
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Towards High-Performance, Efficient, and Reliable Quantum Computing System

Permalink
https://escholarship.org/uc/item/7hk7j7cr

Author
Li, Gushu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hk7j7cr
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Towards High-Performance, Efficient, and Reliable

Quantum Computing System

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Gushu Li

Committee in charge:

Professor Yuan Xie, Co-Chair
Professor Yufei Ding, Co-Chair
Professor Timothy Sherwood
Professor Zheng Zhang

December 2022

The Dissertation of Gushu Li is approved.

Professor Timothy Sherwood

Professor Zheng Zhang

Professor Yufei Ding, Committee Co-Chair

Professor Yuan Xie, Committee Co-Chair

October 2022

Towards High-Performance, Efficient, and Reliable Quantum Computing System

Copyright © 2022

by

Gushu Li

iii

To my friends and family

iv

Acknowledgements

The dissertation is not possible without the help of many people. I would first thank

my advisors Dr. Yuan Xie and Dr. Yufei Ding. Yuan’s background is more on the

hardware side while Yufei’s background is more on the software side. Working with both

of them simultaneously equips me with a holistic view of the entire system and enables

many more research opportunities. They have always been supportive and willing to

encourage me to explore new research directions. They helped me build courage and

confidence, which I believe are the most important things for an independent researcher.

I will be trying to convey such mental strength to the next generation.

I am also grateful to my other committee members, Dr. Timothy Sherwood and

Dr. Zheng Zhang, for their valuable feedback about my research and helpful suggestions

about my job search. And I learned a lot of writing skills by reading Dr. Sherwood’s

award papers.

Then I want to thank Ms. Val de Veyra who helped me with a lot of paperwork and

administration matters. On my first day at UCSB ECE department, I was told that

‘whatever help you need, you can always ask Val’. In the last five and a half years, I

emailed her or walked into her office numerous times and she can always provide the help

I need.

I also want to send my greetings to Dr. Shuangchen Li and Dr. Xiang Fu who helped

me a lot at the very beginning of my Ph.D. study. I first worked with Shuangchen on

processing in memory after I joined UCSB. I learned many practical research method-

ologies and research experiences from him. These experiences have been helping me even

after I changed to the quantum computing area. After I changed the research topic, I

had very little idea about quantum computing. Xiang was already known for his work on

quantum control architecture at that time. He shared with me a lot of valuable guidance

v

during my hard time and help me get onto the right track quickly.

My two joyful summer internships are not possible without my mentor at IBM, Dr.

Ali Javadi-Abhari. Ali is a great collaborator who always supports my idea, find the

resource I need, and provide me with a lot of industry insights. I am also fortunate

to collaborate with Dr. Yunong Shi. Yunong has a strong background in quantum

computing. We have been frequently discussing quantum computing research over phone

calls in the last few years. Many of my research ideas come from these discussions.

I want to thank my theory collaborators, Dr. Li Zhou, Dr. Nengkun Yu, and Dr.

Mingsheng Ying. Our collaboration help me get into the programming language research

area and resulted in the first distinguished award paper about quantum programming

language at major programming language conferences.

A lot of people helped me during my job search. They include Dr. Zhaoran Wang,

Dr. Xiaodi Wu, Dr. Yunong Shi, Dr. Qian Zhang, Dr. Hongye Hu, Dr. Xing Hu, Dr.

Shuangchen Li, Dr. Tevfik Bultan, Mr. Xueyang Wang, Mr. Haoxiang Wang, etc. I

would also thank my labmates, including Maohua Zhu, Liu Liu, Abanti Basak, Fengbin

Tu, Jiayi Huang, Xueqi Li, Yu Ji, Pengfei Zuo, Peng Gu, Wenqin Huangfu, Xinfeng Xie,

Ling Liang, Yuke Wang, Boyuan Feng, Zheng Qu, Jilan Lin, Nan Wu, Bangyan Wang,

Zhaodong Chen, Guyue Huang, Zheng Wang, Hao Li, Siqi Li, Keyi Yin, Zhaohui Yang.

I am fortunate to meet you during my Ph.D. journey and wish you all the best.

Last but not the least, I would like to thank my parents, Mr. Zhenping Li and Mrs.

Fengsen Wu, for their continuous unconditional support. And I would like to thank my

wife Tianqi Tang for her love and support over the last eight years, from Beijing to Santa

Barbara.

vi

Curriculum Vitæ
Gushu Li

Education

2022 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara.

2021 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara.

2015 B.E. in Electronic Engineering, Tsinghua University.

Publications

[C1]. Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yufei Ding, Yuan Xie,
“A Synthesis Framework for Stitching Surface Code with Superconducting Quantum
Devices”, IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022.

[C2]. Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, Yuan
Xie, “A Synthesis Framework for Stitching Surface Code with Superconducting Quan-
tum Devices”, IEEE/ACM International Symposium on Computer Architecture (ISCA),
2022.

[C3]. Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie,
“Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quan-
tum Simulation Kernels”, ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2022.

[C4]. Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, Yuan Xie,
“On the Co-Design of Quantum Software and Hardware”, ACM International Conference
on Nanoscale Computing and Communication (NanoCom), invited paper, 2021.

[C5]. Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, Yufei Ding, “Palleon: A Runtime
System for Efficient Video Processing toward Dynamic Class Skew”, USENIX Annual
Technical Conference (ATC), 2021.

[C6]. Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, Yufei
Ding. “GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Accelera-
tion on GPUs”, USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2021.

[C7]. Gushu Li, Yunong Shi, Ali Javadi-Abhari, “Software-Hardware Co-optimization
for Computational Chemistry on Superconducting Quantum Processors”, IEEE/ACM
International Symposium on Computer Architecture (ISCA), 2021.

[C8]. Yuke Wang, Boyuan Feng, Gushu Li, Georgios Tzimpragos, Lei Deng, Yuan Xie,
Yufei Ding, “TiAcc: Triangle-inequality based Hardware Accelerator for K-means on FP-
GAs”, IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021.

vii

[C9]. Gushu Li∗, Li Zhou∗, Nengkun Yu, Yufei Ding, Mingsheng Ying, Yuan Xie,
“Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs”,
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2020.

[C10]. Gushu Li, Yufei Ding, Yuan Xie, “Eliminating Redundant Computation in Noisy
Quantum Computing Simulation”, Design Automation Conference (DAC), 2020.

[C11]. Gushu Li, Yufei Ding, Yuan Xie, “Towards Efficient Superconducting Quantum
Processor Architecture Design”, ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

[C12]. Gushu Li, Yufei Ding, Yuan Xie, “Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices”, ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[C13]. Gushu Li, Guohao Dai, Shuangchen Li, Yu Wang, Yuan Xie, “GraphIA: An In-
situ Accelerator for Large-scale Graph Processing”, International Symposium on Memory
Systems (MEMSYS), 2018.

[C14]. Gushu Li, Xiaoming Chen, Guangyu Sun, Henry Hoffmann, Yongpan Liu, Yu
Wang, Huazhong Yang, “A STT-RAM-based low-power hybrid register file for GPG-
PUs”, Design Automation Conference (DAC), 2015.

[J1]. Yuke Wang, Boyuan Feng, Gushu Li, Lei Deng, Yuan Xie, Yufei Ding. “STPAcc:
Structural TI-based Pruning for Accelerating Distance-related Algorithms on CPU-FPGA
Platform.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2021.

Please Note: Text, tables, and figures from these papers are used and appear
in this dissertation.

viii

Abstract

Towards High-Performance, Efficient, and Reliable Quantum Computing System

by

Gushu Li

As the new “race to the moon”, quantum computing can possibly trigger a computa-

tion revolution due to its strong potential in several important domains, e.g., cryptogra-

phy, chemistry simulation, optimization, and machine learning. However, as an emerging

research area, grand challenges remain ahead since state-of-the-art quantum computing,

from software to hardware, is still highly immature. This dissertation explores high-

performance, efficient, and reliable quantum computing systems, and strikes a synergy

among different technology stacks, including application, programming language, com-

piler optimization, hardware architecture design, and simulation. In particular, this

dissertation focuses on two directions: 1) cross-layer co-design for quantum comput-

ing system; and 2) enabling deep quantum software/compiler optimizations at the high

level. In the first direction, this dissertation studies how to efficiently map quantum soft-

ware to hardware via carefully designed compiler optimization, and then investigates the

application-specific architecture design with substantial hardware efficiency improvement.

Following the application-specific principle and putting the algorithm optimization and

hardware design together, this dissertation proposed a software-hardware co-optimization

for chemistry simulation and achieved a wide range of benefits across multiple system

stacks. In the second direction, this dissertation explores leveraging the algorithmic in-

formation, which is usually carried by new high-level programming languages, to design

quantum software optimizations that are hard to implement in conventional quantum

software infrastructures. These optimizations include a Pauli-string-based intermediate

ix

representation for large-scope compiler optimization on quantum simulation programs, a

projection-operator-based runtime assertion language for efficient quantum program test-

ing and debugging, and a trial scheduling technique to identify and eliminate redundant

computation in noisy quantum computing simulation.

x

Contents

Curriculum Vitae vii

Abstract ix

1 Introduction 1
1.1 Overview . 2
1.2 Outline . 10

2 Background 12
2.1 Quantum Computing Software . 12
2.2 Quantum Computing Hardware . 20

3 Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices 23
3.1 Introduction . 23
3.2 Background . 27
3.3 Problem Analysis . 29
3.4 Finding Initial Mapping and SWAPs . 33
3.5 Evaluation . 46
3.6 Limitation and Future Work . 51
3.7 Related Work . 52
3.8 Conclusion . 54

4 Towards Efficient Superconducting Quantum Processor Architecture
Design 56
4.1 Introduction . 56
4.2 Background . 59
4.3 Quantum Program Profiling . 63
4.4 Architecture Design . 67
4.5 Evaluation . 78
4.6 Discussion . 85
4.7 Related Work . 87
4.8 Conclusion . 88

xi

5 Software-Hardware Co-Optimization for Computational Chemistry on
Superconducting Quantum Processors 89
5.1 Introduction . 89
5.2 Background . 94
5.3 Ansatz Compression . 99
5.4 Architecture Design . 104
5.5 Compiler Optimization . 107
5.6 Evaluation . 112
5.7 Discussion and Future Directions . 120
5.8 Related Work . 121
5.9 Conclusion . 123

6 Paulihedral: A Generalized Block-Wise Compiler Optimization Frame-
work for Quantum Simulation Kernels 125
6.1 Introduction . 125
6.2 Background . 130
6.3 Foundations of Paulihedral . 132
6.4 Block-Wise Instruction Scheduling Passes 137
6.5 Block-Wise Optimization Passes . 140
6.6 Evaluation . 146
6.7 Discussion . 157
6.8 Related Work . 159
6.9 Conclusion . 160

7 Projection-Based Runtime Assertions for Testing and Debugging Quan-
tum Programs 163
7.1 Introduction . 163
7.2 Preliminary . 167
7.3 Projection-based assertion: design and theoretical foundations 173
7.4 Transformation techniques for implementation on quantum computers . . 186
7.5 Overall Comparison . 198
7.6 Case Studies: Runtime Assertions for Realistic Quantum Algorithms . . 202
7.7 Discussion . 211
7.8 Related Work . 213
7.9 Conclusion . 215

8 SANQ: A Simulation Framework for NISQ Computing System 216
8.1 Introduction . 216
8.2 Background . 219
8.3 Simulator Overview . 220
8.4 Noisy Simulation & Optimization . 223
8.5 Control System Simulator . 229
8.6 Evaluation . 235

xii

8.7 Future Applications . 242
8.8 Limitations and Future Work . 247
8.9 Related Work . 248
8.10 Conclusion . 249

9 Conclusion and Discussion 250
9.1 Pursuit of Quantum Computing . 250
9.2 Future Research Directions . 252

A Appendix for Chapter 6 257
A.1 Artifact Abstract . 257
A.2 Artifact Checklist . 258
A.3 Description . 260
A.4 Installation . 261
A.5 Evaluation and Expected Results . 261

B Appendix for Chapter 7 263
B.1 Proof of the theorems, propositions, and lemmas 263

Bibliography 274

xiii

Chapter 1

Introduction

The idea of building a quantum computer started from the 1980s when physicists found

a theoretical quantum Turing machine model [1] and later it is pointed out that such a

quantum machine may simulate a quantum system that cannot be simulated efficiently

on a classical computer [2]. A milestone in the development of quantum computing is

Shor’s algorithm [3] which, proposed by Peter Shor in 1994, can factor a large integer

in polynomial time and thus attack the widely-used RSA-based cryptography system.

These early efforts kicked off the second quantum revolution [4].

After the proposal of building a quantum computer, people started to attack two

research directions. First, on the theory side, we need to figure out the applications

that can potentially be accelerated using a quantum computer. Till now, there have

been hundreds of quantum algorithms developed for different purposes (e.g., chemistry

simulation [5], combinatorial optimization [6], search [7]) with different speedups [8].

Second, on the practical side, which technology we can use to physically implement a

quantum computer? There are several candidate technologies (e.g., superconducting

quantum circuit [9], ion trap [10], photonics [11]) but it is not yet known which one will

finally win this race.

1

Introduction Chapter 1

Recent progress towards practical quantum computing has been inspiring and the ad-

vantage of quantum computing has been experimentally demonstrated. In 2019, Google

announced that ‘quantum supremacy’, which is a computational task that can be effi-

ciently done using a quantum computer but is hard to solve on a classical computer, has

been achieved in the random circuit sampling [12]. Later, the ‘quantum supremacy’ was

also demonstrated on the Gaussian boson sampling task [13, 14, 15]. However, all the

quantum supremacy tasks are basically sampling from a random distribution and it is

hard to find practical applications from the random distribution sampling.

Naturally, the next step in the development of quantum computing is to demonstrate

practical quantum advantage. This requires efforts from multiple technology stacks in a

quantum computer system. For now, quantum computing is in its vacuum-tube era or

even pre-vacuum-tube era. A classical analogy can be the time when the first general-

purpose digital classical computer ENIAC was developed [16].

1.1 Overview

This dissertation features the emerging Quantum Computer System and studies

how to deeply optimize the effectiveness, efficiency, and reliability of quantum computa-

tion by attacking critical problems at multiple technology stacks. The works presented

in this dissertation can be categorized in two research directions: 1) quantum computing

system cross-layer co-design [17, 18, 19, 20], and 2) enabling deep quantum software/-

compiler optimizations at high-level [21, 22].

1.1.1 Cross-Layer Co-Design in Quantum Computing System

The current quantum computing system follows a vertically layered design similar

to its classical counterpart: algorithm - programming language - compiler - architec-

2

Introduction Chapter 1

ture - device. Such a layered structure can simplify the system design by hiding the

details inside each individual layer, but it also misses optimization opportunities since

the information flow across different layers can be blocked by the layer abstractions.

Moreover, the design objectives of different layers may contradict each other, which will

limit the overall improvement when optimizing different system stacks individually. This

dissertation [18, 19, 20, 17] strikes a synergy among different technology stacks and op-

timizes the quantum computing system by mutually exposing key information between

the quantum software and hardware. In particular, we vision that an array of quantum

computing accelerators, each of which is tailored to a specific application, is much more

likely to be adopted with relatively modest resource requirements. By introducing the

application-specific design principle into quantum computing, our work is able to coor-

dinate optimizations at different stacks and then outperform the direct combination of

individually optimizing the different layers.

Qubit Mapping on Superconducting Devices

My research on qubit mapping (ASPLOS’19 [18]) studies how to map logical qubits

to physical qubits on a superconducting architecture. This work has been adopted by

several quantum compilers including IBM’s Qiskit and the qcor compiler by Oak Ridge

National Lab. On a superconducting quantum processor, two-qubit gates are only sup-

ported on physically nearby qubits while the logical two-qubit gates can be applied on

arbitrary two logical qubits. A quantum compiler has to decide the logical-to-physical

qubit mapping and meanwhile dynamically insert additional SWAP operations to remap

some qubits so that all two-qubit gate dependencies in the input program are satisfied.

It is desirable to reduce the number of inserted SWAPs as more SWAPs will increase the

error. Yet, this optimization problem is indeed NP-hard and an efficient and effective

heuristic is missing before our work. We propose a fast yet effective algorithm for this

3

Introduction Chapter 1

qubit mapping problem. We first change the traditional mapping-transition-based search

to a new SWAP-sequence-based search. This reduces the search space greatly since the

number of possible SWAPs is much smaller than that of possible mappings. We also

propose an inverse-search method to optimize the initial mapping based on a key obser-

vation that the qubit mapping problem is reversible. The final mapping of a reserved

quantum circuit can improve the initial mapping of the original circuit. To accommo-

date quantum devices with different characteristics, we design a decay effect to let the

compiler tend to select non-overlapping SWAPs to reduce the circuit depth and control

the trade-off between gate count and circuit depth. Compared with state-of-the-art so-

lutions, our algorithm can generate comparable or better mapping results (∼ 10% gate

count reduction) in a much shorter time (100x-1000x speedup) for better scalability.

Efficient Superconducting Quantum Processor Architecture Design

For superconducting quantum processors, people would like to integrate more qubits

and more qubit connection in one substrate to support the execution of larger quantum

programs and reduce the qubit mapping overhead. However, more computation resources

will also increase the fabrication difficulty and lower the yield rate. Seeking both the high

yield rate and the high performance simultaneously for a superconducting quantum pro-

cessor design is hard due to this intrinsic trade-off. My research explores the efficient su-

perconducting quantum processor architecture design via the application-specific design

principle. In particular, we propose an end-to-end design flow (ASPLOS’20 [19]) to au-

tomatically extract program information and then generate a superconducting quantum

processor architecture that can support the target program with both high performance

and high yield rate. This first stage of the design is to extract two-qubit gate patterns in

the target application because executing two-qubit gates is the performance bottleneck

and its underlying hardware support introduces the fabrication complexity. The second

4

Introduction Chapter 1

stage is a hardware design flow with three key subroutines, i.e., layout design for qubit

location, bus selection for qubit connection, and frequency allocation for physical qubit

design. Each subroutine focuses on different hardware resources and cooperates with

corresponding profiling results and physical constraints. More hardware resources are

deployed on specific locations only when they are expected to benefit the performance

most. Experiments show that our design flow could outperform IBM’s general-purpose

designs with better Pareto-optimal results, e.g., magnitudes of yield improvement with

negligible performance loss.

Software Hardware Co-Optimization for Quantum Computational Chemistry

Variational Quantum Eigensolver (VQE) for quantum chemistry is one leading candi-

date application for near-term quantum computers to demonstrate a quantum advantage

with practical usage. However, conventional setup for VQE on near-term superconducting

quantum processors cannot accommodate simulating large-size chemical systems because

it suffers from the large circuit size, the limited hardware resource, and the deficient com-

piler optimization. Optimizations have been made at different system stacks, but they

did not come collaboratively, leading to insufficient overall improvement. My research

identifies a Pauli-string-centric software-hardware co-optimization (ISCA’21 [20]) that

can coordinate optimizations at the algorithm level, hardware level, and compiler level.

Each of the proposed optimizations not only focuses on the design objectives of one indi-

vidual technology but also considers the optimizations in other parts of the stack. This

is possible because Pauli strings are the central building blocks of quantum simulation

circuits whose two-qubit gate pattern and synthesis flexibility can guide the hardware

and compiler design. Based on this observation, we propose 1) a hardware-friendly VQE

circuit pruning method with minimal accuracy loss 2) a X-Tree superconducting ar-

chitecture that can execute Pauli string simulation circuits using a minimal number of

5

Introduction Chapter 1

connections, and 3) a compilation algorithm to deploy the pruned circuits onto X-Tree ar-

chitecture with negligible overhead. Experimental results show that our co-optimization

outperforms conventional VQE setups with significant program size reduction, faster

convergence speed, mild simulation accuracy loss, more efficient hardware design, and

negligible compilation mapping overhead.

1.1.2 Deeper Quantum Program Optimization at High Level

Quantum software, which will deploy and optimize the quantum programs onto the

underlying physical quantum hardware platforms, is essential and critical in a quantum

computing system. Yet, today’s quantum compiler/software infrastructures are still far

from optimal. One reason is that most optimizations in today’s quantum compilers are lo-

cal program transformations over very few qubits and gates. In general, it is conceptually

hard for a compiler that runs on a classical computer to automatically derive large-scale

quantum program optimizations at the assembly gate level. My research [22, 21] tackles

this challenge and systematically enhances the quantum software frameworks by intro-

ducing high-level program optimizations in the quantum domain. Instead of optimizing

the quantum programs at the gate level, we design new quantum programming language

primitives and intermediate representations that can encode the high-level semantics of

the programs. Such high-level information can then be leveraged to derive new large-

scale quantum program optimizations beyond the capabilities of conventional gate-level

optimizations.

6

Introduction Chapter 1

Large-Scale Quantum Compiler Optimization with High-Level Intermediate

Representation.

We develop Paulihedral (ASPLOS’22 [21]), an algorithmic quantum compiler frame-

work for the quantum simulation kernel which is a subroutine widely used in many

algorithms. This framework has been adopted by IBM’s Qiskit and Amazon’s Braket.

Paulihedral enables large-scale compiler optimizations via a new formal high-level inter-

mediate representation (IR), namely Pauli IR. This IR is built upon the Pauli strings,

the central building blocks of quantum simulation kernels. Pauli IR can efficiently en-

code high-level algorithmic information in a quite compact form where the operator size

grows linearly with respect to the number of qubits. The follow-up program analysis

and optimization can be performed on this IR without processing the quantum gate

matrices whose sizes grow exponentially. The syntax and semantics of Pauli IR are de-

fined to uniformly represent simulation kernels of different forms and constraints from

all quantum algorithms, as far as we know, and accommodate various backends (i.e., the

fault-tolerant quantum computer and the near-term superconducting quantum proces-

sor). Several new optimizations are proposed to leverage the Pauli algebra and reconcile

multiple optimization factors, including instruction scheduling, circuit synthesis, gate

cancellation, and qubit layout/routing. These optimizations are hard to implement in

existing quantum compilers because reconstructing high-level semantics in today’s com-

piler infrastructures, in which the programs are represented by assembly-style low-level

gate sequences, is extremely hard. Experimental results show that our work can sig-

nificantly outperform state-of-the-art quantum compilers with more effective, scalable

optimizations, and better reconfigurability.

7

Introduction Chapter 1

Projection-Based Quantum Program Assertion

We develop the projection-based quantum program assertion (OOPSLA’20 [22]) to

advance quantum program testing, debugging, and error mitigation. This work won the

Distinguished Paper Award and has been adopted by the Quantinuum’s t|ket⟩ framework.

As in its early stage, the basic testing and debugging approaches are not yet available

or well-developed for quantum programs before our work. The predicates of quantum

programs in prior quantum program testing works are usually expressed in classical logic

languages which limits the testing capability. The measurement operations in the as-

sertion checking may destroy the tested quantum state, leading to a highly inefficient

checking procedure. We observe that the quantum states can be quantified by linear

subspaces of the entire system state space and such linear subspaces can be naturally

expressed by projection operators. We then formally define our new quantum program

assertion primitive upon the projection operator. Compared with previous quantum as-

sertions that express quantum state predicates in classical logical languages, projections

have much greater logical expressive power and unique hardware-friendly property as it

naturally aligns with the projective measurement operations in most quantum hardware

platforms. We rigorously prove the statistical checking efficiency and propose several

compilation techniques to resolve machine constraints. To the best of our knowledge,

this is the first runtime assertion scheme with such expressive predicates and practical

implementation details. We remark that our projection-based assertion can also be ap-

plied as an error mitigation technique to filter out hardware noise and improve the overall

fidelity of the results of a quantum program beyond its usage of debugging. For exam-

ple, Quantinuum has utilized our projection-based assertion technique in their molecular

simulation experiment on an ion-trap-based quantum computer. Their results confirmed

that adding a projection-based assertion can reduce about 50% error of the final molecular

8

Introduction Chapter 1

energy estimation.

1.1.3 Architectural Modeling and Simulation

Due to the limited access to the real quantum computing systems, simulation is an

important approach when proposing and evaluating quantum computing system inno-

vations without accessing realistic hardware. Since a complete NISQ system consists of

two major components, the quantum processor and its classical control system, a simu-

lator for NISQ systems needs to meet the following requirements: 1) simulating a noisy

quantum processor, and 2) simulating a classical control system. In this dissertation,

we propose a simulation framework, namely SANQ, for NISQ computing system design

and evaluation [23]. SANQ consists of one noisy quantum computing simulator for the

quantum processor, and one architectural simulation infrastructure to construct behavior

models for the classical control system, leading to a comprehensive evaluation of NISQ

systems and preparing for future design innovations.

Noisy quantum computing simulation that could consider various noise effects is

widely used in algorithm development and device performance evaluation. In Monte

Carlo (MC) noisy simulation, noise effects can be treated as errors that are randomly

injected during the computation. To model such random effects, the same input quantum

program is simulated for a large number of times, and in each simulation trial, errors are

randomly injected based on an error model of the target quantum device. Previous op-

timizations focused on single-trial simulation optimization while little consideration has

been given to inter-trial optimization. My research optimized the MC noisy quantum

simulation by eliminating the great computation redundancy among those MC simu-

lation trials [24]. It is possible that some share MC simulation trials share the same

intermediate states which can be temporarily stored and reused to save computation.

9

Introduction Chapter 1

However, saving a state takes significant memory space, which may limit the size of the

simulated program. Therefore, it would be desirable to remove redundant computation

with the stored intermediate state as few as possible. We propose a trial reorder scheme

to 1) efficiently identify and remove the computation redundancy in the MC simulation,

and 2) minimize the number of stored intermediate states. Instead of direct running the

MC simulation, all the simulation trials are first generated without actually running the

simulation. These trials are analyzed and reordered based on the locations of the injected

errors. The overlapped computation between two consecutive trials is maximized so that

saving one intermediate state can save more computation. Those intermediate states

that cannot be reused in the follow-up computation are dropped to reduce the memory

requirement. Experiment results show that we can save around 80% computation on av-

erage with only a small number of state vectors stored at most on a realistic device model.

The test on larger-size device models demonstrates that our noisy quantum computing

simulation optimization has great scalability as it could save even more computation

when simulating future NISQ devices with lower error rates and more simulation trials.

The architectural simulation infrastructure is specifically designed for control sys-

tem design. Users can construct a behavior model for a classical control system with

provided common hardware modules or with customized newly designed hardware com-

ponents. SANQ currently focuses on the execution fidelity and timing simulation, which

are both critical in NISQ system evaluation, while it is extensible to accommodate more

simulation, e.g., power and reliability.

1.2 Outline

The rest of this dissertation will detail all these works mentioned above and is orga-

nized as follows. We start from the necessary background about quantum computing in

10

Introduction Chapter 1

Chapter 2. Then we first introduce the SABRE qubit mapping algorithm and the effi-

cient superconducting quantum procesor architecture design in Chapter 3 and Chapter 4,

respectively. Putting software and hardware together, we explore the software-hardware

co-design for quantum chemistry simulation on superconducting quantum processors in

Chapter 5. The high-level quantum program optimization framework for quantum sim-

ulation, Paulihedral, is introduced in Chapter 6, followed by the projection-based quan-

tum program assertion in Chapter 7. Our architectural modeling and simulation are in

Chapter 8. Finally, we conclude this dissertation and discuss the future research of this

dissertation in Chapter 9. The description of the artifact of Paulihedral is available in

Appendix A. The proof of the theorems in Chpater 7 is postponed to Appendix B.

11

Chapter 2

Background

In this chapter, we will provide a brief introduction to quantum computing basic concepts.

We try to limit our discussion and only keep the necessary content to help formulate and

understand this dissertation. We refer the readers to excellent resources [25] for more

details. Quantum computing research spans all technology stacks from high-level theory

and algorithm, to mid-level architecture and low-level physics [26, 27, 28]. We will start

with the software and theory basics, followed by the hardware background.

There are several theoretically equivalent computing diagrams of quantum com-

puting. This dissertation will focus on the most widely adopted gate-based quantum

circuit model. Other computing models like adiabatic quantum computing [29], the

measurement-based quantum computing [30], topological quantum computing [31] are

not covered.

2.1 Quantum Computing Software

Quantum computing is based on quantum systems evolving under the law of quantum

mechanics. The state space of a quantum system is a Hilbert space (denoted by H), a

12

Background Chapter 2

complete complex vector space with the inner product defined. Naturally, the state of a

quantum system is described by the elements in this Hilbert space H. And the operations

to manipulate the quantum states are the operators applied on the elements in H.

2.1.1 State Vector and Density Operator

When the state of a quantum system is in an exact state, such an exact state is known

as a pure state. A pure state is described by a unit vector |ψ⟩ in the state space H of

the target quantum system. The size of the state vector is determined by the number of

dimensions of the state space. For example, a qubit (the quantum counterpart of a bit in

classical computing) is the basics information processing unit in quantum computing and

it has a two-dimensional state space H2 = {a |0⟩ + b |1⟩}, where a, b ∈ C, |a|2 + |b|2 = 1

and |0⟩, |1⟩ are two computational basis states. Another commonly used basis is the

Pauli-X basis, |+⟩ = 1√
2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩). Different from classical bit,

one qubit can be the linear combination of the two basis states, which can be represented

by |Ψ⟩ = α |0⟩ + β |1⟩, where α, β ∈ C and |α|2 + |β|2 = 1.

Suppose we are using the computational basis and the state of one qubit is |ψ⟩ =

α |0⟩+β |1⟩. The state vector of this state is

 α

β

 and we usually denote |ψ⟩ =

 α

β

.

Different from a classical bit which can only in the 0 or 1 state, a qubit can be in the

linear combination two basis states |0⟩ and |1⟩, which is called the superposition.

When two or more quantum systems are combined, the overall state space is the

tensor product of the state spaces of all individual systems. For a quantum system with

n qubits, the state space of the composite system is the tensor product of the state spaces

of all its qubits:
⊗n

i=1Hi = H2n . For example, the state of a two-qubit system can be

represented by |ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩ in a 4-dimensional Hilbert

13

Background Chapter 2

space. The state vector is

α00

α01

α10

α11

. This dissertation only considers finite-dimensional

quantum systems because realistic quantum computers only have a finite number of

qubits.

When the exact state is unknown, but we know it could be in one of some pure

states |ψi⟩, with respective probabilities pi, where
∑

i pi = 1, a density operator ρ can

be defined to represent such a mixed state with ρ =
∑

i pi|ψi⟩⟨ψi| (⟨ψ| is the complex

conjugate of |ψ⟩). A pure state is a special mixed state. For example, suppose a qubit

is in state |0⟩ with a probability of 0.5 and in state |1⟩ with a probability of 0.5. Then

its density operator is ρ = 0.5|0⟩⟨0| + 0.5|1⟩⟨1|. Using the computational basis, this

density operator can be represented by a 2 × 2 matrix

 0.5 0

0 0.5

. Note that this

mixed state is different from the pure state |ψ⟩ = 1√
2
|0⟩ + 1√

2
|1⟩ whose density operator

is ρ = (1√
2
|0⟩+ 1√

2
|1⟩)(1√

2
⟨0|+ 1√

2
⟨1|) with matrix form of

 0.5 0.5

0.5 0.5

. In general, the

matrix of a density operator for an n-qubit system is a complex matrix of size 2n × 2n.

2.1.2 Gate/Unitary Transformation

To perform computation over the quantum states, we need to manipulate the quantum

states. Such dynamics are called quantum operations in the most general case. In this

dissertation, we focus on two major types of operations performed on a quantum system,

unitary transformation (also known as quantum gates) and quantum measurement.

Definition 2.1.1 (Unitary transformation) A unitary transformation U on a quan-

14

Background Chapter 2

tum system in the finite-dimensional Hilbert space H is a linear operator satisfying

UU † = IH

where IH is the identity operator on H.

We list the definitions of the unitary transformations used in the rest of this disser-

tation as follows:

Single-qubit gates: H (Hadamard) = 1√
2

 1 1

1 −1

 , X =

 0 1

1 0

Two-qubit gates: CNOT(Controlled-NOT, Controlled-X), Swap:

CNOT = |0⟩⟨0| ⊗ I2 + |1⟩⟨1| ⊗X =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, Swap =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Three-qubit gates: Toffoli, Fredkin (Controlled-Swap, CSwap):

Toffoli = |0⟩⟨0| ⊗ I4 + |1⟩⟨1| ⊗ CNOT =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

15

Background Chapter 2

Fredkin = |0⟩⟨0| ⊗ I4 + |1⟩⟨1| ⊗ Swap =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

After a unitary transformation, a state vector |ψ⟩ or a density operator ρ is changed

to U |ψ⟩ or UρU †, respectively. Here are some examples of the statevector and gate.

Example 2.1.1 (Single-qubit unitary/gate operation) Suppose we have one qubit

whose initial state is |ψ⟩0 = |0⟩. Its state vector is |ψ⟩0 = |0⟩ =

 1

0

. We apply

a Hadamard gate on it. The new state is |ψ⟩1 = H |ψ⟩0 = 1√
2

 1 1

1 −1

 1

0

 =

1√
2

 1

1

 = 1√
2
(|0⟩ + |1⟩)

Example 2.1.2 (Multi-qubit system) Suppose the first qubit is in state |ψ⟩1 = 1√
2
(|0⟩+

|1⟩) and we have a second qubit whose state is |0⟩. The overall system state is |ψ⟩ =

|ψ1⟩⊗ |0⟩ = 1√
2
(|0⟩⊗ |0⟩+ |1⟩⊗ |0⟩) = 1√

2

 1

1

⊗
 1

0

 = 1√
2

1

0

1

0

. We usually denote

it by |ψ⟩ = 1√
2
(|00⟩ + |10⟩).

Example 2.1.3 (Multi-qubit unitary/gate operation) Suppose we have two qubits

16

Background Chapter 2

whose state is |ψ⟩ = 1√
2
(|00⟩ + |10⟩). We apply a CNOT gate on it. The new state is

|ψ⟩2 = CNOT |ψ⟩ =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1√
2

1

0

1

0

= 1√

2

1

0

0

1

= 1√

2
(|00⟩ + |11⟩).

Applying a unitary/gate operation U to a density operator is similar by changing

U |ψ⟩ to UρU †.

2.1.3 Measurement

The gate/unitary transformation introduced above can manipulate the quantum data

but cannot ‘read’ the quantum data. That is, the gate/unitary transformations can

modify the data but cannot obtain information from the quantum data. To obtain

information from the quantum data, we need to perform the quantum measurement

operation.

Definition 2.1.2 (Quantum measurement) A quantum measurement on a quantum

system in the Hilbert space H is a collection of linear operators {Mm} satisfying

∑
m

M †
mMm = IH

.

Different from a classical data read operation which usually does not change the ob-

served data, a quantum measurement operation may change the quantum data measured

and destroy the quantum state measured. And a quantum measurement is intrinsically

probabilistic and different outcomes are obtained with different probabilities. After a

17

Background Chapter 2

quantum measurement on a pure state |ψ⟩, an outcome m is returned with probabil-

ity p(m) = ⟨ψ|M †
mMm |ψ⟩ and then the state is changed to |ψm⟩ = Mm|ψ⟩√

p(m)
. Note that∑

m p(m) = 1. For a mixed state ρ, the probability that the outcome m occurs is

p(m) = tr(M †
mMmρ), and then the state will be changed to ρm = MmρM

†
m

p(m)
.

Example 2.1.4 (Single-qubit measurement) Suppose we have one qubit in state

|ψ⟩ = 1√
2
(|0⟩ + |1⟩). We perform a quantum measurement M = {M0 = |0⟩⟨0|,M1 =

|1⟩⟨1|} on this qubit. Then the probability of observing the outcome 0 in this mea-

surement is p(0) = ⟨ψ|M †
0M0 |ψ⟩ = 1√

2
(⟨0| + ⟨1|) |0⟩ ⟨0|0⟩ ⟨0| 1√

2
(|0⟩ + |1⟩) = 1

2
. Af-

ter the measurement, the state is changed to |ψ0⟩ = M0|ψ⟩√
p(0)

=
|0⟩⟨0| 1√

2
(|0⟩+|1⟩)√
1
2

= |0⟩.

Note that ⟨1|0⟩ = ⟨0|1⟩ = 0 since |0⟩ and |1⟩ formulate an orthonormal basis set.

And we have ⟨0|0⟩ = ⟨1|1⟩ because the states should be normalized. Similarly, the

probability of observing the outcome 0 in this measurement is p(1) = ⟨ψ|M †
1M1 |ψ⟩ =

1√
2
(⟨0| + ⟨1|) |1⟩ ⟨1|1⟩ ⟨1| 1√

2
(|0⟩ + |1⟩) = 1

2
. After the measurement, the state is changed

to |ψ1⟩ = M1|ψ⟩√
p(1)

=
|1⟩⟨1| 1√

2
(|0⟩+|1⟩)√
1
2

= |1⟩.

Multi-qubit measurement cases can be generalized [25]. We can also observe that after

the measurement, the overall system state is in a mixed state whose density operator is

ρ = 1
2
|0⟩⟨0| + 1

2
|1⟩⟨1|.

2.1.4 Quantum Circuit

Quantum circuit is one of the most widely used diagrams to represent a quantum

program. Figure 2.1 shows an example quantum circuit. It is quantum teleportation, the

‘hello world’ program in quantum computing. In the quantum circuit, each horizontal

line represents one logical qubit. There are totally three logical qubits in this quantum

teleportation program. The gates and measurement operations are represented by dif-

ferent blocks applied on the lines. The square with the letter ‘H’ represents a Hadamard

18

Background Chapter 2

Figure 2.1: Quantum circuit of the quantum teleportation program

gate (defined above). This square symbol is placed on one line, meaning that this gate is

applied on the qubit associated with the line. The vertical symbols connecting two lines

are the CNOT gates applied on the two connected qubits. On the top right of Figure 2.1,

there are two squares with instrument symbols inside them. These squares are the single

qubit measurements M = {M0 = |0⟩⟨0|,M1 = |1⟩⟨1|} applied on the qubits associated

with the lines. The last two X and Z gates are classically conditioned by the measure-

ment results of the first two qubits. When the measurement result is 1, the classically

controlled gate is executed. Otherwise, the gate is not executed. To execute a quantum

circuit, we need to execute the gates and measurements from the left to the right.

Note that it has been proved that arbitrary quantum circuit can be expressed by

compositions of a set of single-qubit gates, CNOT gate, and measurements [32]. On the

other hand, many quantum hardware platforms only support single-qubit gates and two-

qubit gates. Therefore, in this dissertation, we mostly only consider quantum programs

without three-qubit or large-size gates. For example, Figure 2.2 shows a quantum circuit

that decomposes the Toffoli gate [25] using only single- and two-qubit gates. The three-

qubit gate on the left is Toffoli gate. On the right side is a sequence of single-qubit gates

and CNOT gates which implement exactly the same function as a Toffoli gate.

19

Background Chapter 2

q0

q1

q2

=

H T † T T †
T †

T H

T †
T

S

Figure 2.2: Quantum circuit of the Toffoli gate

2.2 Quantum Computing Hardware

After we have the quantum program, we need hardware platforms that can physically

implement the qubits and manipulate the qubits specified by the gates/measurements

in the program. Several potential technologies are explored and developed to implement

quantum machines. It is still not clear which one of them will finally beat the others since

they all have some advantages and disadvantages. In this section, we will focus on the

superconducting quantum circuit technology as it is the hardware model of most works

covered in this dissertation. For other technologies, there are many excellent learning

materials, including but not limited to [10, 33, 11].

2.2.1 Superconducting circuit

The superconducting circuit is currently the most popular technology to implement

a quantum chip. It is pursued by many physics research groups and many industry

leaders like IBM, Google, Intel, Microsoft, etc. The qubits in superconducting circuits

are realized by the two lowest energy levels of resonant microwave circuits embedding

a Josephson tunnel junction [34, 9]. The gates and measurements are implemented by

applying microwave frequency radiation. For more details about the superconducting

quantum circuit technology, we recommend [35, 36]

Figure 2.3 shows a picture of IBM’s 5-qubit device. There are five dark square struc-

tures and they are the five physical superconducting qubits. There are also several wires

20

Background Chapter 2

Figure 2.3: IBM 5-qubit chip[37]

that implement connections among the qubits and the I/O ports. These wires are the

resonators and are required to implement two-qubit gates and measurements. State-of-

the-art quantum processors are at a much larger scale. For example, IBM has announced

its 127-qubit chip [38]. Google also announced its 72-qubit chip [39]. Another startup

Rigetti also recently released their 40-qubit and 80-qubit devices [40].

Recent Progress

A lot of important quantum computing experiments have been performed using super-

conducting quantum processors. In 2019, Google announced that ‘quantum supremacy’

has been achieved on their 53-qubit device [12]. Several quantum error correction code

experiments on the superconducting quantum circuit processors have successfully demon-

21

Background Chapter 2

strated that quantum error correction can suppress the logical error rate [41, 42, 43, 44].

Various algorithms with practical usage are also implemented using this technology [45,

46, 47]. The major challenges of superconducting circuits are the low temperature re-

quirement, circuit cross coupling when scaling up, and the sensitivity to imperfections.

22

Chapter 3

Tackling the Qubit Mapping

Problem for NISQ-Era Quantum

Devices

3.1 Introduction

Quantum computing has been rapidly growing in the last few decades because of its

potential in various important applications, including integer factorization [3], database

search [7], quantum simulation [48], etc. Recently, IBM, Intel, and Google released their

quantum computing devices with 50, 49, and 72 qubits respectively [49, 50, 51]. IBM and

Rigetti also provide cloud quantum computing services [37, 52], allowing more people to

study real quantum hardware. We are expected to enter the Noisy Intermediate-Scale

Quantum (NISQ) era in the next few years [53], when quantum computing devices with

dozens to hundreds of qubits will be available. Though the number of qubits is insufficient

for Quantum Error Correction (QEC), .it is expected that these devices will be used to

solve real-world problems beyond the capability of available classical computers [54, 55].

23

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

However, there exists a gap between quantum software and hardware due to tech-

nology constraints in the NISQ era. When designing a quantum program based on the

most popular circuit model, it is always assumed that qubits and quantum operations

are perfect and any quantum-physics-allowed operations can be applied. But on NISQ

hardware, the qubits have limited coherence time, and quantum operations are not per-

fect. Furthermore, only a subset of theoretically possible quantum operations can be

directly implemented, which calls for a modification in the quantum program to fit the

target platform.

In this chapter, we will focus on the qubit mapping problem caused by limited two-

qubit coupling on NISQ devices. Two-qubit gates are one important type of quantum

operations applied on two qubits. They can create quantum entanglement, an advantage

that does not exist in classical computing. Two-qubit gates can be applied to arbitrary

two logical qubits in a quantum algorithm but this assumption does not hold with NISQ

devices. When running a quantum program, the logical qubits need to be mapped to

the physical qubits (an analogy in classical computation is register allocation). But for

the physical qubits on NISQ devices, one qubit can only couple with its neighbor qubits

directly. So that for a specific mapping, two-qubit gates can only be applied to limited

logical qubit pairs, whose corresponding physical qubit pairs support direct coupling.

This makes a quantum circuit not directly executable on NISQ devices.

As a result, circuit transformation is required to make the circuit compatible with

NISQ device during compilation. Based on a given quantum circuit and the coupling

information of the device, we need 1) an initial logical-to-physical qubit mapping and

2) the intermediate mapping transition which is able to remap the two logical qubits in

a two-qubit gate to two coupled physical qubits. The qubit mapping problem has been

proved to be NP-Complete [56].

Previous solutions to this problem can be classified into two types. One type is to

24

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

formulate this issue into an equivalent mathematical problem and then apply a solver [57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. These attempts suffer from very long runtime

and can only be applied to small size cases. Moreover, general software solvers can

not exploit the intrinsic feature of the quantum mapping problem. Another type of

approach is heuristic search [68, 69, 70, 71, 72, 73, 74, 75], while most of them were

developed on ideal 1D/2D lattice model and not applicable to NISQ devices with more

irregular and restricted coupling connections. Some recent works [76, 56, 77] targeting

IBM chip architecture are able to handle arbitrary coupling but they suffer from very long

runtime due to exhaustive mapping search, and their solutions for initial mapping lack

the ability of global optimization. Moreover, none of them have the ability to control the

generated circuit quality among multiple optimization objectives to fit in NISQ devices

with different characteristics.

In this chapter, a SWAP-based BidiREctional heuristic sear-ch algorithm, named

SABRE, is proposed to solve this qubit mapping problem and overcome the drawbacks

mentioned above. With the observation that many attempts in exhaustive search can

be redundant and effective mapping transition needs to start from the qubits in the

two-qubit gates that need to be executed, we design an optimized SWAP-based heuristic

search scheme in SABRE with significantly reduced search space. Initial mapping has

been proved to be very important in this problem since it can significantly affect the

final circuit quality [56, 77]. We present a novel reserve traversal search technique in

SABRE to naturally generate a high-quality initial mapping through traversing a reverse

circuit, in which more consideration is given to those gates at the beginning of the circuit

without completely ignoring the rest of the circuit. Moreover, we introduce a decay effect,

which will slightly increase our heuristic cost function values when evaluating overlapped

SWAPs, to let SABRE tend to select non-overlapped SWAPs. This optimization enables

the control of parallelism in the additional SWAPs and can further generate different

25

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

hardware-compliant circuits with a trade-off between circuit depth and the number of

gates.

SABRE is evaluated with various benchmarks on a latest IBM 20-qubit chip model [37]

compared with the best known solution [77]. Experimental results show that SABRE is

able to find the optimal mapping for small benchmarks and the number of additional

gates is reduced by 91% or even fully eliminated. For larger benchmarks, SABRE can

demonstrate exponential speedup against the previous solution and still outperform it

with around 10% reduction in the number of additional gates on average with the assis-

tance of the high-quality initial mapping generated by our proposed method. In some

cases, the best known previous solution cannot even finish execution due to exponential

execution time and memory requirement, while SABRE can still work with short exe-

cution time and low memory usage. By tuning the decay parameters in our algorithm,

SABRE shows the ability to control the generated circuit quality with about 8% variation

in generated circuit depth by varying the number of gates.

The major contributions of this chapter can be summarized as follows:

• We perform a comprehensive analysis on the shortcomings of previous solutions,

and then summarize the objectives and metrics that should be considered when

designing a heuristic solution for the qubit mapping problem.

• We propose a SWAP-based search scheme which can produce comparable results

with exponential speedup in the search complexity compared with previous exhaus-

tive mappingsearch algorithms. This fast search scheme ensures the scalability of

SABRE to accommodate larger-size quantum devices in the NISQ era.

• We present a reverse traversal technique to enable global optimization in the initial

mapping solution by leveraging the intrinsic reversibility in qubit mapping prob-

lem. Our high-quality initial mapping can significantly reduce the overhead in the

26

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

generated circuit.

• By introducing a decay effect in the heuristic cost function, we are able to generate

different hardware-compliant circuits by trading the number of gates in the circuit

against the circuit depth. This makes SABRE applicable for NISQ devices with

different characteristics and optimization objectives.

3.2 Background

In this section, we will give a brief introduction to quantum hardware in the NISQ era.

We will focus on IBM’s superconducting quantum processor and the qubit connectivity

constraints.

3.2.1 Quantum Computing Hardware in the NISQ Era

There are several different candidate technologies to implement quantum computing

on hardware, including superconducting quantum circuit [78], ion trap [79], quantum

dot [80], neutral atom [81], etc. We will use superconducting quantum circuit, which is

currently the most promising technology, as an example to introduce quantum computing

hardware model.

Figure 3.1 shows the information about IBM Q20 chip [37]. The lifetime of the qubits

are about 50µs on average. The average error rates are 4.43 × 10−3, 8.47 × 10−2, 3.00 ×

10−2 for single-qubit gate, measurement, and CNOT gate respectively. As mentioned in

Chapter 2, the physical superconducting qubits are connected by physical resonators, also

known as couplers. Since the qubits are placed on a planar geometry, the couplers can

only connect one qubit to its neighboring qubits due to on-chip placement-and-routing

constraints. This qubit connectivity constraint can be abstracted and represented in a

27

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Q10 Q11

Q15

Q12

Q16 Q17

Q13 Q14

Q18 Q19

Q0 Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8 Q9

Two-qubit gate error rate: 3.00x10-2

Measurement error rate: 8.74x10-2

Single-qubit gate error rate: 4.43x10-3

Qubit Lifetime:
T1=87.29us, T2=54.43us

Chip Parameters on Average:

Figure 3.1: IBM Q20 Tokyo Information [37] (Vary over Time)

coupling graph shown on the left. Each node in this graph represents a qubit and two

nodes are connected by a bidirectional arrow if their corresponding qubits are physically

connected. For example, Q0 is connected to Q1 and Q5 through couplers, which means

a CNOT gate can be applied on qubit pair {Q0, Q1} and {Q0, Q5} in either direction.

However, Q0 is not directly connected with Q6 and you cannot apply a CNOT gate on

these two qubits directly.

John Preskill proposed this NISQ concept, referring to quantum computers with the

number of qubits ranging from dozens to hundreds [53]. Quantum computers of such

size are expected to appear in the next few years. Due to limited number of qubits

in the NISQ era, all logical qubits in the quantum circuit are directly implemented by

physical qubits without QEC. NISQ hardware is not as perfect as the model used when

we design a quantum program. In this chapter, the following three major limitations are

considered:

1. Qubit Lifetime. A qubit can only retain its state for a very short time. It

may decay to another state or interact with the environment and lose the original

quantum state. The coherence time of state-of-the-art superconducting qubits can

reach ∼ 100 µs [37]. All the computation must be accomplished within a fraction

28

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

of qubit coherence time, which sets an upper bound on the number of sequential

gates that can be applied on qubits.

2. Operation Fidelity. Quantum operations applied to the qubits can also introduce

errors. For example, the error rate for operations is reported to be around 10−3

for single-qubit gates, and 10−2 for two-qubit gates and measurements [37, 82, 83].

Therefore, it is important to minimize the number of gates in a quantum algorithm

to reduce the amount of error accumulated.

3. Qubits Coupling. A physical connection is required when applying two-qubit

gates, which means that two-qubit gates can only be applied on two physically

nearby qubits. One popular coupling structure is the 2D Nearest Neighbor struc-

ture which fits in the planar layout of qubits on state-of-the-art superconducting

quantum chips.

3.3 Problem Analysis

In this section, we will illustrate the challenge of qubit mapping caused by the three

limitations discussed above. We first introduce qubit mapping problem with a small-size

example. Then we will discuss the design objectives and the metrics used to evaluate our

solution.

3.3.1 Problem in Qubit Mapping

We will use a small-size example to explain this qubit mapping problem. A 4-qubit

device model is used as the hardware platform (shown in Figure 3.2 (b)). Two-qubit

gates are allowed on the following physical qubit pairs:{Q1, Q2}, {Q2, Q4}, {Q4, Q3},

{Q3, Q1} and not allowed on {Q1, Q4}, {Q2, Q3}.

29

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

q1

q2

q3

q4

(Q 1)

(Q 2)

(Q 3)

(Q 4)

q1

q2

q3

q4

(Q 1)

(Q 2)

(Q 3)

(Q 4)

(Q 2)

(Q 1)

(Q 3)

(Q 4)

Q1 Q2

Q3 Q4

q1

q2
=

(a)

(b)

Initial Mapping Updated Mapping

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

CNOT q1, q2
CNOT q3, q4
CNOT q2, q4
SWAP q1, q2
CNOT q2, q3
CNOT q3, q4
CNOT q1, q4

(c) (d)

Original Code Block
Updated Code Block

Figure 3.2: (a) SWAP Gate Decomposition, (b) Physical Qubit Coupling Graph Ex-
ample, (c) Original Quantum Circuit, (d) Updated Hardware-Compliant Quantum
Circuit

Now suppose we have a small quantum circuit to be executed on this 4-qubit device.

This quantum circuit consists of six CNOT gates (shown in Figure 3.2 (c)). We assume

the initial logical-to-physical qubits mapping is {q1 7→ Q1, q2 7→ Q2, q3 7→ Q3, q4 7→ Q4}.

We can find that four of the six CNOT gates can be directly executed, but the fourth

and the sixth CNOT gates (marked red in Figure 3.2 (c)) cannot be executed because

the corresponding qubit pairs are not connected on the device. A perfect initial mapping

to satisfy all two-qubit gate dependencies does not exist in this example and we need to

change the qubit mapping during execution and make all CNOT gates executable.

SWAP Qubit Mapping. Same as previous solutions, we employ SWAP operations

to change the qubit mapping by exchanging the states between two qubits. It consists

of three CNOT gates (shown in Figure 3.2 (a)). We can employ multiple SWAPs to

move one logical qubit to arbitrary physical qubit location. Even two qubits are not

nearby on the quantum device, we can still move them together and then apply the

two-qubit gate in the circuit. Figure 3.2 (d) shows that the updated quantum circuit is

now executable after we insert one SWAP operation between q1 and q2 after the third

CNOT gates. The first three CNOT gates can be executed under initial mapping. After

the inserted SWAP, mapping is updated to {q1 7→ Q2, q2 7→ Q1, q3 7→ Q3, q4 7→ Q4}. All

three remaining CNOT gates now can be executed under this updated mapping.

Other Methods. Prior work also tried to employ other circuit transformation meth-

30

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

ods [56] like ’Reverse’ or ’Bridge’ because of the asymmetric connection hardware model

from IBM’s 5-qubit and 16-qubit chips [37]. On those chips, CNOT gate is only allowed

in one direction even if two physical qubits are connected on the chip. Fortunately,

physical experiments have shown that the connection between superconducting qubits

can be symmetric [84] and on IBM’s latest 20-qubit chip [37, 85], CNOT gate can be

applied on either direction between any connected qubit pair. Since the difficulty from

the asymmetric connection is overcome by technology advance, we will focus on the latest

symmetric coupling model and only consider inserting SWAPs for mapping change.

By introducing additional SWAPs in the quantum circuit, we can solve all the two-

qubit gate dependencies and generate a hardware-compliant circuit without changing the

original functionality. However, due to limitations of NISQ devices, inserting SWAPs in

the quantum circuit will also cause the following problems:

1. The number of operations in the circuit is increased. Since the operations are

imperfect and will introduce noise, the overall error rate will increase.

2. The circuit depth may also be increased, which means the total execution time will

be increased and too much error can be accumulated due to qubit decoherence.

If we compare the original circuit and the updated circuit in Figure 3.2 (c) and (d),

the number of gates increases from 6 to 9 and the circuit depth increases from 5 to 8.

Additional SWAPs will bring significant overhead in terms of fidelity and execution time.

As a result, we hope to minimize the number of additional SWAPs in order to reduce

the overall error rate and total execution time. We formally define the qubit mapping

problem as follows:

Definition: Given an input quantum circuit and the coupling graph of a quantum

device, find an initial mapping and the intermediate qubit mapping transition (by

inserting SWAPs) to satisfy all two-qubit constraints and try to minimize the number of

31

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

additional gates and circuit depth in the final hardware-compliant circuit.

3.3.2 Objectives and Metrics

Since qubit mapping problem is NP-Complete [56], it is hard to directly find the

optimal solution. We will design a heuristic algorithm trying to find a solution to this

problem with the following objectives:

1. Flexibility. NISQ devices may have an irregular coupling design which can evolve

over time. Our algorithm should be able to deal with arbitrary symmetric coupling

cases for various benchmarks.

2. Fidelity. This objective comes from the imperfect quantum operations. The error

rate of a CNOT gate is high and one SWAP even requires 3 CNOT gates. We

target to improve the overall fidelity by reducing the number of quantum gates,

especially two-qubit gates, of the final hardware compliant circuit.

3. Parallelism. This objective comes from the limited qubit lifetime. Inserting

SWAPs may increase the depth of the circuit. If our algorithm can insert SWAPs

that can be executed in parallel and control the final circuit depth, a deeper circuit

will be allowed to execute on hardware.

4. Scalability. Our algorithm targets to be scalable with an acceptable execution

time for NISQ devices which contain dozens to hundreds of qubits. As the number

of qubits continues to increase beyond the scope of NISQ in the future, QEC might

be used, and the problem addressed in the chapter turns into another one, as

discussed in other papers [86, 87, 88, 89].

Metrics. Our algorithm is evaluated by a set of benchmarks of various sizes on IBM’s

latest public superconducting chip model [37] to test the flexibility and scalability. The

32

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Table 3.1: Definition of Notations used in this Chapter
Notation Definition
n number of logical qubits
q{1,2,··· ,n} logical qubits in quantum circuit
g number of gates in the circuit
d depth of the circuit
N number of physical qubits
Q{1,2,··· ,N} physical qubits on quantum device
G(V,E) the coupling graph of the chip
D[][] the distance matrix of the physical qubits

D[i][j] is the distance between Qi,Qj

π() a mapping from q{1,2,··· ,n} to Q{1,2,··· ,N}
π−1() a mapping from Q{1,2,··· ,N} to q{1,2,··· ,n}
F Front Layer, defined in Section 3.4.1
E Extended Set, defined in Section 3.4.4

metrics are the total number of gates and the circuit depth in the generated hardware-

compliant circuit.

3.4 Finding Initial Mapping and SWAPs

In this section, we will introduce our heuristic approach SABRE step by step to

illustrate how our design search could overcome the shortcomings of previous work. We

start with preprocessing steps in Section 3.4.1 and the overview of SABRE’s SWAP-based

heuristic search algorithm in Section 3.4.2. Then we use several examples to explain key

design decisions in SABRE in Section 3.4.3, followed by the heuristic function design in

Section 3.4.4. We summarize the notations used in this chapter in Table 3.1.

3.4.1 Preprocessing

Before our heuristic search, some preprocessing steps are performed to prepare and

initialize the required data.

33

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Distance matrix computing. Given the coupling graph G(V,E) of a quantum

device, we will first compute the All-Pairs Shortest Path (APSP) by Floyd-Warshall

algorithm [90] to obtain the distance matrix D[][]. Each edge in the coupling graph has

distance of 1 because one SWAP is required to exchange the two qubits of an edge. So

that D[i][j] represents the minimum number of SWAPs required to move a logical qubit

from physical qubit Qi to Qj. The complexity of this step is O(N3), which is acceptable

for NISQ devices with hundreds of qubits.

Circuit DAG generation. We use a Directed Acyclic Graph (DAG) to represent

q1

q2

q3

q4

q5

q6

H

H

H

Z

H

H

Z

g1

g2

g3

g4

g5

g6

g7

g8

…
…

O
r
ig

in
a

l C
ir

cu
it

G
e
n

e
ra

te
d

 D
A

G

g1

g2

g3

g4

g5

g6

g7

g8

…
…

Front Layer

q2

q3

q6

q4

q2

q3

q4

q1

q4

q5

Figure 3.3: Example of DAG Generation and Front Layer Initialization.

34

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

the execution constraints between the two-qubit gates in a quantum circuit. The single

qubit gates are not considered here because they can always be executed locally on one

qubit without bringing dependencies on other qubits. A two-qubit gate CNOT (qi, qj) can

be executed only when all the previous two-qubit gates on qi or qj have been executed.

We traverse the entire quantum circuit and construct a DAG to represent execution

dependencies with complexity O(g). An example is shown in Figure 3.3. The DAG in

the lower half is generated from the quantum circuit above. For example, the gate g3

depends on gate g1 because qubit q2 is in both g1 and g3 can not be executed before g1.

Front layer initialization. A front layer (denoted as F) in this chapter is defined

as the set of all the two-qubit gates which have no unexecuted predecessors in the DAG.

These gates can be executed instantly from a software perspective. For a two-qubit gate

CNOT (qi, qj), it can be placed in the set F when all previous gates on qi or qj have

been executed. By checking the generated DAG, we can select all vertices in the graph

with 0 indegree, which means the corresponding two-qubit gates have no dependencies,

to initialize F . In Figure 3.3, the initial front layer contains g1 and g2 because they have

no predecessors.

Temporary initial mapping generation. SABRE does not give the initial map-

ping at the preprocessing stage, but a temporary initial mapping is still required to start

our heuristic search. We randomly generate an initial mapping as a start point. Later in

Section 3.4.3, we will finally update this initial mapping at the end of SABRE.

3.4.2 SWAP-Based Heuristic Search

The preprocessing stage leads to the distance matrix D[][], circuit DAG, initial F ,

and an initial mapping. In this section, we introduce the complete SWAP-Based heuristic

search procedure.

