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Abstract of the Dissertation

Efficient Statistical Models For Detecting And

Analyzing Human Genetic Variations

by

Zhanyong Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Eleazar Eskin, Chair

In recent years, the advent of genotyping and sequencing technologies has en-

abled human genetics to discover numerous genetic variants. Genetic variations

between individuals can range from Single Nucleotide Polymorphisms (SNPs) to

differences in large segments of DNA, which are referred to as Structural Varia-

tions (SVs), including insertions, deletions, and copy number variations (CNVs).

Genetic variants play an important role in regulating human diseases and traits.

I first propose an efficient genotyping method which can accurately report the

genotypes of thousands of individuals over a high-density SNP map at low cost.

This method utilizes pooled sequencing technology and imputation. A proba-

bilistic model, CNVeM, is then developed to detect CNVs from High-Throughput

Sequencing (HTS) data. I demonstrate by experiment that CNVeM can estimate

the copy numbers and boundaries of copied regions more precisely than previous

methods.

Genome wide association studies (GWAS) have discovered numerous individ-

ual SNPs involved in genetic traits. However, it is likely that complex traits

are influenced by interaction of multiple SNPs. I propose a two-stage statistical

model, TEPAA, to reduce computational time greatly while maintaining almost
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identical power to the brute force approach which considers all possible combina-

tions of SNPs. The experiment on the Northern Finland Birth Cohort data shows

that TEPAA achieved 63 times speedup.

Another drawback of GWAS is that rare causal variants will not be identified.

Rare causal variants are likely to have been introduced in a population recently

and are likely to be in shared Identity-By-Descent (IBD) segments. I propose a

new test statistic to detect IBD segments associated with quantitative traits. I

make a connection between the proposed statistic and linear models so that it does

not require permutations to assess the significance of an association. In addition,

the method can control for population structure by utilizing linear mixed models.
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CHAPTER 1

Introduction

Deoxyribonucleic acid (DNA) in the cells is the carrier of genetic information of all

known living organisms. The DNA sequence is composed of a particular order of

repeating units called nucleotides. There are four types of nucleotides in the DNA

sequence, which are denoted as ‘A’, ‘C’, ‘G’ and ‘T’. It is the sequence of these

four nucleotides in DNA that encodes genetic information. Individuals within one

species share as much as 99.9% of their DNA sequences. Completed in 2003, the

Human Genome Project (HGP) determined the common sequence of the 3 billion

nucleotides that make up the human genome [Con01] (In this article, we use DNA

sequence and genome interchangeably).

Differences between the DNA sequences within one species are called genetic

variations, or genetic variants. Genetic variation in the genome is present in

many forms, including single nucleotide polymorphisms (SNPs, locations in the

DNA sequence which are polymorphic in the population), small insertion-deletion

polymorphisms and chromosomal structural variations (SVs), including insertions,

deletions, and copy number variations (CNVs).

Genetic variations play an important role in regulating the human diseases,

such as cancer, diabetes and so on. Individuals who carry a mutation at a certain

variant may have high probability to develop the disease than those without the

mutation. Also, human traits, such as height, hair color are also affected by the

genetic variants. Thus, it is of crucial importance to study the role of genetic

variants in human genome. The process of identifying genetic variants that are
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associated with a certain trait or disease is referred to as an association study,

which is fundamental in understanding diseases and searching for treatments.

The first step to conduct an association study is to collect the genotypes for a

group of individuals over a set of genetic variants. The advent of high throughput

sequencing technologies have ushered in a new era of genetic variant discovery.

For the first time, we are able to collect thousands of individuals’ genetic data

at hundreds of thousands genetic markers, and perform a genome-wide associa-

tion study (GWAS). SNPs have been a main interest in the field of genetics for

the last decade, and they contain significant amounts of information for GWAS.

High-Throughput Sequencing(HTS) technologies are rapidly decreasing the cost of

obtaining genetic information. The cost for utilizing one of these technologies con-

sists of a sample preparation step and a sequencing step of the prepared sample.

The dramatic increase in the efficiency of the sequencing technology makes the

cost of the sequencing step negligible for small target regions. Thus the main re-

maining cost is the sample preparation step. Using overlapping sequencing pools,

where samples are mixed together into pools which are prepared and sequenced

together has been shown to reduce cost significantly for collecting information on

genetic variants that only occur in a few of the samples. These methods utilize

ideas from compressed sensing. In Chapter 2, I extend this approach to utilize

additional information from reference genetic variation datasets which provide the

correlation structure between genetic variants. Utilizing this information, we can

significantly increase the efficiency of overlapping pool sequencing.

CNVs are another important mediator for diseases and traits. The develop-

ment of HTS technologies has also provided great opportunities to identify CNV

regions in mammalian genomes. In a typical experiment, millions of short reads

obtained from a genome of interest are mapped to a reference genome. The map-

ping information can be used to identify CNV regions. One important challenge

in analyzing the mapping information is the large fraction of reads that can be
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mapped to multiple positions. Most existing methods either only consider reads

that can be uniquely mapped to the reference genome, or randomly place a read to

one of its mapping positions. Therefore, these methods have low power to detect

CNVs located within repeated sequences. In Chapter 3, I propose a probabilistic

model, CNVeM, that utilizes the inherent uncertainty of read mapping. It uses

maximum likelihood to estimate locations and copy numbers of copied regions,

and implements an expectation-maximization (EM) algorithm. One important

contribution of our model is that it can distinguish between regions in the refer-

ence genome that differ from each other by as little as 0.1%. As our model aims

to predict the copy number of each nucleotide, it can predict the CNV boundaries

with high resolution. We apply our method to simulated datasets and achieve

higher accuracy compared to CNVnator, the state of art CNV detector. More-

over, we apply our method to real data from which we detected known CNVs. To

our knowledge, this is the first attempt to predict CNVs at nucleotide resolution,

and to utilize uncertainty of read mapping.

I have further extended the approach to apply it to cancer data. Recent

studies have reported that CNVs are an important factor leading to cancer. In

order to obtain the DNA-sequence of the cancer cells using HTS technologies,

a biopsy is first conducted on the patient, where tumor tissue specimens were

collected from the random sites of the tumor. However, analysis of tumor CNVs

can be confounded by the presence of contaminating cells from normal surrounding

stromal tissue, which have normal copy numbers. Another challenge is also the

large fraction of reads that can be mapped to multiple positions. Most existing

methods have low power to detect CNVs of tumor cells. In Chapter 4, I propose

a probabilistic model, CNVmix, that utilizes the inherent uncertainty of read

mapping to infer CNVs from tumor samples mixed with stromal cells. I propose a

method to estimate the proportion of stromal cells in the contaminated samples.

Then the information is utilized to estimate locations and copy numbers of CNV
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regions.

GWAS studies have discovered numerous loci involved in genetic traits. Vir-

tually all studies have reported associations between individual SNP and traits.

However, current studies on certain complex diseases have also suggested that

some SNPs influence diseases through interactions [WAP00, BSW05, YIS04]. One

approach to detect interactions of SNPs is the brute force approach which performs

a pairwise association test between a trait and each pair of SNPs. The brute force

approach is often computationally infeasible because of the large number of SNPs

collected in current GWAS studies. In Chapter 5, I propose a two-stage model,

Threshold-based Efficient Pairwise Association Approach (TEPAA), to reduce the

number of tests needed while maintaining almost identical power to the brute force

approach. In the first stage, our method performs the single marker test on all

SNPs and selects a subset of SNPs that achieve a certain significance threshold.

In the second stage, we perform a pairwise association test between traits and

pairs of the SNPs selected from the first stage. The key insight of our approach is

that we derive the joint distribution between the association statistics of a single

SNP and the association statistics of pairs of SNPs. This joint distribution allows

us to provide guarantees that the statistical power of our approach will closely

approximate the brute force approach. We applied our approach to the Northern

Finland Birth Cohort data and achieved 63 times speedup while maintaining 99%

of the power of the brute force approach.

Another drawback of GWAS is that rare causal variants will not be identified

as they are rare in the population and the statistical power is low. Rare causal

variants are likely to have been introduced in a population recently and are likely

to be in shared Identity-By-Descent (IBD) segments. Recently, many methods

have been developed to detect the IBD segments between a pair of individuals.

These methods are able to detect very small shared IBD segments between a pair

of individuals up to 2 centimorgans in length. This IBD information can be used
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to identify recent rare mutations associated with phenotypes of interest. Previous

approaches for IBD association were applicable to case/control phenotypes. In

Chapter 6, I propose a novel and natural statistic for the IBD association test-

ing, which can be applied to quantitative traits. A drawback of the statistic is

that it requires a large number of permutations to assess the significance of the

association, which can be a great computational challenge. We make a connec-

tion between the proposed statistic and linear models so that it does not require

permutations to assess the significance of an association. In addition, our method

can control for population structure by utilizing linear mixed models.
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CHAPTER 2

Efficient Genotyping of Individuals using

Overlapping Pool Sequencing and Imputation

2.1 Backgroud

In the past few years GWAS studies have successfully detected single SNPs as-

sociated with many diseases [MC09, MCC09]. Most of the associated SNPs have

been collected using genotyping technologies [GSL05, MDL04]. Genotype chips

typically collect SNPs with minor allele frequency (MAF) of at least 0.01; these

SNPs are known as ‘common SNPs’ [MDL04]. However, the recent studies have

shown that rare variants, or SNPs with MAF lower than 0.01, may play an im-

portant role in diseases [MCC09, EFG10]. Since rare SNPs outnumber common

SNPs, one possibility is to increase the number of SNPs collected by the genotype

chips. However, this will increase the cost of genotyping and is limited to collect-

ing only previously discovered SNPs. Another approach is to apply imputation

methods. In these methods, a standard genotype chip is used for genotyping.

Then one of the existing computational methods [HDM09, MHM07] is used to

infer the ungenotyped SNPs. However, the imputation methods may have error

rates as high as 5% and are also limited to genotypes on previously discovered

SNPs.

High throughput sequencing (HTS) technologies, where millions of fragments

of DNA are obtained in each run of a sequencing machine [SJ08, Met08, Mar08],

have the advantage that they can collect rare variants [BTL11, Ban10, LCY11,
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ZBG12]. Although HTS costs are decreasing, compared to the cost of genotyping

they are expensive. The cost of HTS technologies consists of a sample prepa-

ration step and a sequencing step of the prepared samples. Recent advances in

sequencing technologies have dramatically decreased the cost of the sequencing

step. Thus, the main cost is in the sample preparation step. Many studies require

a large number of individuals to be sequenced in order to have sufficient statis-

tical power to implicate variations in disease. However, due to cost constraints,

it is impractical to sequence each individual separately because of the sample

preparation costs. To reduce the sample preparation costs, one strategy is to use

overlapping pools where multiple individuals (samples) are grouped into one pool

and are sequenced together. The cost is reduced because only one sample prepa-

ration is necessary per pool. This reduces total number of sample preparation

steps necessary for the study. In this strategy the pools are designed such that

each individual sample is present in more than one pool. Utilizing the knowledge

of which individual is in which pool and the results of the sequencing of the pools,

in principle, it is possible to infer the genotypes of each individual.

In the past few years a number of studies have investigated the overlapping

pool problem, which consists of two main subproblems. The first subproblem is

to determine the design matrix, which indicates how individuals should be pooled

together so that the detection of rare and common SNPs is possible with high

accuracy [PP09, HHS08]. The second subproblem is to recover the sequence of

each individual given the design matrix and the results of the sequencing. This

problem is known as the decoding problem.

