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Forest ecosystems are a significant faction of the Earth’s landscape, and accurate estimates 

of forest structures are important for understanding and predicting how forest ecosystems 

respond to climate change and human activities. Light detection and ranging (LiDAR) 

technology, an active remote sensing technology, can penetrate the forest canopy and 

greatly improve the efficiency and accuracy of mapping forest structures, compared to 

traditional passive optical remote sensing and radar technologies. However, currently, 

LiDAR has two major weaknesses, the lack of spectral information and the limited spatial 

coverage. These weaknesses have limited its accuracy in certain forestry applications (e.g., 

vegetation mapping) and its application in large-scale forest structure mapping. The aim of 

research described in this dissertation is to develop data fusion algorithms to address these 

limitations. In this dissertation, the effectiveness of LiDAR in estimating forest structures 

and therefore monitoring forest dynamics is first compared with aerial imagery by 

detecting forest fuel treatment activities at the local scale. Then, a vegetation mapping 

algorithm is developed based on the fusion of LiDAR data and aerial imagery. This 

algorithm can automatically determine the optimized number of vegetation units in a forest 

and take both the vegetation species and vegetation structure characteristics into account 

in classifying the vegetation types. To extend the use of LiDAR in mapping forest 

structures in areas without LiDAR coverage, a data fusion algorithm is proposed to map 

fine-resolution tree height from airborne LiDAR, spaceborne LiDAR, optical imagery and 

radar data in regional scale. Finally, this dissertation further investigates the methodology 

to integrate spaceborne LiDAR, optical imagery, radar data and climate surfaces for the 

purpose of mapping national- to global-scale forest aboveground biomass. The proposed 

data fusion algorithms and the generated regional to global forest structure parameters will 

have important applications in ecological and hydrologic studies and forest management. 
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Chapter 1  Introduction 
 

 

Forests cover around 30% of the Earth’s land surface, and provide diverse ecosystem 

services, such as converting carbon dioxide to oxygen and biomass, acting as a carbon sink, 

regulating climate, purifying water, maintaining essential ecological processes and life 

support systems, and providing habitats for plants and animals (Führer et al., 2000; Lasch 

et al., 2002; Bales et al., 2011). To improve our understanding of the global forest 

ecosystem, it is of great significance to quantify three-dimensional (3D) forest structures, 

such as tree height, aboveground biomass (AGB) and leaf area index (LAI). However, 

currently, we still lack accurate forest structure estimations at national to global scales. 

How to map forest structures accurately and therefore monitor forest dynamics from local 

to global scales is still a question that needs to be addressed. 

 

 

1.1 Traditional ways to measure forest structure 

Traditionally, forest structures are observed based on field measurements. Surveyors use 

instruments [such as global positioning system (GPS) receiver, diameter tape, range finder, 

LAI 2000, hemispherical camera] to record the information of each individual trees [such 

as tree location, diameter at breast height (DBH), tree height, LAI]. These field 

measurements are highly accurate, but have three major limitations. First, taking field 

measurements is highly labor-intensive and time-consuming, especially in certain wild 

areas. Brienen et al. (2015) claimed that the time and labor costs of taking field 

measurements in wild Amazon forests was from 100 to 200 times of those in developed 

forest areas. Second, measuring certain forest parameters in the field is destructive to the 

environment. For example, the harvesting method is the most accurate way to measure 

forest AGB. However, the removal of trees may have negative impacts on the forest 

ecosystem, such as destroying the habitats of wildlife (Tempel et al., 2015). Third, field 

measurements are usually taken at the plot scale, which cannot be used to directly generate 

spatial continuous forest structure layers. These limitations have largely constrained the 

use of field measurements in large-scale forest structure mapping. 

The development of remote sensing technology can greatly help to address the 

limitations of field measurements. Remote sensing technology can provide continuous 

land surface observations with much higher efficiency and lower cost (Brivio et al., 2002; 

Jenson, 2009). Currently, passive optical sensors [e.g., Landsat Thematic Mapper (TM) 

and Moderate Resolution Imaging Spectroradiometer (MODIS) data] and radar sensors 

[e.g., phased array L-band Synthetic Aperture Radar (SAR)] are two frequently used 

remote sensing data sources, and there have been numerous studies focusing on how to use 

these data to map forest structure parameters. For example, Chen et al. (1996) used Landsat 

TM images to retrieve LAI of boreal conifer forests; Zhang et al. (2014) mapped the forest 

tree height, LAI and AGB in California using the Landsat TM data; Lu et al. (2005) 

explored using Landsat TM data to map forest AGB in Brazilian Amazon; Fensholt et al. 

(2004) evaluated the performance of MODIS in deriving LAI in semi-arid environment; 

Gao et al. (2008) proposed an algorithm to produce temporally and spatially continuous 

LAI from MODIS data. However, many studies have demonstrated that these 
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approaches using traditional passive optical imagery and radar data are fraught with 

uncertainty issues due to the saturation effect of these sensors. For example, it was found 

that the saturation points for using passive optical imagery to map forest AGB can range 

from 15 to 150 Mg/ha depending on different sensors (Baccini et al., 2008; Cartus et al., 

2012; Foody et al., 2001; Luckman et al., 1997; Ranson and Sun et al., 1994; Saatchi et al., 

2007; Sader et al., 1989; Sun et al., 2002; Toan et al., 1992; Wagner et al., 2003), and the 

saturation points for SAR are higher than optical imagery, which range from 30 to over 

300 Mg/ha based on the use of different frequencies and polarization methods (Huang et 

al., 2015; Kasischke et al., 2012; Lu, 2006; Mitchard et al., 2009; Myneni et al., 2001; 

Woodhouse et al., 2012). 

 

 

1.2 Light detection and ranging (LiDAR) 

LiDAR, an active remote sensing technology, can greatly help to solve the above-

mentioned problems related to field measurements and traditional remote sensing data. It 

shoots a focused short-wavelength laser pulse to a targeted land surface object, and 

measures the range to the object by determining the travel time of the laser pulse. Through 

integrating GPS and inertial measurement unit information, the obtained range 

measurement can be converted to accurate 3D locations (Shan and Toth, 2008). Because 

the use of a focused short-wavelength laser pulse, LiDAR can effectively penetrate the 

forest canopy and measure the 3D structures of forests. For example, Anderson et al. (2006), 

Clark et al. (2004), Naesset (1997), Nilsson (1996), Wing et al. (2015), and Zimble et al. 

(2003) explored the methods to derive forest tree height from LiDAR data at different 

scales; Morsdorf et al. (2006), Riano et al. (2004), Richardson et al. (2009), and Zhao and 

Popescu (2009) developed algorithms to estimate LAI from LiDAR data; Bortolot and 

Wynne (2005), Clark et al. (2011), Nelson et al. (2009), Popescu et al. (2011), and 

Swatanran et al. (2011) successfully used LiDAR data to estimate forest AGB in areas with 

various forest types. All these previous studies have shown that LiDAR can help to quantify 

forest structures with unprecedented accuracy, and therefore improve our understanding 

on global forest ecosystem. 

 

 

1.3 Limitations of LiDAR 

Although LiDAR can help to accurately quantify 3D forest structures, it currently has two 

major limitations. First, LiDAR lacks spectral information. Spectral information is highly 

useful for differentiating land surface objects, and it is the foundation of the passive optical 

remote sensing. There have been many studies showing that using hyperspectral and 

multispectral imagery can help to classify land cover types (Aplin, 2004; Franklin, 1986; 

Green et al., 1994; Mallinis et al., 2008; Townshend et al., 1991) and vegetation species 

(Adam et al., 2010; Carpenter et al., 1999; Hirano et al., 2003, Li et al., 2005; Xu and Gong, 

2007). However, currently, most LiDAR sensors can only shoot and receive energy at a 

single band (usually the near-infrared band). Although dual-band LiDAR has been 

developed recently (such as the Optech Titan equipped with three bands), there is nearly 

no practical use of this kind of sensor currently due to the extremely high cost of these 

sensors. Moreover, even with the intensity (the spectral information recorded in LiDAR 
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data) information of the single-band LiDAR, it cannot be used for direct comparison. Due 

to energy attenuation, multi-path effects and the influence of different incident angles, the 

intensity information for the same types of land surface objects obtained from different 

times, flight lines, or locations can be significantly different (Boyd and Hill, 2007; 

Hasega'wa, 2006; Mazzarini et al., 2002; Song et al., 2002; Wang et al., 2009). Although 

there have been algorithms developed trying to calibrate the LiDAR intensity information 

(Jutzi and Gross, 2009; Kaasalainen et al., 2009; Kaasalainen et al., 2011), these methods 

are usually data specific or sensor specific and the calibrated results are still problematic. 

Second, the availability of LiDAR is currently limited. Based on the platform that 

LiDAR sensors are mounted on, LiDAR can be divided into four categories, terrestrial 

LiDAR, near surface LiDAR, airborne LiDAR and spaceborne LiDAR. Terrestrial LiDAR 

can be used to collect LiDAR data with extreme high point density and accuracy (Dassot 

et al., 2011; Tao et al., 2015; Li et al., 2016). However, like traditional field measurements, 

collecting terrestrial LiDAR data is highly time-consuming and labor-intensive, rendering 

it impractical for large-scale studies. Near surface LiDAR, characterized by the UAV 

(unmanned aerial vehicle) LiDAR system, has become more popular recently due to its 

increased flexibility and low cost. Many research-based or commercial UAV LiDAR 

systems have been developed during the last decade (Chisholm et al., 2013; Guo et al., 

2017; Lin et al., 2011; Nagai et al., 2009; Wallace et al., 2012). However, UAV-based 

LiDAR systems can only cover small areas (<10 km2), and can hardly be used in large-

scale studies (Guo et al., 2017). Compared with terrestrial and UAV LiDAR systems, 

airborne LiDAR can collect data with higher efficiency and enough density to derive 3D 

forest structures, which makes it one of the most frequently used platforms in regional-

scale studies. However, currently, airborne LiDAR data are only available in certain areas 

of the world due to the high flight mission cost. It is estimated by the U.S. Forest Service 

that the current price for collecting airborne LiDAR data with a point density of 5 pts/m2 

is around $2.5 per acre (Hummel et al., 2011), and this price will increase significantly 

with the increase of the required point density (Jakubowski et al., 2013). This significantly 

constrains the application of airborne LiDAR data in large-scale (e.g., national- to global-

scale) studies. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, 

and land Elevation (ICESat) satellite, as the only available spaceborne LiDAR data 

currently, can provide global-scale LiDAR measurements with much lower cost. However, 

its ellipsoidal ground footprints, which are ~65 m in diameter, are spaced at 170 m along 

the track and at tens of kilometers across tracks (Schutz et al., 2005), which are too sparse 

to be used directly to generate spatial continuous forest structure estimations in large scale. 

These two limitations of LiDAR have largely constrained its application in mapping 

vegetation types and estimating large-scale forest 3D structures. How to overcome these 

limitations of LiDAR and use LiDAR to improve the accuracy of vegetation mapping and 

large-scale forest structure estimations is an important area of research. 

 

 

1.4 Study objectives 

In summary, optical passive remote sensing and radar data have the spectral information 

and spatial coverage, and LiDAR data have the capability to map 3D forest structures 

accurately. By taking advantages each type of remotely sensed data, it is possible to solve 
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the problems of each data type and generate reliable vegetation maps and forest structure 

products at multiple scales (Baccini et al., 2008; Boudreau et al., 2008; Saatchi et al., 2011; 

Simard et al., 2011). Therefore, this dissertation aims to answer the following two questions. 

1) What are the advantages of LiDAR in estimating forest structures and monitoring forest 

changes? 2) How to fuse LiDAR data with other remotely sensed datasets to overcome the 

limitations of LiDAR for different applications at different scales? Specifically, this 

dissertation has four objectives. 

1) Examine the effectiveness of LiDAR for mapping forest structure and detecting 

forest changes at a local scale. We compared the capability of LiDAR and aerial 

imagery for detecting forest fuel treatment activities. Moreover, a novel algorithm 

was proposed to detect and quantify forest fuel treatments directly from bi-temporal 

LiDAR point cloud data. 

2) Develop an algorithm to map vegetation types through the fusion of LiDAR data 

and optical imagery at a local scale. We proposed a strategy to map forest 

vegetation composition using both multispectral aerial imagery and airborne 

LiDAR data. This approach included the use of a Bayesian information criterion 

algorithm to determine the optimized number of vegetation groups and an 

unsupervised classification technique and post hoc analysis to map these vegetation 

groups. 

3) Develop a data fusion algorithm to map fine-resolution forest structures at regional 

scales. In this study, we used forest tree height as an example. The fine-resolution 

forest tree height distribution in the Sierra Nevada was estimated through a method 

using field measurements, airborne LiDAR data, spaceborne LiDAR data, optical 

imagery and radar data. 

4) Develop an algorithm to map forest structures at national to global scales. We 

focused on forest AGB for this study. A data fusion algorithm was proposed to map 

national- to global-scale forest AGB from field measurements, spaceborne LiDAR 

data, optical imagery, radar data and climate surfaces. An uncertainty field model 

was introduced in the algorithm to minimize the influence of the plot locality 

uncertainty. This algorithm was first tested at the national scale to map the forest 

AGB distribution across China and then applied to map the global-scale forest AGB 

distribution. 
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Chapter 2  Forest fuel treatment detection using multi-temporal 

airborne LiDAR data and high resolution aerial imagery 
 

 

Abstract 

Treatments to reduce forest fuels are often performed in forests to enhance forest health, 

regulate stand density, and reduce the risk of wildfires. While commonly employed, there 

are concerns that these forest fuel treatments (FTs) may have negative impacts on certain 

wildlife species. Often FTs are planned across large landscapes, but the actual treatment 

extents can differ from planned extents due to operational constraints and protection of 

resources (e.g., perennial streams, cultural resources, wildlife habitats). Identifying the 

actual extent of treated areas is of primary importance to understand the environmental 

influence of FTs. Light detection and ranging (LiDAR) is a powerful remote sensing tool 

that can provide accurate measurements of forest structure and has great potential for 

monitoring forest changes. This study used canopy height model (CHM) and canopy cover 

(CC) products derived from multi-temporal airborne laser scanning (ALS) data to monitor 

forest changes following the implementation of landscape-scale FT projects. Our approach 

involved the combination of a pixel-wise thresholding method and an object-of-interest 

segmentation method. We also investigated forest change through the use of normalized 

difference vegetation index and standardized principal component analysis from multi-

temporal high resolution aerial imagery. The same FT detection routine was then applied 

to compare the capability of ALS data and aerial imagery for FT detection. Our results 

demonstrate that the FT detection using ALS derived CC products produced both the 

highest total accuracy (93.5%) and kappa coefficient (κ) (0.70), and was more robust at 

identifying areas with light FTs. The accuracy using ALS derived CHM products (the total 

accuracy was 91.6%, and the κ was 0.59) was significantly lower than that of the result 

using ALS derived CC, but was still higher than using aerial imagery. Moreover, we also 

developed and tested a method to recognize the intensity of FTs directly from pre- and 

post-treatment ALS point clouds. 

Keywords: forest fuel treatment; remote sensing; change detection; LiDAR; aerial 

imagery 

 

 

2.1 Introduction 

Forests of the Sierra Nevada mountain range in California, USA are extensive, but face 

increasing risk of wildfire, largely due to fire suppression, fuel buildup, and changes in 

climate (Stephens et al., 2010). In 2013 alone, the American Fire and the Rim Fire, burned 

over 111 km2 of the Tahoe National Forest (located at the northern Sierra Nevada), and 

over 1,041 km2 of forest in the Stanislaus National Forest and Yosemite National Park 

(located at the southern Sierra Nevada), respectively. To reduce the loss from 

uncharacteristically large and high severity wildfire, the USDA (United States Department 

of Agriculture) Forest Service (referred as USFS hereafter) and other land management 

agencies conduct mechanical forest fuel treatments (FT) on areas with high fire risk in the 

Sierra Nevada. Through the forest thinning and mastication, these mechanical FT activities 

aim to modify wildland fire behaviors and minimize negative impacts on the forest health 
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and enhance forest fire suppression capabilities (Collins et al., 2010). However, there have 

been concerns over potential negative impacts of these fire mitigation treatments on the 

habitat of protected animals, particularly the California spotted owl (Strix occidentalis 

occidentalis) and the Pacific fisher (Martes pennant). 

Knowing the actual (as opposed to planned) extent of FTs (note that FTs referred 

hereafter are mechanical FT activities) is critical for understanding how FTs affect the 

wildfire risk, wildlife and forest health. The method for reporting completed FTs, which is 

still being used currently, involves using planned treatment boundaries and then updating 

them based on field observations. Planned FT boundaries are often geographically distinct 

from the actual extents due to operational constraints and the protection of resources (e.g., 

perennial streams, cultural resources, wildlife habitat). Thus, mapping the actual FT extent 

relies heavily on field observations, which are very labor-intensive and time-consuming. 

Moreover, currently, the intensity of FTs is commonly reported by FT types (e.g., low, 

crown, or selection thinning) (Agee and Skinner, 2005) or harvesting methods (e.g., 

mastication, thinning, or cable thinning). Fundamentally, there remains a lack of accurate 

methods to quantitatively evaluate both the extent and intensity of FTs. 

Remote sensing, which can expand both spatial and temporal scales of land surface 

observations, provides an alternative way to detect forest structure changes due to FTs. 

Change detection, defined as the process of identifying differences in the state of an object 

or a phenomenon by observing it at different times (Singh, 1989), is the most commonly 

used method to identify land surface changes from multi-temporal passive remote sensing 

data. Generally, change detection can be divided into three groups: image algebra, 

transformation, and classification methods (Lu et al., 2004; Singh, 1989). Image algebra 

methods apply algebraic calculus (e.g., image differencing, regression, ratioing) on multi-

temporal remotely sensed data at the pixel level to obtain a change image (Allen and Kupfer, 

2000; Lunetta et al., 2006; Patra et al., 2011; Prakash and Gupta, 1998; Sohl, 1999). 

Transformation methods use statistical procedures [e.g., Principal component analysis 

(PCA), Kauth-Thomas (KT) transformation, Gramm-Schmidt (GS) transformation, and 

Chi-square transformation] to minimize the redundant information in multi-temporal data 

and derive change images (Collins and Woodcock, 1994, 1996; Li and Yeh, 1998; Qin et 

al., 2013; Ridd and Liu, 1998; Seto e al., 2002). Both the algebra and transformation 

methods have to determine thresholds to differentiate the changed and unchanged areas 

(Guerra et al., 1998; Yousif and Ban, 2013). Classification methods identify change areas 

by comparing the image classification results from multi-temporal remote sensing data 

(Desclée et al., 2006; Hame et al., 1998; Hao et al., 2014; Li and Xu, 2010; Walter, 2004). 

However, few studies have mapped FT areas using passive remote sensing data because of 

the limited ability of these sensors for penetrating the forest canopy (Weishampel et al., 

2000). Because FTs typically remove smaller and sub-dominant trees to reduce fuel 

laddering and use mastication of shrubs to remove surface fuels, the changes in forest 

surface spectral characteristic may be too slight to be identified with passive remote sensing. 

Light Detection and Ranging (LiDAR), an active remote sensing technique, uses a 

focused short wavelength laser pulse, which can penetrate the forest canopy more 

effectively. It has been proven that LiDAR can be used to accurately estimate forest 

parameters, such as tree height (Clark et al., 2004; Hudak et al, 2002; Zimble et al., 2003), 

leaf area index (LAI) (Morsdorf et al., 2006; Riano et al., 2004; Richardson et al., 2009; 
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Zhao and Popescu, 2009), and aboveground biomass (Bortolot and Wynne, 2005; Popescu 

et al., 2011; Zhao et al., 2009). Clark et al. (2004) used the airborne laser scanning (ALS) 

data to accurately estimate sub-canopy elevation and tree height in a tropical rain forest 

landscape. Korhonen et al. (2011) found that ALS discrete data can be used to obtain 

comparable estimations of forest vertical canopy cover, angular canopy closure, and LAI. 

Andersen et al. (2005) estimated the canopy fuel parameters (e.g. crown fuel weight, crown 

bulk density, canopy height, and canopy base height) using regression analysis between 

ALS data derived metrics and field measurements. Kramer et al. (2014) found that the 

forest percentage cover between 2 and 4 m derived from ALS data is a good indicator of 

ladder fuels, which are an important forest structural attribute contributing to wildfire 

hazard. Kane et al. (2013 and 2014) evaluated the effects of wildfire on forest spatial 

structure at different height strata through the fusion of optical imagery and ALS data, and 

found that three forest spatial structures (i.e., canopy gap, clump-open, and open) were 

associated with the fire severity. 

Accurate estimations of these forest parameters from ALS data are highly desirable 

for understanding the composition and structure information of forests and therefore 

monitoring forest changes (Dubayah et al., 2010). For example, Yu et al. (2004 and 2006) 

estimated tree growths and monitored harvested trees using canopy height models (CHM) 

derived from multi-temporal ALS data in a conifer forest. However, to the best of our 

knowledge, there have been few studies conducted on using multi-temporal ALS to detect 

FT extents. Moreover, research comparing the capability of ALS data and aerial images 

for detecting FT extents is still lacking. 

The main objective of this paper is to study the capability of ALS data for identifying 

FTs using change detection routines that combine the pixel-wise thresholding (i.e., algebra 

or transformation methods) and the object-of-interest (OBI) segmentation (i.e., 

classification methods). As a comparison, the same change detection routine is also applied 

on multi-temporal high resolution aerial imagery. Additionally, this study aims to 

investigate the possibility of quantitatively mapping the FT intensity directly from multi-

temporal ALS data. 

 

 

2.2 Data 

2.2.1 Study area 

The Last Chance study site (39°07'N, 120°35'W) covers 92.1 km2 of the Tahoe National 

Forest, California, USA (Figure 2-1). It is on the southwest side of the Sierra Nevada crest. 

The elevation ranges from 228 m to 2189 m, and the slope ranges from 0° to near 90°. Over 

90% of the study area is covered by vegetation, and the average canopy cover is around 

67%. The study site is covered by mixed conifer forests, which are dominated by white fir 

(Abies concolor), ponderosa pine (Pinus ponderosa), incense-cedar (Calocedrus 

decurrens), sugar pine (Pinus lambertiana), and Douglas-fir (Pseudotsuga menziesii) (Su 

et al., 2016). Within the mixed conifer stands, the major hardwoods are black oak (Quercus 

kelloggii) and canyon live oak (Quercus chrysolepis) (Su et al., 2016). The FTs detected in 

the study area were implemented between 2008 and 2012. The main FTs conducted in this 

area were mechanical forest thinning, which aimed to reduce the ladder fuels by removing 

small to mid-sized tree from low and intermediate canopy strata within the treatment areas. 
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It is important to note these treatments intended to leave larger overstory trees intact and 

have post-treatment canopy cover between 40% and 50% (Collins et al. 2011). 

 
Figure 2-1 The Last Chance study area with the distribution of field plots, terrain elevations, 

and the proposed forest fuel treatment (FT) footprints from the United States Forest 

Services (USFS). 

 

 

2.2.2 Field measurements 

408 plots (12.62 m in radius and 500 m2 in area) were selected in the study site (Figure 2-

1). The first plot was randomly chosen and the following plots were placed on 500 m × 

500 m grids. Within specific watersheds, the sampling was intensified to 250 m × 250 m. 

When locating each plot by using a TrimbleTM GeoXH GPS in the field, the plot center had 

to be farther than 12.62 m away from any landing or road surfaces. If the plot needed to be 

offset, we randomly chose one of the four cardinal directions and moved the plot 25 m in 

that direction. In each plot, the canopy cover (CC) measurement and the treatment 

condition were collected from the field. The CC was measured by a sight tube on a 5 m by 

5 m regular grid centered on the plot center (total of 25 points per plot). These 

measurements were made twice, first in the summer of 2007 (prior to treatment 

implementation), and again in 2013 (after treatment implementation). It should be noted 

that 39 plots were eliminated in the analysis of this study because their treatment conditions 
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were not collected in the field. Among the remaining 369 plots, 46 plots were recognized 

as treated. Besides these plot measurements, polygons of the intended treatment areas 

(created by the USFS) were also used in this study to evaluate the FT detection accuracy 

(Figure 2-1). 

 

 

2.2.3 Small footprint ALS data 

The pre-treatment ALS data used in this study were acquired in September, 2007, and the 

post-treatment ALS data were acquired in November, 2012 and August, 2013 (the 2012 

flight was stopped by snow). An Optech GEMINI airborne laser terrain mapper (ALTM) 

from National Center of Airborne Laser Mapping at the University of Houston was used 

for both the pre- and post-treatment ALS data acquisition. The sensor was operated at 100 

kHz with a scanning frequency of 40–60 Hz and a scan angle of 12–14° on either side of 

nadir. It was mounted on a twin-engine Cessna Skymaster which flew at 600–800 m above 

the ground. The average swath width of a single pass was around 510 m with over 50% 

overlap between two adjacent flight lines, and the obtained point density was 9.6 points/m2 

on average. The ALS footprint size is about 15-20 cm in diameter. To make sure the pre- 

and post-treatment ALS flights aligned together, over 800 ground check points, positioned 

by ground GPS, were set to calibrate and assess the vertical and horizontal accuracy of the 

ALS flights. The obtained horizontal accuracy was around 10 cm and the vertical accuracy 

was from 5 to 35 cm. 

