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Abstract

Active Testing: Predicting and Confirming Concurrency Bugs for Concurrent and
Distributed Memory Parallel Systems

by

Chang Seo Park

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Koushik Sen, Chair

Parallel and concurrent software sometimes exhibit incorrect behavior because of unin-
tended interference between different threads of execution. Common classes of concurrency
bugs include data races, deadlocks, and atomicity violations. These bugs are often non-
deterministic and hard to find without sophisticated tools. We present Active Testing, a
methodology to effectively find concurrency bugs that scales to large distributed memory
parallel systems.

Active Testing combines the coverage and predictive power of program analysis with the
familiarity of testing. It works in two phases: in the predictive analysis phase, a program
is executed and monitored for potential concurrency bugs and in the testing phase, Active
Testing re-executes the program while controlling the thread schedules in an attempt to
reproduce the bug predicted in the first phase.

We have implemented Active Testing for multi-threaded Java programs in the CalFuzzer
framework. We have also developed UPC-Thrille, an Active Testing framework for Unified
Parallel C (UPC) programs written in the Single Program Multiple Data (SPMD) program-
ming model combined with the Partitioned Global Address Space (PGAS) memory model.
We explain in detail the design decisions and optimizations that were necessary to scale
Active Testing to thousands of cores. We present extensions to UPC-Thrille that support
hybrid memory models as well.

We evaluate the effectiveness of Active Testing by running our tools on several Java and
UPC benchmarks, showing that it can predict and confirm real concurrency bugs with low
overhead. We demonstrate the scalability of Active Testing by running benchmarks with
UPC-Thrille on large clusters with thousands of cores.
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Chapter 1

Introduction

Since the semiconductor industry hit the power wall [7], processor speeds are no longer
doubling every two years, but instead the number of processing elements, also called cores, on
a single chip is increasing. To make use of the multiple cores and maintain performance gains
with increasingly parallel hardware, it is necessary to run programs in parallel, i.e. making
simultaneous computations on each core. A program with many threads can be readily
executed in parallel and utilize the increasing number of cores.

For high performance computing (HPC), parallelism in not new. Supercomputers with
thousands of cores appeared in the 1990s, hence the need for parallel programs existed in
the past. Nowadays, the ubiquity of parallelism is found from the lower end of computing on
dual- and quad-core processors on smartphones to supercomputers with more than a million
total cores. Thus, the necessity of writing parallel programs has become ubiquitous as well.

Writing parallel programs is harder than writing their sequential counterparts. For paral-
lel programs, resources such as memory are shared and there may be unintended interference
among the threads when accessing shared resources. Due to such interference, a parallel
program can have different results in different executions depending on how the threads
are scheduled. This is called non-determinism. Non-determinism makes it harder for the
programmer to ensure the correctness of a concurrent program.

Bugs due to non-determinism are called non-deterministic bugs or concurrency bugs.
Some common classes of concurrency bugs are data races, deadlocks, and atomicity vio-
lations. Undetected during testing, these bugs can manifest while running in a production
environment. In this thesis, we develop practical tools and techniques for finding concurrency
bugs in parallel programs.

1.1 Existing techniques to find concurrency bugs

There are many ways to help programmers write correct parallel programs. Model checking
systematically explores all thread schedules for concurrency bugs. Programming languages
for concurrency can have extended type systems and annotations that prevent writing erro-
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neous code. Static analysis looks at the source code of a program and checks for bugs using
various techniques such as data-flow analysis. Dynamic analysis examines an execution of
a program to check for bugs in the execution or predict bugs that may happen in other
executions. Testing runs the program with a given suite of inputs, usually with correspond-
ing expected outputs to check against. These techniques mitigate the problem of writing
incorrect concurrent programs with the following goals:

• Soundness: A technique is sound if it reports all bugs in the program, i.e. it does not
have any false negatives.

• Completeness (Precision): A technique is complete or precise if it only reports real
bugs, i.e. it does not have any false positives.

• Efficiency: A technique is efficient if it does not impose high overhead or have a
prohibitively long analysis time.

• Scalability: A technique is scalable if it works for programs that have large code bases
and/or run on large-scale systems.

• Automation: A technique is automatic if it requires little or no user intervention.

Model checking [26] verifies that a program follows its specification. By checking at each
state exhaustively, model checking will either verify that the program is correct or report
all violations of the specification, i.e. it is sound for bugs exhibiting behavior outside the
specification. However, model checking fails to scale for large multi-threaded programs due
to the exponential increase in the number of thread schedules with execution length (the
state explosion problem).

Type and annotation based techniques [12, 34] help to avoid concurrency bugs at compile
time by rejecting programs that do not type-check. They are sound, but they impose the
burden of annotation on programmers. These annotations are often complex and/or tedious
to write. Furthermore, these techniques are incomplete because some correct programs may
be rejected if they cannot be well-typed in the system, requiring the programmer to rewrite
the program or use workarounds.

Static analysis finds bugs in a program by reasoning about the code. Static program
analyses often conservatively over-approximate bugs in the program such that bugs are not
missed (sound), but they usually report many false positives (incomplete). Static analysis can
be more precise using flow- and context-sensitive analysis, but this increases the computation
and memory required for analysis and may not scale to large programs.

Dynamic analysis checks for bugs at run-time, by examining properties of a program
during execution. Dynamic analyses are often precise, since bugs that they find are from
real executions. However, dynamic analysis can add significant overhead to the program
under analysis. Furthermore, dynamic analyses are unsound in nature, missing some bugs
(false negatives), because it can only reason about code paths that are actually executed
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during analysis. Predictive dynamic analysis tries to reduce false negatives by extrapolating
from an execution to predict bugs that may happen in other executions with different thread
interleavings to increase coverage. These predictive techniques give both false negatives
and false positives, requiring manual inspection to see if a concurrency bug is real or not.
Nevertheless, they are effective in finding concurrency bugs because they can predict bugs
that could potentially happen during a real execution.

Testing techniques, such as random testing or stress testing, are often widely used to
check correctness of parallel programs. In random testing, threads are scheduled randomly
at runtime; in stress testing, a program is executed with thousands of threads and other
heavy workloads to increase the probability of hitting buggy schedules. Testing techniques
are complete, efficient, and automatable. However, random testing fails to find concurrency
bugs with high probability as they appear for very specific thread interleavings. Stress
testing done in a given environment often fails to come up with interleavings that could
happen in other environments, such as under different system loads. Stress testing does
not try to explicitly control the thread schedules, but rather depends on the underlying
operating system or virtual machine for thread scheduling and often ends up executing the
same interleaving repeatedly.

1.2 Contributions

The main contribution of our work is that we make predictive dynamic analysis more precise
and scalable while being efficient and automatic. We have developed a methodology called
Active Testing which combines predictive dynamic analysis with testing. First, we take the
predictive power of dynamic program analysis to find certain patterns during execution that
may correspond to bugs. Then, like testing, we re-execute the program multiple times and
observe failures and anomalous behavior. The main difference with traditional testing is that
we actively control the thread schedules based on the information gathered from program
analysis to direct testing towards the predicted bugs.

We have implemented a general framework for Active Testing which allows different
dynamic analyses to be plugged in to find specific concurrency bugs. Existing dynamic
analyses can be used to predict bugs; we have developed a few novel dynamic analyses of our
own, such as a data race detector for distributed memory parallel programs because existing
data race detection techniques do not scale well. A predictive dynamic analysis may generate
a list of bugs with many false positives. Thus, we have also developed several schedulers for
specific classes of concurrency bugs, which control the thread schedule to reproduce bugs.
A scheduler tries to automatically reproduce the candidate bugs and report back to the
programmer only the real bugs that it was able to reproduce. This removes the burden of
the programmer to sift through all the reports and manually inspect if they are real bugs or
not.

We have implemented Active Testing for Java, which uses threads and shared memory,
and for UPC, a distributed memory parallel programming language. The implementation
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of the Active Testing framework for Java is called CalFuzzer. CalFuzzer includes dynamic
analyses to predict and confirm data races, atomicity violations, and deadlocks. In this thesis,
we only present the algorithms in CalFuzzer for prediction and confirmation of atomicity
violations and deadlocks. The Active Testing framework for UPC, is called UPC-Thrille.
We present the first dynamic data race detector able to handle distributed memory parallel
programs and demonstrate scalability to over a thousand cores.

To make Active Testing scale to large distributed memory parallel systems, we developed
several novel techniques to form the Communication Avoiding Dynamic Analysis framework.
Dynamic analysis for multi-threaded programs, which usually require a central monitoring
thread to collect and analyze the execution of threads, does not work well at scale when
directly ported to distributed memory parallel systems. A central analysis thread incurs a
huge communication overhead; our initial experiments showed that such an implementation
of a central analysis thread fails to scale beyond a few nodes. We avoid a central analy-
sis thread by distributing the analysis. We reduce communication overhead by coalescing
analysis traffic to synchronization boundaries and using filtering and sampling techniques to
avoid redundant information.

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 starts by introducing examples of
common concurrency bugs in programs. We present definitions and examples of a data race,
a deadlock, and an atomicity violation. We show how the bugs may affect the execution of
a program and lead to errors.

As pointed out in the previous section, various techniques for uncovering concurrency
bugs have limitations such as large overheads or too many false positives. Our technique
aims to overcome these shortcomings for an efficient, scalable, and precise push-button tool
for finding concurrency bugs. Chapter 3 lays down the background theories and formal
definitions for Active Testing, our general dynamic analysis framework to predict and confirm
real concurrency bugs. We explain the two phases of Active Testing, the prediction phase and
confirmation phase, which is common to the bug detection algorithms for specific concurrency
bugs such as data races, deadlocks, and atomicity violations. In Chapter 4, we describe
instantiations of Active Testing for these classes of bugs on top of this general two-phase
framework. For data races, we use a barrier-aware lockset based algorithm to predict data
races in SPMD programs. We use an augmented Goodlock algorithm to predict deadlocks
in multi-threaded programs. For atomicity, we target a particular locking pattern to predict
and confirm real atomicity violations.

In Chapter 5, we describe in detail our Active Testing framework for Java, named Cal-
Fuzzer. We also cover additional implementation details to increase the probability of repro-
ducing concurrency bugs in phase II. We present two precise object abstraction techniques to
pass contextual information from phase I to phase II to avoid thrashing, unnecessary pauses
in execution. We also describe an optimization that uses yields to improve the reproduction
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of deadlocks. Chapter 6 summarizes the evaluation of our tool on multi-threaded bench-
marks. We give detailed descriptions of the bugs that our tool found and the limitations
of our tool. We also present evaluation of the object abstraction techniques and yielding
optimization, showing how they affect the reproduction of deadlocks.

To make Active Testing scale to large distributed memory systems, we structured the
analyses for better load distribution among the nodes and less communication over the
network. Chapter 7 presents the Communication Avoiding Dynamic Analysis framework
and our Active Testing implementation for UPC, named UPC-Thrille. We focus on the
implementation details of a general framework for distributed memory parallel programs
and a data race detector for UPC. We also extend UPC-Thrille to handle hybrid mem-
ory models that deal with multiple abstractions of the same memory space. We classify the
three different overheads associated with finding data races on distributed memory systems—
instrumentation, computation, and communication. We present a hierarchical sampling tech-
nique that significantly reduces the instrumentation and computation overheads. Chapter 8
shows the results for the evaluation of our tools on distributed memory parallel benchmarks,
with a description of the bugs that we found. We present results that show Active Testing
can efficiently and scalably find concurrency bugs for distributed memory systems. We also
compare our hierarchical sampling technique with others to emphasize its effectiveness.

In Chapter 9, we discuss related work. Chapter 10 concludes the thesis with a brief
summary and discusses future research directions.
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Chapter 2

Common Concurrency Bugs

In this chapter, we go through a brief overview of the common concurrency bugs in programs
through examples. A data race happens when two threads try to access the same memory
location with an unspecified order. A deadlock occurs when a system cannot make progress
because all threads are waiting for a resource held by some other thread. Atomicity viola-
tions are bugs that happen when a programmer’s assumption about the indivisibility of an
operation is broken.

2.1 Data race through an example

One of the most common concurrency errors due to lack of synchronization is a data race.
A parallel program has a data race if the program can reach a state during execution where
two threads are about to access the same memory location and at least one of the accesses
is a write. Depending on the order of access, i.e. read after write or write after read (or
in case both of the accesses are writes, whichever one occurred last), the program may
exhibit different behavior which in some cases may lead to erroneous executions. This non-
deterministic behavior may result in bugs that happen only under very specific schedules,
and thus hard to detect.

Data races are also harmful in that they may break sequential consistency [54] depending
on the memory model of the underlying system. Sequential consistency is the notion that
every execution of a program on multiple processors should be equivalent to some interleaved
execution on a single processor, i.e. the operations have a single and total sequential order.
If sequential consistency is violated, it may lead to unexpected and undefined behaviors of
the program. [10]

Consider Program 2.1, a matrix-vector multiply routine written in Unified Parallel C
(UPC). UPC [16] is an extension of the C language with a shared global address space
and data parallel constructs. The shared keyword specifies pointers and arrays to shared
memory (e.g. the input variables A, B, C are declared to be shared). Non-shared pointers
and arrays, such as sum in line 4 are local and distinct to each thread. The upc forall
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1 void matvec ( shared [N] double A[N ] [ N] , shared double B[N] ,
2 shared double C[N] )
3 {
4 double sum [N ] ;
5 upc forall ( int i = 0 ; i < N; i ++; &C[ i ] )
6 {
7 sum [ i ] = 0 ;
8 for ( int j = 0 ; j < N; j++)
9 sum [ i ] += A[ i ] [ j ] ∗ B[ j ] ;

10 }
11 upc forall ( int i = 0 ; i < N; i ++; &C[ i ] )
12 C[ i ] = sum [ i ] ;
13 } // a s s e r t (C == A ∗ B)

Program 2.1: Example of a data race in a UPC program

Initially,

A =

(
1 2
3 4

)
and B =

(
1
1

)
Thread 1 Thread 2

1. sum[0] = 0; a. sum[1] = 0;

2. sum[0] += A[0][0] * B[0]; b. sum[1] += A[1][0] * B[0];

3. sum[0] += A[0][1] * B[1]; c. sum[1] += A[1][1] * B[1];

4. C[0] = sum[0]; d. C[1] = sum[1];

Output

C =

(
3
7

)

Figure 2.1: Execution trace of Program 2.1

statement is a parallel-for loop that runs the loop body in different threads. The fourth
argument denotes where to run the loop body. For example, the upc forall loops in lines 5
and 11, run the loop body in the thread that owns the memory corresponding to the ith
element of C. We give a more detailed description of UPC in Chapter 4.1.

If we run the example on two threads with N = 2, the execution trace of all memory
loads and stores with arithmetic operations would look like Figure 2.1. The two threads
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Initially,

A =

(
1 2
3 4

)
and B =

(
1
1

)
Thread 1 Thread 2

1. sum[0] = 0;

a. sum[1] = 0;

2. sum[0] += A[0][0] * B[0];

3. sum[0] += A[0][1] * B[1];

4. B[0] = sum[0];

b. sum[1] += A[1][0] * B[0];

c. sum[1] += A[1][1] * B[1];

d. B[1] = sum[1];

Output

C =

(
3
13

)

Figure 2.2: Erroneous execution trace of Program 2.1 when B and C are aliased

execute in parallel, running their portion of the loop bodies. Since the writes made by the
threads are to addresses distinct from each other, the result of the program is correct no
matter how the shared memory accesses interleave with each other.

However, if the routine is called with B and C aliased (i.e., for an in-place multiplication),
there are two data races: 〈 3, d 〉 (because 3 is a read from Thread 1, d is a write from
Thread 2, and &B[1] == &C[1]) and 〈 4, b 〉 (similarly). One common misconception of
the upc forall loop is that all the loop bodies must terminate to continue (i.e., there is an
implicit barrier at the end of the upc forall statement), which is not true for UPC. Nothing
prevents Thread 1 from executing 4 before Thread 2 finishes b or Thread 2 from executing
d before Thread 1 finishes 3. Figure 2.2 is an execution trace where Thread 1 executes 4
then Thread 2 executes b. After Thread 1 makes the update to B (because it is aliased to
C) at 4, Thread 2 reads the new value when computing the inner product at b, resulting in
the wrong value.

This example illustrates several challenges for finding data races: 1) the number of possi-
ble interleavings can be very large; and 2) the number of memory access to analyze increases
with the problem size. Even for such a small program with only two threads, there are 70
possible interleavings.1 Five interleavings have 4 executing before b (e.g., Figure 2.2) and 10

1There are 5 places where a through d can go: before 1, between 1 and 2, between 2 and 3, between 3 and
4, and after 4. Picking from the 5 locations 4 times with replacement corresponds to

(
5+4−1

4

)
=
(
8
4

)
= 70.
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Initially,

Object l1 = new Object();

Object l2 = new Object();

Thread 1 Thread 2

1 synchronized(l1) { 6 synchronized(l2) {
2 synchronized(l2) { 7 synchronized(l1) {
3 ... 8 ...

4 } 9 }
5 } 10 }

Program 2.2: Example of a deadlock in Java

interleavings have d executing before 3. Thus, even though the program may be incorrect,
55 out of 70 interleavings (78.6%) execute the program computing the correct result. This
illustrates why such bugs can be easily missed with stress testing or random testing, and
why it requires a large amount of work to check all the interleavings exhaustively.

Instead of checking all interleavings, dynamic data race detectors like ours in Chapter 4.1
analyze the memory accesses to predict data races. However, if we run the program on many
threads with a large data set, there may be an overwhelming number of memory accesses to
analyze. We have developed novel sampling and filtering techniques to reduce the number
of accesses to consider while retaining the ability to predict most or all data races in the
program.

2.2 Deadlock through an example

Data races and other concurrency errors can be prevented with synchronization. One com-
mon synchronization primitive is a lock (also called a mutex, for mutual exclusion). A lock
is an object that can be held by only one thread at a time, which can be used for mutual
exclusion of threads in critical regions of code.

However, locks must be used with care; certain locking patterns may run into a deadlock,
where all threads are blocked waiting to acquire a lock which is already held by some other
thread, thus no progress is made. Consider example Program 2.2. Here, a deadlock situation
can arise in the scenario illustrated in Figure 2.3.

Jigsaw, shown in Program 2.3, is a webserver which has this locking pattern that could
deadlock. The nested synchronization corresponds to the statements in lines 7 and 8 for the
main httpd thread and lines 4 and 6 for a SocketClient thread. The SocketClientFactory
object corresponds to lock l1 in Program 2.2 and the SocketClientState object in line 2
corresponds to lock l2. When the server shuts down, it calls cleanup code that shuts down
the SocketClientFactory. The shutdown code holds a lock on the factory at line 7, and
in turn attempts to acquire the lock on csList at line 8. On the other hand, when a
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1. Thread 1 successfully acquires lock l1 (line 1).

2. Thread 2 successfully acquires lock l2 (line 6).

3. Thread 1 is waiting to acquire lock l2 (line 2).

4. Thread 2 is waiting to acquire lock l1 (line 7).

5. Both threads are blocked and cannot progress —
a deadlock has occurred.

l1 l2

Thread 1

Thread 2

Figure 2.3: Execution scenario and lock graph for Program 2.2

1 class SocketCl i entFactory {
2 Socke tC l i en tS ta t e c s L i s t ;
3 boolean c l i en tConnec t i onF in i shed ( . . . ) {
4 synchronized ( c s L i s t ) { decrId leCount ( ) ; }
5 }
6 synchronized boolean decrId leCount ( ) { . . . }
7 synchronized void k i l l C l i e n t s ( . . . ) {
8 synchronized ( c s L i s t ) { . . . }
9 }

10 void shutdown ( ) {
11 k i l l C l i e n t s ( . . . ) ;
12 }
13 }
14
15 Thread 1: httpd Thread 2: SocketClient
16 SocketCl i entFactory f a c t o r y ; SocketCl i entFactory pool ;
17 f a c t o r y . shutdown ( ) ; pool . c l i en tConnec t i onF in i shed ( . . . ) ;

Program 2.3: Deadlock in Jigsaw

SocketClient is closing, it also calls into the factory to update a global count. In this
situation, the locks are acquired in the opposite order: the lock on csList is acquired first
at line 4, and then on the factory at line 6. Thus, when both events happen simultaneously,
the webserver may deadlock and not shut down cleanly.

A deadlock can happen non-deterministically: in some cases, a programs runs to com-
pletion, and under some other thread schedule a deadlock occurs and can be detected by
observing that a set of blocked threads are all waiting for a lock held by another thread in
the set. In our running example (Program 2.2), a deadlock does not happen if the order of
lock acquires is 1 2 6 7.
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1 public class Consumer {
2 private LinkedLis t b u f f e r ;
3 public synchronized void consume ( ) {
4 i f ( ! b u f f e r . isEmpty ( ) ) {
5 Object data = b u f f e r . remove ( ) ;
6 System . out . p r i n t l n ( data . t oS t r i ng ( ) ) ;
7 }
8 }
9 }

10 public class LinkedLis t . . . {
11 public synchronized boolean isEmpty ( ) { . . . }
12 public synchronized Object remove ( ) { . . . }
13 . . .
14 }

Program 2.4: Example of an atomicity violation

Thus, we need tools that check if a program could deadlock or not. A static deadlock
detector [66, 103] can predict deadlocks by inspecting the locking behavior in code. We can
also detect deadlocks with runtime monitoring by creating lock graphs. A lock graph has
locks as nodes and the lock ordering relation as edges. Whenever a thread t attempts to
acquire lock2 when the last acquired lock still held is lock1, an edge labeled t is added from
node lock1 to lock2. For example, the diagram on the right of Figure 2.3 is the lock graph
for Program 2.2. If there is a cycle in the lock graph with distinct labels along the edges,
there is a potential for a deadlock. In our example program, there is a cycle 〈l1, l2, l1〉 and
corresponds to the deadlock in the scenario above.

