146 In particular,

potentials represented by deep neural networks (DNNs) derived from electronic structure

data are routinely used to model various molecular systems, from clusters to liquids and

materials.68–92

State-of-the-art MB and DNN approaches use regression algorithms to construct

data-driven representations of the multidimensional energy landscape of the system of

interest. This process involves generating representative training sets of reference data

calculated at an appropriate level of theory. While MB potentials require tailored para-

metric functions for each term of the MBE, DNN potentials are usually trained on the

total energy and forces of the entire system. By applying embedding schemes to construct

low-dimensional descriptors of molecular environments, DNN potentials can compute the

gradients required for the propagation of the equations of motion in MD simulations

more efficiently than MB potentials.118 On the other hand, since MB potentials only use

information about small clusters, the corresponding training data can be calculated at

a higher level of theory than DNN potentials. As a matter of fact, MB potentials are

usually trained on reference energies calculated at the coupled cluster level of theory,

including single, double, and perturbative triple excitations, i.e., CCSD(T), which is

currently referred to as the “gold standard” for chemical accuracy.117 Furthermore, by

construction, the functional form of MB potentials allows for accurately representing all

physical contributions to the interaction energies, including both short- and long-range

many-body effects.41,42,147

To account for long-range interactions, DNN potentials are often trained on

condensed-phase configurations, which allows for modeling long-range effects either implic-

10



itly, by effectively encoding long-range contributions into short-range representations, or

explicitly, by adding effective electrostatic terms.76,86,92,118,119,148 This implies that, due to

the large number of molecules required to model condensed-phase systems, a lower level

of theory than CCSD(T), usually density functional theory (DFT),52 has to be used to

retrieve the reference energies. In this context, it has recently been shown that the interplay

between functional-driven and density-driven errors may impact the overall accuracy of

DFT models and their transferability from gas-phase to condensed-phase systems.121,149–153

By construction, these limitations also affect the ability of DNN potentials derived from

DFT reference data to “extrapolate” to thermodynamic state points different from those

used in the training process.154

In this work, we investigate the possibility of integrating the best features of

MB potentials (i.e., accuracy and transferability) and DNN potentials (i.e., speed and

ease to use) into a computational framework that can enable large-scale MD simulations

with chemical accuracy. To this end, we focus on the molecular modeling of water as a

prototypical system that has posed several challenges since the early days of MC and MD

simulations155,156 due to its rich phase behavior characterized by several anomalies.157

As a representative state-of-the-art MB potential, we selected MB-pol97,98,106 due to

its demonstrated ability to correctly predict the properties of water across the entire

phase diagram,158 including gas-phase clusters,159–161 liquid water,162 the vapor-liquid

interface,163–165 and ice.166–169 MB-pol has also recently been used to predict structural

and thermodynamic properties of supercooled water down to 200 K at 1 atm, which

were found to be in excellent agreement with experimental data that are available above

225 K.43 However, due to the associated computational cost, the MD simulations with

MB-pol reported in Ref. 43 were limited in terms of both system’s size (up to 512 water

molecules) and sampling time (up to ∼130 ns). The prospect of developing a fast DNN

potential trained on MB-pol simulation data, which retains the same accuracy of MB-pol

across the entire phase diagram, is thus particularly appealing. This will enable large-scale
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simulations of water as a function of temperature and pressure, which will provide further

insights into water’s anomalous behavior and allow for full exploration of the so-called

water’s “no man’s land” that has been proven difficult to probe experimentally.170–175 To

this end, we selected DeePMD76,118,119 as a representative, state-of-the-art framework

for developing a DNN potential of water trained on the MB-pol simulations of Ref. 43.

DeePMD-based DNN potentials have already been used in MD simulations of various

molecular systems, including water,176–179 ionic liquids,180 and metals,181–183 and enabled

MD simulations with up to 10 billion atoms.184

The article is organized as follows: In Section 1.2, we summarize the main features

of the MB-pol potential (Section 1.2.1) and the DeePMD framework (Section 1.2.2). In

Section 1.3.1, we first assess the ability of the DeePMD-based DNN potential to reproduce

thermodynamic and structural properties of liquid water calculated with MB-pol from the

boiling point down to deeply supercooled temperatures. We then use the DNN potential

to characterize several vapor-liquid equilibrium properties as well as many-body dependent

properties of gas-phase clusters. In Section 1.3.2, we introduce two other DeePMD-based

potentials, DNN(VLE10) and DNN(VLE20), that are trained on an expanded training set

that adds vapor-liquid configurations to the training set used to develop the DNN potential.

The performance of both DNN(VLE10) and DNN(VLE20) potentials is assessed on the

same structural and many-body-dependent properties used to assess the performance

of the DNN potential. In Section 1.3.3, we introduce three DeePMD-based potentials,

DNN(MB4), DNN(MB10), and DNN(MB20), that are trained to incorporate low-order

many-body interactions, and assess their performance on the same structural and many-

body dependent properties used in the assessment of the DNN potential. Lastly, in

Section 1.4, we summarize our work and discuss possible future synergies between MB

and DNN potentials.
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1.2 Methods

1.2.1 MB-pol

Since the MB-pol potential of water has already been described in detail in the

literature, we only overview here its salient features.97,98,106 MB-pol was derived from

the MBE that expresses the energy, EN , of a system containing N (atomic or molecular)

monomers as the sum of individual n-body energy contributions,

EN(1, . . . , N) =
N∑
i=1

ϵ1B(i) +
N∑
i=1

N∑
j>i

ϵ2B(i, j) +
N∑
i=1

N∑
j>i

N∑
k>j>i

ϵ3B(i, j, k) + · · ·+ ϵNB(1, . . . , N)

(1.1)

Here, ϵ1B represents the distortion energy of an isolated monomer, such that ϵ1B(i) =

E(i)− Eeq(i) where Eeq(i) is the energy of the i-th monomer in its equilibrium geometry.

The n-body energies, ϵnB, are defined recursively for 1 < n ≤ N by the expression

ϵnB = En(1, . . . , n)−
N∑
i=1

ϵ1B(i)−
N∑
i=1

N∑
i<j

ϵ2B(i, j)−
N∑
i=1

N∑
i<j

∑
i<j<k

ϵ3B(i, j, k)− · · ·

· · · −
N∑

i<j<k<...

ϵ(n−1)B(i, j, k, . . . , n− 1)

(1.2)

MB-pol approximates Eq. 1.2 as:

EN(r1, .., rN) =
N∑
i=1

ϵ1B(i) +
N∑
i>j

ϵ2B(i, j) +
N∑

i>j>k

ϵ3B(i, j, k) + EPOL (1.3)

The one-body term (ϵ1B) is represented by the potential developed by Partridge and

Schwenke.185 The two-body term (ϵ2B) describes four distinct contributions: permanent

electrostatics, dispersion, 2B polarization, and 2B short-range interactions. The three-

body term (ϵ3B) describes two distinct contributions: 3B polarization and 3B short-

range interactions. 2B and 3B short-range interactions are represented by 2B and 3B
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permutationally invariant polynomial (PIPs)186 that were fitted in order for ϵ2B and ϵ3B to

reproduce 2B and 3B energies calculated at the CCSD(T) level of theory in the complete

basis set (CBS) limit.97,98 2B and 3B polarization contributions are implicitly included in

EPOL in Eq. 1.3 which represents classical many-body interactions at all orders through a

polarization term. Further details of the MB-pol potential can be found in the original

references.97,98,106

1.2.2 DeePMD

The DeePMD framework reads atomic positions and associated atom types as input

features.118 Neighbor information for each atom i is extracted from the input feature using

a predefined cutoff radius (rc) and stored as the coordinate difference of each ij atom

pair into Ri ∈ RNi×3, where Ni is the number of neighboring atoms. Each local feature is

then mapped onto generalized coordinates R̃i as outlined in Ref. 119. A local embedding

matrix, Gi, is applied to each local feature Ri in order to ensure rotation and permutation

symmetry while preserving translation symmetry. The resulting encoded feature matrix

Di ∈ RM1×M2 takes the form

Di = (Gi1)T R̃i(R̃i)TGi2 (1.4)

and is passed to a fully-connected feed-forward DNN that maps it onto an “atomic energy”

Ei.119 The total energy E is then calculated as the sum of all Ei, while the atomic

forces F and virials Ξ are calculated from the derivative of the DNN with respect to the

corresponding atomic positions. The DNN parameters are optimized by minimizing the

loss function:

L(pe, pf , pξ) =
pe
N
∆E2 +

pf
3N

∆F 2 +
pξ
9N

∆Ξ2. (1.5)

where pe, pf , pξ are weighting factors, and ∆E, ∆F , and ∆Ξ are the prediction errors for

the reference energy, force, and virial values, respectively. The weighting factors pe, pf , pξ
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are adjusted as the training progresses in order to improve the quality of the fit.

The DeePMD-based DNN potentials presented in this study were developed with

the Deep Potential Smooth Edition (DeepPot-SE),119 following the procedure reported in

Ref. 187, using 25, 50, and 100 neurons for the hidden embedding layers in the DeepPot-SE,

while the submatrix of the embedding matrix uses 16 neurons. The distance cutoff was set

to 6 Å, with a smoothing region of 0.5 Å. Each DNN potential is represented by a fully

connected deep neural network with three layers of 240 neurons each.

Following Ref. 188, the training set for the DNN potential was constructed in

an iterative fashion. Briefly, the training set comprises energies and forces of molecular

configurations extracted from the MB-pol simulations of liquid water between 198 K and

368 K reported in Ref. 43 as well as additional configurations extracted from simulations

carried out with three successive iterations of the DNN potential. The final training set

includes 94770 configurations, each containing 256 molecules. All MB-pol reference data

were computed using the MBX software package.189 Additional details about the training

set are discussed in the Supplementary Material. To account for variations in training,

validation, and testing errors, four distinct potentials (hereafter referred to as seed 1, seed

2, seed 3, and seed 4, respectively) were trained using different random seeds. Only one of

the four DNN potentials (seed 2) was then used in the MD simulations of liquid water

and the vapor-liquid interface. Similarly, four distinct DeePMD-based potentials were

trained on the expanded training sets containing vapor-liquid and cluster configurations

as described in Sections 1.3.2 and 1.3.3, respectively. Fig. 1.1 shows the root-mean-square

error (RMSE) curves of training and validation sets for the energies and forces per atom

during the fitting process of the (seed 2) DNN potential. Overall, well-behaved learning

curves are obtained for both quantities, with final errors of 0.01 kcal/mol and 1 kcal/mol

Å on the energy and force validation errors, respectively. Similar errors have been reported

for other state-of-the-art machine-learned potentials.190
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Figure 1.1. Variation of the DNN training and validation RMSEs per atom relative to
the MB-pol values of the energy and force as a function of the number of training steps.
For visual clarity, we show values averaged over 200 training steps.

1.2.3 Computational details

We performed two sets of MD simulations to determine the ability of the DNN

potential to reproduce both bulk and interfacial properties of liquid water calculated with

MB-pol. The first set of simulations was carried out for a box containing 256 water molecules

in the isothermal-isobaric (NPT ) ensemble at 1 atm and in the temperature range between

198 K to 368 K. The temperature was maintained using a global Nosé–Hoover thermostat

chain of length 3 with a relaxation time of 0.05 ps, and the pressure was controlled by

global Nosé–Hoover barostat with a relaxation time of 0.5 ps which was thermostatted

by a Nosé–Hoover thermostat chain of length 3. At each temperature, the last frame of

the MB-pol trajectories reported in Ref. 43 was used as the initial configuration for the

NPT simulations with the DNN potential. The second set of simulations was carried out

in the canonical (NV T ) ensemble between 400 K and 575 K for a liquid slab of 512 water

molecules in a box of dimensions 20 Å×20 Å×100 Å. The temperature was maintained

using the same global Nosé–Hoover thermostat chain used in the NV T simulations. In
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both NPT and NV T simulations, the velocity-Verlet algorithm was used to propagate the

equations of motion with a time step of 0.5 fs according to Ref. 191. All simulations were

carried out using the DeePMD-kit187 plugin for LAMMPS.192 A complete set of input files

is available on GitHub (see Data Availability).

Besides comparing the DNN and MB-pol radial distribution functions (RDFs),

we also analyzed the ability of the DNN potential to describe the three-dimensional

hydrogen-bond network by calculating the tetrahedral order parameter, qtet,193

qtet = 1− 3

8
·

3∑
j=1

4∑
k=j+1

(
cos(ψjk) +

1

3

)
(1.6)

Here, ψjk is the angle between the oxygen of the central water molecule and the oxygen

atoms of two neighboring water molecules within a cutoff of 3.5 Å. When qtet = 1, the

water molecules are in a perfect tetrahedral arrangement, while qtet = 0 represents the

ideal gas limit.

In addition to the MD simulations for liquid water and the vapor-liquid interface,

we also performed many-body decomposition analyses for two different sets of cluster

structures. The first set consists of the first eight low-lying energy isomers of the water

hexamer (Fig. 1.2), with geometries taken from Ref. 158. The hexamer occupies a

special place in the description of many-body interactions in water because it is the

smallest cluster with low-lying isomers that display three-dimensional hydrogen-bonded

arrangements similar to those found in liquid water and ice. The second set of clusters

contains dimers and trimers extracted from the training sets used to fit the MB-pol 2B

and 3B energy terms, respectively.97,98
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1. Prism 2. Cage 3. Book 1 4. Book 2

6. Cyclic chair 7. Cyclic boat 1 8. Cyclic boat 25. Bag

Figure 1.2. Structures of the first eight low-lying energy isomers of the water hexamer
used in the analysis of interaction and many-body energies. The Cartesian coordinates of
each isomer were taken from Ref. 158.

1.3 Results

1.3.1 DNN potential

As a first step in assessing the ability of the DNN potential to reproduce MB-pol,

we analyze various properties of liquid water. In Fig. 1.3a, we show the temperature

dependence of the liquid density from 198 K to 368 K. In general, the DNN potential

reproduces the MB-pol results over the entire temperature range, predicting similar

temperatures for the density maximum and minimum. A more quantitative analysis

indicates that the DNN potential underestimates the MB-pol density by ∼ 1% in the

220− 290 K range while it predicts a slightly denser liquid as the temperature approaches

the boiling point. The DNN curve also displays a less negative slope for temperatures

above ∼320 K, which suggests that it is relatively more difficult for the DNN potential

to reproduce MB-pol as the liquid properties become more gas-like. To put the present

comparison between the MB-pol and DNN potentials in context, we note that the density of
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Figure 1.3. Temperature dependence of the density (a) and isothermal compressibility
(b) calculated from the present NPT simulations carried out with the DNN potential
at 1 atm (green) compared with the reference MB-pol values from Ref. 43 (blue). The
associated shaded areas indicate 95% confidence intervals of the averages. Fig. S1 displays
the time dependence of the densities calculated along the NPT trajectories carried out
with the DNN potential at each temperature.

liquid water at 298 K predicted by an analogous DeePMD-based DNN potential trained on

the SCAN functional was found to be ∼5% lower than the corresponding value calculated

from the reference ab initio molecular dynamics (AIMD) simulations.194

The comparison between the DNN and MB-pol values for the isothermal com-

pressibility as a function of temperature is shown in Fig. 1.3b. Similar to the density,

the DNN values are in agreement with the MB-pol reference data, reproducing the steep

increase of the isothermal compressibility below 250 K and predicting a maximum at

∼230 K, which is ∼7 K higher than the temperature predicted by MB-pol.43 As in the

case of the liquid density, Fig. 1.3b also indicates that the ability of the DNN potential

to reproduce MB-pol somewhat deteriorates as the temperature approaches the boiling

point. In particular, the DNN potential predicts a nearly constant value of the isothermal

compressibility above 300 K, with no indication of a distinct minimum that is instead

found in both experiment172,195 and MB-pol simulations.43,158

A comparison between the structural properties of liquid water predicted by the
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Figure 1.4. Oxygen-oxygen radial distribution functions (a) and tetrahedral order
parameter distributions (b) calculated from the present NPT simulations carried out with
the DNN potential at 1 atm (green) compared with the reference MB-pol values from Ref.
43 (blue).

DNN and MB-pol potentials between 198 K and 368 K at 1 atm is shown in Fig. 1.4. The

oxygen-oxygen radial distribution functions (RDFs) calculated from the NPT simulations

carried out with the two potentials (Fig. 1.4a) are nearly indistinguishable in the 238-368 K

range. Small deviations are found at deeply supercooled temperatures, which become
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more apparent when analyzing the corresponding distributions of the tetrahedral order

parameter in Fig. 1.4b. These deviations appear to be consistent with the shift of the

isothermal compressibility maximum to a slightly higher temperature predicted by the

DNN potential (Fig. 1.3b).
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Figure 1.5. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated
from the present NV T simulations of a water slab carried out with the DNN potential
(green) compared with the reference MB-pol values from Ref. 165 (blue).

Previous studies demonstrated that MB-pol correctly predicts structural, thermo-

dynamic, and spectroscopic properties of the vapor-liquid interface, including the surface

tension, vapor pressure, vapor and liquid densities,158,165 as well as sum-frequency gener-

ation spectra.163,164 To assess the ability of the DNN potential to reproduce properties

that are not directly related to the MB-pol liquid configurations used during the training

process, in Fig. 1.5, we analyze the surface tension and liquid-vapor equilibrium densities

as a function of the temperature. These comparisons show that both surface tension

and equilibrium densities predicted by the DNN potential deviate significantly from the

corresponding MB-pol reference values as the temperature increases. Interestingly, while

the liquid density predicted by the DNN potential decreases upon increasing temperature,

in qualitative agreement with the expected physical behavior, the vapor density remains

effectively constant over the entire temperature range. Following Ref. 165, we estimated
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the critical temperature (Tc) and density (ρc) associated with DNN potential by fitting

the vapor (ρv) and liquid (ρl) densities (Fig. 1.5) according to:

ρl + ρv
2

= ρc + A(Tc − T ) (1.7)

ρl − ρv
2

= ∆ρ0 (1− T/Tc)
β (1.8)

Here, A and ∆ρ0 are system-specific parameters to be adjusted in the fitting and β = 0.326

is the critical exponent of the three-dimensional Ising model.196 The DNN potential

predicts Tc = 857± 17 K and ρc = 0.302± 0.002 g cm−3, which are significantly different

from the MB-pol values of Tc = 639± 14 K and ρc = 0.34± 0.03 g cm−3. As a reference,

the corresponding experimental values are Tc = 647 K and ρc = 0.32 g cm−3.197

In an attempt to rationalize the different performance of the DNN potential in

reproducing bulk and interfacial properties calculated with MB-pol, we investigated the

ability of the DNN potential to correctly describe many-body interactions. By construction,

MB-pol quantitatively reproduces each term of the MBE (Eq. 1.1) calculated at the

CCSD(T)/CBS level.97,98 In this context, we have shown that a correct representation of

each individual n-body contribution to the interaction energies is required in order for a

water model to be both accurate and transferable across different thermodynamic state

points.129,150,154,198–200

Following previous studies,158,198 in Fig. 1.6 we present a many-body decomposition

analysis of the interaction energies of the first eight low-lying energy isomers of the hexamer

cluster (Fig. 1.2). As mentioned in the Introduction, among water clusters, the hexamer

occupies a special place because it is the smallest cluster with low-lying isomers that

exhibit three-dimensional structures reminiscent of hydrogen-bonding arrangements found

in liquid water and ice. In addition, the large number of isomers with similar interaction

energies makes the hexamer the ideal benchmarking system for determining the accuracy
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Figure 1.6. Many-body decomposition analysis for the eight low-lying energy isomers
of the water hexamer (Fig. 1.2) calculated with four distinct DNN potentials trained on
the same MB-pol training data using four different seeds to initialize the fitting process.
Panels a) to e) show the errors associated with n-body energies (n = 2 − 6) calculated
with the DNN potentials relative to the corresponding MB-pol values. Panel f) shows
the errors associated with the interaction energies calculated with the DNN potentials
relative to the corresponding MB-pol values. The DNN potential with seed 2 is used in
the comparisons shown in Figs. 1.3-1.5.

of water models.129 To provide a general perspective on DeePMD-based DNN potentials

for water, in Fig. 1.6 we analyze the performance of four distinct DNN potentials trained

on the same training set described in Section 1.2.2 but initialized using different random

seeds, with seed 2 corresponding to the DNN potential used in Figs. 1.3-1.5.