Pre-and post-treatment CHM and CC products were calculated from ALS point clouds 

to detect FTs. To derive CHM products, digital surface model (DSM) and digital elevation 

model (DEM) products were interpolated from the first returns and ground returns, 

respectively. The ground returns were identified using the software Terrascan following 

the standard industrial procedure. The interpolation scheme used was the ordinary kriging 

algorithm, because it has been proven to be more accurate than other interpolation methods 

(such as inverse distance weighted and spline) for interpolating DEM and DSM from ALS-

derived elevation points (Clark et al., 2004; Lloyd and Atkinson, 2002; Guo et al, 2010). 

The CHM was calculated by the differences between the DSM and the DEM. Note that 

CHMs and the corresponding DEMs and DSMs were produced in two different resolutions 

(1 m and 20 m). The 1 m resolution CHMs were used to generate CC products (in 20 m 

resolution) using a CHM-based method that showed a good correspondence with field 

measurements (Lucas et al., 2006). Each of 1 m × 1 m CHM cell with a value above a 

selected height threshold was coded as 1. A height threshold of 2 m was selected in this 

study to generate equivalent CC estimations from ALS data with the field measurements. 

The CC was calculated by the percentage of the number of coded CHM cells within in each 

20 m × 20 m grid. The accuracy of the ALS derived pre- and post-treatment CC products 

were evaluated by the pre- and post-treatment field measurements, respectively. 

The obtained 20 m resolution CHMs and CCs were then used in the following FT 

detection procedures. The differences between the pre- and post-treatment CHMs and CCs 

were used to represent changes in forest structure, respectively. Because mechanical forest 

thinning, the main FT type conducted in the study area, usually incorporated the removal 

of vegetation to reduce the forest fuel load, the CHM and CC were expected to have a drop 

in treated areas compared to control areas. 
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2.2.4 High resolution aerial imagery 

Aerial imagery (1 m resolution) from the National Agriculture Imagery Program (NAIP) 

was used in this study for the purpose of comparing the capability of ALS data on FT 

detection with that of traditional passive remote sensing data. The 2005 color-infrared (CIR) 

imagery (composed of green band, red band and near-infrared (NIR) band) was used to 

represent the pre-treatment forest, and the 2012 CIR imagery was selected to represent the 

post-treatment forest. Both the pre- and post-treatment NAIP data were resampled to a 

resolution of 20 m using the weighted mean value method to get comparable results with 

field measurements. The misalignment of digital number (DN) values for time-invariant 

objects is one of the major error sources for applying change detection techniques on multi-

temporal aerial images (Canty and Nielsen, 2008; Lu et al., 2004; Singh, 1989), and 

therefore radiometric normalization is one prerequisite for performing change detection 

algorithms on multi-temporal aerial images. To comprehensively compare the FT accuracy 

from aerial imagery with that from ALS data, two different techniques (NDVI differencing, 

and standardized PCA) were applied to obtain change images from multi-temporal aerial 

imagery. 

 

 

2.2.4.1 Radiometric normalization 

We used an automatic iteratively re-weighted multivariate alteration detection (IR-MAD) 

transformation method developed by Canty and Nielsen (2008) to determine the time-

invariant pixels. These time-invariant pixels were then used to normalize the pre- and post-

treatment aerial images. The IR-MAD method can calculate the no-change probability of 

pixels by transforming multi-temporal images into a set of mutually orthogonal difference 

images (Nielsen, 2007). Only the pixels with no-change probability above the selected 

threshold (0.95 is a commonly used threshold) were selected as time-invariant pixels. In 

this study, the pre-treatment aerial image was used as the reference image in the radiometric 

normalization procedure, and the post-treatment aerial image was used as the target image 

that needed to be normalized. There were overall 1,071 time-invariant pixels selected. 

Two-thirds of them (714 pixels) were used as the training pixels to normalize the aerial 

images, and the remaining 357 pixels were saved to be used as testing pixels. It should be 

noted that all the following procedures related to aerial images were processed based on 

the radiometrically normalized aerial images. 

 

 

2.2.4.2 NDVI differencing method 

NDVI is one of most robust and frequently used vegetation indexes in monitoring 

vegetation status and estimating vegetation parameters (Anyamba and Tucker, 2005; 

Carlson and Ripley, 1997; Carreiras et al., 2006; Pettorelli et al., 2005), which is defined 

as, 

 NIR R

NIR R

(DN) (DN)
NDVI

(DN) (DN)





  (2-1) 
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where NIRDN  and RDN  are the DN values in the NIR band and red band. In this study, the 

pre- and post-treatment NDVI were calculated from the normalized aerial images, and the 

change image was represented by the difference between the pre- and post-treatment NDVI. 

 

 

2.2.4.3 Standardized PCA method 

Standardized PCA, one type of PCA algorithm, requires all input parameters to be 

standardized before performing PCA algorithm. Eastman and Filk (1993) and Mas (1999) 

found that it is better for statistical control than non-standardized PCA method and can 

improve the accuracy of change detection. Thus, in this study, all the six bands from 

normalized pre- and post-treatment aerial images were first standardized by the following 

equation, 

 norm
std

(DN)
DN

x




   (2-2) 

where 
stdDN  is the standardized DN values, 

normDN  is the original normalized DN values, 

and x  and   are the mean and standard deviation of the corresponding band. Then, both 

the standardized pre- and post-treatment aerial images were used as the input for PCA 

transformations. In the standardized PCA routine outputs, the component having the 

poorest correlation with other components usually highlights the changed information, and 

therefore was selected as the change image. As shown in Table 2-1, in each row (or column), 

the R2 for the relationship between the component represented by that row (or column) and 

component 4 is the smallest when related to all other components. Therefore, component 

4 was selected to be used as the change image for the standardized PCA method in the 

following FT detection routine. 

 

Table 2-1 Correlations (represented by the R2) between six components obtained from the 

standardized principal component analysis (PCA) for normalized pre- and post-treatment 

aerial images. 

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 

Comp. 1 1.00 0.85 0.93 0.20 0.34 0.36 

Comp. 2 0.85 1.00 0.98 0.07 0.64 0.62 

Comp. 3 0.93 0.98 1.00 0.14 0.55 0.56 

Comp. 4 0.20 0.07 0.14 1.00 0.07 0.27 

Comp. 5 0.34 0.64 0.55 0.07 1.00 0.97 

Comp.6 0.36 0.62 0.56 0.27 0.97 1.00 

 

 

2.3 FT detection methods 

2.3.1 FT detection strategy 

The same FT detection routine, combining pixel-wise thresholding and OBI segmentation, 

was applied to above mentioned change images (Figure 2-2). An unfiltered pixel-wise FT 

result was first obtained by using a threshold to differentiate treated and untreated pixels 

in the change image. In this study, we assumed that the change parameter should be 

normally distributed, and the variation within the 95% confidence should be recognized as 

the background information. Thus, µ +/- 1.96σ was used as the threshold to differentiate 
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the treated and untreated pixels, where µ and σ are the mean and standard deviation of the 

change image, respectively. It should be noted that the threshold was only selected at one 

side (either µ + 1.96σ or µ - 1.96σ) because FTs only remove trees and can only result in 

unidirectional movement of selected change parameters. 

However, we anticipated that there would be still noise remaining in the unfiltered 

pixel-wise results. To further remove the noise, the OBI segmentation method was used to 

filter the pixel-wise result considering the fact that FTs were usually conducted in spatially 

continuous areas (Zhang et al., 2013). The OBI segmentation was conducted using the 

“Segment Only Feature Extraction Workflow” module in ENVI software. The mean of a 

change image within each segmented polygon was then used to determine its treatment 

attribute. If its value exceeded the threshold (µ +/- 1.96σ) used in the pixel-wise 

thresholding procedure, this polygon was recognized as treated, and vice versa. The 

identified isolated treated polygons with an area smaller than 800 m2 were further removed 

in the OBI segmentation workflow. Finally, the detected unfiltered FT pixels within the 

retained treated polygons were recognized as the final pixel-wise FT extents. 

 
Figure 2-2 The procedure for forest treatment detection that combines a pixel-wise 

threshold control method and an object-of-interest segmentation method. Note that µ and 

σ are the mean and standard deviation of the change image. 

2.3.2 FT intensity recognition 

Within the detected FT extents from the method producing the highest accuracy, we further 

developed and tested a method to identify the FT intensity directly from multi-temporal 

ALS point clouds. We hypothesized that FT activities can change the vertical structure of 

forests and therefore influence the vertical distribution of ALS points. Therefore, we chose 
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the vertical profile area change between the pre- and post-treatment ALS points within a 

pixel to represent the FT intensity. The profile area change can be calculated from pre- and 

post-treatment raw ALS point clouds using the following procedure. 1) Normalize the 

height of raw ALS points using DEM. 2) Normalize the height of ALS points from Step 1 

to 0-1 within each 20 m by 20 m cell. This aimed to reduce the influence of different 

vegetation heights on the FT intensity recognition result. 3) Sort all ALS points from Step 

2 within each 20 m × 20 m pixel ascendingly by height, and draw a height percentile 

ranking profile for each pixel (Figure 2-3). 4) Compute the area composed by the percentile 

ranking profile and x-axis (i.e. the axis labeled as Point Count in Figure 2-3) for each 20 m 

× 20 m cell. 5) Calculate the profile area change as the difference between the profile areas 

of post- and pre-treatment ALS point clouds (i.e., the highlighted gray zones in Figure 2-

3). 

 
Figure 2-3 Examples of pre- and post-treatment percentile ranking profiles (a) in a 20 by 

20 m pixel that has not been treated and (b) in a 20 by 20 m pixel that has been treated. 

The profile area change can range from -100% to 100%, theoretically. When a pixel 

contains no trees in the pre-treatment condition but the post-treatment condition has dense 

enough trees that prevents the ALS signal from penetrating the forest canopy, its profile 

area change should be -100%. Conversely, if a pixel contains dense trees in the pre-

treatment condition but all are cut down by FT activities, then the profile area change 

should be 100%. If there are no FT activities in a pixel, the corresponding profile area 

should be very similar and the profile area change should be close to 0%. Figure 2-3 shows 

two typical examples (i.e., with and without FT) in the study area. As shown in Figure 2-

3(a), for a pixel without FT, the pre- and post-treatment profiles are almost identical, and 

the slight tree growth during the time span of the two ALS flights results in a small negative 

profile area change (-0.95% for Figure 2-3a). In a pixel with FT (Figure 2-3b), the number 

of post-treatment ALS points in upper height levels is significantly increased and the 

number in lower height levels can be decreased. These changes can lead to relatively large 

positive profile area change (11.94% for Figure 2-3b), and the higher the profile area 

change is, the higher the FT intensity should be. 
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2.3.3 Accuracy assessment 

Polygons from the USFS that illustrate the intended FT boundary were used to compare 

with FT detection results of different methods. The proportions of the detected FT areas 

within the USFS treatment footprints were calculated for all FT detection results. 

Additionally, plot measurements were also used to evaluate the FT detection accuracy by 

the total accuracy (τ) and kappa coefficient (κ), which can be denoted as,  

 
a

N
   (2-3) 

 o e

e1

p p

p






  (2-4) 

where a is the number of plots agreeing with the FT detection result, and N is the total 

number of plots; po is the relative observed agreement, and pe is the hypothetical probability 

of chance agreement (Jenson, 2005). It should be noted that a 20 m radius buffer was made 

for each plot to compare with the FT detection result considering the influence of plot size 

and the mis-registration between the plots and ALS data and aerial images. If the plot was 

labeled as treated in the field, it would be recognized as true positive (correctly identified 

by FT detection results) when any part of its buffer overlapped with a treated pixel from 

FT detection results; otherwise, it would be recognized as false positive (incorrectly 

identified by FT detection results). If the plot was labeled as untreated in the field, it would 

be recognized as true negative (correctly rejected by FT detection results) when its buffer 

was isolated from treated pixels from FT detection results; otherwise, it would be 

recognized as false negative (incorrectly rejected by FT results). 

 

 

2.4 Results 

2.4.1 ALS derived CC 

Both the pre- and post-treatment CC were positively correlated with the field 

measurements (Figure 2-4). The coefficients of determination (R2) for the correlations 

between both the pre- and post-treatment ALS derived CC and field measurements are 

above 0.5. The R2 for post-treatment correlation is slightly higher than that for the pre-

treatment correlation. The mean difference between the pre-treatment ALS derived CC and 

field measurements is 13.7%, and that for the post-treatment is 5.5%. The absolute value 

of coefficient of variation of the root mean square error (CV(RMSE)) for the pre-treatment 

is slightly lower than the post-treatment. Figure 2-5 shows the change in CC observed from 

the field measurements. In general, the study area has an 3% increase in CC. However, the 

changes area widely distributed from -60% to 80%. 

Both the pre- and post-treatment ALS derived CC are systematically higher than field 

measurements. Over 83% and 63% of the pre- and post-treatment ALS derived CC are 

higher than the pre- and post-treatment field measurements, respectively. This result is 

expected since the sight tube can recognize finer canopy gap than the CHM method used 

in this study. Besides, the ALS derived CC may be more consistent than field 

measurements. FTs usually involve the selective removal of trees, which can result in a 

decrease in CC. However, based on field measurements, there are 12 out of 46 treated plots 

with an increase of in CC. 11 of these plots showed a drop in CC from ALS data, and only 
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one has an increase in CC (Table 2-2). This phenomenon may have resulted from the 

insufficient sampling points to measure the CC in the field. Studies have found that the CC 

obtained using a sight tube with 23 points had a 5.5% underestimation compared with the 

CC using 195 points (Korhonen et al. 2006), and may be insufficient to capture the 

variation in forest canopy (Fiala et al., 2006). 

 
Figure 2-4 Comparison between the ALS derived canopy cover (CC) and field measured 

CC for both (a) pre-treatment and (b) post-treatment. R2 represents the coefficient of 

determination, and CV(RMSE) represents the coefficient of variation of the root mean 

square error. 

 
Figure 2-5 Histogram of changes between pre- and post-treatment field measured CC (post-

treatment CC minus pre-treatment CC). µ represents the mean difference, and σ represents 

the standard deviation. 
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Table 2-2 The comparison between the field measured canopy cover (CC) and ALS derived 

CC for plots which were identified as treated areas in the field but with an increase in field 

measured CC. 

Plot ID 

Field measured CC (%)  ALS derived CC (%) 

Pre-treatment Post-treatment 
Post-

Pre* 
 Pre-treatment Post-treatment 

Post-

Pre* 

109 48 56 8  65.1 53.7 -11.4 

131 32 68 36  84.7 81.7 -3.0 

216 60 64 4  51.6 62.6 11.0 

224 48 56 8  51.0 30.5 -20.5 

233 52 60 8  78.1 61.2 -16.9 

242 56 60 4  68.3 55.0 -13.2 

266 24 32 8  62.2 54.6 -7.6 

281 28 32 4  33.7 29.9 -3.8 

283 20 36 16  45.3 40.67 -4.7 

322 36 48 12  72.6 54.8 -17.8 

337 40 52 12  71.3 57.9 -13.4 

354 52 64 12  57.0 53.7 -3.3 

*“Post-Pre” means using the post-treatment CC minus the pre-treatment CC. 

 

 

2.4.2 Radiometric normalization for aerial images 

The built radiometric normalization equation for each band using IR-MAD method is 

shown in Figure 2-6. The R2 for green and red bands are both higher than 0.9, and that for 

the NIR band is slightly lower. The accuracy assessment by the 357 time-invariant testing 

pixels is shown in Table 2-3. The differences of means and variances between the 

normalized post- and pre-treatment aerial images are 98% and 70% smaller than those 

between the original post- and pre-treatment aerial images on average. Moreover, the p-

values for the test of equal means and variances between the pre-treatment aerial image 

and normalized post-treatment aerial image are higher than the significance level of α=0.05, 

which indicates that means and variances between the pre-treatment aerial image and 

normalized post-treatment aerial image have no significant differences. 

 

Table 2-3 Comparison of means and variances for the 357 time-invariant testing pixels of 

pre-treatment, post-treatment and normalized post-treatment aerial images. Paired t-test 

and F-test were used to test equal means and variances between the pre-treatment aerial 

image and the normalized post-treatment aerial image. 

Variables Green band Red band NIR band 

Pre-treatment mean 130.6 121.3 158.9 

Post-treatment mean 87.6 69.4 123.9 

Normalized post-treatment mean 130.1 120.8 159.8 

p-value (paired t-test) for means 0.15 0.12 0.11 

Pre-treatment variance 211.0 311.1 304.0 

Post-treatment variance 290.3 510.9 293.9 

Normalized post-treatment variance 182.9 288.6 339.1 

p-value (F-test) for variances 0.18 0.48 0.30 



22 

 

 

 
Figure 2-6 Scatter plots for the 714 time-invariant training pixels obtained from IR-MAD 

normalization method and corresponding simulated radiometric normalization equations 

for (a) green band, (b) red band, and (c) near infrared (NIR) band of aerial images. 

 

 

2.4.3 FT detection results 

The unfiltered pixel-wise FT detection results are shown in Figure 2-7. To quantitatively 

describe the noise rate, the detected FT areas outside the USFS FT footprints are temporally 

considered as “noise”, and the noise rate is defined as the ratio of “noise” area to all 

detected FT area. As can be seen, the noise rate for the FT detection result using CC from 

ALS data is the lowest at 37%. The noise rates using CHM from ALS data and NDVI and 

standardized PCA methods from aerial imagery are slightly higher at 41%, 51%, and 41%, 

respectively. After applying the OBI segmentation routine to filter the pixel-wise results, 

the noise rate for all FT detection results has a significant decrease (Figure 2-8). Most of 

the noise from ALS derived CC method and aerial image derived NDVI method are 

concentrated in the northeastern and southwestern areas, and most of the noise from the 

standardized PCA method are concentrated in the southwestern areas. 

The accuracy of the FT detection was further assessed by plot measurements. The FT 

detection using the ALS derived CC showed the highest accuracy among all results. The 

total accuracy for the FT detection result using ALS derived CC is about an average of 4% 
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higher than the other three methods, and the κ is about an average of 23% higher (Table 2-

4). This is further supported by its producer accuracy, defined as the percentage of correct 

predictions based on field measurements. Its producer accuracy for treated areas is 74%, 

compared with 59%, 63% and 70% for the CHM method, NDVI method and standardized 

PCA method, respectively; its producer accuracy for untreated areas is about 96%, 

compared with 96%, 94%, and 92% for the other three methods (Table 2-4). Moreover, it 

accurately identified the FT activity in the USFS FT footprints within the rectangles “A”, 

“B”, “C” and “D” in Figure 8. All the other three methods detected close to nothing from 

these areas, except the CHM method within the rectangle “A” (Figure 2-8a). The area 

within rectangle “E” in Figure 2-8 was only recognized as treated by the method using the 

ALS derived CC. This area may be true FT detection for the fact that there were plots 

recognized as treated in it. 

 
Figure 2-7 Unfiltered pixel-wise FT detection results from the methods using (a) ALS 

derived canopy height model (CHM), (b) ALS derived CC, (c) aerial imagery derived 
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normalized difference vegetation index (NDVI), and (d) aerial imagery derived 

standardized principle component analysis (PCA) change component. The location of the 

study site is presented in Figure 2-1. 

 
Figure 2-8 Filtered pixel-wise FT detection results from the methods using (a) ALS derived 

CHM, (b) ALS derived CC, (c) aerial imagery derived NDVI, and (d) aerial imagery 

derived standardized PCA change component. Areas in black rectangles marked with “A” 

to “H” are examples for different scenarios. Area “A” can be identified by methods using 

LiDAR data but not methods using aerial imagery; area “B” to area “D” can only be 

identified by LiDAR derived CC method; area “E”, area “H”, and area “I” can be identified 

by at least one of the four FT detection methods used in this study, but are not within the 

USFS FT footprints; area “F” and area “G” are within the USFS FT footprints, but cannot 

be identified by any of the four FT detection methods. The location of the study site is 

presented in Figure 2-1. 
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The CHM method from ALS data has slightly better accuracy than the NDVI method 

and the standardized PCA method using aerial images. Both the total accuracy and κ using 

the ALS derived CHM method are higher than those two methods using aerial images. The 

two methods using aerial images provided similar accuracies. Although the total accuracy 

for the result using the NDVI method is higher than that of the standardized PCA method 

and its κ is lower, their differences are very small, which are only 0.27% and 0.01, 

respectively (Table 2-4). 

 

Table 2-4 Forest treatment detection accuracy assessment by comparing with field plot 

measurements. 

 

CHM  
CC 

 
NDVI* 

 Standardized 

PCA 

Treated 
Non-

treated 

 
Treated 

Non-

treated 

 
Treated 

Non-

treated 

 
Treated 

Non-

treated 

Field 

data 

Treated 27 19  34 12  29 17  32 14 

Non-

treated 

12 311  
12 311 

 
21 302 

 
25 298 

Total accuracy 

(%) 

91.6  
93.5 

 
89.7 

 
89.4 

Kappa 

coefficient 
0.59 

 
0.70 

 
0.55 

 
0.56 

*Normalized difference vegetation index. 

 

 

2.4.4 FT intensity distribution 

As mentioned in section 2.4.3, the ALS derived CC produced the FT detection result with 

the highest accuracy. Therefore, we tested the proposed FT intensity recognition method 

based on the FT extents from ALS derived CC. Figure 2-9 shows the distribution of profile 

area changes (pre-treatment minus post-treatment) within the FT extents. All profile area 

changes within FT extents are larger than 0% (Figure 2-9). The intensity of FTs conducted 

in the southern part of the study area is relatively larger, where the profile area change is 

over 20% in general. The profile area changes of FTs conducted in the middle and northern 

parts of the study area are concentrated in the value from 5% to 20%. Based on our plot 

measurements, the only two plots labeled as cable thinning in the field (indicating the 

removal of big trees) have profile area change values larger than 15%, and the only two 

plots labeled as mastication (indicating the removal of surface fuels, e.g. bushes) have 

profile area change values between 3% and 5%. As to the other 42 treated plots, they were 

labeled as general forest thinning, and therefore we cannot perform a detailed evaluation 

to the FT intensity recognition result currently. 
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Figure 2-9 The FT severity distribution of the study area indicated by the profile area 

change in each 20 m by 20 m pixel (pre-treatment profile area minus post-treatment profile 

area). Note that this result is based on the FT detection result using LiDAR-derived CC 

method, which has the highest detection accuracy. The location of the study site is 

presented in Figure 2-1. 

 

 

2.5 Discussion 

In this study, we compared our FT detection results with other published works on using 

change detection techniques to monitor forest changes or map wildfires, and the accuracies 

of the FT detection results from all four methods in this study are comparable to these 

studies. For example, Desclée et al. (2006) monitored the land cover changes including 

forested areas in Eastern Belgium from SPOT-HRV imagery using a statistical OBI method 

and obtained an accuracy over 90%; Kennedy et al. (2007) detected forest disturbance 

dynamics in western Oregon, US from Landsat TM imagery using trajectory-based change 

detection method and obtained an overall accuracy of 90%; Schroeder et al. (2011) mapped 

wildfire and clearcut harvest disturbances from Landsat TM imagery in central 

Saskatchewan and obtained a total accuracy of around 90%. In this study, the total 

accuracies of the results of all four methods can reach approximately 90%, which are 

similar to these studies. 

Among the four FT detection methods in this study, the FT detection results from the 

ALS derived CC method achieved the highest accuracy. A possible explanation for this 

may be related to the possible superiority of the ALS derived CC method in identifying 

less intensive FTs. Examining an example in areas within rectangle “B” in Figure 2-8, 
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nearly all removed trees in this area were short-statured trees (usually lower than 5 m in 

height) and were dispersed. We can clearly see that the removal of these small trees can 

still lead to a decrease in canopy cover (Figure 2-10a and b), which may increase the 

possibility for the ALS derived CC method to effectively detect these FT areas. Moreover, 

this result is also in consistent with other previously published works. Stephens et al. (2009) 

found that the CC decreased significantly in forests with mechanical FTs, and Kramer et 

al. (2014) found that the LiDAR percentage cover between 2 and 4 m was strongly 

correlated the forest ladder fuels and could be used to distinguish treated from untreated 

areas. To examine the influence of different height cutoffs on the FT detection results, we 

performed the same FT detection routine using the ALS derived CC products at 5 m and 

10 m cutoffs, respectively (Figure 2-11). The omission rate of the results using a 5 m cutoff 

was only increased by around 8% compared with the results using a 2 m cutoff. After the 

cutoff reaching 5 m, the omission rate increased rapidly, and the omission rate of the results 

using a 10 m cutoff was 100%. 

 
Figure 2-10 Comparison between the pre- and post-treatment three-dimensional point 

clouds within the rectangle “B” ((a) and (b)) and the rectangle “H” ((c) and (d)) in Figure 

2-8. 
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Figure 2-11 Comparison between FT detection results using the ALS derived CC products 

computed at a height break of (a) 5 m (b) 10 m, respectively. 

The accuracy of FT detection from methods using aerial imagery (NDVI and 

standardized PCA) is generally lower than methods using ALS data. Both of these two 

methods poorly detected areas with less severe FTs. As mentioned, due to the penetration 

limitation, the aerial images can reflect the forest surface spectral characteristics, but may 

not provide accurate forest structure information (Weishampel et al., 2000). This is 

particularly problematic for detecting change in areas where overstory trees are unaffected, 

which is common for most FTs (Agee and Skinner 2005). Moreover, both of these two 

methods using aerial imagery have relatively high false FT detection rates, which are 

located at the northeast and southwest of the study area, respectively. The high false 

detection effects were commonly seen in previous studies using NDVI to map forest fires 

(Remmel and Perera, 2001). One of the possible explanations is the light cloud 

contamination suppressed the NDVI (Remmel and Perera, 2001). Another possible reason 

may be related to the tree mortality in those areas, which can result in a significant change 

in forest surface spectral reflectance (Jenson, 2005; Liu et al., 2006). Dead trees, especially 

those far away from the road (greater than 60 m), may not be removed from the forest. 

