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Abstract

System Design and Management with Flexible Structures and Mechanisms

by

Ye Xu

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Shen, Chair

Flexible system design has received increasingly more attention in the last a few decades.
Flexibility can increase systems’ ability to adjust against fast-changing environment, and
thereby improves efficiency and reliability, and avoids huge cost from rare but severe dis-
ruptions, or loss due to congestions caused by system uncertainties. In this dissertation,
we focus on the design and management of flexible systems. In particular, we study three
types of flexibility: process flexibility, network flexibility, and payment flexibility. We present
quantitative formulations for these problems, and develop different methodologies to solve
them. We further conduct numerical studies to generate insights as guidelines for the design
of flexible systems in practice.

Flexible supply chains have been widely used by companies to deal with uncertainties.
It is well known that chaining structure is very efficient in balanced supply chains. How-
ever, it is not clear whether it will work well when supply chains are unbalanced. We study
the flexibility design problem of a general supply chain with unbalanced and nonhomoge-
neous structure. Both demand uncertainty and disruptions are considered in our model.
We derive exact solutions for several special cases of the uncapacitated problem where the
number of links is fixed, propose an efficient algorithm for solving the general uncapacitated
problem, and use simulations to derive some managerial insights for the capacitated problem.

A similar idea is applied to network design. Air transportation networks suffer a lot from
disruptions caused by severe weather, natural disasters, power outage, etc. We propose a
flexible hub-and-spoke structure in which airports are allowed to have up to N hubs, and
formulate the problem as a mixed-integer program that minimizes fixed cost, flexibility cost,
and expected transportation cost and penalty cost. Benders decomposition algorithm is ap-
plied to solve this problem. Numerical studies show that the performance of the network can
be improved substantially with flexible hub assignment, and a flexible structure with N = 2
can achieve most of the benefit of those with greater N . We also demonstrate the impact of
the correlation between airport disruptions and address the importance of considering it in
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stochastic air transportation models.

Trade credit, as a form of flexible payment, is a major tool used by small businesses to
obtain external finance. It benefits the buyer and the supplier in multiple ways, and brings
risk to them at the same time. We investigate the impact of trade credit on growing small
businesses and their suppliers. By looking at a one-supplier-one-retailer supply chain, we
study the expansion and inventory policies of the retailer when trade credit is extended or
not. It is shown that the retailer grows faster and orders more with trade credit. It is also
shown by numerical study that the effect of trade credit depends on demand correlation.
When demand is positively correlated, trade credit makes the retailer more likely to go
bankrupt, and thereby lowers the supplier’s long-term profit and may even cause the failure
of the supplier.
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Chapter 1

Introduction

On March 11, 2011, the Tohoku earthquake took place in northeastern Japan. It not only
caused damages, costs, and loss of lives within the country, but also had great and long-lasting
impact on the global semiconductor industry. Taiwan’s chipmakers, as major suppliers of
the manufacturers of electronic products around the world, lost their supply of raw mate-
rials and key components from Japanese wholesale electronics suppliers. Although several
wafer producers in Taiwan and South Korea were running in full capacity to meet demand,
only 30% to 50% of the shortage created by the earthquake was fulfilled ([78]). Taiwan’s
semiconductor manufacturers suffered a lot from shortage in supply. As a result, the price
of electronic components and products raised a lot. To a large extent, all these losses are
caused by the lack of flexibility in the semiconductor supply chain. Taiwan’s semiconductor
manufacturers rely heavily on the supply from Japan. For example, 70% of their imported
12-inch silicon wafers were from Japan ([20]). In addition, the Japanese suppliers located
most of their plants in the northeastern part of Japan, where happened to be close to the
center of the earthquake. Having plants close to each other does have some advantages such
as the economies of scale. However, it makes the system vulnerable to disruptions at the
same time. The example of the Tohoku earthquake one more time reveals that flexibility is
indispensable in supply chains.

Flexible supply chain management has long been studied in the literature, and is com-
monly used in many industries. Actually, the application of flexibility design is not restricted
to supply chain management. It can also be applied in transportation system, financial sys-
tem, product design, military planning, etc. – every system in general. The flexibility of a
system is its ability to adjust itself when environment changes. It measures how much and
how fast it is able to take actions in response to the change. The world is changing in a much
faster pace, and there is much more uncertainty compared to the past. Hence, no one is able
to predict what will happen, and being flexible is even more crucial than ever. Flexibility can
help to hedge against uncertainty and to better utilize limited resources, and eventually save
cost and improve reliability. In addition, flexibility needs to be incorporated into the strategic
level decisions to enable systems to make flexible operations under different circumstances.
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Therefore, the design of flexibility systems is an important issue that deserves a lot attention.

In this dissertation, we study three types of flexibility: (1) process flexibility, (2) net-
work flexibility, and (3) payment flexibility. Chapter 2 discusses the flexibility design of
manufacturing and service systems. We look at a two-layer supply chain which consists of
nonhomogeneous suppliers and retailers. Two types of uncertainty exist: the randomness in
demand faced by retailers, and the disruptions that may happen at suppliers and at the links
between suppliers and retailers. A dedicated structure is usually used in traditional supply
chains, in which each supplier only supplies one retailer, and each retailer only orders from
one supplier. This structure incurs huge lost sales when disruptions take place. To mitigate
the effects of disruptions, we build additional links so that each retailer can obtain prod-
ucts from multiple suppliers. A maintenance cost is incurred for each link at the same time.
Our model seeks to find the optimal link configuration that minimizes the expected total cost.

In Chapter 3, we study the flexibility design of air transportation networks. The tradi-
tional hub-and-spoke structure has a lot of advantages and is widely used in transportation
and communication networks. However, it is vulnerable to disruptions. As a result, the
air transportation network in the United States suffers a lot from disruptions caused by
severe weather, natural disasters, power outage, etc. We present a scenario-based flexible
hub location model that deals with correlated airport disruptions. In this model, each spoke
airport is allowed to select up to N hubs and to decide how much flow to transport via each
hub in each scenario. This structure is referred to as a N -flexible hub-and-spoke structure.
It incorporates flexibility in both strategic level and operational level decisions, and thus
greatly reduces the loss of traveling demand caused by disruptions.

At last, Chapter 4 investigates the impact of trade credit on the growth of small businesses
and their suppliers. Trade credit, as a form of flexible payment, serves as a major tool for
small businesses to obtain external financial resource. Because the growth of small businesses
is often constrained by financial shortage, trade credit accelerates their growths by providing
extra cash without any interest. Suppliers of trade credit also benefit from it because it
creates new business and promote sales. On the other hand, trade credit brings risk to both
the buyer and the supplier. We build a one-supplier-one-retailer supply chain model and
study the effect of trade credit on the supplier and the retailer. It is shown that the retailer
expands more aggressively and the supplier sells more with trade credit. However, when
demand is positively correlated, trade credit makes the retailer more likely to go bankrupt
and thereby hurts the profitability of the supplier.
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Chapter 2

Flexibility Design of Nonhomogeneous
Supply Chains with Disruptions

2.1 Introduction

“Everyone has to become more flexible,” said Richard Morris, vice president of BMW Man-
ufacturing Co. ([33]). To cope with rapidly-changing demand, manufacturers have to be
able to shift production of different products among different plants. Since 2007, because
of the steady increase in gas prices, there has been a greater demand in the U.S. for cars
that are more fuel-efficient and affordable. Due to the change of the market, Honda de-
cided to build more 4-cylinder Accords and reduce the production of large vehicles such as
trucks. To do this, they move the production of V-6 Accords from a plant in Ohio to a
plant in Alabama, and use the Ohio plant to produce more 4-cylinder Accords. The plant
in Alabama was a truck plant that had never been used to produce cars like Accord. It
took Honda a few months to change over, but the duration was much shorter compared to
that of its competitors. The reason why Honda could adjust faster is that their vehicles
share some basic design structures. Flexibility can also be within the same factory. Since
2006, Honda has been using the same production line to produce Civic compacts and CR-V
crossover. The setup time is only 5 minutes. In most recent years, Honda has become one
of the most flexible automakers in North America. Its market share in the U.S. is steadily
increasing. Honda’s example shows that flexibility has become one of the keys to improve
the competitiveness of manufacturing and service companies.

One of the most important questions in designing a flexible supply chain is how much
flexibility is enough. Networks with full flexibility usually have the best performance in
terms of inventory and service level. However, this performance is obtained at the cost of
building a huge number of links. E.g. a supply chain with N suppliers and M demands needs
MN links to be fully flexible. [37] introduce the concept of chaining to achieve substantial
benefits from limited flexibility. They show that the chaining structure can achieve perfor-
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mance almost as good as that of the full flexibility structure by only doubling the number of
links in a dedicated structure. This result is of great significance because they find a highly
connected structure that smartly balances between system performance and cost.

The next question is where to build the links. The balanced nature of chaining implies
that it works best in balanced1 and homogenous2 supply chains. It may not work well when
supply chains are unbalanced and nonhomogeneous, which are more common in practice.
Suppose D1 and D2 are random demands in a supply chain with means equal to 100 and 1,
respectively. It is unwise to equalize the capacities allocated to the two demands because
D1 is far more critical than D2. Furthermore, in most unbalanced supply chains, it is even
impossible to have a balanced link structure other than full flexibility.

Supply disruptions are considered in our model. There has been much research on deal-
ing with demand uncertainty using flexible networks, such as, [37], [1] and [45], while only
a few consider supply uncertainty. Supply disruptions have big impact on a supply chain’s
performance, which has been addressed in much literature such as [65], [71], and [76]. More-
over, it is shown that the optimal strategies for supply chains under disruptions are often the
opposite of those under demand uncertainty ([69], [40]). Hence, it is important to consider
the impacts of disruptions on supply chain flexibility design.

The rest of this chapter is structured as follows. Section 2.2 briefly reviews some related
literature. Section 2.3 describes the general model. Section 2.4 studies a series of uncapaci-
tated problems and provide algorithms to solve them optimally. Section 2.5 discusses some
nice properties of capacitated supply chains. Computational studies are performed in section
2.6. A summary is presented in section 2.7. All proofs can be found in the Appendix.

2.2 Literature Review

[37] study the process flexibility in an N -by-N manufacturing system and model it as a bi-
partite graph. They are the first to introduce the chaining structure, in which all nodes are
chained together to form a circle. With full flexibility as a benchmark, they analyze different
levels of flexibility in the system and conclude that (1) partial flexibility could achieve most
of the benefits of full flexibility, (2) a single long chain is more desirable than several short
chains. For supply chains that already exist, principles for adding additional flexibility are
proposed: add links that further balance total demand faced by each plant, further balance
the capacity allocated to each product, and chain as many nodes as possible. They also
investigate the interaction between flexibility and production capacity. It is demonstrated
that adding flexibility could be fully substituted by increasing capacity. Moreover, there is

1A two-layer supply chain is balanced if it has equal numbers of supply nodes and demand nodes.
2A supply chain is homogeneous if it has identical supply nodes, identical demand nodes, and identical

links.
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no benefit to add flexibility if each supplier’s capacity is either no greater than the minimum
demand or no less than the maximum total demand.

[1] justify the results of [37]. They generalize the concept of chaining to a “k-chain”,
which is a bipartite symmetric network in which each node has degree k and the graph is
connected in a circular manner. They show that the expected throughput is increasing and
concave in k. This result consolidates the advantage of chaining because 2-chain has the
most marginal value. They at last prove that it is better to balance the degrees of plant
nodes (product nodes) if production capacities (demands) are equal, which is consistent with
the principles proposed by [37].

Other research following Jordan and Graves’ work provides more perceptions about the
chaining concept. [36] evaluate the degree of flexibility of a cross-training CONWIP ([34])
system using the proposed concept structural flexibility matrix. [22] adopt the concept of
graph expander to show that there exist sparse structures which can perform as good as
fully flexible systems, and [21] show analytically that the chaining structure can achieve
about 90% of the benefit of a fully flexible system. [31] extend chaining to a multistage
supply chain setting. They identify the floating and stage-spanning bottlenecks as factors
that cause additional inefficiency when products require multiple process activities, and show
that chaining structure is effective even in large-size supply chains. [24] propose guidelines
on flexibility design in unbalanced symmetric supply chains based on the Chaining principles.

Another stream of research studies the flexibility structure in nonhomogeneous networks.
[45] use a two-stage integer stochastic programming model to formulate the flexibility struc-
ture problem. The paper examines a nonhomogeneous system with imperfect resources.
They use “marginal cross production costs” to model the efficiency loss due to resource shar-
ing. An efficient heuristic algorithm using Lagrangian relaxation is proposed. Computational
results show that their approach generates better solutions than other chaining heuristics
when the system is nonhomogeneous, and/or the cost structure is nonhomogeneous. How-
ever, the flexibility design problem is treated as a pure mathematical programming problem
once the model is set up, which is not very helpful for understanding the underlying nature
of the problem.

[5] consider the question of investing in flexibility in a firm that produces N types of
products. Unlike all the previous work in which resources (or suppliers and their capaci-
ties) are already given, their model assumes that the firm can freely invest in all kinds of
resources. A resource has level k if it is able to produce k types of products, and is further
characterized by the product set it is able to produce. This problem is formulated as a linear
two-stage stochastic program. They prove the decreasing return of flexibility, and show that
there are at most two, adjacent levels of resources in the optimal configuration for supply
chains with symmetric demand distributions. [4] study a similar model in symmetric queue-
ing systems and show that the chaining structure (with level-2 resources only) performs well.
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While all the above literature aims at using flexibility to mitigate demand uncertainty,
[40] look at the effects of disruptions in a balanced homogeneous system with cost for extra
flexibility. It is assumed that the capacity of each supply node equals to the mean demand
at each demand node. It is demonstrated that the common belief that longer chains are
more robust may fail under the existence of disruptions. Based on chain structures, they
optimize over the size of each subnetwork which has a chain structure. They show that one
should have shorter chains if link failures dominate and longer chains if node failures dom-
inate. The paper also studies the networks facing multiple failures through decomposition,
and shows that focusing on shorter chains are always more preferable when the probability
of disruptions at nodes and/or links is high.

Other literature on flexible systems with disruptions includes: [2] study the problem of
maximizing the capacity of a queueing system with fully flexible servers and develop an algo-
rithm to obtain timed, generalized round-robin policies that approach the maximal capacity
arbitrarily closely. [63] show that a “W” structure can achieve most of the flexibility of a
fully flexible structure in a parallel queueing system with unreliable and nonhomogeneous
servers. [62] model a supply chain with 2 products and unreliable suppliers, and reveal that
it is beneficial to contracting with a backup supplier, especially when the risk of primary
suppliers are well estimated or when the backup premium is high.

Our work contributes to the literature by studying the flexibility design problem of gen-
eral unbalanced and nonhomogeneous supply chains with both demand uncertainty and
disruptions. We develop an efficient algorithm to solve for the optimal flexible structure
when supply capacity is abundant, and show by numerical study that our algorithm may
work well for supply chains with limited capacity as well. We also show the diminishing
returns of flexibility and capacity, and study the interaction between them.

2.3 General Model and Assumptions

We consider a single-period problem in a supply chain with M retailers and N external
suppliers as displayed in Figure 2.1. All retailers are owned by a firm and sell the same
product. They face random demands D = (D1, . . . , DM) having joint distribution function
F and mean µ = (µ1, . . . , µM). Unmet demand is lost at the end and incurs a unit penalty
cost p. Retailers acquire product from the external suppliers. However, suppliers are subject
to disruptions. When a supplier is disrupted, it is not able to ship any product. Supplier i
fails with probability qi, for i = 1, . . . , N . We assume that suppliers are independent of each
other, so the availability of one supplier does not affect that of the others. We also assume
that each supplier has a capacity limit which may result from limited inventory space or
production rate.
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Figure 2.1: An N -by-M Supply Chain

A retailer can obtain product from a supplier only if there is a “link” between them. A
link can represent the ability of a plant to produce a product or a contract between two
firms. The dashed lines in Figure 2.1 represent potential links to add. We assume that each
retailer can only be supplied by a subset of suppliers which is referred to as the supplier

set. Let Sj =
{
ij(1), . . . , i

j
(uj)

}
be the supplier set of retailer j, where uj is the cardinality of

Sj. There is a centralized decision maker who decides which links to build at the beginning.
Each link costs the firm c to maintain it. The maintenance cost can be the cost of member-
ship, communication, or transportation. Afterwards, demands are realized and the status
of suppliers are observed. The decision maker then decides how much each retailer should
order from each supplier. We assume that there is no production or transportation lead
time, so orders arrive immediately. Demands are then fulfilled and penalty and maintenance
costs are charged. Our objective is to find the optimal link configuration that minimizes the
expected total cost. Now we summarize the notation used in our model.

Stage 1 decision variables:

Yij =

{
1 if build link (i, j)
0 otherwise

, j = 1, . . . ,M, i ∈ Sj.

Stage 2 decision variables:



CHAPTER 2. FLEXIBILITY DESIGN OF NONHOMOGENEOUS SUPPLY CHAINS
WITH DISRUPTIONS 8

fij = amount of product from supplier i to retailer j, j = 1, . . . ,M, i ∈ Sj.

Parameters:

c: maintenance cost for each link;
p: penalty cost for each unit of lost sale;
D = (D1, . . . , DM): demands at retailers;
µ = (µ1, . . . , µM): mean demands at retailers;
d = (d1, . . . , dM): realized demands at retailers;
q = (q1, . . . , qN): failure probabilities of suppliers;
C = (C1, . . . , CN): capacities of suppliers;

State Variables:

R = (R1, . . . , RN): suppliers’ states. Ri = 1 if supplier i is not disrupted, and 0
otherwise;
r = (r1, . . . , rN): realized states of suppliers;

The problem is formulated as a two-stage mixed integer stochastic programming problem:

• Stage 1:

min c
M∑
j=1

∑
i∈Sj

Yij + pED,R[Q(D,R, Y )]

s.t. Yij ∈ {0, 1} j = 1, . . . ,M, i ∈ Sj

• Stage 2:

Q(d, r, Y ) = min
∑
j

dj −
M∑
j=1

∑
i∈Sj

fij

s.t.
∑
i∈Sj

fij ≤ dj j = 1, . . . ,M (2.1)

∑
j:i∈Sj

fij ≤ Ciri i = 1, . . . , N (2.2)

0 ≤ fij ≤ dj · Yij j = 1, . . . ,M, i ∈ Sj (2.3)

Stage 1 problem minimizes the expected total cost (which consists of the link mainte-
nance cost and the expected penalty cost) over all possible link configurations when only
the demand distribution and suppliers’ failure probabilities are known. Function Q(D,R, Y )
denotes the minimum lost sale given demand D, suppliers’ states R, and link structure Y .
Its value in each scenario is obtained by solving the stage 2 problem.
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In stage 2, demands and suppliers’ states are realized. Orders are placed for each retailer
on suppliers in order to minimize lost sale. fij denotes the size of the order from supplier i to
retailer j. (2.1) requires that the amount of product shipped to retailer j is less than or equal
to the demand at retailer j. (2.2) guarantees that the product is shipped from supplier i only
if supplier i is not disrupted, and the total amount should not exceed supplier i’s capacity.
(2.3) makes sure that an order can be placed on supplier i for retailer j only if link (i, j)
is built. Since the expected total demand is constant, minimizing lost sale is equivalent to
maximizing sales, and thereby stage 2 problem can be solved by solving a max-flow problem.

This two-stage problem is computational intractable. We apply the integer L-Shape
method ([7]), but it is not efficient for large-size supply chains. An alternative approach is
proposed by [45]. They develop an efficient heuristic algorithm using Lagrangian Relaxation
method which can deal with large scale supply chains with continuous demand distributions.
Although their model does not consider supply disruptions, we believe that their algorithm
still works for our model as the formulation is similar. However, there is no lower bound
provided for their heuristic solution, and it is shown that their solution is outperformed by
chaining in some cases. More importantly, besides looking for high-quality solutions, we
also seek for more insights on the structure of the problem and to develop better solution
methods based on its properties.

The main difficulty in solving the general model lies in the estimation of the expected
lost sale – we have to solve a max-flow problem for each scenario which has no close form
solution. Since we are more interested in the impacts of heterogeneity and disruptions on
supply chain design, we relax the constraints on suppliers’ capacities for a while. When
suppliers are uncapacitated, retailers do not interact with each other so that the expected
lost sale at each retailer can be estimated individually. The uncapacitated version of our
problem is examined in the next section.

2.4 Uncapacitated Supply Chains

Since the general model is difficult to solve, we relax the capacity constraints by assuming
that suppliers have unlimited capacities. Under this assumption, the lost sale at retailer j
in a specific scenario (d, r) is equal to dj if all its suppliers fail, and 0 otherwise. So the lost
sale (or sales) at each retailer only depends on its demand and the states of its suppliers. It
is not affected by any other retailer or supplier. Given configuration Y , the expected lost
sale at retailer j is

EDj ,R

Dj · I
{∑
i∈Sj

RiYij = 0
} = E[Dj] · P

∑
i∈Sj

RiYij = 0

 = µj ·
∏
i∈Sj

q
Yij
i
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where I{·} is the indicator function. It turns out that the expected lost sale at retailer j is
equal to its mean demand times the probability that all its suppliers are disrupted. Note
that we make no assumption on demand distributions. What only matter are the mean
demands. Our problem can then be formulated as a nonlinear 0− 1 integer program.

(PG) min c

M∑
j=1

∑
i∈Sj

Yij + p

 M∑
j=1

µj ·
∏
i∈Sj

q
Yij
i


s.t. Yij ∈ {0, 1} j = 1, . . . ,M, i ∈ Sj

We note that the maintenance cost is proportional to the summation of Yij’s. This
enables us to construct subproblems of (PG) by fixing the total number of links. In each
subproblem, we remove the first term of the objective function and impose a constraint on
the total number of links instead. (This constraint might be necessary in some case, e.g. a
company may have a budget limit on link maintenance.) We refer to T as the total number
of links, so T is an integer between 0 and

∑M
j=1 uj. Given T = t, a subproblem decides where

to locate the t links in order to minimize the expected lost sale, or equivalently, to maximize
the expected amount of fulfilled demand. The formulation of the subproblem with T = t is
given below.

(PSt) S(t) = max
M∑
j=1

µj

1−
∏
i∈Sj

q
Yij
i


s.t.

M∑
j=1

∑
i∈Sj

Yij = t

Yij ∈ {0, 1} j = 1, . . . ,M, i ∈ Sj

where S(t) denotes the maximum expected sales if the total number of links is equal to t.
(PG) can then be reformulated as

(PG) min c · T − pS(T )

s.t. 0 ≤ T ≤
M∑
j=1

uj, integer

Once we find an efficient approach to solve (PSt), we can solve (PG) efficiently.

In the rest of this section, we derive solution methods for subproblems, and develop an
efficient algorithm to solve the master problem. At last, we discuss the flexibility design
problem of an uncapacitated nonhomogeneous supply chain with both supply disruptions
and link disruptions.



CHAPTER 2. FLEXIBILITY DESIGN OF NONHOMOGENEOUS SUPPLY CHAINS
WITH DISRUPTIONS 11

Solving the Subproblems

To make the analysis easier, we rank the suppliers in each supplier set in increasing order
of failure probability. So qij

(1)
≤ qij

(2)
≤ . . . ≤ qij

(uj)
, for any j. Because the suppliers for each

retailer are ranked from most reliable to least reliable, it is not reasonable for a retailer to
choose a supplier with higher index instead of one with lower index in its supplier set. Then
it is natural to have the following lemma.

Lemma 1. There exists an optimal solution to (PSt) in which if a retailer is supplied by k
suppliers, then it must be supplied by the first k suppliers in its supplier set.

