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How does a biomolecular machine achieve high speed at high
efficiency? We explore optimization principles using a simple two-
state dynamical model. With this model, we establish physical
principles—such as the optimal way to distribute free-energy
changes and barriers across the machine cycle—and connect
them to biological mechanisms. We find that a machine can
achieve high speed without sacrificing efficiency by varying
its conformational free energy to directly link the downhill,
chemical energy to the uphill, mechanical work and by split-
ting a large work step into more numerous, smaller substeps.
Experimental evidence suggests that these mechanisms are com-
monly used by biomolecular machines. This model is useful for
exploring questions of evolution and optimization in molecular
machines.

molecular machines | evolution | nonequilibrium steady state |
kinetic optimization | free-energy landscape

We are interested in how biomolecular machines can be
optimized for speed and efficiency. Some such machines

achieve both speed and efficiency. For example, on an aver-
age day a person synthesizes, uses, and recycles his or her
body weight in ATP (1, 2). All of this ATP is synthe-
sized by the motor FoF1-ATPase, which achieves these results
with high turnover rates [hundreds of ATPs per second per
motor (3)] at high thermodynamic efficiency [∼90% in animal
mitochondria (4)].

For a particular machine with a fixed mechanism, going
faster comes at the expense of efficiency. However, through
evolution, a machine can develop mechanisms that optimize
the entire speed–efficiency curve; they increase speed at no
cost to efficiency or vice versa. What are these mechanisms
that biomolecular machines have evolved to be both fast and
efficient?

Previous studies have identified some specific mechanisms
that optimize speed, such as a constant torque generation over
the angular coordinate of a rotary motor (5), the evolutionary
preference for a rotary mechanism in FoF1-ATPase (6), and a
transition-state location close to the initial state of a machine’s
mechanical step (7–9). Other studies have found more gen-
eral principles—how to best distribute the barrier heights and
free-energy drops across a cyclic free-energy landscape both for
molecular machines (10, 11) and for maximizing the catalytic effi-
ciency of enzymes (12, 13). Our work is consistent with and builds
on these previous results to identify the essential mechanisms for
optimizing speed in molecular machines. We explore in partic-
ular how a machine can link a large downhill chemical energy
to a large uphill mechanical work using intermediate conforma-
tional changes, the role of the transition-state location, and the
kinetic advantage of splitting a single large work step into smaller
“chunks” or substeps.

A Two-State Model of a Molecular Machine
We model how a machine converts the free energy that is put
into the system, ∆µ≥ 0, into the work performed by the sys-

tem, w ≥ 0 (Fig. 1). We divide machine actions into two steps,
a nonmechanical transition (Aj →Bj ), which may include chem-
ical and/or conformational changes, and a mechanical transition
(Bj →Aj+1), over which it performs work. This assumes that
the machine is fully coupled; i.e., there is one output step for
every input step. The model is periodic: The subscript j labels
the position along the track or the number of forward cycles
completed.

We use this model to study a broad class of machines, includ-
ing those with distinct mechanical steps (such as the transport
motors kinesin and myosin) and others that have their work out-
put delocalized or “smeared” across the entire machine cycle
(such as Na-K ATPase) (14). Although it is simpler than the reac-
tion mechanisms of these real machines, this two-state model
captures many essential features of how a machine can best
use its input free energy to overcome the kinetic barriers of
performing large uphill work.

Expressing Model Mechanisms with Basic Free-Energy Diagrams. For
illustrating mechanisms in this paper, we use diagrams of free-
energy–like functions. But first, we describe what our diagrams
mean. The observable quantities in Fig. 1 are the forward and
reverse rates. We represent these rates in terms of the following
free-energy barrier definitions,

fc = k0e
−βg

‡
fc rc = k0e

−βg
‡
rc

fm = k0e
−βg

‡
fm rm = k0e

−βg
‡
rm , [1]

where k0 is a frequency factor and the free-energy barriers g‡fc,
etc., are defined to be positive.
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Fig. 1. The machine cycle is divided into two steps: one nonmechanical
(c) and one mechanical (m). The mechanical step (Bj→Aj+1) generates
the output of a machine and performs work (e.g., the stepping of kinesin
along a microtubule). The nonmechanical step (Aj→ Bj) includes chemical
or conformational changes of the machine that do not perform work.

