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Abstract

Extremely Correlated Fermi Liquid (ECFL) description of low energy excitation

spectrum of high Tc cuprate superconductors measured by Angle Resolved

Photoemission Spectroscopy (ARPES).

by

Kazue Matsuyama

In this dissertation, we present Extremely Correlated Fermi Liquid (ECFL) descrip-

tion of low energy excitation spectrum of high temperature cuprate superconductors

measured by Angle Resolved Photoemission Spectroscopy (ARPES). Focusing on in-

terpretation of the ARPES data, we propose a rigorous approach to understanding the

unconventional quasiparticle dynamics in high Tc cuprate superconductors. First, we

present ARPES line shapes fitting with the ECFL theory. The ECFL theory is very

successful in explaining the ARPES spectral functions of high Tc cuprate supercon-

ductors, and it fits the ARPES line shapes as functions of momentum (momentum

distribution curves, MDCs) and energy (energy distribution curves, EDCs) for different

materials and different temperature with the same intrinsic physical variables along the

nodal direction. Although it is not the first to fit both MDCs and EDCs of high Tc

cuprate superconductors, the ECFL theory offers unprecedented applicability in fitting

the ARPES spectral functions. Second, the ECFL theory provides a robust discussion

for the origin of kinks in energy dispersion of strongly correlated material measured by

ARPES. A bending anomaly in the energy dispersion of strongly correlated matter, the

vii



universal low energy kink in the ARPES spectrum ∼50 - 100 meV, can not be explained

within the standard linear band dispersion theory because of significant corrections due

to interactions. In our work, we address correlation kinks arising from the momentum

dependent Dyson self-energy of the ECFL theory. The calculation is overdetermined,

and four independent variables can predict sets of measurable relations in the ARPES

experiments. We find that ECFL interpretation of the ARPES kinks is consistent with

the available experimental data, and we provide a decisive set of predictions for future

high resolution ARPES experiments.

viii



To my family and friends.

ix



Acknowledgments

First of all, I would like to thank my dissertation committee members, thank you Profes-

sor Sriram Shastry, Professor David Belanger, and Professor Jairo Velasco for agreeing

to serve on my dissertation committee and taking time to read my dissertation work

from your busy schedule. I would like to express my deepest gratitude to my advisor and

chairman in my committee Professor Sriram Shastry for his continuous support, encour-

agement and patience for me during my Ph.D studies at UCSC. Physics discussion with

Dr. Shastry has always been genuinely inspiring. Dr. Shastry has always encouraged me

to think big, not small. I would like to express my sincere thanks to Dr. Gey-Hong

Gweon who provided me an opportunity to work at the SSRL beamline. I would like to

thank him for sharing his expertise in the ARPES experiment and a great deal of his

mentoring support. I would like to sincerely thank Professor Belanger for his support

and concern during my graduate studies at UCSC and kindly serving on my committee.

Also, I would like to thank Dr. Edward Perepelitsky for stimulating discussion and his

insightful comments regarding my work. I appreciate his friendship and support during

my graduate studies in Santa Cruz. I also would like to thank people in physics office at

UCSC, Davina Walker, Sissy Madden, Maria Sliwinski, and David Sugg for providing

me administrative help and support. Thank you all for being friendly and helpful for

me. Also, I am deeply grateful to Physics Department at University of California Santa

Cruz for providing me an opportunity to study in the US as I’m proud of myself for

earning my Ph.D degree from UCSC.

x



Last, but not the least, I would like to thank my parents, Nobuyo Matsuyama

and Yoshimitsu Matsuyama, and my sister Miyuki Mukai and my brother Kouichirou

Matsuyama for supporting me and my life.

xi



Chapter 1

Introduction

Angle resolved photoemission spectroscopy (ARPES) is a powerful experimen-

tal probe that enables direct measurement of the single-particle excitation spectrum.

The unique surface sensitive probe allows us to perform direct observation of the two

dimensional surface state to unprecedented levels, and such detailed information is use-

ful to study physics at microscopic length scale. The experiment becomes specially vital

when we study surface physics and quasi-low dimensional systems, for example, high

Tc cuprate superconductors that the interaction between the layers of which is usually

weak. As ARPES offers us rich information about quasiparticle dynamics in a solid,

such as direct observation of the electronic band structure and configuration of a Fermi

surface, quantitative analysis and interpretation of photoemission data in the ARPES

experiments require considerable understanding of many body physics.

In this dissertation, we propose a novel interpretation of the ARPES photoe-

mission data. The new approach to interpreting the ARPES photoemission data has
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been constructed based on the theoretical proposal of “Extremely Correlated Fermi

Liquid Theory” (ECFL) by Sriram Shastry [1]. The single-particle Green’s function of

ECFL theory is the solution to the Gutzwiller projected ground state of t-J Hamilto-

nian. Taking U →∞ limit in the Hubbard model, we obtain t-J Hamiltonian, and it

has been claimed that the t-J model explains the essential physical properties of high

Tc cuprate superconductors.

Our goal is to understand the ARPES photoemission data and study quasi-

particle dynamics in the cuprate superconductors using ECFL theory. Originally, the

theory was introduced to explain the strange metal phase in the phase diagram of the

hole doped cuprate superconductors. The first ARPES line shape fitting was conducted

for the normal state ARPES data of cuprate superconductors [2]. In this work, line

shape fitting with the single particle spectral function of the ECFL theory demon-

strated unprecedented success with only two free parameters. It was shown that the

ECFL fitting model fits both laser and synchrotron ARPES data of optimally doped

Bi2Sr2CaCu2O8+δ and synchrotron ARPES data of optimally doped La2−xSrxCuO4

along the nodal direction. The unprecedented success of ECFL fits is attributed to

the key theoretical idea of correlation physics, “caparison factor”, and it was shown

that the caparison factor plays a central role to fit the line shapes of high Tc cuprate

superconductors measured by ARPES.

Second, we have proposed the phenomenological ECFL fitting models and

obtained high quality fits for the ARPES line shapes of high Tc cuprate superconductors

in Ref. ([3]). In this work, the phenomenological ECFL models have been proposed to
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challenge fitting the ARPES spectral functions of cuprate superconductors as functions

of momentum ( momentum distribution curves, MDCs ) and energy ( energy distribution

curves, EDCs ). The momentum distribution curves, MDCs, are given by recording the

photo-electron counts as a function of momentum at a fixed energy, and the energy

distribution curves, EDCs, are given by recording the photo-electron counts as a function

of energy at a fixed momentum. We constructed the phenomenological ECFL models

by scrutinizing the behavior of the caparison factor that is an “ω dependent adaptive

spectral weight” that imposes correlation physics of ECFL and Gutzwiller projection.

Gutzwiller projection of ECFL theory works to decrease the spectral weight at high

energy, but it simultaneously holds the Fermi surface volume invariance at low energy.

In this work, it was demonstrated that the proposed phenomenological ECFL models

successfully fit both EDCs and MDCs of ARPES spectral functions of the two different

optimally doped cuprate superconductors Bi2Sr2CaCu2O8+δ and La2−xSrxCuO4 with

the identical intrinsic fitting variables along the nodal direction. However, we should

note that our model was not the first to fit both MDCs and EDCs line shapes of cuprate

superconductors, the unprecedented applicability of the model in fitting the ARPES

spectral functions of cuprates was an achievement.

Finally, the ECFL theory provides a rigorous discussion for the origin of kinks

in the low energy ARPES spectra of strongly correlated materials. The bending anomaly

in energy dispersion of strongly correlated matter has been well known in the ARPES

community, and in past, several theoretical proposals invoking local Bosonic excitations

were considered to discuss its origin, yet none of these proposals was rigorously conclu-
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sive. Therefore, no consensus concerning the origin of kinks in the ARPES spectra has

been established.

The low energy kink in the ARPES spectra of strongly correlated materials is a

bending anomaly in energy dispersion around binding energy of ∼50 - 100 meV. Because

the standard linear band theory can not reproduce it, its origin should be ascribed to

corrections due to interactions. Low energy kinks in the ARPES spectra have been

observed in cuprate superconductors, and in other strongly correlated materials, such

as charge density wave systems, cobaltates, and ferromagnetic iron surfaces. Kinks have

been observed below and above Tc, at wide momentum range from nodal to anti-nodal

direction, and over the entire doping range from insulator to normal metal in the hole

doped phase diagram of cuprates. While past reports often focus on reporting kinks in

MDCs dispersion, we address the significance of investigating kinks in EDCs dispersion

as well. First, we propose an effective protocol for extracting the kink momentum

and energy from the ARPES data. Second, we demonstrate that the available ARPES

data is consistent with the correlation description of kinks, and we show that strong

correlations give rise to the kinks in the low energy ARPES spectra in the most robust

manner. Last, our investigation suggests a decisive set of predictions for future high

quality experiments.

In short, this dissertation focuses on analysis and interpretation of the ARPES

data of strongly correlated materials. First, I discuss the ARPES line shape fitting with

the ECFL theory. Second, I present the correlation explanation for the origin of low

energy kinks in the ARPES spectra. There will be summary and concluding remarks

4



and some more results of ECFL theory in the end.

1.1 A brief introduction to ARPES photoemission theory:

Sudden Approximation

In this section, I present a short summary of ARPES theory that one should

know in order to understand our work in this dissertation. The short outline here focuses

on explaining the theoretical approach of sudden approximation in photoemission ex-

periments, and the outline should show that the sudden approximation directly relates

the measured ARPES spectrum and the single-particle Green’s function [4, 5].

The whole idea of ARPES photoemission experiments is based on the photo-

electric effect that says an electron escapes from solid surface as a result of quantum

mechanical interaction between the incident photon and electrons in the solid. The

ARPES experiments measure the kinetic energy of escaped “photoelectrons” and record

the photo-electron counts as a function of energy and momentum. The measured kinetic

energy of the photoelectron maps out the electronic band structure of the sample as

functions of momenta parallel to the sample surface. When measuring the kinetic energy

of the photoelectrons, we assume the sudden approximation that says the photoemission

process happens instantaneously. This is equivalent to saying, for example, for an in-

teracting N electron system, we assume that the final state of N-1 electron system does

not interact with the emitted photoelectron. The assumption should be valid when the

kinetic energy of the photoelectron is large, but can be inappropriate when the kinetic
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energy of the photoelectron is small. Break down of the sudden approximation of the

low photon energy experiment can be interesting topic to discuss, but it is beyond the

scope of this dissertation.

To illustrate the sudden approximation in the photoemission process mathe-

matically, we write the interaction Hamiltonian for photons interacting with electrons

in the sample,

Hint =
qe

2me
(p ·A + A · p) (1.1)

to simplify our calculation, we let c = ~ = 1. qe is the electron charge, me is the

electron mass, A is the vector potential of the photon field, and p is the momentum

of an electron. Next, quantizing the vector potential of the photon field, the second

quantization representation for this interaction Hamiltonian becomes

Hint =
∑
kp,µ

qe
me

1√
V ωp

exp(ikp · x− iωpt)ε̂µ · pαµ,kp + h.c., (1.2)

where, in the finite volume V, αµ,kp is the annihilation operator for a photon with

polarization vector ε̂µ, and kp and ωp are the momentum and energy of a photon.

This interaction Hamiltonian indicates the excitation of electrons from the ini-

tial state Ψi to the final state Ψf by the vector potential of the photon field leads to

the emission of photoelectrons. When we write the initial and final state wavefunctions
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to describe the photoemission process, we consider the one electron approximation. For

the N electron system, we assume that the initial wavefunction is written as a product

of the orbital wavefunction, φk, where emission of an electron by photoexcitation takes

place, and the remaining initial N-1 electron wavefunction, ψki,N−1. The initial state

wavefunction then becomes Ψi = cφi,kψ
k
i,N−1, and the operator c here antisymmetrizes

the wavefunction. Similarly, the final state wavefunction is also written as a product of

the wavefunction of the photoelectron φf,Ek and the remaining final N-1 electron wave-

function, ψkf,N−1. Therefore, the final state wavefunction becomes Ψf = cφf,Ekψ
k
f,N−1.

For these initial and final state wavefunctios, we write the photocurrent expression that

is proportional to the transition probability of the photoemission process. Using the

Fermi’s Golden rule,

I(k,E) = 2π
∑
f,i,k

| 〈Ψf |Hint |Ψi〉|2 δ(Ef − Ei − ~ωp) (1.3)

writing down this in terms of the initial and final state wavefunction,

I(k,E) = 2π
∑
f,i,k

| 〈φf,Ek |Hint |φi,k〉
∑
l

〈ψkl,N−1 |ψki,N−1〉 |2 δ(Ef + El,N-1 − Ei − ~ωp)

(1.4)

Note that when rewriting the photocurrent in terms of the initial and final

state wavefunctions, we introduce the running subscript l for the final N-1 electron

7



wavefunction, ψkf,N−1, changing from f to l. This is because we include the probability

of exciting the N-1 electron system after removing an electron from the orbital wave-

function, φk, of the initial N electron system. Here, the running subscript l denotes

the number of l excited states of the N - 1 electron system. We consider that there

are l excited states for the final N - 1 electron system with wavefunctions ψkl,N−1 at

energy of El,N-1. Considering of excitation of N - 1 electron system is necessary and

becomes significant when we describe interacting system. Intuitively, we should imagine

that the final system after emitting an electron tries to accommodate the change in the

electron distribution and redistribute remaining N-1 charges, so the system successfully

minimizes its energy.

The mathematical expression of photocurrent with wavefunction ψkl,N−1 in

Eq. (1.4) is useful to illustrate distinct pictures of ARPES spectrum with and with-

out electron interactions in a solid. For example, consider the non interacting system,

the overlap integral of N-1 electrons becomes 1 for specific l, and the ARPES spec-

trum should plot a delta function at l = k, for that single orbital k. On the contrary,

considering of the interacting system, we see the spectrum that is different from the

one for the non interacting system. The ARPES spectrum of the interacting system is

different from that of the non interacting system because the strong correlation leads to

overlapping between states of N - 1 electron system. The photoexcitation at the specific

orbital k produces the number of excited states l for that orbital k, and the ARPES

spectrum should plot the main delta function and additional lines of interacting states

for l 6= k.

8



Finally, many body physics let us write down the photocurrent in Eq. (1.4)

proportional to the spectral function [6], A(k, E),

I(k,E) ∝
∑
f,i,k

| 〈φf,Ek |Hint |φi,k〉 |2 f (E− µ) A(k,E) (1.5)

Here, A(k, E) is the spectral function that is the imaginary part of the single particle

Green’s function, A(k, E) = π−1ImG(k, E). This mathematical expression says the

spectral function determines the probability of removing or adding an electron at mo-

mentum k and energy E. The Fermi-Dirac function, f(E− µ), specifies the probability

of removing an electron from the occupied states. The one electron matrix element gives

the probability of photoexciting the removed electron to the higher energy photoelec-

tron state. We should note that the mathematical expression in Eq. (1.5) describes that

the sudden approximation separates the two photoemission steps, removing an electron

and exciting the removed electron to the higher energy photoelectron state. Conse-

quently, understanding the ARPES spectrum of strongly correlated materials requires

the knowledge of the spectral function of strongly correlated materials.