All four DNN potentials provide statistically equivalent training, validation, and

testing errors (see Tables S2 and S3 of the Supplementary Material). Fig. 1.6 shows that
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none of the four DNN potentials is capable of correctly reproducing individual n-body

energies (n = 2− 6) calculated with MB-pol, with significantly large errors, on the order

of 10 − 20 kcal/mol, for 2- and 3-body contributions. Interestingly, these large errors

compensate among different n-body contributions in such a way that, when the n-body

energies are added together, they result in interaction energies that are in relatively

better agreement with the MB-pol values than the individual n-body contributions. By

definition, the interaction energies are calculated as the difference between the energy

of the cluster and the sum of the 1-body energies of all six water molecules in the same

distorted configurations as in the cluster. In this context, it should be noted that, besides

MB-pol that reproduces the CCSD(T)/CBS reference energies of the hexamer isomers

with chemical accuracy,158 several modern polarizable force fields predict n-body and

interaction energies of water clusters with significantly higher accuracy than the four

DNN potentials examined here.200 Direct comparisons between n-body and interaction

energies calculated with the four distinct DNN potentials and the corresponding MB-pol

reference values are shown in Fig. S3. Importantly, Fig. S3 shows that, besides displaying

large errors, some of the DNN potentials (i.e., seed 1 and seed 4) also predict physically

incorrect many-body contributions (e.g., positive 3-body contributions), which indicates

that, in their conventional implementation, DeePMD-based DNN potentials are not able

to correctly disentangle individual many-body contributions to the interaction energy of a

given water system. Importantly, the inclusion of long-range effects through a classical

electrostatic term does not improve the description of many-body energies as shown in

Figs. S4 and S5 of the Supplementary Material. It should be noted that this behavior

is not specific to DeePMD-based DNN potentials but appears to be common to other

neural network potentials. For example, Figs. S6 and S7 of the Supplementary Material

show that similar behavior is exhibited by Nequip-based potentials92 trained on MB-pol.

Interestingly, the Nequip-based potentials demonstrate superior accuracy in predicting

the interaction energies of the water clusters, but also exhibit larger error compensation
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among different n-body energies, with errors on 2- and 3-body energies being as large as

20− 30 kcal/mol.

1.3.2 DNN(VLE) potential
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Figure 1.7. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated
from the present NV T simulations of a water slab carried out with the DNN(VLE10)
(purple) and DNN(VLE20) (pink) compared with the reference MB-pol values from Ref.
165 (blue).

In an attempt to improve the performance of the DNN potential on vapor-liquid

equilibrium properties, we used active learning to incorporate vapor-liquid configurations

extracted from simulations carried out with the DNN potential in the temperature range

between 268 K and 575 K. At the end of the active learning process, 2412 were added

to the training set. The expanded training set was then used to train two potentials,

DNN(VLE10) and DNN(VLE20), with a 10% and 20% probability of selecting vapor-

liquid configurations during training, respectively. Fig. 1.7 shows that adding vapor-liquid

configurations leads to more accurate predictions of both surface tension and vapor-liquid

equilibrium densities. In particular, compared to the results obtained with the DNN

potential, the surface tension predicted by both DNN(VLE10) and DNN(VLE20) shows

the same temperature dependence as determined by MB-pol, although a systematic
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deviation from the reference values is still observed at all temperatures. Similarly, adding

vapor-liquid configurations to the training set improves the ability of the DNN(VLE10)

and DNN(VLE20) potentials to describe the equilibrium densities of both vapor and

liquid phases. While both DNN(VLE10) and DNN(VLE20) potentials quantitatively

reproduce the MB-pol vapor densities over the entire temperature range, the predicted

liquid densities, however, increasingly deviate from the MB-pol reference values as the

temperature increases. As a consequence, the critical point is still overestimated by both

potentials, with DNN(VLE10) predicting Tc = 718± 4 K and ρc = 0.359± 0.003 g cm−3

and DNN(VLE20) predicting Tc = 674 ± 6 K and ρc = 0.347 ± 0.005 g cm−3. Adding

vapor-liquid configurations to the training set was reported to enable simulations of “water

along its liquid/vapor coexistence line with unprecedented precision”.80 Inspection of Fig. 3

of Ref. 80, however, indicates that relatively large deviations (similar to those found for

DNN(VLE10) and DNN(VLE20) in Fig. 1.7) exist between the vapor and liquid densities

predicted by the neural network potential used in the simulations and the corresponding

reference RPBE-D3 values which, when extrapolated, lead to very different estimates for

the critical point.201

To assess the ability of DNN(VLE10) and DNN(VLE20) to reproduce properties that

do not directly depend on the coexistence between vapor and liquid phases, we examined the

performance of both potentials on the same bulk and cluster properties used in Section 1.3.1

to determine the accuracy of the DNN potential. Fig. 1.8 shows the temperature dependence

of the density and isothermal compressibility of liquid water predicted by DNN(VLE10)

and DNN(VLE20). While both potentials are able to qualitatively reproduce the MB-

pol trends, a comparison with the DNN results reported in Fig. 1.3 indicates that the

inclusion of vapor-liquid configurations to the training set deteriorates the ability of the

DeePMD-based potentials to reproduce the bulk properties. This is further confirmed by

the analyses of the liquid density, RDFs, and qtet distributions shown for the DNN(VLE20)

potential in Figs. S17 and S18 of the Supplementary Material.
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Figure 1.8. Temperature dependence of the density (a) and isothermal compressibility
(b) calculated from NPT simulations carried out with the DNN(VLE10) (purple) and
DNN(VLE20) (pink) potentials at 1 atm. Also shown for reference are the corresponding
MB-pol values from Ref. 43 (blue). The associated shaded areas indicate 95% confidence
intervals of the averages.

Finally, Fig. 1.9 reports the many-body decomposition analysis of the interaction

energies of the hexamer isomers (Fig. 1.2) carried out with the DNN(VLE20) potential. The

corresponding analysis carried out with DNN(VLE10) is reported in the Supplementary

Material in Fig. S8. As for the DNN potential, we used four different seeds to develop four

distinct DNN(VLE20) potentials that were trained on the expanded MB-pol training set

containing vapor-liquid configurations. Seed 4 corresponds to the DNN(VLE20) potential

used in the comparisons shown in Figs. 1.7 and 1.8. As in the case of DNN in Fig. 1.6, none

of DNN(VLE20) potentials is able to correctly reproduce the reference MB-pol many-body

energies, with errors that are on the order of ∼10 kcal/mol for 2-, 3-, and 4-body energies.

Similar poor performance on the many-body decomposition analysis is exhibited by the

DNN(VLE10) potential in Fig. S8 of the Supplementary Material. Analyses analogous to

those shown in Fig. S3 for the DNN potential are reported in Figs. S9 and S10 for the

DNN(VLE10) and DNN(VLE20) potentials, which lead to similar conclusions, i.e., both

DNN(VLE10) and DNN(VLE20) predict physically incorrect many-body energies.
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Figure 1.9. Many-body decomposition analysis for the eight low-lying energy isomers of
the water hexamer (Fig. 1.2) calculated with four distinct DNN(VLE20) potentials that
were trained on the expanded MB-pol training set containing vapor-liquid configurations
using four different seeds to initialize the fitting process. Panels a) to e) show the
errors associated with n-body energies (n = 2 − 6) calculated with the DNN(VLE20)
potentials relative to the corresponding MB-pol values. Panel f) shows the errors associated
with the interaction energies calculated with the DNN(VLE20) potentials relative to the
corresponding MB-pol values. The DNN(VLE20) potential with seed 4 is used in the
comparisons shown in Figs. 1.7 and 1.8.

The analyses presented in this section demonstrate that, while the description of

vapor-liquid equilibrium properties can be improved by adding vapor-liquid configurations

to the original DNN training set, this improvement is achieved at the cost of a less accurate

representation of the bulk properties. Importantly, as in the case of the DNN potentials,

the DNN(VLE10) and DNN(VLE20) potentials are unable to correctly capture the physics

28



of many-body interactions in water.

1.3.3 DNN(MB) potential

Since the inability of a water model to correctly represent many-body contributions

to the underlying molecular interactions appears to be correlated with the lack of transfer-

ability of the model across different thermodynamic state points,129 we investigated the

possibility of “encoding” many-body effects in the DNN potentials within the DeePMD

framework. To this end, we supplemented the original training set used for developing

the DNN potentials discussed in Section 1.3.1 with a set of gas-phase clusters, including

monomers, dimers, trimers, and tetramers which provides direct information about the

low-order and most important terms (i.e., 1-body to 4-body terms) of the MBE in Eq. 1.1.

We then used the expanded training set to train three different DeePMD-based potentials,

referred to as DNN(MB4), DNN(MB10), and DNN(MB20), with 4%, 10%, and 20%

probability of selecting gas-phase cluster configurations during the training process, respec-

tively. Specific details about the composition of the extended training set are provided in

Section S1 of the Supplementary Material.

Fig. 1.10 reports the same analysis reported in Fig. 1.6 for the DNN potential

and shows the errors relative to the MB-pol reference values for n-body and interaction

energies of the first eight isomers of the water hexamer (Fig. 1.2) calculated with four

distinct versions of the DNN(MB20) potential which were trained on the same expanded

training set but initialized with four distinct seeds. Seed 4 corresponds to the DNN(MB20)

potential used in the comparisons shown in Figs. 11 and 12. Analogous analyses carried

out with the DNN(MB4), and DNN(MB10) potentials are reported in Figs. S11 and S12

of the Supplementary Material, respectively. The addition of monomer, dimer, trimer, and

tetramer configurations clearly allows the DNN(MB) potentials to become “aware” of the

existence of distinct many-body contributions to the interactions energies, as demonstrated

by the relatively smaller errors displayed by the DNN(MB20) 2-body, and 3-body energies
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Figure 1.10. Many-body decomposition analysis for the eight low-lying energy isomers of
the water hexamer (Fig. 1.2) calculated with four distinct DNN(MB20) potentials that were
trained on the expanded MB-pol training set containing cluster configurations using four
different seeds to initialize the fitting process. Panels a) to e) show the errors associated
with n-body energies (n = 2− 6) calculated with the DNN(MB20) potentials relative to
the corresponding MB-pol values. Panel f) shows the errors associated with the interaction
energies calculated with the DNN(MB20) potentials relative to the corresponding MB-pol
values. The DNN(MB20) potential with seed 4 is used in the comparisons shown in
Figs. 1.11 and 1.13.

compared to the corresponding errors associated with the DNN potentials in Fig. 1.6.

Similar trends are observed in Figs. S13, S14, and S15 that show direct comparisons of

individual many-body energies and interaction energies calculated with the DNN(MB4),

DNN(MB10), and DNN(MB20) potentials, respectively. Additional analyses of the error

distributions associated with 2-body and 3-body energies calculated for dimer and trimer
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configurations of the cluster training set are reported in Fig. S16 and demonstrate that the

DNN(MB4), DNN(MB10), and DNN(MB20) potentials significantly improve on the DNN

potential in the ability to represent many-body interactions in water. It should, however,

be noted that the DNN(MB) potentials still rely on significant error compensation among

individual n-body energy contributions to minimize the error on the interaction energies

of the hexamer isomers. The observed error compensation indicates that, as the DNN,

DNN(VLE10), and DNN(VLE20) potentials, the DNN(MB) potentials are unable to “learn”

that the interaction energy of a N -body system containing N water molecules is given

by the sum of distinct n-body energy contributions (with n = 2−N). To put things in

perspective, the errors associated with the DNN(MB) predictions for each n-body energy

contribution to the interaction energies of the hexamer isomers, in particular at the 2-body

and 3-body levels, are still appreciably larger than those displayed by state-of-the-art

polarizable force fields for water.200

Having demonstrated that extending the training set by adding monomer, dimer,

trimer, and tetramer configurations allows the DNN(MB) potentials to recover a more

balanced representation of many-body interactions, we next assess the ability of the

DNN(MB4), DNN(MB10), and DNN(MB20) potentials to reproduce vapor-liquid equilib-

rium properties that were poorly predicted by the DNN potentials (Fig. 1.5). Fig. 1.11

shows that all three DNN(MB) potentials more closely reproduce the MB-pol trends for

the surface tension and the equilibrium densities of both vapor and liquid phases over the

entire temperature range examined in this study than the DNN potential. The critical

parameters predicted by the DNN(MB4), DNN(MB10), and DNN(MB20) potential are

Tc = 655±2 K and ρc = 0.325±0.002 g cm−3, Tc = 605±10 K and ρc = 0.32±0.01 g cm−3,

and Tc = 660 ± 6 K and ρc = 0.338 ± 0.005 g cm−3, respectively, which are in better

agreement with the MB-pol values (Tc = 639± 14 K and ρc = 0.34± 0.03 g cm−3) than

the results obtained not only with the DNN potential but also with the DNN(VLE10)

and DNN(VLE20) potentials. The structural differences at the vapor-liquid equilibrium
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between DNN and DNN(MB20) are further highlighted in Fig. S17 which shows the

density profiles predicted by the two potentials at different temperatures. In particular, the

interface structure predicted by DNN(MB20) is significantly different from that predicted

by DNN and in close agreement with the MB-pol results reported in Ref. 165.
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Figure 1.11. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated
from NV T simulations of a water slab carried out with the DNN(MB) potentials (cyan,
light blue, red) compared with the reference MB-pol values from Ref. 165 (blue).
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Figure 1.12. Vapor-liquid equilibrium densities calculated using the same four variants of
each of the DNN, DNN(VLE), and DNN(MB) potentials used in the analyses of Fig. 1.6,
1.9, S8, 1.10, S11, and S12. The densities are compared with the reference MB-pol values
from Ref. 165 (blue dashed line) at 400 K (panel a), 500 K (panel b), and 575 K (panel c).

Despite being able to provide more accurate estimates of the actual MB-pol critical

point, Fig. 1.12 shows that the DNN(MB4), DNN(MB10), and DNN(MB20) potentials
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display a higher degree of variability in their predictions of the liquid density at high

temperatures than the DNN(VLE10) and DNN(VLE20) potentials. This high variability

at high temperatures, which is also displayed by the DNN potentials, can be traced back

to the lack of explicit vapor-liquid configurations in the corresponding training sets, which,

in turn, highlights the difficulty for DeePMD-based potentials to be transferable across

different phases over a wide range of thermodynamic conditions.
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Figure 1.13. Temperature dependence of the density (a) and isothermal compressibility
(b) calculated from NPT simulations carried out with the DNN(MB) potentials at 1 atm
(cyan, light blue, red) compared with the reference MB-pol values from Ref. 43 (blue). The
associated shaded areas indicate 95% confidence intervals of the averages. Fig. S2 show
the density fluctuations along the NPT trajectories carried out with the DNN(MB20)
potentials at each temperature.

The last question that remains to be addressed is whether the improved ability to

represent many-body interactions and predict vapor-liquid equilibrium properties still allows

the DNN(MB4), DNN(MB10), and DNN(MB20) potentials to accurately reproduce the

liquid properties calculated with MB-pol. To this end, Fig. 1.13 shows comparisons between

the temperature dependence of the density and isothermal compressibility calculated

with the DNN(MB4), DNN(MB10), and DNN(MB20) potentials and the corresponding

MB-pol reference values. The DNN(MB4), DNN(MB10), and DNN(MB20) potentials

effectively predict indistinguishable (within statistical error) trends for both density and
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isothermal compressibility, which are in qualitative agreement with the MB-pol reference

values. Specifically, they correctly predict a minimum at ∼300 K in the isothermal

compressibility which is instead absent in the DNN, DNN(VLE10), and DNN(VLE20)

potentials. This suggests that, by being able to more accurately represent many-body

interactions, the DNN(MB4), DNN(MB10), and DNN(MB20) potentials display a higher

degree of transferability to the gas phase at ambient conditions. As in the case of the

DNN(VLE10) and DNN(VLE20) potentials, the comparison between the results of Fig. 1.13

and Fig. 1.3, however, indicates that the addition of configurations different from bulk

configurations (in this case, monomer, dimer, trimer, and tetramer configurations) to

the training set overall deteriorates the ability of the DNN(MB4), DNN(MB10), and

DNN(MB20) potentials to reproduce bulk properties calculated with MB-pol. Despite

these differences, the liquid structure predicted by the DNN(MB4), DNN(MB10), and

DNN(MB20) potentials is in close agreement with that of MB-pol as demonstrated by

the comparisons of the RDFs and qtet distributions calculated with DNN(MB20) that are

shown in Fig. S18 of the Supplementary Material.

1.4 Conclusion

In this study, we analyzed the performance and degree of transferability of a

DeePMD-based DNN potential for water trained on MB-pol reference configurations

extracted from MD simulations of liquid water carried out from 198 K to 368 K at 1

atm. We found that the DNN potential is able to reliably reproduce structural and

thermodynamic properties of liquid water as predicted by MB-pol from the boiling point

down to deeply supercooled temperatures. However, while MB-pol exhibits remarkable

accuracy from the gas to the condensed phase, the DNN potential does not share the same

high level of transferability across phases. In particular, we found that the DNN potential

is not able to accurately describe vapor-liquid equilibrium properties. More importantly,
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a many-body decomposition analysis of the interaction energies of the hexamer isomers

indicates that the DNN potential is not able to correctly “learn” many-body interactions and

effectively relies on error compensation among individual many-body energy contributions

to reproduce the interaction energy of a given N -body system containing N water molecules.

To improve the performance of the DNN potential on vapor-liquid equilibrium

properties, we expanded the initial DNN training set of bulk configurations by adding

configurations extracted from vapor-liquid equilibrium simulations carried out with MB-pol.

While the new DNN(VLE10) and DNN(VLE20) potentials improve the description of the

surface tension and equilibrium densities of both vapor and liquid phases, they predict

less accurate bulk properties and are unable to correctly reproduce individual many-body

contributions to the interaction energies.

In an attempt to explicitly encode many-body interactions onto the DNN potential,

we also expanded the initial DNN training set by adding water monomer, dimer, trimer,

and tetramer configurations, which provide direct information on the most important

many-body contributions (i.e., 1-body to 4-body contributions) to the interaction energies

in water systems. By improving the description of individual many-body contributions,

the new DNN(MB4), DNN(MB10), and DNN(MB20) potentials are also able to reliably

reproduce the vapor-liquid equilibrium properties predicted by MB-pol. We found, however,

that all three potentials exhibit a high degree of variability in predicting the liquid density

at high temperatures due to the lack of representative vapor-liquid configurations in

their training sets, which limits their transferability over a wide range of thermodynamic

conditions. Moreover, the improvement in the description of many-body interactions comes

at the expense of a poorer representation of the liquid properties.

Although DeePMD-based potentials are intrinsically many-body in their functional

form, our analyses show that they do not necessarily correctly represent the underlying

many-body physics of the reference potentials. This suggests that some caution should be

exercised when using DeePMD-based DNN potentials to predict thermodynamic properties
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for state points that are not explicitly and thoroughly included in the training sets.

Although our study focuses on water, similar behavior is likely to be found in DeePMD-

based DNN potentials for other molecular systems, including aqueous solutions as well

as molecular fluids and solids. In this context, we hope that our results can stimulate

further developments of new training procedures and neural network architectures capable

of correctly capturing the physics of many-body interactions in molecular systems.

With this caveat in mind, the computational efficiency provided by the DeePMD

framework suggests that large-scale CCSD(T)-level MD simulations are possible by training

DeePMD-based DNN potentials on data-driven many-body potentials derived from the

MBE calculated at the CCSD(T) level of theory, such as MB-pol. However, for this to hold,

the thermodynamic state points of interest in the DNN simulations must be adequately

represented in the training sets generated using the reference data-driven many-body

potentials. This suggests that a DNN potential trained on an extensive training set,

including molecular configurations extracted from MB-pol simulations carried out over

a wide range of thermodynamic conditions, is well suited for exploring the rich phase

diagram of water,44 particularly in the so-called “no man’s land” region at low temperature,

which has been proven difficult to probe experimentally.172,174,175
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Chapter 2

Active learning of many-body configu-
ration space: Application to the Cs+–
water MB-nrg potential energy func-
tion as a case study

2.1 Introduction

Computer simulations provide fundamental insights into the properties and behavior

of molecular systems.202–204 Since both accuracy and predictive ability of a molecular model

are primarily limited by the computational cost associated with the model itself, developing

cost-effective simulation approaches is key to studying increasingly more complex systems.

It has recently become possible to perform molecular dynamics (MD) simulations of aqueous

systems, from the gas to the condensed phase, retaining high accuracy in the description

of the underlying molecular interactions.129 This is achieved by employing many-body

potential energy functions (PEFs) derived from high-level electronic structure data that

are carried out on selected molecular configurations representative of the corresponding

global many-body potential energy surfaces (PESs).94–98,103,106–108 An optimal approach

to the development of many-body PEFs would require identifying a minimal pool of

configurations that can guarantee an accurate description of the system under exam and,

at the same time, computation time is not lost on calculations on redundant configurations
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describing similar regions of the many-body PES.

Efficient sampling of the configuration space is challenging due to the high dimen-

sionality of the associated molecular configurations. In principle, a regular grid search

would provide a homogeneous representation of all regions of the many-body PES. This

approach, however, becomes unfeasible as the number of degrees of freedom increases. To

reduce the size of the configuration space, it is common practice in the development of

many-body PEFs to apply biases on the relative translations and rotations of the individual

molecular species constituting the system under exam.97,98,107,108 Although of practical

use, this approach can lead to redundant training sets containing several molecular con-

figurations representing similar regions of the target many-body PES. While algorithms

designed to remove geometrically similar configurations exist, it is not guaranteed that

screening based on structural similarity is sufficient for identifying only configurations

necessary for a faithful description of the target many-body PES.