35

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Algorithm 1: SABRE’s SWAP-based Heuristic Search

Input: Front Layer F , Mapping π, Distance Matrix D, Circuit DAG, Chip
Coupling Graph G(V,E)

Output: Inserted SWAPs, Final Mapping πf
1 while F is not empty do
2 Execute gate list = ∅ ;
3 for gate in F do
4 if gate can be executed on device then
5 Execute gate list.append(gate);
6 end

7 end
8 if Execute gate list ̸= ∅ then
9 for gate in Execute gate list do

10 F.remove(gate);
11 obtain successor gates from DAG;
12 if successor gates’ dependencies are resolved then
13 F.append(gate);
14 end

15 end
16 Continue;

17 else
18 score = [];
19 SWAP candidate list = Obtain SWAPs(F,G);
20 for SWAP in SWAP candidate list do
21 πtemp = π.update(SWAP);
22 score[SWAP] = H(F,DAG, πtemp, D, SWAP);

23 end
24 Find the SWAP with minimal score;
25 π = π.update(SWAP);

26 end

27 end

Algorithm 1 shows the pseudo code of our search algorithm for one traversal, which

scans through the entire DAG and inserts SWAPs to make all CNOT gates executable.

Later in Section 3.4.3, this procedure will be used multiple times to update the initial

mapping and improve the results. Generally, SABRE’s heuristic search will iterate until

the front layer F is empty, which means all the gates in the circuit have been executed

36

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

and the algorithm should stop. In each iteration, it will first check if there are any

gates in F that can be directly executed on the chip. If so, it will execute these gates,

remove them from F , and then add new gates to F if possible. Otherwise, it will try to

search for SWAPs, insert the SWAPs in the circuit, and update the mapping. A detailed

explanation of each step is listed as follows:

• Our heuristic search algorithm will first check if F is empty. If so, all the two-qubit

gates in the circuits have been executed and we should finish our search algorithm.

Otherwise, it will initialize an Execute gate list and try to add some gates from F

to Execute gate list.

• To determine whether a gate should be added into Execute gate list, SABRE’s

search algorithm will extract the logical qubits, qi and qj, in the gate and use the

current mapping to find the corresponding physical qubits Qm, Qn = π(qi), π(qj)

on the chip. If Qm and Qn are connected by an edge in the coupling graph G,

then this two-qubit gate on qi and qj can be executed directly and will be added

to Execute gate list.

• If Execute gate list is not empty, all gates in the list are removed from F . After

that, we will check the successor gates of these executed gates. For a successor

CNOT gate on qi and qj, if there is no gate in F that is applied on any of them,

then logically this successor gate is ready to be executed and we will add it to F .

After executing some gates and adding the successor gates, we will go back to the

beginning and the check for the executable gates again.

• If Execute gate list is empty, all the gates in F can be executed in software but not

on hardware. SWAPs need to be inserted to move the logical qubits in a two-qubit

gate close to each other.

37

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

• Instead of searching for a mapping, which will require exponential time and space,

we only search for SWAPs associated with the qubits in F (in Section 3.4.3). Sup-

pose q1 is a target of a two-qubit gate in F now, we find the corresponding physical

qubit Qi = π(q1) in G and then locate all its 5 neighbors Qi1, . . . , Qi5. After

that we use reverse mapping to find the corresponding logical qubits qi1, . . . , qi5 =

π−1(Qi1), . . . , π
−1(Qi5). For logical qubit pairs (q1, qi1), . . . , (q1, qi5), it is possible

to insert a SWAP between the two qubits in a qubit pair since their correspond-

ing physical qubits are connected by an edge in the coupling graph, and two-qubit

gates between these two qubits are supported by the hardware. The SWAPs on

these qubit pairs will be added to SWAP candidate list. We repeat the procedure

above for all the qubits involved in F .

• A heuristic cost functionH is then used to rate each SWAP in the SWAP candidate

list. The SWAP with the lowest score is selected to update the mapping π. Af-

ter that, the algorithm continues to check for executable gates if F is not empty;

otherwise, it terminates.

3.4.3 Key Design Decisions

Compared with previous solutions, SABRE features three points to ensure the design

objectives can be achieved. Three corresponding examples are given to demonstrate the

benefits of our design decisions.

SWAP-Based Search Scheme.

Previous works usually employ mapping-based exhaustive search to find the valid

mapping transition with low overhead [71, 77]. For example, Zulehner et al. search all

possible combination of SWAPs that can be applied concurrently to minimize the output

38

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

circuit depth and the number of additional SWAPs at the same time [77]. However, such

exhaustive search requires O(exp(N)) time and space, which makes the algorithms not

applicable to larger-size NISQ devices (experimental results discussed in Section 3.5.2).

We observe that many SWAPs in the mapping-based exhaustive search can be re-

dundant. Figure 3.4 shows an example of how we reduce the search space and find the

SWAP. Suppose we have a 9-qubit device. The coupling graph and initial mapping are

shown on the right side. The program we need to execute is on the left side. The first two

CNOT gates are in the front layer and ready to be executed. The third CNOT needs to

be executed after the first one due to the dependency on q7. The first two gates cannot

be executed directly because their corresponding physical qubit pairs are not connected.

All qubits not involved in the front layer (q2, q4, q5, q6, q9) are considered as low priority

ones and any SWAPs inside this low priority qubit set cannot help with resolving depen-

dencies in the front layer. Thus, only the SWAPs that associate with at least one qubit

in the front layer (the edges marked red in Figure 3.4) are the candidate SWAPs .

For all the candidate SWAPs, we design a heuristic cost function to help find the

SWAP that can reduce the sum of distances between each qubit pairs in the front layer.

Moreover, we also enable look-ahead ability in the heuristic cost function by considering

the gates right after the front layer. The detailed design of our heuristic cost function

is in Section 3.4.4. Here in this example in Figure 3.4, we can find that the SWAP

marked by a purple arrow is the best one. It can make all the CNOT gates in the front

layer executable and also reduce the distance between q2 and q7, which are in a CNOT

gate right after the front layer. For the long-term gates far away from the front layer,

we temporarily do not consider them because the mapping may vary significantly during

execution and it is hard to estimate the cost accurately over a long gate sequence without

an exhaustive search.

Complexity Analysis. An upper bound of the computation complexity can be

39

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

q2 q4

q1 q3

q5

q6

q7

q8q9

CNOT q1, q7
CNOT q3, q8
CNOT q2, q7

……

……

……

Ready to execute
(Front Layer)

Near-term gates
(Need to be considered)

Low priority qubits
Original Code:

Long-term gates
(Temporarily ignored)

Figure 3.4: Example of SWAP-Based Heuristic Search

estimated by the worst case, in which each two-qubit gate is satisfied individually. The

problem is resolved when all two-qubit gates have been satisfied. The time complexity to

satisfy one two-qubit gate is the multiplication of the time to evaluate a potential option

in the search space, the size of the largest possible search space, and the maximum

number of search steps per two-qubit gate. The complexity of the heuristic cost function

computation is O(N) (in Section 3.4.4). This SWAP-based search could bring exponential

speedup by reducing the search space from O(exp(N)) to O(N) (in the worst case all the

qubits are involved in the front layer), which makes SABRE scalable to larger size cases.

Although it increases the number of search steps because since multiple SWAPs may be

needed for one two-qubit gate, the benefit is still significant because we need, at most,

the diameter of the chip coupling graph (O(
√
N) for 2D layout) number of SWAPs to

move two qubits together for each two-qubit gate. In summary, our SWAP-based search

scheme can reduce the complexity from O(exp(N)) to at most O(N2.5)for each two-qubit

gate, which makes SABRE exponentially faster as N increases.

40

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

q1

q2

q3

q4

q5

q6

q1

q2

q3

q4

q5

q6

Original Circuit Reverse Circuit

In
itia

l M
a

p
p

in
g

F
in

a
l M

a
p

p
in

g

U
p

d
a
ted

 In
itia

l

M
a
p

p
in

g

Figure 3.5: Initial Mapping Update Using Reverse Traversal Technique

Reverse Traversal for Initial Mapping.

It has been proved that initial mapping could have a huge impact on the final

result [56, 77]. However, no previous solution could give an initial mapping with global

consideration. Siraichi et al. counted the number of coupled logical qubits in the circuit

for each logical qubit and tried to find a match with the outdegree of the physical qubit

in the coupling graph with no temporal information considered [56]. Zulehner et al.

determined the initial mapping by those two-qubit gates at the beginning of the circuit

without global consideration [77].

Different from classical circuit or programs, quantum circuits are reversible. You

can easily generate a reverse circuit of the original circuit. The two-qubit gates in the

reverse circuit will be exactly the same with only the order reversed. Figure 3.5 shows

an example of the reverse circuit. The last (first) CNOT gate in the original circuit will

be the first (last) CNOT gate in the reverse circuit on the same qubits. This symmetry

between the original circuit and the reverse circuit creates a new opportunity for initial

mapping optimization. If we know the final mapping of a quantum circuit, we can use

this final mapping as the initial mapping to solve qubit mapping problem for the reverse

circuit on the same hardware model. The final mapping of the reverse circuit can be an

initial mapping for the original circuit. This updated initial mapping comes with better

quality because all the gates’ information is considered. The gates that are closer to the

beginning of the circuit will have more impact on the initial mapping optimization. The

41

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

gates far away from the beginning have less impact but can still be considered through

these forward and backward traversals.

Based on this observation, we propose a novel reverse traversal technique to generate

high-quality initial mapping with global information considered. Figure 3.5 illustrates

the procedure of this technique. We first randomly generate an initial mapping and then

apply our SWAP-based heuristic search to traverse through the original circuit. The final

mapping obtained from this forward traversal will be used as the initial mapping in the

following reverse traversal. We use the same SWAP-based search with only the circuit

reversed, and the original initial mapping will be updated to the final mapping in the

reverse traversal.

Trade-off between the Circuit Depth and the Number of Gates.

When we insert SWAPs in the original quantum circuit, there is a trade-off between

these two metrics: the number of gates and the circuit depth (an analogy in classical

computation can be the trade-off between area and latency in digital circuit design).

Figure 3.6 shows an example. Suppose there is a 9-qubit device and we have 2 CNOT

gates on {q1, q2}, {q3, q4} (marked by blue and green) to execute. The initial mapping

is shown on the left side. We have two different solutions with different optimization

objectives: 1) Depth First. By inserting 4 non-overlap SWAPs on {q1, q5}, {q2, q9}

{q3, q7}, and {q4, q8} (marked by 4 red arrows) which can be executed simultaneously, we

can satisfy these 2 two-qubit gate dependencies with 4 additional SWAPs, and the circuit

depth increases by 1 SWAP. 2) Number of Gates First. {q2, q9} is first swapped and

then two qubit pairs {q2, q3} and {q4, q8} are swapped simultaneously. The SWAP on

{q2, q3} must be applied after the first SWAP on {q2, q9} so that the circuit depth

increases by 2 SWAPs, but only 3 additional SWAPs are required to resolve all the

dependencies.

42

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

CNOT q1, q2
CNOT q3, q4Code: Inserted Code:

SWAP q2, q9
SWAP q1, q5
SWAP q4, q8
SWAP q3, q7

1) Depth First

2) Number of Gates First

Inserted Code:
SWAP q2, q9
SWAP q2, q3
SWAP q4, q8

Original Mapping:

Updated Mapping:

Updated Mapping:

q2 q4

q1 q3

q5

q6

q7

q8q9

q1 q2

q3

q4

q6

q5

q8

q8

q8

q7

q7 q7

q9 q9

q9

q1 q1

q2

q2q3

q3

q4

q4q5 q5

q6 q6

Figure 3.6: Example of Generated Circuits for Different Optimization Objectives (a
Trade-off between d and g)

The two solutions above showed an example of a trade-off between d and g. To enable

the control of such trade-off, a decay effect is introduced in SABRE which makes our

heuristic search algorithm prone to selecting non-overlap SWAPs. For example, after the

SWAP on q2 and q9, the heuristic cost function result for any SWAPs containing q2 or q9

will increase slightly to let our search algorithm favor choosing SWAPs containing other

qubits.

In summary, these three design decisions bring exponential speedup for scalability,

an high-quality initial mapping solution, and the controllability between different opti-

mization objectives. These advantages ensure SABRE achieves all the design objectives

discussed in Section 3.3.2.

43

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

3.4.4 Design the Heuristic Cost Function

As mentioned above, the objectives for heuristic cost function are summarized as

follows:

1. H should be able to indicate the SWAP that can move the qubits in F closer to

finally allow the physical execution of the two-qubit gates in F .

2. Besides the two-qubit gates in F , the heuristic cost function should be able to

consider follow-up two-qubit gates for more effective qubit movement.

3. It should be able to control the parallelism of inserted SWAPs to enable the trade-

off between gate count and circuit depth mentioned in Section 3.4.3.

Nearest Neighbor Cost (NNC) function is used to construct the basic heuristic func-

tion. Further optimization is introduced later to achieve all the design objectives.

Nearest Neighbor Cost Function.

NNC-based heuristic function has been widely used in previous research [71, 77, 69].

NNC is the minimal number of SWAPs required to move two logical qubits adjacent to

each other on the quantum device. On ideal 1D/2D lattice hardware models, NNC can

be easily obtained from the coordinates of the physical qubits while on NISQ devices

with irregular coupling, NNC is the length of the shortest path between two physical

qubits on the coupling graph, which has already been obtained in D[][] during the

preprocessing stage (an offset -1 is ignored without affecting the result). In our design,

the summation of the distances between all qubit pairs in F is the basic heuristic cost

function (shown in Equation 3.1). To evaluate the candidate SWAPs, the mapping π

is temporarily changed by a SWAP and then Hbasic is calculated. If Hbasic is small, it

generally means the distances between the two qubits in the qubit pairs from F are short,

44

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

and this SWAP is more likely to make the gates in F executable. The SWAP with the

minimal Hbasic will be selected.

Hbasic =
∑
gate∈F

D[π(gate.q1)][π(gate.q2)] (3.1)

Look-Ahead Ability and Parallelism.

Although Hbasic is able to guide the heuristic search and solve the qubit movement,

it only considers the two-qubit gates in F . However, a local qubit movement can affect

not only the gates in F but also the following gates. For the example in Figure 3.2, the

SWAP between q3 and q7 is a good selection because it not only resolves the dependencies

for the gates in the front layer but also makes the q2 and q7 closer in the following gate.

Thus, we introduce the Extended Set E, which contains some closet successors of the

gates from F in the DAG. The size of E is flexible, depending on how much look-ahead

ability we hope to have. A large E is not necessary since the summation over E is only

an inaccurate estimation of the effect of a SWAP and the amount of computation will

also increase.

In the updated heuristic cost function, we sum over the gates in both E and F to

enable the look-ahead ability. Since E and F are different sizes, we normalize the two

summations by the sizes of F and E respectively. Also, the gates in F should have some

priority since they need to be executed before those in E. So that a weight parameter

W, 0 ≤ W < 1, is added to reduce the effect of the second term.

In order to select SWAPs that can be executed in parallel, a decay effect is introduced

in the heuristic cost function. If a qubit qi is involved in a SWAP recently, then its

decay parameter will increase by δ (decay(qi) = 1 + δ). This decay parameter will let

our heuristic search tend to select non-overlap SWAPs and increase the parallelism in

the generated circuit. Moreover, by tuning the value of δ, we are able to control the

45

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

‘willingness’ of our heuristic search to generate different circuits with a trade-off between

the number of gates and circuit depth. The final version of our optimized heuristic

function is shown in Equation 3.2. The complexity of this heuristic function is O(N)

since all qubits appear in F in the worst case. The size of E is not considered because it

will not be very large and is set to N in our evaluation.

H = max(decay(SWAP.q1), decay(SWAP.q2))

∗{ 1

|F |
∑
gate∈F

D[π(gate.q1)][π(gate.q2)]

+W ∗ 1

|E|
∑
gate∈E

D[π(gate.q1)][π(gate.q2)]}

(3.2)

3.5 Evaluation

In this section, we evaluate SABRE with a set of benchmarks on the latest, reported

hardware model based on the superconducting circuit technology.

Benchmarks. The benchmarks are selected from previous work [56, 77], including

quantum programs from IBM’s QISKit [76], some functions from RevLib [91], and some

algorithms compiled from Quipper [92] and ScaffCC [93].

Hardware Model. We use the coupling graph from IBM’s Tokyo chip [37] (Fig-

ure 3.1) with 20 qubits. All the couplings are symmetric and the CNOT gate is allowed

in both directions between each pair of connected physical qubits.

Experiment Platform. All experiments in this chapter are executed on a server

with 2 Intel Xeon E5-2680 CPUs (48 logical cores) and 378GB memory. The Operating

System is CentOS 7.5 with Linux kernel version of 3.10.

Algorithm Configuration. The size of the Extended Set |E| is fixed to be 20 and

the the weight W to be 0.5. The decay parameter δ increases from 0.001 and this decay

function is reset every 5 search steps or after a CNOT gate is executed. The algorithm

46

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

is executed for 5 times, each with a different initial mapping for each benchmark. Each

time we run 3 traversals (forward-backward-forward) and report the best result out of 5

attempts.

Comparison. There are several existing algorithms with the flexibility to be applied

to an arbitrary coupling graph proposed by IBM [76], Siraichi et al. [56], and Zulehner

et al. [77]. Among them, Zulehner et al.’s algorithm has beaten the other two solutions

and is used as the Best Known Algorithm (BKA) in this chapter. For a fair comparison,

their source code [94] is downloaded and only the embedded hardware model is modified

to be the same IBM 20-qubit chip model. It is then recompiled with full optimization,

and executed on the same server with SABRE.

3.5.1 Number of Gates Reduction

Table 3.2 shows the gate counts reduction of SABRE compared with BKA [77].

SABRE could beat BKA on various benchmarks of different sizes.

Small Size Cases and Ising Model.

SABRE could perform much better than BKA on small-size benchmarks. It is able to

find a good initial qubit mapping with no or very few additional SWAPs required. The

number of additional gates could be significantly reduced by 91% or even fully eliminated.

For ising model benchmarks, the optimal solution is trivial since the ising model in

quantum mechanics only considers nearby coupling energy. Although the number of

qubits and the number of gates are much larger compared with small cases, SABRE can

still find the optimal solution. BKA only considers the two-qubit gates at the beginning

of the circuit without such a scheme to improve the initial mapping.

47

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Table 3.2: Number of Additional Gates and Runtime Compared with BKA [77]
Original Circuit BKA [77] (C++) SABRE (Python) Comparison

type name n gori gadd gtot ttot gla gop t1 top ttot/top ∆g ∆g/gadd
small 4mod5-v1 22 5 21 15 36 0 6 0 0 0 N/A 15 100%
small mod5mils 65 5 35 18 53 0 12 0 0 0 N/A 18 100%
small alu-v0 27 5 36 33 69 0 30 3 0 0 N/A 30 91%
small decod24-v2 43 4 52 27 79 0 9 0 0 0 N/A 27 100%
small 4gt13 92 5 66 42 108 0 18 0 0 0 N/A 42 100%

sim ising model 10 10 480 18 498 1.37 39 0 0.003 0.004 342.5 18 100%
sim ising model 13 13 633 60 693 42.46 66 0 0.005 0.007 6066 60 100%
sim ising model 16 16 786 Out of Memory 84 0 0.008 0.01 N/A N/A N/A

qft qft 10 10 200 66 266 0.22 93 54 0.004 0.103 2.136 12 18%
qft qft 13 13 403 177 580 266.27 204 93 0.015 0.036 7396 84 47%
qft qft 16 16 512 267 779 474.81 276 186 0.028 0.084 5652 81 30%
qft qft 20 20 970 Out of Memory 429 372 0.034 0.102 N/A N/A N/A

large rd84 142 15 343 138 481 1.97 243 105 0.012 0.035 56.29 33 24%
large adr4 197 13 3439 1722 5161 4.53 2112 1614 0.19 0.49 9.245 108 6%
large radd 250 13 3213 1434 4647 2.23 1488 1275 0.16 0.48 4.646 159 11%
large z4 268 11 3073 1383 4456 1.15 1695 1365 0.15 0.44 2.614 18 1%
large sym6 145 14 3888 1806 5694 0.56 1650 1272 0.19 0.56 1.000 534 30%
large misex1 241 15 4813 2097 6910 0.3 2904 1521 0.29 0.89 0.337 576 27%
large rd73 252 10 5321 2160 7481 1.19 2391 2133 0.31 0.94 1.266 27 1%
large cycle10 2 110 12 6050 2802 8852 1.31 2622 2622 0.44 1.35 0.970 180 6%
large square root 7 15 7630 3132 10762 2.81 5049 2598 0.63 1.5 1.873 534 17%
large sqn 258 10 10223 4737 14960 16.92 5934 4344 1.23 3.52 4.807 393 8%
large rd84 253 12 13658 6483 20141 15.25 7668 6147 1.82 5.39 2.829 336 5%
large co14 215 15 17936 9183 27119 18.37 10128 8982 3.18 9.51 1.932 201 2%
large sym9 193 10 34881 17496 52377 72.61 26355 16653 11.11 30.17 2.407 843 5%
large 9symml 195 11 34881 17496 52377 81.73 25368 17268 11.1 31.42 2.601 228 1%

small: small quantum arithmetic. sim: quantum simulation. qft: quantum fourier transform. large: large quantum
arithmetic. n: number of logical qubits in the original circuit. gori: original number of gates. gadd: number of additional
gates. gtot: total number of gates. ttot: total runtime in seconds, ‘0’ means shorter than 0.001 second. gla: number of
additional gates with only look-ahead heuristic. gop: number of additional gates after reversal traverse. t1: runtime of
first traverse in seconds. top: runtime of all 3 traversals. ∆g: = gadd − gop. Out of Memory: the program required
more than 378 GB memory (entire memory space on the test server)

Large Size Cases.

For larger circuits in type ‘large’ and ‘qft’, SABRE can still be better than BKA.

Since the BKA searches a much larger space in each step, SABRE may not achieve the

same or better result in the first traversal. The gla column in Table 3.2 shows the number

of additional gates after the first traversal with look-ahead heuristic function and gla is

larger than gadd in most cases. However, with the help of our reverse traversal technique,

SABRE (shown in gre) is able to outperform BKA with the updated initial mapping and

reduce the number of additional gates by 10% on average.

48

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

Note that the gate count reduction for large size cases is less significant than that

for small size cases. This difference comes from whether a perfect initial mapping, which

could satisfy all the CNOT gate constraints in the program after the inital mapping

and does not require further SWAPs, can be found. For small benchmarks, there often

exists a physical qubit coupling subgraph that can perfectly or almost match logical qubit

coupling in the benchmarks. Our algorithm can find such matching (at least for all small

benchmarks we have tested), while BKA cannot. This leads to substantial benefit since

very few or no SWAPs are inserted. For the benchmarks with larger number of gates,

a physical qubit subgraph that can match the logical qubits coupling usually does not

exist. Therefore, both our approach and the baseline need to insert more SWAPs, leading

to less benefit.

3.5.2 Runtime Speedup and Scalability

As discussed in Section 3.4.3, the size of search space is O(exp(N)) in BKA, which

limits its scalability in terms of the number of qubits. But the search space size in

SABRE is only O(N). Although more search steps are required since only one SWAP is

selected in each step, the overall complexity in the worst case is still O(N2.5g). Such a

difference in complexity makes BKA not applicable to larger size cases.

Runtime Comparison.

BKA is written in C++ and compiled with GCC O3 optimization, while SABRE is

implemented in pure Python without any parallelization or C/C++ accelerated library.

The ‘ttot/top’ column in Table 3.2 shows the ratio between the execution time of BKA and

SABRE. For most benchmarks, SABRE requires significantly less execution time. Even

in the worst case ‘misex1 241’, SABRE only needs about 3 times runtime compared with

49

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

the BKA. Since the intrinsic speed difference between C++ and Python can be over 100

times, the speedup can still be estimated to be dozens of times if the same programming

language is used.

Limit of BKA and Scalability.

Our experiments have reached the limit of BKA (shown in Table 3.2 with ‘Out of

Memory’). For the ‘sim’ and ‘qft’ type, the benchmarks share the same function with

different input sizes. The runtime of BKA grows rapidly as the number of qubits increases.

For ‘qft 16’ benchmark, we observe that BKA requires more than 40GB memory and

474.81 seconds runtime while SABRE only required about 200MB memory and 0.08

seconds runtime. For ‘ising model 16’ and ‘qft 20’ benchmarks, the BKA requires more

than 378GB memory and can not be executed on our server. But SABRE can still solve

it in 0.1 seconds with about 300MB memory. These results show that SABRE is much

more scalable than BKA.

3.5.3 Trade-off between Number of Gates and Depth

The decay effect is introduced in the heuristic cost function in order to reduce the

depth of the generated circuit. Figure 3.7 shows the generated circuit variation with

different δ values for 9 benchmarks. The X-axis is the number of gates normalized to

gori (in Table 3.2). The Y-axis represents the generated circuit depth normalized to

the original circuit depth. These results showed that SABRE could provide about 8%

variation in generated circuit depth by varying the number of gates and control the

generated circuit quality. For a specific implementation technology, we can change the

δ according to the qubit coherence time and gate fidelity data. However, if we continue

to increase δ, both the circuit depth and the number of gates may increase (not shown

50

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 .2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 .9

qft_10

qft_13

qft_16

qft_20

rd84_142

radd_250

cycle10_2_110

co14_215

sym9_193

Number of Gates Normalized to 𝒈𝒐𝒓𝒊

C
ircu

it
D

ep
th

 N
o
rm

a
lized

 to
 O

rig
in

a
l D

ep
th

Figure 3.7: Trade-off between g and d in the Output Circuits

in the figure) because our search algorithm will consider more about unmoved qubits

instead of trying to satisfy a CNOT dependency, which will bring redundant SWAPs.

3.6 Limitation and Future Work

This chapter provides an effective, flexible, and scalable solution for the qubit mapping

problem. However, some of our assumptions may not hold due to the rapid development

in this area. Some limitations and potential future research directions are listed as follows:

Benchmarks. We select 26 benchmarks of different sizes and functions from several

benchmark suites. However, these quantum circuits may not be able to fully represent the

characteristics of emerging practical NISQ applications which are still under development.

Various Chip Architecture. We use the hardware model from the latest IBM’s

20-qubit chip, on which each connected qubit pair support CNOT gates. However, the

chip model varies among different vendors. For example, Rigetti’s QPU supports CPhase

51

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

and iSWAP two-qubit gates [52, 95]. How to design more general circuit transformations

is beyond the scope of this chapter, but can be a future research direction.

More Precise Hardware Modeling. Besides the qubit coherence time, gate fi-

delity, and available on-chip coupling, the difference in the error rate of various quantum

gates and of the same quantum gate applied on different qubits or qubit pairs may also

influence the fidelity of executing a quantum algorithm [85]. In addition, realistic hard-

ware suffers from more imperfections which are not covered in this chapter, such as the

cross talk between qubits. Both facts call for a more precise hardware model to enable

better platform-specific quantum circuit optimization.

3.7 Related Work

Although the qubit mapping problem shares some similarities with the register allo-

cation [96, 97] and instruction scheduling problem [98, 99, 100] in classical computing,

the constraints are different. In register allocation, the main constraint is the limited

number of registers while for quantum computing, the number of physical qubits cannot

be smaller than that of logical qubits. In instruction scheduling, the main constraints are

the data dependency and limited number of computing units. But in the qubit mapping

problem, the major constraint is the limited coupling between physical qubits. There-

fore, existing methods for such problems cannot be directly applied in this qubit mapping

problem.

It is well known that nearest neighbor coupling is the most feasible and promising

when there were only devices with a very limited number of qubits. Attempts to solve

qubit mapping problem at that time were made on hypothetical quantum hardware mod-

els like ideal 1D/2D lattice models and can be classified into two types. One popular type

of approach is to formulate the qubit mapping problem into a mathematically equiva-

52

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

lent optimization problem and then apply a software solver [57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67]. The major drawback of this type of approach is that a general solver

cannot utilize the intrinsic feature in qubit mapping and the execution time is usually

very long compared with the following heuristic approaches. Another type of approach is

search algorithms guided by heuristic cost functions. Several attempts have been made

on ideal 1D/2D lattice qubit coupling models [68, 69, 70, 71, 72, 73, 74, 75], but they

are not applicable in the NISQ era since qubit coupling can be much more complex and

restricted on NISQ devices. Some other works target hypothetical large-scale quantum

computers [86, 88], which is beyond the scope of NISQ and the qubit mapping problem

turns out to be another one [86, 87, 88, 89].

After IBM launched its quantum cloud service, more people were able to work on

hardware models from realistic devices. IBM provides a mapper targeting IBM’s chips

in its quantum computing toolkit QISKit [76]. This mapper divides the quantum circuit

into independent layers. Each layer only contains non-overlapped operations. Then it

randomly searches satisfying mappings for each layer guided by certain heuristics [56, 77].

Besides IBM’s solution, two more recent works [56, 77] are proposed for IBM’s chips and

can handle devices with arbitrary coupling, which are discussed as follows.

Siraichi et al. studied the qubit allocation problem on IBM QX2 and QX3 chips [56].

They proposed a search algorithm to find the optimal solution based on dynamic pro-

gramming. However, this optimal algorithm requires exponential time and space to

execute and can only work for circuits with 8 or fewer qubits. For larger size cases, they

proposed a heuristic method for both initial mapping and intermediate qubit movement.

Their initial mapping solution counted the number of two-qubit gates between each pair

of logical qubits and tried to find a matched edge on the physical chip with no tempo-

ral information considered in this stage. For the qubit movement, they only resolved

one two-qubit gate each time and determined whether to move qubits depending on the

53

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

number of two-qubit gates between them greedily without considering the effects of these

local decisions. Their heuristic method is fast but oversimplified with results worse than

IBM’s solution.

Zulehner et al. tried to use A* search plus heuristic cost function [77] (the BKA

in this chapter). They divided the two-qubit gates into independent layers similar to

IBM’s solution. Then they searched all possible combination of SWAP gates to minimize

the sum of distance between the coupled qubits in the layer and reduce the depth of

the final output circuit at the same time. Although their method is more efficient than

IBM’s approach and only requires up to several minutes on 16-qubit circuits, searching

all possible combinations of concurrent SWAP gates still requires exponential time. Their

initial mapping was determined by only those two-qubit gates at the beginning of the

circuit without global consideration.

3.8 Conclusion

The NISQ era is coming in the next few years while a significant gap remains be-

tween quantum software and imperfect NISQ hardware. In this chapter, we try to solve

the qubit mapping problem caused by limited physical qubits coupling on NISQ de-

vices. Two-qubit gate is allowed between arbitrary two logical qubits but can only be

implemented between two nearby physical qubits on NISQ hardware. The initial map-

ping between logical qubits and physical qubits and its evolution need to be carefully

designed to minimize the circuit transformation overhead. We propose SABRE, a novel

SWAP-based bidirectional heuristic search method to overcome the drawbacks of previous

works and ensure flexibility, scalability, controllability, and high-quality initial mapping.

Experiment results show that SABRE can generate hardware-compliant circuit among

different objectives with less or comparable overhead consuming much shorter execution

54

Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices Chapter 3

time. Although SABRE works for IBM chips with arbitrary symmetric CNOT coupling,

the hardware model, which differs among vendors and may change over time, is also

simplified and single-qubit gates are not yet considered. We only add additional gates

instead of modifying the original circuit, while the latter one is much more complicated.

In conclusion, this work explores one step in mitigating the quantum software-hardware

gap. Future work is required to take more precise hardware models into consideration.

55

Chapter 4

Towards Efficient Superconducting

Quantum Processor Architecture

Design

4.1 Introduction

The superconducting quantum circuit [9] has become one of the most promising tech-

nique candidates for building quantum computing systems [101, 102, 84] due to the ever-

increasing qubit coherence time, individual qubit addressability, fabrication technology

scalability, etc. Towards efficient superconducting quantum circuit based quantum com-

puting systems, significant research has recently been conducted, ranging from compiler

optimization [103, 104] to periphery control hardware support [28, 105] and device inno-

vation [78, 106].

Despite these system optimizations, the performance of a superconducting quantum

processor is still highly limited by the amount of computation resource on it. Researchers

have been trying to integrate more qubits and qubit connections on one superconducting

56

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

Coupling
Degree

List

Coupling
Strength
Matrix

Layout
Design

Hardware Architecture Design Flow

Bus
Selection

Frequency
Allocation

Location
Constraint

Connection
Constraint

Collision
Conditions

Physical Constraints
Quantum
Program

Program
Profiling

Efficient
Application-

specific
Architecture

Profiling
Information

Figure 4.1: Overview of the Proposed Architecture Design Flow

quantum processor substrate. For example, IBM’s first superconducting quantum chip

on the cloud has 5 qubits with 6 qubit connections, while its latest published chip has

20 qubits with 37 qubit connections [107]. Increasing the number of physical qubits

on a superconducting quantum processor allows programs with more logical qubits to

be executed. Denser qubit connections can increase the overall chip performance by

reducing the overhead of qubit mapping and routing [56, 77, 18, 108].

Nevertheless, more qubits and qubit connections will, unfortunately, increase the

probability of defect occurrence on a chip, leading to lower yield rate and blocking fu-

ture development of larger-scale superconducting quantum processor. For example, the

yield rate of a 17-qubit chip can be lower than 1% under IBM’s state-of-the-art tech-

nology [109]. Such a low yield rate comes from frequency collision, a unique defect on

superconducting quantum processors [110, 111]. The frequencies of physically connected

qubits may ‘collide’ with each other when their values satisfy some specific conditions.

More qubit connections naturally increase the probability of frequency collision and lower

the yield rate.

To optimize both the yield rate and performance would be desirable, but it is difficult

in general due to the inherent trade-off between these two objectives. Most previous

efforts on them are direct device-level improvement [78, 106, 82, 112], while little atten-

57

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

tion has been given to the architectural design of a superconducting quantum processor.

This chapter fills the gap by exploring the possibility of efficient application-specific ar-

chitecture design to reach an optimized balance between yield rate and performance. We

vision that an array of quantum computing accelerators, each of which is tailored to a

specific application, is much more likely to be adopted in the near term where computa-

tion resources are still limited before we can reach a universal quantum computer (i.e.,

one quantum computer that runs all kinds of quantum programs). Our design shares

the same high-level spirit with the hardware architecture designs in classical computing

(e.g., machine learning [113, 114], graph processing [115, 116]), but faces different sce-

narios because both the program patterns and the hardware design space are different in

quantum computing.

In particular, we highlight two key challenges to be addressed before the application-

specific principle can be applied in superconducting quantum processor design. First,

we need to identify and abstract the computation pattern of quantum programs that

can guide the hardware architecture design. Prior quantum program analysis stud-

ies [117, 118, 119, 120, 121, 122] mainly focused on software or compiler optimization and

cannot extract appropriate information for hardware architecture optimization. Second,

the abstracted computation pattern must give guidance to efficient architectural designs,

which employ fewer computation resources with physical constraints satisfied to achieve

both high yield rate and performance. Existing superconducting quantum processor de-

sign schemes cannot handle such irregular/complicated application-specific architecture

design tasks [123, 124, 109, 125].

To overcome these two challenges, we design a systematic design flow to automatically

generate efficient superconducting quantum processor architecture designs for different

quantum programs (shown in Figure 4.1). We first identify two key computation pat-

terns in quantum programs, coupling degree list and coupling strength matrix . A

58

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

profiler is built to automatically extract them from an input quantum program. Both

of them are critical to the program performance and hardware yield rate, and thus op-

timizing their underlying architecture support can potentially achieve a better balance

between the performance and yield rate. We then propose an architecture design flow,

which comes with three key subroutines, layout design , bus selection , and frequency

allocation . Each subroutine focuses on different hardware resources and must cooper-

ate with corresponding profiling results and physical constraints. We further propose an

array of heuristics to ensure the scalability and effectiveness of the architecture search

process. Empirical studies show that these heuristics can find ‘near-optimal’ solution in

the reduced search space.

In summary, this chapter makes the following contributions:

• We are the first to identify the optimization opportunity from the architecture

level to push forward the balance between performance and hardware yield rate for

superconducting quantum processors.

• We formalize an end-to-end design flow, equipped with a set of novel algorithmic

primitives, to automatically generate a series of application-specific architectural

designs under different hardware resource limits.

• Comprehensive experiments show that our design flow could outperform IBM’s

general-purpose designs with better Pareto-optimal results, e.g., magnitudes of

yield improvement with negligible performance loss.

4.2 Background

In this section, we will introduce more technical details about the superconduct-

ing quantum circuit devices to help understand the follow-up superconducting quantum

59

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

processor architecture design flow. Note that in this chapter we assume that the in-

put quantum circuit has been decomposed and gates with three or more qubits are not

considered.

4.2.1 Superconducting Quantum Circuit Basics

All the qubits and quantum operations in a quantum circuit must be implemented in

a real physical quantum computing system to execute the program. In this chapter, we

focus on superconducting quantum processors with fixed-frequency Josephson-junction-

based transmon qubits [78] and all-microwave cross-resonance two-qubit gates [126] that

are adopted by IBM [109].

Physical Qubit and Frequency Figure 4.2 shows the physical circuit and energy

levels of a transmon qubit [78]. Due to the nonlinearity of the Josephson junction, the

gaps between the energy levels in this quantum anharmonic oscillator are different, which

allows us to use the ground state |0⟩ and the first-excited state |1⟩ as the computation

basis without populating other states. Suppose the energy gap between |0⟩ and |1⟩ for a

qubit is E01. The frequency of this qubit f01 is defined as f01 = E01/h, where h is the

Planck constant. Similarly, we use f12 to represent the energy gap between |1⟩ and |2⟩.

For a typical qubit design with effective operations [110], f01 and f12 are about 5GHz

and 4.66GHz, respectively. The anharmonicity of this qubit is defined to be δ = f12−f01,

which is −340MHz under this typical design [125, 127].

Qubit Layout The superconducting physical qubits are confined on a 2-dimensional

planar substrate. Although the qubit placement can be flexible, major vendors fabricate

the qubits in a regularized structure to ensure scalability and reduce the fabrication

complexity. For example, IBM’s 16-qubit and 20-qubit chips [37] placed their qubits on

the nodes of 2×8 and 4×5 lattices, respectively. Google’s 72-qubit chip placed its qubits

60

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

on some nodes of an 11 × 12 lattice [51].

Qubit Connection To enable two-qubit gates between two physical qubits, res-

onators, also known as qubit buses, are employed to connect nearby qubits [126]. For

examples, Figure 4.2 shows two types of commonly used buses. The first one is a 2-qubit

bus connecting two physical qubits. The second one is a 4-qubit bus, which connects four

physical qubits in a square together. The coupling graphs of these two types of buses are

shown on the right. Compared with a 2-qubit bus, 4-qubit bus support two-qubit gates

on not only the four qubit pairs on the edges but also two qubit pairs on the diagonals.

Qubit Mapping It is usually assumed that a two-qubit gate can be applied on ar-

bitrary two logical qubits in a quantum program but some two-qubit gates may not be

executable due to the limited qubit connection on a superconducting quantum processor.

On the hardware side, this problem can be relieved by employing more physical qubit

connections so that two-qubit gates can be directly supported on more qubit pairs. On

the software side, a qubit-remapping compiler [57] can resolve the dependency of the

remaining unexecutable two-qubit gates while additional operations must be introduced

with longer execution time and higher error rate. Therefore, more physical qubit connec-

tions can help with the overall performance by allowing native two-qubit gates on more

physical qubit pairs.

Fabrication Variation Variation is inevitable when fabricating a superconducting

quantum processor. If a qubit is designed to have frequency f , the actual frequency after

fabrication will be f ′ = f + nf , where nf satisfies Gaussian distribution N (0, σ). σ is

the fabrication precision parameter, which is around 130MHz ∼ 150MHz under IBM’s

state-of-the-art technology [109]. Such noise makes it hard to predict the post-fabrication

frequency precisely, which brings the probability of frequency collision.

Frequency Collision When two or three qubits are connected, frequency collision

may happen and cause defects on the device. Figure 4.3 summaries seven qubit frequency

61

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

E01

E12

Energy Levels

4-Qubit
Bus

2-Qubit
Bus

Physical
Connection

Coupling
Graph

Transmon Qubit

Josephson
Junction

|2˃

|1˃

|0˃

Figure 4.2: Superconducting Qubit and Connection

collision conditions in IBM’s devices [109, 111]. On the left is a table showing the

conditions and thresholds of different collision situations. Condition 1, 2, 3, and 4 involve

two connected qubits (j and k). Condition 5, 6, and 7 involve three qubits of which

two qubits (k and i) both connect to the other qubit j. The approximate equations

and the corresponding thresholds determine whether one frequency collision happens.

For example, if qubit j and k are connected and |fj − fk| < 17MHz, then the first

condition is satisfied and frequency collision occur. Note that the fourth condition has

no threshold because it is an inequality rather than an approximate equation. On the

right is a graphical illustration, showing the geometric locations of the qubits that may

have frequency collisions of different conditions in two subfigures. Each circle represents

one qubit and the gray square represent a 4-qubit bus connecting the four surrounding

qubits.

62

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

j

k

k

k

k

i

ii

i

i

j

 Conditions Thresholds

1 𝑓𝑗 ≅ 𝑓𝑘 ±17𝑀𝐻𝑧

2 𝑓𝑗 ≅ 𝑓𝑘 − 𝛿/2 ±4𝑀𝐻𝑧

3 𝑓𝑗 ≅ 𝑓𝑘 − 𝛿 ±25𝑀𝐻𝑧

4 𝑓𝑗 > 𝑓𝑘 − 𝛿

5 𝑓𝑖 ≅ 𝑓𝑘 ±17𝑀𝐻𝑧

6 𝑓𝑖 ≅ 𝑓𝑘 − 𝛿 ±25𝑀𝐻𝑧

7 2𝑓𝑗 + 𝛿 ≅ 𝑓𝑘 + 𝑓𝑖 ±17𝑀𝐻𝑧

Condition 1, 2, 3, 4

Condition 5, 6, 7

Figure 4.3: Frequency Collision Conditions [109, 111]

0 1 2 3 4

0
1
2
3
4

0
1
0
0

1
0
0
0
1

0
0
0
0
1

0
0
0
0
1

1
1
1
02

2

0

1

2

q0

q1 q2

q3

q4

2 1

111

(a) (b) (c) (d)

q0

q1

q2

q3

q4

3
2
1
1

5
Qubit id CNOT #

Figure 4.4: Example of the Profiling Method

4.3 Quantum Program Profiling

The first step towards the development of an architecture-specific quantum processor

for both high performance and yield rate is to determine what program information

we should focus on. There are several different types of components in a quantum

circuit but not all of them will significantly affect the hardware design. Our target

program component(s) should satisfy two conditions: 1) the component’s execution is a

performance bottleneck which can be dramatically improved with optimized hardware

support, and 2) the component’s required hardware should significantly affect the yield

rate.

We found that two-qubit gates can be a key factor to bridge performance and yield.

63

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

To execute two-qubit gates on a quantum processor with limited qubit-to-qubit coupling,

a large number of additional operations are introduced to satisfy their dependencies. But

implementing two-qubit gates on two physical qubits require on-chip qubit connections

which can lower the yield rate through increasing the probability of frequency collision.

Therefore, we give logical qubits and qubit pairs priorities based on the number of involv-

ing two-qubit gates to help with the following architecture design. Critical qubits and

qubit pairs will have more hardware support to improve the efficiency of the generated

architectures.

These remaining components, single-qubit gates, initialization, and measurement op-

erations, do not involve qubit-to-qubit interactions and all happen locally on individual

qubits when they are implemented on hardware. As a result, hardware support for these

components will not affect the chip yield through frequency collision.

4.3.1 Profiling Method

As discussed above, our profiling will focus on the logical qubits and the two-qubit

gates. Figure 4.4 shows an example to illustrate the profiling procedure. Suppose we

have a quantum circuit as shown in Figure 4.4 (a). It has 5 logical qubits denoted by

q0,1,2,3,4. All of them are initialized to be |0⟩. Then some single-qubit gates and two-qubit

gates are applied. Measurement operations are at the end.

We first ignore all single-qubit gates, initialization, and measurement operations.

Then we create a logical coupling graph, in which each vertex represents one logical

qubit in the circuit. Two vertices are connected by an undirected edge if there exists

two-qubit gates applied on the two corresponding logical qubits. The weight of an edge

is the number of two-qubit gate instances on the two connected vertices. In this example,

Figure 4.4 (b) shows the generated graph for the example circuit. The weight of the edge

64

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

between vertex q0 and vertex q4 is 2 since there are two two-qubit gates on q0 and q4. For

all other edges, the weight is 1 because there is only one two-qubit gate on each of those

qubit pairs. The first profiling result is the weighted adjacency matrix of the logical

coupling graph, namely the coupling strength matrix. The element with indices (i, j)

represents the number of two-qubit gates between qi and qj. Figure 4.4 (c) shows the

coupling strength matrix for the example circuit. Note that coupling strength matrix is

always a symmetric matrix.

The second result is coupling degree list. For each qubit, we sum the weights of

edges that connect to its corresponding vertex and define the number of two-qubit gates

applied on it as the coupling degree of one qubit. If one qubit is associated with more two-

qubit gates in a quantum circuit than other qubits, this qubit will use the physical qubit

connections more frequently when executing on the chip. Naturally, we should pay more

attention to those qubits with larger coupling degree. Therefore, all qubits are placed in

a sorted list, namely the coupling degree list. Figure 4.4 (d) is the coupling degree list in

this example. The first one in this list is q4 because it has the largest coupling degree.

All qubits are in a descending order.

4.3.2 Gate Pattern Examples

In this section, we show the existence of distinct two-qubit gate patterns and discuss

the opportunity for application-specific architecture design with two examples. Figure 4.5

shows their coupling strength matrices. On the left is an 8-qubit UCCSD ansatz for VQE,

a quantum simulation algorithm [48]. The high coupling strength qubit pairs form a chain

structure marked by a red rectangle. Q0 and Q1 have a large number of two-qubit gates

between them, as well as {Q1Q2, Q2Q3, · · · , Q6Q7}. For other qubit pairs, the coupling

strength is much lower (only about 10%). On the right is a 15-qubit quantum arithmetic

65

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

0
0
0
0
0
0
0
0
0
8
16
16
6
0
6

0
0
0
0
0
0
0
0
4
4
16
20
10
0
6

0
0
0
0
0
0
0
0
0
0
8
16
6
0
6

0
0
0
0
0
0
0
8
0
12
12
16
4
4
0

0
0
0
0
0
0
0
0
4
8
16
16
4
4
4

0
0
0
0
0
0
8
0
4
4
8
12
22
4
10

0
0
0
0
0
8
0
0
8
0
8
20
8
0
0

0
0
0
8
0
0
0
0
64
30
0
6
132
44
44

0
4
0
0
4
4
8
64
0
32
70
104
64
0
0

8
4
0
12
8
4
0
30
32
0

60
144
40
40

16
16
8
12
16
8
8
0
70

0
132
92
4
4

16
20
16
16
16
12
20
6
104
60
132
0
56
24
42

6
10
6
4
4
22
8
132
64
144
92
56
0
58
64

0
0
0
4
4
4
0
44
0
40
4
24
58
0

6
6
6
0
4
10
0
44
0
40
4
42
64

0

160
160

214
214

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

64

48

32

16

0

0

0

96

64

32

0

0

64

0

96

48

0

0

48

96

0

64

0

0

32

64

96

0

0

0

16

32

48

64

0

0

0

0

0

0

0

0

588

588

768

768

748

748

720

720

748

748

768

768

588

588

0

100

200

300

400

500

600

700

UCCSD_ansatz_8,
8 qubits, VQE

Misex1_241, 15 qubits,
quantum arithmetic

Figure 4.5: Qubit Coupling Strength Pattern Examples

function [91]. The coupling strength among Q0Q1 · · ·Q5 are 0 since there are no two-qubit

gates on any two of them. However, there is a large number of two-qubit gates where

one qubit is in the set Q7,8,9,10 and the other qubit is in the set Q10,11,12 (marked by a

red circle). The analysis of these two motivating examples provides us two observations:

1. The numbers of two-qubit gates on different logical qubit pairs can vary dramati-

cally in a real quantum program.

2. Different types of quantum programs can have different two-qubit gate patterns.

These observations suggest that quantum processors can be customized for different

programs with different patterns. An efficient architecture can focus on supporting the

high-density coupling in a quantum program to reduce the number of connections on-

chip. For example, a quantum processor with an 8-qubit chain structure (8 qubits and

7 qubit connections) can immediately support most of the two-qubit gates in the 8-

qubit UCCSD ansatz program. The rest two-qubit gates can be supported through

remapping without introducing too many additional operations because the total number

66

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

of the remaining two-qubit gates is relatively small. Such application-specific quantum

computing accelerators with simplified architectures can be a more realistic goal in the

near term than a general-purpose quantum processor with a large number of hardware

resources.

4.4 Architecture Design

After a quantum circuit is profiled, a straightforward quantum processor architecture

for such a circuit is to organize the on-chip qubits and qubit connections directly based

on the logical coupling graph. However, we must consider the physical constraints for a

practical architecture. For example, a logical coupling graph may not be perfectly fabri-

cated on hardware since the allowed connections among superconducting qubits are very

limited. Moreover, we hope to improve the yield rate by delivering architecture designs

with fewer hardware resources. Therefore, the proposed hardware design flow must not

only invest more hardware resource on frequent operations based on the profiling results,

but must also obey the physical constraints on the hardware components arrangement.

To accomplish such a complicated task in a scalable way, we decouple the hardware

design procedure into three subroutines and each subroutine focuses on different archi-

tecture components, i.e., qubit layout, connection, and frequency. For each subroutine,

we first review the difficulty and the physical constraints considered. Then we discuss

the design objectives, and how they are achieved in the proposed design algorithms.

4.4.1 Layout Design

The first step is to determine where to place the qubits. To ensure scalability and

modularity, we follow the convention from major vendors introduced in Section 4.2 and

will only place qubits on the nodes of a 2D lattice. We start from a large 2D lattice, in

67

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

which each node is initialized to be empty (Figure 4.6 (a)). Then physical qubits can be

placed in the empty nodes and one node can contain at most one qubit.

There are many ways to place a given number of qubits on a 2D lattice. For example,

16 qubits can constitute a 4×4 lattice, a 2×8 lattice, or other more irregular structures.

But we need to select one qubit layout that is most suitable for executing the program,

i.e., most operations can be directly supported or indirectly supported with low overhead.

The objectives of this qubit layout design subroutine are summarized as follows.

• Since we need to consider the profiling information, we create a pseudo mapping

between logical qubits in the profiled program and the physical qubits in hardware

architecture to be delivered. For two logical qubits with a large number of two-

qubit gates between them, we hope to place their corresponding physical qubits in

adjacent nodes so that later those two-qubit gates can be directly supported by the

connection between the two physical qubits.

• One physical qubit can only have a limited number of directly connected qubits.

For those two-qubit gates that cannot be directly supported, we hope to reduce the

amount of additional operations introduce for remapping the qubits.

q0

q1

q2

q3

q4

3

2

1

1

5

Qubit id CNOT #

q4q1

q0

q2

q3

1

2

3

4

5

(a) (b)

Figure 4.6: (a) Empty Lattice, (b) Qubit Placement Example

68

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

Algorithm 2: Qubit Placement on 2D Lattice

Input: coupling degree list L, coupling strength matrix M
Output: Geometric coordinates of placed qubits

1 Place the qubit with the largest coupling degree in L at one node with
coordinate (0, 0);

2 R = all the qubits remaining; // R is the set of qubits that has not

been placed yet.

3 while R is not empty do
/* Find the next qubit to place */

4 qubit candidate list = ∅ ;
5 for q in R do
6 if q is connected to any placed qubits then
7 qubit candidate list.append(q);
8 end

9 end
10 Find the qubit q with the largest coupling degree in qubit candidate list;
11 node cost = [];

/* Determine the placement location */

12 for location of the nodes that are empty and connected to at least one
occupied node do
/* Heuristic Cost function */

13 node cost[location] =
∑

q′∈q .neighbors
M [q , q′] ∗ distance[location , q′.node]

14 end
/* q′ must be placed neighbor qubits */

15 Place q in the location with the minimal score;
16 R.remove(q);

17 end

We propose a coupling-based qubit placement algorithm to determine the geometric

locations of the qubits on a 2D lattice (pseudocode shown in Algorithm 2). We illustrate

the algorithm with an example in Figure 4.6. First, we put the first qubit in the coupling

degree list, q4, on one node of the 2D lattice. Since the initial 2D lattice is empty, the

location of q4 does not matter. We set the geometric coordinate of the first qubit to be

(0, 0) and then place the rest qubits around q4. q4 has four neighbors, q{0,1,2,3}, in the

logical coupling graph. We need to select the next one to place. By checking the coupling

degree list, we can see that q0 is the one with the largest coupling degree. The node

69

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

occupied by q4 has four equivalent adjacent nodes and we can place q0 on any of them.

In this example, we select the node on the north of q4 with coordinate (0, 1). Such an

algorithm design ensures that the strongly coupled qubit pairs are given higher priority

and placed on adjacent nodes, accomplishing the first objective mentioned above.

Then we need to place q1 since its coupling degree is larger than that of q2 and q3. q1

is connected to both q4 and q0 so that we need a more sophisticated way to evaluate all

potential nodes for q1. We use the function in line 13 of Algorithm 2 to find the node

that can make q1 close to its strong coupled neighbors in the logical coupling graph. This

function is the summation over all q1’s placed neighbors. Each term in the summation

is the product of the coupling strength between q1 and one logical coupling neighbor q′

and the Manhattan distance between the evaluated node location and the location of q′.

After evaluating all the empty nodes that are adjacent to placed nodes q4 and q0, we will

find that the nodes on the east and west of q4 are the best ones because they are closest

to q4 but not far away from q0. Here we select the one on the west of q4 with coordinate

(−1, 0). This summation function can help reduce the number of operations for later

remapping and achieve the second design objective.

The remaining qubits can be placed in a similar procedure until all the qubits have

been placed on the 2D lattice. In this example, q2 and q3 are placed on the nodes with

coordinates (0,−1) and (1, 0), respectively. All the qubits have their locations (coordi-

nates) on a 2D lattice where we can fabricate one physical qubit on each occupied node.

Finally, the nodes with no qubits are removed.

4.4.2 Bus Selection

In the second step, we need to connect the placed physical qubits to enable two-qubit

gates. The difficulty comes from the large size of the design space. For N qubits, there

70

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

q1

q3

q0

q2

jii j

i

j j

i

(a)

(b) (c)

Figure 4.7: (a) Prohibited Condition, (b) Corner Case,(c) Filtered Weight

are
(
N
2

)
distinct qubit pairs. Any of them can be either connected or disconnected so

that there are 2(N
2) different cases. Even after considering the nearest-neighbor coupling

constraint in which one qubit can only connect with few qubits around it on the lattice,

the size of the design space is still O (exp (N)). More importantly, more qubit connections

will improve the performance but lower the yield rate in general so that we need to

identify those connections with the most potential performance benefit in a very large

design space.

This chapter simplifies the connection design problem by considering two types of

common buses, 2-qubit bus and 4-qubit bus (shown in Figure 4.2). These two types of

buses naturally fit in the 2D lattice qubit layout and can be easily fabricated because at

most 4 nearby qubits are connected by one bus. After placing the qubits on a 2D lattice

in the first step, 2-qubit buses can be directly generated on the edges that connect two

occupied nodes but the qubits on a diagonal of a 4-qubit square can never be connected

with only 2-qubit buses. Replacing some 2-qubit buses with 4-qubit buses could provide

71

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

Algorithm 3: 4-qubit Bus Selection

Input: Geometric coordinates of placed qubits, coupling strength matrix,
Maximum number of 4-qubit buses K

Output: Locations of 4-qubit Buses
1 Calculate the cross coupling weight for each square;
2 while K > 0 do

// Select one square in each iteration

3 for square(i, j) in all squares do
4 filtered weight(i, j) = weight(i, j) - weight(i+1, j) - weight(i, j+1) -

weight(i-1, j) - weight(i, j-1);

5 end
6 if no square available for 4-qubit bus then
7 Break;
8 end
9 Select the square with the highest filtered weight;

10 Set the weights of squares (i+1, j), (i, j+1), (i-1, j), and (i, j-1) to be 0 and
mark them to be blocked;

11 K = K − 1;

12 end

more qubit connection by trading in yield rate while it is not yet clear where to apply

the 4-qubit buses can achieve the Pareto-optimal results. The bus selection subroutine

was proposed to identify the locations for 4-qubit buses. Other potential bus designs are

left as future research directions and will be discussed in Section 4.6.

Instead of considering the nodes in a 2D lattice, we consider the squares that are

naturally formed by the edges in the 2D lattice. Each square can be configured to 2-

qubit bus or 4-qubit bus. Now the problem is on which squares we should use 4-qubit

buses. The size of search space, even for this 4-qubit bus square selection problem, is still

O (exp (N)). But the simplification allows us to design high-quality heuristics to guide

the selection. Before introducing our solution, one additional prohibited condition must

be considered.

Prohibited Condition One physical constraint that we must consider when apply-

ing 4-qubit buses is that we cannot have 4-qubit buses in two adjacent squares. The

72

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

reason is explained with the example in Figure 4.7 (a). Suppose we have two adjacent

squares and both of them are using 4-qubit buses. Then there will be two physical con-

nections between qubit i and j. When we use one of the connections, the other one will

bring unexpected effects so that employing 4-qubit bus in one square will immediately

block using 4-qubit buses in any of its adjacent squares.

Considering the physical constraints mentioned above, the objectives of this step are

summarized as follows:

• Since adding more qubit connections will increase the probability of frequency col-

lision and lower the yield, we hope to apply 4-qubit buses on those squares that

can benefit the performance most. In other words, the additional connections are

expected to directly support as many two-qubits gates as possible.

• Applying 4-qubit bus in one square will block adjacent squares, making it impossible

to directly support some two-qubit gates in those blocked squares. This effect

should also be considered when selecting the 4-qubit squares.

We propose a 4-qubit bus selection algorithm to select some squares for 4-qubit

buses (pseudocode shown in Algorithm 3). In each iteration, one square that could

benefit most from a 4-qubit bus will be selected. Users can specify the maximum number

of 4-qubit buses they hope to have. By varying the number of selected squares, a series

of architectures can be generated with a trade-off between yield and performance.

To find the most fitting square, we first need to calculate how much one square could

benefit from a 4-qubit bus. Since the difference between a 2-qubit bus square and a

4-qubit bus square is whether the qubit pairs on the diagonals are connected, we define

the cross-coupling weight for each square as the sum of the coupling strength of the qubit

pairs on the diagonals. For the example in Figure 4.7 (c), the cross-coupling weight of

the green square is the coupling strength of (q0, q3) plus that of (q1, q2). A corner case in

73

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

the coupling weight computation is the square with only 3 qubits (shown in Figure 4.7

(b)). In such squares, 4-qubit buses can naturally reduce to 3-qubit buses which support

coupling between any two of the three connected qubits. The weight of a 3-qubit square

is only the weight of logical coupling between the two qubits on one diagonal since the

other diagonal only has one qubit. For example, the weight of the 3-qubit square in

Figure 4.7 (b) is the (i, j) element in the coupling strength matrix. Except for this small

modification, 3-qubit squares are treated equally as other 4-qubit squares in our bus

selection step. This cross coupling weight can estimate the potential benefit of applying

4-qubit bus in one square and realize the first objective.

However, the cross-coupling weight is not accurate enough to evaluate the benefit of

4-qubit for a square because the prohibited condition is not yet considered. We design

a filter to apply this constraint. For each square, the filtered weight is its original cross-

coupling weight minus all its neighbors’ weights. For example in Figure 4.7 (c), the

filtered weight of the green square is its original weight minus the weights of the four

blue squares. This filter can take the prohibited condition into consideration and achieve

the second objective.

After applying the filter, we will select one square with the highest filtered weight.

Then we will label the selected square and its adjacent neighbors so that it will no longer

be available for future 4-qubit buses. We also change their weights to zero because they

should not affect the 4-qubit selection among the remaining squares. The algorithm will

iterate again to select the next square until there are not more squares available or we

have already applied enough number of 4-qubit buses.

74

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

q0 q1

q3

q2

q4 q5 q6 q7

q8 q9 q10 q11 q12

local region of q12

q5

q4
q9

…...

q10
q6

q1

q3 q0

Figure 4.8: Breath First Frequency Allocation

4.4.3 Frequency Allocation

After the two steps above, we now have a complete coupling topology design of a

superconducting quantum processor. In the third step, we need to designate the pre-

fabrication frequency of each qubit. IBM’s 5-frequency scheme is a regular frequency

designation [109]. However, the generated qubit layout and connection in our design flow

can be irregular since more hardware sources are invested in locations that can benefit

the performance most. Thus, we need a more flexible frequency allocation scheme to

leverage this unbalanced qubit layout and connection. The objective of this step is to

minimize the probability of post-fabrication frequency collision and improve the yield

rate. The physical constraints are the frequency collision conditions in Figure 4.3.

