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ABSTRACT
BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this
study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the
genetic associations between age of onset of AN and age at menarche.
ª 2021 THE AUTHORS. Published by Elsevier Inc on behalf of the Society of Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS)
of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We
conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation,
genetic risk score, and Mendelian randomization analyses.
RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single
nucleotide polymorphism–h2) were 0.01–0.04 for age of onset, 0.16–0.25 for early-onset AN, and 0.17–0.25 for
typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk
factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche,
and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk
scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of
onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-
onset AN.
CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and
implicate biological pathways regulating menarche and reproduction.

https://doi.org/10.1016/j.bpsgos.2021.09.001
Anorexia nervosa (AN) is an eating disorder characterized by
starvation, low body mass index (BMI), and a morbid fear of
weight gain, affecting 0.9% to 1.4% of females and 0.1% to
0.3% of males (1,2). The etiology involves a complex interplay
between genetics and the environment (3). Twin-based studies
report a heritability of 50% to 60% (4). Common genetic
polymorphisms account for a substantial portion of this heri-
tability (single nucleotide polymorphism [SNP]-h2 = 11%–17%)
(5). Peak age of onset is between 16 and 22 years in
community-based epidemiological research (1) and 14 to 19
years in clinical populations (6), and onset after age 25 is
atypical (7). To our knowledge, there are no genome-wide
association study (GWAS) or heritability studies of age of
onset of AN, and the factors that contribute to earlier rather
than later onset are unknown (7).

The Psychiatric Genomics Consortium (PGC) GWAS of AN
identified eight genomic regions associated with the risk of
lifetime AN and implicated a psychiatric and metabolic etiology
(5). Candidate gene studies have suggested that poly-
morphisms in serotonergic and appetite-regulating genesmight
be associated with age of onset (8–11). However, candidate
gene studies generally have been subject to important criti-
cisms, including nonreplication. In illnesses such as schizo-
phrenia and bipolar disorder, a higher genetic burden predicts
earlier onset and age of onset for some psychiatric traits ag-
gregates in families (12–15). The Brainstorm Consortium com-
bined molecular genetic data from 10 psychiatric disorders
including AN and found a modest, significant correlation linking
earlier age of onset to higher heritability (16). Meanwhile, twin
studies of eating disorder symptoms suggest that genetic
contributions change across development such that genetic
effects explain negligible variance prepuberty and increase
substantially in peripuberty (17). Because genetic factors influ-
ence AN risk, the first aim of this study is to investigate whether
common genetic polymorphisms account for variation in age of
onset (aim 1).

Although GWAS efforts have made tremendous contributions
to our understanding of the genetic etiology of AN, phenotypic
and genetic heterogeneity can hinder discovery of the genetic
Biological Psychiatry: Global O
architecture of psychiatric traits (18). Insight can be improved by
leveraging investigations of etiologically homogeneous illness
subphenotypes, such as early-onset presentations. Differences
in clinical presentation of ANby age are evident, althoughnotwell
established because of limited research, with early-onset cases
displaying predominantly non–binge/purge profiles, a faster rate
of weight loss, less endorsement of psychological symptoms,
more favorable long-term outcomes, and a higher male preva-
lence than typical-onset presentations (19–22). The second aim
of this study is to examine a subphenotype of AN, specifically
early-onset, to aid in discovering the genetics and biology of AN
and age of onset (aim 2).