Prabhu et al. [PP09] introduced an elegant method to compute the design

matrix using error-correcting codes. This method is able to recover a single rare-

allele carrier from multiple pools. Using this design matrix the method can detect

which individual carries a rare SNP with only log(N) pools where N is the number

of individuals. However, this method fails for common SNPs.
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Shental et al. [SAZ10] introduced a method to solve the decoding problem for

rare SNPs. This method utilizes compressed sensing (CS) [CRT05], where they

minimize sequencing errors and the predicted minor allele frequency for each SNP.

However, this approach is also not applicable for common SNPs.

Recently, Golan et al. [GER12] utilized a pooling strategy where each individ-

ual is present in only one pool. In this strategy, different individuals have different

abundance levels, which further reduces the cost of sample preparation.

Most similar to our approach, He et al. [HZP11] developed a likelihood method

that solves the decoding problem using linear programming. They incorporated

sequencing errors and the results of imputation of the common variants into their

model. Imputation information provides information on the genotypes of com-

mon SNPs, although this information may be inaccurate. The key idea behind

this approach is to combine the imputation information with the results of the

sequencing to obtain more accurate genotypes. The method detects rare SNPs

with high accuracy. This approach is also among the first methods to use the

overlapping pooling approach to genotype common SNPs.

In this work, we present an approach for solving the decoding problem where

the design matrix, the results of sequencing, and imputation information is given.

We propose two methods to solve the decoding problem. The first method is based

on compressed sensing (CS) [CRT05] which is an active research topic in many

fields. The second method is a likelihood-based approach where we compute the

maximum a posteriori (MAP) estimate. To solve both objective functions we use

the proximal gradient descent algorithm which is an extension of the gradient de-

scent algorithm. We use simulated data to illustrate the accuracy of each method.

In our experiments we show that the MAP model has lower error rate than the

CS model.
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2.2 Methods

2.2.1 Problem Statement and Notations

Consider the scenario where a set of N individuals are to be sequenced and the

length of the genome is L. We can denote the sequence of these individuals by a

matrix

G = {0, 1, 2}N×L. (2.1)

The element gij stands for the number of minor alleles at i-th individual’s j-th

genetic locus. We aim to reconstruct the matrix G utilizing HTS technologies.

However, as we mentioned above, it is infeasible to sequence each individual sep-

arately in practice due to budget constraints, especially when N is large. We

design a pooling schema to mix the samples into T pools. The design schema is

represented by a matrix

A = {0, 1}T×N (2.2)

where aij = 1 if and only if the j-th individual appears in the i-th pool. Under an

error-free model, the number of minor alleles at each locus in each pool is given

as

Y = AG. (2.3)

Our objective is to reconstruct G from this equation. However, we do not observe

Y directly, but only observe an estimate of Y from the sequencing data. From

the results of sequencing the pools, we can estimate the number of minor alleles

for each SNP in each pool using the read counts at each position.

In principle, we can obtain the genotypes by finding a solution to the set of

equations AX = Y . However, as in our design schema T < N , the solution is

not unique. We need other constraints or external data to accurately reconstruct

the matrix G. One possible constraint is that for SNPs that are rare, the column

vector corresponding to each SNP will contain mostly zeros. This idea is the

9



basis of most previous overlapping pool methods [HHF11, SAZ10]. Since the

allele frequency can be inferred from the sequencing results, this constraint can

be utilized to reconstruct the columns of G corresponding to rare SNPs.

For common SNPs, there is not enough information in only the sequencing

data. However, the data can be augmented using information from an imputation

method applied to genotype data collected from microarrays on a subset of the

SNPs. Imputation methods can be utilized to infer the unmeasured common

SNPs, where nearby SNPs are used to impute ungenotyped variants using the

linkage disequilibrium(LD) structure of the genome. However, this process is

inevitably noisy, especially when imputing SNPs of low allele frequencies or SNPs

in regions of low LD. In addition, imputation methods can not infer genotypes for

rare variants. Combining a pooling sequencing approach, we could provide more

accurate genotypes for imputed SNPs and rare variants.

Denote the matrix imputed from genotyped common SNPs to be

M = {0, 1, 2}N×L (2.4)

For the positions j that are neither genotyped nor imputed for individual i, we

set the element Mij = 0. We can represent the true genotype matrix G as a sum

of imputed genotypes and a residual error matrix E, with eij ∈ {−2,−1, 0, 1, 2}.

We note that for common variants, the residuals represent the errors in the im-

putation and for rare variants, since the corresponding column of M is all zeros,

the genotypes of the rare variants are captured in the residuals E. Thus, we have

G = M + E. (2.5)

2.2.2 Compressed Sensing (CS)

As rare variants appear only in a few individuals and the imputation precision is

over 95%, we can assume that the difference between G and M is sparse. To solve
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the formula Y = AG, it is natural that we introduce an L1 penalty. Then the

optimization problem becomes:

minimize
G

||Y − AG||2F + λ||G−M ||1

subject to Gij = {0, 1, 2}, i = 1, . . . , N ; j = 1 . . . L.

(2.6)

A preliminary method. As we have an imputed matrix M and the dif-

ference between G and M is sparse, it is feasible that we enumerate all possible

differences for each individual at one SNP. We enumerate all possible locations of

the differences and mutate corresponding loci in M to recover Ĝ and find the one

which minimize ||Y − AĜ||2F + λ||G−M ||1.

A proximal gradient method. The disadvantage of the previous method is

that enumerating all possible differences makes the method to be intractable for

large set of inputs. We propose an alternative procedure to solve the objective

function (2.6). In this method we relax the condition that the genotype for each

individual at each given position is {0, 1, 2}. We assume the genotype to be a real

number between zero and two (i.e. 0 ≤ Gij ≤ 2) and solve the objective function

with the relaxed constraint. After obtaining the solution, we round the solution

to an integer value. The main intuition behind this method is to use a gradient

descent method. In the gradient descent Gk is the value of matrix G computed

in the k-th step. In the first step of gradient descent we set G1 equal to the

imputation matrix, or any random matrix. In the k-th run of the method we set

Gk equal to Gk−1 − t∇f , where f is the objective function we want to optimize.

We keep iteratively updating the value of G until we achieve convergence of the

objective function. However, in the proximal gradient method after each step we

project the computed value to the space which contains the L1 regularizer. We

utilize a constant step function t ≥ 0, then we initialize the value of G1 to the

imputation matrix M . In the k-th step we set Gk equal to Gk−1 − t∇f , where
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f = 1
λ
||Y −AG||2F . Considering that our objective function has the L1 regularizer

we have to project Gk using the proxt function. We keep improving the value

of G until the value of objective function converge to an optimal solution. The

pseudocode of the method is shown in Algorithm 1.

proxt(Gij) =


Gij − t Gij ≥Mij + t

Mij Mij + t ≤ Gij ≤Mij − t

Gij + t Gij ≤Mij − t

Algorithm 1: Calculate G to minimize the Equation (2.6)

Require: f = 1
λ
||Y − AG||2F

pick a constant step t ≥ 0

G0 ←M

while Not converged do

Gk ← proxt(Gk−1 − t∇f)

k ← k + 1

end while

2.2.3 Maximum a Posteriori

The difficulty of the CS method is to select the correct λ as different values of

λ result in different G’s, thus recovering the original G depends on the correct

choice of λ. In this section we use the generative model of the data to obtain the

desired objective function. We introduce a new variable G′ = G
2

so that G′ij is the

probability that the i-th individual has a minor allele at the j-th SNP. Moreover,

we have two matrices, CT×L and DT×L, which represent the major and minor

allele counts observed from the HTS data, respectively. Cij indicates the major

allele count for the j-th SNP in the i-th pool. Let ε indicates the sequencing error

rate.

The probability of observing a minor allele for the j-th SNP in the i-th pool
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is
∑N

k=1 AikG
′
kj∑N

k=1 Aik
when the sequencing error rate ε is zero. The denominator value∑N

k=1Aik is the normalization constant and A is the design matrix. In the case

where the sequencing error is not zero, the probability of minor allele is (1 −

ε)
∑N

k=1 AikG
′
kj∑N

k=1 Aik
+ ε(1 −

∑N
k=1 AikG

′
kj∑N

k=1 Aik
). The first part represents the scenario where

the sequenced allele is the minor allele. Incorporating the assumption that the

sequencing error rate is ε, the probability of observing the minor allele will then

shrink by a factor of 1 − ε. The second part represents the scenario where the

sequenced allele is the major allele. Then a minor allele will only be observed in

the case that sequencing error occurs, with a probability of ε. We can calculate

the likelihood of observing the data as follows:

P (C,D|G) =
L∏
j=1

T∏
i=1

((1− 2ε)

∑N
k=1AikG

′
kj∑N

k=1Aik
+ ε)Cij

×((2ε− 1)

∑N
k=1AikG

′
kj∑N

k=1Aik
+ 1− ε)Dij . (2.7)

Let the imputation error be denoted as εIm. As the imputation error rate is less

than 5%, the difference between G and M should be small. Given the imputation

matrix M , it is natural to approximate the prior of the G as follow:

P (G|M) ∝ (1− εIm)N−|G−M |1(
εIm
2

)|G−M |1 . (2.8)

Considering the (2.7) and (2.8) one can compute the posteriori probability of

the data according to Bayes rule:

P (G|C,D,M) ∝ P (C,D|G)× P (G|M). (2.9)

Maximizing the posterior probability of the genotype matrix G in (2.9) is equal
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to maximizing the following log probability with respect to G:

|G−M |1 log
εIm

2(1− εIm)

+
L∑
j=1

T∑
i=1

(
Cij log((1− 2ε)

∑N
k=1AikG

′
kj∑N

k=1Aik
+ ε)

+ Dij log((2ε− 1)

∑N
k=1AikG

′
kj∑N

k=1Aik
+ 1− ε)

)
. (2.10)

We use the similar proximal gradient method as mentioned in section 2.2.2 to

solve this maximum a posteriori (MAP) objective function.

2.3 Results

In order to assess the performance of our method, we designed a simulated frame-

work where we can measure the accuracy of our method. We simulated the geno-

type of 50 individuals. For simplicity, we assess the accuracy on one SNP in each

simulation. Since minor allele frequency (MAF) is a crucial factor that will af-

fect the accuracy of pooling sequencing, we evaluated our method under various

MAFs ranging from 1% up to 30%. For each SNP, whether the genotype for each

individual is homozygous or heterozygous is randomly determined according to

the pre-selected MAF. These genotypes serve as the true genotype G.

We also simulate the imputation matrix M . According to the current tech-

nology, the genotyping error rate is as low as 0.5% and the imputation error rate

is 5%. We analyze two cases where the SNP is either genotyped or imputed. If

the SNP is genotyped, the genotype of this SNP in the imputation matrix M is

obtained from the corresponding cell in matrix G, with a chance of 0.5% of hav-

ing an error. If the SNP is imputed, the genotype of this SNP in the imputation

matrix M is obtained from the corresponding cell in matrix G, with a chance of

5% of having an error.

We use a random design matrix A. We simulate 15 pools and the probability
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for any individual to appear in any pool is 50%. For each pool in order to simulate

the read count of each locus we assume the number of reads generated from each

position follows a Poisson distribution. Given that the sequencing coverage is m,

on average each position is covered by m reads. Thus, the number of reads (K) at

one SNP follows a Poisson distribution K ∼ Pois(m). If we take each sequencing

event as a Bernoulli trial, then the number of reads carrying the minor allele follows

a binomial distribution Binom(K,MAF ). Using this distribution, we simulate

the number of reads carrying minor alleles and major alleles, respectively. The

read counts are then considered as the output from pooling sequencing.

From the read counts, we reconstruct the matrix Y and use the methods in

Section 2.2.2 and Section 2.2.3 to recover the matrix Ĝ. The methods are tested

under various MAF ranging from 1% up to 30%. Each scenario is repeated 50

times for genotyped SNPs and imputed SNPs respectively. For genotyped SNPs,

our method always achieves almost 100% accuracy. Here we only demonstrate

the accuracy for imputed SNPs. The results for imputed SNPs are shown in

Figure 2.1. The accuracy depends on the MAF, especially for the MAP method.