Lemma 1 implies that we only need to decide the number of suppliers assigned to each
retailer. Let Kj be the number of suppliers assigned to retailer j. Then a solution K =
(K1, . . . , KM) represents the link structure in which retailer j is supplied by supplier ij(1)
through supplier ij(Kj), for j = 1, . . . ,M . (PSt) can then be reformulated as

(PSt) S(t) = max
M∑
j=1

µj

1−
Kj∏
k=1

qij
(k)


s.t.

M∑
j=1

Kj = t

0 ≤ Kj ≤ uj, integer j = 1, . . . ,M

We first develop analytical approaches to solve (PSt) for two special cases of uncapaci-
tated nonhomogeneous supply chains, and then extend them to the general case.

Special Case 1: Homogeneous Mean Demands and Unrestricted Supplier Sets

We begin with a simple case in which all demands have identical mean µ̄ as illustrated in
Figure 2.2. Recall that the expected lost sale at a retailer is equal to its mean demand times
the probability that all its suppliers are disrupted. So we do not have to distinguish retailers
from each other in this special case. In addition, we assume that Sj = {1, . . . , N} for any j,
and q1 ≤ q2 ≤ . . . ≤ qN . Then (PSt) has a simplified formulation as below.
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Figure 2.2: An N -by-M Supply Chain with Homogeneous Mean Demands, Nonhomogeneous
Supply Reliabilities, and Unrestricted Supplier Sets.

(PSIt ) max
N∑
k=1

(
1−

k∏
i=1

qi

)
Lk

s.t.
N∑
k=1

k · Lk = t (1)

N∑
k=1

Lk ≤M (2)

Lk ≥ 0, integer k = 1, . . . , N

where Lk denotes the number of retailers that are supported by k suppliers, where k =
1, . . . , N . (PSIt ) maximizes the expected sales while satisfying two constraints: (1) the total
number of links is equal to t, and (2) the total number of retailers that are covered is at
most M .

If t ≤ M , any non-negative L that satisfies (1) always satisfies (2), so (2) is redundant
and can be removed. Now (PSIt ) is reduced to an unbounded knapsack problem, in which
there are N types of goods with unit value (1 −

∏k
i=1 qi) and unit cost k, k = 1, . . . , N ,

and we need to decide how many of each goods to take to maximize the total value with a
budget limit is t. This problem is NP-complete in general, but our problem can be solved
in polynomial time because of its special property. We relax the integer constraints of the
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knapsack problem, then we only need to find the type of goods with the highest ‘bang per
buck’ and make its quantity as large as possible. The following claim shows that the first
type of goods has the highest ‘bang per buck’.

Claim 2. 1− q1 ≥ 1−
∏k
i=1 qi
k

, for any k ≥ 2.

Hence, the optimal solution to the LP relaxation of the knapsack problem is L∗1 = t, and
L∗k = 0, for k = 2, . . . , N . Note that L∗ is integral and thereby feasible and optimal for the
knapsack problem as well. Therefore, the optimal link structure when t ≤ M is to have
supplier 1 supply t retailers.

The above solution, although only solves a special case of (PSIt ), demonstrates a strategy
of link allocation: try to make full use of more reliable suppliers before considering those less
reliable. Without loss of generality, we can write any t between 0 and MN as t = aM + b,
where a = 0, 1, . . . , N , b = 0, 1, . . . ,M − 1. Then using the above strategy, we should have
each of the first a suppliers supply all M retailers, supplier a+1 supply b of the retailers, and
the other suppliers supply no retailers. Theorem 3 shows that this link structure is actually
optimal for (PSIt ).

Theorem 3. Let a = max {k ∈ Z : kM ≤ t}, b = t − aM , then there exists an optimal
solution to (PSIt ), denoted by L∗, s.t. L∗a = M−b, L∗a+1 = b, and L∗k = 0 for any k 6= a, a+1.

Special Case 2: Homogeneous Supply Reliabilities

In this section, we study another special case of (PSt) in which all suppliers have the same
failure probability q̄ while retailers can have different average demands and restricted supplier
sets. The formulation of this problem is

(PSIIt ) max
M∑
j=1

µj
(
1− q̄Kj

)
s.t.

M∑
j=1

Kj = t

0 ≤ Kj ≤ uj, integer, j = 1, . . . ,M

Problem (PSIIt ) has a concave objective function and affine constraints. If the integer
constraints are relaxed, the problem becomes a convex optimization problem with strong
duality property. However, we can show that the solution to the relaxation problem is not
necessarily integral. To find the optimal solution to (PSIIt ), or at least to narrow down the
feasible region, we further investigate the properties of an optimal solution.

Lemma 4. There exists an optimal solution to (PSIIt ), denoted by K∗, s.t. for any j 6= l,
K∗l ≤ K∗j , if K∗j < uj and µl ≤ µj.
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Figure 2.3: An N -by-M Supply Chain with Nonhomogeneous Mean Demands, Homogeneous
Supply Reliabilities, and Restricted Supplier Sets.

In other words, a retailer with a greater mean demand should not have less suppliers
than one with a smaller mean demand, unless it has been connected to all the suppliers in
its supplier set. This is consistent with the intuition that important retailers deserve more
reliable supply. From Lemma 4, we immediately arrive at the following theorem.

Theorem 5. For (PSIIt ) with t > 0, there exists an optimal solution K∗ s.t. K∗
ĵ
≥ 1 where

ĵ = argmax{j:uj>0}{µj}.

In light of Theorem 5, we develop an algorithm to solve (PSIIt ). The general idea of this
algorithm is to add one link at a time until all t links are assigned. In each iteration, we find
the retailer with the largest expected unmet demand, and connect it to a supplier that has
not been assigned to it if there is any. Here is the notation used in the algorithm:

• ν: number of links that have been built, also the iteration number. ν ∈ {0, 1, . . . , t}.

• K = (K1, K2, . . . , KM): number of suppliers that have been connected to each retailer.

• uνj : upper bound on the number of suppliers that can be assigned to retailer j after
iteration ν − 1.

• µνj : expected amount of uncovered demand at retailer j in iteration ν.

• tν : number of links to be built after iteration ν − 1 .
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Figure 2.4: Solutions to a 2-by-2 Problem

Next, we propose an algorithm to solve problem (PSIIt ).

Algorithm 1:

Step 0:

µ0
j ← µj, u

0
j ← N , for j = 1, . . . ,M

t0 ← t, ν ← 0, K ← (0, 0, . . . , 0)

Step 1:

If tν = 0, stop. K is the optimal solution.

Otherwise, go to Step 2.

Step 2:

ĵ ← argmax{j:uνj>0}{µνj}

ν ← ν + 1, K ← K + eĵ

uνj ←
{
uν−1j − 1 if j = ĵ
uν−1j otherwise

, µνj ←
{
q̄µν−1j if j = ĵ
µν−1j otherwise

tν ← tν−1 − 1

Repeat from Step 1.

where ej is the jth unit vector. The complexity of the algorithm is O(t). Since (PSIIt )
is a special case of (PSt), and Algorithm 2 in next section reduces to Algorithm 1 when
applied to (PSIIt ), the optimality of Algorithm 1 is justified by that of Algorithm 2.
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General Case: Nonhomogeneous Supply Reliabilities, Nonhomogeneous Mean
Demands, and Restricted Supplier Sets

After examining the two special cases, we are ready to move on to (PSt). Now both suppliers
and retailers are nonhomogeneous. As expected, Algorithm 1 is not guaranteed to find the
optimal solution to (PSt). We illustrate this with a small example. Figure 2.4 describes
a 2-by-2 uncapacitated supply chain in which µ = (200, 10), q = (0.1, 0.7), t = 2, and
S1 = S2 = {1, 2}. Lemma 1 suggests that link (1, 1) must be built in an optimal solution,
and the other link is either (2, 1) or (1, 2). According to Algorithm 1, we should build link
(2, 1) because the expected uncovered demand at retailer 1 (which is equal to 200×0.1 = 20)
is greater than that at retailer 2 (which is equal to 10). However, the optimal solution is to
build link (1, 2) instead because the expected sales increases by ∆12 = 10× (1− 0.1) = 9 if
adding link (1, 2), and ∆21 = 20 × (1 − 0.7) = 6 if adding link (2, 1). This example reveals
that, to find an optimal solution to (PSt), it is not enough to compare the expected remaining
demands at retailers. The marginal benefit of adding a link is a more reasonable measure,
and it is affected by both the expected remaining demand and the candidate supplier’s
reliability. Then we have the following theorem analogous to Theorem 5.

Theorem 6. For (PSt) with t > 0, there exists an optimal solution K∗ s.t. K∗
ĵ
≥ 1 where

ĵ = argmax
{j:uj>0}

{
µj

(
1− qij

(1)

)}
.

Theorem 6 suggests a new criteria for the selection of the additional link in each iteration,
and we use it to develop an algorithm to solve (PSt). We keep the notation of Algorithm 1.
Recall that vector K denotes the numbers of suppliers that have been assigned to retailers.
In the following algorithm, it also specifies which suppliers have been assigned to retailers
because retailers always choose their suppliers in increasing order of failure probability. The
algorithm is depicted below.

Algorithm 2:

Step 0:

µ0
j ← dj, u

0
j ← uj, for any j

t0 ← t, ν ← 0, K ← (0, 0, . . . , 0)

Step 1:

If tν = 0, stop. K is the optimal solution.

Otherwise, go to Step 2.

Step 2:
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ĵ ← argmax{j:uνj>0}

{
µνj

(
1− qij

(Kj+1)

)}
ν ← ν + 1, K ← K + eĵ

uνj ←
{
uν−1j − 1 if j = ĵ
uν−1j otherwise

, µνj ←

{
qij

(Kj)
µν−1j if j = ĵ

µν−1j otherwise

tν ← tν−1 − 1

Repeat from Step 1.

The complexity of this algorithm is also O(t). Algorithm 2 is essentially a myopic algo-
rithm because we add the link with the most marginal benefit in each iteration. Nevertheless,
in the following theorem, we show that Algorithm 2 is actually global optimal.

Theorem 7. Algorithm 2 gives an optimal solution to problem (PSt).

(PSIIt ) is a special case of (PSt), and Algorithm 1 is a special version of Algorithm 2
when applied to (PSIIt ). Therefore, the optimality of Algorithm 1 is guaranteed by that of
Algorithm 2.

Back to the Master Problem

Recall that S(T ) is the maximum expected sales when the number of links equal to T , and
the formulation of the master problem is

(PG) min c · T − pS(T )

s.t. 0 ≤ T ≤
M∑
j=1

uj, integer

S(T ) can be estimated efficiently by Algorithm 2, thus we can apply Algorithm 2 for every
T between 0 and

∑M
j=1 uj, and identify the T value, called T ∗, that minimizes the objective

function. The optimal link structure with T = T ∗ is the optimal solution to (PG). In this

way, (PG) can be solved in O

((∑M
j=1 uj

)2
+
∑M

j=1 uj

)
. Next, we propose a more efficient

algorithm to solve (PG) based on the following two propositions.

Proposition 8. Solutions given by Algorithm 2 are nested. That is, a solution with T = t
is fully contained in a solution with T = t+ 1, for t = 1, . . . ,

∑M
j=1 uj − 1.

Proposition 8 shows that, in order to find the optimal solution to (PSt), we only need to
start from an optimal solution to (PSt−1). Put another way, we only need to apply Algorithm
2 once with T =

∑M
j=1 uj to find the optimal solutions and S(T ) values for all values of T .
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Proposition 9. The marginal increment in S(T ) is decreasing in T .

The marginal maintenance cost is constant, and Proposition 9 shows that the marginal
increment in expected revenue is decreasing in T . Hence, we can solve (PG) optimally by
implementing Algorithm 2 with T =

∑M
j=1 uj, and having it terminate once the marginal

increment in expected revenue is less than or equal to the marginal maintenance cost. The
algorithm is summarized as follow.

Algorithm 3:

Step 0:

µ0
j ← dj, u

0
j ← uj, for any j

ν ← 0, K ← (0, 0, . . . , 0)

Step 1:

If ν =
∑M

j=1 uj, stop. K is the optimal solution.

Otherwise, go to Step 2.

Step 2:

ĵ ← argmax{j:uνj>0}
{
µνj
(
1− qKj+1

)}
∆S ← µν

ĵ

(
1− qKĵ+1

)
If ∆S ≤ c/p, stop. K is the optimal solution.

Otherwise, go to Step 3.

Step 3:

ν ← ν + 1, K ← K + eĵ

uνj ←
{
uν−1j − 1 if j = ĵ
uν−1j otherwise

, µνj ←
{
qKjµ

ν−1
j if j = ĵ

µν−1j otherwise

Repeat from Step 1.

The complexity of the algorithm is O
(∑M

j=1 uj

)
so it is very efficient.

Link Disruptions

It is assumed for all the previous models that links are perfectly reliable. However, besides
suppliers, links may also fail. A lot of literature (such as [40]) have shown that link disrup-
tions may affect the performance of supply chains a lot and in a different way from supply
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disruptions. Therefore, we model the flexibility design problem of an uncapacitated nonho-
mogeneous supply chain with both supply disruptions and link disruptions in this section.
We show that the new model is equivalent to a model with supply disruptions only and can
be solved by our algorithm.

To discriminate between supply disruptions and links disruptions, we replace qi and Ri

with qsi and Rs
i , respectively, and define the following new notation:

qlij: failure probability of the link between supplier i and retailer j;
Rl
ij: state of the link between supplier i and retailer j;

ρij : correlation coefficient between Rs
i and Rl

ij.

With non-zero ρij’s, we allow the states of a supplier to be correlated with the states
of the links connected to them. This is usually true because sometimes the disruption at
a supplier and that at a connected link are caused by the same event. Without loss of
generality, assume that supplier sets are unrestricted. As before, because supply capacities
are unlimited, the expected lost sale at each retailer can be calculated individually. At any
retailer j, its demand Dj cannot be fulfilled if, for every supplier connected to it, either the
supplier fails itself or the link connecting them fails. Then the expected lost sale at retailer
j is

EDj ,Rs,Rl

[
Dj · I

{ N∑
i=1

Rs
iR

l
ijYij = 0

}]
= E[Dj]·P

(
N∑
i=1

Rs
iR

l
ijYij = 0

)
= µj·

N∏
i=1

P (Rs
iR

l
ij = 0)Yij .

Define q̃ij = P (Rs
iR

l
ij = 0), and by calculation, we have

q̃ij = qsi + qlij − qsi qlij − ρij
[
qsi (1− qsi )qlij(1− qlij)

] 1
2 .

Then the expected lost sale at retailer j is equal to µj
∏N

i=1 q̃
Yij
ij , and the formulation of the

problem is

(PL) min c
N∑
i=1

M∑
j=1

Yij + p

(
M∑
j=1

µj

N∏
i=1

q̃
Yij
ij

)
s.t. Yij ∈ {0, 1} i = 1, . . . , N, j = 1, . . . ,M

This formulation looks very similar to (PG), but now the failure probabilities are defined
for (i, j) pairs in stead of suppliers.
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Let Sj = {(i, j) : i = 1, . . . , N} for any j, and Ỹ(i,j)j = Yij for any i, j. Then by
substitution, (PL) can be expressed as

min c

M∑
j=1

∑
k∈Sj

Ỹkj + p

 M∑
j=1

µj
∏
k∈Sj

q̃
Ỹkj
k


s.t. Ỹkj ∈ {0, 1} j = 1, . . . ,M, k ∈ Sj

This is exactly the same formulation as (PG) for an MN -by-M supply chain with mean de-
mands µ, failure probabilities q̃, and supplier sets Sj’s. Therefore, an uncapacitated model
with both supply and link disruptions can always be transformed to an equivalent one with
supply disruptions only. Moreover, it can be solved by Algorithm 3 in O(MN). Because

there is a one-to-one correspondence between Y and Ỹ , the optimal solution to (PL) can be

easily restored from the optimal Ỹ .

2.5 When Capacity is Limited

So far we have developed algorithms to solve the network configuration problem with unca-
pacitated suppliers. In this section, we discuss some properties of capacitated supply chains.

We have shown in Proposition 9 that the marginal benefit of adding flexibility is de-
creasing when suppliers are uncapacitated. A natural question to ask is: does this property
hold when suppliers have limited capacities? The answer seems to be YES according to
the numerical experiments in [37] and [38]. Besides, [1] provide analytical justification for
the concavity of the throughput in the degree of each node under the assumptions of ho-
mogeneous nodes and symmetric network configuration. Nevertheless, it is very difficult to
give a general proof because the optimal configurations are not necessarily nested in general.
Rather than construct a supply chain in one step, companies usually improve the existing
supply chain when it is not flexible enough. Most of the time, the improvement is basically
adding more links because it is expensive to rebuild the network from scratch, even though
it is not optimal to do so. Based on Corollary 1 in [1], we have a similar proposition as
Proposition 9 for capacitated supply chains.

Proposition 10. In a capacitated nonhomogeneous supply chain, if links are added sequen-
tially following a myopic policy, then the increment in expected sales is non-increasing.

Another way of improving the performance of a supply chain is to expand supply capacity.
We are also interested in how the expected sales change as supply capacity increases.

Proposition 11. In a capacitated nonhomogeneous supply chain, the expected sales is in-
creasing and concave in supply capacity.
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These two propositions reveal the diminishing return from investment in flexibility or
supply capacity. They shed some light on the question how much flexibility (supply capacity)
is necessary in a supply chain. The interaction between the two is further investigated in
the computational study.

2.6 Numerical Study

In this section, we carry out a series of numerical experiments to demonstrate a potential
heuristic algorithm for capacitated supply chains, and to answer some important questions.
The first study discusses about the selection of T for capacitated supply chains, the second
study tests the performance of Algorithm 2 in capacitated supply chains, and the last study
studies the interaction between flexibility and supply capacity.

Unless otherwise noted, we set the number of suppliers to be 3 and the number of retailers
4. This 3-by-4 structure has several advantages: (a) it has an unbalanced structure, (b) it
has more retailers than suppliers, which is true for most supply chains, (c) it can have three
levels of flexibility: no flexibility (T ≤ 4), mild flexibility (5 ≤ T ≤ 8), and high flexibility
(T ≥ 9), and (d) its small size allows efficient simulation. In all these studies, each supplier’s
state is independently generated according to a Bernoulli distribution with success proba-
bility 1 − qi, i = 1, 2, 3. Demands at retailers are sampled from a 4-dimensional truncated
normal distribution with mean µ, standard deviation σ = µ/4, and the demand distribution
is truncated at µ± 0.5µ. We consider both independent demands and positively correlated
demands. In the positively correlated demand case, the correlation coefficient between each
pair of demands is set at 0.5.

A basic block of all the experiments is the estimation of the expected sales per period. If
suppliers’ capacities are unlimited, the expected sales can be calculated analytically. How-
ever, simulation tools are needed for capacitated supply chains. To obtain a sharp estimation,
the simulation horizon is set at 10, 000 periods. At the beginning of each period, we gener-
ate a set of demand observations and the suppliers’ states. Given the link structure and the
realized random variables, the maximum throughput of the supply chain is obtained by a
max-flow algorithm. By taking average of the throughputs over the simulation horizon, we
obtain an unbiased estimation of the expected sales.

Selection of the Total Number of Links

We have derived an efficient way to find the optimal number of links in uncapacitated supply
chains, but we have not shown how to identify this value for capacitated supply chains. This
section performs a numerical study on this issue.
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As always argued, flexibility is beneficial but could be costly. Suppose that each link
incurs a cost c per period, and each percent of unmet demand incurs a penalty cost p per
period. Note that here we interpret p as the penalty cost per percentage lost sale instead of
per unit lost sale, so that the effect of demand magnitude is eliminated. If T is small, supply
and demand uncertainties may cause large amount of lost sale and thereby a high penalty
cost. On the other hand, the link maintenance cost may be high if T is large. So either too
much or too little flexibility is not preferable. The tradeoff between penalty cost and link
maintenance cost indicates that T should be set at a proper value in between.

To better understand the effect of T , we simulate the expected total cost of unbalanced
nonhomogeneous supply chains with µ = (40, 30, 20, 10) and various T , q, C, and p. The
expected total cost of a supply chain is obtained by enumerating all possible link configu-
rations with the given T value and selecting the minimum average total cost. Demands are
independent, or have a 0.5 correlation between each other. For simplicity, we set C such that
every supplier has the same capacity and the expected total capacity of the supply chain is
equal to the expected total demand.

We plot the expected total cost as functions of T in Figure 2.5. Demands are inde-
pendent in Figure 2.5(a) and 2.5(b) and are correlated with ρ = 0.5 in Figure 2.5(c) and
2.5(d). Because we only care about the optimal value of T , denoted by T ∗, and we can
always rescale the expected total cost by 1/c without changing T ∗, we fix c = 1 to reduce
the dimension of the factors affecting T ∗. All curves show that the cost function is convex in
T . This is because that the expected total cost is the sum of a linear function (maintenance
cost) and a convex function (penalty cost of lost sale) of T . The convexity of total cost
makes it flat around T ∗, hence it only increases slightly if T deviates from T ∗. It is also
notable that the curves with ρ = 0.5 are almost identical to those with ρ = 0, which means
that the expect total cost does not increase substantially if demands are positively correlated.

Figure 2.5 also reveals that T ∗ depends on q and p. Consider the extreme cases: if q is the
zero vector, all suppliers are perfectly reliable, then not much flexibility is needed to achieve
a desirable level of expected sales; on the other hand, if q is (1, 1, 1), no supplier works at
any time, then no link should be built. Hence, T ∗ might be concave in q. Similarly, T ∗ might
be increasing with respect to p by intuition, because the harder lost sale is penalized, the
more flexibility is desirable.