Among the so-called noise areas, there are some common areas that were detected by 

several methods, which are concentrated in the north of the study site (within the rectangle 

“H”) and the south of the study site (within the rectangle “I”) (Figure 2-8). Although these 

areas are not included in the USFS FT footprints, this may not mean that these areas have 

not been treated. Figure 2-10c and d show the comparison between the pre- and post-

treatment point clouds in the sub-area within rectangle “H”. We can clearly see that there 

are trees that have been removed, which suggests that this area may have been treated. 

There are some areas within the USFS FT footprints but cannot be detected by any of the 

four methods, e.g. areas within rectangles “F” and “G” in Figure 2-8. It is possible that in 

these areas the intact overstory trees, which were not removed in the FTs, inhibited our 

ability to detect the removal of small tress with both ALS data and aerial imagery. There 

are eight field plots within the USFS FT footprints under these two squares, and six of them 
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were identified as non-treated in the field. Even for ALS data, the capability for mapping 

understory shrubs in dense forest stands can be limited (Estornell et al., 2011; Hodgson et 

al., 2005; Jakubowski et al., 2013a). 

The proposed FT intensity recognition method shows the potential to detect the 

conducted FT types by comparing with a limited number of field measurements. As 

mentioned, Kramer et al. (2014) found that the LiDAR percentage cover between 2 and 4 

m was highly correlated with forest ladder fuels. However, the height breaks or strata may 

not be consistent for different areas or treatment types. The proposed method directly 

examines the change in the vertical distribution of ALS point clouds, and may be applicable 

in different areas. Unfortunately, due to the lack of detailed ground truth data, we cannot 

map different profile area change values to different FT types in the current study. 

Moreover, different point cloud densities of different ALS flights may also influence the 

value of the profile area change. In this study, the pre- and post-treatment ALS data were 

acquired using the same protocol, and were accurately coregistered together using ground 

control points. This made the point cloud densities of the pre- and post-treatment flights 

very close. However, in most cases, the ALS point density from different ALS flights may 

significantly different with each other. Further study is still needed to identify how different 

ALS point densities influence the profile area changes. 

Recently, the cost of ALS data acquisition has decreased (Tilley et al., 2004) and is 

comparable or even less expensive than the cost of large-scale field data collection and 

image data analysis (Hummel et al., 2011; Jakubowski et al., 2013b). For example, 

Hummel et al. (2011) compared the cost of using ALS data to exam forest structural 

attributes with the cost of using field measurements, and found that the cost of ALS data 

(6.31 points/m2) acquisition and process was $2.63/ac (acre) (US dollar) compared with 

$2.46/ac (US dollar) to collect field measurements. Johansen et al. (2010) evaluated the 

costs of using ALS data (3.98 point/m2), QuickBird imagery, and SPOT-5 imagery to study 

a stream network with a length of 26, 000 km, and the total research costs using these three 

datasets were $3.8 M, $6.4 M, and $2.6 M (Australian dollar), respectively. Besides, 

considering the improvement of using ALS derived CC products to detect FTs (an increase 

of around 23% in κ compared to the methods using aerial imagery) and capability of ALS 

data on mapping the FT intensity, it may be a better choice for the forest managers to use 

ALS data to manage the FT activities. 

 

 

2.6 Conclusions 

This study developed a method combing pixel-wise thresholding and OBI segmentation to 

identify FT extents from ALS derived CC and CHM. A systematic comparison using the 

same FT detection routine as using ALS data was made to evaluate the capability of ALS 

data and aerial imagery on detecting FT extents. The results demonstrate the ability of ALS 

data to penetrate forest canopy, making it a more effective tool than aerial imagery for 

capturing forest structure change following FTs. Both the ALS derived CHM and CC 

provided higher accuracy in their FT detection results. The ALS derived CC, which can 

reflect the vertical structure information of a forest, produced an even better result than the 

ALS derived CHM method. Its total detection accuracy is over 93%, and its κ is 0.7, which 

are both the highest among all methods. FT detection results using NDVI and standardized 
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PCA from multi-temporal aerial imagery produced almost identical total accuracy and κ. 

Both methods showed relatively limited capacity to detect light FT areas, and had higher 

false detection rate (recognized untreated areas as treated areas) compared to the methods 

using ALS derived parameters. 

Moreover, this study developed and tested a method to detect FT intensity directly 

from ALS point clouds. Based on a limited number of plot measurements, the methods 

show great potential to identify different FT types. However, we cannot make a detailed 

evaluation on the result due to the lack of ground truth in current study. Besides, how the 

change of ALS point densities of different ALS flights still needs to be further studied. 
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Chapter 3  A vegetation mapping strategy for conifer forests by 

combining airborne LiDAR data and aerial imagery 
 

 

Abstract 

Accurate vegetation mapping is critical for natural resources management, ecological 

analysis, and hydrological modeling, among other tasks. Remotely sensed multispectral 

and hyperspectral imageries have proved to be valuable inputs to the vegetation mapping 

process, but they can provide limited vegetation structure characteristics, which are critical 

for differentiating vegetation communities in compositionally homogeneous forests. Light 

detection and ranging (LiDAR) can accurately measure the forest vertical and horizontal 

structures, and provide a great opportunity for solving this problem. This study introduces 

a strategy using both multispectral aerial imagery and LiDAR data to map vegetation 

composition and structure over large spatial scales. Our approach included the use of a 

Bayesian Information Criterion algorithm to determine the optimized number of vegetation 

groups within mixed-conifer forests in two study areas in the Sierra Nevada, California, 

and an unsupervised classification technique and post-hoc analysis to map these vegetation 

groups across both study areas. The results show that the proposed strategy can recognize 

four and seven vegetation groups at the two study areas, respectively. Each vegetation 

group has its unique vegetation structure characteristics or vegetation species composition. 

The overall accuracy and kappa coefficient of the vegetation mapping results are over 78% 

and 0.64 for both study sites. 

Keywords: Vegetation mapping; LiDAR; aerial imagery; forest structure; mixed conifer 

forest. 

 

 

3.1 Introduction 

Vegetation mapping is the process of characterizing vegetation units across a landscape 

from measured environmental parameters (Franklin 1995, Pedrotti 2012). Typically these 

units convey information about the dominant plant species present and the morphological 

structure of the vegetation (e.g., a mesic hardwood or a high-elevation meadow). Accurate 

and up-to-date vegetation maps are critical for managers and scientists, because they serve 

a range of functions in natural resource management (e.g., forest inventory, timber harvest, 

wildfire risk control, wildlife protection), ecological and hydrological modelling, and 

climate change studies (Chuvieco and Congalton 1988, Talbot and Markon 1988, Daly et 

al. 1994, Stephens 1998, Pearce et al. 2001, Mermoz et al. 2005, Alvarez et al. 2013). 

Traditional methods for vegetation mapping usually rely on field surveys, literature 

reviews, aerial photography interpretation, and collateral and ancillary data analysis 

(Pedrotti 2012). However, these methods are expensive and time-consuming. 

Consequently, vegetation maps produced by the traditional approach reflect past conditions 

when released and are not updated frequently (Daly et al. 1994). 

Remote sensing has proved to be a powerful tool in vegetation mapping by employing 

image classification techniques. Multispectral remote sensing imagery such as Landsat, 

SPOT, MODIS, AVHRR, IKONOS, and QuickBird are among of the most commonly used. 

For example, Franklin (1986) used the Landsat Thematic Mapper (TM) simulator data to 
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discriminate the composition of conifer forests in the Klamath Mountains in northern 

California. Carpenter et al. (1999) produced a lifeform map for the Sierra Nevada in 

California from Landsat TM data by applying the ARTMAP neural network method. Liu 

et al. (2006) mapped the distribution of forest disease, sudden oak death, in northern 

California from two-year images obtained by Airborne Data Acquisition and Registration 

system. Mallinis et al. (2008) used object-based classification method to delineate 

vegetation polygons in a conifer forest from Quickbird imagery. Wang et al. (2004) 

combined pixel-based and object-based classification methods to map the different 

mangrove canopy types along the Caribbean coast of Panama. Zhang et al. (2003) and 

Knight et al. (2006) monitored vegetation to produce phenology-based land cover maps 

from MODIS data. Besides multispectral data, hyperspectral imagery is another frequently 

used data type in vegetation mapping (Hirano et al. 2003, Li et al. 2005). The use of 

hyperspectral data can produce more finely classified vegetation mapping results than 

multispectral data (Xu and Gong 2007, Adam et al. 2010), because hyperspectral sensors 

are designed to collect data from hundreds of continuous spectral channels compared with 

multispectral sensors with broad wavelength intervals. 

All these studies using both multispectral and hyperspectral imagery usually only 

focus on either mapping the land cover type or mapping the vegetation composition. 

Examining the detailed structure characteristics in forests has rarely been considered 

because the limited penetration capability for multispectral and hyperspectral data. 

However, this information also plays a very important role in many ecological studies. For 

example, Lindenmayer et al. (2000) advocated that forest structure-based parameters can 

impact biodiversity, and should be taken into account in forest managements. Zielinski et 

al. (2006) and García-Feced et al. (2011) demonstrated that forest structure information 

was critical for mapping the habitat of Pacific fisher (Pekania pennanti) and California 

spotted owl (Strix occidentalis occidentalis). Graham et al. (2004), Agee and Skinner (2005) 

and Peterson et al. (2005) all pointed to the important role that forest structure has on 

wildfire behavior, and argued that modifying forest structure through forest treatment may 

be necessary to reduce fire risk in many dry conifer forest types. Developing methods to 

integrate structure information into the process of vegetation mapping is an important area 

of research. 

Light detection and ranging (LiDAR), an active remote sensing technique, can 

accurately measure the three-dimensional distribution of surface objects (Lefsky et al. 

2002). The focused and narrow laser beam used by LiDAR sensors has a strong penetration 

capability in forest areas (Lim et al. 2003, Jensen 2009, Su and Guo 2014). It has been well 

documented that LiDAR data can be used to derive highly reliable forest structure 

parameters such as tree height (Nilsson 1996, Andersen et al. 2006, Su et al. 2015), canopy 

cover (Lim et al. 2003, Korhonen et al. 2011), leaf area index (Riaño et al. 2004, Jensen et 

al. 2008), stand volume (Nilsson 1996, Naesset 1997), and tree diameter (Popescu 2007, 

Huang et al. 2011). The capacity to resolve forest structure parameters provides a great 

opportunity for developing vegetation mapping strategies (Kramer et al. 2014). Donoghue 

et al. (2007) and Heinzel and Koch (2011) explored the possibility of identifying tree 

species mixtures from parameters derived from LiDAR data. Ørka et al. (2009) and Kim 

et al. (2009) used LiDAR intensity data to differentiate broadleaf and needleleaf trees. 

Reitberger et al. (2008) used full-waveform LiDAR data to classify deciduous and 
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coniferous trees. Holmgren and Persson (2004) identified individual tree species, including 

Norway spruce (Picea abies L. Karst), Scots pine (Pinus sylvestris L.), and deciduous tree, 

by analyzing individual crown shape and rich tree structure parameters derived from 

LiDAR data. However, due to the lack of forest canopy spectral information, the accuracy 

of tree species classification from LiDAR data is limited in complex vegetation conditions. 

The integration of LiDAR data and multispectral/hyperspectral imagery has been used 

to address the limitation of using only LiDAR data in vegetation mapping. For example, 

Cho et al. (2012), Colgan et al. (2012) and Naidoo et al. (2012) mapped tree species 

compositions in African savannas through the combination of LiDAR data and 

hyperspectral data using maximum likelihood, random forest, and support vector machine 

classifiers, respectively; Dalponte et al. (2012) and Hill and Thomson (2005) classified tree 

species compositions of broadleaf and coniferous mixed forests through the fusion of 

spectral and LiDAR data; Holmgren et al. (2008) and Koukoulas and Blackburn (2005) 

used maximum likelihood classifier to identify individual tree species from LiDAR derived 

structure parameters and multispectral information in deciduous and coniferous forests, 

respectively. It has been reported that the integration of LiDAR data and optical imagery 

can increase the vegetation composition classification accuracy by 16-20% in rangelands, 

compared to using only LiDAR data or optical imagery (Bork and Su 2007). However, 

most of these studies on mapping vegetation units are still mainly focusing on classifying 

vegetated from non-vegetated areas or detecting differences in species composition. Forest 

structure characteristics, which can be estimated by statistical imputation methods that 

incorporate field measurements with LiDAR data and optical imagery (Falkowski et al. 

2010, Hummel at al. 2011, Wallerman and Holmgren 2007), are rarely considered in 

classification systems. 

The objective of this study is to develop and test a new strategy to map vegetation 

communities in two mixed conifer forests by considering both the dominant tree species 

composition and vegetation structure characteristics. Multispectral aerial imagery and 

airborne LiDAR data were integrated, along with a robust network of systematically 

established field plots in the vegetation mapping process. An unsupervised classification 

scheme using an automatic cluster determination algorithm based on Bayesian Information 

Criterion (BIC) and k-means classification was applied to the fused data to map the 

vegetation, and a post-hoc analysis based on field measurements was used to interpret the 

ecological properties for each vegetation unit. 

 

 

3.2 Materials and methods 

3.2.1 Study areas 

Our two forest study sites are located in the Sierra Nevada mountain range, California, 

USA (Figure 3-1). The northern site, Last Chance, covers an area of 92.1 km2, and the 

southern site, Sugar Pine, covers an area of 72.8 km2. The elevation ranges from 280 m to 

2190 m for the Last Chance site and from 500 m to 2650 m for the Sugar Pine site, and the 

average elevation for both study sites is over 1500m. Trees common to the Sierran mixed 

conifer and true fir forests dominate the vegetation cover at both sites. The major species 

present include: ponderosa pine (Pinus ponderosa), incense-cedar (Calocedrus decurrens), 

sugar pine (Pinus lambertiana), white fir (Abies concolor), California red fir (Abies 
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magnifica), and Douglas-fir (Pseudotsuga menziesii). Within the mixed conifer stands, the 

major hardwoods are black oak (Quercus kelloggii) and canyon live oak (Quercus 

chrysolepis). Forest cover is relatively homogeneous at both the study sites, but the Last 

Chance site has more heterogeneity than the Sugar Pine site. 

 
Figure 3-1 The geo-locations and terrain information of the Last Chance and Sugar Pine 

study sites with the distribution of field plots. 

 

 

3.2.2 Field measurements 

Plot measurements (12.62 m in radius and 500 m2 in area) were taken in the summer of 

2007 and 2008 (Figure 3-1). The same plot selection procedure was applied to determine 

the location of 372 and 268 evenly distributed plots in Last Chance site and Sugar Pine site, 

respectively. A random point was first chosen to be used as the center of the first plot in 

each study site. Then, this plot center was taken as a seed point to build a grid on a 500 m 

spacing in the four cardinal directions, and the following plot centers were placed on the 

intersections of the grid. Within watersheds for specific research purposes (e.g., studying 

hydrological responses to forest fuel treatments), the sampling was intensified to a 250 m 

by 250 m grid. The position of each plot center in the field was located using a TrimbleTM 

GeoXH GPS. If there were any landing or road surfaces within the plot footprint, the plot 

center was randomly moved by 25 m in one of the four cardinal directions. 
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Within each plot, field measurements on individual live trees included: tree species, 

tree height, diameter at breast height (DBH, breast height = 1.37 m) and height to live 

crown base. Trees were defined as individuals at least 5 cm in DBH. Moreover, the plot 

level canopy cover was measured using a sight tube with 25 sampling points. The plot level 

Lorey’s height and total basal area were calculated from field measurements and used in 

the vegetation mapping process in this study, which can be calculated from the following 

equations. 
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where zLH  and zTBA  represent the Lorey’s height and total basal area of the zth plot, and 

iBA  and iH  are the basal area and tree height of the ith tree in the zth plot. 

 

 

3.2.3 LiDAR data 

Small footprint airborne LiDAR data covering the Sugar Pine site and Last Chance site 

were acquired in September, 2007 and September, 2008 using an Optech GEMINI airborne 

laser terrain mapper (ALTM) from the National Center of Airborne Laser Mapping at the 

University of Houston. It was mounted on a twin-engine Cessna Skymaster, and was flown 

at 600-700 m above the ground. The ALTM sensor was operated at 100 kHz with a 

scanning frequency of 40-60 Hz and a total scan angle of 24–28°. The average swath width 

of a single pass was around 510 m, and the overlap between two adjoining swaths was 65% 

of the swath width. The point density was 6–10 points/m2, and positioning accuracy was 

about 10 cm horizontally and 10-15 cm vertically. 

Overall, there are 13 layers derived from the raw LiDAR point cloud for both study 

sites, including the canopy height model (CHM), canopy cover, and 11 canopy quantile 

metrics. The CHM was calculated by the difference between the LiDAR derived digital 

elevation model (DEM) and digital surface model (DSM), which were interpolated from 

the LiDAR ground returns and LiDAR first returns, respectively. The interpolation 

algorithm used in this study was ordinary kriging, which has been proved to be more 

accurate than other schemes (e.g., inverse distance weighted or spline) for interpolating 

DEM and DSM from LiDAR derived elevation points (Lloyd and Atkinson 2002, Clark et 

al. 2004, Guo et al. 2010). 

The canopy cover was calculated by a CHM based method, a reliable and consistent 

approach for estimating canopy cover from LiDAR data (Lucas et al. 2006). First, a fine 

resolution CHM (1×1 m2) was calculated from LiDAR point cloud using the above-

mentioned algorithm, and the pixels above a selected height threshold were coded as 1 or 

0 otherwise. The height threshold was set as 2 m in this study to match field-based canopy 

cover measurements. Then, this coded CHM was used to overlap with a 20×20 m2 grid, 

and the canopy cover was calculated as the percentage of the number of coded CHM pixels 
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with a value of 1 to the total number of coded CHM pixels within each 20×20 m2 grid. The 

final canopy cover layer was produced in 20 m resolution to roughly match the scale of 

field plots. 

Canopy quantile metrics, representing the height below X% of the LiDAR point cloud, 

are one of most frequently used LiDAR products to estimate the forest parameters that 

cannot be obtained directly from LiDAR point cloud, e.g. diameter at breast height and 

biomass (Lim and Treitz 2004, Thomas et al. 2006). In this study, 11 quantile metrics, 

including 0%, 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%, and 100%, were calculated 

in 20 m resolution directly from the LiDAR point cloud. 

 

 

3.2.4 Aerial imagery 

The 2005 National Agriculture Imagery Program (NAIP) color-infrared (CIR) aerial 

imagery in 1×1 m2 resolution (composed by green band, red band and near-infrared (NIR) 

band) are used in the vegetation mapping procedure of this study. The NAIP program is 

run by the Farm Service of US Department of Agriculture (USDA) for the purpose of 

making high-resolution digital orthographies available to maintain common land units. All 

NAIP images were taken under permitted weather condition, and followed the specification 

of no more than 10% cloud cover per quarter quad tile. The Aerial Photography Field 

Office has adjusted and balanced the dynamic range of each image tile to full range of 

Digital Number (DN) value (0-255), and orthorectified each image file using National 

Elevation Dataset before releasing the data (Hart and Veblen 2015). To ensure the NAIP 

imagery co-registered with LiDAR data, we georeferenced the NAIP imagery using over 

20 correspondence points for each study site selected from NAIP imagery and LiDAR 

derived products (i.e., DEMs and CHMs). 

In addition to the three spectral bands, seven texture layers (including mean, variance, 

homogeneity, contrast, dissimilarity, entropy and second moment) were extracted from 

each spectral band using the gray-level co-occurrence matrix (GLCM) filtering method. 

GLCM is defined over an image to be the distribution of co-occurring values at a given 

offset (Δx, Δy) (Haralick et al. 1973, Anys et al. 1994, Soh and Tsatsoulis 1999), which can 

be mathematically described as: 
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where (i, j) is one DN values combination of the image I at the given offset (Δx, Δy), (p, q) 

are the spatial position indexes in the image I, and (m, n) are the number of rows and 

columns of the image I. The offset (Δx, Δy) is determined by the angular relation between 

the neighboring pixels and spatial resolution of the image. The texture parameters for the 

corresponding GLCM can be calculated using equations provided by Haralick et al. (1973), 

and will not be discussed in detail here. In this study, a 3×3 moving window was used to 

generate GLCMs and calculate corresponding texture parameters for each cell. To match 

the spatial scale of the field plots and LiDAR products, the NAIP imagery and obtained 

texture layers were resampled to the resolution of 20×20 m2 using the weighted mean value 

method (Jakubowksi et al. 2013). All of the following vegetation mapping procedures used 

the resampled NAIP imagery and texture layers. 
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3.2.5 Vegetation mapping strategy 

There are overall 24 aerial imagery derived features (including the spectral bands and 

derived texture layers) and 13 LiDAR derived features initially available for this analysis. 

This large number of potential input layers for vegetation mapping could negatively 

influence the results given the likelihood of redundant information captured by the layers. 

Many algorithms have been developed to reduce the dimensionality of an input dataset, 

e.g., Principal Component Analysis (PCA), Linear Discriminant Analysis, Correspondence 

Analysis, and Detrended Correspondence Analysis. As one of the most commonly used 

techniques, the PCA algorithm has been proven to be effective at removing redundant 

information in remotely sensed data (Mutlu et al. 2008; Pohl and Van Genderen 1998). 

Therefore, in this study, the standardized PCA method was first applied separately to the 

aerial imagery derived and LiDAR derived features (Figure 3-2). The first three PCA 

components from aerial imagery derived features and the first three components from 

LiDAR derived features were combined as the input for vegetation mapping strategy. An 

unsupervised classification strategy and post-hoc analysis integrated with field 

measurements was then applied on the six PCA components to define vegetation groups 

and delineate the boundaries of different groups (Figure 3-2). The detailed descriptions for 

the unsupervised classification strategy and post-hoc analysis are provided below. 

 
Figure 3-2 Procedure for the vegetation mapping strategy used in this study. 

 

 

3.2.5.1 Unsupervised classification strategy 

The specific number and character of vegetation groups within a particular forest are 

usually unknown prior to the vegetation mapping process. Thus, one of the main challenges 

for vegetation mapping is to identify distinct vegetation groups and delineate boundaries 

among groups. In this study, an automatic cluster number determination algorithm based 
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on BIC, developed by Chiu et al. (2001), was combined with k-means unsupervised 

classification to initially map the vegetation. BIC is a robust measure for model selection 

among a finite set of models, which is defined as: 

 2 logk k kBIC l r n     (3-4) 

where k is the cluster number, lk is the classification likelihood function, rk is the number 

of independent parameters, and n is the number of observations. 

To obtain the optimized cluster number, a large maximum cluster number was first 

defined. In this study we used the hierarchical cluster analysis of species composition 

(linkage method = Ward’s; distance measure = Euclidean) following the method described 

in McCune et al. (2002) to determine the maximum number of vegetation groups in both 

study sites. BIC values for all possible cluster numbers (from one to the defined maximum 

cluster number) were then calculated. With these BIC values, the optimized number of 

clusters was determined in two steps. First, the initial value of the cluster number was 

estimated. Let ( )dBIC k  be the change of BIC values from two adjacent cluster numbers 

( ( ) -k k-1dBIC k BIC BIC ), and ( )rBIC k  be the ratio of BIC from k clusters and BIC from 

only one cluster ( ( ) /k 1rBIC k BIC BIC ). If the (2)dBIC  was larger than 0, the initial 

cluster number was set as one; otherwise, the initial cluster number was set equal to the 

number of clusters where ( )rBIC k  was smaller than 0.04 for the first time. Second, if the 

initial cluster number was one, the final cluster number was set as one; otherwise, the ratio 

change in log-likelihood distance was further used to optimize the cluster number. Let 

( )R k  be the ratio of log-likelihood distances (dk) from two adjacent cluster numbers 

(
1( ) /k kR k d d  ). The ratio of change in log-likelihood was computed as 

1 2( ) / R(k )R k , 

where k1 and k2 were the cluster numbers of the two largest ( )R k  smaller than the obtained 

initial cluster number. If the ratio of change was larger than 1.15, the final cluster number 

was set equal to k1; otherwise, it was set equal to the maximum value between k1 and k2. It 

should be noted that all the thresholds used in the BIC algorithm were determined by 

statistical experiments by Chiu et al (2001). 

With the optimized cluster number, we used k-means clustering algorithm to delineate 

the boundary of different vegetation types. K-means divides observations into a pre-

defined number of clusters and each observation belongs to the cluster with the nearest 

mean (Hartigan 1975), which can be mathematically described as: 

 
2

1

arg  min
BIC

j i

k

j i

i x S

x u
 

   (3-5) 

where kBIC is the pre-defined number of clusters, xj is the jth observation vector, Si is the ith 

set of observation vectors, and µi is the mean point of the ith set. In this study, the maximum 

iterations for k-means unsupervised classification was set to 10, and the change threshold 

of the mean points was set to 5%. 

 

 

3.2.5.2 Post-hoc analysis 

Field measurements were used to describe the dominant tree species composition and forest 

structure characteristics. The unsupervised vegetation group for each plot was extracted by 

overlapping the plot location with unsupervised classification result. Then, for all plots 
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belonging to the same unsupervised classification group, we analyzed their dominant tree 

species and forest structure characteristics measured from the field. The dominant tree 

species were defined by the proportions of different tree species weighted by basal area, 

and the forest structure characteristics were defined by the plot level basal area, Lorey’s 

height and canopy cover. Finally, these plot-derived dominant tree species information and 

forest structure characteristics were used to determine the property of each unsupervised 

classification group. It should be noted that approximately two-thirds of the plots (273 in 

Last Chance and 177 in Sugar Pine) were randomly selected and used to define vegetation 

group properties. The other plots were reserved to validate the vegetation mapping result. 