Both of our methods provide improvement in imputation accuracy. When the

MAF is lower than 10%, the MAP method has higher than 99% accuracy.

2.4 Discussion

Many studies require thousands of individuals to be sequenced in order to have

enough power to detect the SNPs involved in disease. This motivated the need

for efficient methods for genotyping individuals.

One approach of efficient genotyping is through overlapped sequencing pools.

A problem with traditional approaches is that they are unable to genotype com-

mon variants. However, for many cohorts that are currently being sequenced,

genotype data collected from microarrays is already available and imputation
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Figure 2.1: The error rate computed for each given method on the simulated

data sets. We range the minor allele frequency (MAF) from 1% up to 30%. CS

represents the results of the compressed sensing method proposed in this work and

MAP represents the results from the maximum a posteriori method. MAP has

the lowest error rare among all methods and as expected the error rate increases

as the MAF increases.

methods are applied to obtain genotypes at uncollected SNPs. Unfortunately,

these methods can only infer genotypes at previously known SNPs. Our approach

utilizes imputation information in conjunction with sequencing pools to both infer

the rare variants as well as improve the accuracy of the imputed genotypes.

We proposed two methods to solve the decoding problem for overlapping pools.

The first method is based on the sparsity of rare variants and low error rate of

imputation methods, where we use the compressed sensing technique to formulate

the problem. The second method is based on a maximum likelihood approach. In

this method we used the generative model of data to obtain the objective function.

We simulated data sets for 50 individuals where these individuals are randomly
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pooled into 15 pools reducing the sample preparation costs by a factor of 3. Using

this simulation framework we illustrate the fact that both of our methods tend

to have low error rate. Moreover, the MAP method tends to outperform the CS

method. In all of our experiments MAP method had lower error rate compared

to the CS method.

We note that our method is very accurate for MAF less than 10%. For higher

MAF, our performance is still better than just using the imputed genotypes. One

way to further increase the accuracy is to use a larger number of pools which

increases the total cost of sequencing.
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CHAPTER 3

Copy Number Variation Detection Using

Uncertainty of Read Mapping

3.1 Background

Genetic variations between individuals can range from single nucleotide differences

to differences in large segments of DNA. Variations on the nucleotide level are re-

ferred to as Single Nucleotide Polymorphisms (SNPs) and on the segment level

are referred to as Structural Variations (SVs), including insertions, deletions, and

copy number variations (CNVs). SVs and in particular CNVs, in which a large

region of genome is deleted or duplicated, play an important role in the genetics

of complex diseases and traits [IFR04, TSB05]. Many recent studies have shown

a correlation between CNVs and different genomic disorders, ranging from brain

related diseases (such as autism, schizophrenia and idiopathic learning disabil-

ity [SLM07]) to cancers (e.g. non-small cell lung cancer [CHR05]).

Common methods to detect CNVs were until recently based on whole genome

array comparative genome hybridization (ArrayCGH). In ArrayCGH, both a genome

of interest (donor genome) and a reference genome are hybridized to a tiling array

and the intensity ratio of the two genomes (donor/reference) provides an estimate

of the copy number gain or loss [Car07, CLC08]. Although a powerful method

to detect the presence of CNVs and to estimate copy numbers, the ArrayCGH

approach is unable to identify the boundaries of CNVs with high resolution.

The development of high-throughput sequencing (HTS) technologies provides
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great opportunities for detecting CNV regions. With HTS technologies, whole

genome shotgun sequencing of one or more individuals becomes possible. Meth-

ods to detect the CNVs from short reads generated by HTS technologies can be

categorized by two main ideas. The first category of methods divides the genome

into small windows and the number of reads mapped to each specific window (read

depth) is used as a proxy for the copy number of that window [AKM09, SKA10,

SMA10, CGJ09, YXM09, Con10]. Alkan et. al [AKM09] used a set of fixed re-

gions which are unique among all primates as control windows and calculated the

average read depth for those regions. Then they scaled the results to predict the

copy number of other windows. Simpson et al. [SMA10] used the same idea of

splitting the genome into windows while incorporating read depth and heterozy-

gous SNPs information (in inbred mouse) into a Hidden Markov Model (HMM).

Adjacent windows with same copy number state are combined into one CNV

region. Abyzov et al. [AUS11] developed a method for CNV discovery from sta-

tistical analysis of read depth. The method is based on the established mean-shift

approach [CM02], which is a popular method in computer vision. This approach

is able to detect the presence of large CNVs and the copy numbers. However, the

resolution of this approach is limited by the size of the windows, which is typically

at least one kilobase.

In the second strategy, “paired-end” reads, where “paired-end” refers to the

two ends of the same segment of a DNA molecule, are used to detect CNVs.

A short gap appears between the two paired-end reads and the distance of this

gap is roughly fixed and known. The second class of approaches utilizes discor-

dant paired-end reads, which are the reads mapped to the reference genome in

an unexpected way [MFD10, HFE10, HAE09]. Discordant reads may indicate the

presence of CNVs. Read depth information is then used to compute the copy num-

ber for each candidate CNV region [SKA10, AKM09]. Medvedev et al. [MFD10]

introduced the idea of using both the read depth as well as the discordant reads
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to detect CNVs. This method first clusters the discordant reads to identify the

CNV boundary, after which it builds a “donor graph” representing the genome

as segments of sequences connected by edges. Moreover, it uses maximum flow

to estimate the most likely copy numbers for the donor genome. One limitation

of this strategy is that it only detects CNVs in regions which are not repeat-rich.

This may reduce the applicability of this method given the existence of many

repeat-rich regions in the genome. Also, the CNVs may have complex structure.

For example, there exist multiple copies of CNVs in the reference genome. This

method can not detect variation within different copies.

Another important challenge for CNV detection lies in the uncertainty of

read mapping. All of the mentioned methods use read depth information. The

read depth is obtained by mapping the short reads to the reference genome and

then calculating the number of reads within a region. However, a read can be

mapped to multiple locations, although the read originated from one specific lo-

cus in the donor genome. This mapping uncertainty can be due to short read

length, sequencing errors, and the presence of repetitive regions. With few ex-

ceptions [HHF11], most studies either consider all possible locations or randomly

pick one mapping location, or even discard all such reads. These methods have

difficulty in detecting CNVs with high accuracy, especially CNVs in repeat-rich

regions.

In this work, we show that handling the uncertainty of read mapping can

help us in predicting the copy number of CNVs, especially in repeat-rich regions.

We propose a probabilistic model, CNVeM, that utilizes the uncertainty of read

mapping. We use maximum likelihood to estimate locations and copy numbers

of copied regions, and implement an expectation-maximization (EM) algorithm.

One important contribution of our model is that we distinguish between similar

copies of a region in the reference genome. We can predict exactly which copy

of a region is duplicated or deleted utilizing the differences between copies and
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handling uncertainty of read mapping.

In our model, we predict the copy number for each nucleotide and adjacent

nucleotides with same copy number are then combined to form a full CNV region.

In this way, we can detect the boundaries precisely and are able to predict small

CNVs. To our knowledge, this is the first attempt to detect CNVs at nucleotide

resolution and to distinguish between similar regions in the reference genome.

3.2 Methods

3.2.1 A Motivating Example

One important contribution of our method is that we distinguish between regions

in the reference genome that differ from each other by a single nucleotide. Fig-

ure 3.1 illustrates an example. The reference genome has two nearly identical

copies of a CNV region, represented as A and B. They only differ by one nu-

cleotide as indicated in the figure, where the nucleotide is ‘C’ in region A and ‘T ’

in region B. In the donor genome, region B is copied twice as B1 and B2. Reads

{r1, r2, . . . , r6} are obtained from the donor genome as shown in the lower part

of Figure 3.1 and then mapped to the reference genome as shown in the upper

part of Figure 3.1. As shown in the figure, reads {r1, r3, r5} can be mapped to

both region A and B in the reference. However, read {r2} can only be mapped to

region A and reads {r4, r6} can only be mapped to region B. If we assign a read to

one of multiple mapping positions randomly following the traditional strategy, we

would determine the copy number of both region A and B to be 1.5. However, in

CNVeM, we use the EM algorithm to find the optimal solution. In each iteration,

we assign a read to different mapping positions according to the distribution of

copy numbers of those positions, and update the copy number of each position.

Upon convergence, the EM algorithm assigns reads {r1, r3, r5} to region A with

probability 1/3 and to region B with probability 2/3. We correctly predict the
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Figure 3.1: Similar copies of a CNV region exist in the reference genome.

‘C’ and ‘T’ are the only different nucleotide between region A and B. Reads

{r1, r2, . . . , r6} are obtained from the donor genome as shown in the lower part

of the figure. Furthermore, these reads can be mapped to the reference genome

as shown in the upper part of the figure.

copy number of region A to be 1 and copy number of region B to be 2.

3.2.2 The Generative Model

We use short read information from HTS technologies to detect copy number

variants. Let G = (g1, g2, . . . , gK) be K continuous nucleotides in the reference

genome, where gi is the ith nucleotide. We assign the copy number of each nu-

cleotide in the reference genome to be 1. The donor genome is also composed of

these nucleotides. However, large regions of the genome can be either deleted or

duplicated and thus the copy number can be changed. For each nucleotide gi, we

denote the copy number as Ci in the donor genome. If Ci < 1, we call it a copy

loss. If Ci > 1, we call it a copy gain. C = (C1, C2, . . . , CK) can be interpreted

as the copy number vector of the donor genome. For most nucleotides, the copy

numbers are the same in the donor genome and in the reference genome. So one

can assume that the length of donor genome is the same as the length of the

reference genome, i.e.
∑K

i=1Ci = K. We define vector (C1

K
, C2

K
, . . . , CK

K
) to be the

normalized copy number vector of the donor genome.
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Using HTS technology, millions of short reads are sampled from the donor

genome. We assume that a read rj of length l is generated by randomly picking a

position i from G according to distribution C/K, and then copying l consecutive

positions starting from position i. The copying process is error-prone, with known

probability ε for a sequencing error rate at any position of the read. This process

is repeated until we have a set of N reads R = {r1, r2, . . . , rN}. The objective is

to infer C = (C1, C2, . . . , CK) from R. Since the reads are mapped to the reference

genome, mapping information is utilized to infer CNVs.

In our model, each read rj is sequenced starting from one position in the donor

genome. As we assume that the donor genome is obtained from the reference

genome by alternating the copy number of some regions, each position in the donor

genome “originates” from a nucleotide in the reference genome. Consequently,

each read originates from a position in the reference genome. If a region in the

reference genome is duplicated in the donor genome, any read generated from the

duplicated segments of the donor genome originates from a unique position in the

reference genome. Z = (Z1, Z2, . . . , ZN) is the origin for each read in the reference

genome, where Zj ∈ {1, 2, . . . , K}. We then define the following likelihood model

of all reads given copy number C and reference genome G:

P (R|C,G) =
N∏
j=1

P (rj|C,G) =
N∏
j=1

K∑
i=1

P (rj, Zj = i|C,G). (3.1)

Here the first equality follows from the fact that the probability that read set R

is composed of independent probabilities of all the reads, and the second equality

follows from the fact that the read probability is equal to the marginalization of

read mapping uncertainty, i.e., P (r) =
∑

i P (r, Z = i).

