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Abstract
Human epilepsy patients suffer from spontaneous seizures, which originate in brain regions that also subserve
normal function. Prior studies demonstrate focal, neocortical epilepsy is associated with dysfunction, several
hours before seizures. How does the epileptic network perpetuate dysfunction during baseline periods? To
address this question, we developed an unsupervised machine learning technique to disentangle patterns of
functional interactions between brain regions, or subgraphs, from dynamic functional networks constructed from
approximately 100 h of intracranial recordings in each of 22 neocortical epilepsy patients. Using this approach,
we found: (1) subgraphs from ictal (seizure) and interictal (baseline) epochs are topologically similar, (2) interictal
subgraph topology and dynamics can predict brain regions that generate seizures, and (3) subgraphs undergo
slower and more coordinated fluctuations during ictal epochs compared to interictal epochs. Our observations
suggest that seizures mark a critical shift away from interictal states that is driven by changes in the dynamical
expression of strongly interacting components of the epileptic network.

Key words: dynamic network neuroscience; epileptic network; non-negative matrix factorization; functional
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Significance Statement

Localization-related epilepsy is a debilitating condition where seizures begin in dysfunctional brain regions and
are often resistant to medication. The challenge for treating patients is mapping dysfunction in brain networks
that also subserve normal function several hours before seizures. Localizing brain regions that generate seizures
is critical for improving seizure freedom rates following invasive surgery. We develop new methods to identify
clusters of functionally interacting brain regions from �100-h intracranial, neocortical recordings per epilepsy
patient. Our results indicate seizure-generating brain regions: (1) can be predicted before seizures and (2) may
kindle dysfunction through interactions with nonseizure generating brain regions. These findings may have
clinical implications for targeting specific brain regions to control seizures several hours before they occur.
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Introduction
For �60 million epilepsy patients, recurring, spontane-

ous seizures have a crippling impact on daily life. In
�26% of these patients, drivers of seizure activity have
been linked to abnormal focal networks located in neo-
cortical or mesial temporal structures (Siegel et al., 2001).
To map dysfunction, epileptologists monitor continuous
intracranial electrophysiology for biomarkers generated
by the epileptic network, a set of interacting brain regions
that are believed to initiate and spread seizure activity in
the brain. To control seizures in medication-resistant
individuals, clinical practitioners have traditionally pre-
scribed resective surgery to remove brain tissue contain-
ing the epileptic network. More recently, epilepsy
specialists are employing laser ablation and implantable
devices to control dysfunction (Stacey and Litt, 2008;
Fisher et al., 2010; Morrell, 2011; Tovar-Spinoza et al.,
2013; Medvid et al., 2015). Novel neurotechnologies af-
ford critical specificity in targeting brain circuits, but the
key question for clinicians remains: which brain region(s)
serve as the best target(s) to control a given patient’s
seizures?

Localizing epileptic brain regions based on abnormal
electrophysiological biomarkers is a difficult problem, as
etiology, seizure semiology, and frequency of events vary
greatly between patients (Kutsy et al., 1999). To reliably
map the epileptic network, invasive monitoring lasts sev-
eral days to weeks, and the length of the hospital stay
increases the risks of infection, complications, and death.
The extended monitoring period allows clinicians to de-
scribe a surgical target that accounts for variability in the
seizure origin while minimizing expected impact on nor-
mal brain function. Recently, sampling error during limited
monitoring time with intracranial electrodes has called
into question the ability of traditional inpatient ictal record-
ing to fully define the epileptic network (King-Stephens
et al., 2015). This suggests that methods to map the
epileptic network that do not rely on ictal recording may
have significant advantages over current approaches.
Critically, in localization-related epilepsy, brain regions
that generate ictal (seizure) events are thought to be
fundamentally altered in their structure and function, lead-
ing to the cognitive deficits observed during interictal
(baseline) epochs (Aarts et al., 1984; Jokeit et al., 1997;

Kwan and Brodie, 2001; Elger et al., 2004; Holmes and
Lenck-Santini, 2006). These observations imply that brain
circuits underlying cognitive functions are recruited by the
epileptic network during interictal (baseline) states. How-
ever, when abnormal electrophysiology is not accompa-
nied by discrete lesions evident on brain imaging, only
�40% of patients attain seizure freedom following resective
surgery (French, 2007). Modest outcomes associated with lo-
calization of abnormal electrophysiology suggests a funda-
mental gap in our understanding of how neurophysiologic
biomarkers relate to pathophysiology.

A mechanistic understanding of seizure generation and
evolution may be derived from spatial and temporal dy-
namics of the epileptic network (Wendling et al., 2003;
Jerger et al., 2005; Schindler et al., 2007; Schevon et al.,
2007; Schindler et al., 2008; Zaveri et al., 2009; Kramer
et al., 2010; Jiruska et al., 2013; Rummel et al., 2013;
Weiss et al., 2013; Burns et al., 2014; Geier et al., 2015;
Khambhati et al., 2015, 2016). In this framework, network
nodes are intracranial sensors measuring the electrocor-
ticogram (ECoG) and network connections are time-
varying statistical relationships between sensors (Friston,
2011; Hutchison et al., 2013). The degree of connectivity
between brain regions is related to the synchronization of
neural populations, a putative generator of dysfunction in
epilepsy. Brain regions that are topologically central to the
epileptic network tend to lie within (Wendling et al., 2003;
Jerger et al., 2005; Schindler et al., 2007, 2008; Kramer
et al., 2010; Jiruska et al., 2013; Burns et al., 2014;
Khambhati et al., 2015) and adjacent to (Schevon et al.,
2007; Zaveri et al., 2009; Rummel et al., 2013; Weiss et al.,
2013; Geier et al., 2015) clinically defined seizure-onset
zones (SOZs) during interictal, preictal, and ictal epochs
(Zaveri et al., 2009; Warren et al., 2010; Khambhati et al.,
2015). In this context, it is interesting to ask the question: if
network dysfunction persists over long time scales, then (1)
how does network topology drive brain dynamics dif-
ferently during interictal and ictal epochs, and (2) how
might aberrant brain regions disrupt functional interac-
tions underlying normal function? Addressing these
pressing questions about epileptic network physiology
is crucial for targeting novel neurotechnology to dys-
functional brain circuits and minimizing impact on net-
work structures involved in normal function.

In this work, we apply an unsupervised machine learn-
ing technique to examine how dynamic network architec-
ture is differentially organized between ictal and interictal
epochs. Our approach uncovers clusters of dynamic
functional connections, or subgraphs, whose connection
strengths undergo similar patterns of temporal variation,
or expression, over several-day long ECoG recordings.
Based on persistent network topology at the scale of
ECoG (Kramer et al., 2011), we first hypothesize that
meso-scale functional networks form a repertoire of sub-
graphs, mapping out interactions between brain regions
that recur through ictal and interictal epochs. The existence
of recurring subgraphs might describe fundamental connec-
tions that guide network propagation of interictal epilepti-
form activity in trajectories similar to seizures (Alarcon et al.,
1997; Lai et al., 2007; Schevon et al., 2009; Wilke et al.,
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2009; Wu et al., 2010; Korzeniewska et al., 2014; Davis et al.,
2016; Khambhati et al., 2016). Second, we predict that
functional subgraphs pinpoint connections specific to puta-
tive regions of seizure generation from functional connectiv-
ity within interictal epochs. Third, we hypothesize that
functional subgraphs undergo slower, coordinated fluctua-
tions in ictal epochs and faster, externally driven fluctuations
in interictal epochs (Khambhati et al., 2015). Our results
support these hypotheses, demonstrating that functional
subgraphs recur through ictal and interictal epochs, predict
connectivity in the SOZ during interictal epochs, and differ-
entiate ictal and interictal epochs on the basis of their time-
varying expression.

Materials and Methods
Patient datasets
Ethics statement

All patients included in this study gave written informed
consent in accordance with the Institutional Review
Boards of the University of Pennsylvania and Mayo Clinic.

Electrophysiology recordings
Twenty-two human patients (12 male and 10 female)

undergoing surgical treatment for medically refractory ep-
ilepsy believed to be of neocortical origin underwent im-
plantation of subdural electrodes to localize the SOZ after
noninvasive monitoring was indeterminate (see Table 1).
De-identified patient data were retrieved from the online
International Epilepsy Electrophysiology Portal (IEEG Por-

tal) (Wagenaar et al., 2013). ECoG signals were recorded
and digitized at either 512 Hz (University of Pennsylvania)
or 500 Hz (Mayo Clinic) sampling rate. Surface electrode
(Ad Tech Medical Instruments, Racine, WI) configurations,
determined by a multidisciplinary team of neurologists
and neurosurgeons, consisted of linear and two-dimen-
sional arrays (2.3 mm diameter with 10 mm inter-contact
spacing) and sampled the neocortex for epileptic foci
(depth electrodes were first verified as being outside the
seizure-onset zone (OUT) and subsequently discarded
from this analysis). Signals were recorded using a refer-
ential montage with the reference electrode, chosen by
the clinical team, distant to the site of seizure onset.
Recordings spanned the duration of a patient’s stay in the
epilepsy monitoring unit.

