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ABSTRACT OF THE THESIS 
 

A Direct Demand Model of Commuter Rail in the San Francisco Bay Area 
 

By 
 

Jennifer Kwong 
 

Master of Science in Civil Engineering 
 

 University of California, Irvine, 2018 
 

Professor Michael McNally, Chair 
 
 
 

This thesis documents the development of a direct travel demand model for 

commuter rail in the San Francisco Bay Area. A direct demand model simultaneously 

estimates trip generation and attraction, which for this thesis would be trips between an 

origin-destination pair of stations. In the model, the number of trips assigned to an origin-

destination pair of stations is dependent on land use characteristics at the origin and 

destination stations in combination with travel time on the network during congested peak 

periods and via transit. The model uses a multiplicative direct demand model to estimate 

ordinary least square regression parameters for the origin-destination trips. From the 

model form, the resultant estimated regression parameters are elasticities, and as such, can 

be used to postulate the effects of the selected land use characteristics and network travel 

times upon the number of trips made.   

At both the origin and destination, the location of the station within the central 

business districts of the San Francisco Bay region had the largest effect on trip generation 

and attraction. Higher employment density at the destination and a larger number of 

workers per household at the origin had a positive effect on trips, while the total number of 
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industrial workers at the destination and an increased number of two car households had a 

negative effect on trips. Longer travel times on transit appeared to have a positive effect on 

trips, yet longer travel times in congested peak periods appeared to have a negative effect 

on trips.  
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INTRODUCTION 

The continuing increase in population in urban areas has unsurprisingly led to a 

corresponding increase in driving, and thus congestion. This has led to a variety of ways to 

attempt to mitigate congestion – from adding additional transportation infrastructure to 

service the demand, to planning communities that encourage people to drive less, and to 

also reduce the amount of greenhouse gases emitted due to increased driving.  

In recognition of the part that the transportation sector plays in anthropogenic 

climate change, the government of California passed two bills - Assembly Bill 32 (AB 32) 

and Senate Bill 375 (SB 375), targeted at reducing greenhouse gas emissions. As a result, 

the two bills have spurred an increased interest in understanding the relationship between 

travel behavior and land uses for governmental policy and industry, especially SB 375, 

which requires regional planning agencies (typically MPOs) to create a Sustainable 

Communities Strategy (SCS). 1  AB 32 requires 1.2% of emission requirements to come from 

local governments, and one method in doing so is by changing development patterns to 

reduce emissions.2 SB 375 helps reinforce the goals established by AB32, and gives 

planning agencies more of a direct requirement in the ways they have to implement the 

GHG emission goals. The Sustainable Communities Strategy is meant to be a complement to 

the regional planning agencies’ Regional Transportation Plan (RTP). The bill specifically 

states that “changes in land use and transportation policy, based upon established 

modeling methodology, will provide significant assistance to California’s goals to 

implement the federal and state Clean Air Acts and to reduce its dependence on 

                                                           
1 https://www.arb.ca.gov/cc/sb375/sb375.htm 
2 http://www.cp-dr.com/articles/node-2140 
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petroleum.” 3 The most powerful method in which SB 375 encourages doing so is in its 

streamlining of development projects that fit with the SCS, even if they conflict with local 

plans, especially transit priority projects. 

As evidenced by the importance accorded to transit in SB 375 - transit has often 

been touted as one of the methods that will help alleviate congestion. In addition to new 

transit projects, the concept of transit-oriented development, such as the changing 

development pattern policy suggested by AB32, has also been a popular suggestion to 

improve congestion. This paper aims to evaluate whether there are land use or 

socioeconomic characteristics,  that contribute to differences in transit ridership at 

stations, in support of this idea. The paper develops a direct demand model for Caltrain, a 

linear commuter rail corridor in the San Francisco Bay Area, and integrates land use and 

travel time variables in a log-sum formulation in order to see if changes in land use density 

and other characteristics typically associated with transit-oriented development strongly 

influence transit ridership between stations. 

  Previous research has attempted to evaluate how land use has affected mode 

choice in an overall setting, with varying results. However, this model focuses specifically 

on ridership, as it would allow transit agencies to predict expected ridership growth at 

stations due to land development and adjust operation plans accordingly, or forecast more 

accurate ridership projections for new capital projects. In addition, it could allow planners 

to recognize baseline densities for land uses in zoning in order to encourage transit 

ridership, and supports modeling efforts for the goals that the California government has 

attempted to put into place with AB 32 and SB 375.   It attempts to forecast both origin and 

                                                           
3 http://www.leginfo.ca.gov/pub/07-08/bill/sen/sb_0351-0400/sb_375_bill_20080930_chaptered.pdf 
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destinations, whereas most previous studies have chosen solely to focus on origin 

ridership. In addition, it uses an on-board travel survey and readily available GIS shapefiles 

to simplify the modeling data collection process, as the data and funds available to transit 

agencies is typically limited. 

Outline 

 Chapter 1 encompasses a literature review of topics relevant to land use and travel 

demand interactions, as well as transit ridership modeling. The thesis begins in Chapter 2 

with an overview of the study area and travel survey data used for the model. In Chapter 3, 

the model is formulated and analyzed to see if there are correlations from the specified 

variables to transit ridership. Chapter 4 makes recommendations for enhancing the 

research done in this paper and for future efforts and concludes the thesis.  
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Chapter 1: Literature Review 

Travel Demand Modeling 

Travel demand modeling primarily began in the 1950s, with the United States’ 

National Defense and Interstate Highway Act of 1956. The construction of the US interstate 

system was one of the first large-scale infrastructure construction processes in the modern 

era, and the four-step planning model that was researched, created and implemented 

during this time period to determine where these highways would go is still used today in 

transportation planning processes today. Planners of that time needed to understand travel 

behavior to predict future highway flows, and set a capacity for the highways they would 

construct. These early attempts to understand travel behavior focused on understanding 

how many trips would be generated from various land uses, and how they would travel 

from origin to destination. Requirements for transportation planning were first mandated 

by the Federal-Aid Highway Act of 1962, including that of models.4   

As such, transportation models in the United States in practice have primarily 

focused on highways and car infrastructure, since that was what they were originally 

developed for. As other modes have increased in usage and popularity, the models have 

been modified to include techniques that can account for different modes, and to address 

the issues that arise in specifying increasingly complex models.  Specific studies have been 

undertaken to inform transit ridership modeling, and many were synthesized and reviewed 

extensively in the 1996 Transit Cooperative Research Program Report, “Transit and Urban 

Form,” and Taylor (2003).   

                                                           
4 Beimborn (1995), 2 
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Model Types 

Travel demand modeling has primarily been done on a regional scale and using the 

traditional four-step model. The four step model as typically used in transportation 

planning is described in McNally (2007). The base activity system (land use characteristics) 

is used to determine how often trips occur (trip generation). Typical units of analysis are 

the transportation analysis zones (TAZs), which group together areas with similar 

characteristics. Trips are estimated in terms of the trips that a land use will produce, and 

how many it will attract. Then, in the following step (trip distribution), productions are 

distributed to attractions via calculated travel impedances (e.g. time or cost), reflecting 

person-trips. These person-trips are then split by mode, based on the understanding of 

mode-share for the region. Lastly, in route assignment, trips are assigned to segments of 

the network, and a time-of-day factor is also applied.  

Activity based modeling has arisen as an alternate modeling approach to the four-

step model that integrates behavioral characteristics and economic utility choices of 

travelers and treats travel as a byproduct of the activity choices that an individual makes.  

Recker (1986), Bhat and Koppelman (1999) describe the fundamentals of activity-based 

modeling. Instead of obtaining trip-based data and outputting individual trips on links for a 

model, activity-based modeling seeks to replicate the set of choices that travelers make 

based on the pattern of activities that they typically do on a daily basis. Proponents of 

activity-based modeling argue for the importance of including the context of a person’s 

daily behavior in determining what trips they will take. Activity based modeling allows for 

trip chaining and activity rescheduling, as they are options for travelers when faced with 
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travel choices, but trip-based modeling will incorrectly weight the effects of trip chains and 

cannot account for rescheduling.   

The scale of these models is typically on a regional level, and as such, it is more 

difficult to examine the effects of mesoscopic neighborhood-scale changes for land use on 

transit line usage by using them to evaluate.   

Aggregate, Corridor, and Direct Demand Models 

 Direct demand models are a model formulation that in a single equation, 

simultaneously estimate trip generation, distribution, and mode split, and are similar to 

econometric models of demand. It is an aggregate model that can represent multiple travel 

choices in a single equation.  