The interpretation of the above probability definition P (rj, Zj = i|C,G) is

straightforward: the probability of j-th read originating from i-th position of the

reference genome, given the copy numbers and reference genome. We can further
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expand this probability as follows:

P (rj, Zj = i|C,G) = P (Zj = i|C)P (rj|Zj = i,G). (3.2)

The equality follows from the fact that the read origin Z is independent of reference

genome G and the sequence of read r is independent of copy number C. We define

the first term P (Zj = i|C) = Ci/K to be the probability of read rj originating from

position i. For each position i and read rj, we have a probability P (rj|Zj = i,G),

which stands for the probability of observing read sequence rj given that the origin

of read rj is position i. We can write P (rj|Zj = i,G) as

P (rj|Zj = i,G) =
l∏

x=1

γ(gi+x−1, r
x
j ) (3.3)

and

γ(gi+x−1, r
x
j ) =


ε/3 if rxj 6= gi+x−1

1− ε otherwise

where rxj stands for the x-th nucleotide of read rj, and the l consecutive nucleotides

starting from position i in the reference genome are gi, gi+1, . . ., gi+l−1. In practice,

for each read rj, the probability P (rj|Zj = i,G) will be close to zero for all but a

few positions, which are reported by the mapping methods.

We also take the prior probability of the donor genome into consideration. As

we assume the donor genome sequence can be obtained by either deleting or dupli-

cating large regions of nucleotides from the reference genome, adjacent positions

will have similar copy numbers in the donor genome. Then, in our probabilistic

model, it is natural to assume that the copy number of the current nucleotide is

only dependent on the previous nucleotide. We have P (C) = P (C1, C2, . . . , CK) =

P (C1)
∏K

i=2 P (Ci|Ci−1).

Using Bayes rule, we can get the posterior probability of C given the read set
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R and reference genome G:

P (C|R,G) ∝ P (R|C,G)P (C)

∝

(
N∏
j=1

K∑
i=1

Ci
K
P (rj|Zj = i)

)
×

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)
. (3.4)

3.2.3 Optimization

Maximizing the posterior probability of copy number C in (3.4) is equal to maxi-

mizing the following log probability with respect to C:
N∑
j=1

(
log

K∑
i=1

Ci
K
P (rj|Zj = i)

)
+ log

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)
. (3.5)

In this section, we illustrate a lower-level description of our method. In order to

make the above objective function simpler we eliminate the constraint
∑K

i=1Ci =

K by introducing a penalty function g(C) = K−
∑K

i=1Ci, which prevents the C ′is

from growing unbounded (the above objective function will have a higher value if

the C ′is grow larger). Incorporating the penalty function, our objective function

now becomes
N∑
j=1

(
log

K∑
i=1

Ci
K
P (rj|Zj = i)

)
+ log

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)
+ δ

(
K −

K∑
i=1

Ci

)
.

(3.6)

where δ is a penalty function coefficient (We set δ = N
K

in our experiments, from

which we achieve best results). We optimize the objective function (3.6) through

an expectation-maximization (EM) algorithm. The algorithm iteratively applies

the following two steps until convergence.

Expectation-step: Estimate the posterior probability of each read origin

under the current estimate of C(t):

P (Zj = i|rj) =
1

P (rj)
P (rj|Zj = i)P (Zj = i|C(t),G)

=
P (rj|Zj = i)C(t)i∑K
k=1 P (rj|Zj = k)C(t)k

. (3.7)
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We can then calculate the expected value of the log objective function, with respect

to the posterior probability of Z using the current estimate of C(t):

Q(C|C(t)) =
N∑
j=1

K∑
i=1

P (Zj = i|rj) log

[
Ci
K
P (rj|Zj = i)

]
+ logP (C) + δ(K −

K∑
i=1

Ci)

=
N∑
j=1

K∑
i=1

log

(
Ci
K

)P (Zj=i|rj)
+

N∑
j=1

K∑
i=1

logP (rj|Zj = i)P (Zj=i|rj)

+ logP (C) + δ

(
K −

K∑
i=1

Ci

)
. (3.8)

Maximization-step:

We find the vector C(t+1) that maximizes the above function:

C(t+1) = arg max
C

Q(C|C(t)). (3.9)

In each iteration of the EM algorithm, both C(t) and P (rj|Zj = i) are fixed values,

so P (Zj = i|rj) is a fixed value within the each iteration. Furthermore,

N∑
j=1

K∑
i=1

logP (rj|Zj = i)P (Zj=i|rj)

is also a fixed value within one single iteration. Then, maximizing the above

function reduces to finding

C(t+1) = arg max
C

(
N∑
j=1

K∑
i=1

log

(
Ci
K

)P (Zj=i|rj)
+ logP (C) + δ(−

K∑
i=1

Ci)

)

= arg max
C

log

(
P (C)×

K∏
i=1

(
Ci
K

)∑N
j=1 P (Zj=i|rj)

× eδ(−
∑K

i=1 Ci)

)

= arg max
C

log

(
P (C)×

K∏
i=1

((
Ci
K

)di
× e−δCi

))

= arg max
C

log

(
P (C1)

(
C1

K

)d1
× e−δC1 ×

K∏
i=2

(
P (Ci|Ci−1)

(
Ci
K

)di
× e−δCi

))
(3.10)
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where

di =
N∑
j=1

P (Zj = i|rj).

We solve the M-step using dynamic programming. Denote the objective func-

tion in the M-step to be

f = log

[
P (C)×

K∏
i=1

((
Ci
K

)di
× e−δCi

)]
. (3.11)

Then we define f(k, x) to be the maximum function value for the first k positions

when the copy number of kth position is Ck = x. Now we design the dynamic

programming solution as indicated in Equation (3.12).

f(k, x) =


log[P (Ck = x)× (Ck

K
)dk × e−δCk ] if k = 1

maxCk−1
{f(k − 1, Ck−1) + log[P (Ck|Ck−1)]}

+ log[(Ck

K
)dk × e−δCk ]

otherwise
(3.12)

We prove that the above dynamic programming solution returns the global

optimal solution for the objective function in (3.11) as follows.

Lemma 3.2.1. The objective function in (3.11) is solved optimally using the

dynamic programming mentioned in (3.12) .

Proof. We recall f(i, x) = maxC1,C2,···Ci−1 log[P (C1, C2, · · ·Ci−1, Ci = x)×
∏i

j=1(
Ci

K
)di×

eδCi ] where dj =
∑N

l=1 P (Zl = j|rl). Moreover, f(i, x) is the maximum value of

the copy number for the first i− 1 positions and the copy number of position i is

x (Ci = x). Using the above definition we drive f(i+ 1, y):
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f(i+ 1, y) = max
C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci, Ci+1 = y)×

i+1∏
j=1

(
Cj
K

)dj
× e−δCj

]

= max
C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci, Ci+1 = y)× Ci+1

K
eδCi+1 ×

i∏
j=1

(
Cj
K

)dj
× e−δCj

]

= max
C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci)P (Ci+1 = y|C1, C2, · · ·Ci)×

Ci+1

K
e−δCi+1

×
i∏

j=1

(
Cj
K

)dj
× e−δCj

]

= max
C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci)P (Ci+1 = y|Ci)×

Ci+1

K
e−δCi+1

×
i∏

j=1

(
Cj
K

)dj
× e−δCj

]

= max
C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci)×

i∏
j=1

(
Cj
K

)dj
× e−δCjP (Ci+1 = y|Ci)

×Ci+1

K
e−δCi+1

]
= max

C1,C2,···Ci

log

[
P (C1, C2, · · ·Ci)×

i∏
j=1

(
Cj
K

)dj
× e−δCjP (Ci+1 = y|Ci)

×Ci+1

K
e−δCi+1

]
= max

Ci

max
C1,C2,···Ci−1

log

[
P (C1, C2, · · ·Ci)×

i∏
j=1

(
Cj
K

)dj
×e−δCjP (Ci+1 = y|Ci)×

Ci+1

K
e−δCi+1

]
= max

Ci

max
C1,C2,···Ci−1

log

[
P (C1, C2, · · ·Ci)×

i∏
j=1

(
Cj
K

)dj
× e−δCj

]

+ log

[
P (Ci+1 = y|Ci)×

Ci+1

K
e−δCi+1)

]
= max

Ci

[
f(i, Ci) + log(P (Ci+1 = y|Ci)×

Ci+1

K
e−δCi+1)

]
.
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The maximum value of the objective function in the M-step is then maxx f(K, x).

Using a backtracking process, we find the vector C = (C1, C2, . . . , CK) that max-

imizes function f in the M-step. By iteratively running the E-step and M-step,

we achieve local optimal solution.

3.2.4 Implementation

This optimization process requires an initial input of copy numbers. Different

initial inputs will affect the convergence time. To achieve better performance, it

is important to start with a “good” initial guess. In order to obtain a good initial

input, we split the genome into non-overlapping bins of 300 bp. All nucleotides

within one bin share the same copy number. Using a similar model as in (3.1), we

get a initial guess of copy numbers by optimizing the objective function (3.13).

P (R|C,G) =
N∏
j=1

P (rj|C,G) =
N∏
j=1

dK/300e∑
i=1

Ci × 300

K
P (rj|Zj ∈ i-th bin)

(3.13)

where P (rj|Zj ∈ i-th bin) = 1
300

∑300
s=1

∏l
x=1 γ(gi×300+s+x−1, rxj ). Similarly, we can

optimize function (3.13) by the EM algorithm. As proved in [HH06], the likelihood

function (3.13) is concave. The EM algorithm will converge to global optimal so-

lution and it will be a good initial guess for the objective function in formula (3.6).

After obtaining a solution using a standard EM algorithm, we conduct our

extended EM algorithm introduced in section 3.2.3. We summarize our method

in Algorithm 2.

3.2.5 GC-bias Correction

One of the short comings of the HTS technologies is the existence of different

biases in the sequencing process. Some biases are due to the environment while

others are due to chemical reactions (DNA amplifications, GC content). Studies

29



Algorithm 2: The complete algorithm of CNVeM

Input: Read mapping information, allowing reads map to multiple locations.

Output: Copy number variations compared to reference genome.

Initialization: Choose an initial configuration of copy numbers C(0).

STAGE ONE:

Optimize the function in (3.13) using a standard EM algorithm based

on bins. We get an initial solution of copy numbers for each bin.

STAGE TWO:

2.1 Use the output from STAGE ONE as an initial guess.

2.2 For each read rj with j ∈ {1, 2, . . . , N}, consider all mapping

positions, calculate the posterior probability of each position according to the

joint probability in formula (3.2). Then map the read to multiple locations

fractionally according to the posterior probability.

2.3 Calculate the total number of reads mapped to each position.

2.4 Update the copy numbers of all nucleotides using the dynamic

programing in formula (3.12).

2.5 Repeat Steps 2.3-2.4 until it converges.
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show that both Sanger and HTS sequencing have bias toward high GC regions.

GC-bias can influence the number of reads generated from a position and thus

the reads are no longer uniformly generated. There have been a number of papers

[AKM09, AUS11, SKA10, YXM09] which deal with GC-bias in CNV calling. In

this work, we adapted the idea mentioned in [AUS11, YXM09] to correct for GC-

bias. In equation (3.10), di is the number of reads mapped to position i. We

correct this bias by updating the definition of di to be dci = di × DOCglobal

DOCgc
, where

dci is the corrected number of reads mapped to position i, di is the original number

of reads mapped to position i, DOCglobal is the average depth of coverage (DOC)

over all positions, and DOCgc is the average DOC over all positions where the

reads have the same GC content as in the reads mapped to position i.

3.3 Results

3.3.1 Simulation Results

In order to assess our method, we carried out experiments on simulated datasets.

We developed a simulation framework, in which a donor genome is obtained by

altering the copy number of some regions in the reference genome.