The success of machine learning (ML) in many areas of molecular sciences (e.g., see

Refs. 68,71,74,76,205–209,209–215) makes it a promising tool for efficiently screening large

pools of molecular configurations for the development of many-body PEFs. Most common

ML approaches rely on supervised learning, which, however, requires large set of known

labeled data to train a model capable to accurately predict the labels of previously unseen

data.216–218 Active learning (AL) provides a potential solution to the need for constructing

beforehand large training sets by interactively generating training configurations at runtime.

AL schemes are thus particularly appealing when using large training sets is prohibitively

expensive either because of the high cost associated with determining the data labels or

because of the high computational cost of the training stage.

In this study, we investigate the application of AL to generating representative

training sets of molecular configurations necessary for the development of many-body

PEFs, with a specific focus on two-body (2B) and three-body (3B) contributions to the

Cs+–water interaction energies. Our AL framework consists of a finite pool of molecular
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configurations (i.e., Cs+(H2O) dimers for the 2B pool and Cs+(H2O)2 trimers for the

3B pool) whose energies are unknown, a training set with configurations selected from

the pool, a predictive model (predictor) thirsting for the training set, and a learner that

actively selects configurations from the pool. We assume that the size of the pool is beyond

awareness of the learner and only a subset of the configurations (referred to as candidates)

in the pool are available to the learner at each iteration. Through the application of our

AL approach, we demonstrate that the size of the original pool of configurations used to

develop the Cs+–water MB-nrg PEF can be greatly reduced without compromising the

accuracy with which the new MB-nrg PEFs describe Cs+–water interactions, from small

clusters to aqueous solutions.

2.2 Methods

2.2.1 MB-nrg potential energy functions

The total energy of a system containing N (atomic or molecular) monomers

(“bodies"), can be rigorously expressed through the many-body expansion (MBE) of the

energy,219

VN =
N∑
i

V 1B
i +

N∑
i<j

V 2B
ij +

N∑
i<j<k

V 3B
ijk + . . .+ V NB (2.1)

where the V 1B
i corresponds to the energy required to distort monomer i from its equilibrium

geometry. Therefore, V 1B(i) = 0 for atomic monomers, and V 1B(i) = E(i) − Eeq(i) for

molecular monomers, where E(i) and Eeq(i) are the energies of monomer i in distorted

and equilibrium geometries, respectively. All higher n-body (nB) interaction terms (V nB)

in Eq. 2.2.1 are defined recursively through

40



V nB(1, . . . , n) = En(1, . . . , n)−
∑
i

V 1B(i)−
∑
i<j

V 2B(i, j)− . . .

−
∑

i<j<···<n−1

V (n−1 )B(i, j, . . . , (n− 1))

(2.2)

Within the MB-nrg framework, the water–water interactions are described by

the MB-pol PEF,97,98,106 which has been shown to correctly reproduce the properties of

water110,158 from small clusters in the gas phase,159–161,220–229 to bulk water,162,230–232 the

air/water interface,163,164,233,234 and ice.166–168 The interactions between Cs+ ions and water

molecules are described through the MBE of Eq. 2.2.1. Specifically, the Cs+–water MB-nrg

PEF includes explicit 2B Cs+–H2O and 3B Cs+–(H2O)2 terms, with all higher-order

interactions being implicitly taken into account through a classical many-body polarization

term.108,235 The 2B term includes three contributions,

V 2B = V 2B
short + V 2B

TTM + V 2B
disp (2.3)

where V 2B
disp is the 2B dispersion energy, and V 2B

TTM is the 2B classical polarization con-

tribution described by a Thole-type model.236 V 2B
short in Eq. 2.3 describes 2B short-range

contributions represented by a 5th-degree permutationally invariant polynomial (PIP) in

variables that are functions of the distances between the Cs+ ion and each of the six sites

of the MB-pol water molecule.108

Similarly, the 3B term of the Cs+–water MB-nrg PEF includes two contributions,

V 3B = V 3B
short + V 3B

TTM (2.4)

where V 3B
TTM is the 3B classical polarization contribution described by the same Thole-type

model as in V 2B
TTM , and V 3B

short describes 3B short-range contributions that are represented
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by a 4th-degree PIP in variables that are functions of the same distances as in V 2B
short.235

The coefficients of both 2B and 3B PIPs were optimized using Tikhonov regression (also

known as ridge regression)237 to reproduce reference interaction energies obtained from

high-level electronic structure calculations.

2.2.2 Interaction energies, fitting procedure, and MD simula-
tions

The 2B and 3B reference energies were taken from Refs. 108 and 235 where

MOLPRO (version 2015.1) was used to carry out electronic structure calculations at the

coupled cluster level of theory using single, double and perturbative triple excitations, i.e.,

CCSD(T), the “gold standard" for chemical accuracy.117 In Ref. 108, the 2B CCSD(T)

energies were calculated in the complete basis set (CBS) limit that was achieved through a

two-point extrapolation138,139 between the values obtained with the correlation-consistent

polarized valence triple zeta (aug-cc-pVTZ for H,O, and cc-pwCVTZ for Cs+) and quadruple

zeta (aug-cc-pVQZ for H,O, and cc-pwCVQZ for Cs+) basis sets.238–241 In Ref. 235, the 3B

CCSD(T) energies were calculated using the aug-cc-pVTZ basis set for the O and H atoms,

and the cc-pwCVTZ basis set for Cs+, and were corrected for the basis set superposition

error using the counterpoise method.242 In both 2B and 3B energy calculations, the

ECP46MDF pseudopotential was used for the core electrons of Cs+.243

The original 2B training set consisted of Cs+(H2O) dimer configurations generated

on a uniform spherical grid, with the Cs+–O distance in the 1.6 - 8 Å range.108 For the

present study, dimer configurations with interaction energies larger than 100 kcal/mol were

removed since they were found to be not necessary for representing Cs+(H2O) configurations

sampled in MD simulations at ambient conditions. The 2B pool was then further reduced

to 13525 dimer configurations after randomly removing 1547 configurations for the 2B test

set.

Due to the larger number of degrees of freedom, the original 3B training set was
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generated in Ref. 235 by extracting Cs+(H2O)2 trimer configurations from MD simulations

of a single Cs+ ion in liquid water at 298.15 K. For the present study, the original 3B set

of Ref. 235 was reduced to a 3B pool of 34441 configurations after randomly removing

4480 configurations for the 3B test set.

The MD simulations presented in Section 2.3.4 were carried out in the isobaric-

isothermal (NPT) ensemble for a box containing a single Cs+ ion and 277 H2O molecules.

The equations of motion were propagated using the velocity-Verlet algorithm with a

timestep δt of 0.2 fs. The temperature of 298.15 K was controlled by Nosé-Hoover chains

of 4 thermostats attached to each degree of freedom while the pressure of 1.0 atm was

controlled following the algorithm described in Ref. 244. All MD simulations were carried

out using an in-house software based on DL_POLY 2.0.245

2.2.3 Active learning

An AL framework based on uncertainty and error estimation was used to generate

optimal 2B and 3B training sets with the goal of reducing the number of dimers and

trimers necessary to develop Cs+–water MB-nrg PEF, without compromising accuracy.

The major difficulty faced by the active learner in generating optimal 2B and 3B training

sets is represented by the need to determine the relevance of candidate dimer and trimer

configurations before knowing the associated 2B and 3B energies.246 It is apparent that

the more accurate the active learner is, the more precise its assessment of a molecular

configuration is. In addition, for efficiency purposes, the energy estimation made by the

learner should be computationally inexpensive compared to the energy determination

performed by the predictor.

In this context, Gaussian process regression (GPR) provides a general approach to

assessing the relevance of a candidate configuration by accurately estimating the associated

energy.247 GPR implies a correlation between the unknown energies of the candidate

configurations and the energies determined for configurations that are already in the
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training sets. The correlation is expressed by the covariance matrix between known and

unknown values of the energies, with the elements of the covariance matrix being calculated

by a kernel function. GPR assumes that both known and unknown energies are distributed

according to a multidimensional Gaussian distribution and then uses the covariance matrix

to predict the conditional probability distribution of the unknown energies given the known

energies. The ability of GPR to interpolate between known energy values makes it a

good model for local uncertainty prediction. It should be noted that a similar approach is

exploited by Gaussian Approximation Potential (GAP) models that have been developed

to represent interatomic interactions.248

Data Pool

Training Set

Predictor

Learner

Candidates

Data

Criteria Update

Figure 2.1. Schematic representation of the AL framework introduced in this study.

Our AL framework, shown in Fig. 2.1, consists of a pool of an unknown number

of molecular configurations, corresponding to Cs+(H2O) dimers for the 2B pool and

Cs+(H2O)2 trimers for the 3B pool, a predictor, and a learner that, based on feedback

from the predictor, selects configurations from the pool and adds them to the training set.

The complete AL protocol is summarized below:

• At each iteration t, the pool S sends a subset of configurations with unknown energies

(Ct = {xj}t ⊆ S) to the learner as training set candidates.
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• Depending on the iteration index t, a training set Tt is formed:

– At t = 0, all configurations in C0 are added to the training set T0 and their

actual energies are determined.

– For t > 0:

∗ The training set Tt−1 from the previous iteration is divided into clusters

{τt−1,k} containing a fixed number of molecular configurations, independent

of the training set size.

∗ A cluster label kj is predicted for each candidate configuration xj in Ct (i.e.,

each candidate configuration xj is assigned to one of the clusters {τt−1,k}).

∗ The uncertainty ∆Ej on the energy of the candidate configuration xj is

estimated as the GPR variance calculated for the entire cluster τk, k = kj.

∗ The error Errj on the energy of the candidate configuration xj is defined

as the average error associated with the energies predicted by the model

for all the configurations in the cluster τk, k = kj.

∗ A selection probability Pt(xj), proportional to the weighted sum of the

energy uncertainty and the energy error, is assigned to each candidate

configuration xj in Ct,

Pt(xj) ∝ [w∆E ∗∆Ej + wErr ∗ Errj] (2.5)

∗ A subset of configurations {x̂i}t ⊆ Ct is selected and, after determining the

associated actual energies ϵi, added to the training set, Tt = {(x̂i, ϵi)}t∪Tt−1.

• The model M is trained on the training set Tt.

• The errors associated with the energies predicted by the model for all configurations

in the training set Tt are updated
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• The cycle is stopped when the gradient of the test error becomes lower than a

predefined value.

The division into clusters {τt−1,k} of equal size reduces the computational cost

associated with GPR, which typically scales as O(n3).247 Since a radial basis function

(RBF) kernel, which is based on the L2 distance, is used to determine the similarity between

two configurations, it follows that configurations close to the candidate configuration play

a central role in the GPR process. The use of the RBF kernel function allows interpolation

with GPR only between configurations that are in the same cluster as the candidate, which,

in turn, helps reduce the computational cost without losing predictive accuracy. As shown

in Eq. 2.5, the learner selects configurations based on the weighted sum of uncertainty and

model error. This procedure ensures a balanced exploration of the configuration space,

exploiting the decision-making process.

Different reduction methods that exploit either molecular features249 or model

diversity250 have recently been proposed. While some are based on correlation estimation

as in our AL framework, approaches solely based on molecular features lack the adaptability

that arises from the constant feedback of the fitting model. In contrast, our AL framework

improves its ability to select new structures as the process advances: a small subset (5%)

of candidates is selected and added to the training set to improve the reliability of the

learner, at each iteration. As our AL framework, approaches based on model diversity,

such as the query by committee (QBC) methods of Ref. 250, share similar advantages

over feature-based approaches. However, our AL framework differs from the QBC method

of Ref. 250 in three main aspects. 1) Our AL framework does not assume any knowledge

about the initial pool. In contrast, since the inclusion criterion used in Ref. 250 is chosen

empirically, the resulting AL approach is system dependent. 2) Since the candidates

in Ref. 250 are selected based on a preset value of the inclusion criterion, a balanced

exploration of the configuration space is not guaranteed. Our AL framework instead

46



assigns a probability to each configuration in the pool. This implies that there always

exists the possibility to select low-probability candidates, which, consequently, guarantee

a balanced exploration of the configuration space. 3) While the AL approach used in Ref.

250 only relies on the standard deviation calculated using the predictor model, our AL

framework exploits both the training error calculated using the predictor model (i.e., the

MB-nrg PEF) and the uncertainty calculated using the Gaussian process regression, which

results in a performance improvement of the overall AL framework. In this context, it

should be noted that, although our AL framework improves upon reduction methods that

exploit either molecular features249 or model diversity250, a perfect training set reduction

may still not be achieved due to the practical impossibility of achieving a perfect balance

between exploration of completely new configurations and exploitation of configurations

already in the training sets.

In this study, we used the KMeans module available in the Scikit-learn Python

package, version 0.21.3, to cluster both the Cs+(H2O) dimers and the Cs+(H2O)2 trimers in

the corresponding 2B and 3B training sets and the cluster size was fixed at 50 configurations.

For GPR we used the class GaussianProcessRegressor and the RBF kernel available in

the same Python package.

Both GPR and KMeans require a vector representation of the 2B and 3B structures

in the high-dimensional configuration space. For this purpose, we used the many-body

tensor representation (MBTR) of atomic environments.251 MBTR defines a structural

descriptor that is easily computable and well suited to calculate the kernels for both GPR

and KMeans. The MBTR descriptor is constructed by storing the terms of the Coulomb

matrix205 associated with each pair of the Ne chemical elements constituting the molecular

system of interest into an Ne × Ne × d tensor, where d is the largest number of unique
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pairs of the same two chemical elements. The MBTR descriptor thus takes the form

fk(x, z ) =
Na∑
i

wk(i )D(x, gk(i ))
k∏

j=1

Czj ,Zij
, (2.6)

where z ∈ Nk are atomic numbers, i = (i1, . . . , ik) ∈ {1, . . . , Na} are index tuples,

k runs over the number of atoms, D is a broadening function, C is the element correlation

matrix, and gk is a function that assigns a scalar to the k atoms based on a k-body physical

feature. The MBTR descriptor is then discretized and rearranged in the form of a vector.

We used the Python package qmmlpack for the vector representation of the 2B and

3B configurations in their respective training sets. The broadening function D was chosen

to be the normal distribution with k = 2, 3. The inverse of the distance, r−1, and the

angle, θ, were used as gk for k = 2, 3, respectively. The number of bins and the width of

the normal distribution were tuned to guarantee the efficiency of the MBTR calculations,

without compromising accuracy.

2.3 Results

The results of our AL framework are presented in the following three subsections.

First, we discuss the learning curves for the 2B and 3B energies, and comparisons are

made between our AL framework and a generic approach based on a random selection

(RS) of molecular configurations. Second, we introduce sketch-maps252 of different 2B

and 3B training sets generated through our AL framework and discuss the corresponding

distributions of 2B and 3B energies. Third, we analyze the interaction and many-body

energies of small water clusters as well as the Cs+-oxygen radial distribution functions

(RDFs) of liquid water calculated using different 2B and 3B training sets generated through

our AL framework.
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2.3.1 Learning curves of 2B and 3B energies

Figs. 2.2 and 2.3 show the learning curves for the 2B Cs+–H2O and 3B Cs+–(H2O)2

energies, respectively, calculated for the training (left panels) and test (right panels) sets as

a function of the training set size. Learning curves obtained using both our AL framework

(blue) and RS approach (magenta) are shown.
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Figure 2.2. RMSEs (in kcal/mol) associated with the 2B training (left) and test (right)
sets displayed as a function of the training set size. Blue and magenta curves correspond
to AL and RS learning curves, respectively. The dashed line indicates the optimal training
set size as determined in this study.

The training root-mean-square errors (RMSEs) associated with the RS approach

increase monotonically as a function of the training set size for both 2B and 3B energies

while the corresponding AL curves display steeper increases for smaller training sets, reach

a maximum, and then decrease. The test RMSEs show different trends, with the curves

obtained with our AL framework displaying a significantly faster decrease as a function of

the training set size. Since our AL framework specifically targets configurations with higher

uncertainties and neighborhood training errors, these configurations are selected more

frequently by the learner and added to the training set. It follows that the configurations

that are left in the pool after each iteration are associated with progressively smaller

uncertainties and training errors. This implies that, when added to the training sets in
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Figure 2.3. RMSEs (in kcal/mol) associated with the 3B training (left) and test (right)
sets displayed as a function of the training set size. Blue and magenta curves correspond
to AL and RS learning curves, respectively. The dashed line indicates the optimal training
set size as determined in this study.

subsequent iterations, these configurations necessarily lead to a decrease of the training

RMSEs and only negligible variations in the test RMSEs as shown in in Figs. 2.2 and 2.3.

As a general rule, the simultaneous stabilization or decrease of the training error

and the stabilization of the test error are good indicators of the convergence of the learning

process.253,254 Therefore, based on the analysis of both training and test RMSEs obtained

with our AL framework, cutoff values for the training set size could be chosen. The optimal

numbers of configurations in the 2B and 3B training sets for the Cs+–water MB-nrg PEFs

were determined to be 5000 Cs+(H2O) dimers and 10000 Cs+(H2O)2 trimers, respectively.

2.3.2 Sketch-maps

Sketch-maps have been shown to be useful tools for representing high-dimensional

configuration spaces with lower-dimensional projections that are easily interpretable in

terms of well-defined structural features.252,255,256

To provide structural insights into the composition of the 2B and 3B training

sets, with varying sizes, obtained with our AL framework, MBTR was used to generate
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Figure 2.4. Sketch-maps of the 2B configurations. The map in in a) represents the
reference CCSD(T) energies while the map in b) represents the difference, ∆E, between
the reference CCSD(T) energies and the energies predicted by the MB-nrf PEF trained
on the full pool of 2B configurations. The maps in c) to f) represent the difference, ∆E,
between the energies predicted by the MB-nrg PEF trained on of the full training set and
the corresponding values predicted by MB-nrg PEFs trained on the reduced-size training
sets of 10000, 8000, 6000, and 4000 configurations generated using the AL framework,
respectively.

the sketch-maps shown in Figs. 2.4 and 2.5, respectively. Panel a) of Fig. 2.4 is a

representation of the entire 2B pool projected onto a 2-dimensional space. Each point on

the map corresponds to a Cs+(H2O) dimer configuration and the associated color indicates

the corresponding CCSD(T) reference 2B energy. Since the 2B pool was generated on a

grid by varying the Cs+-O distance and distorting the water molecule, these features are

reflected in the resulting sketch-map where points cluster together, in an orderly fashion.

Panel b) of Fig. 2.4 shows a sketch-map of the energy differences between the

reference 2B energies and the corresponding values predicted by the MB-nrg PEF trained

on the full 2B pool (13525 configurations). This comparison shows that the the MB-nrg

PEF provides an accurate description of the overall 2B energy landscape, with deviations

larger than 0.5 kcal/mol only found for Cs+(H2O) dimers with associated binding energies
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Figure 2.5. Sketch-maps of the 3B configurations. The map in in a) represents the
reference CCSD(T) energies while the map in b) represents the difference, ∆E, between
the reference CCSD(T) energies and the energies predicted by the MB-nrf PEF trained
on the full pool of 2B configurations. The maps in c) to f) represent the difference, ∆E,
between the energies predicted by the MB-nrg PEF trained on of the full training set and
the corresponding values predicted by MB-nrg PEFs trained on the reduced-size training
sets of 20000, 15000, 10000, and 5000 configurations generated using the AL framework,
respectively.

larger than 40 kcal/mol, and deviations on the order of 0.04 kcal/mol for Cs+(H2O)

dimer configurations with lower binding energies (less than 40 kcal/mol). It should be

noted that dimer configurations with larger binding energies are unlikely to be visited

in MD simulations at ambient conditions and are included in the 2B training sets to

guarantee that the PIPs representing short-range interactions within the the MB-nrg

PEF are well-behaved at short Cs+–water distances. Panels c-f) show sketch-maps of

the differences between 2B energies predicted by the MB-nrg PEF trained on the full 2B

pool and the corresponding values predicted by MB-nrg PEFs trained on progressively

smaller training sets containing 10000, 8000, 6000, 4000 configurations generated using

our AL framework. As expected, systematically reducing the training set size introduces

progressively larger errors, with training sets with fewer than 4000 dimer configurations

leading to overfitting. This analysis shows that our AL framework allows for significantly
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reducing the original 2B Cs+–H2O training set without compromising the overall accuracy

of the resulting MB-nrg PEF. In this context, it should be noted that the areas of the

sketch-maps in panels c-f) that display larger deviations from the original MB-nrg PEF of

Ref. 108, as the training set size decreases, correspond to dimer configurations for which

the original MB-nrg PEF also shows larger deviations from the CCSD(T) reference data

(panel b).

