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ABSTRACT OF THE DISSERTATION 

Integrated Stretchable Circuits and Machine Learning for Human Vital Signs Monitoring 

By 

Yongxiao Zhou 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2023 

Professor Michelle Khine Irvine, Chair 

In the medical field, there is a growing interest in continuous health monitoring as it has the potential to 

enhance the diagnosis and treatment of patients. However, to be effective, continuous monitoring 

systems need to be comfortable for patients to wear and able to gather reliable and actionable data. 

This often requires the device to be soft and conformal to ensure patient comfort and to provide a 

stable interface for high-quality signal acquisition. While wearable technology and global connectivity 

have experienced significant growth over the last few decades, progress in stretchable wearable 

electronics has been slower. This study focuses on developing a systematic and scalable approach to 

fabricate stretchable wearable systems for monitoring human vital signs. The research employs laser 

ablation to create stretchable substrates and integrates conventional surface mounted devices (SMD) 

with stretchable substrates. Lastly, a machine learning method is introduced to analyze vital signs 

collected from patients during sleep studies. The prediction of sleep stages and events is highly 

accurate, and there is great potential for conducting at-home sleep studies. 
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Introduction 

In recent decades, wearable electronics have garnered significant interest with advancements in 

technology and medicine. These devices have evolved to become smaller in size, more sophisticated in 

function, and more affordable to the general public. Wearable electronics have also found extensive use 

in the medical field, not only due to their compactness and convenience but also because they are 

reliable for continuous monitoring. For instance, in the past, patients had to travel to hospitals and 

undergo electrocardiogram tests using wires, leads, and bulky acquisition instruments. However, with 

the advent of wearable smartwatches, users can now obtain meaningful EKG signals at any location of 

their choosing. 

Patients now typically only are seen by a care provider on a fixed schedule or when experiencing 

disease symptoms. This may lead to a delayed or improper diagnosis, particularly for chronic conditions 

requiring constant monitoring2. For instance, if asthma patients exhibit active symptoms but are not 

treated promptly, the consequences can be dire3. Continuous monitoring of vital signals can aid in 

diagnosing ailments and provide real-time warnings of potential acute symptoms. 

Despite the availability of commercialized wearable devices that can measure multiple vital 

signals, most of them are limited to capturing vital signals for short periods of time, providing only snap 

shots in time or, at best, small portions of continuous monitoring. Moreover, due to the rigid nature of 

traditional sensors, such as those found in Apple watches, they are only capable of measuring certain 

types of vital signals, such as pulse, blood oxygen, and EKG4. Other vital signals, such as blood pressure 

and respiration, are difficult to measure with stiff devices. Conversely, the common 

sphygmomanometer has a soft and inflatable bladder, and a stretchable respiratory inductance 

plethysmography band can be used to measure the expansion of the ribcage or abdomen; however, 

they are bulky and cannot provide continuous monitoring. Therefore, there is significant interest and 
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effort in developing more advanced wearable sensing systems capable of continuously measuring other 

important vital signals5. 

Stretchable electronics have become a crucial branch of wearable sensors. They have attracted 

significant interest in recent years due to the growing demand for more versatile and functional 

wearable electronics6–8, healthcare monitoring9–11, and microfluidic systems1,12. Unlike traditional 

electronic circuits, which can be rigid and unsuited for soft anatomy such as human skin, stretchable 

electronics are flexible and can be stretched to a certain threshold, allowing them to conform to soft 

surfaces. This improved conformability not only enhances user comfort but also enables high-quality 

signal acquisition in dynamic environments such as during movement or exercise. Using stretchable 

materials also allows for the acquisition of vital signals that are difficult to capture using rigid 

electronics. 

Another important consideration is how to process the signals collected by wearable devices. 

While developing reliable devices is essential, limited information can be extracted from the data 

without proper analysis. Traditional signal analysis methods are effective for some tasks but may be 

unreliable when replacing well-trained professionals in decision-making. However, with the 

advancement of computational power and artificial intelligence, integrating big data and machine 

learning can help make more efficient and accurate healthcare decisions. By applying appropriate 

machine learning algorithms to collected vital signals, efficiency can be increased, and bias can be 

decreased. In some applications, artificial intelligence outperforms humans when data is processed, and 

models are trained correctly. 

This dissertation will focus on developing and applying a soft, stretchable circuit board platform, 

which can be used to create multi-modality wearable devices. The general topics’ relationship is 

described in figure 0. Chapter 1 is the introduction and background of the entire dissertation. Chapters 

2, 3, and 4 will delve into the main topic, with Chapter 2 discussing the electrode architecture and 
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stretchable substrate, Chapter 3 covers the development of a super sensitive stretchable sensor that 

inspired the creation of the stretchable circuit board, and Chapter 4 details the applications of the 

stretchable circuit board. Chapter 5 focuses on signal processing and algorithms for utilizing the 

collected signals, specifically machine learning techniques for analyzing vital signals collected from 

sleeping patients. This approach can be extended to other vital signals for predictive analysis. Finally, 

Chapter 6 will discuss future work, identifying ways to improve existing devices and broaden their 

potential applications. 

 

 

 

 

 

 

 

 

 

Fig. 0 Relationship among different chapters in this dissertation 
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Chapter 1: Introduction and Requirements for Stretchable Wearable Electronics 

Compared to traditional sensors that consist of stiff materials, soft and stretchable electronics 

offer numerous benefits and can be applied to a range of applications, such as human wearable devices, 

to achieve better performance. However, due to a stiffness mismatch, PCBs (Printed Circuit Boards) may 

not attach well to the skin under dynamic conditions, causing relative movement between the skin and 

the device and leading to decreased signal acquisition quality. An alternative approach is to apply extra 

pressure and adhesive to reduce the relative movement at the interface. However, this may cause 

patients to feel more uncomfortable and even affect normal blood flow and other vital activities. 

In this chapter, we will review the criteria for wearable electronics and explore state-of-the-art 

technology. 

1.1: Introduction and Motivation 

The first and most important criteria for wearable electronics are safety and biocompatibility. 

Devices that use noble metals are better than those that use liquid or toxic metals, as well as devices 

that use latex and nickel, which are common allergens. Since users or patients may need to wear these 

devices for extended periods, comfort is crucial. Smaller and lighter devices are ideal as they are less 

noticeable. As previously mentioned, stiff wearable devices require extra pressure to be applied to the 

skin to ensure signal quality, which can be uncomfortable. Therefore, devices that have stiffness and 

modulus similar to human skin are preferable.  

High-quality signals are crucial for acquisition devices. Traditional stiff devices often experience 

noise and defects due to unstable connections or poor interfaces between the measured surface and 

the device. However, thin and stretchable wearables can laminate onto the skin and stretch or distort 

along with the skin, reducing relative movement and creating a stable interface between the device and 

the skin. To attach the device to the skin, it is necessary to use biocompatible adhesives13–16. Signals are 

generally transmitted from the acquisition device via wires and cables, which are stable and reliable but 



5 
 

not suitable for dynamic systems. Battery-powered and short-range wireless communication systems 

are widely used for wearable devices. These devices typically transmit data to connected smart devices, 

such as phones, which can then analyze the data locally or upload it to the cloud. However, wearable 

devices still require acquisition circuits to measure and pre-process signals before they are transmitted.  

Efforts in creating stretchable electronics have focused on two primary approaches: (1) 

generating stretchable electronic components or (2) integrating rigid components onto stretchable and 

conductive substrates. In recent years, researchers have made significant advancements in the former 

approach, developing fully stretchable transistors and capacitors17–20. However, this technique is still 

relatively immature, and its commercial feasibility and capacity for cost-effective mass production have 

not been well-defined. One major obstacle to the mass production of stretchable electronic components 

is the lack of specific production lines that are compatible with the required materials. Additionally, 

these components have lower reliability and shorter lifespans compared to traditional rigid components, 

which is another issue that must be addressed. 

In summary, the safety and biocompatibility of wearable devices and their comfort, size, and 

weight are all critical factors to consider when developing wearable electronics. By using noble metals 

and designing devices with similar properties to human skin, we can create comfortable and safe 

wearable devices that can be used for extended periods without causing discomfort or harm to the 

wearer.  

To achieve high-quality signals, it is important to have a stable and reliable interface between 

the device and the skin, which can be achieved through stretchable wearables and biocompatible 

adhesives. Short-range wireless communication systems and batteries are suitable for dynamic systems 

and can transmit data to connected smart devices. Finally, acquisition circuits are necessary to measure 

and pre-process signals before transmission.  
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While progress has been made in developing stretchable electronic components, challenges 

remain, such as commercial feasibility, cost-effective mass production, and reliability. Addressing these 

challenges will be crucial to realizing the full potential of stretchable electronics and bringing them to 

market. 
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1.2: Current State of Art of Stretchable Electronics 

1.2.1: Substrate Layer 

Although stretchable electronic circuits have limitations, some of the more attainable 

techniques for creating them involve integrating rigid electronic components in the form of surface 

mounted devices (SMDs) onto stretchable substrates. Compared to traditional rigid circuits, these 

stretchable electronic circuits can bend, twist, and conform with deformable interfaces due to the 

flexible properties of the elastomeric soft substrate material. 

Stretchable circuits typically have a substrate layer, a functional conductive layer, and a 

component layer consisting of electrical components and interconnects between the functional layer 

and rigid electrical components10,21–28. The conductive functional layer is usually bonded to a polymer-

based substrate layer, and additional components are electrically bonded to either the conductive 

functional layer or substrate layer. Depending on the application, an encapsulation layer may also be 

added for insulation purposes. 

To create these stretchable circuit boards, the substrate layer must be sufficiently stretchable to 

support other layers and components, and its stretchability determines the device’s fracture point. 

Researchers often use a stretchable elastomer, such as Ecoflex or polydimethylsiloxane (PDMS), to 

increase the substrate’s stretchability as it is easy to use and relatively inexpensive21–25,28. Some 

researchers have also utilized special surface geometry on the substrate layer, such as the Miura-ori 

structure, to compensate for strain changes when the device is stretched, increasing the overall 

stretchability of the substrate by 75%26,27. However, the choice of materials and structure design affects 

the complexity and efficiency of fabrication, functionality, lifetime, and other aspects of electronics. 
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1.2.2: Functional Layer 

Besides the substrate layer, the stretchability of the functional layer is also crucial to the overall 

circuit’s flexibility. The conductive functional layer is usually made of metal or conductive organic 

materials and can be designed differently depending on the material. Planar conductive functional 

layers usually have poor stretchability; thus, most stretchable electronic devices adopt a serpentine 

design to ensure performance under high strain10,14,21,22,25,29. For example, Xu et al. developed a novel 

free-floating conductive wire that could buckle, twist, and deform in and out of the plane, which 

improved the range of stretchability.14 However, the serpentine free-floating design and liquid 

suspension add more complexity to the fabrication, take up more space in the circuit, and affect the 

robustness of the system. It also adds more uncertainty to predicting the failure because of deformation 

and rotation of the conductive wire happen in the vertical direction. Elastomer-based conductive 

nanocomposites, which are synthesized by mixing elastomeric matrix and conductive nano-materials at 

a customized ratio, serve as alternative options to solving this problem30–33. These composites are 

intrinsically conductive and stretchable and have been widely developed by researchers. However, when 

they are stretched, these nanocomposites suffer significant increases in resistance and are, therefore, 

mostly used as strain sensors. Indeed, Cho and colleagues attempted to use silver nanoparticle ink as 

conductive material for SCBs, but the stretchability of the board was limited to 25%34. Alternatively, 

stress-relief wrinkle structures on the conductive functional layer have been shown to increase 

stretchability and may, therefore, serve as a good candidate1,9,10,28. Over the years, researchers have 

introduced different methods for creating wrinkle structures to accommodate the change in strain once 

stretched. Their relatively good stretchability and performance also make them a popular choice for 

stretchable conductive material. 
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1.2.3: Interconnects 

The interconnects are the interface between the functional material and electrical components. 

Although different types of solder are the mostly wide-used material for interconnects14,22,25,29, they still 

possess disadvantages due to their intrinsic stiffness mismatch when applied to soft polymer substrates. 