 

 

3.2.6 Accuracy assessment 

PCA ordination analysis, one type of multivariate analysis that can depict species 

relationships in low-dimensional space (Gauch 1982), was used to evaluate the capability 

of proposed vegetation mapping strategy on differentiating tree species. It has been widely 

used as a complement to other data clustering techniques that help identify repeatable 

vegetation patterns and discontinuities in species composition (Lepš and Šmilauer, 2003). 

In this study, relative species abundance for ordination analysis was represented by basal 

area (i.e., the ratio of basal area for each tree species to the total basal area of all trees at a 

plot). Moreover, the permutation test, a type of robust non-parametric statistical 

significance test (Nichols and Holmes 2002), was used to evaluate the capability of the 

proposed vegetation mapping strategy on recognizing different structure characteristics, 

since the field measured forest structure parameters are not normally distributed based on 

Shapiro-Wilk test (α=0.05) (Table 3-1). 

 

Table 3-1 Tests of normality for forest structure parameters using Shapiro-Wilk test. 

 
Last Chance site  Sugar Pine site 

Statistic df Sig.  Statistic df Sig. 

Lorey’s Height 0.630 370 0.000  0.988 268 0.030 

Basal Area 0.489 370 0.000  0.941 268 0.000 

Canopy Cover 0.988 370 0.003  0.048 268 0.000 

 

In addition, the total accuracy (TA) and kappa coefficient ( ) were also calculated for 

the purpose of evaluating vegetation mapping results, which can be denoted as: 

 
a

TA
N

   (3-6) 

 
Pr( ) Pr( )

1 Pr( )

a e

e






  (3-7) 

where a is the number of plots whose vegetation group agree with the vegetation mapping 

result, N is the total number of plots used for accuracy assessment; Pr(a) is the relative 

observed agreement, and Pr(e) is the hypothetical probability of chance agreement. The 

95% confidence interval for the TA was calculated using the method provided by Foody 

(2009). About one-third of the plot measurements at each study site were used to calculate 

TA and  . The vegetation group assignments for these test plots were determined by the 
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minimum Mahalanobis distance between these plots and the center of each vegetation 

group. The parameters used for calculating the Mahalanobis distance include the three 

forest structure parameters and the coordinates on the primary and secondary axes from the 

ordination analysis. The center for each vegetation group was calculated by the means of 

plots used to name vegetation groups. To minimize the influence of the different scales of 

parameters, all parameters were normalized before calculating the Mahalanobis distance. 

 

 

3.3 Results 

3.3.1 Optimized cluster number determination 

In this study, the hierarchical cluster analysis result showed that there was never any 

support for more than 8 vegetation classes at either study site. Thus as a conservative 

starting point, we approximately doubled the estimate from preliminary results (i.e. 15 

vegetation classes) and set it as the upper limit of the BIC cluster number determination 

algorithm. As shown in Table 3-2, all dBIC values for the Last Chance site were smaller 

than zero, and the cluster number was 14 when the rBIC was smaller than 0.04 for the first 

time. The initial cluster number was set as 14 for the Last Chance site. When the cluster 

number was smaller than 14, the two largest R(k) values were from results having two 

clusters and seven clusters. Due to the fact that the ratio between these two R(k) was smaller 

than 1.15, the final optimized cluster number for the Last Chance site was set to seven. 

Similarly, the final optimized cluster number for the Sugar Pine site was set to four. It 

should be noted that the initial cluster number for the Sugar Pine site was set to 15 (i.e., the 

pre-defined maximum cluster number) because all the rBIC values were larger than 0.04. 

 

 

3.3.2 Vegetation mapping results 

The vegetation mapping results for the Last Chance and Sugar Pine sites are shown in Fig. 

3. Both sites were dominated by Sierran mixed conifer trees. Specifically, 56% of the Last 

Chance site was classified as the Mature Mixed Conifer Forest, 19% as Young Mixed 

Conifer Forest, and 12.6% as Mixed Conifer Woodland. The Young Mixed Conifer Forest 

was mainly scattered within the Mature Mixed Conifer Forest (Fig. 3-3a). Pine- and open 

true fir-dominated forest types were less abundant, covering 7.3% and 3.7% of the study 

area, respectively (Table 3-3). These forest types were mainly found at the north end of the 

study site, and their coverage increased with elevation (Fig. 1 and Fig. 3-3a). The 

proportion of the Low and High Shrub types were very small, both around 0.6%. At Sugar 

Pine, the Mature Mixed Conifer Forest again was the most common type occupying 57.1% 

of the landscape (Fig. 3-3b). Closed-canopy Mixed Conifer Forest was the next most 

common type, at 25.9% of area, with the greatest concentration in the middle of the study 

site. The Pine-Cedar Woodland and Open Pine-Oak Woodland were distributed at the 

southeast and northwest of the study site, occupying 13.8% and 3.2%, respectively. 



45 

 

 

Table 3-2 The optimized cluster number determination results using Bayesian information criterion (BIC) algorithm for the Last 

Chance and Sugar Pine study sites. 

Last Chance site  Sugar Pine site 

k BIC dBICa rBICb R(k)c  k BIC dBICa rBICb R(k)c 

1 1390210.558     1 1478604.199    

2 1132790.048 -257420.510 1.000 1.942  2 1216658.927 -261945.272 1.000 2.154 

3 1000327.759 -132462.289 .515 1.386  3 1095132.435 -121526.492 .464 1.177 

4 904805.634 -95522.126 .371 1.236  4 991913.123 -103219.312 .394 1.920 

5 827541.566 -77264.068 .300 1.139  5 938229.015 -53684.108 .205 1.055 

6 759733.224 -67808.342 .263 1.502  6 887345.487 -50883.528 .194 1.140 

7 714639.554 -45093.670 .175 1.774  7 842710.399 -44635.088 .170 1.237 

8 689292.817 -25346.737 .098 1.139  8 806647.821 -36062.578 .138 1.461 

9 667049.072 -22243.744 .086 1.119  9 782010.413 -24637.409 .094 1.047 

10 647181.368 -19867.704 .077 1.318  10 758479.133 -23531.280 .090 1.029 

11 632149.235 -15032.134 .058 1.165  11 735610.756 -22868.377 .087 1.009 

12 619263.081 -12886.154 .050 1.098  12 712946.401 -22664.355 .087 1.008 

13 607542.700 -11720.381 .046 1.407  13 690455.682 -22490.719 .086 1.321 

14 599259.290 -8283.410 .032 1.162  14 673467.151 -16988.531 .065 1.058 

15 592152.613 -7106.676 .028 1.014  15 657416.013 -16051.138 .061 1.005 
aThe changes (dBIC) are from the previous number of clusters in the table. 
bThe ratios of changes (rBIC) are relative to the change for the two cluster solution. 
cThe ratios of distance measures (R(k)) are based on the current number of clusters against the previous number of clusters. 
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Table 3-3 Forest structure parameters and dominant tree species for each vegetation group obtained from the k-means unsupervised 

classification procedure. The dominant tree species are evaluated by the relative basal area of each tree species. Note that certain 

tree species with too small relative basal areas for all groups (<1%) were not included in the table. 

Group 

ID 
Vegetation Type 

Basal 

Area 

Lorey’s 

Height 

Canopy 

Cover 

Dominant Tree Speciesb 

Relative Basal Area (%) 

(m2/ha) (m) (%) ABCO ABMA CADE PILA PIMO PIPO PSME QUKE LO 

 Last Chance site 

G1 Low Shrub N/Aa N/Aa N/Aa Manzanita (Arctostaphylos spp.) 

G2 High Shrub N/Aa N/Aa N/Aa Manzanita (Arctostaphylos spp.) 

G3 Open True Fir 4.0 10.1 9.2 69 19 0 0 1 11 0 0 0 

G4 Pine Woodland 11.2 13.2 21.8 15 5 0 22 0 41 17 0 0 

G5 
Mixed Conifer 

Woodland 
20.3 15.6 36.4 44 2 8 5 0 21 18 3 0 

G6 
Young Mixed 

Conifer Forest 
24.7 18.5 46.1 24 1 8 18 0 26 21 1 1 

G7 
Mature Mixed 

Conifer Forest 
48.3 26.3 61.5 34 4 6 18 0 12 22 3 0 

 Sugar Pine site 

G1 
Open Pine-Oak 

Woodland 
11.4 12.2 14.7 0 0 0 3 0 72 0 24 0 

G2 
Pine-Cedar 

Woodland 
19.8 17.6 38.1 11 1 20 11 0 30 0 10 17 

G3 
Mature Mixed 

Conifer Forest 
47.3 25.3 66.8 26 1 28 8 0 19 0 8 10 

G4 
Closed-canopy 

Mixed Conifer 
68.0 32.4 74.6 40 1 29 13 0 9 0 5 2 

aN/A means the value is not available for corresponding blank. 
bSpecies code: ABCO, white fir (Abies concolor); ABMA, California red fir (Abies magnifica); CADE, incense-cedar (Calocedrus decurrens); PILA, sugar 

pine (Pinus lambertiana); PIMO, western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir (Pseudotsuga menziesii); 

QUKE, black oak (Quercus kelloggii); LO, canyon live oak (Quercus chrysolepis). 
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Figure 3-3 Labeled vegetation mapping results for the two study sites. 

The forest vertical structure information and dominant tree species composition for 

each vegetation group are shown in Table 3-3. Naming conventions for the unsupervised 

groups were based on the dominant tree species (Table 3-3). If the tree species composition 

for two vegetation groups was similar, the name recognizes the differences in the forest 

structures. For example, at the Last Chance site, composition of the dominant tree species 

for Young Mixed Conifer Forest and Mature Mixed Conifer Forest are similar, but the 

Mature Mixed Conifer Forest has larger, taller trees and greater canopy cover (Table 3-3). 

Note there is no tree information for groups identified as Low Shrub and High Shrub, 

because there no trees were measured with a DBH of 5 cm or greater in these groups. 

The capability of the proposed vegetation mapping strategy to differentiate among 

dominant species was evaluated by ordination analysis. In Figure 3-4, the first two axes for 

both study sites represent over 50% information of all data. The tree species composition 

between vegetation groups differ greatly with each other at the Last Chance site (Figure 3-

4a). Although the tree species composition of Young Mixed Conifer Forest and Mature 

Mixed Conifer Forest are similar (Table 3-3), the proportion of white fir for the Mature 

Mixed Conifer Forest is larger than Young Mixed Conifer Forest, and that for ponderosa 

pine is smaller (Table 3-3). At the Sugar Pine site, the proportion of black oak trees for 

Open Pine-Oak Woodland is higher than other three vegetation groups, which makes it 

unique among all four vegetation groups (Figure 3-4b). The tree species compositions for 

the other three vegetation groups are similar, especially the Mature Mixed Conifer Forest 

and Closed-canopy Mixed Conifer Forest. The proportion of white fir and California red 
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fir for the Pine-Cedar Woodland is relatively smaller, compared to the Mature Mixed 

Conifer Forest and Closed-canopy Mixed Conifer Forest. 

 
Figure 3-4 Ordination analysis results for the Last Chance and Sugar Pine sites. The “+” 

symbol in each color represents the centroid of the vegetation group represented by the 

corresponding color in each figure. Species code: ABCO, white fir (Abies concolor); 

ABMA, California red fir (Abies magnifica); ALRH, white alder (Alnus rhombifolia); 

CADE, incense-cedar (Calocedrus decurrens); CONU, mountain dogwood; LO, canyon 

live oak (Quercus chrysolepis); PILA, sugar pine (Pinus lambertiana); PIMO, western 

white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-

fir (Pseudotsuga menziesii); QUKE, black oak (Quercus kelloggii); SALIX, peachleaf 

willow (Salix amygdaloides); SEGI, giant sequoia (Sequoiadendron giganteum). 

The capability of the proposed vegetation mapping strategy to differentiate the forest 

vertical structure characteristics was examined by permutation test under the null 

hypothesis that the means of vegetation vertical structure parameters between vegetation 

groups have no difference. Since there were no forest structure parameters for the plots 

within the Low Shrub and High Shrub groups at Last Chance, these two groups were 

excluded in the permutation test. At the Last Chance site, this null hypothesis is rejected 

for differences in parameters between all vegetation groups (α<0.05), except the difference 

of Lorey’s height between Open True Fir and Pine Woodland and that between Pine 

Woodland and Mixed Conifer Woodland (Table 3-4). For differences in Lorey’s height 

between these two group combinations, the null hypothesis can still be rejected at the 

significant level of α=0.10. At the Sugar Pine site, the variation in vegetation structure 

parameters among groups is not as pronounced as the Last Chance site. The vegetation 

parameters for the Closed-canopy Mixed Conifer Forest are the most distinct. The p-values 

for the differences in all three parameters between the Closed-canopy Mixed Conifer Forest 

and the other three vegetation groups are all smaller than 0.05 except for the difference in 

canopy cover with Mature Mixed Conifer Forest. The basal area and Lorey’s height of the 

Mature Mixed Conifer Forest are significantly different from all other groups (α<0.05). 
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However, its canopy cover has no significant difference from all other vegetation groups. 

The differences in all three parameters between Open Pine-Oak Woodland and Pine-Cedar 

Woodland are not significant. 

The accuracy of the vegetation mapping results was evaluated by the independent plot 

measurements (Table 3-5). As can been seen, the overall accuracies of the vegetation 

mapping results are around 80% with a 95% confidence interval of ~8% for both study 

sites, and kappa coefficients are higher than 0.65. At Last Chance site, the commission 

errors and omission errors for most vegetation groups are lower than 20%, except the 

commission errors for the Mixed Conifer Woodland and Young Mixed Conifer Forest and 

the omission error for the Mixed Conifer Woodland. At Sugar Pine site, all commission 

and omission errors are lower than 30%, except the omission error for the Pine-Cedar 

Woodland. The omission rate of the Pine-Cedar Woodland is as high as 41%, and six out 

of seven omitted Pine-Cedar Woodland plots were misclassified as Mature Mixed Conifer 

Forest. 

 

 

3.4 Discussion 

Remote sensing technology has been shown to be extremely helpful for mapping and 

monitoring vegetation over large spatial scales (Xie et al. 2008). However, choosing a 

classification system that comprehensively capture vegetation community composition and 

structure is still a major challenge for vegetation mapping from remotely sensed data (Rapp 

et al. 2005). Traditionally, the number of vegetation units and/or the properties of 

vegetation units within a forest were pre-defined by the prior knowledge of experts from 

previous experience or field sampling data (Bork and Su 2007, Carpenter et al. 1999, 

Naidoo et al. 2012). However, this may lead to biased or inconsistent classification systems 

across regions and may not result in optimal breaks among different vegetation 

communities. Heinzel and Koch (2011) found that the accuracy of vegetation mapping can 

increase from 57% to 91% with corresponding decreases in the number of vegetation 

classes from six to two. It is critical to determine the optimal number of groups that 

balances the value of recognizing differences in vegetation structure and composition with 

the reliability of identifying these differences. 

By combining the LiDAR data and high-resolution aerial image, this study used a 

novel automatic cluster number determination algorithm and k-means unsupervised 

classification to define an optimized classification system. The classification of each 

vegetation group was determined by fully considering both the vegetation structure 

characteristics and dominant tree species composition. The results at both study sites show 

that the proposed vegetation mapping strategy can differentiate vegetation groups by 

vegetation structure parameters or dominant species composition or both (Figure 3-3). At 

the Last Chance site, the small differences in the relative abundance of the common tree 

species were captured along with steep gradients in structure (Figure 3-4a, Table 3-3, and 

Table 3-4). Although the tree species composition for the Young Mixed Conifer Forest and 

Mature Mixed Conifer Forest were very similar, trees in Mature Mixed Conifer Forest were 

considerably larger than in Young Mixed Conifer Forest (Table 3-3). Similarly for the Low 

Shrub and High Shrub groups, which were both dominated by manzanita (Arctostaphylos 

spp.), the latter was about 30 cm higher on average than the former based on the LiDAR 
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Table 3-4 The p-values of permutation test for the differences in forest structure parameters between different vegetation groups in 

the Last Chance and Sugar Pine study sites. 

 Basal Area  Lorey’s Height  Canopy Cover 

 G3a G4a G5a G6a G7a  G3a G4a G5a G6a G7a  G3a G4a G5a G6a G7a 

 Last Chance site 

G3a 1.000 0.004 0.001 0.000 0.000  1.000 0.066 0.009 0.001 0.000  1.000 0.000 0.000 0.000 0.000 

G4a 0.004 1.000 0.002 0.000 0.000  0.066 1.000 0.078 0.001 0.000  0.000 1.000 0.000 0.000 0.000 

G5a 0.001 0.002 1.000 0.013 0.000  0.009 0.078 1.000 0.037 0.000  0.000 0.000 1.000 0.001 0.000 

G6a 0.000 0.000 0.013 1.000 0.000  0.001 0.001 0.037 1.000 0.000  0.000 0.000 0.001 1.000 0.000 

G7a 0.000 0.000 0.000 0.000 1.000  0.000 0.000 0.000 0.000 1.000  0.000 0.000 0.000 0.000 1.000 

 G1a G2a G3a G4a N/Ab  G1a G2a G3a G4a N/Ab  G3a G4a G5a G6a G7a 

 Sugar Pine site 

G1a 1.000 0.920 0.109 0.013 N/Ab  1.000 0.806 0.245 0.014 N/Ab  1.000 0.403 0.684 0.000 N/Ab 

G2a 0.920 1.000 0.000 0.000 N/Ab  0.806 1.000 0.019 0.000 N/Ab  0.403 1.000 0.613 0.000 N/Ab 

G3a 0.109 0.000 1.000 0.000 N/Ab  0.245 0.019 1.000 0.000 N/Ab  0.684 0.613 1.000 0.334 N/Ab 

G4a 0.013 0.000 0.000 1.000 N/Ab  0.014 0.000 0.000 1.000 N/Ab  0.000 0.000 0.334 1.000 N/Ab 
aG3 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3-3. 
bN/A means values is not available for corresponding blank. 
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Table 3-5 The confusion matrices and accuracy assessments for the vegetation mapping results of Last Chance site and Sugar Pine 

site. 

 Last Chance Site  Sugar Pine site 

 Reference Commission 

Error (%) 

Kappa 

Coefficient 

 Reference Commission 

Error (%) 

Kappa 

Coefficient Predicted G1a G2a G3a G4a G5a G6a G7a  G1a G2a G3a G4a 

G1a 1 0 0 0 0 0 0 0.0 

0.70 

 1 0 0 0 0 

0.64 

G2a 0 1 0 0 0 0 0 0.0  0 10 1 0 9.1 

G3a 0 0 4 0 0 0 0 0.0  0 6 42 5 20.7 

G4a 0 0 0 11 2 0 0 15.4  0 1 6 18 28.0 

G5a 0 0 0 2 5 0 3 50  N/Ab N/Ab N/Ab N/Ab N/Ab 

G6a 0 0 0 0 3 12 6 42.9  N/Ab N/Ab N/Ab N/Ab N/Ab 

G7a 0 0 0 0 1 3 46 8.0  N/Ab N/Ab N/Ab N/Ab N/Ab 

Omission 

Error (%) 
0.0 0.0 0.0 15.4 54.5 20.0 16.3 N/Ab  0.0 41.2 14.3 21.7 N/Ab 

Overall 

Accuracy 

(%) 

80.0±7.9 (95% confidence interval)  78.9±8.3 (95% confidence interval) 

aG1 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3-3. 
bN/A means values is not available for corresponding blank. 
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derived CHM. At Sugar Pine, the unsupervised classification clearly detected the pine-oak 

vegetation type from the matrix of mixed conifer forests (Figure 3-4b) as well as the 

structural gradient present (Table 3-3, Table 3-4). 

Forest structure information, which has been difficult to incorporate in previous 

vegetation mapping strategy, is an important factor that has influence on various ecological 

applications (Peterson et al. 2005, Zielinski et al. 2006), and should be used in the 

procedure of developing vegetation maps for forest managements (Lindenmayer et al. 

2000). This is particularly true in more compositionally homogeneous forests. In these 

forest, traditional vegetation mapping methods which rely on passive remote sensing data 

might miss the underlying structural differences within the forest. By including LiDAR 

data, the proposed vegetation mapping strategy can detect differences in vegetation vertical 

structure characteristics that in turn inform the assessment of wildlife habitat suitability, 

wildfire hazard, and water yield. For example, the Sugar Pine site is dominated by three 

vegetation types, Pine-Cedar Woodland, Mature Mixed Conifer Forest, and Closed-canopy 

Mixed Canopy Forest (Figure 3-3b), that have similar tree species composition (Table 3-

3). Without considering forest vertical structure characteristics from LiDAR data, these 

three vegetation groups might be classified only as one larger group. 

The field measurements of species composition and plot-level forest structure support 

the results obtained by the unsupervised classification strategy. The proposed vegetation 

mapping strategy can produce sufficiently high overall accuracies (nearly 80% in both 

cases) and kappa coefficients (over 0.64 in both sites) for most applications where the 

vegetation map provides the essential classification and scaling information. Moreover, the 

overall accuracy and kappa coefficient obtained from the proposed vegetation mapping 

strategy are comparable to most previous supervised vegetation mapping strategies 

integrating LiDAR data and multispectral imagery (Bork and Su 2007, Dalponte et al 2012, 

Cho et al. 2012). 

Although the commission and omission errors for certain vegetation groups were high, 

they may be caused by misregistration between plot measurements and remotely sensed 

data (LiDAR data and aerial imagery). The plot locations were measured using a GPS in 

the field. Although it can produce centimeter level positioning accuracy in most cases, the 

blocking effect of forest canopy may reduce the GPS positioning accuracy significantly 

(Sigrist et al. 1999). The possible positioning error may lead to poor co-registration with 

remotely sensed data. Particularly, this misregistration may have a pronounced effect on 

the commission and omission errors of vegetation groups that do not cluster together. For 

example, the Young Mixed Conifer Forest in the Last Chance site had both a relatively 

high commission error and omission error. Instead of aggregating together, Young Mixed 

Conifer Forest was mainly scattered within Mature Mixed Conifer Forest (Figure 3-3a). A 

commission error of 66.7% for Young Mixed Conifer Forest was due to the 

misclassification as Mature Mixed Conifer Forest. 

The quality of NAIP aerial imagery may be another factor that influences the 

vegetation mapping accuracy. As known, there is non-linear color balancing effect existed 

in the NAIP imagery due to the dynamic range of different image tiles and different data 

acquiring time (Hart and Veblen 2015). Moreover, the absolute horizontal accuracy for the 

NAIP imagery is around 6 m at a 95% confidence level (USDA Farm Service Agency, 

2015). Although this study has tried to reduce the influence of misregistration between 
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NAIP imagery and LiDAR products by matching correspondence points, it still cannot be 

totally eliminated. Further study is still needed to address how the non-linear color 

balancing effect and horizontal accuracy influence the vegetation mapping accuracy. 

Moreover, it has been frequently reported that hyperspectral data outperformed 

multispectral data in recognizing plant species (Adam et al. 2010, Xu and Gong 2007), and 

there has been studies showing that the integration of hyperspectral data and LiDAR data 

can produce more accurate vegetation maps than the integration of multispectral data and 

LiDAR data (Dalponte et al 2012). 

 

 

3.5 Conclusions 

This study proposed a vegetation mapping strategy through the combination of 

multispectral aerial imagery and LiDAR data. Both the vegetation structure and 

composition information were taken into consideration of the determination of 

classification system. The BIC algorithm was used to automatically optimize the number 

of vegetation units within two mixed-conifer forests, and the property of each vegetation 

group was identified by post-hoc analysis based on field measurements. The results show 

that the proposed vegetation mapping strategy is a robust method to map vegetation in 

mixed-conifer forests with a sufficient high accuracy. The overall accuracy and kappa 

coefficient are over 78% and 0.64 for both study sites. Each identified vegetation group 

can be differentiated from others by vegetation structure parameters or dominant species 

composition or both. The obtained vegetation maps have the potential to considerably 

improve the identification of critical habitat for species of concern (e.g., Pacific fisher and 

California spotted owl), as well as identifying wildfire risk through characterizing ladder 

fuels (Kramer et al. 2014). 
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Chapter 4  Fine-resolution forest tree height estimation across the 

Sierra Nevada 
 

 

Abstract 

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the 

region and the country, and tree height is an important forest structure parameter for 

understanding the SN forest ecosystem. There is still a need in the accurate estimation of 

wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we 

presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across 

the SN at 70 m resolution by fusing multi-source datasets, including over 1600 in-situ tree 

height measurements and over 1600 km2 airborne light detection and ranging (LiDAR) 

data. Accurate tree height estimates within these airborne LiDAR boundaries were first 

computed based on in-situ measurements, and then these airborne LiDAR derived tree 

heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter 

System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN 

tree height from these GLAS tree heights, optical imagery, topographic data, and climate 

data. The results show that our fine-resolution SN tree height product has a good 

correspondence with field measurements. The coefficient of determination between them 

is 0.60, and the root-mean-squared error is 5.45 m. 

Keywords: Tree height; Sierra Nevada; LiDAR; Integration; Fine-resolution. 