Now, if our machines were at equilibrium, we could illustrate
their properties using standard free-energy diagrams based on
expressions such as

fcfm
rcrm

= e−β(gc,eq+gm,eq)= 1, [2]

where gc,eq, gm,eq are the equilibrium free-energy changes
between the states. Since these are cyclic processes, the free
energies must sum to zero around an equilibrium cycle; i.e.,
(gc,eq + gm,eq)= 0.

However, here we are interested in steady-state processes,
not at equilibrium. But we can capture insights using similar
expressions such as

fcfm
rcrm

= e−β(gc+gm)= eβ(∆µ−w)= eβ∆µdiss . [3]

Here, ∆µ is a chemical work that is done on the system and w is a
work done by the system. Their difference, (∆µ−w) = ∆µdiss≥
0, is a dissipation of heat and due to differences in concentra-
tions of reactants (ATP) and products (ADP and Pi), which
constrains the forward and reverse rates in Eq. 3 (15–17). So,
the quantities gc and gm are not true equilibrium free-energy
differences between states A and B . Instead, these quantities
give the changes in basic free energy shown in Fig. 2. The basic
free energy is an analog of an equilibrium free energy that is
corrected for nonequilibrium effects, such as a difference in
chemical potentials of species that are out of equilibrium (e.g.,
[ATP]), to give an equivalent kinetic and thermodynamic for-
malism (15). Eq. 3 shows that, across a full cycle, these quantities
are constrained by the measured observables ∆µ and w : gc +
gm =− (∆µ−w)=−∆µdiss. We hope these basic free-energy
landscapes are helpful for illustrating mechanisms below.

Now, in terms of the rate coefficients above, we can com-
pute the cycle flux (number of full cycles per unit time) as (SI
Appendix, section 1)

J =
fcfm− rcrm

fc + fm + rc + rm
. [4]

For a cytoskeletal walker, the velocity is V = Jd for step size d .
For an ion pump that transports n ions per cycle, the current
I =nJ . We use “speed” to refer to these quantities (flux, veloc-
ity, or current). We define the thermodynamic efficiency of a
machine as

η=
w

∆µ
. [5]

Defining Parameters for the Free-Energy Transduction Across the
Machine Cycle. The machine landscape in Fig. 2 is defined by the
four barrier heights g‡ and the basic free-energy changes gc and

gm. For any given pair of macroscopic observables ∆µ and w ,
there are many possible ways to define these quantities. Here,
we define three parameters λ, δ, and N that represent essential
features of this landscape and of the machine’s free-energy trans-
duction. We then explore machine optimization principles over
these parameters.

First, let λ be the fraction of free energy from the input chemi-
cal work that is expended within the mechanical step. Thus, 1−λ
is the fraction expended across the nonmechanical step:

gc = g‡fc− g‡rc =− (1−λ)∆µ [6]

gm = g‡fm− g‡rm =−λ∆µ+w .

This quantity λ describes an inherent feature of the machine
cycle, independent of w , and implicitly includes two contribu-
tions, from the input chemical energy ∆µ and from changes
in conformational free energy, which must sum to zero across
the full cycle. In short, when λ= 0, the decrease in basic free
energy that is available from input chemical energy is expended
in the first, nonmechanical step (gc =−∆µ) and all of the work
is performed in the mechanical step (gm =w). In contrast, when
λ= 1, there is no change in basic free energy across the first step
(gc = 0) and all of the energetic changes happen in the second
step (gm =−∆µ+w =−∆µdiss) (Fig. 3A).