Clinical marking of the SOZ
SOZ was marked on the intracranial EEG (IEEG) ac-

cording to standard clinical protocol at the University of
Pennsylvania. Initial clinical markings are made on the
IEEG the day of each seizure by the attending physician,
always a board certified, staff epileptologist responsible
for that patient’s care. Each week these IEEG markings
are vetted in detail, and then finalized at surgical confer-
ence according to a consensus marking of four board-
certified epileptologists. These markings on the IEEG are
then related to other multimodality testing, such as brain
MRI, PET scan, neuropsychological testing, ictal SPECT
scanning, and magnetoenecephalographic findings to fi-

Table 1: Patient information

Patient
(IEEG Portal) Sex

Age (onset/
surgery)

Seizure
onset Etiology

Seizure
type

Ictal
epochs
(N)

Interictal
epochs
(N) Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP � GTC 01 3228 L ENGEL-I
HUP65_phaseII M 02/36 Right temporal Auditory reflex CP � GTC 03 2986 N/A ENGEL-I
HUP68_phaseII F 15/26 Right temporal Meningitis CP, CP � GTC 05 3020 NL ENGEL-I
HUP70_phaseII M 10/32 Left perirolandic Cryptogenic SP 08 1079 L NR
HUP72_phaseII F 11/27 Bilateral left Mesial temporal

sclerosis
CP � GTC 01 2439 L NR

HUP73_phaseII M 11/39 Anterior right frontal Meningitis CP � GTC 05 1071 NL ENGEL-I
HUP78_phaseII M 00/54 Anterior left temporal Traumatic injury CP 05 1719 L ENGEL-III
HUP79_phaseII F 11/39 Occipital Meningitis CP 01 1775 L NR
HUP86_phaseII F 18/25 Left temporal Cryptogenic CP � GTC 02 2612 NL ENGEL-II
HUP87_phaseII M 21/24 Frontal Meningitis CP 02 1201 L ENGEL-I
Study 004-2 F 14/27 Right temporal occipital Unknown CP � GTC 01 638 NL ILAE-IV
Study 006 M 22/25 Left frontal Unknown CP 02 104 NL NR
Study 010 F 00/13 Left frontal Unknown CP 02 526 L NF
Study 011 F 10/34 Right frontal Unknown CP, CP � GTC 02 283 NL NF
Study 016 F 05/36 Right temporal

orbitofrontal
Unknown CP � GTC 03 669 NL ILAE-IV

Study 019 F 31/33 Left temporal Unknown CP � GTC 15 403 NL ILAE-V
Study 020 M 05/10 Right frontal Unknown CP � GTC 04 412 NL ILAE-IV
Study 023 M 01/16 Left occipital Unknown CP 04 208 L ILAE-I
Study 026 M 09/09 Left frontal Unknown CP 10 539 NL ILAE-I
Study 031 M 05/05 Right frontal Unknown CP � GTC 05 730 NL NF
Study 033 M 00/03 Left frontal Unknown GA 07 1321 L ILAE-V
Study 037 F 45/NR Right temporal Unknown CP 02 1087 NL NR

Patient datasets accessed through IEEG Portal (http://www.ieeg.org). Age at seizure onset and at electrode implant surgery are noted. Location of seizure onset (lobe) and
etiology are clinically determined through medical history, imaging, and long-term invasive monitoring. Seizure types are SP (simple-partial), CP (complex-partial), CP � GTC
(complex-partial with secondary generalization), or GA (generalized atonic). Counted seizures were recorded in the epilepsy monitoring unit. Interictal epochs were 5 min in
duration and at least 2 h away from any seizure. Clinical imaging analysis concludes L, Lesion; NL, nonlesion. Surgical outcome is reported by both Engel score and ILAE
score (scale: I--IV/V, seizure freedom to no improvement; NR, no resection; NF, no follow-up). M, male; F, female.
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nalize surgical approach and planning. This process is
standard of clinical care at National Association of Epi-
lepsy Centers (NAEC)-certified level 4 epilepsy centers in
the United States.

Description of ictal and interictal epochs
Ictal epochs were identified by a team of neurologists

as a part of routine clinical work and spanned the period
between clinically marked earliest electrographic change
(EEC) (Litt et al., 2001) and termination. In this study, we
disregarded subclinical seizures and only considered ictal
epochs from clinical seizures that manifest seizure-related
symptoms. Interictal epochs spanned 5 min in duration
and were at least 2 h removed from any ictal onset. We
analyzed all possible interictal epochs from patient re-
cordings.

Extracting time-varying functional networks
Signals from each 5-min interictal epoch and each ictal

epoch were divided into 1-s, nonoverlapping, stationary
time windows (Fig. 1A) in accord with other studies
(Kramer et al., 2010) and subsequently preprocessed. In
each time window, signals were rereferenced to the com-
mon average reference (Towle et al., 1999; Kramer et al.,
2010) to account for variation in reference location across
patients and to avoid broad field effects that may errone-
ously bias connectivity measurements. Each window was
notch filtered at 60 Hz to remove line-noise, and low-pass
and high-pass filtered at 120 and 4 Hz, respectively, to
account for noise, voltage drift, and � frequency (0.5-4 Hz)
contribution between time windows. To limit sources of
volume conduction from introducing spurious connectiv-
ity, we prewhiten signals in each window using a first-
order autoregressive model to account for slow dynamics.
Prewhitening accomplishes two goals: (1) flattening of the
signal power spectrum to enhance higher-frequency con-
tent that contains local neural population dynamics that is
less affected by volume conduction, and (2) decreasing
the influence of independent node dynamics when com-
puting correlation-based connectivity measurements
(Towle et al., 1999; Bullmore et al., 2001; Lund et al.,
2006; Arbabshirani et al., 2014).

Time-varying functional networks were formed by ap-
plying a normalized cross-correlation similarity function �
between the time series of two sensors in the same time
window using the formula, �xy�k� � max

�
�1 / T �

t
�xk�t� �

xk��yk�t � �� � yk� / 	xk
	yk

�, where x and y are signals from
one of N sensors or network nodes, k is one of K non-
overlapping, 1-s time windows, t is one of T signal sam-
ples during the time window, � � 1, 2, �, T is the time lag
between signals, and � � 0 when node x is the same as
node y. The N 
 N 
 K similarity matrix is also known as
a time-varying adjacency matrix A (Fig. 1B). In our
weighted network analysis, we retain and analyze all pos-
sible connection weights between nodes.

An alternate representation of the three-dimensional
network adjacency matrix A is a two-dimensional network
configuration matrix Â, which tabulates all N � N pairwise
connection strengths across K time windows (Fig. 1C).
Due to symmetry of Ak, we unravel the upper triangle of
Ak, resulting in the weights of N�N � 1�/2 connections.

Thus, Â has dimensions N�N � 1�/2 
 K. We constructed
a separate network configuration matrix for each ictal and
interictal epoch.

Clustering functional connections into subgraphs
To identify network subgraphs--sets of connections

whose variation in strength cluster over time--we applied
an unsupervised machine learning algorithm called non-
negative matrix factorization (NMF) (Lee et al., 1999) to the
network configuration matrix (Fig. 1D). This technique
enabled us to pursue a parts-based decomposition of the
time-varying network configuration matrix into subgraphs
with time-varying expression coefficients (Chai et al.,
2017). Each subgraph is an additive component of the
original network, weighted by its associated time-
varying expression coefficient and represents a pattern
of functional interactions between brain regions. The
NMF-based subgraph learning paradigm is a basis de-
composition of a collection of dynamic graphs that
separates covarying network edges into subgraphs, or
basis functions, with associated temporal coefficients,
or basis weights. Unlike other graph clustering ap-
proaches that seek a hard partition of nodes and edges
into clusters (Bassett et al., 2013), the temporal coeffi-
cients provide a soft partition of the network edges,
such that the original functional network of any time
window can be reconstructed through a linear combi-
nation of all the subgraphs weighted by their associated
temporal coefficient of that time window (Leonardi
et al., 2013, 2014; Chai et al., 2017). This implies that at
a specific time window, subgraphs with a high temporal
coefficient contribute their pattern of functional con-
nections more than subgraphs with a low temporal
coefficient.