Early pubertal timing has long been cited as a risk factor for
AN, particularly early-onset AN, but the evidence base is weak
and observational, and methodological issues complicate
investigation (17). The relatively low prevalence of AN impedes
prospective designs, and nutritional deficiencies in AN arrest
pubertal development and complicate estimates of the causal
influence of pubertal traits. Genetic designs, such as Mende-
lian randomization, can interrogate causality under specific
assumptions while avoiding these measurement confounds.
Population-based twin research has shown that shared ge-
netic factors influence liability to earlier menarche and disor-
dered eating (23). However, a significant genetic correlation
between age at menarche (i.e., a commonly used measure of
puberty timing) and AN was not evident in the largest AN
GWAS to date (5). Large-scale genomic and phenotypic data
collections and new analytic methods (i.e., genetic risk score
[GRS] analysis, Mendelian randomization) have become
available and present an excellent opportunity to examine
whether puberty timing may be a causal risk factor for AN risk
and age of onset (aim 3).
METHODS AND MATERIALS

Design and Participants

This is a secondary analysis of individual-level data from a
GWAS of AN (5), which we refer to as the parent study. Cohorts
pen Science October 2022; 2:368–378 www.sobp.org/GOS 369
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from the parent study were included here if they had cases with
age of onset data. This resulted in 13 cohorts and 55% of
cases (N = 9335) and 58% of controls (N = 31,981) included in
this study from the parent study of 33 cohorts, 16,992 cases,
and 55,525 controls (Table S1 in Supplement 2). For some
secondary analyses using AN risk as a phenotype, all cases
from the 13 cohorts above were included, resulting in 11,632
cases and 31,981 controls for those analyses. More details on
recruitment, phenotyping, DNA collection, and genotyping are
provided in Supplement 1 and other publications (5,24,25).
Supplemental Methods in Supplement 1 and Table S2 in
Supplement 2 provide phenotyping information for age of
onset and early-onset AN, which was characterized as onset
before age 13 years.

GWAS of Age of Onset of AN, Early-Onset AN, and
Typical-Onset AN

Three GWASs were conducted: 1) a within-case GWAS on age
of onset; 2) a case-control GWAS that stratified a subset of
cases by the subphenotype of early-onset AN and compared
these with ancestrally matched controls; and 3) a case-control
GWAS of typical-onset AN for comparative purposes with
respect to the genetic correlations and other secondary ana-
lyses, as detailed later (Table S3 in Supplement 2).

Quality control of genotype data is described in Supplement
1. GWASs were conducted using RICOPILI (26). Samples were
of European ancestry, and genotypes were imputed to the
1000 Genomes reference (27). The first five principal compo-
nents were included to capture ancestry-based population
stratification. Linear regression for age of onset and logistic
regression for early-onset AN and typical-onset AN were car-
ried out on imputed variant dosages using additive models to
test for associations between the markers and the phenotypes.
Cohort-level GWAS analyses were combined with fixed-effects
meta-analysis (including variants with imputation INFO scores
. 0.7). The standard genome-wide cutoff (p , 5 3 1028) was
anticonservative, given three GWASs; therefore, results were
interpreted at a Bonferroni-corrected threshold (p , 1.67 3

1028). The GWAS of age of onset had .80% statistical power
to detect genetic effects with 0.45% of the variance explained
(R2), or bs between 1.06 and 1.59 (at minor allele frequency
0.05–0.5); the GWAS of early-onset AN had .80% power to
detect an odds ratio (OR) between 1.32 and 1.70 (at minor
allele frequency 0.05–0.5, assuming a lifetime prevalence of
0.1%) (28); and the GWAS of typical-onset AN had .80%
power to detect an OR between 1.14 and 1.31 (at minor allele
frequency 0.05–0.5, assuming a lifetime prevalence of 0.9%–

4%) (29). Common variant heritability was estimated with
linkage disequilibrium score regression (LDSC) (30) and the
genomic-relatedness-based restricted maximum-likelihood
(GREML) approach (31) implemented in GCTA (31). GREML
analyses had 80% power to detect SNP-h2s $ 0.1 for age of
onset, 0.07 for early-onset AN (liability scale), and 0.03 for
typical-onset AN (liability scale) (32). Genetic correlation ana-
lyses were conducted on LD Hub (33), and genetic correlation
analyses with two AN GWASs (5,34) not on LD Hub and be-
tween early- and typical-onset AN used LDSC (30,33). Gene
mapping and tissue expression analyses were performed with
FUMA (35).
370 Biological Psychiatry: Global Open Science October 2022; 2:368–
GRSs as Predictors of Age of Onset of AN
(GRSage of onset, GRSearly-onset AN, and GRSAN)