Static and predictive dynamic deadlock detectors often report too many false positives,
i.e. they are imprecise. Active Testing reports only the deadlocks that it reproduces, reducing
the burden of the programmer to confirm whether each report is real or not. For example,
out of the 283 deadlocks in Jigsaw predicted by a dynamic deadlock analysis, we report only
29 of those that Active Testing was able to reproduce.

One challenge for reproducing deadlocks from lock graphs is that it is hard to know at
run-time which lock acquires lead to a deadlock, as locks can be acquired in many contexts.
We present a dynamic deadlock prediction algorithm in Chapter 4.2 with precise object
abstractions that provides contextual information to help reproduce deadlocks.

2.3 Atomicity violation through an example

The absence of data races in a parallel program is not sufficient to ensure that it is free of
non-deterministic bugs. Atomicity is a property of multi-threaded programs that enforces
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Consumer 1 D null null Consumer 2
buffer buffer

Statement Object Returns

Consumer 1 calls isEmpty() buffer: D null null false

Consumer 2 calls isEmpty() buffer: D null null false

Consumer 1 calls remove() buffer: D null null D

Consumer 2 calls remove() buffer: null null null null

Consumer 2 calls toString() data: null Null Pointer Exception

Figure 2.4: Execution scenario for Program 2.4 where Consumer 1 and Consumer 2 share
the buffer and both call consume()

non-interference. A block of code in a multi-threaded program is atomic if for every possible
interleaved execution of the program there exists an equivalent execution with the same
overall behavior where the atomic block is executed serially. In other words, the execution of
the atomic block behaves as if it is not interleaved with actions of other threads. Therefore,
if a code block is atomic, the programmer can assume that the execution of the code block
by a thread cannot be interfered by any other thread. This helps programmers reason about
atomic code blocks sequentially.

Consider Program 2.4 as an example. A Consumer class has an associated buffer where
objects are stored for processing. Before consuming a data object, the buffer is first checked
to see if there are any elements to process (line 4). Only when the buffer is non-empty, an
element is removed and printed. All methods of the LinkedList class are synchronized, thus
even if multiple consumers share the same buffer, there is no data race involved.

However, there may still be a problem in this program for some interleavings. In the
execution scenario in Figure 2.4, two Consumer objects share a common buffer and both are
calling the consume() method when there is only one item in the buffer. If the statements
are executed in the given order, both Consumer objects will check if the buffer is empty
and get a negative answer. Thus, they both try to remove an object from the buffer, but
only one of them will get a data object (Consumer 1 in this case) and the other gets a null
pointer. When the null data object is dereferenced by Consumer 2, an exception occurs.

This scenario is an exemplar “time of check to time of use” (TOCTTOU) bug, which
is caused by changes in the system between the check of a state and the use of that state
[94]. What we intended was for the check and remove from the buffer to be one indivisible
operation, i.e. an atomic operation. This atomicity property has been violated in this case.

In most modern multi-threaded programming languages, atomicity is indirectly achieved
through the use of locks. However, the use of locks cannot always ensure a code block
to be atomic. Program 2.4 is an example of this problem. Thus, many existing program
analysis techniques use heuristics to infer atomic blocks from locks and predict atomicity
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violations. This heuristic may lead to many false positives which increases the burden on
the programmer to check each report manually. In Chapter 4.3, we present a dynamic
atomicity violation analysis which reports only the real atomicity violations that actually
happen in an execution, reducing this burden of confirming real atomicity violations.
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Chapter 3

Active Testing

Numerous program analysis techniques [40, 72, 31] have been developed to predict concur-
rency bugs in multi-threaded programs by detecting violations of commonly used synchro-
nization idioms. For instance, accesses to a memory location without holding a common lock
are used to predict data races on the location, and cycles in the program’s lock order graph
are used to predict deadlocks. However, these techniques often report many false warn-
ings because violations of commonly used synchronization idioms do not necessarily indicate
concurrency bugs. Manually inspecting these warnings is often tedious and error-prone.

Active Testing [87, 74, 49] is a technique for finding real bugs in concurrent programs.
Active Testing uses a randomized thread scheduler to verify if warnings reported by a pre-
dictive program analysis are real bugs. The technique works as follows. In the first phase,
Active Testing uses an existing predictive off-the-shelf static or dynamic analysis, such as
Lockset [84, 72], Atomizer [31], or Goodlock [40], to compute potential concurrency bugs.
Each such potential bug is identified by an abstract state. For example, in the case of a
data race, the abstract state consists of a pair of program statements that could potentially
race with each other in some execution. In the second phase, for each potential concurrency
bug, Active Testing runs the given concurrent program under random schedules. Further,
Active Testing biases the random scheduling by pausing the execution of any thread when
the thread partially satisfies the abstract state describing the potential concurrency bug.
After pausing a thread, Active Testing also checks if a set of paused threads could exhibit a
real concurrency bug. For example, in the case of a data race, Active Testing checks if two
paused threads are about to access the same memory location and at least one of them is a
write. Thus, Active Testing attempts to force the program to take a schedule in which the
concurrency bug actually occurs.

In the following sections, we show informally how Active Testing works with a simple
example. We also define the formal model of concurrent systems that we test. The model
describes the minimal interface of concurrent systems used in our Active Testing algorithms.
We describe in more detail the two phases of Active Testing and their generic schedulers.



15

3.1 Active Testing through an example

Consider the execution trace from Figure 2.2 (page 8) again. This execution trace of Pro-
gram 2.1 (page 7) with B and C aliased is of great interest to us for two reasons: 1) it clearly
shows that there is a race, and 2) it also shows that the result computed is incorrect. There
is a race between events 4 and b, because the write from Thread 1 and the read from Thread
2 to the same address B[0] are temporally next to each other. This is ideally the kind of
trace we would like to obtain from testing, but a trace that a random scheduler can rarely
produce.

Active Testing tries to automatically create such execution traces that exhibit a data
race. First, we run an imprecise dynamic analysis on an execution of the program to find
potential data races that are present in the program. The analysis is a variant of a lockset
based algorithm [84, 18, 72, 100]. The analysis checks if two threads could potentially access
a memory location without holding a common lock. Specifically, the analysis observes all
memory accesses that happen during an execution of the program and records the locks
held during each such access. If there exists two accesses to the same memory location by
different threads, a common lock is not held during the accesses, and at least one of the
accesses is a write, then the analysis reports a potential data race. The analysis reports the
pairs of statements where the threads access the memory location, respectively. Formally,
the set of potential data races pairs reported by the analysis is defined as follows:

Definition 3.1 (Set of Potential Data Race Pairs: DP,E). Given an execution E of a
program P , let us denote a shared memory access event by a thread in the execution by
e = (m, t, l, a, s), where

1. m is the memory address range that is being accessed,

2. t is the thread accessing the memory address range.

3. l is the set of locks held by t at the time of access,

4. a ∈ {READ,WRITE} is the access type, and

5. s is the label of the program statement that generates the memory access event.

Let AP,E be the set of all shared memory access events in the execution E. Then the set of
potential data race pairs reported by the analysis is

DP,E = {(s1, s2) | ∃e1, e2 ∈ AP,E such that e1 = (m1, t1, l1, a1, s1) ∧ e2 = (m2, t2, l2, a2, s2)

∧ m1 ∩m2 6= ∅ ∧ t1 6= t2 ∧ l1 ∩ l2 = ∅ ∧ (a1 = WRITE ∨ a2 = WRITE)} .

In our example execution trace of Figure 2.2, AP,E and DP,E are shown in Figure 3.1.
Note that a race pair in DP,E reported by the analysis can be a false warning because the
analysis does not check if the two accesses are ordered by a synchronization operation. The
analysis simply checks if the program adheres to the idiom that every memory access is
consistently protected by a lock. As such, the analysis can report data races that did not
actually happen in the execution E, but could happen in a different execution E ′ of the
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AP,E = { ( [A, A+8), T1, READ, {}, 9 ),
( [A+8, A+16), T1, READ, {}, 9 ),
( [B, B+8), T1, READ, {}, 9 ),
( [B+8, B+16), T1, READ, {}, 9 ),
( [B, B+8), T1, WRITE, {}, 12 ),
( [A+16, A+24), T2, READ, {}, 9 ),
( [A+24, A+32), T2, READ, {}, 9 ),
( [B, B+8), T2, READ, {}, 9 ),
( [B+8, B+16), T2, READ, {}, 9 ),
( [B+8, B+16), T2, WRITE, {}, 12 ) }

DP,E = { (9, 12) }

Figure 3.1: Memory access events and potential data race pairs of execution in Figure 2.2

Statements 9 and 12 may race

Statement of T1 Statement of T2 Paused Scheduler action

a 7:sum[0]=0 - pick T1 and execute
b 7:sum[1]=0 - pick T2 and execute
c (9:sum[1]+=A[1][0]*B[0]) - pick T2 and pause
d 9:sum[0]+=A[0][0]*B[0] T2 pick T1 and execute
e 9:sum[0]+=A[0][1]*B[1] T2 pick T1 and execute
f (12:B[0]=sum[0]) (9:sum[1]+=A[1][0]*B[0]) T2 data race created
g 12:B[0]=sum[0] - pick T1 and execute
h 9:sum[1]+=A[1][0]*B[0] - pick T2 and execute
i 9:sum[1]+=A[1][1]*B[1] - pick T2 and execute
j 12:B[1]=sum[1] - pick T2 and execute

Figure 3.2: Steps to reproduce data race in Program 2.1

program under a different thread schedule. This predictive power of the analysis is crucial
for increasing the coverage of our Active Testing technique.

To confirm that this prediction is true, we re-execute the program with a random sched-
uler, but with knowledge that statements 9 and 12 may race. We use a scheduler that
serializes the execution, i.e. it picks one thread at a time to execute. Figure 3.2 shows the
steps of the scheduler. At step a, the scheduler randomly picks T1 and executes the state-
ment normally. At step b, the scheduler randomly picks T2 and executes the statement. At
step c, the scheduler picks T2, but since it is about to execute statement 9 which may race
with statement 12, it pauses the thread so that some other thread can reach statement 12.
At step d, the scheduler can only pick T1, because T2 is paused. It is also about to execute
a statement that may race with statement 12, but pausing T1 would stall the system by
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pausing all threads. Thus we execute the statement at T1, similarly at step e. At step f,
T1 is about to execute statement 12. This is a statement that may race with statement 9,
where T2 is paused. We check if the two threads are in race, and they are since T1 is about
to write to B[0] and T2 is about to read from B[0]. Thus, we have created a real data race.
From this point, we unpause all threads and continue to observe the remaining execution for
any anomalies. After going through steps g–j, we have created an execution trace identical
to Figure 2.2, showing the data race and the incorrect result.

The example illustrates the practical challenges of Active Testing. In phase I, 1) man-
aging overhead of data collection at every memory access and synchronization operation;
2) managing overhead of exchanging the data collected between threads; and 3) efficiently
reasoning about the information gathered to predict concurrency bugs. We address these
challenges by presenting a hierarchical sampling technique for data race detection in Chap-
ter 7.3; structuring scalable dynamic analyses to avoid communication in Chapter 7.1; and
efficient algorithms for predicting concurrency bugs in Chapter 4.

In phase II, we need to strategically pick when to pause which thread. If done naively, we
may incur large overheads by pausing threads unnecessarily at irrelevant points and reduce
the probability of reproducing concurrency bugs. We developed techniques for precise object
abstractions, discussed in Chapter 5.2, to help reproduce concurrency bugs by providing
contextual information for when to pause threads.

3.2 Concurrent system model

We use a simple and general model of a concurrent system to describe our Active Testing
methodology. This model can be used for shared memory systems, distributed memory
parallel systems, and others as well. We consider a concurrent system to be composed of a
finite number of threads. Each thread executes a sequence of labeled statements. A thread
communicates with other threads using shared memory. At any point of program execution,
a concurrent system is in some state, which internally contains the contents of shared memory
and bookkeeping information for threads. Starting at the initial state c0, a concurrent system
evolves from one state to another when a thread executes a statement. We leave the detailed
operational semantics of statements unspecified; for analysis and testing purposes, we do
require a few operations to query and control the system. We assume that at any state of
the concurrent system, we can make the following queries and operations.

• Enabled(c) → T : Returns the set of threads T that are enabled in state c. A thread
is disabled if it is waiting to acquire a lock already held by some other thread or waiting
at a barrier.

• Alive(c) → T : Returns the set of threads T that are alive (i.e., has not terminated)
in state c. The state c is in a stall state when some threads are alive but none are
enabled (i.e., Enabled(c) = ∅ ∧Alive(c) 6= ∅).
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• Event(c, t) → e: Returns the event e, which would be generated if thread t executes
its next statement in state c.

• Execute(c, t)→ c′: Returns the new state c′ after thread t executes its next statement
in state c.

We consider the following events that are generated as statements are executed in the
concurrent system. An event is generated as a state transitions into the next state.

Definition 3.2 (Events). As a concurrent system evolves its state through execution of
statements, the following externally observable transition events are generated.

• MEM(t, s,m, a): Thread t at statement labeled s (same for all other events below) ac-
cessed memory range m, consisting of the start and end addresses, where the access
type a is either READ or WRITE.

• LOCK(t, s, l): Thread t acquired lock l.

• UNLOCK(t, s, l): Thread t released lock l.

• BARRIER NOTIFY(t, s): Thread t notified other threads that the barrier is ready to cross.

• BARRIER WAIT(t, s): Thread t finished waiting at a barrier for notifications from other
threads.

• ATOMIC ENTER(t, s): Thread t entered an atomic section.

• ATOMIC EXIT(t, s): Thread t left an atomic section.

• τ : any other internal events that we do not handle.

Given the above model of concurrent programs, we define a happens-before [53] relation
to formally describe our bug detection algorithms. The happens-before relation requires the
notion of independence of transitions.

Definition 3.3 (Independent Transitions). If two transitions in a concurrent system do not
interact with each other, then we call them independent.

For example, a transition denoting the acquire of a lock l1 by a thread t1 is independent
of a transition denoting the acquire of a lock l2 by another thread t2, if l1 and l2 are different
locks.

Definition 3.4 (Dependent Transitions). Two transitions are said to be dependent, if they
are not independent.
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Algorithm 3.1: RandomScheduler(c0)

Input: the initial state c0
1 c := c0;
2 while Enabled(c) 6= ∅ do
3 t := a random thread in Enabled(c) ;
4 c := Execute(c, t) ;

5 if Alive(c) 6= ∅ then
6 print “ERROR: system stall”;

Transitions from the same thread are always dependent on each other. Similarly, the
acquire or release of a lock by one thread is dependent on the acquire or release of the same
lock by another thread. Two accesses (i.e. read or write) of a memory location are dependent
if at least one of the accesses is a write.

A sequence of transitions represents the execution of a concurrent system. Specifically,
τ = t1t2 . . . tn is a transition sequence if there exists states c0, c1, . . . , cn such that c0 is the
initial state and

c0
t1−→ c1

t2−→ . . .
tn−→ cn .

Definition 3.5 (Happens-before: �). The happens-before relation � for a transition se-
quence τ = t1t2 . . . tn is defined as the smallest relation such that

1. if ti and tj are dependent and 1 ≤ i ≤ j ≤ n, then ti � tj, and

2. � is transitively closed.

Thus � is a partial order relation.

We use a scheduler to get an execution trace of a concurrent system. Algorithm 3.1 is
an example of a simple random scheduler which randomly selects an enabled thread and
executes a single statement of that thread. The main loop in line 2 continues execution of a
statement from a random thread that is enabled. When no thread is enabled, the scheduler
makes the final check that all threads have terminated in line 5. If this is not the case, then
the system is in a state that cannot make progress while some thread has not yet terminated.
We call this error state a system stall.

Figure 3.3 shows an overview of the Active Testing framework. In the following sections,
we describe generic schedulers for Phase I (Section 3.3) and Phase II (Section 3.4) of Active
Testing. These schedulers require functions specific to predicting and confirming a class
of concurrency bug. We use lockset-based data race detection as an example in the next
sections. Chapter 4 describes these functions for predicting and confirming data races,
deadlocks, and atomicity violations.
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The Active Testing Framework

Phase 2Phase 2Phase I Phase II

Check
Before

Check
After

CheckPartial

CheckFull
Potential

Bugs
Confirmed

Bugs

Program 
Under 
Test

Figure 3.3: The Active Testing Framework takes a concurrent program under test and
returns confirmed bugs. Internally, it finds potential bugs in the first phase and confirms
and reports real bugs in the second phase.

Algorithm 3.2: Phase1Scheduler(c0)

Input: the initial state c0
Output: set of abstract states

1 c := c0;
2 Abs := ∅;
3 while Enabled(c) 6= ∅ do
4 t := a random thread in Enabled(c) ;
5 e := Event(c, t) ;
6 Abs := Abs ∪ CheckBeforeX(e) ;
7 c :=Execute(c, t);
8 Abs := Abs ∪ CheckAfterX(e) ;

9 if Alive(c) 6= ∅ then
10 print “ERROR: system stall”;
11 return Abs;

3.3 Phase I: Prediction

The Phase I scheduler shown in Algorithm 3.2 is a general way to dynamically observe and
gather information about the execution of a program. Each dynamic analysis may have a
variety of data structures and algorithms, but we generalize this problem as inserting two
functions before and after each statement execution. The two function calls are at lines 6
and 8 in Phase1Scheduler. Each of these functions return abstract states which describe
certain states of the program that potentially correspond to bugs. We collect these states
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Algorithm 3.3: CheckBeforeLockset(e)

Initially: Acc = ∅, the set of all memory accesses in current execution,
∀t ∈ T. L(t) = ∅, the set of locks held by thread t

Input: Event e the concurrent system is about to generate
1 switch e do
2 case MEM(t, s,m, a)
3 Acc := Acc ∪ (m, t, L(t), a, s);
4 return {(s, s′) | ∃(m′, t′, l′, a′, s′) ∈ Acc. m ∩m′ 6= ∅ ∧ t 6= t′

∧ L(t) ∩ l′ = ∅ ∧ (a = WRITE ∨ a′ = WRITE)};
5 case LOCK(t, s, l)
6 L(t) := L(t) ∪ l;
7 return ∅;

Algorithm 3.4: CheckAfterLockset(e)

Initially: L is shared with CheckBeforeLockset
Input: Event e the concurrent system has just generated

1 switch e do
2 case UNLOCK(t, s, l)
3 L(t) := L(t) \ l;
4 return ∅;

until the end when we pass off the set of abstract states to the next phase, which confirms
whether these states can occur in a real execution of the program and correspond to real
concurrency bugs.

For example, let us consider the lockset-based predictive data race analysis from
Section 3.1. The analysis implemented in our framework works as follows. We use
Phase1Scheduler (Algorithm 3.2) with the functions CheckBeforeLockset (Algo-
rithm 3.3) and CheckAfterLockset (Algorithm 3.4). This is an online analysis that
checks for potential data races at every memory access and returns the statement pairs
that may race as abstract states describing the bug. Before each memory access (lines 2–4 of
CheckBeforeLockset), we add the access event into the set of all memory accesses so far.
We check if there is a previous event in the set that accessed an overlapping memory address
(m ∩m′ 6= ∅), from a different thread (t 6= t′), without a common lock held (L(t) ∩ l′ = ∅),
and either the previous or current access is a write (a = WRITE ∨ a′ = WRITE). If such
an access is found, we return the abstract state that describes the data race: the pair of
statements that make the accesses. To keep track of the locks held during a memory access,
we update the set of locks held by each thread before acquiring a lock (lines 5–6 of Check-
BeforeLockset) and after releasing a lock (lines 2–3 of CheckAfterLockset). We
need not consider any events other than memory accesses and locking related events.
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We show in Chapter 4 other algorithms predicting concurrency bugs written in such
manner: CheckBeforeUPCRace and CheckAfterUPCRace for finding data races
and CheckBeforeDeadlock for finding deadlocks.

3.4 Phase II: Confirmation

Once we obtain a set of abstract states from Phase I, we check one by one whether these
abstract states can occur in an execution and correspond to a real concurrency bug. An
abstract state tries to capture the essence of a concurrency bug: two or more threads that
are in certain concrete states simultaneously. For example, in our lockset-based data race
detection example, a pair of statements is an abstract state that represents racy accesses.
Another example is a lock graph containing a cycle to represent a potential deadlock.

One reason why concurrency bugs non-deterministically occur only in certain executions
is because of the simultaneity condition: only particular thread schedules allow these threads
to be in their respective states at the same time. By controlling the scheduler, we make a
best effort to recreate these buggy states by delaying certain threads to meet the simultaneity
condition. However, recreating the abstract state is not always enough. We need to make
sure that the abstract state created corresponds to a real concurrency bug. Once we have two
threads about to execute the statements in the pair predicted as a race, we need to confirm
that they are indeed in race by checking if the two accesses are to overlapping memory
addresses.

The Phase II scheduler shown in Algorithm 3.5 is a general way to recreate a state corre-
sponding to concurrency bugs. As in the Phase I scheduler, it requires functions particular
to a class of concurrency bug that check states of an execution. CheckPartialX returns
true when a thread is in a state which could potentially be part of a concurrency bug state.
For example, CheckPartialLockset (Algorithm 3.6) returns true when the next event
of a thread is a memory access predicted to be in a race. CheckFullX examines a set of
threads to see if they are in a real concurrency bug state. In CheckFullLockset (Algo-
rithm 3.7), we make sure that we are in a state where a real data race is about to happen
by checking that the memory addresses overlap and the accesses each correspond to one of
the statements in the pair.