 

 

4.1 Introduction 

Forests of the Sierra Nevada (SN) mountain range, covering an area of 63 100 km2, are 

valuable natural heritages for the region and the country. As one of the most diverse 

temperate conifer forests on Earth, the SN serves a series of ecosystem functions for the 

region and even the United States (US), e.g. regulating functions by maintaining essential 

ecological processes and life support systems, supporting functions by providing habitats 

for wild plants and animals in the region, provisioning functions by supplying provisions 

of natural resources, and cultural functions by offering life fulfillment opportunities and 

cognitive developments (Bales et al., 2011). In recent decades, forests of the SN have been 

extensively exploited and managed to deal with the increasing wildfire risk induced by fire 

suppression, fuel build up, and climate change (Stephens, Millar, and Collins, 2010). These 

forest management activities have brought growing concerns that they may destroy wildlife 

habitats, especially the habitats of endangered species (Berigan et al., 2012; Matthews et 

al., 2013). Tree height, an important forest structure parameter, plays a crucial role in 

understanding the ecosystem of a forest and therefore modelling the wildlife habitat within 

the forest (Martinuzzi et al., 2009; Vierling et al., 2008). 

Traditionally, forest tree heights are randomly sampled by taking accurate in-situ 

measurements (Naesset, 1997; Næsset and Økland, 2002). Numerous efforts from US 

Forest Service (USFS) have been devoted to obtaining ground measured tree height in the 

SN forests, e.g. the Forest Inventory and Analysis (FIA) Program and the Sierra Nevada 

Adaptive Managements Program (SNAMP). However, these ground inventories are 

usually taken at the plot scale, and therefore cannot be used to estimate wall-to-wall tree 
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height distribution alone. Moreover, taking ground measurements is highly time-

consuming, labor-intensive and costly, and may be impossible for certain forested areas 

due to the inaccessibility. Optical remote sensing can obtain spatially continuous land 

surface observations at reasonable costs and feasible efforts, which provides an indirect 

way to map tree height (Donoghue and Watt, 2006; Hall et al., 2006; Kellndorfer et al., 

2012; Lu et al., 2004; Zhang et al., 2014). Nevertheless, due to the limited penetration 

ability through the forest canopy, optical sensors have strong saturation effects in dense 

forested areas, which makes the retrieved tree height estimations from optical sensors 

usually fraught with uncertainty issues (Donoghue and Watt, 2006; McCombs et al., 2003; 

Su et al., 2015). 

Light detection and ranging (LiDAR), an active remote sensing technique, can 

penetrate the forest canopy effectively due to the use of a focused wavelength laser pulse 

(Popescu, Wynne, and Nelson, 2002; Coops et al., 2007; Su and Guo, 2014). It has been 

proven that it can be used to obtain three-dimensional structure information of forests 

(Morsdorf et al., 2006; Nelson et al., 1984; Popescu et al., 2011; Zhao et al., 2012; Zhao 

and Popescu, 2009). The airborne LiDAR system, one of the most frequently used LiDAR 

platforms, has been widely used to estimate tree height in various forest types with high 

accuracy (Andersen et al., 2006; Clark et al., 2004; Naesset, 1997; Nilsson, 1996; Wing et 

al., 2015). However, currently, there is no spatial wall-to-wall coverage of airborne LiDAR 

data across the SN because of the high cost of flight missions to acquire airborne LiDAR 

data. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land 

Elevation Satellite (ICESat), the only available spaceborne LiDAR data in global scale, 

provides an alternative data source for estimating forest tree height. For example, 

Duncanson et al. (2010), Lefsky et al. (2005) and Lefsky et al. (2007) demonstrated the 

feasibility of using GLAS full-waveform LiDAR metrics to calculate forest tree heights. 

However, the footprints of GLAS data are spaced at 170 m along tracks and tens of 

kilometres across tracks, which are too sparse to be used to generate spatial continuous 

fine-resolution tree height products. 

Recently, by taking advantages of GLAS data, airborne LiDAR data and optical 

imagery, there have been studies focusing on estimating forest tree heights through the 

integration of these data. For example, Leckie et al. (2003) and Suárez et al. (2005) 

developed methods to estimate tree heights from optical imagery and airborne LiDAR data 

in a Douglas-fir (Pseudotsuga menziesii) forest and spruce (Picea) forest, respectively; 

Lefsky (2010) segmented the global forests into over 4.4 million patches using Moderate 

Resolution Imaging Spectroradiometer (MODIS) data, and estimated the forest tree height 

for each forest patch using GLAS data; Simard et al. (2011) estimated the forest canopy 

height (RH100) values from GLAS full-waveform records, and extrapolated the GLAS 

RH100 estimations to global scale based on forest types, tree cover data, elevation data and 

climate data. However, current forest tree height products covering the SN forests (e.g., 

tree height products from Lefsky (2010) and Simard et al. (2011)) are still too coarse to be 

used for evaluating the influence of forest management on wildlife behaviours. 

This study aims to develop a method to estimate the tree height distribution across the 

SN at fine resolution through the combination of ICESat/GLAS data, airborne LiDAR, 

optical imagery, and other ancillary datasets (e.g., vegetation map, climate data and 

topographic data). To address this objective, we collected over 1600 in-situ plot 
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measurements and over 1500 km2 airborne LiDAR data across the SN forests. A procedure 

integrating the step-wise regression, multiple-linear regression and regression tree methods 

was developed to calculate tree heights within airborne LiDAR footprints, compute tree 

heights at the GLAS footprints, and extrapolate tree height estimations from GLAS 

footprints to the whole SN forests. The resulting SN tree height product can be downloaded 

from the web (http://guolabLiDAR.com/SNtreeheight). 

 

 

4.2 Data and Methodology  

4.2.1 Study area 

The SN is a mountain range located in the western US, which runs ~640 km from north to 

south and ~110 km from west to east (Figure 4-1a). The elevation increases gradually from 

the northwest to the southeast, and the mean elevation is over 1500 m; the slope, with a 

mean of 12°, can reach up to 81°, and is generally higher in the southern SN than in the 

northern SN. The lower elevation western SN foothills are covered by Mediterranean 

forests, woodlands and shrub woodlands, and higher elevation mountainous areas are 

temperate coniferous forests. The region is composed of six sub-regions, namely North 

Sierra, North Central Sierra, Central Sierra, South Central Sierra, South Sierra, and East 

Sierra (Figure 4-1). 

 
Figure 4-1 (a) The location and elevation of the Sierra Nevada (SN), and the distributions 

of Geoscience Laser Altimeter System (GLAS) footprints and airborne light detection and 

ranging (LiDAR) data within the SN. (b) The distributions of canopy cover and in-situ 

measurements within the SN. 
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4.2.2 In-situ measurements 

Field observed tree heights are fundamental for calculating and validating tree height 

estimations from remotely sensed data. In this study, we collected 1671 plot measurements 

from SNAMP, Critical Zone Observations (CZO), and US Forest Service (USFS), covering 

an area of over 6000 km2 (Figure 4-1b). All plot measurements from SNAMP and CZO 

were taken under the same protocol in the growing season of 2012 and 2013. Each plot, 

12.62 m in radius (~500 m2 in area), was randomly selected in the corresponding sites of 

these projects. The height and diameter at breast height (DBH) for each individual tree with 

a DBH >5 cm were collected in the field. The plot measurements from USFS were taken 

under the national FIA protocol during the growing season between 2004 and 2009 

(Woodall and Monleon-Moscardo, 2008). These plots were originally set to study the 

behaviour of the California spotted owl (Strix occidentalis occidentalis), an endangered 

wildlife species in the SN. Each plot location was randomly selected and had to be 

potentially suitable for the owl to nest or forage (Su et al., 2015). Overall, there were 1008 

FIA subplot-level plots (7.32 m in radius) collected in this study, and 596 of those plots 

were within the airborne LiDAR footprint (Table 4-1). The tree height and DBH for each 

individual tree with a DBH lager than 12.7 cm were recorded in the field. 

 

Table 4-1 Collected field tree height measurements and airborne light detection and 

ranging (LiDAR) data in this study. 

Data 

source 

Airborne LiDAR  Field measurements 

Year 
Coverage 

(km2) 
 Year 

Number of plots 

within LiDAR 

footprint 

Number of 

plots outside of 

LiDAR 

footprint 

Plot size* 

(m) 

SNAMP 2012&2013 850  2013 606 0 12.62 

CZO 2009 58  2009 57 0 12.62 

USFS 2009-2012 676  2004-2009 596 412 7.32 

* The size of circular plot is presented by the length of radius. 

 

 

4.2.3 Spaceborne LiDAR data and pre-processing 

GLAS on-board the NASA ICESat, which was first launched in January 2003 and retired 

in February 2010, provided global-scale full-waveform LiDAR measurements. Its 

footprints, in a nominal diameter of 65 m, were spaced at 170 m along tracks and tens of 

kilometres across tracks (Schutz et al., 2005). In this study we collected all available 

GLA01 and GLA06 products between 2003 and 2009 within the SN from the 

ICESat/GLAS data pool (http://nsidc.org/data/icesat/order.html). The GLA01 product 

provided the full-waveform measurements, and the GLA06 product provided the 

geolocation and data quality for each full-waveform record. The GLAS footprint samples 

within the SN were further filtered to ensure that 1) they were taken under cloud-free 

conditions; 2) they had no saturation effect; 3) they had high signal to noise ratio (i.e., >50); 

and 4) they were not significantly higher (i.e., 100 m) than the land surface presented by 

the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM). Overall, 

there are 27 214 GLAS full-waveform samples retained within the SN (Figure 4-1). For 

each GLAS sample, we calculated three parameters from the full-waveform information, 
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namely waveform extent, leading edge extent, and trailing edge extent. These three 

parameters have been proved to be highly correlated to canopy height, canopy height 

variability, and terrain slope, respectively (Baghdadi et al., 2014; Bourgine and Baghdadi, 

2005; Lefsky, 2010; Lefsky et al., 2007). Definitions of these three parameters can be found 

in Lefsky et al. (2007), and will not be discussed in detail here. 

 

 

4.2.4 Airborne LiDAR data and pre-processing 

In this study, the airborne LiDAR data, covering around 1600 km2, were collected from 

the SNAMP, CZO, and USFS (Figure 4-1). These airborne LiDAR data were all acquired 

during the growing season during the years of 2009-2013 (Table 4-1). The average point 

density for each airborne LiDAR footprint ranges from 4 pts/m2 to 12 pts/m2. Within each 

airborne LiDAR footprint, a 1 m resolution DEM was first interpolated from the LiDAR 

ground returns using ordinary kriging, since it outperformed other interpolation schemes 

(e.g., inverse distance weighted and spline) for generating DEM from LiDAR derived 

elevation points (Clark et al., 2004; Guo et al., 2010). Then, the elevation of each LiDAR 

point was normalized by the obtained DEMs. Finally, canopy quantile metrics, 

representing the height below X% of the LiDAR point cloud, were generated from these 

normalized LiDAR point clouds. Canopy quantile metrics are frequently used to compute 

forest structure parameters that cannot be measured directly from LiDAR point cloud (Lim 

and Treitz, 2004; Thomas et al., 2006). In this study, 11 canopy quantile metrics, including 

0%, 1%, 5%, 25%, 50%, 75%, 90%, 95%, 99%, and 100%, were generated for each LiDAR 

footprint at 20 m resolution, which is roughly correspondent to the plot size. 

 

 

4.2.5 Wall-to-wall tree height estimation method 

As can be seen in Figure 4-2, a three-step procedure was used to estimate the wall-to-wall 

tree height across the SN: 1) estimate tree height within the airborne LiDAR footprint using 

the step-wise regression method; 2) build regression model to estimate tree heights at 

GLAS footprints; and 3) extrapolate the tree height estimations from GLAS footprints to 

the whole SN forests using a regression tree method. It should be noted that tree height 

mentioned hereafter refers to Lorey’s height (HL), which can be calculated from in-situ 

individual tree height (H) and basal area (B) measurements, 
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where i is the ith tree within each plot, and n is the total number of trees recorded for each 

plot. 
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Figure 4-2 Flow chart of the proposed SN tree height estimation procedure. 

Since the in-situ measurements can hardly be spatially coincident with GLAS 

footprints directly, the airborne LiDAR derived tree heights were used as the media to link 

ground measurements with GLAS data (Tang et al., 2014). Previous studies have shown 

that multiple linear step-wise regression method is an effective method to estimate Lorey’s 

height from airborne LiDAR canopy quantile metrics and inventory data (Andersen et al., 

2005; Hall et al., 2005). In this study, within each airborne LiDAR footprint, two-thirds of 

the corresponding plot measurements were randomly selected, and used as training data to 

build the regression model for estimating tree height at the airborne LiDAR footprints. 

These airborne LiDAR derived tree height estimations were then used to spatially link 

GLAS measurements, and therefore built a multiple linear regression model to estimate 

tree height from GLAS parameters (Lefsky et al., 2007). This regression model was applied 

to all GLAS data to calculate tree heights at GLAS footprints. It should be noted that all 

airborne LiDAR derived tree heights were resampled from 20 m to 70 m resolution using 

the weighted mean value method in this step (Jakubowksi et al., 2013) so that they can 

roughly match the footprint size of GLAS measurements. 

The regression tree method Random Forest (RF) was employed to extrapolate the tree 

height estimations from GLAS footprints to the whole SN forests. Saatchi et al. (2001) 

suggested that the normality of co-variables used in the forest parameter prediction models 

is often violated when complex environmental and ecological parameters are introduced. 

RF is a formalized non-parametric machine learning algorithm, which does not require the 

assumption to be made regarding the normality of covariables (Breiman, 2001). Moreover, 

previous studies have shown that the RF algorithm is robust in modelling forest parameters 
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(e.g., tree height and aboveground biomass) from GLAS data and other remotely sensed 

imagery (Baccini et al., 2008; Simard et al., 2011; Su et al., 2016; Wilkes et al., 2015). 

In this study, 14 ancillary datasets were included in the RF regression tree model, 

primarily representing vegetation, climate and topographic conditions (Table 4-2). All 

available Landsat TM Land Surface Reflectance images covering the SN from the growing 

season of 2009 were collected. These images were further visually examined to make sure 

the cloud and snow coverage was lower than 10%. The maximum value composite (MVC) 

was then calculated from those retained Landsat TM images, and the six spectral bands of 

the MVC (the thermal band was excluded) were used in the RF regression model. In 

addition, we also computed the normalized vegetation difference index (NDVI) from the 

MVC and included it in the RF regression tree model. All covariables were interpolated 

into 70 m resolution using bilinear interpolation method to match the GLAS footprint size. 

Note that the slope product was generated from the interpolated SRTM DEM product using 

ESRITM ArcMap software. 

 

Table 4-2 Ancillary datasets used in the Random Forest regression tree procedure to map 

forest tree height across the Sierra Nevada. 

Dataset Year Resolution Data Source 

Landsat TM Land Surface Reflectance 

product 
2009 30 m US Geological Survey 

NDVI calculated from Landsat TM images 2009 30 m N/A* 

Tree canopy cover 2011 30 m 
National Land Cover 

Database 

Annual Mean Temperature 
1950-

2010 
70 m Alvarez et al. (2014) 

Annual Temperature Seasonality 
1950-

2010 
70 m Alvarez et al. (2014) 

Annual Total Precipitation 
1950-

2010 
70 m Alvarez et al. (2014) 

Annual Temperature Seasonality 
1950-

2010 
70 m Alvarez et al. (2014) 

SRTM Elevation dataset 2000 30 m US Geological Survey 

Slope calculated from SRTM data 2000 70 m N/A* 

* “N/A” represents the corresponding dataset is calculated from other collected dataset. 

 

The RF extrapolation procedure was implemented using the randomForest R package 

(Liaw and Wiener, 2002), which included both the classification and regression functions. 

There are two primary user defined parameters, number of trees and number of variables 

tried at each split (Liaw and Wiener, 2002). In this study, these two parameters were 

determined by manual examination. The number of trees and number of variables tried at 

each split were increased by one iteratively, and the values that produced the minimum 

mean-squared error were selected to extrapolate the GLAS tree height measurements. Here, 

based on manual iterative examination, 500 “RF trees” were included and four variables 

were tried at each split. The built RF regression tree model was used to map the forest tree 

height across the SN. This initial SN tree height result was further masked by tree canopy 

cover product to obtain the final SN tree height product (Figure 4-2). In areas without tree 

coverage (tree canopy cover = 0%), tree height values were set to 0 m. 
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The large amount of covariables used in the extrapolation process may result in the RF 

algorithm overfitting the model. To reduce this possibility, we further examined the 

importance of all collected variables, which was evaluated by the percentage increase in 

the mean-squared error (Liaw and Wiener, 2002). The larger the value was, the more 

important the corresponding variable was. As can be seen in Figure 4-3, all Landsat TM 

MVC spectral bands (except band 4) had relatively lower importance to the RF regression 

model. Therefore, these five bands were not used in the above mentioned RF regression 

model. 

 
Figure 4-3 Importance of variables, denoted by percentage increase of mean squared error, 

for the forest tree height estimation Random Forest model. 

 

 

4.2.6 Accuracy assessment 

The accuracy of the estimated wall-to-wall SN tree height product was evaluated using the 

collected plot measurements, airborne LiDAR derived tree height, and GLAS derived tree 

height, respectively. Two commonly used statistical parameters, adjusted coefficient of 

determination (denoted as R2) and root-mean-squared error (RMSE), were calculated from 

the following equations, 
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where n is the number of samples, p is the degree of freedom (i.e., number of parameters), 

xi is the ith original value, and ˆ
ix  is the ith estimated value. Moreover, the test statistics 

were performed on all regression analyses at the significance level (α) of 0.01. 

To further evaluate the accuracy of our product, this study collected other available 

tree height products covering the SN and compared our result with these products. Overall, 

we found five published works from Simard et al. (2011), Los et al. (2012), Lefsky (2010), 

Kellndorfer et al. (2012) and Zhang et al. (2014) covering the SN. Simard et al. (2011) 

estimated the global forest canopy height (RH100) distribution at 1 km resolution from 

GLAS data, MODIS data, climate surfaces, and topographic data; Los et al. (2012) 

estimated the forest tree height between 60° N and 60° S by decomposing GLAS 

waveforms and aggregated them into a spatial continuous layer at 0.5°; Lefsky (2010) 

segmented the global forests into over 4.4 million patches using MODIS data, and 

estimated the tree height value for each patch from GLAS data; Kellndorfer et al. (2012) 

estimated the US nation-wide tree height (Lorey’s height) distribution at 30 m resolution 

using FIA plot measurements, SRTM data, and three-season Landsat ETM+ data; Zhang 

et al. (2014) estimated the tree height distribution in California at 30 m resolution using 

GLAS data and Landsat TM derived leaf area index data. Unfortunately, the tree height 

products from Lefsky (2010) and Zhang et al. (2014) are not available to us. The data 

downloading link provided by Lefsky (2010) in the paper is not accessible anymore. 

Therefore, the current study only compared our result with the products from Simard et al. 

(2011), Los et al. (2012), and Kellndorfer et al. (2012). To match the spatial resolution of 

our result and products from Simard et al. (2011) and Los et al. (2012), we resampled our 

SN tree height map into 1 km resolution and 0.5° resolution respectively by averaging 

values of all 70 m cells within each coarser resolution cell; to match the spatial resolution 

with the product from Kellndorfer et al. (2012), we resampled their product into 70 m 

resolution using a similar procedure. 

 

 

4.3 Results 

4.3.1 Tree height estimations within airborne LiDAR footprints 

The Lorey’s height distribution within each airborne LiDAR footprint was estimated using 

the step-wise regression method from corresponding plot measurements and canopy 

quantile metrics. To evaluate the accuracy of airborne LiDAR derived tree heights, one 

third of the plot measurements within each airborne LiDAR footprint were retained from 

the regression analysis. Figure 4-4 shows the accuracy assessment result of airborne 

LiDAR derived tree heights using all evaluation plot samples. As can be seen, airborne 

LiDAR derived tree heights show good agreements with field measurements. The R2 is 

higher than 0.7 and the RMSE is around 4.7 m. However, it still tends to slightly 

overestimate the tree heights at areas with low trees, and underestimate tree heights at areas 

with relatively tall trees. 
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Figure 4-4 Evaluation of the airborne LiDAR retrieved Lorey’s height using the validation 

plots. Note that R2 represents the adjusted coefficient of determination, RMSE represents 

the root-mean-square error, H represents the Lorey’s height calculated from field 

measurements, and Ĥ  represents the airborne LiDAR retrieved Lorey’s height. 

 

 

4.3.2 Tree height estimations at GLAS footprints 

By linking GLAS parameters with airborne LiDAR derived tree heights, this study 

estimated forest tree heights at GLAS footprints using the step-wise regression method. 

The waveform extent, leading edge extent, trailing edge extent, and slope were used to 

build the regression model. The following model combining waveform extent, leading edge 

extent and trailing edge extents was selected by the stepwise regression method, 

 0.163 0.404 10.820tan( ) 14.808   ( 0.01)GLASLH WE LE slope p       (4-4) 

where LHGLAS is the estimated Lorey’s height at GLAS footprint, WE is the waveform 

extent, and LE is the leading edge extent. The R2 for the regression model is 0.71, and all 

coefficients and the constant in the model are statistically significant. This regression 

model was used to compute tree heights for GLAS footprints outside of airborne LiDAR 

boundaries. 

Figure 4-5 shows the distributions of GLAS estimated tree heights against different 

topography, vegetation, and climate conditions. As can be seen from Figure 4-5a and b, 

topographic parameters (slope and elevation) have similar relationships with GLAS tree 

heights. The GLAS tree height first increases with both slope and elevation, and then 

decreases after reaching certain values (40° for slope and 3000 m for elevation 

respectively). Canopy cover and NDVI share a similar positive influence on GLAS tree 

heights (Figure 4-5c and d). The higher the canopy cover or NDVI is, the higher the tree 

height is. There is one exception for the influence of NDVI on GLAS tree height. After 

NDVI reaches 0.9, the GLAS tree height has a slight decrease compared to previous NDVI 

group. Annual total precipitation and annual precipitation seasonality have weak positive 



69 

 

 

correlations with GLAS tree heights (Figure 4-5e and f). Once the annual total precipitation 

reaches 1000 mm or the annual precipitation seasonality reaches 70% (except the group 

with values larger than 90%), the average GLAS tree height become stable. The exception 

for the group with an annual precipitation seasonality larger than 90% may be caused by 

the relatively small number of GLAS footprints within this group (Appendix A, Figure A1). 

Annual mean temperature is negatively correlated with the GLAS tree height (Figure 4-

5g), and annual temperature seasonality has no correlation with the GLAS tree height 

(Figure 4-5h). 

 

 

4.3.3 Extrapolated wall-to-wall SN tree height product 

The wall-to-wall 70 m resolution forest tree height map across the SN is shown in Figure 

4-6. Overall, the built RF regression tree model can explain 62.63% of the variation in 

GLAS tree heights. The average tree height of the whole SN is 14.86 m and the standard 

deviation is 11.11 m. For forested areas (with a canopy cover larger than 0%), the average 

tree height is 21.88 m and the standard deviation is 5.32 m. 

To evaluate the estimated SN tree height product, we compared the obtained product 

with plot measurements, airborne LiDAR derived tree height, and GLAS tree height, 

respectively. As shown in Figure 4-7a, the estimated SN tree height product is in good 

correspondence with field measurements (R2=0.60, RMSE=5.45m). Moreover, although 

the fitted line is close to the 1:1 line, the estimated SN tree height product tends to 

overestimate tree heights in areas with relatively low trees (<33 m), and the lower the tree 

is, the more pronounced the overestimation effect is. In areas with relatively higher trees, 

the estimated SN tree height product tends to slightly underestimate tree heights. A pixel 

level comparison between the estimated SN tree height product and the airborne LiDAR 

derived tree heights was shown in Figure 4-7b. The difference between the estimated tree 

height and airborne LiDAR derived tree height follows a normal distribution with a mean 

of -5.17 m and a standard deviation of 10.24 m. Around 61% of differences between them 

are within the range of ±10 m, and around 34% of those are within the range of ±5 m. In 

general, the estimated SN tree height product tends to be lower than the airborne LiDAR 

derived tree heights. Around 72% pixels of the airborne LiDAR derived tree heights are 

higher than the SN tree height product. 

The accuracy of the modelled SN tree height product was further evaluated by 

comparing it to GLAS tree heights. Table 4-3 shows the statistics of differences between 

the estimated SN tree height product and GLAS tree heights for each sub-region. The 

differences range approximately between -10 m and 10 m (except the North Central Sierra 

and South Sierra regions), and the average differences for all sub-regions are near 0 m. The 

standard deviation of differences is lower than 2.4 m for all sub-regions, except the South 

Sierra region, which is the highest among all sub-regions. Moreover, we further examine 

the difference between the estimated SN tree height product and GLAS tree heights within 

0.25° cells (Figure 4-8). The model RMSE for each cell was calculated from all footprint 

level GLAS tree heights within the cell. It should be noted that there were five cells were 

not covered by any GLAS footprints, and their model RMSE values were interpolated from 

their neighbouring cells using bilinear interpolation method. As shown in Figure 4-8, the 

model RMSE ranges from 0.3 m to 15.6 m, and about a half of the 0.25°cells are smaller 
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than 6.5m. Most of cells with large RMSE values are concentrated in the East Sierra and 

South Sierra regions. 
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Figure 4-5 Boxplots of GLAS derived tree height corresponding to different terrain, 

vegetation, and climate parameters. The blue “+” indicates the mean GLAS derived tree 

height of corresponding group. 

 
Figure 4-6 Estimated forest tree height (Lorey’s height) distribution across the SN. 

 
Figure 4-7 (a) Scatter plot between estimated tree heights ( Ĥ ) and field measured tree 

heights (H). (b) Histogram of differences between estimated tree height and airborne 
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LiDAR derived tree height (estimated tree height minus airborne LiDAR derived tree 

height). Note that μ and σ represent the mean and the standard deviation of the differences, 

respectively. 

Table 4-3 Statistics for differences between GLAS-derived tree height and estimated forest 

tree height products at sub-region scale. 