 Ortuzar and Willumsen (2002) give a brief overview of direct demand modeling – 

the models were first developed in the 1960s and fell out of favor in comparison to the 

standard travel models seen today.   They also note that corridor and direct demand 

models are typically used in practice to substitute for full scale modeling, due to data 

limitations.  A large amount of data is typically needed for conventional modeling, which 

typically is difficult to obtain in practice due to the inability 5 to gather that amount of data 

on an as-needed basis. Corridor models typically remove assignment problems, which 

simplifies the network structure and creates savings in data collection and coding.  

One of the initial formulations for direct demand models was the Kraft-SARC model, 

documented in Kraft (1963). The model form as formulated for estimating the demand in 

the Boston-Washington corridor is as follows: 

                                                           
5 Ortuzar and Williumsen (2002), 421 
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𝑇𝑖𝑗𝑚 = 𝛽𝑚𝑜 ∏ 𝐴𝑖𝑗𝑟
𝛽𝑚𝑟 ∏ ∏ 𝐶𝑖𝑗𝑚𝑠

𝛼𝑚𝑛𝑠(𝑚 = 1,2, … 𝑀)

𝑆

𝑠

𝑀

𝑛

𝑅

𝑟

 

In this formulation, 𝑇𝑖𝑗𝑚 is the travel demand between an origin i and destination j by mode 

m, 𝐴𝑖𝑗𝑟 describes the socioeconomic activity variables between i and j, and 𝐶𝑖𝑗𝑛𝑠 describes 

impedance variables (cost, travel time, etc) on mode m. R stands for the r-th variable within 

the set of socioeconomic activity variables, and s for the s-th variable within the set of 

transportation impedance variables. 

Talvitie (1973) was also one of the first to conceptualize a direct travel demand 

model for different modes, looking primarily at bus and rail modes to the downtown area. 

He based the estimated work trips on travel times and costs for each mode, and jobs in 

each zone, using ordinary least squares (OLS) and constrained least squares (CLS) to 

estimate the elasticities. Cost of travel appeared to be a minor factor, in comparison to 

access time to the downtown, supporting that travel demand is typically more responsive 

to travel time than pricing.  

Direct demand modeling of the effects of service variation was done by Lago, 

Mayworm, and McEnroe. They examined elasticities of ridership response to service 

changes, and which areas were more responsive to service changes, finding that the 

response is similar acros modes, as are headway and vehicle-mile elasticities. However, 

they also found ridership is more responsive to changes in lower-service areas, as well as 

off-peak ridership. 

De Cea et al. (1986) describe a formulation of a marginal demand model that 

simplifies the modeling approach for a particular problem by concentrating on the part of 

transport demand likely to be affected by the project or policy. They used this modeling 
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approach to examine an extension of the Santiago, Chile metro network, but note that it is a 

pragmatic methodology whose virtues and limitations can only be seen through practice. 

Preston (1991) models rail demand in Britain with three different models, including 

a direct demand model which he calls an “aggregate simultaneous model.” He attempted to 

forecast flow between stations based on population, residents in two social classes, and 

number of workplaces within 800 meters of rail stations, along with an index of 

competition variable that was defined as the travel time for rail divided by the sum of the 

travel time for rail, bus, and auto. Wardman (1997) also uses direct demand modeling to 

examine the interaction between modes in an inter-urban area in Britain. Using both the 

constant elasticity form and exponential form, and solely estimating rail demand, he 

develops a generalized time variable that combines station to station journey time, 

headways, and transfers, and subject to fare pricing, but removing the generation and 

attraction variables.  

Cervero (2006) analyzes the effects of smart growth using direct demand models, as 

traditional models typically are not fine-grained enough to examine the effects of land use 

patterns and are meant to be applied over a regional area, not at a neighborhood level. He 

describes three direct demand modeling efforts for transit-oriented development 

scenarios, including Charlotte, the San Francisco Bay Area, and St. Louis, concluding that 

though direct demand modeling cannot supplant typical modeling procedures, they can 

supplement the models in developing order-of-magnitude effects of planning decisions.  

The “D’s”: Land Use Variables 

Research has shifted towards how specific land use policies can affect travel 

forecasting. Cervero and Kockelman (1997) is one of the first articles to attempt to evaluate 
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how the primary dimensions (typically referred to in literature afterwards as the 3Ds) of 

density, diversity, and design influence travel demand. They noted that density, land-use 

diversity, and pedestrian-oriented design seem to affect travel behavior, though the 

influence is minimal.  

Later articles explore how destination accessibility and distance to transit affect 

travel demand. Ewing and Cervero (2001) summarize how changes in the built 

environment can affect trip frequency, trip length, mode choice, vehicle miles traveled, and 

vehicle hours traveled, as well as review past literature.  They assess how previous studies 

have defined different types of neighborhoods, and what those studies concluded about 

mode choice, trip frequency, or trip lengths. They note that dense, mixed-used 

development that is not connected to the greater regional network only provides minor 

improvements in travel times and lengths, which is why transit-oriented development has 

become more popular, as it combines local land use changes with high capacity transit, 

rather than relying on isolated land use changes in affecting mode choices.   

Additional Factors of Interest 

Cao, Mokhtarian, and Handy (2009) evaluate the role that residential self-selection 

plays upon travel behavior, and in contrast to Mokhtarian’s early research, concludes that 

with structural equation modeling, the built environment does have a strong influence on 

travel demand, more so than residential self-selection.  

Others, mainly Donald Shoup, have evaluated how parking plays a role in travel 

demand. Shoup (1997) argues that unfairly priced parking (by making it free) has caused 

an excessive amount of driving, and Willson and Shoup (1990) notes that employer-paid 

parking subsidies greatly increases the occurrence of driving. After those subsidies are 
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removed, solo drivers tend to shift towards either carpooling or transit as commuting 

options. Another major discussion has also been the importance of regional variables 

rather than local accessibility in determining travel demand.  

Handy (1992) notes the importance of evaluating how the existing structural form 

(regional accessibility) of the area ties into local accessibility measures in determining how 

much people will drive, based on the options that they have available. Further research by 

Spears, Boarnet and Handy (2010) for the California Air Resources Board evaluate how 

regional accessibility via transit, distance to the central business district, and number of 

destinations available nearby play a role in determining VMT.  

Mathematical Models and Variable Specification 

Earlier models tend to use ordinary least squares regression, negative binomial 

regression, and other forms of linear regression models to estimate their travel behaviors. 

Vickerman (1972) is one of the first articles to explore how non-work travel is generated 

and attracted by various origins and destinations, and uses regression models to explore 

travel behavior in England. Washington, Karlaftis and Mannering (2010) describe in 

greater detail the process for regression estimation in transportation modeling. They 

outline assumptions that need to be fulfilled for regression modeling, and the differences 

between the commonly used regression methods. In particular, regression models require 

the data to consist of exogenous variables, which means that the variables have no 

observable influence on each other. 

However, in social and behavior research, it is more likely the case that variables are 

endogenous and affect each other (e.g. population density will be related to transportation 
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network density, as noted in various papers.) 6 As a result, more recent research has 

focused on structural equation modeling, which better captures the social and behavioral 

aspects of travel behavior and can account for endogenous variables, as well as machine 

learning to better replicate observed travel behavior from large data sets. Bagley and 

Mokhtarian (2002) use structural equation modeling to evaluate endogenous variables for 

residential neighborhoods in the San Francisco Bay Area affect travel demand. They 

conclude that land use configuration and travel patterns have no direct causal relationship, 

but are primarily due to correlations of those variables with each other, and the primary 

influencers of travel demand are travel attitudes, lifestyle, and sociodemographic variables.  

Many of the studies in the 1996 TCRP addressed what factors have been observed to 

raise overall transit ridership in the specific total service areas of the analyzed transit 

systems, without attempting to make predictions on the station level. The primary 

conclusions of papers in the study noted that increasing jobs in the CBD tended to have a 

corresponding increase in ridership on transit systems, while moving jobs from the CBD to 

the suburbs tended to remove riders from the system, even if they had been previous 

transit users.   

Cardozo, Palomares, and Gutierrez (2012) attempt to use geographically weighted 

regression and ordinary least squares to directly forecast transit ridership at the station 

level. However, they predict only ridership origins, and do not attempt to predict where 

riders will be attracted to based on travel costs. In addition, two out of the four selected 

variables that they used as predictors are the number of lines running to a station, as well 

                                                           
6 Cervero and Murakami (2010), Crane and Crepeau (1998), etc.  
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as suburban bus lines running to a station, which in reality, have strong feedback effects to 

ridership, even if the calculated multicollinearity is low.  