Incidentally, the ECFL theory provides us such spectral function for strongly

correlated materials. In the following chapters, I discuss the spectral function of the

ECFL theory and its interpretation of the ARPES spectra of strongly correlated mate-

rials.
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Chapter 2

Phenomenological model for the normal

state ARPES line shapes of high

temperature superconductors

This chapter reproduces the published material, Matsuyama, K, and Gweon, G-H.

“Phenomenological Model for the Normal-State Angle-Resolved Photoemission Spectroscopy

Line Shapes of High-Temperature Superconductors”. Physical Review letters 111.24 (2013):

246401. Here, we would like to mention the new report on the ARPES line shapes. In past, the

ARPES experiments was reporting the strong asymmetric EDCs line shapes ( energy distribution

curves, ARPES intensity measurement as a function of energy at a fixed momentum ) and the

very symmetric MDCs line shapes ( momentum distribution curves, MDCs, ARPES intensity

measurement as a function of momentum at a fixed energy ). However, the most recent ARPES

experiment has reported asymmetric MDCs line shapes near the Fermi level for some of cuprates
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superconductors, for example Hg1201 in Ref. ([58]). We suggest possibly intrinsic asymmetry in

the MDCs line shapes near the Fermi level, but investigation of it should require high resolution

ARPES experiments.

2.1 Abstract

Providing a full theoretical description of the single particle spectral function

observed for high temperature superconductors in the normal state is an important

goal, yet unrealized. Here, we present a phenomenological model approaching towards

this goal. The model results from implementing key phenomenological improvement in

the so-called extremely correlated Fermi liquid (ECFL) model. The model successfully

describes the ARPES spectral function as functions of momentum and energy and fits

data for different materials (Bi2Sr2CaCu2O8+δ and La2−xSrxCuO4), with an identical

set of intrinsic parameters. The current analysis goes well beyond the prevalent analysis

of the spectral function as a function of momentum alone.

2.2 Introduction

In the sudden approximation theory [5] of the angle resolved photo-electron

spectroscopy (ARPES), photo-electron counts, I(~k, ω), recorded as a function of mo-
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mentum (~k) and energy (ω) 1 are given by

I(~k, ω) = |Mif |2 f(ω)A(~k, ω) (2.1)

where Mif is the dipole matrix element for the photo-excitation, f(ω) is the Fermi-Dirac

function, and A(~k, ω) = 1
π ImG(~k, ω) is the single particle spectral function, where G is

the single particle Green’s function 2.

As the single particle Green’s function in the normal state is believed to con-

tain vital information on the nature of excitations relevant to the high temperature

(“high Tc”) superconductivity, its characterization by ARPES has been a major line of

research. Various approaches towards getting at this information have been attempted:

a phenomenological approach based on a simple scaling behavior of the electron self

energy [7], an asymptotic solution to the Gutzwiller projected ground state of the t-J

Hamiltonian [8], application of a non-Fermi liquid theory [9] for low dimensions, and a

newly proposed solution to the t-J Hamiltonian [1].

For an experimental “cut,” i.e. an experimental data set taken along a line

of ~k values, I(~k, ω) is a function defined on a two dimensional domain. This multi-

dimensionality makes analyzing I(~k, ω) a non-trivial task. While attempts [10] have

been made to analyze the I(~k, ω) image (e.g., see Fig. 2.5(a)) as a whole, the current

understanding of line shapes in terms of A(~k, ω) depends on the analysis of selected

energy distribution curves (EDCs; the EDC is a function of ω, defined as I(~k = ~k0, ω))

1We use h̄ = 1 by convention.
2We use the advanced Green’s function.
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[2, 7, 8, 12] or selected momentum distribution curves (MDCs; the MDC is a function

of ~k, defined as I(~k, ω = ω0), with ~k varying along a line) [12, 13].

Currently, there is no consensus on a theoretical model that can suitably de-

scribe ARPES data of high Tc materials. A model that can describe the normal state

data, both EDCs and MDCs, obtained in different experimental conditions and for dif-

ferent materials, with the same intrinsic parameters would be a good candidate. Here,

we propose a new such phenomenological model.

The new theory, so-called Extremely Correlated Fermi liquid (ECFL)[1] arises,

and it was shown to be quite successful in describing EDCs [2]. The new model now

makes it possible to describe other key aspects of the data as well: MDC fits are excellent

and the values of |Mif |2 behave reasonably. And, it improves EDC fits. The result is a

phenomenological model in which the apparent dichotomy between the EDCs and the

MDCs [9, 14] is described excellently by two independent aspects of a single theoretical

concept, the caparison factor [1, 2].

A phenomenological study of this kind seems to be helpful, also in light of the

ongoing development of the ECFL theory [15, 16]. The theoretical formalism of ECFL

initiated by Shastry [1, 15] is quite involved, and, while a numerical solution [16] valid

for hole doping x & 0.3 is now available, more time seems necessary to extend these

promising results to near-optimal doping. Thus, a phenomenological model based on

the main feature of the theory, the caparison factor, may be of considerable value at

this stage. In this theory [15], the caparison factor is an ω-dependent adaptive spectral

weight that encodes two key pieces of physics: the Gutzwiller projection that reduces
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the spectral weight at high ω and the invariance of the Fermi surface volume at low ω.

In our previous work [2], it has been demonstrated that the normal state EDCs

for optimally doped cuprates for two different compounds, or for different experimental

conditions (low photon energy or high photon energy), can be explained using an ECFL

line shape model, all with one set of intrinsic parameters. We will refer to that ECFL as

the “simplified ECFL (sECFL)” [1], in relation to the fuller theory in development [15,

16]. While the EDC analysis used there has strong merits [2, 18], a natural subsequent

question is whether MDCs can be described as well, along the same line of theory.

2.3 Introduction to the theoretical models

In the sECFL model [2], G(~k, ω) is given by

G(~k, ω) =
Qn − n2

4
Φ(ω)
∆0

ω − ε(~k)− Φ(ω)
(2.2)

where Qn = 1 − n
2 = 1+x

2 is the total spectral weight per ~k in the t-J model, and n

(x) is the number of electrons (holes) per unit cell 3. Φ(ω) is an ordinary Fermi liquid

self energy, determined by two intrinsic parameters, ZFL (quasi-particle weight) and ω0

(cutoff energy scale), and one extrinsic parameter η (impurity scattering contribution

to Im Φ). ∆0 is an energy scale parameter, determined completely by n,ZFL, and ω0,

through the global particle sum rule.

It is for the probable benefit to us that we now summarize key results of the

3We now use the symbol ε(~k), instead of ξ(~k) in Ref. ([2]), for the one electron energy.
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work in Ref. ([2]). The Dyson self energy of the AFL, Φ, is given by (as given by

Eq. (2.2) and footnote 6 of Ref. ([2]))

Im Φ(ω) =
ω2 + τ2

Ω0
e
−ω

2+τ2

ω2
0 + η, (2.3)

<Φ(ω) =
−1√
πΩ0

e
− τ

2

ω2
0

[
ω0ω − 2(ω2 + τ2)D

(
ω

ω0

)]
, (2.4)

where τ = πkBT , ZFL =
(

1 + ω0√
πΩ0

)−1
, and D(x) =

√
π

2 e
−x2

erfi(x) is the Dawson

function. EDC fits in Ref. ([2]) used fixed values of ZFL = 1/3 and ε(~k). The exper-

imental data that helped fix these values are the ARPES data taken up to very high

binding energy [10]. Using such data it was possible to find the quasi-particle dispersion

renormalization ratio due to the high energy ARPES “kink,” ZFL. It was also possible

to fix ε(~k), by taking it to have the same form as the tight-binding band dispersion

well-known in the literature, which was scaled to give the correct bandwidth measured

by the ARPES data. This left only two free fit parameters, η and ω0. Of these two,

η is the impurity scattering parameter, which we associated with the effective sample

quality probed by the ARPES technique under different conditions; it is determined in

practice by the width of the sharpest quasi-particle peak of a given data set, ≈ 0.04

eV for data taken with low energy photons (e.g., from laser) and 3 or 4 times greater

for data taken with high energy photons at synchrotrons. Thus, the only intrinsic fit

parameter was ω0, which was determined from fits as ω0 = 0.5± 0.1 eV. Then, through

a theoretical constraint equation, ∆0 = 0.12 ± 0.02 eV was determined. Fitting study

in Ref. ([2]) was able to successfully interpret ω0 and ∆0 as the purely electronic high

15



and low ARPES kink energy scales, respectively (Fig. 5 of Ref. ([2])). This interpreta-

tion provided these two energy scale parameters with their physical meanings. In the

current work, we use the values of all of the intrinsic parameters (ZFL, ω0,∆0) without

change from Ref. ([2]), as we found that all fits were stable under small variations of

these parameters. However, small variations of ε(~k) were necessary, as we describe this

in 2.3.1.

The above Green’s function can be rewritten as

G(~k, ω) =
Qn
γn

+
Cn(~k, ω)

ω − ε(~k)− Φ(ω)
(2.5)

Cn(~k, ω) = Qn

(
1− ω − ε(~k)

γn

)
(2.6)

where Cn(~k, ω) is the “caparison factor” [1, 2] and the energy scale ∆0 is absorbed into

γn ≡ 4Qn∆0/n
2. As all symbols in Eq. 2.5 other than Φ(ω) are real,

A(~k, ω) = Cn(~k, ω)AFL(~k, ω) (2.7)

where AFL is the spectral function for the “auxiliary Fermi liquid (AFL)” Green’s

function 4, AFL = 1
π ImGFL = 1

π Im [ω − ε(~k)− Φ(ω)]−1.

The caparison function Cn, summarized concisely in Eq. 2.6, played the central

role in the sECFL model. In this work, we show how its role can be extended even further

by a key phenomenological modification: inspired by data, we treat the ω dependence

4As in Ref. [2], subscript “FL” means the AFL (auxiliary Fermi liquid)
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and the ~k dependence of Cn as separately adjustable. We shall refer to the modified

model as pECFL, where p stands for “phenomenological.” We distinguish between

MD-pECFL and MI-pECFL based on whether Cn remains momentum dependent (MD)

or made momentum-independent (MI).

With this much introduction to our models, we shall first discuss line shape

fits, before discussing the models. As for free fit parameters controlling the line shape,

all models have η and ω0, like sECFL [2]. In addition, the group velocity, vF0, of

ε(~k), required small adjustment for different models to give correct peak positions as

described in next subsection. Then, only for MD-pECFL, there are two more free fit

parameters.

2.3.1 One electron dispersion relation

For all fits in this work, ε(~k) could be approximated as a line, ε(~k) = vF0(k −

kF ), due to the small energy range and the momentum range involved, as far as ε(~k) is

concerned. We found that the model-dependent variation on vF0 was required in order

for the fits to describe experimental peak positions correctly. For fitting the Bi2212 data,

vF0 = 5.5 (sECFL) and 6.3 eVÅ (MD-pECFL, MI-pECFL). In panel (a) in Fig. 2.5,

ε(~k) values for pECFL fits are shown. For fitting the LSCO data in Fig. 2.8, vF0 =

4 (sECFL), 5 (MD-pECFL), and 5.5 eVÅ (MI-pECFL) were used. This variation in

vF0 is consistent with the amount of uncertainty in knowing the precise band width

(Ref. [10]); it implies small additional uncertainties for the intrinsic parameters ZFL,

ω0, and ∆0.
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2.4 ARPES line shape fits of Bi2212 data

2.4.1 Fits of the Bi2212 180 K data

Figure 2.1 shows ARPES line shape fits for the normal state data for the

optimally doped Bi2Sr2CaCu2O8+δ (Bi2212) sample, taken along the “nodal direction,”

(0, 0) → (π, π). Panel (a) shows fits essentially identical with those in Ref. [2]. The

slight difference is due to a slight change of η (0.17 → 0.18 eV), noted in the caption of

Fig. 2.1. The fit quality of MI-pECFL is clearly the best, while that of MD-pECFL is

noticeably poorer, despite more fit parameters.

Figure 2.2 shows ARPES line shape fits for MDCs of the same data set. Panel

(a) shows clearly that the sECFL has difficulty fitting the data even at ω = 0 (Fermi

energy). Panel (b) shows a quite improved fit by the MD-pECFL model. However, the

MI-pECFL fit shown in panel (c) is definitively the best.
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Figure 2.1: Line shape fits of EDCs for Bi2212 (x = 0.15) measured at 180K using (a)
sECFL, (b) MD-pECFL, and (c) MI-pECFL. Data and model parameters are identical
with those in Ref. [2] (ZFL = 0.33, ω0 = 0.5 eV, ∆0 = 0.12 eV), except for slightly
different values for η (0.17→ 0.18 eV) and ε(~k) (see text).
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Figure 2.2: Line shape fits of MDCs for Bi2212 (x = 0.15) measured at 180 K using
(a) sECFL and (b) MD-pECFL and (c) MI-pECFL. Fit parameters are identical with
those used for Fig. 2.1, except for the reduced η value (0.13 eV) for (a).

That the MI-pECFL model is able to describe EDCs and MDCs so accurately.

In these fits, no extra component (e.g., extrinsic background intensity) was added to the

theory that we described thus far. A small “elastic background line shape” (0.5 times

the raw line shape for k � kF ) had been subtracted prior to fit, as explained in Ref. [2].

All of the conclusions above also apply to the fits of the 91 K data [2] as well.
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2.4.2 Fits of the Bi2212 91 K data

Here, we show that the ARPES data at 91 K, right at Tc, of this material, is

described equally well by the MI-pECFL model. Fig. 2.3 shows that the MI-pECFL

model describes the EDCs the best, while the other two models are still quite good.

Fig. 2.4 shows that the MI-pECFL model describes the MDCs the best, while the other

two models come significantly short. In particular, the sECFL model does very poorly,

even when the η parameter is reduced, against the principle that both EDCs and MDCs

must be described by the same set of parameters (cf. Fig. 2.3), just to help the fit, as

shown in panel (a).
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Figure 2.3: Line shape fits of EDCs for Bi2212 (x = 0.15) measured at 91 K using (a)
sECFL, (b) MD-pECFL, and (c) MI-pECFL. Except the temperature and the overall
intensity scale (see Fig. 2.6), all parameter values used for the fit are the same as those
used for the 180 K data.
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Figure 2.4: Line shape fits of MDCs for Bi2212 (x = 0.15) measured at 91 K, using
(a) sECFL and (b) MD-pECFL and (c) MI-pECFL. Except the temperature and the
overall intensity scale (see Fig. 2.6), all parameter values used for the fit are the same
as those used for the 180 K data.

2.4.3 Analysis of fitting results

From the above work, it is clear that the MI-pECFL model emerges as the

best model for the Bi2212 data. This model is surprisingly simple: the ε(~k) term in

Eq. 2.6 is simply dropped. The motivation for doing so is purely empirical: the MDCs
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of Bi2212 data are known to be quite symmetric and Lorentzian-like. The effect of this

simple modification is surprisingly very good in many ways. Without any additional

fit parameter, MDC fits improve dramatically, as expected (Fig. 2.2(c)), but EDC fits

improve also (Fig. 2.1(c)), especially for ~k far away from ~kF (Fig. 2.5(b)). Furthermore,

the overall scale parameters for MDC fits (Fig. 2.5(c)) and EDC fits (Fig. 2.5(d)) are

now quite reasonable, as discussed in the caption.