Mathematically, NMF approximates Â by two low-rank,
non-negative matrices, such that, Â � WH, where W is
the subgraph connectivity matrix (with dimensions N
�N � 1�/2 
 m), H is the time-varying expression coeffi-
cients matrix (with dimensions m � K), and m is the
optimized number of subgraphs learned. We applied NMF
to the time-varying network configuration matrix using the
alternating non-negative least squares with block-pivoting
method with 100 iterations for fast and efficient factoriza-
tion of large matrices (Kim and Park, 2011). We initialized
W and H with non-negative weights drawn from a uniform
random distribution on the interval [0, 1]. Due to the
nondeterministic nature of this approach, we integrated
subgraph estimates over multiple runs of the algorithm
using consensus clustering, a general method of testing
robustness and stability of clusters over many runs of one
or more nondeterministic clustering algorithms (Monti
et al., 2003). Our adapted consensus clustering procedure
(Greene et al., 2008; Greene, 2009) entailed the following
steps: (1) run the NMF algorithm R times per network
configuration matrix, (2) concatenate subgraph matrix W
across R runs into an aggregate matrix with dimensions
N�N � 1�/2 � R�m, and (3) apply NMF to the aggregate
matrix to determine a final set of subgraphs and expres-
sion coefficients.
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In our study, we set R � 25 runs and separately re-
peated the consensus procedure for each epoch of each
subject. We determined a subject-specific number of sub-
graphs m to learn across epochs by the following proce-
dure: (1) randomly sample 50 epochs from the ictal and
interictal pool, (2) apply NMF for m � 2, 3, �, 20 sub-
graphs, independently for each epoch, (3) compute the
Frobenius error between Â and WH for each m, (4) retain
the value for m that occurs at the elbow of the resulting
Frobenius error curve for each patient, and (5) find the

optimum number of subgraphs m� as the average m from
the 50 epochs.

In sum, this subgraph learning procedure yielded p�m�
total subgraphs per patient, where p is the total number of
ictal and interictal epochs.

Generating surrogate subgraphs
An important mathematical property of subgraphs is

that they form a basis set of the time-varying functional
network from which they were derived. In other words,
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Figure 1. Clustering functional connections from dynamic epileptic networks. A, We identify ictal and interictal epochs from ECoG
signals collected from patients with drug-resistant neocortical epilepsy implanted with intracranial electrodes. An ictal epoch is the
period between seizure-onset, as characterized by the EEC (Litt et al., 2001), and seizure termination. An interictal epoch is defined
to be a continuous, 5-min period at least 2 h preceding or following seizure onset. To measure time-varying functional networks, we
divide each epoch into 1-s time windows and estimate functional connectivity in each time window. In our model, each electrode
sensor is a network node, and the weighted functional connectivity between sensors, interpreted as degree of synchrony, is
represented as a network connection. B, For each epoch, we estimated functional connectivity by applying a magnitude normalized
cross-correlation between each pair of sensor time series in each time window. C, For time-varying functional connectivity, we extract
all pairwise connections between nodes and concatenate them over time windows to generate a time-varying network configuration
matrix. D, We apply NMF to the time-varying configuration matrix from each epoch, resulting in subgraphs that capture frequently
repeating patterns of functional connections, and their expression over time.
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there exists a linear combination of an epoch’s subgraphs
that reconstruct the original network, and any linear com-
bination of the subgraphs forms a new subgraph that is
still a basis of the original network. These properties
allowed us to construct surrogate subgraphs with rewired
network topology that maintain their basis functionality
and preserve the empirically observed distribution of con-
nection strengths.

We formed a set of surrogate subgraphs for each epoch
by calculating a linear combination of the original sub-
graphs with weights pooled from a uniform random dis-
tribution on the interval [0, 1] (Fig. 2A). The size of the
surrogate subgraph set remained equal to the size of the
original subgraph set.

Clustering subgraph ensembles across epochs
We sought to describe subgraph topology from the

entirety of a patient’s data record by quantifying the sim-
ilarity of subgraph connectivity profiles between interictal
and ictal epochs. While several similarity and distance
metrics are capable of comparing statistical features
across observations in a dataset (e.g., Pearson’s correla-
tion, Euclidean distance, cosine similarity), recent work
has shown that a probabilistic measure of similarity de-
rived from consensus clustering, by leveraging the non-
deterministic property of the random initialization, may
more accurately identify clusters in large datasets with
many features (Monti et al., 2003). To quantify topological
similarity of subgraphs across all of a patient’s epochs,
we again employed an NMF-based consensus clustering
approach.

First, we compiled subgraphs across all of a patient’s
epochs and constructed a subgraph ensemble matrix E
(with dimensions N�N � 1�/2 
 �p�m� �; Fig. 2B). To cluster
the collection of p�m� subgraphs, we applied multiple runs
of NMF to E, such that E � VG, where V represents the
subgraph for each cluster centroid (with dimensions N
�N � 1�/2 
 j) and G represents the likelihood cluster
assignment for each subgraph (with dimensions j 
 �p�m� �),
where j is the number of patient-wide clusters of subgraphs.
After every NMF run, we retrieved the cluster assignment
with maximum likelihood for each subgraph and counted the
number of times each possible pair of subgraphs was as-
signed to the same cluster, and by extension the probability
that any two subgraphs cocluster (Brunet et al., 2004;
Greene et al., 2008; Greene, 2009). These probabilities were
tabulated in a symmetric coclustering probability matrix S
(with dimensions �p�m� � 
 �p�m� �; Fig. 2C).

For every patient, we computed a coclustering proba-
bility matrix S over 100 NMF runs for each number of
subgraph clusters j � 2, 3, �, 20. To determine the opti-
mum number of clusters j, we computed the Frobenius
error between E and VG for each j and retained the value
j� that occurs at the elbow of the resulting Frobenius error
curve for each patient. Finally, we assigned each sub-
graph to its consensus cluster by applying one run of
NMF, with j� clusters, to S.

To generate a surrogate coclustering probability matrix,
we repeated our approach and replaced the original sub-
graphs in E with surrogate subgraphs and set the number

of subgraphs j to the optimized number of subgraphs j�
from the original ensemble clustering.

Two-dimensional projection of subgraph similarity
To study the overall topological similarity between sub-

graphs, we employed a multidimensional scaling method
(Borg and Groenen, 2005) that projects each of the p 
 m�
subgraphs as a data point in two-dimensional space and
constrains the position of each data point a distance away
from all other data points based on their relative similari-
ties, as specified in S. In other words, more topologically
similar (dissimilar) subgraphs are closer (further) in two-
dimensional space (for example, see Figure 3A). Formally,
MDS assigns each subgraph a two-dimensional coordi-
nate (xy) by minimizing the following stress function,
StressS � � �

i�j�1, �, p�m�
�1 � Sij � ��xyi � xyj���2�1/2, where S is

the probabilistic subgraph coclustering matrix, i and j are
each different indices for one of m� subgraphs of the p
epochs. The MDS procedure assigns each subgraph a
two-dimensional xy coordinate.

Using the two-dimensional subgraph projection, we
studied the proximity of a subgraph to its cluster centroid.
Subgraphs closer to the centroid of their assigned cluster
were considered more integrated, while subgraphs closer
to the centroid of a nonassigned cluster (neighboring
cluster) were considered more promiscuous. Formally, we
computed a normalized distance to centroid measure by,
Distance�p, m, jassign, jneighbor� � Dist�xyp, m, xyjneighbor

� � Dist
�xyp, m, xyjassign

� / Dist�xyp, m, xyjneighbor
� � Dist�xyp, m, xyjassign

� ,
where Dist is the Euclidean distance function, xy are
projected coordinates of the mth subgraph of the pth ep-
och, and xy is the centroid coordinate of the assigned
cluster for the subgraph jassign or the centroid coordinate of
the most proximal, nonassigned cluster jneighbor. Intuitively,
a subgraph closer to the centroid of its assigned cluster
than its neighboring cluster has normalized distance near
�1, a subgraph closer to the centroid of its neighboring
cluster than its assigned cluster has normalized distance
near –1, and a subgraph equally distant to its own cluster
centroid and neighboring cluster centroid has normalized
distance of 0 (for example, see Figure 3B,C).

Measures of subgraph topology and dynamics
To quantify the topological and dynamic role of func-

tional subgraphs in the epileptic network, we describe
several measures based on the distributions of subgraph
connectivity and expression coefficients.