Similar conclusions can be drawn from the analysis of the sketch-maps of the 3B

training sets shown in Fig. 2.5. Since the original 3B pool was generated by extracting

Cs+(H2O)2 trimers from MD simulations of a single Cs+ ion in liquid water, the resulting

sketch-map (panel a) displays a more uniform distribution in the 2-dimensional space

compared to the corresponding sketch-map obtained for the 2B pool. Depending on the

associated CCSD(T) reference 3B energies, trimer configurations broadly cluster in two

areas, with the “dividing surface" being between -5.0 and -3.0 kcal/mol; this is highlighted

by the sudden change in color in panel a). Also in this case, the original MB-nrg PEF closely

reproduces the CCSD(T) reference 3B energies over the entire configuration space of the

3B pool, as shown in panel b). As for the 2B energies, progressively smaller training sets of

20000, 15000, 10000, 5000 configurations, generated using our AL framework and analyzed

through the sketch-maps shown in panels c-f), lead to progressively larger deviations from

the original MB-nrg PEF. It should be noted that, on average, the deviations remain

smaller than 0.06 kcal/mol even for the smallest training set (5000 trimer configurations).

2.3.3 Clusters analysis

To assess the relative accuracy of the various training sets generated using our AL

framework and determine how the associated differences in the representation of 2B and

3B energies affect the ability of the resulting MB-nrg PEFs to reproduce the properties

of water from the gas to the condensed phase, deviations from the reference 2B and

3B energies of low-lying isomers of the Cs+(H2O)n=1−3 clusters are analyzed in Fig. 2.6.
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Figure 2.6. Schematic representation of the errors associated with the 2B and 3B energies
of low-lying isomers of Cs+(H2O)n=1−3 clusters. The dashed black circles represent the
difference between the reference CCSD(T) energies and the corresponding values obtained
with the MB-nrg PEF trained on the full 2B and 3B pools. The other solid circles represent
the differences between the energies predicted by the MB-nrg PEF trained on the full 2B
and 3B pools and the corresponding values predicted by MB-nrg PEFs trained on 4000 2B
configurations and 5000 3B configurations, with blue and magenta corresponding to the
AL and RS training sets, respectively.

This analysis is carried out for several MB-nrg PEFs generated using the minimal 2B

and 3B training sets shown in Figs. 2.4 and 2.5 of 4000 dimer configurations and 5000

trimer configurations, respectively. Also shown for comparison are the deviations obtained

with the same training sets generated from random selection. In all cases, the differences

between the 2B and 3B energies predicted by the different MB-nrg PEFs are comparable

for all clusters, and often smaller than the corresponding differences between the original
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MB-nrg PEF fitted to the full 2B and 3B training sets and the CCSD(T) reference data.

This analysis thus indicates that the reduction of the training set sizes does not affect

the ability of the resulting MB-nrg PEFs to correctly represent 2B and 3B energies in

small water clusters. It should be noted that this is true for both families of MB-nrg PEFs

derived from training sets generated through AL and RS. This similarity can be attributed

to the intrinsic low dimensionality of the Cs+(H2O) dimers and Cs+(H2O)2 trimers that

make up the corresponding 2B and 3B training sets, which allowed for extensive sampling

of the relevant configurations for the development of the original training sets in Refs. 108

and 235 . However, while no appreciable differences exist in the performance of the two

sets of MB-nrg PEFs, AL clearly provides a more efficient approach to the selection of the

training set sizes as demonstrated by the significantly higher variability associated with the

learning curves obtained with the RS approach. The efficiency of the AL framework thus

becomes particular important when, differently from the present case of the Cs+–water

MB-nrg PEF, no prior information on training sets is provided. This aspect of our AL

framework will be the subject of a forthcoming study.

2.3.4 Radial distribution functions

To investigate the effects of training set reduction on modeling the properties of

bulk solutions, the Cs+–O RDFs calculated using different MB-nrg PEFs obtained from

fits to different combinations of 2B and 3B training sets generated using AL (left panels)

and RS (right panels) are analyzed in Figs. 2.7 and 2.8. The effects of the 2B training set

is first assessed in Fig. 2.7 by analyzing the performance of five MB-nrg PEFs generated

by fitting the 2B term to 2B training sets of various sizes (full, 10000, 8000, 6000, and

4000 dimer configurations) while fitting the 3B term to the full 3B training set for training

the 3B term (34441 trimer configurations). The resulting RDFs calculated from MD

simulations with the resulting MB-nrg PEFs generated from both AL and RS training

sets are shown in the top left and right panels of Fig.2.7, respectively. As discussed in
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Figure 2.7. Top panels: Cs+-O RDFs calculated from MD simulations with MB-nrg
PEFs trained on progressively smaller 2B training sets (in the range of 10000-4000 dimer
configurations) generated through AL (left) and RS (right), and the full 3B pool. Bottom
panels: Differences between the RDF calculated with the MB-nrg PEF trained on the full
2B and 3B pool and the corresponding RDFs calculated with MB-nrg PEFs trained on the
reduced-size AL (left) and RS (right) 2B training sets, and the full 3B pool.

more detail in Ref. 235, the Cs+–O RDF displays a narrow peak, corresponding to the

first hydration shell, at 3.16 Å, and a broader peak, corresponding to the second hydration

shell, at ∼6 Å. No appreciable differences are found between the RDFs obtained using

MB-nrg PEFs with progressively smaller 2B training sets. This is further evidenced by

the curves shown in the bottom panels of Fig. 2.7 representing the differences between the

RDFs calculated with each of the MB-nrg PEFs trained on reduced 2B training sets and
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Figure 2.8. Top panels: Cs+-O RDFs calculated from MD simulations with MB-nrg
PEFs trained on progressively smaller 3B training sets (in the range of 20000-5000 trimer
configurations) generated through AL (left) and RS (right), and the full 2B training set.
Bottom panels: Differences between the RDF calculated with the MB-nrg PEF trained
on the full 2B and 3B pool and the corresponding RDFs calculated with MB-nrg PEFs
trained on the reduced-size AL (left) and RS (right) 3B training sets, and the full 2B pool.

the RDF calculated with the MB-nrg PEF trained on the full 2B training set.

Similarly, the effects of the 3B training set size reduction are investigated in Fig. 2.8

through the analysis of five MB-nrg PEFs generated by fitting the 3B term to 3B training

sets of various sizes (full, 20000, 15000, 10000, and 5000 trimer configurations) while fitting

to the 2B term to the full 2B training set. In this case, reducing the 3B training set size to

less than 10000 trimer configurations results in small differences in the Cs+–water RDF for
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distances larger than 5.0 Å, which lead to a shift of the second hydration shell to slightly

larger distances. However, as shown in the bottom panels of Fig. 2.8, these differences are

barely noticeable and do not lead to any qualitative change in the hydration structure of

Cs+ in liquid water.

Overall, the analysis of both cluster and bulk properties demonstrates that the

application of our AL framework to the original pools of 2B and 3B configurations of

Refs. 162 and 235, respectively, leads to significantly smaller training sets, without loss

of accuracy, which, in turn, largely reduces the cost associated with the development of

CCSD(T)-level MB-nrg PEFs.

2.4 Conclusions

In this study, we introduced an AL framework for generating representative training

sets needed for the development of MB-nrg PEFs.107,108 Our AL framework is based on

uncertainty and error estimation, and consists of a pool of an unknown number of molecular

configurations, a predictor, and a learner that, based on feedback from the predictor,

selects configurations from the pool and adds them to the training set. The selection

process relies on Gaussian process regression and clustering of the configurations in the

training set, which allows for efficiently identifying the most relevant configurations needed

to accurately represent the target many-body PES.

The application of our AL framework to the development of a Cs+–water MB-nrg

PEF chosen as a case study led to significantly smaller training sets than those found

necessary for the development of the original MB-nrg PEF. Analyses of the interaction

and many-body energies calculated for small Cs+(H2O)n cluster as well as the Cs+-oxygen

RDF calculated from MD simulations of a single Cs+ ion in water demonstrate that the

new MB-nrg PEFs derived from the reduced-size training sets generated through AL

display the same accuracy of the original MB-nrg PEF derived from the full 2B and 3B
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pools.108,235

Given the computational cost associated with reference CCSD(T) calculations

of individual many-body energies, our AL framework is particularly well-suited to the

development of many-body PEFs, with chemical and spectroscopic accuracy, which can

then be used in MD simulations of the target molecular system, from the gas to the

condensed phase.
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Chapter 3

Data-Driven Many-Body Models En-
able a Quantitative Description of
Chloride Hydration from Clusters to
Bulk

3.1 Introduction

A molecular-level characterization of the hydration properties of charged species

from small clusters to bulk solutions and interfaces is key to understanding many physico-

chemical processes. Notably, hydrated ions are found as stabilizing species for biomolecules3–5

and are involved in catalytic and transport processes.1,2,257–261 It is hard to overstate the

importance of ions in electrochemical processes, as charged species are a necessary compo-

nent of electrolytic and galvanic cells.12 Hydrated ions have also been shown to take part

in the growth process of cloud condensation nuclei.8–11

While ions are ubiquitous in natural and industrial processes, a predictive under-

standing of the driving forces that determine the molecular properties of ions in aqueous

solutions is still missing. For instance, it is known that, depending on their intrinsic

electronic structure, ions can either strengthen or weaken the structure of the surround-

ing water hydrogen-bonding (H-bonding) network. To describe this effect, Hofmeister’s

original classification of ions according to their ability to modulate protein solubility262
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subsequently led to the classification of ions as “structure makers" and “structure break-

ers".13 Broadly speaking, “structure makers" are small and highly charged ions that are

strongly hydrated and are, therefore, believed to strengthen the H-bonds between the

surrounding water molecules. On the other hand, “structure breakers" are large and usually

monovalent ions that, because of their size, disrupt the structure of the water H-bonding

network. Although appealing due its simplicity, this classification has been challenged by

measurements performed with various spectroscopic techniques.14–18

One of the most striking examples of the uncertainties in the current understanding

of specific ion effects is perhaps represented by the ongoing debate around the distribution

of ions at the air/water interface. Surface tension values larger than those for pure water

were measured for salt solutions by Heydweiller more than one hundred years ago.19

Importantly, while the surface tension was found to be independent of the nature of

the cations, it varied significantly depending on the type of anion present in solution.

Moreover, the effects of the anions on the surface tension were found to follow an inverse

Hofmeister series. First Wagner,20 and later Onsager and Samaras21 proposed that image

charges at the air/water interface are responsible for the local depletion of ions in the

interfacial region which, in turn, leads to the observed variation of the surface tension in

salt solutions. However, subsequent experiments found that the electrostatic potential

difference across the air/water interface measured for solutions of halide salts (with the

exception of fluoride salts) is more negative than that for pure water, thus suggesting that

larger halide ions have higher propensity for the interface than cations, in contradiction

with predictions derived from Wagner, and Onsager and Samaras theories.22 Since then,

various experimental approaches have been used to characterize the physical mechanisms

that determine the distribution of different ions at the water surface, sometimes with

conflicting results.23–25

Pioneering molecular dynamics (MD) simulations carried out for halide–water

clusters using polarizable force fields (FFs) predicted that all halide ions, except fluoride,
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are preferentially located at the surface of the clusters.28–32 In contrast, MD simulations

carried out for Cl−(H2O)n clusters with nonpolarizable FFs found that the chloride ion is

always located in the interior of the clusters.26,27 The different results obtained from MD

simulations with polarizable and nonpolarizable FFs were interpreted as an indication of

the importance of many-body effects in the hydration of halide ions.

Higher propensity for the water surface relative to the bulk was found for larger

halide ions from MD simulations of concentrated salt solutions as well as from calculations

of single-ion potentials of mean force (PMFs) carried out using polarizable FFs.33,34 In

particular, the surface propensity was found to increase from Cl− to I−, with F− being

repelled from the interface. Similar results were later obtained with various polarizable

models.35–37 More recent ab initio MD simulations based on density functional theory (DFT)

found a much lower propensity of the iodide ion, for the air/water interface, compared to

predictions obtained with polarizble FFs.263 However, these MD-DFT simulations were

carried out with the dispersion-corrected BLYP functional which has been shown to suffer

from some intrinsic limitations when applied to the modeling of liquid water.129,264,265 A

lower surface propensity than that calculated for larger halide ions using MD simulations

with polarizable FFs has also been predicted by an extended dielectric continuum (DC)

theory which takes into account both the dimension and the polarizability of the ions.38,39

An alternative model emphasizing the impact that ions may have on surface fluctuations

has also been proposed to explain the experimental observations of selective ion adsorption

at the air/water interface.266

Despite much recent effort in characterizing the molecular driving forces that

contribute to modulating both structural and thermodynamic properties of ions in solution,

it has become increasingly apparent that the development of a unified, molecular theory

of ion hydration requires a quantitative description of the interplay between ion–water

and water–water interactions, which has so far remained elusive. In this context, the

last decade has witnessed the emergence of many-body potential energy functions (PEFs)
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which, rigorously derived from the many-body expansion (MBE) of the energy, hold great

promise for predictive MD simulations of aqueous systems, from small clusters in the gas

phase to bulk solutions and interfaces.40–42 In particular, building upon the MB-pol PEF

for water,97,98,106 we developed two families of many-body PEFs, the TTM-nrg267,268 and

MB-nrg107,108 PEFs, which have been shown to accurately reproduce both structural and

thermodynamics properties of X−(H2O)n (X = F, Cl, Br, I) and M+(H2O)n (M = Li, Na,

K, Rb, Cs) clusters, including quantum-mechanical effects in H-bonding rearrangements

and isomeric equilibria.269–273

In this study, we present a systematic analysis of many-body effects in the hydration

properties of Cl− through detailed comparisons of different models of chloride–water

interactions, from simple point-charge FFs to polarizable FFs, and explicit many-body

PEFs. For this purpose, we introduce an extended MB-nrg PEF that, building upon the

results of Ref. 107, includes an explicit 3-body (3B) term as well as a refined 2-body term

(2B) derived from an expanded training set of dimer configurations generated using a

recently developed active learning scheme for many-body PEFs.120

3.2 Methods

The MBE expresses the energy, EN , of a system containing N (atomic or molecular)

monomers as the sum of individual n-body energies, ϵnB, where n ≤ N ,219

EN(r1, .., rN) =
N∑
i=1

ϵ1B(ri)+
N∑
i<j

ϵ2B(ri, rj)+
N∑

i<j<k

ϵ3B(ri, rj, rk)+ ...+ ϵ
NB(r1, .., rN) (3.1)

Here, ri collectively represents the coordinates of all atoms in monomer i, ϵ1B represents

the distortion energy of an isolated (molecular) monomer, and the n-body energies ϵnB are
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defined as

ϵnB = En(r1, ..., rn)−
N∑
i=1

ϵ1B(ri)−
N∑
i<j

ϵ2B(ri, rj)− . . .−
N∑

i<j<k<...

ϵ(n-1)B(ri, rj, rk, ...) (3.2)

Since the MBE converges quickly for systems with localized electron densities and large

band gaps, Eq. 3.1 can be used as a effective theoretical/computational framework for

developing many-body PEFs where each individual term of the MBE is independently

fitted to the corresponding electronic structure data.110,274

As discussed in detail in the original studies, both TTM-nrg267,268 and MB-nrg107,108

PEFs are derived from Eq. 3.1, and use the MB-pol PEF for representing water–water

interactions.97,98,106 MB-pol has been shown by us and others to correctly reproduce the

properties of water,110,158 from small clusters in the gas phase159–161,220–227,229 to liquid

water,162,230–232,275–277 the air/water interface,163–165,233,234, and ice.166–169 In the TTM-

nrg PEFs all ion–water many-body contributions, i.e., ϵ2B to ϵNB, are described by an

implicit NB term represented by classical polarization.267,268 The MB-nrg PEFs instead

approximate Eq. 3.1 with the sum of explicit low-order terms, generally up to the 3B term,

along with the same implicit many-body term used by the TTM-nrg PEFs to represent all

higher-body interactions,107,108

EN =
N∑
i=1

ϵ1B
i +

N∑
i>j

ϵ2B
i,j +

N∑
i>j>k

ϵ3B
i,j,k + Vpol (3.3)

Each term of Eq. 3.3 is fitted to reproduce the corresponding nB reference energies that, as

discussed below, are calculated at the explicitly correlated coupled cluster level of theory

including single, double, and perturbative triple excitations, i.e., CCSD(T)-F12b.136,137

Since the theoretical/computational framework behind the MB-pol97,98 and MB-nrg107,108

PEFs is described in the original references, we will only discuss here specific details related

to the development of the present chloride–water MB-nrg PEF.
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3.2.1 2-body energies

Following Refs. 107 and 108, ϵ2B in Eq. 3.3 is represented by three terms:

ϵ2B = V 2B
sr + Velec + Vdisp (3.4)

Here, V 2B
sr describes quantum-mechanical short-range 2B interactions (e.g., Pauli repulsion,

and charge transfer and penetration) that arise from the overlap of the electron densities

of the chloride ion and a water molecule, which cannot be represented in terms of classical

expressions.41,42 In the MB-nrg PEF, V 2B
sr is represented by a permutationally invariant

polynomial, V 2B
PIP, that is dampened to zero at long range by a switching function, s2(RCl−O),

of the distance RCl−O between the chloride ion (Cl−) and the oxygen atom (O) of the

water molecule within a Cl−–H2O dimer,

V 2B
sr = s2 (RCl−O) · V 2B

PIP (3.5)

where

s2(RCl−O) =


1, if t2(RCl−O) < 0

cos2
[
t2(RCl−O)π/2

]
, if 0 ≤ t2(RCl−O) < 1

0, if 1 ≤ t2(RCl−O)

(3.6)

and

t2(RCl−O) =
RCl−O −R2B

i

R2B
out −R2B

in
(3.7)

Here, R2B
in = 5.8 Å and R2B

o = 7.8 Å are the predefined inner and outer cutoff distances

of the switching function. These cutoff distances, which differ slightly from those used

in Ref. 107, were found to guarantee a smooth and continuous representation of ϵ2B. In

particular, both R2B
in and the range of the switching function were increased compared

to the original values107 since the gain in stability provided by a more slowly varying
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switching function was found to overcome the higher computational cost associated with

a larger number of 2B interactions to compute. As in Ref. 107, V 2B
PIP is a function of all

pairwise distances among the physical atoms (H, O, and Cl−) and the lone-pair sites of

the MB-pol water molecule (L1 and L2)97 within a Cl−–H2O dimer. V 2B
PIP contains 496

symmetrized monomials (ξi): 3 first-degree monomials, 15 second-degree monomials, 49

third-degree monomials, 130 fourth-degree monomials, and 299 fifth degree monomials. By

construction, V 2B
PIP thus contains 496 linear fitting parameters (ci) and 9 nonlinear fitting

parameters.107

As in Ref. 107, Velec in Eq. 3.4 represents permanent electrostatics between the

negative (-1e) charge of the chloride ion and the MB-pol geometry-dependent point charges

of the water molecule which reproduce the ab initio dipole moment of an isolated water

molecule.185

The last term in Eq. 3.4, Vdisp, describes the 2B dispersion energy:

Vdisp = −f(δCl−O)
C6,Cl−O

R6
Cl−O

− f(δCl−H1
)
C6,Cl−H1

R6
Cl−H1

− f(δCl−H2
)
C6,Cl−H2

R6
Cl−H2

(3.8)

where RCl−O, RCl−H1
, and RCl−H2

are the distances between the Cl− ion and the O, and the

two H atoms of the water molecule within the dimer, and f(δ) and C6 are the corresponding

Tang-Toennies damping functions278 and dispersion coefficients.

3.2.2 3-body energies

Building upon the same theoretical framework used in the development of MB-pol

and the Cs+–H2O MB-nrg PEF, ϵ3B in Eq. 3.3 is represented by a 3B short-range term

that effectively takes into account 3B energy contributions of quantum-mechanical origin

arising from the overlap of the electronic densities of the chloride ion and two water (a
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and b) molecules at a time as well as short-range 3B dispersion energy contributions,

ϵ3B = [s3(RCl−Oa
)s3(RCl−Ob

) + s3(RCl−Oa
)s3(ROaOb

) + s3(RCl−Ob
)s3(ROaOb

)] · V 3B
PIP (3.9)

Here, s3 is a 3-body switching function given by

s3(Rkl) =


1, if t3(Rkl) < 0

cos2
[
t3(Rkl)π/2

]
, if 0 ≤ t3(Rkl) < 1

0, if 1 ≤ t3(Rkl)

(3.10)

where

t3(Rkl) =
Rkl −R3B

i

R3B
out −R3B

in

(3.11)

In Eqs. 3.9 and 3.10, Rkl is the distance between any (k, l) pair of Cl− and O atoms within

a Cl−(H2O)2 trimer, R3B
in and R3B

out are the inner and outer cutoff distances. As an optimal

compromise between accuracy and computational cost, 3B effects are only included within

the first hydration shell of the chloride ion which is achieved by setting R3B
in and R3B

out to

2.5 Åand 4.5 Å, respectively. Although the following analyses demonstrate that the 2B

and 3B cutoff ranges adopted in the present study allow for the accurate representation

of the hydration structure of a chloride ion both in gas-phase clusters and in solution, it

should be noted that the MB-nrg framework gives the user complete freedom in the choice

of the inner and outer cutoffs.