91 K fit results are in complete agreement with these findings in 180 K fit

results, and these facts lend an overwhelming support to the MI-pECFL model. Fig. 2.6

shows the 91 K data as an image, and also shows the overall scale factors, |M |2f(ω) as

a function of ω and |M |2 as a function of ~k, as extracted from MDC fits and EDC fits,

respectively. In great agreement with Fig. 2.5, we see that the MI-pECFL model implies

the most reasonable trend for the matrix element.

However, note that 91 K is the transition temperature of optimally doped

Bi2212. As the ECFL theory is the theory of the normal state, there is a reason to doubt

or question the applicability of the model at very low energies at this temperature. For

instance, the rather noticeable discrepancy between the theory MDC and the measured

MDC at ω = 0, as can be noticed in Fig. 2.4(c), may be related to the inadequate nature

of the theory at low energies for temperatures close to, or below, the superconducting

transition temperature. We discuss related issues in more detail in section (2.5.1).
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Figure 2.5: (a) The ARPES data for Bi2212 at 180 K, fit in Fig. (2.1) and Fig. (2.2).
Rectangle E (M) marks the range of data fit in Fig. 2.1 (2.2). Circle symbols mark ε(~k)
values used in the pECFL fits. ARPES count increases from green, blue (half max),
white, to red (max). (b) EDC and its fits, for ~k value marked by the vertical line V
in (a). (c,d) The overall intensity scale parameters determined from the MDC fit (c)
and the EDC fit (d), which correspond to |M |2f(ω) and |M |2, respectively, by Eq. 2.1.
Shaded areas marks the fit ranges used in Figs. 2.1 and 2.2. As the energy dependence
of |M |2 is expected to be weak for this small range of ω, we expect the points shown
in panel c to approximately follow f(ω) (line). MI-pECFL does this the best. We also
expect points in (d) to show only a modest variation in this k range [10, 11]. Here also,
MI-pECFL performs the best; in contrast, sECFL shows an unnatural steep increase.
(e) Cn(~k, ω) for various models used. For MD-pECFL, a1 = −1 and a2 = 2 are used
throughout this Letter. For sECFL, max (Cn(~k, ω), 0) is used [2]. (f) The evolution
of the MDC asymmetry, controlled by a1 within MD-pECFL (a2 = 2). The MDC by
sECFL is the most asymmetric, while that by MI-pECFL is completely symmetric.
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Figure 2.6: The ARPES data for Bi2212 at 91 K, fit in Fig. (2.3) and Fig. (2.4), rep-
resented in a false color scale (panel a) and the overall intensity scales used for the
MDC fits (panel b) and the EDC fits (panel c). Panels a, b, and c are presented in the
same format as panels a, c, and d, respectively, of Fig. 3. As in that figure of the main
text, we see that the MI-pECFL model gives the most reasonable values of the overall
intensity scales for the MDC fits (panel b) and the EDC fits (panel c), with only a mild
dependence of the matrix element on the momentum and the energy, as anticipated.

The success of MI-pECFL model arises crucially from the separate treatment

of the ω dependence and the ~k dependence, or independence, of the caparison factor,

important for describing EDCs and MDCs, respectively.

In contrast to the pECFL models, it is clear that the sECFL model cannot

describe MDCs at all. Using identical fit parameters as for EDCs (see the dashed line

marked “η = 0.18 eV” in Fig. 2.2(a)), we get very poor fit quality, which improves,

dramatically but insufficiently, by relaxing the η parameter to 0.13 eV (Fig. 2.2(a)). In

this new light, the sECFL model, so successful in the previous work [2], must be viewed

as getting only one of the two things correct—the ω dependence of the caparison factor,

but not its ~k dependence—and its valid regime remains [2] confined to EDCs in the

narrow range of ~k around ~kF (Figs. 2.1(a) and 2.5(a)).
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Note that both the MD-pECFL model and the MI-pECFL model agree with

the sECFL model, when small energy range and small momentum range are considered,

as the EDC fits of Figs. 2.1 and 2.3 show. A more quantitative analysis can be made

about this fact, as follows.

As long as the caparison factor defined in Eq. 2.6 is well above zero, the

sECFL model remains valid. Using γn = 4Qn∆0/n
2 = 0.38 eV, determined from our

fit parameters, and putting ω ≈ Zε(~k), the approximate quasi-particle peak position,

we see that Eq. 2.6 requires (Z − 1)ε(~k) . γn in order for Cn(~k, ω) > 0. Here, we must

take Z to be the total mass renormalization ratio, which, according to our theory, is

equal to Z = ZFLQn = Qn/3 = 0.19. Putting these numbers together, we see that

the sECFL model is expected to be valid for ε(~k) & −0.47 eV, or Zε(~k) & −0.09 eV.

Noting that Zε(~k) corresponds to the approximate peak position in EDC, we therefore

learn that the sECFL model would be good for describing EDCs, when their peaks are

within about 90 meV from the chemical potential. This explains why sECFL fits are

very good in Figs. 2.1 and 2.3, while this is no longer the case in panel (b) in Fig. 2.5.

It is for the same reason that MDC fits by the sECFL are very poor.

This consideration explains excellent EDC fits in Ref. ([2]), justifies the simple

truncation procedure, Cn → max(Cn, 0), employed in that work (see panel (e) in Fig. 2.5

also), and, last but not least, correctly puts pECFL models as standing in harmony

with the sECFL model, not in contradiction to it.

Now when we come back to the MD-pECFL model, from our discussion up to

this point, it does not seem worth much consideration. But, note that neither sECFL
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nor MI-pECFL guarantees the fundamental requirement Cn(~k, ω) ≥ 0 (Fig. 2.5(e)). In

the MD-pECFL model, we take

γn = γn0

[
1 + exp

(
ω − ε(~k)− a1γn0

a2γn0

)]
(2.8)

where γn0 ≡ 4Qn∆0/n
2 = 0.38 eV is the value of γn in the sECFL model. In MD-

pECFL, Cn(~k, ω) ≥ 0 is guaranteed for any ~k and ω values, if a1 ≤ 1 + a2 (1 − log a2).

Physically, a1 and a2 play the role of controlling the MDC asymmetry (Fig. 2.5(f)) and

were determined as a2 = 2± 1 and a1 = −1± 1.

The MD-pECFL model is useful to discuss from three points of view. First, its

discussion touches upon some basic theoretical issues. Second, it provides an alternative

way to define the MI-pECFL model. Third, it provides the best model for the LSCO

data as shown in Fig. 2.8.

From Eq. 2.7, the non-negativity of the spectral function requires that Cn(~k, ω) ≥

0, or equivalently, γn ≥ ω − ε(~k). Considering ε(~k) < 0 and ω near the peak position

(ω ≈ Zε(~k) where Z is the quasi-particle weight), this leads to the following require-

ment: γn & (1− Z)|ε(~k)|. This requirement would clearly be violated for a large value

of |ε(~k)|, if γn were to be held constant. Going beyond the sECFL approach, where

|ε(~k)| was limited to a small value so that this violation is irrelevant, we can avoid this

violation altogether, if we employ a ~k or ω dependent γn. In particular, in MD-pECFL,
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we take

γn = γn0

[
1 + exp

(
ω − ε(~k)− a1γn0

a2γn0

)]
. (2.9)

Here, a2 > 0 defines the width (a2γn0) of the sigmoidal drop of 1/γn, occurring

at a position defined by a1: ω = ε(~k) + a1γn0. This γn function ensures that (1)

Cn → Qn/ω as ω →∞, as well as ω → −∞, as required by the spectral weight sum rule

per ~k within the t-J model, and (2) A(~k, ω) ≥ 0 for any ~k, ω values, as long as

a1 ≤ 1 + a2 (1− log a2) ≡ a1,max(a2),

as can be shown by a bit of algebra, and this way, MD-pECFL ensures the sum rule

and the non-negativity of A(~k, ω).

The new parameters a1 and a2 play the role of controlling the MDC asymmetry.

Before we discuss this, we must first note that, for a given value of a2, a1 has both an

upper bound, as just given, and a rough lower bound, a1 & −a2. The lower bound

arises due to the empirical fact that the EDC line shape cannot be fit within the AFL

theory, which the MD-pECFL theory converges to (up to an overall scale) if a1 → −∞.

That is, a1 cannot be too small. These bounds and the line shape fit severely restrict

values of a1 and a2: a1 lies at about -1 and a2 lies at about 2, both with a small wiggle

room of about ±1.

The role of a1 has been illustrated in panel (f) in Fig. 2.5. As a1 is tuned from
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−∞ to ∞, the MDC goes from completely symmetric, just as in MI-pECFL, to very

asymmetric, just as in sECFL.

Figure 2.7: The MDC line shape dependence of MD-pECFL on the parameter a2 at
ω = −0.11 eV, ( a ) a1 = 1, ( b ) a1 = −1.

In this consideration, the following points are worth noting. First, if a1 →

∞, then MD-pECFL converges to sECFL. This is because γn → γn0 in this limit

(Eq. 2.8). Second, if a1 → −∞, then MD-pECFL does not convert to MI-pECFL, but

to a “re-weighted” AFL. This is because in this case Cn(~k, ω) → Qn and γn → ∞,

giving G(~k, ω) = QnGFL(~k, ω), according to Eqs. 2.5 and 2.6, where GFL is the Green’s

function for the AFL, as defined right after Eq. 2.7. So, the theory becomes that of the

AFL theory, in this limit, except that the total spectral weight is not 1, but the t-J

model weight Qn—so, a “re-weighted” AFL. Now, the MI-pECFL model and the AFL

model are quite different, since the caparison factor gives a stronger EDC asymmetry

in the former model. However, the two models do have in common that their MDCs

are completely symmetric. So, when narrowly focusing on the MDC asymmetry, we
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can view the three models—the MI-pECFL model, the AFL model, and the a1 = −∞

MD-pECFL model—as mutually equivalent.

From this discussion, the following can be noted for the reason why the Bi2212

data are fit poorly by the MD-pECFL model, despite more parameters afforded by it.

The combination of the asymmetric EDC behavior and the symmetric MDC behavior

displayed by the Bi2212 data pose difficulties to the MD-pECFL model. This is because

as the MDC is made more symmetric, the EDC is becoming more symmetric also,

contributing the degradation of the fit (panel (b) Fig. 2.1 and Fig. 2.3(b)). Separately,

the a1 → −∞ MD-pECFL model gives as good an MDC fit as the MI-pECFL model,

while the a1 = 1 MD-pECFL model gives as good an EDC fit as the MI-pECFL model.

The middle ground is found at a1 = −1, at which value both the EDC fit and the MDC

fit suffer a little.

Turning to a2, Fig. 2.7 shows the dependence of the MDC line shape on a2.

The two constraints—the upper bound and the lower bound of a1 for a given a2 value,

and vice versa—discussed above mean that the range of a2 shown here is nearly the full

range of a2 allowed (panel b), or a significant fraction of it (panel a), for each given

value of a1. These line shape changes are of the same kind of line shape change that is

controlled by a1—the change in the MDC asymmetry. Instead of using two parameters

to control the same aspect of the data, we found it sufficient to fix the value of a2 at 2,

and use a1 as a fit parameter to describe the MDC asymmetry. In particular, note that

in panel (b), which corresponds to our final a1 value, the line shape depends little on

a2.
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Accordingly, Cn for MD-pECFL stays clearly above zero and is smooth (Fig. 2.5(e)).

Cn for MI-pECFL is, by definition, that for sECFL at ε(~k) = 0, as marked by label 1

in Fig. 2.5(e). However, we find that it can also be taken to be that for MD-pECFL

at ε(~k) = 0, as indicated by label 2 in Fig. 2.5(e), since fit results are very comparable

between these two choices. Finally, note that, for Bi2212, MD-pECFL is significantly

better than sECFL, but significantly worse than MI-pECFL, despite having two more

fit parameters.

2.5 ARPES line shape fits of LSCO data

The situation slightly changes when we fit data of La2−xSrxCuO4 (LSCO) [19],

showing strong MDC asymmetry (panels b–e). Here, identical fit parameter values as

those for Bi2212 are used, except for η = 0.12 eV and vF0 (see Sec. 2.3.1). Fig. 2.8(a)

shows an EDC fit, good by all models, just as for Bi2212. However, the MDC fit is a

different matter. Notably, MDCs show significant asymmetry for −ω & 0.07 eV (panel

b), and that asymmetry can be described properly only by the MD-pECFL model, as

illustrated clearly in fits shown in panels (b) through (e).
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Figure 2.8: Fits to the data of optimally doped (n = 0.85; x = 0.15) LSCO [19], taken
along the nodal direction. (a) EDC fits at k = kF . (b,c,d,e) MDCs for −ω & 0.07 eV
are significanly asymmetric, described the best by MD-pECFL.

We see that the original sECFL model must be modified greatly (Bi2212) or

somewhat (LSCO) to describe MDCs. We argue that these phenomenological modifi-
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cations require physics beyond the t-J Hamiltonian, since the sECFL model is derived

[1] from the t-J Hamiltonian, and another well-known model [18] based on the t-J

Hamiltonian also implies too asymmetric MDCs. More specifically, the physics of the

(next nearest neighbor hopping) t′ term seems a good candidate: the well-known fact

that |t′/t| is significantly smaller for LSCO [20, 21] goes well with our result that the

MD-pECFL model is more similar to the sECFL model. The t′ term is correlated with

the superconducting transition temperature [21], imparting importance to our current

proposal. We recently found [22] that an anomalous ARPES feature is explained by

pECFL, but not sECFL, and has similarity to a scanning tunneling spectroscopy fea-

ture correlated with superconductivity, adding more credence to our argument here.

Lastly, the fact that the caparison factor for the infinite-dimensional ECFL becomes

~k-independent [23, 24] seems to go along with our result, within the crude analogy

between adding a large t′ term and increasing channels for t hopping.

2.5.1 Low temperature data

In Fig. 2.9(a), we report the quality of the MDC fits shown in Fig. 2.8, using

the standard χ2 measure of the line shape fit. Perfectly consistent with Figs. 2.8(c–e),

we see that the χ2 values for the sECFL model is much too high compared to the χ2

values for the two pECFL models. This lends a definite support to the pECFL model.

However, which pECFL model is better?

As Fig. 2.9(a) shows, the χ2 value is smaller for the MI-pECFL model at low

energy (−ω . 0.05 eV), while it is smaller for the MD-pECFL model for (−ω & 0.05
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eV). So, our question above can be rephrased as “which of these two facts is more

significant?” The answer is the latter, since the theory that we are applying here is

applicable only to physics in the high temperature scale or the high energy (−ω) scale.

When we examine the low temperature data, and compare the data with the theory for

the normal state at high temperature, our primary concern must be focused on the high

energy (−ω) behavior.

Figure 2.9: (a) χ2 per point for the three models used for the line shape analysis of
LSCO (20K) in Fig. 2.8. (b) The FWHM values of MDCs for an optimally doped Bi2212
(Tc = 90 K), as reported by Kaminski et al., in Fig. 4 of their paper, Phys. Rev. Lett. 84,
1788 (2000). Also included are the carrier scattering rate from infrared reflectivity
measurements (A. V. Puchkov, et al., J. Phys. Cond. Matt. 8, 10049 (1996)).