Finding the qubit frequency allocation plan to maximize the yield rate is a hard

problem. The complex collision conditions make it difficult to find an analytic expression

for the yield rate and a brute-force search over all possible frequency configurations will be

very time-consuming. For example, if there are M candidate frequencies for each qubit

and we have N qubits in total, the total number of possible frequency configurations

is MN . For each of these potential configurations, we need to run a yield simulation

(introduced in Section 9) and then select the one with maximal yield rate. This method

is not acceptable due to its high complexity. We propose to optimize the qubit frequency

allocation algorithm based on the facts that 1) the physical qubits in the geometric center

75

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

Algorithm 4: Frequency Allocation

Input: Qubit Location and Connection
Output: Frequency Configuration of Each Qubit

1 Select the qubit in the geometric center of the placed qubits and set its
frequency to be the middle of the allowed frequency range;

2 repeat
3 Find the next qubit qi in breadth-first traversal order;
4 for temp freq in all frequency samples do
5 Set the frequency of qi to be temp freq;
6 Simulate the yield rate within qi’s local region;

7 end
8 Assign the frequency with maximal yield rate to qi;

9 until the frequencies of all qubits are determined ;

of the qubit lattice are more likely to involve in a frequency collision since they usually

have more qubit connections, and 2) frequency collision only happens among nearby

qubits.

Our algorithm determines the qubit frequencies from the center to the periphery

(pseudocode shown in Algorithm 4). Since this step is purely about hardware, the input

of our algorithm is only the qubit location and connection generated from the previous

two subroutines. To reduce the manufacturing difficulty and help prevent the collision

condition 4, we follow the convention from IBM and set an allowed frequency interval

5.00GHz to 5.34GHz. All pre-fabrication frequencies are limited within this interval.

First, we locate the qubit that is closest to the center of the qubit lattice and assign its

frequency to be the center of the allowed frequency interval. Then we apply breadth-first

traversal on the coupling graph from the first qubit in the center. For example, q5 is

the center qubit in the example shown in Figure 4.8. In the breadth-first traversal, we

will first access q4,9,10,6,1 as shown on the right. Each time we access one new qubit, we

will immediately determine its frequency. A list of candidate frequencies is prepared. In

this chapter, the candidate frequencies are 5.00, 5.01, 5.02, . . . , 5.33, 5.34GHz to achieve

76

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

an accuracy of 0.01GHz. We can also have more candidate frequencies but it will take

more time to evaluate all of them.

To evaluate a candidate frequency on a new qubit, we temporarily assign the candidate

frequency to the new qubit and then simulate the yield rate within its local region. The

local region of a qubit is defined as a sub-graph of the original chip coupling graph in

which a qubit may collide with the new qubit. For example in Figure 4.8, when we are

searching for the best frequency of q12, the local region is marked in blue. Note that

it is necessary to consider two hops when allocating frequency for one qubit because

the frequency collision conditions in row 5, 6, and 7 of Figure 4.3 involve 3 connected

physical qubits. Qubits not in this region like q5 cannot collide with q12. We will select

the frequency with the maximal yield rate and assign it to the new qubit. Now the time

complexity of the frequency allocation algorithm is O (MN) where M is the number of

candidate frequencies and N is the number of qubits.

Yield Simulation

We developed a yield simulator based on IBM’s yield model [109, 111]. The fabrica-

tion process can be modeled by adding a Gaussian noise N (0, σ) to the pre-fabrication

frequency of a qubit to generate its post-fabrication frequency where σ is the fabrication

precision parameter. For a given superconducting quantum processor design, we esti-

mate its yield rate through Monte Carlo simulation. Each time we will simulate if one

fabrication is successful. We first generate the post-fabrication frequencies by adding a

random noise sampled from Gaussian distribution mentioned above. Then we check if

any frequency collision condition listed in Figure 4.3 occurs in the post-fabrication fre-

quencies. If so, this fabrication fails. Otherwise, it is successful. All possible cases are

taken into account. For example, we will examine the two frequencies of all connected

physical qubit pairs for condition 1, 2, 3, and 4. If they meet any one of the inequali-

77

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

ties of the conditions, frequency collision is considered to occur in this simulation. This

simulation process is repeated many times. The yield rate can be estimated by the ratio

between the number of successful simulations and the total number of simulations.

4.5 Evaluation

To demonstrate that the proposed application-specific architecture design flow can

deliver hardware designs with better Pareto-optimal results in terms of performance

and yield rate, we conduct experiments over various benchmarks to show not only the

overall improvement but also the breakdown of benefits from each of our hardware design

subroutines.

4.5.1 Experiment Setup

Benchmarks Twelve quantum programs are collected from IBM’s Qiskit [76] and

RevLib [91], or compiled from ScaffCC [117]. These benchmarks cover several important

domains (e.g., simulation, arithmetic) and have various sizes (from 7- to 16-qubit) for a

versatility test of the proposed design flow.

Metrics To evaluate the efficiency of an architecture, we need both the yield rate

and performance. An architecture with a higher yield rate can be successfully fabricated

with fewer attempts, indicating a lower hardware cost. In our experiments, the yield

rate is simulated with IBM’s yield model [109, 111] as introduced in Section 9. For the

performance evaluation, we adopt the total post-mapping gate count metric widely used

in previous studies [77, 56, 18]. More gates lead to longer execution time and a larger

probability of error on quantum computing devices. If a hardware architecture could

execute the program with fewer gates, then its performance is considered to be better.

Yield Simulation Configuration The number of trials in the Monte-Carlo simula-

78

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

(3) 20Q, 4X5, 2-qubit Bus (4) 20Q, 4X5, 4-qubit Bus

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

5.00GHz

5.07GHz

5.13GHz

5.20GHz

5.27GHz

3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

(1) 16Q, 2X8, 2-qubit Bus

(2) 16Q, 2X8, 4-qubit Bus

1

2

3

4

5

Figure 4.9: Baseline Qubit Frequency, Layout,and Connection Designs

tion for each architecture is 10,000∼ 100,000, which is 10 ∼ 100× of that used in IBM’s

experiments [111, 128, 125] to ensure the simulation accuracy. The fabrication precision

parameter σ is set to be 30MHz, a realistic extrapolation of progress in hardware by

IBM [109, 125]. IBM has improved the σ from 200MHz [129] to 130MHz [109] in the

last few years and 30MHz is a reasonable projection to achieve a useful yield as predicted

by IBM [125].

4.5.2 Experiment Methodology

To illustrate the benefit of our design flow, five experiment configurations are designed

to show the overall improvement and the performance/yield trade-off gain at each of

the three subroutines in Section 4.4. Among them, ibm is a set of general-purpose

architectures from IBM and they are not tailored for any applications. The remaining

four configurations are application-specific architectures generated by the entire or part

of the proposed design flow.

ibm We use IBM’s design scheme as the baseline configuration. It has two layout

options, a 2×8 lattice with 16 qubits, and a 4×5 lattice with 20 qubits. The qubit con-

nection design can be either 2-qubit bus only or using 4-qubit buses as many as possible.

In total, there are four architectures combining the layout and connection options (shown

in Figure 4.9). The frequency allocation scheme is a 5-frequency scheme [109, 125]. The

79

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

five frequencies are an arithmetic progression from 5GHz to 5.27GHz and their arrange-

ment is also in Figure 4.9.

eff-full We apply all three subroutines and generate a series of efficient superconduct-

ing quantum processor architectures by varying the number of 4-qubit buses. The number

of designs we can obtain for a quantum program depends on the number of qubits as

more qubits can provide more squares to apply 4-qubit buses in the generated layout. In

this chapter, we obtain the eff-full data series through iterating over all possible numbers

of 4-qubit buses in the second subroutine for bus selection. This experiment can show

the overall architecture design improvement when comparing with the baseline ibm.

eff-5-freq We only apply the first two subroutines to generate qubit layout and con-

nection design but the frequency allocation is done with IBM’s 5-frequency scheme. The

yield benefit from the proposed frequency allocation algorithm can be demonstrated by

comparing with results from eff-full.

eff-rd-bus We keep the first and the third subroutines but randomly select some

squares to employ 4-qubit buses with the prohibited condition constraint satisfied. This

will demonstrate the effect of our filtered-weight-based 4-qubit bus selection algorithm

by comparing with results from eff-full.

eff-layout-only We apply our profiling method and perform a layout design. The

connection design has two options. One is only using 2-qubit buses. The other is using

4-qubit buses as much as possible. The frequency design follows the baseline ibm. The

benefit of our layout optimization can be shown when comparing with the results from

ibm.

For each benchmark, we run all the five configurations to generate different supercon-

ducting quantum processor architectures with different yield rates. Then we apply one

state-of-the-art qubit mapping algorithm [18] on these architectures to obtain the total

number of gates when running the generated or baseline architectures.

80

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

4.5.3 Overall Improvement

Figure 4.10 shows the result of yield and performance for all benchmarks and the

five experiment configurations. There are 12 subfigures and one subfigure contains the

results of the five experiment configurations for one benchmark. The X-axis represents

the normalized reciprocal of post-mapping gate count and data points on the right have

better performance. The Y-axis represents the yield rate and data points on the top

have higher yield rates. The legend at the bottom of Figure 4.10 shows the markers for

the five configurations. The data points for the four designs in the baseline are labeled

by (1), (2), (3), and (4), according to Figure 4.9.

Optimality The optimal solution in this chapter means the Pareto-optimal solution

in terms of post-mapping gate count and yield rate. A series of architectures with better

Pareto-optimal results can be generated by our design flow as the data of eff-full is on

the upper right of ibm. The most simplified designs (the most left top blue triangle data

point in eff-full, zero 4-qubit buses) generated by our design flow outperforms the 16-

qubit baseline design (data point (1) in ibm) without 4-qubit buses in both performance

(∼ 7.7%) and yield rate (∼ 4×). Compared with the 16-qubit baseline with four 4-qubit

buses (data point (2) in ibm), our designs with zero 4-qubit buses achieve over 100×

better yield rate with < 1% performance loss. On the other side, compared with IBM’s

20-qubit chip design with six 4-qubit buses (the baseline design with the most hardware

resources, data point (4) in ibm), the designs with the maximum number of 4-qubit buses

generated from our design flow (the data points on the most bottom right in eff-full)

have over 1000× yield rate improvement on average with only about 3.5% performance

loss.

Controllability The proposed design flow can easily control the trade-off between

yield and performance by only changing the number of 4-qubit buses without traversing

81

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

1 1.1 1.2 1.3 1.4

adr4_197, 13-qubit

1 1.1 1.2 1.3 1.4

rd84_142, 15-qubit

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4 1.5

misex1_241, 15-qubit square_root_7, 15-qubit

radd_250, 13-qubit

1 1.1 1.2 1.3 1.4 1.5

cm152a_212, 12-qubit

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4

dc1_220, 11-qubit

1 1.05 1.1 1.15 1.2 1.25

z4_268, 11-qubit

1 1.1 1.2 1.3 1.4 1.5

sym6-145, 7-qubit

0.98 1 1.02 1.04 1.06 1.08 1.1

UCCSD_ansatz_8, 8-qubit

0.9 0.95 1 1.05 1.1

ibm eff-full eff-rd-bus eff-5-freq eff-layout-only

ising_model_16, 16-qubit

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4 1.5 1.6

qft_16, 16-qubit

Yield
 R

ate

Normalized Reciprocal of Gate #

1 1.05 1.1 1.15 1.2

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4

(1)

(2)
(3)

(4)

(1) (1)

(1) (1) (1)

(1) (1) (1)

(1) (1)

(2) (2)

(2) (2) (2)

(2) (2) (2)

(2) (2)

(3) (3)

(3) (3) (3)

(3) (3) (3)

(3)(3)

(4) (4)

(4) (4) (4)

(4) (4) (4)

(4) (4)

Figure 4.10: Yield v.s. Normalized Reciprocal of Post-mapping Gate Count

across, or sampling a large number of designs in, the entire search space. Depending on

the number of qubits in different target programs, we can trade in around 10× ∼ 50×

yield rate for 10% ∼ 33% performance improvement.

Special Case

The results of ising model are significantly different because the logical qubit coupling

in this benchmark forms a chain structure. The mapping algorithm can always find the

perfect initial mapping without inserting additional operations. As a result, the post-

mapping gate count is the same for all tested hardware architectures. All data points for

this program lie in one vertical line. Only one architecture is generated from our design

flow because there is no need to add 4-qubit bus. All the two-qubit gates can be executed

82

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

through the edges on the 2D lattice. There are no two-qubit gates applied on two qubits

on a diagonal because of the chain coupling structure. In this case, 4-qubit buses can

only lower the yield rate without improving the performance.

4.5.4 Effects from Individual Subroutines

The overall improvement has already been discussed, but one interesting question is

how much improvement the layout and connection optimization contribute and how much

comes from the optimized yield allocation directly. The five configurations decouple the

proposed design flow and provide a breakdown of the effect of individual subroutines.

Effect of Layout Design

The difference between ibm and eff-layout-only illustrates the effect of layout design

since the rest two subroutines are the same. An architecture with more hardware re-

sources is expected to provide higher performance by allowing more flexibility in qubit

mapping. But our optimized layout design could use comparable or fewer hardware re-

sources while the performance can be even better. For example, we compare the 2-qubit

bus only data point (the upper left one) with the 16-qubit baseline with four 4-qubit

buses (labeled by (2) in each subfigure). eff-layout-only provides better or comparable

performance most of the time with about 35× yield improvement on average. The im-

provement at this step depends on the program size and programs with fewer qubits will

use fewer qubits and connections in an optimized architecture. This result proves that

our layout design could generate qubit layout with high performance but using much

fewer hardware resource for different programs.

83

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

4-qubit Bus Selection Quality

By comparing the results from eff-full and eff-rd-bus, we can see that the architec-

tures generated from our bus selection algorithm are better than that of random selection

in trading in yield for performance most of the time. The data points of eff-rd-bus re-

veal the distribution of the yield and performance sampled from random bus designs.

Note that the performance of eff-rd-bus is usually confined by the two data points in

eff-layout-only because adding connections can improve the performance most of the

time. For most benchmarks except qft, the results from eff-full are close to the upper

bound formulated by the random samples, which shows that our weight-based bus selec-

tion could generate a series of near Pareto-optimal hardware architectures with various

numbers of qubit connections.

The result of qft is much worse than that of other programs due to the unique uniform

two-qubit gate pattern in this program. The number of two-qubit gates between arbitrary

two logical qubits is always two in qft, which makes all the logical qubit pairs are the same

in the sense the coupling strength during profiling. Then in bus selection subroutine, all

the squares share the same weight and the weight-based selection is the same as random

selection.

For the two small benchmarks, sym6 and UCCSD ansatz, the number of available

squares in the generated qubit layout is small and there are very few options when

applying 4-qubit buses. Therefore, most of the architectures generated from the random

4-qubit bus selection are the same as those from the proposed design flow, which makes

the results from eff-full and eff-rd-bus very close.

84

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

Frequency Allocation Optimization

By comparing eff-full and eff-5-freq, we can see that the proposed frequency alloca-

tion algorithm provides about 10× yield rate improvement on average. This improvement

is slightly worse when the yield from the baseline 5-frequency is already high, e.g., re-

sults from sym6 and UCCSD ansatz. The fabrication variance makes the ideal yield

100% unreachable and it is hard to optimize yield when it is already high.

4.6 Discussion

This chapter studies application-specific efficient superconducting quantum processor

design. In particular, we formalize the architecture design for superconducting quantum

processors with three key steps, each of which comes with an optimization subroutine.

This is the first attempt, to the best of our knowledge, to identify the optimization

opportunity from the architecture level to push forward the balance between quantum

computing performance and hardware yield rate. Effort towards this direction can be

of significant demand in the near term quantum computing with limited computation

resource and immature fabrication technology.

Although we show that improved Pareto-optimal designs can be generated with a

static program analysis and three optimized design algorithms, several future research

directions can be explored as with any initial research.

Improving Profiling Method This chapter focused on the logical qubit coupling

topology in a quantum program but other patterns may also be leveraged. We omitted

the temporal information of the two-qubit gates and all information about other program

components. But the locations of two-qubit gates in a quantum program may also be

leveraged for finer-grained evaluation of the coupling strength for different logical qubit

pairs at different times during the execution. The single-qubit patterns can also help

85

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

with the basic gate set design.

Exploring More Design Space In the proposed design flow, the number of physical

qubits is the same as that of logical qubits for higher yield rate. However, we can still add

auxiliary physical qubits since they can also be used during the qubit routing, trading

in more yield rate for higher performance. How to add auxiliary qubit to appropriate

locations and how to connect them are interesting problems to explore in the future. To

ensure modularity and scalability, the qubits are forced to be embedded in a 2D lattice

and only consider two types of buses lying in the lattice. However, the qubit placement

and connection could be more flexible if we trade in part of the scalability. For example,

one bus could also connect more than four qubits [130]. The design space in this direction

is not yet explored.

Optimizing Frequency Allocation This chapter tried to optimize the qubit fre-

quency selection from the center to periphery and only searched for the optimal frequency

for one qubit, resulting in a sub-optimal frequency allocation. A global optimization like

formal methods can be explored to further optimize the frequency allocation result. One

alternative approach to resolve the frequency collision issue is to use flux-tunable trans-

mon qubits [82], of which the frequencies can be dynamically tuned with additional

control signals. The design trade-off of different types of qubits is not yet explored and

additional signals bring more noise and increase the control complexity. The proposed

design flow is still valuable even with frequency-tunable qubits because the simplified

architectures with fewer the on-chip connections can not only reduce the fabrication

complexity but also benefit the overall performance by lowering the crosstalk error.

86

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

4.7 Related Work

This chapter ranges across multiple topics, i.e., program profiling, superconducting

processor design, application-specific design, qubit mapping. We briefly introduce related

work for all of them.

Application-specific Design The closest related work is SPARQS, a superconduct-

ing planar architecture proposed by Wilhelm et al. [123, 124] targeting a specific Fermi-

Hubbard model simulation program. However, they only provide an implementation-

independent design from theoretical physics level. This chapter formalizes a systematic

end-to-end design flow with automatic program profiling and realistic physical constraints

included, for the first time. With no limitation on the target program, we can generate

a series of Pareto-optimal hardware architecture designs in a controllable way.

Quantum Program Profiling and Analysis Program profiling and analysis are

very important for software and compiler optimization. Previous works on quantum

program analysis [117, 118, 119, 120, 121, 122] have studied entanglement, termination,

non-cloning checking, etc. The profiling method in this chapter is proposed to guide the

hardware design, fulfilling a different goal.

Superconducting Quantum Processors As one of the most promising candi-

date technology to implement quantum computing, superconducting quantum techniques

have been employed in two mainstream quantum computation models. The circuit model

based processors [37, 52, 51] support quantum circuit model [25] and the quantum anneal-

ers [131] can implement adiabatic quantum computing [29]. Their programming model

and hardware architecture are different for these two quantum computing approaches.

The design flow in this chapter is proposed for circuit model based quantum processors

while efficient quantum annealer design can be a future research direction.

Qubit Mapping Formal and heuristic methods have been attempted to solve this

87

Towards Efficient Superconducting Quantum Processor Architecture Design Chapter 4

problem [64, 60, 18, 77, 56] and minimize the total gate count. Recently several stud-

ies [85, 132, 104] have applied the actual gate error rates for fine-grained optimization.

All these optimizations are pure software-level modification. This chapter attempts to

improve the performance by reducing the mapping overhead from the hardware level.

We adopt the gate count metric to estimate the mapping overhead since our experiments

are performed on artificial hardware architectures.

4.8 Conclusion

The demand for larger computation capability in a superconducting quantum pro-

cessor naturally calls for more hardware resources which will also increase the design

complexity and lower the yield rate. This chapter explored application-specific architec-

ture design for superconducting quantum processors to achieve both high performance

and higher yield rate. Gate patterns in a quantum program can be extracted by the pro-

posed profiling method and then utilized in the follow-up hardware architecture design.

Three subroutines are designed to generate the qubit layout, connection, and frequency

respectively with physical constraints taken into consideration. Experimental results

show that the proposed design flow could deliver architectures with both high yield rate

and performance automatically for different applications except those with extremely

special gate patterns.

88

Chapter 5

Software-Hardware Co-Optimization

for Computational Chemistry on

Superconducting Quantum

Processors

5.1 Introduction

Computational chemistry is an important domain in scientific computing that em-

ploys computer simulation to help understand and predict the properties of chemical

systems like molecules [133]. It has broad applications in chemistry [134], biology [135],

and material science [136]. However, simulations of large chemical systems quickly be-

come intractable as the laws governing them lead to equations too complicated to solve

efficiently on classical computers [137]. For example, more than 1 million node-hours on

the Summit supercomputer were recently allocated to chemistry and materials simula-

tion [138].

89

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Ansatz
Compression

 Param. Importance
estimation

 Hardware-friendly
ansatz construction

Efficient
Architecture

 Tree-based
connection

 Multi-level
layout

Customized Compilation Flow
 Hierarchical initial layout
 Merge-to-Root synthesis

& routing

Pauli-string-centric Co-optimization

hardware-
compatible

circuit

pauli string
intermediate

representation

Hamiltonian of
chemical system

parameters and
pauli strings from

original ansatz

Figure 5.1: Overview of the proposed Pauli-string-centric software-hardware co-optimization

Fortunately, quantum computers are naturally suited to solve problems in compu-

tational chemistry. In fact, this was the original motivation for Feynman’s proposal to

build a quantum computer [2]. A leading algorithm for this task is known as the Varia-

tional Quantum Eigensolver (VQE), which has relatively modest requirements in terms

of number of qubits and depth of computation, and shows some robustness to errors, all

favorable properties for near-term quantum computing [48, 139]. Small-size molecular

simulations using VQE have been experimentally demonstrated with superconducting

quantum circuits [140, 47, 141, 142] and other technologies [143, 144, 145, 146].

Despite the recent progress, larger-scale chemistry simulations are not yet feasible on

quantum devices. We argue that this is primarily due to three shortcomings in current

quantum computing technologies: 1) large program (circuit) size, 2) inefficient hardware

architecture, and 3) deficient compiler optimizations. Each piece is under active research,

but rarely in a collaborative way, leading to insufficient overall improvement. To the best

of our knowledge, there is no existing united co-optimization solution throughout the

application, hardware, and compiler stacks in quantum computing. In this chapter we

make the case that co-optimizing all three of them can dramatically optimize the overall

execution, allowing quantum applications to scale much sooner.

While the co-design principle has been shown to be effective [147], it is challenging

as the design objectives of different technology stacks may contradict each other. We

briefly review some of these challenges below.

Application: Optimizations to reduce the size of VQE circuits have been mostly

90

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

done theoretically, ignoring the actual execution on the underlying hardware [148, 149,

150, 151, 152, 153]. VQE is an iterative optimization algorithm and more parameters to

optimize over can result in better accuracy. However, this adversely leads to larger circuits

and longer time to converge, both undesirable on near-term quantum hardware [149].

Making the program hardware-friendly [47] without keeping its general chemistry struc-

ture could prevent it from converging to the right solution effectively [154].

Hardware architecture: The quality of superconducting quantum processors has

steadily improved in the past few years, while the progress is usually measured by metrics

that are oblivious to application performance [78, 106, 82, 112, 155, 156]. Applications

generally require high qubit connectivity, but this will cause adverse crosstalk and low

yield during device fabrication [111, 157, 158]. Making connections sparse will lead to

high qubit mapping overhead during application execution [108].

Compiler optimizations: State-of-the-art quantum compilers [159, 160, 161] mostly

perform optimizations at the gate level where it is easier to reason about program opti-

mization [162, 163, 164, 104], but they miss a large optimization space when compiling

VQE programs because they do not exploit the synergy of domain knowledge and hard-

ware information.

In this chapter, we co-optimize the algorithm, hardware, and compiler for VQE on

superconducting quantum processors through a key observation that optimizations at dif-

ferent technology stacks can be coordinated through Pauli strings and their simulation

circuits. Pauli strings arise naturally as fundamental building blocks in quantum chem-

istry simulation. Their unique semantics and structure can be carried through the stack

to guide all aspects of the design. At the algorithm level, the VQE program is dominated

by Pauli string simulation circuits. The molecule’s Hamiltonian (energy operator to be

estimated) is also represented by an array of weighted Pauli strings. We find that the

geometrical interpretation of Pauli strings can effectively compress the VQE circuit to

91

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

estimate the same solution with much lower cost. At the hardware level, the gate pattern

of Pauli string simulation circuits makes it possible to efficiently support their execution

with very few on-chip connections. Moreover, Pauli string simulation circuit synthesis

is flexible, allowing us to tailor the compilation flow when deploying VQE programs to

the underlying hardware. Such property makes it possible to achieve very low execution

overhead even on a sparsely-connected hardware architecture.

Our Pauli-string-centric software-hardware co-optimization is shown in Figure 5.1.

First, we introduce a novel VQE circuit compression strategy that takes the Hamil-

tonian of the target chemical system as an additional input. The impor-tance of each

parameter in the VQE circuit is estimated by comparing the Pauli strings of the circuit

with the target Hamiltonian. Only those parameters that are expected to signi-ficantly

affect the final result are kept in a hardware-friendly order. The output of this step

is an array of Pauli strings and their parameters, which can be considered as a new

interme-diate representation (IR) above quantum circuits. Second, we design an X-Tree

superconducting quantum processor archi-tecture that is extremely sparse as it uses the

minimal number of physical connections. The sparsity significantly boosts the proces-

sor reliability and yield rate. Yet, it does not sacrifice performance as the connectivity

structure is well-suited for the structure of Pauli string simulation circuits that appear

in various chemistry and physics applications. Third, we pro-pose a new compilation

flow that converts the Pauli string IR directly into executable quantum circuits for the

X-Tree ar-chitecture. We determine qubit layouts directly from the Pauli strings (termed

hierarchical initial layout). We also perform synthesis and mapping in one step (termed

Merge-to-Root). We show that relying on this higher-level IR, our compiler can map the

program to hardware with negligible overhead, as it can adaptively synthesize each Pauli

string according to the current mapping and the underlying X-Tree architecture.

Our co-designed stack is not limited in programmability and can accommodate a

92

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

wide range of problems in chemistry and physics that are naturally represented by Pauli

strings. We show a comprehensive evaluation by simulating various molecules of differ-

ent sizes and structures. Results show that our co-optimization outperforms conventional

VQE setups with significant program size reduction, faster convergence speed, mild simu-

lation accuracy loss, more efficient hardware design, and negligible compilation mapping

overhead.

Our key contributions can be summarized as follows:

• We discover a Pauli-string-centric co-optimization opportunity that can broadly

advance variational quantum chemistry simulation of various chemical systems on

superconducting quantum processors.

• We propose three novel optimizations for VQE algorithms, quantum compilers,

and superconducting hardware architectures, respectively. Each of them not only

focuses on the design objectives of one individual technology but also considers the

optimizations in other system stacks.

• Our experiments show that our approach outperforms conventional setups of VQE

on superconducting quantum processors across a wide range of criteria from soft-

ware to hardware. On average for nine molecules, when using a 50% parameter

compression ratio, our technique can achieve about 2.5× convergence speedup and

only incur 0.05% error in the simulated energy. It also achieves 99.7% mapping

overhead reduction on an optimized architecture with 8× fabrication yield im-

provement.

93

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.2 Background

In this section, we introduce the necessary background to help understand the pro-

posed co-optimization. The quantum computing basics concepts have been covered in

previous chapters and we will focus on the background about quantum chemistry simu-

lation.

5.2.1 Pauli String and Its Time Evolution Circuit

The central building blocks of chemistry simulation circuits are Pauli string operators.

An n-qubit Pauli string P is an array P = Gn−1Gn−2 . . . G0 where Gi ∈ {I,X, Y, Z} for

the ith qubit and 0 ≤ i < n. X, Y , Z are the three Pauli operators and I is the identity

operator.

Time evolution: In quantum physics, the time evolution of a system is determined

by the system Hamiltonian H, and the unitary that represents this time evolution is

exp(iθH) where θ is a parameter to represent time. Usually, we do not directly implement

exp(iθH) in a quantum circuit since it is hard to directly synthesize exp(iθH) into basic

single-qubit and two-qubit gates efficiently. Instead, we first decomposeH into a weighted

sum of Pauli strings, i.e., H =
∑

j wjPj where Pj is a Pauli string and wj ∈ R is its weight.

The time evolution of Pauli strings exp(iθPi) can be easily synthesized.

Pauli string simulation circuit: We introduce the synthesis of Pauli string sim-

ulation circuits with the examples in Figure 5.2. Suppose the Pauli string is XIY Z on

four qubits and the time parameter is θ. The circuit in Figure 5.2 (a) shows the synthesis

result. The first layer consists of some single-qubit gates. The rule is that if the operator

on one qubit is X (e.g., q3), then we apply an H (Hadamard) gate. If the operator on

one qubit is Y (e.g., q1), then we apply a Y gate. If it is I (e.g., q2) or Z (e.g., q0), no

single-qubit gate is required. After applying the single-qubit gates, several CNOT gates

94

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

will connect all qubits whose corresponding operators are not I in the Pauli string. In

this example, the CNOT gates connect q0, q1, q3 because the operator on q2 is I. We

can first connect q0 and q1 and then connect q1 and q3, as shown in Figure 5.2. Then,

a rotation gate is applied to rotate angle 2θ along the Z axis on the last qubit in the

CNOT connections (i.e., q3). Finally, the CNOT gates and single-qubit gates are applied

again in the reverse order. In summary, the Pauli string will determine the outermost

single-qubit gates and the CNOT gates. The parameter will only affect the rotation angle

of Z-rotation gate in the middle.

Flexible synthesis: The most expensive components for executing a Pauli string

simulation circuit on a near-term superconducting quantum processor are the CNOT

gates before and after the middle rotation gate. Across various qubit technologies today,

(non-local) CNOT gates have an order of magnitude larger latency and error compared

to (local) single-qubit gates. During the synthesis of a Pauli string simulation circuit,

there is flexibility in the pattern of CNOT gates used. For example, the three circuits

in Figure 5.2 (b)(c)(d) show three equivalent synthesis result variants of exp(iθZZZZ).

The requirement of the CNOT gates is that they must be connected in a tree structure

and the CNOT gates are then applied from the leaves to the root (the center rotation

gate is applied on the root qubit). The tree structures of the three variants are shown

below the corresponding circuit examples. Each qubit is a node and the CNOT gates are

represented by directed edges connecting the nodes. We leverage this flexibility to guide

our hardware architecture design and compiler optimizations.

5.2.2 Variational Quantum Computational Chemistry

We use the example in Figure 5.3 to briefly introduce the basics of VQE algorithm

for chemistry simulation. We recommend [5] for further details.

95

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

q0

q1

q2

q3

q0 q1 q2 q3

q0

q1

q2

q3

q0

q1

q2q3

q0

q1

q2

q3
q1 q3 q0q2

Three equivalent synthesis results for: exp(iθZ3Z2Z1Z0)

exp(iθX3I2Y1Z0)
q0

q1

q2

q3 H H

Y Y

(a)

(b)

(c)

(d)

Rz(2θ)

Rz(2θ)

Rz(2θ)

Rz(2θ)

Figure 5.2: Pauli string simulation circuit synthesis examples

Problem encoding

The first step is to encode the simulation problem, for example a Hydrogen (H2)

molecule at a specific bond length (on the left of Figure 5.3). To simulate the state of the

electrons, we map four candidate orbitals (basis states) that an electron may occupy, and

then obtain the system Hamiltonian through standard chemistry tools like PySCF [165].

This step is not the focus of our work.

Circuit construction

After we map the orbitals to qubits, we need to construct a circuit that can generate

a state to represent how the electrons occupy the orbitals. Figure 5.3 shows the overall

structure of this circuit. After all the qubits are initialized to |0⟩ state at the beginning,

the first part on the left is a shallow circuit (applying X gates on some qubits) to prepare

96

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

H

e_

H

e_

q0

q1

q2

q3

H
ar

tr
ee

 F
o

ck
In

it
ia

l S
ta

te

O
n

e-
la

ye
r

Si
n

gl
e-

q
u

b
it

 G
at

es

M
e

as
u

re
m

en
t

…...

ex
p
(i
θ

1
I
3
I
2
X
1
Y

0
)

ex
p
(i
θ

n
X
3
Y
2
X
1
Y

0
)

UCCSD ansatzBond length

IIII
ZZZZ
XZXZ

……

0.06
0.03
0.22

……

weights Pauli strings

Pauli strings in
UCCSD ansatz

Inner loop: sum over the Pauli
strings calculate energy E()

Outer loop: change the parameters with a classical optimizer to minimize E()

System Hamiltonian
(weighted sum of

Pauli strings)

Example: H2 molecule

Map electron orbitals
to logical qubits

Simulation result:

En
e

rg
y

Bond length

𝜃

𝜃

Figure 5.3: Example of variational quantum chemistry simulation flow and result

an initial state. We use the default Hartree-Fock initial state [166]. On the right is

one layer of single-qubit gates to change the basis prior to measurement, based on the

different terms present in the target molecule’s Hamiltonian. These two components only

make up a small portion of the entire simulation circuit. In this work, we focus on the

middle part of the circuit: the parameterized state preparation circuit which is known

as ansatz in the quantum computational chemistry. The parameters of this circuit are

what get optimized during execution. This ansatz part makes up the vast majority of the

quantum subroutine and is the target of our co-optimization.

Execution flow

The execution flow of VQE has two major loops. For a given set of parameters

(denoted by θ̄), we first execute the circuit to generate state
∣∣ψ(θ̄)

〉
. Then we measure

the expectation value
〈
ψ(θ̄)

∣∣Pi ∣∣ψ(θ̄)
〉

where Pi is a Pauli string in the decomposition

of H. We iterate over all Pis in H to obtain E(θ̄) =
∑

iwi
〈
ψ(θ̄)

∣∣Pi ∣∣ψ(θ̄)
〉
. Changing

to measuring different Pis only needs to change the last layer of single-qubit gates and

the parameters are not changed in this inner loop in Figure 5.3. After E(θ̄) is obtained,

a classical optimizer will change the parameters θ̄ to minimize E(θ̄). This optimization

may take many steps to converge and this is the outer loop in Figure 5.3. In this work,

we optimize both the inner loop and outer loop: we discard less important parameters for

97

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

faster convergence and reduce the circuit cost at each iteration by focusing on important

sub-circuits and better mapping. Finally, we obtain a minimal energy E(θ̄) (representing

the ground state) of the H2 molecule under the specified bond length. In a typical

simulation task, we will simulate different bond lengths and record ground state energies

for these different configurations.

Simulation result interpretation

The result of the H2 simulation is on the right of Figure 5.3. The X- and Y-axis

represent the bond lengths and the simulated ground state energies, respectively. The

minimal simulated ground state energy is achieved when the bond length is around 0.7

Å (1Å= 10−10m and we sample the bond length every 0.1Å). The actual bond length

measured by physical experiments is 0.74Å, which is consistent with the simulation result.

5.2.3 UCCSD Ansatz

The widely-used UCCSD (Unitary Coupled Cluster Singles and Doubles), a chemistry-

inspired ansatz [167, 168], is the ‘standard’ ansatz for variational chemistry simulation.

The terms in a UCCSD ansatz are similar to those in the Hamilto-nian of a chemical

system. Therefore, it is expected that tuning the parameters in UCCSD can make a

‘good’ guess about the ground state. A UCCSD ansatz of n qubit has O(n4) parameters

and each parameter corresponds to some Pauli strings. When implementing UCCSD

in a circuit, it becomes a series of Pauli string simulation circuits with parameters, as

shown in the middle of Figure 5.3. Implementing a UCCSD ansatz is very expensive on

a superconducting quantum processor due to its large number of parameters and CNOT

gates in the synthesized circuit. Our techniques will tailor the ansatz, architecture, and

compiler for each other to significantly reduce the cost.

98

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.3 Ansatz Compression

To enable chemistry simulation of larger size problems, we first propose to optimize

the simulation program at the algorithm level. We will focus on optimizing the param-

eterized ansatz because it makes up most of the program. The objectives of the ansatz

optimization are summarized as follows:

• Small: The constructed ansatz should have a small size, i.e., fewer parameters and

gates, for shorter execution time and higher fidelity on near-term devices.

• Accurate: The simulation accuracy should not degrade too much using a smaller

ansatz with fewer parameters.

• Hardware friendly: The generated ansatz can be mapped onto the target hard-

ware without too much overhead.

Our optimization will start from the UCCSD ansatz, the well-accepted standard ansatz

with a large number of parameters (O(n4) parameters for n qubits). We seek to eliminate

those parameters that contribute the least to final measurement results. Doing this

precisely for each parameter can be very complex. Fortunately, in variational algorithms,

we do not have to be very precise, as long as the optimization can converge in a reasonable

amount of time. The key is to have enough parameters to explore the optimization space

and move towards the answer by adjusting those parameters at each iteration. Thus,

we only need to estimate whether a parameter is more likely or less likely to affect the

final measurement results. The ansatz can be compressed by only selecting those circuit

components with critical parameters. The effectiveness of our parameter importance

estimation method can be empirically verified later. In the rest of this section, we first

study how to estimate the importance of each parameter in the UCCSD ansatz. Then

we introduce how to construct the ansatz in a hardware-efficient manner.

99

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.3.1 Parameter Importance Estimation

In a VQE simulation, the final observable, which is the Hamiltonian of the target

chemical system, is an array of weighted Pauli strings. The UCCSD ansatz itself is also

an array of Pauli string simulation circuits with their corresponding parameters (one

parameter can be shared by multiple Pauli strings). We first estimate how likely the

parameter tuning of each Pauli string in the ansatz can affect the final measurement and

then assemble the results to estimate the importance of each parameter. The pseudo

code of this importance estimation is in Algorithm 5. For a given Pauli string (denoted

by Pa) in the ansatz, we compare it with each Pauli string (denoted by PH) in the

Hamiltonian. We explain the Pauli string comparison method with an example of Pa

and PH shown on the left of Figure 5.4. For the two Pauli operators on the same qubit

qs in the two Pauli strings being compared, we have the following three cases that will

make Pa less likely to affect the measurement result of PH :

1. If the Pauli operator in the Pa is ‘I’ (e.g., q3), then this Pauli string simulation

circuit will not apply any gate on qs (as shown in Figure 5.2 (a)) and this will make

Pa less likely to affect the measurement result of PH .

2. If the Pauli operator in the PH is ‘I’ (e.g., q2), then when measuring this Pauli

string simulation circuit in the Hamiltonian, the measurement result on this qubit

qs will be always be 1 and will never be changed with respect to the parameter.

This makes PH less sensitive to parameter tuning in Pa.

3. If the two Pauli operators on qs are the same (e.g., q1), then the effect of changing

the parameter in Pa will be reduced on the measurement results of PH . Figure 5.5

is a geometrical explanation. The state vector of a single qubit can be considered

as a unit vector on the Bloch sphere in a three-dimensional Euclidean vector space

100

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

q0q1q2q3

I

X

Y

I

Y

X

X

Z

: unimportant

: important

XXYYII
XYXYII
XZXZXZ

……
ZZZZXX

Hamiltonian

0.06
0.03
0.22

……
0.17

weights Pauli strings

Ansatz

IIIIXY
IIIIYX
XYXYXY

……
ZZZZXX

Pauli strings Param.

θ1

θ2
……

Pa:

PH:

String
Comparison

Figure 5.4: Importance estimation example

(Figure 5.5 (a)). X, Y, Z can represent three orthogonal axes. When applying

exp(−iθP) (P ∈ {X, Y, Z}) on a state vector |ψ⟩, the state vector on the Bloch

sphere will rotate around the corresponding axis. For example, in Figure 5.5 (b),

the state is rotating around the X-axis after exp(−iθX) is applied on it. Such

rotation will not change the result when we project the state |ψ⟩ onto the same

axis, and therefore will not change the measurement result when the observable is

X.

The only case left is when the two Pauli operators on qs are the different (e.g., q0). In

this case, changing the parameter is very likely to affect the measurement result because

rotation along one axis can change the projection onto another axis. For example, in

Figure 5.5 (b), the projection result on the Y axis is changed after a rotation along the

X-axis is applied.

Suppose the number of qubits on which the Pauli operators satisfy any of the three

conditions above is d and we have d = 3 in this example. How likely tuning the parameter

of Pa will affect the measurement result of PH is estimated to be the absolute value of

the weight of PH multiplied by an exponential decaying term 2−d. We repeat this process

for all PHs in the Hamiltonian and obtain a score of Pa in the ansatz. After we obtain

the scores of each Pauli string in the ansatz, the importance of each parameter equals

101

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

X

Y

Z

state
vector

X-axis

(a) (b)

Y-axis
projection onto

X-axis not changed

projection onto
Y-axis changed

exp(iθX), rotation

along X-axis

Figure 5.5: (a) Block sphere with three axes, (b) Effect of state vector rotation

Algorithm 5: Parameter Importance Estimation

Input: Weighted Pauli strings of target Hamiltonian H, Pauli strings of one
parameter θ

Output: Importance score of parameter θ
1 importance score = 0;
2 for Pa in all Pauli Strings of parameter θ do
3 for PH in all Pauli Strings in H do
4 Obtain the importance decay factor d by comparing Pa and PH ;
5 score += 2−d× abs(weight of PH);

6 end

7 end

the sum of the scores of all that parameter’s corresponding Pauli strings (note that one

parameter can be shared among multiple Pauli strings). For example, the importance

of θ1 in the example ansatz on the right of Figure 5.4 is the sum of the scores of the

first two Pauli strings (IIIIXY and IIIIY X). The importance of the rest parameters

can be calculated similarly. The time complexity of our ansatz compression algorithm is

O(n#(Pa)#(PH)) where #(Pa) and #(PH) are the numbers of Pas and PHs, respectively,

and n is the number of qubits.

5.3.2 Hardware-friendly Ansatz Construction

After the importance of each parameter is determined, we can construct the new

ansatz and achieve the three objectives mentioned above. First, since a small size with

102

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

fewer parameters and Pauli string simulation circuits is expected, we will select only

part of the parameters and Pauli string simulation circuits from the original UCCSD.

The size of the constructed ansatz can be determined by a given compression ratio.

Second, simulation accuracy is also desired. Therefore, we will select those components

that are estimated to be more important than the remaining components. Changing the

parameters in these important components is expected to have a large impact on the

final simulated energy. Thus, a lower simulated ground state energy, which will be closer

to the true ground state energy, is more likely to be achieved. For a given compression

ratio α, if the total number of parameters in the original UCCSD is K, then we will

select the top ⌈αK⌉ parameters and employ their corresponding Pauli string simulation

circuits. Third, we will make the constructed ansatz hardware friendly by putting the

Pauli strings in an importance-decreasing order. Such an order will reduce the overhead

when mapping to the target hardware by the compiler because this approach can improve

qubit locality in the generated ansatz as explained in the next paragraph.

Improving locality: The term qubit locality (similar to data locality in classical

computing) in this chapter is that the CNOT gates are applied more frequently on some

logical qubits in a period of time. In quantum chemistry simulation, each qubit repre-

sents an orbital but the wavefunction of the electrons is not uniformly distributed on all

orbitals. Different orbitals represent the states with different energies and the electrons

are more likely to occupy low energy orbitals because the energy minimum represents a

stable ground state. Therefore, those Pauli string simulation circuits that involve low-

energy orbitals are more important because changing their parameters will affect the

occupancy of the low-energy orbitals. In our ansatz construction, those Pauli string sim-

ulation circuits at the beginning of the program mostly include the qubits representing

low-energy orbitals. And these qubits will be frequently involved in the CNOT gates

in these Pauli string simulation circuits. This creates gate locality in our constructed

103

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

ansatz, which makes it easier to be synthesized and mapped later in our compilation.

The output of our ansatz compression algorithm is a sequence of Pauli strings and

their parameters, rather than a typical quantum circuit. Later in Section 5.5, we will have

a customized compilation flow to compile the Pauli string sequence into an executable

quantum circuit.

5.4 Architecture Design

After a chemistry simulation program is compressed, a quantum hardware platform

is required to finally execute the optimized program. In this section, we propose a new

superconducting quantum processor architecture to efficiently support variational quan-

tum chemistry simulation. We first detail the design objectives and physical constraints.

Then we introduce a new hardware architecture, namely X-Tree, and discuss the reasons

why it can support VQE circuits with both high performance and high efficiency.

Design objectives: This architecture should support VQE programs with high

performance, which means that the simulation programs can be synthesized into circuits

and then mapped onto the proposed architecture with low overhead (i.e., no or few

additional SWAP gates). It should have as few connections as possible because more

connections will increase the probability of frequency collision, lower the yield rate, and

also increase crosstalk error. The architecture should have good programmability,

which means it can support programs from the entire UCCSD simulation family for

various target chemistry systems.

Device modeling and physical constraints: We adopt IBM’s fixed-frequency

transmon qubit and cross-resonance qubit connections [111]. The following practical

physical constraints are considered. Physical qubits are placed on a planar substrate.

One physical qubit can only connect to a limited number of nearby physical qubits

104

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

directly via bus resonators. In this work we allow one qubit to connect to at most four

neighbors to increase device reliability, but similar architectures with five or six direct

connections per qubit have also been built [169].

5.4.1 X-Tree Architecture

As introduced in Section 5.2.1, the CNOT gates in the Pauli string simulation circuits

form a tree structure. Therefore, if the physical qubits are connected in a tree, we can

match them to the CNOT gates in the chemistry simulation program. Based on this

observation, we propose an X-Tree superconducting quantum processor architecture after

considering the design objective and physical constraints mentioned above.

X-Tree architecture construction: An X-Tree architecture starts from a root

qubit. Then more qubits are placed and connected. The key is that the coupling graph

formed by the connection is always a tree and there is no circle in the connections. Fig-

ure 5.6 shows several examples of X-Tree architecture with different numbers of qubits.

We may connect four qubits to the root qubit and obtain the XTree5Q (5-qubit) archi-

tecture. We can add three more qubits to one leaf qubit of XTree5Q to obtain XTree8Q.

Similarly, we can have XTree17Q and XTree26Q architectures by adding more physical

qubits. The first generation of IBM’s cloud-access quantum computers were compatible

with the XTree5Q architecture, but they have since diverged. Next, we explain why

X-Tree architecture can satisfy our three design objectives.

Fewer connections: The proposed X-Tree architecture is highly simplified and has

only the smallest number of connections (N − 1 connections for N qubits) to connect all

qubits because the coupling graph of an X-Tree architecture is a tree. As our device yield

rate simulations will show, this judicious lowering of connections results in higher yield

rate in this architecture compared to conventional 2D-grid architectures (which roughly

105

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

XTree17Q Coupling Graph

level 0

level 1

level 2

root

XTree5Q XTree8Q

XTree26Q

Figure 5.6: X-Tree architecture examples

have 2N connections for N qubits). Similarly, gate crosstalk errors will be significantly

reduced too.

High performance and programmability: We expect the X-Tree architecture to

support variational chemistry simulation applications with low mapping overhead since

the physical qubit connections naturally fit the logical qubits’ CNOT gate connections

(both of them are trees). We also expect programmability since the X-Tree architecture

is not tailored to specific any gate-level VQE circuit instances. Instead, our design

is inspired by the properties of Pauli string, a high-level algorithm feature, without

any assumptions about the simulated system. However, the physical connection tree is

not identical to the CNOT gate connection trees since there are different Pauli strings

on different qubits for different simulation programs. Compiler optimizations are still

required to deploy the chemistry simulation program onto the X-Tree architecture, which

will be explained in the next section.

106

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.5 Compiler Optimization

Although the X-Tree architecture has been designed to match the tree pattern of gates

in a typical quantum chemistry program, we will show that state-of-the-art compilers are

not well suited for taking maximum advantage of it. A traditional quantum compilation

flow separates high-level synthesis from mapping onto the architecture. That is, it will

first convert the Pauli strings and the parameters into concrete Pauli string simulation

circuits using a uniform CNOT synthesis plan. For example, Qiskit [159] synthesizes

the CNOTs in a Pauli string simulation circuit in a chain structure like Figure 5.2 (b).

However, recall that there is great flexibility in how each Pauli string simulation circuit is

synthesized: as long as the non-trivial qubits in the Pauli string are connected by a

tree, it does not matter which connections we use. This is the key insight that allows

us to adaptively synthesize and map each Pauli string simulation circuit in the larger

ansatz. The approach taken by previous compilers fails to recognize this flexibility. Once

the circuit is synthesized, it is exceedingly hard to find such high-level semantics, and

mapping a poorly synthesized program on a sparse architecture can incur a very high

cost.

In this section, we introduce the third optimization, a tailored compiler optimization

to efficiently synthesize and map variational quantum chemistry simulation programs to

X-Tree architectures with very low overhead. We will show that this tailored approach

incurs an overhead of around 99% lower than a traditional compiler for the same architec-

ture, and even 97.7% lower than mapping to a dense architecture but without leveraging

such compiler optimizations.

Our compiler optimization performs circuit synthesis and qubit mapping collabora-

tively in two steps. First, we determine an initial qubit layout, based on the ansatz

Pauli strings only, before the program is synthesized to gate sequences. Then we perform

107

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

q0q1q2q4 q3
I X

X
I
XZ

X
Y
I

X

I I
I

I
II

Y
I
X

X

I Z
I

Y
ZI

Y
Y
X

X

q5
X
I

I
I

I
I

level 0: q0

level 1: q1, q2, q3, q4

level 2: q5

q0q1

q2

q3

q4

q5

Pauli string example Qubits in different levels Initial layout

Root

Figure 5.7: Initial layout example

circuit synthesis and qubit routing (inserting SWAPs) simultaneously onto the X-Tree

architecture.

5.5.1 Hierarchical Initial Layout

Since the program is not converted to gates yet, our initial qubit layout algorithm

will directly analyze the high-level program and provide an initial qubit layout. This is

possible because our proposed X-Tree architecture has different physical qubit levels. For

example, in the XTree17Q architecture in Figure 5.6, the center (root) qubit has level 0

as it is on average closer to all other qubits. The four qubits surrounding the root have

level 1, and the leaves have level 2. Similarly, we can also discover different priorities

for different logical qubits in a chemistry simulation program. The states represented by

some orbitals are closer to the true ground state of the electrons, thus the logical qubits

corresponding to these orbitals will appear in more Pauli string simulation circuits and

will participate in more CNOT gates (as discussed in Section 5.3.2). We place these

logical qubits on lower-level physical qubits, ensuring that they can reach other qubits

with shorter paths.

Our hierarchical initial layout algorithm is based on such heterogeneity of the logical

and physical qubits. The pseudocode is in Algorithm 6 and we explain the algorithm

108

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Algorithm 6: Hierarchical Initial Layout

Input: Pauli strings in the simulation program, an X-Tree architecture with
qubits at different levels

Output: Initial logical-to-physical qubit mapping
1 for Pi in all Pauli Strings do
2 if the qubit j and k appear in Pi then
3 Mat(j, k)+ = 1;
4 end

5 end
6 Qubit occurrence =

∑
kMat(j, k);

7 Logical qubit order = ArgSort(Qubit occurrence);
8 for qubit j in Logical qubit order do
9 Map qubit j to the physical qubit in the lowest available level;

10 if there are multiple possible parent qubit k then
11 select k = argmax(Mat(j,k))
12 end

13 end

with the example in Figure 5.7. We first determine which qubits appear in more Pauli

strings. A matrix will record the number of instances when qubit i and j appear in the

same Pauli string (the first loop). Then we can know which qubits connect to other

qubits more by taking summation in one dimension. Finally, we sort the logical qubits

by their connectivity requirements and place them on the X-Tree architecture from level

0 outwards. In Figure 5.7, we put q0, which appears in all Pauli strings, on the level

0 root and put q1, q2, q3, q4 in the four level 1 physical qubits. In case of multiple

available spots, we attach to a parent qubit which shares the largest number of common

Pauli strings with the logical qubit to be allocated (the parent is already allocated a

physical spot because it is in a lower level). In the example in Figure 5.7, q5 has been

assigned level 2 as it participates in only one Pauli string. Of the qubits it shares a Pauli

string with, q3 is one level up and so chosen as q5’s parent.

109

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

q0

q1

q2

q3

Swap q2 to its
parent node; q0

q1

q2
q3

CNOT q3, q1;

CNOT q0, q2;

Swap q1 to its
parent node;
CNOT q2, q1;

Overhead:
2 SWAPs

CNOT q0, q1;
CNOT q1, q2;
CNOT q2, q3;

Traditional compilation flow:

Merge-to-Root: integrated synthesis and routing

1. synthesis:
2. routing:

q0 q2

q3
q1

Overhead:
5 SWAPs

SWAP q1, …
SWAP q1, …
CNOT q0, q1;
CNOT q1, q2;
SWAP q2, …
SWAP q2, …
SWAP q2, …
CNOT q2, q3;

q0

q3

q2

move q1 move q2

Current
Mapping:

Root

q1

Figure 5.8: Merge-to-Root vs traditional compilation

5.5.2 Merge-to-Root Circuit Synthesis and Qubit Routing

After the initial qubit mapping is determined, we need to synthesize the Pauli string

simulation circuits into concrete circuits and resolve all the CNOT gate dependency issues

caused by the limited on-chip qubit connection. We propose a Merge-to-Root algorithm

to synthesize the simulation circuits and determine how to insert SWAPs for remapping

qubits. For each Pauli string simulation circuit, the two layers of the single-qubit gates

at the beginning and the end are fixed. We only need to synthesize two CNOT trees and

the center rotation gate as introduced in Section 5.2.1. The pseudocode is in Algorithm 7

and we explain it with the example in Figure 5.8.

Suppose we need to compile the simulation of Pauli string on four logical qubits, q0,

q1, q2, and q3. Their current mapping on an X-Tree architecture is shown on the top

left of Figure 5.8. Our merge-to-root compilation starts from the outermost physical

110

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

qubits. We can find that q0, q2, and q3 are currently mapped onto level 2 physical

qubits. We check the parent qubits (at level 1) of these outermost qubits. If a parent

qubit is holding a logical qubit in the simulation circuit, e.g., the parent qubit of q3 is

the one q1 is mapped onto, then we can synthesize a CNOT between these two qubits.

If not, we will find one qubit in the current level and swap it to this parent qubit. For

example, the parent qubit of q0 and q2 is not in the Pauli string. We first select one of

them and SWAP it to the parent qubit. We will select the qubit that will appear more

times in the follow-up Pauli strings. Suppose we move q2 to the parent physical qubit.

We can now synthesize a CNOT between q0 and q2. The procedure above synthesizes all

CNOTs that are between level 2 and 1 with just one SWAP overhead. It will be repeated

from the outer levels to the inner levels until the last qubit. For level 1 qubits (q1 and

q2 in this example), we can move q1 and then synthesize the last CNOT between q2

and q1. This synthesis of the left CNOT tree is now completed with only two SWAPs

in total. The center rotation gate can then be applied on q1. The right CNOT tree

can be synthesized similarly in a reversed order from the inner levels to the outer levels.

The time complexity of our compiler optimization algorithm is O(n#(Pa)) where n is

the number of qubits and #(Pa) is the number of Pauli strings in the ansatz.

Comparing with traditional compilation: The lower half of Figure 5.8 also shows

the compilation results of the left CNOT tree from traditional compilation flow. The left

CNOT tree will first be synthesized into three CNOT gates. Then a mapping algorithm

will try to move the qubits to satisfy the dependencies of the three CNOT gates. In this

example, we first move q1 by two SWAP gates to execute the first two CNOT gates. We

then move q2 by three SWAP gates to execute the last CNOT gate. The total overhead is

five SWAPs, which is much higher than that of our Merge-to-Root compilation. The key

is that, comparing with traditional compilation, Merge-to-Root will synthesize entirely

different CNOTs adapted to the current mapping and the architecture.

111

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Algorithm 7: Merge-to-Root Synthesis and Routing

Input: Initial qubit layout, Pauli strings in the simulation program, a X-Tree
architecture with qubits of K different levels

Output: A hardware compatible circuit
1 for Pi in all Pauli Strings do

// Synthesize left CNOT tree

2 for level k from K − 1 down to 1 do
3 if a qubit at level k is in Pi but its parent qubit qp at level k − 1 is not in

Pi then
4 select one of qp’s child qubits that are in Pi and SWAP it with qp;
5 end
6 Synthesize all CNOTs from level k to k − 1;

7 end

8 end
9 Apply the center rotation gate on the last qubit;

10 Synthesize the right CNOT tree accordingly;

5.6 Evaluation

We evaluate the proposed co-optimization with carefully designed experiments over

a wide range of chemistry simulation benchmarks to show the improvements from the

algorithm, hardware, and compiler levels.

5.6.1 Experiment Setup

Benchmarks: We select nine molecules of various sizes and geometrical structures.

The names of the molecules and the information of their simulation circuits using the

original full UCCSD ansatz are listed in Table 5.1. Note that ‘# of Pauli’ means the

number of Pauli strings.

Metric: The simulation accuracy is measured by the simulated ground state energy

of the target molecule. We adopt atomic units that are more convenient for computational

chemistry. The energy unit is Hartree (1 Hartree ≈ 4.36×10−18 Joules). The bond length

unit is Angstrom (1 Angstrom = 10−10 meter). The convergence speed is indicated by the

112

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Table 5.1: Benchmark molecules and their original cost

of Qubits # of Pauli # of Param. # of Gates (CNOTs)

H2 4 12 3 150 (56)

LiH 6 40 8 610 (280)

NaH 8 84 15 1476 (768)

HF 10 144 24 2856 (1616)

BeH2 12 640 92 13704 (8064)

H2O 12 640 92 13704 (8064)

BH3 14 1488 204 34280 (21072)

NH3 14 1488 204 34280 (21072)

CH4 16 2688 360 66312 (42368)

number of iterations in the parameter optimization (outer loop in Figure 5.3). A smaller

number of iterations means that the simulation converges faster. Compiler optimizations

are evaluated by the gate count in the post-compilation circuit, a widely used metric in

previous studies [77, 56, 18]. A more effective compiler optimization will result in a lower

gate count in the post-compilation circuit. The CNOT count is of particular interest

owing to the much higher error rate and longer latency compared to single-qubit gates.

Implementation: We implement the proposed optimizations based on Qiskit [159]

and perform experiments with classical simulators in Qiskit. The Hamiltonian of the

simulated molecule is generated by PySCF [165] with STO-3G orbitals [170] and Jordan-

Wigner encoding [171]. We freeze the core electrons and only simulate the interaction

of the outermost electrons. We use the default UCCSD ansatz from Qiskit Aqua li-

brary (version 0.8.0). The parameters are optimized using the Sequential Least Squares

Programming [172] solver. The noise-free simulations are performed with Qiskit Aer

statevector simulator and the noisy simulations are performed with Qiksit Aer qasm

simulator (version 0.6.0). For the hardware yield rate, we adopt the yield simulation

method and qubit frequency allocation algorithm in [19]. All experiments are performed

on a MacBook Pro with 2.8 GHz Quad-Core Intel Core i7 CPU and 16GB 2133MHz

113

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

LPDDR3 memory.

5.6.2 Experiment Methodology

Baseline: The software baseline is the original UCCSD ansatz [48], denoted by

‘Orig. UCCSD’. The true ground state energies for reference, denoted by ‘Ground State’,

are obtained by directly calculating the eigenvalue of the Hamiltonian of the target

system. The hardware baseline is IBM’s 17-qubit device (Grid17Q) with a 2D grid

connection [111] (shown on the left of Figure 5.11) for a fair comparison with our 17-

qubit X-Tree device (XTree17Q) employing the same number of qubits. The compiler

baseline is SABRE [18] (SAB), a state-of-the-art general-purpose mapping algorithm in

Qiskit.

Configurations: We apply the parameter compression method in Section 5.3 with

five compression ratios: 10%, 30%, 50%, 70%, 90%. They are denoted by ‘10% Param.’

to ‘90% Param.’ We also generated ansatzes by randomly selecting 50% parameters

(denoted by ‘Rand. 50%’).

5.6.3 Simulation Accuracy and Convergence Speedup

Figure 5.9 shows the simulation accuracy and the convergence speed of our com-

pressed ansatz. The results of H2 is omitted since its circuit is small with only three

parameters. There are three parts in Figure 5.9. The X-axes represent the bond lengths

of the simulated molecules. The Y-axes represent the simulated energy, simulated energy

difference, and the number of iterations steps as labeled on the left of Figure 5.9. The

top part shows simulated energies at different bond lengths. The simulation results of

the compressed ansatzes are close to that of the full UCCSD and the true ground states.

The more parameters we keep, the more accurate simulation we can obtain. To better

114

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

En
er

gy
 (H

ar
tr

ee
)

En
er

gy
 D

iff
.c

om
pa

re
d

to
 G

ro
un

d
St

at
e

(H
ar

tr
ee

)
N

um
be

r o
f i

te
ra

tio
n

st
ep

s t
o

co
nv

er
ge

Figure 5.9: Accuracy and number of iterations vs various parameter reduction ratios

understand the amount of accuracy loss, the middle part of Figure 5.9 shows the en-

ergy difference between different experiment configurations and their corresponding true

ground states. For example, the energy differences for ‘50% Param.’ are usually only at

the level of about 0.05%.