V 3B
PIP is a function of all 41 pairwise distances between the physical atoms (H, O, and

Cl−) and the lone-pair sites of the two water molecules (L1 and L2) within a Cl−(H2O)2

trimer. V 3B
PIP contains 1575 symmetrized monomials, ξi: 39 second-degree monomials, 613

third-degree monomials, and 923 fourth-degree monomials. Therefore, V 3B
PIP contains 1575

linear fitting parameters and 13 nonlinear fitting parameters.

Specific details about V 2B
PIP and V 3B

PIP, along with the definition of all monomials are
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given in the Supplementary Material.

3.2.3 Reference energies

The reference dimer configurations used in the parameterization of the 2B energy

term, ϵ2B, were selected using the active learning approach described in Ref. 120, starting

from a pool of 150 000 configurations generated by sampling a spherical grid between

2–8 Å from the chloride ion as well as the normal modes of the Cl−–H2O dimer. 9059

and 854 dimer configurations were used in the training and test sets, respectively. The

reference 2B energies were calculated at the CCSD(T)-F12b level of theory136,137 in the

complete basis set (CBS) limit that was achieved via a two-point extrapolation.138,139 The

CCSD(T)-F12b calculations were performed with the augmented correlation-consistent

polarized valence triple-/quadruple-ζ (aug-cc-pV[T/Q]Z) basis sets.238,239,279,280

A Cl−–H2O MB-nrg PEF, without the explicit 3B term, ϵ3B, was initially developed

and used in MD simulations with a single Cl− ion in water which were carried out at

ambient conditions in the isobaric-isothermal (NPT) ensemble to generate the 3B pool.

13140 and 1240 Cl−(H2O)2 trimer configurations were extracted from the MD trajectories

and included in the training and test sets, respectively. The 3B energies were calculated

at the CCSD(T)-F12b level of theory136,137 using the aug-cc-pVTZ basis set.238,239,279,280

All CCSD(T)-F12b electronic structure calculations were carried out using MOL-

PRO (version 2020.1).281

3.2.4 Fitting procedure

We followed the same fitting procedure used in the development of MB-pol97,98

and other MB-nrg PEFs.107–109,143,144 Specifically, the linear parameters were optimized

through singular value decomposition, while the non-linear parameters were optimized

using the simplex algorithm. The following regularized weighted sum of squared deviations
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was calculated and minimized:

χ2 =
∑
n∈S

wn[ϵmodel(n)− ϵref(n)]
2 + Γ2

L∑
l=1

c2l (3.12)

Here, S represents the training set and L is the number of linear parameters. The weights

wn are introduced in Eq. 3.12 to emphasize configurations with lower binding energies

according to282

w(Ei) =

[
∆E

Ei − Emin +∆E

]2
(3.13)

Here, Emin is the lowest binding energy in the training set and ∆E is a parameter

that defines the range of favorably weighted energies. ∆E = 35 kcal/mol and ∆E =

47.5 kcal/mol were used for the 2B and 3B energies, respectively. The regularization

parameter Γ was set to 0.0005 to reduce the variation of the linear parameters while

preserving the overall accuracy.

3.2.5 MD simulations and analysis

All MD simulations were carried out in the NPT ensemble for a box containing a

single chloride ion and 277 water molecules at 298.15 K and 1.0 atm, corresponding to a

∼0.2 M solution. The velocity-Verlet algorithm283 was used to propagate the equations of

motion in the MD simulations with the TTM-nrg and MB-nrg PEFs. A timestep δt of

0.2 fs was used, which guarantees a correct sampling of the molecular degrees of freedom

as well as the TTM-nrg and MB-nrg induced dipole moments that were propagated

according to the always stable predictor–corrector algorithm.284 Nosé-Hoover chains with 4

thermostats attached to each degree of freedom were used to control the temperature while

the pressure was controlled using the algorithm described in Ref. 285. The path-integral

molecular dynamics (PIMD) simulations with the MB-nrg PEF were carried out using the

normal-mode representation, with each atom being described by a ring-polymer with 32

beads.286 All MD simulations with the TTM-nrg and MB-nrg PEFs were carried out with
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an in-house version of DL_POLY 2.0245.

For comparison, MD simulations were also carried out using the Cl−–H2O empirical

parameterization compatible with the TIP4P/Ew water model61 which was introduced

in Ref. 66 These simulations were carried out with AMBER287 using a global Langevin

thermostat and a Monte Carlo barostat to control the temperature and the pressure,

respectively.

The FEFF software was used to calculate the EXAFS signals.288–290 Following Ref.

235, all FEFF calculations were performed using clusters containing the chloride ion and

its 33 closest water molecules which were extracted from the corresponding MD and PIMD

trajectories at intervals of 0.5 ps.

3.3 Results

Fig. 3.1 shows the correlation plots between the reference CCSD(T)-F12b/CBS 2B

energies and the corresponding MB-nrg values for both training (panel a) and test (panel

b) sets. Root-mean-square errors (RMSEs) of 0.2387 kcal/mol and 0.2027 kcal/mol for

the training and test sets, respectively, demonstrate that the present MB-nrg PEF is able

to describe the Cl−–H2O 2B energies with coupled cluster accuracy over a wide range of

values, without overfitting.

Fig. 3.1c shows one-dimensional potential energy radial scans for different (θ, ϕ)

orientations of Cl− relative to H2O (see Fig. 3.1d for the definition of the coordinate system).

Independently of the relative orientation, the MB-nrg PEF quantitatively reproduces the

CCSD(T)/CBS values at all Cl−–H2O separations, which provides further evidence for

the overall high accuracy of the present MB-nrg PEF at the 2B level.

After assessing the accuracy of the 2B term of the MB-nrg PEF, Fig. 3.2 shows the

correlation plots between the CCSD(T)-F12b 3B reference energies and the corresponding

MB-nrg values for both training (panel a) and test (panel b) sets. Also in this case, the
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a) b)

c)

Training Test

d)

Figure 3.1. Top panels: 2B energy correlation plots between the CCSD(T)-F12b/CBS
reference values (x-axis) and corresponding MB-nrg values (y-axis) for the training (a)
and test (b) sets. Bottom panels: Cl−–H2O potential energy scans (c) along the Cl−–O
distance (RCl−O) for different orientations θ and ϕ (d). The symbols corresponds to the
CCSD(T)-F12b/CBS reference energies, while the corresponding MB-nrg values are shown
as solid lines.

present Cl−–H2O MB-nrg PEF is able to quantitatively reproduce the CCSD(T)-F12b

values over the a wide range of 3B energies, with RMSEs of 0.0655 kcal/mol and 0.0506

kcal/mol for the training and test sets, respectively. As for the 2B energies, this analysis

indicates that the high accuracy achieved by the MB-nrg PEF does not result from

overfitting. MB-nrg 2B and 3B energy error plots are reported in the Supplementary

Material.
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Test

a) b)

Training

Figure 3.2. 3B energy correlation plots between the CCSD(T)-F12b reference values
(x-axis) and corresponding MB-nrg values (y-axis) for the training (a) and test (b) sets.

Fig. 3.3 shows a comparison between the interaction energies calculated for the

low-energy isomers of the Cl−(H2O)n clusters (n = 1− 4) using the empirical TIP4P/Ew-

based model of Ref. 66, the TTM-nrg PEF of Ref. 267, and the present MB-nrg PEF.

To investigate the role played by short-range many-body effects, in this and following

analyses, we consider two versions of the MB-nrg PEF: the (2B+NB)-MB-nrg PEF that

includes the explicit 2B term of Eq. 3.4 in addition to the classical NB polarization term of

Eq. 3.3, and the (2B+3B+NB)-MB-nrg PEF that includes both explicit 2B (Eq. 3.4) and

3B (Eq. 3.9) terms in addition to the classical NB polarization term of Eq. 3.3. The results

obtained with these four different representations of the Cl−–H2O interactions are compared

with the the corresponding CCSD(T)-F12b reference values.40,270 As expected, being an

empirical pairwise additive model developed for bulk simulations, the TIP4P/Ew-based

model is unable to correctly reproduce the energetics of Cl−(H2O)n clusters, independently

of the size and H-bonding arrangements. By including NB effects through a classical

polarization term, the TTM-nrg PEF clearly provides a more accurate representations of

all clusters, which somewhat deteriorates for structures with more cooperative H-bonding

arrangements, as occurs in the isomer 4f of Cl−(H2O)4. The agreement with the CCSD(T)-

F12b results effectively becomes quantitative with the inclusion of the explicit 2B term
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in the (2B+NB)-MB-nrg PEF, with the exception of the isomer 4f of Cl−(H2O)4, for

which only the (2B+3B+NB)-MB-nrg PEF is able to accurately reproduce the reference

interaction energy. While emphasizing the role of many-body effects in chloride–water

interactions, this analysis also highlights the limitations of a representation of many-body

effects which is entirely based on classical polarization, as in the TTM-nrg PEF and

other common polarizable models, and further demonstrates the importance of correctly

describing short-range low-order (i.e., 2B and 3B) interactions.40 In this context, it should

be noted that the analyses reported in Ref. 40 demonstrate that all nB interactions with

n > 3 in Cl−(H2O)n clusters are correctly described by the classical polarization term, Vpol

employed by the TTM-nrg and MB-nrg PEFs.

1

2

3a

3b

3c

3d

4a

4b

4c

4d

4e

4f

Figure 3.3. Comparison between the interaction energies calculated for the low-energy
isomers of Cl−(H2O)n clusters (with n = 1 − 4) using the empirical TIP4P/Ew-based
model of Ref. 66, the TTM-nrg PEF of Ref. 267, and the present (2B+NB)-MB-nrg and
(2B+3B+NB)-MB-nrg PEFs. For each cluster, the CCSD(T)-F12b reference values40,270

are shown as horizontal dashed lines.

Although the analyses presented in Figs. 3.1-3.3 provide a quantitative assessment of

the ability of the present MB-nrg PEF to reproduce, at the fundamental level, many-body
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interactions in Cl−(H2O)n clusters for which calculations at the coupled cluster level of

theory are feasible, the MB-nrg PEFs also enable computer simulations of condensed-phase

systems for which CCSD(T)-level calculations are currently out of reach. In absence

of high-quality ab initio reference data for bulk simulations, the following analysis uses

available EXAFS data to assess the reliability of the MB-nrg PEF in predicting the

hydration structure of Cl−. As for the analysis in Fig. 3.3, comparisons are made with

results obtained from MD simulations carried out with the TIP4P/Ew-based model, the

TTM-nrg PEF, and the two (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs. In

addition, results from PIMD simulations carried out with the (2B+3B+NB)-MB-nrg PEF

are used to quantify the role played by nuclear quantum effects in determining the local

hydration structure of Cl−.

Fig. 3.4a shows the Cl−–O radial distribution functions (RDFs) calculated from

the five sets of NPT simulations that were carried out in this study. Within 8 Å from the

Cl− ion, the TIP4P/Ew-based model predicts highly structured hydration shells located

at 3.15 Å, 4.80 Å, and 7.15 Å. The inclusion of many-body effects through classical

polarization in the TTM-nrg PEF leads to significant disruption of the first hydration

shell compared to the TIP4P/Ew RDF, which is accompanied by a shift of the second

hydration shell to larger distances (5.13 Å). This effect becomes more pronounced with

the inclusion of explicit 2B and 3B contributions as shown by the RDFs calculated with

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs, respectively. In particular, the

(2B+3B+NB)-MB-nrg PEF predicts more diffuse first and second hydration shells which

indicates a significantly less structured spatial arrangement of the water molecules around

the chloride ion compared to that predicted by the TIP4P/Ew-based model. Similar trends

are found in the Cl−–H RDFs shown in Fig. 3.4b, with the TIP4P/Ew-based model and

(2B+3B+NB)-MB-nrg PEF predicting the most and least structured first Cl−–H shells,

respectively. Importantly, while the TIP4P/Ew-based model predicts a well-defined and

more compact second Cl−–H shell along with a still distinguishable third Cl−–H shell, all
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a) b)

c) d)

Figure 3.4. Top panels: Cl-O (a) and Cl-H (b) radial distribution functions (RDFs)
calculated from MD simulations carried out with the TIP4P/Ew-based model, and TTM-
nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg PEFs as well as from PIMD simulations
with the (2B+3B+NB)-MB-nrg PEF. Bottom panels: Corresponding Cl-O (c) and Cl-H
(d) cumulative distribution functions (CDFs).

many-body PEFs predict more diffuse distributions of the water hydrogen atoms of the

water molecules that more closely hydrate the Cl− ion. It should be noted that MD and

PIMD simulations carried out with the (2B+3B+NB)-MB-nrg PEF effectively provide the

same progression of hydration shells, with minor differences only visible in the first peak

of the Cl−-H RDF, which suggests that nuclear quantum effects play a negligible role in

determining the hydration structure of Cl−.

Figs. 3.4c-d show the corresponding Cl−–O and Cl−–H cumulative distribution
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functions (CDFs). The structural features highlighted in the analysis of the Cl−–O

RDFs clearly have a direct effect on the coordination number. In particular, due to the

underlying more ordered hydration structure, the TIP4P/Ew-based model predicts that

7 water molecules constitute the first shell. A similar evolution of the Cl−–O CDF is

obtained with the TTM-nrg PEF model although, due to a more diffuse arrangement of

the water molecules, it is difficult to precisely determine the coordination number within

the first hydration shell of Cl−, with 6 < n1st < 8. As it could be inferred from the analyses

of the RDFs, a broader first hydration shell, containing ∼ 11 water molecules, is predicted

by both MB-nrg PEFs.
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Figure 3.5. Incremental radial distribution functions (iRDFs) calculated from MD
simulations with the TIP4P/Ew-based model, and TTM-nrg, (2B+NB)-MB-nrg, and
(2B+3B+NB)-MB-nrg PEFs as well as from PIMD simulations with the (2B+3B+NB)-
MB-nrg PEF.

To further explore the structural properties of the hydrated chloride ion, we

calculated the incremental radial distribution functions (iRDFs), which describe individual

contributions to the total Cl−–O RDF associated with each water molecule i as a function

of its distance (RCl−Oi
) Cl−, and the radial-angular distribution functions (RADFs) in the

first hydration shell region. The iRDFs shown in Fig. 3.5 indicate that the TIP4P/Ew-

based model predicts a clear separation between the first and second hydration shells which

is located between the seventh and eighth water molecule. As indicated by the CDFs in

Fig. 3.4c, the separation between first and second hydration shells becomes increasingly less

distinguishable and shifts to larger distances as many-body contributions to the Cl−–H2O

interactions are progressively included, from the TTM-nrg to the (2B+3B+NB)-MB-nrg

PEFs. It should also be noted that the TIP4P/Ew-based model predicts significantly
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narrower iRDFs for water molecules located in the first hydration shell of Cl− (i = 1− 6)

as well as much broader distributions for the 7th and 8th water molecules located in the

transition region between the first and second hydration shells compared to those obtained

with the many-body PEFs. This analysis thus provides further evidence for the TTM-nrg

and MB-nrg PEFs predicting less tightly bound water molecules in the first hydration

shell of Cl− than the TIP4P/Ew-based model.
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Figure 3.6. Radial-angular distribution functions (RADFs) of the first hydration shell cal-
culated from MD simulations with the TIP4P/Ew-based model, and TTM-nrg, (2B+NB)-
MB-nrg, and (2B+3B+NB)MB-nrg PEFs as well as from PIMD simulations with the
(2B+3B+NB)-MB-nrg PEF. The Cl-O distance (in Å) is shown on the x-axis, and the
O-Cl-O angle (in degrees) is shown in the y-axis.

The analysis of the RADFs shown Fig. 3.6 provides direct insights into the average

distribution of water molecules within the first hydration shell of Cl−. While predicting a

tighter first hydration shell along the Cl−-O distance, as already inferred from the analyses

of both RDFs and iRDFs, the TIP4P/Ew-based model is also characterized by a slightly

broader distribution along the angular coordinate than both TTM-nrg and MB-nrg PEFs,

which results in a relatively higher intensity between 55o and 75o. Particularly evident is the

lack of the feature at 130◦ that becomes more pronounced as many-body contributions are

progressively included in the description of the Cl−–H2O interactions. Due to the angular

and radial diffuseness of the first hydration shell, it is difficult to extract contributions

from individual molecules to the RADFs, and the average distribution of oxygen atoms

around the chloride ion cannot be easily inferred. However, the different features exhibited

by the different models show that short-range low-order interactions directly influence the

geometry of the hydration complex. It should be noted that the RADF calculated from
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PIMD simulations with the (2B+3B+NB)-MB-nrg PEF is effectively indistinguishable

from that obtained from the corresponding MD simulations, which provides further support

for nuclear quantum effects playing a negligible role in determining the hydration structure

of Cl−.

To determine which representation of the Cl−–H2O interactions provides the most

realistic description of the hydration structure of Cl− in solution, Fig. 3.7 shows comparisons

of the K-edge EXAFS spectra calculated with the TIP4P/Ew-based model, and TTM-nrg

and MB-nrg PEFs with the corresponding experimental data from Ref. 291. This analysis

shows that the TIP4P/Ew-based model is unable to correctly reproduce the amplitude of

the EXAFS spectra and slightly underestimates the period of the oscillations, with the

calculated peaks appearing at relatively smaller k values. On the other hand, the agreement

with the experimental data systematically improves as many-body effects are progressively

included, with the MD and PIMD simulations carried out with the (2B+3B+NB)-MB-nrg

PEFs providing nearly quantitative agreement with the experimental EXAFS spectrum.

The comparisons shown in Fig. 3.5 also indicate that 3B interactions have minimal impact

on the simulated EXAFS spectra, while the inclusion of nuclear quantum effects in the

PIMD simulations improves the agreement with the experimental data at larger k but

worsens it for k values between 2 and 4 Å−1.
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Figure 3.7. K-edge EXAFS spectra, k2χ(k), calculated from MD simulations with
the TIP4P/Ew-based model, and TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-
nrg PEFs as well as from PIMD simulations with the (2B+3B+NB)-MB-nrg PEF. The
experimental data from Ref. 291 are shown as blue circles.
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3.4 Conclusions

In this study, we have introduced a new many-body MB-nrg PEF describing chloride–

water interactions which includes explicit 2B and 3B terms derived from CCSD(T)-F12b

data along with an implicit NB term based on classical polarization. Although the new

MB-nrg PEF is trained only on Cl−(H2O) dimer and Cl−(H2O)2 trimer configurations, it

is able to quantitatively reproduce the interaction energies of small Cl−(H2O)n clusters,

with n = 1 − 4. Importantly, when used in MD and PIMD simulations of a single Cl−

ion in water, we have demonstrated that the new MB-nrg PEF enables the calculation of

EXAFS spectra that are in close agreement with the available experimental data, correctly

reproducing both the amplitude and phase of the EXAFS oscillations.

Comparisons with the results obtained with a popular empirical force field66 based

on the TIP4P/Ew model of water61 show that pairwise additive representations of chloride–

water and water–water interactions are inadequate for representing chloride hydration

structure in both gas-phase clusters and solution, underestimating the strength of the

interactions in the first case while predicting an overly tight first hydration shell in

the second case. On the other hand, comparisons with the results obtained with the

TTM-nrg PEF267 emphasize the importance of many-body effects in determining the

hydration structure of Cl− but, at the same time, highlight the limitations associated with

a representation of these effects entirely based on classical many-body polarization.