Second, let δ represent the location of the transition state
along the mechanical step, which dictates how a change in w

will affect the forward g‡fm and reverse g‡rm barrier heights (7–9).
Together, λ and δ define the barrier heights

g‡fc = g‡c − (1−λ)∆µ g‡rc = g‡c

g‡fm = g‡m−λ∆µ+wδ g‡rm = g‡m−w (1− δ), [7]

where g‡c and g‡m are intrinsic barriers common to both the for-
ward and reverse transitions. We have assumed that changes in λ
affect the forward and not reverse barrier heights because these
are the changes that will have the greatest impact on machine
speed (SI Appendix, section 2.A).

Finally, let N define the number of mechanical substeps used
by the machine. When N = 1, the machine has a single mechani-
cal step (two total states illustrated in Fig. 1). For a machine with
N substeps, the cycle has 2N total states of alternating chemical

Fig. 2. The basic free-energy changes and barrier heights across a machine’s
landscape. For this two-state model, gc is the basic free-energy difference
from state Ai to Bi, while gm is the basic free-energy difference from state
Bi to Ai+1. Across the full cycle, gc + gm =−∆µdiss. The free-energy barriers
for forward transitions are labeled in green, and the barriers for reverse
transitions are in red. We explore mechanisms that have different values of
gc and gm along with corresponding changes to the barrier heights.
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A B

Fig. 3. The basic free-energy landscapes of two theoretical machines. The
first machine (orange) has most of its basic free energy drop across the non-
mechanical step, λ= 0.2. The second machine (blue) has most of its basic
free energy drop across the mechanical step, λ= 0.8. Here, g‡

c = g‡
m. (A)

When no work is performed, these machines have the same speed. Each
machine has one small and one large barrier to traverse. (B) At larger val-
ues of work, the second machine (λ= 0.8, blue) is much faster. The first
machine (λ= 0.2, orange) has one very small and one very large barrier to
traverse, while the second machine has more evenly distributed barriers.
Here, w = 0.6∆µ.

and mechanical steps. For simplicity, we assume each of these N
substeps is identical. From Eqs. 4 and 7, J (∆µ,w) is the speed
of a machine with a single mechanical step (two total states) and
J2N = 1

N
J (∆µ/N ,w/N ) is the speed of a machine with N sub-

steps (2N total states of alternating chemical and mechanical
steps) (SI Appendix, section 2.C).

How Machines Can Optimize Speed and Efficiency
To study machine optimization, we seek ways to maximize the
speed of the two-state model, at fixed efficiency, with respect to
a model parameter θ by solving

∂J

∂θ

∣∣∣∣
η

= 0, [8]

to find the optimal value θopt. Specifically, we consider θ∈
{λ, δ,N }. The recent work of Brown and Sivak (10, 11) on
molecular machines and other previous work on maximizing
the catalytic efficiency of enzymes (12, 13) have given much
insight into how to best distribute the barrier heights and state
stabilities across a landscape to maximize speed. We build on
this approach to address a question of evolution or synthetic
design that is specific to biomolecular machines: What are
the biological mechanisms that best “use” the downhill chem-
ical input energy to overcome the large kinetic barriers of
performing work?

Biological machines are impressively fast, given that the
mechanical step has a large barrier that arises not only from
uphill work but also from large conformational changes [the
mechanical step of myosin V, for example, spans 36 nm (18)].
Intuitively, we might expect speed to decrease exponentially with
respect to increasing work, J ∝ e−βw , based on an Arrhenius
law for a single irreversible transition across the mechanical bar-
rier, assuming this barrier height increases with the amount of
work. But this is not observed; biological machines maintain
high speeds while performing a large amount of work. This sug-
gests an evolutionary optimization to be fast and efficient. Using
Eq. 8, we find the optimal parameters of our two-state model
and connect them to biological mechanisms that optimize the
entire speed–efficiency tradeoff; they increase speed at no cost
to efficiency or vice versa.