Sub-region 
Number of 

GLAS Shots 

Minimum 

(m) 

Maximum 

(m) 

Average 

(m) 

Standard 

Deviation (m) 

North Sierra 6320 -7.98 10.69 -0.06 1.33 

North Central Sierra 4251 -12.63 20.43 -0.10 2.37 

Central Sierra 3155 -11.57 11.45 -0.14 2.22 

South Central Sierra 4412 -9.09 13.83 -0.07 1.94 

South Sierra 5284 -19.47 36.80 0.07 4.03 

East Sierra 3792 -8.58 11.16 0.00 1.40 

 

 
Figure 4-8 RMSE of the estimated forest tree height with respect to that calculated from 

GLAS shots in 0.25° cells. 
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4.3.4 Comparison with published products 

Figure 4-9 shows the pixel-level differences between our estimated SN tree height result 

and the products from Simard et al. (2011), Los et al. (2012), and Kellndorfer et al. (2012). 

The mean difference between our result and the product from Simard et al. (2011) is -1.1 

m, and the standard deviation is 9.0 m. The differences for over 77% of the 1 km cells are 

within ±10 m. Due to the coarse resolution of the result from Los et al. (2012), there are 

only 41 cells within the SN (Figure 4-9b). In general, their result tends be taller than ours 

in areas with low trees, and be lower than ours in areas with tall trees. The differences for 

16 out of the 41 cells are within the range from -5 m to 5 m, and over a half are within the 

range from -10 m to 10 m. The tree height product from Kellndorfer et al. (2012) also tends 

to be lower than our product (Figure 4-9c). The mean difference between our product and 

the product from Kellndorfer et al. (2012) is 3.6 m, and the standard deviation is 7.3 m. 

Over 81% pixels from our SN tree height product have larger values than the product from 

Kellndorfer et al. (2012).  

 
Figure 4-9 Pixel level comparison between our estimated SN tree height product and tree 

height products from (a) Simard et al. (2011), (b) Los et al. (2012), and (c) Kellndorfer et 

al. (2012). The pixel-level differences are calculated by our SN tree height product minus 

other products. 

 

 

4.4 Discussion 

This study developed a procedure to map the fine-resolution tree height distribution across 

the SN through the combination of ground inventory, airborne LiDAR, and GLAS data. 

The footprint level GLAS tree heights estimated from GLAS parameters and airborne 

LiDAR derived tree heights provided the foundation to build the RF regression tree model, 

and therefore estimate wall-to-wall tree height distribution from ancillary datasets. As 

mentioned in section 4.3.2, different topographic, vegetation, and climate parameters have 

different influences on the SN tree height distribution (Figure 4-5). With the increase of 

both slope and elevation, the GLAS tree height increases first and then decreases after they 

reach to certain thresholds (Figure 4-5a and b). This may be caused by the tree species 

distribution pattern in the SN. The SN oak woodlands are generally distributed in foothill 
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areas with low elevation (<1200 m) and slope values, and the height of oak trees are usually 

lower than 15m; pine forests and mixed conifer forest mainly spread out in areas with steep 

slope and elevation from 1200 m to around 2200 m, and individual tree height is usually 

taller than 15m; in areas with elevation higher than ~2300m, the conditions for tree growth 

become harsher and the main vegetation group is upper montane forest (Barbour and 

Billings, 2000).Similar to previous studies, we found that NDVI had saturation effect when 

being used to model forest canopy parameters, because of the limited penetration capability 

of optical sensors (Lu, 2006; Lu et al., 2004; Wang et al., 2005). Moreover, both the annual 

total precipitation and annual precipitation seasonality have a positive influence on the SN 

tree height, but the influence may become saturated when values reach certain thresholds. 

The exception for the group with an annual precipitation seasonality higher than 90% may 

be caused by the fact that too few GLAS footprints fall in this group. Annual mean 

temperature has a unique negative correlation with the SN tree height. This may be caused 

by the reason that the temperature decreases with the increase of elevation, and most tall 

coniferous trees are distributed in relatively high elevation areas in the SN (Barbour and 

Billings, 2000). 

Although our SN tree height product shows good spatial correspondence with the other 

three published products, there are still differences. In general, our result shows more 

variations in tree height than the product from Simard et al. (2011). In areas with relatively 

steeper slopes (>15°), tree height from our result tends to be taller than that from Simard 

et al. (2011). One possible reason for this is that they did not include terrain slope in their 

tree height mapping procedure, and the GLAS waveform parameters are highly influenced 

by the terrain slope (Lefsky et al., 2007). Along the eastern foothills of the SN, our result 

also tends to be higher than the tree height from Simard et al. (2011) (Figure 4-9a). 

Moreover, although both our SN tree height product and the product from Kellndorfer et 

al. (2012) are Lorey’s height, our tree height product is systematically higher. This may be 

caused by the fact that Kellndorfer et al. (2012) only used the Landsat ETM+ data and 

SRTM data to map the forest tree height. As mentioned, model-based tree height 

measurements from optical sensors usually suffer from the saturation effects, especially in 

areas with high values (Donoghue and Watt, 2006; McCombs et al., 2003; Su et al., 2015). 

Several issues may have complicated the comparison analysis in this study. First of all, 

the definition of tree height among these three products are different. The tree height 

mentioned in this study refers to the Lorey’s height. However, the tree height from Simard 

et al. (2011) is defined by the GLAS waveform shape parameter RH100, and that from Los 

et al. (2012) is calculated by decomposing the GLAS waveform, which are both expected 

to be higher than Lorey’s height. This may be also one of the reasons that the differences 

for around 60% of the 1 km cells between our product and the product from Simard et al. 

(2011) are negative. Moreover, the spatial resolution of these three products are 

significantly different. The resampling process may further increase the uncertainty in the 

comparison results. 

The accuracy of the estimated SN tree height product was evaluated by ground plot 

measurements, airborne LiDAR derived tree heights, and footprint level GLAS tree heights, 

respectively. These accuracy assessment results indicate that our SN tree height product 

can be used to reflect the spatial distribution of canopy height in the SN. Although the 

RMSE of the product is around 5.5 m by comparing with ground measurements, and may 
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even reach over 10 m by comparing with airborne LiDAR tree height at pixel level, the 

map from this study provides one of the best options to understand and explore forest tree 

height variation across the SN at fine resolution. However, this study still has limitations. 

Firstly, the time span of the data used in this study is very wide. The GLAS data were 

acquired between 2003 and 2009, and the airborne LiDAR data and ground measurements 

were taken from 2004 to 2013. Wensel, Meerschaert, and Biging (1987) found that without 

human interference, the conifer trees in the northern California can increase around 3-5 m 

every five years. Therefore, the influence of tree growth during the time span of airborne 

LiDAR data and in-situ measurements may not be neglectable. Moreover, forest changes 

brought by both nature incidents (e.g. wildfires) and human activities (e.g. forest fuel 

treatment, deforestation, and reforestation) may also result in significant changes in tree 

heights (Su et al., 2016). Secondly, the current accuracy assessment using independent plot 

measurements may be biased due to the mismatch between the plot size and the cell size 

of the estimated product. In the current study, we do not have access to in-situ 

measurements with bigger plot size, and we cannot produce the tree height map with finer 

resolution due to the limitation of the GLAS plot size. This issue can be addressed by 

collecting more airborne LiDAR data in the Sierra Nevada. With enough airborne LiDAR 

data, we can directly derive the tree height without using GLAS data, which allows us to 

map the SN tree height with finer (30 m) resolution. Finally, this study has not performed 

a fine-resolution uncertainty analysis on the obtained result using error propagation method. 

Future study is still needed to analyze how the uncertainty from different prediction 

variables influence the tree height estimation result. 

 

 

4.5 Conclusions 

This study presented a method to map fine-resolution forest tree height across the SN by 

combining plot measurements, airborne LiDAR data, GLAS data, optical imagery, 

topographic data, and climate surfaces. Over 1600 in-situ field measurements and airborne 

LiDAR data covering around 1600 km2 were collected to address this mission. The 

resulting SN tree height map at 70 m resolution is available at the web 

(http://guolabLiDAR.com/SNtreeheight). Across the SN, the average tree height is 14.86 

m and the standard deviation is 11.11 m; for only forested areas, the average tree height is 

21.88 m and the standard deviation is 5.32 m. The estimated SN tree height product shows 

good agreements with in-situ plot measurements (R2=0.60, RMSE=5.45m). The mean 

difference between the estimated SN tree height product and airborne LiDAR derived tree 

heights is -5.17 m, and the estimated product tends to be lower than airborne LiDAR 

derived tree heights. This fine resolution SN tree height map can be used to reveal the 

canopy vertical structure characteristics of the SN forests. 
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Chapter 5  Forest aboveground biomass estimation at national to 

global scales 
 

 

Abstract 

The global forest ecosystem, which acts as a large carbon sink, plays an important role in 

modeling the global carbon balance. An accurate estimation of the total forest carbon stock 

in the aboveground biomass (AGB) is therefore necessary for improving our understanding 

of carbon dynamics, especially against the background of global climate change. However, 

because of limitations in forest AGB mapping methods and the availability of ground 

inventory data, there is still a lack in global wall-to-wall forest AGB estimation map. In 

this study, we developed an AGB mapping method using a combination of these ground 

inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land 

Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. 

An uncertainty field model was introduced into the forest AGB mapping procedure to 

minimize the influence of plot location uncertainty. To test the feasibility of the proposed 

algorithm, we first conducted a pilot study in China. Over 8000 ground inventory records 

were collected from published literatures to estimate the forest AGB of China. Our 

nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in 

China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an 

independent ground inventory dataset showed that our proposed method can accurately 

map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of 

determination (R2) and root-mean-square error (RMSE) between our predicted results and 

the validation dataset are 0.75 and 42.39 Mg/ha, respectively. Then, we applied this method 

to global scale, and generated the first global-scale forest AGB map at 1-km resolution. 

The results show that the global forest AGB density is 210.09 Mg/ha on average, with a 

standard deviation of 109.31 Mg/ha. The R2 and RMSE between our predicted results and 

the validation plots were 0.56 and 87.53 Mg/ha, respectively. This new method and the 

resulting global wall-to-wall forest AGB map will help to improve the accuracy of carbon 

dynamic predictions. 

Keywords: forest aboveground biomass, GLAS/ICESat, LiDAR, ground inventory 

 

 

5.1 Introduction 

Global forest ecosystems provide a large carbon sink, which plays an import role in the 

global carbon balance (Pan et al., 2011). Overall, forest ecosystems cover ~30% of the land 

surface, accounting for ~75% of terrestrial gross primary production and ~80% of global 

plant biomass (Beer et al., 2010; Bonan, 2008; Kindermann et al., 2008). It is therefore 

necessary to accurately estimate the current distribution of, and temporal variations in, the 

forest carbon stock in aboveground biomass (AGB) to obtain a clearer understanding of 

carbon dynamics against the background of global climate change (Galbraith et al., 2010; 

Keith et al., 2009; Pan et al., 2011). 

Generally, forest AGB can be estimated through three available methods: model-

based simulations (Bergh et al., 1998; White et al., 2000), measurements from traditional 

ground inventories (Botkin and Simpson, 1990; Botkin et al., 1993; Fang et al., 1998), and  
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retrievals from remote-sensing datasets (Ghasemi et al., 2011; Mitchard et al., 2011a). 

Model-based simulation methods usually provide forest AGB estimations from local to 

global scales based on model inputs (e.g., radiation, climate surfaces, and elevations) 

instead of the actual forest AGB distribution (Iverson et al., 1994; Lu, 2006). Traditional 

forest inventory methods (e.g., direct harvest methods and indirect allometric modelling 

methods) can provide reliable information on biomass at local or regional scales (Fang et 

al., 2001; Malhi et al., 2002). There have been many national forest inventory programs 

conducted across the world to provide accurate information for forest management, such 

as the National Forest Inventories program conducted in the Nordic countries (Tomppo et 

al, 2010). However, taking ground measurements is labor intensive and expensive when 

used for large areas, and is time consuming for nationwide forest survey (Houghton, 2005). 

For example, in U.S. and China, nationwide forest inventories provide reliable information 

on forest AGB, but these inventories are usually conducted on a five-year cycle at the 

nationwide scale, and require extensive human and economic resources.  

Compared with the forest inventory approach, remote-sensing techniques significantly 

improve the efficiency of forest AGB mapping in large areas and areas that are difficult to 

access (Lu et al., 2005; Powell et al., 2010). By linking with ground inventory data, forest 

AGB can be estimated from remote sensing datasets using statistical models. Typically, 

passive optical remote sensing [e.g., Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Landsat Thematic Mapper (TM)] and radar techniques [e.g., phased array 

L-band synthetic aperture radar (PALSAR) and Shuttle Radar Topography Mission 

(SRTM)] have become primary data sources for estimating forest AGB, because of their 

availability (Dong et al., 2003; Ghasemi et al., 2011; Koch, 2010; Mitchard et al., 2011a; 

Rauste, 2005; Soenen et al., 2010). However, the retrieved AGB values using these 

approaches are usually fraught with saturation effects, because of their limited penetration 

in vegetated areas (Baccini et al., 2008; Luckman et al., 1997). The saturation points for 

optical remote sensing range from 15 to 70 Mg/ha, and those for radar range from 30 to 

over 300 Mg/ha based on the use of different wavelengths (Lu, 2006; Mitchard et al., 2009, 

Myneni et al., 2001; Sader et al., 1989; Woodhouse et al., 2012). 

Another alternative method, light detection and ranging (LiDAR), an active remote 

sensing technique, can penetrate the forest canopy effectively, because it uses a focused 

short-wavelength laser pulse (Su and Guo, 2014). This technique has shown great potential 

in mapping forest AGB by providing accurate estimates of tree metrics such as tree height, 

which are closely linked to AGB (Boudreau et al., 2008; Clark et al., 2004; Lefsky et al., 

2005; Popescu et al., 2011). LiDAR does not suffer from saturation effects, even at high 

AGB levels, and therefore far exceeds the capabilities of optical passive and radar remote 

sensing in mapping forest AGB (Clark et al., 2011; Nelson et al., 2009; Swatantran et al., 

2011). However, neither of the two major LiDAR platforms, airborne LiDAR and 

spaceborne LiDAR, provides complete global coverage of land surfaces. Currently, 

airborne LiDAR data are only available for certain small areas across the world. The 

Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and Land Elevation 

Satellite (ICESat) is the only available spaceborne LiDAR system, and its footprints (with 

a nominal diameter of ~65 m) are spaced at 170 m along tracks and tens of kilometers 

across tracks. 
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By taking advantages of each type of data, reliable regional or even global AGB 

products can be obtained by combining multisource datasets. For example, Boudreau et al. 

(2008) explored the possibility of using GLAS data, Landsat-derived land-cover maps, and 

SRTM data to map the forest AGB distribution in Quebec, Canada at the patch level. 

Baccini et al. (2008) mapped the forest AGB distribution in Africa at a resolution of 1 km 

by combining GLAS and MODIS data. Mitchard et al. (2011b) and Saatchi et al. (2011) 

mapped the forest AGB distributions in tropical areas using GLAS and PALSAR data, and 

GLAS, MODIS, and radar data, respectively. Zhang et al. (2014c) mapped the AGB in 

northeastern China by integrating field data, GLAS data, and MODIS products using 

regression models. Neigh et al. (2013) estimated the total AGB for the entire circumboreal 

forest biome by incorporating ground inventory, airborne LiDAR data and spaceborne 

LiDAR data. These pioneering studies prove the validity of GLAS-derived metrics in the 

regional-level estimation of forest AGB. However, to the best of our knowledge, few 

published studies have explored the global forest AGB distribution using spaceborne 

LiDAR. One of the main obstacles is the lack of ground inventory data with which to build 

linkages with the GLAS-derived metrics across the country. 

In this study, we developed a forest AGB estimation procedure using a combination 

of ground inventory data, spaceborne LiDAR, optical imagery, climate surfaces, and 

topographic data. Over 10, 000 plot measurements were collected from the published 

literature, and used to map the global forest AGB at a 1 km resolution. The plot location 

was usually recorded at a 1–10 km accuracy, and therefore the influence of the plot location 

uncertainty was further considered in the forest AGB mapping procedure. The wall-to-wall 

maps of forest AGB are downloadable from http://guolabLiDAR.com. 

 

 

5.2 A pilot study in estimating forest AGB distribution of China 

To develop the forest AGB mapping algorithm and test its feasibility, we first conducted a 

pilot study in China. The forest area of China is among the top five globally and covers 

20.36% of the country’s total area (State Forestry Administration of China, 2013). In 

addition, because of persistent afforestation and reforestation efforts (e.g., Grain for Green 

Program, GGP) since the1950s, the country’s forest area has increased by 0.73 × 106 km2 

(~60%) since the 1970s (State Forestry Administration of China, 2013). The forest 

terrestrial ecosystem of China is a large carbon sink and contributes significantly to 

national and global carbon storage (Fang et al., 2001; Piao et al., 2009). Recent research 

has highlighted the substantial increase in carbon stock as a result of afforestation and 

reforestation (Fang et al., 2014; Liu et al., 2014; Xiao, 2014). Modeling results show that 

sequestration of an additional 110.45 Tg of carbon is expected by the 2020s, as a result of 

the GGP (Liu et al., 2014). Substantial changes in forest areas also result in large spatial 

and temporal variations in nationwide carbon stocks (Guo et al., 2013). However, it is still 

a challenge to estimate the carbon stocks in AGB, because of the lack of efficient and large-

scale practical methods. 
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5.2.1 Data 

5.2.1.1 Forest inventory data 

Forest ground inventory data are fundamental in retrieving AGB from remotely sensed 

datasets. In this study, we collected 8429 records of plot measurements (including both 

research plots and forest inventory plots) from previously published papers. The collected 

plot measurements covered both plantations and natural forests. The geolocation of each 

individual plot record and its corresponding attributes (including stand origin, 

measurement method, data published year, and AGB value) were included in the 

supplemental materials. Since these in-situ plot measurements were collected from various 

data sources and were taken under different standards, this study further used four filtering 

criteria to ensure their quality: (1) they should be georeferenced; (2) they should be larger 

than 0.05 ha; (3) they should have been measured after 2000; and (4) they should not have 

been surveyed using harvesting methods. Records with the same geolocations but 

measured at different years were further averaged. Finally, 1065 plot samples were retained 

for the following forest AGB mapping procedures (Figure 5-1). 

 
Figure 5-1 Geolocations of collected ground inventory data and corresponding vegetation 

zones from Hou (2001). The collected ground inventory data were divided into validation 

samples (green dots) and training samples (blue dots), at a ratio of 1:3. 
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5.2.1.2 ICESat GLAS laser altimetry data 

The NASA (National Aeronautics and Space Administration) GLAS instrument, onboard 

the ICESat satellite, was launched on January 12, 2003; it was designed to have a 183-day 

ground track repeating cycle. It was equipped with three laser sensors, L1–L3, and 1064 

nm laser pulses operated at 20 Hz were used to record the returned full-waveform altimetry 

data within ~65 m ellipsoidal footprints. The footprints were spaced at 170 m along the 

track and tens of kilometers across tracks (Schutz et al., 2005). The returned waveform 

over land had 544 range bins with 15 cm or 60 cm intervals, corresponding to a vertical 

range of 81.6 m or 150 m above the ground. 

Since most of the collected plot measurements were obtained around 2004, we selected 

the GLAS data during the operating periods L2B, L2C, and L3A (from February 17, 2004 

to November 09, 2004) for further AGB mapping procedures. Three GLAS products, 

GLA01, GLA06, and GLA14, were collected from the ICESat/GLAS data pool 

(http://nsidc.org/data/icesat/order.html); they provided full-waveform information, 

geolocation and data quality information, and surface elevation information, respectively. 

These three products were linked together using the unique ID and shot time of each laser 

pulse. For the GLAS footprints within the study area, four further filtering criteria were 

used to ensure the quality of GLAS measurements: 1) they should be taken under cloud 

free conditions; 2) they should have no saturation effects; 3) they should have high signal 

to noise ratios (i.e., >50); and 4) they should not be significantly higher (i.e., < 100 m) than 

the land surface elevation denoted by the SRTM data. 

 
Figure 5-2 Densities of filtered GLAS shots (per 104 ha). 
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The final GLAS dataset contained 629 075 full-waveform records across China. The 

sampling density was generally higher in flat and forested areas (Figure 5-2). For each 

retained GLAS record, three parameters were derived from its full-waveform information, 

i.e., the waveform extent, leading edge extent, and trailing edge extent, which have been 

shown to be highly correlated with canopy height, canopy height variability, and terrain 

slope, respectively (Boudreau et al., 2008; Lefsky et al., 2007; Lefsky, 2010; Su et al., 

2015). The definitions of these three parameters can be found in Lefsky et al. (2007), and 

will not be discussed in detail here. 

 

 

5.2.1.3 MODIS-Terra MOD13A2 NDVI data 

The MODIS-Terra MOD13A2 data are calculated from the MODIS atmospherically 

corrected bi-directional surface reflectance product, and are provided globally at a 1 km 

resolution every 16 d. Water bodies, clouds, aerosols, and cloud shadows are masked in 

the product. In this study, we collected time-series MOD13A2 data during the growing 

season of the year 2004 (from May to September). The use of cumulative normalized 

difference vegetation index (NDVI) from time-series NDVI can increase the AGB 

estimation accuracy compared with the use of NDVI data from a single time period (Li et 

al., 2015). Therefore, we computed the cumulative NDVI from the sum of all collected 

MOD13A2 data, and used it as a predictor in the AGB mapping procedure. 

 

 

5.2.1.4 Topographic data 

SRTM, a joint mission conducted by NASA and the National Geospatial-Intelligence 

Agency, provides a digital elevation model (DEM) product that covers 99.97% of the 

Earth’s land surface, from 56° S to 60° N (U.S. Geological Survey, 2013). Its designed 

accuracy is 20 m horizontally and 16 m vertically. In this study, we used the second version 

of the SRTM data for China at a resolution of 3 arcsec (often quoted as 90 m), which show 

well-defined water bodies and coastlines, and the absence of spikes and wells (U.S. 

Geological Survey, 2013). To be consistent with other datasets, the SRTM DEM was 

resampled to 1 km resolution for further AGB mapping procedures. The slope product 

(denoted by tangent values of slope) was also calculated from the resampled SRTM DEM. 

 

 

5.2.1.5 Climate surfaces 

Four climate surfaces, namely annual mean temperature, annual temperature seasonality, 

annual total precipitation, and annual precipitation seasonality between 1950 and 2000 

were calculated at 1 km resolution using data from 2888 weather stations (1512 stations 

with temperature records and 1376 stations with precipitation records) across China. These 

weather station data were obtained from the Food and Agriculture Organization FAOCLIM 

2.0 (http://www.fao.org/nr/climpag/pub/en1102_en.asp) and the Global Historical Climate 

Network Dataset (GHCN) version 2 (Peterson and Vose, 1997). All the weather station 

data were manually checked to remove as many outliers or human errors as possible. 

To generate these four climate surfaces, monthly mean temperature and monthly total 

precipitation layers from 1950 to 2000 were interpolated from the weather station data 
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using the thin plate spline algorithm, with the resampled 1 km resolution SRTM DEM as 

the covariable (Alvarez et al., 2014). Then, for each year, the mean temperature and total 

precipitation were directly calculated from the monthly layers, and the temperature 

seasonality and precipitation seasonality were computed from the following equation (Xu 

& Hutchinson, 2011): 

 100 /monthly monthlySeasonality SD Mean    (5-1) 

where Seasonality represents the temperature seasonality or precipitation seasonality of the 

corresponding year, and SDmonthly and Meanmonthly are the standard deviation and mean of 

the monthly temperature (in Kelvin) or monthly precipitation (in millimeters) for the 

corresponding year. Finally, the annual mean temperature, annual temperature seasonality, 

annual total precipitation, and annual precipitation seasonality were derived from the 

average of the corresponding yearly products. 

 

 

5.2.1.6 Auxiliary data 

In addition to the above-mentioned data, two auxiliary datasets, i.e., a 1:1 000 000 

vegetation map of China (Hou, 2001) and a 1 km land-use map of China at a 1:100 000 

scale from the year 2000 land-use database (Liu et al., 2002), were used in this study. The 

vegetation map divided China into eight vegetation zones, based on the dominant 

vegetation type (Figure 5-1). The land-use map classified the land cover into six major 

categories (i.e., cropland, forest, grass land, water bodies, artificial areas, and bare earth) 

and 23 subgroups, based on the interpretation of Landsat TM images. Within each 

subgroup, the percentage of corresponding land-use type aggregated from the 30 m Landsat 

TM images was provided. In this study, we were particularly interested in two subgroups 

in the forest category, the closed-forested area group and the open-forested area group. 

 

 

5.2.2 Methodology 

5.2.2.1 Extrapolation of GLAS-derived parameters 

The GLAS-derived parameters, i.e., waveform extent, leading edge extent, and trailing 

edge extent, normally do not have direct biological meanings (Lefsky et al., 2007). 

Additional forest parameter data derived from airborne LiDAR or field plot measurements 

are usually required to convert GLAS parameters to biologically meaningful parameters 

(e.g., canopy height and AGB) (Boudreau et al., 2008; Lefsky, 2010; Saatchi et al., 2011). 

However, airborne LiDAR data are only available for a few small areas, because of 

limitations in terms of flight mission cost and mission duration. Moreover, in our cases, 

the probability of the collected plot measurements overlapping with GLAS footprints was 

too small, because of the huge gap between two adjacent GLAS tracks (Figure 5-2), and 

the considerable uncertainty within the plot location further increased the difficulty of 

matching the GLAS footprints with plot measurements. 