We believe that the analyses presented here, along with results reported in previous

studies,107,108,235,269–273,292 provide further evidence that, as the MB-pol PEF has enabled

an accurate description of the properties of water across different phases,110 the MB-nrg

PEFs for ion–water interactions can enable more realistic simulations of ionic aqueous

systems from gas-phase clusters to bulk solutions and interfaces.
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Chapter 4

Accurate Modeling of Bromide and
Iodide Hydration with Data-Driven
Many-Body Potentials

4.1 Introduction

Halide ions are among the most studied electrolytes, both in experiments and

in simulations, due to their role in various natural and industrial processes.293–296 They

are frequently encountered in biological systems297 and found to play important roles

in electrochemistry,12 and environmental chemistry.8–10 Moreover, due to their spherical

symmetry and short-lived interactions with water molecules, halide ions are frequently

used as benchmarks in fundamental studies of hydration phenomena of negative ions.298

Developing a molecular-level understanding of the properties of hydrated ions

from small gas-phase clusters to aqueous solutions poses several challenges to both ex-

periment and simulation.17,23,298–308 Specific ion effects on the local structure of the

hydrogen-bond (H-bond) network of water have been the focus of extensive investiga-

tions.14,16,28,29,31,32,272,298,309–311 It is established that the presence of ionic species in aqueous

environments gives rise to structural rearrangements of the water H-bond network. How-

ever, the extent of these rearrangements remains matter of debate. Until recently, the

common view has been to classify ions as “structure makers” or “structure breakers” de-
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pending on whether they strengthen or disrupt the H-bond network of the surrounding

water molecules. According to this classification, “structure makers” correspond to ions

with high charge density while “structure breakers” are ions with small and diffuse charge

density. This classification, inspired by Hofmeister’s series on protein stability,262 has

often appeared to be too simplistic and has been repeatedly challenged by experimental

measurements.14–18

Several theoretical and computational studies of the hydration properties of bromide

and iodide ions based on either force fields (FFs) or density functional theory (DFT) have

been reported in the literature, starting from pioneering simulations showing enhanced

propensity of these ions for the water surface.28–32. A polarizable FF derived from first

principles312 was used to characterize the hydration structure and calculate the extended

X-ray absorption fine structure (EXAFS) spectrum of bromide in solution which was found

to be in qualitative agreement with the corresponding experimental data.313 Molecular

dynamics (MD) simulations carried out with the AMOEBA polarizable force field found

that the interactions among water molecules in the first solvation shell around a bromide

ion are similar to those in pure bulk water.314 A systematic analysis of the hydration

properties in ion–water clusters, including Br−(H2O)n clusters, carried out at the DFT level

found that the differences in dipole moments between molecules residing inside and outside

of the first hydration shell of the ion become smaller as the cluster size increases, which was

interpreted as evidence in support of the use of nonpolarizable FFs in MD simulations.315

Car-Parrinello MD simulations of bromide in water carried out with the BLYP functional

were used to calculate the EXAFS spectrum that was found to be in better agreement with

the experimental data than the analogous spectrum calculated using the TIP3P and OPLS

models.316 The BLYP functional was also used in DFT and quantum mechanics/molecular

mechanics (QM/MM) simulations of iodide in water.317 Somewhat surprisingly, it was

found that the EXAFS spectrum calculated from the QM/MM simulations was in better

agreement with the experimental data than the analogous spectrum calculated from the
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DFT simulations. DFT simulations carried out with the BLYP-D functional were used

to calculate the EXAFS spectra of iodide in water which were found to be in qualitative

agreement with the experimental data, displaying some differences in both phases and

amplitudes.318 More recently, polarizable FFs based on the BK3 water model were used to

determine the hydration structure of both halide and alkali-metal ions.319 A subsequent

study found that these BK3-based FFs overpredict water structuring around the ions in

solution and concluded that the ion–water interactions are not adequately represented

by these FFs.320 MD simulations carried out with the ONIOM-XS approach found that

bromide–water interactions in solution are weak and give rise to a loosely bound first

shell.321

In previous studies,107,108,143,144 we introduced the many-body energy (MB-nrg)

theoretical/computational framework for data-driven many-body potential energy functions

(PEFs) that are rigorously derived from the many-body expansion (MBE) of the energy

calculated using coupled cluster theory, including single, double, and perturbative triple

excitations, i.e., CCSD(T), which is currently considered as the “gold standard” for

molecular interactions.117 When used to model halide–water interactions, the MB-nrg

PEFs were shown to provide high accuracy, quantitatively reproducing the energetics

of small X−(H2O)N clusters, with X = F, Cl, Br, and I,40,270 as well as the vibrational

spectra and tunneling splitting of halide monohydrate292 and dihydrate complexes.270,272

More recently, we demonstrated that the original chloride–water MB-nrg PEF107 could

be improved by refining the training set of the 2-body energies via active learning120 and

including an explicit 3-body energy term.113 The new chloride–water MB-nrg PEF was

shown to achieve CCSD(T) accuracy in representing the interaction energies of Cl−(H2O)n

clusters and, when used in MD simulations, it predicted the correct hydration structure of

chloride in water as demonstrated by the quantitative agreement between the experimental

and calculated extended EXAFS spectra.113

In this study, we continue our analysis of many-body effects in ion hydration by
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introducing second-generation bromide–water and iodide–water MB-nrg PEFs. The article

is structured as follows: in the “Methods” section, we present the new MB-nrg PEFs that

are developed from expanded training sets for 2-body and 3-body energies generated using

the active learning scheme of Ref. 120. We assess the overall accuracy of the new MB-nrg

PEFs in the ”Results” section by analyzing their ability to reproduce the energetics of

small Br−(H2O)n and I−(H2O)n clusters as well as the hydration structure of each ion in

solution. In the ”Conclusion”, we summarize our work and provide an outlook for potential

future applications of the MB-nrg PEFs.

4.2 Methods

4.2.1 MB-nrg PEFs

The MB-nrg PEFs for bromide and iodide in water were developed following Ref.

113. Within the MBE, the energy of a system is obtained as the sum of individual n-body

energy terms, ϵnB, according to

EN(1, .., N) =
N∑
i=1

ϵ1B(i) +
N∑
i<j

ϵ2B(i, j) +
N∑

i<j<k

ϵ3B(i, j, k) + ...+ ϵNB(1, .., N), (4.1)

Since the MB-nrg theoretical/computational framework has already been described in the

literature,107,108,143,144,322 we will only describe here the salient features and provide details

specific to the bromide–water and iodide–water PEFs. Briefly, the MB-nrg PEFs use a

combination of short-range permutationally invariant polynomials (PIPs)186 trained on

electronic structure data and physics-based functions to represent the 1B, 2B, and 3B

terms of the MBE in Eq. 4.1,274,322 while all other nB terms with n > 3 are represented

by an implicit many-body term derived from the Thole model of classical polarization.323

Within the MB-nrg theoretical/computational framework, Eq. 4.1 is thus expressed
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as

EN =
N∑
i=1

ϵ1B(i) +
N∑
i>j

ϵ2B(i, j) +
N∑

i>j>k

ϵ3B(i, j, k) + V >3B
pol , (4.2)

where ϵ1B(i) is the distortion energy of the ith monomer in the system, and all other nB

terms are defined recursively as

ϵnB(1, . . . , n) = En(1, . . . , n)−
∑
i

ϵ1B(i)−
∑
i<j

ϵ2B(i, j)− . . .

−
∑
i<j<k

ϵ3B(i, j, k)− . . .− ϵ(n−1)B(1, . . . , n− 1) (4.3)

Here, ϵnB is the n-body energy, and En(1, . . . , n) is the energy of a subsystem containing

n monomers. Since the halide ions are monoatomic species, the 1-body term of the

halide–water MB-nrg PEFs contains contributions only from the intramolecular distortions

of the water molecules, which are described by the MB-pol PEF97,98,106 through the model

developed by Partridge and Schwenke.185

In Eq. 4.2, the 2-body energy, ϵ2B, takes the form

ϵ2B = V 2B
sr + V 2B

elec + V 2B
disp + V 2B

pol (4.4)

where V 2B
sr is a short-range term expressed by a PIP that is fitted to reproduce CCSD(T)

2-body energies and switched off when the distance between the halide ion (X) and the

oxygen atom (O) of the water molecule within the dimer is larger than a predefined cutoff,

V 2B
sr = s2 (RX−O) · V 2B

PIP (4.5)
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The switching function, s2 (RX−O), is given by113

s2(RX−O) =


1, if t2(RX−O) < 0

cos2
[
t2(RX−O)π/2

]
, if 0 ≤ t2(RX−O) < 1

0, if 1 ≤ t2(RX−O)

(4.6)

with

t2(RX−O) =
RX−O −R2B

in

R2B
out −R2B

in

. (4.7)

R2B
in and R2B

out are the inner and outer cutoffs of s2 (RX−O) which are chosen in order to

ensure a smooth and continuous variation of ϵ2B in the switching region. (R2B
in , R2B

out) =

(5.9 Å, 7.9 Å) and (6.2 Å, 8.2 Å) for the bromide–water and iodide–water MB-nrg PEFs,

respectively.

Velec in Eq. 4.4 represents electrostatic interactions between the negative (-1 e)

charge of the halide ions and the geometry-dependent point charges of the water molecule

which are obtained by fitting the ab initio dipole moment of an isolated water molecule

calculated in Ref. 185.

V 2B
disp in Eq. 4.4 represents the 2-body dispersion energy and is expressed as

V 2B
disp = −f(δX−O)

C6,X−O

R6
X−O

− f(δX−H1
)
C6,X−H1

R6
X−H1

− f(δX−H2
)
C6,X−H2

R6
X−H2

(4.8)

where RX−O, RX−H1
, and RX−H2

are the distances between the ion (X−), and the oxygen

(O) and the two hydrogen (H) atoms of the water molecule within a X−–H2O dimer, and

f(δ) and C6 are the corresponding Tang-Toennies damping functions278 and dispersion

coefficients determined in Ref. 107.

The 3-body energy in Eq. 4.2, ϵ3B, is given by

ϵ3B = V 3B
sr + V 3B

pol (4.9)
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As in ϵ2B of Eq. 4.4, V 3B
sr is a short-range term expressed by a PIP that is fitted to

reproduce CCSD(T) 3-body energies and switched off when two or more of the X-O and

O-O distances are larger than a predefined cutoff value according to:

V 3B
sr = [s3(RX−Oa)s3(RX−Ob

)

+ s3(RX−Oa)s3(ROaOb
)

+ s3(RX−Ob
)s3(ROaOb

)

− 2 · s3(RX−Oa)s3(RX−Ob
)s3(ROaOb

)] · V 3B
PIP

(4.10)

A combination of switching functions s3(Rkl) acting on each (X,O) and (O,O) pair is used

to guarantee that ϵ3B transitions smoothly between (V 3B
PIP + V 3B

pol ) at short range and V 3B
pol

at long range, with s3(Rkl) given by

s3(Rkl) =


1, if t3(Rkl) < 0

cos2
[
t3(Rkl)π/2

]
, if 0 ≤ t3(Rkl) < 1

0, if 1 ≤ t3(Rkl)

(4.11)

Here, the variable t3(Rkl) depends on the inner (R3B
in ) and outer (R3B

out) cutoff values

according to:

t3(Rkl) =
Rkl −R3B

i

R3B
out −R3B

in

(4.12)

As discussed in Ref. 113, the MB-nrg framework provides the user with complete freedom

for the choice of the inner and outer cutoffs. To account for the relatively large size and

polarizability of the two halide ions, (R3B
in R3B

out) were set equal to (3.9 Å, 5.9 Å) and (5.5 Å,

6.0 Å) for bromide and iodide, respectively.

Finally, V 2B
pol in Eq. 4.4, V 3B

pol in Eq. 4.9, and V >3B
pol in Eq. 4.2 are implicitly included in

a classical N -body polarization term, V NB
pol , derived from the Thole model.323 The effective

atomic polarizabilities, αeff , for the bromide and iodide ions in water were determined
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from exchange-dipole moment (XDM)324,325 calculations carried out with Gaussian 16326

and postg327,328 for Br−(H2O)n and I−(H2O)n clusters. Specifically, clusters of increasingly

larger radius were extracted from MD simulations for systems containing a single ion and

277 water molecules carried out in the isothermal-isobaric (NPT) ensemble at 298 K and 1

atm using the TTM-nrg PEFs.267 For each radius, 20 clusters were randomly selected and

the corresponding effective atomic polarizabilities were determined as329

αeff = αfree

(
V eff

V free

)4/3

(4.13)

Here V eff and V free are the effective and free volumes of the halide ions, respectively,

obtained from the XDM calculations. Fig. 4.1 shows the average values of αeff for the

bromide and ions as a function of the cluster size. The bulk values of αeff were determined

from the asymptotic limit of the two curves, which results in the values of 3.7819 Å3 and

5.9563 Å3 for Br− and I−, respectively.
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Figure 4.1. Variation of bromide (panel a) and iodide (panel b) polarizabilities calculated
with XDM as a function of the radius (r) of the corresponding Br−(H2O)n and I−(H2O)n
clusters. The error bars are determined as 95% confidence interval.
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4.2.2 Pemutationally invariant polynomials

Both V 2B
PIP and V 3B

PIP are functions of the pairwise distances between the ion (X),

the hydrogen and oxygen atoms (H and O), and the lone-pair sites of the MB-pol water

molecules (L1 and L2)97. V 2B
PIP contains 496 symmetrized monomials (ξi): 3 first-degree

monomials, 15 second-degree monomials, 49 third-degree monomials, 130 fourth-degree

monomials, and 299 fifth degree monomials. V 2B
PIP thus contains 496 linear fitting parameters

(ci) and 9 nonlinear fitting parameters.107,113 V 3B
PIP contains 1575 symmetrized monomials,

ξi: 39 second-degree monomials, 613 third-degree monomials, and 923 fourth-degree

monomials. Therefore, V 3B
PIP contains 1575 linear fitting parameters and 13 nonlinear fitting

parameters.

4.2.3 Fitting procedure

As in MB-pol97,98 and other MB-nrg PEFs,107–109,113,143,144 the linear parameters

of the 2- and 3-body PIPs were fitted through singular value decomposition while the

simplex algorithm was used for the non-linear parameters.

The regularized weighted sum of squared deviations, χ2, was minimized over the

training set S, while the L linear parameters were regularized with Γ = 0.0005:

χ2 =
∑
n∈S

wn[ϵmodel(n)− ϵref(n)]
2 + Γ2

L∑
l=1

c2l (4.14)

Here, wn are weights to emphasize low binding energy configurations according to

w(Ei) =

[
∆E

Ei − Emin +∆E

]2
. (4.15)

where Emin is the lowest binding energy in S and ∆E is the range of favorable configurations

which was set to 30 kcal/mol and 42.5 kcal/mol for the 2-body and 3-body energies,

respectively. The fitting process was performed using a development version of the MB-Fit
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software.322,330

4.2.4 Reference energies

The training sets for the 2-body energies were generated using the method described

in Refs. 120 and 113. A pool of ∼ 150000 configurations was generated from different

sources: a spherical grid with the water molecule in a ∼ 2− 8 Å shell from the ion, normal

modes of the ion–water dimer, and MD simulations carried out in periodic boundary

conditions using the TTM-nrg PEFs267 for a box containing a single ion and 277 water

molecules (see Section “Molecular dynamics simulations”. The reference 2-body energies

were obtained at the CCSD(T)-F12b level of theory136,137 in the complete basis set (CBS)

limit that was achieved via a two-point extrapolation138,139 between 2-body energies

calculated with the augmented correlation-consistent polarized valence triple- (aug-cc-

pVTZ) and quadruple-ζ (aug-cc-pVQZ) basis sets.238,239,279,280 The final 2-body training

sets consist of 17057 bromide–water and 15810 iodide–water dimers, while the corresponding

test sets consist of 1795 and 1668 dimer configurations, respectively.

3-body training sets consisting of 33830 Br−(H2O)2 and 33985 I−(H2O)3 trimers were

also generated from MD simulations carried with the TTM-nrg PEFs.267 The corresponding

tests consist of 3576 and 3621 trimer configurations, respectively. The 3-body energies

were calculated at the CCSD(T)-F12b level of theory136,137 using the aug-cc-pVTZ basis

set.238,239,279,280 All CCSD(T)-F12b calculations were carried out using MOLPRO (version

2020.1).281

4.2.5 Molecular dynamics simulations

All the MD simulations were carried out in the NPT ensemble at 298.15 K and

1.0 atm for an orthorhombic box containing a single ion and 277 water molecules, which

corresponds to a concentration of ∼0.2 M concentration. The velocity-Verlet algorithm

was used to propagate the equations of motion with a time step of 0.5 fs according to
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Ref. 191. The temperature and pressure were maintained using a global Nosé–Hoover

chain of 3 thermostats with a relaxation time of 0.05 ps, and a global Nosé–Hoover

barostat with a relaxation time of 0.5 ps which was thermosttated by a chain of three

thermostats. The NPT simulations consisted of 0.1 ns of equilibration followed by 1

ns of production. Short-range interactions were evaluated with a real-space cutoff of

9 Å, while long-range interactions (including electrostatic, dispersion, and polarization

contributions) were calculated in reciprocal space using a particle–particle particle–mesh

solver.331 All MD simulations were carried out using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)192 package interfaced with the MBX software

for many-body PEFs.189

4.2.6 Extended X-ray absorption spectroscopy

Two different EXAFS analysis methods were used to compare the experimentally

measured structures with the structures obtained from MD simulations. The first method

is exact and consists in generating an ensemble average of EXAFS spectra calculated for a

set of snapshots extracted from the simulated trajectory (MD-EXAFS). The MD-EXAFS

method has previously been described in Ref. 332. From the equilibrated portion of the

MD trajectory, 2000 equally spaced frames are selected and the Cartesian coordinates of

the halide ion, and oxygen and hydrogen atoms of the water molecules are retrieved. Each

set is used as input to the EXAFS scattering code, FEFF9,288–290 in order to generate

the ensemble average χ(k) spectra. As in Refs. 235 and 113, all FEFF calculations were

performed using clusters containing the halide ion and its 33 closest water molecules,

extracted from the corresponding NPT trajectories.

The second method involves fitting a small set of theoretical standards to measured

or calculated spectra. The EXAFS analysis software Artemis was used for this approach.333

The method adopts a Gaussian model and thus approximates the position of each atom

with a normal distribution centered on its average value. The limitations of this approach
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have been discussed with respect to its application to disordered systems.334,335 Fitting to

the theoretical standards requires some a priori insight into the chemical makeup of the

system in order to judiciously select a set of the most important nearby neighbor atoms

for which 3 or 4 scattering paths are created. Then using a least-squares fitting procedure,

refinements to coordination numbers, distances, and disorder are used to provide a best-fit

to the measured or simulated spectrum.

4.3 Results
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Figure 4.2. 2-body energy correlation plots between the CCSD(T)-F12b/CBS reference
values (x axis) and corresponding MB-nrg values (y axis) for the bromide–water (panel a)
and iodide–water (panel b) test sets.

To assess the accuracy of the 2-body terms of the MB-nrg PEFs, Fig. 4.2 shows

correlation plots between the CCSD(T)-F12b/CBS reference 2-body energies and the

corresponding MB-nrg values calculated for the bromide–water and iodide–water dimers in

the test sets. The associated root mean square errors (RMSEs) for both training and test

sets are reported in Table 4.1. Both MB-nrg PEFs achieve CCSD(T)/CBS accuracy over

the entire energy range from -25 kcal/mol to 105 kcal/mol. The ability of the MB-nrg PEFs
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Table 4.1. Root mean square errors (RMSEs) associated with bromide–water and
iodide–water 2-body and 3-body energies calculated with the MB-nrg PEFs relative to the
corresponding CCSD(T)-F12b/CBS reference values of the training and test sets.

MB-nrg PEF 2-body RMSE (kcal/mol) 3-body RMSE (kcal/mol)

Training Test Training Test
bromide–water 0.1947 0.1871 0.0404 0.0470
iodide–water 0.2010 0.2287 0.0513 0.0677

to provide a high-fidelity representation of the CCSD(T)/CBS dimer multidimensional

energy landscape is further demonstrated in Fig. 4.3 that shows comparisons between

CCSD(T)/CBS and MB-nrg one-dimensional potential energy radial scans calculated for

various orientations (θ, ϕ) of each ion relative to the water molecule within a ion–water

dimer.

c)

Figure 4.3. Interaction energy scans along the X−–O distance (RX−O) for selected
orientations (θ, ϕ) of the halide ion relative to the water molecule in a X−(H2O) dimer,
with X = Br (panel a) and I (panel b). RX−O, θ, and ϕ are defined in panel c). The
symbols correspond to the CCSD(T)-F12b/CBS reference interaction energies, while the
corresponding MB-nrg values are shown as solid lines.

Fig. 4.4 shows correlation plots between the CCSD(T)-F12b/CBS reference 3-body

energies and the corresponding MB-nrg values calculated for the bromide–water and iodide–

water trimers in the test sets, while the RMSEs calculated for both training and test sets

are reported in Table 4.1. The comparisons shown in Figs. 4.2 and 4.4 demonstrate that the

both bromide–water and iodide–water MB-nrg PEFs are able to quantitatively reproduce
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the corresponding CCSD(T)/CBS 2-body and 3-body energies, without overfitting.
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Figure 4.4. 3-body energy correlation plots between the CCSD(T)-F12b/CBS reference
values (x axis) and corresponding MB-nrg values (y axis) for the bromide–water (panel a)
and iodide–water (panel b) test sets.