Maximizing Machine Speed by Varying the Basic Free-Energy Drop
Across the Mechanical Step. We first explore how machine speed
and efficiency depend on the λ parameter, which determines
the drop in basic free energy across the mechanical step. Here,

for simplicity, we assume the machine has a single mechanical
step (N = 1). Using Eq. 7 to define the barrier heights, we solve
∂J/∂λ= 0, with all other model quantities (δ, g‡c , g‡m) fixed, to
find λopt (SI Appendix, section 2.B):

λopt (∆µ,w) =
1

2
+

wδ

2∆µ
+

g‡m− g‡c
2∆µ

. [9]

Inserting λopt into the definitions of the barriers, Eq. 7, gives
the result that the machine operates fastest when the two bar-
rier heights are equal, g‡fc = g‡fm = 0.5

(
g‡c + g‡m−∆µ+wδ

)
. This

optimization principle for molecular machines is similar to the
principle of Knowles, who showed for enzymes that turnover
rates are maximal when the rates of binding reactants and releas-
ing products are equal (12, 13), and the work of Brown and
Sivak who, using a two-state cycle, showed that machine speed
is optimized when the forward rates are equal (10).

Here is more intuition about Eq. 9. The first term on the
right-hand side of Eq. 9 (=1/2) shows that the chemical input
free energy should be distributed evenly across the cycle, all
else being equal. The second term expresses that if the machine
performs much work, there is a large barrier in the mechanical
step, and hence more of the available basic free energy should
be expended across the mechanical step. The third term shows
that the optimal distribution of basic free-energy changes will
depend on the intrinsic free-energy barriers of the steps g‡c and
g‡m. That is, if the mechanical step has a large intrinsic barrier
[e.g., from the large entropic barrier that accompanies the con-
formational change in myosin V’s 36-nm step (18)], then more
of the basic free energy should be expended in the mechan-
ical step to reduce this intrinsic barrier. Alternatively, if the
chemical barrier is intrinsically high, then less of the basic free
energy should be expended in the mechanical step to achieve
optimal speed.

Fig. 3 shows the landscapes of two theoretical machines. The
first one (orange, λ= 0.2) has most of the total basic free-
energy drop across the first, nonmechanical step. The second
one (blue, λ= 0.8) has most of the basic free-energy drop across
the mechanical step. When no work is performed, each machine
has one small and one large barrier (Fig. 3A), and they have
identical speeds. When work is performed, the second machine
(λ= 0.8) is faster and has more evenly distributed barrier heights
(Fig. 3B). Fig. 4 shows the speed–efficiency tradeoffs. A machine
with a large decrease in basic free energy across the mechanical
step (large λ) is faster at high efficiency.

Fig. 4. The speed–efficiency tradeoffs for a machine with λ= 1 (blue) and
λ= 0 (orange). The machine with a large basic free-energy drop across the
mechanical step (λ= 1) is faster at high efficiency. Here, g‡

c = g‡
m and δ= 1.
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Fig. 5. To achieve maximum speed, a molecular machine has an optimal
change in conformational free energy. Shown is the speed of a theoreti-
cal machine with respect to the conformational free-energy change across
the mechanical step (−∆Gconf). Here, ∆µ= 20 kT, w = 12 kT, g‡

c = g‡
m, and

δ= 1.

A Conformationally Driven Mechanical Step Optimizes Speed. Here,
we give a molecular interpretation of λopt from Eq. 9 in terms
of a machine’s conformational free-energy landscape. The idea
is that, through changes in the conformational free energy, the
input free energy can be stored in the machine in the first,
chemical step and then expended in the mechanical step. The
conformational free energy contributes to the change in basic
free energy across a transition. Because changes in conforma-
tional free energy must sum to zero across a full cycle, these
contributions are implicitly included in the parameter λ.