Travel Survey Data Review  

 A discussion of travel behavior analysis and transit demand forecasting should also 

reference the typical data used to inform the models, and also the limitations for analysis 

based on the data collection methods. Travel behavior data is typically taken from 

information sources provided by the government. On the federal level, the National 

Household Travel Survey (NHTS) is typically performed every eight years. The last dataset 

available for use is from 2009, and the 2017 survey is currently in the process of 

assembling the collected data for publication in 2018. 7 Information included in the national 

survey includes household demographic data, vehicle data, trip purposes, mode choice, 

travel length (in distance and time), and regional transportation characteristics. It does not 

include travel information costs, route choices, changes in travel patterns over time, 

location-identifying characteristics, and rationale for mode choice. As a result, travel cannot 

be tied directly to individual traffic analysis zones (TAZs) or census block groups, which 

hinders land use and travel behavior interaction modeling efforts. 

 For research that requires data at that fine of a level, typically state departments of 

transportation or metropolitan planning organizations (MPOs) will conduct additional 

travel surveys every ten years. That data will typically include TAZ locations of the 

households that are surveyed, which allows for the households to be associated with 

specific census block groups and then land use characteristics. This allows for the specific 

                                                           
7 http://nhts.ornl.gov/ 
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effects of land use variables and locations to be modeled against vehicle miles traveled or 

trip length, whereas the national survey primarily serves to model travel behavior against 

socioeconomic and demographic characteristics. These travel surveys are also typically for 

intra-regional trips and daily travel, but since 2001, long-distance trips have also been 

included as part of the NHTS’ record.  

 The NHTS states that it is conducted via a random digit dialing, computer-assisted 

telephone interviewing survey conducted over an entire year, from the civilian population 

of the United States. The Southern California Association of Governments (SCAG)8 and 

other MPOs9,10,11 use similar methods to acquire data for their regional travel surveys.  

Stopher and Greaves (2007) reviews the limitations of the type of data that these surveys 

procure, as well as how they are conducted. The majority of travel behavior surveys are 

collected this way, but they note that most surveys underreport trips by approximately 20-

30%. The overall response rate for these surveys (when accounting for recruitment rate 

and completion rate) is also fairly low, at approximately 35%, and non-respondents are 

households that tend to travel more or have more members. The first set of households 

tend to be underrecruited, due to their travel schedules, and the latter tend to not complete 

the surveys once recruited, since additional household members makes completing the 

surveys more arduous. Both of these limitations are significant, especially in terms of 

modeling VMT accurately. Those who travel significantly more often than the general 

population are a key group for modelers to be able to accurately represent. Underreporting 

                                                           
8 http://www.scag.ca.gov/Documents/Final%20Survey%20Methods%20Report.pdf 
9 http://www.baltometro.org/our-work/regional-data-forecasting/household-travel-survey 
10 http://www.dot.ca.gov/hq/tpp/offices/omsp/statewide_travel_analysis/chts.html 
11 http://www.cmap.illinois.gov/data/transportation/travel-tracker-survey 
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trips (especially if emissions models are being based off of VMT) will correspond to 

emission rates that are higher in actuality than those that the model predicts. Though later 

models, once accounting for historical trends, will likely be able to capture this irregularity, 

this will only occur after the additional particulate matter has been emitted and damage 

has already been incurred, and only if the models are validated against previous data and 

models. Do-not-call registries and screening for telemarketers has also reduced the number 

of households willing to be recruited for the surveys, and likewise, the survey data’s quality 

has decreased as the sampling has become less accurate. 

There are specific limitations in using household travel survey data to estimate 

transit behavior, and transit demand analysis is typically done by supplanting typical 

household travel survey data with on-board travel surveys. Typical household travel 

surveys tend to undersample transit riders. For example, only 3% of the trips observed in 

the California Household Travel Survey (CHTS) are made by transit, which covers both bus, 

commuter rail, light rail, and metro rail systems across California over multiple 

metropolitan areas, whereas statewide in a similar year (2013)12, the state saw roughly 

5.3% of work trips made by transit.13  This data is split over multiple transit systems and 

multiple geographic areas, which may behave differently due to system design and overall 

transit coverage in the urban area, making it hard to evaluate variations in user behavior 

for a single system.   

 The proliferation of smartphones has also added another method for which travel 

behavior can be recorded and measured. Haghani (2010) describes how bluetooth sensors 

                                                           
12 http://www.energy.ca.gov/almanac/transportation_data/transit.html 
13 https://www.bts.gov/sites/bts.dot.gov/files/legacy/california.pdf 
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use the Machine Access Control (MAC) addresses of smart phones, cameras, and other 

connected devices passing through the sensors’ area to determine accurate travel times on 

roads. Travel time data via smartphones is also recorded and used commercially by 

corporations such as Microsoft and Google in order to estimate real-time traffic for their 

proprietary mapping software. Ridesharing companies also have a treasure trove of travel 

data in their databases, and have begun partnering in limited capacity with governments to 

analyze and use said data.14  

 Smartphone data has also been used to record travel path and routing choice data 

that previously was difficult to acquire. Hood, Sall and Charlton (2013) use smartphones to 

acquire bicycle route choice data in San Francisco, and then pair that data with a network 

model to better understand which routes bicyclists prefer. They analyze road segment 

variables such as the presence of bicycle lanes, length, turns, grade of the segment, traffic 

volume, speeds, number of lanes, crime rates, and time of day. Nitsche (2012) and (2014) 

also describes how smartphones can be used to supplement and recreate the data in 

traditional travel surveys, and the relative accuracy of the models based on different types 

of modes, e.g. walking, biking, train, and automobile. Gong, Chen, Bialostozky, and Lawson 

(2011) designed a GIS algorithm to process data from GPS units to determine mode and 

route choice and other travel behaviors in New York City using the city’s multi-modal 

transportation network and validate their data against the self-reported travel diaries for 

fairly high accuracy in reporting (at approximately 80%). Cottrill et. al (2013) discuss how 

a smartphone-based travel survey can be developed, with a test case in Singapore for the 

Land Transport Authority (the city-state’s urban planning agency.)  

                                                           
14 https://movement.uber.com/cities 
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 It is worth noting that smartphone data may tend to over represent certain 

economic classes, based on how data is collected. The initial cost of purchasing a smart 

phone may be a factor, as well as how recruitment efforts for these surveys are targeted. 

The Hood (2013) survey contacted local bicycle coalitions and university groups and asked 

them to send out a link for downloading their survey application, which gave out incentives 

for response – but the recruited are more likely to be highly educated and with greater 

purchasing power. However, smartphone ownership covers a huge swath of the American 

population nowadays – the Pew Research Center estimates that 77% of all Americans now 

own smartphones, as well as 64% of individuals in lower-income households earning less 

than $30,000. Thus, the possible skewing of data based on smartphone owner 

demographics may be less of a factor than what they were previously.15  

Current Relevance 

Climate change issues have come to be one of the driving motivators in 

transportation research, especially with the awareness that the transportation sector is 

responsible for 27% of the greenhouse gas (GHG) emissions within the United States. 16 

Vehicle miles traveled (VMT) per capita has a high correlation with declines in local 

environmental quality (via particulate matter and road runoff) and increases in energy 

resource consumption. As more miles are driven, more particulate matter is emitted, more 

acreage is set aside for transportation infrastructure, and more fossil fuels are consumed. 