This view point is also supported well empirically by the known results of the

literature. For instance, in Fig. 2.9(b), we show a plot taken from a reference, given

in the caption. This plot shows that the FWHM values of the ARPES data are nearly

temperature independent at high energy, −ω & 0.08 eV. This is due to the fact that

the high energy data taken at low temperatures are essentially identical with the high
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energy data taken at high temperatures.

This fact justifies our use of the low temperature data in Fig. 2.8. It also

guides us importantly to assess the relative merits of the two models, MD-pECFL and

MI-pECFL, for the LSCO data. Focusing on high energy, we conclude that the MD-

pECFL model is much better, as its χ2 value is several times smaller than that for

MI-pECFL at high energy −ω & 0.05 eV (Fig. 2.9(a)).

This does not mean that we do not need to study the high temperature data

for LSCO. On the contrary, the current lack of the high temperature data for LSCO in

view of our current result makes the study of high temperature ARPES data for LSCO a

very attractive topic. In view of the success of the ECFL model, the strong temperature

dependence predicted at high temperatures (Fig. 5(f) of Ref. ([2])), and the apparent

difference between the LSCO data and the Bi2212 data, the investigation of the high

temperature ARPES line shapes for LSCO may be an excellent topic of research in the

near future.

Lastly, note that at low temperatures, the low energy ARPES peak is signifi-

cantly sharper than our theoretical model predicts, as the MDC comparison at ω = 0

in Fig. 2.8(b) or Fig. 2.4(c) shows. This seems consistent with the general notion that

the onset of the superconducting gap (or pseudo-gap) reduces the decay channels for

quasi-particles.
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2.6 Conclusion

In conclusion, we proposed a phenomenological ARPES line shape model,

based on the ECFL theory [1, 15]. The essential feature of our model remains the

caparison factor [1, 2, 16], which is capable of describing both anomalous EDC line

shapes [18, 2], universal for high Tc cuprates, and apparently more conventional MDC

line shapes [12, 13]. While our model is not the first to fit both EDCs and MDCs

[12] of high Tc cuprates, its demonstrated fidelity (including a qualitative description

of |Mif |2) and range of applicability is now unprecedented. Also unprecedented is the

notable fact that our model requires a Dyson self energy [25], whose form is drasti-

cally different from that assumed by the prevalent, but incomplete, MDC-only analysis

[26, 27]: to our knowledge, ours is the only ~k-dependent [25] Dyson self energy that has

fit cuprate MDCs. Thus, extending the current analysis to wider ranges of momentum,

doping, and temperature and studying its implication on other properties such as the

resistivity [16] seems to make a great research topic for the immediate future.
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Chapter 3

Origin of Kinks in Energy Dispersion of

Strongly Correlated Matter

This chapter reproduces, Kazue Matsuyama, Edward Perepelisky, and B. Sriram Shas-

try, ”Origin of Kinks in Energy Dispersion of Strongly Correlated Matter.” arXiv preprint

arXiv:1610.08079 (2016). The manuscript is currently under consideration for publication.

3.1 Abstract

We investigate the origin of ubiquitous low energy kinks found in Angle Re-

solved Photoemission (ARPES) experiments in a variety of correlated matter. Such

kinks are unexpected from weakly interacting electrons and hence identifying their ori-

gin should lead to fundamental insights in strongly correlated matter. We devise a

protocol for extracting the kink momentum and energy from the experimental data

which relies solely on the two asymptotic tangents of each dispersion curve, away from
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the feature itself. It is thereby insensitive to the different shapes of the kinks as seen in

experiments. The body of available data is then analyzed using this method. We pro-

ceed to discuss two alternate theoretical explanations of the origin of the kinks. Some

theoretical proposals invoke local Bosonic excitations (Einstein phonons or other modes

with spin or charge character), located exactly at the energy of observed kinks, leading

to a momentum independent self energy of the electrons. A recent alternate is the theory

of extremely correlated Fermi liquids (ECFL). This theory predicts kinks in the disper-

sion arising from a momentum dependent self energy of correlated electrons. We present

the essential results from both classes of theories, and identify experimental features

that can help distinguish between the two mechanisms. The ECFL theory is found to

be consistent with currently available data on kinks in the nodal direction of cuprate

superconductors, but conclusive tests require higher resolution energy distribution curve

data.

3.2 Introduction

High precision measurements of electronic spectral dispersions has been possi-

ble in recent years, thanks to the impressive enhancement of the experimental resolution

in the angle resolved photoemission spectroscopy (ARPES). This technique measures

the single electron spectral function A(~k, ω) multiplied by the Fermi occupation func-

tion; it can be scanned at either fixed ~k as a function of ω or at fixed ω as a function of ~k.

These scans produce respectively the energy distribution curves (EDCs) and momentum
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distribution curves (MDCs). The line shapes in both these scans are of fundamental

interest, since they provide a direct picture of the quasiparticle and background com-

ponents of interacting Fermi systems, and thus unravel the roles of various interactions

that are at play in strongly correlated Fermi systems. The dispersion relation of the

electrons can be studied through the location of the peaks of A(~k, ω) in constant ω or

constant ~k scans, and recent experimental studies have displayed a surprising ubiquity

of “kinks” in strongly correlated matter at low energies ∼ 50− 100 meV. The kinks are

bending type anomalies (see Fig. (3.1)) of the simple linear energy versus momentum

dispersion, expected near ~kF from band theory. It is evident that the kinks arise from

some departure from band theory- through mutual interactions or with other degrees

of freedom. Elucidating their origin is of basic importance, and is the main goal of this

work.

The purpose of this paper is multifold, we (i) survey the occurrence of the kinks

in a variety of correlated systems of current interest, (ii) provide a robust protocol for

characterizing the kinks which is insensitive to the detailed shape of the kink, (iii) discuss

how these kinks arise in two classes of theories, one based on coupling to a Bosonic mode

and the other to strong correlations, and (iv) identify testable predictions that ARPES

experiments can use to distinguish between these.

The fifteen systems reporting kinks are listed in Table (3.1); these include (1)

most high Tc cuprates in the (nodal) direction 〈11〉 at various levels of doping from

insulating to normal metallic states in the phase diagram [28, 29] (2) charge density

wave systems, (3) cobaltates and (4) ferromagnetic iron surfaces. The kinks lose their
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sharpness as temperature is raised [30, 29, 31], and appear to evolve smoothly between

the d-wave superconducting state and the normal state.
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Name of the compounds Local Bosonic Mode

Above Tc Below Tc

MDC EDC MDC EDC Charge Spin Not reported

LSCO X[30, 36] X[30, 28, 19, 36] X[37] X[38, 39, 40] X[41]

Bi2201 X[30, 36, 32, 42] X[43] X[32] X[44]

Bi2212 X[45, 29, 30, 31, 32, 36] X[31] X[29, 30, 31, 32, 36] X[46] X[47, 48]

Bi2223 X[32, 49] X[32, 49, 50] X

YBCO X[51] X[52, 53] X[54, 55, 56, 57]

Hg1201 X[58] X[59] X[60, 61, 62]

F0234 X[63] X

CCOC X[64] X

LSMO X[65] X[65] X

2H-TaSe2 (CDW) X[66] X[67]

Iron (110) surface X[68] 85 K X

BiBaCo1 X[69] 5K X[69] 5K X

BiBaCo2 X[69] 5K X[69] 5K X

BiBaCo X[69] 200K X[69] 200K X

NaCoO X[69] 5K X[69] 5K X

Table 3.1: Comprehensive survey for ARPES kinks

42



The kinks above Tc are smoothed out as one moves away from nodal direction

[32]. Recent experiments [33] resolve this movement of the kinks more finely into two

sub features. Most of the studies in Table (3.1) focus on MDC’s, the EDC data is

available for only eight systems so far. Bosonic modes have been reported in six systems

using different probes such as inelastic x-rays or magnetic scattering, with either charge

(phonons, plasmons) or spin (magnetic) character, while the remaining nine systems

do not report such modes. A few theoretical studies of the kinks have implicated the

observed low energy modes via electron-Boson type calculations; we summarize this

calculation in Sec. 3.7. We find, in agreement with earlier studies, that the Boson

coupling mechanism yields kinks in the MDC dispersion, provided the electron-Boson

coupling is taken to be sufficiently large. In addition, we find in all cases studied, this

mechanism also predicts a jump in the EDC dispersion. It also predicts an extra peak

in the spectral function pinned to the kink energy after the wave vector crosses the kink.

These two features are experimentally testable and differ from the predictions of the

correlations mechanism discussed next.

Since kinks are also observed in cases where no obvious Bosonic mode is visible,

it is important to explore alternate mechanisms that give rise to such features. In this

context we note that a recent theoretical work using the extremely strongly correlated

Fermi liquid (ECFL) theory [1, 34] calculates the dispersion using a low momentum and

frequency expansions of the constituent self energies. This calculation [34] shows that

both EDC and MDC energy dispersions display qualitatively similar kinks, in particular

there is no jump in either dispersion. In essence this work implies that a purely electronic
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mechanism with a strong momentum dependence of the Dyson self energy results in kink

type anomalies. We provide some details of this theoretical calculation, and identify

features that can be tested against the experiments. In terms of parameter counting,

the calculation is overdetermined, it can be represented in terms of four parameters

which can be fixed from a subset of measurements. With this determination one can

then predict many other measurables and testable relations between these- as we show

below. We show below that the various predictions are reasonably satisfied in one case

(of OPT Bi2212 below), while in other cases, there is insufficient experimental data to

test the theories.

Some details of the current status of the ECFL theory can be found in Sec. 3.8.

The ECFL theory incorporates strong Gutzwiller type correlation effects into the elec-

tron dynamics. It produces line shapes that are in close correspondence to experimental

results for the high Tc systems [2, 3]. The presence of a low energy kink in the theoreti-

cal dispersion was already noted in Ref. ([2]), the present work substantially elaborates

this observation. In order to understand the origin of a low energy scale in the ECFL

theory, it is useful to recall the predicted cubic correction to Fermi liquid self energy

ImmΣ(~kF , ω) ∼ ω2(1 − ω
∆0

) from equations (3.45, 3.7, 3.8). Here ∆0 is an emergent

low energy scale, it is related to the correlation induced reduction of the quasiparticle

weight Z. It reveals itself most clearly in the observed particle hole asymmetry of the

spectral functions, and therefore can be estimated independently from spectral lineshape

analysis. A related and similar low value of the effective Fermi temperature is found in

recent studies of the resistivity [35]. Here and in our earlier studies it is coincidentally
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found that ∆0 ∼ 20− 50 meV, i.e. it is also roughly the energy scale of the kinks when

the bandwidth is a few eV.

3.3 ARPES spectral dispersions, kinks and a protocol for

data analysis

3.3.1 Summary of variables in the theory

A few common features of spectral dispersions found in experiments are sum-

marized in Fig. (3.1). The schematic figure shows a region of low spectral velocity near

the Fermi momentum followed by a region of steeper velocity, these are separated by a

bend in the dispersion- namely the kink. While the kink itself has a somewhat variable

shape in different experiments, the “far zone” is much better defined and is usually

independent of the temperature, we denote the velocities in the far zones VL, VH for

MDC and their EDC counterparts by V ∗L , V
∗
H . In terms of the normal component of

the momentum measured from the Fermi surface k̂ = (~k − ~kF ).~∇εkF /|~∇εkF |, the kink

momentum k̂kink is uniquely defined by extrapolating the two asymptotic tangents, and

the binding energy at this momentum defines the ideal kink energy Eidealkink (see Eq. (3.6)),

which serves as a useful reference energy.

We first define the important ratio parameter r (0 ≤ r ≤ 2) from the MDC

dispersion velocities as

r =
2VH

VH + VL
. (3.1)
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The EDC and MDC dispersion relation E∗(k) and E(k) are found from theory (see

Sec. 3.8 and Ref. ([34])) as:

E∗(k) =

(
r VLk̂ + ∆0 −

√
Γ2

0 +Q2

)
, (3.2)

E(k) =
1

2− r

(
VLk̂ + ∆0 −

√
r(2− r) Γ2

0 +Q2

)
, (3.3)

where we introduced an energy parameter related to r, VL and k̂kink

∆0 = k̂kinkVL(1− r), (3.4)

and a momentum type variable Q = (r−1)VL (k̂−k̂kink). The variable Γ0 is temperature

like,

Γ0 = η + π{πkBT}2/ΩΦ; (3.5)

here η is an elastic scattering parameter dependent upon the incident photon energy, it is

very small for laser ARPES experiments and can be neglected to a first approximation.

Further, ΩΦ a self energy decay constant, is explained further in Sec. 3.8. The ideal

kink energy VLk̂kink can be expressed in terms of ∆0 scale as:

Eidealkink = − 1

r − 1
∆0. (3.6)
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Figure 3.1: A schematic MDC and EDC spectrum displaying typical features of exper-
iments discussed below. Here k̂ = (~k − ~kF ).~∇εkF /|~∇εkF |, is the momentum component
normal to the Fermi surface, and we label EDC variables with a star. (The sketch
uses parameters VL = 2 eV Å, VH = 6 eV Å, r = 1.5, k̂kink = −0.03 Å−1, ∆0 = 0.03 eV,
and Γ0 = 0.01 eV in equation (3.2,3.3)). The tangents in the far zones identify the
asymptotic velocities VL < VH and V ∗L < V ∗H that characterize the MDC and EDC
spectra. The intersection of the extrapolated MDC tangents fixes the kink momentum
k̂kink and the ideal energy Eidealkink . The dispersion is rounded with raising T, as in the

lower (red) curve. We define the MDC kink energy EMDC
kink as E(k̂kink), i.e. the binding

energy measured at the kink momentum, and similarly the EDC kink energy. In all
cases VL = V ∗L . A testable consequence of the ECFL theory is that V ∗H is fixed in terms
of the two MDC velocities by a strikingly simple relation: V ∗H = 3VH−VL

VH+VL
× VL. This

prediction is tested against experimental data in Fig. (3.2) where both EDC and MDC
data is available. In contrast the electron-Boson theory predicts a jump in the EDC
dispersion at the kink energy, followed by V ∗H = VH . Note that the difference between
the EDC (MDC) kink energy and the ideal kink energy is equal (proportional) to Γ0

(see Eqs. (3.9) and (3.10)).
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The spectral function at low frequencies close to ~kF is also obtainable from

these parameters, the relevant formula is noted below. In terms of ξ

ξ =
1

∆0
(ω − r VLk̂) (3.7)

the spectral function is:

A(~k, ω) =
z0

π

Γ0

(ω − VLk̂)2 + Γ2
0

× {1− ξ√
1 + caξ2

},

(3.8)

Here z0 is the quasiparticle weight and ca ∼ 5.4 (see Sec. 3.8). We should keep in mind

that these expressions follow from a low energy expansion, and is limited to small k̂ and

ω; in practical terms the dimensionless variable |ξ| <∼ 4, so that ω (or k̂) is bounded by

the kink energy (or momentum), as defined below.

3.3.2 Fixing the parameters

The independent parameters in the ECFL expressions for the kink can be taken

as VH , VL, k̂kink and Γ0. These can be fixed with four measurements as we indicate below.