To justify the conjectures above, we design an experiment to investigate T ∗’s dependency
on q and p. We first consider a 3-by-4 nonhomogeneous supply chain with µ = (40, 30, 20, 10).
To make life easier, we let qi’s change proportionally, and C changes accordingly to keep the
expected total supply capacity equal to the expected total demand. Figure 2.6 shows T ∗ v.s.
q under different p values with independent or correlated demands. It turns out that T ∗ is
not concave in q as we expected. However, T ∗ is quasi-concave in q. Comparing the curves
in the same figure, we find that a curve with a larger p is always above one with a smaller
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q 0.1 0.13 0.17
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 7.7851962 6.22441656 5.57766635 5.74675949 6.41030029 7.08962047 8.05787159 9.04971894 10.0496464 11.0491123 12.0496968 13.0574944
20 20 14.5979744 10.4871845 8.18028332 7.52449451 7.86343962 8.22435083 9.15678363 10.1430083 11.1371034 12.142915 13.1453882 14.1529183
30 30 21.3873813 14.7289811 10.7719372 9.28457104 9.29247777 9.35134867 10.2393805 11.2182408 12.2053107 13.2138726 14.2180824 15.2227172
40 40 28.1472427 18.9281623 13.3219884 11.0312799 10.7097217 10.4486879 11.3059365 12.2736207 13.2719213 14.2733456 15.2735879 16.3011308
50 50 34.9671969 23.1921916 15.934276 12.8167389 12.1484952 11.5429375 12.3956384 13.3413196 14.3375626 15.3377524 16.3374669 17.3783591

q 0.3 0.4 0.5
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 8.22006187 7.4387539 7.25325167 7.43507367 7.88640372 8.45865641 9.13689444 10.0405643 11.0226877 12.0152039 13.0160731 14.023528
20 20 15.4711531 12.9067163 11.4188006 10.9073183 10.7727697 10.9242953 11.2694413 12.10957 13.0420501 14.0545701 15.0166895 16.037309
30 30 22.6478566 18.3452839 15.7470616 14.3420723 13.6513335 13.3683261 13.4237287 14.0856177 15.0435901 16.0258084 17.0185447 18.0649897
40 40 29.8587257 23.6986999 19.9087917 17.732625 16.5561683 15.7929736 15.5050128 16.1083797 17.0146967 18.0072637 19.0030749 20.0436075
50 50 37.131322 29.2177918 24.1140553 21.1811022 19.483061 18.2984345 17.6792384 18.1217849 19.0512553 20.0361713 21.0416488 22.0409007
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(a) ρ = 0, q = (0.1, 0.13, 0.27)

q 0.1 0.13 0.17
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 7.7851962 6.22441656 5.57766635 5.74675949 6.41030029 7.08962047 8.05787159 9.04971894 10.0496464 11.0491123 12.0496968 13.0574944
20 20 14.5979744 10.4871845 8.18028332 7.52449451 7.86343962 8.22435083 9.15678363 10.1430083 11.1371034 12.142915 13.1453882 14.1529183
30 30 21.3873813 14.7289811 10.7719372 9.28457104 9.29247777 9.35134867 10.2393805 11.2182408 12.2053107 13.2138726 14.2180824 15.2227172
40 40 28.1472427 18.9281623 13.3219884 11.0312799 10.7097217 10.4486879 11.3059365 12.2736207 13.2719213 14.2733456 15.2735879 16.3011308
50 50 34.9671969 23.1921916 15.934276 12.8167389 12.1484952 11.5429375 12.3956384 13.3413196 14.3375626 15.3377524 16.3374669 17.3783591

q 0.3 0.4 0.5
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 8.22006187 7.4387539 7.25325167 7.43507367 7.88640372 8.45865641 9.13689444 10.0405643 11.0226877 12.0152039 13.0160731 14.023528
20 20 15.4711531 12.9067163 11.4188006 10.9073183 10.7727697 10.9242953 11.2694413 12.10957 13.0420501 14.0545701 15.0166895 16.037309
30 30 22.6478566 18.3452839 15.7470616 14.3420723 13.6513335 13.3683261 13.4237287 14.0856177 15.0435901 16.0258084 17.0185447 18.0649897
40 40 29.8587257 23.6986999 19.9087917 17.732625 16.5561683 15.7929736 15.5050128 16.1083797 17.0146967 18.0072637 19.0030749 20.0436075
50 50 37.131322 29.2177918 24.1140553 21.1811022 19.483061 18.2984345 17.6792384 18.1217849 19.0512553 20.0361713 21.0416488 22.0409007
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(b) ρ = 0, q = (0.3, 0.4, 0.5)

q 0.1 0.13 0.17
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 7.78535873 6.2226116 5.57613507 5.75803208 6.47661313 7.18865126 8.14993652 9.14495401 10.1425635 11.1425285 12.1460969 13.1460969
20 20 14.5702303 10.4437978 8.14693436 7.5150525 7.95322626 8.37981556 9.29987305 10.2851395 11.2850569 12.2850569 13.2850615 14.2925003
30 30 21.4218643 14.6444955 10.6334887 9.15766879 9.31934276 9.4758625 10.3486147 11.3204384 12.3196035 13.3196035 14.3196035 15.3395946
40 40 28.2291524 18.8569199 13.190314 10.8860994 10.7500043 10.6227741 11.4753877 12.4291219 13.4261381 14.4265374 15.4279831 16.43078
50 50 34.8808083 23.031089 15.7790539 12.6718826 12.2870842 11.8672022 12.6793299 13.6328003 14.6327005 15.6317911 16.6327005 17.6453095

q 0.3 0.4 0.5
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 8.23787497 7.45448862 7.27003065 7.47309125 7.91432863 8.50899899 9.18998371 10.1038852 11.070913 12.0678901 13.066296 14.0683569
20 20 15.4728867 12.8931323 11.5167567 10.9368504 10.8468077 11.0146778 11.3773698 12.1961599 13.1507667 14.1376333 15.1359292 16.1584155
30 30 22.661612 18.2383117 15.6864639 14.2549399 13.5988123 13.3025954 13.3567979 14.0543381 14.9806727 15.9644376 16.9611812 17.9742121
40 40 29.8876484 23.649902 19.9395751 17.6447487 16.4416559 15.7733731 15.4557827 16.0714375 16.9655166 17.9488283 18.943182 19.9502301
50 50 37.1203085 29.1909137 24.3136248 21.3086906 19.604307 18.5014436 18.0514294 18.5008672 19.4086086 20.3572264 21.378868 22.4226277
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(c) ρ = 0.5, q = (0.1, 0.13, 0.27)

q 0.1 0.13 0.17
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 7.78535873 6.2226116 5.57613507 5.75803208 6.47661313 7.18865126 8.14993652 9.14495401 10.1425635 11.1425285 12.1460969 13.1460969
20 20 14.5702303 10.4437978 8.14693436 7.5150525 7.95322626 8.37981556 9.29987305 10.2851395 11.2850569 12.2850569 13.2850615 14.2925003
30 30 21.4218643 14.6444955 10.6334887 9.15766879 9.31934276 9.4758625 10.3486147 11.3204384 12.3196035 13.3196035 14.3196035 15.3395946
40 40 28.2291524 18.8569199 13.190314 10.8860994 10.7500043 10.6227741 11.4753877 12.4291219 13.4261381 14.4265374 15.4279831 16.43078
50 50 34.8808083 23.031089 15.7790539 12.6718826 12.2870842 11.8672022 12.6793299 13.6328003 14.6327005 15.6317911 16.6327005 17.6453095

q 0.3 0.4 0.5
p\T 0 1 2 3 4 5 6 7 8 9 10 11 12

10 10 8.23787497 7.45448862 7.27003065 7.47309125 7.91432863 8.50899899 9.18998371 10.1038852 11.070913 12.0678901 13.066296 14.0683569
20 20 15.4728867 12.8931323 11.5167567 10.9368504 10.8468077 11.0146778 11.3773698 12.1961599 13.1507667 14.1376333 15.1359292 16.1584155
30 30 22.661612 18.2383117 15.6864639 14.2549399 13.5988123 13.3025954 13.3567979 14.0543381 14.9806727 15.9644376 16.9611812 17.9742121
40 40 29.8876484 23.649902 19.9395751 17.6447487 16.4416559 15.7733731 15.4557827 16.0714375 16.9655166 17.9488283 18.943182 19.9502301
50 50 37.1203085 29.1909137 24.3136248 21.3086906 19.604307 18.5014436 18.0514294 18.5008672 19.4086086 20.3572264 21.378868 22.4226277
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(d) ρ = 0.5, q = (0.3, 0.4, 0.5)

Figure 2.5: Expected Total Cost v.s. Number of Links

p, which is consistent with our intuition that T ∗ is increasing in p. Again, T ∗ has the same
value no matter demands are independent or not, except for the instance when p = 10 and
q = (0.4, 0.53, 0.67). Therefore, positive correlation between demands has little impact on T ∗.

Algorithm Test

It has been shown in the last study that a capacitated supply chain’s expected total cost
is robust against the variability of T in a neighborhood of T ∗, and there are simple rela-
tionships between T ∗, and failure probabilities and the penalty cost. Thus, it is possible to
find a T that generates close-to-optimal expected total cost using some heuristics. Suppose
T ∗ is given, we only need an algorithm to determine where to locate these links. In this
study, extensive simulations are carried out to test how Algorithm 2 works with limited
supply capacity. Our results show that Algorithm 2 provides reasonably good solutions for
capacitated supply chains under weak conditions. We demonstrate its performance with the
following numerical examples.
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Figure 2.6: Optimal Number of Links v.s. Failure Probabilities in Unbalanced Nonhomoge-
neous Supply Chains with µ = (40, 30, 20, 10)

Consider a 3-by-4 system with µ = (40, 30, 20, 10), q = (0.1, 0.3, 0.5), and ρ = 0. Let
suppliers’ capacities be (30, 30, 30), (50, 50, 50) and (80, 80, 80). These three capacity
portfolios represent the cases that the expected total capacity is (1) less than, (2) roughly
equal to, and (3) greater than the expected total demand, respectively. T increases from
1 to 11 with increment 1 (T = 0 or 12 is not studied because the problem has unique fea-
sible solution in these cases). For each instance, the optimal link structure is identified by
enumerating all possible structures and choose the one that achieves the maximum average
sales in simulation. As a byproduct of simulation, the expected sales when using the link
structure given by Algorithm 2 are also estimated.

Figure 2.7 compares the expected sales using optimal link configurations and those using
link configurations given by Algorithm 2. In both figures, Algorithm 2 configurations are
dominated by the optimal ones. The difference between the two sets of performance is sub-
stantial when C = (30, 30, 30), and is almost negligible when C = (80, 80, 80). This result
is not surprising – since the difference is caused by limited capacities, it must go to zero as
capacities become sufficient. Therefore, the link configurations given by Algorithm 2 may
perform almost as good as the optimal ones when supply capacity is large enough.

To gain more insights, we calculate the relative error in expected sales, denoted by er,
which is given by

er =
optimal average sales− average sales using Algr.2 solutions

optimal average sales
× 100%.

Figure 2.8 shows er with different T and C. As shown in Figure 2.7(a) and Figure 2.7(b), er
decreases as C increases – it can be over 55% when C = (30, 30, 30) while it is within 41%
and 14% when C = (50, 50, 50) and (80, 80, 80), respectively. Although er is obviously not
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Figure 2.7: Performance Comparison of Algorithm 2 Solutions and Optimal Solutions with
Different Values of T and C
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Figure 2.8: Relative Error in Expected Sales when Applying Algorithm 2 to Capacitated
Supply Chains

monotone with respect to T , the general trend is that er is small when T is large, except for
T = 1. When T is restricted to be greater than 4, the number of retailers, the performance
of Algorithm 2 configurations can be greatly improved. For instance, er is within 12% in-
stead of 41% when C = (50, 50, 50) and T > 4. It is reasonable to believe that Algorithm 2
provides reasonably good solutions for capacitated supply chains when T ∗ > M , and when
the expected total capacity of the supply chain is close to the expected total demand.

Supply chain µ q ρ
A1 (40, 30, 20, 10) (0.1, 0.2, 0.3) 0
A2 (40, 30, 20, 10) (0.1, 0.2, 0.3) 0.5
B1 (40, 30, 20, 10) (0.1, 0.3, 0.5) 0
B2 (40, 30, 20, 10) (0.1, 0.3, 0.5) 0.5
C1 (40, 30, 20, 10) (0.7, 0.8, 0.9) 0
C2 (40, 30, 20, 10) (0.7, 0.8, 0.9) 0.5
D1 (1000, 100, 10, 1) (0.1, 0.2, 0.3) 0
D2 (1000, 100, 10, 1) (0.1, 0.2, 0.3) 0.5

Table 2.1: Typical Supply Chains and Their Specifications

To better evaluate Algorithm 2’s performance when supply capacity is limited, we test it
in several more supply chains while keeping the expected total capacity equal to the expected
total demand and increasing T from 5 to 8 with increment 1. Those T values greater than
8 are not tested because the relative error is negligible in these cases according to Figure
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2.8. Table 2.1 summarizes the specifications of the supply chains considered here. They
are separated into two groups: group 1 (A1, B1, C1, D1 ) have independent demands, while
group 2 (A2, B2, C2, D2 ) have positive correlated demands with correlation coefficient 0.5.
Within each group, we consider the four cases: (A) similar demands, and small and similar
failure probabilities, (B) similar demands, and small and very different failure probabili-
ties, (C ) similar demands, and large and similar failure probabilities, and (D) very different
demands, and small and similar failure probabilities. The result is described in fig:errors.
We notice that Algorithm 2 performs almost the same no matter demand is independent or
positively correlated. We also find that the relative error is relatively high (≈ 18%) in A1,
A2, B1 and B2, and is almost zero in C1, D1, C2, and D2. This is because that Algorithm
2 tends to assign too many retailers to the most reliable suppliers when demands are close
to each other, and failure probabilities are small and/or very different. When this happens,
the demand allocated to the most reliable suppliers outweighs their capacity a lot, leading
to more lost sale. Therefore, Algorithm 2 works better for capacitated supply chains when
demands are significantly different from each other, and suppliers are frequently disrupted.

Another observation from Figure 2.8 is that the value of er drops dramatically at T = 5
and T = 9. This is because of the introduce of new suppliers. In the link configuration given
by Algorithm 2, only supplier 1 is used when T ≤ 4, supplier 2 is also used when 5 ≤ T ≤ 8,
and all three suppliers are engaged when T ≥ 9. So the total capacity of the system raises
by 78% when T increases from 4 to 5, and raises by 31% when T increases from 8 to 9.
These sudden increases in capacity cause the sudden improvements in the performance of
Algorithm 2 configurations. This reminds us about the importance of matching demand and
capacity. More precisely, we should (1) try to match the expected capacity at each supplier
and the expected total demand it faces, and (2) try to match the expected demand at each
retailer and the expected capacity of its suppliers. These principles are general versions of
those proposed by [37]. This idea can be incorporated into Algorithm 2 to develop an heuris-
tic approach to solve capacitated problems. In each iteration, we find the supplier with the
largest expected remaining capacity, and connect it to the retailer with the largest expected
unmet demand. This algorithm is greedy and not necessarily optimal. We will study its
performance in the future.

These studies on selection of T ∗ together with the sensitivity analysis of expected total
cost over T lead to an idea of solving capacitated nonhomogeneous problems heuristically.
If we can narrow down the range of possible values of T ∗ based on q, p, and C, and apply
Algorithm 2 with a T properly chosen from that range, then the solution’s performance could
be very close to optimal unless C is very limited.
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Figure 2.9: Relative Error in Expected Sales when Applying Algorithm 2 to Capacitated
Supply Chains
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Interaction between Flexibility and Supply Capacity

It is demonstrated in [37] that the value of flexibility may depend on supply capacity. They
conclude that flexibility is most beneficial when total capacity is equal to total demand, but
has little or even no value when capacity is very small or very large. We undertake a similar
study on our model, and find some interesting results.

We look at a 3-by-4 supply chain with µ = (130, 90, 50, 20) and q = (0.3, 0.4, 0.5), and
increase T from 0 to 12, C from (10, 10, 10) with step size (60, 60, 60). From Figure 2.10(a),
we see that the expected sales are increasing and concave in T regardless of the value of
C ([1] prove this result for homogeneous supply chains). This is a strong evidence that
Proposition 9 holds in more general settings. We also note that adding additional links into
a system that already has 3 or more links cause no improvement when C = (10, 10, 10). This
comes from the same reason as [37] argue, “If each plant’s capacity is less than the minimum
possible demand for each product, each plant is fully utilized under any possible demand”.
Nevertheless, we observe the opposite result when C is sufficiently large. In Figure 2.10(a),
the curve corresponding to C = (∞,∞,∞) represents the case that the capacity of each
supplier is no less than the maximum total demand (435). We see that the expected sales
is strictly increasing in T in this case, which suggesting that adding flexibility is beneficial
even when capacity is arbitrarily large. This phenomenon reveals that adding flexibility could
NOT be fully substituted by increasing supply capacities.

To see how the benefits of flexibility changes with respect to capacity more clearly, we
plot the increment in expected sales when adding flexibility in Figure 2.10(b) as a function of
each supplier’s capacity. The curves ∆3,6, ∆6,9 and ∆9,12 represent the increases in expected
sales when T increases from 3 to 6, 6 to 9 and 9 to 12, respectively. When each supplier’s ca-
pacity is less than 70, extra flexibility after adding 6 links has no value, when each supplier’s
capacity is between 70 and 190, the expected sales of the supply chain can be increased by
adding 3 more links, and when each supplier’s capacity is greater than 190, the expected
sales can be further raised by making the supply chain fully flexible. Therefore, rather than
weakening the effect of flexibility, adding capacity actually magnifies the benefits of flexibility.

2.7 Summary

In this chapter, we look at a flexibility design problem in a capacitated nonhomogeneous
supply chain with disruptions. Two types of cost are considered: penalty cost for lost sale
and the cost of link maintenance. Our objective is to find the network configuration that
minimizes the expected total cost. This problem is formulated as a two-stage mixed integer
stochastic program which is hard to solve for exact optimal solutions. Since the primary
interest of our work is to investigate the properties of optimal network configurations when
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supply chains have unbalanced nonhomogeneous structures and are exposed to disruptions,
we relax the capacity constraints for a while to make the model solvable while keeping those
key factors. The maintenance cost of links is proportional to the total number of links.
This enables us to decompose the problem by fixing the number of links at T , and try to
maximize the expected sales. A myopic algorithm (Algorithm 2) is proposed to solve the
subproblem and is proved to be global optimal as well. The complexity of the algorithm is
O(T ). Based on Algorithm 2, an efficient algorithm (Algorithm 3) is proposed for solving
the uncapacitated model. Next, we show that a problem with both supply disruptions and
link disruptions can always be transformed to an equivalent one with supply disruptions
only, and thus can be solved by Algorithm 3. For capacitated problems, we prove that the
marginal benefit of adding flexibility or increasing supply capacity is decreasing.

We gain some major insights from numerical experiments. First of all, we find that the
expected total cost of the supply chain is convex in T , so the system performance is robust
in a neighborhood of T ∗. Moreover, T ∗ appears to be quasi-concave in q, and increasing in p.
These provide some guidelines on identifying T ∗. Secondly, we show that Algorithm 2 may
give good solutions for capacitated supply chains, if the expected total capacity is roughly
equal to or greater than the expected total demand and if T is greater than the number of
retailers. Lastly, In the investigation of the interaction between capacity and flexibility, we
observe decreasing marginal benefits of flexibility in a capacitated supply chain with supply
disruptions. Additional flexibility is valueless when supply capacity is very small. Neverthe-
less, when suppliers are unreliable, adding flexibility is encouraged when supply capacity is
large.

We identify several possible directions for future research. Firstly, the ideas obtained from
numerical studies can be incorporated into Algorithm 2 to extend it to a heuristic algorithm
for capacitated problems. Secondly, our model can be enriched by generalizing the cost
structure. Instead of assuming each link incurs the same maintenance cost, we can allow the
costs to be nonhomogeneous and/or degree-dependent. Lastly, besides the expected value of
sales, its variance is also an important measure of supply chain performance. We can bring
variance in to our model by either imposing a hard constraint or adopting the CVaR model.
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Chapter 3

Flexible Hub Location Model for Air
Transportation Networks

3.1 Introduction and Literature Review

From late October to early November, 2012, Hurricane Sandy forced the closure of major air-
ports all over the northeast coast of the United States, and flights around the world from or
to those airports were canceled and huge losses had incurred to airlines. It has been noticed
that in addition to paying for meals and accommodations for the travelers who got stuck
in airports, airlines have also reported significant losses towards canceling flights that use
northeast coast airports as intermediate stops. Ideally, their losses could have been mitigated
if they were able to reroute some of their flights through operating airports such as Logan
International Airport at Boston. This story gives rise to the following research questions:
how should we design an air transportation network that possesses necessary flexibility to
hedge against the risk of disruptions at airports, what is the associated benefit and costs, and
how to operate and plan the routes in a flexible network. In the remainder of this chapter,
we focus on the design of a flexible air transportation network, and answer these research
questions. However, we should point out that the same design methodology applies not only
for the air transportation problem, but also for the general hub-and-spoke systems, which is
also known as hub location systems.

Hub location models have important applications in industry companies such as airlines,
logistic companies, and telecommunication firms. A common feature of these applications
is that there exists demand of either the movement of physical goods or the usage of links
from origins to destinations. To satisfy the demand, it is necessary to build connections for
each of the origin-destination (OD) pairs. The OD pairs can be either connected directly,
or connected via a series of links. Then, routing decisions need to be made, based on the
network topology. Usually, there are costs associated with building links, and there are also
transportation costs as functions of demand as well as route lengths for the flows between
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each of the OD pairs. The objective can be various, and the majority of existing research
sets minimizing costs as the objective.

[16] publish a review paper to celebrate the 25th anniversary of two seminal transporta-
tion hub location models ([53] and [52]). The paper gives an insightful review of the origins
of hub-location problems, and comments on the status quo of related research. It can be ob-
served from [16] that the four most unique features of hub location models are the following:
(1) demand is characterized by OD pairs, (2) there is benefit of routing via hubs, (3) a route
for any of the OD pairs can pass at most two hubs, and (4) there is no direct connection
between spokes. The first feature distinguishes hub location models from facility location
models, in which demand is characterized by the node of interests. The second feature pro-
vides incentives for using hubs. In fact, the reason for employing a hub-and-spoke system
rather than point-to-point systems has three folds: hub-and-spoke systems exert economy of
scale by consolidating flows at hubs and save operating costs; hub-and-spoke systems have
fewer links than the point-to-point systems; hub-and-spoke systems also help to increase the
reliability of the network ([41]).

The last two features of hub location models are made by [15]. The third one actually
comes from the assumptions of fully connectivity between hubs and the triangle inequality.
Specifically, suppose that a route passes three hubs, then by the triangle inequality, the costs
associated with transportation can be decreased by using the link that connects the first and
the last hubs in the original route. The last feature is justified based on the removal of flows
that are large enough to be routed directly. There exists work that treats the flow more
sophisticated that adding links between spokes is necessary, see for example [3], however
in this paper, we follow the more general setting and only focus on demand flows that are
beneficial to be transported via hubs.

In a nutshell, given their benefits and unique features, hub location models aim to solve
for the optimal hub locations, assignment of spokes to hubs, and the routes for flows between
each of the OD pairs. Here, it is worth mentioning the categorization of hub location models
based on assignment assumptions. If each spoke is allowed to be connected to only one hub,
then the corresponding model belongs to the category of Single Allocation models. For single
allocation models, all routes starting from the same origin share the same first hub visited.
On the other hand, if there is no limit on the number of hubs each spoke can be connected to,
then the corresponding model is a Multiple Allocation one. For multiple allocation models,
routes staring from the same origin can have different first hub visited, depending on the
destinations. In this chapter, we adopt a variant of multiple allocation models.

Hub location models can be viewed as a hybrid of facility location models and network
flow models. Selecting hub locations and assignment is analogous to facility location prob-
lems, while choosing the optimal routings is a network flow problem. However, decisions are
made jointly, which makes hub location models more difficult to solve compared to the other
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two problems. Nonetheless, the connections, especially that with facility location models,
inspire new research of hub location problems. For example, there are four fundamental
facility location problems: p-center, p-median, set covering, and uncapacitated facility loca-
tion problems, similarly, [15] formulate four fundamental hub location models: p-hub center,
p-hub median, hub covering, and uncapacitated hub location models. The fundamental hub
location models are more complicated than their facility location counterparts. For instance,
[51] presents an integer formulation for the single allocation p-hub median problem, using as-
signment variables Zij = 1 if spoke i is allocate to hub j. Although the dimension of decision
variables is similar to that of the p-median problem, the formulation is quadratic. Meanwhile,
[46] presents the multiple allocation model for p-hub median problem, in which decision vari-
ables take form of Xijkm, representing the fraction of flow through path (i− k −m− j) for
the OD pair (i, j), and thus the dimension of decision variables is much greater. Other
fundamental hub location problems can be formulated in similar ways, see for example [15],
[28], and [61].

Hub location problems have received much attention in the past quarter century. Differ-
ent model formulations and various solution approaches have been studied. Here we briefly
summarize the work that is more related to this chapter. The first quantitative model for
hub location problems appears in 1986 ([53], [52], and [51]). [51] presents the first quanti-
tative analysis on the p-hub median location problem using Civil Aeronautics Board (CAB)
data set, which has then become the standard test-bed for hub location models. Later on,
motivated by the desire to solve larger instances, [74] and [75] formulate single allocation
and multiple allocation p-hub median models based on the idea of multi-commodity flow,
and manage to reduce the size of the formulations to solve problems with up to 200 nodes.
Since then, one important thread of research extension focuses on solution approaches for
the fundamental problems and their variations, see for example [47], [13], [27], [67], and [57].
[28] and [61] provide comprehensive surveys of modeling techniques and solution methods.
Nonetheless, as noted by [16], hub location problems usually solve for strategic level deci-
sions, and thus the fast CPU time is less important. Another thread of research focuses on
extending hub location models by incorporating more realistic assumptions. For instance,
the discount in operating costs between hubs is used to be treated as independent of flow
quantities. [23], [54], and [12] formulate new models in which unit transportation costs are
flow-dependent. Similar extensions include considering capacity limits ([73]), adding service
level constraints ([60], [14]), extending to dynamic hub location problems ([25], [35]), and
modeling competitive hub location problems ([79]).