Experiment on a simulated mouse chromosome

We first tested CNVeM on a simulated mouse genome. We obtained the masked

reference chromosome 17 of Mus Musculus. After pruning all the ‘N’s, the length

of the chromosome 17 reduced to 58Mb. This can be used as the “template

sequence”. We then duplicate segments of the sequence to generate a refer-

ence genome. The lengths of the duplicated segments are chosen from the range

[1000, 10000]. We allow nucleotides to mutate with probability 1% in the dupli-

cation process. The copy numbers of these segments are then altered to generate
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Table 3.1: The results on the simulated mouse chromosome 17 under different

sequencing depth and mutation rates between duplicated segments. No. of predi-

cated CNVs are the number of regions CNVeM reports as CNVs. False discovery

rate is the ratio between number of false positives and number of predicted CNVs,

while false negative rate is the ratio between number of false negatives and num-

ber of true CNVs. It is obvious that CNVeM reports false positive regions due to

that fact that it calls more CNVs than implanted in the donor genome.

mutation rate

between duplicated

segments

Depth of

Coverage

No. of

Predicted

CNVs

No. of

Correct

CNVs

False

Discovery

Rate

False

Negative

Rate

1%

30X 102 100 2.0% 0

15X 102 100 2.0% 0

5X 105 100 4.8% 0

0.5%

30X 102 100 2.0% 0

15X 105 100 4.8% 0

5X 109 100 8.3% 0

0.1%

30X 101 97 4.0% 3.0%

15X 107 98 8.4% 2.0%

5X 116 96 17.2% 4.0%

the donor genome. The copy numbers are chosen from the set {0, 1, 2, 3, 4, 5}. In

each experiment, we simulated 100 copy number variations between the reference

genome and donor genome. To generate a read, we randomly picked a position

from the donor genome and copied 36 consecutive bases starting from this po-

sition. The copying process is repeated until we have the desired coverage. All

reads are then mapped to the reference genome using mrsFast [HHA10], allowing

reads to map with two mismatches. In addition to detecting the existence of copy

number variants, CNVeM especially aims to distinguish which copy is duplicated
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or deleted in the donor genome, while others have the same number of copy oc-

currences compared to the reference genome. Simulations are performed using

various depth of coverage settings. A CNV is considered to be detected correctly

when it overlaps with the true CNV region, meanwhile the predicted copy num-

bers should be the same as the true copy numbers. The results are shown in the

first row of Table 3.1.

We also compared our reported CNVs to true CNVs by base pairs. The overlap

is calculated by intersecting the coordinates of predicted CNVs with those of true

CNVs. The results in the first row of Table 3.2 indicate high accuracy of CNVeM

in predicting the break points.

Furthermore, we simulated the duplicated segments under different mutation

rates to assess the power of our method in locating the copy variation origin. All

results are summarized in Table 3.1 and Table 3.2. We see that both the mutation

rate between duplicated segments and sequencing depth can affect the accuracy

of our program. The smaller the mutation rate, the more similar the duplicated

sequence, and the more difficult to distinguish which segment has copy number

variation in the donor sequence. We have higher false discovery rate when the

read depth is lower and the difference between duplicated copies is smaller, but

we manage to recall almost all copy number variations.

The key observation in comparing the two tables (Table 3.1 and Table 3.2)

is that the false negative rate in predicting the correct quantitive copy number

is always lower than the false negative rate in calling the breakpoints of CNVs,

moreover the false discovery rate of quantitative value for CNV is always higher

than the false discovery rate in breakpoint calling. This illustrates that CNVeM

is robust in detecting the existence of CNVs and determining the break points

of CNVs. To achieve high sensitivity in CNV calling, CNVeM inevitably reports

false positive regions. However, most of these false positive regions are short and

thus we have low false discovery rate in break points calling.
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Table 3.2: Measuring the accuracy of CNV break points by base pairs under

different sequencing depth and mutation rates between duplicated segments. False

discovery rate is the ratio between length of false positive regions and total length

of predicted CNVs, while false negative rate is the ratio between length of false

negative regions and total length of true CNVs.

mutation rate

between duplicated

segments

Depth of

Coverage

Length of

Predicted

CNVs(bp)

Length of

over-

lap(bp)

False

Discovery

Rate

False

Negative

Rate

1% (504000bp)

30X 506755 502183 0.9% 0.3%

15X 506162 501291 1.0% 0.5%

5X 507703 495074 1.8% 2.5%

0.5% (493000bp)

30X 492271 488114 0.9% 1.0%

15X 500460 488387 2.4% 0.9%

5X 501139 483830 3.5% 1.9%

0.1% (492000bp)

30X 469821 452120 3.8% 9.1%

15X 465518 433495 6.9% 11.9%

5X 462193 417340 9.7% 15.2%
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Comparing CNVeM with CNVnator on GC-biased data

In this section we compare CNVeM with the CNVnator [AUS11], which is the

state of art CNV detector. Using a similar framework, we generated a reference

genome and donor genome from chromosome 17 of Mus Musculus. We set the

mutation rate between duplicated segments to be 0.1%. Reads are then simulated

from the donor genome, allowing GC-bias [AUS11, YXM09]. In order to make

the comparison fair for CNVnator, we used Bowtie [LTP09] to do the mapping

with option ‘-best -M 1’. With this option, Bowtie returns the best mapping for

each read and in the case of ties it will randomly pick one mapping location for

a read. This step is due to the fact CNVnator assumes there exists one mapping

location for each read. However, for CNVeM, we use mrsFAST [HHA10] to return

all possible mapping positions for each read. Figure 3.2 illustrates the intersection

of CNVs found by CNVeM and CNVnator on the simulated dataset, where 100

CNVs are implanted to the donor genome. CNVeM finds 111 CNVs which includes

98 of the true CNVs. This indicates that CNVeM has 13 false positives and 2 false

negatives. However, CNVnator finds 250 CNV regions among which 91 regions

are true CNVs. CNVnator fails to find 9 regions which are true CNVs. Moreover,

CNVnator reports 159 false positives. This results from the fact that CNVnator

randomly places a read to one of its multiple mapping positions, and thus affects

the read depth (RD) information, from which CNVnator determines the copy

variation status. All the results indicate that CNVeM has lower false discovery

rate and false negative rate compared to CNVnator. Another disadvantage of

CNVnator is that it can only determine the CNV to be a copy gain or copy loss,

instead of recalling the exact quantitive copy number as in CNVeM.
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(a) CNVnator results (b) Our CNV results

Figure 3.2: Intersection of two CNV detection results with true CNVs. (a) We

illustrate the Venn diagram of the CNVnator calling with the true CNV regions.

(b) We illustrate the intersection between the CNVeM calls and the true CNV

regions. This figure indicates that we have less false positives and false negatives

than CNVnator.

Comparison between different strategies dealing with read mapping

uncertainty

When handling reads that can be mapped to multiple positions, existing meth-

ods either discard those reads, or randomly place the read to one of the multiple

mapping positions. CNVeM considers all possible mapping positions, and a read

can be placed to one of the positions with a probability. We compared the perfor-

mance of these different strategies. Furthermore, we consider the popular strategy

which divides the genome into bins. All nucleotides within one bin have the same

copy number. We develop a method ‘wind’ using the same EM framework as in

section 3.2.3 for the bin strategy.

We run these methods on the same simulated datasets. Following the same

process mentioned above, we generated the reference genome and donor genome

from chromosome 17 of Mus Musculus, with mutation rate between duplicated

segments set to be 0.1%, 0.5%, and 1%, respectively. Reads are simulated at 30X

coverage. The results plotted in Figure 3.3 illustrate that CNVeM has highest

recall and precision at different mutation rates.
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(a) Recall

(b) Precision

Figure 3.3: Comparison between several strategies dealing with read mapping un-

certainty. The x-axis represents the mutation rate between duplicated segments.

The shorthands CNVeM, wind, uniq and rand represent the results from CNVeM,

the results from wind which divides the genome into bins, the results from only

considering reads mapped to unique positions, and results from placing a read to

one of multiple mapping positions randomly, respectively.

Time and memory usage

When dealing with HTS technology which generates tens of gigabytes of data per

day, not only the accuracy of the method becomes important, but memory and

time usage become important factors. The time and memory usage is estimated

for the CNV calling process, and we assume the mapping is done in a separate step.
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Our program takes 30 minutes to detect all the CNVs in the simulated dataset on

masked chromosome 17 of the mouse genome, where we had 30X coverage (having

around 50 million reads). All the experiments were run on a 64-bit AMD Opteron

processor, furthermore, our program used 2Gb of memory at the peak of usage.

In order to run CNVeM on the whole genome sequencing data, the memory usage

increases linearly with the size of the genome.

3.3.2 Results on Real Data

We used the data published by Sanger Institute [SSS09], where chromosome 17

of mouse strain A/J is deeply sequenced using Illumina technology to test our

method on real data. The data contains 112 million (56 million pair-end) reads

and the length of each read is 36bp. This results in a 42X coverage. We aligned

the reads to the masked chromosome 17 using mrsFast [HHA10], allowing up to

2 mismatches. Out of these 112 million reads, 39 million reads mapped uniquely

to the genome. However, 4 million reads mapped to more than one position

in the genome. We supply the mapping information of both uniquely and non-

uniquely mapped reads to CNVeM, and managed to detect 44 copy gain regions

and 355 copy loss regions. Among those 44 copy gain regions, 28 regions have

been reported by Sudbery et al. [SSS09], and 15 regions out of these 355 copy

loss regions have been reported by Sudbery et al. [SSS09] as copy loss regions.

Sudbery et al. also reported 416 deletion regions. We checked the coordinates of

those deletion regions and discovered that 415 of them have overlap with the rest

of copy loss regions reported by CNVeM. Furthermore, we apply CNVnator on

this real data where it manages to detect 42 copy gain regions and 264 copy loss

regions. Comparing the CNVeM calls with those of CNVnator, we see 26 copy

gain regions overlap, and 86 copy loss regions are found by both methods.
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3.4 Discussion

CNV regions have been shown to be correlated with many diseases ranging from

cancers to learning disabilities [CHR05, SLM07]. Two main strategies exist to

improve CNV detection, either to improve the technology from which we gather

data from individuals, or to design better algorithms. The shift from ArrayCGH

to HTS is a good indicator of improvements in the data gathering process, as

current studies suggest that the use of HTS results in higher power in detecting

CNV breakpoints and quantifying the true copy number for each region.

It has been shown previously that we can use both the depth of coverage (DOC)

and paired-end information to detect CNVs accurately [MFD10]. We have shown

that correct usage of DOC improves the accuracy of CNV detection greatly. In

this work we have presented a probabilistic model for detecting CNVs, based on

an expectation-maximization (EM) method. Our method incorporates all avail-

able mapping information in the CNV prediction. It not only has higher accuracy

in detecting the CNVs but also can detect which of the paralog regions in the

genome is copied or deleted. All previous methods fail to distinguish paralog re-

gions as they either discard all multiple mapping reads (reads mapped to multiple

positions) or randomly assign a read to one of the mapping positions.

Another main contribution of this work is that we can predict the CNV break-

points in base-pair resolution. Unlike previous methods which define CNV for

each bin (segment of fixed or variable length), our objective function is defined

for each base-pair. In other words we are predicting the CNV for each base-pair.

This helps us to detect the breakpoint of each CNV with high accuracy.

Although we mention that using DOC can improve the accuracy of CNV detec-

tion, we do not deny the fact that paired-end mapping has valuable information.

Our future work is to incorporate paired-end reads information into our proba-

bilistic model.
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CHAPTER 4

Copy Number Variation Detection from Tumor

Samples Contaminated by Stromal Cells

4.1 Background

Many recent studies have shown a correlation between CNVs and cancers [CHR05,

IFR04, TSB05]. Historically, two key techniques have been used to detect CNVs in

tumor genomes: array comparative genome hybridization (ArrayCGH) and loss of

heterozygosity (LOH) [CLC08, Car07, RIF06, Zha10]. These techniques, although

powerful to detect the presence of CNVs, are unable to identify the boundaries of

CNVs with high resolution.