Phase2Scheduler guides the execution of a concurrent system to reach a potential
buggy state (Abs) reported from Phase I. We randomly pick and execute enabled threads
that are not Paused by the analysis (line 7). Certain threads are paused to increase the
chance of threads being in the abstract state simultaneously. Line 5 is a safeguard that
prevents the scheduler from artificially stalling the system by pausing all enabled threads.

For the thread that was selected, we check whether the next event of the thread partially
satisfies the abstract state (line 9). If this is true, we check if the current thread along
with the paused threads correspond to a real concurrency bug (line 10). We report an error
if we are in such a state. Since we have confirmed the bug, we unpause all threads and
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Algorithm 3.5: Phase2Scheduler(c0, Abs)

Input: the initial state c0 and the abstract state Abs to check for
1 c := c0;
2 Paused := ∅;
3 prob := 1.0;
4 while Enabled(c) 6= ∅ do
5 if Enabled(c) = Paused then
6 Remove a random thread from Paused; // Prevents artificial stall

7 t := a random thread in Enabled(c) \Paused ;
8 e := Event(c, t) ;
9 if CheckPartialX(e, Abs) then

10 if CheckFullX(e, Paused, Abs) then
11 Report error;
12 Paused := ∅;
13 prob := 0;

14 else if random() < prob then
15 Paused := Paused ∪ T ;
16 prob := prob × BACKOFF;
17 continue;

18 c := Execute(c, t);

19 if Alive(c) 6= ∅ then
20 print “ERROR: system stall”;

Algorithm 3.6: CheckPartialLockset(e, Abs)

Input: Event e the concurrent system is about the generate and the abstract state
Abs to confirm

1 (s1, s2) := Abs;
2 switch e do
3 case MEM(t, s,m, a)
4 return s = s1 ∨ s = s2;
5 otherwise
6 return false;

prevent pausing threads hereafter such that we can observe the remaining execution for any
anomalies.

If the event partially satisfies the abstract state but the full state does not correspond
to a concurrency bug, it may be that all the threads required for the bug have not reached
their certain states yet. Thus, we add the selected thread to the Paused set so that other
threads may catch up. Since the constant pausing and unpausing of threads may reduce
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Algorithm 3.7: CheckFullLockset(e, Paused,Abs)

Input: Event e, the current set of Paused threads, and the abstract state Abs to
confirm

1 (s1, s2) := Abs;
2 switch e do
3 case MEM(t, s,m, a)
4 return ∃t′ ∈ Paused. Event(t′) = MEM(t′, s′,m′, a′) ∧ (m ∩m′ 6= ∅) ∧

((s = s1 ∧ s′ = s2) ∨ (s = s2 ∧ s′ = s1));

5 otherwise
6 return false;

execution speed drastically, we employ an exponential backoff scheme to randomly decide
whether to delay the thread or not (line 14). Starting with a pause probability of 1, we
gradually decrease this probability exponentially after each attempt to recreate the buggy
state by delaying a thread.

In the next chapter, we describe two more bug reproduction algorithms using functions
that fit Phase2Scheduler. CheckPartialDeadlock and CheckFullDeadlock re-
produce deadlocks; CheckPartialAtomViol and CheckFullAtomViol detect and re-
produce atomicity violations in a single phase.
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Chapter 4

Instantiations of Active Testing

In this chapter, we present algorithms used in the two phase of Active Testing to detect
and confirm concurrency bugs. First, we present a data race detection and confirmation
algorithm for programs written in Unified Parallel C (UPC), an extension of C for writing
parallel programs. Then, in section 4.2, we describe an algorithm to detect and confirm
deadlocks in Java programs. Finally, in section 4.3, we introduce an algorithm to detect and
confirm atomicity violations for Java programs in a single phase. This algorithm is different
from the previous two in that it does not require the prediction phase to find abstract
potential buggy states. It discovers and confirms these abstract states while running only
the confirmation phase of Active Testing.

4.1 Data race detection for UPC

Unified Parallel C

Unified Parallel C (UPC) is a parallel extension to ISO C 99 for high performance comput-
ing. UPC uses the Single Program Multiple Data (SPMD) parallelism model and provides
a Partitioned Global Address Space: the memory is partitioned in a thread local heap and
a global heap. All threads can access memory residing in the global heap, while access to
the local heap is allowed only for the owner thread. The global heap is logically partitioned
between threads and each thread is said to have local affinity with its sub-partition. The
language extends the C type system with the shared qualifier to denote pointer accesses to
the global address space. Global memory can be accessed either using shared pointer deref-
erences (load and store) or using bulk communication primitives (memget() and memput()).
The language provides synchronization primitives, namely locks, barriers, and split-phase
barriers.

Locks and semaphores are common synchronization constructs in shared memory pro-
gramming models (e.g. pthreads), but SPMD programs also utilize barriers (and their split-
phase versions) for bulk synchronization. When a thread reaches a barrier statement, it
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1 int b u i l d t a b l e ( int nitems , int cap , shared int ∗T,
2 shared int ∗w, shared int ∗v ) {
3 int wj , v j ;
4 wj = w [ 0 ] ;
5 v j = v [ 0 ] ;
6 upc forall ( int i = 0 ; i < wj ; i ++; &T[ i ] )
7 T[ i ] = 0 ;
8 upc forall ( int i = wj ; i <= cap ; i ++; &T[ i ] )
9 T[ i ] = vj ;

10 u p c b a r r i e r ;
11 . . .
12 }
13 int main ( int argc , char∗∗ argv ) {
14 . . .
15 upc forall ( i = 0 ; i < nitems ; i ++; i ) {
16 weight [ i ] = 1 + ( lrand48 ()%max weight ) ;
17 value [ i ] = 1 + ( lrand48 ()%max value ) ;
18 }
19 b e s t v a l u e = b u i l d t a b l e ( nitems , capac i ty , t o ta l , weight , va lue ) ;
20 . . .
21 }

Program 4.1: Parallel knapsack implementation with data race.

cannot proceed onto the next statement until all others threads have also reached the bar-
rier. This effectively splits a program execution into multiple phases and all threads run in
the same phase at a given time.

Utilizing the time while waiting for other threads in barriers, we can increase parallelism
by doing some useful local work. UPC has split-phase barriers, in which a thread first
notifies the other threads that they can continue through the barrier and then after doing
some local work, if available, it waits for notification from the other threads. The events
BARRIER NOTIFY(·) and BARRIER WAIT(·) in Definition 3.2 are generated respectively, when
a thread notifies other threads and when a thread finished waiting for other threads at a
barrier.

Phase I: Race Prediction Phase

Data races happen when in an execution two threads are about to access the same memory
location, at least one access is a write, and no ordering is imposed between these concurrent
accesses. Figure 4.1 is a partial listing for a UPC program that computes the “0-1 knapsack
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problem” in parallel using dynamic programming. Although not apparent at first look, there
are two data races in this program that can lead to incorrect results. The first data race is
between lines 4 and 16, and the second between lines 5 and 17. Since a upc forall statement
is not a collective operation (i.e., there is no implicit synchronization at the beginning or end
of the loop), there is no ordering enforced between the write to weight[0] in line 16 and the
read from it in line 4. If the read happens before the write, the table is incorrectly initialized
and result in an incorrect computation. The second race is similar to the first. Ironically,
the program has been assigned for years as homework for graduate parallel programming
courses at UC Berkeley. The bug has been reported by students, which was detected by our
tools and independently confirmed by others.

To predict this bug in the example program, we can use the lockset-based predictive
dynamic analysis from Chapter 3. However, in lieu of lock based synchronization, scientific
programs tend to use barrier synchronization. A barrier partitions the program execution
into different phases and prevents a thread from advancing to the next phase before all
other threads have completed the phase. Due to this kind of synchronization, our phase I
analysis reports a large number of false warnings. In order to eliminate these false warnings,
we propose a modification to our analysis, called Barrier Aware May-Happen-in-Parallel
Analysis.

Barrier Aware May-Happen-in-Parallel Analysis

In order to hide communication latency in clusters, split phase barriers are provided in the
UPC language. Non-blocking collectives serve a similar purpose in other languages. A split
phase barrier in UPC is implemented by a pair of calls upc notify and upc wait. As long as
there are no data conflicts, threads can execute arbitrary code in between this pair of calls,
also called the local computation phase as opposed to the global computation phase which is
everywhere outside the pair of calls. In principle, only local work should be done in the local
computation phase for proper synchronization but this is not enforced.

We illustrate which phases of a program can execute concurrently, using a subset of the
happens-before relation � from Definition 3.5. In UPC, a thread cannot progress from a
upc wait call until notifications from all other threads arrive. Thus, the upc notify calls
of the other threads must happen before a matching wait on any thread. According to this
happens-before relation for split-phase barriers, a shared access a can happen concurrently
with an access from another thread in the region starting from the notify that matches
the first wait before a and ending at the wait matching the first notify after a. Figure
4.1 illustrates this scenario for two threads. The arrows denote the happens-before relation
induced by the barrier synchronization behavior, with the event pairs affecting the ordering
of the shared access indicated as solid arrows. The upper diagram shows the region of thread
T2 that can happen in parallel with a shared access of thread T1 between a wait and notify.
Following the split-phase barrier semantics, the shared access cannot happen before T2 has
notified waitA of T1, and similarly T2 cannot go beyond waitB before T1 executes notifyB.
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Figure 4.1: The regions of other threads concurrent with a shared access

The lower diagram shows that a shared access of T1 between a notify and wait can happen
in parallel with a larger region of T2.

Based on the happens-before relation of notify and wait statements, we derive a may-
happen-in-parallel relationship between program blocks and incorporate barrier awareness in
the race detection analysis. For our purposes, we only consider split-phase barriers, since a
single-phase barrier can be expressed as a consecutive notify and wait with no statements
in between.1

Definition 4.1 (May-happen-in-parallel: ||). Let each thread ti have a barrier phase counter
pi ∈ N. Initially, ∀i. pi = 0. After a thread executes each notify and wait, the phase counter
is increased by 1. Two phases p1 and p2 may happen in parallel, denoted as p1 || p2, if

p2 ∈
[
2
⌊p1

2

⌋
− 1, 2

⌊
p1 + 1

2

⌋
+ 1

]
.

The formula in Definition 4.1 unifies the fact that even phases (global computation) can
race with phases ±1 and odd phases (local computation) can race with phases ±2. Note that
p1 || p2 is a necessary condition for all statements in p1 to be concurrent with statements
in p2. We now extend the lockset algorithm with the barrier aware may-happen-in-parallel
analysis.

1This is how the Berkeley UPC Runtime defines single-phase barriers:
#define upc barrier (x) { upc notify(x); upc wait(x); }
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Algorithm 4.1: CheckBeforeUPCRace(e)

Initially: Acc = ∅, the set of all memory accesses in current execution,
∀t ∈ T. L(t) = ∅, the set of locks held by thread t, and ∀t ∈ T. bp(T ) = 0,
the barrier phases of threads.

Input: Event e the concurrent system is about to generate
1 switch e do
2 case MEM(t, s,m, a)
3 Acc := Acc ∪ (m, t, L(t), a, bp(t), s);
4 return {(s, s′) | ∃(m′, t′, l′, a′, p′, s′) ∈ Acc. m ∩m′ 6= ∅ ∧ t 6= t′

∧ L(t) ∩ l′ = ∅ ∧ (a = WRITE ∨ a′ = WRITE) ∧ bp(t) || p′};
5 case LOCK(t, s, l)
6 L(t) := L(t) ∪ l;
7 return ∅;

Definition 4.2 (Set of Barrier Aware Potential Data Race Pairs: D̄P,E). We extend the
memory access event in Definition 3.1 by adding a field for the barrier phase p of thread t:
e = (m, t, l, a, p, s). The set of potential data race pairs reported by our analysis is

D̄P,E = {(s1, s2) | ∃e1, e2 ∈ AP,E such that p1||p2 ∧
m1 ∩m2 6= ∅ ∧ t1 6= t2 ∧ l1 ∩ l2 = ∅ ∧

(a1 = WRITE ∨ a2 = WRITE)} .

The first phase of Active Testing executes the program once to build the set of possible
data races D̄P,E from the above definition. Each thread builds a trace of memory accesses
e = (m, t, l, a, p, s) with respect to the barrier phases and set of locks held at that program
point. Each thread maintains this trace for the portion of the global heap with local affinity.
For any global memory reference in T1, Phase I performs a query operation on the trace
of the thread responsible for maintaining state for that region, e.g. T2. If an outstanding
conflicting access is found on T2, the detection algorithm has identified a potential data race,
i.e. it has found a statement pair (s1, s2) in D̄P,E.

The functions CheckBeforeUPCRace (Algorithm 4.1) and CheckAfterUPCRace
(Algorithm 4.2) calculate D̄P,E online. They are called from Phase1Scheduler (Algorithm
3.2). As in the lockset-based race detection example from Chapter 3, we record memory ac-
cesses and check for conflicts with previous accesses (lines 2–4 of Algorithm 4.1) and maintain
lock (lines 5–6 of Algorithm 4.1 and lines 2–3 of Algorithm 4.2) and barrier phase (lines 4–7
of Algorithm 4.2) information. The abstract state returned by the functions is a statement
pair that may potentially race.
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Algorithm 4.2: CheckAfterUPCRace(e)

Initially: L and bp are shared with CheckBeforeUPCRace
Input: Event e the concurrent system has just generated

1 switch e do
2 case UNLOCK(t, s, l)
3 L(t) := L(t) \ l;
4 case BARRIER NOTIFY(t, s)
5 bp(T ) := bp(T ) + 1;
6 case BARRIER WAIT(t, s)
7 bp(T ) := bp(T ) + 1;

8 return ∅;

Phase II: Race Confirmation Phase

From Phase I, we get the set D̄P,E. For each statement pair in D̄P,E, there is a possibility that
it may be a false positive due to lack of application specific semantic information, e.g. usage
of custom synchronization operations. In the second phase of Active Testing, we re-execute
the program and actively control the thread schedule in an effort to confirm the real data
races. Specifically, for each statement pair (s1, s2) in D̄P,E, we try to create an execution
state where two threads are about to execute s1 and s2, respectively, and they are about
to access the same memory location, and at least one of the accesses is a write. Such an
execution is evidence that the data race over the statements s1 and s2 is a real race.

The two functions required by Algorithm 3.5 for confirmation of data races in UPC
are the same as CheckPartialLockset (Algorithm 3.6) and CheckFullLockset (Al-
gorithm 3.7). In the same manner of confirming lockset-based data races, CheckPar-
tialUPCRace pauses threads whenever they reach a statement in (s1, s2) and Check-
FullUPCRace confirms any real races between the thread selected to be executed and
any of the paused threads.

4.2 Deadlock detection

In this section, we present DeadlockFuzzer [49], which follows the active testing method-
ology to predict and confirm deadlocks. The DeadlockFuzzer algorithm also consists
of two phases. In the first phase, we execute a multi-threaded program and find potential
deadlocks that could happen in some execution of the program. This phase uses a modified
Goodlock [9] algorithm, called informative Goodlock, or simply iGoodlock, which identifies
potential deadlocks even if the observed execution does not deadlock. We call the modified
algorithm informative because we provide suitable debugging information to identify the
cause of the deadlock—this debugging information is used by the second phase to create real
deadlocks with high probability. A limitation of iGoodlock is that it can give false positives
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because it does not consider the happens-before relation between the transitions in an exe-
cution. As a result, the user is required to manually inspect such potential deadlocks. The
second phase removes this burden from the user. In this phase, a random thread scheduler is
biased to generate an execution that creates a real deadlock reported in the previous phase
with high probability. We next describe these two phases in more detail.

Phase I: Deadlock prediction

In this section, we present a formal description of iGoodlock. The algorithm observes the
execution of a multi-threaded program and computes a lock dependency relation (defined
below) and uses a transitive closure of this relation to compute potential deadlock cycles.
The algorithm improves over generalized Goodlock algorithms [9, 3] in two ways. First, it
adds contextual information to a computed potential deadlock cycle. This information helps
to identify the program locations where the deadlock could happen and also to statically
identify the lock and thread objects involved in the deadlock cycle. Second, we simplify the
generalized Goodlock algorithm by avoiding the construction of a lock graph, where locks
form the vertices and a labeled edge is added from one lock to another lock if a thread
acquires the latter lock while holding the former lock in some program state. Unlike existing
Goodlock algorithms, iGoodlock does not perform a depth-first search, but computes the
transitive closure of the lock dependency relation.

Given a multi-threaded execution σ, let Lσ be the set of locks that were held by any
thread in the execution and Tσ be the set of threads in the execution. Let C be the set of
all statement labels in the multi-threaded program. We define the lock dependency relation
of a multi-threaded execution as follows.

Definition 4.3 (Lock dependency relation). Given an execution σ, a lock dependency rela-
tion Dσ of σ is a subset of Tσ × 2Lσ ×Lσ ×C∗ such that (t, L, l, C) ∈ Dσ iff in the execution
σ, in some state, thread t acquires lock l while holding the locks in the set L, and C is the
sequence of labels of LOCK statements that were executed by t to acquire the locks in L∪ {l}.

Definition 4.4 (Lock dependency chain). Given a lock dependency relation D, a lock de-
pendency chain
τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉 is a sequence in D∗ such that the following proper-
ties hold.

1. for all distinct i, j ∈ [1,m], ti 6= tj, i.e. the threads t1, t2, . . . , tm are all distinct objects,

2. for all distinct i, j ∈ [1,m], li 6= lj, i.e. the lock objects l1, l2, . . . , lm are distinct,

3. for all i ∈ [1,m− 1], li ∈ Li+1, i.e. each thread could potentially wait to acquire a lock
that is held by the next thread,

4. for all distinct i, j ∈ [1,m], Li ∩ Lj = ∅, i.e. each thread ti should be able to acquire
the locks in Li without waiting.
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Definition 4.5 (Potential deadlock cycle). A lock dependency chain

τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉

is a potential deadlock cycle if lm ∈ L1.

Note that the definition of a potential deadlock cycle never uses any of the Ci’s in Dσ to
compute a potential deadlock cycle. Each Ci of a potential deadlock cycle provides us with
information about program locations where the locks involved in the cycle were acquired.
This is useful for debugging and is also used by the confirmation phase to determine the
program locations where it needs to pause a thread.

The iGoodlock algorithm is language independent and can be adapted to most multi-
threaded programming languages without modification. For simpler exposition, we describe
it in terms of the Java language. Java is an object-oriented language where everything is an
object2, including locks and threads. Each lock and thread object involved in a potential
deadlock cycle is identified by its unique ID, which is typically the address of the object.
The unique ID of an object, being based on dynamic information, can change from execution
to execution. Therefore, the unique ID of an object cannot be used by Phase II of Active
Testing to identify a thread or a lock object across executions. In order to overcome this
limitation, we compute an abstraction of each object. An abstraction of an object identifies
an object by static program information. For example, the label of a statement at which an
object is created could be used as its abstraction. Such an abstraction of an object does not
change across executions. However, multiple objects could map to the same abstraction. We
describe two object abstraction computation techniques that are more precise in Section 5.2.
In this section, we assume that abs(o) returns some abstraction of the object o. In Java,
locks are re-entrant, i.e., a thread may re-acquire a lock it already holds. In our algorithms,
we ignore a transition LOCK(t, s, l) if t re-acquires a lock l.3

Given a potential deadlock cycle 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉, iGood-
lock reports the abstract deadlock cycle 〈(abs(t1), abs(L1), abs(l1), C1), . . . ,
(abs(tm), abs(Lm), abs(lm), Cm)〉. The confirmation phase takes such an abstract deadlock
cycle and tries to create a real deadlock corresponding to the cycle with high probability.

iGoodlock is a combination of an online and offline analysis. We next describe how we
compute the lock dependency relation during a multi-threaded execution (online) and how
we compute all potential deadlock cycles given a lock dependency relation (offline).

Computing the lock dependency relation of a multi-threaded execution

With CheckBeforeDeadlock (Algorithm 4.3), we can compute the lock dependency
relation during an execution using the general Phase I Scheduler (Algorithm 3.2). For

2except primitive data such as ints and doubles
3This is implemented by associating a usage counter with a lock which is incremented whenever a thread

acquires or re-acquires the lock and decremented whenever a thread releases the lock. A LOCK(l) is considered
whenever the thread t acquires or re-acquires the lock l and the usage counter associated with l is incremented
from 0 to 1.
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Algorithm 4.3: CheckBeforeDeadlock(e)

Initially: ∀t. Lockset(t) = 〈·〉, a map from each thread to the stack of locks it holds;
∀t. Context(t) = 〈·〉, a map from each thread to the stack of labels of
statements where the it acquired the currently held locks.

Input: Event e the concurrent system is about to generate
Output: A lock dependency relation

1 ret := ∅;
2 switch e do
3 case LOCK(t, s, l)
4 Context(t) := push(Context(t), s);
5 ret := 〈t, Lockset(t), l, Context(t)〉;
6 Lockset(t) := push(Lockset(t), l);

7 case UNLOCK(t, s, l)
8 Context(t) := pop(Context(t));
9 Lockset(t) := pop(Lockset(t));

10 return ret;

each thread, we maintain two stacks that keep track of the locks held by a thread and the
statement labels (program counter) where each lock was acquired. As seen in the algorithm,
maintaining these stacks to compute the lock dependency relation is quite simple. At the end
of execution, we obtain the full lock dependency relation D observed during that execution.
This relation is passed to the iGoodlock algorithm for offline processing.

Note that in Algorithms 4.3, 4.5, and 4.6, we use a general stack data structure. We
define a stack below in a pure-functional style.

Definition 4.6 (Stack). A stack is an ordered collection of elements. An empty stack is
denoted as 〈·〉. The contents of a stack is enumerated within angled brackets, starting with
the top-most element. For example, S = 〈a, b, c〉, denotes a stack S with a as its top-most
element and c the bottom-most. A stack supports the following operations:

• push(S, i) → S ′: Returns the stack S ′ with the item i pushed onto the top of stack
S. For example, push(〈a, b, c〉, d) returns 〈d, a, b, c〉. push(S, i) is also abbreviated as
i :: S.