While the first three can be measured with precision, the variable Γ0 depends on the

temperature and is also quite sensitive to the various experimental conditions including

the incident photon energy, thus making it less precisely known than the others; we will

perforce be content with rough estimates of this variable. The remaining parameters

can be calculated using Eq. (3.1) and Eq. (3.4) etc. As mentioned above, the theory
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is overdetermined, in terms of these four parameters, the theory predicts a number of

other quantities: a) the dispersion curves for both EDCs and MDCs, b) the location

of both EDC and MDC kinks at finite temperature, and c) the spectral functions near

the Fermi level ( up to roughly the kink energy). Below we present an analysis of the

ARPES data of Bi2212, LSCO and Bi2201 taken from literature, where we give the

details of the fits and the predicted EDC velocities for future experiments.

The asymptotic velocities VH , VL determine the ratio r from Eq. (3.1). The

energy ∆0 and the ideal kink energy are determined from equations (3.4, 3.6). As

discussed in Fig. (3.1) EMDC
kink is found by measuring the dispersion at the kink wave

vector E(k̂kink), and similarly the EDC kink energy EEDCkink is found from E∗(k̂kink). For

understanding the finite temperature data, the theory provides temperature dependent

correction terms for the two spectra, determined by the parameter Γ0 (see Sec. 3.8),

EEDCkink = Eidealkink − Γ0, (3.9)

EMDC
kink = Eidealkink − Γ0

√
r

2− r
. (3.10)

Since Γ0 determines the non-zero T (or η) correction, we estimate from the difference

between low and high temperature MDC dispersion curves

Γ0 = ∆Ekink =

√
2− r
r

(
Eidealkink − EMDC

kink

)
. (3.11)

Clearly uncertainties in Γ0 are governed by those in the MDC dispersion at the kink
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momentum.

As noted in Fig. (3.1), the ECFL theory predicts a kink, rather than a jump in

the EDC spectrum, quite analogous to that in the MDC dispersion, but with a different

velocity on the steeper side, i.e. V ∗H 6= VH . In fact the theory provides an experimentally

testable expression relating the two, V ∗H is expressed quite simply in terms of measurable

experimental variables,

V ∗H =
3VH − VL
VH + VL

× VL. (3.12)

As mentioned in the introduction the Boson-mode coupled theories predict a jump in

the EDC spectrum at the kink energy. The velocity beyond the jump is the same in

EDC and MDC, i.e. V ∗H = VH , in contrast to Eq. (3.12). This velocity is reported in

only a few cases, and provides a ready test of the ECFL theory.

The theory also predicts VL = V ∗L , which is satisfied by inspection in all re-

ported cases and is common to the Boson-mode theory. We use this protocol to analyze

the experiments on three well studied families of high Tc materials next.

3.4 OPT Bi2212 ARPES dispersion data

In the well studied case of optimally doped Bi2212 (BSCCO) superconduc-

tors, the kink has been observed in both EDC and MDC. We summarize the ECFL fit

parameters in Table (3.2) obtained from literature [31]. We also display the predicted

energy and velocity of the EDC spectral kink. The velocity ratio VH/V
∗
H ∼ 1.3 in this
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case, is quite large and measurable. In this case the EDC dispersion has fortunately

already been measured, allowing us to test the prediction. From Table (3.2) we see that

the energy of the EDC kink and its velocity are close to the predictions.

MDCs EDCs

OPT Bi2212 ARPES data EMDC
kink (meV) EEDCkink (meV) V ∗H (eV Å)

VL (eV Å) VH (eV Å) k̂kink (Å−1) Calculated Measured Calculated Measured Predicted Measured

1.47 ± 0.07 3.3± 0.3 - 0.037± 0.005 67± 21 67± 8 63± 21 65± 8 2.60± 0.56 2.1± 1.1

Table 3.2: Parameter table for ARPES kink analysis for OPT Bi2212 [31] in Fig. 3.2
presents three essential parameters, VL, VH , and k̂kink. From the high and low temper-
ature MDC dispersions, we measured Γ0 . 10 meV in Panel (b) of Fig. 3.2. With the
measured experimental parameters and determining the velocity ratio r in Eq. (3.1),
we are able to estimate the finite temperature kink energy for EDC and MDC disper-
sions by Eq. (3.9) and Eq. (3.10) and predict V ∗H by Eq. (3.12). The uncertainties for
calculated variables were determined by error propagation, and the uncertainties for
experimental variables were given by the half of the instrumental resolution.

In Panel (a) in Fig. 3.2, we plot the predicted EDC dispersion using the param-

eters extracted from the MDC dispersion in Panel (b), and compare with the ARPES

data measured[31]. It is interesting that the predicted slope of the EDC dispersion from

Eq. (3.12) is close to the measured one. Indeed the measured EDC dispersion is close

to that expected from the ECFL theory. To probe further, in Panel (c) in Fig. (3.2)

we compare the theoretical EDC line shape (solid blue line) given by the same parame-

ters through Eq. (3.8), with the ARPES line shape measured at high temperature [31].
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Panel (d) compares the theoretical MDC curve with the data. The theoretical curves

are from the low energy expansion and hence are chopped at the high end, correspond-

ing to roughly |ξ|max ∼ rVL k̂kink
∆0

for MDC and |ξ|max ∼
Eidealkink

∆0
for the EDC. With this

cutoff, the momentum is less than the kink momentum and the energy is less than the

kink energy. We used Γ0 = 40 meV since it provides a rough fit for both EDC and

MDC spectral functions.
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Figure 3.2: ARPES kinks data for OPT Bi2212 from Ref. ([31]) compared to theoret-
ical ECFL curves (solid lines) using parameters listed in Table. 3.2. Panel:(a) The
predicted EDC spectrum (blue) from Eq. (3.2), versus the experimental EDC data (ma-
genta symbols) at T=115K. For reference we also show the MDC data (red dashed
curve) and the corresponding ECFL fit (green solid curve). Panel:(b) Experimental
MDC spectra at 40K (below Tc in blue dashed line) and 115K (above Tc in red dashed
line) yield common asymptotes shown in black lines from the far zone. These determine
the parameters displayed in Table (3.2). Panel:(c) At low energy ± 60 meV, the EDCs
spectral function (blue solid line) from Eq. (3.8) is contrasted with the corresponding
ARPES data from [31]. Panel:(d) At ω = 0 we compare the MDCs spectral function
(blue solid line) from Eq. (3.8) with the corresponding ARPES data from Ref. ([31]).
The range of validity for the theoretical expansion is ± k̂kink ( 0.037Å−1 ), the data points
in the range are shown in black circle symbols, while the light gray circle symbols are
outside this range. The peak position of the theoretical curve has been shifted to left
by 0.007 Å−1 which is within the instrumental resolution of 0.01 Å−1.
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This value is somewhat larger than the bound ∼ 10 meV given in Table (3.2),

a smaller value leads to narrower lines but with the same shape. In rigorous terms the

same Γ0 must fit the dispersion and also the spectral functions. Our fit, requiring a

different Γ0, is not ideal in that sense. However the resolution of the available data

is somewhat rough, and should improve with the newer experimental setups that have

become available. We thus expect that higher resolution data with laser ARPES should

provide an interesting challenge to this theory. We also stress that from Eq. (3.8), the

MDC curves look more symmetric than the EDC curves at low energies. While many

experimental results do show rather symmetric MDC’s, there are well known exceptions.

For instance MDCs asymmetry has indeed been reported for nearly optimally doped

Hg1201 ( Tc = 95 K ) at binding energy very close to the Fermi level, ω ∼ - 5 meV and

ω ∼ -18 meV in Fig. 5 in Ref. ([58]).

Note that the ω = 0 MDC plot of the spectral function A(k, ω) from Eq. (3.8),

locates the peak momentum k̂peak > 0, i.e. slightly to the right of the physical Fermi

momentum ~kF . This implies that the experimental Fermi momentum determination is

subject to such a correction, whenever the spectral function Eq. (3.8) has a momentum

dependent caparison factor. In the case displayed in Panel (d), the shift is 0.007 Å−1, a

bit less than the instrumental resolution, and we have shifted the curve to the left for

comparing with the data. A similar shift is made in Panel (l) Fig. 3.3. For analogous

reasons the EDC peak in A(k, ω) at ~kF is shifted to the left i.e. ωpeak < 0. A small

shift to the right is made in Panel (k) of Fig. (3.3), in order to compensate for this

effect. These shift effects are within the resolution with present setups, but should be
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interesting to look for in future generation experiments, since they give useful insights

into the energy momentum dependence of the spectral function.

3.5 LSCO low temperature data

Here we analyze the LSCO data at low temperature (20 K) and at various

doping levels raging from the insulator (x = 0.03) to normal metal (x = 0.3) from

Ref. ([28]). The parameters are listed in Table (3.3), where we observe that the velocity

VL is roughly independent of x, and has a somewhat larger magnitude to that in OPT

Bi2212 in Table (3.2). The kink momentum decreases with decreasing x, roughly as

k̂kink = −(0.37x− 0.77x2)Å−1, and the kink energies of EDC and MDC dispersions are

essentially identical. In the region beyond the kink, the prediction for V ∗H is interesting

since it differs measurably from the MDC velocity VH . We find the ratio VH/V
∗
H ∼

1.02− 1.5 is quite spread out at different doping.
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MDCs EDCs

LSCO low temperature ARPES data EMDC
kink (meV) EEDCkink (meV) V ∗H (eV Å)

x ( doping level ) VL (eV Å) VH (eV Å) k̂kink (Å−1) Calculated Measured Calculated Measured Calculated Measured

0.3 2.4± 0.2 3.0± 0.3 - 0.047± 0.005 113± 29 110± 10 113± 29 2.93± 0.45

0.22 2.0± 0.1 3.6± 0.2 - 0.042± 0.005 84± 18 85± 10 84± 18 3.14± 0.35

0.18 1.7± 0.3 4.5± 0.6 - 0.040± 0.005 68± 43 72± 10 68± 43 3.2± 1.2

0.15 1.75± 0.07 4.3± 0.1 - 0.037± 0.005 65± 11 64± 10 65± 11 3.23± 0.20

0.12 2.0± 0.3 3.7± 0.5 - 0.029± 0.005 58± 28 55± 10 58± 28 3.19± 0.89

0.1 1.8± 0.2 5.0± 0.7 - 0.035± 0.005 63± 44 64± 10 63± 44 3.5± 1.4

0.075 1.9± 0.2 5.6± 0.8 - 0.026± 0.005 49± 37 51± 10 49± 37 3.8± 1.7

0.063 1.8± 0.3 6.0± 0.5 - 0.022± 0.005 40± 21 43± 10 40± 21 3.7± 1.1

0.05 1.7± 0.2 5.7± 0.6 - 0.023± 0.005 39± 25 41± 10 39 ± 25 3.5± 1.3

0.03 2.0± 0.3 6.1± 0.4 - 0.016± 0.005 32± 15 32± 10 32± 15 4.02± 0.85

Table 3.3: Data table for ARPES kink analysis for OPT LSCO ( T = 20 K ) [28] in
Fig. 3.3. We were unable to reliably estimate Γ0 here due to the lack of data at high
temperature, and hence set it at zero. The uncertainties for measured values were given
by half of the instrumental resolution (10 meV, ∼0.005 Å−1). The uncertainties for the
calculated values were determined by error propagation.
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Our analysis becomes unreliable as lower doping level x < 0.075 in Panels

(h) to (j) in Fig. 3.3, where the dispersion kink is no longer a simple bending kink,

an extra curving tendency begins to appear. To put this in context, recall that the

line shape of LSCO becomes extremely broad at small x [19], and so the peak position

of the spectral function becomes more uncertain than at higher energy. We should
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Figure 3.3: ARPES kinks data for LSCO data [28] compared to theoretical ECFL
curves (solid lines) using parameters listed in Table. 3.3. The doping level x varies
between (normal metal) 0.3 ≤ x ≤ 0.03 (insulator) in Panels (a) to (j). Each panel
shows MDC nodal dispersion data (symbols), whose uncertainties are ± 10 meV. Two
black solid straight lines represent VL and VH, and the blue dashed line is the theoretical
prediction for EDC dispersion by Eq. (3.2). Panel:(k) We compare the spectral line
shape for EDCs at kF from Eq. (3.8) (blue solid line) in the range ±Eidealkink ∼ 65 meV
with the corresponding ARPES data (black circles) [3]. Panel:(l) At ω = 0 we compare
the MDCs spectral function (blue solid line) from Eq. (3.8) with the corresponding
ARPES data from Ref. ([3]). The range of validity for the theoretical expansion is
± k̂kink ( 0.037Å−1 ), the data points in the range are shown in black circle symbols,
while the light gray circle symbols are outside this range. The peak position of the
theoretical curve MDC has been shifted to left by 0.006 Å−1.

point out that in Fig. (3.3) Panel (k) the spectral function has been shifted to right

by 4 meV for a better fit. This shifting is consistent with our argument that the

Fermi momentum determination has a possible small error of in order 0.006 Å−1, arising

57



from the k̂ dependent caparison factor, and hence the peak position has an uncertainty

VL × .006 ∼ 10 meV.

3.5.1 Fit parameters

For the LSCO data, we quoted the ECFL theory parameters, velocity ratio r,

the ideal kink energy Eidealkink and the small energy parameter ∆0, in Eqs (1,6,4) (see also

Eq. (3.36)). In Fig. 3.4, we display the doping dependence of these parameter x = 1−n.

The size of the data point represent the uncertainty for each data points. While r and

∆0 stay almost constant, the ideal kink energy decreases linearly with increasing x.
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Figure 3.4: ( a ) The ratio of low and high velocities, r, as a function of doping levels,
and ( b ) ideal kink energy, ( c ) ECFL energy parameter ∆0 as a function of doping
levels for LSCO data in the main text.

3.6 Bi2201 above Tc data

In this section, we present our ARPES kink analysis for OD Bi2201 above

Tc using data available in Ref. ([42]). ARPES kinks in the single-layer compounds

Bi2201, as also LSCO, are observed to have weak to moderate temperature dependence.

Therefore, even though our data in Fig. (3.5) is for T above Tc, the temperature variable
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Γ0 appears to be quite small. In Fig. (3.5), we predict the EDC dispersions for OD

Bi2201 data using Eq. (3.2) for measured experimental MDC variables in Table (3.4).

MDCs EDCs

Bi2201 above Tc ARPES data EMDC
kink (meV) EEDCkink (meV) V ∗H (eV Å)

x (doping level ) VL (eV Å) VH (eV Å) k̂kink (Å−1) Calculated Measured Calculated Measured Calculated Measured

0.225 1.7± 0.1 4.5± 0.4 - 0.039± 0.005 75± 28 76± 5 72± 28 3.24± 0.80

0.24 1.9± 0.1 4.9± 0.3 - 0.033± 0.005 82± 21 80± 5 77± 21 3.58± 0.60

0.252 2.0± 0.2 4.2± 0.2 - 0.035± 0.005 78± 16 74± 5 75± 16 3.42± 0.39

0.258 1.7± 0.2 4.1± 0.2 - 0.039± 0.005 80± 17 77± 5 75± 17 3.11± 0.40

0.27 1.8± 0.1 4.0± 0.3 - 0.039± 0.005 79± 22 79± 5 76± 22 3.17± 0.56

Table 3.4: ARPES kink analysis for various OD Bi2201 above Tc [42] in Fig.3.5. We
measured all Γ0 . 10 meV. The uncertainties for the calculated kink energies were
determined by error propagation, and the uncertainties for the experimental variables
were given by half of the instrumental resolution.