Another important extension is modeling the reliability of hubs. Almost all hub location
research assumes that hubs will work as planned. However, as in our motivating example,
severe weather, natural disasters, terrorist attacks, and labor strikes can all cause tempo-
rary unavailability of hubs. Hub-and-spoke systems are more vulnerable to disruptions than
point-to-point systems. In a point-to-point system, one failed node affects only flows from
or to that node, and one failed link affects only the flow between one OD pair. But in a



CHAPTER 3. FLEXIBLE HUB LOCATION MODEL FOR AIR TRANSPORTATION
NETWORKS 35

hub-and-spoke system, one failed hub affects flows from or to all its spokes. In other words,
optimal hub locations and assignment obtained by assuming hubs are perfectly reliable may
contain hubs that have high failure rates, and thus the corresponding system may have high
“failure costs”.

The current practice in the air transportation system of the United States is to assign a
nominal route to each flight and to reroute it if the intermediate hubs are disrupted. Rerout-
ing decisions are made primarily according the National Playbook which contains alternative
routes for common scenarios. These routes are mostly obtained from historical experience
and are not necessarily optimal. In addition, they are lack of flexibility and may cause con-
gestions at hubs. Therefore, we need a joint optimization model that considers the outcome
in every scenario when making strategic level decisions. The main idea of our model is to
designe a flexible hub-and-spoke network to hedge against the risk of hub disruptions. How-
ever, flexibility comes at the costs of additional link expenses. Therefore, we seek for the
optimal trade-off between flexibility and link costs.

In the facility location community, there have been growing interests in facility location
models under disruptions. Specifically, both hubs and links are possible to fail. The first
reliable facility model was introduced by [70]. They study the stochastic p-median problem
and assume that all nodes have equal failure probabilities. The assumption of uniform failure
probabilities is relaxed in [66], and several heuristic solution algorithms are provided. Other
work considering facility disruptions includes [58], [59], and [50].

Unlike the fast growing situation of reliable facility location research, there is only a
few papers study hub location problems under hub disruptions. The main difficulty rises
when considering backup hubs, as for each of the OD pairs in a p-hub system, if one of the
hubs on the designated route fails, there are (p − 1)2 alternate routes to choose from, and
choosing the hub locations is even harder after taking into consideration of backup hubs
and alternative routes. [39] is the first to study reliable hub location problems. In [39],
both single allocation and multiple allocation models are formulated, and the objective is to
maximize the expected network flow, in the absence of backup hubs and alternative routes.
[81] also formulate both single and multiple allocation p-hub median location problems, and
the objective is to minimize the expected total operating costs. The paper makes several
assumptions to enable a Lagrangian relaxation solution approach: (1) it is assumed that no
more than one hub will be disrupted at any time, (2) the model does not consider loss of
flow due to the failures of spokes. However, these assumptions fail if the failure probabilities
are large or positively correlated. We relax these assumptions in our model.

This chapter contributes to the literature of hub location problems in the following as-
pects: (1) to the best knowledge of the authors, this chapter is the first that studies the
flexible capacitated hub location problem, which deals with correlated airport disruptions,
(2) the model proposed in this chapter adopts a variation of multiple allocation to allow
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more flexible routing decisions, (3) we reveal that a hub-and-spoke structure in which each
spoke are assigned with 2 hubs can perform almost as good as a fully flexible one in which
each spoke are assigned with all hubs, and (4) principles on deciding hub locations and as-
signment are proposed to serve as guidelines on the design of networks with disruptions.

The remainder of the chapter is organized as follows. Section 3.2 presents our model
formulation and describes the solution method. In Section 3.3, we carry out a series of nu-
merical studies to evaluate the benefit of flexibility, to investigate the effects of capacity and
disruption correlation, and to get insights on the design of networks with disruptions. We
conclude in Section 3.4 and point out several future directions.

3.2 Model

We look at the design problem of an air transportation system with airports i ∈ I. The hub-
and-spoke framework is adopted. We follow the following assumptions in the traditional hub
location models. The transportation cost matrix is symmetric. That is, the transportation
cost from airport i to airport j is the same as that from j to i. Based on this assumption,
we define the traveling demand between i and j as the summation of the traveling demand
in both directions. The traveling demand between each pair of airports is deterministic and
constant. Each airport has a finite capacity and incurs a fixed cost if it is selected as a hub.
The subgraph of hubs is complete. Transportation costs in hub-to-hub routes are discounted
by a factor β ∈ (0, 1).

Unlike in traditional hub location problems, airports are not reliable in our model. Dis-
ruptions may happen at airports with respective probabilities, and the state of one airport
may be dependent on those of the others. When an airport is disrupted, no passenger can
pass, leave from, or arrive at it. Penalty cost is incurred whenever traveling demand is lost.
To cope with hub disruptions, we allow each spoke airport to have at most N hubs, and to
choose which of these hubs to use in each scenario. We refer to this network structure as an
N-flexible hub-and-spoke structure. To measure the increment in operational cost at hubs
due to added flexibility, we incorporate a variable cost into the cost of each hub, which is
referred to as the flexibility cost. Define the degree of flexibility of a hub as the number of
spokes connected to it. We assume that the flexibility cost of a hub is proportional to its
degree of flexibility.

The goal of our model is to determine the hub locations and assignment in order to min-
imize the expected total cost of the air transportation network, which consists of the fixed
cost, the flexibility cost, the transportation cost, and the penalty cost. We choose to use a
scenario-based model in order to characterize the correlation between airport disruptions1.

1In the rest of this chapter, we use ‘correlation between airports’ for ‘correlation between airport disrup-
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The total number of possible scenarios can be huge in practice, but when the failure prob-
abilities of airports are small, we can limit the number of scenarios by only including those
with substantial probabilities. This will be further demonstrated in numerical studies.

Our model differs from a similar work, [81], in several ways. First of all, our model is
more flexible in both network structure and operations. Instead of restricting the number
of alternative hubs of each airport (or OD pair) by 2, we allow each airport to have up to
N hubs, for N = 1, 2, . . .. In this way, our model is also able to represent a wide range
of network structures, from the traditional hub-and-spoke structure with single allocations
(N = 1) to a fully flexible hub-and-spoke structure (N = I). In the operational level, [81]
assumes that airports need to use hubs in the pre-determined primary-backup order. In
our model, airports choose which hubs to use and decide how much flow to transport via
each hub in each scenario. Thus, each OD pair is able to adjust its routes according to the
availability of hubs. Secondly, our model captures the correlation between airports, which
is fairly common in practice. It is shown in numerical studies that airport correlation may
have great impact on the network structure. Thirdly, our model considers the capacity lim-
its at airports. Lots of literature on flexibility has proved that capacity affects the value of
flexibility, and flexibility in turn changes the capacity utilization rate. Lastly, we use fixed
cost to control the total number of hubs instead of fixing it at a constant P . Actually, as we
will show, flexibility may reduce the number of hubs needed.

Formulation

The notation used in our model are summarized below.
Parameters:

• I: set of airports.

• S: set of scenarios.

• fi = fixed cost of a hub at i, for i ∈ I.

• wi = unit flexibility cost of a hub at i, for i ∈ I.

• ci = capacity of airport i, for i ∈ I.

• dij = unit traveling cost of route i− j, for i, j ∈ I, i < j.

• hij = traveling demand2 between airport i and j, for i, j ∈ I, i < j.

• pij = unit penalty cost for the loss of traveling demand between i and j, for i, j ∈ I,
i < j.

tions’.
2Denoted as demand in the rest of this chapter.
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• qs = probability of scenario s, for s ∈ S.

• asi : indicator of the availability of airport i in scenario s, 1 if available, and 0 otherwise,
for i ∈ I, s ∈ S.

• β = discount factor of hub-to-hub transportation cost.

Decision variables:

• Xi =

{
1 if i is a hub
0 otherwise

for i ∈ I.

• Yji =

{
1 if hub i is assigned to j
0 otherwise

for i, j ∈ I.

• F s
ijkl = fraction of hij transported via route i − k − l − j in scenario s, for i <
j, i, j, k, l ∈ I, s ∈ S.
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Note that dij, hij, pij, and F s
ijkl are defined only for i < j to avoid double counting. Then

the flexible hub location problem is formulated as the following MIP.

(P ) min
∑
i

fiXi +
∑
i

∑
j

wiYji +
∑
s
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(∑
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∑
j>i
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(3.1a)

s.t. Yji ≤ Xi i 6= j, i, j ∈ I (3.1b)

Yii = Xi i ∈ I (3.1c)∑
i

Yji + (N − 1)Xj ≤ N j ∈ I (3.1d)∑
k

∑
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)
≤ ci i ∈ I, s ∈ S (3.1f)

∑
l

F s
ijkl ≤ asia

s
ja
s
kYik i < j, i, j, k ∈ I, s ∈ S (3.1g)∑

k

F s
ijkl ≤ asia

s
ja
s
lYjl i < j, i, j, l ∈ I, s ∈ S (3.1h)

Xi ∈ {0, 1} i ∈ I (3.1i)

Yji ∈ {0, 1} i, j ∈ I (3.1j)

F s
ijkl ≥ 0 i < j, i, j, k, l ∈ I, s ∈ S (3.1k)

(3.1a) minimizes the expected total cost consisting of the fixed cost, the flexibility cost,
the transportation cost, and the penalty cost. (3.1b) ensures that an airport can be assigned
to other airports only if it is a hub. (3.1c) forces that a hub must be assigned to itself. (3.1d)
is the flexibility constraint. It restricts the total number of hubs assigned to an airport by
N if it is a spoke, and by 1 if it is a hub. (3.1e), (3.1f), (3.1g) and (3.1h) guarantee the
feasibility of flows in each scenario. (3.1e) ensures F s

ijkl’s are fractions. (3.1f) enforces that
the total flow going through an airport cannot exceed its capacity. (3.1g) and (3.1h) ensures
that there is a positive flow in a route only if the route is built and no airport in it is disrupted.

Define uijkl = hij(dik + βdkl + dlj − pij), then (3.1a) can be rewritten as

min
∑
i

fiXi +
∑
i

∑
j

wiYji +
∑
s

qs

(∑
i

∑
j>i

∑
k

∑
l

uijklF
s
ijkl +

∑
i

∑
j>i

hijpij

)
(3.2)
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Then we have the following theorem on the global sensitivity of the problem.

Theorem 12. The minimum expected total cost is concave in f , w, and q.

Our numerical studies show that the minimum expected total cost is convexly decreasing
in N , but is not necessarily convex in c.

The formulation (P ) has large numbers of decision variables (O(SI4)) and constraints
(O(SI3)), so it is not easy to be solved using commercial solvers. We apply a Benders decom-
position algorithm to solve it. The general idea of Benders decomposition is to partition the
original problem into a restricted master problem and a series of subproblems. By solving
the subproblems, we generate Benders cuts that guarantee either the feasibility of subprob-
lems or the optimality of the master problem, and iteratively add them into the restricted
master problem. The algorithm terminates when no more cuts can be found. The details of
the Benders decomposition algorithm is described in next section.

Benders Decomposition Algorithm and Pareto-Optimal Cuts

In our problem, the restricted master problem decides hub locations and assignment, and
subproblems solve the transportation problems in all scenarios. When hub locations X and
assignment Y are fixed at x and y, respectively, the remaining problem can be decomposed
by scenario. The subproblem of scenario s is as follow.

(SP s) zs(x, y) = min
∑
i

∑
j>i

∑
k

∑
l

uijklF
s
ijkl +

∑
i

∑
j>i

hijpij (3.3a)

s.t.
∑
k

∑
l

F s
ijkl ≤ 1 i < j, i, j ∈ I (3.3b)∑

j<i

∑
k

∑
l

hjiF
s
jikl +

∑
j>i

∑
k

∑
l

hijF
s
ijkl

+
∑
k 6=i

∑
l 6=i
l>k

hkl

(∑
j 6=i

(F s
klij + F s

klji) + F s
klii

)
≤ ci i ∈ I (3.3c)

∑
l

F s
ijkl ≤ asia

s
ja
s
kyik i < j, i, j, k ∈ I (3.3d)∑

k

F s
ijkl ≤ asia

s
ja
s
l yjl i < j, i, j, l ∈ I (3.3e)

F s
ijkl ≥ 0 i < j, i, j, k, l ∈ I (3.3f)

(SP s) decides how much flow to transport via each route subject to the availability of airports
and hub capacities. zs(x, y) is the minimum transportation cost and penalty cost in scenario
s given hub locations x and assignment y. Let λ, τ , µ, π be the dual variables associated
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with constraints (3.3b), (3.3c), (3.3d), and (3.3e), respectively. The dual problem of (SP s)
is

(DSP s) zs(x, y) = max
∑
i

∑
j>i

λsij +
∑
i

ciτ
s
i +

∑
i

∑
j>i

∑
k

asia
s
ja
s
kyikµ

s
ijk

+
∑
i

∑
j>i

∑
k

asia
s
ja
s
kyjkπ

s
ijk +

∑
i

∑
j>i

hijpij

s.t. λsij + hijτ
s
j + hijτ

s
i + µsijk + πsijl ≤ uijkl

i, j, k, l ∈ I such that i < j, and condition (a) (3.4a)

λsij + hijτ
s
j + hijτ

s
i + µsijk + πsijl + hijτ

s
k ≤ uijkl

i, j, k, l ∈ I such that i < j, and condition (b) (3.4b)

λsij + hijτ
s
j + hijτ

s
i + µsijk + πsijl + hijτ

s
l ≤ uijkl

i, j, k, l ∈ I such that i < j, and condition (c) (3.4c)

λsij + hijτ
s
j + hijτ

s
i + µsijk + πsijl + hijτ

s
k + hijτ

s
l ≤ uijkl

i, j, k, l ∈ I such that i < j, and condition (d) (3.4d)

λsij + hijτ
s
j + hijτ

s
i + µsijk + πsijk + hijτ

s
k ≤ uijkl

i, j, k, l ∈ I such that i < j, and condition (e) (3.4e)

λ, τ, µ, π ≤ 0 (3.4f)

where condition (a) is i = k or j = k, and i = l or j = l, condition (b) is i 6= k, j 6=
k, and i = l or j = l, condition (c) is i 6= l, j 6= l, and i = k or j = k, condision (d) is
i 6= k, j 6= k, i 6= l, j 6= l, and k 6= l, and condition (e) is i 6= k and j 6= k.

Define ηs as the decision variable representing the sum of transportation cost and penalty
cost in scenario s ∈ S. Then the restricted master problem is

(RMP ) min
∑
i

fiXi +
∑
i

∑
j

wiYji +
∑
s

qsηs (3.5a)

s.t. (3.1b), (3.1c), (3.1d), (3.1i), (3.1j)

(3.5b)

The connection between ηs and zs(X, Y ) is temporarily broken, so feasibility cuts and opti-
mality cuts need to be added in order to force them equal to each other. Note that (SP s)
is always feasible and (DSP s) is always bounded, so only optimality cuts will be added.
Let (λ̄(t), τ̄ (t), µ̄(t), π̄(t)), t = 1, . . . , T , be the extreme points of the feasible region of (DSP s),
then the optimality cuts generated by solving (DSP s) are

ηs ≥
∑
i

∑
j>i

∑
k

asia
s
ja
s
kµ̄

s(t)
ijklYik +

∑
i

∑
j>i

∑
k

asia
s
ja
s
kπ̄

s(t)
ijklYjk +

∑
i

∑
j>i

λ̄
s(t)
ij +

∑
i

ciτ̄
s(t) (3.6)

for t = 1, . . . , T . (3.6) are the so called natural Benders cuts. T can be very large, so only
the active ones of (3.6) are added into (RMP ).
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In an optimal solution to the primal subproblem (SP s), each OD pair may use only one
to two routes, so most of F s

ijkl’s are 0. Therefore, the primal subproblem (SP s) is usually
degenerate, and then the dual subproblem (DSP s) usually has multiple optimal solutions.
However, only one of these solutions is returned by the solver in the algrithm and it might
be dominated by other optimal solutions. Adding weak cuts may result in large number of
iterations and eventually slows down the algorithm.

To strengthen the Benders cuts, in addition to the natural cuts, we also add Pareto-
optimal cuts as proposed by [44]. A Pareto-optimal cut is identified by solving an auxiliary
problem of (DSP s) as below.

(AP s) max
∑
i

∑
j>i

λsij +
∑
i

ciτ
s
i +

∑
i

∑
j>i

∑
k

asia
s
ja
s
ky

0
ikµ

s
ijk +

∑
i

∑
j>i

∑
k

asia
s
ja
s
ky

0
jkπ

s
ijk

s.t.
∑
i

∑
j>i

λsij +
∑
i

ciτ
s
i +

∑
i

∑
j>i

∑
k

asia
s
ja
s
kyikµ

s
ijk

+
∑
i

∑
j>i

∑
k

asia
s
ja
s
kyjkπ

s
ijk ≥ zs(x, y) (3.7)

(3.4a), (3.4b), (3.4c), (3.4d), (3.4e), (3.4f)

(3.7) ensures that every feasible solution to (AP s) is an optimal solution to (DSP s). We
choose y0 such that

y0ji =

{
N
2I

i 6= j
1
2

otherwise

for i, j ∈ I, and define x0 such that x0i = 1/2, for i ∈ I. Then it is easy to show that (x0, y0)
forms a relative interior point of the feasible region of (X, Y ). It has been proved by [44]
that the cut generated by (AP s) is Pareto-optimal, so it is not dominated by any other cut
generated by (DSP s). By adding the Pareto-optimal cuts together with the natural cuts, the
total number of iterations is greatly reduced and the overall solution time is also improved.

3.3 Numerical Studies

In this section, we present some numerical results to demonstrate the value of flexibility in
air transportation networks and to develop more insights on the design of flexible hub-and-
spoke structures. The data of the first 15 cities in the CAB data ([51]) is used. We take
the flow in CAB as demand and the distance as transportation cost. The fixed cost of each
airport is randomly generated from the interval [4 × 107, 5 × 107], and its flexibility cost is
set at 1/10 of its fixed cost. The capacity of each airport is set at twice of the total demand
from and to it, i.e. ci = 2

∑
j hij, for i ∈ I. The unit penalty cost of each OD pair is is

randomly generated from the interval [4 × 103, 6 × 103]. The discount factor of hub-to-hub
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route is 0.9. Later, some of these parameters are adjusted in a controlled experiment to
examine their effects on the network topology.
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Figure 3.1: Clustering of Airports

Because of the lack of data on the correlation between airports, and because airports
close to each other are usually positively correlated, we partition airports into clusters ac-
cording to distance, and assume that the airports within the same cluster are perfectly
positive correlated. Among the first 15 cities in the CAB data, Chicago (ORD), Cincinnati
(CVG), Cleveland (CLE), and Detroit (DTW) are identified as one cluster, Dallas (DFW)
and Houston (IAH) as another cluster, and each of the other nine airports forms a cluster
by itself, as depicted in Figure 3.1, in which singleton clusters are denoted by hollow square
makers and other airports in the same cluster share the same type of solid marker. Clusters
are assumed to be independent of each other. The failure probabilities of the clusters are
independently generated from a uniform distribution over [0, 0.1]. Because the failure proba-
bilities are small, only the scenarios with no more than one cluster disrupted are considered.
Note that compared with [81], our assumption allows more than one airport to be disrupted.

Value of Flexibility in Air Transportation Networks

When There Is No Flexibility Cost

Our model proposes to use flexibility in hub assignment to hedge against the risk of airport
disruptions. Thus, it is necessary to examine whether flexibility can improve the performance
of air transportation networks with unreliable airports. Considering the cost of flexibility,
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it is also interesting to investigate how much flexibility is needed. It has been proved for
process flexibility design that, the marginal benefit of flexibility is decreasing, and a 2-chain
is able to perform almost as well as a fully flexible structure ([1]). In this study, we check
whether the above properties hold for hub-and-spoke structures.

We first set the cost of flexibility at zero in order to reveal the pure benefit of flexibility.
Figure 3.2 shows the changes in expected costs as N increases from 1 to 6. Note that the
network has a traditional hub-spoke structure with single allocation when N = 1, and has a
flexible hub-and-spoke structure with all the other N values. Figure 3.2(a) demonstrates the
decreasing in penalty cost as a result of increased reliability when there is more flexibility in
the network. The figure also suggests that the improvement in reliability is diminishing as N
increases. Figure 3.2(b) shows that there may be higher transportation cost when changing
from a inflexible network to a flexible network, but adding more flexibility will eventually
return lower transportation cost. We also find that the expected total cost is convexly de-
creasing in N , as shown in Figure 3.2(c). It means that flexibility can reduce expected total
cost, and the marginal value of flexibility diminishes as N increases. Moreover, the expected
total cost is constant when N ≥ 5, so adding flexibility has no value when N is sufficiently
large. On the contrary, when N increases from 1 to 2, the expected total cost drops dramat-
ically. In out simulation, the drop in expected total cost from N = 1 to N = 2 is 77.56%
of the total drop from N = 1 to N = 6. Therefore, by having a 2-flexible hub-and-spoke
structure, we get almost all the benefit of a fully flexible structure.

Recall that the flexibility constraint requires that each spoke airport uses at most N
hubs, so some may use N hubs and some may use less. Obviously, since there is no flexibility
cost, it does not hurt for spoke airports to use exactly N hubs whenever the total number of
hubs is at least N . However, our simulation results provide evidence for that the flexibility
constraint is not always binding. In Figure 3.3, we plot the total number of hubs (TH),
the average number of hubs assigned to a spoke airport(AH), and the maximum number
of hubs assigned to a spoke airport (MH) with different values of N . First of all, AH and
MH is restricted by TH, and TH is determined by all parameters, so increasing N does not
have any effect on the network structure once N is large enough. Secondly, when N = 4,
5, or 6, even if some spoke airports use exactly N hubs, others use less, so AH is less than
MH. Therefore, the flexibility constraint is not binding in these cases. There are several
possible reasons for not using flexibility when it incurs no cost. One possible reason is that
the hub is too far away such that the transportation cost if using it outweighs the penalty
cost. Another possible reason is that, several hubs belongs to the same cluster and some of
them have enough capacity to serve a spoke airport, then not all these hubs will be used by
the spoke airport. Other reasons may include insufficient hub capacity.

We also observe that much fewer hubs are needed in flexible hub-and-spoke structures
(When N > 1). As noted before, N = 1 is equivalent to single allocation. Under disruptions,
it is natural for a single allocation network to build more hubs, and each hub serves a small
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Figure 3.2: Expected Costs v.s. N with Zero Flexibility Cost
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Figure 3.3: Total Number of Hubs, Average Hubs Assigned to Each Spoke, and Maximum
Hubs Assigned to One Spoke v.s. N , with Zero Flexibility Cost

number of spokes in order to spread the risk, as if lots of spokes are assigned to one hub,
then the failure of that hub will incur penalty costs for all passengers associated with that
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hub and the spokes connecting to it. When N is greater than 1, the risk of hub failures is
mitigated by the extra flexibility of the spokes. Moreover, because each spoke is connected
to two or more hubs, decreasing the number of hubs will not cause sharp increase in the
transportation cost – similar to multiple allocation models, flows from the same origin can
use different hubs for different destinations. It is worthwhile to point out here that one
major difference between our model and traditional multiple allocation models is that in our
model, the hubs used for each OD pair in different scenarios can be different. Then, building
fewer hubs saves fixed costs. It can be noticed that as N increases from 2 to 3, the total
number of hubs increases from 4 to 5. This is mainly because the decrement in expected
penalty cost and transportation cost outweigh the fixed cost of an additional hub, and the
available capacity when using four hubs limits the ability to serve more passengers under
certain scenarios.