• pop(S)→ S ′: Returns the stack S ′ with the top-most element popped off the stack S.
For example, pop(〈a, b, c〉) returns 〈b, c〉.

• top(S)→ i: Returns the top-most element of the stack S. For example, top(〈a, b, c〉)
returns a.
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Algorithm 4.4: iGoodlock(D)

Input: lock dependency relation D
Output: potential deadlock cycles

1 i := 1;
2 Di := D;
3 while Di 6= ∅ do
4 for each (t, L, l, C) ∈ D and each τ in Di do
5 if τ, (t, L, l, C) is a dependency chain by Definition 4.4 then
6 if τ, (t, L, l, C) is a potential deadlock cycle by Definition 4.5 then
7 report abs(τ, (t, L, l, C)) as a potential deadlock cycle;
8 else
9 add τ, (t, L, l, C) to Di+1;

10 i := i+ 1;

Computing potential deadlock cycles iteratively

Let Dk denote the set of all lock dependency chains of D that has length k. By defi-
nition, D1 = D. iGoodlock computes potential deadlock cycles by iteratively computing
D2, D3, D4, . . . and finding deadlock cycles in those sets. The iterative algorithm for com-
puting potential deadlock cycles is described in iGoodlock (Algorithm 4.4).

Note that in iGoodlock we do not add a lock dependency chain to Di+1 if it is a
deadlock cycle (lines 6–9). This ensures that we do not report complex deadlock cycles, i.e.
deadlock cycles that can be decomposed into simpler cycles.

In iGoodlock, a deadlock cycle of length k gets reported k times. For example, if

〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉

is reported as a deadlock cycle, then

〈(t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm), (t1, L1, l1, C1)〉

is also reported as a cycle. In order to avoid such duplicates, we put another constraint
in Definition 4.4: the unique ID of thread t1 must be less than the unique ID of threads
t2, . . . , tm.

Phase II: Deadlock confirmation

In the second phase of DeadlockFuzzer, it can execute a multi-threaded program using
a random scheduler such as Algorithm 3.1. Starting from the initial state, it randomly picks
an enabled thread and executes its next statement. When the system reaches a state that
has no enabled threads, it checks if any of the threads are still alive. If so, it reports a
system stall. A stall could happen due to a resource deadlock (i.e. deadlocks that happen
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Algorithm 4.5: CheckPartialDeadlock(e, Cycle)

Input: Event e and the Cycle to confirm
Initially: ∀t. Lockset(t) = 〈·〉 and ∀t. Context(t) = 〈·〉 as defined in Algorithm 4.3.

1 switch e do
2 case LOCK(t, s, l)
3 Lockset(t) := push(Lockset(t), l);
4 Context(t) := push(Context(t), s);
5 return 〈abs(t), abs(Lockset(t)), abs(Context(t))〉 ∈ Cycle;
6 case UNLOCK(t, s, l)
7 Lockset(t) := pop(Lockset(t));
8 Context(t) := pop(Context(t));

9 return false;

Algorithm 4.6: CheckFullDeadlock(e, Paused, Cycle)

Input: Event e, the current set of Paused threads, and the Cycle to confirm
Initially: Lockset and Context are shared with CheckPartialDeadlock

1 n := |Cycle|;
2 tn := e.t;
3 return ∃t1, . . . , tn−1 ∈ Paused. top(Lockset(t)) ∈ pop(Lockset(t1)) ∧
∀i ∈ [1, n− 1]. top(Lockset(ti)) ∈ pop(Lockset(ti+1)) ;

due to locks) or a communication deadlock (i.e. a deadlock that happens when each thread
is waiting for a signal from some other thread in the set). DeadlockFuzzer only considers
resource deadlocks.

A key limitation of this approach is that it may not create real deadlocks very often.
Following the Active Testing template, we implement functions CheckPartialDeadlock
(Algorithm 4.5) and CheckFullDeadlock (Algorithm 4.6) enabling DeadlockFuzzer
to bias the random scheduler so that potential deadlock cycles reported by iGoodlock are
created with high probability.

The abstract state passed to these functions is the potential deadlock cycle that we wish
to confirm. The maps Lockset and Context are as defined in CheckBeforeDeadlock
(Algorithm 4.3) and shared between the two functions. The Phase II scheduler executes
the multi-threaded program like the simple random scheduler, except that it performs some
extra work when it encounters a lock acquire or lock release statement. If a thread t is
about to acquire a lock l in the context C, then if (abs(t), abs(l), C) is present in Cycle, the
scheduler pauses thread t before t acquires lock l, giving a chance for another thread, which
is involved in the potential deadlock cycle, to acquire lock l subsequently. This ensures that
the system creates the potential deadlock cycle Cycle with high probability.
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During the confirmation phase of DeadlockFuzzer, it maintains three data structures:
Lockset that maps each thread to a stack of locks that are currently held by the thread,
Context that maps each thread to a stack of statement labels where the thread has acquired
the currently held locks, and Paused which is a set of threads that has been paused by
DeadlockFuzzer. Paused is initialized to an empty set, and Lockset and Context are
initialized to map each thread to an empty stack.

DeadlockFuzzer runs in a loop until there is no enabled thread. At termination,
DeadlockFuzzer reports a system stall if there is at least one active thread in the ex-
ecution. Note that DeadlockFuzzer only catches resource deadlocks. In each iteration
of the loop, DeadlockFuzzer picks a random thread t that is enabled but not in the
Paused set. If the next statement to be executed by t is not a lock acquire or release, t
executes the statement and updates the state as in the simple random scheduling algorithm
(see Algorithm 3.1). If the next event to be generated by t is LOCK(t, s, l), s and l are pushed
to Context(t) and Lockset(t), respectively. DeadlockFuzzer determines if t needs to be
paused in order to get into a deadlock state in CheckPartialDeadlock (Algorithm 4.5.
Specifically, it checks if (abs(t), abs(Lockset(t)), Context(t) is present in Cycle. Only if t
can be part of a deadlock cycle, DeadlockFuzzer checks if the acquire of l by t could lead
to a deadlock using CheckFullDeadlock in Algorithm 4.6. CheckFullDeadlock
goes over the current lock set of each paused thread and sees if it can find a cycle. If a cycle
is discovered, then DeadlockFuzzer has created a real deadlock. If there is no cycle, then
t is added to Paused. If the next event to be generated by t is UNLOCK(t, s, l), then we pop
from both Lockset(t) and Context(t).

At the end of each iteration, it may happen that the set Paused is equal to the set of
all enabled threads. This results in a state where DeadlockFuzzer has unfortunately
paused all the enabled threads and the system cannot make any progress. We call this
thrashing. DeadlockFuzzer handles this situation by removing a random thread from the
set Paused. A thrash implies that DeadlockFuzzer has paused a thread in an unsuitable
state. DeadlockFuzzer should avoid thrashing as much as possible in order to guarantee
better performance and improve the probability of detecting real deadlocks. Sections 5.2
and 5.3 present techniques to reduce thrashing.

4.3 Atomicity violation detection

In this section, we describe AtomFuzzer, which tries to create atomicity violations in
executions on-the-fly. It follows the Active Testing template, but is different from others in
that it does not have a prediction phase: only Phase II is required to find and confirm real
atomicity violations. We use a robust notion of atomicity, called causal atomicity, introduced
by Farzan et al. [27].

Definition 4.7 (Causal Atomicity). A block of code B of a thread is causally atomic if there
is no execution where a transition of another thread happens-after the beginning of B and
happens-before another transition that is within the same block B.
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The definition of causal atomicity implies that an atomicity violation occurs in an exe-
cution if there are three transitions t1, t2, and t3 such that

1. t1 and t3 are transitions of the same thread and are within the same atomic block,

2. t2 is a transition of another thread, and

3. t1 happens-before t2 and t2 happens before t3.

The goal of AtomFuzzer is to create such atomicity violations.

The randomized active atomicity violation detection algorithm

We are interested in detecting a special class of causal atomicity violations where the tran-
sitions t1, t2, and t3 involved in the violation are acquires of the same lock l. There are
three reasons for focusing on this particular pattern. First, our experiments demonstrate
that this is a very common atomicity violation pattern and real-world programs often show
this buggy pattern. Second, since we focus on lock acquires only, the runtime overhead of
AtomFuzzer is pretty low compared to other tools. Third, we believe that this pattern
does not capture some other common situations where t1, t2, and t3 are accesses to the same
memory location. However, we argue that a data race over the memory location implies the
remaining patterns and can be detected by a race detector. Assume that t1, t2, and t3 are
accesses to the same memory location m. If these accesses are not in data race, then each
of these accesses is surrounded by a common lock, say l. Let t′1, t

′
2, and t′3 be transitions

denoting the acquire of the lock l before the transitions t1, t2, and t3, respectively. The tran-
sitions t′1, t

′
2, and t′3 then form the above mentioned atomicity violation pattern. Therefore,

if there is no race among the transitions t1, t2, and t3, then the resulting atomicity violation
pattern is the same as the pattern we are interested in.

In AtomFuzzer, we consider the ATOMIC ENTER(t, s) and ATOMIC EXIT(t, s) events gen-
erated by the concurrent system. Normally, we will assume that the ATOMIC ENTER(·) and
ATOMIC EXIT(·) transitions will be introduced by programmers to annotate the entry and
exit of atomic blocks in a concurrent system. Also, we consider locks to be re-entrant, as in
Section 4.2.

AtomFuzzer looks for the atomicity violation pattern described above while running
the Phase II scheduler (Algorithm 3.5) with the functions CheckPartialAtomViol (Al-
gorithm 4.7) and CheckFullAtomViol (Algorithm 4.8). In particular, whenever Atom-
Fuzzer finds that a thread t is inside an atomic block and is about to acquire a lock l
that has been previously acquired and released inside the same atomic block, AtomFuzzer
issues an atomicity violation warning (Line 10 in Algorithm 4.7). Such a warning would be
given by any other static or dynamic atomicity checking tool. However, such a warning can
be spurious unless one can show that some other thread can acquire and release the same
lock l immediately before the thread t acquires the lock. AtomFuzzer tries to create this
scenario by changing the default scheduler behavior. Specifically, AtomFuzzer pauses the
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Algorithm 4.7: CheckPartialAtomViol(e, Abs)

Input: Event e and the abstract state Abs to confirm
1 (AlreadyAcquired, InsideAtomic) := Abs;
2 switch e do
3 case ATOMIC ENTER(t, s)
4 InsideAtomic := InsideAtomic ∪ t ;
5 case ATOMIC EXIT(t, s)
6 InsideAtomic := InsideAtomic \ t ;
7 AlreadyAcquired := AlreadyAcquired \ {(t′, l) : t′ = t};
8 case LOCK(t, s, l)
9 if t ∈ InsideAtomic then

10 if (t, l) ∈ AlreadyAcquired then
11 print “Warning: atomicity violation possible at ”, s;
12 return true;

13 else
14 AlreadyAcquired := AlreadyAcquired ∪ (t, l);

15 if ∃t′. (t′, l) ∈ AlreadyAcquired then
16 return true;

17 return false;

Algorithm 4.8: CheckFullAtomViol(e, Paused,Abs)

Input: Event e, the current set of Paused threads, and the abstract state Abs to
confirm

1 (AlreadyAcquired, InsideAtomic) := Abs;
2 switch e do
3 case LOCK(t, s, l)
4 return ∃t′ ∈ Paused. Event(t′) = LOCK(t′, s′, l′) ∧ l′ = l;

execution of the thread t just before it acquires the lock l and allows the other threads to
execute. If at any point in the execution, AtomFuzzer discovers that some other thread
has acquired the lock l, then AtomFuzzer flags an atomicity violation error because it has
created a scenario showing an atomicity violation.

The algorithm can produce three kinds of outputs:

1. Warnings: These are potential atomicity violations. Existing tools, such as Atomizer,
already produce these warnings. We do not show these warnings to the user and we
only use them for experimental evaluation.

2. Errors: These are real atomicity violations, i.e. AtomFuzzer has actually created
an execution showing the violations. Sometimes atomicity violations may not result
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in bugs because they are benign. Moreover, if we are using the heuristic that all
synchronized public methods are atomic blocks, then an atomicity violation may not
result in a bug because the heuristic may not match the user intention.

3. Bugs/Exceptions: These are uncaught exceptions or program crashes that result
due to real atomicity violations. If we are using the heuristic, then they indicate that
the found atomicity violation is a real bug.

In the algorithm we maintain three sets: Paused to maintain information about the
threads that we have paused in an effort to create an atomicity violation, InsideAtomic
to keep track of threads that are already inside an atomic block, and AlreadyAcquired to
keep track of locks that a thread has already acquired and released while inside its current
atomic block. These sets are initially empty. Since AtomFuzzer does not have a predictive
phase reporting potential buggy states, we consider the pair of sets AlreadyAcquired and
InsideAtomic as the abstract state we wish to confirm.

At every state AtomFuzzer picks a random enabled thread t, such that the thread has
not been paused for the purpose of creating an atomicity violations. If a thread t executes
ATOMIC ENTER(t, s) (see line 3 in Algorithm 4.7), then we add t to the set InsideAtomic to
record the fact that the thread is now inside an atomic block. Similarly, if a thread t executes
ATOMIC EXIT(t, s) (see line 5 in Algorithm 4.7), then we remove t from the set InsideAtomic
to indicate the fact that the thread is no longer inside an atomic block. We also clear all
entries corresponding to the thread t in the set AlreadyAcquired.

The key component of the AtomFuzzer algorithm kicks in if the randomly picked
transition is LOCK(t, s, l) of thread t. There are two ways a thread is part of an atomicity
violation. First, is to be the thread that is inside of an atomic block that acquires, releases,
and then re-acquires the same lock, but have another thread violate atomicity by acquiring
the lock between the release and acquire of the lock. This is the case that is handled in line 10
of Algorithm 4.7. Whenever a thread is about to reacquire a lock inside an atomic block,
we issue a warning that an atomicity violation could happen, following Lipton’s reduction
algorithm [58], and pause the thread to wait for another thread to possibly acquire the lock.

The other case is for the atomicity-violating thread to acquire a lock that has been
released inside an atomic block and about to be acquired again. This case is handled in line 15
of Algorithm 4.7. Whenever a thread could possibly participate in an atomicity violating
situation, we check if the lock acquire is an actual atomicity violation in Algorithm 4.8.
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Chapter 5

Implementation for Multi-threaded
Programs

In this chapter, we describe an extensible tool for Active Testing of concurrent Java pro-
grams, called CalFuzzer. CalFuzzer provides a framework for implementing various
predictive dynamic analyses to obtain a set of abstract program states involved in a poten-
tial concurrency bug. We have implemented three such techniques in CalFuzzer: a hybrid
race detector [72], the Atomizer algorithm [31] for finding potential atomicity violations,
and iGoodlock [49] which is a more informative variant of the Goodlock algorithm [40] for
detecting potential deadlocks. More generally, CalFuzzer provides an interface and utility
classes to enable users to implement additional such techniques.

CalFuzzer also provides a framework for implementing custom schedulers for Active
Testing. We call these custom schedulers active checkers. We have implemented three active
checkers in CalFuzzer for detecting real data races, atomicity violations, and deadlocks.
More generally, CalFuzzer allows users to specify an arbitrary set of program statements
in the concurrent program under test where an active checker should pause. Such statements
may be thought of as concurrent breakpoints [75].

We have applied CalFuzzer to several real-world multi-threaded Java programs com-
prising a total of 600K lines of code and have detected both previously known and unknown
data races, atomicity violations, and deadlocks. CalFuzzer could also be extended to de-
tect other kinds of concurrency bugs, such as missed notifications and atomic set violations.

5.1 CalFuzzer

We have implemented the CalFuzzer [47] Active Testing framework for Java. CalFuzzer
(available at http://srl.cs.berkeley.edu/~ksen/calfuzzer/) instruments Java byte-
code using the SOOT compiler framework [96] to insert callback functions before or after
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various synchronization operations and shared memory accesses.1 These callback functions
are used to implement various predictive dynamic analyses and active checkers. Each pre-
dictive dynamic analysis implements an interface called Analysis. The methods of these
interface implement the CheckBeforeX and CheckAfterX functions in Algorithm 3.2.
Likewise, each active checker is implemented by extending a class called ActiveChecker

which implements the CheckPartialX and CheckFullX functions in Algorithm 3.5.
The methods of these two classes are called by the callback functions.

The framework provides various utility classes, such as VectorClockTracker and
LocksetTracker to compute vector clocks and locksets at runtime. Methods of these classes
are invoked in the various callback functions described above. These utility classes are used
in the hybrid race detection [72] and iGoodlock [49] algorithms; other user defined dynamic
analyses could also use these classes.

The instrumenter of CalFuzzer modifies all bytecode associated with a Java program
including the libraries it uses, except for the classes that are used to implement CalFuzzer.
This is because CalFuzzer runs in the same memory space as the program under analysis.
CalFuzzer cannot track lock acquires and releases by native code and can therefore go
into a deadlock if there are synchronization operations inside uninstrumented classes or
native code. To avoid such scenarios, CalFuzzer runs a low-priority monitor thread that
periodically polls to check if there is any deadlock. If the monitor discovers a deadlock, then
it removes one random transition from the paused set.

CalFuzzer can also go into livelocks. Livelocks happen when all threads of the program
end up in the paused set, except for one thread that does something in a loop without
synchronizing with other threads. We observed such livelocks in a couple of our benchmarks
including moldyn. In the presence of livelocks, these benchmarks work correctly because the
correctness of these benchmarks assumes that the underlying Java thread scheduler is fair.
In order to avoid livelocks, CalFuzzer creates a monitor thread that periodically removes
those transitions from the paused set that are waiting for a long time.

5.2 Computing object abstractions

A key requirement of active checkers is that it should know where a thread needs to be paused.
For example, DeadlockFuzzer needs to know if a thread t that is trying to acquire a lock
l in a context C could lead to a deadlock. DeadlockFuzzer gets this information from
iGoodlock, but this requires us to identify the lock and thread objects that are the “same”
in the iGoodlock and DeadlockFuzzer executions. This kind of correlation cannot be
done using the address (i.e., the unique ID) of an object because object addresses change
across executions. Therefore, we propose to use object abstraction—if two objects are the

1We decided to instrument bytecode instead of changing the Java virtual machine or instrumenting Java
source code because Java bytecode changes less frequently than JVM and Java source may not be available
for libraries.
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same across executions, then they have the same abstraction. We assume abs(o) computes
the abstraction of an object.

There could be several ways to compute the abstraction of an object. One could use the
label of the statement that allocated the object (i.e. the allocation site) as its abstraction.
However, that would be too coarse-grained to distinctly identify many objects. For example,
if one uses the factory pattern to allocate all thread objects, then all of the threads will have
the same abstraction. Therefore, we need more contextual information about an allocation
site to identify objects at finer granularity.

If we use a coarse-grained abstraction, then active checkers will pause unnecessary threads
before events such as acquiring some unnecessary locks. This is because all these unnecessary
threads and unnecessary locks might have the same abstraction as the relevant thread and
lock, respectively. This will in turn reduce the effectiveness of an active checker, as it will
more often remove a thread from the Paused set due to the unavailability of any enabled
thread. We call this situation thrashing. Our experiments with DeadlockFuzzer show
that if we use the trivial abstraction, where all objects have the same abstraction, then we
get a lot of thrashing. This in turn reduces the probability of creating a real deadlock. On
the other hand, if we consider too fine-grained abstractions for objects, then we will not be
able to tolerate minor differences between two executions, causing threads to pause at fewer
locations and miss deadlocks. We next describe two abstraction techniques for objects that
we have found effective in our experiments. Note that good object abstractions can help
other checkers in the CalFuzzer framework reproduce bugs.

To obtain more knowledge of the context in which objects are created, we consider the
following three internal events that are irrelevant to concurrency.

• CALL(t, s,m): Thread t at statement labeled s (same for all other events below), called
method m.

• RETURN(t, s,m): Thread t return from method m.

• NEW(t, s, o, T, o′): Thread t created a new object o of dynamic type T inside the body
of a method whose this argument evaluates to o′.

Abstraction based on k-object-sensitivity

Given a multi-threaded execution and k > 0, let o1, . . . ok be the sequence of objects such
that for all i ∈ [1, k − 1], oi is allocated by some method of object oi+1. We define absOk (o1)
as the sequence 〈s1, . . . , sk〉 where si is the label of the statement that allocated oi. abs

O
k (o1)

can then be used as an abstraction of o1. We call this abstraction based on k-object-sensitivity
because of the similarity to k-object-sensitive static analysis [63].

In order to compute absOk (o) for each object o during a multi-threaded execution, we
instrument the program to maintain a map CreationMap that maps each object o to a pair
(o′, s) if o is created by a method of object o′ at the statement labeled s. This gives the
following straightforward runtime algorithm for computing CreationMap.
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1 main ( ) {
2 for ( int i =0; i <5; i++)
3 foo ( ) ;
4 }
5 void f oo ( ) {
6 bar ( ) ;
7 bar ( ) ;
8 }
9 void bar ( ) {

10 for ( int i =0; i <3; i++)
11 Object l = new Object ( ) ;
12 }

Program 5.1: Example code that creates objects inside a loop

• At the event NEW(t, s, o, T, o′), add o 7→ (o′, s) to CreationMap.

One can use CreationMap to compute absOk (o) using the following recursive definition:

absOk (o) = 〈〉 if k = 0 or CreationMap[o] = ⊥
absOk+1(o) = s :: absOk (o′) if CreationMap[o] = (o′, s)

When an object is allocated inside a static method, it will not have a mapping in CreationMap.
Consequently, absOk (o) may have fewer than k elements.