The development of high-throughput sequencing (HTS) technologies provides

great opportunities to detect CNV regions with high resolution in tumor genomes.

With HTS technologies, whole genome shotgun sequencing becomes possible. Mil-

lions of reads are obtained from fragments of the DNA molecules. The reads are

mapped to the reference genome and the mapping information is utilized to call

CNVs.

Recent studies have proposed methods to detect CNVs using short reads gen-

erated from HTS technologies. One approach is to split the genome into small

windows and use the number of reads mapped to each specific window (read depth)

as a proxy for the copy number of that window [AKM09, SKA10, SMA10, CGJ09,

YXM09]. However, the resolution of this approach is limited by the size of the

windows, which is typically at least one kilobase. Another approach is to use
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“paired-end” reads, where “paired-end” refers to the two ends of the same segment

of a DNA molecule, to detect CNVs [MFD10, HFE10, HAE09]. One limitation

of this strategy is that it can not detect CNVs in repeat-rich regions, where a

short segment of the DNA sequence appears repetitively. This may reduce the

applicability of this method given the existence of many repeat-rich regions in the

human genomes.

In Chapter 3, we proposed a statistical method, CNVeM, to detect CNVs

in the donor genome. However, CNVeM cannot be applied to detect CNVs in

tumor genome directly. One challenge in detecting tumor CNVs comes from

the specimen collecting process, prior to applying either ArrayCGH, LOH or HTS

technologies. In a typical experiment, tumor tissue samples were cut from random

sites of the tumor at biopsy. However, tumor cells are surrounded by stromal cells,

which are the normal connective tissue cells in the organs. Tumor samples are

easily contaminated by the stromal cells in the specimen collection process. This

heterogeneity in tumor samples contributes to the complexity of CNV detection.

Liu et al. proposed an HMM model to infer CNVs using SNP arrays from tumor

samples mixed with stromal cells [LLS10]. However, their method suffers from

low resolution from the inherent limitation of array techniques.

In this study, we extended CNVeM and proposed a new probabilistic model,

CNVmix, that estimates the copy numbers for each nucleotide based on the read

mapping information from tumor samples. CNVmix is able to incorporate the

contaminating genomes. We proposed a method to estimate the proportion of

contaminating genomes in the tumor samples. Most mammals, including human,

are diploid. One diploid cell contains two sets of genomes, each inherited from one

parent. CNVs in diploid tumor cells appear in many forms, such as hemizygous

deletion where a region of one genome is deleted, homozygous deletion where a

region of both genomes is deleted and amplification where a region of one or both

genomes is duplicated. We utilize the hemizygous deletion regions to estimate the
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proportion of contaminating cells in the tumor samples. We identify hemizygous

deletion regions by detecting regions in which the read depth is lower than ex-

pected and the alleles (types of nucleotides at a SNP position) of heterozygous

SNPs are imbalanced. In hemizygous regions, tumor genomes have copy number

1, while stromal genomes have normal copy number 2. Utilizing the ratio be-

tween two alleles at heterozygous SNPs within hemizygous deletion regions, we

estimate the proportion of contaminating genomes as in section 4.2.2. With the

estimated contamination rate, we develop the generative model of observing the

read set from the contaminated tumor samples. The CNVs in the tumor genomes

are estimated by optimizing the parameters in the generative model.

Another important challenge for detecting CNVs in tumor genome lies in the

uncertainty of read mapping. Similar with CNVeM, the new model CNVmix also

utilizes the uncertainty of read mapping to detect tumor CNVs. We can detect

the CNV boundaries and copy numbers of CNVs precisely and are able to predict

small CNVs.

We apply our method to simulated datasets and achieve higher accuracy com-

pared to existing methods. To our knowledge, this is the first attempt to predict

tumor CNVs using HTS outputs from contaminated tumor samples.

4.2 Methods

4.2.1 The generative model

We use short read information from the HTS technologies to detect copy number

variants in diploid tumor genome. We use same notation as the generative model

of CNVeM in Chapter 3. One difference is that we aim to detect CNVs in tumor

genome, which is diploid, so we assign the copy number of each nucleotide in the

diploid reference genome to be 2. For most nucleotides, the copy numbers are the
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same in the tumor genome and in the reference genome. So one can assume that

the length of tumor genome is the same as the length of the reference genome,

i.e.
∑K

i=1Ci = 2K. We define vector ( C1

2K
, C2

2K
, . . . , CK

2K
) to be the normalized copy

number vector of the tumor genome.

Using HTS technology, millions of short reads are generated from the tumor

samples. As the samples are contaminated by stromal cells, which have same

copy numbers with the reference genome, reads can originate from either the

tumor genome or the stromal genome. Denote the proportion of stromal cells in

tumor samples to be ρ (0 ≤ ρ ≤ 1). The probability of a read originating from

the stromal genome is ρ.

In our model, each read rj originates from one position in either the stromal

genome or the tumor genome. Let H = {H1, H2, . . . , HN} be the source of each

read, where Hj ∈ {0, 1} represents whether read rj originates from the stromal

genome (Hj = 0) or the tumor genome (Hj = 1). Z = {Z1, Z2, . . . , ZN} is

the true origin of each read, where Zj ∈ {1, 2, . . . , K}, and we then define the

following likelihood model of all reads given copy number C, contamination rate

ρ and reference genome sequence G

P (R|ρ, C,G) =
N∏
j=1

P (rj|ρ, C,G) =
N∏
j=1

1∑
h=0

K∑
i=1

P (rj, Hj = h, Zj = i|ρ, C,G). (4.1)

The interpretation of the above probability definition P (rj, Zj = i,Hj =

h|ρ, C,G) is straightforward: the probability of j-th read generated from i-th po-

sition in the stromal genome (tumor genome), given the contamination rate, copy

numbers and reference genome sequence. We can further expand this probability

as follows:

P (rj, Zj = i,Hj = h|ρ, C,G) = P (Zj = i,Hj = h|ρ, C)P (rj|Zj = i,G). (4.2)

The equality follows from the fact that the read position Z and source H are

independent of the reference genome sequence G and the sequence of read r is
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independent of copy number C and contamination proportion ρ. We define the

first term to be the probability for read rj originating from position i of the stromal

genome (tumor genome) as follows:

P (Zj = i,Hj = h|ρ, C) =


1/K × ρ if h = 0

Ci/2K × (1− ρ) if h = 1.

(4.3)

As in Equation (3.3), we denote the probability of observing the sequence

of read rj given that the true origin of read rj is position i to be P (rj|Zj =

i,G). The prior probability of the tumor genome is also defined as P (C) =

P (C1, C2, . . . , CK) = P (C1)
∏K

i=2 P (Ci|Ci−1).

Using Bayes rule, we can get the posterior probability of C given the read set

R, contamination rate ρ and the reference genome sequence G:

P (C|ρ,R,G) ∝ P (R|ρ, C,G)P (C)

∝

(
N∏
j=1

K∑
i=1

[
2ρ+ (1− ρ)Ci

2K
]P (rj|Zj = i)

)
×

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)
.

(4.4)

4.2.2 Estimation of contamination rate ρ

Due to the existence of stromal cells in the tumor samples, the detection of CNVs

becomes more difficult. Accurate estimation of the proportion of stromal cells in

the mixed sample plays an important role in detecting CNVs in tumor genomes.

We proposed a method to estimate the contamination rate from the read mapping

information. We utilize the hemizygous deletion regions to estimate the proportion

of contaminating cells in the tumor samples. In hemizygous deletion regions,

tumor genomes have copy number 1, while stromal genomes have normal copy

number 2. Hemizygous deletion regions are predicted to be copy loss regions

using the method in section 4.2.3 no matter contaminating cells exist or not.

After identifying copy loss regions using the method in section 4.2.3, allele
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frequency information is used to extract hemizygous deletions from the copy loss

regions. Each heterozygous SNP has two alleles, denoted as ‘A’ and ‘B’. In hem-

izygous deletion regions, the alleles of heterozygous SNPs are imbalanced as one

of the alleles is deleted. This information can be used as a signal to indicate

whether a copy loss region is hemizygous deletion region or not. After identifying

hemizygous deletion regions, we denote the B allele frequency (BAF) of a het-

erozygous SNP in the hemizygous deletion region as b and apply the following

strategy similar to [LLS10] to estimate the contamination rate ρ̂.

ρ̂ =
BT − bnT

BT − bnT − (BN − bnN)
(4.5)

where BT ,nT is the B allele copy number (0 or 1) and total copy number (1) of the

heterozygous SNP in hemizygous deletion region in the tumor genome; BN = 1,

nN = 2 is the B allele copy number and total copy number of the heterozygous

SNP in stromal genome. The estimates from all heterozygous SNPs in hemizygous

deletion regions are averaged to approximate the true contamination rate. In the

uncommon case that no hemizygous deletion region is identified in the sample,

higher copy numbers can also be used with the same formula to estimate the

contamination rate ρ.

4.2.3 Optimization

Maximizing the posterior of copy number C in Equation (4.4) is equal to maxi-

mizing the following log probability with respect to C:

N∑
j=1

(
log

K∑
i=1

[
2ρ+ (1− ρ)Ci

2K
]P (rj|Zj = i)

)
+ log

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)
. (4.6)

Similar as in Chapter 3, we incorporate a penalty function coefficient δ in order
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to eliminate the constraint
∑K

i=1Ci = 2K. Our objective function now becomes

N∑
j=1

(
log

K∑
i=1

[
2ρ+ (1− ρ)Ci

2K
]P (rj|Zj = i)

)
+ log

(
P (C1)

K∏
i=2

P (Ci|Ci−1)

)

+δ

(
2K −

K∑
i=1

Ci

)
(4.7)

We optimize the objective function (4.7) through an expectation-maximization

(EM) algorithm.

Expectation-step:

Q(C|C(t)) =
N∑
j=1

K∑
i=1

log

(
[
2ρ+ (1− ρ)Ci

2K
]

)P (Zj=i|rj)
+

N∑
j=1

K∑
i=1

logP (rj|Zj = i)P (Zj=i|rj)

+ logP (C) + δ

(
2K −

K∑
i=1

Ci

)
(4.8)

Maximization-step:

C(t+1) = arg max
C

log

[
P (C1)

(
[
2ρ+ (1− ρ)Ci

2K
]

)d1
× e−δC1

×
K∏
i=2

(
P (Ci|Ci−1)

(
[
2ρ+ (1− ρ)Ci

2K
]

)di
× e−δCi

)]

where di =
∑N

j=1 P (Zj = i|rj).

We solve the M-step using dynamic programming. Denote the objective func-

tion in the M-step to be

f = log

[
P (C)×

K∏
i=1

((
[
2ρ+ (1− ρ)Ci

2K
]

)di
× e−δCi

)]
. (4.9)

Then we define f(k, x) to be the maximum function value for first k positions

when the copy number of kth position is Ck = x. Now we design the dynamic
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programming solution indicated as follows:

f(k, x) =


log[P (Ck = x)× ([2ρ+(1−ρ)Ck

2K
])dk × e−δCk ] if k = 1

maxCk−1
{f(k − 1, Ck−1) + log[P (Ck|Ck−1)]}

+ log[([2ρ+(1−ρ)Ck

2K
])dk × e−δCk ] otherwise

Similar to the proof in Chapter 3, it can be proved that the above dynamic

programming solution returns the global optimal solution for objective function in

Equation (4.9). The maximum value of the objective function in the M-step is then

maxx f(K, x). Using a backtrack process, we find the vector C = (C1, C2, . . . , CK)

that maximizes the function f in the M-step. By iteratively running the E-step

and M-step, we achieve local optimal solution.

4.3 Results

In order to assess our method, we carried out experiments on simulation datasets.

We developed a simulation framework, in which the tumor genome is obtained by

altering the copy number of some regions from the reference genome.