GRS analyses were conducted for aim 1 to investigate the
evidence for a common variant–based genetic etiology. A GRS
represents the combined effect of risk alleles carried by the
individual and more powerfully predicts a complex trait than a
single-SNP association analysis. Three sets of GRS at various
p thresholds (pTs) were calculated for each individual with
PRSice-2 (36) using the leave-one-cohort-out approach: 1)
GRSage of onset using the age of onset GWAS from this study, 2)
GRSAN using the GWAS results of the parent study (5), and
3) GRSearly-onset AN using the case-control GWAS for early-
onset AN from this study (Supplemental Methods in Supplement
1). Linear regression quantified the association between
GRSage of onset, GRSearly-onset AN, and GRSAN with age of
onset with b and R2. Cohort-level analyses were combined
with fixed-effects meta-analysis. p values were corrected
using the false discovery rate (FDR) procedure (37).
GRSage at menarche as a Predictor of Age of Onset of
AN, Early-Onset AN, Typical-Onset AN, and AN Risk

Large-scale genetic data have shown moderate to strong
correlations between age at menarche and pubertal milestones
across sexes, supporting the choice to capture puberty timing
with age at menarche (38). GRSage at menarche was calculated
using the summary statistics from Day et al. (38). GRS analyses
were carried out using the procedure above to address aim 3
(Supplemental Methods in Supplement 1).

Causal Associations Between Puberty Timing and
Age of Onset of AN, Early-Onset AN, Typical-Onset
AN, and AN Risk

Mendelian randomization estimated the causal association
between age at menarche and age of onset, early-onset AN,
typical-onset AN, and AN risk, per aim 3. We used known
genetic variants in GWAS summary statistics as instruments
(5,38). Analyses were conducted with the TwoSampleMR
package of MR-Base (39). We used the inverse-variance
weighted estimator, which meta-analyzes the SNP-specific
Wald estimates, and sensitivity approaches were applied
(Supplement 1). Power calculations implied .80% power to
detect a b of 1.01 for age at menarche on AN age of onset, OR
of 0.90 for age at menarche on early-onset AN, OR of 1.16 for
age at menarche on typical-onset AN, OR of 0.90 for age at
menarche on AN risk, and b # 0.99 for AN risk on age at
menarche (40). Age at menarche was hypothesized to be
inversely associated with early-onset AN and AN risk.
RESULTS

Age of Onset Phenotype Summary

Table S1 in Supplement 2 describes the cohorts. The mean
age of onset among the 9335 AN cases (99% female) in the 13
cohorts was 15.91 years (SD = 4.29, range 5–58), and
approximately 15% had early-onset AN. A density plot of age
of onset is shown in Figure S1 in Supplement 1.
378 www.sobp.org/GOS
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Figure 1. Early-onset and typical-onset AN show significantly different
genetic correlation patterns with risk and comorbid traits. FDR-significant
differences in genetic correlations were detected in two categories—
anthropometric and reproductive—within six previously identified categories
of risk or comorbid traits of interest for AN. (A) Sixty-two phenotypes were
tested; duplicate phenotypes are not plotted (for duplicate phenotypes, we
prioritized published summary statistics or the rg difference with the lowest
SE). Full results are shown in Table S9 in Supplement 2. (B) Shows the rgs
between the phenotypes and the age of onset subphenotypes. The error
bars in both plots represent the SE. ADHD, attention-deficit/hyperactivity
disorder; AN, anorexia nervosa; BMI, body mass index; FDR, false discov-
ery rate; HbA1C, hemoglobin A1c; HDL, high-density lipoprotein; HOMA-B,
homeostatic model assessment for beta cell function; HOMA-IR, HOMA for
insulin resistance; LDL, low-density lipoprotein; PGC, Psychiatric Genomics
Consortium; RGC, ReproGen Consortium; UKB, UK Biobank.
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GWASs of Age of Onset, Early-Onset AN, and
Typical-Onset AN