Cervero and Murakami (2010) note that GHG emissions can be roughly determined by 

multiplying miles per gallon (fuel consumption) versus the fuel’s carbon content, and then 

                                                           
15 http://www.pewresearch.org/fact-tank/2017/01/12/evolution-of-technology/ 
16 https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions 
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by a person’s vehicle miles traveled. The first are determined by the technology advances 

available for transportation, and the latter by the activities that the person chooses to 

partake in as well as their origin (which is typically their residence.) They refer to these 

two concepts as sustainability mobility – for advances in transportation technology, and 

sustainable urbanism – for improved land-use planning measures that reduce total vehicle 

miles traveled.  They also note that the majority of research has focused on the sustainable 

mobility portion, as the benefits in improving transportation technology are more easily 

measurable. At present, the available literature tying changes in land use to VMT and GHG 

reductions has been inconsistent in determining the benefits that can be attributed to 

differing land uses, though a number have concluded that there are measurable, if small, 

benefits to doing so.  
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Chapter 2: Study Area and Background 

Study Area Overview 

The study focuses on the Caltrain commuter rail network, which is a commuter rail 

line with only one line and 32 stations that serves the cities and counties in between the 

two cities of San Francisco and San Jose (Figure 1.) It averages approximately 62,000 riders 

on the weekdays, and 12,000 on the weekends. Two highways, US-101 and I-280, parallel 

the Caltrain system for its length, and are marked on the figure below.  In the year the study 

data was acquired, Caltrain was notable for being one of the few American transit systems 

that saw ridership gains rather than declines, due to the strong economic growth of the Bay 

Area. Ridership gains have also been driven by increased congestion on the two highways 

paralleling the lines (US-101 and I-280) for the majority of the peak periods during the 

same time period. 
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Figure 1: Caltrain Stations and Service Area 
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Data Overview 

 The data used for this study came from five primary sources – the EPA’s Smart 

Location Database, the 2014 Caltrain On-Board Travel Survey, Google Maps, and Caltrans’ 

GIS and Performance Measurement System (PeMS) Databases.  

 Land use data was obtained through the EPA’s Smart Location Database. The EPA 

first published the SLD in 2012, with a complete update in 2014. It is intended to be a 

nationwide geographic data resource for measuring location efficiency and is available for 

public use in a GIS format. Sample variables included within the dataset include (on a block 

group level) – residential density, population density, employment density, employment 

and housing entropy, street intersections per square mile, distance to nearest transit stop, 

destination accessibility via car and transit, and more. Land use and accessibility measures 

were computed for the SLD based on typical measures used previously in transportation 

research. The data year for the SLD data matches that of the MTC Caltrain data, so it does 

not need to be scaled for population/job changes. Google Maps and PeMS were used to 

obtain free flow and congested travel times. GIS data obtained from the Caltrans system 

included the Caltrain rail network, highway network in the Bay Area, and stations on the 

network. The Caltrain webpage also provided the total number of parking spaces at each 

Caltrain station.  

MTC’s Caltrain On-Board Travel Survey data included information about traveler 

socioeconomic data, such as workers in household, vehicles in household, household 

income; trip data, including location (boarding and alighting stations, trip departure hour 

and predicted return hour), as well as information about the home TAZ, destination TAZ, 

school TAZ, and workplace TAZ. In addition, a GIS shapefile of the TAZs was provided.  The 
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survey consisted of two major portions – the on-to-off element, in order to identify 

boarding and alighting patterns of transit riders, and to expand the results of the main 

survey. The main survey was meant to create a detailed profile of typical riders on Caltrain, 

and gathered socioeconomic data. Over 19,000 on-to-off surveys were completed, as well 

as approximately 5,000 main surveys.17  A table of the origin and destination trips by 

station pairs follows.  

  

                                                           
17 
http://www.caltrain.com/Assets/_MarketDevelopment/pdf/Caltrain+Origin+$!26+Destination+Survey+201
4.pdf 
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Table 1a: O\D Pairs for Caltrain Daily Boardings and Alightings 

  

O \ D

San 

Francisco

22nd 

Street

Bay-

shore

So. San 

Francisc

o

San 

Bruno

Mill-

brae

Burlin-

game

San 

Mateo

Hayward 

Park Hillsdale Belmont

San 

Carlos

Redwoo

d City

Menlo 

Park

Palo 

Alto

San Francisco 0 3 0 45 85 138 81 456 75 507 78 276 834 598 2308

22nd Street 145 0 1 4 7 23 2 47 24 98 8 39 127 90 854

Bayshore 27 0 0 3 2 2 13 5 8 4 0 25 21 0 143

So. San 

Francisco 154 1 0 0 13 0 10 2 0 52 5 33 39 55 93

San Bruno 221 7 0 3 0 0 2 8 6 27 0 5 59 6 154

Millbrae 446 0 3 0 0 0 32 65 14 45 47 117 265 149 442

Burlin-game 401 15 0 0 7 11 0 9 0 133 14 74 72 166 352

San Mateo 722 23 4 11 20 86 29 0 3 40 33 53 167 102 435

Hayward Park 78 7 0 0 11 16 0 0 0 11 0 20 36 10 75

Hillsdale 1444 23 7 30 18 112 45 33 0 0 0 68 27 81 423

Belmont 208 0 0 7 12 37 19 3 0 1 0 11 37 11 133

San Carlos 297 70 0 23 29 40 15 55 13 27 56 0 18 16 337

Redwood City 1270 69 20 113 31 167 33 100 7 140 6 30 0 17 238

Menlo Park 663 64 0 19 9 157 10 20 13 32 0 0 54 0 113

Palo Alto 2158 22 0 31 12 134 51 43 0 86 7 19 199 14 0

California Ave 607 48 0 12 0 93 4 24 0 21 7 17 21 14 17

San Antonio 349 13 0 8 15 40 0 13 0 67 5 42 60 27 67

Mountain 

View 2819 56 0 90 8 288 72 64 15 127 13 47 124 128 311

Sunnyvale 2752 14 0 33 44 191 20 156 31 68 40 56 167 103 415

Lawrence 568 0 0 59 3 97 1 15 0 23 0 10 74 23 106

Santa Clara 597 5 0 5 0 105 0 39 3 15 21 40 41 64 211

College Park 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

San Jose 3499 99 0 26 178 406 104 258 5 325 24 191 431 178 1235

Tamien 473 1 0 7 0 37 4 10 13 10 0 15 143 45 299

Capitol 15 0 0 0 0 0 0 0 0 2 0 13 0 0 1

Blossom Hill 16 0 0 0 0 0 0 0 0 7 0 0 9 6 28

Morgan Hill 29 0 0 0 0 0 0 0 0 0 0 7 0 15 21

San Martin 8 0 0 0 0 8 0 0 0 7 0 0 13 2 15

Gilroy 18 0 0 0 0 1 0 0 0 2 0 0 0 2 31

Subtotal 19985 538 34 529 504 2192 546 1425 230 1876 363 1208 3040 1923 8860
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Table 1b: O\D Pairs for Caltrain Daily Boardings and Alightings 

 

  

O \ D

Californ

ia Ave

San 

Antonio

Mountain 

View Sunnyvale Lawrence

Santa 

Clara

College 

Park

San 

Jose Tamien Capitol

Blossom 

Hill

San Francisco 342 158 1156 379 138 315 0 1297 24 13 3

22nd Street 52 21 480 95 23 29 0 140 0 0 0

Bayshore 7 0 2 0 7 15 0 45 0 0 0

So. San 

Francisco 0 0 18 7 0 61 0 41 0 0 0

San Bruno 5 0 76 59 7 18 0 34 0 0 0

Millbrae 86 6 430 27 13 111 7 278 7 0 0

Burlin-game 107 0 183 32 38 35 0 104 3 0 0

San Mateo 88 10 176 25 32 19 0 184 7 0 0

Hayward Park 13 1 0 7 0 0 0 66 3 0 0

Hillsdale 41 15 228 68 47 41 0 96 16 0 0

Belmont 11 18 14 0 0 38 0 138 0 0 0

San Carlos 35 4 199 59 53 94 21 171 18 0 0

Redwood City 46 3 88 79 11 17 15 195 7 0 0

Menlo Park 9 5 60 11 19 82 38 183 0 0 0

Palo Alto 13 33 139 29 38 14 23 284 0 0 0

California Ave 0 0 46 13 27 29 0 78 12 0 0

San Antonio 0 0 14 15 13 18 11 23 0 0 0

Mountain 

View 109 34 0 0 54 18 50 205 0 0 0

Sunnyvale 150 18 177 0 0 36 11 122 7 0 0

Lawrence 58 12 0 0 0 0 11 39 0 0 0

Santa Clara 78 0 15 20 0 0 13 42 5 0 0

College Park 0 0 0 0 0 0 0 0 0 0 0

San Jose 265 63 148 129 27 88 13 0 0 0 0

Tamien 99 12 47 30 22 7 0 6 0 0 0

Capitol 0 0 6 0 0 0 0 0 0 0 0

Blossom Hill 7 0 27 13 30 0 10 0 0 0 0

Morgan Hill 22 2 47 26 31 0 0 0 0 0 0

San Martin 33 0 0 0 12 0 0 0 0 0 0

Gilroy 21 0 17 17 13 7 0 0 7 0 0

Subtotal 1695 414 3795 1140 656 1090 222 3770 116 13 3
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Chapter 3: Model Methodology, Formulation, and Results 

Methodology 

In order to calculate the land use variables, the service area of the station had to be 

defined. A distance threshold for the catchment area of the stations was defined by taking a 

Euclidean distance of 0.5 miles around the station, which is the typical walking distance 

used for rail station service areas in most research, and has been extensively studied 

(Parsons Brinckerhoff 1996, Walters and Cervero 2003, O’Neill Ramsey and Chou 1992). 