Effective parameter selection: We show the effectiveness of our parameter se-

lection method by comparing the ansatzes generated by our compression method with

those constructed by randomly selected parameters. For the ansatzes with 50% ran-

domly selected parameters, we generate five different random parameter selections for

each molecule at each simulated bond length. The simulation result distribution of

115

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Figure 5.10: Noisy simulation case studies on LiH and NaH

‘Rand. 50%’ is demonstrated by the mean and standard deviation of the simulated ener-

gies. It can be observed that the ‘50% Param.’ ansatzes generated by our optimization

outperform the ‘Rand. 50%’ with better accuracy and the simulated energies are closer

to the true ground state energies. The accuracy of ‘Rand. 50%’ is similar to that of ‘30%

Param.’, which means that our optimization can select 30% of parameters but achieve the

same level of accuracy from randomly selecting 50% of the parameters. This comparison

proves that our ansatz compression algorithm is very effective. The execution time of our

ansatz compression is negligible compared with the VQE execution itself. For example,

it requires several minutes to compress the ansatz for CH4 while it takes over ten CPU

116

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Table 5.2: Mapping overhead comparison of different compilation approaches
Original # of CNOTs MtR on XTree17Q (# of CNOTs) SAB on XTree17Q (# of CNOTs) SAB on Grid17Q (# of CNOTs)

Ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

H2 48 48 52 56 56 0 0 0 6 6 0 0 0 0 0 0 0 0 0 0

LiH 80 208 256 272 280 0 6 6 12 18 48 126 132 150 168 0 6 9 15 18

NaH 176 448 672 736 764 0 0 0 3 21 162 777 1002 1197 1470 12 12 87 120 123

HF 400 912 1264 1552 1608 0 0 0 6 36 633 1863 2034 2163 2502 87 126 267 372 612

BeH2 1504 3808 5696 7248 7984 3 6 24 51 228 3315 6513 13416 14268 17862 621 1395 4005 5253 8091

H2O 1536 3840 5712 7280 7988 0 12 18 75 135 3132 7764 12495 13266 15618 1110 1725 2034 2514 3156

BH3 3664 9632 14560 18368 20824 0 39 108 237 606 9489 23811 35289 45603 46395 2163 7632 9654 17010 21165

NH3 3680 9696 14592 18480 20824 0 30 72 183 522 11646 20622 35523 42348 48447 1959 5844 8568 12375 13668

CH4 7136 19040 28992 36656 41632 0 45 120 366 1005 23796 56799 79821 99831 111876 4788 18939 25173 33792 39729

hours to simulate CH4 with VQE at one bond length.

Convergence speedup: The bottom part of Figure 5.9 shows the number of iter-

ations to converge. The compressed ansatzes with fewer parameters can converge much

faster with smaller numbers of parameter optimization steps. The numbers of parameter

optimization steps are reduced by 14.3×, 4.8×, 2.5×, 1.6×, and 1.1× on average for the

five parameter compression ratios of 10% to 90%, respectively.

There is also a subtle implication in computation reliability when the computation

concludes faster. Quantum computers are calibrated to reduce gate errors. After a few

hours, the physical properties of the system drift causing the calibration to become stale.

At current experimental speeds, a full VQE experiment can easily take hours to converge,

which makes these speedups a boost to reliability as well.

5.6.4 Noisy Simulation Case Studies

We study the effect of hardware noise on LiH and NaH as case studies. Our simulation

adopts a depolarizing error model with realistic CNOT error rates of 0.0001 [173]. Fig-

ure 5.10 shows the simulation results. Similar to Figure 5.9, the first, second, and third

rows are the overall simulated energies, energy differences, and number of iterations,

respectively. We observe that our compressed VQE can still demonstrate the correct

landscapes of the molecule energy under different bond lengths. We can also observe in-

teresting trade-offs between parameter pruning and accuracy in noisy regimes. For LiH,

117

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

1E-4
1E-3
1E-2
1E-1
1E+0

0.2 0.3 0.4 0.5 0.6

XTree17Q Grid17Q

Yi
el

d
ra

te

Fabrication precision (GHz)17-qubit Grid (Grid17Q)

Figure 5.11: Grid17Q architecture and the yield rate comparison

the error first decreases from ‘10% Param.’ to ‘50% Param.’ due to the increasing pa-

rameters. After that, the error does not change significantly from ‘50% Param.’ to ‘90%

Param.’ because the effect of more parameters is masked by the increasing gate error.

‘50% Param.’ is a sweet spot for LiH. For NaH, the balance is different. The error first

increases from ‘10% Param.’ to ‘30% Param.’ and then drops from ‘30% Param.’ to ‘90%

Param.’ This suggests that we should either select ‘10% Param.’ or ‘90% Param’. Such

trade-offs depend on the molecule Hamiltonian, the bond length configuration, hardware

noise strength, and maybe other factors. A comprehensive research into these trade-offs

is left as future work.

5.6.5 Hardware Efficiency

We evaluate our hardware design by comparing the XTree17Q architecture with base-

line Grid17Q. Both of them have 17 physical qubits. Figure 5.11 shows the yield rates

of XTree17Q and Grid17Q for various fabrication precision parameters from 0.2 GHz to

0.6 GHz. The yield rate of the XTree17Q architecture is about 8× higher than that of

the Grid17Q architecture. This is because Grid17Q has 24 connections while XTree17Q

only employs 16 connections.

118

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.6.6 Mapping Overhead Reduction

Table 5.2 shows the mapping overhead (i.e., the number of additional CNOT gates)

of our Merge-to-Root (MtR) compilation (including our initial layout algorithm) vs. the

baseline compilation (SAB) on XTree17Q and Grid17Q architectures.

We first compare MtR on XTree17Q vs. SAB on XTree17Q. The sparse connectiv-

ity of XTree17Q makes the mapping overhead very high for the general-purpose SAB

compiler. The number of additional CNOTs is about 177% of the CNOT count of the

original circuits. This is even worse for larger benchmarks. For CH4, the number of

additional CNOTs for SAB is about 288% of the original CNOT count. However, our

MtR compilation incurs dramatically smaller overhead. For all tested benchmarks, the

number of additional CNOTs is on average 1.4% of the original CNOT count. Therefore,

our MtR compilation reduces the mapping overhead to only about 1% of the overhead

from the state-of-the-art compilation.

The SAB compiler still cannot compete with our co-designed approach even if it

targets a much denser architecture. Grid17Q employs more connections, of course at the

cost of 8× lower yield rate compared to our XTree17Q. However, even then the CNOT

overhead for MtR on XTree17Q is only about 2.3% of SAB on Grid17Q in most cases.

Locality improvement: Analysis of mapping overheads shows that our ansatz con-

struction improves gate locality. At 10% ansatz compression ratio, MtR on XTree17Q

does not require any additional CNOTs most of the time. We also observe that this

mapping overhead jumps much faster from 70% to 90% compared to other gaps. For

example, the mapping overhead increases from 70% to 90% is about 2.9× that of 50%

to 70%, while the original CNOT count increment from 70% to 90% is only about 0.47×

that of 50% to 70%. This is because our ansatz construction will first select Pauli string

simulation circuits with more gate locality so that they can be synthesized and mapped

119

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

to XTree17Q efficiently. But at compression ratios close to 1 (i.e. little compression),

Pauli string simulation circuits with poor locality will also be included in the ansatz,

which makes the mapping overhead grow faster.

5.7 Discussion and Future Directions

In this chapter, we advance variational quantum computational chemistry through a

holistic software-hardware co-optimization from the algorithm, compiler, and hardware

levels, outperforming conventional setups with significant benefits of multiple aspects.

This is the first attempt, to the best of our knowledge, that leverages the high-level

application domain knowledge to coordinate the optimizations throughout the three

levels from software to hardware in quantum computing. Also our software-hardware

co-optimization is not targeting a particular program instance and can broadly accom-

modate the full family of computational chemistry problems with such structure. We

believe that the co-optimization principle can also be applied to other promising appli-

cation domains and hardware implementation technologies to boost the development of

quantum computing. Several further research directions are briefly discussed as follows:

More physical systems: This chapter focused on chemical systems and the re-

sults can guide the development of new useful compounds. Many other physical systems

are also worth simulating. For example, the Hubbard model [174] in condensed matter

physics can explain the transition between conducting and insulating systems. These

models may have different characteristics compared to a chemical system, e.g., periodic

potential vs atomic potential, fermion vs boson. We expect that the Pauli-string-centric

principle will still be applicable since the mathematics about simulating a Hamiltonian

is invariant. But the actual optimizations may need to change according to the charac-

teristics of these models.

120

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

Hardware architecture variants: This work focuses on the tree architecture with

a minimized number of connections for a higher yield rate. However, it is not yet known

how to find other Pareto-optimal designs. We may also need to change the number of con-

nections per qubit when scaling up and to improve CNOT fidelity. It can be interesting

to consider tree structures with different degrees at different levels. Moreover, for other

hardware like ion traps, the main constraints can be different, and it is worth explor-

ing how to extend the Pauli-string-centric principle to optimize quantum computational

chemistry on other platforms.

Deeper compiler optimization: The compiler optimization in this chapter is for

the circuit synthesis and qubit mapping passes, which are essential in compiling a pro-

gram to an executable circuit on a superconducting quantum processor. Deeper compiler

optimization is possible in at least two directions. First, other passes in the traditional

compilation flow, e.g., gate cancellation [163], may be customized to variational quan-

tum chemistry simulation programs. Second, the variational quantum simulation is a

numerical optimization algorithm. It is thus possible to allow approximate compilation

for more aggressive compiler optimization. Third, compiler-based error mitigation tech-

niques [175, 176, 177] can also be incorporated to further reduce the simulation error.

5.8 Related Work

The techniques in this chapter range across the algorithm, hardware, and compiler

for variational quantum computational chemistry. We briefly introduce related work for

each of them.

121

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

5.8.1 Algorithmic Optimization

The major component in the VQE circuit is the parameterized ansatz. UCCSD [48] is

the “standard” chemistry-inspired ansatz, but has a large size. There have been several

optimizations to reduce its size [148, 149, 150, 151, 152, 153], but without consider-

ing specific hardware mapping overheads. At the other extreme, “hardware-efficient”

ansatzes [47] have been proposed which only employ gates that are easy to implement on

the underlying hardware. However, these ansatzes are unlikely to support large molecules

since they do not consider any information about the chemical system to be simu-

lated [154, 5]. Alternatively, several ansatz selection techniques rely on classical simula-

tion of the molecule, and it is unclear how they scale to super-classical regimes [146, 178].

In contrast, the algorithm optimization proposed in this work exploits information about

the target system through Pauli string comparison, and can maintain simulation accuracy

as well as reduce hardware mapping overhead, and does not require classical simulation.

Additionally, there is prior work on optimizing the number of measurements required

to evaluate the energy [179, 180, 181, 182, 183]. This type of optimization reduces the

number of iterations of the inner loop in Figure 5.3 and is orthogonal to our techniques

which reduce the number of iterations in the outer loop as well as the size of the circuit

itself. These optimizations can be employed together with our techniques.

5.8.2 Compiler Optimization

A large body of work exists on mapping quantum circuits to hardware [104, 18, 77, 85,

184]. These algorithms are invoked after a quantum circuit is already synthesized and are

general-purpose with little assumption regarding the input programs or the underlying

hardware architectures.

High-level semantics have recently been considered in compiler optimizations. Cowtan

122

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

et al. recently proposed a method for compiling UCC ansatzes by partitioning Pauli

strings into sets, but not considering the underlying architecture [185]. An architecture-

aware synthesis for phase-polynomial quantum circuits was proposed in [186].

In contrast, this chapter uses the Pauli string simulation circuit to devise a new

compilation flow based not only on the chemistry simulation domain knowledge but also

on the underlying architecture. Starting from a Pauli string IR, it achieves unprecedented

mapping overhead reduction by combining synthesis and mapping in a single pass.

5.8.3 Application-specific Quantum Processor Architecture

An application-specific quantum architecture was proposed by Wilhelm et al. for a

specific Fermi-Hubbard model simulation, based on a superconducting planar architec-

ture [123, 124]. Recently, an end-to-end design flow has also been proposed to generate

optimized superconducting quantum processor architectures for different individual quan-

tum programs [19]. These architectures are circuit-specific rather than domain-specific,

as they exploit low-level gate patterns but not high-level domain knowledge and do not

generalize to families of circuits. For trapped ion technology, [187] provided a forward-

looking overview of co-designing trapped ion machines. Murali et al. also proposed a

toolflow to evaluate the architecture design of trapped ion quantum computers over a

benchmark suite [188]. Our architecture design, which integrates the algorithm-level do-

main knowledge, is a concrete optimized design with compiler support to accommodate

various variational quantum chemistry programs with different simulation targets.

5.9 Conclusion

In this chapter, we advance variational quantum chemistry simulation through a holis-

tic software-hardware co-optimization at the algorithm, compiler, and hardware levels.

123

Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum
Processors Chapter 5

We show that variational quantum chemistry programs can be significantly simplified

without complex derivative calculation, and they can be efficiently mapped onto a high

yield superconducting quantum processor with very sparse connections. The three pro-

posed optimizations can accommodate simulating various chemical systems and bring a

wide range of advantages from software to hardware. The design principle and the re-

sults from this chapter could guide future development of quantum software and hardware

infrastructures.

124

Chapter 6

Paulihedral: A Generalized

Block-Wise Compiler Optimization

Framework for Quantum Simulation

Kernels

6.1 Introduction

In the previous chapter we introduce the software-hardware co-design for quantum

chemistry simulation. Actually, quantum simulation is much more than chemistry sim-

ulation. It is can be generalized to many other domains. one of the most important

quantum algorithm design principles and can be generalized to many other domains.

Simulating a quantum physical system, including the chemical system and other quan-

tum physics systems of interest, which motivated Feynman’s proposal to build a quan-

tum computer [2], is by itself an important application of quantum computing [189, 190].

Later, the idea of quantum simulation was extended to quantum algorithms for other

125

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

applications, e.g., linear systems [191], quantum principal component analysis [192], and

quantum support vector machine [193]. These algorithms involve simulating an artificial

quantum system crafted based on the target problem. In recently developed variational

quantum algorithms for near-term quantum computers (e.g., VQE for chemistry [48] and

QAOA for combinatorial optimization [6]), the program structures are also inspired by

the simulation principle.

Because the quantum simulation principle is shared among many algorithms, one sub-

routine, which we term the quantum simulation kernel in this chapter, appears frequently

in quantum programs. This kernel is to implement the operator (controlled-)exp(iHt)

where H is the Hamiltonian of the simulated system and t ∈ R is system evolution time.

Since it is hard in general to directly compile exp(iHt) into executable single- and two-

qubit gates, a compiler usually decomposes H into the sum of local Hamiltonians [189]

(simulation of which can be easily compiled to basic gates) and then synthesize them

one-by-one. Consequently, the quantum simulation kernel will be compiled to a very

long gate sequence and constitute the vast majority of cost in post-compilation quantum

programs.

Optimizing the compilation of this kernel can immediately benefit a wide range of

quantum applications. However, three key challenges have so far hindered deeper com-

piler optimizations for quantum simulation kernels.

First, existing quantum compilers (e.g., Qiskit [159], Quilc [194], t|ket⟩ [161]) lack a

good formal high-level intermediate representation (IR). Once programs are converted

to low-level gate sequences, the high-level semantics of quantum simulation kernels are

lost and hard to reconstruct from assembly-style gate sequences. Moreover, simulation

kernels face different constraints in different algorithms. Previous ad-hoc optimizations

of quantum simulation [195, 196, 197, 198, 185, 186, 199, 103, 200, 201, 20, 202] are

mostly algorithm-specific and do not generalize due to the lack of a formal IR that can

126

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

uniformly represent simulations kernels as well as varying constraints that are attached

to them in different algorithms.

Second, most optimizations (e.g., circuit rewriting [162], gate cancellation [163], tem-

plate matching [164], qubit mapping [104]) in today’s quantum compilers [159, 194] are

local program transformations at small scale. However, these passes are designed for

generic input program and fail to leverage the deeper optimization opportunities present

in quantum simulation kernels. These opportunities are mainly from the properties of

Pauli strings which naturally appear in the (Suzuki-)Trotter Hamiltonian approxima-

tion [189, 203], Jordan-Wigner [204] or Bravyi-Kitaev [205] fermion-to-qubit transforma-

tion, etc.

Third, quantum simulation kernels appear in a wide range of algorithms. Some algo-

rithms [189, 190, 191, 192, 193] are designed for fault-tolerant quantum computers with

quantum error correction while others [6, 48] target near-term noisy quantum computers.

The hardware models of these backends can be very different and one single optimization

pass may not be suitable for all of them. Adapting the high-level algorithmic optimiza-

tions to the various (and ever-evolving) hardware platforms with different constraints

and optimization objectives naturally invokes a reconfigurable compiler infrastructure.

To overcome these challenges, we propose Paulihedral, a compiler framework backed

by a formal IR to deeply optimize quantum simulation kernels. A brief comparison be-

tween Paulihedral and conventional quantum compilers is shown in Figure 6.1. First,

Paulihedral comes with a new IR, namely Pauli IR, to represent the quantum simulation

kernels at the Pauli string level rather than the gate level. The syntax of Pauli IR has

a novel block structure which can uniformly represent the simulation kernels of different

forms and constraints. The semantics of Pauli IR is defined on the commutative matrix

addition operation. Such semantics guarantees that the follow-up high-level algorithmic

optimizations are always semantics-preserving and can be safely applied. Second, we

127

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Quantum Simulation Kernels

Conventional compiler, e.g., Qiskit, t|ket⟩ Paulihedral compiler

Gate Sequence Pauli IR

compiler frontend

e.g., Qiskit level 3 passes:
unroll to 1- & 2-qubit gates,
qubit layout & routing,
unroll to basis gates,
2-qubit block optimization,
commutative cancellation,
……

inter-block:
instruction scheduling

Gate Sequence Gate Sequence

Pauli IRblock-wise opt:
circuit synthesis,
gate cancellation,
layout & routing,
……

Key
contributions:

Figure 6.1: Paulihedral vs conventional compilers

propose several novel optimization passes to reconcile instruction scheduling, circuit syn-

thesis, gate cancellation, and qubit layout/routing at the Pauli IR level. All these passes

are much more effective than their counterparts in conventional gate-based compilers

because they are operating in a large scope where the algorithmic properties of Pauli

strings (quantum simulation kernel) are fully exploited. The optimization algorithms in

these passes are also highly scalable since analyzing and processing Pauli strings are much

easier than handling the gate matrices on a classical computer. Third, we decouple the

technology-independent and technology-dependent optimizations at different stages and

Paulihedral can be extended to different backends by adding/modifying the technology-

dependent passes. To showcase, we develop technology-dependent optimizations for two

different backends, the fault-tolerant quantum computer and the noisy near-term super-

conducting quantum processor.

Our comprehensive evaluations show that Paulihedral outperforms state-of-the-art

128

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

baseline compilers (Qiskit [159], t|ket⟩ [161] and algorithm-specific compilers [200, 206,

207]) with significant gate count and circuit depth reduction on both fault-tolerant and

superconducting backends, and only introduces very small additional compilation time.

We also perform real-system experiments to show that Paulihedral can significantly in-

crease the end-to-end success rate of QAOA programs on IBM’s superconducting quan-

tum devices.

Our major contributions can be summarized as follows:

1. We propose Paulihedral, an extensible algorithmic compiler framework that can

deeply optimize quantum simulation kernels and thus benefit the compilation of a

wide range of quantum programs, with passes that make it retargetable to various

backends and optimization objectives.

2. We define a new Pauli IR with formal syntax and semantics which can uniformly

represent quantum simulation kernels and encode algorithmic constraints of seem-

ingly very different algorithms, and safely expose high-level information to the

compiler for optimizations.

3. We propose several compiler passes for different optimization objectives and back-

ends. They can outperform previous works by systematically leveraging the algo-

rithmic information and they are scalable to efficiently handle larger-size programs.

4. Our experiments on 31 different benchmarks show that Paulihedral can outperform

state-of-the-art baseline compilers with significant gate count and circuit depth re-

duction. For example, compared with t|ket⟩ [161], Paulihedral achieves 53.1% gate

count reduction and 53.3% circuit depth reduction on average on the superconduct-

ing backend, as well as 33.6% gate count and 65.0% circuit depth reduction on the

fault-tolerant backend, using only ∼ 5% additional compilation time. For QAOA on

129

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

a real quantum device, Paulihedral achieves end-to-end 1.24× success probability

improvement on average (up to 1.87×) against the baseline Qiskit compiler [159].

6.2 Background

In the section we introduce the necessary background about quantum simulation

kernels. We will first revisit the Pauli strings and then introduce the quantum algorithms

related to quantum simulation.

6.2.1 Pauli String and Compilation

We start with the Pauli string, the basic concept in quantum simulation. For an

n-qubit system, a Pauli string is defined as P = σn−1σn−2 · · ·σ0 where σi ∈ {I,X, Y, Z},

0 ≤ i ≤ n−1. X, Y , Z are the three Pauli operators, and I is the identity. σi corresponds

to the i-th qubit. The operators in a Pauli string P can represent a Hermitian operator

⊗n−1
i=0 σi (⊗ is the Kronecker product), which can be denoted by P without ambiguity.

In the rest of this chapter, we do not distinguish a Pauli string P and the Hermitian

operator generated by P .

One important property of a Pauli string is that the operator exp(iP θ
2
) can be easily

synthesized into basic gates. An example of synthesizing exp(iY4Z3I2X1Z0
θ
2
) is shown

in Figure 6.2. There are two identical layers of single-qubit gates at the beginning and

the end of the synthesized circuit. In this single-qubit gate layer, there are H or Y

gates on those qubits whose operators are X (i.e., q1) or Y (i.e., q4) in the Pauli string,

respectively. In the middle is a left CNOT tree, a central Rz(θ) gate, and a right CNOT

tree. The left tree can be generated in different ways and the only requirement is to

connect all the qubits whose operators are not the identity in P (e.g., q0, q1, q3, q4 in

Figure 6.2). The lower half of Figure 6.2 shows three different but valid ways to generate

130

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

q0

q2
q1

q4
q3

left
CNOT
tree

sin
gl

e-
qu

bi
t

ga
te

s

Rz sin
gl

e-
qu

bi
t

ga
te

sH H

Y Y

q0

q2
q1

q4
q3

Rz(𝜃) Rz(𝜃)

Rz(𝜃)

q0 q1 q3 q4
root qubit: q4

q0
q1

q3q4
root qubit: q4

q0 q4 q1 q3
root qubit: q1

right
CNOT
tree

(1) (2) (3)

Figure 6.2: Synthesis example of exp(iY4Z3I2X1Z0
θ
2)

the CNOT tree circuits and their corresponding tree graphs. In these trees, the CNOT

gates should connect the qubits from the leaf nodes to the root node. Any qubit in the

tree can become the root (e.g., q4 in Figure 6.2 (1) (2), q1 in Figure 6.2 (3)). The central

Rz(θ) gate is applied on the root qubit and the right CNOT tree has the same CNOT

gates in the left tree but in a reversed order. Paulihedral uses this algorithmic flexibility

in synthesis to increase gate cancellation and reduce the mapping overhead.

6.2.2 Quantum Simulation Kernels

The quantum simulation kernel is to (approximately) implement the operator exp(iHt)

where H is the Hamiltonian of the simulated system and t ∈ R. Since directly compiling

exp(iHt) into single- and two-qubit gates is hard, a compiler usually expands H in the

Pauli basis, i.e., H =
∑N

j=1wjPj where wj ∈ R and Pj is a Pauli string. Then exp(iHt)

is approximated using the Trotter formula [208]: exp(iHt) =
[∏N

j=1 exp(iPjwj∆t)
] t

∆t
+

O(t∆t). ∆t is a parameter determined by the simulation accuracy. Figure 6.3 (a) shows

the expansion process. exp(iHt) is first converted to t
∆t

terms of exp(iH∆t). Each

131

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

exp(𝑖𝑤!𝑃!Δ𝑡)

…

1
𝑤"

𝑤#
𝑤!

𝑤$

𝑤%

𝑞& 𝑞"

𝑞$𝑞%

exp(𝑖𝑤!𝐼"𝐼#𝑍!𝑍$𝛾)
exp(𝑖𝑤#𝑍"𝐼#𝑍!𝐼$𝛾)
exp(𝑖𝑤"𝑍"𝑍#𝐼!𝐼$𝛾)
exp(𝑖𝑤%𝐼"𝑍#𝐼!𝑍$𝛾)
exp(𝑖𝑤&𝐼"𝑍#𝑍!𝐼$𝛾)

(b) Ansatz in OAOA graph Max-Cut(a) Expansion of Hamiltonian simulation
exp(𝑖𝑤"𝑃"Δ𝑡)

exp(𝑖𝐻Δ𝑡) exp(𝑖𝐻Δ𝑡)exp(𝑖𝐻Δ𝑡)

exp(𝑖𝐻𝑡)

…

Figure 6.3: Example of quantum simulation kernels

exp(iH∆t) is then expanded to an array of exp(iPjwj∆t) and converted to basic gates.

Quantum simulation kernels also appear in recently developed variational quantum

algorithms, in which the vast majority of the program is an ansatz (parameterized quan-

tum circuit). One popular type of ansatz with good trainability is the application-inspired

ansatz [209] which can be considered as a simulation kernel. Compared with implement-

ing exp(iH∆t), the only difference is that the ∆t is changed to some tunable parameters

associated with different Pauli strings and the overall program structure remains the

same. For example, Figure 6.3 (b) shows the ansatz of QAOA algorithm [6] on a 4-node

graph Max-Cut problem. The graph of the problem has 5 edges of different weights, and

the Hamiltonian of this problem is the weighted sum of the 5 Pauli strings associated

with the 5 edges. The majority of the QAOA ansatz [6] is to implement the 5 operators

on the right (γ is the parameter).

6.3 Foundations of Paulihedral

In this section, we first introduce the opportunities and challenges of compiler opti-

mizations for the simulation kernel. Then we formally introduce a new IR that maintains

the high-level information and the algorithm constraints in Paulihedral.

132

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

no gate cancellation
in naïve synthesis

gate cancellation in
alternative synthesis

(a)

Y

R

Y

R

ZZY ZZI Y

R

Y

R

ZZY ZZIq0

q2
q1

R R

ZXI ZZI

HH
Y

R

YZZY

gate cancellation is blocked by non-commutative circuit(c)

q0

q2
q1

R

ZZZq0

q2
q1

q1 q0 q2(b)
R

ZZZ

no swap required in
alternative synthesis

swap required in
naïve synthesis

R

ZZZ

Figure 6.4: Optimization opportunities and challenges

6.3.1 Opportunities and Challenges

The optimization opportunities used in this chapter come from the properties of

Pauli strings mentioned above. We introduce them by the examples in Figure 6.4. 1)

Gate cancellation: It is possible to have more gate cancellation by selecting a different

synthesis plan for the exp(iPθ). Suppose the naive synthesis is the one in Figure 6.2 (1)

and we have two Pauli strings, ZZY and ZZI. Under the naive synthesis (on the left of

Figure 6.4 (a)) there is no gate cancellation. However, in an alternative synthesis of ZZY ,

we can have two CNOT gates cancelled (on the right of Figure 6.4 (a)). 2) Mapping:

The mapping overhead onto connectivity-constrained architectures can also be reduced.

For example, we wish to map the ZZZ simulation circuit onto a linear architecture with

the current mapping shown in Figure 6.4 (b). Under the naive synthesis we need to insert

one SWAP between q0 and q1. While a better synthesis plan on the right of Figure 6.4

(b) does not require any SWAPs.

133

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Although there is much optimization space for quantum simulation kernels, such op-

timizations are not yet widely deployed in today’s quantum compiler infrastructures due

to the following challenges. 1) Missing high-level information: Once the program is

converted to basic gates, where today’s compilers perform most optimizations, it is hard

to identify and reconstruct the high-level semantics of Pauli string simulation circuit

blocks from an assembly-style gate sequence. 2) Non-semantics-preserving opti-

mization: To leverage some optimization opportunities would require non-semantics-

preserving operations that are usually not allowed in a compiler. For example, con-

sider the program in Figure 6.4 (c). It is known from Figure 6.4 (a) that gates can

be cancelled between ZZY and ZZI but now there is an ZXI simulation circuit be-

tween them. We observe that the order of the simulation terms with respect to dif-

ferent Pauli strings is not specified in the Trotter formula or the variational form re-

quirement. So, from an algorithmic perspective, the compiler may exchange the order

of ZZI and ZXI, making ZZY and ZZI adjacent for gate cancellation. However,

such operation is not semantics preserving from a gate-level perspective because, in gen-

eral, exp(iZZIθ1)exp(iZXIθ2) ̸= exp(iZXIθ2)exp(iZZIθ1). This would be impossible

to leverage without an IR that is able to encode such algorithmic knowledge.

6.3.2 Pauli IR: Syntax and Semantics

To overcome the challenges above, the objective of the new IR is to maintain high-

level algorithmic information and make all transformations semantics-preserving. Our

new IR, namely Pauli IR, realizes them with its syntax and semantics.

Syntax: The syntax is shown in Figure 6.5 and explained as follows. A program

is recursively defined as a list of pauli blocks. Each pauli block is a tuple with two

elements. The first element is a list of weighted Pauli strings (pauli str lists) and the

134

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

⟨program⟩ ::= ⟨pauli block⟩
| ⟨program⟩ ; ⟨pauli block⟩

⟨pauli block⟩ ::= {⟨pauli str list⟩, parameter}
⟨pauli str list⟩ ::= ⟨pauli str, weight⟩

| ⟨pauli str list⟩ ; ⟨pauli str, weight⟩
⟨pauli str⟩ ::= σn−1σn−2 · · ·σ0

σi ::= I | X | Y | Z, (0 ≤ i ≤ n− 1)

parameter, weight ∈ R

Figure 6.5: Formal syntax of an n-qubit Pauli IR program

second element is a real-valued parameter shared by all Pauli strings in this pauli block.

One element in the pauli str list is an n-qubit Pauli string and a real-value weight.

Figure 6.6 shows the Pauli IR code of three example programs. Figure 6.6 (a) simulates

the Hamiltonian of H2 and each pauli block has one pauli str. Figure 6.6 (b)(c) are

variational quantum algorithms so that parameters are labeled by θ and γ. In the UCCSD

program (Figure 6.6 (b)), each pauli block has multiple pauli strs which share the same

θ in the pauli block. In the QAOA program (Figure 6.6 (c)), all pauli strs are in one

pauli block, sharing the parameter γ.

Encoding constraints: One key advantage of the IR syntax is that the algorithmic

constraints in all simulation kernels, as far as we know, can be naturally encoded. In

some simulation kernels (e.g., UCCSD [48], QAOA for constrained optimization [210]),

the algorithm requires that some Pauli strings should always appear together for some

algorithmic purposes like symmetry preserving [211], parameter sharing [6, 48], error

suppression [196], etc. Pauli IR employs a pauli block structure to represent such con-

straints. The compiler can extract such information and all the pauli strs inside one

pauli block are always scheduled together in follow-up optimization passes. In the rest

of this chapter, pauli block is denoted by block for simplicity.

135

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

{(IIIZ, 0.214), Δ𝑡};
{(IIZI, -0.37), Δ𝑡};

......
{(XXXX, 0.042), Δ𝑡};
{(YYXX, 0.042), Δ𝑡};
{(ZIZI, 0.186), Δ𝑡};
{(ZZII, 0.134), Δ𝑡};

{(IIXY, 0.5), (IIYX, -0.5), θ1};
{(XYII, -0.5), (YXII, 0.5), θ2};
{(XYYY, -0.125),, (YXXX, 0.125), θ3};

{(IIIIZZ, w1), (IIIZIZ, w2),
......

(ZIZIII), wN-1), (ZZIIII, wN), 𝛾};(a) H2 simulation

(b) 4-qubit
UCCSD

(c) 6-qubit
QAOA

Figure 6.6: Example Puali IR programs

J∅K = 0

J⟨program⟩; ⟨pauli block⟩K = J⟨program⟩K + J⟨pauli block⟩K
J{⟨pauli str list⟩, parameter}K = parameter × J⟨pauli str list⟩K

J⟨pauli str list⟩; ⟨pauli str, weight⟩K = J⟨pauli str list⟩K
+ J⟨pauli str, weight⟩K

J⟨pauli str, weight⟩K = weight× Jpauli strK
Jσn−1σn−2 · · ·σ0K = σn−1 ⊗ σn−2 ⊗ · · · ⊗ σ0

Figure 6.7: Formal semantics of an n-qubit Pauli IR program

Semantics: The IR’s semantics function, which is denoted by J⟨program⟩K, can be

formally defined by the rules in Figure 6.7. This function is a mapping from the IR

syntax to the set of all Hermitian operators in a 2n-dimensional Hilbert space as our

IR is to represent the Hamiltonian to be simulated. Note that the rules in the second

and the fourth rows are defined based on matrix addition which is always commuta-

tive. As a result, exchanging the order of the pauli blocks in a program or the order of

⟨pauli str, weight⟩s in a pauli block will not change the semantics.

136

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

q0

q2
q1

q6
q5
q4
q3

q7

q0

q2
q1

q6
q5
q4
q3

q7

Y X
X X
X Y
X X

1

X Y
X Y
Z Z
Z Z

2

Y X
Y X
Z Z
X X

3

q0

q2
q1

q6
q5
q4
q3

q7

X X
Y X

4

X Y

Y
X

5

Y
Z

6

X
Z

7

Z Z
X Y
Z Z
Y X

8

X
Y

9

Z Y
Y I
Z Z

10
X X
Y X

4

X Y
X
Y

9

X
Z

7

Y
Z

6
Y
X

5

Y X
X X
X Y
X X

1

Z Z
Y X
Z Z
X Y

8

X Y
X Y
Z Z
Z Z

2

Z Y
Y I
Z Z

10

q0

q2
q1

q6
q5
q4
q3

q7

X Y
X Y
Y Y
Z Z

3
Y X
X X
X Y
X X

1

X Y
X Y
Z Z
Z Z

2 X X
Y X

4

X Y

Z Y
Y I
Z Z

10

X
Y

9

X
Z

7

Y
Z

6
Y
X

5 X Y
X Y
Y Y
Z Z

3
X Y
X Y
Z Z
Z Z

2

X
Y

9 X
Z

7 Y
Z

6

X X
Y X 4

X Y

Z Y
Y I
Z Z

10

Y
X

5

(a) 10 example blocks (b) gate-count oriented scheduling (lexicographic order)

(c) block sorting by active length (d) depth-oriented scheduling

Y X
Y X
Z Z
X X

3

Z Z
Y X
Z Z
X Y

8

Z Z
Y X
Z Z
X Y

8

Y X
X X
X Y
X X

1

Figure 6.8: Example of block scheduling optimizations

6.4 Block-Wise Instruction Scheduling Passes

The first step in Paulihedral is to schedule the blocks and the instructions within

each block. Intuitively for two adjacent Pauli strings, more gates can be cancelled if

they share the same non-identity operators on more qubits. Trying to maximize the

number of shared operators between consecutive strings would be desirable. Also, it is

possible to execute multiple blocks which have non-identity operators on disjoint sets of

qubits in parallel and reduce the final circuit depth. In this section, we present two block

scheduling algorithms for two optimization objectives, reducing the total gate count or

the circuit depth. We explain our block scheduling optimizations using the example in

Figure 6.8. Suppose we will schedule 10 blocks on 8 qubits (Figure 6.8 (a)). In these

blocks, each column is a Pauli string. The identity operators are omitted since they do

not result in any circuit.

6.4.1 Gate-Count-Oriented Scheduling

Lexicographic ordering of Pauli strings has been shown to be effective at enabling gate

cancellation between them [212, 196]. Here we adapt this principle to the multi-string-

per-block case for our gate-count-oriented scheduling algorithm. In the lexicographic

137

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Algorithm 8: Depth-oriented scheduling

Input: List of Pauli blocks.
Output: Pauli Layers L.

1 Sort Pauli blocks by active-length-decreasing order, then sort blocks of the same
active length by lexicographic order;

2 R = the set of all Pauli blocks remaining; L = ∅;
3 Initialize the first layer;
4 while R is not empty do
5 next block = arg maxblock∈R Overlap(block, last Pauli layer);
6 pauli layer = [next block]; R.remove(next block);
7 while total depth of the small padding blocks ¡ the depth of next block do
8 find small Pauli block not overlapped with next block;
9 Append these blocks to pauli layer;

10 Remove these blocks from R;

11 end
12 L.append(pauli layer);

13 end

order, the Pauli strings are scheduled in the alphabetical order. In Figure 6.8, we assume

X < Y < Z < I and use little-endian to lexicographically order from q7 down to q0.

When a block has multiple strings, we first apply the lexicographic order on all strings

in this block and then use the first string to represent this block when compared with

other blocks. The first Pauli string can be representative because the strings in one block

are usually mutually commutative in practical algorithmic constraints [48, 6, 196]. Two

strings in a mutually commutative set can share the same operators on many qubits and

all strings in one block are similar. Figure 6.8 (b) shows the result of gate-count-oriented

scheduling.

6.4.2 Depth-Oriented Scheduling

The blocks can also be scheduled for reducing circuit depth. For example, in Fig-

ure 6.8, q0 to q5 are idle when executing block 9, 7, and 6. We may execute block 1

with them in parallel so that the overall circuit depth can be reduced. We propose a new

138

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

depth-oriented block scheduling algorithm, whose pseudocode is in Algorithm 8. For the

example in Figure 6.8, we first sort all blocks by the active length of the Pauli strings of

the blocks in a decreasing order. The active length of a block is defined by the number of

qubits which have a non-identity operator in at least one Pauli string of this block. This

is an over-approximated estimation on how a block will occupy the qubits. The blocks

of the same active length are ordered by the lexicographic order above. Figure 6.8 (c)

shows the sorting result. Block 3, 1, 8, 2 have the largest active length of 4 so they are

at the beginning. Block 9, 7, 6, 5 have the smallest active length of 2 and they are at

the end.

Then we begin to schedule all blocks and put the blocks in different layers to increase

the parallelism. For each layer, we first schedule a large active length block. Then we

search for small active length blocks that can be executed in parallel with the large block.

For the example in Figure 6.8 (d), we initialize the first layer by selecting the first block

after the sorting. We place the block 3 at the beginning. Then we search for small

blocks that have no overlapped active qubits with the large block and can be executed

in parallel. There are no such small blocks for block 3 so we continue by start another

layer with block 1. In this layer, block 4, 9, 7, 6 can be placed in parallel with block 1.

We iterate over the sorted block and find the first few blocks that can padded in this

layer. In this example, we select block 4 and 9. We also estimate the depth of these

small blocks so that total depth of these blocks will not exceed the depth of the original

large block in this layer. We repeat this padding process until we cannot find any new

blocks that can be added in this layer. We then continue to the next layer and start with

block 2 because its first Pauli string has the most overlapped Pauli operators with the

Pauli strings at the end of the previous layer. We iterate until all blocks are scheduled.

Figure 6.8 (d) shows the final result of our depth-oriented scheduling and we can expect

that the circuit depth can be reduced even if we do not convert the program to the gates.

139

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

This is another benefit of Pauli IR because the compiler can operate on a fairly compact

description of the program. Once the program is lowered to gates, then the size blows

up and parallelizing gates becomes much more expensive.

6.5 Block-Wise Optimization Passes

In this section, we introduce two optimization passes that can exploit the gate can-

cellation potential created by our scheduling passes in the last section, and convert the

Pauli IR programs to gate sequences with different optimization objectives onto the fault-

tolerant quantum computer (FT) backend and the near-term superconducting quantum

computer (SC) backend.

6.5.1 On the Fault-Tolerant Backend

Our strategy for the FT backend is to adaptively find the synthesis plan that can

maximize gate cancellation since the mapping overhead can usually be neglected after

applying quantum error correction [213]. The pseudocode is shown in Algorithm 9, and

we explain it with Figure 6.9. To capture the major gate cancellation opportunities, we

scan over all layered blocks and try to select consecutive layer pairs that share the most

Pauli operators. There should be significant operator overlap between consecutive layers

since this was considered in our scheduling. The blocks on the left of Figure 6.9 are in

five layers. Layer 1, 2, 3, 5 have one block in each and layer 4 has two blocks. We will

pair the layer 3 and 4 together first since they share the same Pauli operators on 6 qubits.

Then the first two layers are paired since they share Pauli operators on only 2 qubits.

The last layer is left alone.

We first realize gate cancellation between the paired layers. For all layer pairs, we

synthesize the Pauli strings at the end of the first layer and the Pauli strings at the be-

140

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Algorithm 9: Optimization for FT backend

Input: List of Pauli layers pls
Output: A quantum circuit of basic gates

1 pl paired = []; // paired Pauli layer list

2 while neighboring layers exist in pls do
3 i = argmaxi∈IndexSet(pls)Overlap(pli, pli+1) ;

4 pls.remove(pli); pls.remove(pli+1);
5 pl paired.append((pli, pli+1));

6 end
7 for (pl1, pl2) in pl paired do
8 ps list1 = last Pauli string of pl1;
9 ps list2 = first Pauli string of pl2;

10 analyze string overlap then do synthesis on (ps list1, ps list2);
11 pl1.remove(ps list1); pl2.remove(ps list2);
12 for pb in (pl1 + pl2) do
13 most overlap sort(pb); // find overlap at Pauli-string-level

14 analyze string overlap then do synthesis on the sorted strings in pb;

15 end

16 end
17 for pb in pls do
18 most overlap sort(pb); analyze string overlap then do synthesis on the sorted

strings in pb;

19 end

ginning the second layer in the pair. For the layer 3 (block 3) and the layer 4 (block 4 and

5), we need to handle the IY XXYXXI in the layer 3 and (IIIIY XXX,Y Y XXIIII)

in the layer 4. There are two sets of overlapped operators, Y XX on qubit 3-1 and Y XX

on qubit 6-4. For each set, most gates can be directly cancelled, and we can select one

qubit from each set and connect them with CNOT gates. The synthesis result for these

two layers with gates cancelled is shown on the right of Figure 6.9. We repeat this process

to optimize the synthesis of Pauli strings at the junction of two paired layers. Here we

will synthesize the last string in layer 1 and the first string in layer 2.

We then realize the gate cancellation between strings inside a block. For those Pauli

strings in the paired layer but not synthesized (one block with multiple strings), we

141

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

q0

q2
q1

q6
q5
q4
q3

q7

Z I Z I
Z Z Z Z
Z Z Z Z
Y Y X X
X X Y Y
Z Z Z Z

1
Y Y
Z Y
X X
Z Z
Z Y
Z I

2 X
X
Y
X
X
Y

3 X
X
X
Y

4

X
X
Y
Y

5 X
X

6

H
H
Y
H
H
Y R

H

R

Y R

H
H
H
Y
H
H
Y
Y

3 4

5

layer pair

gate cancellation between layersstring pair

Figure 6.9: Example of compilation onto FT backend

employ a similar strategy at the string level for all Pauli strings inside one block. For

each block, we search for string pairs that share the same Pauli operators on the most

qubits and then synthesize these pairs first. In the block 1 in Figure 6.9, the first three

Pauli strings are not yet synthesized. We will pair and synthesize the first two Pauli

strings since they share 5 Pauli operators and a lot of gates can be cancelled. For the

individual Pauli strings left, they are not paired with other strings (e.g., the third string

in block 1). We check if it shares more Pauli operators with its left neighbor string or

right neighbor string. Then we select the one with more gate cancellation and synthesize

the Pauli string accordingly. For the blocks that are not paired with other blocks at

the beginning of this algorithm (e.g., block 6), we treat them as unsynthesized Pauli

strings and apply the same strategy, pairing and synthesizing the strings with high gate

cancellation potential first then dealing with individual strings. Finally, all Pauli strings

are compiled and we obtain a gate sequence of the input Pauli IR program. The final

gate count is substantially reduced because the gate cancellation potential created by

our block scheduling passes is maximally exploited through the adaptive synthesis plan

in our block-wise optimization pass.

142

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

6.5.2 On the Near-Term Superconducting Backend

The compilation is more complicated for the SC backend because the SWAP gates are

necessary to change the qubit mapping due to the qubit connectivity constraints. The

gates are not uniform as they have different error rates on different qubits. We assume

that the device calibration information (qubit coupling graph and the gate error rates

on each qubit and qubit pair) is provided by the vendor. The major objective on the SC

backend is to reduce the mapping overhead.

Our key idea is to find a tree embedding in the coupling map that can support

the Pauli strings in the current layer and also minimize the mapping transition overhead

between layers. Algorithm 10 shows the pseudocode, and we explain it using the example

in Figure 6.10. For the initial qubit layout, we map all qubits to the most connected

subgraph in the device coupling map. Suppose the coupling map and the current mapping

of Figure 6.10 (b). We then begin to generate the simulation circuits and insert SWAPs

for the blocks that appear in the critical path. In our block scheduling, we have already

placed the blocks in different layers. In each layer, the largest block (involving the most

qubits) is most likely on the critical path. Our optimization pass will first process the

largest block in each layer, followed by the small blocks remaining. The program in

Figure 6.10 (a) has two layers in which block 3 and 4 are the largest blocks.

For each block, we first select a root qubit. We define that the core qubit list of a

block contains the qubits which have a non-identity operator on all Pauli strings in the

block (e.g., q2-5 for block 3, q(2,4,6) for block 4). For block 3, since it is the first layer,

we only need to consider itself. For q2-5 in its core list, they are already in a connected

subgraph (Figure 6.10 (b)). We select any one of them (e.g., q2) as the root. And we

only need to attach q6 to this subgraph by connecting it to any node of this graph.

Suppose we swap q6 with q0 and now all active qubits in this block are connected in a

143

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

q0

q2
q1

q6
q5
q4
q3

q7

X
Z

2
find a tree embedding

in the coupling map
X X
Z Z
Y X
X Y
X I

3 X X
I Y
X X
Y I
X X

4

X

X

1

q3 q2 q5 q0

q7 q4 q1 q6

q3

q2 q5

q6q4

(a) example program (b) hardware coupling map

CNOT

(c) CNOT on embedded tree (d) embedded tree transformation

SWAP

q3

q2 q5

q6q4

connected
components core qubits

connected
after SWAP

Figure 6.10: Example of compilation onto SC backend

subgraph. Active qubits are those qubits that have a non-identity operator in at least

one string in this block. We can naturally generate an embedded tree from the coupling

map (Figure 6.10 (c)).

Next we can synthesize the strings in block 3. The key idea is to naturally implement

the CNOT tree in the Pauli circuits on the embedded tree so that we do not need to

insert SWAPs for all individual CNOTs. We generate CNOT gates and single-qubit gates

from the outermost qubits to the root for all the Pauli strings in the current block. If a

qubit is active in the current Pauli string, we will check if its parent node is also active

in the current Pauli string. If so, we insert a CNOT between the qubit and its parent.

Otherwise, we swap it with its parent so that the qubit can get closer to the root and

will be connected by CNOT later. In Figure 6.10 (c), the generated CNOTs are labeled

by red arrows. After we determine the left CNOT tree, the right CNOT tree can be

generated by reversing the order of CNOTs in the left tree.

After we process block 3, we will compile block 4, the next block in the critical path.

144

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

As our block scheduling passes tend to maximize the overlap between two consecutive

layers, the core lists of two consecutive layers are similar. For example, q(2,4,6) are in the

core list of block 4 and they all appear in the core list of block 3. We evaluate all these

qubits to select the root qubit with the largest connected component (within the core

list) in the current mapping (Figure 6.10 (c)) to minimize the transition overhead. For

q(2,4,6), we will select q2 or q4 since they are in a size-2 connected component while q6 is

in a size-1 connected component. Similarly, we then move all other active qubits to the

tree through the path with the smallest error rate estimated by the device information.

Here we select q2 as the root and then swap q6 and q5 to transit from block 3 to 4 with

only 1 SWAP (Figure 6.10 (d)). After that the core qubits in block 4 are connected and

we can begin synthesizing all strings in block 4.

The procedure above is to process the largest blocks in each layer. For other small

blocks in the same layer, we follow a similar strategy and attempt to construct the trees

for active qubits in those small blocks. If the trees of the small blocks do not affect the

tree construction of the large block, we just process the small blocks in parallel with the

large block since they will not affect each other. This will create parallelism and reduce

the depth of the generated circuit. For example, block 2 and 3 can be processed in

parallel because q0 and q1 are connected after swapping q6 with q0. However, if the trees

of the small blocks affect the processing of the large block, we will put it in remain layer

and process them at the end. For example, block 1 will be in the remain layer because

connecting q0 and q7 will affect block 3.

After we process all the large blocks in the critical path and those small blocks that

can executed in parallel, we will compile the blocks in the remain layer. The order

of processing these blocks is determined by whether the active qubits are close in the

current mapping. We compute the cumulative distance between active qubits in a block

and then compile the block with the smallest cumulative distance and update the qubit

145

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

mapping. This process is repeated until all the blocks are processed.

6.6 Evaluation

In this section, we evaluate Paulihedral by comparing with state-of-the-art baselines,

analyze the effects of individual passes, and perform real system study.

6.6.1 Experiment Setup

Backend: The optimizations in this chapter target two different backends, the fault-

tolerant backend (FT) and near-term superconducting backend (SC). We will cover both

of them. We select IBM’s latest 65-qubit Manhattan architecture [157] as the SC back-

end. For real system study, we use IBM’s 16-qubit Melbourne chip, the largest publicly

available one.

Metric: We use the CNOT/single-qubit gate count, and the circuit depth in the

post-compilation program to evaluate Paulihedral. For the SC backend, the CNOT gate

count is more important due to its higher error rate and latency. The depth is also

important due to short qubit coherence times. For the FT backend, T gate is usually

more expensive but for the simulation kernels, the ratio between the H, Y, CNOT gate

count and the T gate count grows linearly as the number of qubits increases. Because

a Pauli string of length n will have O(n) H, Y, and CNOT gates but the number of Rz

gates (the only source of T gates) is always one. It has also been shown that CNOT count

is a significant cost in fault-tolerant algorithms and should not be neglected compared

to T gates [214]. Hence, we estimate the performance with total gate count and circuit

depth, following convention in previous work [197, 195, 198, 185].

Benchmark: We select 31 benchmarks of different sizes and various applications.

For the SC backend, we select VQE UCCSD ansatzes [48] of six sizes, and the QAOA

146

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

programs [6] for graph max-cut on regular (REG) graphs of degrees 4, 8, 12, and random

(Rand) graphs of edge probability 0.1, 0.3, 0.5, as well as traveling salesman problem

(TSP) of different sizes. These benchmarks are generated by Qiskit [159]. For the FT

backend, we first generate the Hamiltonians of five molecules using PySCF [165] (N2,

H2S, MgO, CO2, NaCl). We also prepare the Hamiltonians of three Ising models and

three Heisenberg models, both of which are widely used in condensed matter physics, of

different dimensions. We finally generate random Hamiltonians (Rand) of various sizes

(30 to 80 qubits) for a more comprehensive evaluation. For a Hamiltonian of n qubits,

we prepare 5n2 Pauli strings. In each Pauli string, we first randomly select one integer m

between 1 and n. Then we randomly select m qubits and assign random Pauli operators

to them. The rest n − m qubits will be assigned with the identity. Table 6.1 shows

the details of these benchmarks. Note that ‘Pauli #’ represents the number of Pauli

strings. We include the CNOT and single-qubit gate counts when naively converting

these benchmarks into gates without any optimization/transformations, and neglecting

mapping overhead.

Implementation: We prototype Paulihedral in Python 3.8 (denoted by ‘PH’). The

entire compilation flow has two stages. The first stage is the quantum simulation pro-

gram optimizations. The baselines include the Quantinuum’s t|ket⟩ compiler [161] which

employs the simultaneous diagonalization [198, 185, 186], a popular technique for opti-

mizing quantum simulation programs (‘TK’), and the QAOA compiler [200, 206, 207],

an algorithm-specific compiler for unconstrained optimization QAOA on graphs (‘QAOA

compiler’). The second stage is the generic compilation and we have two industry generic

compilers, the IBM’s Qiskit [159] at the highest optimization level 3 (‘Qiskit L3’) and the

Quantinuum’s t|ket⟩ generic compiler [161] at the highest optimization level 2 (‘tket O2’),

The experiments are performed on a server with a 28-core Intel Xeon Platinum 8280 CPU

and 1TB RAM. Note that due to the limited representation ability of t|ket⟩, the algorith-

147

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Table 6.1: Benchmark information
Backend Type Name Qubit # Pauli # CNOT # Single #

SC

UCCSD

UCCSD-8 8 144 1134 1240
UCCSD-12 12 1476 16192 15588
UCCSD-16 16 4200 56558 47044
UCCSD-20 20 8316 132326 109248
UCCSD-24 24 9300 146312 115584
UCCSD-28 28 20724 353984 270196

QAOA

REG-20-4 20 40 80 40
REG-20-8 20 80 160 80
REG-20-12 20 120 240 120
Rand-20-0.1 20 18 37 18
Rand-20-0.3 20 56 113 56
Rand-20-0.5 20 93 187 93

TSP-4 16 112 192 112
TSP-5 25 225 400 225

FT

Ising
Ising-1D 30 29 58 29
Ising-2D 30 49 98 29
Ising-3D 30 59 118 59

Heisenberg
Heisen-1D 30 87 174 319
Heisen-2D 30 147 294 539
Heisen-3D 30 177 354 649

Molecule

N2 20 2951 39594 32151
H2S 22 4582 66026 52686
MgO 28 24239 388258 310519
CO2 30 16154 252402 202282
NaCl 36 67667 1249768 945935

Random

Rand-30 30 4500 132939 99123
Rand-40 40 8000 316039 229240
Rand-50 50 12500 618763 441532
Rand-60 60 18000 1068153 754071
Rand-70 70 24500 1699771 1190101
Rand-80 80 32000 2540640 1768117

mic constraints are hard to be encoded in ‘TK’. To run our experiments and perform a

fair comparison at our best, we relax those constraints in ‘TK’ and this relaxation allows

a larger optimization space.

6.6.2 Comparing with t|ket⟩ and the QAOA Compiler

Table 6.2 shows the compilation time and results of the four configurations of all

benchmarks on the two backends. Note that ‘>72 hrs’ indicates that the ‘tket O2’ takes

148

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Table 6.2: Compilation time and results compared with t|ket⟩ [161]
Time(s) PH+Qiskit L3 Time(s) PH+tket O2 Time(s) TK+Qiksit L3 Time(s) TK+tket O2

PH Qiskit CNOT Single Total Depth tket CNOT Single Total Depth TK Qiskit CNOT Single Total Depth tket CNOT Single Total Depth
UCCSD-8 0 9 1165 667 1832 1404 16 1282 538 1820 1415 0 17 2247 1188 3435 1975 1 1775 346 2121 1527
UCCSD-12 1 120 17322 8607 25929 17808 485 20794 6816 27610 19439 0 331 35130 16113 51243 28910 31 26713 4007 30720 21747
UCCSD-16 3 471 58441 27607 86048 55566 7300 77274 19157 96431 65749 2 1525 140932 55678 196610 107177 179 106868 11837 118705 87064
UCCSD-20 8 827 106464 54951 161415 97168 11033 128195 37972 166167 107750 4 3171 315911 123823 439734 235862 655 223106 23736 246842 179618
UCCSD-24 9 1235 126013 68258 194271 113293 33155 187653 40357 228010 156431 6 4015 383444 145586 529030 285638 944 260282 29101 289383 213557
UCCSD-28 25 2759 280514 145672 426186 258326 69940 473093 92118 565211 386285 17 8933 870722 326600 1197322 644877 3313 595631 58782 654413 482484
REG-20-4 0 1 329 108 437 161 2 311 43 354 128 0 0 1594 523 2117 762 3 1441 40 1481 710
REG-20-8 0 2 519 266 785 290 7 574 84 658 267 0 0 1985 663 2648 894 3 1726 80 1806 816
REG-20-12 0 2 694 393 1087 396 12 842 125 967 404 0 0 1893 705 2598 765 3 1675 120 1795 775
Rand-20-0.1 0 1 188 46 234 97 1 167 20 187 67 0 0 577 184 761 255 0 448 18 466 214
Rand-20-0.3 0 1 414 181 595 236 5 439 60 499 202 0 0 1539 502 2041 688 2 1355 56 1412 644
Rand-20-0.5 0 2 571 313 884 335 9 674 98 772 333 0 0 1812 622 2434 735 3 1614 93 1707 746

TSP-4 0 2 500 381 881 257 8 583 112 695 283 0 0 1006 556 1562 446 2 1207 112 1319 530
TSP-5 0 3 1093 683 1776 636 24 1457 225 1682 534 0 0 2886 1250 4136 1030 9 3057 225 3282 1249

N2 6 255 16632 11223 27855 17486 37 16002 10861 26863 17682 2 116 19762 9785 29547 21087 15 18928 9702 28630 20446
H2S 16 450 25726 17580 43306 27676 94 24813 16836 41649 28051 3 209 35248 17453 52701 36450 47 33968 17075 51043 35329
MgO 615 2489 116973 87654 204627 126259 3291 113575 78585 192160 127619 20 1840 198428 92012 290440 203064 3818 192499 85694 278193 194905
CO2 293 1656 96829 65243 162072 93679 2663 93391 61386 154777 95302 15 1182 126634 58368 185002 129697 1699 121768 56277 178045 124557
NaCl 7377 7492 316456 247630 564086 338763 28920 307038 223261 530299 342775 63 7262 626692 267424 894116 626665 87838 605201 247500 852701 599322

Ising-1D 0 0 58 29 87 6 0 58 29 87 6 0 2 508 29 537 450 0 508 29 537 450
Ising-2D 0 0 98 49 147 18 0 98 49 147 18 0 1 306 49 355 219 0 306 49 355 219
Ising-3D 0 0 118 59 177 18 0 118 59 177 18 0 1 290 59 349 188 0 290 59 349 188

Heisen-1D 0 1 87 204 291 13 0 87 190 277 13 0 1 172 176 348 100 0 169 200 369 126
Heisen-2D 0 1 216 315 531 43 0 212 284 496 47 0 1 293 239 532 89 0 293 294 587 98
Heisen-3D 0 2 305 366 671 65 0 295 335 630 67 0 2 365 271 636 118 0 364 328 692 125
Rand-30 13 1386 94222 47315 141537 70787 2329 89152 50490 139642 78429 5 779 114043 55665 169708 87196 141 108943 62158 171101 97897
Rand-40 42 4253 233266 108988 342254 166989 175842 223946 119225 343171 189856 11 1775 270928 125264 396192 199567 961 259985 142805 402790 227284
Rand-50 104 9144 470240 211605 681845 329388 55853 455607 234635 690242 379553 24 3575 533631 239379 773010 388722 5220 514235 276401 790636 447315
Rand-60 203 14007 834418 364816 1199234 575973 >72hrs N.A. 44 5930 926982 404279 1331261 666338 22096 895895 471005 1366900 768714
Rand-70 393 27849 1345439 576378 1921817 924730 >72hrs N.A. 74 9672 1476952 636284 2113236 1050970 138031 1430214 746249 2176463 1220344
Rand-80 709 39322 2033283 856105 2889388 1386577 >72hrs N.A. 116 17092 2205935 938304 3144239 1555808 285101 2138232 1104321 3242553 1811440

over 72 hours and was shut down in the middle. In summary, ‘PH’ outperforms ‘TK’

with substantial gate count and circuit depth reduction while only introducing ∼ 5%

additional time (‘PH’ vs ‘Qiskit/tket’) in the entire compilation flow.

On the SC backend, ‘PH’ can reduce the CNOT, single-qubit, total gate count, and

circuit depth by 66.2% (43.3%), 53.4% (-22.7%), 62.6% (41.2%), and 60.8% (44.3%),

respectively on average, compared with ‘TK’ using ‘Qiskit L3’ (‘tket O2’) generic com-

pilation. ‘PH’ can achieve such significant improvement because ‘TK’ does not support

mapping-aware optimization for general Pauli strings and can only do a inefficient generic

qubit mapping. The single-qubit gate count increases when using ‘tket O2’ but this does

not affect the overall improvement since the CNOT gates have much higher error rates

on the SC backend and latency and the total single-qubit gate count is still relatively

low.