4.3.1 Experiment on a simulated human chromosome 17

We tested our method on a simulated human genome. We obtained the human ref-

erence chromosome 17 from Feb. 2009 assembly of human genome (hg19, GRCh37

Genome Reference Consortium Human Reference 37). After pruning all the ‘N’s,

the length of the chromosome 17 reduced to 40Mb. We utilize the similar frame-

work as in section 3.3.1 to generate the reference genome and tumor genome. The

only difference is that the reads are generated from both reference genome and

tumor genome. This is to simulate the fact that tumor samples are contaminated

by the stromal cells. Simulations are performed on different contamination rate to

assess the power of CNVmix in detecting tumor CNVs from contaminated sam-
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ples. A CNV is considered to be detected correctly when it overlaps with the true

CNV region, meanwhile the predicted copy numbers should be the same with the

true copy numbers. The results are shown in Table 4.1. We also compared our

Table 4.1: The results on the simulated human chromosome 17 under different

proportion of contamination cells. No. of predicated CNVs are the number of re-

gions CNVmix reports as CNVs. False discovery rate is the ratio between number

of false positives and number of predicted CNVs, while false negative rate is the

ratio between number of false negatives and number of true CNVs. It is obvious

that CNVmix reports false positive regions due to that fact that it calls more

CNVs than implanted in the tumor genome.

True

Contamination

Rate

Estimated

Contamination

Rate

No. of

Predicted

CNVs

No. of

Correct

CNVs

False

Discovery

Rate

False

Negative

Rate

0% 0 100 100 0 0

20% 21.2% 101 100 1.0% 0

40% 38.8% 103 100 2.9% 0

50% 52.7% 116 100 13.8% 0

60% 58.5% 123 99 19.5% 1.0%

80% 84.2% 249 93 62.6% 7.0%

reported CNVs to true CNVs by base pairs. The overlap is calculated by inter-

secting the coordinates of predicted CNVs with those of true CNVs. The results

in Table 4.2 indicate high accuracy of CNVmix in predicting the break points.

From Table 4.1 and Table 4.2, we observe that both false discovery rate and

false negative rate increase as the contamination rate increases. Nonetheless, our

method has sufficient power to detect CNVs from mixed tumor samples, even

tumor samples that are contaminated by as much as 60% normal cells. When

the contamination rate is higher than 50%, there is a dramatic rise in terms of
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false discovery rate, while the increase in false negative rate is more smooth.

This phenomenon indicates that in order to achieve high sensitivity, our method

inevitably reports false positive regions. However, most of these false positive

regions are short, and thus we have low false discovery rate in break points calling.

The false negative rate in predicting the correct quantitive copy number is always

lower than the false negative rate in calling the breakpoints of CNVs. Moreover

the false discovery rate of quantitative value for CNVs is always higher than the

false discovery rate in breakpoint calling. This illustrates that CNVmix is robust

in detecting the existence of copy variation and determining the break points of

CNVs.

Table 4.2: Measuring the accuracy of CNV break points by base pairs under

different proportion of contaminating cells. The total length of true CNVs is

491000bp. False discovery rate is the ratio between length of false positive regions

and total length of predicted CNVs, while false negative rate is the ratio between

length of false negative regions and total length of true CNVs.

True Con-

tamination

Rate

Estimated

Contamination

Rate

Length of

Predicted

CNVs(bp)

Length of

over-

lap(bp)

False

Discovery

Rate

False

Negative

Rate

0% 0 484100 478084 2.6% 1.2%

20% 21.2% 491299 482355 1.8% 1.8%

40% 38.8% 493397 482293 2.3% 1.8%

50% 52.7% 493397 482293 6.6% 1.5%

60% 58.5% 525477 477592 9.1% 2.7%

80% 84.2% 872751 445754 48.3% 9.2%
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4.3.2 Comparison of our method with CNVnator

In this section we compare our method with the CNVnator [AUS11], which is

the state-of-the-art CNV detector. Using a similar simulation framework, we

generated the genomes in stromal cells and tumor cells from chromosome 17 of

human. We set the contamination rate to be 20% and reads are then simulated

at 30X coverage. We use the same parameter configuration as in section 3.3.1

to compare CNVmix and CNVnator. Figure 4.3.2 illustrates the intersection

of CNVs found by CNVmix and CNVnator on the simulated dataset, where 100

CNVs are implanted in the tumor genome. CNVmix finds 101 CNVs which include

all of the true CNVs. This indicates that CNVmix has 1 false positive and no

false negatives. However, CNVnator finds 261 CNV regions among which 99

regions are true CNVs. CNVnator fails to identify one CNV region. Moreover,

CNVnator reports 162 false positives. This results from fact that CNVnator

mistakes contaminating cells for tumor cells. Meanwhile, CNVnator randomly

places a read to one of its multiple mapping positions, and thus affects the read

depth (RD) information, from which CNVnator determines the copy variation

status. All the results indicate that CNVmix has lower false discovery rate and

false negative rate than CNVnator.

4.4 Discussions

In this work we present a probabilistic model for detecting CNVs from HTS out-

puts, based on an Exception-Maximization (EM) method. Our method incorpo-

rates all read mapping information. It has higher accuracy in detecting the CNVs

compared to previous methods, as they either discard multiple mapping reads or

randomly place a multiple mapping read to one of the mapping positions. Con-

sidering the fact that tumor samples are easily contaminated by stromal cells,

we incorporate the contamination rate in our model and proposed a method to
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(a) CNVnator results (b) Our CNV results

Figure 4.1: Intersection of two CNV detection results with true CNVs. (a) We

illustrate the venn diagram of the CNVnator calling with the true CNV regions.

(b) We illustrate the intersection between the CNVmix calls and the true CNV

regions. This figure indicates that we have less false positives and false negatives

than CNVnator.

estimate the contamination rate. The simulation results indicate that our method

estimates the contamination rate accurately.

This model can identify hemizygous deletions, homozygous deletions and am-

plifications accurately according to the simulation results. However, it cannot

identify copy neutral LOH region, where one genome is deleted but the other

genome is duplicated. Our model depends on the read depth (RD) information

to detect CNVs while the copy number of copy neutral LOH is still 2 and RD

signal does not reflect the variation. A signal of BAF band centered at 0 or 1

indicates the presence copy-neural LOH. One future direction of this model is to

incorporate BAF information for detection of copy neural LOH region.
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CHAPTER 5

Gene-Gene Interactions Detection Using A

Two-stage Model

5.1 Background

Genome-wide association studies (GWAS) attempt to discover genetic variation

associated with disease traits. To perform GWAS, studies collect genetic varia-

tion of individuals and their disease status or disease related traits. GWAS studies

typically collect single nucleotide polymorphisms (SNPs) because technologies al-

low for very cost-efficient collection of SNPs. Since SNPs are so prevalent in the

genome, they are likely to be correlated with other genetic variations. Current

GWAS studies collect about a million SNPs in thousands of individuals. The

standard approach for identifying associations between SNPs and traits is that

for each SNP, we compare the average trait value of individuals who have one

allele of a SNP and that of individuals who have the other allele of the SNP. If

the difference between the two average trait values is above a certain threshold,

we declare that the SNP is significantly associated with the trait. We refer to

computing the difference in the average trait values for each SNP as the “single

marker test”, and it has successfully identified many individual SNPs associated

with several complex diseases [CSS93, BKK94, AHK00, SVL07, Con07].

Current studies on certain complex diseases have also suggested that some

SNPs influence diseases through interactions [WAP00, BSW05, YIS04]. In an

extreme scenario, two SNPs may not have any effect on a disease independently,
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but they may affect the disease when both are present. To detect an interaction

of SNPs, one needs to consider the association between a trait and a pair of SNPs.

One approach to find such associations is to divide individuals into two groups:

one group of individuals who have a certain combination of alleles for a pair of

SNPs and the other group of individuals who have different combinations of alleles

for the pair of SNPs. We then compute the difference in the average trait value

between the two groups to determine whether the pair of SNPs is significantly

associated with the trait. Finding an association between a trait and a pair

of SNPs is called the “pairwise association test”, and recently, several different

methods have been proposed [EMM06, ZHZ10, YHW09, MCG06, LHC04].

One major challenge in discovering pairs of SNPs associated with a trait is that

it requires enormous computation. One needs to compute associations between

a trait and 4×
(
M
2

)
pairs of SNPs where M is the number of SNPs available for

testing. When M is close to one million as in current GWAS, an exhaustive

pairwise search that considers all pairs of SNPs considers 2000 billion pairs of

SNPs, which is a computationally challenging task. As the number of SNPs in

GWAS keeps increasing with the improvement of technologies to collect SNPs,

the exhaustive search becomes even more computationally infeasible.

In this work, we present a Threshold-based Efficient Pairwise Association Ap-

proach (TEPAA) for detecting associations between traits and pairs of SNPs using

a two-stage model. In the first stage, our method performs the single marker test

on all individual SNPs and selects a subset of SNPs that exceed a certain signif-

icance threshold (called “the first stage threshold”) for further consideration. In

the second stage, individual SNPs that are selected in the first stage are paired

with each other, and we perform the pairwise association test on those pairs. In

this method, there exists a trade-off between the probability of the method de-

tecting a pair of SNPs associated with a trait (called “statistical power of the

method”) and the computational burden (or cost). Intuitively, statistical power
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increases as we include more SNPs in the second stage, which means higher cost.

The first stage threshold determines this trade-off, and we derive the analytical

power of our method which allows us to determine the threshold and to control

this trade-off. The key insight of our approach is that we derive the joint dis-

tribution between the association statistics of single SNPs and the association

statistics of pairs of SNPs. This joint distribution allows us to provide guaran-

tees that the statistical power of our approach will closely approximate the brute

force approach. We can accurately compute the analytical power of our two stage

model at any first stage threshold and compare it to the power of the brute force

approach. Hence, we are able to choose as few SNPs as possible in the first stage

while achieving almost the same power as the brute force approach.

While recently developed methods such as TEAM [ZHZ10, ZPX09] signifi-

cantly reduce the computational burden of searching for pairs of associated SNPs,

to our knowledge very few methods are feasible to apply to full size human GWAS

datasets. The SIXPAC method developed by Pe’er and Prabhu utilizes a novel

randomization technique that requires 10× to 100× fewer tests than a brute-force

approach to find long-range interactions using standard two-locus test [PP12].

However, their method only handles case-control data and can not apply to quan-

titative traits. Wan et al. developed an approach BOOST, which designed a

Boolean representation of data and used a screening stage to filter out most non-

significant SNP interactions [XCQ10]. However, their method can not apply to

quantitative traits either.

The only existing method that is feasible on a full size human GWAS dataset

to detect SNP pairs associated with quantitative traits is FastEpistasis [SXB10].

FastEpistasis is a brute-force approach which conducts pairwise associations for

all pairs of SNPs, or SNP pairs specified by users. The advantage of FastEpis-

tasis is that their method is parallelled and utilizes high-performance computer

architectures with multiple cores. Our method utilizes a two-stage strategy and
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greatly reduced the number of pairwise association tests with little power loss.

We note that in this work, we are only considering pairs of SNPs which are

far apart from each other. There is another class of methods which consider

multiple SNPs close to each other [WKE10, WLC11, LLK13]. These problems are

completely different and characterized by very different challenges. For example,

the computational burden which is the focus of our method is different because

the number of pairs of SNPs near each other is significantly smaller than the total

number of pairs of SNPs. In addition, neighboring SNPs are typically correlated

with each other, referred to as in linkage disequilibrium (LD). Pairs of SNPs far

from each other are typically independent or unlinked which is an observation

that we leverage in our approach.