To determine the degree to which a subgraph expressed
functional connectivity in the SOZ, we computed SOZ sen-
sitivity, a measure of the relative strength of subgraph con-
nectivity within the seizure-onset zone (SOZ) and OUT.
Mathematically, the SOZ sensitivity is defined, SOZ Sensi-
tivity �p, m� � C�p, mSOZ

� C�p, mOUT / C�p, mSOZ
� C�p, mOUT

, where
C�SOZ is the average subgraph connection strength of nodes
within the SOZ and C�OUT is the average subgraph connec-
tion strength of nodes outside the SOZ, of the mth subgraph
of the pth epoch. The SOZ sensitivity ranges from �1,
maximally sensitive to functional connections within the
SOZ, to –1, maximally sensitive to functional connections
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outside the SOZ (for example, see Figure 4). We also
computed a surrogate distribution of SOZ sensitivity by
randomly permuting the SOZ label across network nodes
and recomputing SOZ sensitivity.

To determine the degree to which a subgraph ex-
pressed functional connectivity between brain regions
exhibiting intericital epileptic spikes, we computed a spike
sensitivity measure of the relative strength of subgraph con-
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Figure 2. Clustering subgraphs based on topological similarity. A, For the set of original subgraphs learned from an epoch of data
(left), we generated an equally sized set of surrogate subgraphs (right) by computing a weighted linear combination of the subgraphs
with weights drawn from a uniform random distribution on the interval [0, 1]. The surrogate subgraphs have rewired network topology
but maintain their functionality as a mathematical basis of the original network. B, For each patient, we constructed a subgraph
ensemble matrix, representing the N�N � 1�/2 functional connections for each subgraph from all interictal and ictal epochs. The
ensemble matrix aggregates functional subgraphs expressed over �100 h of intracranial recording. We also constructed a
patient-specific surrogate ensemble matrix by aggregating surrogate subgraphs across all epochs. C, We quantified the topological
similarity between all subgraphs in the ensemble matrix by applying a consensus NMF algorithm that tracks the number of times every pair
of subgraphs is assigned to the same cluster over 100 runs of NMF. This procedure resulted in a coclustering probability matrix representing
the frequency with which subgraphs from ictal and interictal epochs are clustered together, a measure of similarity between the connectivity
profiles of subgraph pairs. In the example, the coclustering probability matrix of real subgraphs demonstrates less ambiguous similarity
(matrix entries are near 0 or 1) and greater clustering than surrogate subgraphs (matrix entries closer to 0.5).
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nectivity within spiking regions and outside spiking regions.
Mathematically, the spike sensitivity is defined as Spike Sensi-
tivity �p, m� � C�p, mspike

� C�p, mnonspike / C�p, mspike
� C�p, mnonspike

,
where C� spike is the average subgraph connection
strength of nodes within spiking regions and C� nonspike is
the average subgraph connection strength of nodes
outside spiking regions of the mth subgraph of the pth

epoch. The spike sensitivity ranges from �1 (maximally
sensitive to functional connections within spiking re-
gions) to –1 (maximally sensitive to functional connec-
tions outside spiking regions). We also computed a
surrogate distribution of spike sensitivity by randomly
permuting the spike label across network nodes and
recomputing spike sensitivity.

We compared subgraph dynamics between epochs by
calculating the energy, skew, and power spectral density
(PSD) of subgraph expression coefficients. To compare
subgraph expression between different epochs, we nor-
malized each subgraph’s expression coefficients such
that its maximum value was 1. The subgraph expression
energy (Chai et al., 2017) quantifies the overall magnitude
expression of the subgraph during an epoch (for example,
see Figure 5C) and was computed by energy�p, m� � �

�Hp, m
2�, where H are the temporal coefficients of the mth

subgraph from the pth epoch.
The skew of a distribution of subgraph expression co-

efficients quantifies how transiently or persistently sub-
graphs are expressed (Chai et al., 2017). Intuitively,
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indicates their topological similarity (i.e., closer subgraphs are more similar); circles represent interictal subgraphs and bolded stars
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projections of real subgraphs (left) of the same cluster (color) tend to be closer to one another than to subgraphs of other clusters.
In contrast, the projections of surrogate subgraphs from the same cluster tend to be as close to one another as surrogate subgraphs
from other clusters. B, Normalized, projected distance of a subgraph to its assigned cluster’s centroid, the mean geographical
location of subgraphs in a cluster, relative to its neighboring cluster’s centroid (most proximal, nonassigned cluster centroid),
averaged over all subgraphs of each patient (N � 22). Real subgraphs were significantly closer to their cluster centroid compared with
surrogate subgraphs (paired $t$-test; t21 � 12.09, p � 7 � 10�11), suggesting the same set of brain regions functionally interact
repeatedly over several hours. C, Normalized, projected distance of ictal and interictal subgraphs to their cluster centroid, averaged
over all ictal or interictal subgraphs of each patient with complex partial (CP) seizures (N � 8) and with secondarily generalized
complex partial (CP � GTC) seizures (N � 10). Both groups of patients expressed ictal subgraphs that were significantly further away
from their cluster centroid than interictal subgraphs (paired $t$-test; CP: t7 � �3.29, p � 0.013; CP � GTC: t9 � �4.26, p � 0.002),
suggesting ictal subgraphs may represent functional connections that lie at the transition between interictal subgraphs. (�p � 0.05,
��p � 0.01, ���p � 0.001; Bonferroni corrected for multiple comparisons).
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transient subgraphs are expressed in brief, infrequent
bursts, resulting in a heavy-tailed distribution of temporal
coefficients (i.e., more small coefficients and few large
coefficients), and persistent subgraphs are expressed
evenly in time, resulting in a more normal distribution of
temporal coefficients that fluctuate about the mean. The
skew of the distribution of temporal coefficients for a
subgraph distinguishes whether it is transiently (skew is
greater than zero) or persistently (skew less than zero)
expressed (for example, see Figure 5D). The skew of the
subgraph expression coefficients during an epoch is de-
fined as skew�p, m� � ���Hp, m � �Hp, m

�3� / ����Hp, m �
�Hp, m

�2��3/2 , where H are the temporal coefficients of the
mth subgraph from the pth epoch, and �H is the mean of
the coefficients.

The PSD quantifies the modulation frequency of a sub-
graph’s expression (Leonardi et al., 2013) during an epoch
and was computed using Welch’s method with a sam-
pling frequency of 1 Hz (corresponding to the duration of

ECoG signal used to measure functional connectivity) and
an FFT window size of 20 s (for example, see Figure 5D).

Statistical tests
We performed statistical tests at the patient level for

each analysis in this study by first averaging measures
across all subgraphs or subgraph clusters for a given
patient, and measuring effects over all patients.

First, we examined the topological similarity between
ictal, interictal, and surrogate subgraphs within patients.
To compare each of these subgraph types, we calculated
the average distance to centroid for all subgraphs of each
type and used paired $t$-tests to examine differences
within patients (Table 2, a--c).

Next, we assessed whether certain clusters of sub-
graphs were more sensitive to functional connectivity in
the SOZ than others. Using a paired $t$-test and Bonfer-
roni multiple comparisons correction, we compared the
SOZ sensitivity distribution of each cluster to a null model in
which brain regions within the SOZ are randomly permuted
for every interictal subgraph (Table 2, d--i). We similarly
assessed whether certain clusters of subgraphs were more
sensitive to functional connectivity in interictal spiking re-
gions than others. Using a paired $t$-test and Bonferroni
multiple comparisons correction, we compared the spike
sensitivity distribution of each cluster to a null model in
which brain regions exhibiting interictal spikes are randomly
permuted for every interictal subgraph (Table 2, n--s). To
determine whether a significant effect between subgraph
cluster assignment and spike sensitivity exists, we used a
one-way ANOVA (Table 2, m).

Next, we investigated whether subgraphs of different
clusters exhibit different degree of expression energy dur-
ing interictal epochs. Using a paired $t$-test and Bonfer-
roni multiple comparisons correction, we compared the
distribution of expression energy, averaged over all inter-
ictal subgraph of each cluster, across patients, to the
distribution of expression energy, averaged over all inter-
ictal subgraphs outside that cluster, across patients
(Table 2, j). Similarly, using a paired $t$-test, we compared
the distribution of expression skew between subgraphs of
clusters with high SOZ sensitivity and subgraphs of clusters
with low SOZ sensitivity (Table 2, k).

We next compared the average PSD curves between
ictal and interictal epochs using a statistical technique
called functional data analysis (FDA; see Ramsay and
Silverman, 2005, for technique, and Bassett et al.,
2012, for illustrative application). FDA allowed us to test
whether the area between ictal and interictal PSD
curves were significantly different by comparing the
true area to a null model in which ictal and interictal
labels across subjects were permuted 1,000,000 times
and the area between the curves was recomputed for
each permutation (Table 2, l and t).