The data from the census block groups that had portions which fell within the 0.5 mile 

buffer were aggregated. The counts for variables that were hypothesized to correlate with 

ridership were created for each station, and then divided by the unprotected acreage to 

create density measures for the station catchment areas. Counts and unprotected acreage 

for each census block group was taken from the EPA’s Smart Location Database, which in 

turn obtained its data from the US Census’s TIGER shapefiles. Land use variables that were 

created in this step are listed below (Table 2), and were taken from the variables of interest 

previously reviewed and established in the literature review. A table of values by station 

for the selected variables of interest  (Table 3) follows the hypothesized variables.  
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Table 2: Hypothesized Ridership Variables 

Variable Description 
Population Population of census block groups that have at least some 

portion falling within the 0.5 mile station catchment area, 
abbreviated as 0.5 mile station catchment area CBGs 
hereafter 

Population Density Calculated population divided by the sum of unprotected 
acreage of in the 0.5 mile station catchment area CBGs 

Housing Units Housing units in the as 0.5 mile station catchment area CBGs 
Housing Density Calculated housing units divided by the sum of unprotected 

acreage of in the 0.5 mile station catchment area CBGs 
Workers Total workers in station catchment area 
No-car households Non-car households in the 0.5 mile station catchment area 

CBGs 
One-car households One-car households in the 0.5 mile station catchment area 

CBGs 
Two-car households Two-car households in the 0.5 mile station catchment area 

CBGs 
Employment Total jobs in the as 0.5 mile station catchment area CBGs 
Office Employment Total office jobs in the as 0.5 mile station catchment area 

CBGs 
Industrial Employment Total industrial jobs in the as 0.5 mile station catchment 

area CBGs 
Entertainment 
Employment 

Total entertainment jobs in the as 0.5 mile station 
catchment area CBGs 

Retail Employment Total retail jobs in the as 0.5 mile station catchment area 
CBGs 

Employment Density Calculated total jobs divided by the sum of unprotected 
acreage of in the 0.5 mile station catchment area CBGs 

Parking spaces Parking spaces at the station 
Land-use mix Entropy mix calculated via employment and household 

entropy 
Network density Road network density for the 0.5 mile station catchment 

area CBGs 
CBD Generated-variable that flagged the two central business 

districts (San Jose and San Francisco)  
 

  



26 
 

Table 3a: Hypothesized Ridership Variables Values by Station

 

  

STATION Parking

Housing 

Units

Housing 

Density Population

Population 

Density

0 Car 

HH

1 Car 

HH

2+ Car 

HH

SAN FRANCISCO 0 6288 11.459 11629 21.192 1616 3659 1007

22ND ST 0 2408 5.561 4577 10.570 367 1167 869

BAYSHORE 38 3428 1.598 11344 5.288 427 1032 1962

SOUTH SAN FRANCISCO 81 2787 1.070 9453 3.630 323 964 1494

SAN BRUNO 178 2395 5.154 7619 16.398 130 828 1432

MILLBRAE TRANSIT CENTER 175 4544 3.105 10651 7.278 415 2010 2109

BURLINGAME 68 4147 9.161 7626 16.847 414 2145 1582

SAN MATEO 42 4206 9.893 10797 25.395 587 2221 1388

HAYWARD PARK 213 4521 4.094 10699 9.690 240 1608 2664

HILLSDALE 518 4169 4.882 9984 11.690 340 1457 2366

BELMONT 375 4700 3.490 11088 8.232 263 1507 2919

SAN CARLOS 219 3195 2.840 6277 5.579 251 1192 1748

REDWOOD CITY 557 3854 4.811 9934 12.401 412 1799 1634

MENLO PARK 150 4337 2.866 8836 5.839 385 1898 2043

PALO ALTO 389 7044 4.007 14483 8.238 1069 4011 1956

CALIFORNIA AVENUE 185 3068 4.504 6993 10.265 191 863 2007

SAN ANTONIO 199 4385 6.495 9347 13.844 431 1853 2093

MOUNTAIN VIEW 340 3264 6.611 5980 12.113 267 1580 1411

SUNNYVALE 367 4498 2.393 9992 5.315 340 2091 2060

LAWRENCE 122 3357 2.094 8098 5.052 92 1362 1898

SANTA CLARA 289 1981 0.804 6332 2.570 153 794 1029

COLLEGE PARK 0 2160 3.544 4642 7.616 252 1006 899

SAN JOSE 581 12026 4.176 26099 9.064 976 5732 5300

TAMIEN 275 3081 5.374 8196 14.295 271 945 1860

CAPITOL 379 3686 3.360 9488 8.650 83 1332 2268

BLOSSOM HILL 425 1555 1.804 5054 5.862 27 210 1313

MORGAN HILL 486 3217 1.537 9537 4.557 69 601 2543

SAN MARTIN 167 924 0.134 2971 0.429 4 137 782

GILROY 471 2247 2.968 8333 11.006 182 702 1355
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Table 3b: Hypothesized Ridership Variables Values by Station 

  

STATION Office Retail Industrial Entertainment Total Workers Avg. Network Density

SAN FRANCISCO 4402 824 3516 3298 3047 33.258

22ND ST 227 213 1786 578 2146 22.171

BAYSHORE 1795 442 3791 144 5174 7.456

SOUTH SAN FRANCISCO 2564 2300 19949 2234 3941 14.853

SAN BRUNO 63 225 69 540 3197 25.029

MILLBRAE TRANSIT CENTER 1756 1074 12620 3983 4828 19.052

BURLINGAME 805 1037 259 933 3363 21.386

SAN MATEO 720 805 412 1383 3903 28.131

HAYWARD PARK 2956 1089 772 1232 5419 21.481

HILLSDALE 1227 2221 342 1133 5171 21.320

BELMONT 771 584 2257 870 5110 19.780

SAN CARLOS 863 1542 4933 846 2946 19.242

REDWOOD CITY 5549 1950 1102 1019 3992 24.130

MENLO PARK 1979 1040 426 1175 3720 15.383

PALO ALTO 3559 3008 822 3473 4743 27.580

CALIFORNIA AVENUE 1085 902 579 770 2665 26.719

SAN ANTONIO 497 1779 175 636 4167 21.680

MOUNTAIN VIEW 1088 175 145 812 2961 26.998

SUNNYVALE 2109 1077 16991 1069 5016 16.106

LAWRENCE 1054 1286 15550 546 3515 13.802

SANTA CLARA 2584 1236 19435 1278 1903 15.927

COLLEGE PARK 1772 620 1266 862 2010 22.996

SAN JOSE 6445 2793 5028 3694 11083 25.471

TAMIEN 78 90 956 76 2967 24.139

CAPITOL 175 78 338 148 3870 17.628

BLOSSOM HILL 92 446 3143 201 2261 22.134

MORGAN HILL 475 212 3120 595 3669 14.593

SAN MARTIN 20 83 281 258 1102 3.940

GILROY 417 511 550 324 2960 20.840
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Travel costs were calculated using congested travel time on highways against travel 

time on the Caltrain network. Free flow travel time was estimated using the average time at 

3 am from station to station using Google Maps. Then, peak period travel time on the 

highway was estimated using the average travel time index from PeMS during peak periods 

for the stretch of highway corresponding to the Caltrain link. The free flow travel speed 

was multiplied by the travel time index to get a time estimate, as the travel time index is 

defined by PeMS as the ratio of the average travel time for all travelers in a certain area to 

the free-flow travel time. The PeMS data used was taken from two weeks in October 2014 

(during the same time period as the on-board travel survey) for Tuesday, Wednesday, and 

Thursday each week and averaged to best replicate typical conditions. Travel time on the 

Caltrain network was calculated using the published Caltrain timetables.  