Abstraction based on light-weight execution indexing

Given a multi-threaded execution, a k > 0, and an object o, let mn,mn−1, . . . ,m1 be the
call stack when o is created, i.e. o is created inside method m1 and for all i ∈ [1, n− 1], mi

is called from method mi+1. Let us also assume that si+1 is the label of the statement at
which mi+1 invokes mi and qi+1 is the number of times mi is invoked by mi+1 in the context
mn,mn−1, . . . ,mi+1. Then absIk(o) is defined as the sequence [s1, q1, s2, q2, . . . , sk, qk], where
s1 is the label of the statement at which o is created and q1 is the number of times the
statement is executed in the context mn,mn−1, . . . ,m1.

For example in Program 5.1, if o is the first object created by the execution of main,
then absI3(o) is the sequence [11, 1, 6, 1, 3, 1]. Similarly, if p is the last object created by the
execution of main, then absI3(p) is the sequence [11, 3, 7, 1, 3, 5]. The idea of computing this
kind of abstraction is similar to the idea of execution indexing proposed in [104], except
that we ignore branch statements and loops. This makes our indexing light-weight, but less
precise.
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In order to compute absIk(o) for each object o during a multi-threaded execution, we
instrument the program to maintain a thread-local scalar d to track its depths and two
thread-local maps CallStack and Counters. We use CallStackt to denote the CallStack

map of thread t. The above data structures are updated at runtime as follows.

• Initialization:

– for all t, dt ⇐ 0

– for all t and s, Counterst[dt][s]⇐ 0

• At event CALL(t, s,m)

– Counterst[dt][s]⇐ Counterst[dt][s] + 1

– push s to CallStackt

– push Counterst[dt][s] to CallStackt

– dt ⇐ dt + 1

– for all c, Counterst[dt][s]⇐ 0

• At event RETURN(t, s,m)

– dt ⇐ dt − 1

– pop twice from CallStackt

• At event NEW(t, s, o, T, o′)

– Counterst[dt][s]⇐ Counterst[dt][s] + 1

– push s to CallStackt

– push Counterst[dt][s] to CallStackt

– absIk(o) is the top 2k elements of CallStackt

– pop twice from CallStackt

Note that absIk(o) has 2k elements, but if the call stack has fewer elements, then absIk(o)
returns the full call stack.

Chapter 6.4 shows our evaluation on the effectiveness of these two object abstraction
strategies for DeadlockFuzzer. We also compare against ignoring the abstractions and
contextual information altogether to show the usefulness of good object abstraction for lower
overhead and better probability of reproducing deadlocks.
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1: Thread 1 8: Thread 2

2: synchronized(l1) { 9: synchronized(l1) {
3: synchronized(l2) { 10:

4: } 11: }
5: } 12: synchronized(l2) {

13: synchronized(l1) {
14: }
15: }

Program 5.2: An example program that may thrash often during reproduction

5.3 Yielding to avoid thrashing in reproducing

deadlocks

Object abstractions is one way to help reduce thrashing; this in turn helps increase the
probability of reproducing a concurrency bug. We show another potential reason for a lot of
thrashings using an example and propose a solution to partly avoid such thrashings.

iGoodlock reports a potential deadlock cycle in Program 5.2. In the active random
deadlock checking phase, if Thread 1 is paused first (at line 3) and if Thread 2 has just
started, then Thread 2 will get blocked at line 9 because Thread 1 is holding the lock l1

and it has been paused and Thread 2 cannot acquire the lock. Since we have one paused and
one blocked thread, we get a thrashing. DeadlockFuzzer will un-pause Thread 1 and we
will miss the real deadlock. This is a common form of thrashing that we have observed in
our benchmarks.

In order to reduce the above pattern of thrashing, we make a thread yield to other threads
before it starts entering a deadlock cycle. Formally, if (abs(t), abs(l), C) is a component of
a potential deadlock cycle, then DeadlockFuzzer will make any thread t′ with abs(t) =
abs(t′) yield before a statement labeled c where c is the bottom-most element in the stack
C. For example, in the above code, DeadlockFuzzer will make Thread 1 yield before it
tries to acquire lock l1 at line 2. This will enable Thread 2 to make progress (i.e. acquire
and release l1 at lines 9 and 11, respectively). Thread 2 will then yield to any other thread
before acquiring lock l2 at line 12.

We show in our evaluations (see Chapter 6.4) that this optimization is useful in some
cases to increase the probability of reproducing deadlocks.
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Chapter 6

Evaluation of Active Testing for
Multi-threaded Programs

In this chapter, we discuss the results of running our Active Testing tool for Java on several
benchmarks. We summarize the overheads and bugs reported from the various analyses and
checkers in the CalFuzzer framework running on real-world concurrent Java programs and
libraries totaling over 600K lines of code. We discuss some of the deadlocks (Section 6.2) and
atomicity violations (Section 6.3) reported from our tool in more detail and present evidence
to support the decision of using the lightweight indexing abstraction in Section 6.4.

6.1 Summary of results

We evaluated CalFuzzer on a variety of Java programs and libraries. The following pro-
grams were included in our benchmarks: moldyn, a molecular dynamics simulation bench-
mark from the Java Grande Forum; cache4j, a fast thread-safe implementation of a cache
for Java objects; sor, a successive over-relaxation benchmark, and hedc, a web-crawler ap-
plication, both from ETH [100]; jspider, a highly configurable and customizable Web Spider
engine; and jigsaw, W3C’s leading-edge Web server platform. We created a test harness
for jigsaw that concurrently generates simultaneous requests to the web server, simulating
multiple clients, and administrative commands (such as “shutdown server”) to exercise the
multi-threaded server in a highly concurrent situation.

The libraries we experimented on include Java Collections, Java logging facilities
(java.util.logging), and the Swing GUI framework (javax.swing). Another widely used
library included in our benchmarks is the Database Connection Pool (DBCP) and Collec-
tions components of the Apache Commons project. We created general test harnesses to use
these libraries with multiple threads.

Table 6.1 summarizes some of the results of running Active Testing on several real-world
concurrent Java programs comprising over a total of 600K lines of code. Further details are
available in [87, 74, 49]. Note that the bugs reported by the active checkers (RaceFuzzer,
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Avg. run time (s) Number of reported bugs
Benchmark LoC Norm RF DF AF HR RF K iG DF K Az AF K
moldyn 1,352 2.07 42.4 - - 5 2 0 0 - - - - -
Apache CFB1 3,370 0.139 - - 0.309 - - - - - - 1 1 0
cache4j 3,897 2.19 2.61 - 35 18 2 - - - - 1 1 0
Java Logging 4,248 0.166 - 0.493 - - - - 3 3 2 - - -
ArrayList 5,886 0.16 0.24 7.072 0.30 14 7 - 9 9 - 1 1 0
jspider 10,252 4.62 4.81 - 51 29 0 - 0 0 - 28 4 0
sor 17,718 0.163 0.23 - 1.0 8 0 0 0 0 - 0 0 0
hedc 25,024 0.99 1.11 - 1.8 9 1 1 0 0 - 3 0 1
DBCP 27,194 0.60 - 1.4 - - - - 2 2 2 - - -
weblech 35,175 0.81 1.36 - 17.01 27 2 1 - - - 25 0 0
jigsaw 160,388 - - - - 547 36 - 283 29 - 60 2 1
Java Swing 337,291 4.69 - 28.1 - - - - 1 1 1 - - -

Table 6.1: Average execution time and number of bugs reported for each checker implemented
with the CalFuzzer framework (LoC: Lines of Code, Norm: Uninstrumented code, RF:
RaceFuzzer, DF: DeadlockFuzzer, AF: AtomFuzzer, HR: Hybrid Race Detection, K: Pre-
viously known real bugs, iG: iGoodlock, Az: Atomizer). 1CFB: CircularFifoBuffer). 2DF
seems to perform poorly, but a different harness with a higher normal run time (2.86s) was
used.

AtomFuzzer, and DeadlockFuzzer) are real, whereas those reported by the dynamic analyses
(hybrid race detector, Atomizer, and iGoodlock) could be false warnings. Although Active
Testing may not be able reproduce some real bugs, all previously known real bugs were
reproduced, with the exception of AtomFuzzer (see [74] for a discussion on its limitations).

The run-time overhead of CalFuzzer is from 1.1x to 20x. Normally, the slowdown is
low since only the synchronization points and memory accesses of interest are instrumented.
However, in some cases the slowdown is significant—this is caused when CalFuzzer pauses
redundantly at an event. We use precise abstractions (see Section 5.2) to distinguish relevant
events, which lessens redundant pauses as shown in Section 6.4.

6.2 Deadlocks found

DeadlockFuzzer found a number of previously unknown and known deadlocks in our
benchmarks. Two previously unknown deadlocks were found in Jigsaw. One is shown in
Figure 2.3, when the http server shuts down. Another similar deadlock occurs when a
SocketClient kills an idle connection. It involves the same locks, but are acquired at
different program locations. iGoodlock provided precise debugging information to distinguish
between the two contexts of the lock acquires.

The deadlock in the Java Swing benchmark occurs when a program synchronizes on a
JFrame object, and invokes the setCaretPosition() method on a JTextArea object that is
a member of the JFrame object. The sequence of lock acquires that leads to the deadlock is
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as follows. The main thread obtains a lock on the JFrame object, and an EventQueue thread
which is also running, obtains a lock on a BasicTextUI$BasicCaret object at line number
1304 in javax/swing/text/DefaultCaret.java. The main thread then tries to obtain a lock
on the BasicTextUI$BasicCaret object at line number 1244 in javax/swing/text/Default-
Caret.java, but fails to do so since the lock has not been released by the EventQueue thread.
The EventQueue thread tries to acquire the lock on the JFrame object at line number 407 in
javax/swing/RepaintManager.java but cannot since it is still held by the main thread. The
program goes into a deadlock. This deadlock corresponds to a bug that has been reported
at http://bugs.sun.com/view bug.do?bug id=4839713.

One of the deadlocks that we found in the DBCP benchmark occurs when a thread
tries to create a PreparedStatement, and another thread simultaneously closes another
PreparedStatement. The sequence of lock acquires that exhibits this deadlock is as fol-
lows. The first thread obtains a lock on a Connection object at line number 185 in org/a-
pache/commons/dbcp/DelegatingConnection.java. The second thread obtains a lock on a
KeyedObjectPool object at line number 78 in org/apache/commons/dbcp/PoolablePrepared-
Statement.java. The first thread then tries to obtain a lock on the same KeyedObjectPool

object at line number 87 in org/apache/commons/dbcp/PoolingConnection.java, but cannot
obtain it since it is held by the second thread. The second thread tries to obtain a lock on
the Connection object at line number 106 in org/apache/commons/dbcp/PoolablePrepared-
Statement.java, but cannot acquire it since the lock has not yet been released by the first
thread. The program, thus, goes into a deadlock.

The deadlocks in the Java Collections Framework happen when multiple threads are
operating on shared collection objects wrapped with the synchronizedX classes. For ex-
ample, in the synchronizedList classes, the deadlock can happen if one thread executes
l1.addAll(l2) concurrently with another thread executing l2.retainAll(l1). There are
three methods, addAll(), removeAll(), and retainAll() that obtain locks on both l1 and
l2 for a total of 9 combinations of deadlock cycles. The test cases for Java Collections are
artificial in the sense that the deadlocks in those benchmarks arise due to inappropriate use
of the API methods. We used these benchmarks because they have been used by researchers
in previous work (e.g. Williams et al. [103] and Jula et al. [50]), and we wanted to validate
our tool against these benchmarks.

Since DeadlockFuzzer is unsound, if it does not classify a deadlock reported by iGood-
lock as a real deadlock, we cannot definitely say that the deadlock is a false warning. For
example, in the Jigsaw benchmark, the informative Goodlock algorithm reported 283 dead-
locks. Of these 29 were reported as real deadlocks by DeadlockFuzzer. We manually
looked into the rest of the deadlocks to see if they were false warnings by iGoodlock, or
real deadlocks that were not caught by DeadlockFuzzer. For 18 of the cycles reported,
we can say with a high confidence that they are false warnings reported by the iGoodlock
algorithm. These cycles involve locks that are acquired at the same program statements, but
by different threads. There is a single reason why all of these deadlocks are false positives.
The deadlocks can occur only if a CachedThread invokes its waitForRunner() method be-
fore that CachedThread has been started by another thread. This is clearly not possible in
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an actual execution of Jigsaw. Since iGoodlock does not take the happens-before relation
between lock acquires and releases into account, it reports these spurious deadlocks. For the
rest of the cycles reported by iGoodlock, we cannot say with reasonable confidence if they
are false warnings, or if they are real deadlocks that were missed by DeadlockFuzzer.

6.3 Atomicity violations found

Since we do not have atomicity annotations in our benchmark programs, we use the heuristic
that any code block that is synchronized is atomic in our experiments. The same assump-
tion has been made in the Atomizer tool [31]. A rationale behind this assumption is that
programmers often surround a code block with synchronized to achieve mutual exclusion,
i.e. to ensure that the data inside the code block is accessed without interference from other
threads. In other words, programmers often assume that a synchronized code block will be-
have atomically. Note that this assumption might give some false warnings if a synchronized
block need not be atomic in a program. However, this does not affect our general claim
that AtomFuzzer gives no false warnings—if the programmer properly annotates atomic
blocks, then we get no false warnings.

AtomFuzzer discovered several previously unknown atomicity violations in the JDK
1.4.2 synchronized classes LinkedList, ArrayList, HashSet, TreeSet, and LinkedHashSet.
All these violations lead to uncaught exceptions; therefore, these violations indicate real
bugs. Java provides wrappers to Collection classes to make them thread-safe in a concur-
rent program. For example, java.util.Collections.synchronizedSet(Set s) wraps a
java.util.Set object, so that operations on a set are protected by a mutex. AtomFuzzer
discovered real atomicity violations in the removeAll method.

For example, if we have two SynchronizedSets l1 and l2, and call l1.removeAll(l2)
then the following methods in Program 6.1 get called: Collections.removeAll calls
AbstractCollection.removeAll, which calls Collections.contains. The while loop in-
side AbstractCollection.removeAll should be atomic because any changes to l2 triggers
a ConcurrentModificationException. However, the statement c.contains() inside the
loop calls Collections.contains, which acquires and releases a lock at each iteration. This
allows an atomicity violation in Collections.removeAll.

The errors discovered in the Apache Commons Collections library are also due to
non-synchronized use of iterators. For example, the CircularFifoBuffer is a wrap-
per class for an circular buffer, which in turn extends from JDK AbstractCollection.
CircularFifoBuffer is a synchronized Buffer, which locks the underlying collection be-
fore each operation. However, the implementation of the underlying collection (an
AbstractCollection in this case) does not take synchronization into account, and uses
the iterator in an unsafe manner. This causes an atomicity violation error which results in
an exception.

Since AtomFuzzer is unsound, we cannot definitely say that an atomicity violation
warning is not an error if AtomFuzzer has not classified the warning as an error. Similarly,
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Collections.java:

public boolean removeAll(Collection coll) {
synchronized(mutex) {

return c.removeAll(coll);

}
}
public boolean contains(Object o) {

synchronized(mutex) {
return c.contains(o);

}
}

AbstractCollection.java:

public boolean removeAll(Collection c) {
boolean modified = false;

Iterator e = iterator();

while (e.hasNext()) {
if(c.contains(e.next())) {

e.remove();

modified = true;

}
}
return modified;

}

Program 6.1: Atomicity violation in Java Collections

we cannot definitely say that an atomicity violation error is not a bug if AtomFuzzer has
not classified the error as a bug. For example, in the case of jspider, AtomFuzzer
reports 28 warnings, 4 errors, and 0 bugs. We cannot definitely say that the remaining 24
warnings are not errors and that the 4 errors are not bugs. In order to better understand
the effectiveness of our technique, we manually analyzed the 28 warnings and 4 errors and
found that all the remaining warnings (i.e. the warnings that were not classified as errors by
AtomFuzzer) are not errors and all the reported errors are not bugs. The results of our
manual analysis show that AtomFuzzer is relatively complete for jspider; however, they
do not imply that AtomFuzzer is complete for all concurrent programs. We next give a
detailed description of the results of our manual analysis.

We found that there are two key reasons why some of the warnings are not errors. First,
we found that many times the main thread releases and acquires a lock while inside an atomic
block, but before creating any thread. Therefore, no other thread can interleave between the
release and acquire of the lock. However, Lipton’s reduction algorithm will give an atomicity
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public static void initialize() {
synchronized { // inferred as an atomic block

synchronized(L) {
// do something

}
synchronized(L) {

// do something

}
}

}

public static void main(String args[]) {
initialize();

(new SomeThread()).start();

}

Program 6.2: Initialization code causing spurious atomicity violation warnings

violation warning. A simplified code snippet that gives such atomicity violation warning is
shown in Program 6.2.

Second, we found that in some situations all atomic blocks that access a particular lock
(say L) are synchronized by a common lock (say L′.) In such situations, no other thread can
acquire and release the lock L while a thread is in an atomic block and is accessing the same
lock L. Therefore, a real atomicity violation cannot happen although Lipton’s reduction
algorithm will give an atomicity violation warning. A simplified code snippet that gives such
atomicity violation warning is shown in Program 6.3.

We observed that there are two reasons for getting atomicity errors that are not bugs.
First, we observed that our heuristic for identifying atomic blocks does not match the user
intention in some situations. For example, in jspider some of the run methods that are entry
method for threads are synchronized. Because of the heuristics we used, AtomFuzzer
treats them as atomic. However, it is unrealistic to assume that the entry method of a thread
is atomic because such an assumption would make the entire thread atomic. In some other
situations we found that a code block has been synchronized over a lock l because the thread
calls l.notify() or l.wait() inside the block. In such scenarios the block should not treated
as atomic because a call to l.wait() would naturally violate the atomicity assumption by
releasing the lock l. However, since our heuristic treats any synchronized block as atomic,
we get a false atomicity error report. We can remove these false error reports by modifying
our heuristic such that it does not treat such synchronized blocks as atomic.

AtomFuzzer reports some atomicity errors which we have found to be benign. An
example of such a benign error is shown in Program 6.4. Here any interleaving of calls to
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public void foo() {
synchronized(L’) { // inferred as an atomic block

synchronized(L) {
// do something

}
synchronized(L) {

// do something

}
}

}

Thread 1 Thread 2

foo(); foo();

Program 6.3: A common lock preventing atomicity violations

public static synchronized int getUniqueId() {
count++;

return count;

}

Thread 1 Thread 2

// atomic { getUniqueId();

getUniqueId(); ...

...

getUniqueId();

// } end atomic

Program 6.4: A benign atomicity violation
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getUniqueId() is correct because the semantics of getUniqueId() allows such interleavings.
We found such a benign atomicity violation error in cache4j.

6.4 Evaluation of object abstractions and yielding

We conducted additional experiments to evaluate the effectiveness of various design decisions
for DeadlockFuzzer. We tried variants of DeadlockFuzzer: 1) with abstraction based
on k-object-sensitivity, 2) with abstraction based on light-weight execution indexing, 3) with
the trivial abstraction (all objects map to the same abstract object), 4) without context
information, and 5) with the optimization in Section 5.3 turned off. Figure 6.1 summarizes
the results of our experiments. Note that the results in Table 6.1 correspond to variant
2, which uses the light-weight execution indexing abstraction, context information, and the
yielding optimization in Section 5.3. We found this variant to be the best performer: it
created deadlocks with higher probability than any other variant and it ran efficiently with
minimal number of thrashings.

Graph (a) shows the correlation between the variants of DeadlockFuzzer and average
run time. Graph (b) shows the probability of creating a deadlock by the variants. Graph (c)
shows the average number of thrashings encountered by each variant. Graph (d) shows the
correlation between the number of thrashings and the probability of creating a deadlock.

Graph (a) shows that variant 2, which uses execution indexing, performs better than
variant 1, which uses k-object-sensitivity. Graph (b) shows that the probability of creating
a deadlock is the highest for variant 2 on our benchmarks. The difference is significant
for the Logging and DBCP benchmarks. Ignoring abstraction entirely (i.e. variant 3) led
to many thrashings in Collections and decreased the probability of creating a deadlock.
Graph (c) on the Swing benchmark shows that variant 2 has the least amount of thrashing.
Ignoring context information increased the thrashing and the run time overhead for the Swing
benchmark. In the Swing benchmark, the same locks are acquired and released many times
at several different program locations during the execution. Hence, ignoring the context of
lock acquires and releases leads to a huge amount of thrashing.

Graph (a), which plots average run time for each variant, shows some anomaly. It shows
that variant 3 runs faster than variant 2 for Collections—this should not be true given
that variant 3 thrashes more than variant 2. We found that without the right debugging
information provided by iGoodlock, it is possible for DeadlockFuzzer to pause at wrong
locations but, by chance, introduce a real deadlock which is unrelated to the deadlock cycle it
was trying to reproduce. This causes the anomaly in graph (a) where the run-time overhead
for Collections is lower when abstractions are ignored, but the number of thrashings is larger.
The run time is measured as the time it takes from the start of the execution to either
normal termination or when a deadlock is found. DeadlockFuzzer with our light-weight
execution indexing abstraction faithfully reproduces the given cycle, which may happen
late in the execution. For more imprecise variants such as the one ignoring abstractions, a
different deadlock early in the execution may be reproduced, thus reducing the run time.
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Graph (d) shows that the probability of creating a deadlock goes down as the number
of thrashings increases. This validates our claim that thrashings are not good for creating
deadlocks with high probability. The second variant tries to reduce thrashings significantly
by considering context information and object abstraction based on execution indexing, and
by applying the yield optimization in Section 5.3.