Because of the stiffness mismatch, the failure of the integrated electronic during stretching usually 

occurs at the interconnects and limits the stretchability of the circuit. For example, the wire designed by 

Lin’s group was able to stretch up to 80%; however, when stiff electronic components and interconnects 

were introduced to the circuit, the stretchability decreased to ~30%29. Liquid metal can be an alternative 

option that avoids the stiffness mismatch problem associated with solder and can also be used as the 

functional layer to provide good stretchability and performance21,23. When liquid metal is used in 

electronics, the stiffness mismatch and conductivity of the interconnects are no longer a major limiting 

factor compared to solder, as long as the SMDs are contacting the liquid metal. However, channels that 

contain liquid metal require extra precautions during fabrication and handling, as they are more prone 

to mechanical failure. Thus, an alternative to increasing the robustness of the circuit is needed to 

reinforce the interconnects or use different interconnects material. 
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1.3: Conclusion 

Overall, the field of stretchable electronics holds great promise for various applications, 

particularly in wearable devices and biomedical sensors. While there are still several obstacles to 

overcome, advancements in the integration of SMDs and stretchable substrates have allowed for the 

creation of stretchable electronic circuits that can conform to deformable interfaces. Future research in 

this area should focus on addressing the challenges involved in fabricating highly-stretchable wiring, 

creating robust interconnections, and achieving large-scale manufacturing and fabrication of stretchable 

electronics. With further developments, stretchable electronics have the potential to revolutionize the 

field of electronics and improve the performance and comfort of wearable devices and biomedical 

sensors. 
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Chapter 2: Design and Fabrication of Stretchable Electronics’ Substrate 

 In this chapter, I will introduce a fast and simple method of fabricating substrates for stretchable 

circuits using conductive nanostructured gold, referred to as ‘wrinkled gold’, as the functional material. 

The wrinkled gold structure ensures easy fabrication and high stretchability up to 130% strain without 

specific and cautious design. By leveraging the wrinkled gold’s nano-microstructure and its tolerance to 

strain, we are able to design all conductive paths as easy-to-fabricate straight lines instead of serpentine 

or mesh patterns. Additionally, unlike some partially free-floating14,25 or liquid metal21,23 designs, the 

conductive gold layer is strongly chemically bonded to the PDMS substrate layer, which ensures the 

robustness and durability of the circuit. All conductive traces are designed and laser etched precisely via 

laser ablation to ensure time efficiency. Multiple devices may be laser ablated in parallel to save time 

and achieve large-scale manufacturing capacity. To alleviate the stiffness mismatch issue between SMDs 

and the conductive layer, a specially designed low-cost nylon mesh reinforcement is sandwiched 

between SMDs and the conductive layer, and conductive silver epoxy is used.  
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2.1: Wrinkled Gold Structure 

 The fabrication process for the wrinkled gold structure involves several steps, including metal 

deposition, pre-stressing of the polystyrene sheet, shrinking protocol, application of MPTMS, covering 

with PDMS, curing, and lift-off of the thin gold film. The process is improved from previous protocols 

reported by Pegan et al. 35 and Zhou et al. 1 by controlling the thickness of the metal layer and optimizing 

the shrinking protocol. 

First, a magnetron sputter is used to deposit a 60 nm layer of gold onto the pre-stressed 

polystyrene sheet. The sheet is then placed in a convection oven at 140 °C for 13 minutes to allow the PS 

to flow back to its original shape without stress. During this step, the metal layer buckles under the 

stress caused by the shrinking of the PS, forming wrinkles. 

To ensure the surface smoothness of the sample, a piece of heated glass at 140 °C is placed on 

top of the sample, and a weight of 1 kg is applied while the sample is still soft under heat. The sample is 

then allowed to cool down to room temperature. 

Next, the sample is placed in a five mM 3-mercaptopropyl trimethoxysilane (MPTMS) ethanol 

solution for 2 hours. The MPTMS bonds to gold and silicone chemically. After rinsing away excess 

MPTMS, the dried sample is covered with polydimethylsiloxane (PDMS) and spin-coated at 500 RPM for 

30 seconds. The sample is then degassed for 10 minutes in a vacuum chamber at -96 kPa and cured 

under 60 °C for 1 hour. 

The PDMS and the functional gold thin film are lifted off from the polystyrene by submerging 

the sample in a 60 °C acetone bath for 20 minutes. The PDMS and bonded gold thin film are further 

cleaned by toluene sonication and rinsed with acetone. Finally, the substrate is dried at room 

temperature before laser ablation. 

 The wrinkle structure improves the durability and stretchability of the metal film. When the 

substrate is strained linearly, deformation of the substrate causes elongation of the thin metal film. In 
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comparison to planar thin films, the wrinkled film allows for a considerably larger dynamic range 

because the wrinkles unfold, align to the axis of strain, and stretch before cracks form. The subsequent 

cracking corresponds to a steeper increase in resistance as the cracks propagate and coalesce. In one of 

my previous research projects, as shown in figure 1a, platinum wrinkles were observed to stretch along 

the direction of the applied strain, indicated by the arrow. Cracks were formed as well. The red pseudo-

color illustrates the exposed bottom polymer substrate and the cracks around it. The wrinkles act as an 

additional strain relief, allowing for a considerably larger dynamic range before irreversible failure. 

Although gold and platinum are different, the general working principles are still the same, and this is 

the basis of stretchable wires and sensors. Usually, platinum presents more cracks and higher resistance 

change, and gold is more suitable for conductive wire applications. 
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2.2: Conductive Wires and Stretchable Strain Sensor on the Stretchable Circuit 

 All the conductive traces and strain sensors are designed in AutoCAD and etched by laser 

ablation on the substrates prepared in the previous step. The infrared laser cutter is set at 12% of its 

maximum power and 70% of its maximum speed, respectively, and 1000 PPI. The high-energy laser 

beam will penetrate through the surface metal and into the PDMS substrate. The top layer of PDMS is 

burnt, and the attached metal will come off. After the laser ablation is completed, the substrate is 

submerged in 70% ethanol and sonicated for 15 seconds to remove any possible debris and dust. The 

substrate is then dried before mounting SMDs using interconnects. 

The strain sensor used to measure respiration is embedded in the stretchable device and has 

the same thickness as the conductive wires. However, the initial piezoresistive strain sensor in our lab 

was introduced by Pegan et al. 35. Later, a super-sensitive strain sensor was introduced by Zhou et al. 1. 

Both types of strain sensor utilize platinum as the functional material, as platinum is more brittle and 

can form micro-cracks easier than gold. Gold, on the other hand, is more conductive and less sensitive to 

strain change, which makes it ideal for conductive wire material. However, with the integration of the 

strain sensor into the stretchable circuit board, extra work and time are required to deposit two types of 

metal onto the same piece of material. As tested by Kim et al.36, gold wires can work as a strain sensor 

but with lower sensitivity. Therefore, I decided to use gold as the functional material for the strain 

sensor as well. 

However, the resistance of the gold wire changes regardless of whether it is used as a wire or a 

strain sensor. To ensure that most of the resistance change comes from the strain sensor, the resistance 

of the sensor needs to be significantly larger than that of the wire. The width of the conductive wire is 1 

mm. In order to increase the local resistance of the strain sensor, the width of the trace is significantly 

reduced to 0.2 mm, and the length of the trace is elongated significantly compared to the wire. 

Serpentine design is also applied to increase the sensor density. As a result, the resistance of the sensor 
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is approximately four kOhm, while the resistance of the wire is approximately 20 Ohm. By deliberately 

designing the locations of SMDs and sensors, I am ensuring that most of the strain and resistance 

change is from the sensor area. 
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2.3: Conclusion 

The stretchable substrate and metal conductive layer are created by shrinking low-cost pre-

strained PS film. Due to the wrinkle structures on the metal film, the metal film can now be stretched 

much further compared to the plain structure. To speed up the metal deposition process, we outsource 

the metal deposition work, and we have a huge roll of PS film with pre-sputtered gold. After the casting 

and transfer process, the entire sample becomes stretchable. Then laser ablation is used to create the 

sensors and conductive wires precisely and quickly.  

 In the next chapter, I will talk about the super-sensitive strain sensor1 in detail and explain how 

it works. Furthermore, I want to describe how it facilitated the development of stretchable circuits and 

devices. 
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Chapter 3: High-Resolution Integrated Piezoresistive Sensors  

In this chapter, I present a completely encapsulated wrinkled metal thin film-based flexible 

piezoresistive sensor with a tunable elastic modulus that can measure micron-scale strain. Because of its 

extreme sensitivity, we demonstrated its effectiveness for monitoring microfluidic strain, device 

pressure, and valve state. This soft strain sensor has a dynamic range of 50% and can detect linear 

displacements as small as 5 μm (0.025% strain). The displacement of the sensor can be used to calculate 

the force applied to the sensor. Due to its high strain sensitivity to linear stretching and ultra-soft 

substrate, small pressures applied on the surface will deform the sensor, causing it to expand 

orthogonally to serve as a highly sensitive pressure sensor for microfluidic applications. The pressure 

measured from the microfluidic device can be correlated to the flow rate in the channel as well. Finally, 

the sensor can be integrated into a pneumatic valve to monitor valve actuation. To the best of our 

knowledge, there is no such sensor that can electrically monitor valve state in microfluidic devices.   

 

 

 

 

 

 

 

 

 



18 
 

 

3.1: Background and Motivation 

 Microfluidic devices used for molecular analysis, cellular analysis, and drug screening require 

precise control of parameters such as pressure and flow rate37–42. To achieve fluid delivery, off-chip 

hardware, including pressure regulators for pressure-driven flow and syringe pumps for controlling 

volumetric flow, are commonly used. Although integrated valves can be used for on-chip routing and 

switching of fluids43–45, they are still dependent on external pressure sources and solenoids for control. 

Furthermore, feedback from these systems, such as pressure or flow rate, is typically provided by 

sensors off-chip, either in the tubing connected to the device or integrated into the perfusion hardware. 

 Despite the significant advancements in micro total analysis systems in recent years, there is still 

a lack of widely accessible on-chip monitoring and closed-loop control of fundamental parameters. This 

lack of on-chip monitoring solutions creates inherent limitations in the responsiveness and accuracy of 

the measurements that can be obtained. The use of off-chip hydraulic and pneumatic sensors is limited 

by the dead volume of the interface tubing connecting the sensors to the chip. This dead volume is 

usually larger than the volume of the microfluidic device, and it can dominate the response time and 

accuracy of a measurement.  

Integrating local measurement options for fundamental parameters into microfluidic systems is 

currently challenging. While optical sensors can provide precise and reliable flow and pressure 

measurements, they require coupling to expensive and complex imaging systems46–49. Micro 

electromechanical systems (MEMS)-based sensors offer high-resolution on-chip integration, but their 

fabrication is typically complex, and contact-based measurements can lead to confounding factors such 

as fouling. For example, in-channel sensors that extend into the fluid channel can affect the local flow 

profile and suffer from fouling, which can cause inaccurate results due to increased drag force50. 
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Commercially available MEMS sensors are not designed for single-use applications, creating a cost and 

complexity mismatch that limits their widespread integration51.  

Soft and stretchable sensors have garnered considerable interest in research due to their ability 

to conform to different surfaces and their wide dynamic range under deformation. These sensors can 

convert mechanical displacement into electrical signals, such as changes in resistance or capacitance. 

Among them, liquid metal-based pressure sensors with a PDMS substrate are a popular choice for 

integration into microfluidic devices. However, channels containing liquid metal require extra 

precautions during fabrication and are more prone to mechanical failure. Alternatively, thin metal film-

based sensors offer attractive performance and robustness characteristics and are easier and safer to 

fabricate and handle52–54. These sensors are able to sense mechanical deformations in various planes, 

and the resulting electrical signals can be correlated and calibrated to physical parameters-of-interest. 

However, soft strain gauges have typically been limited to macroscale applications55–57, and there are 

few reports of soft sensors capable of monitoring micro-scale strains. Recent papers focused on micron-

scale sensors still report monitoring deformations on the millimeter scale58. Monitoring deformations 

from extremely small forces requires unique strategies. For instance, wearable sensors may not respond 

linearly in this micro regime, and gauge factor has been reported to be different between low strain 

range and high strain range35,59. Moreover, in micro-applications, the system may not be able to actuate 

the strain sensor due to limited force output. For example, the small force generated from a monolayer 

of cardiomyocytes or small pressure changes in a microfluidic channel may not be sufficient to drive 

conventional rigid force gauges. The stress generated by an isolated muscle strip ranges from 8 to 20.7 

kPa60, which is not strong enough to drive conventional rigid force gauges. 