The provided Caltrain data was synthesized to create origin and destination pairs 

from the survey data (Table 4.) The weighting factor attributed to each trip was summed 

based on the home station and destination station provided by the survey respondent. The 

accuracy of the home and destination station for the respondents was checked by matching 

the stations to the provided home TAZ code and destination TAZ code. The home TAZ was 

considered the origin TAZ, and the employment/school/other TAZ would be considered 

the destination TAZ. In addition, a table of origin/destination pairs by station was also 

created and follows below. 
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Table 4: Caltrain Daily Ridership Boardings and Alightings by O\D 

STATION ORIGIN DESTINATION 

SAN FRANCISCO 9311 19985 

22ND ST 2309 538 

BAYSHORE 331 34 
SOUTH SAN 
FRANCISCO 584 529 

SAN BRUNO 696 504 
MILLBRAE TRANSIT 
CENTER 2588 2192 

BROADWAY 0 0 

BURLINGAME 1758 546 

SAN MATEO 2267 1425 

HAYWARD PARK 354 230 

HILLSDALE 2864 1876 

BELMONT 698 363 

SAN CARLOS 1654 1208 

REDWOOD CITY 2699 3040 

ATHERTON 0 0 

MENLO PARK 1561 1923 

PALO ALTO 3349 8860 

STANFORD STADIUM 0 0 

CALIFORNIA AVENUE 1088 1695 

SAN ANTONIO 799 414 

MOUNTAIN VIEW 4630 3795 

SUNNYVALE 4613 1140 

LAWRENCE 1099 656 

SANTA CLARA 1318 1090 

COLLEGE PARK 3 222 

SAN JOSE 7692 3770 

TAMIEN 1279 116 

CAPITOL 38 13 

BLOSSOM HILL 151 3 

MORGAN HILL 199 0 

SAN MARTIN 99 0 

GILROY 135 0 

TOTAL 56166 56167 
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Formulation 

 The aggregate ridership model as tested consisted of two formulations. One 

replicated typical methods of estimating ridership via ordinary least squares regression, in 

order to validate hypothesis about variables’ effects on ridership. 

 The first was formulated as  

𝑇𝑖 = 𝑓(𝑜𝑟𝑖𝑔𝑖𝑛 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑟𝑒𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)  and 𝑇𝑗 =

𝑓(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑟𝑒𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)   
Where 

𝑇𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑇𝑗 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗 

 

 The second tested a log-sum formulation that related the land use characteristics at 

each end to the number of riders on its origin/destination station pair, and included travel-

time costs between stations for both transit and congested peak speeds. A hypothesized 

relationship for ridership between stations, travel time between stations, and land use 

variables at origin and destinations was proposed in the form of: 

𝑇𝑖𝑗

= 𝑓(𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)  
This posits that the interaction between two locations (via trips between the two 

locations) is related to characteristics of urban development at the origin and destination, 

as well as taking into account the travel time between destination and origin. The 

formulation was tested as: 

𝑇𝑖𝑗 = 𝑇𝑖 ∗ 𝑇𝑗 ∗  𝑡𝑖𝑗  

Where:  
𝑇𝑖𝑗 = 𝑡𝑟𝑖𝑝𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗 

𝑇𝑖 = 𝑡𝑟𝑖𝑝𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 
𝑇𝑗 = 𝑡𝑟𝑖𝑝𝑠 𝑑𝑒𝑠𝑡𝑖𝑛𝑒𝑑 𝑡𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗 
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𝑡𝑖𝑗 = 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 

As the model seeks to estimate the effects of the independent variables upon the 

dependent variables, a log-log transformation of the variables was taken in order to 

produce an equation that could estimate the percent change in the dependent variable 

(trips between a station pair) with a percent change in the independent variables. The 

result could then be transformed back to determine the predicted number of trips for that 

station pair. This leads to a form: 

log (𝑇𝑖𝑗) = log (𝑇𝑜) + log(𝑇𝑗) + log(𝑡𝑖𝑗) 

 

Direct forecasting of ridership at a station level has been done primarily with 

ordinary least squares regression or multiple regression analysis, which is seen in Parsons 

Brinckerhoff 1996, Cardozo et. al 2012, Cervero 2006.  In addition, this replicates the 

estimation methods of the four-step model (McNally 2007), which tends to use regressions 

to estimate trips. This method was used to estimate origins and destinations from the 

available land-use variables. The model would ideally be able to predict the variation in 

ridership from land-use, before using the variables in the log-sum formulation.  

Model Estimation, OLS 

The final model for origins incorporated three independent variables, which were 

households owning 2-cars or more, total workers in the catchment area, and the central 

business district variable.  These three variables were all statistically significant at the 0.05 

level, and explained approximately 68% of the variation found within the destination data. 

None of the variables appeared to show multicollinearity, based on their variance inflation 

factors (VIF). The variables also appeared to be correlated with the data in the 

hypothesized ways – an increase of households owning two or more cars in the station 
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catchment area saw a decrease in transit trip origins, and increasing the number of 

workers in the catchment area also seems to correlate with increased transit trip origins. 

The two stations in the CBDs of San Jose and San Francisco also were associated with an 

increased number of origins. 

Table 5: Final OLS Model, Origins 

Variable Coefficient 
Estimate 

Standard 
Error 

t-Statistic Probability VIF 

Intercept 1432.9774 603.9327 2.373 0.0257 - 
Households 
with two or 
more cars 

-1.6215 0.7019 -2.310 0.0294 6.54 

Total 
workers 

0.8043 0.3550 2.266 0.0324 7.24 

CBD 6499.4585 1066.3058 6.095 .00000227 1.36 
# of 
observations 

29 

# of variables 3 
Adjusted R2 0.6893 
R2 0.7225 
Residual 
standard 
error 

1246 

Degrees of 
freedom 

25 

F-statistic 21.7 p-value (F-statistic) .0000003881 
 
 In addition to the final model, other models for origins were tested, which included 

the two variables for single-car households and no car household with the other tested 

variables, as well as including population and parking spaces at the station. However, the 

correlations given by the coefficients and their significance levels were less significant, and 

also had problems with redundancy as indicated by their variance inflation factors. The 

model coefficients for the variables of interests are presented below. 
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Table 6: Preliminary OLS Model, Origins – Single Car, Zero Car Households 

Variable Coefficient 
Estimate 

Standard 
Error 

t-Statistic Probability VIF 

Intercept 1138.0675 706.9632 1.610 0.12108 - 
Zero-car 
households 

-0.1372 1.7877 -0.077 0.93949 8.57 

One-car 
households 

1.240 0.5516 2.038 0.05322 9.64 

Households 
with two or 
more cars 

-0.9679 0.7808 -1.240 0.22763 10.47 

Total 
workers 

0.1421 0.3871 0.367 0.71696 11.13 

CBD 4311.9165 1408.1324 3.062 0.00552 3.07 
# of 
observations 

29 

# of variables 3 
Adjusted R2 0.7596 
R2 0.8025 
Residual 
standard 
error 

1096 

Degrees of 
freedom 

23 

F-statistic 18.7 p-value (F-statistic) .0000002005 
 

 A model consisting of the zero-car and one-car households, with CBD, and 

population, and parking spaces at stations variables was also tested, but likewise, had 

problems with redundancy, even if it explained additional variation in the model and the 

correlation coefficients passed typical levels of significance.  
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Table 7: Preliminary OLS Model, Origins – Additional Variables 

Variable Coefficient 
Estimate 

Standard 
Error 

t-Statistic Probability VIF 

Intercept 1004.0757 547.4947 1.834 0.080226  
Zero-car 
households 

3.3838 1.3604 2.487 0.020936 7.567 

One-car 
households 

1.0459 0.4411 2.371 0.026901 9.4041 

Parking 3.2027 1.1874 2.697 0.0131 1.56 
Population -0.6859 0.1908 -3.594 0.001613 21.93 
Total 
workers 

0.8389 0.3692 2.272 0.033197 15.44 

CBD 4282.9282 1082.5133 3.956 0.000671 2.76 
# of 
observations 

29 

# of variables 6 
Adjusted R2 0.8425 
R2 0.8762 
Residual 
standard 
error 

887.7 

Degrees of 
freedom 

25 

F-statistic 25.94 p-value (F-statistic) .000000000644 
 

The final model for destinations incorporated three independent variables, one of 

which was the central business district indicator variable, and the other two related to 

employment – specifically, employment density and total industrial employment. These 

three variables were all statistically significant at the 0.001 level, and explained 

approximately 75% of the variation found within the destination data. None of the 

variables appeared to show multicollinearity, based on their variance inflation factors. The 

variables also followed the expected correlation – stations with a greater employment 

density in the catchment area were likely to have more trip ends. The two stations located 

in the two central business districts that anchored the census statistical area also had more 
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trip ends. A higher number of industrial workers seemed to be associated with less trip 

ends.  