We assume here that all of the chemical free energy ∆µ is
released across the first transition. We label the change in con-
formational free energy across this chemical step as ∆Gconf. The
conformational free energy across the mechanical step is then
−∆Gconf. We expand the definition of basic free-energy changes
from Eq. 6 to explicitly include these terms:

gc = g‡fc− g‡rc =−(1−λ)∆µ=−∆µ+ ∆Gconf, [10]

gm = g‡fm− g‡rm =−λ∆µ+w =−∆Gconf +w .

Eq. 10 shows that λ= ∆Gconf/∆µ. So, using Eq. 9, we can now
express what conformational free energy optimizes the machine
speed:

∆Gconf, opt (∆µ,w) =
∆µ

2
+

wδ

2
+

g‡m− g‡c
2

. [11]

Fig. 5 shows the prediction of Eq. 11 that, under most condi-
tions, the fastest machines will be those having a relatively large
and specific value of conformational free-energy storage. The
machine takes up and stores this free energy in the chemical
step and expends that free energy in the mechanical step, like
the cocking and releasing of a spring.

Fig. 5 shows that a machine having a suboptimal conforma-
tional change can run orders of magnitude slower. Conforma-
tional energy storage modulates the barrier heights across the
machine cycle. A machine with small ∆Gconf would have one
small barrier and one large barrier (orange curve in Fig. 3B).
Larger conformational free-energy storage will raise the barrier
of the chemical step and lower the larger barrier of the mechani-
cal step. This serves to more evenly distribute the barrier heights
(blue curve in Fig. 3B).

Machines Are Faster That Have an “Early” Transition State. Our
model also allows for a parameter δ, which can be interpreted as
the position of the transition state along the machine’s mechan-

ical step (Eq. 7). It has been shown that machines are faster if
they have a small value of δ (7, 8) and we have shown that this
conclusion is general (9). That is, ∂J/∂δ < 0 under all condi-
tions and for arbitrarily complex machine models (which include
futile hydrolysis cycles, ATP-driven backsteps, etc.). A smaller
value of δ (i.e., a transition state close to the initial state)
always corresponds to a machine that is faster, more power-
ful, and more efficient at constant velocity. And it corresponds
to a favorable, concave speed–efficiency tradeoff as in the blue
curve in Fig. 4.

We note that a machine’s power stroke, depending on how it
is defined, may correspond to this optimal value of δ (8, 9, 19) or
to the optimal value of λ (20, 21). We do not advocate any spe-
cific definition here, but by either definition, a power stroke may
refer to the release of conformational strain across a machine’s
mechanical step.

Speeding up Machines with Mechanical Substeps. Machine speed
can be optimized by breaking the large output step into
smaller alternating chemical and mechanical steps, which we
call mechanical substeps. A machine that has four 10-kT–sized
barriers is faster than a machine with one 40-kT barrier. This
principle applies broadly but is best illustrated for a machine
where all of the chemical energy is taken up in the non-
mechanical step and all of the work is performed in the for-
ward mechanical step (λ= 0 and δ= 1). Consider a set of
machines that have different numbers N of mechanical sub-
steps but that are otherwise identical. As discussed above and
in SI Appendix, section 2.C, if J (∆µ,w) is the speed of a
machine with a single mechanical step (two total states), then
J2N = 1

N
J (∆µ/N ,w/N ) is the speed of a machine with N sub-

steps (2N total states of alternating chemical and mechanical
steps).

The mechanical substeps reduce and distribute the free-energy
barriers of the machine, as shown in Fig. 6. Fig. 6, Inset shows
that, when performing a large amount of work, a machine with
more substeps is several orders of magnitude faster than an
analogous machine with one large step. Biological machines can
leverage the four separate downhill components of ATP hydrol-
ysis (ATP binding, hydrolysis, ADP release, and Pi release) to
split up their work steps. This is observed in the myosin family,
where N = 2 for the 6-nm step of myosin II (22), and N = 3 for
the 36-nm step of myosin V (18).