57

Chapter 7

Implementation for Distributed
Memory Parallel Programs

Program analyses for multi-threaded programs do not work well when directly ported to
distributed memory systems. Distributed memory programs run at a much larger scale than
multi-threaded programs that run on a single node with one or two multi-core processors,
making a central monitoring thread unscalable. Also, because of the increased overhead
of communication over the network, transmitting analysis information among threads too
frequently will clog the network and decrease performance dramatically. Reasoning about
bulk memory transfers, instead of word-level accesses, are necessary as well.

We propose a general structure for scalable distributed analysis called the Communication
Avoiding Dynamic Analysis (CADA) framework. We divide an analysis into three modes
suitable for scalable distributed analysis. UPC-Thrille [76] is an Active Testing tool for
UPC, structured in the CADA framework. We discuss implementation details of data race
prediction and confirmation for distributed memory parallel programs. We extended UPC-
Thrille to handle hybrid memory models using two new techniques for scalability — persistent
alias locality heuristic and hierarchical sampling.

7.1 Communication Avoiding Dynamic Analysis

To address the challenges of writing an efficient and scalable dynamic analysis for large-scale
systems, we propose a Communication Avoiding Dynamic Analysis (CADA) framework.
We generalize two key properties of a scalable analysis: 1) an analysis should be distributed
in nature, without the need of a central thread and 2) communication between threads
should be minimized. Based on these properties, we derive the structure of an CADA and
some common optimizations that can be performed independent of a particular analysis for
communication avoidance.

The structure of a distributed analysis is crucial for its scalability. Unlike program
analyses for multi-threaded programs, a central analysis thread is prohibitive because of
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load imbalance and concentrated communication traffic. Thus, we need to distribute, as
evenly as possible, the computation and communication required in the analysis among the
threads in the distributed system to achieve scalability.

An analysis operates in three modes: a local information gathering mode where infor-
mation required for the analysis is gathered and stored in a local database, a global data
distribution mode where analysis data is bucketed and sent to the respective thread respon-
sible for each bucket, and a distributed computation mode where the actual analysis of data
happens. We show this general structure in Figure 7.1.

Local gathering mode

For large scale distributed systems, latency and bandwidth issues with communication among
threads become a big performance problem. An analysis for software on such platforms have
the same problems and need to follow best practices, such as communication avoidance, in
order to remain scalable.

The first thing we need to remove from a distributed analysis, coming from a program
analysis for multi-threaded programs, is a central monitoring thread that collects events from
all the threads in order to perform some analysis. Communication among threads cannot
be completely removed, because of the necessity for a global analysis. Thus, our efforts are
mainly put into minimizing communication as much as possible.

We take advantage of the fact that SPMD programs are broken up into multiple phases
by barriers. As seen in Figure 4.1, a shared access could only race with its neighboring
phases. Thus, a check for a conflict among accesses must be made by all the accesses within
a barrier phase, with all the neighboring barrier phases. Instead of checking for conflicts
at each access, the query for conflict checking can be made at a synchronization point, all
at once. This reduces the total overhead of all the conflict checking queries, by combining
multiple communication into one.

Between synchronization points, the data generated by events are collected by individual
threads and stored locally in a database. The contents and format of the data is analysis
dependent, and left unconstrained in the framework. All collected data is held locally,
until the next data distribution mode. The effect of this is already great in reducing the
communication latency, but it is desirable to reduce the amount (i.e., total bytes of data)
of communication as well, in order to reduce the increase in bandwidth usage caused by the
analysis.

From our experiences, we have learned that some data gathered from the events are
redundant. There could be data that is completely identical (e.g., two reads of one thread
from the same memory address range) or data that dominate others (e.g., a write to a
memory range by one thread masks a read to the same or sub-range of the memory by
the same thread, for purposes of detecting races). A filter, specific to an analysis, can be
employed by the analysis writer to compact the data gathered locally by a thread, which
will eventually be communicated to other threads.
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A simple yet effective filter that is useful to many analyses is the sampling filter. For
programs with tight inner loops, multiple events might be generated by a statement inside
the loop. Although the generated data may not be redundant, the significance of the data
drop as the event is generated hundreds or thousands of times.

Data distribution mode

Once data is gathered from all threads locally, it must be distributed among the threads for
analysis. How the data is distributed affects the overhead of the analysis, both in terms of
computation and communication. Data should be distributed as evenly as possible, because
1) the amount of data assigned to each thread is the amount of work that the thread needs
to perform, and 2) communication overhead can be significant if every thread tries to send
large data to one particular thread. Unbalanced work loads can cause unnecessary delays
for all threads, and slow down the application under analysis.

The data is divided up by some bucketing function that maps the meta-data to a par-
ticular thread. Data can be bucketed through hashing, or by some other function of the
meta-data. It is desirable that the bucketing is as even as possible, to get better load bal-
ancing. For example, in our data race detection work for UPC (Section 7.2), the bucketing
function is based on the affinity of the memory location that was being accessed, i.e. the
destination location is calculated as

upc threadof(e.memory) where e is the memory access event .

Although this bucketing scheme does not guarantee even distribution, it follows the natural
communication pattern of the original application (requesting the thread which has affinity
to the shared memory for access). In other words, if the application makes shared memory
accesses in a balanced way, the analysis will not incur any more imbalance while distributing
data for analysis.

The framework takes care of sending the data to the appropriate destination thread based
on the bucketing function. Because the database is analysis specific, it is left mostly uncon-
strained except that the framework requires the analysis writer to supply data serialization
and unserialization functions to convert data to and from byte streams for transfer.

Distributed computation mode

With the data distributed among the threads in the data distribution mode, each thread per-
forms analysis on its bucket of data. This mode of operation is essentially taking advantage
of the parallel hardware on the system to do a distributed analysis. All the data necessary
for analysis should be transferred into each thread’s local memory (or in the thread’s portion
of the global heap) in the data distribution mode.

Again, assuming that the data (hence, the workload) is distributed evenly, the analysis
should scale well with the size of the system. The total overhead of the analysis on the ap-
plication program is still dependent on how much computation is required from the analysis.
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However, forbidding the use of inter-thread communication in the distributed computation
mode should minimize the effects of the analysis on the scalability of the application.

7.2 UPC-Thrille

We have implemented the Active Testing framework for the Berkeley UPC [14] compiler
called UPC-Thrille [76] available at http://upc.lbl.gov/thrille. We support all opera-
tions provided by the UPC v1.2 language specification: memory accesses through pointers to
shared, bulk transfers (e.g. upc memput), lock operations, and barrier operations. The frame-
work itself is implemented in the UPC programming language and it can be easily ported
to other UPC compiler/runtime implementations, such as Cray UPC. We next describe the
implementation of the two phases of Active Testing.

Implementation of race prediction phase

The runtime instrumentation redefines all memory access and synchronization operations by
adding “before” and “after” calls into our analysis framework. For example, for any data
access we add THRILLE BEFORE(type, address) and THRILLE AFTER(type, address)
calls before and after the actual data access statement, respectively. When linking the
application with our runtime, a write to shared memory p[i] = 3 translates into:

THRILLE_BEFORE(write, p+i);

upcr_put_pshared_val(p+i, 3);

THRILLE_AFTER(write, p+i);

During execution, each thread maintains a trace of memory accesses to a particular
portion of the shared heap. Whenever a thread accesses the shared heap it has to inform
the maintainer of that particular region. Overall, during phase I there are two sources of
program slowdown: 1) querying a potentially large access trace and; 2) transmitting the
query data over the network. In the rest of this section we describe optimizations designed
to reduce the overhead of these operations.

Data structures to represent memory accesses: The data structure to represent
memory accesses needs to efficiently support both single address queries as well as the address
range queries associated with bulk transfers. Previous work on data races focuses on word
level memory accesses and uses hash tables to find conflicting addresses. To efficiently find
overlapping intervals, we use interval skip lists (IS-list) [38].

Skip lists [78] are an alternative to balanced search trees with probabilistic balancing.
They are much easier to implement and perform very well in practice. Skip lists are essentially
linked lists augmented with multiple forwarding pointers at each node. The number of
forwarding pointers is called the level of a node, which is randomly assigned with a geometric
distribution when a node is inserted into the list. Higher level nodes are rare, but can skip
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over many nodes, contributing to the performance of skip lists (expected time O(log n) for
insert, delete, and search). Skip lists are also space efficient: a node can be stored in memory
with an average of four machine words, one word for the key, one word for the pointer to data,
and an average of two forward pointers with p = 0.5 as the success probability parameter
for the geometric distribution.

An IS-list is essentially a skip list for all the endpoints of intervals it contains, with
edges representing the interval spanned by the endpoints. Each node and edge is marked
with intervals that cover them. To efficiently handle overlapping queries with minimal space
overhead, only the highest level edges that are sub-intervals of I (i.e. edge (n1, n2) ⊆ I and
6 ∃ edge (n′1, n

′
2). (n1, n2) ⊂ (n′1, n

′
2) ⊆ I) need to be marked, and a node n is marked with

I if any of the incoming or outgoing edges of that node is marked with I and n ∈ I. For
example, in Figure 7.2, interval I2 = [20, 50), has markers on the second level forward edge
of node 20 and the third level forward edge of node 30, because there are no higher level
edges that are contained in I2.

The operations on IS-lists are time and space efficient. Inserting an interval takes ex-
pected time O(log2 n) where n is the number of intervals in the IS-list. A search for intervals
overlapping a point can be found in expected time O(log n + L), where L is the number of
matching intervals, and searching for intervals overlapping an interval takes expected time
O(log2 n+ L). The expected space required for n intervals is O(n log n).

Figure 7.2 is an overview of how the database of shared memory accesses is represented.
Each memory access event e = (m, t, l, a, p, s) is first grouped by the address range m and
inserted into the IS-list. Each interval is associated with a lock trie that represents the locks
l held during e. Each node in the trie represents an access with all the locks in the path
from the root held. For example, the root of the trie represents an access to m without any
locks held. A trie is used to represent locks to efficiently search for accesses racing with e,
by only following edges not included in e.l. Algorithm 7.1 shows the full steps for finding
racing accesses in the trie.

Query Coalescing: The race prediction phase has to perform remote queries at each
individual remote memory access to check for conflicts. On a cluster, this amounts to
performing additional data transfers for each transfer present in the application.

In our implementation, each thread tracks all the remote accesses locally and delays all
the queries until barrier boundaries. Inside barriers, threads coalesce the query data by
memory region into larger messages and perform point-to-point communication with the
maintainer of each region. Upon receiving information from all other threads, each thread
independently computes all conflicting access that happen within its region of the global
shared heap.

Our implementation performs both communication - communication and communication
- computation overlap using a software pipelining approach. Transfers for query data are
asynchronously initiated at a barrier operation and overlapped with each other. These
transfers are allowed to proceed until the program executes the next barrier, at which point
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Algorithm 7.1: FindRace(isl, e)

Input: IS-list isl and access e
Output: An access in isl that races with e

1 I ← Intervals in isl that overlap with e.m;
2 foreach interval i ∈ I do
3 N ← { i.node };
4 foreach node n ∈ N do
5 if n.data 6= NULL ∧ n.data.t 6= e.t ∧ n.data.p || e.p ∧ (n.data.a = WRITE ∨

e.a = WRITE) then /* a race is found */
6 e′ = (i, {l: l ∈ path from n to root}, n.data);
7 return e′

8 else /* only traverse lock edges not held by e */
9 foreach c ∈ n.children do

10 if c.lock 6∈ e.l then N ← N ∪ {c};

Algorithm 7.2: AddAccess(isl, e)

Input: IS-list isl to add access e while reporting races and removing stronger accesses
1 if 6 ∃e′ ∈ isl s.t. e′ v e then
2 if r ← FindRace(isl, e) then
3 Report r;
4 else
5 Insert e into isl;
6 Remove ∀e′ A e from isl;

they are completed, new transfers are initiated and queries are performed for the requests
just completed.

Extended Weaker-Than Relation: Keeping track of all shared memory access can incur
high space overhead for threads and increase the amount of communication required between
threads. Thus, we prune redundant information about accesses that do not contribute to
finding additional data races. For example, if a thread reads and writes to the same memory
region, only the write information is required, because any races with the read would also
imply a race with the write. Similarly, a narrower memory region, an access with more
locks held, and a memory region accessed by a lesser number of threads are all redundant
information. Formally, the weaker-than relation between memory accesses introduced by
Choi et al [18] identifies the accesses that can be pruned. We extend this relation to handle
memory ranges.
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Definition 7.1 (Extended Weaker-Than: v). For two memory access events e1 and e2,

e1 v e2 ⇔ e1.m ⊇ e2.m ∧ e1.t v e2.t ∧
e1.l ⊆ e2.l ∧ e1.a v e2.a

where

ti v tj ⇔ ti = tj ∨ ti = ∗ (multiple threads)

ai v aj ⇔ ai = aj ∨ ai = WRITE

Only the weakest accesses are stored locally and sent to other threads at barriers. Also,
when conflicting races are computed, the weaker-than relation is used in Algorithm 7.2 to
prune redundant accesses from multiple threads.

Exponential Backoff: We can further prune redundant access information by dynamically
throttling instrumentation on statements that are being repeatedly executed. For each static
access label (file, line number, variable), we keep a probability for considering these accesses
for conflict detection, initially all set to 1.0. Whenever a data race is detected on a statement,
we set the probability to 0, effectively disabling instrumentation for that statement for the
rest of the execution. Each time an access is recorded, we reduce the probability by a backoff
factor, eventually disabling instrumentation for this statement after multiple unsuccessful
attempts at finding a conflicting access. For our experiments, we used a backoff factor of 0.9
which was a good balance for effectively finding potential data races with low overhead. In
Section 8.1, we discuss the performance gains achieved by these optimizations.

Algorithm 7.3 is the complete scheduling algorithm for race prediction. The global access
list is the communication channel to send shared access information between threads. Each
thread also maintains local IS-lists to keep track of its memory accesses separately for each
phase and affinity. The probability of considering each program statement is initially set
to 1.0. Lines 4–9 are the actions performed for each memory access. We probabilistically
add the shared access information to the thread’s local IS-list, while pruning all but the
weakest accesses (Algorithm 7.2). Lines 10–15 handle lock acquires and releases. In case of
a notify statement (lines 16–20), before notifying the other threads (line 19), we make sure
that all pending asynchronous transfers are complete (line 17) and initiate asynchronous
transfers of accesses in the current phase (line 18). For wait statements (lines 21–37), we
first wait for all other threads (line 22), and then initiate asynchronous transfers of accesses
in the current phase (line 23). In lines 24–36, we check for barrier aware potential data race
pairs (Definition 4.2) in the previous barrier phases based on local information (islist) and
information received from other threads (global acc list).

Implementation of race confirmation phase

After collecting potential data race pairs from phase I, we run the race testing phase on
each pair to confirm they are real and observe the effects of the race in isolation. Algorithm
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Algorithm 7.3: ThrilleRacerScheduler()

1 Initially,
Global: ∀t ∈ T , p ∈ N, o ∈ T . global acc list[t, p, o] = ∅
Thread local: p = 0, L = ∅, ∀s. prob[s] = 1.0, and ∀p ∈ N, o ∈ T . islist[p, o] = ∅

2 while i := next instruction of thread t do
3 switch i do
4 case i = MEM(m,a,s)
5 e← (m, t, L, a, p, s);
6 if random() < prob[s] then
7 AddAccess(islist[p, owner(m)], e);
8 prob[s] *= BACKOFF;

9 Execute i;

10 case i = LOCK(l)
11 Execute i;
12 L← L ∪ l;

13 case i = UNLOCK(l)
14 L← L\l;
15 Execute i;

16 case i = UPC NOTIFY
17 Synchronize all pending transfers;
18 foreach t′ 6= t do Asynchronously send islist[p, t′] to global acc list[t, p, t′];
19 Execute i;
20 p++;

21 case i = UPC WAIT
22 Execute i;
23 foreach t′ 6= t do Asynchronously send islist[p, t′] to global acc list[t, p, t′];
24 /* Check for races among all accesses in phase p− 2 */

25 foreach t′ 6= t do
26 foreach e ∈ global acc list[t′, p− 2, t] do
27 AddAccess(islist[p− 2, t], e);

28 /* Check races in phases p-2, p-3 */

29 foreach e ∈ islist[p− 2, t] do
30 AddAccess(islist[p− 3, t], e);

31 /* Check races in phases p-2, p-1 */

32 foreach e ∈ islist[p− 2, t] do
33 AddAccess(islist[p− 1, t], e);
34 foreach t′ 6= t do
35 foreach e ∈ global acc list[t′, p− 1, t] do
36 AddAccess(islist[p− 1, t], e);

37 p++;

38 otherwise
39 Execute i;
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Algorithm 7.4: ThrilleTesterScheduler(s1, s2)

Input: Potential race pair s1, s2
1 Initially,

Global: Prob = 1.0,∀t ∈ T . sem[t] = 1, pending[t] = NULL
2 while i := next instruction of thread t do
3 if Prob > 0 ∧ i = MEM(m,a,s) then
4 if s = s1 ∨ s = s2 then
5 if ∃t′. pending[t′].m ∩m 6= ∅ ∧ (pending[t′].a = WRITE ∨ a = WRITE) ∧

pending[t′].s 6= s then
6 Report race between threads t and t′;
7 sem[t′].signal();
8 Prob = 0;

9 else if random() < Prob then
10 pending[t] = (m, a, s);
11 sem[t].wait(TIMEOUT);
12 pending[t] = NULL;
13 Prob *= BACKOFF;

14 Execute i;

7.4 shows the complete scheduling algorithm. We use an exponential backoff optimization
similar to phase I to keep the overhead of phase II low and achieve scalability. bupc sems,
an extension in the Berkeley UPC runtime, are used as semaphores to control the execution
order of threads. Each thread announces the memory access it is currently pending on in the
global data structure pending. Here, we only need to consider the shared memory accesses
in the program (line 3). If the statement label matches one of the statements in the potential
data race pair (line 4), we first check if any other thread is pending on the other statement
(line 5). If one is found to be pending on an access with an overlapping memory address
and either access is a write, we report a real race and signal the other thread to proceed.
Once a real race is found, we disable testing (line 8) and continue execution of the program
normally and observe if any errors occur due to the race.

If no other pending thread meeting the race criteria is found, we probabilistically post
the information about the access (line 10) and pause the thread for some time (line 11). At
line 12, either a real race was found and the semaphore released by the other thread (line
7) or the timeout could have expired. In either case, we no longer announce this thread as
pending on the memory access and reduce the probability of pausing.

Phase II is not guaranteed to be a sound approach—it cannot confirm all real data races.
However, the approach was able to confirm all previously known races in our benchmarks.
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7.3 Extensions to hybrid memory models

Well optimized UPC programs usually cast pointers-to-shared (e.g. shared int *) to C
proper pointers (e.g. int*) and Section 7.2 misses a large class of data races introduced by
memory aliases. Furthermore, the presence on non-blocking communication operations [11]
introduces another class of data races. As non-blocking communication is a background
asynchronous activity that can be overlapped with computation, memory accesses within
a thread can race with the communication operations initiated by the same thread. MPI
programs face a similar problem when using the MPI Isend/IRecv non-blocking communi-
cation primitives. A complete solution for finding both “traditional” and races introduced
by non-blocking communication needs to track all the memory references, including those
using C pointers, as well as communication calls.

In this section, we discuss the overhead of data race detection and how it is exacerbated
when dealing with hybrid memory models that alias the same address space. We describe two
techniques — persistent alias locality heuristic and hierarchical sampling — that effectively
reduces the overhead for data race detection in programs using hybrid memory models.

The overhead of data race detection

Runtime overhead due to instrumentation is recognized as a problem that dynamic race de-
tectors have to address. Commercial tools for C programs such as the Intel Thread Checker
or the Sun Thread Analyzer, usually provide full coverage at the expense of 600X execu-
tion slowdown [93] on scientific OpenMP programs with small memory footprints. Average
overheads on other scientific programs for the Intel Thread Checker have been reported [83]
around 200X and as high as 485X.

Sampling techniques have been introduced by Arnold and Ryder [5] and later adopted
in other bug finding tools [6, 61] for parallel programs. The efficacy of these techniques is
determined by the granularity of the instrumented code region and the sampling strategy.
Tools [6] for finding bugs in programs running on managed runtimes (e.g. Java) tend to
use instruction level sampling; the additional instrumentation overhead is not perceived as
unacceptable since the runtime already manages object metadata and access. These systems
usually observe up to 3X slowdowns for non-scientific applications and data is not available
for HPC applications. The equivalent of instruction sampling is performed in distributed
memory tools such as DAMPI [99] and UPC-Thrille which track communication calls.

Recently, Marino et al [61] proposed a technique to coarsen the sampling control from
instruction level to function level. They use a compiler to generate instrumented and un-
instrumented versions of functions and select the appropriate copy at run-time. The instru-
mented version of a function monitors every memory reference during its execution. Their
LiteRace tool introduces up to 3X overhead while providing good coverage on non-scientific
programs; it has not been evaluated on scientific programs. In the rest of this thesis, we
refer to this technique as function sampling. One reason that function sampling outperforms
instruction sampling is that it amortizes the cost of tracking memory references better:
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function sampling executes one branch/decision per function call while instruction sampling
executes one branch/decision per instruction.

Several sampling strategies have been proposed and evaluated for non-scientific programs.
Random sampling has been shown to provide poor coverage. SWAT [39] detects memory
leaks and uses an approach where the execution of code segments is sampled at a rate in-
versely proportional to their execution frequency. LiteRace uses a bursty sampler, where the
execution of a function is sampled initially at a 100% rate and the sample rate is progres-
sively reduced until it reaches a lower bound. Both approaches try to give priority to regions
of code rarely executed and give priority to the first execution of any code region.

The implementation of UPC-Thrille described in Section 7.2 uses instruction-level in-
strumentation with a bursty sampling similar to LiteRace. UPC-Thrille instruments every
memory access performed using pointer-to-shared, either at word granularity or using
bulk memget/memput memory operations.