The GWAS of age of onset (13 cohorts, 9335 cases) yielded no
SNPs with p values , 1.67 3 1028 (Figure S2 in Supplement
1). The SNP with the lowest p value was rs146976977
(p = 1.85 3 1027). The phenotypic variance explained by
GRSage of onset was R2 = 0.13%. SNP-h2 was 0.04 (SE = 0.05)
with LDSC and 0.01 (SE = 0.02) with GREML.

No significant loci (p , 1.67 3 1028) were observed for the
GWAS of early-onset AN (5 cohorts, 1269 cases and 25,042
controls), although one false positive was observed at the
standard genome-wide significance threshold (Figure S2 and
Supplemental Results in Supplement 1). The false-positive
designation was given because the SNP had no nearby link-
age disequilibrium friends, an unrealistically large OR, was not
genotyped (INFO score = 0.74), is low frequency, occurs in
predominantly European populations, and based on the small
sample size. GRSearly-onset AN explained 0.85% of the variance
(liability scale R2), and observed scale SNP-h2 was 0.08 (SE =
0.02) with LDSC and 0.11 (SE = 0.01) with GREML. Liability
scale SNP-h2 was 0.16–0.19 (SE = 0.04) with LDSC and
0.21–0.25 (SE = 0.02) with GREML, assuming a lifetime prev-
alence of 0.1% to 0.3% (28).

The GWAS of typical-onset AN (5 cohorts, 6998 cases and
25,042 controls) revealed two genome-wide significant loci
(chromosome 3, rs3821875, OR = 1.21, 95% CI 1.14 to 1.29,
p = 5.38 3 10210; chromosome 9, rs4641158, OR = 1.23, 95%
CI 1.15 to 1.31, p = 2.63 3 1029) (Figure S2 in Supplement 1).
The first was the top locus in the parent study and is complex
and multigenic (i.e., .100 genes) with many chromatin and
expression quantitative trait loci interactions. The second
single-gene locus was not significant in the parent study and
encodes CNTLN (centlein, centrosomal protein), which orga-
nizes microtubules (41) and is expressed in ovarian cells (42).
Gene expression was most enriched in brain tissues, although
no tissue expression p values (Figure S3 in Supplement 1), nor
gene sets (Table S4 in Supplement 2), were Bonferroni signif-
icant. GRStypical-onset AN explained 0.25% of the variance (lia-
bility scale R2). Observed scale SNP-h2 was 0.21 (SE = 0.02)
with LDSC and 0.19 (SE = 0.01) with GREML, and liability scale
SNP-h2 assuming a lifetime prevalence of 0.9% to 4%
(1,43,44) was 0.17–0.25 (SE = 0.02) with LDSC and 0.15–0.22
(SE = 0.02) with GREML.

The allelic effects at the eight genome-wide significant loci
in the AN risk GWAS were investigated in the early- and
typical-onset GWASs, and allelic effects were similar
(Tables S5a–c in Supplement 2).

Genetic Correlations of Age of Onset, Early-Onset
AN, and Typical-Onset AN

The genetic correlation between early- and typical-onset AN
did not differ significantly from unity, rg = 0.81 (SE = 0.12).
Owing to the low heritability of age of onset, the quantitative
trait, we had insufficient power to explore genetic correlations
with other traits, and none reached even nominal significance
(p , .05).