Total employment was also tested instead of employment density, and also saw a 

statistically significant correlation at a probability of 0.06 and a t-value of 1.940. However, 

the total employment model had a greater standard error of 2743, lower adjusted R2 and R2 

values (0.5624, 0.5099), and a lower F-statistic, and so the employment density model was 

chosen for inclusion instead.   

Table 8: Final OLS Model, Destinations 

Variable Coefficient 
Estimate 

Standard 
Error 

t-Statistic Probability VIF 

Intercept -1477 671.0 -2.202 0.037119 - 
Employment 
Density 

352.9 62.51 5.645 0.0000071 1.54 

CBD 6164 1638 3.762 0.000909 1.31 
Total 
Industrial 
Workers 

-.1918 .06587 -2.912 0.007448 1.22 

# of 
observations 

29 

# of variables 3 
Adjusted R2 0.7787 
R2 0.7521 
Residual 
standard 
error 

1951 

Degrees of 
freedom 

25 

F-statistic 29.31 p-value (F-statistic) .00000002383 
 
 As the census business district stations appear in both formulations as a significant 

factor, It could be hypothesized that stations in these areas tend to behave significantly 

differently than other stations – they both produce and attract a significant amount of trips, 

irrespective of other land-use factors. However, this is also because central business 
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districts tend to be some of the densest, concentrated employment centers of their 

geographic region, and San Francisco and San Jose also hold a significant amount of 

residents for the region. A table (Table 9) of the selected variables and their values for each 

station follows on the next page. 
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Model Estimation, Log-sum 

The direct demand model is estimated using the form  In the previous sections, an 

assessment of the land use variables hypothesized to have an effect on creation of trips 

originating and trips destined to stations was established. The equations for those are as 

follows: 

𝑇𝑜 = 1432 − 1.625𝐻𝐻2𝑐𝑎𝑟 + 0.8043𝑊𝑡𝑜𝑡𝑎𝑙 + 6499𝐶𝐵𝐷 
𝑇𝑗 = −1147 + 3529𝐸𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 0.1918𝑊𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + 6164𝐶𝐵𝐷 

Where: 
𝐻𝐻1𝑐𝑎𝑟 = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑜𝑤𝑛𝑖𝑛𝑔 2 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑐𝑎𝑟𝑠 
𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 
𝐸𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝑊𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 
𝐶𝐵𝐷 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

 
Congested network travel times and travel times between stations via transit were 

also obtained in order to see if there was a relation between an increase in network travel 

time and transit time to ridership.  

The general multiplicative form of a direct demand model can be formulated as: 

𝑇𝑖𝑗 = 𝑎𝑋𝑏
𝑌𝑐𝑍𝑑 

Where a, y, and z are some hypothetical parameters (in this case, land use and travel time.) 

As  𝑒𝑇𝑖𝑗 = (
𝑑𝑇

𝑑𝑋
) (

𝑋

𝑇
) = 𝑏, the equation can also be written as  a log-log formulation of: 

log (𝑇𝑖𝑗) = log(𝑎) + 𝑏 𝑙𝑜𝑔(𝑋) + 𝑐 𝑙𝑜𝑔(𝑌) + 𝑑 𝑙𝑜𝑔(𝑍) 
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Using the log log formulation, the following model was developed:  

Table 10: Final Direct Demand Model Estimation 

Variable Coefficient 
Estimate 

Standard 
Error 

t-Statistic Probability 

Intercept -0.65243 1.287 -0.507 0.6122 
CBD_j 2.2263 0.234 9.519 < 2e-16 
E_density_j 0.81911 0.061 13.406 < 2e-16 
E_industrial_j -0.1628 0.0409 -3.982 7.44e-05 
HH_2car_i -0.99111 0.30504 -3.249 0.00121 
CBD_i 1.821 0.2462 7.396 3.53e-13 
HH_workers 1.311 0.3057 4.29 2.01e-05 
Peak AM TT -3.98051 0.61664 -6.455 1.87e-10 
Transit TT 3.6452 0.65509 5.564 3.58e-08 
# of 
observations 

29 

# of variables 3 
Adjusted R2 0.3984 
R2 0.4043 
Residual 
standard 
error 

1.613 

Degrees of 
freedom 

803 

F-statistic 68.12 p-value (F-statistic) < 2.2e-16 
 
 
The model then becomes:  

𝑙𝑜𝑔(𝑇𝑖𝑗) = 2.263log(𝐶𝐵𝐷𝑗) + 0.819𝑙𝑜𝑔 (𝐸𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑗
) − 0.1628 log (𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑗

)

− 0.9911𝑙𝑜𝑔(𝐻𝐻2𝑐𝑎𝑟𝑖
) + 1.821 log(𝐶𝐵𝐷𝑖) + 1.311𝑙𝑜𝑔(𝐻𝐻𝑤𝑜𝑟𝑘𝑒𝑟𝑠𝑖

)

− 3.98 log(𝑇𝑇𝑎𝑚) + 3.6452log (𝑇𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡) 
 
 

In terms of the land use variables, the relative magnitude and direction of the land 

use variables effect in the log-log formulation on trips produced at origin and attracted to 

destination stays similar to that observed in the linear formulations. The station being 

located either in a CBD for its origin or destination appears to be one of the biggest factors 

in whether a transit trip will occur at it. Congested travel times between stations and 
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transit travel times between stations were considered to see if there was an effect upon 

ridership. A table of the predicted values of the trips by origin and destination follows 

below in Table 11. 
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Table 11a: Model Predicted Trips by O\D Pair

 

O\D

SAN 

FRANCISCO 22ND ST BAYSHORE

SOUTH SAN 

FRANCISCO

SAN 

BRUNO

MILLBRAE 

TRANSIT 

CENTER

BURLIN

GAME

SAN 

MATEO

HAYWARD 

PARK HILLSDALE BELMONT

SAN FRANCISCO 71 24 59 45 99 104 146 78 73 43

22ND ST 207 3 7 6 13 13 18 10 9 5

BAYSHORE 228 9 15 12 25 24 31 16 15 9

SOUTH SAN 

FRANCISCO 234 10 6 19 34 27 31 16 15 8

SAN BRUNO 208 9 6 22 30 20 23 12 11 6

MILLBRAE 

TRANSIT CENTER 263 12 7 23 17 20 22 13 12 7

BURLINGAME 214 9 5 14 9 16 15 10 10 6

SAN MATEO 275 12 6 15 9 16 14 23 19 11

HAYWARD PARK 225 10 5 12 8 14 15 35 16 9

HILLSDALE 238 10 5 12 8 15 16 33 19 11

BELMONT 192 8 4 10 6 12 13 25 14 15

SAN CARLOS 147 6 3 7 5 9 9 16 8 7 3

REDWOOD CITY 233 10 5 11 7 14 15 25 13 12 6

MENLO PARK 173 7 3 8 5 10 11 18 10 9 5

PALO ALTO 254 11 5 12 8 15 17 28 15 14 8

CALIFORNIA 

AVENUE 119 5 2 6 4 7 8 13 7 7 4

SAN ANTONIO 206 9 4 9 6 12 14 22 12 11 7

MOUNTAIN VIEW 192 8 4 9 6 11 13 20 11 10 6

SUNNYVALE 248 10 5 11 7 14 16 25 13 12 7

LAWRENCE 158 7 3 7 5 9 10 15 8 7 4

SANTA CLARA 115 5 2 5 3 6 7 10 5 5 3

COLLEGE PARK 134 5 2 5 4 7 7 12 6 5 3

SAN JOSE 1207 49 22 48 32 63 66 100 52 47 27

TAMIEN 95 4 2 4 2 5 5 8 4 4 2

CAPITOL 101 4 2 4 3 5 5 8 4 4 2

BLOSSOM HILL 88 4 2 3 2 5 5 7 4 3 2

MORGAN HILL 89 4 2 4 2 5 5 7 4 4 2

SAN MARTIN 61 2 1 2 2 3 3 5 3 2 1

GILROY 135 6 2 5 4 7 8 12 6 6 3

Grand Total 6038 316 142 349 244 480 488 730 396 364 211
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Table 11b: Model Predicted Trips by O\D Pair 

  