At last, AH and MH are increasing in N . Actually, this result can be verified by con-
tradiction. For example, suppose that as N increases from 4 to 5, the MH of the optimal
topology decreases from 4 to 3, then, the network topology with MH equals to 3 should
return lower total expected cost than any topology with MH equals to 4. However, note that
the new network is a feasible configuration for the case of N = 4, and this contradicts with
the assumption that the optimal topology when N = 4 has an MH equals to 4.

Figure 3.4 summarizes the network topologies when N = 1, N = 2, and N = 3. In these
figures and the figure hereafter, we use solid markers to denote hub locations, and hollow
markers for spoke locations. As shown in Figure 3.4(a), when N = 1, most of airports,
except for those in the northeast, are hubs themselves to take the advantage of discounts
in transportation costs between hubs, because they are far away from each other. Airports
in the northeast choose ORD to be their common hub, instead of employing different hubs
to improve reliability as discussed above, due to the following reasons. Firstly, since ORD,
CVG, CLE, and DTW belong to the same cluster and have perfectly positive correlation,
having more than one hub in these four cities will not return higher reliability. Secondly, hav-
ing a common hub for northeastern airports expresses economy of scale, as at the fixed cost
of one hub, the flows associated with northeastern airports are aggregated together to save
transportation cost. Thirdly, CAB data suggests that the flows between ORD and north-
eastern airports are significant, so choosing ORD as the common hub results in substantial
savings in transportation cost compared to using other airports in the same region, such as
DTW. Last but not least, according to our assumption, ORD’s reliability is above average
and its capacity is sufficient to serve all northeastern airports; thus, it is not economical to
connect a northeastern airport to a hub that is in a different cluster from ORD, such as
connecting Baltimore (BWI) to Atlanta (ATL).

When flexibility exists, the network topology expresses a more balanced pattern. As
shown in Figure 3.4(b) and Figure 3.4(c), hubs are evenly spread and each of them serves
several spokes. The most important observation is that, each spoke node tends to choose



CHAPTER 3. FLEXIBLE HUB LOCATION MODEL FOR AIR TRANSPORTATION
NETWORKS 47

−120 −115 −110 −105 −100 −95 −90 −85 −80 −75 −70

25

30

35

40

45

ATL

BWI

BOSORD

CVG

CLE

DFW

DEN

DTW

IAH

MCI

LAX
MEM

MIA

MSP

(a) N = 1
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(b) N = 2
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(c) N = 3

Figure 3.4: Network Topologies with Zero Flexibility Cost

hubs from different clusters, for example when N = 3, Miami (MIA) chooses ATL, CLE, and
DFW as its three hubs. Connecting with hubs in different clusters improve the reliability
of each spoke, because the hubs belonging to different clusters are independent. Moreover,
since each OD pair can choose different intermediate hubs, it helps shorten routes by having
scattered hubs. At last, it is worth noting that increasing the flexibility level may not only
change the number of hubs, but also the hub locations. Therefore when more hubs are needed,
simply adding hubs to the old configuration does not guarantee optimality. For instance,
Denver (DEN) is a hub when TH= 4 (when N = 2), and a spoke when TH= 5 (when N = 3).
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When There Is Positive Flexibility Cost

Next, since flexibility comes at the cost of establishing connections between spokes and hubs,
we restore the positive flexibility cost and examine the changes in network topology. Figure
3.5 summarizes the expected costs with non-zero flexibility costs. Obviously, the expected
total cost after taking into consideration of the flexibility cost should be higher than that in
the case of zero flexibility cost, as shown in Figure 3.5(c). Similar to the case with zero flex-
ibility cost, having a 2-flexible hub-and-spoke structure achieves about 83.3% of the benefit
of a fully flexible structure.
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Figure 3.5: Expected Costs v.s. N with Flexibility Cost

The first observation is that when is positive flexibility cost, the expected penalty and the
expected total costs express similar trends as those with zero flexibility cost, as N increases.
However, Figure 3.5(b) shows that the expected transportation cost increases after bringing
in flexibility. This is because when N ≥ 2, less hubs and less links are employed, as shown in
Figure 3.6. Therefore, the savings in the expected total cost can be explained by the savings
in penalty cost and fixed cost.
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Hubs Assigned to One Spoke v.s. N , with Flexibility Cost

Figure 3.7 depicts the network topology when there is positive flexibility cost. It is ob-
served that the topology when N = 1 is exactly the same as the case with zero flexibility
cost. However, when N = 2, CVG is only connected to one hub at ORD, as shown in Figure
3.7(b). When N = 3, CLE is no longer used as hub as in the case of zero flexibility, and most
of spokes are connected to only two hubs. The main cause is the trade-off between decrement
in transportation and penalty cost and the increment in flexibility cost. For instance when
N = 2, the flexibility cost of connecting CVG to ATL is above the average flexibility cost,
while the flows associated with CVG is much lower than the average flow, and the majority
of CVG’s flow goes to northern airports, thus the flexibility cost outweighs the potential
savings in transportation and penalty cost.

Another important observation is based on Figure 3.7(c). When N > 2, a spoke node is
rarely connected to a third hub node in order to be more reliable, because the two assigned
hubs of that spoke usually belongs to different clusters and the probability for both of them
fail is extremely small. Thus, the main reason for having a third hub is to save transporta-
tion cost, or to meet the capacity limits at its hubs. For instance, according to CAB data,
Memphis (MEM) has high demand to north, west, and east, and thus it is connected to
ATL, ORD, and DFW. IAH is another example. Although IAH and its hub DFW are in the
same cluster, IAH is also connected to ATL mainly due to the capacity limit at DFW.

The comparison between Figure 3.4 and Figure 3.7 delivers another key finding: spokes
tend to choose their first hub from airports in the same cluster, and when a spoke form a
cluster by itself, it tends to choose a nearby hub as its first hub. For instance, CLE, CVG,
and DTW choose ORD, and IAH chooses DFW. The main reason is that ORD is perfectly
“reliable” to CLE, CVG, and DTW, because ORD fails only if all of CLE, CVG, and DTW
fail. The other cause is the economies of scale. Combining nearby airports together (and
selecting one of them to be a hub) returns saving in transportation cost through discounts
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Figure 3.7: Network Topologies with Flexibility Cost

between hubs. However, there is always a tradeoff between the increment in fixed cost and
the decrement in transportation cost, and this is why both Boston (BOS) and BWI are
connect to ORD instead of having separate hubs.

Effect of Airport Capacities

In previous simulation studies, the capacity of each airport i is set at twice of the total de-
mand from and to it, i.e. ci = 2

∑
j hij. For convenience, we denote “γ − cap” as the setting

in which the capacity of each airport is set at ci = γ
∑

j hij, for γ > 0. That is, previous
simulation studies are conducted under 2−cap. In this section, we investigate the effect of γ.
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Figure 3.8: Expected Costs under Different γ − cap with Flexibility Cost

Figure 3.8(c) plots the expected total cost under different γ− cap, and naturally it shows
that greater γ corresponds to lower expected total cost. It is also noticed from Figure 3.8(c)
that under all γ − cap’s in our simulations, the expected total cost is decreasing in N . In
particular, the decrement is diminishing as N increases, and a 2-flexible hub-and-spoke net-
work is able to attain most of the cost saving benefit returned by a fully flexible network.
Figure 3.8(a) suggests that flexibility reduces the expected penalty cost as well. Moreover,
greater γ is more efficient in mitigating the risk of disruption. This is because when γ is
greater, each available hub is able to handle more demand when other hubs are disrupted.
However, Figure 3.8(b) shows that switching from no-flexibility to flexible networks does
not necessarily lead to lower transportation cost. Actually, the simulation results indicate
that when adding a little flexibility to a inflexible network, the transportation cost increases
as a result of the reduction in the number of hubs. In addition, it is also showed by our
simulation that for fixedN , the expected total cost is not necessarily convexly decreasing in γ.

Figure 3.9 further illustrates that when γ is small, more hubs is needed by each spoke.
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Figure 3.9: Total Number of Hubs, Average Hubs Assigned to Each Spoke, and Maximum
Hubs assigned to One Spoke under Different γ − cap

In addition, comparing Figure 3.9(a) with Figure 3.6 and Figure 3.9(b), we notice that when
N ≥ 2, AH always takes values close to 2, which implies that a 2-flexible hub-and-spoke
structure is close to optimal, and adding more flexibility returns only marginal improve-
ment. In other words, when capacities at hubs are large enough, a 2-flexiblehub-and-spoke
structure can efficiently hedge against the risk of disruptions. Adding more flexibility only
has marginal impact on transportation cost and fixed cost.

To get more insights, we plot in Figure 3.10 the network topologies with N = 1, N = 2,
and N = 3 under 1.5− cap and 3− cap. The figure suggests increased capacity also leads to
savings in transportation cost. For instance, compared to Figure 3.7(b), the case of N = 2
under 3− cap has one more hub at CLE, as shown in Figure 3.10(d). In the new topology,
DTW is connected to CLE instead of ATL. Note that since DTW and CLE as well as ORD
are in the same cluster, then once CLE and ORD fail, DTW fails as well, so the re-assignment
of DTW is only due to the potential saving in transportation cost, which also explains why
BOS and BWI are disconnected from ORD and re-assigned to CLE. In addition, compared
to the case of N = 2 under 2 − cap, MEM is no longer assigned to ORD, and IAH is only
connected to DFW. The implication based on the above observations is that, there exists
potential savings in flexibility cost and transportation cost from increasing hub capacities,
because low hub capacities make it necessary to use routes through different intermediate
hubs for the demand associated with the same OD pair.
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Effect of Correlation between Airports

It is usually assumed that disruptions are independent in reliable facility location models or
reliable hub location models. However, this assumption fails for air transportation networks.
For example, snow storms often hit the whole Chicago-Minneapolis area, so a few airports
in this area, including ORD, MSP, DTW, CLE, and IND, are often disrupted at the same
time. In this study, we demonstrate how disruption correlation affects the topology of the
network by a numerical example, and point out that overlooking correlation may result in
inefficiency and higher cost.

In this study, we set the disruption probability of each airport at 0.2 and the unit penalty
cost of each OD pair at 8000. Two cases of airport disruptions are studies: (1) the correlated
disruption case, in which ORD, DTW, and ATL form a cluster, and each of the other air-
ports forms a cluster by itself, and (2) the independent disruption case, in which airports are
disrupted independently. Because disruption probabilities are small at each airport, we only
consider the scenarios in which at most one cluster is disrupted for the correlated disruption
case, and those in which at most one airport is disrupted for the independent disruption
case. Scenario probabilities are normalized so that they sum up to one.

In Figure 3.11, we plot the optimal hub locations and assignment in these two cases when
N = 2. It is notable that the network topology in the correlated disruption case is quite
different from that in the independent disruption case. If airports are disrupted indepen-
dently, ORD, DTW, and ATL are all selected as hubs, while in the correlated disruption
case, only ORD among the three is selected, CLE takes the place of DTW, and MIA is also
selected as a hub. The reason for the change in hub locations is because, it is not beneficial
to have two perfectly correlated hubs, especially when they are close to each other and any
of them has sufficient capacity. ORD and DTW make a typical example for this issue. First,
they are always disrupted at the same time, so they are not able to serve as backup hubs
of each other. Then the only possible advantages to have both of them as hubs are more
sufficient hub capacity and lower transportation cost. However, ORD and DTW are close
to each other, and the capacity of ORD is already large enough to serve all the nearby air-
ports, so the benefit of having both of them as hubs is outweighed by the increased fixed cost.

Besides the change in hub locations, we also observe change in hub assignment. In the
independent disruption case, each of the five spoke airports near the east coast, BOS, CLE,
CVG, BWI, and MIA, connects to two of the three hubs, ORD, DTW, and ATL. In the
correlated disruption case, because DTW is replaced by CLE, BOS, CVG and DTW con-
nect to ORD and CLE, BWI switches from ATL to the closer hub CLE, and MIA becomes
a hub. A natural question is, whether the change in hub assignment is just a result of the
change in hub locations, or it is also caused by the correlation between airports. To answer
this question, we conduct another experiment in which ORD, DTW, and ATL are perfectly
correlated, and hub locations are fixed as in the independent disruption case. The optimal
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Loss of demand Fixed Cost Flex. Cost Transp. Cost Penalty Cost
Correlated 1.51× 105 2.83× 108 1.13× 108 1.00× 109 1.08× 109

Independent 1.34× 105 2.83× 108 1.13× 108 9.70× 108 1.21× 109

Relative Increase 12.26% 0.08% 0.17% −2.99% 12.26%

Table 3.1: Cost of Overlooking Disruption Correlation

hub assignment is displayed in Figure 3.12. It is notable that the hub assignment is different
from that in Figure 3.11(a) although the hub locations remain the same. In particular, none
of the spoke airports uses more than one of the three correlated hubs. This is because that
having two perfectly correlated hubs is not helpful with mitigating their disruptions.

At last, we investigate the cost of overlooking disruption correlation. We have shown
that, in the correlated disruption case, the optimal network topology is as displayed in Fig-
ure 3.11(b) (denoted by the correlated topology). Now suppose that the planner treat the
airports as independent ones, so he ends up with a network topology as shown in Figure
3.11(a) (denoted by the independent topology), which is optimal in the independent dis-
ruption case. Given that the hub locations and assignment have been fixed, we optimize
over the flows in all scenarios and obtain various statistics. Some of the results are summa-
rized in Table 3.1. The first column is the expected loss of demand caused by disruptions.
Columns 2 to 5 are the fixed cost, the flexibility cost, the expected transportation cost, and
the expected penalty cost, respectively. The statistics when using the correlated topology
is listed in line 1, and those when using the independent topology in line 2. The relative
increases in these statistics are listed in line 3. We note that the expected loss of demand
raises by 12.26% from using the independent topology. Fixed cost and flexibility cost have
little change, and the expected transportation cost slightly decreases because less demand is
transported. The expected penalty cost increased by the same percentage as the expected
loss of demand because the unit penalty cost is the same for every OD pair. The above re-
sults imply that, failing to consider correlations between airports when designing a network
may result in more demand loss and higher penalty cost.

Summary of Key Findings and Insights

According to the results from the numerical studies, we propose the following principles on
deciding hub locations and assignment.

1. A flexible network is better than a single allocation network, in terms of stronger
reliability, less transportation cost, and fewer required hubs.

2. When there exists multiple clusters that are independent or weakly correlated with
each other, a 2-flexible hub-and-spoke structure can efficiently hedge against the risk
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of disruptions. Adding flexibility usually has diminishing benefits in expected total
cost.

3. Avoid selecting airports that are positively correlated and close to each other as hubs
at the same time unless the capacity of any of them is not large enough.

4. For any spoke airport, try to first assign it with the hubs that are strongly positively
correlated with it.

5. If a spoke airport uses hubs that are all independent or weakly correlated with it, try
not to choose those that are strongly correlated with each other.

6. When adding flexibility to any spoke airport which currently has only one hub, the
choice of new hub should either be independent or has weak correlation with its first
one.

7. If there are multiple hubs that satisfy principle 4-6, then choose the one that has greater
capacity and is on the direction of the most significant demand associated with the
spoke of interest.

8. Add a third hub to a spoke, only if it helps reduce the transportation cost, or the total
capacity of current hubs cannot meet the demand associated with the spoke of interest.

3.4 Summary

In this chapter, we present a flexible capacitated hub location model that deals with airport
disruptions. Unlike the traditional hub location models, our model allows each spoke airport
to have up to N hubs, all of which can be used in every scenario without any pre-determined
order. In each scenario, after the states of airports are observed, each airport decides how
much of its demand to be transported via each of its hubs. In this way, our model not
only adopts a flexible network structure, but also uses a flexible mechanism to make routing
decisions. To properly characterize airport disruptions, we assume that they can be corre-
lated with each other, which is quite common in practice. Our problem is formulated as a
mixed-integer program that minimizes the expected total cost. Because of the large number
of decision variables and constraints, this problem is computational intractable. Benders
decomposition is applied to solve it, and Pareto-optimal cuts are added to accelerate the
algorithm.

In numerical studies, we carry out a series of experiments on the first 15 cities in the
CAB data, and obtain the following conclusions and insights. First of all, we reveal the di-
minishing return of flexibility in networks. As N increases, the minimum expected total cost
is convexly decreasing. Analogous to 2-chain in process flexibility, a 2-flexible hub-and-spoke
structure is able to achieve most of the benefit of a fully flexible structure. When failure
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probabilities are small, having a 3-flexible structure is not very helpful in further improving
the reliability of the network once we already have a 2-flexible structure. However, it may
indeed lower the total cost by better matching demand with hub capacity and saving trans-
portation cost. We also observe that, the more capacity the airports have, the less flexibility
is needed. Of course, a 2-flexible structure is always beneficial as long as airports are not
reliable. At last, we point out that the correlation between airports can greatly change the
topology of the optimal network. Overlooking correlation may result in suboptimal hub
locations and assignment and cause inefficiency and cost.

Our model also has several limitations. The approach we use is essentially a scenario-
based two stage stochastic programming approach, and it suffers the drawbacks of the latter.
For example, our model fails to work if the probabilities of scenarios are unknown (though
it is unlikely that we do not have these probabilities). In addition, our model sets minimiz-
ing the expected total cost as objective, and it fails to capture the risk-aversion of decision
makers. Therefore, a possible extension could be a robust hub location model that optimizes
the worst case total cost when disruptions happen. At last, although the authors agree with
[16] that the fast growing computing capabilities assure that computational time is no longer
the major limitation, it is still interesting to see how our algorithm performs with a larger
instance on cloud computing engines.
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(a) N = 1, under 1.5− cap
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(b) N = 1, under 3− cap
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(c) N = 2, under 1.5− cap
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(d) N = 2, under 3− cap
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(e) N = 3, under 1.5− cap
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(f) N = 3, under 3− cap

Figure 3.10: Network Topologies under Different γ − cap
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(a) Independent Disruption Case
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(b) Correlated Disruption Case

Figure 3.11: Network Topologies in the Independent Disruptions Case and the Correlated
Disruptions Case
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Figure 3.12: Network Topology in the Correlated Disruption Case with Hub Locations in
the Independent Disruption Case
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Chapter 4

Impact of Trade Credit on Retailers’
Growth and Suppliers’ Benefit

4.1 Introduction and Literature Review

Shortage in internal finance has been identified as the main obstacle for the growth of small
firms ([17] and [11]). According to the World Business Environment Survey in 1999-2000,
small (with 5 to 50 employees) and medium (with 51 to 500 employees) firms are significantly
more financially constrained then large firms (with over 500 employees), and the growth of
small firms are most negatively affected by financial constraints ([6]). It is usually difficult
for small businesses to get loan from banks, so they use trade credit as a major tool to
get external finance. A supplier extends trade credit to a buyer by allowing the buyer to
order now and pay later. Trade credit provides an additional resource of funds to buyers by
delaying payments. It takes two forms: net term and two-part term. A net k term requires
that payment will be due k days after the delivery. An interest, which is usually high, will
be charged if the buyer fails to pay on time. A two-part term not only specifies the due
date of the payment, but also gives a discount percentage and a discount period. Hence, it
provides the buyers with an option to pay early to get discount. We will focus on the net
term in this chapter.

Trade credit is widely used, especially by small firms. According to [9], more than half
of the small businesses in the United States in 1998 use trade credit. Trade credit is used
more than all other financial services except checking account. In particular, the use of trade
credit is most common among firms in manufacturing, construction, and wholesale and retail
trade industries for which non-labor costs, such as the costs of equipment and inventory, are
large relative to labor costs. Small firms not only use but also supply trade credit. Most
small firms offer net terms trade credit, and about 20% offer two-part terms ([80]). Other
evidence of the extensive use of trade credit can be found in [56] and [49].
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The existence of trade credit has long been studied by economists. For buyers, the ad-
vantage of trade credit is obvious: they can borrow cash without paying any interest. This
is especially desirable for those firms short in funds but unable to raise it from specialized
financial institutions such as banks. In addition, trade credit provides buyers a period to
inspect the product and make exchange before payment ([68] and [42]). Then why suppliers
extend trade credit? The main reason is that suppliers can create new business and promote
sales. They can also build stronger supplier-customer relationships. Besides, trade credit
allows suppliers to price discriminate ([56]) though direct price discrimination is usually ille-
gal. Other benefits include better control of buyers and lower transaction costs ([29] and [26]).

While trade credit brings all the benefits discussed above, it may increase the risk of
the supplier as well. Delinquency cost arises when the buyer fails to pay by the end of the
credit period. More importantly, all the past due become bad debt once the buyer goes
bankrupt. [10] identifies the nonpayment of trade credit as a major cause of the failures of
small businesses. Taking into account that buyers who seek trade credit are usually finan-
cially constrained and lack of good credit record, it is even more critical for the supplier to
better evaluate the risk when determining whether to offer trade credit to a certain buyer.

This chapter aims to answer the following questions: How does trade credit facilitate the
growth of small businesses? Does trade credit affect the chance that small businesses sur-
vive? And when should suppliers extend trade credit? We study a one-supplier-one-retailer
supply chain that produces and sells a single product in a multi-period setting. The retailer
starts with a small size and limited fund. He makes expansion decisions every a few periods
based on his size and fund. The supplier may choose to extend or not to extend trade credit
to the retailer. We analyze the growth of the retailer, and carry out numerical experiments
to get insights on the benefits and risks of trade credit.

In general, there are two streams of research on trade credit: one uses empirical studies
to identify the determinants of trade credit and build financial theories, the other focuses
on inventory models with permissible delay of payment. Among the literature in the first
stream, [55] find that small firms concentratedly borrow from a few financial institutions
to build a stronger relationship and to increase their availability of financing, and they use
less trade credit if having a longer relationship with financial institutions. This observation
is later verified by [56]. They find that small firms use more trade credit if having limited
access to credit from financial institutions. They also propose a price discrimination theory
that trade credit is provided to firms with higher profit margin. [49] identify a firm’s in-
dustry as an important determinant of trade credit terms, and find evidence supporting the
product-quality-guarantee theory and the theory that trade credit provides suppliers with
information on buyers’ creditworthiness. We refer the readers to [30] for a thorough review
of other related literature.

The second stream studies inventory problems when trade credit is extended. [64] pro-
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pose an EOQ model when the supplier offers trade credit with price discount. All increasing
deterministic demand models are discussed. [18] present an EOQ model with order-quantity-
dependent trade credit, price dependent demand, and finite production rate that is propor-
tional to demand rate. The total profit of the vendor-buyer integrated system is optimized
over the retail price, the buyer’s order quantity, and the vendor’s production batch size. It is
found that a longer trade credit term can increase the total profit. Other EOQ based trade
credit models include [77].

The effects of trade credit in stochastic inventory models are also studied. [43] present
an approximate method for calculating the cost function in a periodic review setting when
the (s, S) policy is used. [32] study the inventory policy of a retailer confronted with ran-
dom demand and general trade credit. The base-stock-policy is proved to be optimal and
the optimal base stock level is derived. They also demonstrate with numerical examples
how the supplier adjusts the discount period length or the discount rate when the other
parameter is fixed in order to maximize his expected profit. [19] compare the order quanti-
ties in a newsvendor problem under different payment schemes including own-financing and
supplier-financing, and experimental studies show that the retailer orders more under the
own-financing payment scheme than under the supplier-financing payment scheme. While
this phenomenon can not be explained by any utility model, it is consistent with the mental
accounting in consumer behavior. Their results implies that trade credit may lower the order
quantity of the retailer instead of increasing it. [72] demonstrate how payment schemes affect
inventory policies in the EOQ model and the base stock model, and propose that payment
scheme should match the supply chain strategy.