In this study, to relate the GLAS parameters to plot measurements, we extrapolated 

the three GLAS parameters into spatial continuous layers using a regression method. GLAS 

footprints that did not fall in the closed-forested area group or the open-forested area group 

from the land-use map (Liu et al., 2002) were excluded to minimize the influence of non-

forested areas on the extrapolation results. In total, 202 298 GLAS footprints were retained 
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for the subsequent extrapolation process. Furthermore, because all the collected raster 

datasets were at (or resampled to) 1 km resolution, we aggregated the retained GLAS 

footprints into 87 893 1 km pixels, and the averages of the three GLAS-derived parameters 

within each pixel were used in the final GLAS parameter extrapolation procedure. 

The regression tree method Random Forest (RF) (Breiman, 2001) was used to 

extrapolate the three GLAS-derived parameters. RF, a formalized non-parametric 

machine-learning algorithm, has been successfully used in areas such as biomass mapping 

(Baccini et al., 2008) and niche modeling (Prasad et al., 2006). Simard et al. (2011) showed 

that RF was robust in extrapolating RH100, one of the GLAS-derived parameters, to a 

spatial continuous layer. One of the main advantages of RF is that it does not require an 

assumption to be made regarding the normality of covariables (Breiman, 2001), which is 

often violated when complex ecological systems and environmental variables are 

introduced (Saatchi et al., 2011). Also, RF can minimize the within-group variance at the 

expense of a small increase in the bias and overcome the overfitting habit of decision tree 

algorithms (e.g., Classification and Regression Tree algorithm) (Breiman, 2001; Friedman 

et al., 2001), because of the use of its unique tree “bagging” algorithm, which selects a 

random subset of covariables at each candidate split. 

Seven ancillary predictors were used in the RF regression tree modeling process, 

namely cumulative NDVI, elevation, slope, and the four climate surfaces. Moreover, each 

vegetation zone from Hou (2001) was represented by a unique numerical identification 

number and fed into the RF regression tree model. The RF extrapolation method was 

implemented using the randomForest R package (Liaw and Wiener, 2002), which includes 

both classification and regression functions. In this study, 500 “RF trees” were included 

and four variables were tried at each split, based on manually iterative examination. 

 

 

5.2.2.2 Forest AGB estimation 

The 1065 plot measurements were randomly divided into a training dataset and validation 

dataset, at a ratio of 3:1 (Figure 5-1). The 799 training plot measurements along with the 

three GLAS metrics and the seven collected predictors were used to estimate forest AGB 

using the RF regression tree algorithm (Figure 5-3). As in the GLAS extrapolation 

procedure, the regression RF forests were built by relating the training plot measurements 

to the prediction variables. Similar to the GLAS parameter extrapolation process, 500 RF 

trees and four prediction variables tried at each split were selected based on manually 

iterative examination. 

 
Figure 5-3 Scheme for estimating forest AGB distribution in China from multisource 

remotely sensed data and ground inventory data. 



88 

 

 

To improve the computational efficiency and remove redundant information, we 

explored the importance of all prediction metrics and determined the optimal variables for 

forest AGB mapping. The percentage increase in the mean-squared error (%IncMSE) and 

the increase in node purity (IncNodePurity) were calculated to evaluate the variable 

importance (Liaw and Wiener, 2002). The larger the %IncMSE and the IncNodePurity of 

a variable are, the more important this variable is. As can be seen from Figure 5-4, 

regardless of whether the evaluation was performed using the %IncMSE or the 

IncNodePurity, the absence of the three GLAS-derived metrics and topographic data 

significantly increased the mean-squared error and node purity, indicating a decrease in the 

prediction accuracy of the built RF regression tree model. The three GLAS-derived metrics 

and topographic data were therefore used as the prediction variables for mapping the AGB 

distribution. Note that considering the different characteristics of trees from different 

vegetation zones (e.g., tree species, tree size and tree density), the vegetation zone data was 

also used in the AGB mapping process. 

    
Figure 5-4 Importance of variables, denoted by percentage increase of mean-squared error 

(%IncMSE) (left) and the increase in node purity (IncNodePurity) (right), for AGB 

estimation RF model built from training dataset without considering plot location 

uncertainty. LE, WE, TE, PTotal, PSeason, TMean, TSeason, AccNDVI, and VegZone 

represent the leading edge extent, waveform extent, trailing edge extent, annual total 

precipitation, annual precipitation seasonality, annual mean temperature, annual 

temperature seasonality, cumulative NDVI, and vegetation zone, respectively. 

Additionally, when relating the ground inventory data to the predictors, the plot 

location uncertainties were too large to be neglected. Without considering the surveying 

accuracy, most of the latitudes and longitudes given by the inventory data were accurate to 

0.01° (corresponding to ~1 km), and some of them were only accurate to 0.1° 

(corresponding to ~10 km). These huge plot location uncertainties could result in 

significant differences in the corresponding values of predictor variables, and therefore 

influence the forest AGB estimation result. To minimize the influence of plot location 

uncertainty, we introduced an uncertainty field model (Guo et al., 2008) into the RF AGB 

mapping procedure (Figure 5-3). This method hypothesized that the real plot center was 
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randomly located within a circular buffer zone of the provided plot location, and the radius 

of the buffer was determined by the corresponding plot location uncertainty. In this study, 

by assuming that the plot location cannot be more than 1 or 10 km (determined by the 

accuracy of the given plot location) away from the given location in any direction, we 

created a 1 or 10 km buffer around each plot. Then 100 sets of different ground inventory 

data were randomly generated within the buffers. 

The AGB mapping procedure based on the RF regression tree algorithm was 

performed for each set of ground inventory data with a location uncertainty (Figure 5-3). 

We generated 100 predicted forest AGB layers using this process, and the average of these 

forest AGB layers was taken as the initial forest AGB estimation result. The final forest 

AGB mapping result was computed from the initial forest AGB estimation result by setting 

the non-forested pixels at 0 Mg/ha. In this study, if a 1 km pixel was not covered by either 

of the two forested groups from the land-use map (i.e., the closed-forested area group and 

the open-forested area group), it was treated as a non-forested pixel, and vice versa. It 

should be noted that the RF prediction process for each run was operated separately on 

each vegetation zone using the same RF regression tree model obtained from the 

corresponding run, considering the computation efficiency. The Qinghai-Tibet Plateau 

alpine vegetation and the temperate steppe vegetation zones were merged together and 

treated as one zone in this process, which were both dominated by grassland and shrubs 

and had relatively small forested areas. 

 

 

5.2.2.3 Accuracy assessment 

The accuracy of the estimated forest AGB of China was evaluated at the plot level, pixel 

level, and vegetation zone level. The plot-level accuracy was assessed by directly 

comparing the estimated result with an independent validation ground inventory dataset 

(Figure 5-3). The adjusted coefficient of determination (R2) and root-mean-square error 

(RMSE) were computed using the following equations: 
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where  is the observed AGB from the validation plot,  is the modeled AGB at the plot 

location from the wall-to-wall AGB map,  is the average AGB of all validation plots, 

and  is the number of validation plots. 

The pixel-level uncertainty was only evaluated by the uncertainty induced by the plot 

location (εlocation), which was calculated from the standard deviation of 100 AGB estimation 

iterations: 
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where  is the modeled AGB at the jth iteration and  is the average of all modeled 

AGBs. Finally, the uncertainty at the vegetation zone scale was estimated by the RMSE 

between the estimated AGB and the independent validation plot inventory data for each 

vegetation zone. 

 

 
Figure 5-5 Distributions of extrapolated GLAS-derived full-waveform parameters, namely 

(a) waveform extent, (b) leading edge extent, and (c) trailing edge extent. Note that areas 

without closed-forested area and open-forested area coverage have been excluded from the 

maps. 

 

 

5.2.3 Results 

5.2.3.1 Extrapolated GLAS parameters 

The GLAS-derived waveform extent, leading edge extent, and trailing edge extent were 

extrapolated to spatially continuous layers using the RF regression tree method (Figure 5-

5). Overall, the built RF regression models can explain around 57%, 52%, and 46% of the 

ˆ
jB B̂
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variances in the waveform extent, leading edge extent, and trailing edge extent, 

respectively. The root-mean-square residuals for the extrapolated waveform extent, leading 

edge extent, and trailing edge extent are 24 m, 20 m, and 6 m, respectively. The waveform 

extent and leading edge extent share similar spatial patterns. Values in southern China are 

generally higher than those in northern China. In the tropical monsoon forest–rain forest 

located in southern Tibet, both the waveform extent and leading edge extent have 

significantly higher values than in other areas. Compared with the waveform extent and 

the leading edge extent, the trailing edge extent is more evenly distributed across China. 

 

 

5.2.3.2 Forest AGB estimation in China 

The wall-to-wall forest AGB map is shown in Figure 5-6 and can be downloaded from 

http://faculty.ucmerced.edu/qguo/carbon. The RF regression tree model built from plot 

measurements without considering location uncertainties can explain 72% of variances in 

forest AGB and the root-mean-squared residual is 40.12 Mg/ha. Overall, the forest AGB 

density is higher in southern China than in northern China (Figure 5-6). The average forest 

AGB density for the whole China (without considering non-forested areas) is about 120 

Mg/ha, and the standard deviation is 61 Mg/ha. 

 
Figure 5-6 Wall-to-wall map of forest AGB distribution in China. 
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Northern China is mainly occupied by the cold temperate needleleaf forest, temperate 

needleleaf–broadleaf mixed forest, warm temperate deciduous broadleaf forest, temperate 

steppe, and temperate desert (Figure 5-1). The mean AGB density for the cold temperate 

needleleaf forest is around 75 Mg/ha, and is more homogeneously distributed. Over 50% 

of such forested areas have an AGB density range of 70–80 Mg/ha (Figure 5-7). The warm 

temperate needleleaf–broadleaf mixed forest has an average AGB density of around 90 

Mg/ha, and over a half of such forested areas have an AGB density range of 80–120 Mg/ha. 

Although the warm temperate deciduous broadleaf forest is in the south of the temperate 

needleleaf–broadleaf mixed forest, its average AGB density is smaller, and close to that of 

the cold temperate needleleaf forest (Figure 5-7). This may be due to the fact that these 

areas have been heavily disturbed by human activities, and most of these forests are 

plantations instead of natural forests. The average AGB density for the temperate steppe is 

the lowest among all vegetation zones (~65 Mg/ha) (Figure 5-7), and its proportion of 

forest is less than 9%. The average AGB density of the temperate desert is about 100 Mg/ha, 

and over 50% of this area is within the range 50 to 150 Mg/ha. Most forests in this 

vegetation zone are distributed within the Junggar Basin (Figure 5-6). 

 
 

Figure 5-7 Boxplot of estimated forest AGB in each vegetation zone. The blue “+” 

indicates the mean forest AGB of corresponding vegetation zone. Numbers 1–8 on x axis 

represent cold temperate needleleaf forest, temperate needleleaf–broadleaf mixed forest, 

warm temperate deciduous broadleaf forest, subtropical evergreen broadleaf forest, 

tropical monsoon forest–rain forest, temperate steppe, temperate desert, and Qinghai-Tibet 

Plateau alpine vegetation, respectively. 

Southern China is mainly covered by subtropical evergreen broadleaf forest, tropical 

monsoon forest–rain forest, and Qinghai-Tibet Plateau alpine vegetation. All these 

vegetation zones have significantly higher average AGB densities than those of the 

vegetation zones in northern China (p<0.0001) (Figure 5-7). Specifically, the average AGB 
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density for the subtropical evergreen broadleaf forest is about 140 Mg/ha, and the 

maximum AGB density can reach over 330 Mg/ha. The tropical monsoon forest–rain forest 

has the highest mean forest AGB density among all vegetation zones, and has a broader 

range of AGB density distributions (Figure 5-7). Its median AGB density is over 200 

Mg/ha, and about half of the area is within the AGB density range 100–250 Mg/ha. The 

average AGB density for the Qinghai-Tibet Plateau alpine vegetation zone is about 150 

Mg/ha, and is mainly contributed by forested areas in the most southeastern part of the 

Qinghai-Tibet Plateau (Figure 5-6). 

The accuracy of the wall-to-wall forest AGB estimation in China was evaluated using 

266 independent validation plot measurements. As shown in Figure 5-8, the R2 between 

the predicted and field-measured AGB is 0.75 and the RMSE is 42.39 Mg/ha. Although 

the slope and intercept for the correlation between estimated and field measured AGB are 

larger than one and smaller than zero, the fitted line is still very close to the 1:1 line (Figure 

5-8). The negative intercept suggests that the proposed AGB estimation method tends to 

slightly overestimate AGB densities at areas with low values (<87 Mg/ha). After the forest 

AGB density reaching 87 Mg/ha, the proposed AGB estimation method tends to 

underestimate the forest AGB density, and this underestimation effect becomes more 

pronounced with the increase of forest AGB density. 

 
Figure 5-8 Distribution of modeled forest AGB uncertainty introduced by plot location 

uncertainty at pixel level. White areas indicate areas with neither closed-forested area nor 

open-forested area land-use cover. 
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The estimated mean AGB density for each vegetation zone was further compared with 

that calculated from all 1065 plot measurements in each vegetation zone. As the data in 

Table 1 show, the differences between the predicted mean AGB density and plot-measured 

mean AGB density for most vegetation zones are smaller than 10 Mg/ha. The temperate 

desert has the largest difference, i.e., ~20 Mg/ha. The RMSE for each vegetation zone, 

calculated from the validation plot measurements, is shown in Table 5-1. As can be seen, 

the RMSEs for most vegetation zones are within the range 23–33 Mg/ha. The subtropical 

evergreen broadleaf forest and Qinghai-Tibet Plateau alpine vegetation have relatively 

large RMSEs (over 45 Mg/ha). The high RMSE for the Qinghai-Tibet alpine vegetation 

may be caused by the small number of validation plots (only three) located in this 

vegetation zone. The temperate desert has the smallest RMSE (~14 Mg/ha) among all 

vegetation zones. 

 

Table 5-1 Comparison of mean forest AGB values from wall-to-wall predicted map and all 

plot measurements in each vegetation zone. Note that the RMSE was only calculated based 

on the validation plot dataset. 

Vegetation zone 
Predicted mean 

AGB (Mg/ha) 

Plot mean 

AGB (Mg/ha) 

RMSE 

(Mg/ha) 

Cold temperate needleleaf forest 72.75 74.48 32.81 

Temperate needleleaf–broadleaf mixed forest 104.02 92.79 26.08 

Warm temperate deciduous broadleaf forest 72.29 82.12 32.56 

Subtropical evergreen broadleaf forest 133.22 139.43 45.86 

Tropical monsoon forest–rain forest 191.43 180.90 23.30 

Temperate steppe 56.11 64.70 26.20 

Temperate desert 81.45 101.63 13.86 

Qinghai-Tibet Plateau alpine vegetation 168.20 160.42 50.12 

 

 

5.2.4 Discussion 

5.2.4.1 Linking ground plots and GLAS data 

In this study, we collected over 8000 records of forest AGB field measurements and 

developed a procedure to estimate wall-to-wall forest AGB distributions in China, using a 

combination of plot measurements, GLAS data, optical imagery, climate surfaces, and 

topographic data. Because the GLAS data are spatially discontinuous, how to link plot 

measurements to GLAS footprints is one of the key issues in estimating forest AGB 

distribution. Generally, there are three methods for addressing this issue: 1) direct link 

based on the geolocation (Saatchi et al., 2011; Zhang et al., 2014c); 2) use of airborne 

LiDAR data as a medium (Boudreau et al., 2008); and 3) extrapolation of GLAS 

parameters (Zhang et al., 2014b). 

Direct linkage between the ground inventory and GLAS measurements at the same 

geolocation is the most intuitive matching method. However, in our cases, about 80% of 

the plots are over 1 km away from their closest GLAS footprint. The discrepancy between 

their locations means that they can hardly be matched. Instead of direct linkage, airborne 

LiDAR has been used as the medium between ground inventory and GLAS measurements. 

Airborne LiDAR has proved to be capable of estimating forest AGB based on plot 

measurements (Boudreau et al., 2008). The use of airborne LiDAR data obtained by 
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selectively flying in portions of the study area enables the forest AGB within the footprints 

to be accurately estimated and therefore used as ground truth data to estimate the AGB 

within the GLAS footprints. However, currently, the availability of airborne LiDAR data 

in China is very limited because of the high flight mission costs. 

Instead of trying to link the plot AGB and GLAS parameters at the GLAS footprint 

level, Zhang et al. (2014a) first extrapolated the GLAS-derived vegetation heights to 

continuous layers using a TM-derived leaf area index (LAI) product, and then estimated 

the AGB distribution from the vegetation height in California, USA at a 30 m resolution. 

The TM-derived LAI was the only predictor used to generate the continuous vegetation 

height, therefore their final AGB estimation relied heavily on the accuracy of the LAI 

product. However, previous studies have shown that the TM-derived LAI data are fraught 

with uncertainty issues because of the spectral saturation effect (Lu et al., 2004; Wang et 

al., 2005). This was also indicated by their results, which showed that the estimated forest 

AGB had a large uncertainty, ranging from 40 to 150 Mg/ha (Zhang et al., 2014a). Simard 

et al. (2011) showed the feasibility of deriving vegetation height by extrapolating RH100, 

a GLAS-derived parameter, to a global continuous layer using an RF regression tree 

algorithm. This greatly improved the potential of GLAS data in the estimation of global 

AGB. However, it has been reported that RH100 underestimates the canopy height (Sun et 

al., 2008) and careful calibration may be needed for further forest AGB estimation (Zhang 

et al., 2014a). 

 
Figure 5-9 Distribution of modeled forest AGB uncertainty introduced by plot location 

uncertainty at pixel level. White areas indicate areas with neither closed-forested area nor 

open-forested area land-use cover. 
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In this study, we extrapolated the GLAS-derived waveform extent, leading edge extent, 

and trailing edge extent to spatially continuous products, using an RF regression tree model 

similar to that used by Simard et al. (2011). These three parameters have been successfully 

used to estimate the vegetation height and AGB at the GLAS footprint level (Boudreau et 

al., 2008; Lefsky et al., 2005). In this study, these three extrapolated GLAS metrics along 

with topographic data can explain over 72% variances of the forest AGB, and the forest 

AGB distribution can be mapped with high accuracy by linking the plot-measured AGB to 

them (Figure 5-8). This shows the feasibility of using extrapolated GLAS full-waveform 

parameters to estimate forest AGB. 

Moreover, the plot location uncertainty has rarely been considered when linking plot 

measurements to GLAS parameters. For the plot measurements collected from the 

literature in particular, the plot location uncertainty can be as high as 10 to 15 km, without 

considering the actual surveying uncertainty. This huge location uncertainty can result in 

significantly different correspondences between field-measured AGB and predictors. In 

this study, as a result of introducing plot location uncertainty into the forest AGB modeling 

procedure, R2 between the predicted AGB and plot validation dataset increased from 0.64 

to 0.75, and the RMSE decreased from 50 to 42 Mg/ha. At the pixel level, the absolute 

value of the uncertainty introduced by the plot location increased with forest AGB density, 

and contributed to around 10% of the final AGB estimation (Figure 5-9). In the tropical 

monsoon forest–rain forest in the most southeastern part of Tibet, the uncertainty brought 

by the plot location can reach nearly 40 Mg/ha. 

 

 

5.2.4.2 Influence of different forest definitions on total forest AGB estimation 

Usually, forest extent is defined as an area with a tree cover higher than a fractional cover 

threshold. However, the tree cover threshold used to define forest extent varies with time 

and place. Tree covers of 10%, 25%, and 30% are the most frequently used thresholds used 

by individual parties to the United Nations Framework Convention on Climate Change. 

This discrepancy in the definition of a forest may result in significantly different total forest 

areas, and therefore influence the estimation of total biomass carbon stock in the forest. 

Table 5-2 shows the total forest areas and total AGB estimations for different forest 

definitions. As can be seen, the total forest area for each vegetation zone decreases 

significantly with increasing tree cover threshold used to define the forest extent. The total 

forest area from the original Landsat TM land-use map is about 7% larger than the total 

forest area when a 30% tree cover threshold is applied on the Landsat TM land-use map to 

define the forest extent. This difference in total forest area can lead to a drop of ~5% in the 

total AGB estimation for China, which equals about 1000 million tons of forest biomass. 

The drop effect of the total forest AGB is greater in climate zones with relatively small 

total forest areas. For example, the temperate desert and Qinghai-Tibet Plateau alpine 

vegetation have a very small proportion of forest cover, and differences in the definitions 

of forest extent can result in a decrease of over 16% in the total forest AGB estimation. 
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5.2.4.3 Comparison of estimated forest AGB and published results 

We compared our nationwide forest AGB map with previously published AGB mapping 

results covering different areas of China to further evaluate our result. For northeastern 

China, Zhang et al. (2014c) estimated that the average forest AGB density was 83.50 Mg/ha, 

and the total forest AGB carbon stock was 1.55 Pg. Our results indicate that the average 

forest AGB density in northeastern China is ~88.50 Mg/ha, and the total forest AGB carbon 

stock is 1.5 Pg (using a ratio of 50% to convert forest AGB to forest AGB carbon stock) 

(Saatchi et al., 2011). This total AGB carbon stock estimation is also consistent with the 

value of 1.4–1.6 Pg of carbon obtained by simulations using the TRIPLEX 1.0 model (Peng 

et al., 2009). The provincial average forest AGB density from our results is also close to 

that estimated by Guo et al. (2013) for northeastern China, which was estimated based on 

the national forest inventory data of China. The average forest AGB densities for Inner 

Mongolia, Liaoning, Jilin, and Heilongjiang provinces from our wall-to-wall AGB map are 

67, 77, 93, and 81 Mg/ha, respectively, and those from their results are 77, 63, 119, and 85 

Mg/ha. However, these values are significantly higher than those reported by Thurner et al. 

(2014), namely 27, 25, 40 and 33 Mg/ha, respectively. This may be caused by the growing 

stock volume product retrieved from synthetic aperture radar data, which was used as the 

predictor in their AGB estimation process. This product was mainly calibrated based on 

plot measurements in Russia, which might make it less representative for forests in 

northern China. 

 

Table 5-2 Comparison of forest area and total forest AGB for each climate zone under 

different forest definitions. Vegetation zones 1–8 represent cold temperate needleleaf forest, 

temperate needleleaf–broadleaf mixed forest, warm temperate deciduous broadleaf forest, 

subtropical evergreen broadleaf forest, tropical monsoon forest–rain forest, temperate 

steppe, temperate desert, and Qinghai-Tibet Plateau alpine vegetation, respectively. 

Vegetation 

zone 

0%a 10%b 25%b 30%c 

Forest 

area 

(M km2) 

Total 

AGB 

(M ton) 

Forest 

area 

(M km2) 

Total 

AGB 

(M ton) 

Forest 

area 

(M km2) 

Total 

AGB 

(M ton) 

Forest 

area 

(M km2) 

Total 

AGB 

(M ton) 

1 0.14 926.54 0.14 923.17 0.13 907.54 0.13 899.02 

2 0.22 2053.42 0.22 2047.99 0.22 2024.97 0.21 2012.64 

3 0.11 796.07 0.11 783.83 0.10 743.50 0.10 725.25 

4 1.00 11416.54 0.99 11322.78 0.96 10944.46 0.94 10750.21 

5 0.12 2123.52 0.12 2112.93 0.12 2074.80 0.12 2056.13 

6 0.08 472.55 0.08 461.35 0.07 426.29 0.07 411.64 

7 0.03 205.42 0.03 199.73 0.02 179.61 0.02 170.59 

8 0.01 127.97 0.01 124.52 0.01 112.05 0.01 106.39 

Total 1.71 18122.03 1.70 17976.30 1.63 17413.21 1.60 17131.86 

 

For southern China, Saatchi et al. (2011) estimated the forest AGB distribution in 

tropical regions using a combination of GLAS, MODIS, and radar data, which included 

forests of China lower than 40° N. Their forest AGB estimation ranges match our 

nationwide wall-to-wall forest AGB map as well, except in the case of the Qinghai-Tibet 



98 

 

 

Plateau. For the Qinghai-Tibet Plateau, the majority of our estimates are 0 Mg/ha, but their 

result ranges around 20-80 Mg/ha. This difference may be caused by the different land-use 

maps used by these two studies. In the land-use map we used, most of the Qinghai-Tibet 

Plateau was classified as non-forest groups, and our corresponding AGB values were set 

at 0 Mg/ha. 

 
Figure 5-10 (a) Pixel-level differences between the estimated forest AGB from this study 

and the forest AGB from Saatchi et al. (2011) [our estimated AGB minus the forest AGB 

from Saatchi et al. (2011)]. (b) Scatter plot between the field measured AGB and the forest 

AGB from Saatchi et al. (2011). Note that R2 represents the adjusted coefficient of 

determination, RMSE represents the root-mean-square error, B represents the field 

measured AGB, and   represents the estimated AGB from Saatchi et al. (2011). 