To date, there are a limited number of papers that have demonstrated the effective application 

of flexible sensors in micro-device monitoring59,61. Parker and colleagues developed a high-sensitivity 

piezoresistive sensor using multi-material 3D printing to monitor stress induced by cardiac tissues, with 
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a reported minimum tested strain of 0.0125%61. Flexible sensors such as this have the potential to 

replace traditional optical methods to monitor tissue contractility62. Wen and colleagues developed a 

silver powder doped-PDMS-based piezoresistive pressure sensor that can be bonded to a microfluidic 

device59. When the pressure in the channel increases, the flexible sensor is stretched.  

In situations of pressure-driven flow, the pressure is directly proportional to the flow rate. Thus, 

the flow rate can be calculated from the pressure measured by a sensor in the fluid channel. While most 

report noncontact flow meters to have a resolution of tens to hundreds of μl/min63–65, some research 

groups have demonstrated nanoliter resolution temperature flow sensors66 and 0.5 μl/min resolution 

microwave flow sensors67. However, temperature flow sensors66 could be disturbed by non-flow effects, 

such as environmental heat flux flowing into sensors during experiments. Unlike other parameters, 

pressure is still a flow indicator that is independent of surrounding noise, such as electromagnetic waves 

and heat flux. In the flow sensor by Sanati-Nezhad and colleagues, pressure in a microfluidic channel 

deforms a membrane to modulate the permittivity of a microwave resonator, thus producing a flow 

measurement67. 

From the current literature on available sensors for micron-scale in-situ monitoring, there 

remains a need to develop a universal sensor compatible with soft lithography that can be scaled, 

arrayed, and used to measure a range of critical microfluidic parameters.  
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3.2: Method 

3.2.1: Sensor Fabrication 

Fabrication of the soft strain sensors was improved for sensitivity from the previous protocol 

reported by Pegan et al. 35. Specifically, we tuned the thickness of the metals, improved the shrinking 

protocol, developed a soft, customized PDMS substrate, and introduced an encapsulation layer on the 

sensors. Briefly, a layer of single-sided adhesive plastic shadow mask film is applied to a pre-stressed 

polystyrene sheet. The geometry of the mask is designed by laser etching and then lifted off from the 

polystyrene sheet. Then a thickness-controlled magnetron sputter deposits 40 nm of Pt and 5 nm of Au 

onto the masked polystyrene sheet. The mask is removed, and the polystyrene sheet is put in a 

convection oven set at 140 degree Celsius for 13 minutes. After the sheet shrinks under heat, the 

sample is placed in a 5mM 3-mercaptopropyl trimethoxysilane (MPTMS) ethanol solution for 2 hours. 

After rinsing away the excess MPTMS, the dried sample is covered with polydimethylsiloxane (PDMS), 

which has a mass ratio of 1:20:4.2 cure to base to dimethyl silicone fluid (PMX 200), and spin-coated at 

800 RPM for 35 seconds. The sample is placed in the vacuum to degas and is then cured at 60°C 

overnight. The PDMS and the functional metal thin film are lifted off from the polystyrene by 

submerging the sample in a heated acetone bath. The PDMS and bonded thin metal film are further 

cleaned by additional acetone and toluene rinsing. In order to make the metal film electrically isolated 

from the environment, another layer of PDMS with the same composition as above is spun on the other 

side at 1000 RPM for 35 seconds. The sample is placed at room temperature for at least 48 hours to 

cure. After curing, the final sensor geometry is designed, and laser etched through. The pad area of the 

sensor is sandwiched by two pieces of acrylic to reduce any potential movement to the pad and 

connection area. The 28-gauge silicone wires are connected to the pad with silver conductive epoxy 

(M.G. Chemical Ltd). 
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3.2.2: 5 μm Resolution Benchtop Setup  

A Zaber linear actuator (Zaber Technologies Inc) is mounted onto a custom acrylic stage, and the 

entire system is placed within a custom acrylic box to prevent any possible environmental air flow that 

might affect the signal acquisition. The stage contains two parts: one part is stationary; the other part is 

able to slide on a track uniaxially. The driving side of the linear actuator is connected to the moving part 

of the stage. The pad side of the sensor is mounted on the stationary side of the stage, while the other 

side of the sensor is clamped onto the moving portion of the stage. A Precision LCR Meter (Keysight 

Technologies E4980AL) is used to acquire resistance data of the sensor. A Labview-based program is 

used to control the movement of the stage and collect stage position data from the linear actuator and 

sensor resistance data from the LCR meter. The linear actuator applies 6 consecutive groups of micro-

cycles of 5 μm, and each group contains 300 cycles. Then the entire process is repeated at different 

frequencies. 

3.2.3: Pressure Sensitivity Test 

A 3mm x 15mm x 1.5mm (w x l x h) acrylic piece is placed over the sensor trace area directly, 

and a metal probe is attached to a force gauge (Mark 10 M5-025). The force gauge is mounted on the 

test stand (Mark 10 ESM 303) and moves down at 20 μm/s speed until it comes in contact with the 

acrylic piece. The test is repeated 5 times.  

3.2.4: Channel and Device Dimension and Assembly 

The microfluidic device contains two parts: a channel and a sensor. The channel is made with 

positive mold on a piece of PDMS (Young’s modulus ~2.6Mpa68) and has a cross-sectional dimension of 

50 μm x 150 μm. The total length of the channel is 241.7 mm. For flow rates from 1 μl/min to 200 

μl/min, the Reynolds number remains smaller than 40. Thus, the working range is always stable laminar 

flow, and there is no noise due to turbulence. 

The thin film-based piezoresistive sensor consists of two layers of PDMS with customized 
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stiffness (Young’s modulus ~250Kpa) and one layer of wrinkled bimetallic thin film (platinum and gold). 

The total thickness of the layer is ~100 μm. The metal film is sandwiched and firmly bonded between 

PDMS layers to stay insulated and prevent wearing and scratching. The polymer layers and wrinkled 

metal film will deform under stretching or compression; due to the brittle wrinkled structure of the 

metal film, micro-cracks will form. As more and larger cracks form on the metal film, the electrical 

resistance increases.  

The sensor is directly embedded at the bottom of the chip and serves as the base of the 

channel. The pressure required to drive fluid flow deforms the channel. As the upper and side walls of 

the channel are about 10-fold stiffer than the bottom sensor wall, most of the deformation will occur on 

the sensor surface. The electrical resistance of the sensor increases due to the deformation described 

above.  

3.2.5: Microfluidic device fabrication 

The microfluidic device comprises two parts: a sensor and a channel. The sensor part follows the 

same procedure as regular sensor fabrication until the curing of the encapsulation layer. After curing, 

the sensor is ready for plasma treatment. The channel device is fabricated through a traditional replica 

molding process (a detailed flow chart is shown in supplemental Figure s6). The positive mold is created 

by applying a layer of single-sided adhesive plastic film (Frisket Film from Grafix Art) on a piece of acrylic 

base. The shape of the channel is designed by laser etching the outline of the channel geometry. Excess 

plastic film outside the channel geometry is removed after laser etching. An acrylic well is adhered to 

the base to create a mold. 10:1 base-to-cure ratio of PDMS is poured into the mold, degassed for 20 

minutes, and cured for 2 hours under 60 °C. The PDMS channel device is removed from the positive 

mold, and a biopsy punch is used to create an inlet and outlet. After cleaning both device and the sensor 

with tape, the bottom side of the sensor and the channel side of the device are placed in the plasma 

machine (Plasma Etch) and treated for 3 minutes. Then the sensor and device are placed with treated 
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sides against each other and cured at 60 °C for over 2 hours for stronger bonding.  

 

3.2.6: Microfluidic flow rate measurement 

The outlet of the microfluidic chip is connected to a plastic pipeline and open to the air. The 

inlet of the microfluidic chip is connected to a 3 ml syringe and controlled by a syringe pump. The 

syringe pump is programmed to deliver a specific flow rate to perform relevant working range, 

resolution, accuracy, repeatability, and leak tests. An inline pressure transducer (Omega PX 409) is 

connected to the syringe outlet via a T-shaped connector. A Precision LCR Meter (Keysight Technologies) 

is used to acquire sensor resistance data. 

 

3.2.7: Valve integration 

Microfluidic valves and digital logic circuits were fabricated similarly to previous works45. 

Microfluidic channels were machined into sheets of PMMA (Polymethyl methacrylate) using a CO2 laser 

(VLS 2.3, Universal Laser Systems), and devices were assembled by aligning and sandwiching the channel 

layers (channel has a width of 400 μm and depth of 400 μm, a resistor has a width of 200 μm and depth 

of 200 μm) around a piece of sensor-embedded PDMS (~600 μm thickness). The sensor was situated 

directly over the valve. For the flow control valve, a constant vacuum pressure of -85 kPa was applied to 

one side of the flow layer while a mass air flow meter (Zephyr HAF, Honeywell) was connected to the 

other side through 150 cm of 0.02” ID Tygon microbore tubing. The valve was switched on and off with a 

period of 10 s and a control pressure of -85 kPa delivered via a computer-controlled miniature solenoid 

valve (S10, Pneumadyne, Plymouth, MN) while air flow measurements were acquired at a frequency of 

90 Hz. Inverter gates were constructed similarly, leaving the input to the inverter open to room air and 

adding a pressure sensor (PX139, Omega) to the output of the gate. Pressure measurements were 

acquired at a frequency of 50 Hz. The oscillator pump consisted of a ring oscillator formed from three 
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identical inverter gates connected in a ring and three liquid handling valves, each connected to the 

output of an inverter. The flow rate of air from the peristaltic pump was measured by a hot wire 

anemometer (Zephyr HAF, Honeywell) connected to the output of the pump, while images of the 

incident light reflected from a pump valve were acquired at 240 Hz by a camera (iPhone Xr, Apple 

Computer). The average pixel intensity of a region of interest over the valve was extracted and 

processed with a custom program written using OpenCV69.  
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3.3: Results and Discussion 

3.3.1: Characterization of Sensor Performance  

We first characterized our piezoresistive sensors with integrated nano-to-micro scale wrinkled 

structures (Figure 1). This thin film is supported on and encapsulated with a silicone elastomer. The 

resistance change of the sensors is based on crack formation within the wrinkled film when stretched. 

When the sensor is strained linearly, deformation of the substrate causes elongation of the thin metal 

film. In comparison to planar thin films, the wrinkled film allows for a considerably larger dynamic range 

because the wrinkles unfold, align to the axis of strain, and stretch before cracks form. The subsequent 

cracking corresponds to a steeper increase in resistance as the cracks propagate and coalesce. In Figure 

1a, wrinkles were observed to stretch along the direction of the applied strain, indicated by the arrow. 

Cracks were formed as well. The red pseudo-color illustrates the exposed bottom polymer substrate and 

the cracks around it. The wrinkles act as an additional strain relief, allowing for a considerably larger 

dynamic range while maintaining high sensitivity before irreversible failure.  

The composition of the functional metal thin film was tuned to achieve a balance of brittleness 

Fig. 1 (a) Unstretched (top) and stretched (bottom) sensors. On the right are scanning electron microscope images of sensor trace region. It is apparent on 

the SEM that the wrinkles align and stress in the direction of actuation.  Fractures in the thin film have been illustrated by pseudo-coloring the exposed 

polymer layer in red. (b) Sensor’s resistance response under different cyclic frequencies (from top to bottom are 0.5, 1, and  2 Hz respectively). The sensor 

(blue) tracks the displacement of 5 μm (red) very well, and the baseline shift is captured for 2 Hz as well (~265 s). 5 μm corresponds to 0.025% strain of the 

sensor. 



27 
 

and stability in the sensor to achieve a stretch resolution of 5 microns. The thin metal film is a bilayer of 

platinum and gold. Material brittleness will affect the number and size of cracks that form, along with 

the energy required to form cracks. Platinum is a more brittle material, while gold has good ductility70. A 

thicker platinum layer results in more and larger cracks but leads to unstable resistance. As a more 

ductile material, a gold layer will lead to fewer cracks, but the change in resistance is significantly 

smaller. A balance can be achieved by controlling the thickness of platinum and gold, respectively. After 

testing various combinations, we chose a 40 nm platinum along with a 5 nm gold layer because it 

provided the highest signal detection while still maintaining stability. The sensor’s substrate is 70 μm 

thick PDMS, with an encapsulation layer of 30 μm PDMS, with the wrinkled metal layer sandwiched in 

between the PDMS layers. A detailed cross-sectional dimension of the sensor is shown in supplemental 

figure s1. 