While the accuracy exhibited by the 2-body and 3-body terms of the bromide–water

and iodide–water PEFs is certainly remarkable, it is also somewhat expected since these

terms are explicitly fitted to reproduce the corresponding CCSD(T)-F12b/CBS reference

energies. In this context, one of the most arduous challenges for data-driven PEFs is

achieving full transferability across phases and/or thermodynamic state points different

from those represented in the training sets. To address this challenge, we first analyze the

ability of the MB-nrg PEFs to correctly reproduce the CCSD(T)-F12b/CBS interaction

energies of small X−(H2O)n clusters shown in Fig. 4.5. It is important to emphasize that

the calculations carried out for systems containing a single ion and more than two water

molecules correspond to actual predictions since, by construction, the MB-nrg PEFs were

only trained up to the 3-body energies in the trimers and all higher many-body terms are

represented by classical polarization. Fig. 4.6 shows comparisons between the CCSD(T)-

F12b/CBS reference interaction energies40,270 and the corresponding values calculated
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Figure 4.5. Low-lying energy isomers of Br−(H2O)n (top panels) and I−(H2O)n (bottom
panels) clusters (n = 1− 4).

with the MB-nrg PEFs for 15 different X−(H2O)n clusters (with n = 1− 4), with X = Br

and I. Besides the full MB-nrg PEFs, hereafter referred to as (2B+3B+NB)-MB-nrg PEFs,

which include explicit PIP-based representations of both 2-body and 3-body energies

(Eqs. 6-14), Fig. 4.6 also shows results obtained with MB-nrg PEFs that include PIP

terms only for the 2-body energies and are hereafter referred to as (2B+NB)-MB-nrg

PEFs. The comparisons in Fig. 4.6, therefore, allow for assessing not only the overall
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Figure 4.6. Comparison between the interaction energies calculated for the low-energy
isomers of Br−(H2O)n (panel a) and I−(H2O)n (panel b) clusters (n = 1 − 4) using the
(2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs. For each cluster, the CCSD(T)-F12b
reference values40,270 are shown as horizontal dashed lines.

accuracy of the full MB-nrg PEFs but also the relative importance of 2-body, 3-body,

and higher n-body contributions to the interactions energies of larger bromide–water and

iodide–water systems. The (2B+3B+NB)-MB-nrg PEFs quantitatively reproduce the

CCSD(T)-F12b/CBS reference energies of both Br−(H2O)n and I−(H2O)n, independently

of the cluster size and structure. Importantly, the performance of the (2B+3B+NB)-MB-

nrg and (2B+NB)-MB-nrg PEFs is very similar, with only small differences found for the

isomers with relatively higher interaction energy (e.g., isomers 3d and 4e), which indicates

that n-body energy contributions with n > 2 are primarily due to classical electrostatic

interactions.

The last challenge that remains to be addressed in order to assess the transferability

96



0

5

10

15

20

25

30
n(r)

3 4 5 6 7 8
RBr O (Å)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
g(

r)

a) Br
3 4 5 6 7 8

RI O (Å)

b) I

(2B+NB)-MB-nrg
(2B+3B+NB)-MB-nrg

Figure 4.7. Bromide-oxygen (panel a) and iodide-oxygen (panel b) radial distribution
functions, g(r), and corresponding coordination numbers, n(r), calculated from NPT
simulations carried out at 298 K and 1 atm with the (2B+NB)-MB-nrg (blue) and
(2B+3B+NB)-MB-nrg (red) PEFs.

of the MB-nrg PEFs is to determine if the high accuracy displayed in predicting the

interaction energies of small clusters in the gas phase translates into realistic descriptions

of the hydration structure of the bromide and iodide ions in solution at finite temperature.

In this regard, Fig. 4.7 shows the radial distribution functions (RDFs) and corre-

sponding coordination numbers calculated from NPT simulations carried out with both

(2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs at 298 K and 1 atm for a box con-

taining a single ion and 277 water molecules in periodic boundary conditions. The RDFs

describing spatial 2-body correlations between the Br− ion and the oxygen (O) atoms of

the water molecules exhibit a well-define hydration sttructure, with a prominent, first-shell

peak at ∼3.4 Å. Both (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs effectively

predict the same position and shape for this first peak. Some minor differences exist

between the two MB-nrg PEFs in the region of the second, broader peak corresponding

to the second hydration shell that extends between ∼4.2 Å and ∼6.2 Å. Specifically, the
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(2B+3B+NB)-MB-nrg PEF predicts a small shift of the second hydration shell towards

shorter distances, signalling relatively stronger bromide–water interactions. The variation

of the water coordination number as a function of the distance from the bromide ion shows

an inflection point at ∼4.2 Å, indicating that the first hydration shell contains ∼ 7-8 water

molecules.

The iodide–oxygen RDFs predicted by both (2B+NB)-MB-nrg and (2B+3B+NB)-

MB-nrg PEFs shows a first peak similar to that observed in the corresponding bromide–

oxygen RDFs, but at slightly larger distances due to the larger size of the iodide ion.

However, the evolution of the subsequent hydration shells around iodide is appreciably

different. In particular, both (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs predict

a shallow hydration structure beyond 4.5 Å, with the presence of a second and third

hydration shell only barely visible in the (2B+3B+NB)-MB-nrg PEF. In this regard, it

should be noted that the presence of the “kink” at ∼5.5 Å in the iodide-oxygen RDF

calculated with the (2B+3B+NB)-MB-nrg PEF might also be due to a less-than-perfect

transition from the data-driven component (i.e., PIPs + polarization) to the purely classical

component (i.e., polarization) of the 3-body term in Eq. 4.9. The role of the switching

functions in the 2-body (Eq. 4.5) and 3-body (Eq. 4.10) terms of the MB-nrg potentials

will be the subject of a forthcoming study.

As expected from the shape of the iodide-oxygen RDFs calculated with the (2B+NB)-

MB-nrg and (2B+3B+NB)-MB-nrg PEFs, the water coordination number calculated with

both PEFs effectively shows a monotonic increase as a function of the distance from

the iodide ion, with only a weak inflection point at ∼4.5 Å which precludes a precise

determination of the first-shell coordination number. The differences between the bromide–

oxygen and iodide–oxygen RDFs primarily arise from the competition between 2-body

halide–water and water–water interactions that are further modulated by 3-body iodide–

water–water interactions. As shown in Refs. 272, the strength of 2-body halide–water

interactions decreases with the size of the halide ions and becomes comparable to the
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strength of 2-body water–water interactions in the case of the iodide ion. The competition

between iodide–water and water–water interactions thus results in a shallower iodide–

oxygen RDF beyond the first hydration shell. When compared to the theoretical models

of Ref. 318, the MB-nrg model predicts a nearly identical first peak. However, DFT-based

MD and the Dang and Chang (D/C) model predict less interstitial water between the first

and the second solvation shell, as reported in the Supporting Information.
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Figure 4.8. K-edge EXAFS spectrum, k2χ(k), of bromide in water calculated from NPT
simulations carried out at 298 K and 1 atm with the (2B+NB)-MB-nrg and (2B+3B+NB)-
MB-nrg PEFs. The experimental EXAFS spectrum from Ref. 336 is shown as black circles.
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Figure 4.9. K-edge (panel a), L1-edge (panel b), and L3-edge (panel c) EXAFS spectra,
k2χ(k), of iodide in water calculated from NPT simulations carried out at 298 K and 1
atm with the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs. The corresponding
experimental EXAFS spectra from Ref. 318 are shown as black circles.

While the analysis of the RDFs discussed above allows for gaining insights into the
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hydration structure of bromide and iodide ions in solution, it does not provide any evidence

for the accuracy and realism of the RDFs predicted by the MB-nrg PEFs. To address this

last challenge, in Figs. 4.8 and 4.9, we show comparisons between the experimental and

simulated EXAFS spectra, calculated with the MD-EXAFS methodology introduced in

the Methods section, for bromide and iodide in water, respectively. The K-edge spectra

calculated with the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs for bromide in

water are effectively indistinguishable from each other and in quantitative agreement with

the experimental spectrum, with only small deviations for k in the 3-3.5 Å−1 range. Similar

agreement between the experimental and MB-nrg results was reported for the K-edge

spectrum of chloride in water.113

In Fig. 4.9, we report results relative to three different absorption edges for iodide

(K-, L1-, and L3-edges). With regard to the EXAFS single scattering paths, there is a

simple 90◦ phase shift in the χ(k) oscillations from the K- or L1- edge spectra (1s and 2s

initial states, respectively) with respect to those observed for the L3-edge (2p initial state).

However, the symmetry selection rules dictate that the K-, L1-, and L3-edge spectra

provide independent, non-redundant, measurements of the local symmetry with respect to

multiple scattering paths.337

All three EXAFS spectra calculated with the iodide–water MB-nrg PEFs are

also in good agreement with the experimental data, with the agreement improving as k

increases. However, while the phase of each spectrum is quantitatively reproduced by the

MB-nrg PEFs over the entire range of k values, some discrepancies in the amplitudes of

the oscillations exist at small values of k, especially in the case of the K-edge spectrum.

Interestingly, the differences seen in the second shells of the RDFs predicted by the

(2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg PEFs appear to only have minimal effects

on the corresponding EXAFS spectra. This provides further evidence for the local

nature of the EXAFS measurements that are primarily sensitive to the first hydration

shell. The amplitude discrepancies for the K- and L1-edge spectra (1s and 2s initial states,
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respectively), especially in the region around 2.5 Å−1 and 4.2 Å−1, are due to multi-electron

excitations that are part of the atomic background function present in the experimental

spectra.318,338. Importantly, the multi-electron excitations for the L3-edge (2p initial state)

have different distributions and intensities of transitions. The complete set of K-, L1- and

L3-edge atomic-background multi-electron excitation features are also observed in the

residuals for the model fit to the experimental spectra that is shown in the χ(k) spectra of

Fig. S6a in the Supporting Information. In the light of these moderate distortions of the

experimental EXAFS spectra, the MB-nrg provides excellent overall agreement.

For comparison, EXAFS spectra calculated only including water molecules within

the the first hydration shell of the halide ions are shown in Figs. S2 and S3 in the Supporting

Information. Although very similar to those calculated by including 33 water molecules,

i.e., including water molecules residing beyond the first hydration shell, the EXAFS spectra

calculated with only water molecules within the first solvation shell show small differences

in the amplitudes as well as at large k values for both halide ions. This suggests that, when

possible, including a larger number of water molecules beyond the first hydration shell in

the FEFF calculations may lead to better converged EXAFS spectra. For comparisons,

the EXAFS spectra calculated for I− using DFT-based simulations as well as simulations

with the D/C polarizable model reported in Ref. 318 are shown in Fig. S4.

It is important to emphasize that all the structural details of the RDFs are encoded

into the various regions of the calculated EXAFS spectra. For instance, the EXAFS

spectra contain information about the rather broad and asymmetric first peak in the

calculated RDFs for which both halide ions show a relatively large amount of disorder.

Furthermore, the EXAFS spectra are sensitive to interstitial water molecules that reside in

the region from 4 to 4.5 Å. At larger distances, however, the lack of any or the presence of

very weak structures makes detection more difficult. The signals χ(k) also contain angular

correlation components that are a feature of photoelectron multiple scattering paths.318

101



Table 4.2. Top: Comparison of the structural parameters from K-edge fits to experimental
EXAFS gathered from Ref. 336 and MD-EXAFS from this work for the aqueous Br−
first-shell structure. Bottom: Comparison of the structural parameters from simultaneous
K-, L1-, and L3-edge fits to experimental EXAFS and MD-EXAFS gathered from Ref.
318 with MD-EXAFS fits from this work for the aqueous I− first-shell structure. N is
the coordination number, R refers to the measured X-H and X-O distances, σ2 is the
Debye-Waller factor, ϕX-H-O is the X-H-O angle, and the subscript XHO refers to three-leg
I-H-O paths. The goodness of the fit, R, is calculated as the sum of the errors squared
scaled by the magnitude of the data. See main text for details.

System Structure
Scatterer N* R (Å) σ2 × 103 (Å2) σ2

BrHO × 103 (Å2) ϕBr-H-O R

0.5m RbBr OH2O 6 3.274(024) 13.0(4.2) 12.4(2.0) 158◦ 0.020HH2O 6 2.357(049) 21.6(9.6)

MB-nrg MD OH2O 6 3.392(017) 13.2(2.4) 18.4(4.8) 154◦ 0.016HH2O 6 2.501(037) 27.1(11.5)

System Structure
Scatterer N R (Å) σ2 × 103 (Å2) σ2

IHO × 103 (Å2) ϕI-H-O R

0.4m NaI OH2O 6.3(0.9) 3.498(025) 17.1(4.7) 20.9(6.8) 148◦ 0.046HH2O 6.3(0.9) 2.649(028) 35.6(4.5)

DFT MD OH2O 6.0(0.4) 3.584(007) 14.4(1.1) 15.9(1.6) 156◦ 0.008HH2O 6.0(0.4) 2.686(026) 36.6(5.1)

D/C MD OH2O 5.0(0.4) 3.526(007) 12.7(1.0) 21.4(2.7) 163◦ 0.013HH2O 5.0(0.4) 2.597(017) 22.7(2.7)

MB-nrg MD OH2O 5.6(0.5) 3.569(010) 16.6(1.4) 19.1(1.0) 147◦ 0.011HH2O 5.6(0.5) 2.723(029) 34.9(5.4)
* Fixed parameter.

In order to explore these characteristics of the EXAFS spectra, in Table 4.2 we report

the structural parameters obtained from fitting the K-edge of bromide and simultaneously

fitting the K-, L1-, and L3-edge of iodide to the theoretical standards, using the second

methodology discussed in the Methods section. Specifically, listed in Table 4.2 are the

coordination number N, the measured I-H and I-O distances R, the Debye-Waller factor

σ2, and the X-H-O angle ϕX-H-O. The resulting fits are shown in Figs. S5 and S6 of the

Supporting Information. For both bromide and iodide (X = Br, I), the X-O, X-H, and

X-H-O scattering paths were selected. The bromide K-edge EXAFS data were weighted

by k2, and fitted over the range 1.8 < k < 10.0 Å−1. Both the real and imaginary parts of

χ(R) are in the region of 1.25 < R < 4.5 Å. A value S2
0 = 0.91 of the core hole factor was
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used. Given the small number of independent points collected, the coordination number

was kept fixed at 6 for bromide; for the same reason, the fitted parameters generally

show a larger error when compared to iodide. In the case of iodide, the K-, L1- and

L3-edge experimental data were weighted by k3, and fitted simultaneously over the ranges

1.9 < k < 8.8, 1.9 < k < 8.6, and 1.9 < k < 7.8 Å−1, respectively. In all cases, both the

real and imaginary parts of the resulting χ(R) are in the region of 1.25 < R < 4.5 Å. A

value S2
0 = 1.0 of the core hole factor was used. It is important to note that, since the

exact same fitting model was applied to the experimental, DFT-based, D/C model, and

MB-nrg model spectra, their differences can be quantitatively compared. As shown in

Table 4.2, the I-O and I-H distance from the MB-nrg model fit are within 0.07 Å of the

experimental values. The Debye Waller factors for I-O, I-H, and I-H-O from MB-nrg are

identical to those of the experimental values within fitting errors; this is especially striking

when compared to other reported MD-EXAFS results. Similar agreement is observed

for the bromide-water structure. Moreover, the MB-nrg iodide-water model is capable of

faithfully reproducing the I-H-O angle. The small differences observed in the coordination

number are within the error recorded for the experimental fit.

4.4 Conclusions

In this work, we have introduced second-generation bromide–water and iodide–

water MB-nrg PEFs. Within the MB-nrg theoretical/computational framework, the two

MB-nrg PEFs are derived from the MBE of the energy and includes explicit data-driven

2-body and 3-body energy terms along with an implicit term describing all n-body energy

contributions with n > 3. The 2-body and 3-body terms are represented by PIP optimized

to reproduce the corresponding CCSD(T)-F12b reference data, while the implicit term is

represented by classical many-body polarization.

The two MB-nrg PEFs are able to quantitatively reproduce the interaction energies
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of Br−(H2O)n and I−(H2O)n, effectively achieving CCSD(T)-F12b accuracy in all cases

examined in this study. A systematic analysis of the interaction energies show that 3-body

energy contributions are primarily due to classical polarization. However, the inclusion

of an explicit, short-range 3-body term is shown to be important for retrieving specific

features of the hydration shells around the two ions in solution. The second solvation shell

is found to be particularly sensitive to 3-body interactions: while in the case of bromide

the shell slightly shifts to shorter distances when the short-range PIP is included in the

MB-nrg PEF, neglecting short-range iodide-water-water interactions leads to a shallow and

nearly featureless iodide–oxygen radial distribution function beyond the first hydration

shell.

The structural features that characterize the hydration structure of bromide and

iodide in solution predicted by the MB-nrg PEFs are confirmed by the agreement between

the experimental and simulated EXAFS spectra. It should, however, be noted that while

the phases of the EXAFS spectra simulated with the MB-nrg PEFs correctly reproduce

the experimental values, small variations in the amplitudes, especially in the case of the

K-edge of iodide, exist, which may be due to inaccuracies in the MB-nrg PEFs and/or

multielectron scattering effects that are not accounted for in the simulated spectra.

We believe that the results presented in this study further demonstrate the ability

of the MB-nrg PEFs to correctly predict the physics of hydrated halide ions, providing

a quantitative representation of halide–water interactions from the gas to the condensed

phase and enabling affordable MD simulations of ionic aqueous solutions with CCSD(T)

accuracy.
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Chapter 5

Correcting Delocalization Errors in
DFT-Based Representations of Ion Hy-
dration

The necessity of a unified approach in the study of the complex and diverse

interplay of forces between ions and water at various thermodynamic conditions arises

from the myriad of natural and industrial chemical phenomena in which hydrated ions

participate, including, but not limited to, biomolecule stabilization,3–5 catalytic and

transport processes,1,2,257–261 and electrochemical processes.12 In this context, the advent

of modern computing architectures126 allowed molecular dynamics (MD) simulations to be

adopted as the principal method of discovery in computational molecular sciences.339,340 The

accuracy of molecular models ultimately determines the fidelity of all physical quantities

calculated from an MD simulation. In this context, conventional force fields (FFs), which

usually contain a set of empirically derived parameters that govern simple analytical

expressions within a pairwise additive approximation, allow low-cost simulations of large

systems at the expense of accuracy.129,132,134,135,341–345 The limitations of pairwise-additive

FFs can be overcome by using data-driven potential energy functions (PEFs) trained

on ab initio reference data.79,83,146,346 In this context, while reference energies calculated

at the coupled cluster level of theory including single, double, and perturbative triple

excitations [CCSD(T)], currently regarded as the “gold standard” of electronic structure
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calculations,117,347 have been used to develop data-driven PEFs for water97,98 and other

molecular systems,107–109,143,144,235,322 the development of advanced PEFs that are trained

on more computationally efficient, while still accurate, “first principles” methods remains

of practical interest.

In principle, density functional theory (DFT) provides an exact treatment of the

electronic ground-state potential energy surface (PES) of a given molecular system by

solving the Kohn-Sham equations.50,51 However, as the exact density functional E[n] that

characterizes the ground-state of a given system is unknown, “practical” DFT relies on

approximations that satisfy, to a varying extent, the exact constraints of DFT.348–350

The ultimate quality of the density functional approximation (DFA) is given by the

exchange-correlation potential ṼXC[n] that effectively determines the accuracy of any

physical property derived from the approximate functional Ẽ[n], including the density

itself.