Fig. 6. Splitting one large work step (black) into two (red) or four (blue)
mechanical substeps. ξ is the reaction coordinate. Modifying a molecu-
lar machine to have more substeps reduces the barrier height along the
mechanical step. Inset shows that, when performing a large amount of
work, a machine with several mechanical substeps can be several orders of
magnitude faster than a machine with a single mechanical step. Speed is
plotted on a log scale.
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Fig. 7. The in vivo efficiencies of molecular machines. Included are Na-K
ATPase; SERCA; the proton PPi pump; the plasma membrane proton pump;
PMCA; V-ATPase; myosin II; NCX; NCKX; and animal, Escherichia coli, and
chloroplast FoF1-ATPase. The efficiency η= w/∆µ, where these values of
∆µ and w are calculated from experimental data (SI Appendix, section 3).

Similarly, FoF1-ATPase uses mechanical substeps. In a recent
study, Anandakrishnan et al. (6) used a simple kinetic model to
study the evolutionary optimization of this motor. Their work
shows that the rotary mechanism of FoF1-ATPase optimizes
speed with the same principle described here for mechanical
substeps—the rotary mechanism reduces and distributes the
kinetic barriers of the machine cycle. This motor takes, as input,
the downhill transport of 8–15 protons, depending on the species
(23). The rotary mechanism intersperses these downhill steps
with the synthesis of three ATP molecules (output), each of
which is further subdivided into separate work steps of reactant
binding, synthesis, and product release (24, 25). This gives a more
even application of torque across the angular coordinate of the
motor (5).

Other biological machines also use mechanical substeps. In SI
Appendix, section 2.C, we use Eq. 8 to calculate Nopt for different
machines and to discuss various practical considerations.

Biological Machines Are Both Fast and Efficient. Fig. 7 shows that
biomolecular machines in vivo tend to have high efficiencies. For
many machines, these in vivo values of input free energy ∆µ and
output work w used to calculate efficiency will vary, depending
on cell conditions. But for the machines in Fig. 7, these val-
ues are known under typical conditions and appear to be fairly
consistent (SI Appendix, section 3). These machines are as effi-
cient as macroscopic electric motors and more efficient than heat
engines; η > 50% for 10 of the 12 machines shown.

Fig. 8 shows the speed–efficiency relationships for various
biomolecular machines as measured from in vitro experiments.
These machines have tradeoff curves that are much more favor-
able than would occur in a single Arrhenius barrier process, also
shown for reference.

We now rationalize some of the differences in the speed–
efficiency behaviors shown in Fig. 8. (We do not discuss F1-
ATPase because these speed–efficiency data, obtained for the
isolated F1 domain running in the hydrolysis direction, do not
match the motor’s in vivo function.) Consistent with the model,
machines with the best speed–efficiency curves in Fig. 8 have
more substeps, N . And these machines all have large values of λ,
except for RNAP, which has the worst speed–efficiency tradeoff.
Kinesin and dynein also have small values of δ, the transition-
state location. See SI Appendix, section 4 for the values of N , λ,
and δ (estimated from model fits to the in vitro single-molecule
data from Fig. 8).

Na-K ATPase has the best speed–efficiency tradeoff of the
machines in Fig. 8. This pump hydrolyzes ATP as input to export

three Na+ ions from the cell and import two K+ ions uphill
against their chemiosmotic gradients. This machine has such
a good tradeoff because the output work is delocalized across
the entire cycle and therefore the rate-limiting work step (the
release of one of the Na+ ions) is only weakly dependent on
the total work of the machine (26). This pump effectively has
many substeps, although we do not report an exact value since
it is difficult to estimate the work contribution over the various
transitions (the occlusion, transport, and release of each of the
five ions).

The cytoskeletal transport motors myosin V, kinesin, and
dynein are fast at high efficiency, but they have fewer substeps
than Na-K ATPase [N = 3 for myosin V (18)]. The tradeoffs of
these three motors may also be affected by the run length L, the
average number of full cycles a motor completes before falling
off its cytoskeletal track. At zero load, L≈ 25 for myosin V (27),
L≈ 100 for kinesin (28), and L≈ 250 for dynein (29). For these
three motors, the trend in L (dynein > kinesin > myosin V) is
anticorrelated with the speed–efficiency behavior (myosin V >
kinesin> dynein). It is possible that the motor’s run length intro-
duces an extra tradeoff, where different biological mechanisms
can use the available free energy to achieve a greater run length,
but at the expense of speed or efficiency.