This chapter investigates the impact of trade credit on the growth of small businesses and
their suppliers through a mathematical model, which has not been studied in the literature.
In particular, our work is different from all the others in the following aspects. Firstly, we
build a mathematical model of the growth of small businesses that jointly makes inventory
and expansion decisions. Demand are assumed to be random and size-dependent. Both
additive and multiplicative demand models are considered. Secondly, we study the effect
of trade credit on the growth of small businesses and show that they tend to expand more
aggressively and towards a higher target size when using trade credit. Thirdly, we quanti-
tatively evaluate the risk of trade credit for both the supplier and the buyer. It is shown
that the risk of trade credit is negligible under the additive demand model. However, under
the multiplicative demand model, trade credit makes the buyer more likely to go bankrupt
in his growing stage, and thereby negatively affects the supplier’s profitability. At last, we
reveal that trade credit has a higher risk when demand is positively correlated. We point
out that it is important for suppliers to carefully investigate the market when making trade
credit decisions.

The remainder of this chapter is organized as follow: section 4.2 describes the model and
solves the retailer’s problem analytically, section 4.3 uses simulation to evaluate the sup-
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plier’s payoff when trade credit is extended or not, and to provide insights on the value of
trade credit, and section 4.4 summarizes our main results and points out several directions
for future work.

4.2 Model and Assumptions

We consider a supply chain with one supplier and one retailer. The supplier produces a single
product at unit cost c, and sells it to the retailer at wholesale price w(> c). The retailer
then sells the product to its customers at retail price p(> w). Here we assume that the retail
price p is fixed, because the retailer has little market power in his growing stage and hence
is a price-taker. Demand is random and depends on the retailer’s size. We adopt a linear
mean demand function d(s) = αs, where s is the size of the retailer, and α > 0 is the average
demand attracted by each unit of size. Both additive and multiplicative demand models are
studied. In the additive model, demand D(s) = d(s) + ε, with ε ∼ F and E[ε] = 0, while
in the multiplicative model, D(s) = d(s) · ε, with ε ∼ F and E[ε] = 1. In both cases, the
support of D(s) is contained in [0,+∞). These two demand models represent two cases of
demand correlation: negative correlation with ρ = −0.5, and positive correlation with ρ = 1.

The supplier can choose to charge the retailer on the delivery of orders, or to extend trade
credit. We denote these two cases by scenario a and scenario b, respectively. For analytic
simplicity, we only consider trade credit terms in the form of Net k, for k = 1, 2, . . .. Then
in scenario b, payment from the retailer can be delayed for k periods without penalty, and
there is no discount for early payment. The supplier needs to decide whether to extend trade
credit in order to maximize her expected profit.

The retailer starts at initial size s0 > 0 with a very limited initial fund f0 > 0. We model
his growing process in a multi-period setting. He makes expansion decision every n periods
which we call a year. Let the planning horizon be T years which is long enough for the
retailer to reach his target size. We number the n periods between the tth and the (t+ 1)th
expansion with (t, 1), . . . , (t, n). At the beginning of year t, the retailer may choose to enlarge
his size at unit cost e. Let st denote the expanded size of year t, then an operational cost us2t
is charged. Note that the operational cost is convex increasing in his size, reflecting the loss
of efficiency as he becomes bigger. This prevents the retailer from growing excessively large.
Unmet demand at the end of each period is lost. Leftover is carried to the next period in
the same year but not to the next year. This assumption works well for perishable products.
The unit inventory cost is h, satisfying h + w < p, otherwise the retailer would rather to
discard leftover and order in the next period. Without loss of generality, the salvage value
of inventory at the end of each year is 0.
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(b) Scenario b: Trade credit on terms of Net k

Figure 4.1: Sequence of Events in Period t

Retailer’s Problem

For the tractability of the problem, we assume that the retailer is myopic. That is, he max-
imizes his profit in the current year without planning for the future. Actually, this is not
uncommon among small businesses. Then the retailer’s problem can be solved for each indi-
vidual year. Once the retailer’s size is fixed, the remaining inventory problem is a dynamic
linear inventory problem. It has been proved that a base-stock policy is optimal, but the
optimal base-stock levels are difficult to calculate. Here we assume that the retailer follows
a stationary base-stock policy with base-stock level qt. Then the retailer needs to decide qt
at the beginning of period 1 in order to maximize his expected profit over the year.

Figure 4.1(a) and 4.1(b) describe the sequence of events happened at the retailer in one
period in scenario a and b, respectively. If the current period is the first one in a year, the
retailer first enlarges his size to st and decides the base-stock level qt. At the same time,
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expansion cost and operational cost is charged. He then observes his beginning inventory
and order up to qt. We assume that there is no production or transportation lead time, so
the retailer receives the order instantly. Purchase cost of the current period is charged in
scenario a, but it can be delayed in scenario b. Afterwards, demand is realized, and the re-
tailer sells the product to its customers and collects revenue. Then the retailer pays for some
previous delayed purchase cost if in scenario b. Inventory cost is charged for any leftover
if this is not the last period of a year. Leftover is salvaged otherwise. At last, the retailer
checks his financial status and either moves on to the next period or goes bankrupt.

In scenario b where trade credit on terms of net k is offered, the retailer always pays
k periods later because there is no incentive for him to pay early. Note that payment is
not delayed by exact k periods in our model. Rather, it is delayed until revenue has been
collected k times. Hence, when k = 1, the retailer pays for the order after selling the product
in the same period.

Let Πt(st, qt) denote the retailer’s profit in year t given expanded size st and base-stock
level qt, then

Πt(st, qt) = p
n∑
i=1

min{Dt,i(st), qt} − w(k)

[
qt +

n∑
i=2

(
qt − [qt −Dt,i−1(st)]

+)]

−h
n−1∑
i=1

[qt −Dt,i(st)]
+ − us2t − e(st − st−1).

where w(k) is the k-period discounted wholesale price, for k = 0, 1, 2, . . .. Note that w(k) only
represents the mentally discounted wholesale price if payment can be delayed for k periods.
The actually wholesale price is still w even if trade credit is extended. Thus, w(0) = w, and
we assume that w(k+1) < w(k) for all k. In other words, the longer the payment is delayed,
the less weight is has when the retailer makes the planning. Then the retailer’s expected
profit is

πt(st, qt) = −
[
np+ (n− 1)(h− w(k))

]
E[Dt,i(st)− qt]+ −

[
w(k) + (n− 1)h

]
qt

−us2t +
[
nαp+ (n− 1)α(h− w(k))− e

]
st + est−1.

Given ft−1, the retailer’s fund at the end of last year, the following financial constraint needs
to be satisfied in scenario a.

wqt + est + us2t ≤ f ′t−1 (4.1)

where f ′t−1 = ft−1 +est−1. In scenario b, since purchase cost can be delayed, we have a looser
constraint instead.

est + us2t ≤ f ′t−1 (4.2)
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The retailer’s problem in year t is then modeled as

max πt(st, qt)

s.t. (4.1) in scenario a, or (4.2) in scenario b

st ≥ st−1, qt ≥ 0

This optimization model is infeasible if ft−1 < us2t−1, i.e. the retailer’s fund is not enough
to pay for the total cost even if he neither expands his size nor orders anything from the
supplier (in scenario a). In this case, the retailer has already gone bankrupt at the end of
last period. Therefore, we always assume ft−1 ≥ us2t−1 when solving the retailer’s problem.

Lemma 13. Financial constraint (4.2) can be replaced by a linear constraint

st ≤
√
e2 + 4uf ′t−1 − e

2u
:= s̄t.

Thus, (4.2) is equivalent to imposing an upper bound s̄t on st. Because (4.1) implies (4.2),
s̄t is also an upper bound on st in scenario b. In addition, st ≤ s̄t ensures the non-negativity
of qt.s

Lemma 14. The size upper bound s̄t is always greater than or equal to the retailer’s starting
size st−1 if ft−1 ≥ us2t−1.

Lemma (14) guarantees the feasibility of the retailer’s problem. In the rest of this section,
we derive the retailer’s expansion and order policies in both scenario a and b, and for both
additive and multiplicative demand models.

Additive Demand Model

In the additive demand model, Dt,i(st) = αst + εt,i, where εt,i ∼iid F and E[εt,i] = 0, for
i = 1, . . . , n. The support of εt,i is [−αs0,+∞) to make demand non-negative at any size
no less than the initial size. To make life easier, define zt = qt − αst. Then the retailer’s
expected profit in period t can be conveniently expressed as a function of st and zt.

πt(st, zt) (4.3)

= −
[
np+ (n− 1)(h− w(k))

]
E[εt,i − zt]+ −

[
w(k) + (n− 1)h

]
zt

−us2t + [nα(p− w(k))− e]st + est−1

=


−
[
np+ (n− 1)(h− w(k))

]
F 1(zt)−

[
w(k) + (n− 1)h

]
zt

−us2t + [nα(p− w(k))− e]st + est−1 if zt ≥ −αs0
n(p− w(k))zt − us2t +

[
nα(p− w(k))− e

]
st + est−1 otherwise

(4.4)

Suppose st is given, and there is no financial constraint, then the optimal value of zt is

z
(k)
β = F−1(β(k))
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where β(k) = n(p−w(k))

np+(n−1)(h−w(k))
. z

(k)
β is the unconstrained optimal value of zt for the original

problem. Later we will obtain the constrained optimal value of zt and solve for the optimal
expanded size for both scenarios.

Scenario b: Trade Credit on Terms of Net k When trade credit on terms of net
k(≥ 1) is offered, the retailer does not have to pay at the time of ordering, so zt is not

involved in the financial constraint. The optimal value of zt is z∗t = z
(k)
β for any st. Now the

retailer’s expected profit in period t is only a function of st.

πt(st, z
(k)
β ) = −us2t + [nα(p− w(k))− e]st −

[
np+ (n− 1)(h− w(k))

]
F 1(z

(k)
β )

−
[
w(k) + (n− 1)h

]
z
(k)
β + est−1

πt(st, z
(k)
β ) has a concave quadratic form. It is maximized at

ŝ
(k)
t =

nα(p− w(k))− e
2u

.

It is notable that ŝ
(k)
t has the same value in any period, so the subscript t is omitted. ŝ(k)

is the optimal size of the retailer in scenario b. We assume that nα(p − w(k)) − e > 0 and
s0 < ŝ(k), otherwise there is no incentive for the retailer to expand.

The optimal values of st and zt are

s∗t =


st−1 if ŝ(k) < st−1
ŝ(k) if st−1 ≤ ŝ(k) ≤ s̄t
s̄t otherwise

(4.5)

z∗t = z
(k)
β

for t = 1, . . . , T . The retailer’s expansion policy in scenario b with additive demand is to
stay at st−1 if st−1 > ŝ(k), to expand up to s̄t if s̄t < ŝ(k), and to expand to the optimal size

ŝ(k) otherwise. His order policy is to order q∗t = αs∗t + z
(k)
β , for t = 1, . . . , T .

Scenario a : No Trade Credit Financial constraint (4.1) needs to be satisfied when
trade credit is not available. With zt defined, (4.1) can be rewritten as

wzt + (αw + e)st + us2t ≤ f ′t−1 (1)

It involves both st and zt, thus the retailer needs to balance between size and base-stock
level. Let z∗t (st) denote the optimal value of zt for any given st. z

∗
t (st) takes value z

(0)
β if st is

small enough, but is restricted by (4.1) otherwise. Let sft be the maximum value of st such

that z∗t (st) = z
(0)
β . Its value is given by

sft =

{ √
(αw+e)2+4uf ′t−1−4z

(0)
β wu−(αw+e)

2u
if f ′t−1 ≥ z

(0)
β w − (αw + e)2/(4u)

−∞ otherwise.
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The constrained optimal value of zt is

z∗t (st) =

{
z
(0)
β if st ≤ sft[
f ′t−1 − (αw + e)st − us2t

]
/w =: zt(st) otherwise.

(4.6)

Plugging (4.6) back into (4.4), we can solve for the optimal expanded size. Because
πt(st, zt) takes different forms when zt is in different regions, we need to check whether
zt(st) ≥ −αs0. zt(st) ≥ −αs0 if and only if

st ≤
√

(αw + e)2 + 4uf ′t−1 + 4αwus0 − (αw + e)

2u
=: sst

Hence, sst is the maximum value of st such that zt(st) ≥ −αs0.

So far we have obtained the two threshold values of st, s
f
t and sst . The relations among

sft , s
s
t , and s̄t is described by the proposition below.

Proposition 15. In the additive demand case, sft < sst ≤ s̄t, for any t.

Therefore, the retailer’s expected profit when zt = z∗t (st) is

πt(st, z
∗
t (st)) =


g1(st) if st ≤ sft
g2(st) if sft ≤ st ≤ sst
g3(st) if st ≥ sst

where

g1(st) = −us2t + [nα(p− w)− e]st +
[
est−1 − [np+ (n− 1)(h− w)]F 1(z

(0)
β )

− [w + (n− 1)h] z
(0)
β

]
g2(st) = − [np+ (n− 1)(h− w)]F 1 (zt(st))− [w + (n− 1)h] zt(st)− us2t

+ [nα(p− w)− e] st + est−1

g3(st) = n(p− w)zt(st)− us2t + [nα(p− w)− e] st + est−1.

Lemma 16. In the additive demand case, g1(·) is strictly concave over R, g2(·) is strictly
concave over [sft ,∞), and g3(·) is strictly concave and decreasing over [0,∞).

g1 has exactly the same form as the expected profit in scenario b, so it is maximized at

ŝ(0) =
nα(p− w)− e

2u
.

Let št be the unique value of st such that g′2(st) = 0. There is no close-form solution for št
in general, but it can be efficiently obtained by (binary search).
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Lemma 17. In the additive demand case, πt(st, z
∗
t (st)) is continuously differentiable, for

any t.

Let s̃t be the unconstrained optimal expanded size of the retailer in period t with lower
bound st−1 and upper bound s̄t omitted, then Lemma 16 and Lemma 17 lead to the following
proposition.

Proposition 18. In the additive demand case,

s̃t =

{
št if sft < ŝ(0)

ŝ(0) otherwise.

for any t.

Corollary 19. In the additive demand case, s̃t < s̄t, for any t.

The optimal values of st and zt are

s∗t = max{st−1, s̃t} (4.7)

z∗t =

{
z
(0)
β if s∗t ≤ sft
zt(s

∗
t ) otherwise.

Multiplicative Demand Model

In this section, we derive the retailer’s expansion and order policies in both scenarios in
the multiplicative demand case. Recall that the multiplicative demand model assumes that
Dt,i(st) = αstεt,i, with εt,i ∼iid F and E[εt,i] = 1, for i = 1, . . . , n. The support of εt,i
is assumed to be [0,∞). As for the additive demand model, we define zt = qt/(αst) for
mathematical convenience, and rewrite the retailer’s expected profit in period t as a function
of st and zt.

πt(st, zt) = −α
[
np+ (n− 1)(h− w(k))

]
stE[εt,i − zt]+ − α

[
w(k) + (n− 1)h

]
stzt − us2t

+
[
nαp+ (n− 1)α(h− w(k))− e

]
st + est−1

= −α
[
np+ (n− 1)(h− w(k))

]
stF

1(zt)− α
[
w(k) + (n− 1)h

]
stzt − us2t

+
[
nαp+ (n− 1)α(h− w(k))− e

]
st + est−1 (4.8)

The unconstrained optimal value of zt is also equal to z
(k)
β . We will show that the retailer’s

expansion and order policies in the multiplicative demand case also have similar structures
as those in the additive demand case.
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Scenario b: Trade Credit on Terms of Net k zt is always unconstrained when trade
credit is available, so z∗t = z

(k)
β for all t. With zt set at optimal, the expected profit of the

retailer in period t is

πt(st, z
(k)
β ) = −us2t

+
[
α
[
np+ (n− 1)(h− w(k))

] (
1− F 1(z

(k)
β )
)
− z(k)β α

[
w(k) + (n− 1)h

]
− e
]
st

+est−1.

It is maximized at

ŝ(k) =
α
[
np+ (n− 1)(h− w(k))

] (
1− F 1(z

(k)
β )
)
− z(k)β α

[
w(k) + (n− 1)h

]
− e

2u
.

Without loss of generality, we assume that ŝ(k) > s0.

Then the retailer’s constrained optimal expanded size in period t is

s∗t =


st−1 if ŝ(k) < st−1
ŝ(k) if st−1 ≤ ŝ(k) ≤ s̄t
s̄t otherwise

(4.9)

To sum up, the retailer’s expansion policy in scenario b with multiplicative demand is the
same as that with additive demand. His order policy in this case is to order q∗t = z

(k)
β αs∗t ,

for t = 1, . . . , T .

Scenario a : No Trade Credit When no trade credit is provided, the retailer’s base-stock
level, or equivalently, zt, might be restricted by financial constraint (4.1). It is required that

wαstzt + us2t + est ≤ f ′t−1.

It follows that

z∗t (st) =

{
z
(0)
β if st ≤ sft

zt(st) =
f ′t−1−us2t−est

αwst
otherwise

where

sft =

√
(z

(0)
β αw + e)2 + 4uf ′t−1 − (z

(0)
β αw + e)

2u

is the maximum value of st such that z∗t (st) is not restricted by the financial constraint. Note
that z∗t (st) is non-negative whenever st ≤ s̄t, so it is always feasible and in the support of εt.

Analogous to the additive demand case, we have the following proposition.

Proposition 20. In the multiplicative demand case, sft < s̄t, for any t.
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When zt = z∗t (st), the retailer’s expected profit is

π(st, z
∗
t (st)) =

{
g1(st) if st ≤ sft
g2(st) otherwise

where

g1(st) = −us2t
+
[
α [np+ (n− 1)(h− w)]

(
1− F 1(z

(0)
β )
)
− z(0)β α [w + (n− 1)h]− e

]
st

+est−1

g2(st) = −α [np+ (n− 1)(h− w)] stF
1(zt(st)) +

(n− 1)hu

w
s2t

+

[
α [np+ (n− 1)(h− w)] +

(n− 1)h

w
e

]
st −

[
ft−1 +

(n− 1)h

w
f ′t−1

]
Lemma 21. In the multiplicative demand case, g1(·) is strictly concave on R and g2(·) is
strictly concave on [sft ,∞).

It has been solved in scenario a that g1 is maximized at

ŝ(0) =
α [np+ (n− 1)(h− w)]

(
1− F 1(z

(0)
β )
)
− z(0)β α [w + (n− 1)h]− e

2u
.

Let št be the unique value of st such that g′2(st) = 0, then g2 is maximized at št.

Lemma 22. In the multiplicative demand case, πt(st, z
∗
t (st)) is continuously differentiable,

for any t..

By Lemma 21 and Lemma 22, π(st, z
∗
t (zt)) is overall concave in st and has a unique

maximum. Let s̃t be the unconstrained optimal expanded size of the retailer in period t with
lower bound st−1 and upper bound s̄t omitted, then we have the following result.

Proposition 23. In the multiplicative demand case,

s̃t =

{
št if sft < ŝ(0)

ŝ(0) otherwise.

for any t.

Corollary 24. In the multiplicative demand case, s̃t < s̄t, for any t.

The optimal values of st and zt are

s∗t = max{st−1, s̃t} (4.10)

z∗t =

{
z
(0)
β if s∗t ≤ sft
zt(s

∗
t ) otherwise.
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Discussion on Retailer’s Growing Process

In this section, we summarize and compare the retailer’s growing processes in scenario a and
scenario b from several aspects.

Expansion and inventory policies. The retailer essentially follows the same expan-
sion policy in all cases: he expands to an unconstrained optimal size s̃t if s̃t is between his
starting size st−1 and the size upper bound s̄t, expands to s̄t if s̃t exceeds the size upper
bound, and stays at st−1 otherwise. We call this a bounded expand-up-to policy. However,
s̃t is different from scenario to scenario. In scenario a, s̃t = št in all periods except the last
period of his growing process in which s̃t = ŝ(k). While in scenario b, s̃t always equals to ŝ(0).

The retailer has different base-stock levels in scenario a and scenario b. In scenario b, he
always orders up to the unconstrained base-stock level q∗t = αs∗t + z

(k)
β (in the additive case)

or q∗t = αs∗t z
(k)
β (in the multiplicative case). In scenario a, he orders up to the restricted

base-stock level q∗t = αs∗t + zt(s
∗
t ) (in the additive case) or q∗t = αs∗t zt(s

∗
t ) (in the multi-

plicative case) when his expanded size s∗t exceeds sft , and orders up to the unconstrained

base-stock level q∗t = αs∗t + z
(0)
β (in the additive case) or q∗t = αs∗t z

(0)
β (in the multiplicative

case) otherwise.

Growing manner and speed. We first look at the retailer’s growing manner in sce-
nario b. By (4.5) and (4.9), we see that s∗t never exceeds ŝ(k) as long as s0 < ŝ(k). The
retailer expands up to s̄t in every period when s̄t is less than ŝ(k). Once s̄t ≥ ŝ(k) is satisfied
in some period, the retailer expands to ŝ(k) and ends his growing process.

In scenario a, the retailer may expand to št in some periods. One immediate question is
whether it is possible for the retailer to grow over ŝ(0). The answer is no. To see this, we
start from the following lemma.

Lemma 25. In scenario a, št < ŝ(0) if sft < ŝ(0).

Lemma 25 shows that the retailer’s size can not exceeds ŝ(0) in any year in which he
expands to št. We define the first year in which sft ≥ ŝ(0) is satisfied as the mature year and
all the previous periods the developing years. We will see from the next proposition that
these names accurately describe the two stages of the retailer’s growing process.

Proposition 26. In scenario a, the retailer expands to max{st−1, št} in every developing
year. His size is always less than ŝ(0) during these years. In the mature year, he expands to
ŝ(0) and finishes his growing process.

By Proposition 26, we have the following two corollaries.
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Corollary 27. The retailer expands more aggressively in scenario b than in scenario a.
That is, in a certain year, he expands more in scenario b than in scenario a given that the
starting size and fund are the same.

Corollary 28. In scenario a, the retailer orders up to the restricted base-stock level q∗t =
αs∗t + zt(s

∗
t ) in the additive case or q∗t = αs∗t zt(s

∗
t ) in the multiplicative case in developing

years, and orders up to the unconstrained base-stock level q∗t = αs∗t + z
(0)
β in the additive case

or q∗t = αs∗t z
(0)
β in the multiplicative case in the mature year.

Corollary 28 greatly simplifies the retailer’s order policy in scenario a.

Target size. No matter under additive or multiplicative demand model, there exists a
constant size ŝ(k) that has been shown to be the retailer’s target size, i.e. the size that the
retailer grows towards and stays at once reaching it. The target size takes different values
under different demand models. More specifically,

ŝ(k) =
nα(p− w(k))− e

2u

in the additive demand case, while

ŝ(k) =
1

2u

{
α
[
np+ (n− 1)(h− w(k))

]
− α

[
np+ (n− 1)(h− w(k))

]
F 1(z

(k)
β )

−z(k)β α
[
w(k) + (n− 1)h

]
− e
}

in the multiplicative demand case, for k = 0, 1, . . .. It is notable that ŝ(k) is determined
only by α, n, p, w(k), e and u in the additive demand case, while it also depends on h and
the demand distribution in the multiplicative demand case. We also conduct a sensitivity
analysis on ŝ(k) and obtain the following proposition.