Results
To disentangle functional subgraphs and their time-

varying expression from epileptic brain, we retrieved
ECoG recorded during ictal and interictal epochs from 22
patients undergoing routine presurgical evaluation of their
neocortical epilepsy (see Table 1 for patient-specific in-
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Figure 4. Interictal subgraphs are selectively sensitive to the
SOZ. A, Distribution of average SOZ sensitivity of subgraphs in
each cluster, ranked in decreasing order, from each patient (N �
22). SOZ sensitivity of true SOZ labels in blue and of permuted
SOZ labels in gray. We observed a significant effect of SOZ
sensitivity for real SOZ labels compared with permuted SOZ
labels for clusters 1, 2, 3, and 6 (�p � 0.05, ��p � 0.01, ���p �
0.001; Bonferroni corrected for multiple comparisons). These
results demonstrate that functional interactions between brain
regions are heterogeneously sensitive to dysfunction in the SOZ,
depending on cluster-specific subgraph stereotypes. B, Impor-
tantly, we observed that subgraphs of cluster 1 were significantly
sensitive to connections within the SOZ, while subgraphs of
cluster 6 were significantly sensitive to connections outside the
SOZ. An example of subgraphs from cluster 1 (left) and cluster 6
(right) are shown here. Connections between SOZ nodes are
shown in the top-left box, and connections between non-SOZ
nodes are shown in the bottom-right box.
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formation) through the IEEG Portal (http://www.ieeg.org).
We defined an ictal epoch as the period of ECoG signal
between seizure onset, as characterized by the EEC (Litt
et al., 2001), and seizure termination. Further, we defined
an interictal epoch as a continuous 5-min period of ECoG
signal at least 2 h preceding or following seizure onset.
We analyzed all possible interictal epochs, which
amounted to � � 106  17 h of ECoG signal per patient.

For each epoch of each patient, we applied the follow-
ing steps: (1) estimated weighted functional connectivity
using a normalized cross-correlation metric and (2) clus-
tered patterns of frequently expressed functional connec-
tions from the network model by applying a machine
learning technique called NMF to the time-varying net-
work configuration matrix (see Materials and Methods for
detailed procedure, and see Table 3 for number of sub-
graphs learned per epoch for each patient). This tech-
nique enabled us to pursue a parts-based decomposition
of functional connections into subgraphs with time-
varying expression coefficients (Chai et al., 2017). Each

subgraph is an additive component of the original network
and represents a pattern of functional interactions be-
tween brain regions. Subgraphs are accompanied by
time-varying expression coefficients, measuring the de-
gree to which each subgraph is expressed at a given point
in time.

Importantly, our approach yields a collection of func-
tional subgraphs over the long-term clinical recording. We
studied the topology and dynamics of these learned sub-
graphs in greater detail to understand and pinpoint drivers
of epileptic network dysfunction, interictally.

Ictal network architecture emerges during interictal
epochs

We first ask the following: do subgraphs of interacting
brain regions recur in their expression over the entire
duration of a patient’s intracranial recordings? We ex-
pected that if the same brain regions interact frequently,
as described by a subgraph, then similar patterns of
subgraph connectivity should emerge over the long-term
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Figure 5. Expression energy and transience differentiate ictal and interictal epochs. A, We computed (i) subgraph expression
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activity. Shown here are four examples of subgraph expression from a single patient, chosen by identifying subgraphs whose
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Distribution of subgraph expression energy, averaged across interictal epochs of each cluster (ranked by SOZ sensitivity) for each
patient (N � 22). For each cluster, we compared the distribution of expression energy for subgraphs of that cluster to expression
energy for subgraphs of all other clusters and found significantly lower expression energy of subgraphs within cluster 1, most sensitive
to nodes in the SOZ, than outside cluster 1 (paired $t$-test; t21 � �3.21, p � 0.004; Bonferroni corrected for multiple comparisons).
C, Distribution of subgraph expression skew, averaged across interictal epochs of clusters 1 and 6 for each patient (N � 22). We
observed subgraphs of cluster 1, which were most sensitive to nodes in the SOZ, exhibited significantly greater skew, and therefore
greater temporal transience, than subgraphs of cluster 6, which were most sensitive to nodes outside the SOZ (paired t test; t21 �
2.12, p � 0.04). These findings suggest that subgraphs with strongly connected SOZ nodes exhibit more transient, burst-like,
dynamics than subgraphs with strongly connected non-SOZ nodes. D, PSD distribution of ictal and interictal subgraph expression,
averaged over patients (N � 22). We observed a significant difference between ictal and interictal subgraph expression, ictal
subgraphs modulate their expression at lower frequencies and interictal subgraphs modulate their expression at higher frequencies
(FDA; p � 3 
 10�5). These findings suggest that subgraph expression is more gradual and coordinated during ictal epochs than
interictal epochs.
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recording. To test our hypothesis, we took the following
probabilistic approach (Fig. 2): (1) constructed a subgraph
ensemble matrix by aggregating functional connections
over all subgraphs of a patient, (2) quantified topological
similarity between subgraphs by applying a consensus
NMF algorithm to separate ensemble matrices for real and
surrogate subgraphs, (3) populated a real and a surrogate
coclustering probability matrix based on pairwise similar-
ity of subgraphs from all epochs, and (4) projected the
coclustering probability matrix on a two-dimensional Eu-
clidean space using MDS. See Table 3 for number of
subgraph ensemble clusters for each patient.

In the two-dimensional projection space, topologically
similar subgraphs are geographically closer and topolog-
ically dissimilar subgraphs are geographically farther from
one another. We expected that interactions between brain
regions prescribed by subgraphs within a cluster would
be highly distinct from interactions between brain regions
of other clusters. We visually confirmed this hypothesis in
a sample patient, observing that geographically closer
subgraphs were more likely assigned to the same cluster
(Fig. 3A). In contrast, surrogate subgraphs, with random-
ized connectivity, of the same patient did not exhibit
geographical clustering corresponding to the clustering

Table 2: Statistical table

Line Data structure Type of test Power
a Normal Paired $t$-test 1
b Normal Paired $t$-test 0.21
c Normal Paired $t$-test 0.57
d Normal Paired $t$-test (Bonferroni corrected) 1
e Normal Paired $t$-test (Bonferroni corrected) 0.99
f Normal Paired $t$-test (Bonferroni corrected) 0.97
g Normal Paired $t$-test (Bonferroni corrected) 0.85
h Normal Paired $t$-test (Bonferroni corrected) 0.10
i Normal Paired $t$-test (Bonferroni corrected) 0.10
j Normal Paired $t$-test (Bonferroni corrected) 0.55
k Normal Paired $t$-test 0.58
l Nonparametric Permutation test 1 
 106

permutes
m Normal One-way ANOVA 1
n Normal Paired $t$-test (Bonferroni corrected) 0.70
o Normal Paired $t$-test (Bonferroni corrected) 0.36
p Normal Paired $t$-test (Bonferroni corrected) 0.06
q Normal Paired $t$-test (Bonferroni corrected) 0.07
r Normal Paired $t$-test (Bonferroni corrected) 0.05
s Normal Paired $t$-test (Bonferroni corrected) 0.05
t Nonparametric Permutation test 1 
 106

permutes

Table 3: Subgraph learning and ensemble clustering table

Patient
(IEEG Portal)

Electrode
sensors (N)

Electrode
configuration

Ictal
Epochs (N)

Interictal
Epochs (N)

Total
Epochs (p)

Subgraphs per
Epoch (m� )

Subgraph
Ensemble Clusters (j�)