RNAP has the worst speed–efficiency behavior of the
machines in Fig. 8. RNAP synthesizes RNA from a template
DNA strand (30). As output work, RNAP generates force that
melts the DNA template. This output work is physically sepa-
rated from the machine itself—RNAP breaks hydrogen bonds
that are several base pairs upstream from the motor (31). This
physical separation may make it difficult or impossible for RNAP
to use the speed-optimizing strategies we have described. The
motor does not use mechanical substeps and it has a small value
of λ= 0.22, in agreement with the observation that it operates as
a Brownian ratchet (30).

Conclusions
We have explored the optimization of speed and efficiency of
molecular machines using a simple dynamical model. Our model
explores parameters of evolution and synthetic design: not just
what is, but what could have been. We find that, at high effi-
ciency, a machine’s speed can be increased several orders of
magnitude by coupling the downhill chemical input to the uphill
work through an intermediate conformational change and by
breaking the large kinetic barrier of a single work step into

Fig. 8. The speed–efficiency relationships for six molecular machines. Speed
is normalized with respect to the maximum speed of each machine. These
machines maintain a high speed even while operating at high efficiency. The
black line shows a reference model of a single-barrier, irreversible, Arrhenius
process. Data are from refs. 30 and 32–36. Fits to the data are described in
SI Appendix, section 4.
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multiple smaller substeps. The benefit of these mechanisms can
be seen in the experimentally determined speed–efficiency trade-
offs of biological machines: They allow machines to maintain a
high speed even at high efficiency.

These principles are broadly applicable to molecular ma-
chines. But one—the optimal value of λ, the basic free-energy
drop across the mechanical step—depends on the amount of
work that is performed. Some machines operate under fairly

consistent loads or forces, but others undoubtedly experience a
range of loads. Although we do not explore it here, it is interest-
ing to consider what machine mechanisms may have evolved to
optimize performance over such varying conditions.

ACKNOWLEDGMENTS. We thank Dean Astumian, Dan Zuckerman, and Joe
Howard for comments and suggestions. We are grateful for support from
the Laufer Center for Physical and Quantitative Biology and from NIH Grant
GM06359217.

1. Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP
synthases: Fourth in the cycles review series. EMBO Rep 7:276–282.

2. Törnroth-Horsefield S, Neutze R (2008) Opening and closing the metabolite gate. Proc
Natl Acad Sci USA 105:19565–19566.

3. Matsuno-Yagi A, Hatefi Y (1988) Estimation of the turnover number of bovine heart
FoF1 complexes for ATP synthesis. Biochemistry 27:335–340.

4. Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioen-
ergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases.
J Bioenerg Biomembr 46:229–241.

5. Oster G, Wang H (2000) Reverse engineering a protein: The mechanochemistry of ATP
synthase. Biochim Biophys Acta 1458:482–510.

6. Anandakrishnan R, Zhang Z, Donovan-Maiye R, Zuckerman DM (2016) Biophysical
comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary
process. Proc Natl Acad Sci USA 113:11220–11225.

7. Schmiedl T, Seifert U (2008) Efficiency of molecular motors at maximum power. EPL
Europhys Lett 83:30005.

8. Howard J (2011) Motor proteins as nanomachines: The roles of thermal fluctuations
in generating force and motion. Biological Physics, ed Rivasseau V (Springer, Basel),
pp 47–59.

9. Wagoner JA, Dill KA (2016) Molecular motors: Power strokes outperform Brownian
ratchets. J Phys Chem B 120:6327–6336.

10. Brown AI, Sivak DA (2017) Allocating dissipation across a molecular machine cycle to
maximize flux. Proc Natl Acad Sci USA 114:11057–11062.