Proposition 29. ŝ(k) is increasing in α and p, and is decreasing in w(k), h, e, and u. for
k = 0, 1, 2, . . ..

Proposition 29 is consistent with our intuition: it is better for the retailer to have bigger
size if his size has more impact on the demand or if the product is more profitable, and it
is better to have a smaller size if it is more expensive to expand or to maintain his size.
Because w(k+1) > w(k) for k = 0, 1, 2, . . ., the retailer’s target size in scenario b is always
larger than that in scenario a, and the longer the payment can be delayed, the larger the
target size is.
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4.3 Numerical Studies

It has been proved in last section that the retailer grows faster with trade credit, so trade
credit is favorable for the retailer in this sense. We further examine the retailer’s growing
speed in this section through numerical experiments. On the other hand, since demand is
random, it is possible for the retailer to go bankrupt before he expands to his target size.
Thus, it is also necessary to check whether trade credit affects the chance that the retailer
reaches his target size. This issue is also addressed in this section. In these experiments, we
also simulate the behavior of the supplier in order to evaluate trade credit’s impact on her
profitability.

Experiment Settings

We test the system in various settings. Each setting is characterized by: (1) availability of
trade credit (no trade credit or trade credit on terms of Net 1), (2) demand model (additive
or multiplicative), and (3) other parameters (costs, prices, initial size and fund, etc.). For
each setting, we generate 5000 sample paths. Each sample path consists of 500 years which
is long enough for the retailer to reach his target size. εt,i’s are generated independently
according to a uniform distribution (on [−αs0, αs0] in the additive case and on [0, 2] in the
multiplicative case).

For each sample path, the simulation terminates if T > 5000 or if the retailer goes
bankrupt. If the retailer is operating until the end of simulation horizon, he pays the sup-
plier all unpaid amount if there is any. If the retailer goes bankrupt, we assume that he
ends up with nothing. If his end fund is not enough to pay for all the unpaid amount,
he can liquify his asset by selling it at unit price e0(< e). We detect bankruptcy as fol-
lows. The retailer goes bankrupt at the end of a year if his ending fund is not enough
to pay the operational cost of next year even if he would not expand. He goes bankrupt
at the end of a period in the middle of a year if his ending fund is not enough to pay the
purchasing cost of next period (in scenario a) or if his ending fund is negative (in scenario b).

Our model involves a large number of parameters, but it is neither practical nor necessary
to change all of them in simulation. First, we fix α, p, and s0 at 1, because every system
can be transformed into a system with α = 1, p = 1, and s0 = 1 by re-scaling parameters
properly. For analytical simplicity, we also set n = 4, h = 0.1, e0 = e/2, and c = p/3.
w changes between 0 and p − h. e and u are set at values such that ŝ(0) = 100. After
all the above parameters are determined, f0 takes 10 values evenly spaced in the interval
[f0,min, f0,max], where f0,min = us20, the minimum value of f0 such that the retailer does not
go bankrupt at the beginning, and f0,max = u(ŝ(k))2 + e(ŝ(k) − s0), the minimum value of f0
such that the retailer is able to extend to his target size in the first period in scenario b. For
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(a) Additive demand model
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(b) Multiplicative demand model

Figure 4.2: NOP of the Retailer with f0,index = 4

each f0, we define

f0,index =
10(f0 − f0,min)

f0,max − f0,min
+ 1

as its index, so f0,min has index 1, and f0,max has index 10. By using the index of f0, we are
able to refer to the same level of initial fund under different parameters.

Retailer’s Growing Speed

We already know that the retailer grows faster in scenario b than in scenario a. We are also
interested in by how much faster he grows with trade credit. Since ŝ(0) is fixed at 100, we
measure the growing speed of the retailer through the number of periods needed for him to
reach his target size (NOP). The average NOP in scenario a and that in scenario b with
f0,index = 4 are plotted in Figure 4.2 as functions of w. As expected, the retailer always
needs less periods to reach his target size in scenario b than in scenario a no matter which
demand model is used.

We also observe that NOP changes as w increases. However, while NOP increases con-
vexly in scenario a, it stays constant or decreases slightly in scenario b. Hence, the retailer’s
growing speed is very sensitive to the change in the wholesale price in scenario a, but is quite
robust in scenario b. Moreover, although ŝ(0) is maintained at 100, ŝ(1) actually increases
as w increases. It increases from 103 to 175 in the additive demand case and from 104.1 to
248.3 in the multiplicative demand case when w increases from 1/6 to 5/6. Therefore, the
retailer grows much faster in scenario a than in scenario b.

Retailer’s Survival Rate

We define the survival rate of the retailer as the probability that he reaches his target size
before going bankrupt. In this section, we investigate the impacts of trade credit on the
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(a) Additive demand model
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(b) Multiplicative demand model

Figure 4.3: Retailer’s Survival Rate with w = 1/2

retailer’s survival rate. Figure 4.3 displays the retailer’s survival rate when w = 1/2. In the
additive demand case, the survival rate of the retailer is always 1 except for the case that
f0 = f0,min. This means that there is little chance for the retailer to fail when demand is
negatively correlated no matter trade credit is used or not. In the multiplicative demand
case, survival rate is much lower, and the retailer is more likely to survive in scenario a than
in scenario b in most cases. The opposite happens only when f0 equals f0,min or f0,max.
Ignoring the two extremes cases of f0, we find that the retailer’s survival rate when he uses
trade credit is within 0.5. That is, with more than a half chance he fails to reach his target
size. Because only failures before target size is reached is counted here, we expect that the
retailer’s overall survival rate over the simulation horizon is even lower. We also observe
an increasing trend in the retailer’s survival rate with respect to f0, which implies that the
retailer is more likely to survive if he has more initial fund.

Retailer’s and Supplier’s Profits

It is shown that the retailer grows towards a larger target size with a faster speed when
trade credit is available, so he should be able to achieve a higher profit over the simulation
horizon if he survives. Nevertheless, it is also shown in the last study that his survival rate
might be lower at the same time, so his overall profit is not necessarily higher when trade
credit is available. Similar things happen with the supplier. If the retailer survives, because
the retailer has a bigger size and always orders the unconstrained order quantity in scenario
b, the supplier sells more in this scenario, and thereby makes more profit. However, she may
also lose profit due to trade credit. One risk of trade credit comes directly from nonpayment
– the retailer fails to pay all the unpaid amount when he goes bankrupt. Another potential
risk is that the retailer might be more likely to go bankrupt in an early stage so that the
supplier can not make any profit after that.
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Figure 4.4: Relative Increase in Retailer’s and Supplier’s Profit in the Additive Demand
Case
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Figure 4.5: Relative Increase in Retailer’s and Supplier’s Profit in the Multiplicative Demand
Case

We estimate the retailer’s and the supplier’s expected profits in scenario a and scenario
b with both additive and multiplicative demand models, and calculate the relative increases
in their profits from scenario a to scenario b. The relative increase in profit with additive de-
mand model is displayed in Figure 4.4 and that with multiplicative demand model in Figure
4.5. In the additive demand case, because the retailer survives with probability 1, both the
retailer and the supplier have higher profit in scenario b than in scenario a. On the contrary,
we observe decreases in retailer’s and supplier’s profits in the multiplicative demand case.
This implies that, when demand is positively correlated, trade credit may lower the profits
of both the retailer and the supplier. Another interesting result is, the supplier’s and the
retailer’s profit always change in the same direction when trade credit is extended. More
specifically, the supplier gets more profit with trade credit if and only if the retailer also gets
more profit. So there is opportunity for them to reach a win-win agreement on the terms of
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Figure 4.6: Supplier’s Lose Rate with f0,index = 4 in the Multiplicative Demand Case

trade credit. At last, figure 4.4 also shows that the value of f0 has little effect on the relative
increase in profit in the additive demand case, but can mitigate the risk of trade credit in
the multiplicative demand case.

We also investigate whether trade credit may cause the bankruptcy of the supplier when
she is a small business herself. Our model verifies the findings in [10]. We define the lose
rate of the supplier as the probability that she gets negative profit over the simulation
horizon. Her lose rate is always zero in the additive demand case because the retailer almost
never fails in that case. However, positive lose rate is observed under multiplicative demand
model. Figure 4.6 plots the supplier’s lose rate with f0,index = 4 in the multiplicative demand
case. It is notable that the supplier may lose money with positive probability in scenario b.
Therefore, when the supplier is also financially constrained, she may go bankrupt because
of the failure of the retailer if she extends trade credit to him. Moreover, if the supplier also
uses trade credit, she may further cause the failure of her credit provider.

4.4 Summary

In this chapter, we study the impact of trade credit on the growth of small businesses and
their suppliers through a mathematical model. In the model, we consider a supply chain
in which a single retailer seeks to expand his size and a single supplier seeks to create new
business and gain long-term profit. The retailer is financially constrained and has no access
to bank loans. The supplier may choose to extend trade credit to the retailer in order to
help him expand his size and potentially increase her own sales. Demand from end users
is assume to be random and depend on the retailer’s size. The retailer’s problem is solved
analytically under both the additive and the multiplicative demand models. It is proved
that the retailer grows faster and orders more with trade credit. Numerical studies show
that both the supplier and the retailer benefit from trade credit in the additive demand
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case. They achieve higher profit when trade credit is extended. On the contrary, in the
multiplicative demand case, the retailer’s survival rate is lower when he uses trade credit,
and thereby his overall profit is also lower. At the same time, the supplier loses profit by
extending trade credit, and some times her profit is even negative.

We get the following major insights from our model. First of all, trade credit facilitates
the growth of small businesses and can stabilize their growth speed when wholesale price
changes a lot. Second, using or providing trade credit is more risky if demand is positively
correlated. It not only makes buyer more likely to go bankrupt, but can also cause the failure
of suppliers. As last, the effect of trade credit is dependent on demand correlation. Thus,
suppliers need to carefully investigate the market before making decisions.

There are several directions for future work. For example, we only compare scenario b
when k = 1 with scenario a in numerical studies. It is not clear how the impact of trade
credit changes as k increases. By carrying out numerical studies with more general k values,
researchers will be able to get some insight on the design of trade credit terms, and to explain
why net 30 and net 10 are commonly used in practice. It is also interesting to study how
business failures diffuse in a more complex supply chain where trade credit is extended by
every node to its downstream.
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Appendix A

Proofs of Chapter 2

The proofs for all lemmas, theorems and important statements are given in this section.
Since some of them may be used in multiple settings, we prove each of them in the most
general setting. That is, we prove Claim 2 and Theorem 3 for (P I

t ), Lemma 4 for (P II
t ),

Lemma 1, Theorem 6, and Theorem 7 for (PSt), Proposition 8 and Proposition 9 for problem
(PG), and Proposition 10 and Proposition 11 for uncapacitated problems. The proofs of
Theorem 5 is not given here, because it is a special version of Theorem 6.

Proof of Lemma 1. Suppose Y is an optimal solution to (PSt), and kj =
∑

i∈Sj Yij is the

number of suppliers connected with retailer j in this solution. So
∑M

j=1 kj = t, and 0 ≤
kj ≤ uj, for any j. Construct another solution Y ∗, s.t. Y ∗ij = 1 for j = 1, . . . ,M , i =

ij(1), . . . , i
j
(kj)

, and all other Y ∗ij ’s equal to 0. Then Y ∗ is a feasible solution to (PSt) because∑M
j=1

∑
i∈Sj Y

∗
ij =

∑M
j=1 kj = t. In addition, because the suppliers in each supplier set is

ranked in increasing order of failure probability, we have
∏

i∈Sj q
Y ∗ij
i ≤

∏
i∈Sj q

Yij
i for any j.

Thus, Y ∗ is at least as good as Y , and thereby optimal. Therefore, we can always find an
optimal solution to (PSt) in which, if a retailer is supplied by k suppliers, then it must be
supplied by the first k suppliers in its supplier set.

Proof of Claim 2. Consider the function g(q1) = qk1 − kq1 + k − 1. g is convex when q1 ≥ 0,
and g′(q1) = kqk−11 − k. By first order condition, g achieves its minimum 0 at q1 = 1. Thus,
qk1 − kq1 + k − 1 ≥ 0, for any q1 ≥ 0. Also, by the assumption qk1 ≤ q1q2 . . . qk, we have

q1q2 . . . qk − kq1 + k − 1 ≥ qk1 − kq1 + k − 1 ≥ 0

and equivalently

1− q1 ≥
1− q1q2 . . . qk

k
.

Proof of Theorem 3. To prove Theorem 3, we need to prove the following lemma.
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Lemma 30. There exists an optimal solution to (PSIt ) in which only one or two successive
Lk’s are positive.

Proof of Lemma 30. Suppose LA is an optimal solution to (PSIt ). Let kA1 = min{k :
LAk > 0}, kA2 = max{k : LAk > 0}. If kA2 − kA1 ≤ 1, then we are done. Otherwise, define
lmin = min{LA

kA1
, LA

kA2
}. If kA1 + kA2 is even, let c = (kA1 + kA2 )/2. Now we construct another

solution LB s.t. LB
kA1

= LA
kA1
− lmin, LBc = LAc + 2lmin, LB

kA2
= LA

kA2
− lmin, and LBk = LAk , for

any k 6= kA1 , c, k
A
2 . Then LB satisfies

N∑
k=1

LBk =
N∑
k=1

LAk ≤M

N∑
k=1

k · LBk =
N∑
k=1

k · LAk − kA1 · lmin + c · 2lmin − kA2 · lmin =
N∑
k=1

k · LAk = t.

So LB is a feasible solution to (PSIt ). The increase in objective function value is

Obj(LB)−Obj(LA) = −

1−
kA1∏
i=1

qi

 lmin +

(
1−

c∏
i=1

qi

)
2lmin −

1−
kA2∏
i=1

qi

 lmin

= lmin

 kA1∏
i=1

qi

1 +

kA2∏
i=kA1 +1

qi − 2
c∏

kA1 +1

qi


≥ lmin

 kA1∏
i=1

qi

1 +

 c∏
kA1 +1

qi

2

− 2
c∏

kA1 +1

qi


= lmin

 kA1∏
i=1

qi

1−
c∏

kA1 +1

qi

2

≥ 0

If kA1 + kA2 is odd, let c1 = b(kA1 + kA2 )/2c, c2 = d(kA1 + kA2 )/2e. Construct LB s.t. LB
kA1

=

LA
kA1
− lmin, LBc1 = LAc1 + lmin, LBc2 = LAc2 + lmin, LB

kA2
= LA

kA2
− lmin, and LBk = LAk , for any

k 6= kA1 , c1, c2, k
A
2 . Then LB satisfies

N∑
k=1

LBk =
N∑
k=1

LAk ≤M

N∑
k=1

k · LBk =
N∑
k=1

k · LAk − kA1 · lmin + c1 · lmin + c2 · lmin − kA2 · lmin =
N∑
k=1

k · LAk = t.
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So LB is a feasible solution to (PSIt ). The increase in objective function value is

Obj(LB)−Obj(LA) = −

1−
kA1∏
i=1

qi

 lmin +

(
1−

c1∏
i=1

qi

)
lmin +

(
1−

c2∏
i=1

qi

)
lmin

−

1−
kA2∏
i=1

qi

 lmin

= lmin

 kA1∏
i=1

qi

1 +

kA2∏
i=kA1 +1

qi −
c1∏

kA1 +1

qi −
c2∏

kA1 +1

qi


≥ lmin

 kA1∏
i=1

qi

1 +

 c1∏
kA1 +1

qi

2

− 2

c1∏
kA1 +1

qi


= lmin

 kA1∏
i=1

qi

1−
c1∏

kA1 +1

qi

2

≥ 0

To sum up, we can always find another optimal solution LB. What is more, if we define
kB1 = min{k : LBk > 0}, kB2 = max{k : LBk > 0}, then kB2 − kB1 < kA2 − kA1 . By repeating
this procedure for finitely many times, we can find an optimal solution in which at most two
successive Lk’s are positive. This completes the proof of Lemma 30.
It is easy to show that, if a = max {k ∈ Z : kM ≤ t}, b = t−aM , then La = M−b, La+1 = b,
and Lk = 0, for any k 6= a, a + 1 is the only feasible solution that satisfies the condition of
Lemma 30. Therefore, it must be optimal for (PSIt ).

Proof of Lemma 4. Let KA be an optimal solution to (PSIIt ). If for any l, j s.t. µl ≤ µj and
KA
j < uj, we have KA

l ≤ KA
j , then we are done. Otherwise, suppose there exist j1, j2, s.t.

KA
j1
< uj1 , µj1 ≥ µj2 , and KA

j1
< KA

j2
. We construct KB s.t. KB

j1
= KA

j1
+ 1, KB

j2
= KA

j2
− 1,

and KB
j = KA

j , for any j 6= j1, j2. Then KB satisfies

M∑
j=1

KB
j =

M∑
j=1

KA
j = t

0 ≤ KB
j ≤ uj, integer j = 1, . . . ,M
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So KB is a feasible solution to (PSIIt ). The increase in objective function value is

Obj(KB)−Obj(KA) =
M∑
j=1

µj

(
1− q̄KB

j

)
−

M∑
j=1

µj

(
1− q̄KA

j

)
=

[
µj1

(
1− q̄K

B
j1

)
+ µj2

(
1− q̄K

B
j2

)]
−
[
µj1

(
1− q̄K

A
j1

)
+ µj2

(
1− q̄K

A
j2

)]
= (1− q̄)

(
µj1 q̄

KA
j1 − µj2 q̄

KA
j2
−1
)

Given KA
j1
< KA

j2
, we have KA

j1
≤ KA

j2
− 1, and thus q̄K

A
j1 ≥ q̄K

A
j2
−1. We also have µj1 ≥ µj2 .

Hence, the increase in objective function value is nonnegative. KB is also an optimal solution
to (PSIIt ). By repeating this procedure for finitely many times, we can always find an optimal
solution K∗, s.t., if K∗j < uj, µl ≤ µj, then K∗l ≤ K∗j , for any l, j.

Proof of Theorem 6. Suppose K is an optimal solution to (PSt) with t > 0. If Kĵ ≥ 1,

then we are done. Otherwise, there exists j̃ 6= ĵ s.t. Kj̃ ≥ 1, because K needs to satisfy∑M
j=1Kj = t ≥ 1. We construct another solution K∗ s.t. K∗

ĵ
= 1, K∗

j̃
= Kj̃ − 1, and

K∗j = Kj for all other j’s. Obviously, K∗ is a feasible solution to PSt. The increase in
objective function value is

Obj(K∗)−Obj(K) =
M∑
j=1

µj

1−
K∗j∏
k=1

qij
(k)

− M∑
j=1

µj

1−
Kj∏
k=1

qij
(k)


= µĵ

(
1− q

iĵ
(1)

)
− µĵ(1− 1) + µj̃

1−
Kj̃−1∏
k=1

q
ij̃
(k)

− µj̃
1−

Kj̃∏
k=1

q
ij̃
(k)


= µĵ

(
1− q

iĵ
(1)

)
− µj̃

(
1− q

ij̃
(K
j̃
)

)Kj̃−1∏
k=1

q
ij̃
(k)

By the definition of ĵ, and the order of suppliers in supplier sets, we have

µĵ

(
1− q

iĵ
(1)

)
≥ µj̃

(
1− q

ij̃
(1)

)
≥ µj̃

(
1− q

ij̃
(K
j̃
)

)
≥ µj̃

(
1− q

ij̃
(K
j̃
)

)Kj̃−1∏
k=1

q
ij̃
(k)

Thus, the increase in objective function value is non-negative. K∗ is also an optimal solution
to (PSt).
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Proof of Theorem 7. Let K∗ be an optimal solution to (PSt). For any K ≤ K∗, we say K
is part of K∗, and construct a remaining problem

(PR) max
M∑
j=1

µRj

1−
Kj+Lj∏
k=Kj+1

qij
(k)


s.t.

M∑
j=1

Lj = tR

0 ≤ Lj ≤ uRj , integer, j = 1, . . . ,M.

in which tR = t −
∑M

j=1Kj, µ
R
j = µj

∏Kj
k=1 qij

(k)
, and uRj = uj − Kj, for any j. To prove

Theorem 7, we first introduce and prove the following lemma.

Lemma 31. If L∗ is an optimal solution to (PR), then (K + L∗) is an optimal solution to
(PSt).

Proof of Lemma 31. It is easy to show that (K + L∗) is feasible for (PSt). We prove its
optimality by contradiction. Suppose L∗ is optimal for (PR), but (K + L∗) is not optimal
for (PSt). Let L′ = K∗ −K. Then L′ is a feasible solution to (PR), and

M∑
j=1

µj

1−
Kj+L

′
j∏

k=1

qij
(k)

 >
M∑
j=1

µj

1−
Kj+L

∗
j∏

k=1

qij
(k)

 (A.1)

The objective function value of (PR) at L′ is

Obj(L′) =
M∑
j=1

µRj

1−
Kj+L

′
j∏

k=Kj+1

qij
(k)


=

M∑
j=1

µj

 Kj∏
k=1

qij
(k)

1−
Kj+L

′
j∏

k=Kj+1

qij
(k)


=

M∑
j=1

µj

1−
Kj+L

′
j∏

k=1

qij
(k)

− M∑
j=1

µj

1−
Kj∏
k=1

qij
(k)

 .

Similarly, the objective function value of (PR) at L is

Obj(L∗) =
M∑
j=1

µj

1−
Kj+L

∗
j∏

k=1

qij
(k)

− M∑
j=1

µj

1−
Kj∏
k=1

qij
(k)

 .

By (A.1), we have Obj(L′) > Obj(L∗), which contradicts that L is optimal for (PR). This
completes the proof of Lemma 31.
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Let Kν be the value of K at the end of iteration ν of Algorithm 2. We then prove the
following proposition.

Proposition 32. Kν is part of an optimal solution to (PSt) for any 1 ≤ ν ≤ t.

Proof of Proposition 32. We prove by mathematical induction.

When ν = 1, K1 = eĵ, where ĵ = argmaxj:uj>0

{
µj

(
1− qij

(1)

)}
. By Theorem 3, there exists

an optimal solution K∗ s.t. K∗
ĵ
≥ 1, so K1 is part of K∗.

Assume Kν is part of an optimal solution to (PSt), ν < t. We construct a remaining problem
with respect to Kν .

(P ν) max
M∑
j=1

µνj

1−
Kν
j +Lj∏

k=Kν
j +1

qij
(k)


s.t.

M∑
j=1

Lj = tν

0 ≤ Lj ≤ uνj , integer, j = 1, . . . ,M.

where tν , µνj , and uνj are as defined in Algorithm 2. Let ĵ = argmaxj:uνj>0

{
µνj

(
1− qij

(Kν
j
)

+ 1

)}
.

By Theorem 3, there exists an optimal solution L∗ to (P ν) s.t. L∗
ĵ
≥ 1. And by Lemma 31,

(Kν +L∗) is an optimal solution to (PSt). K
ν+1 = Kν +eĵ is part of (Kν +L∗), and thereby

part of an optimal solution to (PSt).
By mathematical induction, we conclude that Kν is part of an optimal solution to (PSt) for
any 1 ≤ ν ≤ t. This completes the proof of Proposition 32.
Algorithm 2 terminates when ν = t, and returns Kt. By Proposition 32, Kt is part of an
optimal solution to (PSt). In addition, it satisfies

∑M
j=1K

t
j = t, so it is an optimal solution

to (PSt).

Proof of Proposition 8. Let Kt,ν be the number of suppliers that have been assigned to
retailers at the end of iteration ν of Algorithm 3 with t links to be built. Kν does not change
as the value of t changes as long as 1 ≤ ν ≤ t. Then for any t1, t2 s.t. 1 ≤ t1 < t2 ≤

∑M
j=1 uj,

we have Kt1,ν = Kt2,ν for any 1 ≤ ν ≤ t1. Hence, Kt1,t1 = Kt2,t1 . The solution when T = t1
is part of that when T = t2. Since t1 and t2 are chosen arbitrarily, we conclude that the
solutions given by Algorithm 2 are nested.