Our analysis suggests V∗H < VH as in Bi2212 and LSCO. Kink energies for

MDCs were estimated theoretically, and compared with the experimental values in

Table (3.4), suggesting our data analysis is reliable. We find that the ratio VH/V
∗
H ∼

1.37 − 1.4 is consistently larger than in the other two families and should be easy to

measure. Further high resolution EDC data at different doping is needed to check the

predictions of the present analysis.
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Figure 3.5: ARPES kinks data for various OD Bi2201 compounds above Tc [42] com-
pared to theoretical ECFL curves (solid lines) using parameters in Table (3.4). From
(a) to (e) the doping level varies between 0.225 < x < 0.27, and the blue dashed line
is the theoretically predicted EDC spectrum using Eq. (3.2). We estimated all Γ0 . 10
meV.

3.7 Electron-Boson coupling theory of kinks

The electron Boson mechanism suggested in Ref. ([70]) and others [33, 46],

is the coupling of the electrons to Bosonic modes (such as phonons), located at the

kink energy. To illustrate the basic idea, we first consider free electrons coupled to an

Einstein phonon mode of energy ω0 = .08 eV [33, 46], with coupling constant g. In this

case, the spectral function is expressed in terms of a momentum independent self-energy

Σ(ω), as

A(~k, ω) = − 1

π

ImmΣ(ω)

(ω − ξk −<eΣ(ω))2 + (ImmΣ(ω))2
,

(3.13)
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where ξk ≡ εk − µ, εk is the bare dispersion, and µ is the chemical potential. The real

and imaginary parts of the self-energy due to the electron-phonon interactions are given

by the well known formulas: [71, 72]

ImmΣ(ω) = −πg2
∑
±
N(ω + µ± ω0)×

[
f∓(ω ± ω0) + n(ω0)

]
,

<eΣ(ω) = − 1

π

∫
dν

ImmΣ(ν)

ω − ν
, (3.14)

where f−(ν) ≡ f(ν), f+(ν) ≡ f̄(ν) ≡ 1 − f(ν), f(ν) and n(ν) are the Fermi and

Bose distribution functions respectively, and N(E) ≡ 1
Ns

∑
k δ(E − εk) is the local

density of states for the free electrons. Since the relevant frequency range for the self-

energy is |ω| ∼ ω0, and ω0 � W , where W is the bandwidth, we neglect the frequency

dependence in the density of states, i.e. N(ω + µ ± ω0) ≈ N(µ) ≈ N(εf ), where εf is

the Fermi energy. Furthermore, the strength of the electron-phonon coupling is given

by the dimensionless parameter [73] λ ≡ 2N(εf )g2

ω0
. Therefore, the imaginary part of the

self-energy is expressed directly in terms of λ as

ImmΣ(ω) = −πλω0

2

∑
±

[
f∓(ω ± ω0) + n(ω0)

]
.

(3.15)
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Figure 3.6: Results for free electrons coupled to an Einstein phonon mode of frequency
ω0 = .08 eV, with coupling strength λ = 0.5, at T = 10 K. Right panel: The EDCs at
several representative momenta, the variable ξ = vf (k − kF ) = (1 + λ)VL(k − kF ) here
and in later figures. The dashed line indicates the phonon frequency, ω = −ω0. Each
EDC has two well-defined features, a peak followed by a hump (separated by a sharp
dip for low momentum EDCs). Middle panel: The MDC dispersion (magenta) has
no jump while the EDC dispersion (blue) shows a jump. The two vertical dashed lines
partition momentum space into three regions. The horizontal dashed line indicates the
location of the hump in the EDCs in the first (low-momentum) region. In the first two
regions, the EDC dispersion follows the MDC dispersion (closest to zero frequency),
while in the third (high momentum) region, it stays pinned to the phonon frequency
over a large range of momentum, until it discontinuously jumps back down to the MDC
dispersion. Note that VH = V ∗H . Left panel: ω − <eΣ(ω) and −ImmΣ(ω) vs. ω. The
horizontal dashed lines indicate the momenta associated with the corresponding EDCs
in the right panel. The red dots indicate the locations of the peaks, and the green dots
indicate the locations of the humps, as determined directly from each EDC.
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We initially choose a typical intermediate strength value of λ = 0.5. We also

add a small broadening η = .01 eV to the imaginary part of the self-energy. In Fig. (3.6),

we display ω−<eΣ(ω) and−ImmΣ(ω) vs. ω (left panel), the EDC and MDC dispersions

(middle panel), as well as the EDCs at several representative momenta (right panel) at

T = 10 K. The EDC and MDC dispersions as well as the EDCs can be understood

directly from the real and imaginary parts of the self-energy using Eq. (3.13). From

Eq. (3.13), the the MDC at fixed ω is a Lorentzian of width −ImmΣ(ω) and peak

position ξ∗(ω) = ω − <eΣ(ω) [70]. Therefore, the MDC dispersion is obtained by

inverting ξ∗(ω) to obtain E(ξ). Since ω − <eΣ(ω) is not one-to-one, E(ξ) is a multi-

valued function.

To understand the EDC dispersion, we first examine the EDC curves in the

right panel of Fig. (3.6). The momentum ξ associated with each curve is given by the

location of the corresponding horizontal dashed line along the vertical axis in the left

panel. The EDC at each momentum has two distinguishable features, a peak followed

by a hump. In the left panel, the red and green dots indicate the location of the peak

and hump, respectively, at each momentum, as determined directly from the EDC.

We partition the EDCs into three distinct momentum regions, |ξ| < |ξ1|, |ξ1| <

|ξ| < |ξ2|, and |ξ| > |ξ2|, where the momenta ξ1 and ξ2 (the low-energy kink momentum)

are denoted by the dashed vertical lines in the middle panel of Fig. (3.6). In the

first region, |ξ| < |ξ1|, the peak location, E∗p , disperses according to the equation ξ =

E∗p − <eΣ(E∗p), while the hump location, E∗h, remains at a fixed frequency, displayed

by the horizontal dashed line in the middle panel. In addition, there is a sharp dip
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between the peak and the hump which is pinned to the phonon frequency, −ω0. Since

ImmΣ(E∗p) is constant throughout this region, the height of the peak does not change.

On the other hand, since |E∗h− ξ−<eΣ(E∗h)| decreases as |ξ| is increased (and of course

ImmΣ(E∗h) is constant), the hump height grows as |ξ| approaches |ξ1|. Nevertheless,

since the peak height remains greater than the hump height throughout this region (as

will be shown below), the EDC dispersion is given by E∗ = E∗p .

In the second region, |ξ1| < |ξ| < |ξ2|, both E∗p and E∗h disperse according to

the equation ξ = E∗p,h−<eΣ(E∗p,h), E∗p being the root closest to, and E∗h being the root

farthest from, zero frequency. Since ImmΣ(E∗p) continues to remain constant and has

the same value as in the first region, so does the height of the peak. Moreover, since

ImmΣ(E∗h) remains constant as well, the height of the hump remains the one which it

reached at ξ = ξ1. Finally, since |ImmΣ(E∗h)| > |ImmΣ(E∗p)|, the peak height is greater

than the hump height, and therefore E∗ = E∗p .

In the third region, |ξ| > |ξ2|, E∗p is pinned to the phonon frequency −ω0,

while E∗h continues to disperse according to the equation ξ = E∗h − <eΣ(E∗h). Since

ImmΣ(E∗h) continues to have the same value as in the second region, so does the height

of the hump. Meanwhile, the peak height decreases, since |E∗p − ξ−<eΣ(E∗p)| increases

as |ξ| is increased. Although initially E∗ = E∗p = −ω0, eventually, after |ξ| has been

sufficiently increased, the peak height falls below the hump height, and E∗ = E∗h.

Accordingly, in the middle panel, we see that in first two regions, the EDC dispersion

follows the MDC dispersion, E∗ = E (closest to zero frequency). However, in the

third region, E∗ stays fixed at −ω0, until at sufficiently high momentum, it jumps
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back down to the MDC dispersion. Since the MDC and EDC dispersions coincide for

large momentum, the velocities VH and V ∗H are equal. We take these three features,

a discontinuous jump in the EDC dispersion, a peak pinned to the phonon frequency

in the EDC over a prolonged range of momentum, and the equality VH = V ∗H , to be

signatures of electron-Boson coupling in ARPES experiments. Similar calculations to

the one above can be found in [70, 33], with analogous results.
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Figure 3.7: To explore the effects of raising λ, we set λ = 1 while leaving all other
parameters unchanged from Fig. (3.6). As a result, the kink momentum in the MDC
dispersion becomes bigger, the hump in the EDCs is suppressed, the EDC dispersion
stays pinned to the phonon frequency over a larger range of momentum, and the mag-
nitude of the jump in the EDC dispersion grows.

To examine the effects of raising λ, we set λ = 1 leaving all other parameters

unchanged, and plot the corresponding results in Fig. (3.7). This causes several notice-

able changes to the results in Fig. (3.6). 1) The kink in the real part of the self-energy

becomes sharper, which leads to a larger kink momentum, ξ2, in the MDC dispersion.

2) −ImmΣ(E∗h) becomes bigger, causing the height of the hump to go down. 3) As

a direct consequence of 2), the range over which the EDC dispersion stays pinned to

the phonon frequency becomes more prolonged in momentum space, and therefore the
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magnitude of the jump in the EDC dispersion also becomes bigger.

Setting T → 0 in Eq. (3.15), and plugging it into Eq. (3.14), we find that

to linear order in ω � ω0, <eΣ(ω) = −λω. Therefore, λ =
vf
VL
− 1 (see also [74]).

According to the normal state data (T = 115 K) from [31, 46, 75] (since T � ω0,

this zero temperature formula still applies), VL = 1.47eV Å and vf = 2.7eV Å, yielding

λ = 0.84. In principle, one might argue for the larger value of vf ∼ 5.4 eV Å from the

ARPES observed width of the band [2], leading to λ ∼ 2.67, a very high value indeed.

However, we will assume, with several authors of the Boson-coupling models, that the

smaller estimate is overall more reasonable. Using these experimentally relevant values,

in Fig. (3.8), we plot ω−<eΣ(ω) and −ImmΣ(ω) vs. ω (left panel), as well as the MDC

and EDC dispersions (middle panel), and the EDCs at several representative momenta

(right panel). Due to the higher value of T , the self-energy curves have been rounded

out somewhat as compared to Fig. (3.6), but retain the same features. We see that the

EDC dispersion once again follows the MDC dispersion (closest to zero frequency) in

the first two momentum regions, until it (nearly) flattens out in the third region, where

the peak is pinned to the phonon frequency, −ω0, in the corresponding EDCs. As the

momentum is increased such that the height of this peak shrinks below the height of

the hump, the EDC dispersion jumps discontinuously down from the phonon frequency,

to the MDC dispersion. Consequently, we see that the velocities of the MDC and EDC

dispersion coincide above the kink; i.e. VH = V ∗H .
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Figure 3.8: We now use the experimentally relevant values of λ = 0.84 and T = 115 K.
The curves retain the same qualitative features as in Fig. (3.6), which are less sharp in
the present case due to the higher value of T .

We now examine how these results are affected by retaining the full frequency-

dependence of the density of states in Eq. (3.14). Just as was done in [46], we use the

dispersion tb2 from [75]. In this case, εf = 0 and N(εf ) = 0.61 eV−1. Retaining the

same values of T = 115 K and λ = 0.84, we set g = 0.23 eV in Eq. (3.14). We also

set µ ≈ εf = 0. In Fig. (3.9), we plot ω − <eΣ(ω) and −ImmΣ(ω) vs. ω (left panel),

as well as the MDC and EDC dispersions (middle panel), and the EDCs at several

representative momenta (right panel). Due to the functional form of the density of states

(see the inset of the left panel), the MDC dispersion acquires two additional branches

which yield large frequency values. In the first two momentum regions (below the low-

energy kink momentum), the EDC dispersion follows the lowest-frequency branch of

the MDC dispersion. As the momentum increases into the third region (above the

low-energy kink momentum), the peak stays pinned to the phonon frequency in the

corresponding EDCs. Moreover, since |ImmΣ (E(ξ)) | � |ImmΣ(−ω0)|, where E(ξ)

can be any branch of the MDC dispersion, the EDC dispersion stays pinned to the
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phonon frequency as well. As the momentum is increased further and the height of the

peak decreases sufficiently, the EDC dispersion jumps discontinuously onto the highest-

frequency branch of the MDC dispersion, since this is the one with the smallest value

of |ImmΣ (E(ξ)) |, and hence VH = V ∗H . This small value of |ImmΣ (E(ξ)) | leads to a

noticeable hump at high-frequencies in the corresponding EDCs.
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Figure 3.9: We explore the effects of using the full frequency-dependence of the density
of states in Eq. (3.14), with λ = 0.84 and T = 115 K. Due to the functional form
of the density of states (displayed as an inset in the left panel), the MDC dispersion
acquires two additional branches which yield large frequency values. Below the low-
energy kink momentum, the EDC dispersion follows the lowest-frequency branch of the
MDC dispersion. Above the low-energy kink momentum, the EDC dispersion initially
stays pinned to the phonon frequency, until it discontinuously jumps onto the highest-
frequency branch of the MDC dispersion (VH = V ∗H). A noticeable hump also develops
at high-frequencies, in the corresponding EDCs.

Thus far, we have considered only free electrons coupled to a Boson mode. We

now include electron-electron correlations. Following [25], we assume that

ImmΣel−el(ω) = −(τ2 + ω2)

Ω0
exp

[
−(τ2 + ω2)

ν2
0

]
− η,

(3.16)
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where Σel−el(ω) is the self-energy due only to electron-electron correlations, τ ≡ πkBT ,

T = 115 K, Ω0 = .14 eV, ν0 = .5 eV, and we set η = .01 eV. This phenomenological

form for ImmΣel−el(ω) reproduces the correct Fermi-liquid behavior at low frequencies,

and extrapolates to high frequencies in a reasonable way. Furthermore, we assume a

flat band for εk of bandwidth W , i.e N(E) = 1
W Θ(W2 − |E|), and set µ ≈ εf = 0.

Retaining the same values of N(εf ) = 0.61 eV−1 and λ = 0.84 as before, yields the

values W = 1.64 eV and g = 0.23 eV. The self-energy is now given by the sum

Σ(ω) = Σel−el(ω) + Σel−ph(ω), where the imaginary part of the latter term is

ImmΣel-ph(ω) = −πg2
∑
±
Ael-el,loc(ω ± ω0)×

[
f∓(ω ± ω0) + n(ω0)

]
, (3.17)

while the real part is as usual given by applying the Hilbert transform to Eq. (3.17).

Here, Ael-el,loc(ω) = 1
Ns

∑
k Ael-el(~k, ω), where Ael-el(~k, ω) is given by Eq. (3.13) with

the substitution Σ(ω) → Σel-el(ω). Eq. (3.13) continues to express A(~k, ω) in terms of

Σ(~k, ω), where both objects now include electron-electron and electron-phonon correla-

tions.