Besides the regional scale comparison, we also performed a pixel-level comparison 

between our estimated forest AGB map and that from Saatchi et al. (2011) in southern 

China (Figure 5-10a). It should be noted that the forest AGB map from Saatchi et al. (2011) 

was masked by the land-use map from Liu et al. (2002) before the comparison. Similar to 

our forest AGB map, the non-forested areas were set at 0 Mg/ha. The average difference 

between our and their forest AGB results is -7.23 Mg/ha. The absolute values of differences 

for 60% of the pixels are smaller than 50 Mg/ha, and for 36% of the pixels are smaller than 

25 Mg/ha. As can be seen in Figure 5-10a, our forest AGB result tends to be lower than 

their result in southeastern China, and higher than their result in Yunnan, Chongqing, 

Sichuan and Guizhou provinces. In the most southeastern part of the Qinghai-Tibet Plateau, 

the majority of their forest AGB densities are slightly higher (10-50 Mg/ha) than our 

estimates. These differences are possibly caused by the fact that their forest AGB result 

was estimated based on plots from tropical areas across the world and were less 
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representative of forest conditions in China. As shown in Fig10b, we evaluated their AGB 

mapping result by our collected field measurements. Overall, their result shows a satisfying 

accuracy; the R2 and the RMSE are around 0.4 and 68 Mg/ha respectively. However, their 

result inclines to underestimate forest AGB in areas with low values, and overestimate it 

in areas with high values (Figure 5-10b). In southeastern China, although this region 

belongs to the subtropical evergreen broadleaf vegetation zone, it has been heavily 

disturbed by human activities, and the proportion of plantations is relatively higher. The 

possible lack of plot measurements from these plantation areas may lead to overestimations 

of forest AGB and therefore make their result higher than our forest AGB map. 

 

 

5.2.4.4 Limitations of the current study 

Although the resulting nationwide wall-to-wall forest AGB map of this study shows good 

accuracy by comparing with both independent field measurements and other published 

products, there are still limitations in the methodology of the current study. The three 

extrapolated GLAS parameters along with topographic information can be used to explain 

over 72% of variations in forest AGB, and therefore accurately map the wall-to-wall forest 

AGB distribution of China. However, the extrapolated GLAS parameters were imputed 

based on the regression analysis using selected ancillary datasets (i.e., cumulative NDVI, 

climate surfaces, and topographic data). Moreover, the spatial resolution of the original 

GLAS parameters and the extrapolated GLAS parameters are also different. These 

differences may lead the biophysical meanings of these three GLAS full-waveform 

parameters to become unclear. Although using spatial interpolation techniques (e.g. 

ordinary kriging and thin plate spline) to extrapolate GLAS parameters can help to preserve 

their biophysical meanings, the distribution of GLAS footprints is not random but 

concentrated around the ground tracks, which can result in significant strip effects to the 

extrapolated GLAS parameters. 

Further, the extrapolation of GLAS parameters may even bring new error sources to 

the forest AGB estimation step. However, in the current study, the uncertainties induced 

by the extrapolated GLAS parameters as well as other prediction variables were not 

considered and evaluated in the forest AGB estimation procedure. The pixel level 

uncertainty can be evaluated in more detail by introducing a numerical error propagation 

model based on Monte Carlo simulation (Zhang et al., 2014b). A systematic evaluation of 

how uncertainties from different sources influence the final forest AGB distribution result 

will be conducted in a future study. 

Additionally, the influence of forest growth on the AGB estimation result was not 

considered in this study. The plot measurements collected in this study were mainly taken 

between 2000 and 2010. The AGB increase brought by the forest growth might be non-

negligible for certain plots, and result in mismatches between these plot measurements and 

remotely sensed covariables. If we only chose plot measurements from 2004 (the same 

year with remotely sensed datasets), the number of plot measurements would be too small 

to build a reliable forest AGB estimation model. In this study, the average of plot 

measurements with the same geolocations but measured at different years were used to 

represent the forest AGB condition at that plot. This may be helpful to partially reduce the 
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influence of forest growth on the final AGB estimation. However, collecting more ground 

inventory data for each calendar year is still needed to fully address this issue. 

 

 

5.3 Global forest AGB distribution estimation 

The pilot study in previous section shows the feasibility of the proposed algorithm in 

mapping large-scale forest AGB. Therefore, we further extended this method to global 

scale and mapped the global-scale forest AGB distribution. There are overall 4090 records 

of plot measurements from papers published between 1990 and 2013, and 3348 of them 

were retained for the forest AGB mapping procedure (Figure 5-11; Appendix B, Table B1 

and Table B2). 

 
Figure 5-11 Geolocations of the collected ground inventory data. The background maps 

are the ecoregion zone map and land cover map from MODIS 2004. 

The resulting global wall-to-wall forest AGB map is shown in Figure 5-12a. The RF 

regression tree model built from plot measurements without considering plot location 

uncertainty explained 61.21% of the variances in forest AGB and the root-mean-squared 

residual was 99.30 Mg/ha. The final global forest AGB result indicated that the mean AGB 

density for global forests was 210.09 Mg/ha with a standard deviation of 109.31 Mg/ha. 

The forest AGB density gradually increased from the boreal forest area to the tropical forest 

area (Figure 5-12a). The statistics of the national and continental forest AGB are shown in 

Table B3 and Table B4 (Appendix B). The mean uncertainty introduced by the plot location 

was 14.53 Mg/ha with a range of 3.75–127.69 Mg/ha (Figure 5-12b), and it accounted for 

lower than 10% of the AGB estimations in most regions (Figure 5-12c). Forests distributed 

in the European, North American, and Amazon areas generally had relatively low 

uncertainty values (<30 Mg/ha). In Southeast Asia, the influence of plot location 

uncertainty became larger, resulting in a forest AGB uncertainty of over 50 Mg/ha. The 

AGB estimation uncertainty introduced by the plot location was the highest on the western 

coast of North America and central Papua New Guinea, reaching values of 100 Mg/ha. 
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Figure 5-12 The derived wall-to-wall map of global forest AGB in this study; (b) the 

absolute uncertainty induced by plot location uncertainty (estimated as the standard 

deviation of the 100 RF run results); and (c) the relative uncertainty induced by plot 

location uncertainty. The study region was bounded at 80° N and 58° S and from longitude 

-180° to 180°. 

Around one third of plot measurements were retained from the AGB mapping process 

to evaluate the forest AGB estimation result at the plot scale. As can be seen in Figure 5-

13, the estimated forest AGB map showed a good agreement with the field-measured AGB. 

The fitted line between the observed values and predicted values was close to the 1:1 line. 

The statistical parameters also showed that the accuracy of the estimated global forest AGB 
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map was satisfactory. The R2 between the observed and predicted AGB was 0.56 and the 

RMSE was 87.53 Mg/ha. However, the global forest AGB map had some limitations. It 

was inclined to overestimate forest AGB density in areas with low AGB density (<221 

Mg/ha), and underestimate forest AGB density in areas with relatively high AGB density 

(>221 Mg/ha). 

 
Figure 5-13 Evaluation of predicted forest AGB using validation ground inventory dataset 

at the plot level. R2 represents the adjusted coefficient of determination, RMSE represents 

the root-mean-square error. 

At the ecoregion zone level, the forest AGB map was compared with the AGB density 

values of the eight ecological zones in different continents provided by the 

Intergovernmental Panel on Climate Change (IPCC). As shown in Figure 5-14, the R2 and 

RMSE between the IPCC suggested values and the predicted AGB were 0.38 and 101.21 

Mg/ha, respectively. However, there was a clear outlier where the predicted forest AGB 

density for the North America temperate oceanic forest was significantly lower than the 

value provided by the IPCC. When we removed this data point, the R2 increased to 0.56 

and the RMSE decreased to 82.38 Mg/ha, which were very close to the plot-level validation 

results. 
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Figure 5-14 Comparison of the predicted forest AGB with IPCC suggested values at the 

ecological zone level. The outlier is the temperate oceanic forest in North America. R2 

represents the adjusted coefficient of determination, and RMSE represents the root-mean-

square error. 

Moreover, we further compared our global wall-to-wall forest AGB map with other 

eight regional forest AGB maps (Appdix C, Figure C1-C8) (Avitabile et al., 2015; Baccini 

et al., 2012; Blackard et al., 2008; Margolis et al., 2015; Neigh et al., 2015; Reusch & 

Gibbs, 2008; Saatchi et al., 2011; Thurner et al., 2014). Overall, our product corresponded 

well with the products generated based on LiDAR data, especially in tropical areas. 

Products generated using traditional optical passive remote sensing and radar data intended 

to underestimate the forest AGB density. 

 

 

5.4 Conclusions 

In this study, we developed a method to estimate forest AGB distribution through the 

combination of multi-source remote sensing data sets. The proposed method is firstly tested 

at the national scale of China. The results show that the proposed method can be used to 

accurately estimate forest AGB density in a large scale. The R2 and RMSE between the 
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predicted map and independent field measurements are 0.75 and 42.39 Mg/ha, respectively. 

The plot location uncertainty can induce up to 10% uncertainty in the final forest AGB 

estimation, and generally the higher the forest AGB density is, the higher uncertainty 

induced by the plot location uncertainty. By considering the plot location uncertainty into 

the AGB estimation model, the forest AGB estimation accuracy can be significantly 

improved. 

The high accuracy of the resulting national-scale forest AGB map proves the 

feasibility of the proposed method, and therefore we further use this method in the global 

scale. The resulting global-scale forest AGB map shows that the global forest AGB density 

is around 210 Mg/ha on average with a standard deviation of 109 Mg/ha. This global 

product is evaluated at the plot level and the result show that our product has a good 

correspondence with the independent plot measurements (R2=0.56, RMSE=87.53 Mg/ha). 

At the ecoregion level, values recommended by the IPCC are used to compare with this 

new map which also show a good correspondence (R2=0.38, RMSE=101.21 Mg/ha with 

one outlier; R2=0.56, RMSE=82.38 Mg/ha after removing one outlier). This new global 

forest AGB map is highly beneficial to global carbon assessments and biogeochemical 

modellings. Moreover, it can also help to quantify changes in forest biomass caused by 

deforestation or afforestation. 
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Chapter 6  Conclusions 
 

 

This dissertation shows that light detection and ranging (LiDAR) demonstrates a strong 

capability to penetrate forest canopy, making it a more effective tool than aerial imagery 

for capturing forest structure changes following forest fuel treatments. All change detection 

methods using LiDAR-derived forest structure parameters outperform the methods using 

aerial imagery, especially in areas with light forest fuel treatment activities. The method 

using LiDAR-derived canopy cover reaches an overall accuracy of 93.5% and a kappa 

coefficient (a statistic measuring inter-rater agreement) of 0.7, which are over 5% and 25% 

higher than the methods using aerial imagery. Moreover, through a direct comparison of 

bi-temporal LiDAR point clouds, this dissertation presents a new algorithm to quantify the 

severity of forest structure changes caused by forest fuel treatment activities, well beyond 

what can be done using methods based on aerial imagery. The systematic evaluation and 

the developed algorithm for detecting and quantifying forest fuel treatments provide a 

scalable approach to accurately monitor changes in mixed conifer forests. 

The weakness of LiDAR in lacking spectral information can be partially compensated 

by fusing LiDAR data with multispectral aerial imagery. This dissertation focuses on 

mapping vegetation types at the regional scale through the fusion of LiDAR data and aerial 

imagery. The developed vegetation mapping strategy can classify vegetation units by 

considering both vegetation species information and forest structure characteristics. The 

Bayesian Information Criterion method is integrated into the algorithm, which can 

automatically determine the optimized number of vegetation groups. This proposed 

algorithm is shown to be robust in two mixed conifer forests in the Sierra Nevada, 

California. The overall accuracy and the kappa coefficient are over 78% and 0.64 for both 

study sites, which are comparable to traditional methods that only relied on multispectral 

imagery. Moreover, the proposed algorithm has a great advantage for mapping vegetation 

types in relative homogeneous forests. Comparing to methods using only multispectral 

imagery, the fusion of LiDAR and multispectral imagery can help to recognize more 

vegetation variances in an area by considering both vegetation structure characteristics and 

dominant species composition. 

The fusion of multi-source remote-sensing data can also help to address the limitation 

related to the LiDAR spatial availability. The proposed algorithm of integrating field 

measurements, airborne LiDAR data, spaceborne LiDAR data, optical imagery and radar 

data can be successfully used to map fine-resolution tree height in a large area without full 

LiDAR coverage. In this dissertation, this algorithm is used to generate a tree height 

product across the whole Sierra Nevada at 70 m resolution. The estimated Sierra Nevada 

tree height product shows a good agreement with in-situ plot measurements. The 

coefficient of determination (R2) is 0.60, and the root-mean-squared error (RMSE) is 5.45 

m. The resolution of the generated Sierra Nevada tree height product is much finer than 

previously published tree height products in the Sierra Nevada (>1 km usually), and has a 

comparable accuracy with them. Moreover, it can greatly help to address the saturation 

effect of the tree height product derived from multispectral imagery only. 
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Through the fusion of spaceborne LiDAR data with other remotely sensed datasets, 

LiDAR can be used to increase the accuracy of national- to global-scale forest structure 

estimations at a relatively coarser resolution. This dissertation presents an algorithm to fuse 

field measurements, spaceborne LiDAR data, optical imagery, radar data and climate 

surfaces to map the spatial distribution of aboveground biomass at national to global scales. 

The integrated uncertainty field model can greatly help to reduce the influence of plot 

location uncertainty on the prediction results. Compared to the results without using the 

uncertainty field model, R2 of the estimated forest aboveground biomass with the 

uncertainty field model increases by 17%, and the RMSE decreases by 16%. The proposed 

algorithm is successfully used to generate the first national-scale forest aboveground 

biomass map of China and the first global-scale forest aboveground biomass map at 1-km 

resolution. Both maps show good correspondences with independent field measurements 

(China: R2=0.75, RMSE=42.39 Mg/ha; Global: R2=0.56, RMSE=82.38Mh/ha). Moreover, 

both maps are less influenced by the saturation effect of optical imagery, compared to other 

published regional forest aboveground biomass maps. This new global forest AGB map is 

highly beneficial to improve our understanding on global carbon cycle and improve the 

accuracy of global biogeochemical modellings. 

The proposed algorithms in this dissertation address the limitations of LiDAR data in 

forestry applications. However, this dissertation only uses tree height and AGB as 

examples in the regional- to global-scale forest structure estimations. In the future, we need 

to further extend these studies by generating other important forest structure parameters, 

such as canopy cover, leaf area index, tree age, and tree density. Moreover, the resolution 

of the generated forest AGB product at national- to global-scale is relatively coarser 

compared to the regional tree height product. With the increasing availability of the 

airborne LiDAR data across the world, future studies on generating global-scale fine-

resolution forest structure estimations need to be conducted. 
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Appendix A 
 

 

 
Figure A1 Numbers of GLAS footprints within different terrain, vegetation, and climate 

parameter groups (corresponding to Figure 4-5). 
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Appendix B 
 

 

Table B1 The main literature provided the AGB using allometric equation. 

ID Author Year Title Journal Plots 

1 
Keeling and 

Phillips 
2007 

The global relationship between forest 

productivity and biomass. 

Global Ecology and 

Biogeography 
55 

2 Liu, et al 2013 

How temperature, precipitation and 

stand age control the biomass carbon 

density of global mature forests 

Global Ecology and 

Biogeography 
160 

3 Malhi, et al. 2006 

The regional variation of aboveground 

live biomass in old-growth Amazonian 

forests 

Global Change 

Biology 
227 

4 Ma, et al 2012 

Regional drought-induced reduction in 

the biomass carbon sink of Canada's 

boreal forests 

PNAS 155 

5 
Mitchard, et 

al 
2014 

Markedly divergent estimates of 

Amazon forest carbon density from 

ground plots and satellites 

Global Ecology and 

Biogeography 
413 
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Table B2 The distribution of plots in each continents and ecoregions. 

Continent Original Filtered 

Africa 157 118 

Asia 2486 1932 

Australia 68 49 

Europe 163 127 

North America 368 317 

South America 814 787 

Oceania 34 18 

Total 4090 3348 

Ecoregion Original Filtered 

Boreal coniferous forest 244 219 

Boreal mountain system 57 31 

Boreal tundra woodland 19 5 

Polar 15 1 

Subtropical desert 36 27 

Subtropical dry forest 14 10 

Subtropical humid forest 976 899 

Subtropical mountain system 274 238 

Temperate continental forest 269 257 

Temperate desert 50 9 

Temperate mountain system 838 521 

Temperate oceanic forest 87 80 

Temperate steppe 90 32 

Tropical desert 1 0 

Tropical dry forest 41 31 

Tropical moist deciduous forest 154 116 

Tropical mountain system 59 51 

Tropical rainforest 824 812 

Tropical shrubland 10 7 

Other 32 2 

Total 4090 3348 
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Table B3 The estimated national-level forest AGB density and biomass stock from the 

generated global forest AGB map. 

Country Mean AGB, Mg/ha Forest area, Mha Total AGB, Pg 

Angola 221.03 ± 42.44 2.8 0.63 

Argentina 163.14 ± 95.93 16.39 3.33 

Australia 415.85 ± 131.69 20.28 8.68 

Austria 165.56 ± 25.48 3.96 0.66 

Belgium 205.02 ± 54.55 0.67 0.14 

Bangladesh 297.96 ± 33.34 0.45 0.14 

Bulgaria 168.08 ± 22.79 2.68 0.45 

Bosnia and Herzegovina 181.86 ± 22.16 1.99 0.36 

Belarus 104.72 ± 10.28 7.59 0.79 

Belize 302.78 ± 24.54 1.27 0.39 

Bolivia 255.94 ± 59.79 38.66 10.45 

Brazil 306.79 ± 36.1 317.34 97.44 

Brunei Darussalam 279.71 ± 33.71 0.42 0.12 

Bhutan 277.98 ± 36.84 2.45 0.68 

Central African Republic 355.58 ± 36.77 4.32 1.54 

Canada 141.38 ± 64.68 268.81 38.26 

Switzerland 203.56 ± 74.53 1.17 0.23 

Chile 410.6 ± 104.67 21.11 8.81 

China 160.74 ± 45.16 101.34 16.41 

Cameroon 373.62 ± 49.06 16.86 6.36 

Democratic Republic of the Congo 342.01 ± 49.17 103.67 35.52 

Republic of Congo 325.16 ± 52.88 17.72 5.85 

Colombia 322.76 ± 53.71 59.34 19.33 

Costa Rica 346.5 ± 52.41 1.99 0.7 

Cuba 279.08 ± 56.83 1.08 0.31 

Czech Republic 142.47 ± 20.76 2.56 0.37 

Germany 146.04 ± 44.15 10.95 1.61 

Dominican Republic 339.69 ± 39.43 0.66 0.22 

Ecuador 328.16 ± 54.17 12.2 4.05 

Spain 265.65 ± 67.1 4.2 1.11 

Estonia 99.17 ± 8.07 2.53 0.25 

Ethiopia 307.51 ± 54.37 2.36 0.75 

Finland 89.42 ± 7.99 15.51 1.37 

Fiji 316.05 ± 19.23 0.99 0.31 

France 261.66 ± 85.86 14.92 4.05 

Gabon 354.3 ± 56.66 15.59 5.55 

United Kingdom 265.09 ± 87.3 3.22 0.87 

Georgia 187.09 ± 27.24 2.21 0.42 

Ghana 343.08 ± 27.22 1.42 0.48 

Guinea 325.04 ± 31.96 0.51 0.17 

Equatorial Guinea 382.23 ± 31.71 1.85 0.7 

Greece 163.55 ± 20.46 1.31 0.21 

Guatemala 290.15 ± 34.62 3.72 1.08 

Guyana 333.05 ± 30.02 15.12 5.02 

Honduras 312.28 ± 34.71 3.64 1.14 

Croatia 164.64 ± 30.4 1.83 0.3 

Hungary 137.06 ± 25.52 0.98 0.13 

Indonesia 328.25 ± 43.39 102.79 34.04 

India 253.38 ± 61.34 19.46 5.25 

Ireland 246 ± 80.9 0.79 0.18 
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Table B3 (continued) 
Country Mean AGB, Mg/ha Forest area, Mha Total AGB, Pg 

Iran 151.72 ± 17.77 1.19 0.18 

Italy 188.72 ± 44.85 5.16 0.98 

Jamaica 323.08 ± 23.02 0.37 0.12 

Japan 175.78 ± 41.69 22.83 4.03 

Kazakhstan 125.04 ± 26.21 1.02 0.13 

Kenya 334.59 ± 107.12 0.55 0.2 

Cambodia 279.47 ± 38.84 4.05 1.15 

Republic of Korea 141.72 ± 9.57 4.16 0.59 

Lao PDR 276.6 ± 26.71 13.42 3.73 

Liberia 350.27 ± 31.01 4.27 1.5 

Sri Lanka 279.46 ± 56.08 1.44 0.4 

Lithuania 101.31 ± 11.39 1.89 0.19 

Latvia 102.98 ± 9.67 3.31 0.34 

Madagascar 239.17 ± 66.35 6.34 1.62 

Mexico 243.66 ± 50.25 17.83 4.51 

Myanmar 289.05 ± 40.36 24.65 7.25 

Mongolia 106.86 ± 11.96 2.01 0.21 

Malaysia 322.33 ± 35.03 20.64 6.69 

New Caledonia 316.87 ± 35.14 0.66 0.21 

Nigeria 322.46 ± 45.55 3.59 1.16 

Nicaragua 329.52 ± 33.37 3.31 1.1 

Norway 210.15 ± 116.76 9.04 1.95 

Nepal 230.36 ± 40.42 3.16 0.74 

New Zealand 488.69 ± 107.94 12.24 6.07 

Panama 335.61 ± 30.78 3.82 1.29 

Peru 316.49 ± 34.14 66.13 20.84 

Philippines 336.33 ± 29.98 8.97 3.03 

Papua New Guinea 357.15 ± 46.76 32.32 11.55 

Poland 108.36 ± 23.93 8.78 0.95 

Dem. Rep. Korea 143.6 ± 9.1 5.41 0.78 

Portugal 253.7 ± 56.38 0.7 0.18 

Paraguay 163.04 ± 67.7 6.83 1.28 

Romania 163.32 ± 22.88 6.15 1.01 

Russian Federation 110.14 ± 23.48 530.48 59.87 

Solomon Islands 336.73 ± 25.59 2.13 0.71 

Sierra Leone 297.04 ± 32.75 1.4 0.42 

Serbia 177.91 ± 24.6 1.61 0.29 

Suriname 339.81 ± 26.28 11.31 3.84 

Slovakia 170.73 ± 23.31 2.22 0.38 

Slovenia 173.12 ± 22.76 1.33 0.23 

Sweden 108.11 ± 16.39 26.32 2.82 

Thailand 279.58 ± 41.75 7.21 2.05 

Turkey 175.62 ± 33.7 4.39 0.77 

Taiwan 370.45 ± 79.48 1.76 0.67 

Tanzania 231.22 ± 58.5 1.17 0.29 

Uganda 391.6 ± 63.5 0.96 0.38 

Ukraine 124.65 ± 30.26 7 0.88 

United States 180.96 ± 92.44 150.61 27.71 

Venezuela 318.49 ± 31.54 36.52 11.63 

Vietnam 277.58 ± 34.41 9.35 2.62 

Vanuatu 325.07 ± 23.98 0.71 0.23 

South Africa 256.31 ± 93.44 1.45 0.4 
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Table B4 The estimated continental-level forest AGB density and biomass stock from the 

generated global forest AGB map. 

Continent Mean AGB, Mg/ha Forest area, Mha Total AGB, Pg 

Africa 333.34 ± 63.80 191.0 64.65 

Asia 172.28 ± 94.75 762.2 143.14 

Australia 415.66 ± 131.75 20.3 8.69 

North America 166.48 ± 84.97 459.1 77.46 

Oceania 424.30 ± 114.03 21.9 9.30 

South America 301.68 ± 67.43 608.6 188.68 

Europe 132.97 ± 50.70 310.1 40.83 
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Appendix C 
 

 

 
Figure C1 Differences between our global wall-to-wall forest AGB product and the 

products from (a) Saatchi et al. (2011), (b) Baccini et al. (2012), Avitabile et al. (2015), 

and (d) Reusch & Gibbs (2008) in pan-tropical forest areas. 
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Figure C2 Spatial similarities between our global wall-to-wall forest AGB product and the 

products from (a) Saatchi et al. (2011), (b) Baccini et al. (2012), Avitabile et al. (2015), 

and (d) Reusch & Gibbs (2008) in pan-tropical forest areas. The spatial similarity is defined 

by the Fuzzy Numerical index, which ranges from 0 (fully distinct maps) to 100 (fully 

identical maps). 



120 

 

 

 
Figure C3 Differences between our global wall-to-wall forest AGB product and the 

products from (a) Margolis et al. (2015), (b) Thurner et al. (2014), and (c) Reusch & Gibbs 

(2008) in the North America. 
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Figure C4 Spatial similarities between our global wall-to-wall forest AGB product and the 

products from (a) Margolis et al. (2015), (b) Thurner et al. (2014), and (c) Reusch & Gibbs 

(2008) in the North America. The spatial similarity is defined by the Fuzzy Numerical 

index, which ranges from 0 (fully distinct maps) to 100 (fully identical maps). 
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Figure C5 Differences between our global wall-to-wall forest AGB product and the 

products from (a) Neigh et al. (2015), (b) Thurner et al. (2014), and (c) Reusch & Gibbs 

(2008) in the northern Eurasia. 
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Figure C6 Spatial similarities between our global wall-to-wall forest AGB product and the 

products from (a) Neigh et al. (2015), (b) Thurner et al. (2014), and (c) Reusch & Gibbs 

(2008) in the northern Eurasia. The spatial similarity is defined by the Fuzzy Numerical 

index, which ranges from 0 (fully distinct maps) to 100 (fully identical maps). 
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Figure C7 Differences between our global wall-to-wall forest AGB product and the 

products from (a) Blackard et al. (2008), (b) Saatchi et al. (2005), and (c) Reusch & Gibbs 

(2008) in the U.S. 
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Figure C8 Spatial similarities between our global wall-to-wall forest AGB product and the 

products from (a) Blackard et al. (2008), (b) Saatchi et al. (2005), and (c) Reusch & Gibbs 

(2008) in the U.S. The spatial similarity is defined by the Fuzzy Numerical index, which 

ranges from 0 (fully distinct maps) to 100 (fully identical maps). 