On the FT backend, ‘PH’ can reduce the CNOT, single-qubit, total gate count,

and circuit depth by 38.7% (44.5%), 18.6% (3.0%), 32.8% (34.4%), and 61.7% (68.0%),

respectively on average, compared with ‘TK’ using ‘Qiskit L3’ (‘tket O2’). The cir-

cuit depth reduction is significant due to the depth-oriented scheduling in ‘PH’. Our

149

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Table 6.3: Comparing with QAOA compiler [200]
PH+Qiskit L3 QAOA Compiler+Qiskit L3

Benchmark CNOT Single Total Depth Time(s) CNOT Single Total Depth Time(s)
REG-20-4 329 108 437 161 0.14 394 101 495 171 6.32
REG-20-8 519 266 785 290 0.23 727 141 868 297 10.27
REG-20-12 694 393 1087 396 0.29 1020 181 1201 399 14.55
Rand-20-0.1 188 46 234 97 0.08 212 80 292 111 4.52
Rand-20-0.3 414 181 595 236 0.1 546 118 664 230 7.74
Rand-20-0.5 571 313 884 335 0.12 842 155 997 334 12.3

block-wise optimization is also much effective compared with ‘TK’ strategy. The details

of ‘TK’ are not public and what we can infer, at our best, from their limited docu-

ments [161, 198, 185, 186] is that the simultaneous diagonalization may introduce too

much overhead. For example, the ‘Ising-1D’ program has even more gates after ‘TK’.

One possible reason is that all Pauli strings in Ising-1D are mutually commutative and

it takes many additional gates to simultaneously diagonalize all these Pauli strings.

Table 6.3 shows the compilation results of ‘PH’ and the QAOA compiler [200] on

the 6 MaxCut problems. We ran the QAOA compiler with 20 random seeds for each

program and collected the averaged compilation results. Comparing with the QAOA

compiler, Paulihedral can achieve 24.6%, 12.2%, and 3.2% reduction in CNOT count,

total gate count, and circuit depth, respectively on average, using only 1.7% compilation

time. The overhead is about 40% in single-qubit gate count, but in QAOA the CNOT

count is usually over 3− 4× higher than single-qubit gate count and CNOT error rate is

usually 10× higher on the SC backend. Therefore, ‘PH’ significantly outperforms QAOA

compiler, even though it is more general purpose and not tailored to a single algorithm.

This is because ‘PH’ employs a block-wise optimization for searching SWAPs and the

search scope is much larger than that of the QAOA compiler’s greedy search.

150

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

6.6.3 Pass Option Comparison

Now we study the effect of different pass options in Paulihedral. We first compare

the two block scheduling passes.

DO vs GCO scheduling: On the left of Table 6.4 we show the difference between

the depth-oriented (DO) scheduling and the gate-count-oriented (GCO) scheduling (in

Section 6.4). Overall, across the 17 benchmarks on the FT backend, ‘DO’ can yield

low-depth circuits while ‘GCO’ can reduce the gate count more. The circuit depth of

DO is 46.7% (geomean) compared with that of GCO and the gate count overhead is

5.9%, 0.64%, and 3.3% for CNOT, single-qubit, and total gate count, respectively. For

benchmarks on the SC backend, the effect of the block scheduling is largely amortized

by mapping overhead reduction since the tested Manhattan architecture has very sparse

qubit connection. For the UCCSD benchmarks, ‘DO’ and ‘GCO’ share similar overall

performance. For the QAOA benchmarks, there is no difference between ‘DO’ and ‘GCO’

since the entire kernel has only one block.

BC improvement: Our block-wise compilation (BC) passes (in Section 6.5) can

significantly reduce the gate count and circuit depth. On the right of Table 6.4 we

show the comparison between using BC against a naive synthesis and Qiskit L3. For the

17 benchmarks on the FT backend, BC reduces the circuit depth, the CNOT, single-

qubit, and total gate counts by 15.5%, 6.0%, 3.1%, and 5.0%, respectively. On the

SC backend, the BC pass is even more effective since the large mapping overhead can

be greatly reduced. For the UCCSD (QAOA) benchmarks, BC can reduce the CNOT,

single-qubit, total gate count, and circuit depth by 60% (33%), 45% (8%), 56% (26%),

and 53% (−14%), respectively on average. The circuit depth of QAOA benchmarks is

increased since the BC focus more on SWAP reduction, leading to fewer gates but deeper

circuits because the effect of SWAP reduction is relatively limited in the small-size QAOA

151

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Table 6.4: Pass option effect comparison
DO vs GCO Block-Wise Compilation improvement

CNOT Single Total Depth CNOT Single Total Depth
UCCSD-8 -4.43% -1.19% -3.27% 0.72% -51.07% -51.14% -51.09% -37.93%
UCCSD-12 6.32% -8.41% 0.93% 2.37% -57.38% -55.35% -56.73% -50.06%
UCCSD-16 -2.62% -6.32% -3.84% -1.94% -59.61% -45.26% -55.90% -51.89%
UCCSD-20 -3.81% -8.55% -5.48% -6.49% -72.40% -56.43% -68.47% -67.66%
UCCSD-24 -5.25% 3.90% -2.23% -10.60% -68.72% -49.02% -63.80% -63.38%
UCCSD-28 -1.19% 5.00% 0.84% -2.34% -73.97% -56.31% -69.80% -67.22%
REG-20-4 N.A. -21.85% -6.90% -18.62% 27.78%
REG-20-8 N.A. -34.63% 1.14% -25.73% 18.37%
REG-20-12 N.A. -36.62% -12.86% -29.69% 13.79%
Rand-20-0.1 N.A. -11.74% -16.36% -12.69% 36.62%
Rand-20-0.3 N.A. -28.99% -2.16% -22.53% 26.20%
Rand-20-0.5 N.A. -38.60% -4.28% -29.67% 10.20%

TSP-4 N.A. -43.12% -12.81% -33.05% -19.18%
TSP-5 N.A. -47.53% -7.58% -37.07% -2.30%

N2 13.30% 3.13% 8.97% -7.59% -4.54% -2.93% -3.90% -6.77%
H2S 17.43% 6.24% 12.61% -3.09% -6.32% -2.94% -4.98% -8.25%
MgO 31.16% 8.51% 20.40% -0.48% -6.89% -8.17% -7.44% -9.45%
CO2 26.08% 6.43% 17.36% -8.84% -5.13% -1.34% -3.64% -6.04%
NaCl 25.03% 6.55% 16.18% -5.46% -12.18% -8.48% -10.60% -13.62%

Ising-1D 0.00% 0.00% 0.00% -93.10% 0.00% 0.00% 0.00% 0.00%
Ising-2D 0.00% 0.00% 0.00% -68.42% 0.00% 0.00% 0.00% 0.00%
Ising-3D 0.00% 0.00% 0.00% -71.43% 0.00% 0.00% 0.00% 0.00%

Heisen-1D 0.00% 0.00% 0.00% -92.57% 0.00% 7.37% 5.05% 0.00%
Heisen-2D -19.10% -12.01% -15.04% -82.30% 0.00% 3.28% 1.92% 0.00%
Heisen-3D -8.41% -13.68% -11.36% -80.83% 0.00% 1.95% 1.05% 0.00%
Rand-30 7.25% 6.95% 7.15% -9.76% -8.74% -3.53% -7.06% -29.45%
Rand-40 6.11% 5.55% 5.93% -9.46% -9.68% -2.99% -7.65% -31.80%
Rand-50 4.83% 4.98% 4.88% -9.21% -10.48% -2.19% -8.06% -33.15%
Rand-60 4.10% 4.36% 4.18% -9.30% -10.75% -1.90% -8.23% -33.44%
Rand-70 3.60% 3.79% 3.66% -8.80% -11.07% -1.63% -8.44% -33.76%
Rand-80 3.27% 3.34% 3.29% -8.70% -11.19% -1.54% -8.54% -34.17%

benchmarks.

Pauli string pattern effects: It can be observed that the effect of the passes vary

on different benchmarks. The reason is that the Pauli strings in the benchmarks have

different patterns which can be classified into two categories based on the numbers of

non-identity operators in each Pauli string. As mentioned in Section 6.2, a Pauli string

with more non-identity operators on more qubits will in general be converted to a larger

circuit block involving more qubits and gates. The first category includes the molecule

152

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Hamiltonians, the random Hamiltonians, and the UCCSD. In these Hamiltonians, many

Pauli strings have non-identity operators on various numbers of qubits (up to all qubits).

The second category includes the Ising, Heisenberg, and the selected QAOA benchmarks,

of which the Hamiltonians only have Pauli strings with non-identity operators on at most

two qubits. Such a difference in the operator distribution affects the compilation results.

On the FT backend, benchmarks in the first category (molecule and random Hamilto-

nians) benefit more from the BC optimizations since Pauli strings with more non-identity

operators have larger potential in gate cancellation and depth reduction. Benchmarks

in the second category (Ising and Heisenberg) cannot benefit from BC since those Pauli

strings with only two non-identity operators can only be synthesized in a single way and

there is no space BC can explore to further reduce the gate count and circuit depth. How-

ever, these benchmarks can benefit a lot from DO. GCO turns out to be inefficient in both

gate count and circuit depth for them because GCO cannot create gate count reduction

while DO can create additional single-qubit gate reduction opportunities between con-

secutive layers by putting many small-size blocks in one layer. On these benchmarks, DO

completely outperforms GCO with on average 84.2% circuit depth reduction and 7.5%

total gate count reduction. Similarly on the SC backend, the BC improvement on the

UCCSD benchmarks (first category) is also more significant compared with the QAOA

benchmarks (second category) because more gate can be cancelled and more SWAPs in

the mapping overhead can be eliminated when the tree sizes are large for Pauli strings

with more non-identity operators.

6.6.4 Pass Benefit Breakdown

To show the separate effect of scheduling passes and optimization passes, we prepare

breakdown experiments on four benchmarks (two random Hamiltonian RAND-40 and

153

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Table 6.5: Benefit breakdown of the block ordering and block-wise optimization passes
Benchmark Metric Baseline order Baseline order + BC DO order DO order + BC

RAND-40

CNOT 313011 279165 (-10.8%) 259477 (-17.1%) 234264 (-25.1%)
Single 157853 149234 (-5.5%) 143686 (-9.0%) 131302 (-16.8%)
Depth 275175 188267 (-31.6%) 245675 (-10.7%) 168003 (-38.9%)

RAND-50

CNOT 613714 548499 (-10.6%) 529220 (-13.8%) 474999 (-22.6%)
Single 300955 283647 (-5.8%) 279465 (-7.1%) 255104 (-15.2%)
Depth 529844 360004 (-32.1%) 490793 (-7.4%) 329169 (-37.9%)

N2

CNOT 36484 23371 (-35.9%) 17423 (-52.2%) 15981 (-56.2%)
Single 20124 14713 (-26.9%) 11557 (-42.6%) 11366 (-43.5%)
Depth 42525 25216 (-40.7%) 18749 (-56.0%) 16788 (-60.5%)

H2S

CNOT 61127 38213 (-37.5%) 27752 (-54.6%) 24792 (-59.4%)
Single 32885 24173 (-26.5%) 18154 (-44.8%) 17307 (-47.4%)
Depth 70618 40985 (-42.0%) 30430 (-56.9%) 26581 (-62.4%)

RAND-50, two molecule Hamiltonians N2 and H2S). Their information is in Table 6.1.

We have four configurations by combining two ordering options and whether to apply

block-level optimizations. The baseline order is the original order of the problem Hamil-

tonians, which for RAND-40 and -50 is random and for N2 and H2S is determined by

the Hamiltonian generation module in PySCF [165] (which is based on ordering the elec-

tron orbitals from low energy to high energy level). The DO order is the depth-oriented

order in Section 6.4.2. ‘BC’ means that the block-level optimization in Section 6.5.1 is

applied. All configurations are followed by Qiskit Level 3 optimization by default. The

following table shows the CNOT gate count, single-qubit gate count, circuit depth, and

their corresponding reduction percentage of each configuration compared to the ‘Baseline

order’.

In Table 6.5 we can find that both the DO order and the BC have substantial contribu-

tions to the final CNOT/single-qubit gate count and circuit depth reduction. Averaging

over the results of the four selected benchmarks, the effect of BC is 69% of that of DO

order scheduling in CNOT reduction, 65% in single-qubit gate reduction, and 1.62x in

circuit depth reduction.

154

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

6.6.5 Real System Study

Finally, we evaluate ‘PH’ on IBM’s 16-qubit Melbourne chip with 8 QAOA MaxCut

programs. We generate 4 regular graphs of 7 to 10 nodes with 4 edges per node (‘REG-

n(7-10)-d4’), and 4 random graphs of 7 to 10 nodes with edge probability 0.5 (‘RD-

n(7-10)-p0.5’). We prepare 1-level QAOA circuits on these graphs and then optimize

the parameters in the simulator. Those circuits with the optimized parameters are then

evaluated on the Melbourne chip (40960 shots per circuit). The baseline is ‘Qiskit L3’

with the Pauli strings ordered by iterating over the adjacency matrix (Qiskit default

configuration).

Figure 6.11 shows the improvement of the success probability after applying ‘PH’ op-

timizations. The ‘Estimated Success Probability’ (ESP), a widely used metric in guiding

the compiler optimization [215, 176, 104], is a theoretical estimation of the success prob-

ability based on the program and the hardware noise model. The ‘Real System Success

Probability’ (RSP) is the number of trials with correct measurement results divided by

the total number of trials when executing on the real machine. Applying ‘PH’ can im-

prove the ESP by 2.11× on average (up to 3.00×) based on the noise model of the tested

device, by reducing the CNOT count and circuit depth by 15.1% and 36.2%, respectively

on average. On the real machine, ‘PH’ can improve the RSP by 1.24× on average (up

to 1.87×). There is a gap between the results from ESP and RSP because the noise

model only provides limited hardware information. We expect that the compilation can

be further improved with more detailed hardware models.

Table 6.6 shows the detailed compilation results onto the IBM’s 16-qubit Melbourne

chip It can be observed that Paulihedral optimization leads to significant reduction in

both gate count and circuit depth. More importantly, the reduction grows as the bench-

mark size increases, showing that Paulihedral will be more effective on larger size input

155

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

0
1
2
3
4

REG-n7-d4 REG-n8-d4 REG-n9-d4 REG-n10-d4 RD-n7-p0.5 RD-n8-p0.5 RD-n9-p0.5 RD-n10-p0.5 geomean

ESP Improvement RSP Improvement

Figure 6.11: Success Probability Improvement for QAOA on IBM’s 16-qubit Melbourne Chip

Table 6.6: Detailed compilation results onto IBM Melbourne

Qiskit Paulihedral+Qiskit
Metric CNOT Single Depth RSP CNOT Single Depth RSP

REG-n7-d4 45 218 86 23.81% 43 131 56 27.50%
REG-n8-d4 78 202 100 10.97% 66 170 78 12.89%
REG-n9-d4 86 247 113 22.05% 67 124 70 24.69%
REG-n10-d4 122 238 114 10.22% 70 134 72 19.08%
RD-n7-p0.5 35 149 64 0.67% 40 82 39 0.85%
RD-n8-p0.5 68 166 102 0.09% 61 94 59 0.13%
RD-n9-p0.5 76 209 107 0.37% 71 126 67 0.42%
RD-n10-p0.5 141 314 174 0.08% 93 211 106 0.09%

programs. Such reduction can be turned into the final success probability improvement.

We show the absolute success probabilities and the relative improvement in the second

table. We can also observe that there is a significant difference between regular graphs

and random graphs. This is because regular graphs have some symmetries and the so-

lution space (the number of valid solutions) is much larger than that of random graphs

(that is, the number of valid solutions are larger). This makes QAOA on regular graphs

much more noise tolerant. The low absolute success probability comes from the fact that

the Melbourne chip is an old device with higher error rates. But it is the only publicly

accessible chip with 14 qubits and all other public devices are of 5-7 qubits.

156

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

6.7 Discussion

It would be always desirable to have more effective quantum compiler optimizations to

fully exploit the potential of quantum computing. One common approach is to model the

hardware more precisely (e.g., from coarse-grained gate count [56, 18, 216] to independent

non-uniform gate error [104, 85], then correlated crosstalk error [158], and finally low-

level pulse optimizations [217, 218]). The compiler can naturally exploit more potential

from the hardware with more detailed hardware information.

Different from these compiler innovations that are mostly driven by the underlying

technologies, Paulihedral takes another approach which is to enable deeper compiler op-

timizations by leveraging the algorithmic properties of the high-level quantum programs.

Relatively little attention has been given to this direction because 1) it is exceedingly

difficult to extract useful high-level semantics from the gate-sequence representation in

today’s compiler infrastructures, and 2) scalable yet effective static analysis of quantum

programs is also very hard as the size of the operation matrices grows exponentially with

the number of qubits. We believe that these are two critical yet difficult open problems

in the future development of quantum compiler/software infrastructure since they pre-

vent the compiler from automatically detecting high-level and large-scale optimization

opportunities.

Paulihedral tackles these two problems for the quantum simulation kernel, a widely

used subroutine, and thus can benefit the compiler optimization for many quantum al-

gorithms. In particular, we define a new Pauli IR which can capture the high-level

semantics of simulation kernels. The domain knowledge of quantum simulation can thus

be exploited by the compiler automatically, yielding optimizations that are hard to be

implemented in the conventional gate-based representation. We then design several new

compiler passes, all of which are scalable block-wise circuit transformations since the

157

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

analysis on Pauli strings can be efficiently handled by classical computers. The evalua-

tion in this work has covered a wide range of quantum simulation kernels and we expect

that Paulihedral will continue to benefit future quantum algorithms since the quantum

simulation has been a long-living algorithm design principle in the last few decades.

Looking forward, although Paulihedral is designed from an algorithmic perspective,

it can incorporate those technology-driven optimizations. In this chapter, we have sup-

ported two different backends with two technology-dependent optimization passes tar-

geting different objectives and hardware constraints. These passes can also be further

optimized once we have a deeper understanding of the quantum devices and come up

with more comprehensive hardware models. Paulihedral can be further extended to other

quantum architectures (e.g., ion-trap-based architectures [188, 219], photonics [220]) by

adding new optimization passes.

It is also possible to make Paulihedral more intelligent by automatically managing

the passes based on the input program characteristics. Currently Paulihedral has four

passes and we have already observed that the different Pauli string patterns can affect the

final improvement under different pass configurations as discussed in Section 6.6. In the

future, more passes can be included to cover more backends, error resources, architectural

constraints, and optimization objectives. How to automatically select the most suitable

combination of passes from a pool of compiler passes is worth to explore.

Finally, the idea of quantum algorithmic compiler can be extended to other promising

quantum algorithm domains. There are several other important common techniques in

quantum algorithm design (e.g., quantum phase estimation [25], amplitude amplifica-

tion [221]) and promising quantum application domains (e.g., quantum machine learn-

ing [222]). How to design new programming languages to maintain the high-level seman-

tics of these programs and then propose corresponding algorithmic compiler optimizations

is still an open problem which can be left as future work.

158

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

6.8 Related Work

Paulihedral is a compiler framework with a new IR abstraction and deeper optimiza-

tions for general quantum simulation kernels. We first review the program representa-

tion and optimizations in quantum compilers. Then we discuss existing optimizations

for quantum simulation programs.

IR in quantum compilers: Modern classical compilers employ multiple IRs (e.g.,

control flow graph, static single assignment) from high level to low level and different

optimizations are applied on different IRs. Today’s quantum compilers [159, 161, 223,

224, 225], on the other hand, are mostly built around low-level representations [226, 227,

228], which makes it difficult to extract high-level information about the semantics of

the algorithm and discover non-commutative yet semantics-preserving re-orderings. The

most recent version of open quantum assembly language (OpenQASM) [229] recognizes

the need for higher-level semantics such as control, inverse, and power operations, but

is still incapable of representing Pauli-level semantics which are prevalent in quantum

simulation kernels. As we have shown, our Pauli IR can carry high-level semantics

through multiple optimization stages, encode all known algorithm constraints, and is

compatible with further low-level optimizations by these tools.

Quantum compiler optimizations: The state-of-the-art quantum compilers [159,

227] usually have multiple passes to execute different optimizations, (e.g., circuit rewrit-

ing [162], gate cancellation [163], template matching [164], qubit mapping [104]). These

passes applied on the low-level gate sequences usually only rewrite the circuit locally

on very few qubits or gates every time and only focus on one optimization objective in

each pass. Different from these optimizations, all passes in Paulihedral performance pro-

gram transformations at a much larger scope in a scalable way and multiple optimization

opportunities can be reconciled because the high-level algorithmic information is lever-

159

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

aged. This makes Paulihedral optimizations more effective than simply combining those

small-scale single-objective passes.

Optimizations for simulation algorithms: One common optimization technique

is to group the Pauli strings into sets of mutually commutative strings and then apply

simultaneous diagonalization [198, 185, 186, 197]. This technique, adopted by t|ket⟩ [161,

198, 185, 186], can simplify the circuit inside each set while the simultaneous diagonaliza-

tion step introduces substantial overhead before and after the circuit of each set, limiting

the overall optimization performance. Some other works [195, 196, 199, 20, 230, 103,

200, 201] explore the simulation program optimization or synthesis but these works are

mostly ad-hoc, limited to specific algorithms/architectures, and not easily generalizable

to a broader range of programs and employed by a compiler infrastructure. In Paulihe-

dral, the Pauli IR’s recursive, block-wise structure can support simulation kernels in all

related algorithms, as far as we know. And our optimization algorithms have been shown

to be much more effective in the evaluation above.

6.9 Conclusion

We propose Paulihedral, an algorithmic quantum compiler targeting the quantum

simulation kernel, a subroutine widely used in many quantum algorithms. Paulihedral

enables deep compiler optimizations by defining a new Pauli-string-based IR, which can

encode high-level algorithmic information and constraints of many seemingly different

quantum algorithms in a unified manner. All follow-up optimizations in Paulihedral

operate at a large scope with good scalability and can reconcile multiple optimization

opportunities. Paulihedral can be extended to different backends by adding or modifying

technology-dependent passes. Comprehensive experimental results show that Paulihe-

dral can significantly outperform state-of-the-art quantum compilers with more effective,

160

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

scalable optimizations and better reconfigurability.

161

Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation
Kernels Chapter 6

Algorithm 10: Optimization for SC backend

Input: List of Pauli layers pls, device information
Output: Hardware compatible circuit Q

1 Map logical qubits to the most connected subgraph of the device coupling map;
2 for pauli layer in pls do
3 pb = the largest Pauli block in pauli layer; s = core qubit list of pb;
4 T1 = node in s with largest connected component;
5 connect active qubits in pb to tree T1 through shortest path (lowest error

rate); wl =leaves of T1 sorted by depth;
6 for ps in pb do
7 while wl ̸= ∅ do
8 n = wl.deque(); np = n.parent;
9 if n is the root of T1 then continue;

10 if ps[n] ̸= I and ps[np] ̸= I then
11 add single-qubit gates based on ps[n] and ps[np];

Q.append(CNOT (n, np));

12 else if ps[n] ̸= I and ps[np] == I then
13 Q.append(SWAP (n, np));
14 end
15 wl.append(np);

16 end
17 generate the right half circuit of ps reversely;

18 end
19 for spb in remaining blocks of pauli layer do
20 T2 = try construct tree(spb); // Return NULL if changes T1
21 synthesize spb with T2 if T1 not changed; otherwise add spb to

remain layers;

22 end

23 end
24 while remain layers is not empty do
25 Sort remain layers by cumulative distance between active qubits;
26 Synthesize first layer of remain layers with the same strategy and remove it

from remain layers;

27 end

162

Chapter 7

Projection-Based Runtime

Assertions for Testing and

Debugging Quantum Programs

7.1 Introduction

Quantum computing is a promising computing paradigm with great potential in cryp-

tography [3], database [7], linear systems [191], chemistry simulation [48], etc. Sev-

eral quantum program languages [159, 231, 92, 232, 233, 234, 235] have been published

to write quantum programs for quantum computers. One of the key challenges that

must be addressed during quantum program development is to compose correct quan-

tum programs since it is easy for programmers living in the classical world to make

mistakes in the counter-intuitive quantum programming. For example, Huang and

Martonosi [236, 237] reported a few bugs found in the example programs from the ScaffCC

compiler project [117]. Bugs have also been reported in IBM’s OpenQASM project [238]

and Rigetti’s PyQuil project [239]. These erroneous quantum programs, written and

163

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

reviewed by professional quantum computing experts, are sometimes even of very small

size (with only 3 qubits)1. Such difficulty in writing correct quantum programs hinders

practical quantum computing. Thus, effective and efficient quantum program debugging

is naturally in urgent demand.

In this chapter, we focus on runtime testing and debugging a quantum program on a

quantum computer, and revisit assertion, one of the basic program testing and debugging

approaches, in quantum computing. There have been two quantum program assertion

designs in prior research. Huang and Martonosi proposed statistical assertions, which

employed statistical tests on classical observations [237] to debug quantum programs.

Motivated by indirect measurement and quantum error correction, Liu et al. proposed a

runtime assertion [240], which introduces ancilla qubits to indirectly detect the system

state. As early attempts towards quantum program testing and debugging, these studies

suffer from the following drawbacks:

1) Limited applicability with classical style predicates: The properties of

quantum program states can be much more complex than those in classical computing.

Existing quantum assertions [237, 240], which express the quantum program assertion

predicates in a classical logic language, can only assert some simple quantum states of

three special cases (detailed later in Section 7.5). A lot of complex intermediate program

states cannot be tested by these assertions due to their limited expressive power. Hence,

these assertions can only be injected at some special locations where the states are within

the three supported types. Such restricted assertion types and injection locations will

increase the difficulty in debugging as assertions may have to be injected far away from

a bug.

2) Inefficient assertion checking: A general quantum state cannot be dupli-

cated [241], while the measurements, which are essential in assertions, usually only probe

1We checked the issues raised in these projects’ official GitHub repositories for this information.

164

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

part of the state information and will destroy the tested state immediately. Thus, an

assertion, together with the computation before it, must be repeated for a large num-

ber of times to achieve a precise estimation of the tested state in Huang and Martonosi’s

assertion design [237]. Another drawback of the destructive measurement is that the com-

putation after an assertion will become meaningless. Even though multiple assertions can

be injected at the same time, only one assertion could be inspected per execution, which

will make the assertion checking more prolonged [237].

3) Lacking theoretical foundations: Different from a classical deterministic pro-

gram, a quantum program has its intrinsic randomness and one execution may not cover

all possible computations of even one specific input. Moreover, some quantum algorithms

(e.g., Grover’s search [7], Quantum Phase Estimation [25], qPCA [192]) are designed to

allow approximate program states, and the quantum program assertion checking itself

is also probabilistic. Consequently, testing a quantum program usually requires multi-

ple executions for one program configuration. It is important but rarely considered (to

the best of our knowledge) what statistical information we can infer by testing those

probabilistic quantum programs with assertions. Existing quantum program assertion

studies [237, 240], which mostly rely on empirical study, lack a rigorous theoretical foun-

dation.

Potential and problem of projections: We observe that projection can be the key

to address these issues due to its potential logical expressive power and unique mapping

property. The logical expressive power of projection operators comes from the quantum

logic by Birkhoff and von Neumann back in 1936 [242]. The logical connectives (e.g., con-

junction and disjunction) of projection operators can be defined by the set operations on

their corresponding closed subspaces of a Hilbert space. Moreover, projections naturally

match the projective measurement, which may not affect the measured state when the

state is in one of its basis states [243]. However, only those projective measurements with

165

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

a very limited set of projections can be directly implemented on a quantum computer

due to the physical constraints on the measurement basis and measured qubit count,

impeding the full utilization of the logical expressive power of projections.

To overcome all the problems mentioned above and fully exploit the potential of

projections, we propose Proq, a projection-based runtime assertion for quantum pro-

grams. First, we employ projection operators to express the predicates in our runtime

assertion. The logical expressive power of projection-based predicates allows us to assert

much more types of states and enable more flexible assertion locations. Second, we

define the semantics of our projection-based assertions by turning the projection-based

predicates into corresponding projective measurements. Then the measurement in our

assertion will not affect the tested state if the state satisfies the assertion predicate. This

property leads to more efficient assertion checking and enables multi-assertion per execu-

tion. Third, we quantitatively show that after a sufficient number of testing executions

with projection-based assertions, the semantics of the tested program can be guaranteed

with a high confidence level. This result can serve as the theoretical foundation of quan-

tum program testing with projection-based assertions. Finally, we consider the physical

constraints on a quantum computer and introduce several transformation techniques,

including additional unitary transformation, combining projections, and using auxiliary

qubits, to make all projection-based assertions executable on a measurement-restricted

quantum computer. We also propose local projection, which is a sound simplification of

the original projections, to relax the constraints in the predicates for simplified assertion

implementations.

The major contributions of this chapter can be summarized as follows:

1. We, first the time, propose to use projection operators to design runtime asser-

tions that have strong logical expressive power and can be efficiently checked on a

166

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

quantum computer.

2. On the theory side, we prove that testing quantum programs with projection-based

assertions is statistically effective in debugging or assuring the program semantics

for both exact and approximate quantum programs.

3. On the practice side, we propose several assertion transformation techniques to sim-

plify the assertion implementation and make our assertions physically executable

on a measurement-restricted quantum computer.

4. Both theoretical analysis and experimental results show that our assertion outper-

forms existing quantum program assertions [237, 240] with much stronger expressive

power, more flexible assertion location, fewer executions, and lower implementation

overhead.

7.2 Preliminary

In this section, we introduce the necessary preliminary to help understand the pro-

posed assertion scheme. We will start from our base quantum programming language and

then introduce the projection operator as well as the hardware constraints considered in

this chapter.

7.2.1 Quantum Programming Language

For simplicity of presentation, this work adopts the quantum while-language [244]

to describe the quantum algorithms. This language is purely quantum without classi-

cal variables but this selection will not affect the generality since the quantum while-

language, which has been proved to be universal [244], only keeps basic quantum com-

putation elements that can be easily implemented by other quantum programming lan-

167

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

guages [159, 231, 92, 232, 233, 234, 235]. Thus, our assertion design and implementation

based on this language can also be easily extended to other quantum programming lan-

guages

Definition 7.2.1 (Syntax [244]) The quantum while-programs are defined by the gra-

mmar:

S ::= skip | S1;S2 | q := |0⟩ | q := U [q]

| if (□m ·M [q] = m→ Sm) fi

| while M [q] = 1 do S od

The language grammar is explained as follows. q represents a quantum variable

while q means a quantum register, which consists of one or more variables with its

corresponding Hilbert space denoted by Hq. q := |0⟩ means that quantum variable q

is initialized to be |0⟩. q := U [q] denotes that a unitary transformation U is applied

to q. Case statement if · · ·fi means a quantum measurement M is performed on q to

determine which subprogram Sm should be executed based on the measurement outcome

m. The loop while · · ·od means a measurement M with two possible outcomes 0, 1 will

determine whether the loop will terminate or the program will re-enter the loop body.

The semantic function of a quantum while-program S (denoted by JSK) is a mapping

from the program input state to its output state after executing program S. For example,

JSK(ρ) represents the output state of program S with input state ρ. A formal and

comprehensive introduction to the semantics of quantum while-programs can be found

in [245].

168

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

7.2.2 Projection and Projective Measurement

One type of quantum measurement of particular interest is the projective measure-

ment because all measurements that can be physically implemented on quantum com-

puters are projective measurements. We first introduce projections and then define the

projective measurement.

For each closed subspace X of H, we can define a projection PX . Note that every

|ψ⟩ ∈ H (|ψ⟩ does not have to be normalized) can be written as |ψ⟩ = |ψX⟩ + |ψ0⟩ with

|ψX⟩ ∈ X and |ψ0⟩ ∈ X⊥ (the orthocomplement of X).

Definition 7.2.2 (Projection) The projection PX : H 7→ X is defined by

PX |ψ⟩ = |ψX⟩.

for every |ψ⟩ ∈ H.

In the rest of this chapter, we denote PX as P because there is a one-to-one correspon-

dence between the closed subspaces of a Hilbert space and the projections in it. For

simplicity, we do not distinguish a projection P from its corresponding subspace. Note

that P is Hermitian (P † = P) and P 2 = P . If a pure state |ψ⟩ (or a mixed state ρ) is in

the corresponding subspace of a projection P , we have P |ψ⟩ = |ψ⟩ (PρP = ρ). The rank

of a projection P (denoted by rankP) is defined by the dimension of its corresponding

subspace.

Definition 7.2.3 (Projective measurement) A projective measurementM is a quan-

tum measurement in which all the measurement operators are projections (0H is the zero

169

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

operator on H):

M = {Pm}, where
∑
m

Pm = IH and PmPn =

Pm if m = n,

0H otherwise.

Note that if a state |ψ⟩ (or ρ) is in the corresponding subspace of Pm, then a projective

measurement with observed outcome m will not change the state since:

|ψm⟩ =
Pm |ψ⟩√

⟨ψ|P †
mPm |ψ⟩

=
|ψ⟩√
⟨ψ|ψ⟩

= |ψ⟩ ,

resp. ρm =
PmρP

†
m

tr
(
P †
mPmρ

) =
ρ

tr(ρ)
= ρ

7.2.3 Projection-Based Predicates and Quantum Logic

In addition to defining projective measurements, projection operators can also define

the predicates in quantum programming. We introduce the definition of projection-based

predicates.

Definition 7.2.4 (Projections-based predicates) Suppose P is a projection opera-

tor on H and its corresponding closed subspace is X. A state ρ is said to satisfy a

predicate P (written ρ |= P) if supp(ρ) ⊆ X, where supp(ρ) is the subspace spanned by

the eigenvectors of ρ with non-zero eigenvalues. Note that ρ |= P =⇒ Pρ = ρ.

Some quantum algorithms (e.g., qPCA [192]) are not exact and their program states

may only approximately satisfy a projection-based predicate. We first introduce two

concepts, trace distance D and fidelity F , to evaluate the distance between two states.

Then we define the approximate satisfactory of projection-based predicates.

Definition 7.2.5 (Trace distance of states) For two states ρ and σ, the trace dis-

tance D, which measures the “distinguishability” of two quantum states, between ρ and

170

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

σ is defined as

D(ρ, σ) =
1

2
tr|ρ− σ|

where tr|X| = tr
√
X†X and

√
X†X refers to the positive square root which is unique

because X is a density matrix which is Hermitian. Note that 0 ≤ D(ρ, σ) ≤ 1 and

D(ρ, σ) = 0 ⇔ ρ = σ. For two normalized states ρ and σ (pure states or density

operators with trace 1), D(ρ, σ) = 1 ⇔ ρ and σ are orthogonal. Trace distance is a

metric and it satisfies the triangle inequality.

Definition 7.2.6 (Fidelity) For two states ρ and σ, the fidelity F , which is not a metric

but measures the “closeness” of two quantum states, between ρ and σ is defined as

F (ρ, σ) = tr
√√

ρσ
√
ρ

where
√
ρ is the unique positive square root given by the spectral theorem (the same with

the square root in the above definition). For example, suppose the spectrum decomposition

of ρ is
∑

i pi|ψi⟩⟨ψi|, then
√
ρ =

∑
i

√
pi|ψi⟩⟨ψi| (we have pi ≥ 0 since a state ρ must be

a positive semi-definite operator.). Note that 0 ≤ F (ρ, σ) ≤ 1 and F (ρ, σ) = 1 ⇔ ρ = σ.

F (ρ, σ) = 0 ⇔ ρ and σ (may not be normalized) are orthogonal. Note that fidelity does

not satisfy the triangle inequality. A frequently used metric induced by fidelity is the

arccos of fidelity and it satisfies the triangle inequality.

Definition 7.2.7 (Approximate satisfactory of projection-based predicates)

A state ρ is said to approximately satisfy (projective) predicate P with error parameter ϵ,

written ρ |=ϵ P if there exists a σ with the same trace such that σ |= P and D(ρ, σ) ≤ ϵ.

In the rest of this chapter, all predicates are projection-based predicates and we do

not distinguish a predicate P , a projection P , and its corresponding closed subspace P .

A quantum logic can be defined on the set of all closed subspaces of a Hilbert space [242].

171

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Definition 7.2.8 (Quantum logic on the projections [242]) Suppose S(H) is the

set of all closed subspaces of Hilbert space H. Then (S(H),∧,∨,⊥) is an orthomodular

lattice (or quantum logic). For any P,Q ∈ S(H), we define:

P ∧Q = P ∩Q, P ∨Q = span(P ∪Q), P⊥ = {|ψ⟩ ∈ H : ⟨ψ|P |ψ⟩ = 0}

and the notations are defined as follows. Suppose T is a set in H. Then span(T) is the

subspace spanned by T , and T is the closure of T . That is, in this quantum logic, the

logic operations on the predicates are defined by the set operations on their corresponding

subspaces.

7.2.4 Measurement-Restricted Quantum Computer

Although projective measurement has restricted all the measurement operators to be

projection operators, most quantum computers which run on the well-adopted quantum

circuit model [25] usually have more restrictions on the measurement.

First, they only support projective measurement in the computational basis. That

is, only projective measurements with a specific set (which only contains all the compu-

tational basis states) of projection operators can be physically implemented. For exam-

ple, such a projective measurement on n qubits can be described as M = {Pt}, where

Pt = |t⟩⟨t| is the projection onto the 1-dimensional subspace spanned by the basis state

|t⟩, and t ranges over all n-bit strings; in particular, for a single qubit, this measurement

is simply M = {P0, P1} with P0 = |0⟩⟨0| and P1 = |1⟩⟨1|.

Second, only projective measurements with projection operators of special ranks can

be physically implemented. Suppose we have an n-qubit program with a 2n-dimensional

state space. After we measure one qubit, the state of that qubit will collapse to one of its

basis states. The overall state space is reduced by half and becomes a 2n−1-dimensional

172

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

space. A projection P with rankP = 2n−1 can be implemented by measuring one qubit.

If k qubits are measured, the remaining space will have 2n−k dimensions, and projections

with rankP = 2n−k can be implemented by measuring k qubits. In reality, we can only

measure an integer number of qubits but cannot measure a fraction number of qubits.

For an n-qubit system, we can measure {1, 2, · · · , n} qubits so that only projections with

rankP ∈ {2n−1, 2n−2, · · · , 1} can be directly implemented.

7.3 Projection-based assertion: design and theoreti-

cal foundations

The goal of this chapter is to provide a design of assertions which the programmers

can insert in their quantum programs when testing and debugging their programs on a

quantum computer. In particular, our design aims to achieve two objectives:

1. The assertions should have strong logical expressive power and can be efficiently

checked.

2. The assertions should be executable on a quantum computer with restricted mea-

surements.

In this section, we will focus on the first objective and introduce how to design

quantum program assertions based on projection operators. We first discuss the reasons

why projections are suitable for expressing predicates in a quantum program assertion.

Then we formally define the syntax and semantics of a new projection-based assert

statement. Finally, we rigorously formulate the theoretical foundations of program testing

and debugging with projection-based assertions. We prove that running the assertion-

injected program repeatedly can narrow down the potential location of a bug or assure

that the semantics of the original program is close to what we expect.

173

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

rank = 1

rank = 0

rank = 2
n

rank = 2

rank = 4

rank = 3

…...

zero operator

identity operator

…... … … rank = 2
n

- 1

… …

…

…... … …

…...

all projections in

the 2
n
-dimensional

Hilber space

predicates supported

in existing assertions

…... …...

…...

…

…...

Figure 7.1: Logical expressive power comparison

7.3.1 Checking the Satisfaction of a Projection-Based Predicate

An assertion is a predicate at a point of a program. The key point of designing

assertions for quantum programs is to first determine how to express predicates in the

quantum scenario. Projection-based predicates has been used widely in static analysis

and logic for quantum programming. For the first time, we employ projection-based

predicates in runtime assertions for two reasons.

Strong logical expressive power: Figure 7.1 shows the orthomodular lattice based

on all projections in a 2n-dimensional Hilbert space and compares the logical expressive

power of the predicates in existing assertions and the projections. All predicates expressed

using a classical logical language in existing quantum program assertions [237, 240] can be

represented by very few elements of special ranks in this lattice (detailed discussion is in

174

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Section 7.5.1). But projections can naturally cover all elements in Figure 7.1. Therefore,

projections have a much stronger expressive power compared with the classical logical

language used in existing quantum assertions.

Efficient runtime checking: A quantum state ρ can be efficiently checked by a

projection P because ρ will not be affected by the projective measurement with respect

to P if it is in the subspace of P . We can construct a projective measurement M =

{Mtrue = P,Mfalse = I − P}. When ρ is in the subspace of P , the outcome of this

projective measurement is always “true” with probability of 1 and the state is still ρ.

Then we know that ρ satisfies P without changing the state. When ρ is not in the

subspace of P , which means that ρ does not satisfy P , the probability of outcome “true”

or “false” in the constructed projective measurement is tr(Pρ) or 1−tr(Pρ), respectively.

Suppose we perform such procedure k times, the probability that we do not observe any

“false” outcome is tr(Pρ)k. Since tr(Pρ) < 1, this probability approaches 0 very quickly

when tr(Pρ) is not close to 1 and we can conclude if ρ satisfies P with high certainty

within very few executions. Moreover, even if the state ρ is not in the subspace of P ,

the projective measurement with outcome “true” will change the incorrect state ρ to

a correct state that is in the subspace of P so that the following execution after the

assertion is still valid.

When 1 − tr(Pρ) < ϵ and ϵ is small, it is possible that we do not observe any ‘false’

outcome in very few executions because the probability of observing a ‘false’ outcome

is small. In this situation, we have the following two cases. First, the program itself

has some real bugs that makes a tested state very close to what we expect. Given

1 − tr(Pρ) < ϵ, the trace distance (Definition 7.2.5) of the tested state ρ and at least

one desired state is bounded by a small number ϵ +
√
ϵ(1 − ϵ) if we realize that PρP

tr(PρP)

is a desired state since it satisfies P (in Lemma 7.3.1). It is almost impossible to prove

that no such bugs ever exist but such a bug is not severe since the final state of the

175

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

program will also be close to the expected final state. This is because the trace distance

is contractive under trace-nonincreasing quantum operations (the semantic function of

any quantum program), i.e., D(JSK(ρ), JSK(σ)) ≤ D(ρ, σ) where JSK is the semantic

function of program S and D is the trace distance. Therefore, the trace distance between

the final state of the tested program and the expected final state is also bounded by the

small number ϵ +
√
ϵ(1 − ϵ). Moreover, we have checked and confirmed that all types

of bugs reported by Huang and Martonosi [236] (the only systematic report about bugs

in real quantum programs to the best of our knowledge) can make tr(Pρ) significantly

smaller than 1. Therefore, checking a projection-based predicate is effective for these

known quantum program bugs. Second, the program itself is not an exact quantum

program and its correct program states are supposed to only approximately satisfy the

predicates. We will prove that projection-based assertions can still test and debug such

approximate quantum programs later in Section 7.3.4.

7.3.2 Assertion Statement: Syntax and Semantics

We have demonstrated the advantages of using projections as predicates. Now we

add a new runtime assertion statement to the quantum while-language grammar.

Definition 7.3.1 (Syntax of the assertion) The syntax of the quantum assertion is

defined as:

assert(q;P)

where q = q1, ..., qn is a collection of quantum variables and P is a projection in the state

space Hq.

As the original quantum while-language is already universal, we define the semantics

176

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

of the new assertion statement using the quantum while-language. An auxiliary notation

abort is employed to denote that the program terminates immediately and reports the

termination location. The formal semantics of abort is JabortK(ρ) = 0H for all any

input state ρ [245]. Intuitively, this definition means we do not have any quantum state

after abort.

Definition 7.3.2 (Semantics) The semantics of the new assertion statement is de-

fined as

assert(q;P) ≡ if MP [q] = m0 → skip

□ m1 → abort

fi

where MP = {Mm0 = P,Mm1 = IHq
− P}.

The semantics of the assertion statement is explained as follows: We construct a

projective measurement MP = {Mm0 = P,Mm1 = IHq
− P} based on the projection

operator P in the assertion. We apply this measurement of the corresponding qubit

collection q. If the measurement result is m0, which means that the tested state is in the

closed subspace of P , then we continue the execution of program without doing anything

because the tested state satisfies the predicate in the assertion. If the measurement result

is m1, which means the tested state is not in the closed subspace of P , the program will

terminate and report the termination location. Then we can know that the state at this

location does not satisfy the corresponding predicate. Here the semantics of abort is

slightly different from the original one because we need to report the termination location.

177

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

7.3.3 Statistical Effectiveness of Testing and Debugging with

Projection-Based Assertions

As with classical program testing, quantum program testing can show the presence of

bugs, lowering the risking of remaining bugs, but cannot assure the behavior of all possible

computation. One testing execution cannot even check the program behavior thoroughly

for one input due to the intrinsic randomness of quantum systems. Therefore, multiple

executions are required to test a quantum program with one input. In this section, we

show that, for a program with projection-based assertions and one specific input, running

it repeatedly for enough times can locate bugs or statistically assure the behavior of the

program under the specific input with high confidence.

We consider a quantum program S. When the programmers try to test a program with

assertions, multiple assertions could be injected so that a potential bug could be revealed

as early as possible. Suppose we insert l assertions whose predicates are P1, P2, . . . , Pl (Pl

is the predicate for the final state). We define that a bug-free standard program Sstd is a

program that can satisfy all the predicates throughout the program. We will show that

after running the program with assertion inserted for a couple of times, we can locate

the incorrect program segment if an error message occurs or conclude that output of the

tested program S and the standard program Sstd (under a specific input ρ) is close. We

first formally define a debugging scheme for a quantum program.

Definition 7.3.3 A debugging scheme for S is a new program S ′ with assertions being

178

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

added between consecutive subprograms Si and Si+1:

S ′ ≡ S1; assert(q1;P1);

S2; assert(q2;P2);

· · · ;

Sl−1; assert(ql−1;Pl−1);

Sl; assert(ql;Pl)

where qi is the collection of quantum variables and Pi is a projection on Hqi for all

0 < i ≤ l.

In this debugging scheme, assertions are injected after every statement while this may

not be necessary in practice. The assertion injection is flexible, and the programmers

can inject assertions only on those locations where they hope to have assertions.

Now we discuss the statistical properties of this debugging scheme. A program seg-

ment Si is considered to be correct if its output satisfies the predicate Pi when its input

satisfied Pi−1 as specified by the assertions. We show that running the program S ′ (de-

fined in Definition 7.3.3) with assertions injected could effectively check the program by

proving that the tested program S and a standard program Sstd will have a similar se-

mantic function under the tested input state. A quantitative and formal description of

the effectiveness of our debugging scheme is illustrated by the following theorem.

Theorem 7.3.1 (Effectiveness of debugging scheme) Suppose we repeatedly execute

S ′ (with l assertions) with input ρ and collect all the error messages.

1. If an error message occurs in assert(qi;Pi), then subprogram Si is not correct, i.e.,

with the input satisfying precondition Pi−1, after executing Si, the output can violate

postcondition Pi.

179

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

2. If no error message is reported after executing S ′ for k times (k ≫ l2), program S

is close to the bug-free standard program; more precisely, with confidence level 95%,

(a) the confidence interval of minSstd
D (JSK(ρ), JSstdK(ρ)) is

[
0, 0.9l+

√
l√

k

]
,

(b) the confidence interval of maxSstd
F (JSK(ρ), JSstdK(ρ)) is

[
cos 0.9l+

√
l√

k
, 1
]
,

where the minimum (maximum) is taken over all bug-free standard programs Sstd

that satisfy all assertions with input ρ. Here D is the trace distance (Defini-

tion 7.2.5) and F is the fidelity (Definition 7.2.6).

Moreover, within one testing execution, if the program sm is not correct but assert(qm;Pm)

is passed, then follow-up assertion assert(qm+1;Pm+1) is still effective in checking the

program Sm+1.

By Theorem 7.3.1, we conclude that we can use projection-based assertions to test a

quantum program and find the locations of potential bugs with the proposed debugging

scheme. When an error message occurs in assert(qi;Pi), we can know that there is at

least one bug in the program segment Si. Although we could not directly know how the

bug happens nor repair a bug, our approach can help with debugging in practice, by

narrowing down the potential location of a bug from the entire program to one specific

program segment. After applying the proposed debugging scheme, programmers can

manually investigate the target program segment to finally find the bug more quickly

without searching in the entire program. If we could not have any error message after

running the assertion checking program S ′ for a sufficiently large number of times, we can

conclude that the semantics of the original program S for the tested input is at least close

to what we expected (specified by the assertions) with high confidence. In the proposed

theorem, we require k ≫ l2 because we hope to achieve the confidence level 95%. In

practice, the number of test executions can be reduced with a lower confidence level.

180

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Only one input tested: It can be noticed that only one input is tested when using

the proposed debugging scheme in Theorem 7.3.1. However, in classical program testing,

we usually prepare a large number of testing cases to increase the testing thoroughness.

Here we argue that considering one input is already useful in testing many quantum

programs because the input information of many practical quantum algorithms (e.g.,

Shor’s algorithm [3], Grover algorithm [7], VQE algorithm [48], HHL algorithm [191])

are only encoded in the operations and the input state is always a trivial state |00 · · · 00⟩.

Consequently, we do not need to check different inputs when testing these quantum

algorithms. Checking for one specific input ρ = |00 · · · 00⟩⟨00 · · · 00| will be sufficient.

7.3.4 Testing and Debugging Approximate Quantum Programs

We have shown that projection-based assertions can be used to check exact quan-

tum programs but there are also other quantum algorithms (e.g., qPCA [192], Grover’s

search [7], Quantum Phase Estimation [25]) of which the correct program states some-

times only approximately satisfy a projection. We generalize Theorem 7.3.1 by adding

error parameters on all the program segments to represent the approximation throughout

the program, and prove that we can still locate bugs or conclude about the semantics of

the tested program with high confidence by checking projection-based assertions.

We first study how much a state ρ is changed after a projective measurement by

proving a special case of the gentle measurement lemma [246] with projections. The

result is slightly stronger than the original one [246] under the constraint of projection.

Lemma 7.3.1 (Gentle measurement with projections) For projection P and den-

sity operator ρ, if tr(Pρ) ≥ 1 − ϵ, then we have

1. D
(
ρ, PρP

tr(PρP)

)
≤ ϵ+

√
ϵ(1 − ϵ), D is the trace distance (Definition 7.2.5).

181

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

2. F
(
ρ, PρP

tr(PρP)

)
≥

√
1 − ϵ, F is the fidelity (Definition 7.2.6).

Suppose a state ρ satisfies P with error ϵ, then tr(Pρ) ≥ 1 − ϵ which ensures that,

applying the projective measurement MP = {Mtrue = P, Mfalse = I − P}, we have the

outcome “true” with probability at least 1 − ϵ. Moreover, if the outcome is “true” and

ϵ is small, the post-measurement state PρP
tr(PρP)

is close to the original state ρ in the sense

that their trace distance is at most ϵ+
√
ϵ(1 − ϵ).

Consider a program S = S1;S2; · · · ;Sl with l inserted assertions assert(qm, Pm) after

each segments Sm for 1 ≤ m ≤ l. Unlike the exact algorithms, here each program segment

Sm is considered to be correct if its input satisfies Pm−1, then its output approximately

satisfies Pm with error parameter ϵm. The following theorem states that the debugging

scheme defined in Definition 7.3.3 is still effective for approximate quantum programs.

Theorem 7.3.2 (Effectiveness of debugging approximate quantum programs)

Assume that all ϵm are small (ϵm ≪ 1). Execute S ′ for k times (k ≫ l2) with input ρ,

and we count km for the occurrence of error message for assertion assert(qm, Pm).

1. The 95% confidence interval of real ϵm is [w−
m, w

+
m]. Thus, with confidence 95%, if

ϵm < w−
m, Sm is incorrect; and if ϵm > w+

m, we conclude Sm is correct. Here, w−
m, w

+
m

and wcm are B (α, km + 1, k −
∑m

i=1 ki) with α = 0.025, 0.975 and 0.5 respectively,

where B(P,A,B) is the P th quantile from a beta distribution with shape parameters

A and B.

2. If no segment appears to be incorrect, i.e., all ϵm ≥ w−
m, then after executing the

original program S with input ρ, the output state σ approximately satisfies Pl with

error parameter δ, i.e., σ |=δ Pl, where δ =
∑l

m=1

√
wcm+

√∑l
m=1(

√
w+
m −√

wcm)2.

With this theorem, we can test and debug approximate quantum programs by count-

ing the number of occurrences of the error messages from different assertions. If the

182

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

observed assertion checking failure frequency is significantly higher or lower than the

expected error parameter of a program segment, we can conclude that this program seg-

ment is correct or incorrect with high confidence. If all program segments appear to be

correct, we can conclude that the final output of the original program approximately

satisfies the last predicate within a bounded error parameter.

7.3.5 An Example of Using the Effectiveness Theorems

We give an example to illustrate using Theorem 7.3.1 and 7.3.2 in practical debugging.

Suppose a bug-free standard program S has two qubits p, q:

S ≡ p := Z[p]; p := Ry(π/2)[p]; p, q := CNOT[p, q]

where Ry(θ) is the rotation about the Y-axis, i.e.,

Ry(θ) =

 cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 .
When the input is |00⟩pq, the program produces a Bell state |Φ+⟩pq = |00⟩pq+|11⟩pq√

2
. Now

we consider a real program written by a careless programmer:

Sreal ≡ p := Z[p]; p := Ry(1.7)[p]; p, q := CNOT[p, q]

which can be decomposed into two segments, Sreal,1 ≡ p := Z[p]; p := Ry(1.7)[p], Sreal,2 ≡

p, q := CNOT[p, q]. The careless programmer understands the program correctly and

knows that if the input is |00⟩pq, the state after the first two unitary transformations on

p should be |+⟩q = |0⟩q+|1⟩q√
2

and the final state should be Bell state. Thus he adds two

183

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

assertions to Sreal:

S ′
real ≡ p := Z[p]; p := Ry(1.7)[p]; assert(p;P1); p, q := CNOT[p, q]; assert(p, q;P2)

where P1 = |+⟩⟨+| and P2 = |Φ+⟩⟨Φ+|.

Theoretically it can be proved that S ′
real is close to but not equal to the bug free

program in the sense that:

D(JSK(|00⟩pq), JSrealK(|00⟩pq)) = 0.065, F (JSK(|00⟩pq), JSrealK(|00⟩pq)) = 0.9979

Note that the final state is a pure state and thus all bug-free standard programs are

equivalent to S when input is |00⟩pq.

We then consider three different testing cases. In the first two cases the programmer

thinks the program should be accurate and in the last case the program is considered to

be approximate.

Case 1. The programmer executes S ′
real for 1000 times and surprisingly no error is

reported. What can he learn from the result? By Theorem 7.3.1 (2) with k = 1000 and

l = 2, we have: with confidence level 95%,

1. the confidence interval of D(JSK(|00⟩pq), JSrealK(|00⟩pq)) is [0, 0.101];

2. the confidence interval of F (JSK(|00⟩pq), JSrealK(|00⟩pq)) is [0.995, 1];

We can see that the real trace distance 0.065 and fidelity 0.9979 are indeed in the corre-

sponding intervals [0, 0.101] and [0.995, 1], respectively.

Case 2. The programmer executes S ′
real for 10,000 times and 37 errors are reported by

the first assertion assert(p;P1) but no error is reported by the second assertion. Now

what can he conclude?

184

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

1. By Theorem 7.3.1 (1), the first segment Sreal,1 ≡ p := Z[p]; p := Ry(1.7)[p] is not

correct; there must be some bugs;

2. By Theorem 7.3.1 (2), the second segment Sreal,2 ≡ p, q := CNOT[p, q] is very likely

to be true in the sense that: there exists a bug free standard program S1;S2 with

two segments S1 and S2 such that: with confidence 95% (k = 9963, l = 1)

(a) the confidence interval of D(JS1;S2K(|00⟩pq), JS1;Sreal,2K(|00⟩pq)) is [0, 0.019];

(b) the confidence interval of F (JS1;S2K(|00⟩pq), JS1;Sreal,2K(|00⟩pq)) is [0.99982, 1];

In fact, segment Sreal,2 is exactly correct.

Case 3. Now, the programmer thinks that the program is approximate and a small

error is acceptable. In detail, for both segments Sreal,1 and Sreal,2, he selects the same

acceptable error parameters ϵ1 = ϵ2 = 0.01.

Fact: A straightforward calculation gives the *real value* of ϵ1,real = 0.0042 and ϵ2,real =

0, and the output JSrealK(|00⟩pq) approximately satisfies P2 with error parameter 0.065.

Consider the execution results in the case 2 above. According to Theorem 7.3.2 (1),

we first calculate the 95% confidence intervals of real ϵ1 and ϵ2 are [w−
1 , w

+
1] and [w−

2 , w
+
2]

where parameters are:

w−
1 = 0.0027, w+

1 = 0.0051, wc1 = 0.0038,

w−
2 = 0.00000, w+

2 = 0.00037, wc2 = 0.00007

Obviously, ϵ1 > w+
1 and ϵ2 > w+

2 and thus with confidence 95%, both of the segments are

acceptable. Now, by Theorem 7.3.2 (2), we further know that the output JSrealK(|00⟩pq)

approximately satisfies P2 with error parameter δ = 0.0845 > 0.065. All of these confi-

dence intervals and parameters given by our theorems are consistent with the Fact.

185

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

7.4 Transformation techniques for implementation

on quantum computers

In the previous section, we have illustrated how to test and debug a quantum program

with the proposed projection-based assertions and proved its effectiveness. However,

there exists a gap that makes the assertions not directly executable on a real quantum

computer. There are two reasons for this incompatibility as explained in the following:

1. Limited measurement basis: Not all projective measurements are supported on

a quantum computer and only projective measurement that lie in the computational

basis can be physically implemented directly with today’s quantum computing un-

derlying technologies (in Section 7.2.4). But there is no restriction on the projection

operator P in the assertions so that P could be arbitrary projection operator in

the Hilbert space. For example, P = |+⟩⟨+| = 1
2
(|0⟩ + |1⟩)(⟨0| + ⟨1|) is on a basis

of {|+⟩ , |−⟩}. These assertions with projections not in the computational basis

cannot be directly executed on a real quantum computer.

2. Dimension mismatch: A projective measurement, which is already in the com-

putational basis, may still not be executable because the number of dimensions of

its corresponding subspace cannot be directly implemented by measuring an in-

teger number of qubits. For an n-qubit system, only projections with rankP ∈

{2n−1, 2n−2, · · · , 1} can be directly implemented (in Section 7.2.4). But the rank of

the projection in an assertion can be any integer between 0 and 2n. For example,

a projection in a 2-qubit system can be P = |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨11|. An

assertion with such projection cannot be directly implemented because rankP = 3

and rankP /∈ {2, 1}.

In this section, we introduce several transformation techniques to overcome these two

186

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

obstacles. The basic idea is to use the conjunction of projections and auxiliary qubit

to convert the target assertion into some new assertions without dimension mismatch.

Then some additional unitary transformations are introduced to rotate the basis in the

projective measurements. These transformation techniques can be employed to compile

the assertions and make a quantum program with projection-based assertions executable

on a measurement-restricted real quantum computer.

7.4.1 Additional Unitary Transformation

We first resolve the limited measurement basis problem without considering the di-

mension mismatch problem. Suppose the assertion assert(q;P) we hope to implement is

over n qubits, that is, q = q1, q2, · · · , qn, each of qi is a single qubit variable. We assume

that rankP = 2m for some integer m with 0 ≤ m ≤ n so there is no dimension mismatch

problem.

Proposition 7.4.1 For projection P with rankP = 2m, there exists a unitary transfor-

mation UP such that (here Iqi = IHqi
):

UPPU
†
P = Qq1 ⊗Qq2 ⊗ · · · ⊗Qqn =

n⊗
i=1

Qqi ≜ QP ,

where Qqi ∈ {|0⟩qi⟨0|, |1⟩qi⟨1|, Iqi} for each 1 ≤ i ≤ n. UP and QP can be obtained

immediately after we diagonalize the projection P .

We call the pair (UP , QP) an implementation in the computational basis (ICB for

short) of assert(q;P). ICB is not unique in general. According to this proposition, we

have the following procedure to implement assert(q;P):

1. Apply UP on q;

187

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

2. Check QP in the following steps: For each 1 ≤ i ≤ n, if Qqi = |0⟩qi⟨0| or |1⟩qi⟨1|,

then measure qi in the computational basis to see whether the outcome k is con-

sistent with Qqi ; that is, Qqi = |k⟩qi⟨k|. If all outcomes are consistent, go ahead;

otherwise, we terminate the program with an error message;

3. Apply U †
P on q.

The transformation for assert(q;P) with ICB (UP , QP) when rankP = 2m is:

assert(q;P) ≡ q := UP [q]; assert(q;QP); q := U †
P [q]

Since QP is now a projection in the computational basis, assert(q;QP) can be executed

by Definition 7.3.2 and the projective measurement constructed by QP is executable.

Example 7.4.1 Given a two-qubit register q = q1, q2, if we want to test whether it is in

the Bell state (maximally entangled state) |Φ⟩ = 1√
2
(|00⟩+ |11⟩), we can use the assertion

assert(q;P = |Φ⟩⟨Φ|). We apply proposition 7.4.1 and diagonalize the projection P .