11. Brown AI, Sivak DA (2018) Allocating and splitting free energy to maximize molecular
machine flux. J Phys Chem B 122:1387–1393.

12. Albery WJ, Knowles JR (1976) Evolution of enzyme function and the development of
catalytic efficiency. Biochemistry 15:5631–5640.

13. Albery WJ, Knowles JR (1977) Efficiency and evolution of enzyme catalysis. Angew
Chem Int Ed Engl 16:285–293.

14. Hill TL, Eisenberg E (1981) Can free energy transduction be localized at some crucial
part of the enzymatic cycle? Q Rev Biophys 14:463–511.

15. Hill T (1977) Free Energy Transduction in Biology: The Steady-State Kinetic and
Thermodynamic Formalism (Academic, New York).

16. Seifert U (2011) Stochastic thermodynamics of single enzymes and molecular motors.
Eur Phys J E 34:26.

17. Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular
machines. Rep Prog Phys 75:126001.

18. Cappello G, et al. (2007) Myosin V stepping mechanism. Proc Natl Acad Sci USA
104:15328–15333.

19. Howard J (2006) Protein power strokes. Curr Biol 16:R517–R519.
20. Astumian RD (2016) Optical vs. chemical driving for molecular machines. Faraday

Discuss 195:583–597.
21. Astumian RD, Mukherjee S, Warshel A (2016) The physics and physical chemistry of

molecular machines. ChemPhysChem 17:1719–1741.
22. Capitanio M, et al. (2006) Two independent mechanical events in the interaction cycle

of skeletal muscle myosin with actin. Proc Natl Acad Sci USA 103:87–92.
23. Pogoryelov D, et al. (2012) Engineering rotor ring stoichiometries in the ATP synthase.

Proc Natl Acad Sci USA 109:E1599–E1608.
24. Watanabe R, Iino R, Noji H (2010) Phosphate release in F1-ATPase catalytic cycle

follows ADP release. Nat Chem Biol 6:814–820.
25. Suzuki T, Tanaka K, Wakabayashi C, Saita E-i, Yoshida M (2014) Chemomechan-

ical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol 10:930–
936.

26. Castillo JP, et al. (2011) Energy landscape of the reactions governing the Na+ deeply
occluded state of the Na+/K+-ATPase in the giant axon of the Humboldt squid. Proc
Natl Acad Sci USA 108:20556–20561.

27. Baker JE, et al. (2004) Myosin V processivity: Multiple kinetic pathways for head-to-
head coordination. Proc Natl Acad Sci USA 101:5542–5546.

28. Andreasson JOL, et al. (2015) Examining kinesin processivity within a general gating
framework. eLife 4:e07403.

29. Reck-Peterson SL, et al. (2006) Single-molecule analysis of dynein processivity and
stepping behavior. Cell 126:335–348.

30. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct
observation of base-pair stepping by RNA polymerase. Nature 438:460–465.

31. Wang H-Y, Elston T, Mogilner A, Oster G (1998) Force generation in RNA polymerase.
Biophys J 74:1186–1202.

32. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a
molecular force clamp. Nature 400:184–189.

33. Toyabe S, Watanabe-Nakayama T (2011) Thermodynamic efficiency and mecha-
nochemical coupling of F1-ATPase. Proc Natl Acad Sci USA 108:17951–17956.

34. Toba S, Watanabe TM, Yamaguchi-Okimoto L, Yano Toyoshima Y, Higuchi H (2006)
Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic
dynein. Proc Natl Acad Sci USA 103:5741–5745.

35. Mehta AD, et al. (1999) Myosin-V is a processive actin-based motor. Nature 400:
590–593.

36. Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump
current-voltage relationship in Guinea pig ventricular myocytes. J Gen Physiol 94:
539–565.

Wagoner and Dill PNAS | March 26, 2019 | vol. 116 | no. 13 | 5907