In Fig. (3.10), we plot ω −<eΣ(ω) and −ImmΣ(ω) vs. ω (left panel), as well

as the MDC and EDC dispersions (middle panel), and the EDCs at several represen-

tative momenta (right panel), from this calculation. Due to the specific form of the

self-energy, Σel−el(ω) (both −ImmΣel−el(ω) and Ael-el,loc(ω) are displayed as an inset

in the left panel), the highest-frequency branch of the MDC dispersion yields very large
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values of the frequency. Just as in the cases considered above, for momentum |ξ| be-

low the low-energy kink momentum, the EDC dispersion follows the lowest-frequency

branch of the MDC dispersion, El(ξ). As the momentum |ξ| is increased above the

low-energy kink momentum, the rapid increase in |ImmΣ (El(ξ)) | causes the peak in

the EDC as well as the EDC dispersion to stay pinned to the phonon frequency. As the

momentum is increased further, |ImmΣ (Eh(ξ)) | becomes comparable to |ImmΣ(−ω0)|,

where Eh(ξ) is the highest-frequency branch of the MDC dispersion. At this point, the

EDC dispersion jumps discontinuously from the phonon frequency onto the highest-

frequency branch of the MDC dispersion, and hence VH = V ∗H . This is also reflected in

the corresponding EDCs, which acquire a hump at high-frequencies.

-0.2-0.2-0.4-0.4-0.6-0.6
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Figure 3.10: We explore the effects of Fermi-liquid-like electron-electron correlations
(Eq. (3.16)), with λ = 0.84 and T = 115 K. Due to the functional form of the self-
energy, Σel−el(ω) (both −ImmΣel−el(ω) and Ael-el,loc(ω) are displayed as an inset in
the left panel), the highest-frequency branch of the MDC dispersion yields very large
values of the frequency. Below the low-energy kink momentum, the EDC dispersion
follows the lowest-frequency branch of the MDC dispersion. Above the low-energy
kink momentum, the EDC dispersion initially stays pinned to the phonon frequency,
until it discontinuously jumps onto the highest-frequency branch of the MDC dispersion
(VH = V ∗H). This is also reflected in the corresponding EDCs, which acquire a hump at
high-frequencies.

In conclusion, we find that in all of the above cases of electrons interacting
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with a Boson mode, the EDCs are characterized by three signatures: (1) a peak pinned

to the Boson-frequency over a large range of momentum, (2) the EDC dispersion jumps

discontinuously from the Boson-frequency onto (the highest-frequency branch of) the

MDC dispersion, and (3) VH = V ∗H . These three features are jointly present for most

parameters explored, and may be viewed as the signatures of kinks produced by this

mechanism.

3.8 Extremely Correlated Fermi liquid theory of kinks

In this section we present the theoretical details of the ECFL calculation of

kinks. We first show the results of a low energy and momentum expansion of the

ECFL Greens function in terms of a few parameters. Earlier studies [23, 76, 16] show

that the two self energies Φ,Ψ of the ECFL theory are to a large extent similar to

the self energies of a standard intermediate coupling Fermi liquid, and yet due to their

specific combination that occurs in Eq. (3.18) and Eq. (3.20) end up providing a non

trivial resulting theory. Indeed in Ref. ([23]) a similar low energy expansion in high

dimensions, was tested successfully against the numerical results of the Dynamical Mean

Field Theory (DMFT). It should be noted that the DMFT theory is designed for high

dimensions, where the momentum dependence of the Dyson self energy and Ψ self energy

of the ECFL theory drops out. In this section we allow for momentum dependence of

both self energies in the ECFL formalism, this is in-fact the only distinction between

the present expansion and that in Ref. ([23]). We see below that this momentum
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dependence is essential for describing the low energy kinks in the occupied part of the

ARPES spectrum.

3.8.1 Low energy expansion of the ECFL theory

We start with the ECFL Greens function G expressed in terms of the auxiliary

Greens function g and the caparison function µ̃ Ref. ([1]) and Ref. ([34]), we write

G(~k, iω) = g(~k, iω)× µ̃(~k, iω), (3.18)

and with the latter expressed in terms of the two self energies Φ(~k, iωn),Ψ(~k, iωn) as:

µ̃(~k, iωn) = 1− n

2
+ Ψ(~k, iωn) (3.19)

g−1(~k, iωn) = iωn + µ− (1− n

2
)εk − Φ(~k, iωn),

(3.20)

where n is the electron number per site, ωn = (2n + 1)π/β the Matsubara frequency,

which we analytically continue iω → ω + i0+. Let us define k̂ as the normal deviation

from the Fermi surface i.e. k̂ = (~k − ~kF ).~∇εkF /|~∇εkF |. Our first objective is to Taylor

expand these equations for small ω and k̂, as explained above. We carry out a low
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frequency expansion as follows:

1− n

2
+ Ψ(~k, ω) = α0 + cΨ(ω + νΨ k̂ vf ) + iR/γΨ +O(ω3),

(3.21)

where the frequently occurring Fermi liquid function R = π{ω2 + (πkBT )2}, vf =

(∂kεk)kF is the bare Fermi velocity, and the four parameters α0, cΨ, νΨ, γΨ are coefficients

in the Taylor expansion having suitable dimensions. Similarly we expand the auxiliary

Greens function

g−1(k, ω) = (1 + cΦ)
(
ω − νΦ k̂ vf + iR/ΩΦ +O(ω3)

)
,

(3.22)

where we have added another three coefficients in the Taylor expansion cΦ, νΦ,ΩΦ.

To carry out this reduction we first trade the two parameters cΨ, γΨ in favor

of parameters ΩΨ and s by defining cΨ = α0
ΩΨ

and γΨ = sΩΦ
cΨ

, where the dimensionless

parameter 0 ≤ s ≤ 1. With these expansions and the quasiparticle weight determined

in terms of the expansion parameters as Z = α0
1+cΦ

, we find

G =
Z

ΩΨ

ΩΨ + ω + νΨ k̂ vf + iR/(sΩΦ)

ω − νΦ k̂ vf + iR/ΩΦ

. (3.23)
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Using A(k̂, ω) = − 1
π ImmG we find the spectral function

A(k̂, ω) =
Z

π

R
ΩΦ

(ω − νΦ k̂ vf )2 + ( RΩΦ
)2
× µ̃c(k̂, ω)

(3.24)

Here the caparison factor, (not to be confused with the caparison function in Eq. (3.18)),

is found as

µ̃c(k̂, ω) = 1− ξ(k̂, ω)

ξ(k̂, ω) =
1

∆0
(ω − ν0 k̂ vf ) (3.25)

In Eq. (3.25) we have introduced two composite parameters

∆0 =
s

1− s
ΩΨ, and ν0 =

1

1− s
νΦ +

s

1− s
νΨ. (3.26)

This procedure eliminates the three old parameters s, ΩΨ and νΨ in favor of the two

emergent energy scale ∆0 and velocity ν0.

It is interesting to count the reduction in the number of free parameters from

the starting value of seven in Eq. (3.21) and Eq. (3.22). Already in Eq. (3.23) we

have a reduction to six, since the quasiparticle weight Z combines two of the original

parameters. Since Eq. (3.26) subsumes three parameters into two, the spectral function

in Eq. (3.24) contains only five parameters: the two velocities ν0 vf , νΦ vf , and the two

energies ΩΦ,∆0, in addition to the overall scale factor Z.
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We will see below that the parameters that are measurable from energy dis-

persions are best expressed in terms of certain combinations of the velocities. In order

to make the connection with the experiments close, we will redefine the two velocities in

terms of an important dispersion velocity at the lowest energies VL and a dimensionless

ratio r, on using the definitions:

νΦ vf = VL

ν0 vf = r × VL. (3.27)

In order to account for the difference between laser ARPES and synchrotron

AREPS having different incident photon energies, we will make two phenomenological

modifications in Eq. (3.24) following Ref. ([2])

R(ω)/ΩΦ → R(0)/ΩΦ = π{πkBT}2/ΩΦ + η ≡ Γ0 (3.28)

where η represents an elastic energy from impurity scattering, dependent upon the en-

ergy of the incident photon in the ARPES experiments. In the spirit of a low energy

expansion R is evaluated at ω = 0. Thus Γ0 is a T dependent constant, which sub-

sumes the two parameters η and ΩΦ, and thus the total parameter count is still five.

Secondly for extension to higher energies, we “renormalize” the parameter ξ in Eq. (3.25)

according to a recently discussed prescription following from a theoretical calculation

Ref. ([35]) as µ̃c → {1 − ξ√
1+caξ2

}, where ca ∼ 5.4 near optimum doping δ ∼ 0.15 as
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estimated recently. This correction ensures that the caparison factor exhibits the cor-

rect linear behavior for small ξ, and remains positive definite at high energies. Thus we

write the spectral function in terms of the new variables as

A(~k, ω) =
Z

π

Γ0

(ω − VL k̂)2 + Γ2
0

× {1− ξ√
1 + caξ2

},

(3.29)

with ξ = 1
∆0

(ω − r VL k̂). We should keep in mind that these expressions follow from a

low energy expansion, and is limited to small k̂ and ω, so that the dimensionless variable

|ξ|max ∼ O(1). Microscopic calculations of all these parameters is possible in the ECFL

theory. One important parameter is the energy scale ∆0 which is found to be much

reduced from the band width, due to extremely strong correlations. A related energy is

the effective Fermi liquid temperature scale where the T 2 dependence of the resistivity

gives way to a linear dependence. This scale is estimated in the limit of large dimensions

from Ref. ([35]) to be as low as 45 K near optimum doping, i.e. much reduced from

naive expectations.

For the present purposes we take a different track, we note that the ARPES

fits are overdetermined, so that we can determine the few parameters of the low energy

theory from a fairly small subset of measurements. The five final (composite) parameters

defining the spectral function Eq. (3.29) are Z, VL, r,∆0,Γ0, where ca ∼ 5.4. Of these Z

is multiplicative, it is only needed for getting the absolute scale of the spectral function,

and ca does not play a significant role near zero energy, it is required only at high
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energies. Thus the spectra relevant to EDC and MDC will require only four parameters

VL, r,∆0,Γ0. These suffice to determine the low energy theory and thus to make a

large number of predictions; i.e. implying non trivial relationships amongst observables.

Many of the predictions rely only on the overall structure of the theory and not its

details.

3.8.2 The EDC and MDC dispersion relations and kinks

Starting from Eq. (3.29), we can compute the energy dispersions for MDC

(varying k̂ while keeping ω fixed) and the EDC spectra (varying ω while keeping k̂

fixed). In terms of a momentum type variable

Q(k̂) = ∆0 + (r − 1)k̂ VL (3.30)

we can locate the peaks of Eq. (3.29) using elementary calculus since ca only plays a

role at high energies, we set ca → 0 when performing the extremization and find the

MDC dispersion

E(k) =
1

2− r

(
k̂ VL + ∆0 −

√
r(2− r) Γ2

0 +Q2

)
,

(3.31)
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and the EDC dispersion

E∗(k) =

(
r k̂ VL + ∆0 −

√
Γ2

0 +Q2

)
. (3.32)

Using these two dispersions and expanding them in different regimes, we can extract all

the parameters of the kinks.

3.8.2.1 Kink momentum

As explained in the main paper, when we set T = 0 = η so that Γ0 = 0, both

the EDC and MDC dispersions contain an ideal kink at the kink momentum. Therefore,

using Eqs. (3.31) and (3.32), the condition Q = 0 locates the kink momentum for both

dispersions:

k̂kink =
∆0

(1− r)VL
, (3.33)

it corresponds to occupied momenta, i.e. k̂kinkvf < 0, provided that r > 1. We thus

can express ∆0 = k̂kink VL(1− r), enabling us to usefully rewrite

Q = (r − 1)VL (k̂ − k̂kink) = ∆0 {1−
k̂

k̂kink
}. (3.34)

As required by the ideal kink, Q changes sign at the kink momentum,

sign(Q) = sign(k̂ − k̂kink). (3.35)
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3.8.2.2 Ideal Kink energies: T=0

Using Eq. (3.31) and Eq. (3.32), in conjunction with Eq. (3.33), the ideal kink

energy is the same for both dispersions, and is given by

Eidealkink = − 1

r − 1
∆0. (3.36)

We can also usefully estimate this ideal kink energy from the asymptotic velocities in

the far zone, as explained in the main paper.

3.8.2.3 The non-ideal i.e. T > 0 kink energy

The EDC and MDC kink energies for the non-ideal case can be viewed in

a couple of ways. We have argued in the main paper that these are best defined by

fixing the momentum k̂ = k̂kink and reading off the energy at this value. This is an

unambiguous method independent of the detailed shape of the kink, since it only requires

knowledge of k̂kink, which can be found from an asymptotic measurement as we have

argued in the main paper. We can put Q = 0 and k̂ → k̂kink in Eq. (3.32) and Eq. (3.31)

and read off the kink energies:

EEDCkink = Eidealkink − Γ0, (3.37)

EMDC
kink = Eidealkink − Γ0

√
r

2− r
. (3.38)
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We observe that the MDC kink energy is real provided 2 ≥ r ≥ 1. Note also that at

T = 0 and η = 0, the two energies both reduce to the ideal kink energy.

3.8.2.4 The ideal energy dispersions

At T = 0 or for for |Q| � Γ0, the two dispersions Eq. (3.32) and Eq. (3.31)

become:

E∗(k) ∼
[
r − (r − 1) sign(k̂ − k̂kink)

]
k̂ VL + 2∆0Θ(k̂kink − k̂) (3.39)

and

E(k) ∼ 1

2− r

[
1− (r − 1) sign(k̂ − k̂kink)

]
k̂ VL +

2∆0

2− r
Θ(k̂kink − k̂).

(3.40)

The velocities in the asymptotic regime |k̂| � k̂kink can be found from the slopes of

these, and are therefore temperature-independent. For k̂ � k̂kink we get the “low”

velocities

dE(k)

dk̂
= VL

dE∗(k)

dk̂
= V ∗L = VL (3.41)
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and thus the EDC and MDC velocities are identical. For k̂ � k̂kink we get the “high”

velocities

VH =
dE(k)

dk̂
=

r

2− r
VL, (3.42)

V ∗H =
dE∗(k)

dk̂
= (2r − 1)VL. (3.43)

We may cast Eq. (3.43) into an interesting form

V ∗H =

{
3VH − VL
VH + VL

}
VL, (3.44)

it is significant since the EDC spectrum velocity is exactly determined in terms of the

two MDC spectrum velocities. It is also a testable result, we show elsewhere in the

paper how this compares with known data. Note that the four independent parameters

VL, r,∆0,Γ0 alluded to in the discussion below Eq. (3.29), can be determined from the

directly measurable parameters VL, VH , k̂kink,Γ0 (3.42,3.33,3.11). Therefore, either set

of parameters gives complete knowledge of the EDC and MDC dispersions, as well as

the spectral function (up to an overall scale).