P =
1√
2

(|00⟩ + |11⟩) 1√
2

(⟨00| + ⟨11|) =

1
2

0 0 1
2

0 0 0 0

0 0 0 0

1
2

0 0 1
2

UPPU
†
P =

1√
2

0 0 1√
2

0 1√
2

1√
2

0

1√
2

0 0 −1√
2

0 1√
2

−1√
2

0

· P ·

1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

1√
2

0 −1√
2

0

=

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

= QP

The generated diagonal matrix QP is actually |0⟩q1⟨0| ⊗ |0⟩q2⟨0| and the unitary UP can

188

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

be implemented with first an CNOT gate and then a H gate. Therefore, we have:

H[q1]CNOT[q1, q2] · P · CNOT[q1, q2]H[q1] = |0⟩q1⟨0| ⊗ |0⟩q2⟨0|

we can first apply CNOT gate on q and H gate on q1, then measure q1 and q2 in the

computational basis. If both outcomes are “0”, we apply H on q1 and CNOT on q again

to recover the state; otherwise, we terminate the program and report that the state is not

Bell state |Φ⟩.

Unitary generation: The generated unitary may not be the exact inverse of the

preceding operations. Suppose the desired state is |ψ⟩, the only requirement for the uni-

tary is U : |ψ⟩ 7→ |0⟩, and the output of U under input states other than |ψ⟩ does not

matter. This may allow simpler implementations of U . In general, it is not clear whether

the generated U will be simpler or more complex when decomposing the U into basic

single- and two-qubit gates. We demonstrate an in-principle unitary generation process

but the actual implementation can be further optimized with techniques like tensor net-

work, decision diagram, symbolic execution, etc. The scalability will be determined by

the optimization on the matrix calculation and storage. This is left as future work.

7.4.2 Combining Assertions

The first transformation technique solves the measurement basis issue but does not

consider the dimension mismatch issue, which will be addressed by the next two tech-

niques. We first consider an assertion assert(q;P) in which the projection P has

rankP ≤ 2n−1 and rankP ̸= 2m with some integer m. We have the following proposi-

tion to decompose this assertion into multiple sub-assertions that do not have dimension

mismatch issues.

189

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Proposition 7.4.2 For projection P with rankP ≤ 2n−1, there exist projections P1, P2,

· · · , Pl satisfying rankPi = 2ni for all 1 ≤ i ≤ l where ni ∈ N, such that P = P1 ∩ P2 ∩

· · · ∩ Pl.

Essentially, this way works for our scheme because conjunction can be defined in

Birkhoff-von Neumann quantum logic. Theoretically, l = 2 is sufficient; but in practice,

a larger l may allow us to choose simpler Pi for each i ≤ l.

Using the above proposition, to implement assert(q;P), we may sequentially ap-

ply assert(q;P1), assert(q;P2), · · · , assert(q;Pl). Suppose (UPi
, QPi

) is an ICB of

assert(q;Pi) for 1 ≤ i ≤ l, we have the following scheme to implement assert(q;P):

1. Set counter i = 1;

2. If i = 1, apply UP1 ; else if i = l, apply U †
Pl

and return; otherwise, apply U †
Pi−1

UPi
;

3. Check QPi
; i := i+ 1; go to step (2).

The transformation for assert(q;P) when rankP ≤ 2n−1 is:

assert(q;P) ≡ assert(q;P1); assert(q;P2); ; assert(q;Pl)

where rankPi = 2ni and P = P1 ∩P2 ∩ · · · ∩Pl. There are no dimension mismatch issues

for these sub-assertions and they can be further transformed with Proposition 7.4.1.

Example 7.4.2 Given register q = q1, q2, q3, how to implement assert(q;P) where P =

|00⟩q1q2⟨00| ⊗ Iq3 + |111⟩q1q2q3⟨111|? We first observe that P = P1 ∩ P2 where

P1 = (|00⟩q1q2⟨00| + |11⟩q1q2⟨11|) ⊗ Iq3 ,

P2 = |00⟩q1q2⟨00| ⊗ Iq3 + |100⟩q1q2q3⟨100| + |111⟩q1q2q3⟨111|.

190

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

with following properties:

CNOT[q1, q2] · P1 · CNOT[q1, q2] = Iq1 ⊗ |0⟩q2⟨0| ⊗ Iq3

Toffoli[q1, q3, q2] · P2 · Toffoli[q1, q3, q2] = Iq1 ⊗ |0⟩q2⟨0| ⊗ Iq3 .

Therefore, we can implement assert(q;P) by:

• Apply CNOT[q1, q2];

• Measure q2 and check if the outcome is “0”; if not, terminate and report the error

message;

• Apply CNOT[q1, q2] and then Toffoli[q1, q3, q2];

• Measure q2 and check if the outcome is “0”; if not, terminate and report the error

message;

• Apply Toffoli[q1, q3, q2].

7.4.3 Auxiliary Qubits

The previous two techniques can transform projections with rankP ≤ 2n−1 but those

projections with rankP > 2n−1 remain unresolved. This case cannot be handled with

the conjunction of a group of sub-assertions directly because logic conjunction can only

result in a subspace with fewer dimensions (compared with the original subspaces of the

projections in the sub-assertions). The possible subspace of a projection in an n-qubit

system has at most 2n−1 dimensions since we have to measure at least one qubit. As

a result, we cannot use logic conjunction to construct a projection with rankP > 2n−1.

The logic disjunction of projections with small ranks can create a subspace of larger size

but it is not suitable for assertion design. As discussed at the beginning of Section 7.3,

191

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

it is expected that a correct state is not changed during the assertion checking. But if a

state ρ at the tested program location is in a space of a large size, applying a projective

measurement with a small subspace may destroy the tested state when the tested state

is not in the small subspace, leading to inefficient assertion checking.

We propose the third technique, introducing auxiliary qubits, to tackle this problem.

Actually, one auxiliary qubit is already sufficient. Suppose we have an n-qubit program

with a 2n-dimensional state space. If we add one additional qubit into this system,

the system now has n + 1 qubits with a 2n+1-dimensional state space. This new qubit

is not in the original quantum program so it is not involved in any assertions for the

program. A projection P with 2n−1 < rankP ≤ 2n can thus be implemented in the new

2n+1-dimensional space using the previous two transformation techniques. One auxiliary

qubit is sufficient because the projection P is originally in a 2n-dimensional space and

we always have rankP ≤ 2n.

The transformation for assert(q;P) when rankP > 2n−1 is:

assert(q;P) ≡ a := |0⟩; assert(a, q; |0⟩a⟨0| ⊗ P)

where a is the new auxiliary qubit. Noting that rank(|0⟩a⟨0| ⊗ P) = rankP ≤ 2n.

Example 7.4.3 Given register q = q1, q2, we aim to implement assert(q;P) where P =

|0⟩q1⟨0| ⊗ Iq2 + |11⟩q1q2⟨11|.

We may have the decomposition |0⟩a⟨0| ⊗ P = P0 ∩ P1, where

P0 = |0⟩a⟨0| ⊗ Iq, P1 = |00⟩aq1⟨00| ⊗ Iq2 + |011⟩aq1q2⟨011| + |100⟩aq1q2⟨100|,

192

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

and P1 can be implemented with one additional unitary transformation:

Fredkin[q2, a, q1] · P1 · Fredkin[q2, a, q1] = Ia ⊗ |0⟩q1⟨0| ⊗ Iq2 .

where the Fredkin gate is defined in Chapter 2.

Note that P0 automatically holds since the auxiliary qubit a is already initialized to

|0⟩, we only need to execute:

• Introduce auxiliary qubit a, initialize it to |0⟩;

• Apply Fredkin[q2, a, q1];

• Measure q1 and check if the outcome is “0”; if not, terminate and report the error

message;

• Apply Fredkin[q2, a, q1]; free the auxiliary qubit a.

7.4.4 Local Projection: Trading Checking Accuracy for Imple-

mentation Efficiency

As shown in the three transformation techniques, we need to manipulate the pro-

jection operators and some unitary transformations to implement an assertion. These

transformations can be easily automated when n is small or the tested state is not fully

entangled (which means we can deal with them part by part directly). For projections

over multiple qubits, it is possible that the qubits are highly entangled. Asserting such

entangled states accurately requires non-trivial efforts to find the unitary transforma-

tions and we need to manipulate operators of size 2n for an n-qubit system in the worst

case, which makes it hard to fully automate the transformations on a classical computer

when n is large. Such scalability issue widely exists in quantum computing research that

193

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

requires automation on a classical computer, e.g., simulation [247], compiler optimization

and its verification [248, 249], formal verification of quantum circuits [232, 250].

In our runtime projection-based assertion checking, we propose local projection

technique to mitigate this scalability problem (not fully resolve it) by designing asser-

tions that only manipulate and observe part of a large system without affecting a highly

entangled state over multiple qubits. These assertions, which are only applied on a

smaller number of qubits, could always be automated easily with simplified implementa-

tions but the assertion checking constraints are also relaxed. This approach is inspired

by the quantum state tomography via local measurements [251, 252, 253], a common

approach in quantum information science.

We first introduce the notion of partial trace to describe the state (operator) of a

subsystem. Let q1 and q2 be two disjoint registers with corresponding state Hilbert

space Hq1 and Hq2 , respectively. The partial trace over Hq1 is a mapping trq1(·) from

operators on Hq1 ⊗ Hq2 to operators in Hq2 defined by: trq1(|ϕ1⟩q1⟨ψ1| ⊗ |ϕ2⟩q2⟨ψ2|) =

⟨ψ1|ϕ1⟩ · |ϕ2⟩q2⟨ψ2| for all |ϕ1⟩, |ψ1⟩ ∈ Hq1 and |ϕ2⟩, |ψ2⟩ ∈ Hq2 together with linearity.

The partial trace trq2(·) over Hq2 can be defined dually. Then, the local projection is

defined as follows:

Definition 7.4.1 (Local projection) Given assert(q;P), a local projection Pq′ over

q′ ⊆ q is defined as:

Pq′ = supp
(
trq\q′(P)

)
.

Proposition 7.4.3 (Soundness of local projection) For any ρ |= P , we have ρ |=

Pq′ ⊗ Iq\q′.

This simplified assertion with Pq′ will lose some checking accuracy because some

states not in P may be included in Pq′ , allowing false positives. However, by taking

the partial trace, we are able to focus on the subsystem of q′. The implementation of

194

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

assert(q′;Pq′) can partially test whether the state satisfies P . Moreover, the number

of qubits in q′ is smaller, and we only need to manipulate small-size operators when

implementing assert(q′;Pq′). We have the following implementation strategy which is

essentially a trade-off between assertion implementation efficiency and checking accuracy:

• Find a sequence of local projection Pq1 , Pq2 , · · · , Pql of assert(q;P);

• Instead of implementing the original assert(q;P), we sequentially apply

assert(q1;Pq1), assert(q2;Pq2), · · · , assert(ql;Pql).

Example 7.4.4 Given register q = q1, q2, q3, q4, we want to check if the state is the

superposition of the following states:

|ψ1⟩ = |+⟩q1|111⟩q2q3q4 , |ψ2⟩ = |000⟩q1q2q3|−⟩q4 ,

|ψ3⟩ =
1√
2
|0⟩q1 (|00⟩q2q3 + |11⟩q2q3) |1⟩q4 .

To accomplish this, we may apply assert(q;P) with P = supp
(∑3

i=1 |ψi⟩⟨ψi|
)
. However,

projection P is highly entangled which prevents efficient implementation. But if we only

observe part of the system, we will the following local projections:

Pq1q2 = trq3q4(P) = |0⟩q1⟨0| ⊗ Iq2 + |11⟩q1q2⟨11|,

Pq2q3 = trq1q4(P) = |00⟩q2q3⟨00| + |11⟩q2q3⟨11|,

Pq3q4 = trq1q2(P) = |00⟩q3q4⟨00| + |11⟩q3q4⟨11|.

To avoid implementing assert(q, P) directly, we may use assert(q1, q2; Pq1q2),

assert(q2, q3; Pq2q3), and assert(q3, q4;Pq3q4) instead. Though these assertions do not

fully characterize the required property, their implementation requires only relatively low

cost, i.e., each of them only acts on two qubits.

195

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

In the next example, we show that a local projection may detect some bugs but not

all of them.

Example 7.4.5 Consider the following program with three qubits p, q, r:

S ≡ p := H[p]; q := H[q]; r := H[r]; p, q := CZ[p, q]; p, r := CZ[p, r]; q := H[q]; r := H[r]

The program S produces a GHZ state |000⟩pqr+|111⟩pqr√
2

if the input state is |000⟩pqr. Suppose

a full description of GHZ state involving three qubits is somewhat difficult to implement

due to complexity; instead, we choose the assertion assert(p, q;P) inserted at the end of

the program where projection P is the local projection of GHZ state, i.e.,

P = |00⟩pq⟨00| + |11⟩pq⟨11| =

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

which can be implemented by 1). Apply CNOT on p, q; 2). Measure qubit q and check

if the measurement output is 0; 3). Apply CNOT on p, q. However, it is not difficult

to realize that assert(p, q;P) is not a perfect description of GHZ state; for example, the

following *bug* program Sbug where the final unitary transformation r := H[r] is missing:

Sbug ≡ p := H[p]; q := H[q]; r := H[r]; p, q := CZ[p, q]; p, r := CZ[p, r]; q := H[q]

also passes assert(p, q;P) with input |000⟩pqr. However, the program Sbug in fact pro-

duces:

|00⟩pq|+⟩r + |11⟩pq|−⟩r√
2

196

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

if the input is |000⟩pqr. On the other hand, consider another *bug* program S ′
bug where

the unitary transformation q := H[q] is missing:

S ′
bug ≡ p := H[p]; q := H[q]; r := H[r]; p, q := CZ[p, q]; p, r := CZ[p, r]; r := H[r]

Then it can be shown that if the input state is |000⟩pqr, assert(p, q;P) is not passed and

we are able to conclude that S ′
bug is not the desired program using Theorem 7.3.1.

7.4.5 Summary

To the best of our knowledge, the three transformations constitute the first work-

ing flow to implement an arbitrary projective measurement on measurement-restricted

quantum computers. A complete flow to make an assertion assert(q;P) (on n qubits)

executable is summarized as follows:

1. If rankP > 2n−1, initialize one auxiliary qubit a, let n := n+1 and P := |0⟩a⟨0|⊗P

(Section 7.4.3);

2. If rankP /∈ {2n−1, 2n−2, · · · , 1}, find a group of sub-assertions (Section 7.4.2);

3. Apply unitary transformations to implement the assertion or sub-assertions (Sec-

tion7.4.1).

The three transformations cover all possible cases for projections with different ranks and

basis. Therefore, all projection-based assertions can finally be executed on a quantum

computer. The local projection technique can be applied when an assertion is hard to be

implemented (automatically). Whether to use local projection is optional.

197

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

7.5 Overall Comparison

In this section, we will have an overall comparison among Proq and two other quan-

tum program assertions in terms of assertion coverage (i.e., the expressive power of the

predicates, the assertion locations) and debugging overhead (i.e., the number of execu-

tions, additional gates, measurements).

Baseline: We use the statistical assertions (Stat) [237] and the QEC-inspired asser-

tions (QECA) [240] as the baseline assertion schemes. To the best of our knowledge,

they are the only published quantum program assertions till now. Stat employs a clas-

sical statistical test on the measurement results to check if a state satisfies a predicate.

QECA introduces auxiliary qubits to indirectly measure the tested state.

7.5.1 Coverage Analysis

Assertion predicates: Proq employs projections which are able to represent a

wide variety of predicates. However, both Stat and QECA only support three types

of assertions: classical assertion, superposition assertion, and entanglement assertion.

The expressive power difference has been summarized in Figure 7.1. For Stat, all these

three types of assertions can be considered as rankP = 1 special cases in Proq. The

corresponding projections are

P = |t⟩ ⟨t| , t ranges over all n-bit strings for classical assertion

(suppose n qubits are asserted)

P = |+++ . . .⟩ ⟨+++ . . .| for superposition assertion

P = (|00 . . . 0⟩ + |11 . . . 1⟩)(⟨00 . . . 0| + ⟨11 . . . 1|) for entanglement assertion

198

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Stat’s language does not support other types of states. QECA supports arbitrary 1-

qubit states (these states can naturally cover the classical assertion and superposition

assertion in Stat), some special 2-qubit entanglement states, and some special 3-qubit

entangle states. These states can be considered as some rankP = 1, 2, 4 special cases in

Proq, respectively. So all QECA assertions are covered in Proq. Moreover, the imple-

mentations of QECA assertions are all designed manually without a systematic assertion

implementation generation so they cannot be extended to more cases directly. The ex-

pressive power of the assertions in Proq, which can support many more complicated cases

as introduced in Section 7.3 and 7.4, is much more than that of the baseline schemes.

Assertion locations: Thanks to the expressive power of the predicates in Proq,

projection-based assertions can be injected at more locations with complex intermediate

states in a program. The baseline schemes can only inject assertions at those locations

with states that can be checked with the very limited types of assertions. If the baseline

schemes insert assertions at locations with other types of states, their assertions will

always return negative results since the predicates in their assertions are not correct.

Therefore, the number of potential assertion injection locations of Proq is much larger

than that of the baseline schemes.

7.5.2 Overhead Analysis

It is not easy to directly perform a fair overhead comparison between Proq and the

baseline because Proq supports many more types of predicates as explained above. We

first discuss the impact of this difference in assertion coverage in practical debugging.

Assertion coverage impact: Proq support assertions that cannot be implemented

in Stat and QECA. These assertions will help locate the bug more quickly. When inserting

assertions in a tested program, Proq assertions can always be injected closer to a potential

199

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

bug because Proq allows more assertion injection locations. The potential bug location

can then be narrowed down to a smaller program segment, which makes it easier for the

programmers to manually search for the bug after an error message is reported.

Then we remove the assertion coverage difference by assuming all the assertions are

within the three types of assertions supported in all assertion schemes.

Assertion checking overhead: We mainly discuss two aspects of the assertion

checking overhead, 1) the number of assertion checking program executions and 2) the

numbers of additional unitary transformations (quantum gates) and measurements to

implement each of the assertions.

1. Compare with Stat: Stat’s approach is quite different from Proq. It only in-

jects measurements to directly measure the tested states without any additional

transformations.

(a) number of executions: The classical assertion, the first supported assertion

type in Stat, is equivalent to the corresponding one in Proq. The tested state

remains unchanged if it is the expected state. However, when checking for super-

position states and entanglement states, the number of assertion checking program

executions will be large because 1) Stat requires a large number of samples for each

assertion to reconstruct an amplitude distribution over multiple basis states, and

2) the measurements will always affect the tested states so that only one assertion

can be checked per execution. It is not yet clear how many executions are required

since the statistical properties of checking Stat assertions are not well studied. The

original Stat paper [237] claims to apply chi-square test and contingency table

analysis (with no details about the testing process) on the measurement results

collection of each assertion but it does not provide the numbers of required execu-

tions to achieve an acceptable confidence level for different assertions over different

200

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

numbers of qubits, which makes it hard to directly compare the checking overhead

(no publicly available code). We believe the number of executions will be large at

least when the tested state is in a superposition state over multiple computational

basis states. For example, the superposition assertion, which checks for the state

|+++ . . .⟩ in an n-qubit system, requires k ≫ 2n testing executions to observe a

uniform distribution over all 2n basis states.

(b) number of gates and measurements: For an assertion (any type) in Stat,

it only requires n measurements on n qubits in assertion checking but it may need

to be executed many times as explained above. For the corresponding assertions

in Proq, a classical assertion requires n measurements (the same with Stat, e.g.,

Assertion A0 in Figure 7.3). A superposition assertion requires additionally 2n H

gates (e.g., Assertion A1 in Figure 7.3). An entanglement assertion requires ad-

ditionally 2(n − 1) CNOT gates and 2 H gates (e.g., Assertion A2 in Figure 7.3).

Proq only needs few additional gates (linear to the number of qubits) for the com-

monly supported assertions.

2. Compare with QECA: All QECA assertions are equivalent to their correspond-

ing Proq assertions. Therefore, QECA has the same checking efficiency and sup-

ports multi-assertion per execution if we only consider those QECA-supported as-

sertions. The statistical properties (Theorem 7.3.1 and 7.3.2) we prove can also

be directly applied to QECA. So the number of the assertion checking ex-

ecutions is the same for QECA and Proq. The difference between QECA and

Proq is that the actual assertion implementation in terms of quantum gates and

measurements. The implementation cost of Proq is lower than that of QECA

because QECA always need to couple the auxiliary qubits with existing qubits. We

will have concrete data of the assertion implementation cost comparison between

201

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Proq and QECA later in a case study in Section 7.6.1.

7.6 Case Studies: Runtime Assertions for Realistic

Quantum Algorithms

In this section, we perform case studies by applying projection-based assertions on

two famous sophisticated quantum algorithms, the Shor’s algorithm [3] and the HHL

algorithm [191]. For Shor’s algorithm, we focus on a concrete example of its quantum or-

der finding subroutine. The assertions are simple and can be supported by the baselines,

which allows us to compare the resource consumption between Proq and the baseline and

show that Proq could generate low overhead runtime assertions. For HHL algorithm, in-

stead of just asserting a concrete circuit implementation, we will show that Proq could

have non-trivial assertions that cannot be supported by the baselines. In these non-trivial

assertions, we will illustrate how the proposed techniques, i.e., combining assertions, aux-

iliary qubits, local projection, can be applied in implementing the projections. Numerical

simulation confirms that Proq assertions can work correctly.

7.6.1 Shor’s Algorithm

Shor’s algorithm was proposed to factor a large integer [3]. Given an integer N , Shor’s

algorithm can find its non-trivial factors within O(poly(log(N))) time. In this chapter,

we focus on its quantum order finding subroutine and omit the classical part which is

assumed to be correct.

202

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

p := |0⟩⊗n;

while M [p] = 1 do

p := |0⟩⊗n; q := |0⟩⊗n; assert(p, q;A0); p := H⊗n[p]; assert(p, q;A1);

p, q := Uf [p, q]; assert(p, q;A2); p := QFT−1[p]; assert(p, q;A3);

od

Figure 7.2: Shor’s algorithm program with assertions. The projections A0, A1, A2,
A3 are defined in Section 7.6.1.

Shor’s Algorithm Program

Figure 7.2 shows the program of the quantum subroutine in Shor’s algorithm with

the injected assertions in the quantum while-language. Briefly, it leverages Quantum

Fourier Transform (QFT) to find the period of the function f(x) = ax mod N where a is

a random number selected by a preceding classical subroutine. The transformation Uf ,

the measurement M , and the result set R are defined as follows:

Uf : |x⟩p |0⟩q 7→ |x⟩p |a
x mod N⟩q ,M =

{
M0 =

∑
r∈R

|r⟩ ⟨r| ,M1 = I −M0

}
,

R = {r | gcd(a
r
2 + 1, N) or gcd(a

r
2 − 1, N) is a nontrivial factor of N}

For the measurement, the set R consists of the expected values that can be accepted by

the follow-up classical subroutine. For a comprehensive introduction, please refer to [25].

Assertions for a Concrete Example

The circuit implementation we select for the subroutine is for factoring N = 15 with

the random number a = 11 [254]. Based on our understanding of Shor’s algorithm, we

have four assertions, A0, A1, A2, and A3, as shown in Figure 7.2. Figure 7.3 shows the

final assertion-injected circuit with 5 qubits. The circuit blocks labeled with assert are

203

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

Quantum Order Finding Subroutine

Classical Results Checking Subroutine (assumed to be correct)Success

Fail

assert A0

No unitary required

assert A1

check if the result is 000

The additional
unitary is 3

Hadamard gates

check if the result is 00000

assert A2

check if the result is 000

The additional unitary is
2 CNOT gates and
 1 Hadamard gate

assert A3

check if the result is 000

The additional
unitary is 1

Hadamard gate

𝑃 = |+ + + + + +|

𝑃 = |00000 00000| 𝑃 = |0 0 + 0 0 + |

𝑃 = (|000 + |111)
(000| + 111|)

Figure 7.3: Assertion-injected circuit implementation for Shor’s algorithm with
N = 15 and a = 11

for the four assertions with four projections defined as follows:

A0 = |00000⟩0,1,2,3,4⟨00000|; A1 = |+++⟩0,1,2 ⟨+++| ⊗ |00⟩3,4⟨00|;

A2 = |++⟩0,1 ⟨++| ⊗ (|000⟩ + |111⟩)2,3,4(⟨000| + ⟨111|);

A3 = (|000⟩ + |001⟩)0,1,2(⟨000| + ⟨001|) ⊗ (|00⟩ + |11⟩)3,4(⟨00| + ⟨11|).

We detail the implementation of the assertion circuit blocks in the upper half of Fig-

ure 7.3. For each assertion, we list its projection, the additional unitary transformations,

with the complete implementation circuit diagram. For A1, A2, and A3, since the qubits

not fully entangled, we only assert part of the qubits without affecting the results. The

unitary transformations are decomposed into CNOT gates and single-qubit gates, which

204

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

is the same with QECA for a fair comparison.

Assertion Comparison

Similar to Section 7.5, we first compare the coverage of assertions for this realistic

algorithm and then detail the implementation cost in terms of the number of additional

gates, measurements, and auxiliary qubits.

Assertion coverage: All four assertions are supported in Stat and Proq. For QECA,

A0, A1, and A3 are covered but A2 is not yet supported even if it is an entanglement

state. The reason is that the QECA assertion only supports 3-qubit entanglement states

with rankP = 4 but A2 is a 3-qubit entanglement state with rankA2 = 1.

We compare the circuit cost when implementing the assertions between Proq and

QECA. Stat is not included because we have already discussed the implementation dif-

ference in Section 7.5.2 and it is not clear how many executions are required for Stat.

Table 7.1 shows the implementation cost of the three assertions supported by both

Proq and QECA. In particular, we compare the number of H gates, CNOT gates, mea-

surements, and auxiliary qubits. It can be observed that Proq uses no CNOT gates and

auxiliary qubits for the three considered assertions, while QECA always needs to use ad-

ditional CNOT gates and auxiliary qubits. This reason is that QECA always measures

auxiliary qubits to indirectly probe the qubit information. So that additional CNOT

gates are always required to couple the auxiliary qubits with existing qubits. This design

Table 7.1: Detailed assertion implementation cost comparison between Proq and QECA [240]

A0 A1 A3

of Proq QECA Proq QECA Proq QECA
H 0 0 6 6 2 2

CNOT 0 5 0 6 0 4
Measure 5 5 3 3 3 3

Aux. Qbit 0 1 0 1 0 1

205

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

p := |0⟩⊗n; q := |0⟩⊗m; r := |0⟩;
while M [r] = 1 do

assert(p, r;P);

q := |0⟩⊗m; q := Ub[q]; p := H⊗n[p]; p, q := Uf [p, q]; p := QFT−1[p]; assert(p;S);

p, r := Uc[p, r]; p := QFT[p]; p, q := U †
f [p, q]; p := H⊗n[p]; assert(p, q, r;R);

od

assert(q;Q);

Figure 7.4: HHL algorithm program with assertions

significantly increases the implementation cost when comparing with Proq.

To summarize, we demonstrate the complete assertion-injected circuit for a quantum

program of Shor’s algorithm and the implementation details of the assertions. We com-

pare the implementation cost between Proq and QECA to show that Proq has lower cost

for the limited assertions that are supported by both assertion schemes.

7.6.2 HHL Algorithm

In the first example of Shor’s algorithm, we focus the assertion implementation on a

concrete circuit example and compare against other assertions due to the simplicity of

the intermediate states. In the next HHL algorithm example, we will have non-trivial

assertions that are not supported in the baselines and demonstrate how to apply the

techniques introduced in Section 7.4.

The HHL algorithm was proposed for solving linear systems of equations [191]. Given

a matrix A and a vector b⃗, the algorithm produces a quantum state |x⟩ which is corre-

sponding to the solution x⃗ such that Ax⃗ = b⃗. It is well-known that the algorithm offers

up to an exponential speedup over the fastest classical algorithm if A is sparse and has

a low condition number κ.

206

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

HHL Program

The HHL algorithm has been formulated with the quantum while-language in [255]

and we adopt the assumptions and symbols there. Briefly speaking, A is a Hermitian

and full-rank matrix with dimension N = 2m, which has the diagonal decomposition

A =
∑N

j=1 λj|uj⟩⟨uj| with corresponding eigenvalues λj and eigenvectors |uj⟩. We assume

for all j, δj =
λjt0
2π

∈ N+ and set T = 2n = ⌈maxj δj⌉, where t0 is a time parameter to

perform unitary transformation Uf . Moreover, the input vector b⃗ is presumed to be

unit and corresponding to state |b⟩ with the linear combination |b⟩ =
∑N

j=1 βj|uj⟩. It is

straightforward to find the solution state |x⟩ = c
∑N

j=1
βj
λj
|uj⟩ where c is for normalization.

The HHL program has three registers p, q, r which are n,m, 1-qubit systems and used

as the control system, state system, and indicator of while loop, respectively. For detailed

definitions of Ub, Uf , QFT, and the measurement M , please refer to [255, 191].

Debugging Scheme for HHL Program

We introduce the debugging scheme for the HHL program shown in Figure 7.4. The

projections P,Q, S,R are defined as follows:

P = |0⟩p⟨0| ⊗ |0⟩r⟨0|; Q = |x⟩q⟨x|; S = supp

(
N∑
j=1

|δj⟩p⟨δj|

)

R = |0⟩p⟨0| ⊗ (|x⟩q⟨x| ⊗ |1⟩r⟨1| + Iq ⊗ |0⟩r⟨0|).

Projection R is across all qubits while P is focused on register p, r and Q is focused

on the output register q. These projections can be implemented using the techniques

introduced in Section 7.4; more precisely:

1. Implementation of assert(p, r;P):

measure register p and r directly to see if the outcomes are all “0”;

207

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

2. Implementation of assert(q;Q):

apply Ux on q; (additional unitary transformation in Section 7.4.1)

measure register q and check if the outcome is “0”;

apply U †
x on q;

3. Implementation of assert(p, q, r;R):

measure register p directly to see if the outcome is “0”;

introduce an auxiliary qubit a, initialize it to |0⟩; (auxiliary qubit in Section 7.4.3)

apply Ux on q and UR on r, q, a;

measure register a and check if the outcome is “0”; (combining assertions in Sec-

tion 7.4.2)

apply U †
R on r, q, a and U †

x on q;

where Ux is defined by Ux|x⟩ = |0⟩ and UR is defined by

UR|1⟩r⟨1| ⊗ |i⟩q⟨i| ⊗ |k⟩a⟨k| = |1⟩r⟨1| ⊗ |i⟩q⟨i| ⊗ |k ⊕ 1⟩a⟨k ⊕ 1|

for i ≥ 1 and k = 0, 1 and unchanged otherwise.

We need to pay more attention to assert(p;S). The most accurate predicate here is

S ′ =
N∑

j,j′=1

βjβj′|δj⟩p⟨δj′| ⊗ |uj⟩q⟨uj′ | ⊗ |0⟩r⟨0|

which is a highly entangled projection over register p and q. As discussed in Section 7.4.4,

in order to avoid the hardness of implementing S ′, we introduce S = supp(trq,r(S
′)) which

is the local projection of S ′ over p. Though assert(p;S) is strictly weaker than original

assert(p, q, r;S ′), it can be efficiently implemented and partially test the state.

208

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

0.5053

0.0080 0.0062 0.0111

0.4695

0 0 0 0
0.00

0.20

0.40

0.60

000000 000001 000010 000011 010000 010001 010010 010011 others

1

0 0 0 0
0.00

0.50

1.00

00000 00001 00010 00011 others

Assertion P Assertion Q

Assertion R

1st time entering the loop

2nd time entering the loop

Before entering Assertion Q

After the introduced unitary

transformation Ux0.2424

0.0835
0.2188

0.4553

0
0.00

0.25

0.50

00000 00001 00010 00011 others

0.2170 0.2003
0.2885 0.2943

0.0000
0.00

0.20

0.40

10000 10001 10010 10011 others

1

0 0 0 0
0.00

0.50

1.00

10000 10001 10010 10011 others

0.1286

0.0443

0.1161

0.2416

0.1019 0.0940
0.1354 0.1382

0
0.00

0.10

0.20

0.30

00000 00001 00010 00011 10000 10001 10010 10011 others

Before entering Assertion R

0.1945
0.2348 0.2932

0.2305

0.0020 0.0194 0.0022 0.0234 0
0.00

0.10

0.20

0.30

00100 00101 00110 00111 01100 01101 01110 01111 others

Assertion S
For both before and

after the assertion

r, p[2], q[2]

r, p[2], q[2]

r, p[2], q[2]

r, p[2], q[2]

r, p[2], q[2]

r, p[2], q[2]

a, r, p[2], q[2]

After the introduced unitary

transformations Ux and UR

Figure 7.5: Numerical simulation results for the states around the assertions in HHL
algorithm

Numerical Simulation Results

For illustration, we choose m = n = 2 as an example. Then the matrix A is 4 × 4

matrix and b is 4 × 1 vector. We first randomly generate four orthonormal vectors for

|uj⟩ and then select δj to be either 1 or 3. Such configuration will demonstrate the

applicability of all four techniques in Section 7.4. Finally, A and b are generated as

209

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

follows.

A =

1.951 −0.863 0.332 −0.377

−0.863 2.239 −0.011 −0.444

0.332 −0.011 1.301 −0.634

−0.377 −0.444 −0.634 2.509

, b =

−0.486

−0.345

−0.494

−0.633

Assertion coverage: We have four assertions, labeled P , Q, R, and S, for the HHL

program. Only P is for a classical state and supported by the Stat and QECA. Q, R,

and S are more complex and not supported by the baseline assertions.

Figure 7.5 shows the amplitude distribution of the states during the execution of

the four assertions and each block corresponds to one assertion. Since our experiments

are performed in simulation, we can directly obtain the state vector |ψ⟩. The X-axis

represents those basis states of which the amplitudes are not zero. The Y-axis is the

probability of the measurement outcome. Each histogram represents the probability

distribution across different computational basis states. This probability is be calculated

by ∥⟨ψ|x⟩∥2, where |x⟩ is the corresponding basis state. The texts over the histograms

represent the program locations where we record each of the states. For example, in

‘Assertion Q’ block, we show that the state vector has non-zero amplitudes on multiple

basis states. But after applying the unitary transformation Assertion Q, the state vector

only has non-zero amplitudes on one basis state.

Assertion P is at the beginning of the loop body. The predicate is P = |000⟩r,p ⟨000|,

which means that the quantum registers r and p should always be in state |0⟩ and |00⟩,

respectively, at the beginning of the loop body. Figure 7.5 shows that when the program

enters the loop D at the first and second time, the assertion is satisfied and the quantum

registers r and p are 0.

Assertion Q is at the end of the program. Figure 7.5 shows that there are non-zero

amplitudes at 4 possible measurement outcomes at the assertion location. But after the

210

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

applied unitary transformation, the only possible outcome is 10000. Such an assertion is

hard for Stat and QECA to describe but it is easy to define this assertion using projection

in Proq.

Assertion R is at the end of the loop body. Figure 7.5 confirms that the basis states

with non-zero amplitudes are in the subspace defined by the projection in assertion R.

Its projection implementation involves the techniques of combining assertions and using

auxiliary qubits. Such complex predicates cannot be defined in Stat and QECA while

Proq can implement and check it.

Assertion S is in the middle of the loop body. At this place the state is highly en-

tangled as mentioned above and directly implementing this projection will be expensive.

We employ the local projection technique in Section 7.4.4. Since δjs are selected to be

either 1 or 3, the projection S becomes |01⟩p⟨01| + |11⟩p⟨11|. This simple form of local

projection that can be easily implemented. Figure 7.5 confirms that the tested highly

entangled state is not affected in this local projective measurement.

To summarize, we design four assertions for the program of HHL algorithm. Among

them, only P can be defined in Stat and QECA. The remaining three assertions, which

cannot be defined in Stat or QECA, demonstrate that Proq assertions can better test

and debug realistic quantum algorithms.

7.7 Discussion

Program testing and debugging have been investigated for a long time because it

reflects the practical application requirements for reliable software. Compared with its

counterpart in classical computing, quantum program testing and debugging are still at

a very early stage. Even the basic testing and debugging approaches (e.g., assertions)

are not yet available or well-developed for quantum programs. This work made efforts

211

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

towards practical quantum program runtime testing and debugging through studying how

to design and implement effective and efficient quantum program assertions. Specifically,

we select projections as predicates in our assertions because of the logical expressive power

and efficient runtime checking property. We prove that quantum program testing with

projection-based assertion is statistically effective. Several techniques are proposed to

implement the projection under machine constraints. To the best of our knowledge, this is

the first runtime assertion scheme for quantum program testing and debugging with such

flexible predicates, efficient checking, and formal effectiveness guarantees. The proposed

assertion technique would benefit future quantum program development, testing, and

debugging.

Although we have demonstrated the feasibility and advantages of the proposed as-

sertion scheme, several future research directions can be explored as with any initial

research.

Projection implementation optimization: We have shown that our assertion-

based debugging scheme can be implemented with several techniques in Section 7.3 and

demonstrated concrete examples in Section 7.6. However, further optimization of the

projection implementation is not yet well studied. One assertion can be split into several

sub-assertions, but different sub-assertion selections would have different implementation

overhead. We showed that one auxiliary qubit is enough but employing more auxiliary

qubits may yield fewer sub-assertions. For the circuit implementation of an assertion,

the decomposition of the assertion-introduced unitary transformations can be optimized

for several possible objectives, e.g., gate count, circuit depth. A systematic approach

to generate optimized assertion implementations is thus important for more efficient

assertion-based quantum program debugging in the future.

More efficient checking: Assertions for a complicated highly entangled state may

require significant effort for its precise implementation. However, the goal of assertions is

212

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

to check if a tested state satisfies the predicates rather than to prove the correctness of a

program. It is possible to trade-in checking accuracy for simplified assertion implemen-

tation by relaxing the constraints in the predicates. Local projection can be a solution

to approximate a complex projective measurement as we discussed in Section 7.4.4 and

demonstrated in one of the assertions for the HHL algorithm in Section 7.6. However,

the degree of predicate relaxation and its effect on the robustness of the assertions in

realistic erroneous program debugging need to be studied. Other possible directions, like

non-demolition measurement [256], are also worth exploring.

7.8 Related Work

This chapter explores runtime assertion schemes for testing and debugging a quantum

program on a quantum computer. In particular, the efficiency and effectiveness of our

assertions come from the application of projection operators. In this section, we first

introduce other existing runtime quantum program testing schemes, which are the closest

related work, and then briefly discuss other quantum programming research involving

projection operators.

7.8.1 Quantum Program Assertions

Recently, two types of assertions have been proposed for debugging on quantum com-

puters. Huang and Martonosi proposed quantum program assertions based on statistical

tests on classical observations [237]. For each assertion, the program executes from the

beginning to the place of the injected assertion followed by measurements. This pro-

cess is repeated many times to extract the statistical information about the state. The

advantage of this work is that, for the first time, assertion is used to reveal bugs in re-

alistic quantum programs and help discover several bug patterns. But in this debugging

213

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

scheme, each time only one assertion can be tested due to the destructive measurements.

Therefore, the statistical assertion scheme is very time consuming. Proq circumvents this

issue by choosing to use projective assertions.

Liu et al. further improved the assertion scheme by proposing dynamic assertion

circuits inspired by quantum error correction [240]. They introduce ancilla qubits and

indirectly collect the information of the qubits of interest. The success rate can also

be improved since some unexpected states can be detected and corrected in the noisy

scenarios. However, their approach requires manually designed transformation circuits

and cannot be directly extended to more general cases. Their transformation circuits

rely on ancilla qubits, which will increase the implementation overhead as discussed in

Section 7.6.1.

Moreover, both of these assertion schemes can only inspect very few types of states

that can be considered as some special cases of our proposed projection-based assertions,

leading to limited applicability. In summary, our assertion and debugging schemes out-

perform these two existing assertion schemes mentioned above in terms of expressive

power, flexibility, and efficiency.

7.8.2 Quantum Programming Language Research with Projec-

tions

Projection operators have been used in logic systems and static analysis for quantum

programs. All projections in (the closed subspaces of) a Hilbert space form an orthomod-

ular lattice [257], which is the foundation of the first Birkhoff-von Neumann quantum

logic [242]. After that, projections were employed to reason about [258] or develop a

predicate transformer semantics [259] of quantum programs. Recently, projections were

also used in other quantum logics for verification purposes [260, 255, 261]. Orthogonal to

214

Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs Chapter 7

these prior works, this chapter proposes to use projection-based predicates in assertion,

targeting runtime testing and debugging rather than logic or static analysis.

7.9 Conclusion

The demand for bug-free quantum programs calls for efficient and effective debugging

scheme on quantum computers. This work enables assertion-based quantum program de-

bugging by proposing Proq, a projection-based runtime assertion scheme. In Proq, pred-

icates in the assert primitives are projection operators, which can significantly increase

the expressive power and lower the assertion checking overhead compared with existing

quantum assertion schemes. We study the theoretical foundations of quantum program

testing with projection-based assertions to rigorously prove its effectiveness and effi-

ciency. We also propose several transformations to make the projection-based assertions

executable on measurement-restricted quantum computers. The superiority of Proq is

demonstrated by its applications to inject and implement assertions for two well-known

sophisticated quantum algorithms.

215

Chapter 8

SANQ: A Simulation Framework for

NISQ Computing System

8.1 Introduction

Quantum computing has attracted great interest from both academia and industry in

the last few decades due to its strong potential in accelerating various important appli-

cations, e.g., integer factorization [3], database search [7], molecule simulation [48]. The

second quantum revolution, transition from quantum theory to quantum engineering [4],

is leading us towards Noisy Intermediate-Scale Quantum (NISQ) era [53], when quan-

tum computing devices have fewer than 1000 qubits and are not large enough to support

Quantum Error Correction (QEC). To make good use of such NISQ devices which suffer

from limited qubit lifetime and imperfect operations, more attention is given to NISQ

system design and optimization in recent years, ranging across NISQ compiler [77, 85, 56],

quantum control hardware architecture [262, 28, 263], NISQ device [51, 50, 49, 264], etc.

Ideally, all these innovations should be evaluated on realistic devices. However, NISQ

systems require extreme execution environment and most of them still remain in physics

216

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

laboratories. Existing quantum computing cloud services, e.g. IBM Q Experience [37],

Rigetti’s QPU [52], only provide limited access which can not satisfy the ever-increasing

demand for experiments for evaluating new NISQ system designs. These restrictions are

blocking more researchers from getting into this area.

Simulation can be a potential solution to this problem as NISQ system innovations

can be proposed and evaluated without accessing realistic hardware. Since a complete

NISQ system consists of two major components, the quantum processor and its classical

control system, a simulator for NISQ systems needs to meet the following requirements:

1. Noisy Quantum Computing Simulation. Quantum processors in NISQ era

suffer from various noise effects. A simulator needs to be able to model the noises

on realistic NISQ devices. The simulated output fidelity can help guide future

NISQ system design.

2. Classical Control System Simulation. The design of a control system can

significantly affect the overall NISQ system performance, especially the timing be-

havior. Such effects also influence the performance of the quantum processor. For

example, longer execution time will bring more decoherence error.

Unfortunately, such a simulator that can satisfy these requirements is still miss-

ing. Traditional architectural simulators, e.g., GEM5 [265], GPGPU-Sim [266], are

designed for classical digital computing without the ability to simulate quantum comput-

ing. Previous quantum computing simulation optimizations, no matter from algorithm

level [267, 247, 268, 269, 270, 271, 272] or system level [273, 274, 275, 276, 277, 278], focus

on a single execution and do not consider the computation redundancy among different

noisy simulation traces. Moreover, a simulator that could capture the timing-sensitive

components in the control system [279, 280] and be adaptive to different underlying

quantum computing implementation technologies [28, 281] is still missing.

217

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

Classical Control System

Host Machine

Analog SignalPost-
Compilation
Instructions

Results

Control
Unit

Analog-to-Digital Interface

Digital-to-Analog Interface

QC Program

QC Compiler

User
A Complete QC System

Quantum
Processor

Figure 8.1: Schematic Overview of NISQ Computing System Architecture

In this chapter, we propose a simulation framework, namely SANQ, for NISQ system

design and evaluation. SANQ consists of two major components. First, SANQ offers

an optimized noisy quantum computing simulator with flexible error modeling accel-

erated by eliminating redundant computation. With the input circuit and the error

model, SANQ will automatically generate a series of simulation traces. The traces will

be reordered to maximize the overlapped computation between two consecutive traces

and reduce the memory requirement for temporary intermediate state storage. Such

inter-trace optimization can significantly improve the simulation performance, as a huge

number of error injection traces have to be executed and averaged in the noisy simula-

tion. Second, SANQ contains a reconfigurable control system architecture simulator to

support various timing bottleneck analysis and related design space exploration. A set

of abstracted timing-sensitive microarchitecture components (e.g., Digital-to-Analog In-

terface, Instruction Scheduler) is constructed to capture the timing behavior of an NISQ

system. These components can then be connected to simulate the execution of an entire

quantum program, providing not only the overall execution time but also the utilization

of each component. In particular, a mini control system architecture configuration is

provided by default.

In summary, the main contributions of this chapter are:

• We present the first comprehensive simulation infrastructure, which consists of an

accelerated noisy quantum computing simulator and a control system architecture

218

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

simulator, for NISQ system modeling and evaluation.

• We propose a novel trace reorder technology to accelerate the noisy quantum com-

puting simulation by eliminating redundant computation among error injection

traces. To the best of our knowledge, this is the first trace-level optimization and

can cooperate with existing full-state quantum computing simulators.

• We provide a reconfigurable control system architecture simulator with a set of

abstracted timing-sensitive component models to support various timing bottleneck

analysis and related design space exploration.

• Experimental results show that 1) Our accelerated noisy simulator can reduce about

79% computation amount on average (up to 95%) compared with existing full-state

simulators. 2) Our control system simulator can capture the timing behavior of two

real control systems.

• Several examples are provided as a preliminary study to show that SANQ could

benefit compiler optimization, control system design, etc.

8.2 Background

In this section, we will present a brief review of relevant background knowledge to

help understand the NISQ computing system.

8.2.1 NISQ System

Figure 8.1 shows a schematic NISQ computing system. On the left is a host machine,

a classical computer which will interact with users and control the quantum computing

system. Users provide quantum programs and the quantum computing compilers will

219

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

convert these programs to the basic instructions which can be executed by the control

system. The control system will further convert the instructions to control signals and

send them to the quantum processor to implement different operations.

Quantum Processor. The quantum processor is the core of the NISQ computing

system, which can be implemented by different underlying technologies, e.g., supercon-

ducting quantum circuit [78], ion trap [282], and quantum dots [283]. The state of the

qubits on the quantum processor is changed by external physical operations, e.g. micro-

frequency electronic signals [284], lasers [285]. For the lack of QEC, the qubits are also

affected by various noise effects [25]. Unlike classical processors which work on digital

signals, quantum processors are manipulated by analog signals.

Classical Control System. A classical control system lies between the host machine

and the quantum processor [105]. It converts post-compilation instructions into control

pulse signals to control the quantum processor. The measurement results in analog form

are also received from the quantum processor and converted to a digital form. Such a

classical control system provides a digital interface for the quantum processor and makes

the NISQ system a co-processor of the host machine.

8.3 Simulator Overview

In this section, we will provide an overview of SANQ, a simulation framework that

contains a noisy quantum computing simulator and a classical control system simulation

infrastructure to cover the entire NISQ computing system. The workflow of SANQ is

illustrated in Figure 8.2.

Input. The input required by SANQ has three components, a post-compilation

quantum program, an error model, and a control system design. The instructions in

the post-compilation quantum program must be executable on the simulated hardware,

220

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

which means all the quantum operations have been decomposed into hardware supported

operations via compilation. The rest two components are about the simulated NISQ

system. An error model should be provided to describe error operator, error position, and

error probability on the simulated noisy quantum processor. Users can define customized

error model via the provided interface. More accurate error model can come from the

vendor or be characterized by physical experiments. The hardware design of the control

system is about the model of each hardware module in the simulated control system.

Users need to specify the output of each module under all possible input and how these

modules are connected. By default, SANQ is pre-configured to be the baseline system

model in the rest of this chapter. The input used in this chapter for the baseline error

model and control system design is provided for user reference.

Simulation. With the required input information, the two simulation components

in SANQ can provide comprehensive modeling of an entire NISQ system. The noisy

quantum computing simulator uses the error information to construct an error model

and generate error injection traces for the follow-up Monte Carlo (MC) simulation. The

generated error injection traces will first be analyzed and reordered to eliminate redun-

dant computation. Then SANQ will perform functional quantum computing simulation

for all the error injection traces and average the results, to obtain an output distribution

and evaluate the fidelity. On the other hand, the control system simulation infrastructure

in SANQ will use the provided hardware design to generate a behavior model for the sim-

ulated control system. Traditional architectural simulation is then performed to model

how the control system will execute each instruction of the input quantum program and

control the quantum processor. Important information like the total execution time for

a quantum program and the control hardware resource utilization rate can be simulated

to evaluate the overall system performance.

Output. The output from SANQ will demonstrate key execution information of

221

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

the simulated NISQ system. The noisy quantum computing simulator will provide the

final output distribution in the MC simulation. By comparing this result with error-free

execution, SANQ can evaluate the fidelity for one quantum program execution on the

simulated quantum processor. The control system simulation will then provide detailed

timing information for one execution. More information like the occupation for each

hardware component can also be collected to help locate the bottleneck in the simulated

control system.

Input Simulation
Output

Hardware
Design

Optimized Noisy QC Simulator

Control System Simulator

Output

Distribution,

Fidelity,

Timing,

Resource Usage,

…...
Architectural

Simulation

Post-
compilation

Program

Error Info

Behavior
Model

Error
Injection

Monte Carlo
Simulation

Figure 8.2: SANQ Workflow

This section provides an overview of SANQ. In the next two sections, we will introduce

the two simulation components in detail with examples of how SANQ could simulate an

existing NISQ system. In Section 8.4, we illustrate how to configure the error model

based on IBM’s public quantum processor information and how to accelerate the noisy

quantum computing simulation by eliminating redundant computations. In Section 8.5,

we will construct a mini control system in SANQ based on real control systems.

222

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.4 Noisy Simulation & Optimization

In general, simulating quantum computation on a classical machine is a hard problem.

Noisy full-state quantum computation simulation is even more time-consuming since

it requires simulating error-injected circuit many times to obtain an averaged result

distribution. In this section, we will demonstrate how users can define an error model

with error operator, position, and probability. SANQ will generate error injection traces

based on the error model before running the actual simulation calculation. Then, we

will introduce how we reorder these error injection traces to leverage the redundant

computation among them without too much memory usage.

8.4.1 Error Modeling in Noisy Simulation

An error model indicates how error happens during the computation process. In

SANQ, the error model has three parts, error operator, error position, and error proba-

bility.

Error Operator

Error operators are some special operators that will be randomly injected in the

quantum circuit in order to model the noise effect in the quantum program execution on

noisy quantum hardware. The three Pauli matrices, X, Y , and Z (given in Equation 8.1),

are commonly used error operators to describe coherent errors. When a error happens,

an error operator will be applied on the target qubit(s).

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 (8.1)

223

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

Error Position

Error positions are the places where an error could possibly be injected in the sim-

ulated quantum circuit. For gate errors, error operators can be injected after a gate.

For Some other errors like decaying from high-energy state |1⟩ to low-energy state |0⟩ or

interacting with the environment can happen without an operation. Such an error could

appear at any place across the quantum circuit.

Error Probability

After the error operators and positions are determined, we still need to know the

probability for each error position with each error operator. Each time when we meet an

error position during the simulation, we will randomly inject one error operator based

on the error probability for each operator at this position.

Trace Generation

The error operator, position, and probability can construct an error model which can

be used in the noisy quantum computing simulation. The error injection simulation traces

will then be generated under the given error model. We use the symmetric depolarization

error channel, a standard model employed in most noisy simulators [273], as an example

to illustrate this procedure. Under this error model, the three error operators are X, Y ,

Z. There error probability for these three errors are equal, p = P (X) = P (Y) = P (Z).

The error probability and the simulated circuit are shown in Figure 8.3. Since the error

is triggered by operations, we inject an error operator E after each gate. On the right

of Figure 8.3 is the final error injected circuit. We will traverse this circuit to generate

one simulation trace. Every error operator E is replace by X, Y , and Z with the same

probability p, or by the identity operator I with the probability 1−3p. We then record the

224

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

final circuit which will be used for one simulation trace. This traversal will be repeated

for a large number of times to generate enough traces for the noisy simulation.

E

I X Y Z

1-3p
p p

p

H H E E

E E

E

Error Probability Original Circuit Error Injected Circuit

Figure 8.3: Depolarization Error Channel and Injection

Other Types of Errors

Except for the examples above, other types of coherent errors can also be defined in

SANQ by reconfiguring the error operator, position, and probability. For the measure-

ment operation errors which are very common but incoherent, since the error operator

can only be applied to quantum states while the result after the measurement is a classical

bit, we inject an error that flips the measurement result bit with the specified probability

right after the measurement operation.

8.4.2 Noisy Quantum Computation Simulator Optimization

The redundancy among the error-injected simulations can be leveraged to reduce

amount of computation. If two error-injection simulation traces share the same state

in the middle, we can save this intermediate state in one simulation trace and then

reuse it in the other simulation trace to eliminate the computation before this state.

However, the size of a state grows exponentially as the number of qubits increases and it

takes significant memory space to store a state vector. Thus, how to identify and store

these states efficiently must be addressed to enable this inter-trace quantum computation

225

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

(a)

S1 S2

(b)

S1 S2 S1 S2 S11 2 3

Figure 8.4: Example for Computation Redundancy and Execution Reordering

simulation optimization.

After we obtain the MC simulation traces with the input circuit and the error model,

SANQ will perform a static analyze on the generated traces to identify the redundant

computation and optimize the simulation trace order. We will first start from a example

to illustrate the computation redundancy and the discuss how to efficiently run all the

simulation traces.

Computation Redundancy

Figure 8.4 shows an example to demonstrate the computation redundancy. There

are totally four error injection executions in this example, represented by four quantum

circuits. The first one in (a) is the original error-free execution. S1 and S2 are two

intermediate states during the error-free execution. The other three in (b) (labeled with

1 , 2 , and 3) are error injected executions. Each of them has one error operator occurred,

represented by gates E{1,2,3}. To run the noisy quantum computing simulation, all these

four quantum circuits will be simulated and then averaged to obtain a distribution of

the final output. We can find that all the four quantum circuits are exactly the same

before reaching S1 state. The state vector of S1 is the same for all four execution since

no errors are injected before S1. As a result, the computation from the initial state to S1

can be shared by all four executions. The state vector at S1 only needs to be calculated

and stored in one execution. The rest three executions can start from the stored S1 state

instead of starting from the beginning. Such redundancy exists at multiple locations

226

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

across the error injection MC executions. For example, the state vector at S2 can be also

be shared by the error-free execution and the first two error injected executions 1 2 .

The motivating example above has shown computation redundancy among MC exe-

cutions. We can store some state vectors when we first reach such states and the results

will be reused in the following executions. However, the maximal number of state vec-

tors we can store is limited since one state vector has 2n amplitudes (n is the number

of qubits). Although several techniques have been proposed to store the state vector in

a compressed form [271, 270], the memory requirement will still grow exponentially as

the number of qubits increases. To allow circuits with more intermediate states to be

simulated efficiently, we introduce an execution reorder technique to reduce the maximal

number of concurrently maintained state vectors without loss of the benefit from the

computation redundancy elimination.

Execution Reorder

Different execution order can significantly affect the number of states that need to be

stored. For the example in Figure 8.4 (b), 1 2 3 is an inefficient MC execution order.

When running 1 , both the states S1 and S2 need to be stored so that 2 can start from S2

and 3 can start from S1. An optimized execution order for this example can be 3 2 1 .

When executing 3 , we only need to store state S1. The execution of 2 can directly start

from the stored S1 and then S1 can be dropped since it is no longer used in the follow-up

executions. During the execution of 2 , S2 will be stored and finally used when executing

1 . Consequently, only one state vector needs to be stored during the entire simulation

process. An optimized execution order reduced 50% of memory requirement (from two

state vectors to one state vector) compared with a straight-forward order in this example.

In our noisy quantum computation simulator, we first generate the MC execution

traces without actually running the simulation. The simulated quantum circuit is divided

227

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

into layers, in which any two quantum operations are not applied on the same qubit.

Error operators will only be injected at the end of each layer (shown in Figure 8.3).

One execution trace will record the location and operator of each injected error. These

traces will be ordered by the location of the first injected error. The traces with the first

error injected in the first layer (e.g., 3 in Figure 8.4) will appear at the beginning of

the execution order, followed by those traces with the first error injected in the second

layer (e.g., 2 in Figure 8.4), and so on.

After the ordering procedure above, we begin our simulation by executing the first

layer of the circuit with no error injected and store the state as S1. This part of computa-

tion can be shared by all MC traces. Then we will execute all the traces with errors first

injected in the first layer. If two or more error traces share the same first error (injected

on the same qubit with the same error operator), these traces will be grouped. The sim-

ulation for these traces can be optimized recurrently if we consider S1 as the initial state

and let the remaining circuit after the first layer be the simulated circuit. After finishing

the traces with first error in the first layer, we can execute one more layer without error

and store the new state as S2. Now S1 can be dropped as no executions remaining will

rely on it. Additional memory space is only required when recurrent reordering happens

because these traces sharing first error operator need to store the state vector after the

shared error to help eliminate the computation redundancy among them. The maximal

number of state vectors we need to store is the recursion depth, which is small because

the probability for two independent randomly generated traces to have m shared error

operators decreases exponentially as m increases.

This execution reorder technique leverages the inter-trace computation redundancy

and can cooperate with existing quantum computing simulation optimizations which

focus on the execution of one simulation trace. The final simulation result will not be

changed since the output of all traces are calculated and averaged.

228

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.5 Control System Simulator

In this section, we illustrate how to simulate a control system in SANQ with the

default design, a mini control system, as an example. We start from discussing the

assumptions on the programming model, compiler, and quantum processor, because they

will affect the interface of the control system. Then we will introduce how to compose a

hardware design with key timing-sensitive components abstracted from an investigation

on several existing control systems from major vendors, e.g., IBM [281], Google [286],

Rigetti [287], and TU Delft [28]. The behavior of each instruction can then be specified

and finally we can simulate an entire quantum program in the composed control system.

8.5.1 Assumptions

Although programming and compilation should be done on the host machine and

are not simulated in SANQ, some assumptions need to be made for them before we can

continue to construct the architecture of a classical control system. For the quantum

processor, our assumption is only about the interface with the control system and does

not affect the error models in the noisy simulation.

Programming Model and Compiler

This mini control system accepts OpenQASM [226], the interface language of IBM’s

quantum computing cloud service designed for small depth quantum circuits, as the ISA.

OpenQASM is selected due to its rich benchmark resource and compiler support. Quan-

tum programs can be developed in high-level languages like Scaffold [233], Quipper [92],

or Q# [231], and then compiled to flattened OpenQASM format instructions. However,

some OpenQASM instructions are not executable so that we add some constraints for

the program used in our mini control system. There are only 5 types of instructions from

229

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

OpenQASM remaining after compilation (the first 5 types in Figure 8.5). In addition, we

add one ’Wait’ instruction, which is critical in realistic control systems [28, 281], to enable

more flexible timing control. Our control system will support this 6 types of instructions.

For simplicity, the conditional instruction in the original OpenQASM standard is slightly

modified and we only support one instruction in the branch based on one bit comparison

result. The quantum operations in the post-compilation instructions are in the Quantum

ISA (QISA) of the target quantum processor, which means the control signals for these

operations are prepared and available. A conditional instruction in OpenQASM is also

included and will be managed inside the control system. All the hardware constraints, e.g.

the limited physical two-qubit gate availability, have been addressed during compilation

optimization and the generated quantum program is completely hardware compatible.

All the post-compilation instructions have been pre-uploaded to an instruction memory

in the control system. There is no communication between the host machine and the

control system during the quantum program execution.