To calculate the conversion between mechanical displacement and corresponding force, certain 

approximations and assumptions were made. As the sensor is stretched at the micron scale with 

negligible deformation, the deformation of the sensor is assumed to be a uniform beam that is 

undergoing uniaxial stress and has elastic-like behavior. From equation 1:  

                                                        𝜎 = 𝐸 ∙ 𝜀                                        (1) 

where 𝜎 is stress, 𝐸 is Young’s Modulus, and 𝜀 is strain 

We can further expand on this in equation 2:  

                                                           
𝐹

𝑤∙ℎ
= 𝐸 ∙

∆𝐿

𝐿0
                                             (2) 

where 𝐹 is the uniaxial force, w and h are width and thickness of cross-sectional area, ∆𝐿 is the change 

in length, and 𝐿0 is the original length. Thus, to reduce the force required to actuate the sensor to 

displace 5 μm, the elastic modulus of the silicone substrate was lowered to 250kPa by adding dimethyl 

silicone fluid (PMX 200) to a mixture of a 20: 1 base-to-cure mass ratio Polydimethylsiloxane (PDMS), 

and substrate dimensions were adjusted to 20mm X 2mm X 0.1mm (l X w X h). The combination of these 
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constituents allows the sensor to detect as low as 20 μN uniaxial force, which corresponds to 5 μm 

linear displacement.  

Figure 1b shows a representative sensor’s behavior under different stretching frequencies. It 

demonstrates the sensor’s repeatability. The sensor’s pad area is fixed on a linear actuator (Zaber 

Technologies Inc), with the tip area clamped on a moving stage. The moving stage was cycled by 5μm at 

0.5, 1, and 2 Hz, respectively, while the sensor tracked the changes accordingly. A baseline shift of the 

stage movement was also captured at ~265s for 2 Hz. While it is not obvious in the figure, there is a 

signal delay between the position and resistance. For 0.5, 1, and 2 Hz, the response times are 169, 80, 

and 27 ms, respectively.  

To further understand the signal latency, one more experiment was performed.  As shown in 

Figure s2a, a typical sensor was stretched by 200 μm at a speed of 200 μm/s, held for 10 seconds, and 

released back by 200 μm at a speed of 200 μm/s. The position of the linear actuator and the resistance 

of the sensor were both recorded. 34 tests (N=10 sensors) were performed. On average, the actuator 

began to move at 5.03±0.01 s while the sensor began to detect a resistance change at 5.08±0.08 s. The 

stop time was defined as the time at which the sensor or actuator reached 90% of the value of the 

maximum relative change. The actuator stopped at 5.90±0.02 s, and the sensor stopped at 5.95±0.1 s. 

The data indicates that the sensors have an average response time of 50 ms. Computer processing and 

device communication time, however, also contribute to this response time. 

To observe signal hysteresis, the sensor was cycled to 150 μm and stretched at 20 μm/s speed 

20 times. The hysteresis for a representative sensor is shown in supplemental figure s2b. From this 

figure, although reproducible, the sensor’s resistance followed different trajectories when stretched and 

released at large deformations. With the loading and unloading behavior displaying different 

sensitivities, it is important to know which trajectory the sensor is on when tested. Supplemental figure 

s2c shows a representative sensitivity curve in terms of the change in resistance versus the change in 
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length. As the sensors were initially stretched, wrinkles in the thin metallic film unfolded, resulting in 

minimal changes in resistance. As strain increases and cracks form and propagate, the resistance 

increases nonlinearly. 

3.3.2: Calculating Flow and Pressure  

The sensor was integrated with the microfluidic chip by plasma bonding the microfluidic chip 

directly onto the sensor. The sensor had the same structure and design as the one used for stress-strain 

testing, except the PDMS substrate was larger and had not been cut into a dog bone shape.  

When fluid is pushed through the microfluidic device, the pressure within the channel deforms 

the membrane of the piezoresistive sensor (supplemental figure s3) and changes the electrical 

resistance of the functional metal film. As shown in Figure 2a, the channel (clear, blue) overlaps with the 

sensing area (black).  

When pressure is applied normal to the sensor surface, the sensor substrate will expand in the 

transverse plane. Lateral expansion of the sensor elongates the metal film causing cracks to appear; 

when pressure is reduced from the surface, the substrate returns to its original shape, and the fractured 

Fig. 2 (a) Picture of a microfluidic device with embedded sensor. (b) Schematic cross-section of device. (c) Pressure sensitivity or the sensor, the 

sensor is compressed 5 times. Blue line is the actual sensor sensitivity curve with red bars as standard error at each 2 kPa increments, and the 

yellow line is the linear fitting line. A R2 value of 0.942 is achieved. (d) Pressure and sensor data for flow rate increases from 0 to 50 μl/min in 10-

μl/min increments, and repeated 3 times. (e) Change of pressure vs. change of resistance as flow rate increases from 0 to 200 μl/min. (f) Post-

processed sensor resistance and pressure tracings for 10 cycles of flow rate from 0 to 20 μl/min. The processed sensor signal decay stabilizes after 

3 cycles. 
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metal will come back into contact with each other. Due to the design difference between the trace and 

pad area, the pad area had a larger metal area. However, from the simulation results in Figure s4, the 

pressure within the region that overlaps the sensor pad area was several folds smaller than that of the 

region overlapping the trace area.  

We assessed several aspects of the sensor performance, including working range, resolution, 

accuracy, and repeatability. For our microfluidic device, with a working flow rate range of 6 μl/min to 

200 μl/min, the measured pressure from the inline pressure sensor of the inlet fluid varied between 1 

kPa to 74 kPa. Figure s4 depicts a simulation of pressure within the channel under a 10 μl/min flow rate. 

The pressure map shows the gauge pressure, which can be related to deformation on the channel wall 

and sensor. Gauge pressure inside the channel drops along the pathway and reaches 0 at the open-air 

outlet indicated in Figure 2b. With a channel width of 250 μm and a trace width of the sensor of 300 μm, 

the overlap area is small in comparison to the entire sensor. The deformation of a single overlap area 

may be too small for the signal change of the sensor to be detected. Thus, multiple sensor-channel 

crosses are used to increase the overlap area to boost the signal. However, from the simulation (figure 

s4), the pressure drops along with channel length, and the deformation of the cross area will become 

smaller with less pressure. As a result, more overlap will increase the total signal sensitivity but with 

diminishing returns. With the variable pressure along the channel and the sensor having multiple 

crosses within the channel to increase signal change, it is difficult to detect localized pressure. In this 

configuration, the sensor detects overall deformation caused by the pressure.  

To confirm our results, a pressure sensitivity test was performed on the sensor. A 3mm by 

15mm acrylic flat was placed over the sensor trace area. A force gauge (Mark 10 M5-025) was fixed on a 

test stand (Mark 10 ESM 303) and placed into contact until pressure was applied to the acrylic piece. As 

the pressure increased, the sensor’s resistance increased as well (Figure 2c). The blue line is the average 

resistance across 5 runs. Red markers indicate the standard error at every 2 kPa increment. The yellow 
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line is the linearly fitted line, which has an R2 value of 0.942. From the graph, although the resistance 

value varies across sensors, they all follow the same trend and are relatively linear, especially at low 

pressures. 

Figure 2d represents a variable flow rate test showing pressure and sensor data versus time. The 

flow rate increases from 0 to 50 μl/min in 10 μl/min increments, and the entire test is repeated three 

times consecutively. 

The working range for our device is 6 μl/min to 200 μl/min. The criterium for minimum 

resolution is that the signal change between two different flow rates is at least 3-fold larger than the 

root mean squared noise. In a flow rate test ranging from 0 to 30 μl/min with 2 μl/min increment, data 

shows that the minimum detectable flow rate is 6 μl/min, and the resolution is 2 μl/min (figure s5). 

Although the flow rate working range for our device is tested to an upper limit of 200 μl/min (as shown 

in Figure 2e), the device has been tested up to 300 μl/min without failure (data not shown). 

Although sensor data shows a good correlation to changes in pressure and flow rate, the 

baseline signal decays when strain is removed, and the sensor returns to an unstretched state (as shown 

in Figure 1c). The flow rate drops from 20 μl/min to 0 μl/min, as shown in Figure 2f. Signal decay is 

noticeable when the sensor reading drops, even when the linear actuator or syringe pump is idle. The 

decaying tails observed in Figure 2d and supplemental Figure s2a illustrate the baseline decay with a 

time length greater than ~85 min. Similarly, signals at zero flow rate decrease in value as well (Figure 2d, 

four separate zero flow rate points are ~35 min, 55 min, 75 min, and 90 min). This decay complicates the 

data analysis and limits the duration that the resistance to pressure relationship is accurate but can be 

accounted for with subsequent data processing. Because baseline decay occurs in all sensor data, every 

test data has a different baseline value. In order to compare inter-trial data with different starting 

baselines, all data are subtracted by the beginning baseline resistance so that it starts at 0. Additionally, 

the decaying trend is compensated by data post-processing. As shown in Figure 2f, the value of each 
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valley was extracted and set to 0 ohms. Each valley point is used to form a linear interpolated line. The 

data points between the valleys were adjusted by subtracting the linearly interpolated lines, between 

the valley, from the signal so that the sensor signal at each zero flow rate is set to 0 Ohm.  

System elasticity is one minor issue that contributes to signal decay; another possible 

contribution to signal decay is polymer relaxation. Relaxation is an intrinsic property of the polymer 

substrate. As the channel wall and sensor floor undergo mechanical hysteresis and relaxation, the 

formation and contact points of cracks in the embedded thin metal film are affected, resulting in 

electrical hysteresis as well. Other groups demonstrated that the hysteresis in piezo-resistive-based 

elastomeric strain sensors could be potentially accounted for using machine learning 71.  

To ensure the repeatability of the sensor, conditioning tests were performed on the chip device. 

The fluid flows through the pre-primed device at 20 μl/min for 2 minutes and then pauses for 2 minutes; 

this cycle is repeated 10 times. The sensor resistance difference between 0 and 20 μl/min is compared 

for 10 cycles (Figure 2f). Although some decay remains, the difference in resistance decrease is greatly 

reduced after 3 cycles. 

3.3.3: Valve Sensor 

The microfluidic valves used in this study were normally closed elastomeric membrane valves 

similar to those first reported by the Mathies group 44. A valve consists of two layers of microfluidic 

channels sandwiched around a thin elastomeric membrane. The valve is opened by applying a vacuum 

to the control layer, deflecting the membrane, and connecting the channels on the opposite side. The 

piezoresistive sensor was embedded in the elastomeric membrane with the sensing element placed 

directly over the seat of the valve, allowing the sensor to detect the valve opening or closing when the 
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sensor was stretched or relaxed.  

We first investigated the ability of the integrated piezoresistive sensor to measure the state of a 

valve configured to switch fluid flow on or off (Figure 3a). An external hot wire anemometer (Zephyr 

HAF, Honeywell) was configured to measure the flow rate of air through the valve as it was opened and 

closed. Upon valve actuation, the integrated sensor produced a sharp spike in signal followed by an 

increase in baseline resistance when opened and a decrease when closed. These results show the 

membrane stretching before the valve opens, followed by the membrane remaining in a partially 

stretched state while the valve remains open (Figure 3c). Upon closing, the sensor signal spikes again as 

the vacuum is released, and the membrane contacts the valve seat sealing the valve closed. We 

Fig.3 (a) Sensor integrated into an elastomeric membrane valve for control of reagent flow. White scale bar is 1 cm (b) Valve construction details. 

Close up view of overhead (top inset) and cross-section of valve (bottom inset). Channels on the control and flow layers are shown in red and blue, 

respectively. Sensor is embedded in the membrane shown in green. Valve seat length (L) = 1.2 mm, valve seat width (W) = 2.4 mm, membrane 

thickness (T) = 0.6 mm. (c) Sensor resistance increases when the valve is opened or closed. (d) Sensor integrated into a microfluidic inverter logic 

gate for microfluidic computing. (e) Inverter gate construction details. Channels on the control and flow layers are shown in red and blue, 

respectively. Sensor placement shown in green. (f) Comparison of sensor resistance and inverter output over time. (g) Photo of microfluidic 

oscillator pump with integrated sensor. Light reflected from a single valve was used for high speed video analysis (inset). Only the sensor on the 

left is used. (h) Schematic of peristaltic pump controlled by integrated ring oscillator circuit. The sensor was placed under the final pump valve to 

detect opening and closing. (i) A comparison of sensor data and high-speed video for monitoring oscillation frequency show matching peaks at 

6.71 Hz. (j) Flow rate from the peristaltic pump measured using external hot wire anemometer and corresponding sensor measurements from the 

final valve in the pump. All scale bars are 1cm. 