HUP64_phaseII 88 Grid: 8x8; Strip: 1x6 (4) 01 3228 3229 8 8
HUP65_phaseII 80 Grid: 8x8; Strip: 1x6 (3) 03 2986 2989 8 9
HUP68_phaseII 79 Grid: 8x8; Strip: 1x8 (2), 1x4 (2) 05 3020 3025 8 7
HUP70_phaseII 78 Grid: 8x8; Strip: 1x6, 1x4 (2) 08 1079 1087 7 8
HUP72_phaseII 62 Strip: 1x8 (3), 1x6 (5), 1x4 (2) 01 2439 2440 8 9
HUP73_phaseII 56 Strip: 1x8 (4), 1x6 (4) 05 1071 1076 8 7
HUP78_phaseII 100 Grid: 8x8; Strip: 1x6 (2), 1x4 (3); Depth: 1x4 (3) 05 1719 1724 6 8
HUP79_phaseII 84 Grid: 6x8; Strip: 1x8, 1x6 (4), 1x4 01 1775 1776 8 8
HUP86_phaseII 118 Grid: 8x8; Strip: 1x6 (5), 1x4 (4); Depth: 1x4 (2) 02 2612 2614 7 8
HUP87_phaseII 88 Grid: 8x8; Strip: 1x4 (3); Depth: 1x4 (3) 02 1201 1203 8 8
Study 004-2 64 Grid: 6x6; Strip: 1x4 (5); Depth: 1x4 (2) 01 638 639 8 7
Study 006 56 Grid: 6x8; Strip: 1x8 02 104 106 8 8
Study 010 56 Grid: 6x8; Strip: 1x4 (2) 02 526 528 8 10
Study 011 84 Grid: 6x8; Strip: 1x8 (2), 1x4 (5) 02 283 285 7 7
Study 016 64 Grid: 4x6 (2); Strip: 1x4 (4) 03 669 672 8 6
Study 019 80 Grid: 3x8, 6x6; Strip: 1x8 (2), 1x4 (3); Depth: 1x4 (2) 15 403 418 7 8
Study 020 56 Grid: 4x4, 4x6; Strip: 1x4 (4) 04 412 416 8 9
Study 023 92 Grid: 8x8; Strip: 1x8, 1x4 (3); Depth: 1x4 (2) 04 208 212 8 8
Study 026 96 Grid: 8x8; Strip: 1x8 (3), 1x4 (2) 10 539 549 7 6
Study 031 116 Grid: 8x8, 4x6; Strip: 1x8 (2), 1x4 (3) 05 730 735 7 7
Study 033 124 Grid: 8x8, 3x8; Strip: 1x8 (3), 1x4 (3) 07 1321 1328 8 7
Study 037 80 Grid: 8x8; Strip: 1x8 (2) 02 1087 1089 8 9

Summary of number of ictal and interictal epochs, total number of epochs, optimized number of subgraphs learned per epoch, and optimized number of sub-
graph ensemble clusters for each patient.
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assignment. To test whether clustering of topologically
similar subgraphs is significantly greater in the true data
than in the surrogate model, we quantified the degree of
clustering by computing a normalized distance to centroid
index for each subgraph that compares the Euclidean
distance from a subgraph to its assigned cluster’s cen-
troid and the same subgraph to its nearest neighboring
cluster centroid (Fig. 3B). A cluster centroid is the mean
two-dimensional, geographical location over all sub-
graphs in the cluster. Using a paired $t$-test, we found
that the normalized distance to centroid, averaged over all
subgraphs for each patient, was significantly greater for
real subgraphs (� � 0.71  0.03) than surrogate sub-
graphs (� � 0.24  0.02; t21 � 12.09, p � 7 
 10�11;
Table 2, a). These results suggest that subgraphs as-
signed to the same cluster exhibit greater topological
similarity than expected by chance. In other words, the
functional architecture of meso-scale brain circuits is or-
ganized by recurring subgraphs of connectivity, in which
the same sets of brain regions functionally interact, re-
peatedly, over several hours. These recurring patterns of
functional interactions describe organizational rules for
specific groups of brain regions more likely to functionally
interact at different periods of time.

Based on our result of recurring functional subgraphs in
epileptic brain, we next asked whether ictal subgraphs are
topologically distinct from interictal subgraphs. Visualiz-
ing the two-dimensional projection of the subgraph co-
clustering probability matrix from an example patient (Fig.
3A), we observed several bridge-like extensions between
subgraph clusters, representing putative transition sub-
graphs between clusters that might be invoked as the
network shifts between dynamical states. We hypothe-
sized that ictal subgraphs lie closer to the cluster periph-
ery, at the junction of subgraph transitions, than interictal
subgraphs. Moreover, we expected subgraphs of sei-
zures that undergo more complex stages of spreading
dynamics, secondarily generalized, complex partial sei-
zures (CP � GTC), would be closer to these junctions (i.e.,
further from the cluster centroid) than focal seizures
whose dynamics minimally spread, complex partial sei-
zures (CP). To test our hypothesis, we computed the
normalized distance to centroid index, separately, for ictal
and interictal subgraphs of each patient with CP seizures
and with CP � GTC seizures (Fig. 3C). Using a paired
$t$-test and Bonferroni correction for multiple comparisons,
we found: (1) for patients with CP seizures, ictal subgraphs
were significantly more distant (� � 0.70  0.04) from their
cluster centroid than interictal subgraphs (� � 0.76  0.03;
t7 � � 3.29, p � 0.013; Table 2, b); and (2) for patients with CP
� GTC seizures, ictal subgraphs were significantly more distant
(� � 0.57  0.06) from their cluster centroid than interictal
subgraphs (� � 0.71  0.04; t9 � � 4.26, p � 0.002;
Table 2, c). These results suggest that ictal subgraphs are less
integrated within their clusters than interictal subgraphs and
that ictal subgraphs of patients with CP � GTC seizures (t9 �
� 4.26) lie further from cluster centroid than ictal subgraphs of
patients with CP seizures (t7 � � 3.29). Importantly, ictal
subgraphs are not topologically distinct from interictal
subgraphs and may, in fact, represent functional connec-

tions that lie at the transition between interictal sub-
graphs. Furthermore, seizures with complex patterns of
spreading dynamics (CP � GTC) may express functional
connections closer to junctions between subgraph clus-
ters than seizures with more focal dynamics (CP).

Interictal subgraphs predict seizure-onset regions
In the preceding analyses, we observed that (1) ictal

and interictal subgraphs that are more topologically sim-
ilar are grouped in the same cluster and (2) ictal sub-
graphs are topologically similar to interictal subgraphs
and may capture transitions between clusters. If similar
patterns of functional connectivity are expressed during
ictal and interictal epochs, then we logically ask whether
interictal subgraphs can predict which functional interac-
tions drive seizure-onset. To address this question, we
compared interictal subgraph topology within and outside
of clinically defined seizure-onset brain regions. In accord
with routine clinical evaluation of patients’ epilepsy, a
team of neurologists successfully identified the sensors in
the SOZ and sensors exhibiting interictal epileptiform
spikes based on visual inspection of the intracranial re-
cordings.

To determine the degree to which a subgraph ex-
pressed functional connectivity in the SOZ, we quantified
the relative strength of brain regions within the SOZ and
OUT for each subgraph by computing the SOZ sensitivity
measure. This measure enabled us to summarize the
relationship between functional subgraphs and the SOZ
of each patient and compare subgraph architecture be-
tween patients.

We first asked whether all interictal subgraphs are
equally sensitive to connections in the SOZ, or are some
interictal subgraphs more sensitive than others. We hy-
pothesized that connectivity in the SOZ would be ex-
pressed in a few interacting brain regions, rather than
homogenously over many functional subgraphs. Thus, we
expected the SOZ sensitivity measure to stratify func-
tional subgraphs based on the epileptic network architec-
ture within and outside the SOZ. First, we separately
ranked each patient’s subgraph clusters in decreasing
order of their average interictal SOZ sensitivity. Next, we
aggregated SOZ sensitivity measures for interictal sub-
graphs of the same ranked cluster across patients. We
expected cluster ranking to reveal potential hetereogene-
ity in the SOZ sensitivity of interictal subgraphs. Across
the patient cohort, we generated a distribution of the
average SOZ sensitivity for each of the top 6 ranked
clusters, the minimum number of subgraph clusters iden-
tified for the 22 patients (Fig. 4A). Using a paired $t$-test
and Bonferroni correction for multiple comparisons, we
compared the SOZ sensitivity distribution of each cluster
to a null model in which brain regions within the SOZ are
randomly permuted for every interictal subgraph. Com-
pared with the null distribution, we found significantly
greater SOZ sensitivity for cluster 1 (� � 0.31  0.04;
t21 � 8.19, p � 2 
 10�7; Table 2, d), cluster 2 (� �
0.15  0.03; t21 � 5.58, p � 3 
 10�5; Table 2, e), and
cluster 3 (� � 0.08  0.02; t21 � 3.75, p � 0.005;
Table 2, f); significantly lower SOZ sensitivity for cluster 6
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(� � � 0.10  0.02; t21 � � 3.97, p � 0.001; Table 2, g);
and no significant difference for cluster 4 (� �
0.01  0.02; t21 � 1.86, p � 0.08; Table 2, h) and cluster
5 (� � � 0.05  0.02; t21 � � 1.47, p � 0.16; Table 2, i).
These results indicate interictal subgraphs exhibit a het-
erogeneous sensitivity to brain regions within and outside
the SOZ, with subgraphs in cluster 1 demonstrating the
presence of network hubs localized to the SOZ and sub-
graphs in cluster 6 demonstrating the presence of net-
work hubs localized outside the SOZ (Fig. 4B).