In order to provide a complete data race detection solution we have modified UPC-Thrille
and the Berkeley UPC compiler to track all memory references, including all references
through C proper pointers. We provide a well optimized implementation of instruction
sampling that makes extensive use of C macro-definitions to eliminate function call overheads
for the instrumentation code. Every memory reference is examined using a bursty sampling
strategy. We have also implemented function sampling with the same bursty strategy.

For any sampled memory reference, the implementation checks whether the address re-
sides within a thread’s private address space or within the global address space. This check
requires integration with the UPC runtime memory management module and it is an ex-
pensive operation, common to PGAS languages. References to the private address space are
ignored as they cannot race. Global references are inserted into the UPC-Thrille internal
data structures and further checked against other references.

We distinguish three types of overhead for data race detection: 1) instrumentation over-
head is introduced by the checks to prune the non-interesting data accesses; 2) computation
overhead is introduced by the operations on internal data structures to manage the interest-
ing accesses; and 3) communication overhead is introduced by the exchange of conflicting ac-
cesses between threads. Thus, private references contribute only to instrumentation overhead
while global references also contribute to the computation and communication overhead.

We have performed experiments with instruction sampling using the default backoff factor
of 0.9 and with multiple function sampling strategies. Our results indicate that for the NAS
Parallel Benchmarks function sampling is not a scalable strategy. For most benchmarks
class B and up, experiments when instrumenting only the first invocation of a function did
not terminate: some exhausted the available memory while some were manually terminated
after observing 1000X slowdown. Results for instruction level sampling indicate that this
approach is able to find races with up to 65X slowdown. Detailed results are presented in
Section 8.2.

This behavior contradicts the intuition that function sampling scales better than instruc-
tion sampling. The performance reversal is caused by the granularity of control over instru-
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mentation being too coarse: as loops within these benchmarks execute billions of references,
function sampling tracks billions of references.

As function level sampling does not work and instruction sampling introduces a 65X
overhead that is unacceptable when running at scale, our implementation uses two techniques
to reduce the number of tracked memory references without sacrificing the precision of the
analysis.

The first optimization reduces the overhead of instrumentation by exploiting the insight
that aliases are persistent in PGAS programs: once one is created it will point in the same
region (private or global) for a long period of time. Using this we can eliminate the overhead
introduced by looking up the physical memory layout inside the language runtime.

The second optimization reduces overhead using hierarchical sampling. By combining
function and instruction sampling we amortize the cost of instrumentation while retaining
fine grained control over the number of events sampled.

Exploiting the persistence of locality in aliases

PGAS languages, such as UPC, Titanium, CAF, Chapel and X10, provide the abstraction of
a shared memory address space. Data residing in this space is accessible through references
to variables that have a particular type, e.g. pointer-to-shared type in UPC or global

in Titanium1.
The memory management inside any PGAS language runtime is complex due to the

need to provide globally addressable memory and to support data layouts, e.g. block cyclic
layouts. Thus, a reference to a global object is orders of magnitude [46] more expensive than
a local reference, through a C pointer in the UPC case. Application developers aggressively
cast global references to local and compiler optimizations [56, 51, 57] have been explored to
privatize global references.

For every local memory reference, the data race detection code needs to perform the
inverse up-cast operation and check whether the address is globally visible. This operation
is also orders of magnitude more expensive than a regular memory load/store.

In our implementation we limit the number of up-casts performed at run-time using the
intuition that aliases/locality are persistent: during the program execution a reference will
access only the private space or only the global space, independent of its static data type.
This assumption allows the analysis to determine at run-time the locality of any reference
only once and cache the result for the rest of the execution. In our implementation, we add
a shadow variable to cache the locality of every memory reference expression.

The persistence of locality assumption is valid in all of our test programs and it does
not decrease the precision of the analysis. The heuristic may lead to false negatives (miss
real data races) when the underlying assumption is not valid for the program. However,
the technique can be trivially generalized for programs with a more dynamic behavior. As
casts in PGAS languages are complicated and are implemented as runtime calls, any casting

1Actually, in Titanium any reference is global by default and the language provides local qualifiers.
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call can be modified to invalidate the locality information cached. The performance of this
approach is determined by the ratio of casts to memory references performed by the program
at run-time. The additional overhead for realistic programs is likely to be negligible in
practice.

Hierarchical sampling

For every memory reference there are two sources of run-time overhead. Instrumentation
overhead is introduced to decide whether the reference should be recorded and computation
overhead is introduced when recording the reference in the tool’s internal data structures.
By reducing the instruction sampling rate, one can clearly reduce overhead, but at the
expense of program coverage. To provide both low overhead and good coverage we propose
a hierarchical sampling approach which combines the fine grained control of instruction
sampling with the overhead amortization provided by function sampling. By using a good
hierarchical sampling strategy, we can reduce the instrumentation overhead while retaining
the ability to sample from a diverse context with less redundancy. Using the concept of code
regions, we formally define instrumentation and hierarchical sampling.

Definition 7.2 (Code regions). We inductively define code regions. By definition, the small-
est unit of a code region is a memory reference (read or write). A code region is a reference
or a sequence of one or more code regions. The entire program is the largest code region.
Each code region R has a label, denoted as #R.

Functions, loop bodies, basic blocks etc. are examples of code regions. We assume struc-
tured code, i.e. that all code regions are properly nested.

Definition 7.3 (Region stack). During program execution, a region stack RS is maintained.
Similar to a call stack, when a region R is entered, the label of the region #R is pushed to
RS. When exiting a region, the last label is popped from the stack. At the beginning of a
program execution, RS is initially empty.

Definition 7.4 (Instrumentation). Instrumentation is a transformation of a code region
R→ Rinst.

If R is a memory reference (base case),

Rinst =
if check-reference(#R :: RS) then

log(#R)
R

Else, if R is a sequence of regions [R1, R2, . . . , Rn],
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Rinst =

if check-region(#R :: RS) then
RS = #R :: RS;
[Rinst

1 , Rinst
2 , . . . , Rinst

n ];
RS = pop(RS)

else
[R1, R2, . . . , Rn]

By specializing the check-reference and check-region and choosing the region granularity,
we can implement multiple sampling algorithms. For example, instruction sampling with
an exponential backoff (strategy I in the experiments presented in Section 8.2), is imple-
mented as the following functions. The map p : label→ R contains the (dynamic) sampling
probabilities of regions.

∀#R ∈ Statements. p(#R) = 1.0

check-reference(#R :: RS) =
if rand() < p(#R) then

p(#R) ∗ = BACKOFF FACTOR;
return true

else
return false

check-region(x) = true

Function sampling as introduced by the LiteRace [61] implementation is defined as fol-
lows. The region is a whole function and the sample-strategy function depends on the strategy
of sampling, such as a fixed probability, random or an adaptive strategy.

check-reference(x) = true

check-region(#R :: RS) = sample-strategy(#R)

Intuitively, the check-reference function decides what events should be logged at run-time,
while the check-region function provides control over the granularity of these decisions. We
propose a hierarchical sampling strategy that combines instruction sampling with function
sampling. The combination of hierarchical sampling with the aliasing run-time heuristic is
referred to as HA and described as follows. This implementation uses exponential backoff
at both individual reference and function granularity.
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∀#R ∈ Statements ∪ Functions. p(#R) = 1.0

check-reference(#R :: RS) =
if p > 0 ∧ rand() < p(#R) then

if is-local-access(R) then
// locality persistence heuristic

p(#R) = 0;
return false;

else
p(#R) ∗ = STMT BACKOFF FACTOR;
return true;

else
return false

check-region(#R :: RS) =
if p > 0 ∧ rand() < p(#R) then

p(#R) ∗ = FUNC BACKOFF FACTOR;
return true

else
return false

In Section 8.2 we present our evaluation results that show overheads for single-level and
hierarchical sampling. Hierarchical sampling is the most efficient with lowest overhead. We
also show that the persistent alias locality heuristic is necessary in addition to hierarchical
sampling for some benchmarks to maintain low overheads.
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Chapter 8

Evaluation of Active Testing for
Distributed Memory Programs

In this chapter, we evaluate the effectiveness of Active Testing for distributed memory parallel
programs. We apply the race detector and tester from Chapter 7 on several benchmark UPC
programs. We discuss the computation and communication overheads caused by the analysis
and explain the races found in detail.

To evaluate our techniques for hybrid memory models, we ran our experiments with the
persistent alias locality on and off for a variety of sampling strategies including hierarchical
sampling, which showed the best performance.

8.1 Evaluation of UPC-Thrille for data race detection

We evaluate data race detection on UPC fine-grained and bulk communication benchmarks.
For implementations using bulk communication primitives we use the NAS Parallel Bench-
marks (NPB) [68, 69], releases 2.3, 2.4, and 3.3. The fine-grained benchmarks reflect the
type of communication/synchronization that is present in larger applications during data
structure initializations, dynamic load balancing, or remote event signaling.

The guppie benchmark performs random read/modify/write accesses to a large dis-
tributed array, a common operation in parallel hash table construction. The amount of
work is static and evenly distributed among threads at execution time. The mcop bench-
mark solves the matrix chain multiplication problem [21]. This is a classical combinatorial
problem that captures the characteristics of a large class of parallel dynamic programming
algorithms. The matrix data is distributed along columns, and communication occurs in the
form of accesses to elements on the same row. The psearch benchmark performs parallel
unbalanced tree search [73]. The benchmark is designed to be used as an evaluation tool for
dynamic load balancing strategies.
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Figure 8.1: Scalability of Active Testing up to 1024 cores for NPB classes C and D. Class D
was not available for benchmark IS. We were unable to run FT class C on 1 core and class
D on 1024 cores.
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ThrilleRacer ThrilleTester

Benchmark LoC Runtime RT OH Pot. races Avg.RT Avg.OH Conf. races

guppie 277 2.094s 2.346s 1.120x 157 (2) 2.129s 1.017x 2
knapsack 191 2.099s 2.412s 1.149x 2 (2) 2.136s 1.018x 2
laplace 123 2.101s 2.444s 1.163x 0 (0) - - -
mcop 358 2.183s 2.198s 1.007x 0 (0) - - -
psearch 777 2.982s 3.037s 1.018x 11 (3) 3.095s 1.038x 2

N
A

S
P

ar
al

le
l

B
en

ch
. FT 2.3 2306 8.711s 9.243s 1.061x 25 (2) 9.131s 1.048s 2

CG 2.4 1939 3.812s 3.831s 1.005x 0 (0) - - -
EP 2.4 763 10.022s 10.109s 1.009x 0 (0) - - -
FT 2.4 2374 7.036s 7.045s 1.001x 6 (1) 7.334s 1.042x 1
IS 2.4 1449 3.073s 3.106s 1.011x 0 (0) - - -
MG 2.4 2314 4.895s 5.045s 1.031x 9 (2) 4.955s 1.012x 2
BT 3.3 9626 48.78s 49.04s 1.005x 40 (8) 49.15s 1.008x 0
LU 3.3 6311 37.05s 37.22s 1.005x 0 (0) - - -
SP 3.3 5691 59.56s 59.70s 1.002x 32 (8) 61.36s 1.030x 0

Table 8.1: Results for race-directed Active Testing on a 4 core workstation. We present
results for NPB class A.
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Figure 8.2: Communication and computation overhead of UPC data race detection
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UPC-Thrille on Shared Memory Systems

In Table 8.1 we show a summary of results obtained for UPC-Thrille when running the
benchmarks on a quad-core 2.66GHz Intel Core i7 workstation with 8GB RAM. We report the
total lines of source code (LoC) for each benchmark and the runtime of the original program
without any analysis. We report the runtime (RT) and overhead(OH) of the program with
race prediction (phase I) enabled and the average runtime and overhead for program re-
execution with race confirmation (phase II).

The total number of potential races predicted by phase I is reported in column six. This
number reflects the number of racing memory accesses performed throughout the application
execution. The number in parentheses represents the unique pairs of racing statements
reported by UPC-Thrille that are associated with the runtime races. Each pair of racing
statements identified in phase I is tested in phase II and we report the number of confirmed
races in the last column.

The race prediction phase added for most benchmarks only a small runtime overhead of
up to 15%. The overhead of the race confirmation phase is determined by the granularity
of the delays (pauses) introduced in the thread schedule, as well as by the dynamic count of
such pauses. For all experiments, the overhead of phase II was negligible when using a delay
of 10ms.

Our results demonstrate that UPC-Thrille is able to precisely detect and report the
races present in the benchmarks evaluated. For all these benchmarks, the races manifest
regardless of the concurrency of the execution or the actual input set. Any testing run at
any concurrency will uncover the same set of races.

Races Found

guppie: These races are expected in the program, as random updates are made to a global
table. One race is between a read of a table entry from one thread and a write to the same
entry from another thread. The other race is between two writes from different threads to
the same location in the table.

knapsack: This is our example program in Figure 4.1. Through Active Testing, we can
confirm that both races are indeed real. Furthermore, by controlling the order in which the
race is resolved, we can force the program into an error. If either initial value is read before
the write, the verification check of the solution fails.

psearch: The races are in code that implements work stealing. Shared variables hold the
amount of stealable work available for each thread. A real race can result in work stealing to
fail, but does not affect the correctness of the program because of carefully placed mutexes.
One of the predicted races is unrealizable because of this custom synchronization.

NPB 2.4 FT: This race is real but benign, as all threads initialize the variable dbg sum to
0 at the same time.
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NPB 2.4 MG: Two shared variables are read by each thread and then reset to 0 by thread
0. It seems highly suspicious that there is no barrier to wait for all the reads. We reproduced
both the races but it did not affect the solution computed. After inspecting the code, the
variables are actually used only by thread 0 for reporting purposes.

NPB 2.3 FT: The races in this version is quite devious. The accesses to a shared
variable dbg sum is protected by a lock sum write. Then how could the accesses be rac-
ing? It turns out that each thread holds a different lock, because the wrong function
upc global lock alloc() was called to allocate the lock — a different global lock is re-
turned to each calling thread. upc all lock alloc(), a collective function that returns the
same lock to all threads, should have been used instead.

NPB 3.3 BT and SP: The races predicted by phase I in these benchmarks cannot be con-
firmed in phase II, because these benchmarks use custom synchronization operations. Both
benchmarks implement point-to-point synchronization operations where one thread performs
a write operation (write a) followed by a upc fence (null strict memory reference), while
another thread is polling on the value of the variable a. The false positives are not caused
by the strict operation per se, but by lack of semantic information about the application.

Scalability of UPC-Thrille on Distributed Memory Systems

Some applications might have races that occur only at certain concurrency levels; thus, the
overall scalability of UPC-Thrille is important. In Figure 8.1 we present results for NPB class
C scaled up to 256 cores and class D up to 1024 cores on the Franklin [35] Cray XT4 system
at NERSC. The nodes contain a quad-core AMD Budapest 2.3GHz processor, connected
with a Portals interconnect. The latency for this network using Berkeley UPC [14] is around
11µs for eight byte messages.

For all benchmarks, we plot the original application speedup (no analysis) and the
speedup with race prediction enabled (phase II ). For benchmarks with races predicted, we
also present the scalability of the confirmation phase (phase II ). The average slowdown of
both phase I and phase II are less than 1%. The maximum slowdown observed for phase
I was 8.1% for IS class C at 128 cores. For phase II, MG class D at 1024 cores had the
maximum slowdown of 15%. These results are obtained with an exponential backoff of 0.9.

For most of the benchmarks, the race prediction and confirmation phases scale well. For
phase I, our implementation introduces overhead mostly in barrier operations. Figure 8.2
compares the average per-barrier overhead of Active Testing with the average application
inter-barrier time, noted as barrier length. The barrier length is computed as the total
application original execution time divided by the number of barriers. The average per-
barrier overhead of Active Testing is computed as the total overhead divided by the number
of barriers and we further sub-divide it into computation and communication overhead.
Serial computation is the average overhead of the IS-lists lookup while communication is the
average overhead of communication added by UPC-Thrille. Our implementation overlaps
UPC-Thrille specific communication with both internal lookups and the whole computation
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Overhead
Bench LoC Runtime(s) #Races NL HA.5 IA FA0 I
guppie 271 19.070 2(2) + 0(0) 54.9% 54.2% 53.7% DNF 74.9%
psearch 803 0.697 3(1) + 2(2) 2.48% 10.8% 666% 8.01% 6490%
BT 3.3 9698 189.48 7(0) + 3(1) 0.574% 1.16% 77.6% DNF -
CG 2.4 1654 39.573 0(0) + 1(1) 1.09% 27.6% 57.6% DNF 2579%
EP 2.4 678 54.453 0(0) + 0(0) -0.618% 0.805% 2.09% 4.74% 111%
FT 2.4 2289 62.663 2(2) + 0(0) 0.601% 30.1% 121% DNF 2744%
IS 2.4 1426 5.130 0(0) + 0(0) 0.376% 119% 159% DNF 1201%
LU 3.3 6348 155.997 0(0) + 44(2) -0.425% - 75.7% DNF -
MG 2.4 2229 18.687 2(2) + 4(0) 0.336% 176% 632% DNF 2020%
SP 3.3 5740 247.937 10(0) + 3(1) 0.160% 0.861% 29.1% DNF -

Table 8.2: Statistics for the NAS Parallel Benchmarks class C, guppie and psearch running
on 16 cores. We report the races found as A(B) + C(D), where A represents the number of
races detected by the original UPC-Thrille tool with B of them confirmed, and C represents
the additional number of races detected with our extensions with D of them confirmed
through phase II. Some execution overheads are omitted (-), due to configuration errors.

already present in the application between barriers. Thus, communication measures only
residuals after overlapping and in most cases lookups are the main cause of slowdown.

For reference, CG class C running on 256 cores (CG-C-256) executes on average a barrier
every 335µs, CG-D-256 every 2.7ms, while CG-D-1024 executes one at 1ms intervals. In
all these cases, the race prediction phase has a low overhead, accounting for a few percent
slowdown. These considerations indicate that Active Testing has a good scalability potential.

All optimizations applied provide good performance benefits. Weaker-than and the expo-
nential back-off reduce the volume and frequency of communication operations. For example,
in MG class C running on 64 cores, there were a total of 4.7M shared accesses (memput,
memget) for all threads. With weaker-than, we pruned 2.1M accesses (46%), mostly shared
reads because writes are weaker than reads (Definition 7.1). With exponential backoff (fac-
tor=0.9), we further pruned to 53K accesses but were still able to predict all the data races
as before. Each thread communicated an average of 10 bytes per barrier. The maximum
bytes sent by a thread at a barrier was 23KB, but this number went down after the effects
of dynamic throttling kicked in.
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Format S[A][F]

Sampling
H: hierarchical, I: instruction-level, F: function-level
NL: no instrumentation on local accesses

Alias Indicates the use of the persistence alias heuristic
Factor Back-off factor for sampling at function level
Example HA.5: Hierarchical sampling with alias heuristic and back-off factor of 0.5

Table 8.3: Key for labels of hierarchical sampling strategies

8.2 Evaluation of techniques for hybrid memory

models

We evaluate our techniques for hybrid memory models on the same benchmarks as in Sec-
tion 8.1. The difference is that we also account for all indirect loads and stores made by each
thread that may potentially alias the global portion of the heap.

The experimental results are obtained on a Cray XE6 system [45] composed of nodes
containing two twelve-core AMD MagnyCours 2.1 GHz processors. The system has two
nodes attached to a Gemini network interface card, forming an overall 3-D torus network
with 6,384 nodes. The network provides a bandwidth of 9.375 GBytes/sec per direction in
10 directions. The maximum injection bandwidth per node is 20GB/s.

We evaluate the performance of our data race detection tool on 10 UPC programs written
in different programming styles. Table 8.2 summarizes the results for running the bench-
marks on a single Cray XE6 node with 16 threads. For each benchmark we evaluate the
overhead of several configurations of the tool. Instruction sampling is denoted by I and
for this configuration we report results with the default setting of 0.9 instruction backoff
factor as in the previous section. Function sampling is denoted by F, while hierarchical
function and instruction sampling is denoted by H. For hierarchical sampling, instructions
are sampled with the default values for I, while the numbers at the end of the label denote
the function backoff factor. Thus, H1 is identical to I (always samples functions), while
with H0 we sample only the first invocation of any function. At the mid-point H.5 the
probability of sampling a function invocation decays from 1 by 0.5 each time the function is
sampled; for long running programs the sampling probability converges to 0. The letter A
in the configuration name denotes applying the aliasing heuristic to that particular sampling
method. Table 8.3 summarizes the labeling of sampling strategies.

Comparison of Sampling Techniques

We illustrate the differences between the different tool configurations using the CG bench-
mark. These trends are representative for the whole suite of benchmarks we examined.
For reference, the original UPC-Thrille tool adds 8% runtime overhead when instrumenting
only communication calls (labeled as NL in the graphs for No-Local). Our implementation
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finds one new race in the implementation of this benchmark when compared to the original
UPC-Thrille.

Figure 8.3 presents the tool performance when applied to the CG benchmark classes A and
D running on 16 and 2048 cores respectively. The benchmark implements an iterative method
and Class A solves a problem with a small memory footprint (MBs) in few iterations, while
class D solves a large (GBs) problem. Other previous shared memory data race detectors [84,
61, 81, 32] have been scaled at most up to 16 cores and on applications using small data sets.
LiteRace is validated on a four core system, while the tool presented by Raman et al [81]
has been scaled up to 16 cores.

Instruction level sampling I of all memory references adds a 3600% overhead to the CG
benchmark execution. This is obtained using the default sampling backoff factor of 0.9 to
find races when instrumenting only shared memory accesses through runtime calls. The
overhead can be reduced by decreasing the sampling frequency, at the expense of coverage.