34 
 

observed that the spike that occurred during valve state changes was dependent on the orientation of 

the sensor and was most pronounced when the sensor was placed directly over the seat of the valve. 

Data from the external air flow sensor showed the valve completely opened and closed, and the sensor 

did not interfere with the normal operation of the valve. These results indicate the piezoresistive sensor 

is suitable for monitoring the state change of the valve. 

Normally closed elastomeric membrane valves can also be used to create digital logic gates that 

are well suited for building integrated microfluidic control circuitry45. Therefore, we next investigated 

the ability of the integrated piezoresistive sensor to measure the state of a valve configured as a 

microfluidic inverter gate. This circuit adds a pull-up resistor before the vacuum connection to the valve 

and an output connection upstream of the resistor to produce a digital pressure output signal that is the 

inverse of the input signal. The sensor reported an increase in resistance of approximately 6 ohms when 

the valve was opened and returned to baseline when the valve was closed, providing a clear electronic 

signal that corresponded to changes in the pneumatic output of the inverter gate. 

Finally, to create a simple integrated microfluidic control circuit, an oscillator pump45 was 

constructed consisting of three identical inverter gates connected in a ring and three liquid handling 

valves, each connected to the output of an inverter gate (Figure 3g). When a constant vacuum pressure 

was applied to the oscillator, the pressure sequence generated by each inverter opened and closed the 

pump valves to create a peristaltic pumping action. The piezoresistive sensor was placed under the final 

valve in the pump while high speed video imaging was used to monitor the incident light reflected when 

the valve membrane was pulled open (Figure 3g inset). The oscillation frequency measured by the 

sensor agreed well with the measurements acquired using high speed video imaging, and the sensor was 

able to accurately measure oscillation frequencies as high as 24.9 Hz, approximately the Nyquist 

frequency of our acquisition device (figure 3i and supplementary figure s8). Previous work has shown 

that the frequency of a ring oscillator can be tuned by changing the input pressure45 and the average 
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flow rate of an oscillator pump is dependent on the frequency 72. Using this information, the oscillation 

frequency can be used to calculate the average flow rate from the pump. 

When placed under the final valve in the peristaltic pump (figure 3h), the sensor readings also 

aligned well with the pulsatile flow rate measurements acquired from a hot wire anemometer (Zephyr 

HAF, Honeywell) connected to the output of the pump (figure 3j). A small backflow was detected when 

the final pump valve opened, which was mostly negated by the closing of the middle valve in the pump. 

Finally, a strong forward pulse occurred when the final valve closed. Monitoring the state of the final 

valve in the pump, the sensor can be used to indicate the instantaneous flow rate produced by the 

pump. A detailed explanation of the working principle of the oscillator is provided in supplementary 

figure s7. 
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3.4: Conclusion 

We developed a soft, highly sensitive strain sensor that is able to capture 5 μm linear 

displacement (0.025% strain for 20mm sensor length) in the normal and uniaxial direction and can be 

deformed with as little as 20 μN of force (100 Pa stress). The response time of our sensor for linear 

stretching is ~50 ms. In comparison to other flexible pressure and strain sensors’ response times, which 

ranges from ~17 ms to ~100ms52,73–75, our sensor shows a relatively fast response.  

As an indirect flow meter, our sensor also can detect on-site flow rate in-situ as low as 6 μl/min 

with a resolution of 2 μl/min in our device. However, for our current set up (with only a single sensor), 

failure will occur if the device is clogged. This causes the pressure to build up and the sensor readings to 

increase, but nothing will be flowing. In future work, multiple sensors can be used such that separate 

measurements at each intersection of the channel can be acquired. This allows for more precise local 

pressure and flow monitoring. Moreover, it will allow for the detection of clogging in the channel. As the 

pressure increases prior to the clogged point and decreases after the clogged point, the sensors will 

show relatively high or low readings at different intersections.  

For monitoring the microfluidic valve state, our integrated sensor provides a more direct 

method to monitor valve actuation than existing optical monitoring methods. Currently, the sensor can 

monitor the binary status of a single valve precisely. Due to the analog output of the sensor, it could 

potentially detect partially opened valves rather than binary open and closed status; however, this may 

require individual calibration of each sensor. 

The sensor still has some drawbacks.  As mentioned in the results section, hysteresis and decay 

of the signal affect the repeatability of the sensor. With hysteresis present in our system, only the 

loading signal path is used for analysis. For our strain and liquid flow tests and experiments, we focused 

on the loading trajectory rather than the unloading trajectory for consistency, particularly as the decay is 

less severe. For the valve experiment, we are qualitatively checking for the opening and closing of the 
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valve along with other features of the actuation (such as spikes shown in figure 3). Although hysteresis 

still exists, it is not critical here and can be compensated for with machine learning algorithms 71 aspects 

for this specific application.  

Due to decay, the signal baseline varies during experiments, so the starting resistance must be 

subtracted to zero from the baseline for different experiments. Several attempts have been made to 

minimize hysteresis and decay. In one case, we observed that stiffer substrates demonstrate less decay; 

however, stiffer substrates require larger loads to deform, which may decrease the detection resolution 

of the sensor. For some physiological applications, it is impossible to apply larger forces. Thus, adjusting 

stiffness according to different applications is a potential solution to minimize hysteresis and decay. 

Additionally, the use of other substrate materials with less intrinsic hysteresis than PDMS is possible, 

too. 

We demonstrated the ability to integrate our soft and extremely sensitive strain sensor into 

microfluidic devices to provide contactless detection of pressure and correlation with flow rate. The 

sensor can also be embedded into PDMS-based valves to detect the extent of valve opening in 

microfluidic devices. Moreover, being PDMS-based, the sensor can be easily trimmed and bonded to any 

other silicone-based device via plasma treatment. The measurement results show a good linear 

correlation between sensor reading and flow rate and pressure in the device. The sensor has a flow rate 

detection range from 6 microliters per minute (μL/min) to 200 μL/min and a resolution of 2 μL/min. The 

sensor can confirm partial or complete valve actuation under different pressures. 

Because the sensor is made of PDMS, it is compatible with soft lithography and easily integrated 

into microfluidic chips. The stiffness of the substrate, along with the sensitivity and dimensions of the 

sensor, can be adapted to different applications. The soft and flexible substrate also makes it possible to 

integrate the sensor into biological applications and monitor micron-scale tissue movement. The sensors 

can also be readily arrayed; for example, they can be extended from one valve to multiple valves to 
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measure several valves’ status, which is important for large-scale microfluidic systems that require real-

time feedback to control each valve. 
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3.5: Next Step Improvement 

The strain sensor is a fundamental building block of stretchable wearable devices and 

stretchable circuit boards. By changing functional materials from platinum to gold, the sensor will show 

less resistance change and make it ideal for a circuit board application. The stiffness of the PDMS 

substrate is also tunable and can be adjusted to accommodate different situations. Another working 

concept for the strain sensor is the same as the stretchable circuit board. One crucial difference and 

challenge I need to overcome is the bonding interconnects between stiff SMDs and stretchable 

substrates, which I will discuss in detail in the next chapter. 
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Chapter 4: Surface Mount Devices and Integration Method with Stretchable Circuit 

 In the previous chapter, I talked about how to fabricate a super-sensitive strain sensor and 

demonstrated it could be used for wearable devices and microfluidics. The next step for potential 

improvement for the sensor is the acquisition and stiff components. Although the sensor is super 

sensitive and stretchable, it still requires a separate piece of acquisition device and battery packs to 

acquire and transmit the signal. It will be a huge improvement if all the components are combined as 

one. In this chapter, I will talk about how to integrate all the components together into one piece, 

including the SMDs, Bluetooth acquisition chip, conductive wires, and laser-ablated circuit substrate 

mentioned in previous chapters. As mentioned before, although there are fully stretchable electronic 

components, they are still immature and have limited functionalities. As a result, the integration of 

traditional SMDs and the stretchable substrate is an ideal way to create stretchable circuit boards with 

multiple functions.  

Briefly speaking, the interconnects have a structure that is similar to a composite material. We 

add a layer of laser-cut nylon mesh in between the SMDs and substrate as the stress relief layer, and 

conductive silver epoxy is used to electrically bond SMDs and substrate together, which is similar to 

reinforcement material. A PDMS encapsulation layer is used to form the matrix for the interconnects. 

This composite-like structure increases the robustness of the interconnects. The high-level idea is the 

mesh increases the contacting area between SMDs and substrate; the mesh’s stiffness is in between the 

substrate and SMDs. Both factors help decrease the stress and local strain around the actual conductive 

epoxy contacting points.  

We demonstrate that the composite interconnects increase the failure strain of the stretchable 

circuit board by a significant amount with a simple resistor design and LED array design. We further 

demonstrate the functionality with the implementation of human respiration monitor board and human 

ECG circuit board. 
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4.1: Background and Motivation 

 There is a significant stiffness mismatch between soft PDMS elastomers and stiff SMDs, such as 

resistors and capacitors. Compared to PDMS, the stretchability of SMDs is negligible. Without proper 

processing and assembling, when the circuit is stretched, the PDMS substrate will experience high strain, 

while the SMD will not. However, the SMD and the substrate are physically and chemically bonded 

together by conductive epoxy, and there is no strain on the substrate within this interconnects’ region. 

As a result, the substrate around the interconnects will experience a high strain difference when 

stretched. The high local stress difference will cause fracture on the interconnects and affect the circuit 

performance, eventually lead to circuit failure.  
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4.2: Mesh Design and Validation 

In order to delocalize the local strain and reduce the sudden change of strain around the 

interconnects area, an energy-dissipating layer could be utilized to increase interfacial toughness. The 

energy dissipating layer also functioned to decrease the stiffness mismatch between SMDs and PDMS 

substrate. A novel composite structure energy dissipating layer was introduced. As shown in Figure 4a, a 

piece of specially designed laser-cut nylon mesh (SEFAR NITEX) was sandwiched between SMD and 

substrate as reinforcement material. Silver epoxy was used to connect SMD electrically and 

mechanically to the conductive layer through the two holes on the mesh indicated in red dash lines. A 

PDMS encapsulation layer was added on top as the matrix of composite material. The PDMS 

encapsulation layer filled up the micro-gaps among the mesh and among layers under vacuum and 

bonded all layers and components firmly after curing.  

 Fig.4(a) Schematic of interconnect structure. b) Results for failure strain test of 4 groups. (c) images of 4 groups of interconnects. (d) Finite element 

analysis simulation of local strain for 4 types of interconnects.  
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 The mesh and the encapsulation layer together worked as an energy dissipation layer. Firstly, 

due to the hollow design, the stretchability of the nylon mesh was in between of substrate and SMD, 

which reduced the significant stiffness mismatch between the substrate and SMD. Secondly, the strain 

difference at the silver epoxy connection point was smaller when mesh was presented. When mesh was 

not used, the strain in the PDMS substrate was high, but the strain at the epoxy connection point was 

near zero; when mesh was used, the mesh had a much lower strain than the PDMS substrate, and the 

strain difference was smaller. Thirdly, the localized strain near the epoxy connection point was 

delocalized to a larger area. Originally, the high local strain difference interface was around the epoxy 

connection points. With the mesh, the stiffness mismatch between mesh and substrate is much larger 

than it is between mesh and SMD. Thus, the high local strain difference interface was delocalized from 

the small connection points to a larger mesh area. 

 Additionally, the geometry, especially the depths and curvature of the cove design on the side of 

the mesh, was important to the robustness of the interconnects. To find and validate the mesh design, a 

mesh comparison experiment on resistor design was conducted. The comparison group contains 5 

samples whose resistor was bonded to the substrate directly with silver epoxy. The rest three groups 

contained 5 straight, 4 shallow cove, and 5 deep cove mesh reinforcement designs (figure 4c). A tensile 

test was performed on each sample until it reached failure strain. The failure strain was defined as the 

strain at which the circuit became non-conductive or substrate rip. As shown in figure 4b, failure strains 

of all three groups with mesh (90.9%, 101.5%, 109.8%) were significantly higher than the control group 

(56.8%), which did not have any types of reinforcement structures. The comparison also showed that 

the deep cove design had the largest failure strain among all designs. To understand more about the 

mechanism and effect of the mesh design, a finite element analysis (FEA) of the strain concentration 

around the mesh design was performed and shown in Figure 4d. Other conditions were kept the same 

while only the mesh shape was changed. When a piece of square mesh was added to the substrate, the 
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highest strain area shifted to the four corners of the mesh, which left the middle area (where the 

interconnects are) lower strain at ~0.67. With a shallow cove shape mesh layer added, the strain 

distributed more around the four end points of the mesh (~0.98) while keeping the center cove area at a 

lower strain level (~0.52). The deeper cove design concentrated more stress around the end points and 

lowered the strain (~0.37) at the center area more than the shallow cove design. With this novel cove 

mesh island multilayer structure, most of the strain generated during stretching would be loaded 

around the tip area of the mesh, and the interconnects were protected with less strain, which ensured a 

significantly higher ultimate failure strain of the circuit. 