0 0 0

1 0 0

0 1 0

1 1 0

1 1 1

θ λφqubit idx

qubit idx 0 qubit idx 1

qubit idx reg idx

qubit idx

031 30 29 81624

U(θ, φ, λ), qubit[idx]

CX, qubit[idx 0], qubit[idx 1]

Measure, qubit[idx], reg[idx]

Reset, qubit[idx]

reg idx flagIf (reg[idx] == flag)

0 0 1 number of cyclesWait, number of cycles

opcode ‘idx’ is short for index

Figure 8.5: Instruction Encoding for Mini Control System

Quantum Processor

In this work, the quantum processor is assumed to be based on superconducting

quantum circuit technology. The control signals for superconducting qubits are pre-

calibrated micro-frequency electronic waveforms. Adapting IBM’s configuration [288],

230

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

one single-qubit operation requires one control signal to be applied to that qubit. One

two-qubit gate needs three control signals applied to the two qubits and the resonator

between them. Other quantum computing technologies may have different interfaces. For

example, ion trap devices can be manipulated by lasers. These different interfaces can

be abstracted by analog signal channel between the quantum processor and the control

system.

8.5.2 Hardware Design

With the assumptions above, users can specify the hardware design of the control

system. For each hardware module, users need to determine what internal states the

hardware module should maintain, and the output under all possible inputs. Moreover,

users need to specify how the input and output ports of the hardware modules are

connected in the hardware design.

As an example, a mini control system consisting of a control unit, a Digital-to-

Analog (DA) interface, and an Analog-to-Digital (AD) interface, is shown in Figure 8.6.

The hardware modules in the control unit are introduced as follows:

• Instruction Memory. This memory stores all the instructions. Since there is no

existing binary encoding standard for OpenQASM [238]. we assume that each in-

struction consumes 32 bits (encoding shown in Figure 8.5). The input for this

module is a memory address from Program Counter and the output is the instruc-

tion on that address which will be sent to a Decoder.

• Program Counter. The Program Counter (PC) records the address of the next

instruction. It will automatically increase after one instruction is issued by the

scheduler. It can also accept new address under conditional instructions.

231

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

Measurement
Unit

Measurement
Unit

In
stru

ctio
n

 M
em

o
ry

Control Unit

Measurement Register

PC Comparator

Decoder Scheduler

Digital-to-Analog Interface

Analog-to-Digital Interface

ADC
Measurement

Unit

Signal Channels

Instruction
Queue

Pulse
LUT

DAC

Figure 8.6: A Mini Control System

• Measurement Register. The measurement register stores the measurement results

from the measurement unit. The comparator can read the measurement register.

• Decoder & Comparator. The decoder will decode those instructions in binary form

fetched from the instruction memory. If it is a conditional instruction, the decoder

will ask the comparator to read the measurement registers, do the comparison to

determine the address of the next instruction. If an instruction needs to be applied

on the quantum processor, the decoder will send the operation information to the

scheduler.

• Scheduler. The scheduler will decide which signal channel(s) will be used to apply

an operation and send the operation to the instructions queue(s) of the signal

channel(s). The operation dispatch policy is to find the signal channel(s) that

can finish all the jobs in the queue(s) at the earliest time. The instructions are

dispatched in order.

Interface Design. The Mini Control System adopted the interface design from

Quantum Control Box (QCB) [28], which is briefly introduced as follows. For the DA

interface, we employ three DA signal channels, the minimum requirement to implement

232

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

two-qubit gates. Each channel has an instruction queue as a temporary buffer for the

instructions. The waveform is implemented by a Pulse Look-Up-Table (LUT), which

can directly fetch stored pulse data, and we assume that all the pulse waveform data

are already in the LUT. A Digital-Analog-Converter (DAC) follows the Pulse LUT to

generate analog signals. For the AD interface, one AD channel will receive an analog

signal from the quantum processor and convert it to digital form by an Analog-Digital-

Converter (ADC). The Measurement Unit will perform a weighted integration over the

signal and then compare the results with a threshold value to determine whether the

measurement result is 0 or 1. All the channels in the AD/DA interface can connect to

different qubits via switches.

8.5.3 Behavior Model Generation

After the hardware design is specified, SANQ will generate a behavior model for the

simulated control system. A behavior model is about how the hardware will execute the

given instructions. In our mini control system example, only 5 types of basic instructions

in OpenQASM standard [226] and the additional ‘Wait’ instruction in Figure 8.5 will

appear after being compiled and flattened. The execution for these 6 types of instructions

in the mini control system is listed here.

1. U(θ, ϕ, λ). U(θ, ϕ, λ) is a parameterized single-qubit gate. The decoder will send

the instruction information to the scheduler and the scheduler will select one signal

channel and put the instruction in the instruction queue. When this instruction is

popped out, its control pulse will be fetched from the Pulse LUT, converted to an

analog signal through DAC, and sent to the target qubit.

2. CX. CX is Control-NOT, the only supported two-qubit gate. Different from single-

qubit gates, the scheduler needs to select three signal channels to complete this

233

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

operation.

3. Measure. Measure is the measurement operation. The scheduler needs to choose

one DA channel to send a special pulse and one AD channel will receive a feedback

pulse. The Measurement Unit will determine the output and write the result to

the Measurement Register.

4. Reset. Reset is a single-qubit operation that resets the qubit to |0⟩ state. In this

mini control system, Reset is implemented by passive reset, which waits for 5 × T1

coherence time to let the qubit decay to |0⟩ state.

5. If. This is a conditional instruction. The decoder will ask the comparator to read

the measurement register, do the comparison to determine the address of the next

instruction. If the condition is not satisfied, the next instruction will be ignored.

6. Wait. The control system will wait for a specific number of cycles before executing

the next instruction.

8.5.4 Architectural Simulation

After the behavior model is established, SANQ will simulate the control system by

executing the provided post-compilation instructions. The post-compilation instructions

are put into the Instruction Memory first and PC is set to be the address of the first

instruction. Then, the configured NISQ control system will be simulated.

Besides simulating the execution time, SANQ can also actively collect and record the

states of all the hardware modules, e.g., the number of instructions in each instruction

queue, the number of instructions executed, etc. These statistical data can help locate

the bottleneck in the system design. An example will be given in Section 8.7.

234

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.6 Evaluation

To demonstrate the effective and efficiency of our comprehensive NISQ simulator, we

conduct a series experiments to evaluate the computation saving in the optimized noisy

simulator and the timing simulation accuracy of our control system simulator.

8.6.1 Evaluating the Noisy Simulation Optimization

We conducted two groups of experiments to give a full test of our accelerated noisy

simulator: 1) large-scale circuits with artificial error model. 2) small-scale circuits with

realistic device error model.

Baseline. The baseline noise simulation strategy is from a full-state quantum com-

putation simulator, Rigetti’s QVM [289], which executes the error injection traces se-

quentially to generate an output distribution.

Metric. In order to perform a fair evaluation of our noisy simulator optimization,

the metrics in this section are chosen to be independent of implementation and platform.

For the computation time, we use the number of basic operations (matrix-vector multi-

plication) in the full-state quantum computation simulation to indicate the computation

amount. For the memory consumption, we use the number of Maintained State Vec-

tors (MSVs) during the noisy simulation since the memory space for the state vectors,

which will grow exponentially as the number qubits increases, dominates the memory

consumption.

Artificial Error Model

Benchmarks. Random circuit is widely-used in benchmarking quantum computation

simulators [274, 290, 291, 247, 292]. We use Quantum Volume (qv) benchmark, one type

of random circuit proposed by IBM [293]. Several qv programs are generated with various

235

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

numbers of qubits (from 10 to 40) and circuit depth (from 5 to 20) to test the computation

saving and memory consumption as the input circuit scales. For example, ‘n10,d10’ means

10 qubits with circuit depth 10. The largest circuit used in this experiment with 40 qubits

and depth of 20 is already close to the limit of existing full state quantum computation

simulators [247].

Error Model. We use the symmetric depolarizing gate error model adopted by

other simulators [76, 273]. The error rates of single-qubit gates ranges from 10−3 to

10−4. 10−3 represents state-of-the-art superconducting quantum circuit technology and

104 reflects extrapolations of progress in hardware. The error rates of two-qubit gates

and measurement operations are set to be 10× of single-qubit gates. We generate 106

random error injection traces based on the error model for all quantum volume programs.

Results. Since the benchmark size is too large to be simulated on a standalone

machine, we calculate the computation amount without actually performing the com-

putation. Figure 8.7 shows the computation amount for all benchmarks with different

error rates. On average, we can save about 79% computation. In the worst case, for

a quantum volume circuit of the largest size and highest error rate, we can still save

about 31% computation. The computation amount drops dramatically with lower error

rates which can be expected in future devices. Figure 8.8 shows the number of MSVs,

which grows slowly as the circuit depth increases. On average we need to store about 6

intermediate state vectors. When the number of qubits increases, the number of MSVs

decreases because there are more potential error positions which reduce the probability

for two traces to share the same injected error.

Realistic Error Model

Benchmarks. Table 8.1 shows the 12 quantum programs used in this experiment.

They are collected from IBM OpenQASM benchmarks and prior work [238, 56]. These

236

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0

0.2

0.4

0.6

0.8

n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20
10^-3/10^-2 5X10^-4/5X10^-3 2X10^-4/2X10^-3 10^-4/10^-3

Figure 8.7: Normalized Computation for QV Experiments

0

5

10

n10,d5 n10,d10 n10,d15 n10,d20 n20,d20 n30,d20 n40,d20
10^-3/10^-2 5X10^-4/5X10^-3 2X10^-4/2X10^-3 10^-4/10^-3

Figure 8.8: Memory Consumption for QV Experiments

benchmarks include Bernstein-Vazirani algorithm (bv) [294], Quantum Fourier Trans-

form (qft) [25], Quantum Volume (qv) [293], Grover algorithm [7], Randomized Bench-

marking (rb) [295], Modular Multiplication (7x1mod15) [76], and W-state [296]. The

four columns on the right in Table 8.1 show the number of qubits and instructions in the

post-compilation programs for each benchmark. The selected programs have 5 or fewer

qubits to be simulated on the IBM 5-qubit chip model (illustrated by Figure 8.9) and do

not contain Reset instructions. The measurement instructions only appear at the end

of each program so that there are no conditional instructions. All the benchmarks only

have U(θ, ϕ, λ), CX, and Measure instructions after compilation.

Error Model. We still use the symmetric depolarizing gate error model with the

237

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

Table 8.1: Benchmark Characteristics
Name Qubit # U # CX # Measure #

rb 2 9 2 2
grover 3 87 25 3
wstate 3 21 9 3

7x1mod15 4 17 9 4
bv4 4 8 3 3
bv5 5 10 4 4
qft4 4 42 15 4
qft5 5 83 26 5

qv n5d2 5 44 12 5
qv n5d3 5 74 21 5
qv n5d4 5 100 30 5
qv n5d5 5 130 36 5

Q0

Q1

Q2

Q3

Q4

2.72

3.77

4.18

3.97

3.62

3.51

Two-qubit Gate Error (10-2)

Single-qubit Gate
Error (10-3)

Measurement
Error (10-2)

1.37 2.40Q0

1.37 2.60Q1

2.23 3.00Q2

1.72 2.20Q3

0.94 4.50Q4

Figure 8.9: Error Rates on IBM Yorktown Chip [37]

error probability specified in Figure 8.9. All the benchmarks are compiled and mapped to

this IBM’s 5-qubit device [297] to the determine the actual physical qubits. We generate

various numbers of traces (from 1024 to 8192) to test the computation saving under

different simulation configurations.

Results Figure 8.10 shows the computation saving for all benchmarks and different

numbers of traces. The proposed optimization can save about 75% ∼ 85% of computation

on average with the number of traces increases from 1024 to 8192. In the worst case when

the benchmark is large (‘qv n5d5’), the computation amount saving still achieves 57%

with 8192 traces. We can also see that the more traces we execute, the more computation

238

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0

0.2

0.4

0.6

1024 traces 2048 traces 4096 traces 8192 traces

Figure 8.10: Normalized Computation for Realistic Error Model

00 01 10

0.2

0.4

0.6

0.8

2

3

4

5

6

7

Figure 8.11: Memory Consumption for Realistic Errror Model

we will save because more overlapped computation can be identified. Figure 8.11 shows

the number of MSVs in experiments with 1024 traces and this result does not significantly

change when the number of traces increases from 1024 to 8192. The number of MSVs

is 3 for the smallest benchmark ‘rb’ and only 6 in the largest benchmarks ‘qft5’ and

‘qv n5d5’. As discussed in Section 8.4, the number of MSVs will grow slowly since the

probability for two traces to share the same m injected errors decays exponentially with

m.

239

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0

1,000

2,000

3,000

4,000

5,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Delft QCB SANQ

us

Ex
ec

u
ti

o
n

 T
im

e

Iterations

Code for one
iteration:
Wait, 40000;
U1, q[0];
U2, q[0];
Measure, q[0], c[0];

Figure 8.12: Timing Behavior Experiments with TU Delft’s QCB

8.6.2 Evaluating the Control System Simulator

We evaluate the timing behavior of our control system simulator against two realistic

control systems from IBM [281] and TU Delft [28].

TU Delft’s Control System. TU Delft’s Quantum Control Box (QCB) is a con-

trol system for a single-qubit quantum processor [28] The clock frequency is set to be

200MHz. Other key parameters are shown in Table 8.2. The latency of single-qubit

gates, two-qubit gates, and measurement operations are assumed to be 20ns, 40ns, and

300ns, respectively.

To compare our simulation results our simulator against realistic execution of QCB,

we run the AllXY program1, the original testing experiment for QCB [28]. The AllXY

test program has 21 iterations and in each iteration, two single-qubit gates are applied

to one qubit followed by a measurement operation. Figure 8.12 shows the code for one

iteration (U1 and U2 represent different single-qubit gates in different iterations) and the

execution time on QCB and SANQ. Our simulator could imitate the timing behavior of

QCB with very low error (< 1%) and the small error becomes negligible as the number

of iterations increases.

IBM’s Control System. IBM’s experimental control system model is different

so that our simulator needs to be reconfigured. The latency for single-qubit and two-

1For details about AllXY program, please refer the QCB paper [28].

240

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

Table 8.2: Baseline Control System Model
Single-qubit Gate Two-qubit Gate

Latency 20ns 40ns
Channel 1 3

DA Channel # 3
AD Channel # 1
Measurement Latency 300ns, 1 AD Channel

and 1 DA Channel

0

500

1000

1500

2000

2500

1 Round 2 Rounds 3 Rounds
IBM Real Control System SANQ

ns Error from
Warm-up Phase

Ex
ec

u
ti

o
n

 T
im

e

Code (one round):
Measure, q[0], c[0];
Wait, 60;
If c[0]==1
U(pi, 0, pi), q[0];

Control Pulse:

Measurement
Pulse

Cavity
Emptying

Bit
Flip

Figure 8.13: Timing Behavior Experiments with IBM

qubit gates are 50ns and 300ns, respectively, with 2 DA channels and 2 AD channels.

The test program is Active Reset as shown in Figure 8.13 on the left. We first send

measurement pulse to a qubit and then wait for 60 cycles for cavity emptying (required

by IBM’s device). If the measurement result is |1⟩, we apply a bit flip operation. This

procedure is repeated for 3 times to guarantee a high reset fidelity. The execution time

of IBM’s real control system and the simulation results are in Figure 8.13 on the right.

The simulated execution time is close to that of IBM’s real system. There exists a

constant error (about 130ns) which comes from the warm-up phase of the control system

because such procedure before issuing the first instruction is not yet simulated in SANQ.

In summary, the average error ratio is 10% and such error can be mitigated if we take

the communication between the host machine and the control system into consideration,

which will be addressed in our future work.

241

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.7 Future Applications

In this section, we propose three future applications of SANQ that are not available

on existing quantum computation simulators. First, SANQ can perform a comprehensive

system performance evaluation by simulating both the quantum processor and the control

system. Second, SANQ can perform design space exploration for the control system to

guide future control hardware architecture design. Third, by monitoring the utilization

of the hardware components, SANQ can help locate new optimization opportunities to

improve NISQ system design. The rest of this section will provide three examples to

illustrate the applications of SANQ in detail.

Baseline Configuration. The baseline quantum processor model in this section

is from the IBM 5-qubit Chip [37] and generated in Section 8.4. The control system

model is the TU Delft’s QCB in Section 8.6 with key parameters shown in Table 8.2.

The baseline compiler remains the same with Section 8.6 and the benchmarks used are

in Table 8.1.

8.7.1 System Performance Evaluation

We demonstrate the ability to perform a comprehensive system performance eval-

uation by comparing two different QC compiler optimization approaches on the qubit

mapping problem. One is the dynamic programming approach (DYN) in Enfield [56].

The other one is a heuristic approach for efficient qubit mapping (EFF) [77].

Experiment Design. We compile the 12 benchmarks with the two compilers men-

tioned above. Then we simulate the execution fidelity and time, from the noise quantum

computation simulator and the architectural control system simulator, respectively. Since

some benchmarks are large and the correct output will be hidden by the noise on IBM’s

5-qubit device [107], the term ’execution fidelity’ used in this section is the ratio of error-

242

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0
0.5

1
1.5

2
2.5

3

Fidelity Execution Time (with Measurement) Execution Time (without Measurement)

Figure 8.14: Normalized Simulation Result of EFF

free trace count over total trace count. Both the quantum processor model and control

system model used in compilation and simulation are the baseline models.

Results. Figure 8.14 shows that the execution fidelity and time (with and without

measurement operations included) of EFF normalized to the results of DYN. For two

small benchmarks ‘rb’ and ‘wstate’, EFF and DYN generate the same code and the

simulation results are the same for them. In general, DYN is well optimized for CX gates

and the execution fidelity is about 35% better than that of EFF on average. However,

EFF also considered parallelism optimization. For the ‘qv’ benchmarks, the execution

time is shorter for EFF even when the execution fidelity is still worse than EFF. For the

’bv4’ and ’bv5’ benchmarks, they are small and the dominant factor in execution time

is the CX gates so that EFF is much worse than DYN. The original evaluation in the

EFF and DYN papers [56, 77] was based on the coarse-grained gate count and circuit

depth metric in the generated program. SANQ generates consistent results to verify

the optimality of DYN and the parallelism optimization in EFF. Moreover, SANQ could

perform fine-grained fidelity and execution time evaluation, preparing for deeper compiler

optimization.

243

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0.4

0.6

0.8

1

rb grover wstate 7x1mod15 bv4 bv5 qft4 qft5 qv_n5d2 qv_n5d3 qv_n5d4 qv_n5d5

3 4 5 6 7 8 9 10 11 InfExecution Time with Measurement Instructions
Number of DA Channels

0.4

0.6

0.8

1

rb grover wstate 7x1mod15 bv4 bv5 qft4 qft5 qv_n5d2 qv_n5d3 qv_n5d4 qv_n5d5

Execution Time without Measurement Instructions

N
o

rm
alized

 Execu
tio

n
 Tim

e

Figure 8.15: Execution Time Comparison with Various Numbers of DA Channels

8.7.2 Design Space Exploration

By simulating the classical control system, SANQ is able to perform design space

exploration to help guide the control system design. This example focuses on the number

of DA channels, which places an upper bound on the instruction parallelism. For a

quantum processor, instructions applied on different qubits can be executed in parallel

theoretically. However, the number of DA channels to send the control pulses is limited in

a realistic control system. The baseline employs three DA channels (the same with QCB

configuration [28]), which can support at most three simultaneous single-qubit operations

or one two-qubit operation. In this study, we investigate how the number of DA channels

can affect the overall performance of a NISQ computing system.

Experiment Design. We vary the number of DA channels from three to eleven and

simulate the execution time. All other configurations remain the same. In the end, we

assume that there are infinite DA channels to remove this constraint. This will show the

ultimate limit if we continue to increase the number of DA channels.

Results. Figure 8.15 shows the execution time with various numbers of DA channels.

The results shown in the upper half include the measurement instructions. All the

benchmarks can benefit from more DA channels, except ’rb’, which only has two qubits

and is not constrained by the number of DA channels. Larger size benchmarks can save

more execution time than small size benchmarks. When there are eleven DA channels,

244

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

most benchmarks have been close to the upper bound with infinite DA channels, which

is about 15% on average since the execution is also limited by other effects, such as

instruction dependencies.

Our simulation shows that the execution time of measurement instructions is the

major limitation in this case study. For all the experiments, the number of AD chan-

nels is always one which means that all the measurement instructions must be executed

sequentially. Moreover, the size of the selected benchmarks is small but the latency of

measurement instruction is much longer than other operations in our quantum processor

model (300ns vs. 20 ∼ 40ns). Fortunately, all the measurement operations are at the

end of each benchmark and we can calculate the execution time before the measurement.

The execution comparison without the measurement instructions is provided in the lower

half of Figure 8.15 and the average execution time-saving limit can achieve about 36%.

8.7.3 Finding New Optimization Opportunity

The third example will show that SANQ can suggest new optimization opportunities

in NISQ system design by analyzing the execution status and locating the bottlenecks.

For this example, we monitor the utilization rate of the DA channels in the system

performance evaluation experiments (in Section 8.7.1). Figure 8.16 shows one bottleneck

found in our experiments. On the left are the first five instructions in ‘bv4’ benchmark.

In this case, SANQ finds that from 0ns to 20ns, the number of instructions that is being

executed is three and the DA channel utilization rate is 100%. But starting from 20ns to

60ns, only one instruction is being executed and the utilization rate is just 33.3%. The

reason for this situation is discovered after looking into the execution details (shown in

the middle of Figure 8.16). From 0ns to 20ns, the first three instructions are executed

in parallel. The fourth instruction cannot be executed due to the DA channel constraint.

245

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

0 20 40 60ns 0 20 40nsCode Sample:
H q[0]
H q[1]
H q[2]
X q[3]
H q[3]

Figure 8.16: Example of Bottleneck

But from 20ns to 60ns, only two instructions are executed because all the following

instructions involve q3 and cannot be executed before the fifth instruction. As a result,

the utilization rate of DA channels is only 33% from 20ns to 60ns.

It is hard to locate such bottleneck through traditional program profiling or quantum

computing simulation without considering the actual control system. SANQ gives such

opportunity to identify such hidden bottleneck, preparing for future system optimization.

For example, the bottleneck mentioned above can potentially be solved in two ways.

One approach could be compiler optimization. If the compiler knows that there are

only three DA channels in the control system and hopes to reduce the execution time, a

simple instruction reschedule can resolve this problem. For example, Figure 8.16 shows

an example on the right. The compiler can exchange the third and the fourth instruction

without changing the circuit function. The baseline control system can execute the X

gate on q3 first. Then the remaining two H gates can be executed in parallel. Totally, the

first five instructions now only consume 40ns, saving 33% of execution time compared

with the original execution. Another approach is to employ a more intelligent scheduling

policy for the control system. The baseline considers one instruction at a time and only

dispatch instructions in order. This example suggests that a more powerful scheduler can

consider more instructions ahead and issue instructions out-of-order to achieve a higher

246

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

utilization of hardware resources.

8.8 Limitations and Future Work

This chapter provides a simulation framework for a whole NISQ system. However,

as an initial work in this area, SANQ comes with some limitations. In this section, we

briefly discuss these limitations and our future plan.

More Precise Noise Modeling. The proposed noisy quantum computation sim-

ulator is equipped with widely used noise models. However, errors in realistic hardware

can be even more complex. For example, all errors are generated independently in our

Monte Carlo simulation while error correlation actually exists and is being studied by

physicists [298, 299]. Deeper understanding of the mechanisms on the target quantum

computing platform will lead to more precise noise models.

Advanced Quantum Control Architecture. The baseline control system is im-

plemented with OpenQASM [226], a widely used intermediate representation for NISQ

computing process. This interface language is designed for small depth quantum circuit

experiments on IBM’s quantum computing cloud service and lacks several important

features for a control system ISA, e.g., efficient encoding, flexibility for quantum opti-

mal control [300, 301]. For further research, SANQ will adopt more advanced quantum

control architectures, such as eQASM [263].

Cooperating with Host Machine. SANQ assumes that all the post-compilation

instructions have been transferred to the control unit and does not consider the host

machine. The assumption brings error in the simulation as discussed in Section 8.6. In

the future, SANQ can be integrated as a sub-module into an existing computer system

simulator, e.g., GEM5 [265], to include communication between the host machine and

the quantum computing subsystem.

247

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.9 Related Work

Quantum Computing Simulator and Optimization. Previous optimizations for

quantum computation simulators can be summarized into two categories. Some simula-

tors increase the simulation capability from algorithm-level [267, 247, 268, 269, 270, 271,

272]. , e.g., tensor networks [247, 268], stabilizers [269, 270], decision diagrams [271, 272].

These works exploited sparsity or redundancy inside a single quantum computing sim-

ulation process while the proposed optimization leverages the redundancy among mul-

tiple MC simulation executions. The other type of optimizations is from computer sys-

tem level, including vector instructions[273, 274], specialized linear algebra library [275],

multi-thread [273, 274, 276], distributed system [274, 275, 276], GPU [277, 278]. Our

acceleration is from algorithm-level and is compatible with previous approaches focusing

on single trace simulation optimization.

Control Systems. The electronic interface for quantum processors has been studied

for small size cases [302, 303, 304, 305, 105]. Fu et al. proposed QuMA, a microarchitec-

ture with accurate timing control, fast feedback control, etc. for a superconducting quan-

tum processor [28]. A cycle accurate microarchitectural-level simulator called QuMASim

is developed for this specific architecture [279, 280]. Leon et al. also proposed a cycle

accurate simulator for each hardware module in the control system without a complete

microarchitecture [306]. Dijk et al. proposed SPINE, a toolset with a circuit simulator,

for co-simulation of the electrical circuit and a spin-qubit-based quantum processor [307].

The control system simulator in this work provides abstracted timing-sensitive compo-

nents and can be easily reconfigured to various systems.

248

SANQ: A Simulation Framework for NISQ Computing System Chapter 8

8.10 Conclusion

This chapter introduces SANQ, a simulation framework for architecting NISQ com-

puting systems. SANQ consists of two components, an optimized noisy quantum com-

putation simulator and an architectural simulation infrastructure for the classical control

system. The noisy quantum computation simulator is equipped with flexible error model-

ing and optimized by computation redundancy elimination. The architectural simulation

infrastructure can construct behaviour models and evaluate control systems design deci-

sions. The usage of SANQ is illustrated by adopting realistic error model and published

control system design. Three examples are given to show that SANQ could benefit NISQ

system design through comprehensive system evaluation and execution status analysis.

In conclusion, this chapter proposes the first NISQ system simulator, allowing more

researchers to participate in quantum computing research and perform the early-stage

evaluations for future innovations.

249

Chapter 9

Conclusion and Discussion

Quantum computing is still in its very early stage and many challenges remain ahead.

This dissertation explores how to improve quantum computer systems from several differ-

ent aspects, ranging across programming language to compiler and hardware architecture

with an emphasis on the software and compiler side. Several research outputs in this dis-

sertation have been adopted by industry quantum software frameworks. We believe that

the high-level principles in this dissertation, the cross-layer co-design and high-level op-

timization, can be long-living and hasten the onset of practical quantum advantage.

In the rest of this chapter, we will elaborate on why we should continue pursuing

quantum computing and discuss some future research directions.

9.1 Pursuit of Quantum Computing

The works covered in this dissertation started from 2017 when quantum computing

was less popular compared with that in 2022 when the dissertation was finished. Many

leading industry companies and startups joined the pursuit of quantum computing. Along

with the increasing popularity, criticism also arises. It has been around 40 years since the

250

Conclusion and Discussion Chapter 9

beginning of the pursuit of quantum computing but we have not yet succeeded. Google

claimed that they achieved ‘quantum supremacy’ [12] while the claim was retracted as

the classical simulation algorithm is also improved [308]. There are still many challenges

to be solved before we can achieve practical quantum computing. It is highly possible

that we are still in the hype cycle [309] similar to many other technology innovation

areas.

We argue that we should still pursue quantum computing, no matter whether quan-

tum computing will finally be successful or not. Suppose that, in the worst case, we

finally cannot make a large-scale fault-tolerant quantum computer and we cannot run

Shor’s algorithm or other promising quantum algorithms at a large scale. In this case,

our pursuit of a quantum computer is still very valuable. Such pursuit is similar to the

“race to the moon” which is much more than just sending people to the moon. During

this process, many related studies (e.g., rocket technology, remote sensing, how people

can survive in outer space) were triggered and many companies are developed. Building

a quantum computer is not just about quantum computing. Actually, it has already

triggered a lot of technological innovations. For example, to build a quantum computer,

we need to develop cryogenic devices and electronics, new materials, fabrication technolo-

gies, etc. On the algorithm side, we have developed new theories to understand quantum

and new algorithms, It also triggers interdisciplinary collaborations, for example, finding

the analog control pulse of a quantum system is an important problem and people have

already tried to use machine learning/reinforcement learning techniques to tackle this

problem. Overall, this pursuit of quantum computing will definitely benefit the overall

society.

It is also frequently questioned that the near-term works in quantum computing may

be obsolete. We agree that the final large-scale quantum computer may be very different

from those small prototypes we have today. But the technologies at different stacks may

251

Conclusion and Discussion Chapter 9

impact quantum computer development in different ways. For higher-level technologies

like theories and algorithms, we believe they will have a long lifetime because mathematics

theory usually does not change too much. For low-level technologies like the device and

hardware, they are in rapid development and evolving. However, to understand the true

potential of these different technology routes, we need to carefully design and optimize

the entire system. This is a road that we must walk through before we can reach the

large-scale fault-tolerant quantum computer.

9.2 Future Research Directions

Looking forward, we will deepen and strengthen the quantum computer system re-

search in several dimensions. Specifically, I plan to develop photonics-based quantum

systems that execute non-circuit quantum computation models. I will also work on

compiler-based autotuning for quantum algorithm design and projection-based quantum

program analysis/debugging for quantum software engineering. My long-term goal is to

hasten the onset of practical quantum advantage with our quantum computing system

design and optimizations.

9.2.1 Photonics-Based Quantum Computing with Non-Circuit

Computation Model

The recent development of integrated silicon photonics allows creating and manip-

ulating many photons and makes the photonics a new promising quantum computing

technology candidate. Compared with other mainstream candidates like superconduct-

ing quantum circuit or ion trap, photonics-based quantum computing is appealing be-

cause photons have low noise (decoherence free, crosstalk free), light-speed transmission,

252

Conclusion and Discussion Chapter 9

room temperature operation, and fast measurement. Despite the advancement on the

photonics devices, the software infrastructure and hardware architecture for photonics-

based quantum computing system are much less developed. Most existing quantum

computing systems are constructed for running the quantum circuit computation model

with gates and qubits. However, the computing paradigms of photonics-based quantum

computing, including measurement-based quantum computing, fusion-based quantum

computing, continuous-variable quantum computing, are of very different characteris-

tics even if they are theoretically equivalent. Therefore, existing quantum computing

systems cannot be directly migrated to photonics-based quantum computing. I plan

to develop a set of software tools to support and optimize the inter-paradigm compila-

tion, including 1) efficient data conversion between conventional two-dimensional qubits

and infinite-dimensional qumodes on photonics devices, and 2) operation translation

with an emphasize on classical-quantum interaction due to the frequent measurement on

photonics-based quantum computing. I will also explore the hardware architecture design

for photonics-based quantum computing system, including the on-chip photon generator,

router, detector, and the classical post-processing units.

9.2.2 Advanced Quantum Compilation with Algorithmic Auto-

tuning

Traditional algorithms that demonstrate quantum speedup cannot be implemented

on state-of-the-art devices due to the huge resource requirement. For example, factoring

a number that is too large to tackle using known classical algorithms, Shor’s algorithm

requires thousands of logical qubits and tens of millions of physical qubits when full

quantum fault tolerance is applied. New quantum algorithms like VQE for quantum

chemistry simulation and QAOA for combinatorial optimization, which seem to be less

253

Conclusion and Discussion Chapter 9

resource-demanding and more noise resilient, have been devised recently. However, exe-

cuting these algorithms on today’s quantum hardware platforms is still challenging. As

such, there is active research trying to develop resource-efficient algorithmic alternatives

tailored to various quantum devices. Yet, manual algorithmic optimization is slow and

challenging given the large optimization space and complex design trade-offs. This mo-

tivates us to investigate compiler toolchains that could enable automatic algorithmic

optimizations for the quantum computing domain, e.g., an advanced compilation infras-

tructure with the capability of algorithmic autotuning. Specifically, I will abstract the

algorithmic designs in the quantum domain into a compiler optimization problem. The

key here is to crystallize the development of resource-efficient quantum algorithms into a

set of optimization tuning configurations, figure out their dependencies and applicability,

and explore the optimization space efficiently. I will develop the first language and com-

piler support for quantum algorithmic optimization. The algorithmic design space will

be explored systematically and efficiently to generate quantum algorithms that match or

outperform those manually crafted by domain experts.

9.2.3 Projection-Based Quantum Program Debugging and

Analysis

Program logics, model-checking, equivalence checking, termination analysis, reacha-

bility analysis, and invariant generation, have been extended to evaluate the correctness

of the error-prone quantum programs. Unfortunately, these methods often require sim-

ulation on the entire state and thus are restricted to programs with only 25-40 qubits

even on the best supercomputers today. As an alternative method, runtime assertion is

recently employed in quantum computing for efficient testing and debugging. Existing

quantum program assertions employ a classical language to describe the assertion predi-

254

Conclusion and Discussion Chapter 9

cates and only three simple specific types of quantum states asserted. A lot of complex

intermediate program states cannot be tested by these assertions due to their limited

expressive power. To address these challenges, I plan to establish a general framework

for quantum program analysis, testing, and debugging. The key is to leverage the power

of projection operators in quantum logic and projective measurements. Our preliminary

work [22] on projection-based runtime assertions has demonstrated great efficiency and I

will extend it to a more realistic setting and build end-to-end toolsets for practical usage.

I also plan to augment quantum program analysis through automatic projective invariant

generation and quantum logic reasoning with projection-based predicates. I will rigor-

ously formulate the theoretical foundations for the new analysis and debugging schemes,

and propose efficient and effective practical implementations of the runtime assertions,

invariant generation, and logical reasoning.

9.2.4 Electronic Design Automation for Quantum Device/Sys-

tem.

The demand on larger-scale quantum computing devices and systems naturally in-

vokes electronic design automation (EDA), which can help with device modeling, simu-

lation, and design space exploration while a top-down EDA toolset for quantum devices

is still missing. This motivates me to develop new systematic quantum computing de-

vice modeling methods via simulation from the physics level, circuit level, and architec-

ture level. At the physics level, the traditional first principle simulation methods, e.g.,

electromagnetic field simulation, are usually very time-consuming. I plan to accelerate

the physics level simulation from both the algorithm side (e.g., customizing finite ele-

ment analysis for quantum computing devices, applying machine learning techniques)

and system side (e.g., hardware acceleration, compiler/programming system support).

255

Conclusion and Discussion Chapter 9

The physics level simulation results will serve as lumped parameter models in the cir-

cuit level simulation. At the circuit level, I will leverage EDA methods from traditional

CMOS technology. I plan to optimize the device fabrication, e.g., circuit place and

routing for superconducting quantum processors when performing circuit quantum elec-

trodynamics simulation on the lumped parameter model. The simulated circuit models

will serve as the hardware building blocks in the architecture level simulation. At the

architecture level, I plan to cover both the quantum processor itself and the peripheral

digital-analog hybrid classical control system for a comprehensive evaluation. I have

built a preliminary architecture design flow [19] for superconducting quantum processors

based on IBM’s device model and I will extend it to support more quantum computing

technologies.

256

Appendix A

Appendix for Chapter 6

In this chapter we provide the artifact description of the Paulihedral compiler introduced

in Chapter 6.

A.1 Artifact Abstract

The artifact contains the source code of the Paulihedral compiler and other necessary

code scripts to reproduce the key results (Table 6.2, 6.3, and 6.4) and compare with the

baselines in our evaluation. The hardware requirement is a regular X86 server/laptop

but the memory size may limit the size of the benchmark that can be compiled. The IBM

Melbourne device used in our evaluation has just retired and the related results cannot be

reproduced. But we still keep the original script of that experiment for your reference.

The software dependencies only contain common software packages. We also provide

our benchmark generation script and have pre-generated all benchmarks used in our

evaluation. Note that for Table 6.3 the results are averaged over 20 randomly generated

graphs per benchmark. While in our artifact, we show the result of one random seed and

a slight deviation is expected.

257

Appendix for Chapter 6 Chapter A

A.2 Artifact Checklist

• Language: Paulihedral has a new intermediate representation (IR), Pauli IR,

which is implemented by a 2-dimensional Python list in this artifact. Examples

can be found in ‘Paulihedral.ipynb’.

• Algorithm: Paulihedral has four core algorithms.

– Gate-count-oriented scheduling (Section 4.1) is the function

‘gate count oriented scheduling’ in ‘parallel bl.py’.

– Depth-oriented scheduling (Section 4.2) is the function

‘depth oriented scheduling’ in ‘parallel bl.py’.

– Block-wise optimization on fault-tolerant backend (Section 5.1) is in function

‘block opt FT’ in ‘synthesis FT.py’.

– Block-wise optimization on superconducting backend (Section 5.2) is in func-

tion ‘block opt SC’ in ‘synthesis SC.py’.

• Benchmarks: The benchmarks are the Pauli IR programs of the simulation kernels

listed in Table 6.1.

• Runtime environment: Python, Jupyter Notebook.

• Disk space required: 10 GB is sufficient for the artifact and all software depen-

dencies.

• Hardware: Intel CPU, Memory size depending on the benchmark size (the largest

benchmarks can be processed with 1T RAM).

• Experiments: Compiling the Pauli IR programs using Paulihedral and follow-up

generic quantum compilers.

258

Appendix for Chapter 6 Chapter A

• Time to prepare workflow: 10 minutes

• Time to complete experiments: The approximate execution time for each

benchmark under different configurations can be found in Table 6.2. It will take

hundreds of CPU hours to fully reproduce all results in Table 6.2, 6.3, and 6.4.

• Output: The output of the compilation is the quantum circuit containing CNOT

gates and single-qubit gates only.

• Metrics: We consider the following metrics in the output

– Number of single-qubit gates

– Number of CNOT gates

– Number of all gates

– Circuit depth

– Execution time

All these metrics can be directly counted from the output quantum circuit.

• Publicly available: Yes

• Code license: Apache License 2.0

• Workflow framework used: Jupyter notebook, Qiskit, t|ket⟩

• Archived repo: https://zenodo.org/record/5780204

• DOI: 10.5281/zenodo.5748398

259

https://zenodo.org/record/5780204

Appendix for Chapter 6 Chapter A

A.3 Description

A.3.1 How to Access

The artifact is available at the following Zenodo link https://zenodo.org/record/

5780204 with DOI 10.5281/zenodo.5780204. You can download the zip file and then

decompress it.

A.3.2 Hardware Dependencies

A regular server with Intel CPUs can run our artifact while the amount of RAM

may limit the size of benchmarks that can be executed. In our experiments, we use 1T

RAM to execute all benchmarks. If you do not have enough RAM, it is possible that the

large benchmarks like ‘NaCl’ and ‘Rand-80’ are not executable due to out of memory.

Note that in Section 6.4, we have real system experiments on IBM’s Melbourne device.

This device has permanently retired and is not longer accessible. So we are not able to

reproduce the results in Figure 6.11.

A.3.3 Software Dependencies

The artifact in implemented in Python 3.8.12. We require Qiskit and t|ket⟩. In our ex-

periments, we use Qiskit 0.23.5 and t|ket⟩ version 0.11.0. while other versions may or may

not work. These two frameworks requires numpy 1.20.0. We also need jupyter notebook,

which can installed from Anaconda, since we prepare the file ‘Paulihedral.ipynb’ that con-

tains scripts to automatically and interactively reproduce the results in Table 6.2, 6.3,

and 6.4 for easy validation. See ‘README.md’ for installing the software dependen-

cies. Note that the PySCF version must be 1.7.6. The QAOA compiler used in our

evaluation (Section 6.2, Table 6.3) is downloaded from https://github.com/mahabubul-

260

https://zenodo.org/record/5780204
https://zenodo.org/record/5780204

Appendix for Chapter 6 Chapter A

alam/QAOA-Compiler and has already been integrated in this artifact (in the folder

‘QAOA-Compiler’). The QAOA compiler requires networkx 2.5.0 and commentjson 0.9.0.

The list of dependencies can be found in ‘requirements.txt’.

A.3.4 Benchmarks

The benchmarks can be generated using the file ‘gene benchmark.py’. We have pre-

generated all benchmarks used in our evaluation and they can be found in benchmark/-

data. You can also generate Pauli IR programs from you own Hamiltonians/applications

following the format in the example in the first code block in ‘Paulihedral.ipynb’.

A.4 Installation

To use our artifact, you can first download the repo to your local machine. Then you

can install the software dependencies by running the command:

pip i n s t a l l −r requ i rements . txt

A.5 Evaluation and Expected Results

After you download the artifact and install all software dependencies, you can open

the jupyter notebook file ‘Paulihedral.ipynb’. The first code block will demonstrate an

example of a Pauli IR program. Note that we just set all the rotation angles in the

center Rz gates to ‘1.0’. The Rz gates will not be affected in the entire compilation

flow. The second, third, and fourth code blocks will automatically reproduce the results

in Table 6.2, 6.3, and 6.4, respectively. The results are printed out directly. Note that

the results in Table 6.3 are averaged over 20 randomly generated graphs per benchmark.

While in our artifact, we show the result of one random seed. Therefore, a slight deviation

261

Appendix for Chapter 6 Chapter A

is expected. Note that the execution time cannot be perfectly reproduced because your

local machine configurations can be different from the server we used in our evaluation

while the trend should remain the same.

Since reproducing all the results are very time consuming (hundreds of CPU hours

on a server), we add an option in ‘config.py’ so that small-size experiment results can be

reproduced quickly. In ‘config.py’, if you set ‘test scale’ to ‘full’, then the code will run all

benchmarks; if you set ‘test scale’ to ‘small’, then the code only run small benchmarks,

which will take about a few CPU hours on a MacBook. By default, ‘test scale’ is set to

‘small’.

We also attach our code (in file ‘real system.py’) for experiment on the IBM devices.

This script can print out the compilation results when compiling the QAOA programs

onto the IBM Melbourne chip. However, since the IBM Melbourne chip used in this

dissertation is no longer available, the real system execution results in Figure 6.11 cannot

be reproduced. You can change the device to other available IBM devices in the script.

262

Appendix B

Appendix for Chapter 7

B.1 Proof of the theorems, propositions, and lem-

mas

B.1.1 Proof of Theorem 7.3.1

Theorem: Suppose we repeatedly execute S ′ (with l assertions) with input ρ and

collect all the error messages.

1. (Posterior) If an error message occurs in assert(qm;Pm), we conclude that sub-

program Sm is not correct, i.e., with the input satisfying precondition Pm−1, after

executing Sm, the output can violate postcondition Pm.

2. (Posterior) If no error message is reported after executing S ′ for k times (k ≫ l2),

we claim that program S is close to the bug-free standard program; more precisely,

with confidence level 95%,

(a) the confidence interval of minSstd
D (JSK(ρ), JSstdK(ρ)) is

[
0, 0.9l+

√
l√

k

]
,

(b) the confidence interval of maxSstd
F (JSK(ρ), JSstdK(ρ)) is

[
cos 0.9l+

√
l√

k
, 1
]
,

263

Appendix for Chapter 7 Chapter B

where the minimum (maximum) is taken over all bug-free standard program Sstd

that satisfies all assertions with input ρ.

Moreover, within one testing execution, if the program sm is not correct but assert(qm;Pm)

is passed, then follow-up assertion assert(qm+1;Pm+1) is still effective in checking the

program Sm+1.

Proof: The proof has three parts.

• Error message occurred in assert(qm;Pm).

Obviously, no error message occurred in assert(qm−1;Pm−1), which ensures that the

current state ρ after the assertion assert(qm−1;Pm−1) indeed satisfies ρ |= Pm−1.

After executing the subprogram Sm, the state becomes JSmK(ρ). The error message

occurred in assert(qm;Pm) indicates that JSmK(ρ) ̸|= Pm, which implies subprogram Sm

is not correct, i.e., with the input satisfying precondition Pm−1, after executing Sm, the

output can violate postcondition Pm.

• No error message is reported.

We assume that for the original program S, the state before and after Sm is ρm−1 and

ρm for 1 ≤ m ≤ l; and for the debugging scheme S ′, the state after assert(qm;Pm) is ρ′m

for 1 ≤ m ≤ l and set ρ′0 = ρ.

We first show the trace distance D and angle A (distance defined by fidelity1) of

JSmK(ρ′m−1) and ρ′m. Realize that, the k executions of assertion assert(qm;Pm) are k

independent Bernoulli trials with success (report error message) probability ϵm = 1 −

tr
(
PmJSmK(ρ′m−1)

)
. With the result that there is no success in k trials, we here use the

commonly used methods of binomial proportion confidence interval, the Clopper-Pearson

interval2 [310] to estimate the actual value of probability ϵm. The confidence interval

1Formally, A(ρ, σ) ≜ arccos(F (ρ, σ)).
2It is also called the ’exact’ confidence interval, as it is based on the cumulative probabilities of the

binomial distribution.

264

Appendix for Chapter 7 Chapter B

(CI) of ϵm is
(

0, 1 −
(
α
2

) 1
k

)
with confidence level 1−α; in other words, based on the trial

results, we may draw the distribution of possible actual value, which is expressed as:

Pr(a ≤ ϵm ≤ b) =

∫ b

a

fX(x)dx,

fX(x) = Beta(1, k) = k(1 − x)k−1.

According to Lemma 7.3.1, we know that:

D(JSmK(ρ′m−1), ρ
′
m) ≤ ϵm +

√
ϵm(1 − ϵm) =: Ym

A(JSmK(ρ′m−1), ρ
′
m) ≤ arccos(

√
1 − ϵm) =: Zm

Some properties of Ym and Zm are listed below3:

center estimate CI

Ym
1

k+1
+
√

π
4k+3

[
0, β

k
+
√

β
k

]
Zm

√
π

4k+3

[
0,
√

β
k

]
with β = − ln(α/2).

3As we focused on the summation of values, we choose the mean of possible actual value as the center
estimate, rather than the center of CI. As a consequence, the standard deviation is corrected to the
distance of center estimate and right-bounded of CI.

265

Appendix for Chapter 7 Chapter B

Next, we derive the following inequalities:

D(ρl, ρ
′
l)

≤ D(ρl, JSlK(ρ′l−1)) +D
(
JSlK(ρ′l−1), ρ

′
l

)
= D(JSlK(ρl−1), JSlK(ρ′l−1)) +D

(
JSlK(ρ′l−1), ρ

′
l

)
≤ D(ρl−1, ρ

′
l−1) +D

(
JSlK(ρ′l−1), ρ

′
l

)
...

≤
l∑

m=1

D
(
JSmK(ρ′m−1), ρ

′
m

)
≤

l∑
m=1

Ym

and similarly,

A(ρl, ρ
′
l) ≤

l∑
m=1

Zm

using the fact that trace-preserving quantum operations (the semantic functions of ter-

minating programs) are contractive for both D and A. Note that all Ym are independent,

so the estimate mean of
∑l

m=1 Ym is

l

k + 1
+ l

√
π

4k + 3

266

Appendix for Chapter 7 Chapter B

and the CI with confident level 1 − α is 4

[
0,

l

k + 1
+ l

√
π

4k + 3
+
√
l

(
β

k
+

√
β

k
− 1

k + 1
−
√

π

4k + 3

)]
.

Similarly, we can construct the CI of
∑l

m=1 Zm:

[
0, l

√
π

4k + 3
+
√
l

(√
β

k
−
√

π

4k + 3

)]
.

If k is large (e.g., greater than 100) and choose α = 0.05 (the confidence level is 95%),

we may simplify above formula and conclude:

1. The 95% CI of D(ρl, ρ
′
l) is [

0,
0.9l +

√
l√

k

]
,

2. The 95% CI of F (ρl, ρ
′
l) is [

cos
0.9l +

√
l√

k
, 1

]
.

Now, if we construct a sequence of subprograms S ′
m which takes ρ′m−1 as input and

output ρ′m, obviously S ′
1; · · · ;S ′

l is a bug-free standard program (that passes all assertions

with input ρ). Therefore, we complete the proof.

• Even if some Sm is not correct, if the execution of S ′ does not terminate at assert(qm;Pm),

then the state after assert(qm;Pm) is changed and satisfies Pm, which is actually the cor-

rect input for testing Sm+1. Therefore, the rest of the execution is still good enough for

debugging other errors.

4The exact bound of CI is generally difficult to calculate. Given a set of Xi with estimate
mean EXi and CI (EXi − wi,EXi + wi), a simpler way to estimate the CI of summation

∑
i Xi is(∑

i EXi −
√∑

i w
2
i ,
∑

i EXi +
√∑

i w
2
i

)
, an interval centered at

∑
i EXi with width

√∑
i w

2
i , similar

to the behavior of standard deviation.

267

Appendix for Chapter 7 Chapter B

B.1.2 Proof of Lemma 7.3.1

Lemma: For projection P and density operator ρ, if tr(Pρ) ≥ 1 − ϵ, then

1. D
(
ρ, PρP

tr(PρP)

)
≤ ϵ+

√
ϵ(1 − ϵ).

2. F
(
ρ, PρP

tr(PρP)

)
≥

√
1 − ϵ.

Proof: 1. For pure state |ψ⟩, we have:

tr |P |ψ⟩⟨ψ|P⊥| = tr
√
P |ψ⟩⟨ψ|P⊥P⊥|ψ⟩⟨ψ|P

=
√
⟨ψ|P⊥P⊥|ψ⟩ tr

√
P |ψ⟩⟨ψ|P

=
√
⟨ψ|P⊥|ψ⟩

√
⟨ψ|P |ψ⟩

=
√

tr(P |ψ⟩⟨ψ|)
√

tr(P⊥|ψ⟩⟨ψ|).

Therefore, for any density operators ρ with spectral decomposition ρ =
∑

i pi|ψi⟩⟨ψi|, we

have:

tr |PρP⊥| = tr |P
∑
i

pi|ψi⟩⟨ψi|P⊥|

≤
∑
i

pi tr |P |ψi⟩⟨ψi|P⊥|

=
∑
i

√
pi tr(P |ψi⟩⟨ψi|)

√
pi tr(P⊥|ψi⟩⟨ψi|)

≤
√∑

i

pi tr(P |ψi⟩⟨ψi|)
√∑

i

pi tr(P⊥|ψi⟩⟨ψi|)

=
√

tr(Pρ) tr(P⊥ρ)

268

Appendix for Chapter 7 Chapter B

using the Cauchy-Schwarz inequality. Now, it is straightforward to have:

D
(
ρ,

PρP

tr(PρP)

)
=

1

2
tr
∣∣∣PρP + P⊥ρP + PρP⊥ + P⊥ρP⊥ − PρP

tr(PρP)

∣∣∣
≤ 1

2
tr |PρP |

∣∣∣1 − 1

tr(PρP)

∣∣∣+
1

2
|PρP⊥ + P⊥ρP |

+
1

2
|P⊥ρP⊥|

≤ 1

2
(1 − tr(Pρ)) + tr

∣∣P√ρ√ρP⊥∣∣+
1

2
tr((I − P)ρ)

≤ ϵ

2
+
√

tr(Pρ) tr(P⊥ρ) +
ϵ

2

≤ ϵ+
√
ϵ(1 − ϵ).

The restriction of P makes it a slightly stronger than the original one in [246].

2. For pure state |ψ⟩, we have:

F

(
|ψ⟩⟨ψ|, P |ψ⟩⟨ψ|P

tr(P |ψ⟩⟨ψ|P)

)
=

√
⟨ψ|P |ψ⟩⟨ψ|P |ψ⟩

tr(P |ψ⟩⟨ψ|P)

=
√

tr(P |ψ⟩⟨ψ|P).

269

Appendix for Chapter 7 Chapter B

Now, for any density operators ρ with spectral decomposition ρ =
∑

i pi|ψi⟩⟨ψi|, we have:

F

(
ρ,

PρP

tr(PρP)

)
= F

(∑
i

pi|ψi⟩⟨ψi|,
∑
i

pi tr(P |ψi⟩⟨ψi|P)

tr(PρP)

P |ψi⟩⟨ψi|P
tr(P |ψi⟩⟨ψi|P)

)

≥
∑
i

√
pi
pi tr(P |ψi⟩⟨ψi|P)

tr(PρP)
F

(
|ψi⟩⟨ψi|,

P |ψi⟩⟨ψi|P
tr(P |ψi⟩⟨ψi|P)

)
=
∑
i

pi tr(P |ψi⟩⟨ψi|P)√
tr(PρP)

=
tr(PρP)√
tr(PρP)

=
√

1 − ϵ

using strong concavity of the fidelity.

B.1.3 Proof of Theorem 7.3.2

Theorem: Assume that all ϵi are small (ϵm ≪ 1). Execute S ′ for k times (k ≫

l2) with input ρ, and we count km for the occurrence of error message for assertion

assert(qm, Pm).

1. The 95% confidence interval of real εm is [w−
m, w

+
m]. Thus, with confidence 95%,

if ϵm < w−
m, we conclude Sm is incorrect; and if ϵm > w+

m, we conclude Sm is

correct. Here, w−
m, w

+
m and wcm are B (α, km + 1, k −

∑m
i=1 ki) with α = 0.025, 0.975

and 0.5 respectively, where B(P,A,B) is the P th quantile from a beta distribution

with shape parameters A and B.

2. If no segment is appeared to be incorrect, i.e., all ϵm ≥ w−
m, then after executing the

original program S with input ρ, the output state σ approximately satisfies Pl with

270

Appendix for Chapter 7 Chapter B

error parameter δ, i.e., σ |=δ Pl, where δ =
∑l

m=1

√
wcm+

√∑l
m=1(

√
w+
m −√

wcm)2.

Proof:

The proof is similar to Appendix B.1.1.

We assume that for the original program S, the state before and after Sm is ρm−1 and

ρm for 1 ≤ m ≤ l; and for the debugging scheme S ′, the state after assert(qm;Pm) is ρ′m

for 1 ≤ m ≤ l and set ρ′0 = ρ.

Realize that, the k−
∑m−1

i=1 ki executions of assertion assert(qm;Pm) are k−
∑m−1

i=1 ki

independent Bernoulli trials with success (report error message) probability εm = 1 −

tr
(
PmJSmK(ρ′m−1)

)
. With the result that there is mm success in k −

∑m−1
i=1 ki trials, we

use the Clopper-Pearson interval to estimate the actual value of probability εm. Set

confidence level 95%, the CI [w−
m, w

+
m] is calculated by:

w−
m = B

(
0.025, km + 1, k −

m∑
i=1

ki

)
, w+

m = B

(
0.975, km + 1, k −

m∑
i=1

ki

)
,

where B(P,A,B) is the P th quantile from a beta distribution with shape parameters A

and B.

Proof of (1): If the desired ϵm is smaller than the lower bound w−
m, i.e., with confidence

95%, the real value of εm is larger than w−
m and also ϵm, the segment Sm is incorrect. And

if the desired ϵm is larger than the upper bound w+
m, i.e., with confidence 95%, the real

value of εm is smaller than w+
m and also ϵm, the segment Sm is correct when the input of

S is ρ as the output approximately satisfies Pm with error εm less than ϵm.

Proof of (2): We set wcm = B (0.5, km + 1, k −
∑m

i=1 ki). According to Lemma 7.3.1, we

know that:

D(JSmK(ρ′m−1), ρ
′
m) ≤ εm +

√
εm(1 − ϵm) =: Ym

271

Appendix for Chapter 7 Chapter B

Since εm is a beta distribution and small (because ϵm ≥ w−
m and ϵm is small), one can

prove that:

1. The mean Ym is smaller than Y c
m ≜ wcm +

√
wcm(1 − wcm);

2.
[
Y −
m ≜ w−

m +
√
w−
m(1 − w−

m), Y +
m ≜ w+

m +
√
w+
m(1 − w+

m)
]

is also the 95% CI of Ym;

3. Y +
m − Y c

m > Y c
m − Y −

m ;

and thus, it is possible to choose Y c
m as the center estimate and Y +

m − Y c
m the standard

deviation of CI. As a result, the estimate mean of
∑l

m=1 Ym is smaller than
∑l

m=1 Y
c
m

and thus its CI is

 l∑
m=1

Y c
m −

√√√√ l∑
m=1

(Y +
m − Y c

m)2,
l∑

m=1

Y c
m +

√√√√ l∑
m=1

(Y +
m − Y c

m)2

 .
Recall that D(ρl, ρ

′
l) ≤

∑l
m=1 Ym, and since εm is small, we may ignore the infinitesimal

of higher order and approximate the CI of D(ρl, ρ
′
l) as:

 l∑
m=1

√
wcm −

√√√√ l∑
m=1

(
√
w+
m −

√
wcm)2,

l∑
m=1

√
wcm +

√√√√ l∑
m=1

(
√
w+
m −

√
wcm)2

 .
Note that ρ′l |= Pl since it is the post-measurement state, we conclude that the output ρl of

original program S must approximately satisfy Pl with an error at most δ ≜
∑l

m=1

√
wcm+√∑l

m=1(
√
w+
m −√

wcm)2.

B.1.4 Proof of Proposition 7.4.2

Proposition: For projection P with rankP ≤ 2n−1, there exist projections P1, P2,

· · · , Pl satisfying rankPi = 2ni for all 1 ≤ i ≤ l, such that P = P1 ∩ P2 ∩ · · · ∩ Pl.

272

Theoretically, l = 2 is sufficient.

Proof:

After we diagonalize the projection P with the form UΛU †, where the matrix form

of Λ is a diagonal matrix

Λ = diag(1, 1, · · · , 1︸ ︷︷ ︸
rank P

, 0, 0, · · · , 0︸ ︷︷ ︸
2n−rank P

).

Choose following two diagonal matrices

Λ1 = diag(1, · · · , 1︸ ︷︷ ︸
2n−1

, 0, · · · , 0),

Λ2 = diag(1, · · · , 1︸ ︷︷ ︸
rank P

, 0, · · · , 0︸ ︷︷ ︸
2n−1−rank P

, 1, · · · , 1︸ ︷︷ ︸
2n−1−rank P

, 0, · · · , 0︸ ︷︷ ︸
rank P

),

which satisfy Λ1∩Λ2 = Λ and rank Λ1 = rank Λ2 = 2n−1. Therefore, we set P1 = UΛ1U
†

and P2 = UΛ2U
† as desired.

273

Bibliography

[1] P. Benioff, The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing machines,
Journal of statistical physics 22 (1980), no. 5 563–591.

[2] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys 21
(1982), no. 6/7.

[3] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM review 41 (1999), no. 2 303–332.

[4] J. P. Dowling and G. J. Milburn, Quantum technology: the second quantum
revolution, Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 361 (2003), no. 1809 1655–1674.

[5] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum
computational chemistry, Reviews of Modern Physics 92 (2020), no. 1 015003.

[6] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization
algorithm, arXiv preprint arXiv:1411.4028 (2014).

[7] L. K. Grover, A fast quantum mechanical algorithm for database search, in
Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pp. 212–219, ACM, 1996.

[8] S. Jordan, Quantum algorithms zoo (2022), URL: http://quantumalgorithmzoo.org
(2022).

[9] M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum
information: an outlook, Science 339 (2013), no. 6124 1169–1174.

[10] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Trapped-ion
quantum computing: Progress and challenges, Applied Physics Reviews 6 (2019),
no. 2 021314, [https://doi.org/10.1063/1.5088164].

[11] S. Slussarenko and G. J. Pryde, Photonic quantum information processing: A
concise review, Applied Physics Reviews 6 (2019), no. 4 041303,
[https://doi.org/10.1063/1.5115814].

274

http://xxx.lanl.gov/abs/https://doi.org/10.1063/1.5088164
http://xxx.lanl.gov/abs/https://doi.org/10.1063/1.5115814

[12] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J.
Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov,
E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh,
S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman,
H. Neven, and J. M. Martinis, Quantum supremacy using a programmable
superconducting processor, Nature 574 (Oct, 2019) 505–510.

[13] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F.
Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita,
T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon,
N. Quesada, and J. Lavoie, Quantum computational advantage with a
programmable photonic processor, Nature 606 (Jun, 2022) 75–81.

[14] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin,
D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang,
L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan,
Quantum computational advantage using photons, Science 370 (2020), no. 6523
1460–1463, [https://www.science.org/doi/pdf/10.1126/science.abe8770].

[15] H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen, L.-C. Peng, Y.-H. Luo,
D. Wu, S.-Q. Gong, H. Su, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li,
X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, J. J. Renema,
C.-Y. Lu, and J.-W. Pan, Phase-programmable gaussian boson sampling using
stimulated squeezed light, Phys. Rev. Lett. 127 (Oct, 2021) 180502.

[16] H. H. Goldstine and A. Goldstine, The electronic numerical integrator and
computer (eniac), Mathematical Tables and Other Aids to Computation 2 (1946),
no. 15 97–110.

[17] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, On the co-design of
quantum software and hardware, in International Conference on Nanoscale
Computing and Communication (NANOCOM), ACM, 2021.