We next asked whether interictal subgraph topologies
are uniquely sensitive to architecture in the SOZ, or
whether they capture a wider range of interictal epilepti-
form activity. This question is critical for understanding
whether functional connectivity captured by subgraphs is
artifactually driven by interictal epileptiform spikes, which
do not necessarily correlate with regions within the site of
seizure initiation. To determine the degree to which a
subgraph expressed functional connectivity in spiking re-
gions, we quantified the relative connection strength be-
tween brain regions exhibiting spikes and between brain
regions not exhibiting spikes for each subgraph by com-
puting the spike sensitivity measure. First, we computed
the average spike sensitivity over subgraphs of each
ranked cluster. Next, we generated a patient-level distri-
bution of the average spike sensitivity for each cluster
(Fig. 6A). To assess whether subgraph clusters differen-
tially capture functional connectivity between spiking re-
gions, we used a one-way ANOVA and found no
significant effect between ranked cluster assignment and
average spike sensitivity (one-way ANOVA; F(5) � 1.50, p
� 0.20; Table 2, m). Next, we asked whether any partic-
ular cluster exhibited subgraphs that were more sensitive
to spiking regions than expected by a null model in which
brain regions exhibiting epileptic spikes were randomly
permuted for every interictal subgraph. Using a paired
$t$-test and Bonferroni correction for multiple compari-
sons, we found no significant differences between the
average spike sensitivity of any cluster and its associated
null distribution (t21 � 2.2, p � 0.05; see Table 2, n--s, for
clusters 1-6). These results suggest that interictal sub-
graph topology is not driven by brain regions that dem-
onstrate abnormal epileptiform spiking.

Taken together, we found that the epileptic network
decomposes into a small number of constituent sub-
graphs that predict varying degree of architecture be-
tween brain regions within the SOZ, ranging from strongly
connected to significantly disconnected. Moreover, inter-
ictal subgraph topology is uniquely sensitive to brain re-
gions in the SOZ and not grossly driven by brain regions
that periodically emit epileptic spikes. Overall, the strati-
fication of subgraphs based on sensitivity to the SOZ
suggests that different network substructures may be
complicit with the SOZ during interictal periods. It follows
that relative differences in the temporal expression of
functional subgraphs could describe time periods in
which distributed network regions are interacting. If sub-
graphs with high sensitivity to functional connectivity
within the SOZ exhibit different temporal patterns of ex-
pression than subgraphs with low sensitivity, then such

dynamical properties might be useful for predicting SOZ-
sensitive subgraphs from interictal epochs.

Accordingly, we next examined how various functional
subgraph topologies differentially behave in their pattern
of time-varying expression: that is, their subgraph dy-
namics.

Temporal dynamics differentiate subgraphs of
interictal and ictal epochs

We have presented evidence that ictal subgraphs are
topologically similar to interictal subgraphs and, further,
that interictal subgraph topology can predict where sei-
zures begin. Logically, we finally ask, if ictal and interictal
subgraphs express similar network architecture, how is
functional connectivity of the epileptic network differen-
tially expressed between ictal and interictal epochs? By
addressing this critical question, we aimed to explain how
network architecture involving the SOZ remains active
during interictal epochs without manifesting clinical sei-
zures. First, we analyzed the time-varying expression co-
efficients of each subgraph, which represent the degree
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Figure 6. Methodological considerations. A, Distribution of av-
erage spike sensitivity of subgraphs in each cluster, from each
patient (N � 22). Spike sensitivity of true spiking regions in blue
and of permuted spiking regions in gray. We observed no sig-
nificant effect of subgraph cluster assignment on interictal spike
sensitivity (one-way ANOVA; F5 � 1.50, p � 0.20). We also found
no significant differences between spike sensitivity for real spik-
ing regions compared with permuted spiking regions (paired
$t$-test; t21 � 2.2, p � 0.05; Bonferonni corrected for multiple
comparisons). These results demonstrate that functional con-
nectivity described by subgraphs is not sensitive to network
regions that exhibit interictal spikes. B, Mean area between PSD
curves for ictal and interictal subgraphs for different window
sizes used in the calculation of the PSD. True area in blue and
95% confidence interval using FDA in gray. These results dem-
onstrate that our finding of differences in subgraph expression
dynamics during ictal and interictal epochs is robust to choice in
window size used to compute the PSD.
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to which a subgraph is expressed as a function of time.
These coefficients are naturally provided by the NMF
subgraph detection technique. From these data, we for-
mulated two hypotheses: (1) that functional subgraphs
express a variety of dynamical modes that predict sub-
graph topologies with heightened sensitivity for epileptic
brain regions, and (2) that expression of ictal subgraphs is
modulated at slower time scales than interictal sub-
graphs, supporting the notion that seizures are internally
driven processes with coordinated dynamics.

To test our first hypothesis, we used established tools
for studying network dynamics (Chai et al., 2017) and
computed subgraph expression energy, a measure of
overall dynamical activity, and subgraph expression
skew, a measure of transient or persistent dynamics, and
identified a sample of subgraphs that exhibit high/low
energy and transient/persistence dynamics (Fig. 5A). In-
tuitively, the subgraph energy measures the intensity with
which a subgraph is expressed over a period of time.
Subgraphs with greater expression energy tend to be
more dominant in the global network architecture, while
subgraphs with lower expression energy resemble more
quiescent network processes. Based on our finding that
interictal subgraphs are sensitive to functional connectiv-
ity within the SOZ, we expected that network processes
related to the SOZ might be more quiescent during
seizure-free interictal periods, leading to predictably lower
expression energy for interictal subgraphs with high SOZ
sensitivity (cluster 1) compared with interictal subgraphs
with lower SOZ sensitivity (clusters 2-6). Using a paired
$t$-test and Bonferroni correction for multiple compari-
sons, we compared the distribution of expression energy,
averaged over all interictal subgraphs of each cluster,
across patients to the distribution of expression energy,
averaged over all interictal subgraphs outside that cluster,
across patients (Fig. 5B). We found that interictal sub-
graphs of cluster 1 exhibit significantly lower expression
energy (� � 0.17  0.01) than interictal subgraphs out-
side of cluster 1 (� � 0.20  0.004; t21 � –3.21, p �
0.004; Table 2, j), suggesting that, indeed, subgraphs with
high sensitivity to SOZ brain regions exhibit significantly
attenuated activity during interictal epochs. Importantly,
our results imply that expression energy is specific in its
ability to predict the subgraph cluster that exhibits strong
functional connections in the SOZ.

Next, we asked whether interictal subgraphs with pro-
nounced connectivity in the SOZ (cluster 1) differ in their
pattern of expression compared with interictal subgraphs
with pronounced disconnectivity in the SOZ (cluster 6). To
answer this question, we used subgraph expression skew
to determine the overall transience of a subgraph. Intui-
tively, subgraph transience measures the behavior in
which a subgraph is expressed over a period of time.
Subgraphs with greater transience tend to exhibit inter-
mittent increases in expression and may resemble brief
periods of heightened recruitment in conjunction with
metabolic demand or cognitive goals, while subgraphs
with lower transience exhibit more routine fluctuations
and may resemble persistent and essential network pro-
cesses. During interictal periods, we expected that sub-

graphs with strong connectivity in the SOZ may express
their pattern of functional connections with greater tran-
sience, in support of seizure initiation, than subgraphs of
cluster 6 with significant disconnectivity in the SOZ (Fig.
5C). Using a paired $t$-test we found that expression
skew, averaged over all interictal subgraphs, across pa-
tients was greater for cluster 1 (� � 1.25  0.24) than
cluster 6 (� � 0.75  0.20; t21 � 2.12, p � 0.04;
Table 2, k). These results suggest interictal subgraphs
with high connectivity within the SOZ are expressed tran-
siently, and interictal subgraphs with high connectivity
outside the SOZ are expressed persistently. In other
words, network substructures highly involved with seizure-
onset areas intermittently increase in expression, while
structures highly involved outside the SOZ, and quiet
within the SOZ, persist in their expression during interictal
periods.

These results point to a robust repertoire of interictal
dynamics involving different component subgraphs of the
epileptic network and suggest that network regions in the
SOZ may be involved in quiescent, low-energy processes
that intermittently increase in dominance without mani-
festing clinical seizures. While findings related to our first
hypothesis paint a nuanced picture of the role played by
epileptic network architecture in interictal dynamics, an-
swers to our second question regarding how network
processes associated with subgraphs differentially evolve
during ictal and interictal epochs remain elusive.