 The fabrication process of the interconnects is stated below. The cleaned and dried substrate 

was placed on the glass slide to ensure flatness. A designed mesh was placed on top of the conductive 

gold where SMD was going to be mounted. Sliced thin scotch tapes are attached to the side of the mesh 

to anchor it in place. Silver epoxy was mixed, prepared, and applied to the pre-cut hole on the mesh; 

electronic components were then aligned and placed on top of the mesh. Then a piece of glass slide is 

stacked on top with some pre-applied pressure and fixed to the bottom glass slide with scotch tape. The 

purpose of the top glass slide was to apply constant pressure and force all layers in close contact during 

the epoxy-heated curing process under 100 °C for 1 hour. After cure, the top glass slide and anchor 

scotch tape on the mesh were removed. Finally, PDMS was prepared as previously mentioned and spin-

coated onto the substrate at 500 RPM for 30 seconds. The PDMS was vacuumed for 10 minutes and 

cured under 60°C for 1 hour. 
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4.3: Fatigue Test  

 The durability of the surface-mounted resistor device was also testified via various strain tests. 

The device was stretched up to 80 percent strain without noticeable breakage or change in resistance at 

each strain (Figure 5a). A cyclic test was performed on this device: the device was stretched 30% more 

than 1000 times (Figure 5b and 5c). The cyclic test demonstrated a stable baseline and consistent 

waveform. To visualize the durability of the device, a circular LED array (7 LEDs with mesh composite 

interconnects, Figure 5d) was fabricated and stretched up to 50% strain. Video is recorded with the test 

simultaneously. The pixel intensity of the LEDs was extracted from each picture taken at each strain 

percentage and analyzed, which showed no perceptible brightness change (Figure 5e). In summary, the 

LED and resistor device demonstrated that SMD with the nylon mesh could be a generic way of making 

wearable devices.  

 

Fig.5(a) Resistance % change at different strain. b) Fatigue test for resistor design. (c) Insert of fatigue test. (d) LED intensity at different strain. (e) 

Average LED intensity change over different strains. 
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4.4: Stretchable Circuit Board Applications 

Inspired by Chu’s previous work10, a novel fully stretchable wireless respirational sensor is 

fabricated. From previous work, it was proved that the sensor’s strain was dynamically correlated to the 

respirational pattern. The SCB contains a Bluetooth module and a voltage divider. The entire system was 

powered by a 3.3 V battery and did not require an external power source. Compared to the resistance of 

the resistor, the resistance of the Bluetooth module was ~4 MΩ, which was ~100 folds higher. Thus, the 

relationship among voltage could be described by Ohm’s Law as the following equation: 

𝑉𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑉𝑡𝑜𝑡𝑎𝑙

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑅𝑓𝑖𝑥
∙ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟  

where 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 represented voltage across the sensor, 𝑉𝑡𝑜𝑡𝑎𝑙 represented the voltage across the entire 

system, 𝑅𝑠𝑒𝑛𝑠𝑜𝑟 represented the resistance of the sensor, and 𝑅𝑓𝑖𝑥  represented the resistance of the 

Fig.6(a)Respiration device on the subject (b)Respiration device at different strains when stretched. (c) Comparison of BIOPAC and our respiration 

device.  
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fixed resistor. The resistance of the sensor could be calculated as: 

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑓𝑖𝑥 ∙ 𝑉𝑠𝑒𝑛𝑠𝑜𝑟

𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑠𝑒𝑛𝑠𝑜𝑟
 

The Bluetooth module acquired the voltage across the sensor and sent the information to any 

connected Bluetooth devices. The entire circuit board was attached to the human subject’s abdomen via 

KT tape on its two ends, while the sensor part could be stretched freely along with the movement of the 

abdomen. As shown in Figure 6b, when the subject inhaled (left picture), due to abdomen expansion, 

the sensor would be stretched, and resistance would increase; when the subject exhaled (right picture), 

the sensor would relax back to its original status, and resistance would decrease. To verify whether the 

sensor was tracking the movement of the abdomen correctly, a time-synchronized video was recorded 

along with the sensor signal recording simultaneously. The video was analyzed by tracking the pixel 

movement of the abdomen frame by frame. The plot in Figure 6c showed a good correlation between 

the abdomen movement and the sensor voltage change.  

A fully stretchable two-lead ECG circuit board was designed and tested as the next application. 

First, a differential amplifier increased the impedance of two signal inputs from the subject and 

amplified the difference between the two inputs. Then the amplified differential signal was passed 

through an active band pass filter with a passing frequency between 0.05 Hz and 32.88 Hz. The 

differential amplifier had a gain of 24.4, and the bandpass filter had a gain of 22. Theoretically, the 

entire system could amplify the input signal difference with a gain of 537. The simulated signal 

amplification was indicated in Figure 7c. One of the inputs was grounded, and another one was a 

sinusoid signal (red line) with 2 mV peak-to-peak amplitude and 10 Hz frequency. The system produced 

the expected output voltage (blue line) of 1.07 V peak to peak, closely matching the theoretical values. 

Although it was not expected to stretch the ECG board during normal usage, the stretching of the circuit 

to different strains (up to 50%) shows negligible effect on the output signal quality. Eventually, the 
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circuit board was placed on a human subject with three dry electrodes connected (two for signal input 

and one for ground) and powered by one 3.3 V and one 1.5 V coin battery. In order to verify the 

accuracy of the Bluetooth module, the output signal was captured by a wired DAQ board and Bluetooth 

module simultaneously. From Figure 7d, it could be observed that the Bluetooth module was tracking 

approximately the same result as the wired board, and the QRS complex and T wave were clearly shown 

in the ECG diagram. As mentioned before, although the overall impedance of the gold wires was higher 

than other conductive wires28,76,77, it did not have a noticeable effect on the applications as long as the 

components’ impedances were high enough.  

 

 

 

Fig.7(a)EKG device on the subject (b)EKG device at close look. (c) Comparison between input signal and amplified output signals. (d) Human EKG 

signal acquired by wired device and wireless unit. 
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4.5: Conclusion 

In this work, a novel fabrication method to rapidly and consistently produce SCBs was 

introduced. Utilizing the commercialized pre-sputtered gold polystyrene sheet saved the sputtering time 

in the previous fabrication procedure and minimalized batch-to-batch differences. After transferring to a 

stretchable PDMS substate, the gold could be laser ablated, and the circuit design could be quickly 

fabricated. The resulting wrinkled gold conductive could tolerate high strain without noticeable 

resistance change when stretched. Commercialized silver epoxy, along with specially designed nylon 

mesh, was directly applied to the gold-component interface to create robust and conductive 

interconnects that ensured a high failure strain of up to 137%. The cyclic stability of the design was up to 

at least 1000 cycles. The combination of techniques allowed quick and reproducible conversion from 

traditional PCBs to SCBs. 

Although currently, the mesh and SMDs were mounted by hand in the current prototype, they 

could be modified and adapted to the current PCB fabrication process. The conductive epoxy could be 

pre-dispensed onto the designed locations, and the pre-cut mesh could be aligned and adhered to the 

bottom of SMDs. Afterward, the mechanical arm would pick up the SMD with the mesh and locate it in 

place. After all, components were in place, the entire board would be heat cured, and the encapsulation 

could be done afterward. 

There were several limitations to the current design. The first issue was that the resolution of 

the circuit design was limited by the laser cutter precision (~100 µm). However, this limitation could be 

improved if a more advanced and precise laser cutter was used. The second problem was the relatively 

high resistance of the wrinkled gold film. The resistance of the conductive wire was relatively high 

compared to other publications. However, the LEDs, respirational device, and ECG board applications 

still demonstrated reliable performance and negligible change in signals at different strains.  
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Overall, this novel fabrication method suggests that it may open new avenues for developing 

stretchable circuit boards by simplifying board fabrication and toughing interconnects. 
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Chapter 5: Sleep Data Analysis and Machine Learning 

 The ultimate goal of my work is to integrate sensors and acquisition devices with machine 

learning for continuous monitoring. In the previous chapters, I demonstrated that it is feasible to 

fabricate stretchable sensors with an integrated wireless acquisition device. In this chapter, to 

demonstrate the ability of machine learning for home monitoring, I analyze sleep data from a sleep 

clinic. I demonstrate how a machine learning model can be used to process the data faster and more 

accurately. I examine 5 different time series signals: photoplethysmography (PPG) channel, respiration 

flow rate channel, two respiration effort channels, and R-R interval channel calculated from ECG channel 

from sleep patients. The result turns out that the combination of PPG signals and respiration effort 

channels produces the best model among all the different combinations. 
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5.1: Introduction and Motivation 

 Sleep is a fundamental aspect of human physiology that is essential for overall health and well-

being78. During sleep, the brain and body undergo a complex series of processes that are critical for 

physical and cognitive restoration79. Sleep is composed of different stages, each of which is 

characterized by distinct patterns of brain activity and physiological changes80. These stages are 

generally classified into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep81 . 

NREM sleep is further divided into three stages based on the presence of specific brain wave patterns82, 

while REM sleep is characterized by rapid eye movements, vivid dreaming, and physiological changes 

such as increased heart rate and breathing83. 

The different sleep stages play important roles in various aspects of human physiology, including 

memory consolidation84, hormone regulation85, and immune function86. Additionally, specific sleep 

activities such as obstructive sleep apnea87, sleepwalking88, and REM sleep behavior disorder (RBD)89 can 

provide insights into underlying neurological conditions. 

The gold standard for detecting sleep stages is polysomnography (PSG), which involves 

recording various physiological parameters during sleep, including electroencephalogram (EEG), 

electromyogram (EMG), and electrooculogram (EOG). The EEG records brain activity, while the EMG 

records muscle tone, and the EOG records eye movement. These parameters are analyzed by a trained 

sleep technologist or computer algorithm to determine the different stages of sleep. 

Deep learning has become a powerful tool in recent years, and there are many researchers 

utilizing different types of neural networks to classify sleep stages90–93. The researchers that show very 

accuracy are using PSG signals, including EEG, which is only available in the sleep lab. However, in recent 

years, various wearable devices, such as wrist-worn actigraphy monitors and headbands, have been 

developed to detect sleep stages in a non-invasive manner. These devices use various sensors, such as 
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accelerometers and PPG, to track movement and heart rate, respectively. While these devices are not as 

accurate as PSG, they provide a convenient and cost-effective means of tracking sleep stages over time. 

Researchers utilize PPG signals to make predictions on sleep stages and show relatively high accuracies. 

In order to further improve the accuracy, most of them develop more advanced models. 

Besides the PPG signal, respiration is also closely related to the sleep stage and has a significant 

impact on each other. Sleep is an essential physiological process that is critical for maintaining overall 

health and well-being, while respiration refers to the process of breathing that supplies the body with 

oxygen and removes carbon dioxide. During sleep, the respiratory system undergoes changes that are 

closely linked to the various stages of sleep. The complex interplay between respiration and sleep has 

been the subject of extensive research, and a better understanding of this relationship is essential for 

the diagnosis and treatment of various sleep disorders. 

During sleep, the respiratory system undergoes significant changes that are closely linked to the 

various stages of sleep94. During non-REM sleep, respiration becomes more regular and efficient, while 

during REM sleep, it becomes more irregular and prone to interruptions. This is due to changes in the 

activity of respiratory muscles and the level of carbon dioxide in the body, which are regulated by the 

central nervous system. These changes in respiration during sleep are critical for maintaining normal 

oxygen and carbon dioxide levels in the body. 