Over the years, different classes of ṼXC[n] have emerged to tackle major challenges

in molecular DFT, such as accurately describing (i) non-covalent interactions,351,352 and

(ii) electronic charge densities,152,349,352,353 both of which are crucial for describing ion-

hydration.121,354–356 In this context, semi-local DFAs are the de facto approach for “first

principles” modeling, due to their often-reasonable accuracy relative to (more expensive)

post Hartree-Fock methods, and the efficiency provided by their O(N3) scaling. However,

despite the success and widespread use of semi-local DFAs, it is well known that the

incomplete cancellation of self-interaction in ṼXC [n]
357,358 can lead to a poor description of

the static correlation energy,359 and excess delocalization of the electron density.353,360,361

Early DFT studies of water and hydrated ion clusters revealed that the self-

interaction error (SIE) and the delocalization error (DE) have a crucial effect on the

interaction energies and bond topologies of aqueous systems.362–364 Due to the complex

interconnection between the electronic structure of ion–water systems and their physical

properties in the thermodynamic limit, the unreliability of semi-local DFAs may limit
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DFT from providing insight into ion hydration phenomena. Critical to this matter, it was

recently shown that many modern DFAs do not faithfully predict the electron density of a

wide range of systems, suggesting deviation of the field from the path toward the exact

functional.349 In this spirit, the last decade has seen significant progress in our understand-

ing of the strengths and limitations of DFAs in terms of systematic errors,152,354,365–367 and

developing of physically robust and strongly constrained DFAs.368,369 For instance, the

SCAN functional was derived to satisfy the 17 exact constraints known for meta-GGA

functionals.368 Being non-empirical and capable of describing mid-range interactions rea-

sonably well, SCAN continues to find applications for predicting the properties of molecular

and extended systems alike,370 and the development of machine-learned potentials for

accelerated simulations of complex molecular systems such as water.150,176,371

While SCAN has been the DFA of choice in several recent studies on the properties

of water,150,153,154,176,179,194,355,371–373 as well as hydrated ions,121,356,374,375 it is known that it

over-delocalizes the electron density of such systems, leading to unphysical over-binding that

is manifested in large 2-body errors.154,355 Recently, it was shown that the 2-body energies

predicted by SCAN for water cannot be systematically improved to approach CCSD(T)

reference energies through a naive modulation of fractional Hartree-Fock exchange.154

Soon after, an analysis of the density-driven errors (∆ED) and functional-driven errors

(∆EF) in SCAN revealed minimal ∆EF relative to CCSD(T), providing support for the

physical robustness of the DFA adopted by SCAN, and large ∆ED that could be remedied

via density-correction.121,150,153 Thus, density-corrected SCAN (DC-SCAN) has since been

shown to be the first DFT-based model to accurately predict the properties of water across

its phase diagram,150,346 and has displayed overall higher accuracy for water and ionic

aqueous clusters than modern DFAs such as ωB97M-V376 and the recently developed

DM21.377,378

However, despite the proven accuracy of DC-SCAN in the description of water

across its phase diagram, researchers in the field of ion hydration have yet to widely adopt
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the use of density-corrected DFT-based models. This study presents a systematic study of

ion hydration using DC-SCAN and shows that it offers a significant improvement over

SCAN, currently regarded as the reference density functional across semi-local DFAs for

the modeling of aqueous solutions.264,265,379–387 We demonstrate that the use of DC-SCAN-

based data-driven many-body PEFs, MB-SCAN(DC), enables the efficient study of ions in

solution with near-chemical accuracy, by combining the DC-SCAN coverage of short- and

mid-range contributions with the dispersion term Vdisp, which is inherent to the MB-nrg

many-body framework.107,108,113,115,346

Within the DC-DFT formalism,149 the total error in any DFT calculation can be

decomposed as

∆EDFA = Ẽ[ñ]− E[n] = ∆EF +∆ED (5.1)

where ∆EF = Ẽ[n]− E[n] is the functional-driven error (FE) due to the specific choice

of a DFA approximation, and ∆ED = Ẽ[ñ] − Ẽ[n] is the density-driven error (DE)

due to the approximate self-consistent density predicted by the DFA. As recent studies

suggest, the breadth of DC-DFT’s applicability (particularly in the form of HF-DFT,

where the Hartree-Fock density nHF is used as a proxy for the exact density) is still under

investigation.153,388–391

To begin our analysis, we quantify the sensitivity of ion–water interaction to the

choice of an approximate density, ñ. Figure 5.1(a) shows the average density sensitivity

⟨S̃⟩, calculated with SCAN for a set of Na+(H2O)n and Cl−(H2O)n clusters according to

the following expression:

⟨S̃DFA⟩ =
1

N

N∑
i=1

|Ẽi[ñLDA]− Ẽi[ñHF]|, (5.2)

as nw ≡ n increases from 1 → 16. To account for structural dependence, the averages in

Eq. (5.2) were performed over sets of N = 20 randomly selected cluster configurations
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extracted from MD simulations performed using the MB-nrg PEFs for sodium–water115

and chloride–water113. As discussed in detail in previous studies, the ion–water MB-nrg

PEFs107,108 build upon the functional form introduced with the MB-pol PEF for water97,98

and provide a highly accurate description of ion hydration from small clusters to solutions

at infinite dilution. It is apparent from Figure 5.1(a) that the density sensitivity is

significant and a point of possible concern in modeling ion hydration, as ⟨S̃⟩ is greater than

2 kcal/mol for systems larger than the dimer,367,389 and characterized by a quasi-linear

increase with respect to the number of water molecules in the cluster (nw). As it has been

suggested that the delocalization error may be sensitive to system size up to an asymptotic

limit,153,389 Figure 5.1(b) plots ⟨S̃/nw⟩, illustrating a contribution of about 1 kcal/mol

from individual water molecules to the total density error.
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Figure 5.1. Average density sensitivity (a) ⟨S̃⟩ (kcal/mol) associated with the SCAN
functional for Na+(H2O)n (purple curve) and Cl−(H2O)n (green curve) clusters where
nw ≡ n = 1 − 16, and (b) ⟨S̃/nw⟩ shows the size dependence of the density sensitivity,
illustrating the contributions of individual water molecules to the density error. The error
bands are determined as 95% confidence interval.
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The significance of the density sensitivity is better appreciated by examining the

average error in the interaction energy per water molecule, ⟨∆Eint/nw⟩, shown in Figure 5.2

for both SCAN and DC-SCAN relative to the corresponding MB-nrg reference values.113,115

The per-molecule contribution to the interaction energy error converges beyond the first

solvation shell. As expected for semi-local exchange-correlation functionals, SCAN shows

excessive attractive ion-water interaction; in this regard, the introduction of the HF

density, free of self-interaction, succeeds in remedying the excess delocalization, resulting

in a smaller average error. The total interaction energy error of each Na+(H2O)n and

Cl−(H2O)n cluster is reported in Fig. S1 of the Supporting Information, highlighting the

approximately two-fold reduction in the magnitude of the error.
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Figure 5.2. Average signed error in the interaction energy per water molecule for clusters
with nw = 1− 16, ⟨∆eint⟩, relative to the MB-nrg reference energies (in kcal/mol). The
error bands are determined as 95% confidence interval.

Density-driven errors in SCAN are further understood by taking advantage of the

many-body expansion (MBE) of the energy,54 which elegantly allows the total energy EN
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to be expressed as a sum of the individual n-body terms, including 1-body, 2-body, 3-body,

and up to the N -body energy:

E =
N∑
i=1

E1B(i) +
N∑
i>j

E2B(i, j) +
N∑

i>j>k

E3B(i, j, k) + . . .+ ENB(1, . . . , N). (5.3)

Figure 5.3 shows the many-body decomposition analysis of the minimum-energy isomers

of the Na+(H2O)4 and Cl−(H2O)4 clusters. In this analysis, we further investigate the

different accuracy in energy prediction of SCAN and DC-SCAN with regards to small

hydration complexes of alkali-metals and halides.121 As apparent in panels a) and b) of

Fig. 5.3, while DC-SCAN shows errors within ∼1 kcal/mol from MB-nrg reference values,

the 2-body errors associated with SCAN are generally larger, reaching up to ∼7 kcal/mol

in the case of chloride; the partial correction due to the positive 3-body error only slightly

mitigates the effect on the total interaction energy, resulting in the overall better prediction

of interaction energies by DC-SCAN relative to the reference values shown in Table 5.1. In

gas-phase water clusters, the localized nature of nHF is the foundation to the heightened

predictive capabilities of DC-SCAN, as it virtually reduces the excess delocalization of

self-consistent SCAN densities.121 In this context, panels c) and d) of Figure 5.3 show

the energy separation of each n-body term into ion–water (iw) and water–water (ww)

contributions. A significant fraction of the total error in 2-body and 3-body energies arises

from the description of ion–water interactions. The consistently larger error associated

with the SCAN and DC-SCAN results for Cl−(H2O)4 can be explained by considering that

the more diffuse electron density of negatively charged ions results in more pronounced

density-driven errors.121,356,378

Semi-local exchange-correlation functionals, such as SCAN, are routinely used to

perform ab initio molecular dynamics (AIMD) simulations of aqueous systems.372,374,375

Nonetheless, AIMD simulations using DC-SCAN can become computationally prohibitive

due to the fact that DC-DFT formally scales as O(N4) given nHF, limiting their applicability
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Figure 5.3. Errors (in kcal/mol) associated with individual n-body contributions to the
interaction energy of the low-lying energy isomers Na+(H2O)4 (panel a), and Cl−(H2O)4
(panel b) A detailed breakdown of the contributions of water-water and ion-water interac-
tions to the n-body energies is shown for Na+(H2O)4 (panel c), and Cl−(H2O)4 (panel d).
The errors are shown relative to the MB-nrg reference energies (in kcal/mol).

to small molecular systems. One particularly successful approach involves leveraging the

MBE of the energy; this approach has demonstrated its ability to accurately model

various aqueous systems. In our theoretical/computational framework, MB-SCAN and

MB-SAN(DC) PEFs of generic molecules approximate the MBE defined in Eq. 5.3 as

EN = V 1B + V 2B + V 3B + Velec (5.4)

where each of the V nB terms of the MB-DFT and MB-nrg PEFs includes an n-body

data-driven term V nB
PIP for each n-mer. Specifically, V 1B is the monomer distortion energy,
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Table 5.1. Interaction energy comparison between MB-nrg, DC-SCAN and SCAN for the
Na+(H2O)4 and Cl−(H2O)4 clusters represented in the n-body analysis shown in Fig. 5.3.
The energy values are given in kcal/mol.

Na+(H2O)4 Cl−(H2O)4
MB-nrg DC-SCAN SCAN MB-nrg DC-SCAN SCAN

2B -83.673 -83.913 -85.846 -65.160 -65.535 -71.786
3B 4.266 4.111 4.197 3.808 4.096 5.350
4B 0.361 0.291 0.411 -0.713 -0.574 -0.733
5B -0.035 -0.040 -0.056 0.037 0.033 0.041
Eint -79.081 -79.551 -81.294 -62.028 -61.979 -67.128

such that V 1B = 0 for monatomic ions, and it can be represented either by the Partridge-

Schwencke PEF185 or the MB-SCAN, MB-SCAN(DC) PEFs for the water monomer153 in

MB-MD simulations. In this context, V 2B and V 3B MB-SCAN and MB-SCAN(DC) PEFs

are introduced here for the ion-water interactions. Note that MB-nrg PEFs inherently

account for long-range dispersion, such that V 1B and V 2B are defined as V 1B
PIP + V 1B

disp and

V 2B
PIP + V 2B

disp, respectively,107,108,113,115 accounting for the contribution to the long-range

dispersion that is missing in SCAN and DC-SCAN.392,393 Finally, in Eq. 5.4, Velec contains

terms explicitly treating charge-charge, charge-dipole, dipole-dipole interactions, and

the polarization energy.394 A comprehensive description of the MB-DFT and MB-nrg

framework, including a breakdown of the individual terms in MB PEFs can be found in

references 346 and 394, respectively. Further details on the computational details and

fitting procedure are reported in the Supporting Information.

While previous studies have focused on the effect of density-corrected DFAs on

water-water interactions,153,378 in this work we isolate the ion-water contribution during

simulation by using MB-pol as water-water interaction model. Fig. 5.4 shows the RDFs

with respect to the sodium-oxygen and chloride-oxygen distances obtained via bulk-phase

MD simulations in the NPT ensemble at 298 K and 1 atm using the MB-SCAN and

MB-SCAN(DC) models and including n-body corrections of the MB-nrg framework up to

the 3-body term in the top panels and up to the 2-body term in the bottom panels. All
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Figure 5.4. Sodium-oxygen (left panels) and chloride-oxygen (right panels) radial
distribution functions, g(r), calculated from NPT simulations carried out at 298 K and
1 atm with the MB-SCAN (blue, purple), MB-SCAN(DC) (red, magenta), and MB-nrg
(gray) PEFs using both 2-body and 3-body corrections (top panels) and using only 2-body
corrections (bottom panels).

the simulation details are reported in the Supporting Information.

Sodium and chloride ions are expected to exhibit significantly different solvation

behavior when simulated using SCAN- and DC-SCAN-based MB-nrg PEFs, given the

large difference in error shown in the gas-phase analysis of Fig. 5.3 between the energies

predicted with the two functionals. Both systems show identical structural features in the

first solvation shell using the two models; when compared with the reference interaction

energy of the sodium- and chloride-water dimer configurations reported in Refs. 41 and

42 of −24.09 and −15.58 kcal/mol, respectively, it is clear that, when accounting for all
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the ion–water pairwise interactions, the total density correction becomes negligible with

respect to the dimer interaction energy of the bulk system. In the second solvation shell,

however, the number of 3-body contributions becomes significant. In the case of sodium,

the small difference in the 3-body effect of the density correction, translates to effectively

identical bands. On the other hand, the relevant SCAN 3-body error of the chloride ion in

Fig. 5.3 has a repulsive effect on the overall hydration structure and is directly related

to a shift of the second solvation shell to larger distances. This is substantiated by the

2-body corrected MB-nrg models, whose RDFs are reported in panels c) and d). While

sodium shows superimposing RDFs for both MB-SCAN and MB-SCAN(DC), as expected,

given the small 3-body contribution, the same is true in the case of chloride. The small

difference in intensity of the first solvation shell can be attributed to a stronger overall

3-body effect, considering the greater dimension of the hydration complex.

In this work, we have explored the contribution of density driven errors to the

description of hydration phenomena of monatomic, singly-charged ions, and reported

a systematic analysis of SCAN and DC-SCAN functionals applied to the hydration of

sodium and chloride ions. The analyses of density sensitivity, interaction and individual

many-body energies of hydrated ions further demonstrate that DC-SCAN is a robust tool

for the description of gas-phase clusters of non-covalent systems with non-homogenous

charge densities, providing an accuracy that goes beyond that of pure DFT. By effectively

correcting the delocalization errors in SCAN calculations of ion-water systems using the

Hartree-Fock density, DC-SCAN allows DFT to closely approach the accuracy of explicitly-

correlated wavefunction-based ab initio methods. The almost constant density sensitivity

per water molecule illustrates the weight of delocalization error in aqueous solutions of ionic

systems, determining a linear size-dependent misrepresentation of the electronic density,

and thus the interaction energy. In this spirit, we rationalize the effect that a localized

density, free of self-interaction error, plays in the prediction of interaction energies in

hydration complexes of increasing sizes. Our findings manifest the proportional correlation
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between interaction energy error and delocalization error. Correcting for density-driven

errors allows the DC-SCAN method to provide consistent interaction energies with minimal

loss of accuracy when compared to reference MB-nrg values, trained on CCSD(T) reference

energies, as a function of system size. In addition, many-body analyses of the SCAN

and DC-SCAN interaction energies of sodium- and chloride-water clusters show that

DC-SCAN predicts 2- and 3-body energies with chemical accuracy when compared to

MB-nrg reference values. Thus, DC-SCAN greatly mitigates the many-body energy errors

identified in SCAN calculations for both sodium and chloride. It should be emphasized

that DC-SCAN achieves remarkable accuracy in 3-body contributions, crucial to the

faithful representation of chloride-water interactions, overcoming the significant deviations

displayed by SCAN. As the system size approaches the macroscopic limit, the propagation

of the density-driven errors is examined by means of MB-MD simulations and RDF

analyses. Here, the density delocalization of the SCAN functional introduces spurious

repulsions at the 3-body level that affect the topology of the ion-water-water network of

the chloride ion, resulting in a larger second solvation shell. This effect appears to be

negligible at shorter distances due to the small number of 3-body contributions and the

small absolute value of 2-body errors with respect to the total 2-body energy of the system.

In turn, DC-SCAN accurately reproduces the expected behavior across all distances, which

attests to the robustness of the SCAN non-empirical functional form, upon correction of

density-driven errors. These results suggest that the usage of accurate functional forms as

in SCAN, together with better system densities, provides a more rigorous representation of

the overall ground-state properties of hydrated ions. The significant quality of the physical

properties retrieved with DC-SCAN warrants further investigation in its applicability for

the representation of generic molecular systems.
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Chapter 6

Conclusions

This dissertation dove into the design of new computational frameworks for mod-

elling and understanding the physical and chemical properties of ionic systems in aqueous

environments, with a specific focus on the development and application of many-body

(MB) interaction potentials for hydrated halides.

We investigated the performance and transferability of a relatively new family of

interaction models: deep neural network (DNN) potentials. Taking water as benchmark

system, DeePMD-based models were trained liquid water configurations at various ther-

modynamic conditions, using the highly accurate MB-pol reference. The DNN potentials

were found to accurately reproduce structural and thermodynamic properties of liquid

water predicted by MB-pol from the boiling point to deeply supercooled temperatures.

However, the trained models lack the high level of transferability between phases that

MB-pol possesses; they struggle to accurately describe vapor-liquid equilibrium properties

and many-body interactions, tending to rely on error compensation among individual

many-body energy contributions. While an improved description of vapor-liquid equilib-

rium (VLE) properties and a better description of individual many-body contributions to

the interaction energy was achieved by training on additional VLE configurations and gas-

phase clusters, respectively, obtaining a consistently accurate description of water across

different phases was not possible. DNN potentials are inherently many-body, but they may
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not correctly represent the underlying many-body physics, limiting their transferability

over a wide range of thermodynamic conditions.

Among state-of-the-art interaction models, MB potentials are currently a compelling

alternative to neural networks; in this regard, the MB-nrg family of interaction potentials

provides transferable models by design, explicitly embedding the many-body framework

and retrieving the total energy bottom-up, from the many-body expansion (MBE) of

the energy. For the construction of such potential energy functions (PEFs), we have

developed an active learning (AL) algorithm for generating representative training sets

that works in synergy with the present MB-nrg workflow. The AL framework estimates

the error on the MB-nrg model and the energy uncertainty through Gaussian process

(GP) regression, and assigns a probability to configurations in a large pool generated

through scans along relevant collective variables, normal mode sampling, and molecular

dynamics (MD) simulations. The learner self-consistently selects configurations from the

pool and adds them to the training set, until convergence is reached. The framework

was tested on the cesium-water system as a case study; the development of the MB-nrg

PEF has enabled efficient identification of the most relevant configurations necessary for

accurately representing the target many-body potential energy surfaces (PESs), resulting

in significantly smaller training sets than those needed for the development of the original

MB-nrg PEF while preserving the accuracy.

Considering the computational expense of reference coupled cluster with single,

double and perturbative triple excitations (CCSD(T)) calculations of individual many-

body energies, the AL framework was used in the generation of the new MB-nrg PEFs for

halide-water interaction. In particular, dimer and trimer training sets of chloride, bromide,

and iodide ions with water have been used to build explicit 2-body and 3-body polynomials.

Although the MB-nrg PEFs are trained only on gas-phase clusters, they successfully

reproduce the interaction energies and solvation structure of hydrated halides from the gas-

to the condensed- phase, as the resulting extended x-ray absorption fine structure (EXAFS)
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spectra closely align with experimental data and accurately reproduce amplitude and phase

of the EXAFS oscillations, outperforming the existing TTM-nrg framework and popular

empirical force fields based on the TIP4P/Ew water model. With regards to chloride,

pairwise additive representations of ion-water and water-water interactions are insufficient

for accurately depicting chloride hydration structure in gas-phase clusters and solution;

these models underestimate interaction strengths in the former and predict an overly tight

first hydration shell in the latter. While classical many-body polarization significantly

improves the description of chloride-water interactions, TTM-nrg still shows limitations

when compared to more accurate MB-nrg models; these offer a quantitative representation

of the halide ion hydration shell structure and energetics from gas to condensed phase, and

enable cost-effective MD simulations of ionic aqueous solutions with chemical accuracy.

For relatively small systems, CCSD(T) reference values allow to generate accurate

MB potentials to be used in MD simulations. However, for larger systems and framework

that require bulk configurations during the training procedure, as DNNs, we must rely

on alternative ab initio methods, as density functional theory (DFT). We have shown

that for monatomic, singly-charged ions as Na+ and Cl-, semi-local density functional

approximations (DFAs) as SCAN suffer from large density-driven error that can compromise

the accuracy of the calculations. We have shown how, analogously to pure water, extracting

SCAN energies from Hartree-Fock densities greatly corrects this behavior. DC-SCAN

serves as a robust tool for modeling gas-phase clusters of non-covalent systems with

non-homogeneous charge densities, outperforming pure DFT in terms of accuracy and

approaching explicitly-correlated wavefunction-based ab initio methods. The limitation

of non-corrected semi-local DFAs propagates to the macroscopic limit; by constructing

MB-SCAN and MB-SCAN(DC) models, we have explored the structural differences in

the radial distribution functions (RDFs) of the two ions: SCAN’s density delocalization

introduces spurious repulsions in chloride’s hydration complex, resulting in a larger second

solvation shell. On the other hand, DC-SCAN accurately reproduces the expected behavior
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across all distances, demonstrating the robustness of the SCAN non-empirical functional

form upon correction of density-driven errors. This suggests that combining accurate

functional forms like SCAN with improved system densities can provide a more rigorous

representation of the overall ground-state properties of hydrated ions.

The findings herein demonstrated the potential and limitations of state-of-the-

art interaction models. Advanced computational frameworks as MB-nrg can accurate

describe and predict the behavior of ionic systems in aqueous environments; the models

that have been presented provide an important foundation for future work, not only for

further refinement and optimization, but also for their application to a broader range

of phenomena. It is hoped that this work will stimulate the exploration of air-water

interfaces, the calculation of the surface propensity of halide ions, and their behaviour at

finite concentration.
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