Specifically, we sought an understanding of the differ-
ent time scales associated with network processes during
ictal and interictal epochs. To address this issue, we
computed PSD for each subgraph, averaged the PSD
curves over all ictal or interictal subgraphs of each patient,
and analyzed the resulting ictal and interictal PSD distri-
bution (Fig. 5A). Using a statistical technique called FDA
(see Ramsay and Silverman, 2005, for technique; and
Bassett et al., 2012, for illustrative application), we asked
whether the area between ictal and interictal PSD curves
were significantly different by comparing the true area to
a null model in which ictal and interictal labels across
subjects were permuted 1,000,000 times, and the area
between the curves was recomputed for each permuta-
tion. We found that the ictal and interictal PSD curves
were significantly separated (area between curves �
0.014; p � 2.2 � 10�5; Table 2, l), indicating that, on
average, network processes underlying ictal dynamics are
more likely to operate at frequencies lower than 0.2 Hz,
while network processes underlying interictal dynamics
are more likely to operate at frequencies �0.2 Hz. To
ensure that our finding is not driven by differences in the
duration of ictal and interictal epochs, we recomputed the
area between PSD curves using several window sizes
(Fig. 6B) and observed consistently significant separation
between ictal and interictal PSD curves for window sizes
�10 s (Bonferroni corrected FDA; p � 0.05; Table 2, t).
Our finding that the expression of ictal subgraphs modu-
lates at slower frequencies and expression of interictal
subgraphs modulates at higher frequencies, implies that
the same epileptic network architecture of ictal and inter-
ictal epochs support network processes at vastly different
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time scales. More generally, these results demonstrate
that seizures mark a critical shift in network dynamics that
is driven by slower and more coordinated expression of
frequently interacting brain regions.

Discussion
In this work, we asked the following question: does

interictal functional architecture of the epileptic brain per-
petuate network dysfunction several hours between sei-
zures? To answer this question, we designed and applied
a novel tool to disentangle subgraphs and their time-
varying expression from dynamic functional connectivity.
Our work supports the notion that ictal and interictal
epochs traverse a similar set of functional subgraphs, but
differ in the temporal pattern of subgraph expression: that
is, subgraph dynamics.

Subgraphs disentangle regions of the epileptic
network

A common notion in epilepsy is that dysfunctional cor-
tical regions produce epileptiform activity, capable of
generating seizures. However, network theorists posit
that dysfunction may, in part, arise when neural activity
between cortical regions hypersynchronize (Uhlhaas and
Singer, 2006; Jiruska et al., 2013). Previous studies have
identified discrete network states that describe shifts in
global network topology, such as magnitude of functional
connectivity (Rummel et al., 2013; Burns et al., 2014;
Khambhati et al., 2015). However, these approaches are
unable to pinpoint specific functional connections that
drive changes in brain state across a seizure.

Building on prior work (Eavani et al., 2013; Leonardi
et al., 2013, 2014), in this study, we disentangle functional
networks into additive subgraphs, patterns of functional
interactions between brain regions, that vary in expres-
sion over time. Logically, different subgraphs may be
simultaneously or sequentially expressed to meet func-
tional demand (Bassett et al., 2006; Deco et al., 2011;
Bullmore and Sporns, 2012; Santarnecchi et al., 2014;
Chai et al., 2017). Our results demonstrate that the dy-
namic epileptic network expresses functional subgraphs
that recur during ictal and interictal epochs. It is intuitively
plausible that the epileptic network is actually composed
of a small set of subgraphs that underlie normal function
during interictal epochs, but are coopted to support sei-
zure dynamics during ictal epochs (Kramer and Cash,
2012; Schevon et al., 2012; Korzeniewska et al., 2014;
Petkov et al., 2014; Khambhati et al., 2015). Such a theory
is corroborated by our finding that subgraphs of ictal
epochs are more likely to lie at the transition between
clusters representing different gross topological architec-
ture, and exhibit slower and more coordinated dynamics
than during interictal epochs. The slow subgraph dynam-
ics we observed in ictal epochs operate in a similar fre-
quency range to infra-slow oscillations (0.02-0.2 Hz) of the
local field potential, whose putative role is to modulate
neuronal excitability (Vanhatalo et al., 2004). Based on this
relationship, we speculate that ictal subgraphs may play a
mechanistic role in coordinating excitability between brain
regions in the epileptic network to drive initiation, evolu-
tion, and termination of seizures.

Importantly, the geography of the subgraph projection
space points to a core-periphery organization (Borgatti
and Everett, 1999) of ictal and interictal subgraphs, in
which more densely clustered interictal subgraphs form a
core set of highly similar topologies and more loosely
clustered ictal subgraphs form a network periphery of
more variable topologies. The existence of core-periphery
organization in dynamical brain networks related to lan-
guage (Fedorenko and Thompson-Schill, 2014; Chai
et al., 2016b) and learning (Bassett et al., 2013) supports
the idea that temporally variable network architectures
help navigate different cognitive states. In the epileptic
network, ictal subgraphs of the cluster periphery may be
more likely to facilitate dynamical transitions between
clusters of different subgraph topologies than interictal
subgraphs. Furthermore, our finding that subgraphs of
seizures with pronounced spatial spread (CP � GTC) lie
closer to their cluster periphery than focal seizures (CP)
may contribute to global properties of network topology that
have been used to predict seizure type in prior work
(Khambhati et al., 2016). Neurophysiologically, the epileptic
network demonstrates a weakened regulatory, push-pull
control in constraining CP � GTC seizures (Khambhati et al.,
2016) and might contribute to the ability of CP � GTC
subgraphs to more flexibly transition between subgraph
clusters than CP subgraphs.

Predicting seizure origin in the network
We observed that functional interactions specific to the

SOZ are highly predicted by the magnitude of functional
connectivity and cluster assignments of topologically sim-
ilar, interictal subgraphs. Our results agree with prior stud-
ies demonstrating increased network connectivity in
seizure-onset regions during interictal epochs (Warren
et al., 2010; Korzeniewska et al., 2014). Our finding that
topologically similar subgraphs form clusters over the
long data record suggests that the pattern of functional
interactions is critical to differentiate regions that drive
seizure onset from the surrounding network.

Importantly, our results demonstrate that the site of
seizure origin in the epileptic network exhibits dysfunction
that recurs transiently over long periods of time. Further-
more, our novel subgraph clustering approach reliably
pinpoints this target several hours before seizures occur
and reveals that the region is overall more “silent” or
dormant relative to regions outside the seizure origin.
However, we witnessed that these dysfunctioned and
attenuated subgraphs can transiently disrupt functional
interactions underlying persistent brain processes not in-
volving the seizure origin. Prior work has shown that focal,
left-sided epileptiform activity is associated with de-
creased short-term verbal memory and focal, right-sided
epileptiform activity is associated with decreased short-
term memory in nonverbal or spatial tasks (Aarts et al.,
1984; Holmes and Lenck-Santini, 2006). Further studies
demonstrate that seizures originating in the temporal lobe
result in decreased cognitive performance on tasks often
associated with activation of frontal and prefrontal lobe,
such as performance IQ, verbal IQ, and word list learning
(Jokeit et al., 1997), suggesting that cognitive functions
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are impacted over long distances through network inter-
actions. The approach we developed can be used to
study pressing questions regarding secondary deficits
caused by interactions between epileptic and nonepilep-
tic brain regions.

Methodological limitations and extensions
The first important clinical consideration related to this

work is the sampling error inherent in any intracranial
implantation procedure. Any of the techniques used to
map epileptic brain usually yield incomplete representa-
tions of the epileptic network. As a consequence, the
subgraphs we measured may represent just a portion of
more distributed functional circuits that extend further
throughout the brain.

Secondly, our methods of predicting epileptic network
architecture from interictal epochs rely on accurate delin-
eation of seizure-onset regions. Because of sampling er-
ror and variability in clinical decision making, the seizure-
onset region may be under- or oversampled. However,
the goodness-of-fit of our statistical model in predicting
seizure-onset regions based on functional connectivity
suggests that our model reasonably agrees with a con-
sensus definition of the SOZ formed by a team of prac-
ticing neurologists.

Clinical impact
Mapping architecture of the epileptic network presents

significant challenges for clinicians. In patients with neo-
cortical epilepsy, we showed that functional network to-
pology is highly similar between ictal and interictal
epochs. These findings are relevant for (1) optimizing
treatment strategies to reduce dysfunction and preserve
normal function, and (2) reducing morbidity and mortality
associated with extended duration of invasive intracranial
electrode implantation, which according to recent studies
may actually require months of outpatient intracranial re-
cording with implantable devices (King-Stephens et al.,
2015). By predicting seizure-onset regions from interictal
epochs, clinical monitoring may be shortened, or poten-
tially even conducted intraoperatively. In this setting, one
might imagine epilepsy surgery or device placement tak-
ing place in one procedure, relying on interictal brain
network mapping, delivered similarly to ablations per-
formed by cardiac electrophysiologists. Furthermore, our
finding that complex patterns of functional connectivity
correlate with sources of dysfunction supports the use of
novel interventional strategies, such as laser ablation or
implantable devices, to affect functional circuits at finer
spatial scales than is currently possible with large resec-
tive surgery.
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