In addition, the relationship between respiration and sleep is particularly relevant in the context 

of sleep disorders such as obstructive sleep apnea (OSA). OSA is a common disorder characterized by 

repeated episodes of partial or complete obstruction of the upper airway during sleep, leading to 

disrupted respiration and frequent arousals from sleep. The frequency and severity of apnea events in 

OSA are strongly linked to the sleep stage, with the majority of events occurring during REM sleep95. This 

highlights the importance of understanding the relationship between respiration and sleep stages in the 
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diagnosis and treatment of OSA. 

In this study, I am demonstrating a different way to improve sleep stage prediction with signals 

collected by wearable devices. Instead of a PPG signal, there are other channels, such as respiration flow 

and respiration effort sensors, for in-home sleep studies. The study illustrates that with additional 

respiration channels, the model achieves better overall performance. 
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5.2: Data Set Description 

The dataset used in this study consisted of deidentified polysomnography (PSG) recordings from 

the UCI Sleep Center. The files were deidentified and exported into European Data Format (EDF), 

preserving only the primary diagnosis of the record.  All clinical studies were conducted in the UCI Sleep 

center according to the American Academy of Sleep Medicine (AASM) practice parameters for in-lab 

sleep studies using a Natus SleepWorks PSG ® acquisition system.  

Sleep staging was performed by one of two registered polysomnography technologists who 

participated in interscorer variability quality assurance as required by AASM. All studies were overread 

by one Board certified Sleep Physician (RNK). Scoring was done according to the AASM scoring manual 

(ref). 

The dataset included 123 PSGs. 33 had OSA (+ about 20 from Vena files). The remainder (20+20+ 

a few from Vena files) had other sleep disorders 
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5.3: Method 

5.3.1: EEG arousal data set preparation: 

The flow for data pre-processing is illustrated in figure 8. The data is first Z-score normalized to 

achieve a mean of 0 and standard deviation of 1, then it is downsampled to 64 Hz. The data is 

segmented into 30 seconds duration according to EEG arousal event labels. Finally, different channels 

are concatenated to create input data. 

123 subjects’ data is used to predict the existence of EEG arousal events. The existence of 

arousal events is manually scanned and determined based on EEG channels by trained technicians. In 

this study, five channels are used to determine the sleep stages, including a photoplethysmogram (PPG) 

signal from a finger pulse oximeter, respiration flow rate, respiration effort sensor on the chest, 

respiration effort sensor on the abdomen, and RRI calculated from ECG channel. Each data point 

contains 5 channels of 30 seconds of information, and all channels are down-sampled from 512 Hz to 64 

Hz to increase calculation efficiency. The length of each channel in each data point is 1921. The start 

point of each event data point is 15 seconds before the arousal event label time; the end point is 15 

seconds after the arousal event label time. The baseline is defined as any random 30 seconds periods 

Fig.8 Four major steps to pre-process the data: Z-score normalization, down-sample to 64 Hz, segment into 30 seconds, concatenate different 

channels 
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that have no arousal events and no motion artifacts. The entire data preparation is performed in MatLab 

R2022b. 

RR interval is calculated from the ECG channel by referring to Geng et al. and Wei et al. 96,97. 

Briefly, 5 minute ECG signal prior to the 30 seconds sleep stage is selected. If there is discontinuity or 

artifacts, this 5-minute segment is abandoned. All R peaks within the 5 minutes are extracted, and RR 

intervals are calculated except the last R peak. The equation is shown below: 

𝑅𝑅𝐼𝑖 =  𝑅𝑖+1 − 𝑅𝑖  

Because the RRI is not continuous or equally distanced, a spline interpolation is applied to the 

signal to create an equally-spaced input signal. Because the RRI is different among different patients, Z-

score normalization is performed for each 5-minute section. The RRI signal has the same length as other 

channels. 

In order to train the model to pay more attention to the shape and relative shape change of the 

signal instead of the absolute value of each channel, Z-score normalization is performed on all data 

points. For example, every data point is subtracted by the mean value of the channel for the entire 

recording duration and then divided by its standard deviation of the channel for the entire recording 

duration. After the normalization, every channel has a mean of zero and a standard deviation of 1, 

although, within each segment, this may not be the case. After normalization, every data point has a 

dimension of 5 x 1921 (channel x timestep). Data is examined to remove potential motion artifacts. A 

peak detection method is used. Within the 30 seconds period, if there are less than 20 peaks or more 

than 60 peaks exist in the PPG signal (less than 40 or more than 120 heartbeats per minute during sleep 

are highly uncommon), this entire data point is excluded from the experiment. No further data pre-

processing is performed besides normalization and the number of peaks threshold cutoff.  

The complete data set contains 22772 data points with 11210 (49.23%) events and 11562 

(50.77%) baselines. The data set is split into 80% (18217) training set, and 20% (4555) test set randomly. 
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5.3.2: Sleep stage data set preparation: 

 The flow for data processing is similar to EEG arousal event detection. The data is first Z-

score normalized to achieve a mean of 0 and standard deviation of 1, then it is downsampled to 64 Hz. 

The data is segmented into 30 seconds duration according to sleep stage labels provided by sleep 

technicians. Finally, different channels are concatenated to create input data. 

 123 subjects’ data are used in the sleep stage prediction. Each subject’s sleep stage is manually 

labeled every 30 seconds based on EEG and EMG channels by trained technicians. In this study, five 

channels are used to determine the sleep stages, including a photoplethysmogram (PPG) signal from a 

finger pulse oximeter, respiration flow rate, respiration effort sensor on the chest, respiration effort 

sensor on the abdomen, and RRI calculated from ECG channel. The entire data preparation is performed 

in MatLab R2022b. Each data point contains 5 channels of 30 seconds of information, and all channels 

are down-sampled from 512 Hz to 64 Hz to increase calculation efficiency. The length of each channel in 

each data point is 1921. 

 In order to train the model to pay more attention to the shape and relative shape change of the 

signal instead of the absolute value of each channel, every 30 seconds segment is normalized to itself. 

For example, every data point is subtracted by its mean value within 30 seconds and then divided by its 

standard deviation within 30 seconds. After the normalization, every channel has a mean of zero and a 

standard deviation of 1. After normalization, every data point has a dimension of 5 x 1921 (channel x 

timestep). Data is examined to remove potential motion artifacts. A peak detection method is used. 

Within the 30 seconds period, if there are less than 20 peaks or more than 60 peaks exist in the PPG 

signal (less than 40 or more than 120 heartbeats per minute during sleep are highly uncommon), this 

entire data point is excluded from the experiment. No further data pre-processing is performed besides 

normalization and the number of peaks threshold cutoff.  
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The complete data set contains 99981 data points. In these 99981 data points, 24.54% (24541) 

are wake stage, 5.80% (5798) are N1 stage, 40.02% (40017) are N2 stage, 15.70% (15770) are N3 stage, 

13.86% (13855) are REM stage. The data set is split into 80% (80010) training set, and 20% (19971) test 

set randomly. 

5.3.3: Neural network architecture and training process 

 Inspired by Korkalainen et al. 90, we implement a convolutional neural network (CNN) connected 

with a bidirectional long short-term memory network (BiLSTM) to classify the sleep stages. The structure 

is presented in figure 9. CNN is used to learn useful information from the shape, such as the relative 

height of each peak, the slope of the peak, or whether the peak is flatter or sharper. BiLSTM is used to 

learn temporal information within the 30 seconds window, such as the time lag between the first and 

second peaks. There are 3 independent classification systems, 3 stages (wake, Non-REM, REM), 4 stages 

Fig.9 Architecture of the neural network. It contains one CNN module and one BiLSTM module. 
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(wake, N1+N2, N3, REM), and 5 stages (wake, N1, N2, N3, REM) systems. Furthermore, we modify the 

input channels to be different combinations of the original input to test which input combination 

produces the best result. The different combinations are shown in figure 10. In total, we test 8 different 

signal combinations and compare the results among them. The model architecture is the same for 

different models except for input dimensions and output dimensions. The network is implemented in 

Python 3.7  

with PyTorch 1.13.1.  

 In the CNN section, there are six 1-D convolutional layers, two max-pooling, and one global 

average pooling. Each 1-D convolutional layer is followed by a 1-D batch normalization and a rectifier 

linear unit (ReLU) for activation. There is a max-pooling layer after the second and the fourth 

convolutional layer. A global average pooling is connected at the end of CNN. After the global average 

pooling, the output is fed into BiLSTM. The BiLSTM contains 2 layers of 256 units with a dropout rate of 

0.5 to reduce overfitting. The output from the last layer at the last timestep is fed into a fully connected 

layer to make a final decision with the dimensions equal to the number of predicted classes. The fully 

connected layer has a dropout rate of 0.5. 

Fig.10 Different signal combinations that used in the model 
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 The data is randomly divided into mini-batches with a batch size of 32 during training. Each 

batch is fed into the network in sequence. The original input dimension is 32 samples x # of channels x 

1921 timestep, while the output dimension is 32 samples x # of categories. The category that has the 

highest probability will be the final categorical prediction. During training, categorical cross-entropy loss 

and Adam optimizer are used. An L2 regularization term is also added to the optimizer to reduce 

potential overfitting. The initial warm-up learning rate is 0.001 to avoid potential local minimum, and 

after 15 training epochs, the learning rate is decreased to 0.0001 for further fine training. After each 

epoch is trained, the model is evaluated on the test set and training set. The training is done after 50 

epochs. The model that has the highest test accuracy among 50 epochs will be saved.  

5.3.4: Statistical terms 

 In this study, 5 scores are used to describe the performance of the model. The first score is 

accuracy, which is: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 

The second score is precision, which is: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

The third score is recall, which is: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

The fourth score is F1 score, which is: 

𝐹1 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The fifth score is cohen's kappa score, which is: 

𝜅 =  
  𝑝0 − 𝑝𝑒

1 −  𝑝𝑒
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Moreover, because the precision, recall, and F1 score are class dependent, there are weighted-

precision, weighted-recall, and weighted-F1 scores calculated to provide a better model overall score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

5.4: Results 

For the EEG arousal event detection and sleep stage classification, I alternate the combination of 

input channels and compare the performances of different combinations. These combinations include 

PPG alone, respiration flow alone, respiration effort alone, PPG + respiration flow, PPG + respiration 

effort sensor, PPG + respiration flow + respiration effort sensor, PPG + respiration effort sensor + RRI, 

and PPG + respiration effort sensor + respiration flow + RRI. 

I perform four different classification tasks for sleep stage detection. The first one is wake and 

sleep classification; the second one is wake, non-REM, and REM sleep; the third one is wake, N1 + N2, 

N3, REM sleep; the fourth one is wake, N1, N2, N3, REM sleep. Within each classification task, the 

combinations of input channels are the same as the EEG arousal event.  

5.4.1: EEG arousal event detection 

 The summary of the EEG arousal event is shown in the table below. The best model is marked in 

red color. The confusion matrix of the best model is shown in figure 11. The best model is the one using 

Fig.11 Confusion matrix for EEG arousal event classification 
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PPG and two respiration effort sensors. By comparing the performance between PPG and PPG + effort 

sensors, we can observe most of the prediction power comes from the PPG channel, but by adding the 

effort sensor’s channel, the performance is still increased. The confusion matrix tells that the model is 

able to retrieve 81% of events correctly but only 68% of the baseline events. This indicates the model 

needs improvement on baseline (no events). 

5.4.2: Wake and sleep classification 

This model is a 2 stages classifier (wake, sleep). The best model uses PPG, flow, and 2 effort 

sensors. The input dimension is 32 x 4 x 1921 (batch size x # of channels x timestep). The output’s 

dimension is 32 x 2 (batch size x # of classes). This model has a test accuracy of 94.89%. The precision, 

recall, and F1 score for each class are shown below: for wake, 90.31%, 82.96%, and 86.48%; for sleep, 

95.71%, 97.72%, and 96.70%. The weighted precision, weighted recall, and weighted F1 score are 

Fig.12 Confusion matrix for 2 stages, 3 stages, 4 stages, and 5 stages classification 
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94.61%, 94.70%, and 94.62%. The kappa value is 0.83. The normalized confusion matrix is shown in 

figure 12a. From the confusion matrix, we can see that the model is able to predict 98% of the sleep 

correctly but only 83% of wake correctly. One potential reason is the data screw. In the entire data set, 

only 24.54% are wake stage. Because the model is trained on much fewer wake data, it will have worse 

performance on the wake stage. 