[18] G. Li, Y. Ding, and Y. Xie, Tackling the qubit mapping problem for nisq-era
quantum devices, in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,

275

http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.abe8770

ASPLOS ’19, (New York, NY, USA), p. 1001–1014, Association for Computing
Machinery, 2019.

[19] G. Li, Y. Ding, and Y. Xie, Towards efficient superconducting quantum processor
architecture design, in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 1031–1045, 2020.

[20] G. Li, Y. Shi, and A. Javadi-Abhari, Software-hardware co-optimization for
computational chemistry on superconducting quantum processors, in Proceedings
of the 48th Annual International Symposium on Computer Architecture,
p. 832–845, IEEE Press, 2021.

[21] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, Paulihedral: a
generalized block-wise compiler optimization framework for quantum simulation
kernels, in Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 554–569, 2022.

[22] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, Projection-based runtime
assertions for testing and debugging quantum programs, in Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM, 2020.

[23] G. Li, Y. Ding, and Y. Xie, Sanq: A simulation framework for architecting noisy
intermediate-scale quantum computing system, arXiv preprint arXiv:1904.11590
(2019).

[24] G. Li, Y. Ding, and Y. Xie, Eliminating redundant computation in noisy quantum
computing simulation, in 2020 57nd Design Automation Conference (DAC), 2020.

[25] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,
Quantum Computation and Quantum Information, by Michael A. Nielsen, Isaac
L. Chuang, Cambridge, UK: Cambridge University Press, 2010 (2010).

[26] R. Van Meter and C. Horsman, A blueprint for building a quantum computer,
Communications of the ACM 56 (2013) 84–93.

[27] F. T. Chong, D. Franklin, and M. Martonosi, Programming languages and
compiler design for realistic quantum hardware, Nature 549 (2017) 180.

[28] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf,
R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G.
Almudever, L. DiCarlo, and K. Bertels, An experimental microarchitecture for a
superconducting quantum processor, in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 813–825,
IEEE/ACM, 2017.

276

[29] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by
adiabatic evolution, arXiv preprint quant-ph/0001106 (2000).

[30] R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum
computation on cluster states, Phys. Rev. A 68 (Aug, 2003) 022312.

[31] Z. Wang, Topological quantum computation. No. 112. American Mathematical
Soc., 2010.

[32] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum
computation, Physical review A 52 (1995), no. 5 3457.

[33] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and
C. Jurczak, Quantum computing with neutral atoms, Quantum 4 (2020) 327.

[34] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga,
S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch,
H. Bluhm, and K. Bertels, The engineering challenges in quantum computing, in
Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pp. 836–845, 2017.

[35] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play,
Annual Review of Condensed Matter Physics 11 (2020), no. 1 369–395,
[https://doi.org/10.1146/annurev-conmatphys-031119-050605].

[36] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit quantum
electrodynamics, Rev. Mod. Phys. 93 (May, 2021) 025005.

[37] IBM, “IBM Q Experience Device.”
https://www.research.ibm.com/ibm-q/technology/devices/, 2018.

[38] J. Chow, O. Dial, and J. Gambetta, Ibm quantum breaks the 100-qubit processor
barrier, IBM Research Blog (2021).

[39] J. Kelly, A preview of bristlecone, google’s new quantum processor, Google
Research Blog 5 (2018).

[40] R. Computing, Rigetti computing announces next-generation 40q and 80q
quantum systems, 2021.

[41] Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu, Z. Wei, T. He,
S. Cao, F. Chen, T.-H. Chung, H. Deng, D. Fan, M. Gong, C. Guo, S. Guo,
L. Han, N. Li, S. Li, Y. Li, F. Liang, J. Lin, H. Qian, H. Rong, H. Su, L. Sun,
S. Wang, Y. Wu, Y. Xu, C. Ying, J. Yu, C. Zha, K. Zhang, Y.-H. Huo, C.-Y. Lu,

277

http://xxx.lanl.gov/abs/https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://www.research.ibm.com/ibm-q/technology/devices/

C.-Z. Peng, X. Zhu, and J.-W. Pan, Realization of an error-correcting surface
code with superconducting qubits, Phys. Rev. Lett. 129 (Jul, 2022) 030501.

[42] Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth, D. Sank,
C. Quintana, M. McEwen, R. Barends, P. V. Klimov, S. Hong, C. Jones,
A. Petukhov, D. Kafri, S. Demura, B. Burkett, C. Gidney, A. G. Fowler, A. Paler,
H. Putterman, I. Aleiner, F. Arute, K. Arya, R. Babbush, J. C. Bardin,
A. Bengtsson, A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell,
N. Bushnell, B. Chiaro, R. Collins, W. Courtney, A. R. Derk, D. Eppens,
C. Erickson, E. Farhi, B. Foxen, M. Giustina, A. Greene, J. A. Gross, M. P.
Harrigan, S. D. Harrington, J. Hilton, A. Ho, T. Huang, W. J. Huggins, L. B.
Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, K. Kechedzhi, S. Kim, A. Kitaev,
F. Kostritsa, D. Landhuis, P. Laptev, E. Lucero, O. Martin, J. R. McClean,
T. McCourt, X. Mi, K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Newman, M. Y. Niu, T. E.
O’Brien, A. Opremcak, E. Ostby, B. Pató, N. Redd, P. Roushan, N. C. Rubin,
V. Shvarts, D. Strain, M. Szalay, M. D. Trevithick, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven, S. Boixo, V. Smelyanskiy, Y. Chen,
A. Megrant, J. Kelly, and G. Q. AI, Exponential suppression of bit or phase errors
with cyclic error correction, Nature 595 (Jul, 2021) 383–387.

[43] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings,
S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller,
A. Blais, C. Eichler, and A. Wallraff, Realizing repeated quantum error correction
in a distance-three surface code, Nature 605 (May, 2022) 669–674.

[44] E. H. Chen, T. J. Yoder, Y. Kim, N. Sundaresan, S. Srinivasan, M. Li, A. D.
Córcoles, A. W. Cross, and M. Takita, Calibrated decoders for experimental
quantum error correction, Physical Review Letters 128 (2022), no. 11 110504.

[45] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo,
M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, E. Farhi,
A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, M. P.
Harrigan, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe, S. V. Isakov,
E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V.
Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark,
E. Lucero, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill,
H. Neven, M. Y. Niu, T. E. O’Brien, E. Ostby, A. Petukhov, H. Putterman,
C. Quintana, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
D. Strain, K. J. Sung, M. Szalay, T. Y. Takeshita, A. Vainsencher, T. White,
N. Wiebe, Z. J. Yao, P. Yeh, and A. Zalcman, Hartree-fock on a superconducting

278

qubit quantum computer, Science 369 (2020), no. 6507 1084–1089,
[https://www.science.org/doi/pdf/10.1126/science.abb9811].

[46] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute, K. Arya,
J. Atalaya, J. C. Bardin, R. Barends, S. Boixo, M. Broughton, B. B. Buckley,
D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, S. Demura, A. Dunsworth, D. Eppens, A. Fowler, B. Foxen,
C. Gidney, M. Giustina, R. Graff, S. Habegger, A. Ho, S. Hong, T. Huang, L. B.
Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly,
S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev,
M. Lindmark, M. Leib, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen,
A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman,
C. Neill, F. Neukart, M. Y. Niu, T. E. O’Brien, B. O’Gorman, E. Ostby,
A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N. C. Rubin, D. Sank,
A. Skolik, V. Smelyanskiy, D. Strain, M. Streif, M. Szalay, A. Vainsencher,
T. White, Z. J. Yao, P. Yeh, A. Zalcman, L. Zhou, H. Neven, D. Bacon,
E. Lucero, E. Farhi, and R. Babbush, Quantum approximate optimization of
non-planar graph problems on a planar superconducting processor, Nature Physics
17 (Mar, 2021) 332–336.

[47] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and
J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets, Nature 549 (2017), no. 7671 242–246.

[48] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, A variational eigenvalue solver on a
photonic quantum processor, Nature Communications 5 (Jul, 2014) 4213.

[49] Will Knight, “IBM Raises the Bar with a 50-Qubit Quantum Computer.”
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-
50-qubit-quantum-computer/, 2017.

[50] Jeremy Hsu, “CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum Supremacy.”
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-
49qubit-chip-aims-for-quantum-supremacy, 2018.

[51] Julian Kelly, “A Preview of Bristlecone, Google’s New Quantum Processor.”
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-
new.html, 2018.

[52] Rigetti, “The Quantum Processing Unit (QPU).” https://www.rigetti.com/qpu,
2018.

[53] J. Preskill, Quantum computing in the nisq era and beyond, arXiv preprint
arXiv:1801.00862 (2018).

279

http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.abb9811
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://www.rigetti.com/qpu

[54] J. Preskill, Quantum computing and the entanglement frontier, arXiv preprint
arXiv:1203.5813 (2012).

[55] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J.
Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in
near-term devices, Nature Physics 14 (2018), no. 6 595.

[56] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira, Qubit
allocation, in Proceedings of the 2018 International Symposium on Code
Generation and Optimization, CGO 2018, (New York, NY, USA), p. 113–125,
Association for Computing Machinery, 2018.

[57] D. Maslov, S. M. Falconer, and M. Mosca, Quantum circuit placement, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 27
(2008), no. 4 752–763.

[58] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, Linear nearest neighbor
synthesis of reversible circuits by graph partitioning, arXiv preprint
arXiv:1112.0564 (2011).

[59] A. Shafaei, M. Saeedi, and M. Pedram, Optimization of quantum circuits for
interaction distance in linear nearest neighbor architectures, in Proceedings of the
50th Annual Design Automation Conference, p. 41, ACM, 2013.

[60] A. Shafaei, M. Saeedi, and M. Pedram, Qubit placement to minimize
communication overhead in 2d quantum architectures, in Design Automation
Conference (ASP-DAC), 2014 19th Asia and South Pacific, pp. 495–500, IEEE,
2014.

[61] R. Wille, A. Lye, and R. Drechsler, Optimal swap gate insertion for nearest
neighbor quantum circuits, in Design Automation Conference (ASP-DAC), 2014
19th Asia and South Pacific, pp. 489–494, IEEE, 2014.

[62] A. Lye, R. Wille, and R. Drechsler, Determining the minimal number of swap
gates for multi-dimensional nearest neighbor quantum circuits, in Design
Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific,
pp. 178–183, IEEE, 2015.

[63] D. Venturelli, M. Do, E. Rieffel, and J. Frank, Temporal planning for compilation
of quantum approximate optimization circuits, in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI, pp. 4440–4446,
2017.

[64] D. Venturelli, M. Do, E. Rieffel, and J. Frank, Compiling quantum circuits to
realistic hardware architectures using temporal planners, Quantum Science and
Technology 3 (2018), no. 2 025004.

280

[65] K. E. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank,
Comparing and integrating constraint programming and temporal planning for
quantum circuit compilation, arXiv preprint arXiv:1803.06775 (2018).

[66] A. Oddi and R. Rasconi, Greedy randomized search for scalable compilation of
quantum circuits, in International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pp. 446–461,
Springer, 2018.

[67] D. Bhattacharjee and A. Chattopadhyay, Depth-optimal quantum circuit
placement for arbitrary topologies, arXiv preprint arXiv:1703.08540 (2017).

[68] M. AlFailakawi, I. Ahmad, and S. Hamdan, Lnn reversible circuit realization
using fast harmony search based heuristic, in Asia-Pacific Conference on
Computer Science and Electrical Engineering, 2014.

[69] M. Saeedi, R. Wille, and R. Drechsler, Synthesis of quantum circuits for linear
nearest neighbor architectures, Quantum Information Processing 10 (2011), no. 3
355–377.

[70] C.-C. Lin, S. Sur-Kolay, and N. K. Jha, Paqcs: Physical design-aware
fault-tolerant quantum circuit synthesis, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 23 (2015), no. 7 1221–1234.

[71] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler,
Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum
circuits, in Design Automation Conference (ASP-DAC), 2016 21st Asia and
South Pacific, pp. 292–297, IEEE, 2016.

[72] R. R. Shrivastwa, K. Datta, and I. Sengupta, Fast qubit placement in 2d
architecture using nearest neighbor realization, in Nanoelectronic and Information
Systems (iNIS), 2015 IEEE International Symposium on, pp. 95–100, IEEE, 2015.

[73] A. Kole, K. Datta, and I. Sengupta, A heuristic for linear nearest neighbor
realization of quantum circuits by swap gate insertion using n-gate lookahead.,
IEEE J. Emerg. Sel. Topics Circuits Syst. 6 (2016), no. 1 62–72.

[74] A. Kole, K. Datta, and I. Sengupta, A new heuristic for n-dimensional nearest
neighbor realization of a quantum circuit, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37 (2018), no. 1 182–192.

[75] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and H. Rahaman, A
novel approach for nearest neighbor realization of 2d quantum circuits, in
Proceedings of IEEE Computer Society Annual Symposium on VLSI, IEEE, 2018.

281

[76] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernádez, J. Carballo-Franquis, A. Chen, C.-F. Chen,
J. M. Chow, A. D. Córcoles-Gonzales, A. J. Cross, A. Cross, J. Cruz-Benito,
C. Culver, S. D. L. P. González, E. D. L. Torre, D. Ding, E. Dumitrescu, I. Duran,
P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G.
Gago, J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers,
 L. Herok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa,
A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F. J.
Mart́ın-Fernández, D. T. McClure, D. McKay, S. Meesala, A. Mezzacapo,
N. Moll, D. M. Rodŕıguez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan,
H. Paik, J. Pérez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A. R.
Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia,
Y. Shi, A. Silva, Y. Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner,
D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood,
S. Wood, S. Wörner, I. Y. Akhalwaya, and C. Zoufal, Qiskit: An open-source
framework for quantum computing, 2019.

[77] A. Zulehner, A. Paler, and R. Wille, Efficient mapping of quantum circuits to the
ibm qx architectures, in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018, pp. 1135–1138, IEEE, 2018.

[78] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design
derived from the cooper pair box, Physical Review A 76 (2007), no. 4 042319.

[79] D. Nigg, M. Mueller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A.
Martin-Delgado, and R. Blatt, Quantum computations on a topologically encoded
qubit, Science (2014) 1253742.

[80] D. Zajac, T. Hazard, X. Mi, E. Nielsen, and J. Petta, Scalable gate architecture
for a one-dimensional array of semiconductor spin qubits, Physical Review
Applied 6 (2016), no. 5 054013.

[81] M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with rydberg
atoms, Reviews of Modern Physics 82 (2010), no. 3 2313.

[82] J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank,
J. Mutus, B. Campbell, Y. Chen, and Z. Chen, State preservation by repetitive
error detection in a superconducting quantum circuit, Nature 519 (2015), no. 7541
66.

[83] T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathé,
M. Pechal, M. Mondal, M. Oppliger, C. Eichler, and A. Wallraff, Rapid

282

high-fidelity single-shot dispersive readout of superconducting qubits, Physical
Review Applied 7 (2017), no. 5 054020.

[84] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,
B. Campbell, Z. Chen, B. Chiaro, and A. Dunsworth, Qubit architecture with high
coherence and fast tunable coupling, Physical review letters 113 (2014), no. 22
220502.

[85] S. S. Tannu and M. K. Qureshi, Not all qubits are created equal: A case for
variability-aware policies for nisq-era quantum computers, in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, (New York, NY,
USA), p. 987–999, Association for Computing Machinery, 2019.

[86] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown,
D. Franklin, F. T. Chong, and M. Martonosi, Compiler management of
communication and parallelism for quantum computation, ACM SIGARCH
Computer Architecture News 43 (2015), no. 1 445–456.

[87] A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, Fault-tolerant, high-level
quantum circuits: form, compilation and description, Quantum Science and
Technology 2 (2017), no. 2 025003.

[88] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, Optimized surface code communication in
superconducting quantum computers, in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 692–705, ACM,
2017.

[89] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and
C. Almudever, Mapping of lattice surgery-based quantum circuits on surface code
architectures, arXiv preprint arXiv:1805.11127 (2018).

[90] R. W. Floyd, Algorithm 97: shortest path, Communications of the ACM 5 (1962),
no. 6 345.

[91] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, Revlib: An online
resource for reversible functions and reversible circuits, in Multiple Valued Logic,
2008. ISMVL 2008. 38th International Symposium on, pp. 220–225, IEEE, 2008.

[92] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, Quipper: A
scalable quantum programming language, in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, (New York, NY, USA), p. 333–342, Association for Computing
Machinery, 2013.

283

[93] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, Scaffcc: a framework for compilation and analysis of quantum
computing programs, in Proceedings of the 11th ACM Conference on Computing
Frontiers, p. 1, ACM, 2014.

[94] Robert Wille, “Mapping to the IBM QX Architectures.”
http://iic.jku.at/eda/research/ibm qx mapping/, 2018.

[95] E. A. Sete, W. J. Zeng, and C. T. Rigetti, A functional architecture for scalable
quantum computing, in Rebooting Computing (ICRC), IEEE International
Conference on, pp. 1–6, IEEE, 2016.

[96] G. J. Chaitin, Register allocation spilling via graph coloring, in Proceedings of the
1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’82, (New
York, NY, USA), p. 98–105, Association for Computing Machinery, 1982.

[97] M. Poletto and V. Sarkar, Linear scan register allocation, ACM Transactions on
Programming Languages and Systems (TOPLAS) 21 (1999), no. 5 895–913.

[98] R. M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units,
IBM Journal of research and Development 11 (1967), no. 1 25–33.

[99] J. L. Hennessy and T. Gross, Postpass code optimization of pipeline constraints,
ACM Transactions on Programming Languages and Systems (TOPLAS) 5 (1983),
no. 3 422–448.

[100] J. M. Codina, J. Sánchez, and A. González, A unified modulo scheduling and
register allocation technique for clustered processors, in pact, p. 0175, IEEE, 2001.

[101] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears,
B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H.
Devoret, and R. J. Schoelkopf, Observation of high coherence in josephson
junction qubits measured in a three-dimensional circuit qed architecture, Phys.
Rev. Lett. 107 (Dec, 2011) 240501.

[102] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,
B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White,
A. N. Cleland, and J. M. Martinis, Coherent josephson qubit suitable for scalable
quantum integrated circuits, Phys. Rev. Lett. 111 (Aug, 2013) 080502.

[103] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann, and F. T.
Chong, Optimized compilation of aggregated instructions for realistic quantum
computers, in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, (New York, NY, USA), p. 1031–1044, Association for Computing
Machinery, 2019.

284

http://iic.jku.at/eda/research/ibm_qx_mapping/

[104] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers, in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, (New York, NY, USA), p. 1015–1029, Association for Computing
Machinery, 2019.

[105] J. P. van Dijk, E. Charbon, and F. Sebastiano, The electronic interface for
quantum processors, arXiv preprint arXiv:1811.01693 (2018).

[106] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M.
Gambetta, Universal gate for fixed-frequency qubits via a tunable bus, Physical
Review Applied 6 (2016), no. 6 064007.

[107] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,
Validating quantum computers using randomized model circuits, arXiv preprint
arXiv:1811.12926 (2018).

[108] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H.
Alderete, Full-stack, real-system quantum computer studies: Architectural
comparisons and design insights, in Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, (New York, NY, USA),
p. 527–540, Association for Computing Machinery, 2019.

[109] S. Rosenblatt, J. Hertzberg, J. Chavez-Garcia, N. Bronn, H. Paik, M. Sandberg,
E. Magesan, J. Smolin, J.-B. Yau, V. Adiga, M. Brink, and J. M. Chow,
Enablement of near-term quantum processors by architectural yield engineering,
Bulletin of the American Physical Society (2019).

[110] E. Magesan and J. M. Gambetta, Effective hamiltonian models of the
cross-resonance gate, arXiv preprint arXiv:1804.04073 (2018).

[111] M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt, Device
challenges for near term superconducting quantum processors: frequency
collisions, in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6–1,
IEEE, 2018.

[112] S. Rosenblatt, J. S. Orcutt, and J. M. Chow, Laser annealing qubits for optimized
frequency allocation, July 2, 2019. US Patent App. 10/340,438.

[113] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning, in
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, (New York, NY,
USA), p. 269–284, Association for Computing Machinery, 2014.

285

[114] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, Eie:
efficient inference engine on compressed deep neural network, in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pp. 243–254, IEEE, 2016.

[115] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics, in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 1–13, IEEE, 2016.

[116] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, A scalable processing-in-memory
accelerator for parallel graph processing, ACM SIGARCH Computer Architecture
News 43 (2016), no. 3 105–117.

[117] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, Scaffcc: Scalable compilation and analysis of quantum programs,
Parallel Computing 45 (2015) 2–17.

[118] M. Ying and Y. Feng, Quantum loop programs, Acta Informatica 47 (2010), no. 4
221–250.

[119] M. Ying, N. Yu, Y. Feng, and R. Duan, Verification of quantum programs,
Science of Computer Programming 78 (2013), no. 9 1679–1700.

[120] S. Ying, Y. Feng, N. Yu, and M. Ying, Reachability probabilities of quantum
markov chains, in International Conference on Concurrency Theory, pp. 334–348,
Springer, 2013.

[121] K. Honda, Analysis of quantum entanglement in quantum programs using
stabilizer formalism, arXiv preprint arXiv:1511.01572 (2015).

[122] S. Perdrix, Quantum entanglement analysis based on abstract interpretation, in
International Static Analysis Symposium, pp. 270–282, Springer, 2008.

[123] P.-L. Dallaire-Demers and F. K. Wilhelm, Quantum gates and architecture for the
quantum simulation of the fermi-hubbard model, Physical Review A 94 (2016),
no. 6 062304.

[124] P. J. Liebermann, P.-L. Dallaire-Demers, and F. K. Wilhelm, Implementation of
the ifredkin gate in scalable superconducting architecture for the quantum
simulation of fermionic systems, arXiv preprint arXiv:1701.07870 (2017).

[125] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross,
Topological and subsystem codes on low-degree graphs with flag qubits, arXiv
preprint arXiv:1907.09528 (2019).

286

[126] C. Rigetti and M. Devoret, Fully microwave-tunable universal gates in
superconducting qubits with linear couplings and fixed transition frequencies,
Physical Review B 81 (2010), no. 13 134507.

[127] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, Procedure for
systematically tuning up cross-talk in the cross-resonance gate, Physical Review A
93 (2016), no. 6 060302.

[128] M. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, M. Brink, J. M.
Chow, and B. Plourde, Tunable superconducting qubits with flux-independent
coherence, Physical Review Applied 8 (2017), no. 4 044003.

[129] S. Rosenblatt, J. Hertzberg, M. Brink, J. Chow, J. Gambetta, Z. Leng, A. Houck,
J. Nelson, B. Plourde, X. Wu, et. al., Variability metrics in josephson junction
fabrication for quantum computing circuits, in APS Meeting Abstracts, 2017.

[130] J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis, and M. R.
Geller, High-fidelity controlled-σ z gate for resonator-based superconducting
quantum computers, Physical Review A 87 (2013), no. 2 022309.

[131] D-Wave Systems Inc., “D-Wave System Documentation.”
https://docs.dwavesys.com/docs/latest/, 2018.

[132] A. Ash-Saki, M. Alam, and S. Ghosh, Qure: Qubit re-allocation in noisy
intermediate-scale quantum computers, in Proceedings of the 56th Annual Design
Automation Conference 2019, p. 141, ACM, 2019.

[133] F. Jensen, Introduction to computational chemistry. John wiley & sons, 2017.

[134] A. Aspuru-Guzik, R. Lindh, and M. Reiher, The matter simulation (r) evolution,
ACS central science 4 (2018), no. 2 144–152.

[135] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating
reaction mechanisms on quantum computers, Proceedings of the National
Academy of Sciences 114 (2017), no. 29 7555–7560.

[136] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan,
Low-depth quantum simulation of materials, Physical Review X 8 (2018), no. 1
011044.

[137] P. A. M. Dirac, Quantum mechanics of many-electron systems, Proceedings of the
Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character 123 (1929), no. 792 714–733.

287

https://docs.dwavesys.com/docs/latest/

[138] Oak Ridge National Lab, “ALCC program awards nearly 6 million summit node
hours across 31 projects.”
https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-
million-summit-node-hours-across-31-projects/. Accessed: 2020-08-16.

[139] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of
variational hybrid quantum-classical algorithms, New Journal of Physics 18
(2016), no. 2 023023.

[140] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero,
A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank,
A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven,
A. Aspuru-Guzik, and J. M. Martinis, Scalable quantum simulation of molecular
energies, Phys. Rev. X 6 (Jul, 2016) 031007.

[141] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. Kimchi-Schwartz,
J. McClean, J. Carter, W. De Jong, and I. Siddiqi, Computation of molecular
spectra on a quantum processor with an error-resilient algorithm, Physical Review
X 8 (2018), no. 1 011021.

[142] Google AI Quantum and Collaborators, Hartree-fock on a superconducting qubit
quantum computer, Science 369 (2020), no. 6507 1084–1089,
[https://science.sciencemag.org/content/369/6507/1084.full.pdf].

[143] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K. Kim, Quantum
implementation of the unitary coupled cluster for simulating molecular electronic
structure, Physical Review A 95 (2017), no. 2 020501.

[144] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic,
B. P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R. Blatt, and C. F. Roos,
Quantum chemistry calculations on a trapped-ion quantum simulator, Phys. Rev.
X 8 (Jul, 2018) 031022.

[145] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A.
Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller, Self-verifying variational
quantum simulation of lattice models, Nature 569 (May, 2019) 355–360.

[146] Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R.
Brown, S. Allen, J. M. Amini, J. Apisdorf, K. M. Beck, A. Blinov, V. Chaplin,
M. Chmielewski, C. Collins, S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan,
S. M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J. D. Wong-Campos,
D. Moehring, C. Monroe, and J. Kim, Ground-state energy estimation of the

288

https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-million-summit-node- hours-across-31-projects/
https://www.olcf.ornl.gov/2020/08/05/alcc-program-awards-nearly-6-million-summit-node- hours-across-31-projects/
http://xxx.lanl.gov/abs/https://science.sciencemag.org/content/369/6507/1084.full.pdf

water molecule on a trapped-ion quantum computer, npj Quantum Information 6
(Apr, 2020) 33.

[147] J. Staunstrup and W. Wolf, Hardware/software co-design: principles and practice.
Springer Science & Business Media, 2013.

[148] J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Whaley, Generalized unitary
coupled cluster wave functions for quantum computation, Journal of chemical
theory and computation 15 (2018), no. 1 311–324.

[149] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, An adaptive
variational algorithm for exact molecular simulations on a quantum computer,
Nature communications 10 (2019), no. 1 1–9.

[150] P.-L. Dallaire-Demers, J. Romero, L. Veis, S. Sim, and A. Aspuru-Guzik,
Low-depth circuit ansatz for preparing correlated fermionic states on a quantum
computer, Quantum Science and Technology 4 (2019), no. 4 045005.

[151] I. G. Ryabinkin, T.-C. Yen, S. N. Genin, and A. F. Izmaylov, Qubit coupled cluster
method: a systematic approach to quantum chemistry on a quantum computer,
Journal of chemical theory and computation 14 (2018), no. 12 6317–6326.

[152] I. G. Ryabinkin, R. A. Lang, S. N. Genin, and A. F. Izmaylov, Iterative qubit
coupled cluster approach with efficient screening of generators, Journal of
Chemical Theory and Computation 16 (2020), no. 2 1055–1063.

[153] H. L. Tang, E. Barnes, H. R. Grimsley, N. J. Mayhall, and S. E. Economou,
qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansatze
on a quantum processor, arXiv preprint arXiv:1911.10205 (2019).

[154] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Barren
plateaus in quantum neural network training landscapes, Nature communications
9 (2018), no. 1 1–6.

[155] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,
Validating quantum computers using randomized model circuits, Physical Review
A 100 (2019), no. 3 032328.

[156] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink,
L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, et. al., Demonstration of
quantum volume 64 on a superconducting quantum computing system, Quantum
Science and Technology 6 (2021), no. 2 025020.

[157] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross,
Topological and subsystem codes on low-degree graphs with flag qubits, Phys. Rev.
X 10 (Jan, 2020) 011022.

289

[158] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, Software mitigation
of crosstalk on noisy intermediate-scale quantum computers, in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, (New York, NY, USA), p. 1001–1016,
Association for Computing Machinery, 2020.

[159] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, G. Aleksandrowicz,
T. Alexander, M. Amy, E. Arbel, Arijit02, A. Asfaw, A. Avkhadiev, C. Azaustre,
AzizNgoueya, A. Banerjee, A. Bansal, P. Barkoutsos, A. Barnawal, G. Barron,
G. S. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, A. Bhobe, L. S. Bishop,
C. Blank, S. Bolos, S. Bosch, Brandon, S. Bravyi, Bryce-Fuller, D. Bucher,
A. Burov, F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal,
A. Chen, C.-F. Chen, E. Chen, J. C. Chen, R. Chen, J. M. Chow, S. Churchill,
C. Claus, C. Clauss, R. Cocking, F. Correa, A. J. Cross, A. W. Cross, S. Cross,
J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, T. E. Dandachi,
M. Daniels, M. Dartiailh, DavideFrr, A. R. Davila, A. Dekusar, D. Ding, J. Doi,
E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty,
E. Eastman, G. Eberle, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández,
A. H. Ferrera, R. Fouilland, FranckChevallier, A. Frisch, A. Fuhrer, B. Fuller,
M. GEORGE, J. Gacon, B. G. Gago, C. Gambella, J. M. Gambetta,
A. Gammanpila, L. Garcia, T. Garg, S. Garion, A. Gilliam, A. Giridharan,
J. Gomez-Mosquera, Gonzalo, S. de la Puente González, J. Gorzinski, I. Gould,
D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, M. Haglund, I. Haide,
I. Hamamura, O. C. Hamido, F. Harkins, V. Havlicek, J. Hellmers, L. Herok,
S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, J. Huang, R. Huisman,
H. Imai, T. Imamichi, K. Ishizaki, R. Iten, T. Itoko, JamesSeaward, A. Javadi,
A. Javadi-Abhari, W. Javed, Jessica, M. Jivrajani, K. Johns, S. Johnstun,
Jonathan-Shoemaker, V. K, T. Kachmann, A. Kale, N. Kanazawa, Kang-Bae,
A. Karazeev, P. Kassebaum, J. Kelso, S. King, Knabberjoe, Y. Kobayashi,
A. Kovyrshin, R. Krishnakumar, V. Krishnan, K. Krsulich, P. Kumkar, G. Kus,
R. LaRose, E. Lacal, R. Lambert, J. Lapeyre, J. Latone, S. Lawrence, C. Lee,
G. Li, D. Liu, P. Liu, Y. Maeng, K. Majmudar, A. Malyshev, J. Manela,
J. Marecek, M. Marques, D. Maslov, D. Mathews, A. Matsuo, D. T. McClure,
C. McGarry, D. McKay, D. McPherson, S. Meesala, T. Metcalfe, M. Mevissen,
A. Meyer, A. Mezzacapo, R. Midha, Z. Minev, A. Mitchell, N. Moll, J. Montanez,
G. Monteiro, M. D. Mooring, R. Morales, N. Moran, M. Motta, MrF, P. Murali,
J. Müggenburg, D. Nadlinger, K. Nakanishi, G. Nannicini, P. Nation, E. Navarro,
Y. Naveh, S. W. Neagle, P. Neuweiler, J. Nicander, P. Niroula, H. Norlen,
NuoWenLei, L. J. O’Riordan, O. Ogunbayo, P. Ollitrault, R. Otaolea, S. Oud,
D. Padilha, H. Paik, S. Pal, Y. Pang, V. R. Pascuzzi, S. Perriello, A. Phan,
F. Piro, M. Pistoia, C. Piveteau, P. Pocreau, A. Pozas-Kerstjens, M. Prokop,
V. Prutyanov, D. Puzzuoli, J. Pérez, Quintiii, R. I. Rahman, A. Raja,

290

N. Ramagiri, A. Rao, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice,
M. Riedemann, M. L. Rocca, D. M. Rodŕıguez, RohithKarur, M. Rossmannek,
M. Ryu, T. SAPV, SamFerracin, M. Sandberg, H. Sandesara, R. Sapra,
H. Sargsyan, A. Sarkar, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi,
A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B.
Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov, I. Sokolov, SooluThomas,
Starfish, D. Steenken, M. Stypulkoski, S. Sun, K. J. Sung, H. Takahashi,
T. Takawale, I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
M. Tomasik, E. de la Torre, K. Trabing, M. Treinish, TrishaPe, D. Tulsi,
W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, A. C. Vazquez, V. Villar,
D. Vogt-Lee, C. Vuillot, J. Weaver, J. Weidenfeller, R. Wieczorek, J. A.
Wildstrom, E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood,
S. Wood, S. Wood, J. Wootton, D. Yeralin, D. Yonge-Mallo, R. Young, J. Yu,
C. Zachow, L. Zdanski, H. Zhang, C. Zoufal, and M. Čepulkovskis, Qiskit: An
open-source framework for quantum computing, 2019.

[160] R. S. Smith, E. C. Peterson, M. Skilbeck, and E. Davis, An open-source,
industrial-strength optimizing compiler for quantum programs, Quantum Science
and Technology (2020).

[161] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan,
t|ket⟩: a retargetable compiler for NISQ devices, Quantum Science and
Technology 6 (nov, 2020) 014003.

[162] M. Soeken and M. K. Thomsen, White dots do matter: Rewriting reversible logic
circuits, in Proceedings of the 5th International Conference on Reversible
Computation, RC’13, (Berlin, Heidelberg), p. 196–208, Springer-Verlag, 2013.

[163] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, Automated optimization
of large quantum circuits with continuous parameters, npj Quantum Information
4 (May, 2018) 23.

[164] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, Quantum circuit
simplification and level compaction, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27 (2008), no. 3 436–444.

[165] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D.
McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K. Chan, Pyscf: the
python-based simulations of chemistry framework, 2017.

[166] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular electronic-structure theory.
John Wiley & Sons, 2014.

291

[167] J. Paldus, M. Takahashi, and B. W. H. Cho, Degeneracy and coupled-cluster
approaches, International Journal of Quantum Chemistry 26 (1984), no. S18
237–244, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.560260824].

[168] R. J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step
toward predictive quantum chemistry, The Journal of Physical Chemistry 93
(Mar, 1989) 1697–1708.

[169] I. Quantum, IBM Quantum Experience, August 2020.

[170] W. J. Hehre, R. F. Stewart, and J. A. Pople, self-consistent molecular-orbital
methods. i. use of gaussian expansions of slater-type atomic orbitals, The Journal
of Chemical Physics 51 (1969), no. 6 2657–2664.

[171] P. Jordan and E. Wigner, Über das paulische äquivalenzverbot, Zeitschrift für
Physik 47 (1928), no. 9-10 631–651.

[172] D. Kraft, A software package for sequential quadratic programming, .

[173] M. Malekakhlagh, E. Magesan, and D. C. McKay, First-principles analysis of
cross-resonance gate operation, Phys. Rev. A 102 (Oct, 2020) 042605.

[174] J. Hubbard, Electron correlations in narrow energy bands, Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences 276
(1963), no. 1365 238–257.

[175] T. Patel and D. Tiwari, Veritas: accurately estimating the correct output on noisy
intermediate-scale quantum computers, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020
(C. Cuicchi, I. Qualters, and W. T. Kramer, eds.), p. 15, IEEE/ACM, 2020.

[176] S. S. Tannu and M. Qureshi, Ensemble of diverse mappings: Improving reliability
of quantum computers by orchestrating dissimilar mistakes, in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’52, (New York, NY, USA), p. 253–265, Association for Computing Machinery,
2019.

[177] S. S. Tannu and M. K. Qureshi, Mitigating measurement errors in quantum
computers by exploiting state-dependent bias, in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 279–290, 2019.

[178] A. Eddins, M. Motta, T. P. Gujarati, S. Bravyi, A. Mezzacapo, C. Hadfield, and
S. Sheldon, Doubling the size of quantum simulators by entanglement forging,
arXiv preprint arXiv:2104.10220 (2021).

292

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.560260824

[179] A. Jena, S. Genin, and M. Mosca, Pauli partitioning with respect to gate sets,
arXiv preprint arXiv:1907.07859 (2019).

[180] P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi,
and F. T. Chong, Minimizing state preparations in variational quantum
eigensolver by partitioning into commuting families, arXiv preprint
arXiv:1907.13623 (2019).

[181] V. Verteletskyi, T. Yen, and A. Izmaylov, Measurement optimization in the
variational quantum eigensolver using a minimum clique cover. arxiv 2019, arXiv
preprint arXiv:1907.03358 (2019).

[182] T.-C. Yen, V. Verteletskyi, and A. F. Izmaylov, Measuring all compatible
operators in one series of single-qubit measurements using unitary
transformations, Journal of Chemical Theory and Computation 16 (2020), no. 4
2400–2409.

[183] A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Verteletskyi, Unitary partitioning
approach to the measurement problem in the variational quantum eigensolver
method, Journal of Chemical Theory and Computation 16 (2019), no. 1 190–195.

[184] A. M. Childs, E. Schoute, and C. M. Unsal, Circuit transformations for quantum
architectures, arXiv preprint arXiv:1902.09102 (2019).

[185] A. Cowtan, W. Simmons, and R. Duncan, A generic compilation strategy for the
unitary coupled cluster ansatz, arXiv preprint arXiv:2007.10515 (2020).

[186] A. M.-v. de Griend and R. Duncan, Architecture-aware synthesis of phase
polynomials for nisq devices, arXiv preprint arXiv:2004.06052 (2020).

[187] K. R. Brown, J. Kim, and C. Monroe, Co-designing a scalable quantum computer
with trapped atomic ions, npj Quantum Information 2 (2016), no. 1 1–10.

[188] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, Architecting noisy
intermediate-scale trapped ion quantum computers, in Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture,
ISCA ’20, p. 529–542, IEEE Press, 2020.

[189] S. Lloyd, Universal quantum simulators, Science 273 (1996), no. 5278 1073–1078,
[https://www.science.org/doi/pdf/10.1126/science.273.5278.1073].

[190] D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed
increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83 (Dec, 1999)
5162–5165.

[191] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems
of equations, Phys. Rev. Lett. 103 (Oct, 2009) 150502.

293

http://xxx.lanl.gov/abs/https://www.science.org/doi/pdf/10.1126/science.273.5278.1073

[192] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal component analysis,
Nature Physics 10 (Sep, 2014) 631–633.

[193] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for
big data classification, Phys. Rev. Lett. 113 (Sep, 2014) 130503.

[194] R. S. Smith, E. C. Peterson, M. G. Skilbeck, and E. J. Davis, An open-source,
industrial-strength optimizing compiler for quantum programs, Quantum Science
and Technology 5 (jul, 2020) 044001.

[195] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, Improving quantum
algorithms for quantum chemistry, Quantum Info. Comput. 15 (jan, 2015) 1–21.

[196] K. Gui, T. Tomesh, P. Gokhale, Y. Shi, F. T. Chong, M. Martonosi, and
M. Suchara, Term grouping and travelling salesperson for digital quantum
simulation, arXiv preprint arXiv:2001.05983 (2020).

[197] E. van den Berg and K. Temme, Circuit optimization of Hamiltonian simulation
by simultaneous diagonalization of Pauli clusters, Quantum 4 (Sept., 2020) 322.

[198] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, Phase gadget
synthesis for shallow circuits, Electronic Proceedings in Theoretical Computer
Science 318 (May, 2020) 213–228.

[199] V. Vandaele, S. Martiel, and T. G. de Brugière, Phase polynomials synthesis
algorithms for nisq architectures and beyond, arXiv preprint arXiv:2104.00934
(2021).

[200] M. Alam, A. Ash-Saki, and S. Ghosh, Circuit compilation methodologies for
quantum approximate optimization algorithm, in 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 215–228, IEEE,
2020.

[201] B. Tan and J. Cong, Optimal layout synthesis for quantum computing, in
Proceedings of the 39th International Conference on Computer-Aided Design,
ICCAD ’20, (New York, NY, USA), Association for Computing Machinery, 2020.

[202] L. Lao and D. Browne, 2qan: A quantum compiler for 2-local qubit hamiltonian
simulation algorithms, arXiv preprint arXiv:2108.02099 (2021).

[203] M. Suzuki, Generalized trotter’s formula and systematic approximants of
exponential operators and inner derivations with applications to many-body
problems, Communications in Mathematical Physics 51 (1976), no. 2 183–190.

[204] P. Jordan and E. Wigner, Über das paulische äquivalenzverbot, Zeitschrift für
Physik 47 (Sep, 1928) 631–651.

294

[205] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Annals of
Physics 298 (2002), no. 1 210–226.

[206] M. Alam, A. Ash-Saki, and S. Ghosh, An efficient circuit compilation flow for
quantum approximate optimization algorithm, in 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2020.

[207] M. Alam, A. Ash-Saki, J. Li, A. Chattopadhyay, and S. Ghosh, Noise resilient
compilation policies for quantum approximate optimization algorithm, in
Proceedings of the 39th International Conference on Computer-Aided Design,
pp. 1–7, 2020.

[208] H. F. Trotter, On the product of semi-groups of operators, Proceedings of the
American Mathematical Society 10 (1959), no. 4 545–551.

[209] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum
algorithms, Nature Reviews Physics 3 (Sep, 2021) 625–644.

[210] Z. H. Saleem, B. Tariq, and M. Suchara, Approaches to constrained quantum
approximate optimization, arXiv preprint arXiv:2010.06660 (2020).

[211] B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E. Economou, and E. Barnes,
Efficient symmetry-preserving state preparation circuits for the variational
quantum eigensolver algorithm, npj Quantum Information 6 (Jan, 2020) 10.

[212] A. Tranter, P. J. Love, F. Mintert, and P. V. Coveney, A comparison of the
bravyi–kitaev and jordan–wigner transformations for the quantum simulation of
quantum chemistry, Journal of Chemical Theory and Computation 14 (2018),
no. 11 5617–5630, [https://doi.org/10.1021/acs.jctc.8b00450]. PMID: 30189144.

[213] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes:
Towards practical large-scale quantum computation, Phys. Rev. A 86 (Sep, 2012)
032324.

[214] D. Maslov, Optimal and asymptotically optimal nct reversible circuits by the gate
types, Quantum Info. Comput. 16 (oct, 2016) 1096–1112.

[215] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. V. Meter, Extracting success from
ibm’s 20-qubit machines using error-aware compilation, J. Emerg. Technol.
Comput. Syst. 16 (May, 2020).

[216] A. Zulehner, A. Paler, and R. Wille, An efficient methodology for mapping
quantum circuits to the ibm qx architectures, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38 (2019), no. 7
1226–1236.

295

http://xxx.lanl.gov/abs/https://doi.org/10.1021/acs.jctc.8b00450

[217] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, Optimized
quantum compilation for near-term algorithms with openpulse, in 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 186–200, 2020.

[218] J. Cheng, H. Deng, and X. Qia, Accqoc: Accelerating quantum optimal control
based pulse generation, in ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 543–555, 2020.

[219] X.-C. Wu, D. M. Debroy, Y. Ding, J. M. Baker, Y. Alexeev, K. R. Brown, and
F. T. Chong, Tilt: Achieving higher fidelity on a trapped-ion linear-tape quantum
computing architecture, .

[220] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand,
A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B.
Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E.
Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi,
N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton,
A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang,
Quantum circuits with many photons on a programmable nanophotonic chip,
Nature 591 (Mar, 2021) 54–60.

[221] G. Brassard and P. Hoyer, An exact quantum polynomial-time algorithm for
simon’s problem, in Proceedings of the Fifth Israeli Symposium on Theory of
Computing and Systems, pp. 12–23, 1997.

[222] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and
unsupervised machine learning, arXiv preprint arXiv:1307.0411 (2013).

[223] M. Amy and V. Gheorghiu, staq—a full-stack quantum processing toolkit,
Quantum Science and Technology 5 (jun, 2020) 034016.

[224] N. Khammassi, I. Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol, L. Lao,
K. Bertels, and C. G. Almudever, Openql: A portable quantum programming
framework for quantum accelerators, J. Emerg. Technol. Comput. Syst. 18 (dec,
2021).

[225] A. McCaskey and T. Nguyen, A mlir dialect for quantum assembly languages, in
2021 IEEE International Conference on Quantum Computing and Engineering
(QCE), (Los Alamitos, CA, USA), pp. 255–264, IEEE Computer Society, oct,
2021.

[226] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, Open quantum
assembly language, arXiv preprint arXiv:1707.03429 (2017).

296

[227] R. S. Smith, M. J. Curtis, and W. J. Zeng, A practical quantum instruction set
architecture, arXiv preprint arXiv:1608.03355 (2016).

[228] A. Kissinger and J. van de Wetering, Pyzx: Large scale automated diagrammatic
reasoning, Electronic Proceedings in Theoretical Computer Science 318 (May,
2020) 229–241.

[229] A. W. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S. Bishop,
S. Heidel, C. A. Ryan, J. Smolin, J. M. Gambetta, and B. R. Johnson, Openqasm
3: A broader and deeper quantum assembly language, arXiv preprint
arXiv:2104.14722 (2021).

[230] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, On the co-design of
quantum software and hardware, in Proceedings of the Eight Annual ACM
International Conference on Nanoscale Computing and Communication,
NANOCOM ’21, (New York, NY, USA), Association for Computing Machinery,
2021.

[231] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov,
M. Mykhailova, A. Paz, and M. Roetteler, Q#: Enabling scalable quantum
computing and development with a high-level dsl, in Proceedings of the Real World
Domain Specific Languages Workshop 2018, p. 7, ACM, 2018.

[232] J. Paykin, R. Rand, and S. Zdancewic, Qwire: A core language for quantum
circuits, in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, (New York, NY, USA), pp. 846–858, ACM,
2017.

[233] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F.
Chiang, S. Vanderwilt, J. Black, F. Chong, M. Martonosi, M. Suchara, K. Brown,
M. Pedram, and T. Brun, 2012. scaffold: Quantum programming language, tech.
rep., Technical Report TR-934-12. Princeton University, 2012.

[234] Rigetti Forest team, “Forest SDK.” https://www.rigetti.com/forest, 2019.

[235] Google, “Announcing Cirq: An Open Source Framework for NISQ Algorithms.”
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-
framework.html, 2018.

[236] Y. Huang and M. Martonosi, Qdb: From quantum algorithms towards correct
quantum programs, in 9th Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

297

https://www.rigetti.com/forest
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html
https://ai.googleblog.com/2018/07/announcing-cirq-open-source-framework.html

[237] Y. Huang and M. Martonosi, Statistical assertions for validating patterns and
finding bugs in quantum programs, in Proceedings of the 46th International
Symposium on Computer Architecture, pp. 541–553, ACM, 2019.

[238] IBM, “Gate and operation specification for quantum circuits.”
https://github.com/Qiskit/openqasm, 2019.

[239] Rigetti, “A Python library for quantum programming using Quil..”
https://github.com/rigetti/pyquil, 2019.

[240] J. Liu, G. T. Byrd, and H. Zhou, Quantum circuits for dynamic runtime
assertions in quantum computation, in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 1017–1030, 2020.

[241] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature
299 (1982), no. 5886 802.

[242] G. Birkhoff and J. Von Neumann, The logic of quantum mechanics, Annals of
mathematics (1936) 823–843.

[243] Y. Li and M. Ying, Debugging quantum processes using monitoring
measurements, Phys. Rev. A 89 (Apr, 2014) 042338.

[244] M. Ying, Floyd–hoare logic for quantum programs, ACM Transactions on
Programming Languages and Systems (TOPLAS) 33 (2011), no. 6 19.

[245] M. Ying, Foundations of Quantum Programming. Morgan Kaufmann, 2016.

[246] A. Winter, Coding theorem and strong converse for quantum channels, IEEE
Transactions on Information Theory 45 (Nov, 1999) 2481–2485.

[247] J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi, Classical simulation of
intermediate-size quantum circuits, arXiv preprint arXiv:1805.01450 (2018).

[248] K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks, A verified optimizer for
quantum circuits, arXiv preprint arXiv:1912.02250 (2019).

[249] Y. Shi, X. Li, R. Tao, A. Javadi-Abhari, A. W. Cross, F. T. Chong, and R. Gu,
Contract-based verification of a realistic quantum compiler, arXiv preprint
arXiv:1908.08963 (2019).

[250] R. Rand, J. Paykin, and S. Zdancewic, Qwire practice: Formal verification of
quantum circuits in coq, arXiv preprint arXiv:1803.00699 (2018).

[251] N. Linden, S. Popescu, and W. Wootters, Almost every pure state of three qubits
is completely determined by its two-particle reduced density matrices, Phys. Rev.
Lett. 89 (Oct, 2002) 207901.

298

https://github.com/Qiskit/openqasm
https://github.com/rigetti/pyquil

[252] J. Chen, Z. Ji, B. Zeng, and D. L. Zhou, From ground states to local hamiltonians,
Phys. Rev. A 86 (Aug, 2012) 022339.

[253] T. Xin, D. Lu, J. Klassen, N. Yu, Z. Ji, J. Chen, X. Ma, G. Long, B. Zeng, and
R. Laflamme, Quantum state tomography via reduced density matrices, Phys. Rev.
Lett. 118 (Jan, 2017) 020401.

[254] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and
I. L. Chuang, Experimental realization of shor’s quantum factoring algorithm
using nuclear magnetic resonance, Nature 414 (2001), no. 6866 883.

[255] L. Zhou, N. Yu, and M. Ying, An applied quantum hoare logic, in Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1149–1162, ACM, 2019.

[256] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Quantum nondemolition
measurements, Science 209 (1980), no. 4456 547–557.

[257] G. Kalmbach, Orthomodular lattices, vol. 18. Academic Pr, 1983.

[258] O. Brunet and P. Jorrand, Dynamic quantum logic for quantum programs,
International Journal of Quantum Information 2 (2004), no. 01 45–54.

[259] M. Ying, R. Duan, Y. Feng, and Z. Ji, Predicate transformer semantics of
quantum programs, Semantic Techniques in Quantum Computation 8 (2010)
311–360.

[260] D. Unruh, Quantum relational hoare logic, Proceedings of the ACM on
Programming Languages 3 (2019), no. POPL 33.

[261] N. Yu, Quantum temporal logic, 2019.

[262] X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis,
E. Charbon, and K. Bertels, A heterogeneous quantum computer architecture, in
Proceedings of the ACM International Conference on Computing Frontiers,
pp. 323–330, ACM, 2016.

[263] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J.
Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, eqasm:
An executable quantum instruction set architecture, arXiv preprint
arXiv:1808.02449 (2018).

[264] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Experimental comparison of two quantum computing
architectures, Proceedings of the National Academy of Sciences 114 (2017), no. 13
3305–3310.

299

[265] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, gem5-gpu: A
heterogeneous cpu-gpu simulator, IEEE Computer Architecture Letters 14 (2015),
no. 1 34–36.

[266] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, Analyzing
cuda workloads using a detailed gpu simulator, in Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,
pp. 163–174, IEEE, 2009.

[267] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum circuit simulation.
Springer Science & Business Media, 2009.

[268] I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor
networks, SIAM Journal on Computing 38 (2008), no. 3 963–981.

[269] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits,
Physical Review A 70 (2004), no. 5 052328.

[270] S. Anders and H. J. Briegel, Fast simulation of stabilizer circuits using a
graph-state representation, Physical Review A 73 (2006), no. 2 022334.

[271] A. Zulehner and R. Wille, Advanced simulation of quantum computations, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2018).

[272] G. F. Viamontes, I. L. Markov, and J. P. Hayes, High-performance quidd-based
simulation of quantum circuits, in Proceedings of the conference on Design,
automation and test in Europe-Volume 2, p. 21354, IEEE Computer Society, 2004.

[273] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, Qx: A
high-performance quantum computer simulation platform, in 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 464–469,
IEEE, 2017.

[274] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, qhipster: the quantum high
performance software testing environment, arXiv preprint arXiv:1601.07195
(2016).

[275] D. Wecker and K. M. Svore, Liqui—¿: A software design architecture and
domain-specific language for quantum computing, arXiv preprint arXiv:1402.4467
(2014).

[276] D. S. Steiger, T. Häner, and M. Troyer, Projectq: an open source software
framework for quantum computing, Quantum 2 (2018) 49.

[277] Brian Tarasinski, “quantumsim, A GPU-accellerated full density matrix simulator
of quantum circuits.” https://gitlab.com/quantumsim/quantumsim, 2018.

300

https://gitlab.com/quantumsim/quantumsim

[278] T. Jones, A. Brown, I. Bush, and S. Benjamin, Quest and high performance
simulation of quantum computers, arXiv preprint arXiv:1802.08032 (2018).

[279] X. FU, Quantum Control Architecture: Bridging the Gap between Quantum
Software and Hardware. PhD thesis, Delft University of Technology, 2018.

[280] M. Zhang, Qumasim: A quantum architecture simulation and verification
platform, .

[281] Antonio Corcoles, Maika Takita, Ken Inoue, Scott Lekuch, Abhinav Kandala, Jay
Gambetta, Jerry M. Chow, “ Integration of classical electronics for quantum
computing tasks in superconducting qubit systems.” APS March Meeting, 2019.

[282] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and
W. K. Hensinger, Blueprint for a microwave trapped ion quantum computer,
Science Advances 3 (2017), no. 2 e1601540.

[283] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots,
Physical Review A 57 (1998), no. 1 120.

[284] J. M. Chow, Quantum information processing with superconducting qubits. Yale
University, 2010.

[285] J. J. Garćıa-Ripoll, P. Zoller, and J. I. Cirac, Speed optimized two-qubit gates with
laser coherent control techniques for ion trap quantum computing, Physical Review
Letters 91 (2003), no. 15 157901.

[286] Amit Vainsencher, Ben Chiaro, Roberto Collins, Brooks Foxen, Evan Jeffrey, Erik
Lucero, Matthew McEwen, Daniel Sank, John M Martinis , “Superconducting
qubit control electronics - Part 1/2: system overview and control hardware.” APS
March Meeting, 2019.

[287] Glenn Jones, Deanna Abrams, Stephan Brown, Lauren Capelluto, Schuyler Fried,
Sabrina Hong, Blake Johnson, Rob Lion, Adam Mocarski, Mike Pelstring, Chad
Rigetti, Damon Russell, Michael Rust, Colm Ryan, Diego Scarabelli, Rodney
Sinclair, Prasahnt Sivarajah, Chloe Song, Alexa N Staley, John Stevenson, Mark
Suska, Nima Taie-Nobarie, Celena Tanguay, Nikolas Tezak, Stefan Turkowski , “
Scalable instrumentation for general purpose quantum computers.” APS March
Meeting, 2019.

[288] IBM, “IBM Quantum Device Backend Information.”
https://github.com/Qiskit/ibmq-device-information, 2018.

[289] Rigetti Computing, “ Noise and Quantum Computation.”
https://pyquil.readthedocs.io/en/stable/noise.html, 2019.

301

https://github.com/Qiskit/ibmq-device-information
https://pyquil.readthedocs.io/en/stable/noise.html

[290] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, Simulation of low-depth
quantum circuits as complex undirected graphical models, arXiv preprint
arXiv:1712.05384 (2017).

[291] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik,
and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum
circuits, arXiv preprint arXiv:1710.05867 (2017).

[292] R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, Quantum supremacy circuit
simulation on sunway taihulight, arXiv preprint arXiv:1804.04797 (2018).

[293] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger,
S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo,
P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, Quantum
optimization using variational algorithms on near-term quantum devices,
Quantum Science and Technology 3 (2018), no. 3 030503.

[294] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Journal on
computing 26 (1997), no. 5 1411–1473.

[295] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. Blakestad, J. D. Jost, C. Langer,
R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum
gates, Physical Review A 77 (2008), no. 1 012307.

[296] J. Joo, Y.-J. Park, S. Oh, and J. Kim, Quantum teleportation via a w state, New
Journal of Physics 5 (2003), no. 1 136.

[297] UFMG Compilers Laboratory, “QUbit Allocation, The Enfield Project.”
http://cuda.dcc.ufmg.br/enfield/, 2018.

[298] D. Aharonov, A. Kitaev, and J. Preskill, Fault-tolerant quantum computation with
long-range correlated noise, Physical review letters 96 (2006), no. 5 050504.

[299] J. Preskill, Sufficient condition on noise correlations for scalable quantum
computing, arXiv preprint arXiv:1207.6131 (2012).

[300] J. Werschnik and E. Gross, Quantum optimal control theory, Journal of Physics
B: Atomic, Molecular and Optical Physics 40 (2007), no. 18 R175.

[301] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster, Speedup for quantum optimal
control from automatic differentiation based on graphics processing units, Physical
Review A 95 (2017), no. 4 042318.

[302] X. Qin, Z. Shi, Y. Xie, L. Wang, X. Rong, W. Jia, W. Zhang, and J. Du, An
integrated device with high performance multi-function generators and
time-to-digital convertors, Review of Scientific Instruments 88 (2017), no. 1
014702.

302

http://cuda.dcc.ufmg.br/enfield/

[303] C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan, and T. A. Ohki, Hardware for
dynamic quantum computing, Review of Scientific Instruments 88 (2017), no. 10
104703.

[304] Y. Salathé, P. Kurpiers, T. Karg, C. Lang, C. K. Andersen, A. Akin, S. Krinner,
C. Eichler, and A. Wallraff, Low-latency digital signal processing for feedback and
feedforward in quantum computing and communication, Physical Review Applied 9
(2018), no. 3 034011.

[305] J. Lin, F.-T. Liang, Y. Xu, L.-H. Sun, C. Guo, S.-K. Liao, and C.-Z. Peng, High
performance and scalable awg for superconducting quantum computing, arXiv
preprint arXiv:1806.03660 (2018).

[306] L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, and K. Bertels, Pauli
frames for quantum computer architectures, in Proceedings of the 54th Annual
Design Automation Conference 2017, p. 76, ACM, 2017.

[307] J. van Dijk, A. Vladimirescu, M. Babaie, E. Charbon, and F. Sebastiano, A
co-design methodology for scalable quantum processors and their classical
electronic interface, in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018, pp. 573–576, IEEE, 2018.

[308] F. Pan and P. Zhang, Simulation of quantum circuits using the big-batch tensor
network method, Phys. Rev. Lett. 128 (Jan, 2022) 030501.

[309] J. Fenn and M. Raskino, Mastering the hype cycle: how to choose the right
innovation at the right time. Harvard Business Press, 2008.

[310] C. J. CLOPPER and E. S. PEARSON, THE USE OF CONFIDENCE OR
FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL,
Biometrika 26 (12, 1934) 404–413,
[https://academic.oup.com/biomet/article-pdf/26/4/404/823407/26-4-404.pdf].

303

http://xxx.lanl.gov/abs/https://academic.oup.com/biomet/article-pdf/26/4/404/823407/26-4-404.pdf

	Curriculum Vitae
	Abstract
	Introduction
	Overview
	Outline

	Background
	Quantum Computing Software
	Quantum Computing Hardware

	Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices
	Introduction
	Background
	Problem Analysis
	Finding Initial Mapping and SWAPs
	Evaluation
	Limitation and Future Work
	Related Work
	Conclusion

	Towards Efficient Superconducting Quantum Processor Architecture Design
	Introduction
	Background
	Quantum Program Profiling
	Architecture Design
	Evaluation
	Discussion
	Related Work
	Conclusion

	Software-Hardware Co-Optimization for Computational Chemistry on Superconducting Quantum Processors
	Introduction
	Background
	Ansatz Compression
	Architecture Design
	Compiler Optimization
	Evaluation
	Discussion and Future Directions
	Related Work
	Conclusion

	Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels
	Introduction
	Background
	Foundations of Paulihedral
	Block-Wise Instruction Scheduling Passes
	Block-Wise Optimization Passes
	Evaluation
	Discussion
	Related Work
	Conclusion

	Projection-Based Runtime Assertions for Testing and Debugging Quantum Programs
	Introduction
	Preliminary
	Projection-based assertion: design and theoretical foundations
	Transformation techniques for implementation on quantum computers
	Overall Comparison
	Case Studies: Runtime Assertions for Realistic Quantum Algorithms
	Discussion
	Related Work
	Conclusion

	SANQ: A Simulation Framework for NISQ Computing System
	Introduction
	Background
	Simulator Overview
	Noisy Simulation & Optimization
	Control System Simulator
	Evaluation
	Future Applications
	Limitations and Future Work
	Related Work
	Conclusion

	Conclusion and Discussion
	Pursuit of Quantum Computing
	Future Research Directions

	Appendix for Chapter 6
	Artifact Abstract
	Artifact Checklist
	Description
	Installation
	Evaluation and Expected Results

	Appendix for Chapter 7
	Proof of the theorems, propositions, and lemmas

	Bibliography