3.8.2.5 Near Zone: Corrections to Energy dispersion due to finite T.

In the regime dominated by finite T and effects of η the elastic scattering pa-

rameter, we can also perform an expansion in the limit when |Q| � Γ0, using Eq. (3.31)
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and Eq. (3.32). The the first few terms are

E(k) =
∆0

1− r
−
√

r

2− r
Γ0 +

VL
2− r

(k̂ − k̂kink)

− (1− r)2

2
√
r(2− r)3

V 2
L

Γ0
(k̂ − k̂kink)2 + . . . (3.45)

Similarly for the EDC dispersion

E∗(k) =
∆0

1− r
− Γ0 + rVL(k̂ − k̂kink)

−(1− r)2

2

V 2
L

Γ0
(k̂ − k̂kink)2 + . . . (3.46)

These formulas display a shift in the energies due to Γ0 and also a Γ0 dependent curva-

ture. Since the regime of this expansion, |Q| < Γ0 is different from that of the expansion

in Eq. (3.43) and Eq. (3.41), we note that velocities are different as well. Thus one must

be careful about specifying the regime for using the velocity formulae.

Let us note that in this regime |Q| < Γ0 the two dispersions differ, with the

EDC higher.

E∗(k)− E(k) = {
√

r

2− r
− 1}Γ0

−(1− r)2

2− r
VL(k̂ − k̂kink) + . . . (3.47)

This equation gives a prescription for estimating Γ0 in cases where the other parameters

are known. Alternatively in the MDC dispersion we expect to see a curvature only near
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the location of the kink, this is sufficient to fix Γ0: from Eq. (3.45)

d2E(k)

dk̂2
= − (r − 1)2√

r(2− r)3

V 2
L

Γ0
. (3.48)

The curvature d2E(k)

dk̂2
can be estimated from the experimental data to provide an esti-

mate of Γ0.

3.8.3 The Dyson self energy

For completeness we present the low energy expansion of the Dyson self energy,

which gives rise to the spectral function in Eq. (3.29). We may define the Dyson self

energy from

ΣD = ω + µ− εk − G−1 (3.49)

Using Eq. (3.23) we obtain

ImmΣD = − 1

Z

R
ΩΦ

1− 1
∆0

(ω − ν0 k̂ vf )

{1 + (ω + νΨ k̂ vf )/ΩΨ}2 + R2

s2Ω2
ΦΩ2

Ψ

(3.50)
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The corresponding real part is given by

<eΣD = µ− µ0 + ω − k̂ vf

− 1

Z

(ω − νΦ k̂ vf ) + 1
ΩΨ
q2

{1 + (ω + νΨ k̂ vf )/ΩΨ}2 + R2

s2Ω2
ΦΩ2

Ψ

q2 = (ω + νΨ k̂ vf )(ω − νΦ k̂ vf ) +
R2

sΩ2
Φ

. (3.51)

The q2 term is quadratic (or higher) in the small variables ω, k̂ vf , however these small

terms are needed if we want to reproduce exactly Eq. (3.24).

3.8.3.1 Useful identities and some Fermi Liquid parameters.

We list a few useful identities relating the various parameters

ΩΨ =
1− s
s

∆0,

s =
∆0

∆0 + ΩΨ

ν0 =
νΦ + s νΨ

1− s
= r νΦ

νΨ =
r − 1− rs

s
νΦ

r − 1 =
∆0

ΩΨ

(
1 +

νΨ

νΦ

)
(3.52)
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Let us note the Fermi liquid renormalizations from Eq. (3.49)

dΣD

dk̂

∣∣∣∣
FS

= (
VL
Z
− vf )

dΣD

dω

∣∣∣∣
FS

= (1− 1

Z
)

(3.53)

Therefore we write the Fermi liquid mass enhancement that determines the heat capacity

as:

m

m∗
= Z

{
1 +

1

vf

dΣD

dk̂

∣∣∣∣
FS

}
= VL/vf = νΦ. (3.54)

Thus νΦ is the inverse mass enhancement factor, obtainable from the ratio of the heat

capacity and the bare density of states. In this model we note that νΦ is not obliged

to vanish as Z near the half filled limit n → 1, but may be a finite number of O(1).

This is unlike the Brinkman Rice “heavy metal’ type behavior m/m∗ ∝ Z, which is

prototypical of theories with a momentum independent self energy.

Finally we note that the condition for the kink to occur is, we recall, r > 1.

From Eq. (3.52) we see that this requires a finite ΩΨ (so that 1 > s > 0). We also need

∆0 > 0 and
(

1 + νΨ
νΦ

)
> 0.
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3.9 Conclusion

The main goal of this work is to understand the physical origin of the kinks

seen in ARPES studies of a wide class of systems. For this purpose we have listed

fifteen systems of topical interest where ARPES kink data is available. Our focus is on

the nodal direction data, since the largest volume is available here. We have devised a

useful protocol to extract kink parameters from data, where the asymptotic tangents

of the kink are used. Using this protocol we have analyzed in detail three families

of systems. The main parameters of the kinks are the energy, momentum and the

dispersion velocities in EDC and MDC scans, these provide a quantitative data set for

testing various theoretical proposals for explaining kinks.

We have next outlined two competing theories of the kinks, and highlighted

their distinctive predictions. One is the electron-Boson model, where an Einstein mode

of either spin or charge origin couples to the electrons, resulting in a momentum in-

dependent self energy. This theory gives rise to kinks in the electron dispersion. The

other theory is the strong or extreme correlation theory, where the interactions lead to

a momentum dependent self energy in 2 dimensions. This theory also gives rise to kinks

in the electron dispersion.

We consider an electron-Boson coupling model and provide detailed calcula-

tions of the electron self energy in a Fermi gas and a Fermi liquid with varying electron

phonon coupling constants. We next provide details of the origin of kinks using the

framework of the extremely correlated Fermi liquid.
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While we focussed attention on kinks in the nodal direction in the present work,

the ECFL theory is also valid for other directions, it has a momentum dependence in

the self energy both normal to the Fermi surface and also along the tangent. The

ECFL theory applied to the d-wave superconducting state in the t-J model is expected

to lead to further interesting results in the future. For now we note that the observed

nodal direction spectra are essentially unchanged at Tc, which makes the nodal direction

particularly interesting.

The predictions of the two theories differ significantly and in experimentally

testable ways. The Boson-mode theory gives rise to kinks located at the energy of

the localized mode. The electron Boson coupling can be estimated to be λ ∼ 1 from

comparing the bare velocity of the electrons and the renormalized velocity. The bare

velocity is obtainable from band theory, while the renormalized velocity can be found

from the observed kink momentum and energy. This is quite large when we recall that

the largest known elemental coupling in Pb, is λ ∼ 1.2. For the kinks, the Boson-mode

theory predicts in Sec. 3.7: (1) a momentum independent peak in the spectral function

at the kink energy when k̂ < k̂kink, (2) a jump in the EDC dispersion at the kink energy

but not the MDC dispersion and (3) the EDC and MDC velocities are identical both

before and after the kink is crossed.

The extremely strong correlation theory also gives rise to kinks, these originate

from the momentum dependence of the self energy in Sec. 3.8. A simple low energy

and momentum expansion of the ECFL theory gives inter-relations between observed

features of the kinks. It predicts (1) a kink at an emergent low energy scale originating
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from Gutzwiller correlations (2) no jump in the EDC dispersion and (3) the EDC

velocity is determined by the MDC velocities through Eq. (3.12). It is remarkable

that a knowledge of the MDC dispersion suffices to predict the EDC dispersion. The

parameters obtained from the MDC also enable us to reconstruct the spectral function

at low momentum and energy, in both MDC and EDC scans.

It is thus clear that EDC dispersions hold the key to distinguishing between

the two competing theories. EDC dispersion data is sparse but exists, the work on

OPT Bi2212 from Ref. ([31]) presents both EDC and MDC dispersions at 115 K. Its

resolution is presumably not optimal, since it was an early experiment. Nevertheless we

can use it to make a first pass at comparing the two theories. This data set shows that

the EDC dispersion is continuous, i.e. has no jump. Further the velocity V ∗H is close to

that predicted by the ECFL analysis. The measured spectral function in EDC is rather

noisy but does not seem to have a clear immovable feature at Ekink. It is roughly fit

by the low energy parameterized curves as well, where the MDC is seen to be more

symmetric than the EDC cuts.

As noted in Table (3.1) the above case OPT Bi2212 is particularly interest-

ing. Low energy Bosonic modes have been observed in neutron scattering [47, 48], and

in momentum resolved electron energy loss experiments [46]. In Ref. ([46]) an MDC

dispersion is presented using parameters taken from the Bosonic data. This leads to a

rather detailed model, and is shown to provide a reasonable fit to the MDC dispersion

and the observed kink, but the EDC dispersion is not available.

The present work also gives the parameters for two other popular systems
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LSCO and Bi2201, where we give a set of predictions for the velocities in the EDC

dispersion that can be testd in future experiments.

In conclusion we have presented a current summary of the physics of the kinks.

We believe that there is urgent need for further high resolution EDC data, and also T

dependent scans to explore the rounding of kinks. Using such data one should be able

to check the predictions of the theory more thoroughly, and thereby obtain definitive

understanding of this important problem of the origin of low energy kinks in ARPES.
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Chapter 4

Summary and Concluding remarks

In this dissertation, the novel interpretation of the experimental data of the

Angle Resolved Photoemission Spectroscopy ( ARPES ) experiments has been discussed.

The proposed Green’s function is the solution to the Gutzwiller projected ground state of

t-J Hamiltonian, and it was calculated by “Extremely Correlated Fermi Liquid Theory”

( ECFL ) by Shastry [1]. The key physics idea of the ECFL theory is contained in “the

caparison factor”. The caparison factor is an ω dependent adaptive spectral weight that

imposes main physics of Gutzwiller projection that works to decrease the spectral weight

at high energy while keeping the Fermi surface volume invariance at low energy. The

ECFL theory has led to unprecedented success when explaining the ARPES spectra of

high Tc cuprate superconductors along the nodal direction. The ECFL theory can fit

both laser and synchrotron ARPES spectra of cuprates with only two free variables [2],

and the phenomenological ECFL models can fit the ARPES spectra of different cuprate

superconductors, optimally doped Bi2Sr2CaCu2O8+δ and La2−xSrxCuO4, as functions
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of momentum and energy with the same physical intrinsic parameters [3].

In addition to that, the ECFL theory provides a robust description of the

origin of low energy kinks in the ARPES spectra. The low energy bending anomaly,

near 50 - 100 meV in energy dispersion, has been observed in the ARPES spectra

of high Tc cuprate superconductors and other strongly correlated materials, such as

charge density systems, cobaltates, and ferromagnetic iron surfaces. The ARPES kinks

present below and above Tc, over the entire doping range from insulator to normal

metal in the hole doped phase diagram, and at wide momentum range from nodal to

anti-nodal direction. We have investigated two competing theoretical scenarios for the

origin of the ARPES kinks. One is the electron-Boson model, and another is the strong

correlation model. The theoretical construct of the electron-Boson model is an Einstein

mode of either charge or spin coupling to the electrons, leading to the momentum

independent Dyson self energy. In the strong correlation model, the interactions evoke

a momentum dependent Dyson self energy in two dimensions, and this gives rise to

kinks in energy dispersion. The two competing theories have been discussed thoroughly

and compared with the available ARPES data, and we showed that the description of

correlation kinks is consistent with the ARPES data while the explanation suggested

by the electron-Boson model is questionable.

When discussing the correlation description of ARPES kinks, we have demon-

strated that the effective protocol of ECFL kink analysis successfully explains the

available ARPES kinks data of different cuprate superconductors, Bi2212, LSCO, and

Bi2201. The theory depends merely on the two asymptotic tangents of each dispersion
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curve (far zone), away from the feature itself (near zone), and this makes it insensitive

to the shape of the kink as seen in experiments. The overdetermined calculation uses

only four independent parameters to predict sets of many observable relations in the

ARPES experiments.

While the ECFL interpretation of the ARPES spectra should be rigorous and

addresses comprehensive understanding and definition to the ARPES data, we suggest

that our predictions may call for high resolution experiments. For instance, the ARPES

data of the EDC energy dispersions of underdoped materials and the asymmetry in the

lines shapes of MDCs near the Fermi level, which has been just reported for Hg1201 in

Ref. ([58]), would be interesting to investigate when the high resolution experiments are

available. In particular, systematic and comprehensive investigation on the property of

low energy excitation spectrum of three different single layer cuprate superconductors,

Bi2201 LSCO and Hg1201, focusing on concerning the asymmetry in the ARPES line

shapes, should be interesting research topic.

Although our discussion in this dissertation focuses on the ARPES spectra

along the nodal direction, the theory is valid for other momentum directions. We

expect to see further interesting results when the d-wave superconducting state in the

t-J model becomes available. For that, we would like to mention the most recent report

on progress of the ECFL theory that studies the low energy properties of the infinite

dimensional t-J model in Ref. ([35]).

In Fig. (4.1) ( from Ref. ([35]) ), the ECFL theory predicts the resistivity behav-

ior as a function of temperature in infinity dimensions. Recognizing the single particle
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Green’s function, the exact resistivity of a metal due to inelastic mutual collisions of

electrons has been calculated in infinity dimensions. The result in Fig. (4.1) is inter-

esting as we see a clear deviation from the Fermi liquid behavior. Also, we see the

resistivity is linearly increasing for temperature greater than ∼ 45 K.

In Fig. (4.2) ( from Ref. ([35]) ), the ECFL result of the chemical potential

is plotted as a function of temperature. The chemical potential curves are plotted for

different densities, and note that the curve turns around at density between n = 0.6 and

0.7, and the behavior changes at this doping value. Fig. (4.3)( from Ref. ([35]) ) presents

the ECFL calculation of the quasiparticle weight vs. the hole density, δ = 1 - n. In

this plot, the quasiparticle weight recedes as δ goes to zero. Comparing to the solid line

of numerical quasiparticle weight calculation by DMFT, the nonlinear behavior of the

quasiparticle weight vs. δ plot indicates the fluctuations should be beyond the mean

field description.

In conclusion, in this dissertation, I have discussed the ECFL theory and its

interpretation of the low energy spectrum of strongly correlated matter measured by

ARPES. We have shown that the ECFL interpretation of the ARPES spectra is robust

and consistent with the available set of experimental data. We should find further

interesting discussions when more reports on the high resolution ARPES experiments

for various different cuprate superconductors become available.
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Figure 4.1: ρdc (µΩ cm) on absolute scale vs T ( temperature in Kelvin ) for particle
density, n = 0.85 ( x = 0.15 ) from Ref. ([35]). The quadratic resistivity of Fermi liquid
behavior in the blue dotted line breaks down above TFL ≈ 30 K, and is followed by a
regime of linear resistivity. More information for this plot can be found in Ref. ([35])

Figure 4.2: Plot of the chemical potential as a function of temperature for various
different particle densities, n = 0.4, 0.5, 0.6, 0.7, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875
increasing to the direction of arrow showing. T ≤ 1.2. For lower density curves, the
chemical potential decreases monotonically as T increasing, and there we see a shallow
minimum forms for higher density curves. Note the curve turns around at the particle
density of n ∼ 0.7. More information for this plot can be found in Ref. ([35])
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Figure 4.3: The computed quasiparticle weight Z ( red dots ) vs. the hole density δ =
1 -n, comparing to the exact numerical results from DMFT [23] that fits very good to
the quasiparticle weight formula ∼ δ1.39. More information for this plot can be found
in Ref. ([35])
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