5.4.3: Wake, non-REM, and REM classification  

This model is a 3 stages classifier (wake, Non-REM, REM). The best model uses PPG, flow, and 2 

effort sensors. The input dimension is 32 x 4 x 1921 (batch size x # of channels x timestep). The output’s 

dimension is 32 x 3 (batch size x # of classes). This model has a test accuracy of 90.59%. The precision, 

recall, and F1 score for each class are shown below: for wake, 88.63%, 87.45%, and 88.04%; for Non-

REM, 91.67%, 94.84%, and 93.23%; for REM, 88.13%, 76.99%, and 82.18%. The weighted precision, 

weighted recall, and weighted F1 score are 90.51%, 90.59%, and 90.47%. The kappa value is 0.82. The 

normalized confusion matrix is shown in figure 12b. We can see REM and Wake's stages are predicted 

with less performance. In the dataset, 24.54% are wake stage, and 13.86% are REM stage, so the worse 

performance is reasonable.  

5.4.4: Wake, light sleep, deep sleep, and REM classification  

This model is a 4 stages classifier (wake, light sleep (N1 + N2), deep sleep (N3), REM). The best 

model uses PPG and 2 effort sensors. The input dimension is 32 x 3 x 1921 (batch size x # of channels x 

timestep). The output’s dimension is 32 x 4 (batch size x # of classes). This model has a test accuracy of 

83.69%. The precision, recall, and F1 score for each class are shown below: for wake, 88.70%, 84.43%, 

and 86.52%; for light sleep, 81.31%, 87.21%, and 84.16%; for deep sleep, 82.80%, 76.35%, and 79.45%; 

for REM 86.19%, 80.57%, and 83.28%. The weighted precision, weighted recall, and weighted F1 score 

are 83.84%, 83.69%, and 83.67%. The kappa value is 0.76. The normalized confusion matrix is shown in 



66 
 

figure 12c. 24.54% are wake stage, 45.82% are light sleep stage, 15.70% are deep sleep stage, and 

13.86% are REM stage.  

5.4.5: Wake, N1, N2, N3, and REM classification  

This model is a 5 stages classifier (wake, N1, N2, N3, REM). The best model uses PPG and 2 effort 

sensors. The input dimension is 32 x 3 x 1921 (batch size x # of channels x timestep). The output’s 

dimension is 32 x 5 (batch size x # of classes). This model has a test accuracy of 80.69%. The precision, 

recall, and F1 score for each class are shown below: for wake, 84.41%, 89.94%, and 87.09%; for N1, 

42.99%, 16.15%, and 23.48; for N2, 79.34%, 84.13%, and 81.67%; for N3 81.55%, 77.31%, and 79.38%; 

for REM 82.88%, 83.81%, and 83.34%. The weighted precision, weighted recall, and weighted F1 score 

are 79.51%, 80.69%, and 79.74%. The kappa value is 0.73. The normalized confusion matrix is shown in 

figure 12d.  

In the data set, 24.54% (24541) are wake stage, 5.80% (5798) are N1 stage, 40.02% (40017) are 

N2 stage, 15.70% (15770) are N3 stage, 13.86% (13855) are REM stage. The small percentage of N1 

results in low performance in the N1 stage. Another finding is the model classifies 31% of N1 as wake, 

while 45% of N1 as N2. This potentially indicates it might be true that N1 is the stage when the person 

starts to fall asleep, and it is a stage between wake and N2. This transition stage may be very similar to 

wake and N2 as well, and this might be another reason for bad N1 performance. For N3 stages, 21% are 

classified as N2, and 7% of N2 are classified as N3. A good way to improve the model is trying to look 

into those incorrect predictions and examine them manually. Overall, the confusion matrix gives a good 

understanding of how we can improve the model in the future. 

5.4.6: Precision, recall and F1 score summarization table for sleep stages 

 The averaged precision, recall, F1, and Cohen’s Kappa are shown in the table below. In the table, 

each row represents a different classification task, and each column represents a different input signal 
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combination. The best-performing model is marked in red. The models that contain RRI information are 

in blue.  
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5.5: Discussion 

Although there is an intrinsic relationship between sleep stages and respiration, nobody 

analyzes this relationship. Traditionally, the PPG signal is a popular alternative that many researchers 

use to predict sleep stages besides EEG signals. The data presented in the previous section demonstrate 

that instead of the PPG signal, respiration signals and sleep stages also have a correlation and lead to 

higher model performance. For all 4 different classification tasks, the precision, recall, and F1 scores of 

respiration effort-only models are higher than PPG-only models (the third column and the first column). 

Moreover, when combining PPG and effort sensors, the model performs better than any of the signals 

alone.  

From the summarization table, one trend is obvious. Looking at each column, all the 

performance numbers decrease when the model tries to predict more stages. This intuitively makes 

sense because more categories will increase the classification difficulty.  

 Another finding is the best models are either PPG + respiration effort sensors or PPG + 

respiration effort sensors + flow sensors. The performance of these two combinations is higher than any 

other signals alone or other combinations. The respiration flow channel does not add too much value to 

the model. Thus, for the sake of fewer inputs, the respiration flow channel is not necessary for this 

study. But it might still be useful for other tasks.  

 Another finding is that more input channels do not always provide better results. From the 

results, it can be observed that the models containing RRI channel perform worse than the model 

without RRI channels. Adding the RRI channel to the model will decrease the model's performance. One 

possible reason for this is due to the mechanism of CNN. At each CNN layer, there are multiple kernels 

with different parameters. However, all the kernels are shared among all input channels. That is saying, 

for each kernel, the results are the summation of all channels, and each channel has the same weight 

percentage. In this case, if one input channel contains more noise, the addition of this channel will add 
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more noise to the final results. The RRI channel is the one that contains noise and worsens the overall 

performance. 
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5.6: Conclusion 

5.6.1: Summary 

 I demonstrate that EEG arousal events can be detected with PPG and respiration channels 

accurately. Different sleep stages can also be classified accurately. It is not necessary to perform feature 

extraction from the raw signal because any feature extraction may cause the loss of information. Only Z-

score normalization is necessary for data pre-processing. There is still improving the potential for the 

models, especially for multi-stages. Data screw is a common problem for all sleep stages data sets. In 

this study, 24.54% (24541) are wake stage, 5.80% (5798) are N1 stage, 40.02% (40017) are N2 stage, 

15.70% (15770) are N3 stage, 13.86% (13855) are REM stage. It can be observed that F1 scores from low 

to high are N1, N3, and REM. All models perform worst on N1 stage prediction due to a lack of N1 data. 

The performance on the REM stage is also lower than in other stages. 

This study still makes it possible to monitor the sleep status of patients at home without other 

PSG channels. With PPG and respiration effort sensors, the model is able to differentiate whether the 

patient is awake or asleep with good accuracy. It can also predict if the patient has an EEG arousal event 

or not. 

5.6.2: Future works 

 The study shown in this chapter demonstrates that with the deep learning model, detection of 

EEG arousal events and sleep stages is possible for at-home study. More patients can potentially benefit 

from this study. They do not need to go to the sleep lab, and less equipment is needed to collect the 

sleep data. One challenge is the model’s accuracy, especially for fine stages differentiation such as N1 

and REM. This could be improved by collecting more data for model training. A better model will also 

help. Currently, many researchers have already demonstrated that a transformer-based natural 

language model could be applied to time series prediction98–101. The transformer-based model tends to 

work better than CNN + BiLSTM-based model for time series prediction.  
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Chapter 6: Discussion and future prospect 

6.1: Summary 

 The utilization of wearable sensors for tracking human vital signs necessitates consideration of 

patient and hardware factors, which give rise to distinct requirements. With regard to the sensors 

themselves, it is crucial that the entire system is soft and flexible enough to mold to the skin. This is 

crucial not only for ensuring patient comfort but also for obtaining accurate signals. On the other hand, 

patients must have a solid grasp of human anatomy in order to determine the type and quality of signals 

that can be obtained from the body. Our aim in this study was to provide initial findings in both of these 

domains, with the expectation that they will ultimately lead to the development of comprehensive 

human vital signs monitoring system. 

 In chapter 2, I discuss a novel method to fabricate a stretchable conductive substrate. It is a 

method that is improved from Khine lab’s previous wrinkle surface fabrication process. More 

specifically, we outsource the sputtering process and get rid of the shadow mask method. Laser ablation 

is used to create patterns on the substrate. This process saves a lot of time and increases production 

efficiency by fabricating in parallel.  

 In chapter 3, a process of fabricating super-sensitive strain sensors is explored. We tune the 

sensor’s sensitivity by modifying the metal layer’s thickness and composition substrate layer’s stiffness. 

With the improved sensitivity up to 5 um, the sensor is able to track micro-movements. Additionally, the 

sensor is able to detect the opening and closing of valves.  

 In chapter 4, I introduce a new approach to creating stretchable circuit boards (SCBs) that is 

both rapid and consistent. The method involves using a pre-sputtered gold polystyrene sheet, which 

eliminates the need for sputtering time and minimizes differences between batches. The gold layer can 

then be laser ablated and transferred onto a stretchable PDMS substrate to quickly create the circuit 
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design. The resulting wrinkled gold conductive layer can withstand high levels of strain without 

experiencing any noticeable change in resistance when stretched. To create durable and conductive 

interconnects that can withstand strains up to 137%, a commercialized silver epoxy and specially 

designed nylon mesh were directly applied to the interface between the gold component and the 

stretchable substrate. Additionally, the cyclic stability of the design was tested and shown to last for at 

least 1000 cycles. By combining these techniques, this method enables a rapid and reproducible 

transition from traditional PCBs to SCBs. Different SCBs that can measure human EKG and respiration 

rate are fabricated to demonstrate the functionality of the SCBs. 

 In chapter 5, to demonstrate the power of adding machine learning to our sensors, I develop a 

method using deep learning to classify sleep stages and detect arousal events. Without using traditional 

EEG signals that can be collected only in a sleep lab, using PPG and respiration channels that are 

accessible at home can produce reliable and accurate predictions. When combining PPG and the 

respiration channel, the performance of the model will get further boosted compared to any single input 

channel alone. This model only needs to perform Z-score normalization on the input data and cut into 

30 seconds duration. No complicated feature extractions are needed for this model. This easy approach 

allows patients to be monitored at home yet still allows automated prediction of their sleep stage and 

arousal event accurately. 

 

6.2: Future works 

 The work done in this dissertation includes different directions of wearable devices. There are 

potential works in several different directions that can be continued in the future. 

 The first direction is the hardware part of wearable devices. Even though I have demonstrated 

the robustness and functionality with multiple applications, there are still large many that can be 

improved and built upon.  One important potential work is to implement the multi-layer structure. 
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Currently, all devices are single-layer structures, which makes it hard to extend the functionality. More 

functionalities mean more components, which need more space. With the current structure, the only 

way is to increase the surface area and mount more components. However, if the device can be made 

with multiple layers, the surface area will remain the same, but the number of components will 

increase.  

 The second direction is the method to process the signal collected from the patient. I already 

demonstrated with home-accessible signals, the model is able to differentiate different sleep stages 

with high accuracy. The model is also able to detect EEG arousal events. However, I do not investigate 

other events, such as apnea and hypopnea. Moreover, these events can be further divided into finer 

classes, such as central apnea and obstructive apnea. More detailed data is needed to study these 

events. As mentioned in the previous chapter, a transformer-based NLP model could be used to increase 

model performance as well. 

 

6.3: Future prospects 

In order for wearable technology to become ubiquitous in the future, there are numerous 

obstacles that must be overcome. Currently, very few soft electronic systems can operate without being 

integrated with a traditional PCB in order to connect to existing wireless infrastructure. Furthermore, 

soft electronic systems that have managed to be successfully integrated often require a complex 

fabrication process, which makes scaling up production difficult. To make soft wearable sensors more 

widespread, a method must first be developed that can integrate all the necessary components of a 

circuit, especially existing SMDs, while also being scalable. The fabrication method used in this 

dissertation has the potential to be scalable through a roll-to-roll process. Without a good 

manufacturing plan, soft wearable devices will likely remain restricted to the academic realm. 

Additionally, the data acquired must be of high quality and actionable, meaning that methods for 
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eliminating motion artifacts or identifying poor-quality data must be developed. High-quality data can 

then be processed by machine learning algorithms to identify irregular signals and potentially aid in 

patient diagnoses. Although the current model only detects preliminary events and performs simple 

classifications, improved models and algorithms will eventually lead to better performance and making 

better decisions. Ultimately, the widespread implementation of wearable systems, coupled with 

advanced data processing, has the potential to significantly improve the quality of life for patients and 

advance the field of medicine itself. 
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