We investigated genetic correlations between early-onset
AN and 62 traits prioritized from six categories based on pre-
vious evidence from AN (5,17): psychiatric (i.e., schizophrenia,
Biological Psychiatry: Global O
major depressive disorder), anthropometric (i.e., weight,
height), glycemic (i.e., type 2 diabetes, insulin resistance), lipid
related (i.e., high-density lipoprotein cholesterol, triglycerides,
pen Science October 2022; 2:368–378 www.sobp.org/GOS 371
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leptin), reproductive (i.e., age at menarche, age at menopause),
and education and intelligence (i.e., IQ, college completion).
Nominally significant (p , .05) genetic correlations were
observed with eight traits (Table S6 in Supplement 2). Ranked
in order of increasing p values, these were reproductive, ed-
ucation, glycemic, and lipid-related traits, but none were sig-
nificant after FDR correction (37). We also considered the
genetic correlations between early-onset AN, all 7001 traits on
LD Hub, and previous GWAS of AN (Table S7 in Supplement
2). FDR-significant correlations were observed between
early-onset AN and the three previous AN GWASs and a UK
Biobank question on whether help was sought from a psy-
chiatrist for nerves, anxiety, tension, or depression. The ge-
netic correlations for typical-onset AN are in Table S8 in
Supplement 2.

We compared the early-onset AN and typical-onset AN
genetic correlations (Table S9 in Supplement 2). FDR-
significant differences emerged for reproductive and anthro-
pometric traits (Figure 1). Early-onset AN evidenced genetic
overlap with younger age at menarche, whereas typical-onset
AN did not. Early-onset AN did not genetically overlap with
anthropometric traits, whereas typical-onset AN showed
negative correlations.

GRSage of onset, GRSearly-onset AN, and GRSAN as
Predictors of Age of Onset of AN

GRS analyses supported a common genetic basis of age of
onset (Figure 2). Higher GRSage of onset significantly predicted
higher age of onset at three pTs, and GRSearly-onset AN

significantly predicted a younger age of onset at seven pTs.
GRSAN did not significantly predict age of onset. The GRSs
explained a small amount of phenotypic variance (R2) in age of
onset (Figure 2). The highest R2s across pTs were 0.13% for
GRSage of onset (at pT , .1), 0.39% for GRSearly-onset AN (pT , .4),
and 0.17% for GRSAN (pT , 1). Cochrane Qs for the meta-
control AN GWAS (2); GRSearly2onset AN, GRS computed from the case-control e
nucleotide polymorphism.

372 Biological Psychiatry: Global Open Science October 2022; 2:368–
analyses in Figure 2 (24 total) were nonsignificant (p , .05),
indicating that despite methodological differences across co-
horts (i.e., age of onset phenotyping, recruitment, and sam-
pling), heterogeneity was not evident. The forest plots in
Figure S4 in Supplement 1 depict b estimates across the co-
horts; results are shown for the best-performing pTs for illus-
tration. We also observed significant associations between
GRS quartile groups and age of onset (Supplemental Results in
Supplement 1; Figure 2). Descriptive information for the GRS
leave-one-cohort-out analyses is provided in Table S10 in
Supplement 2.

GRSage at menarche as a Predictor of Age of Onset of
AN, Early-Onset AN, Typical-Onset AN, and AN Risk

Per aim 3, we investigated the associations between
GRSage at menarche and age of onset (13 cohorts, 9335 cases),
early-onset AN (5 cohorts, 1269 cases and 25,042 controls),
typical-onset AN (5 cohorts, 6998 cases and 25,042 controls),
and AN risk (13 cohorts, 11,632 cases and 31,981 controls).
GRSage at menarche significantly predicted age of onset of AN
and early-onset AN at all pTs (Table 1). For instance, a 1 SD
decrease in GRSage at menarche was associated with an age of
onset decrease of 0.21 years (95% CI 20.31 to 20.12; at pT ,
.1) and a 20% higher odds of early-onset AN (95% CI 1.13 to
1.27; at pT , 1).