Function level sampling F.5 introduces a 2900% overhead for class A, lower than the
3600% overhead of I. A comparison of the overhead breakdown for F and I illustrates the
fundamental differences between the two methods. I introduces almost all overhead (3600%)
in instrumentation, with less than 3% for computation and communication overhead com-
bined, while F.5 adds only 112% instrumentation overhead. This large difference validates
the common intuition that function level sampling amortizes the cost of deciding what ref-
erences to track. On the other hand, F.5 exhibits a large 2800% computation overhead to
record and reason about the memory references that are actually tracked. The computation
overhead for I is very small at less than 2%. This behavior is explained by the temporal
distribution of tracked memory accesses during the program execution. UPC-Thrille uses a
combination of lockset based and happens-before analysis that requires tracking all memory
references between two barrier statements. Function level sampling exhibits a clustered
behavior, where many memory references are tracked for a short period of time. Instruction
sampling spreads the tracking of memory references more evenly over the program execution.
Thus, the behavior of function sampling is determined by the scalability of the tool’s internal
data structures, while the behavior of instruction sampling is determined by the speed of
classifying whether a memory access is to the global heap or not. We discuss the scalability
of data structures below.

Hierarchical sampling H.5 provides better performance than both function and instruc-
tion sampling and exhibits 2550% overhead. Most of this overhead is instrumentation over-
head.

Adding the aliasing heuristics to any of the tool methods greatly improves performance.
The overhead of instruction sampling is reduced from 3600% to 105% with IA. The overhead
of hierarchical sampling is reduced from 2550% with H.5 to 99% with HA.5 and from 294%
with H0 to 17% with HA0. The lowest overhead of data race detection for the CG class A
benchmark running on 16 cores is obtained by the HA approach.

Similar trends are observable when scaling the problem and running class D on 2048
cores. For this particular configuration, the F and FA methods do not finish due to memory
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and time constraints. I exhibits a 259% overhead, while all hybrid and instruction level
methods with the aliasing heuristic exhibit less than 15% slowdown.

Implementation Overheads

Previous work on data race detection focuses on word-level memory accesses and only require
keeping track of conflicting addresses. These tools usually use hash table data structures
internally. For scientific programs with bulk communication operations (PGAS or MPI),
data races on full memory ranges can occur during execution. UPC-Thrille uses an efficient
Interval Skiplist [38] data structure to represent memory ranges that demonstrate good
performance when sampling shared memory accesses made through the runtime.

As the performance of function sampling is clearly hampered by the internal data struc-
ture overhead, we evaluate the scalability using micro-benchmarks for the insertion and
search operations. The time complexity of these algorithms is dependent on the number of
elements in the data structure and the distribution of the intervals. We evaluate performance
across a range of list sizes and interval distributions: sequential, reverse sequential, strided
and uniform random. Sequential streams are often encountered in code that performs data
structure initialization, and are present in all of our benchmarks. Strided accesses occur in
the Fast Fourier Transform code NAS FT, while random accesses of the form a[b[i]] appear
in sparse methods of NAS CG and sorting in NAS IS, as well as guppie. For a real-world
perspective, we also measure the average number of memory intervals that are recorded in
our benchmarks.

Figure 8.4 presents the measured performance on one core of the Cray XE6 system. For
a uniform random distribution of 20,000 ranges, the average insert time is 12 µs and the
average search time is 1.3 µs. For a more regular distribution of ranges such as a sequential
one (e.g. [0, 10), [10, 20), [20, 30), . . . ), the insertion and search times were higher at 114µs
and 2.4µs, respectively. This is a weakness of the Interval Skiplist which relies on randomness
of data for balancing link levels. The effect can be offset by adding some irregularity, such
as inserting a mix of two different sequential streams. In the application benchmark, the
memory access stream does have irregularity, and as illustrated by the results for the stream
of memory access from MG: inserts are on average 45µs and searches 0.54µs.

When using instruction sampling for the application benchmarks, the Interval Skiplists
never grew too large. They remained at under 1000 unique ranges, thus the insert and search
times of the Interval Skiplist do not contribute largely to the overhead. On the other hand,
when using function sampling the data structures grew above 106 entries, at which point we
stopped the execution due to the very large overheads already accumulated.

Instruction sampling pays a higher cost for classifying a memory reference but it naturally
throttles the number of references recorded at any time. Function sampling performs a fast
classification while having to record a large number of references. Reference classification
has a constant overhead independent of the number of references already recorded, while
recording overhead scales with the number of references. This difference explains why func-
tion sampling scales worse than instruction sampling for scientific programs. For reference,
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Figure 8.3: Breakdown of data race detection overhead for the CG class A benchmark
running on 16 cores and class D running on 2048 cores. The F and FA configurations did
not finish for the class D experiment. At the mid-point HA.5 the probability of sampling a
function invocation decays from 1 to 0, by 0.5 each time a function invocation is instrumented.



84

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

5000	   10000	   15000	   20000	  

us
ec
	  p
er
	  o
pe

rt
ai
on

	  

Number	  of	  ranges	  

Inserts	  

Uniform	  

Sequen4al	  

Reverse	  Sequen4al	  

Strided	  

2	  Seq.	  streams	  

mg	  

0	  
0.5	  
1	  

1.5	  
2	  

2.5	  
3	  

3.5	  
4	  

4.5	  

5000	   10000	   15000	   20000	  

us
ec
	  p
er
	  o
pe

rt
ai
on

	  

Number	  of	  ranges	  

Searches	  

Uniform	  

Sequen4al	  

Reverse	  Sequen4al	  

Strided	  

Uniform	  -‐	  Sequen4al	  

mg	  

Figure 8.4: Average time for the insert and search operations in Interval Skiplist.

when running on the Cray XE6, the average instrumentation overhead per reference is 1ns,
the average memory classification is 45ns, the average computation overhead per reference
is 500ns while the average communication overhead per reference is 60µs.
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Scalability Aspects of Data Race Detection

The trends discussed for the CG benchmark are illustrative of the behavior of data race
detection for all the other applications in our workload.

Function sampling (F or FA) is faster than instruction sampling (I or IA, respectively)
for problems using small datasets, such as class A of the NAS Parallel Benchmarks. When
increasing the data set size to B, C and D, function sampling in any flavor does not terminate,
while the highest overhead observed for instruction sampling is 6500%. From all benchmarks
considered, the only exception happens for psearch and EP where F is roughly twice as fast
than I. psearch is a tree search benchmark which performs a constant and small amount of
work per function, independent of the problem size: this is a common characteristic to many
commercial applications. EP is an “Embarrassingly Parallel” benchmark where no global
memory accesses are made and thus none need to be tracked. The performance reversal
observed for most benchmarks contradicts the common intuition that function sampling
performs better than instruction sampling.

Hierarchical sampling H performs better than both instruction sampling I and function
sampling. While it does reduce overhead, we observe slowdowns as high as 2000% which is
still unacceptable when running at scale.

Applying the aliasing heuristic reduces the overhead of data race detection for both
instruction level and hierarchical sampling. The maximum slowdown observed by IA is
1000% while the maximum slowdown for I is 6500%. Similar results are observed for HA
when compared to H.

Figure 8.5 shows the performance of our approach when performing strong scaling ex-
periments for the classes C and D of the NAS Parallel Benchmarks. For all experiments,
the lowest overhead is introduced by the HA configuration and we are able to find all the
races with less than 50% runtime overhead when running up to 2048 cores. In the case of
the NAS Parallel Benchmarks class C on 16 cores, the weighted average overhead for all the
benchmarks with HA.5 was 11.9%. Overall, instrumentation overhead contributes the most
to the slowdown caused by data race detection. The computation overhead in the scalable
versions of IA and HA is small. At large scale, the communication overhead is also small
due to the techniques in Section 7.2.
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Figure 8.5: Scalability of the sampling methods on NPB classes C and D. The overhead of
instruction sampling I is very high compared to the others and has been omitted.
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Chapter 9

Related Work

We provide additional references to related work in the field of concurrency bug finding for
multi-threaded shared memory programs and other programming models.

9.1 Concurrency bug analyses for multi-threaded

programs

Dynamic techniques for finding concurrency bugs can be classified into two classes: predictive
techniques and precise techniques. Predictive dynamic techniques [84, 100, 18, 71, 2, 40, 9,
49, 101, 102, 31, 29, 30] could predict concurrency bugs that did not happen in a concurrent
execution; however, such techniques can report many false warnings. Phase I of our Active
Testing uses predictive techniques. Precise dynamic techniques, such as happens-before race
detection [85, 23, 1, 19, 62, 82, 20, 67, 32] and atomicity monitoring [105, 59, 28, 33], are
capable of detecting concurrency bugs that actually happen in an execution. Therefore,
these techniques are precise, but they cannot give as good coverage as predictive dynamic
techniques.

Dynamic techniques need to address the challenge of high runtime overhead. Sampling
approaches to reduce instrumentation overhead have been discussed throughout this pa-
per. Techniques to reduce the computation overhead have been explored as well. Choi et
al [18] discuss static analysis techniques to reduce the overhead of data race detection for
Java programs. As alias and pointer analysis for C based programs is notoriously conser-
vative, these techniques need to be supplemented by the runtime techniques presented in
Section 7.3. Recently, Raman et al [81] describe a scalable implementation for data race de-
tection in Habanero Java programs implemented using fine-grained structured parallelism.
Their benchmarks are equivalent to our fine-grained benchmarks, while our NAS benchmarks
use coarse grained interactions. They report analysis overheads as high as 10× and provide
valuable data about the scalability of other state of the art race detectors for multi-threaded
programs: Eraser [84] and FastTrack [32]. They report slowdowns as high as 100× for the
latter.
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Static verification [25, 42, 79, 15] and model checking [26, 44, 36, 41, 98, 64] or path-
sensitive search of the state space are alternative approaches to finding bugs in concurrent
programs. Model checkers, being exhaustive in nature, can often find all concurrency related
bugs in concurrent programs. Unfortunately, model checking does not scale with program
size. Several other systematic and exhaustive techniques [13, 17, 91, 88] for testing con-
current and parallel programs have been developed recently. These techniques exhaustively
explore all interleavings of a concurrent program by systematically switching threads at syn-
chronization points. To detect generalized (resource and communication) deadlocks [48], a
model of a program based on synchronization is extracted and run through a model checker.
CHESS [64, 65] tames the scalability problem of model checking by bounding the number
of preempting context switches to small numbers. However, CHESS is not directed towards
finding common concurrency bugs quickly—it is geared towards systematic search and better
coverage.

Randomized algorithms for model checking have also been proposed. For example Monte
Carlo Model Checking [37] uses a random walk on the state space to give a probabilistic
guarantee of the validity of properties expressed in linear temporal logic. Randomized depth-
first search [24] and its parallel extensions have been developed to dramatically improve the
cost-effectiveness of state-space search techniques using parallelism. A randomized partial
order sampling algorithm [86] helps to sample partial orders (i.e. non-equivalent executions)
almost uniformly at random. Race directed random testing [87], the precursor to Active
Testing, uses an existing dynamic analysis tool to identify a set of pairs of statements that
could potentially race in a multi-threaded execution. Each such pair is then used to bias
a random scheduler so that the statements in the pair can be executed temporally next to
each other.

A few techniques have been proposed to confirm potential bugs in concurrent programs
using random testing. Havelund et al. [8] uses a directed scheduler to confirm that a potential
deadlock cycle could lead to a real deadlock. However, they assume that the thread and
object identifiers do not change across executions. Similarly, ConTest [70] uses the idea of
introducing noise to increase the probability of the occurrence of a deadlock. It records
potential deadlocks using a Goodlock algorithm. To check whether a potential deadlock can
actually occur, it introduces noise (using yield, sleep, wait (with timeout)) during program
execution to increase the probability of exhibition of the deadlock. Our work differs from
ConTest in the following ways. ConTest uses only locations in the program to identify locks.
We use context information and object abstractions to identify the run-time threads and
locks involved in the deadlocks; therefore, our abstractions give more precise information
about run-time objects. Moreover, these techniques are not systematic as the primitives
sleep(), yield(), priority() can only advise the scheduler to make a thread switch, but
cannot force a thread switch. As such, they cannot pause a thread as long as required
to reproduce real bugs. We explicitly control the thread scheduler to create the potential
deadlocks, instead of adding timing noise to program execution.

Shacham et al. [89] have combined model checking with lockset based algorithms to
prove the existence of real races. CTrigger [77] uses trace analysis, instead of trying out
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all possible schedules, to systematically identify (likely) feasible unserializable interleavings
for the purpose of finding atomicity violations. SideTrack [106] improves monitoring for
atomicity violations by generalizing an observed trace.

A couple of techniques have been proposed to prevent deadlocks from happening during
program execution, and to recover from deadlocks during execution. When a buggy pro-
gram executes and deadlocks, Dimmunix [50] records the deadlock pattern. During program
execution, it tries to prevent the occurrence of any of the deadlock patterns that it has
previously observed. Rx [80] proposes to recover programs from software failures, including
deadlocks, by rolling them back to a recent checkpoint, and re-executing the programs in a
modified environment.

9.2 Concurrency bug analyses for other programming

models

So far there have been a lot of research effort to verify and test concurrent and parallel
programs written in Java and C/pthreads for non-HPC platforms; the huge body of literature
listed above supports this fact. There have also been effort to test and verify HPC programs,
mostly focused on C/MPI programs.

ISP [95] is a push-button dynamic verifier capable of detecting deadlocks, resource leaks,
and assertion violations in C/MPI programs. DAMPI [99] overcomes ISP’s scalability lim-
itations and scales to thousands of MPI processes. Like ISP, DAMPI only tests for MPI
Send/Recv interleavings, but runs in a distributed way. In contrast to our work, DAMPI
instruments and reasons only about the ordering of Send/Recv operations with respect to
the MPI ranks, and not about the memory accessed by these operations. Both ISP and
DAMPI assume that program input is fixed. TASS [92] removes this limitation by using
symbolic execution to reason about all possible inputs to a MPI program, but it is work only
at inception.

MPI messages can be intercepted and analyzed for bugs and anomalies. Intel Mes-
sageChecker [22] does a post-mortem analysis after collecting message traces, while MAR-
MOT [52] and Umpire [97] check at runtime. Our proposed Active Testing technique targets
finding memory bugs in HPC programs and has to extend the previous approaches with
techniques to reason about local memory accesses in conjunction with communication oper-
ations.

Some of the existing work for Single Program Multiple Data (SPMD) programs uses
static analysis, e.g. barrier matching [4, 107] or single value analysis [43]. Static analysis
requires extensive compiler support, often lacks whole program information, and reports a
large number of false positives. Debugger based approaches [60] also face challenges finding
concurrency bugs due to their non-determinism.

Recently, GPGPU (General Purpose Graphical Processing Unit) programming is increas-
ingly used for data parallel and scientific applications. GRace [108] is data race detector for
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GPU programs using a two-phase approach, like Active Testing. First, it uses static analysis
to reduce instrumentation on statements with addresses that are pre-determined at compile-
time to be race-free. Then, a dynamic checker logs and analyzes shared memory accesses
at run-time. GRace takes advantage of the more structured thread scheduling and Sin-
gle Instruction Multiple Data (SIMD) execution model of GPUs to remove false positives.
GKLEE [55] is a concolic verifier and test generator for GPU programs. By running GPU
programs on a symbolic virtual machine (VM) and exploring different branches, it can detect
data races, deadlocks, and other performance issues. GKLEE also generates concrete tests to
confirm the bugs on real GPU hardware. Active Testing for distributed memory parallel pro-
grams works for the more general Single Program Multiple Data (SPMD) execution model.
We could specialize Active Testing for GPU programs, modeling their execution behavior
and synchronization primitives and using the static analysis techniques of GRace to reduce
instrumentation overhead. Static analysis could also help UPC-Thrille reduce instrumenta-
tion overhead by pruning unnecessary instrumentation at provably race-free statements.



91

Chapter 10

Conclusion

10.1 Summary

Parallel programs are becoming more important as we see the increase of parallelism in
hardware. Writing correct parallel programs is hard because of the additional reasoning
about interference among threads. To help programmers, we have developed a methodology
called Active Testing and show how to specialize it for shared memory and distributed
memory parallel programs.

Active Testing is a combination of predictive dynamic analysis and testing. With efficient
algorithms targeting specific concurrency bugs, we predict potential bugs with low overhead.
One of the biggest disadvantages of predictive analyses is the reporting of false positives,
requiring the programmer to go over reports and manually check if they are real bugs or not.
In Active Testing, we have a confirmation phase, that take the predicted bugs and try to
reproduce them with high probability by controlling a random scheduler towards the state
required for the bug. Thus Active Testing is complete and only reports real bugs that are
reproduced by the confirmation phase, removing the burden of the programmer for checking
whether bug reports are real or not.

Through experiments, we have shown that Active Testing can effectively find concur-
rency bugs. We have found and confirmed previously known and unknown deadlocks and
atomicity violations in Java programs and libraries. The runtime overhead of previous tools
for confirming bugs can go up to 100×; we tame it by using precise abstractions to reduce
thrashing and have seen up to 20× reduction of overhead in our experiment with reproducing
deadlocks.

We have also specialized Active Testing to handle scientific applications on large scale
distributed memory systems. We use several techniques to reduce the communication among
threads for scalability. We structure the framework for a distributed analysis and remove
the necessity for a central thread. Exploiting the structure of HPC code that use barrier
synchronization, we coalesce query traffic at synchronization points. Sampling and filtering
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techniques are used to reduce redundant information. Our experiments show that with these
techniques, Active Testing scales well to thousands of cores.

Distributed memory parallel programs often use local aliases to address global memory
within a node. For these hybrid memory programs, breaking down the analysis overhead is
helpful for making analyses efficient and scalable. We introduce a hybrid sampling technique
and a persistent alias locality heuristic to bring down the overhead for data race detection
on hybrid memory models under 50% even at 2048 cores.

To summarize, our Active Testing methodology is a precise, efficient, and scalable tech-
nique to automatically find concurrency bugs. We have used it on multi-threaded and dis-
tributed memory platforms to quickly uncover known and unknown concurrency bugs. The
methodology is general enough so that it can be extended to find other types of concurrency
bugs and implemented for other programming models and languages.

10.2 Discussion

We discuss future work to improve our Active Testing implementations in the areas of 1) im-
proving performance, 2) increasing precision, and 3) additional functionality. We can increase
the performance of both phase I and phase II with improved sampling and testing strate-
gies. Handling additional synchronization primitives will increase precision of our prediction
algorithms. Handling additional concurrency bugs requires writing more analyses in our
framework.

We can speed up the confirmation phase of Active Testing by testing for multiple bugs
in a single execution instead of re-executing the program multiple times to confirm each bug
individually. This is very useful at large scale as multiple executions of a program may be
too time consuming. Iterative programs may be partitioned by barrier phases and tested for
distinct bugs at each partition. We could also partition an execution by groups of threads
and attempt to reproduce different bugs at each group.

To increase the precision of data race detection for UPC, we can extend the analysis
to handle more synchronization and data transfer operations such as strict accesses and
non-blocking collectives. Currently, these operations may show up as confirmed races, even
if they were intentionally used for custom synchronization. Other memory accesses that
depend on these operations may show up as potential bugs that need to be confirmed in
phase II, although the bugs are impossible in any execution. To handle these additional
operations require us to extend our synchronization abstractions and algorithms.

We can extend our suite of analyses to find other concurrency bugs for UPC. Deadlock and
atomicity violation detection for UPC requires a straightforward adaptation to the CADA
framework. Other analyses, such as for detecting performance bugs are also possible. For
example, we can infer repeated remote accesses that read or write the same value and use
local caches to reduce unnecessary network traffic. A barrier strength reduction analysis
could transform expensive full barriers to point-to-point synchronization when possible.
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There are several interesting open questions related to hierarchical and function sampling.
Our hierarchical approach considers two granularities: function and instruction. In order to
achieve lower overhead or to improve program coverage, one can imagine decreasing the
overhead from function level to some intermediate program block level. Because of the
presence of deep loop nests in scientific programs we believe that sampling at these two
granularities is sufficient. A theoretical question remains whether function sampling can be
made more scalable. Scalability can be improved by two approaches: 1) using data structures
with better scalability characteristics than Interval Skiplists; and 2) using better formalisms
to reduce the number of memory references that the analysis has to track. We leave exploring
these questions as future work.

An important topic for practical tools is techniques for bounding overheads and testing
time to make it a usable tool in real-world development and testing environments. We
could extend the data race detection implementation to provide maximum coverage on a
time budget: our goal is to find the maximum number of data races with no more than a
guaranteed application slowdown. Our preliminary experiences indicate that we are likely
to be able to guarantee no more than 2X slowdown. To improve coverage, we plan to
use and augment the concept of region stacks introduced in the formalism presented in
Section 7.3. We would like to experiment with several other strategies besides exponential
backoff at instruction and function level: 1) proportional sampling per unique region stack;
2) k-region context sampling (similar to k-CFA [90] and k-object-sensitive [63] analyses);
and 3) proportional sampling at functions and exponential backoff at statements.

Communication Avoiding Dynamic Analysis, a standardized framework for writing anal-
yses for distributed systems, can be beneficial in many ways. By structuring an analysis into
three distinct modes, it forces the analysis writer to rethink it to be suitable for large scale
distributed systems. It also provides a common library of frequently used functions that
can be reused in different analyses. Another benefit of the common API is that multiple
analyses could be composed to run together on an application. The total time to run all
n analyses should be less than the time to run the application n times with each analysis
running separately. We need to make sure that multiple analyses do not increase the memory
pressure of the instrumented program in an already memory constrained environment.

Another interesting research direction is providing a domain specific language (DSL) for
CADA. By describing the three modes of an analysis declaratively in a DSL with analysis
primitives, it could reduce the effort of writing new scalable and efficient analyses. Although
with additional language constraints, it might be difficult to write more general analyses.
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