O\D

SAN 

CARLOS

REDWOOD 

CITY

MENLO 

PARK

PALO 

ALTO

CALIFORNIA 

AVENUE

SAN 

ANTONIO

MOUNTAIN 

VIEW SUNNYVALE LAWRENCE

SAN FRANCISCO 63 138 64 129 89 96 129 76 75

22ND ST 8 17 8 16 11 12 16 9 9

BAYSHORE 12 26 12 25 17 18 24 14 14

SOUTH SAN 

FRANCISCO 12 25 12 23 16 17 23 13 13

SAN BRUNO 9 19 9 18 13 13 18 10 10

MILLBRAE 

TRANSIT CENTER 10 21 10 20 14 15 20 12 11

BURLINGAME 8 18 8 17 12 13 17 10 9

SAN MATEO 13 28 13 27 18 20 26 14 13

HAYWARD PARK 10 22 10 22 15 16 21 12 11

HILLSDALE 10 23 11 23 16 17 23 12 11

BELMONT 6 17 9 19 13 14 18 10 9

SAN CARLOS 19 9 19 13 13 17 9 8

REDWOOD CITY 14 18 37 25 24 29 14 12

MENLO PARK 10 29 36 22 20 22 10 9

PALO ALTO 16 43 27 35 28 31 14 12

CALIFORNIA 

AVENUE 7 20 11 24 12 13 6 5

SAN ANTONIO 12 31 16 30 19 22 9 7

MOUNTAIN VIEW 11 25 12 23 14 15 7 6

SUNNYVALE 12 27 12 23 14 14 15 9

LAWRENCE 7 15 7 12 8 7 9 6

SANTA CLARA 4 10 4 7 5 4 5 3 3

COLLEGE PARK 5 11 5 8 5 5 6 3 3

SAN JOSE 42 90 39 71 44 44 54 32 32

TAMIEN 3 7 3 6 4 4 4 3 3

CAPITOL 3 7 3 6 4 4 5 3 3

BLOSSOM HILL 3 7 3 5 3 4 5 3 3

MORGAN HILL 3 7 3 6 4 4 5 3 3

SAN MARTIN 2 5 2 4 3 3 4 2 2

GILROY 5 11 5 10 6 7 9 6 6

Grand Total 323 717 344 667 462 463 589 324 309
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Table 11c: Model Predicted Trips by O\D Pair 

  

O\D

SANTA 

CLARA

COLLEGE 

PARK SAN JOSE TAMIEN CAPITOL

BLOSSOM 

HILL

MORGAN 

HILL

SAN 

MARTIN GILROY

SAN FRANCISCO 55 75 419 21 9 45 17 2 24

22ND ST 7 9 50 2 1 5 2 0 3

BAYSHORE 10 13 73 4 2 8 3 0 4

SOUTH SAN 

FRANCISCO 9 12 66 3 1 7 3 0 4

SAN BRUNO 7 9 51 2 1 5 2 0 3

MILLBRAE 

TRANSIT CENTER 8 10 58 3 1 6 2 0 3

BURLINGAME 6 9 47 2 1 5 2 0 3

SAN MATEO 9 12 66 3 1 7 3 0 4

HAYWARD PARK 7 10 52 3 1 5 2 0 3

HILLSDALE 8 10 54 3 1 6 2 0 3

BELMONT 6 8 42 2 1 4 2 0 3

SAN CARLOS 5 6 34 2 1 4 1 0 2

REDWOOD CITY 8 10 53 3 1 6 2 0 3

MENLO PARK 5 7 37 2 1 4 2 0 2

PALO ALTO 7 9 49 2 1 5 2 0 3

CALIFORNIA 

AVENUE 3 4 21 1 0 2 1 0 2

SAN ANTONIO 5 6 33 2 1 4 2 0 3

MOUNTAIN VIEW 4 5 28 1 1 3 1 0 2

SUNNYVALE 5 6 36 2 1 5 2 0 3

LAWRENCE 3 4 24 1 1 3 1 0 2

SANTA CLARA 4 22 1 0 3 1 0 2

COLLEGE PARK 3 31 2 1 4 2 0 3

SAN JOSE 31 50 22 7 44 20 2 35

TAMIEN 3 4 35 0 4 2 0 3

CAPITOL 3 4 26 1 14 4 0 6

BLOSSOM HILL 3 4 30 2 2 3 0 5

MORGAN HILL 3 5 37 2 2 9 1 6

SAN MARTIN 2 4 27 2 1 6 4 4

GILROY 6 9 67 4 3 14 7 1

Grand Total 229 316 1566 99 45 236 96 11 146
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The model appears to account for approximately 40% of the variation in trips 

between OD pairs, and a comparison follows below.  The model appears to underpredict 

trips between station pairs that have higher ridership, and a comparison of the estimated 

origins and estimated destinations against the observed origins and destinations follows in 

Table 12. This is less apparent in the log-log formulation, as seen in the tabularized 

summary statistics for the model and the graph below.  

 

 
Figure 2: Log of Trips vs Log of Predicted Trips for OD Station Pairs 

However, when examining the log-log residuals, it is more apparent that the model 

has difficulty making an accurate prediction for the station pairs with higher ridership, and 

that a pattern exists for the residual .  
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Figure 3: Residual Plot of the log of Trips vs. Predicted Trips  

 
Thus, improvements on the model form could likely be made in order to account for the 

variation in ridership a higher OD-pair stations.  
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Table 12: Observed and Estimated Origins and Destinations by Station 

 

  

Observed 

Origins

Estimated 

Origins Difference

Observed 

Destinations

Estimated 

Destinations Difference

San Francisco 19985 6038 -13947 9311 2269 7043

22nd Street 538 316 -222 2309 477 1832

Bayshore 34 142 109 331 661 -330

So. San Francisco 529 349 -180 584 659 -76

San Bruno 504 244 -260 696 546 150

Millbrae 2192 480 -1711 2588 622 1966

Burlin-game 546 488 -58 1758 497 1261

San Mateo 1425 730 -695 2267 676 1590

Hayward Park 230 396 166 354 569 -215

Hillsdale 1876 364 -1512 2864 600 2264

Belmont 363 211 -152 698 481 216

San Carlos 1208 323 -885 1654 381 1272

Redwood City 3040 717 -2323 2699 608 2091

Menlo Park 1923 344 -1580 1561 478 1083

Palo Alto 8860 667 -8194 3349 671 2679

California Ave 1695 462 -1234 1088 312 776

San Antonio 414 463 49 799 513 287

Mountain View 3795 589 -3205 4630 449 4181

Sunnyvale 1140 324 -816 4613 555 4059

Lawrence 656 309 -347 1099 341 758

Santa Clara 1090 229 -861 1318 245 1073

College Park 222 316 94 3 286 -283

San Jose 3770 1566 -2205 7692 2373 5319

Tamien 116 99 -17 1279 222 1057

Capitol 13 45 32 38 238 -200

Blossom Hill 3 236 233 151 209 -57

Morgan Hill 0 96 96 199 229 -30

San Martin 0 11 11 99 164 -65

Gilroy 0 146 146 135 367 -232
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Chapter 4: Conclusion, Future Work and Recommendations 

In conclusion, the model sought to evaluate the creation of a direct demand model 

for transit ridership that would be able to integrate origin and destination land use 

characteristics, in addition to network travel time information. The model used a 

multiplicative direct demand model to estimate elasticities between land use variables and 

network characteristics for the origin-destination trips.  

At both the origin and destination, the location of the station within the central 

business districts of the San Francisco Bay region had the largest effect on trip generation 

and attraction. Higher employment density at the destination and a larger number of 

workers per household at the origin had a positive effect on trips, while the total number of 

industrial workers at the destination and an increased number of two car households had a 

negative effect on trips. Longer travel times on transit appeared to have a positive effect on 

trips, yet longer travel times in congested peak periods appeared to have a negative effect 

on trips.  

Future work would include the examination of additional variables to see if any 

explanatory variables could account for the variation at stations that generate and attract 

more riders. High ridership stations are usually the points of interests for agencies, in order 

to evaluate peak load and peak load capacities. As such, a model that could accurately 

evaluate the effects of changing land use characteristics and travel times as a result of land 

development in a transit corridor for high ridership station would be beneficial. A likely 

explanatory variable could be subcenters for employment. Adding subcenters as a variable 

would require a regional analysis for subcenters to be determined. In addition, future work 

could examine the effects of aggregation at a TAZ level instead of a station level, which 
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would likely be useful for evaluating land development projects. Future work could also 

evaluate if this model form works on a non-linear corridor system with multiple branch 

lines, which would likely add to the complexity.   

More models similar to this could also be easily constructed if more transit agencies 

had readily available data, either from obtaining the data from transit card usage or 

performing similar on-board travel surveys.  
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