Age at Menarche as a Causal Risk Factor for Age of
Onset of AN, Early-Onset AN, Typical-Onset AN, and
AN Risk

Mendelian randomization provided evidence consistent with a
causal link between younger age at menarche and early-onset
AN (b = 20.21, SE = 0.09, p = .02) (Table 2). For each 1-year
decrease in age at menarche below the mean (in the
observed range), the odds of early-onset AN increased by 23%
(95% CI 3% to 48%). Genetically determined age at menarche
Figure 2. GRSage of onset and GRSearly-onset AN

significantly predict age of onset of AN. The p values
are false discovery rate–corrected for multiple
testing. *p , .05; ***p , .001. (A) Unstandardized bs
represent the average increase in age of onset
(years) per 1-unit increase in GRS. The error bars are
95% confidence intervals. The eight data points in
each field, from left to right, represent ascending p
value selection thresholds (pT , .001, pT , .01, pT ,
.1, pT , .2, pT , .3, pT , .4, pT , .5, pT , 1) for
inclusion of SNPs from the GWAS into the GRS (i.e.,
pT , 1 means that all SNPs were included in score
calculation). Table S10 in Supplement 2 reports
descriptive statistics for GRS. (B) Marginal means
and standard errors are plotted. The tests of signifi-
cant difference are from fixed-effects inverse-vari-
ance weighted meta-analyses of mean difference in
age of onset by GRS quartile. The data include 13
cohorts (n = 9335) for GRSage of onset and GRSAN and
5 cohorts (n = 8267) for GRSearly-onset AN. AN,
anorexia nervosa; GRS, genetic risk score; GRSAAO,
GRS computed from the within-case age of onset
GWAS; GRSAN, GRS computed from the case-

arly-onset AN GWAS; GWAS, genome-wide association study; SNP, single
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did not significantly predict age of onset of AN—although the
mostly positive, wide CI precludes definitive interpretation (b =
0.23, 95% CI 20.02 to 0.48, p = .08)—and did not predict
typical-onset AN (b = 0.06, 95% CI 20.04 to 0.16, p = .26) or
AN risk (b = 20.04, 95% CI 20.12 to 0.04, p = .27). In the
opposite direction, AN risk was not a causal risk factor for age
at menarche (b = 0.03, 95% CI 20.05 to 0.11, p = .50). Given
the lack of SNP instruments from the age of onset, early-onset,
and typical-onset AN GWASs, their causal effects on age at
menarche could not be investigated. Sensitivity analyses
complemented the findings of the inverse-variance weighted
analyses (Supplement 1).
DISCUSSION

This study provides evidence for a genetic basis for age of
onset of AN, which is conferred at least partly through com-
mon genetic variants. GRSs capturing the effects of alleles
associated with AN age of onset and early-onset AN signifi-
cantly predicted age of onset. Furthermore, results suggested
that the genetic architecture underlying earlier puberty, repre-
sented by age at menarche, may bring about an earlier onset of
AN.

The SNP-h2 of the subphenotype of early-onset AN was
similar to what has been reported for psychiatric diagnoses
including AN (SNP-h2s 0.10–0.26). The SNP-h2 of age of onset,
a quantitative trait, was low (SNP-h2s 0.01–0.04). Other psy-
chological and behavioral quantitative traits have been found
to have low heritabilities (i.e., depressive symptoms, subjective
well-being, cigarette smoking, extraversion: SNP-h2s
0.05–0.06) (16). Twin-based upper bound estimates of herita-
bility (twin-h2) of age of onset are lacking but would help to
contextualize these results, as would SNP-h2 estimates from
large, homogeneous datasets (.5000) (45). The heritabilities of
early-onset and typical-onset AN were similar. This paints a
different picture to the Brainstorm Consortium’s report
combining several psychiatric disorders, which suggested
earlier age of onset of psychiatric illness as an indicator for
higher heritability (16). The Brainstorm Consortium analysis
was a broad brushstroke view that relied on rough single es-
timates of average age of onset from experts and did not use
phenotypic data. Our approach is data based, but the esti-
mates are preliminary, given that the discovery GWASs have
small samples for psychiatric GWAS.