Proof of Proposition 9. Algorithm 2 adds links in non-increasing order of marginal benefit,
then by Proposition 8, the marginal increment in S(T ) is non-decreasing in T .

Proof of Proposition 10. Let S be the set of all the candidate links. Define function F (·) as
the expected sales of the supply chain given a subset of links are built. Let A be an arbitrary
subset of S which contains no more than

∑M
j=1 uj − 2 links, and

B = A ∪ {a1}, where a1 ∈ S\A, and F (B) ≥ F (B′) ∀ B′ s.t. A ⊂ B′ ⊂ S, |B′| = |B|,
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C = B ∪ {a2}, where a2 ∈ S\B, and F (C) ≥ F (C ′) ∀ C ′ s.t. B ⊂ C ′ ⊂ S, |C ′| = |C|.
Let B̃ = A ∪ {a2}. Then A ⊂ B̃ ⊂ S, and |B̃| = |B|, thereby F (B) ≥ F (B̃).

By Corollary 1 in [1], F (B∪ B̃) +F (B∩ B̃) ≤ F (B) +F (B̃). It follows that F (C) +F (A) ≤
2F (B), or equivalently, F (C)− F (B) ≤ F (B)− F (A).

Proof of Proposition 11. First we show that the sales of the supply chain is concave in C
when suppliers are reliable and demands are deterministic.
As mentioned before, the sales of a supply chain is equal to the max flow in a network in
which the source node is connected to suppliers well the sink node is connected to retailers.
By adding a link from the sink to the source and assigning weight 1 to it and weight 0 to
all other links, we convert the max-flow problem into a max-weight circulation problem, and
the max weight is equal to the max flow. By Proposition 1.2 in [murota], the max flow is
concave in C.
Let C1 and C2 be any two capacity vectors. Define C̄ = tC1 + (1− t)C2 for t ∈ [0, 1]. Let d
be the demands, and r the states of suppliers. Then the realized capacity vector is equal to
C · r for any capacity vector C (here (·) represents element-wise product). Let F (C) denote
the max flow with realized capacity C. Then

F (C̄ ·r) = F
(
[tC1 + (1− t)C2] · r

)
= F

(
tC1 · r + (1− t)C2 · r

)
≥ tF (C1 ·r)+(1−t)F (C2 ·r)

Since r and d are arbitrarily chosen,

E
[
F
(
C̄ ·R

)]
≥ tE

[
F (C1 ·R)

]
+ (1− t)E

[
F (C2 ·R)

]
.

Therefore, the expected sales is concave in supply capacity.
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Appendix B

Proofs of Chapter 3

Proof of Theorem 12. Let Ω be the feasible region of (P ). By Theorem 6.2 in [48], optimizing
the expected total cost over Ω is equivalent to optimizing over conv(Ω). In addition, by
Theorem 5.3 in [8], the minimum expected total cost is a concave function of the cost vector,
and thus is concave in f , w, and q respectively.
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Appendix C

Proofs of Chapter 4

Proof of Lemma 13. (4.2) is a quadratic inequality of st. By solving it, we get

−
√
e2 + euf ′t−1 − e

2u
≤ st ≤

√
e2 + euf ′t−1 − e

2u
= s̄t.

Because constraints st ≥ st−1 for t = 1, 2, . . . implies st > s0 > 0, and
−
√
e2+euf ′t−1−e

2u
< 0, we

only need to bound st above by s̄t.

Proof of Lemma 14. Given ft−1 ≥ us2t−1, then

s̄t ≥
√
e2 + 4u(us2t−1 + est−1)− e

2u
=

√
(e+ 2ust−1)2 − e

2u
= st−1.

Proof of Proposition 15. First we prove sft < sst .

β(0) =
n(p− w)

np+ (n− 1)(h− w)
∈ (0, 1) ⇔ z

(0)
β > −αs0

⇔ −4z
(0)
β wu < 4αwus0

⇔ sft < sst

Next we prove sst ≤ s̄t.

sst ≤ s̄t ⇔
√

(αw + e)2 + 4uf ′t−1 + 4αwus0 ≤
√
e2 + 4uf ′t−1 + αw

⇔ (αw + e)2 + 4uf ′t−1 + 4αwus0 ≤ e2 + 4uf ′t−1 + α2w2 + 2αw
√
e2 + 4uf ′t−1

⇔
√
e2 + 4uf ′t−1 ≥ e+ 2us0

⇔ f ′t−1 ≥ us20 + es0
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Because st−1 ≥ s0 and ft−1 ≥ us2t−1, we have

f ′t−1 = ft−1 + est−1 ≥ us2t−1 + est−1 ≥ us20 + es0

and thereby sst ≤ s̄t also holds.

Proof of Lemma 16. g1(·) has a quadratic form with negative coefficient at the second order
term, so it is strictly concave on R.

g′′2(st) = − [np+ (n− 1)(h− w)] f (zt(st)) (z′t(st))
2

+ [np+ (n− 1)(h− w)]F 0(zt(st))z
′′
t (st)

− [w + (n− 1)h] z′′t (st)− 2u

Given

zt(st) =
1

w

[
f ′t−1 − (αw + e)st − us2t

]
we have

z′t(st) = −αw + e

w
− 2u

w
st

z′′t (st) = −2u

w

Thus,

g′′2(st) = − [np+ (n− 1)(h− w)] f (zt(st)) (z′t(st))
2 − 2u

−2u

w

{
[np+ (n− 1)(h− w)]F 0 (zt(st))− [w + (n− 1)h]

}
.

If st ≥ sft , then zt(st) ≤ z
(0)
β , and thereby

F 0 (zt(st)) ≥ F 0(z
(0)
beta) = 1− β(0) =

w + (n− 1)h

np+ (n− 1)(h− w)
.

It follows that

g′′2(st) ≤ − [np+ (n− 1)(h− w)] f (zt(st)) (z′t(st))
2 − 2u < 0.

g2(·) is strictly concave on [sft ,+∞).

g′′3(st) = −2u

w
[np− (n− 1)w] < 0

so g3(·) is strictly concave over R.

g′3(st) = n(p− w)z′t(st)− 2ust + nα(p− w)− e

= −np− (n− 1)w

w
(2ust + e)

If st ≥ 0, then 2ust+e > 0, and g′3(st) < 0. Thus, g3(·) is strictly decreasing on [0,+∞).
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Proof of Lemma 17. We only need to show the the first derivative of πt(st, z
∗
t (st)) is continu-

ous. Because g1(·), g2(·), and g3(·) are continuously differentiable respectively, we only need
to show that the first derivative of πt(st, z

∗
t (st)) is continuous at sft and sst .

g′1(st) = −2ust + nα(p− w)− e
g′2(st) =

{
[np+ (n− 1)(h− w)]F 0(zt(st))− [w + (n− 1)h]

}
z′t(st)− 2ust + nα(p− w)

−e

g′3(st) = −np− (n− 1)w

w
(2ust + e)

So we have

g′1(s
f
t ) = −2usft + nα(p− w)− e

g′2(s
f
t ) =

{
[np+ (n− 1)(h− w)]F 0(z

(0)
β )− [w + (n− 1)h]

}
z′t(s

f
t )− 2usft + nα(p− w)

−e
= −2usft + nα(p− w)− e

g′2(s
s
t) =

{
[np+ (n− 1)(h− w)]F 0(−αs0)− [w + (n− 1)h]

}
z′t(s

s
t)− 2usst + nα(p− w)

−e

= n(p− w)

(
−αw + e

w
− 2u

w
sst

)
− 2usst + nα(p− w)− e

= −np− (n− 1)w

w
(2usst + e)

g′3(s
s
t) = −np− (n− 1)w

w
(2usst + e)

Therefore, g′1(s
f
t ) = g′2(s

f
t ), and g′2(s

s
t) = g′3(s

s
t).

Proof of Proposition 18. By Lemma 16 and Lemma 17, there exists a unique s̃t and it equals
to ŝ(0) if dπt

dst

∣∣
st=s

f
t
< 0, and št otherwise. When sft > ŝ(0), we have dπt

dst

∣∣
st=s

f
t

= g′1(s
f
t ) < 0, and

thereby s̃t = ŝ(0). When sft ≤ ŝ(0), we have dπt
dst

∣∣
st=s

f
t

= g′1(s
f
t ) ≥ 0, and thereby s̃t = št.

Proof of Corollary 19. Case 1: sft ≥ ŝ(0).
s̃t = ŝ(0) ≤ sft . By Proposition 15, sft < s̄t. Therefore, s̃t < s̄t.
Case 2: sft < ŝ(0).
To prove št < s̄t, only need to prove that g′2(s̄t) < 0.

g′2(s̄t) = [np+ (n− 1)(h− w)]F 0(zt(s̄t))z
′
t(s̄t)− [w + (n− 1)h] z′t(s̄t)− 2us̄t + nα(p− w)

= −e
=

{
[np+ (n− 1)(h− w)]F 0(−αs0)− [w + (n− 1)h]

}
z′t(s̄t)− 2us̄t + nα(p− w)

−e
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Because the support of ε is [−αs0,+∞), F 0(−αs0) = 1. It has also been shown in the proof
of Lemma 16 that z′t(st) = −αw+e

w
− 2u

w
st, then we have

g′2(s̄t) = −n(p− w)

(
αw + e

w
+

2u

w
st

)
− 2us̄t + nα(p− w)− e

= −np− (n− 1)w

w
(2us̄t + e) < 0.

Proof of Proposition 20.

sft < s̄t ⇔

√
(z

(0)
β αw + e)2 + 4uf ′t−1 − (z

(0)
β αw + e)

2u
<

√
e2 + 4uf ′t−1 − e

2u

⇔
√

(z
(0)
β αw + e)2 + 4uf ′t−1 < z

(0)
β αw +

√
e2 + 4uf ′t−1

⇔ (z
(0)
β αw + e)2 + 4uf ′t−1 < (z

(0)
β αw)2 + e2 + 4uf ′t−1 + 2z

(0)
β αw

√
e2 + 4uf ′t−1

⇔ 2z
(0)
β αwe < 2z

(0)
β αw

√
e2 + 4uf ′t−1

⇔ e <
√
e2 + 4uf ′t−1

Because f ′t−1 ≥ us2t−1 > 0, e <
√
e2 + 4uf ′t−1 always holds, and thereby sft < s̄t also

holds.

Proof of Lemma 21. g1(·) has a quadratic form with negative coefficient at the second order
term, so it is strictly concave on R.

g′′2(st) = α [np+ (n− 1)(h− w)]
[
(2z′t(st) + stz

′′
t (st))F

0(zt(st))− stf (zt(st)) (z′t(st))
2
]

+
2(n− 1)hu

w

Given

zt(st) =
f ′t−1 − est − us2t

αwst

we have

z′t(st) = −
f ′t−1
αws2t

− u

αw

z′′t (st) =
2f ′t−1
αws3t
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Thus,

g′′2(st) = −α [np+ (n− 1)(h− w)] stf (zt(st)) (z′t(st))
2

+α [np+ (n− 1)(h− w)]F 0 (zt(st))

(
− 2u

αw

)
+

2(n− 1)hu

w
.

If st ≥ sft , then zt(st) ≤ z
(0)
β , and thereby

F 0 (zt(st)) ≥ F 0(z
(0)
beta) = 1− β(0) =

w + (n− 1)h

np+ (n− 1)(h− w)
.

It follows that

g′′2(st) ≤ −α [np+ (n− 1)(h− w)] stf (zt(st)) (z′t(st))
2 − 2u

w
[w + (n− 1)h] +

2(n− 1)hu

w

= −α [np+ (n− 1)(h− w)] stf (zt(st)) (z′t(st))
2 − 2u < 0

g2(·) is strictly concave on [sft ,+∞).

Proof of Lemma 22. We only need to show the the first derivative of πt(st, z
∗
t (st)) is contin-

uous. Because g1(·) and g2(·) are continuously differentiable respectively, we only need to
show that the first derivative of πt(st, z

∗
t (st)) is continuous at sft .

g′1(st) = −2ust + α [np+ (n− 1)(h− w)]
(

1− F 1(z
(0)
β )
)

−z(0)β α [w + (n− 1)h]− e

g′2(st) = α [np+ (n− 1)(h− w)]
[
1− F 1(zt(st)) + stF

0(zt(st))z
′
t(st)

]
+

(n− 1)h

w
(2ust + e)

So we have

g′1(s
f
t ) = −2usft + α [np+ (n− 1)(h− w)]

(
1− F 1(z

(0)
β )
)
− z(0)β α [w + (n− 1)h]− e

g′2(s
f
t ) = α [np+ (n− 1)(h− w)]

[
1− F 1(z

(0)
β ) + sft F

0(z
(0)
β )z′t(s

f
t )
]

+
(n− 1)h

w
(2usft + e)

= α [np+ (n− 1)(h− w)]
(

1− F 1(z
(0)
β )
)

+ α [w + (n− 1)h] sft z
′
t(s

f
t )

+
(n− 1)h

w
(2usft + e)

By definition of sft , it satisfies

u(sft )
2 + (z

(0)
β αw + e)sft = f ′t−1.
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Then

z′t(s
f
t ) = −

f ′t−1
αws2t

− u

αw

= − 1

αw

(
2u+

z
(0)
β αw + e

sft

)
Then

g′2(s
f
t ) = α [np+ (n− 1)(h− w)]

(
1− F 1(z

(0)
β )
)
− w + (n− 1)h

w
sft

(
2u+

z
(0)
β αw + e

sft

)

+
(n− 1)h

w
(2usft + e)

= α [np+ (n− 1)(h− w)]
(

1− F 1(z
(0)
β )
)
− 2usft − z

(0)
β α [w + (n− 1)h]− e

Therefore, g′1(s
f
t ) = g′2(s

f
t ).

Proof of Proposition 23. By Lemma 21 and Lemma 22, πt(st, z
∗
t (st)) is strictly concave. In

addition,

lim
st→+∞

g′2(st) = lim
st→+∞

{
α [np+ (n− 1)(h− w)]

[
1− F 1(zt(st)) + stF

0(zt(st))z
′
t(st)

]
+

(n− 1)h

w
(2ust + e)

}
= −∞

Therefore, s̃t always exists. s̃t equals to ŝ(0) if dπt
dst

∣∣
st=s

f
t
< 0, and št otherwise. When

sft > ŝ(0), we have dπt
dst

∣∣
st=s

f
t

= g′1(s
f
t ) < 0, and thereby s̃t = ŝ(0). When sft ≤ ŝ(0), we have

dπt
dst

∣∣
st=s

f
t

= g′1(s
f
t ) ≥ 0, and thereby s̃t = št.

Proof of Corollary 24. Case 1: sft ≥ ŝ(0).
s̃t = ŝ(0) ≤ sft . By Proposition 20, sft < s̄t. Therefore, s̃t < s̄t.
Case 2: sft < ŝ(0).
To prove št < s̄t, only need to prove that g′2(s̄t) < 0.

g′2(s̄t) = α [np+ (n− 1)(h− w)]
[
1− F 1(zt(s̄t)) + s̄tF

0(zt(s̄t))z
′
t(s̄t)

]
+

(n− 1)h

w
(2us̄t + e)

= α [np+ (n− 1)(h− w)]
[
1− F 1(0) + s̄tF

0(0)z′t(s̄t)
]

+
(n− 1)h

w
(2us̄t + e)

Because the support of ε is [0,+∞) and E[ε] = 1, F 0(0) = 1 and F 1(0) = E[ε] = 1. It is also
known that s̄t satisfies us̄2t + es̄t = f ′t−1, so

z′t(s̄t) = −
f ′t−1
αws̄2t

− u

αw
= −us̄

2
t + es̄t
αws̄2t

− u

αw
= − 1

αw
(2u+

e

s̄t
).
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It follows that

g′2(s̄t) = −α [np+ (n− 1)(h− w)] s̄t
1

αw
(2u+

e

s̄t
) +

(n− 1)h

w
(2us̄t + e)

= −np− (n− 1)w

w
(2us̄t + e) < 0.

Proof of Lemma 25. We only need to check whether g′2(sŝ
(0)) < 0 when sft < ŝ(0).

In the additive demand case,

g′2(ŝ
(0)) =

{
[np+ (n− 1)(h− w)]F 0(zt(ŝ))− [w + (n− 1)h]

}
z′t(ŝ

(0))−2uŝ(0)+nα(p−w)−e

If sft < ŝ(0), then zt(ŝ
(0)) < z

(0)
β , and

F 0(zt(ŝ
(0))) > F 0(z

(0)
β ) =

w + (n− 1)h

np+ (n− 1)(h− w)
.

We also have

z′t(ŝ
(0)) = −αw + e

w
− 2u

w
ŝ(0) < 0.

Then
g′2(ŝ

(0)) < −2uŝ(0) + nα(p− w)− e = 0

In the multiplicative demand case,

g′2(ŝ
(0)) = α [np+ (n− 1)(h− w)]

[
1− F 1(zt(ŝ

(0))) + ŝ(0)F 0(zt(ŝ
(0)))z′t(ŝ

(0))
]

+
(n− 1)h

w
(2uŝ(0) + e)

= α [np+ (n− 1)(h− w)]
[
1− F 1(zt(ŝ

(0)))
]

+α [np+ (n− 1)(h− w)]F 0(zt(ŝ
(0)))ŝ(0)

(
−

f ′t−1
αw(ŝ(0))2

− u

αw

)
+

(n− 1)h

w
(2uŝ(0) + e)

We have show that, if sft < ŝ(0), then

F 0(zt(ŝ
(0))) > F 0(z

(0)
β ) =

w + (n− 1)h

np+ (n− 1)(h− w)
.
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Thus,

g′2(ŝ
(0)) < α [np+ (n− 1)(h− w)]

[
1− F 1(zt(ŝ

(0)))
]

−α [w + (n− 1)h]

(
f ′t−1
αwŝ(0)

+
u

αw
ŝ(0)
)

+
(n− 1)h

w
(2uŝ(0) + e)

= α [np+ (n− 1)(h− w)]
[
1− F 1(zt(ŝ

(0)))
]

−α [w + (n− 1)h]

(
zt(ŝ

(0)) +
e

αw
+

2u

αw
ŝ(0)
)

+
(n− 1)h

w
(2uŝ(0) + e)

= α [np+ (n− 1)(h− w)]
[
1− F 1(zt(ŝ

(0)))
]
− α [w + (n− 1)h] zt(ŝ

(0))− 2uŝ(0)

−e
= −α [np+ (n− 1)(h− w)]

[
F 1(zt(ŝ

(0)))− F 1(z
(0)
β )
]

+α [w + (n− 1)h] (z
(0)
β − zt(ŝ

(0)))

= −α [np+ (n− 1)(h− w)]
[
F 0(z

(0)
β )(z

(0)
β − zt(ŝ

(0)))−
(
F 1(zt(ŝ

(0)))− F 1(z
(0)
β )
)]

= −α [np+ (n− 1)(h− w)]

[∫ z
(0)
β

zt(ŝ(0))

F 0(z
(0)
β )dx−

∫ z
(0)
β

zt(ŝ(0))

F 0(x)dx

]

Because F 0(x) > F 0(z
(0)
β ) for any x < z

(0)
β , we have

g′2(ŝ
(0)) < 0.

Proof of Proposition 26. Let year t̂ be the mature year. By Proposition 18 and Proposition
23,

s̃t =

{
št if t < t̂
ŝ(0) if t = t̂

Then by (4.7) and (4.10), for any t < t̂, s∗t = max{st−1, št}, and Lemma 25 implies that
s∗t ≤ št < ŝ(0) during these developing years. In the mature year, s∗

t̂
= max{st̂−1, ŝ(0)}.

Because st̂−1 = s∗
t̂−1, and it has been shown that s∗

t̂−1 < ŝ(0), we have s∗
t̂

= ŝ(0)

Proof of Corollary 27. In year t, assume that the retailer starts from the same size st−1
and the same fund ft−1 in both scenarios, st−1 < min{ŝ(0), ŝ(k)}, and ft−1 > us2t−1 (i.e.
the fund allows expansion). Let sat and sbt denote the retailer’s expanded sizes in scenario
a and scenario b, respectively. Then by Proposition 26, sat = max{st−1, št} < ŝ(0), and
by Proposition 29, ŝ(0) < ŝ(k), so sat < ŝ(k). In addition, Corollary 19 and Corollary 24
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together with the condition ft−1 > us2t−1 implies that sat =< s̄t. We have also shown that
sbt = min{ŝ(k), s̄t}. Therefore, sat < sbt .

Proof of Corollary 28. In any developing year, sft < ŝ0 ⇒ s̃t = št ⇒ s∗t = max{st−1, št}.
By Lemma 17 and Lemma 22, sft < ŝ0 also implies sft < št. Therefore, s∗t ≥ št > sft , and
thereby z∗t = zt(s

∗
t ).

In the mature year, sft ≥ ŝ0 ⇒ s̃t = ŝ0 ⇒ s∗t = max{st−1, ŝ0}. By Proposition 26, st−1 ≥ ŝ0,

so s∗t ≤ ŝ0 ≤ sft . It follows that z∗t = z
(0)
β .

Proof of Proposition 29. In the additive demand case,

∂ŝ(k)

∂α
=

n(p− w(k))

2u
> 0

∂ŝ(k)

∂p
=

nα

2u
> 0

∂ŝ(k)

∂w(k)
= −nα

2u
< 0

∂ŝ(k)

∂e
= − 1

2u
< 0

∂ŝ(k)

∂u
= −nα(p− w(k))− e

2u2
= − ŝ

(k)

u
< 0

So ˆs(k) is increasing in α and p, and decreasing in wk, e and u.
In the multiplicative demand case, z

(k)
β is a function of α, p, w(k) and h, so we first derive

the partial derivative of ŝ(k) with respect to z
(k)
β .

∂ŝ(k)

∂z
(k)
β

=
α
[
np+ (n− 1)(h− w(k))

]
F 0(z

(k)
β )− α

[
w(k) + (n− 1)h

]
2u

= 0.
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Then we have

∂ŝ(k)

∂α
=

[
np+ (n− 1)(h− w(k))

] (
1− F 1(z

(k)
β )
)
− z(k)β

[
w(k) + (n− 1)h

]
2u

=
1

2u

2uŝ(k) + e

α
> 0

∂ŝ(k)

∂p
=

nα
(

1− F 1(z
(k)
β )
)

2u
=
nα

2u

(
F 1(0)− F 1(z

(k)
β )
)
> 0

∂ŝ(k)

∂w(k)
=
−(n− 1)α

(
1− F 1(z

(k)
β )
)
− z(k)β α

2u
= − α

2u

[
(n− 1)

(
F 1(0)− F 1(z

(k)
β )
)

+ z
(k)
β

]
< 0

∂ŝ(k)

∂h
=

(n− 1)α
(

1− F 1(z
(k)
β )
)
− z(k)β α(n− 1)

2u
=

(n− 1)α

2u

[
F 1(0)− F 1(z

(k)
β )− z(k)β

]
=

(n− 1)α

2u

[∫ z
(k)
β

0

F 0(x)dx−
∫ z

(k)
β

0

1dx

]
< 0

∂ŝ(k)

∂e
= − 1

2u
< 0

∂ŝ(k)

∂u
= − 1

2u2

{
α
[
np+ (n− 1)(h− w(k))

]
− α

[
np+ (n− 1)(h− w(k))

]
F 1(z

(k)
β )

−z(k)β α
[
w(k) + (n− 1)h

]
− e
}

= − ŝ
(k)

u
< 0

So ˆs(k) is increasing in α and p, and decreasing in wk, h, e and u.
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