No loci reached genome-wide significance in the age of
onset and early-onset AN GWASs. Precise epidemiological
estimates of early-onset AN are lacking, but prevalence is low
and less than the lifetime prevalence of 0.3% in adolescents
and 0.9% in adults (1,28). This limits GWAS statistical power at
the current sample sizes. The genetic correlation between
early-onset AN and AN risk is stronger than the genetic cor-
relation of AN risk with other traits (i.e., psychiatric, anthro-
pometric, metabolic: rgs 20.36 to 0.45) (5). The genetic
correlation between early-onset and typical-onset AN was
high, although distinct patterns of genetic correlations with
other traits were observed. Early-onset AN correlated with
lower age at menarche, and typical-onset AN correlated
negatively with anthropometric traits. Studying homogeneous
clinical subphenotypes such as early-onset AN may yield novel
insight into the etiology of AN but is reliant on large
pen Science October 2022; 2:368–378 www.sobp.org/GOS 373
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Table 2. MR Analyses Testing the Causal Associations Between Age at Menarche and Age of Onset of AN, Early-Onset AN,
Typical-Onset AN, and AN Risk

Analysis
Age at Menarche/
Age of Onset of AN

Age at Menarche/
Early-Onset AN

Age at Menarche/
Typical-Onset AN

Age at Menarche/
AN Risk

AN Risk/
Age at Menarche

IVW MR, b (SE) 0.23 (0.13) 20.21 (0.09)a 0.06 (0.05) 20.04 (0.04) 0.03 (0.04)

Sensitivity Analyses

Heterogeneity, Q 238.38 212.28 295.16b 395.54b 3.39

Egger regression, b (SE) 0.29 (0.38) 20.20 (0.25) 0.17 (0.14) 0.13 (0.11) 0.41 (0.35)

Egger regression, intercept (SE) 20.002 (0.02) 20.0003 (0.01) 20.005 (0.01) 20.01 (0.004) 20.03 (0.03)

Weighted median estimate, b (SE) 0.21 (0.20) 20.09 (0.15) 0.07 (0.07) 0.0002 (0.05) 0.04 (0.04)

MR-PRESSO global 240.42 214.14 297.76b 399.03b –

Steiger Direction: truea Direction: trueb Direction: trueb Direction: trueb Direction: trueb

GSMR, b (SE) 0.07 (0.10) 20.11 (0.07) 0.16 (0.03)b 0.03 (0.02) 0.03 (0.03)

b values are differences in the outcome per year increase in age at menarche for the analyses with menarche timing as the exposure. Number of
single nucleotide polymorphism instruments in IVW, Egger, weighted median, and GSMR analyses: menarche/age of onset of AN = 208,
menarche/early-onset AN = 210, age at menarche/typical-onset AN = 210, age at menarche/AN risk = 206, AN risk/age at menarche = 3.

AN, anorexia nervosa; GSMR, generalized summary data-based Mendelian randomization; IVW, inverse-variance weighted; MR-PRESSO,
Mendelian randomization pleiotropy residual sum and outlier.

ap , .05.
bp , .001.
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phenotyping collections. Preliminary findings from this study
suggest that a reproductive biology–based etiology for some
patients may be worthy of further exploration.

Two loci were associated with typical-onset AN, one highly
multigenic locus containing many brain-expressed genes and
associated with AN risk (5), and a single-gene locus encoding a
centrosomal protein and associated with phenotypes geneti-
cally correlated with AN (5), such as body fat distribution
(adjusted-for-BMI) (46), high-density lipoprotein cholesterol
level (47), and unipolar depression (48). The typical-onset AN
GWAS was statistically powered for the initial implication of
variants, given that ORs of 1.12 to 1.28 are in the range of the
larger effects that we would expect to see in AN.

An important finding in this study was that GRSs for age of
onset and early-onset AN significantly predicted age of onset.
This provides evidence for a common variant genetic basis for
age of onset, although the clinical significance is unclear. The
age of onset difference was approximately 6 months between
the lowest and highest GRSage of onset quartiles. Future studies
characterizing the more extreme ends of the GRS distribution
of age of onset (i.e., 5%) may see considerably greater differ-
ences in timing of AN onset. Irreversible growth stunting and
long-term bone disease (49) are morbidities exacerbated by
earlier onset and could be mitigated by risk prediction tools
that predict not only illness risk but timing of onset.

The variance in age of onset accounted for by common
genetic variants was low. The explanatory power of GRS is
influenced by the underlying genetic architecture and herita-
bility and sufficiently powered discovery GWASs. Even so, the
ability to account for variance in psychiatric phenotypes has
been limited. Schizophrenia, for example, has a large genetic
component and a heritability estimate of 80% (50), but GRS
has only been able to account for 7% of variation on the lia-
bility scale—the most of any psychiatric disorder—with this
estimate increasing as GWAS power has increased (51). GRS
broadly has proven useful in research applications—by pre-
dicting incidence, disease severity, and treatment response—
374 Biological Psychiatry: Global Open Science October 2022; 2:368–
and can yield benefit to personalized prevention and early inter-
vention of disease even when accounting for low variance (52).

A prevailing difficulty in risk factor research for AN has been
how to consider peripuberty as a puzzle piece. Early-onset AN
was historically termed premenarchal AN (53), which failed to
appreciate that the starvation emblematic of the disease arrests
puberty (and omits males). The association between puberty
timing and AN can be difficult to study because the low prev-
alence of AN renders prospective association studies imprac-
tical, and in treatment-seeking populations, patients typically
have delays in help seeking. Genetic analyses circumvent some
of thesemethodological difficulties. In this study, GRS for earlier
age at menarche predicted early-onset AN and lower age of
onset. Furthermore, there was evidence consistent with earlier
age at menarche being a causal risk factor for early-onset AN.
This could suggest a genetically distinct variant of AN, geneti-
cally linked to puberty that is predisposed to an earlier age of
onset. Indeed, this aligns with previous hypotheses (54,55) that
a subset of women with eating disorders may represent an
ovarian hormone–sensitive phenotype. Furthermore, twin
studies suggest that estrogen plays a role in genetic risk for
disordered eating (17). Our results converge with clinical studies
implicating early pubertal timing as a risk factor for eating dis-
orders (17) and extend the literature by suggesting a shared or
potentially causal genetic molecular basis.

Cases with early-onset AN did not show a genetic rela-
tionship with BMI or related anthropometric indices, in contrast
to cases with typical-onset AN. Literature comparing pre-
morbid BMI trajectory between these groups is lacking.
Because metabolic factors in AN are a burgeoning area of
study, this could be an interesting finding to follow up.
Continued investigation of the subphenotype of early-onset
AN may help to inform etiology and classification.

A limitation of this study is that the phenotyping of age of
onset was not standardized across cohorts. The phenotype
was age of onset of AN diagnosis in some cohorts and age of
first symptoms in others. The reliance on retrospective recall of
378 www.sobp.org/GOS
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age of onset is also a limitation. The generalizability of the
findings to non-Europeans and males is not known. Genetic
effects may emerge earlier in males according to existing
research (56). From the statistical power analyses, it seems
reasonable to conclude that at this stage, the GWASs of age of
onset and early-onset AN are underpowered to identify indi-
vidual variants.

In conclusion, this study provides evidence that a genetic
basis underlies AN age of onset and that reproductive biology
may influence the early onset of AN. Larger, well-matched
case-control samples with standardized age of onset data
will help to further reveal the biological mechanisms that in-
fluence age of onset.
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