5.2 Results

5.2.1 Overview of the Two-stage Model TEPAA

We present a two-stage model, TEPAA, for detecting associations between traits

and pairs of SNPs. In this first stage, the association statistics for all SNPs

are computed. Any SNPs which have a statistic higher than a pre-determined

threshold then advance to the second stage in which all pairs of these SNPs are

evaluated. The first stage threshold is important in determining power and cost

of our method because it controls the number of SNPs to be selected in the first

stage. For a truly associated pair of SNPs to be identified using our approach,

both SNPs must advance to the second round and thus must have association

statistics higher than the first stage threshold. Clearly, the more stringent the

threshold, the smaller the number of SNPs in the second stage and the smaller

number of pairs of SNPs which must be evaluated speeds up this method. On

the other hand, more stringent thresholds increase the chance that at least one

of the pair of truly associated SNPs will not be more significant than the first
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stage threshold and the pair will not be identified by the method. Hence, there

is a trade-off between power and cost, which is determined by the first stage

threshold.

Our method chooses the first stage thresholds such that the two-stage model

loses only a small amount of power but increases computational efficiency dra-

matically compared to the exhaustive search. To find such thresholds, we first

derive the analytical power and cost of both the brute force approach and the

two-stage model. This analysis allows us to choose the threshold that yields

the desired power and cost, and hence it allows us to control the trade-off be-

tween the two. To derive the analytical power of our two stage model, we use

the framework of Multivariate Normal Distribution(MVN) to model the associa-

tion statistics [HKE09, KE13, KLE11]. We use a MVN to approximate the joint

distribution between the association statistic of single SNP and the association

statistic of pairs of SNPs. The non-centrality parameters (NCPs) of statistics are

considered to be the mean vector in the MVN and correlations among statistics

as a covariance matrix in the MVN. The NCPs and correlations can be calculated

from the data and thus we obtained all the parameters of the MVN. The details

of the analysis are discussed in Section 5.3.4.

From our analysis, we observe that the thresholds which control the power

loss of the two stage approach depend on the minor allele frequency (MAF) of the

SNPs. In particular, more common SNPs can be filtered out with less significant

thresholds than rare SNPs. In order to efficiently implement TEPAA using MAF

dependent thresholds for each pair, we group the SNPs into bins based on their

MAFs to apply the correct thresholds to each possible pair. After disregarding

rare variants with MAF < 0.05, we categorize all common SNPs into 9 bins

according to their MAF, with step size 0.05. Each pair of SNPs would have two

thresholds, one for each SNP in the first stage. In total, we have
(
9
2

)
+9 categories

of SNP pairs. We pre-compute the first stage thresholds for each combination of
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two MAFs in order to achieve 1% power loss, while achieving high cost savings.

We sort the SNPs within each bin by their association statistics and use binary

search to rapidly obtain the set of SNPs above a single threshold to efficiently

implement the first stage of our method.

5.2.2 Application of TEPAA to the NFBC Data

We applied TEPAA to the Northern Finland Birth Cohort (NFBC) data to

demonstrate the utility of our two stage model and the cost saving on a real data.

The Northern Finland Birth Cohort Data contains 5, 326 individuals, and 331, 476

SNPs are genotyped. The histogram of all SNPs’ MAFs is shown in Fig. 5.1(a).

As described in detail in Section 5.3.6, we categorize all common SNPs into 9

bins according to their MAFs. The number of SNP pairs in each category is

shown in Fig. 5.1(b). The first stage thresholds of TEPAA are pre-computed for

each category in order to have the power loss at 1% using the methods described

in Section 5.3.6. The cost saving for each category is summarized in Table 5.1.

Based on Fig. 5.1(b) and Table 5.1, the estimated overall cost saving is 63.2 times,

which is the ratio between total number of pairwise association tests of brute force

approach and that of TEPAA.
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shown in Figure 1(b). The first stage thresholds of TEPAA are pre-computed for each category in
order to have the power loss at 1% using the methods described in Section 3.5. The cost saving for
each category is summarized in Table 3. Based on Figure 1(b) and Table 3, the estimated overall
cost saving is 23.05 times, which is the ratio between total number of pairwise association tests in
brute force approach and that of TEPAA.
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shown in Table 1(b). The first stage thresholds of TEPAA are pre-computed for each category in
order to have the power loss at 1% using the methods described in Section 3.5. The cost saving for
each category is summarized in Table 3. Based on Table 1(b) and Table 3, the estimated overall
cost saving is 23.05 times, which is the ratio between total number of pairwise association tests in
brute force approach and that of TEPPA.

MAF of SNP B

M
A

F
o
f
S
N

P
A

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05 1.13 5.2 5.86 5.70 5.54 5.30 5.13 5.00 4.97 4.94
0.1 0 5.97 13.45 13.07 12.72 12.16 11.78 11.48 11.40 11.34
0.15 0 0 7.57 14.71 14.32 13.69 13.26 12.93 12.84 12.77
0.2 0 0 0 7.15 13.91 13.31 12.89 12.56 12.48 12.41
0.25 0 0 0 0 6.77 12.95 12.54 12.22 12.14 12.07
0.3 0 0 0 0 0 6.19 11.99 11.69 11.61 11.55
0.35 0 0 0 0 0 0 5.81 11.32 11.25 11.18
0.4 0 0 0 0 0 0 0 5.52 10.96 10.90
0.45 0 0 0 0 0 0 0 0 5.44 10.83
0.5 0 0 0 0 0 0 0 0 0 5.38

For all SNPs in each bin, we calculate the statistic SA and sort the SNPs in descending order of
their statistic SA’s. Since our analysis in section 3 is based on haploid species or homozygous SNPs
and human are diploid species with heterozygous SNPs, we need to adjust our model. We adopted
the dominance model, which means that the genotypes which carry one or two causal alleles will
both be considered as the causal genotype.

SNPs are then paired to perform the pairwise association test. One of our assumption in section 3
is that the causal alleles are minor alleles at both SNPs, which is not always true. So in the second
stage, we have to consider four different combinations of the causal alleles because both minor and
major allele might be the causal allele at both SNPs.

Since it is impractical to run the brute force on the whole chromosome, the CPU time of the
brute force approach is estimated from one single chromosome by scaling, which is estimated to
be XXX. The CPU time of TEPAA is Y Y Y . We achieved 23.05 times of cost saving, which
verifies our estimation that the cost savings is 23.05. However, both brute-force approach and two-
stage model report no significant SNP interactions under the significance threshold 10−12. This is
understandable since this data set contains only 5, 326 individuals.

2.3 TEPAA Controls Power Loss in Simulated Data

To demonstrate that TEPAA has only 1% power loss using the pre-computed first stage thresholds
in Table 1 and Table 2, we implant a significant SNP-SNP interaction to the Northern Finland
Birth Cohort Data and then detect the SNP pair using TEPAA.

We created phenotype data based on the phenotype “Crpres” in the Finland data. To simulate
the significant SNP pairs, we randomly sample the MAF of each SNP from [0.05, 0.5). The alleles
of each individuals at these two simulated SNP are then sampled from the MAF. The phenotypes
of the individuals with causal alleles at the SNP pairs are increased by the effect size βAB. βAB is
calculated from Equation 8 to achieve 50% power in the brute-force approach. Then we apply both
brute-force approach and two-stage approach to the simulated dataset. The first stage significance
thresholds αA and αB in the two-stage approach are selected in order to obtain 1% power loss.

We generated 10, 000 simulated SNP pairs and applied both approaches. The power for each
approach is calculated as the proportion of experiments that the approach detected the implanted

(b) The number of SNP pairs in each category. Numbers are
shown in factor of 100 millions.

Fig. 1. The Distribution of all SNPs’ MAFs and number of SNP pairs in each category.
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05 1.13 5.2 5.86 5.70 5.54 5.30 5.13 5.00 4.97 4.94
0.1 - 5.97 13.45 13.07 12.72 12.16 11.78 11.48 11.40 11.34
0.15 - - 7.57 14.71 14.32 13.69 13.26 12.93 12.84 12.77
0.2 - - - 7.15 13.91 13.31 12.89 12.56 12.48 12.41
0.25 - - - - 6.77 12.95 12.54 12.22 12.14 12.07
0.3 - - - - - 6.19 11.99 11.69 11.61 11.55
0.35 - - - - - - 5.81 11.32 11.25 11.18
0.4 - - - - - - - 5.52 10.96 10.90
0.45 - - - - - - - - 5.44 10.83
0.5 - - - - - - - - - 5.38

For all SNPs in each bin, we calculate the statistic SA and sort the SNPs in descending order of
their statistic SA’s. Since our analysis in section 3 is based on haploid species or homozygous SNPs
and human are diploid species with heterozygous SNPs, we need to adjust our model. We adopted
the dominance model, which means that the genotypes which carry one or two causal alleles will
both be considered as the causal genotype.

SNPs are then paired to perform the pairwise association test. One of our assumption in section 3
is that the causal alleles are minor alleles at both SNPs, which is not always true. So in the second
stage, we have to consider four different combinations of the causal alleles because both minor and
major allele might be the causal allele at both SNPs.

Since it is impractical to run the brute force on the whole chromosome, the CPU time of the
brute force approach is estimated from one single chromosome by scaling, which is estimated to

(b) The number of SNP pairs in each category. Numbers

are shown in factor of 100 millions.

Figure 5.1: The Distribution of all SNPs’ MAFs and number of SNP pairs in each

category.
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For all SNPs in each bin, we calculate the association statistics and sort the

SNPs in descending order of their statistics. We perform our analysis using the

dominant model which is standard for analysis of epistatic interactions. We note

that the basic approach of TEPAA can be extended to other models such as

recessive or additive as well.

We compare the performance of the brute force approach and TEPAA to detect

the SNP pairs associated with the phenotype “CRP” (C-reactive protein) on a

machine with 2.3 GHz AMD Opteron Processor. Since it is impractical to run the

brute force on the whole chromosome, the CPU time of the brute force approach is

estimated from one single chromosome by scaling, which is estimated to be 1, 542

hours for phenotype “CRP”. The CPU time of TEPAA is 24.5 hours for the same

phenotype. We achieved 62.9 times of cost saving, which verifies our analysis

of the cost savings of TEPAA when achieving 1% of power loss. However, both

brute-force approach and two-stage model report no significant SNP interactions

under the significance threshold 10−12. This is understandable since this data

set contains only 5, 326 individuals. In the next section, we show that the brute

force approach and TEPAA have similar power when there exists significant SNP

interactions.

5.2.3 TEPAA Controls Power Loss in Simulated Data

To demonstrate that TEPAA has only 1% power loss using the pre-computed first

stage thresholds, we perform simulations where we implant a significant SNP-SNP

interaction to the NFBC data and then detect the SNP pair using TEPAA.

We created phenotype data using the phenotype “CRP” (C-reactive protein)

in the NFBC data as a starting point. To simulate the significant SNP pairs, we

randomly sample the MAF of each SNP from [0.05, 0.5). The alleles of each indi-

viduals at these two simulated SNPs are then sampled according to the MAF. The
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phenotypes of the individuals with causal alleles at the SNP pairs are increased

by a selected effect size so that the pairs has 50% power in the brute-force ap-

proach. Then we apply both the brute-force approach and the two-stage approach

to the simulated dataset. The first stage significance thresholds in the two-stage

approach are selected in order to obtain 1% power loss.

We generated 10, 000 simulated SNP pairs and applied both approaches. The

power for each approach is calculated as the proportion of experiments that the

approach detected the implanted SNP pairs among all 10000 experiments. The

power of brute-force approach is 51% while the power of TEPPA is 50.8%. The

practical power loss is 0.4%. We note that the power loss is lower than we expected

because the thresholds are chosen for MAF frequency bins to be conservative and

valid for all members of that bin.

5.3 Methods

5.3.1 Association Test between One SNP and Traits

We first illustrate the method to detect association between traits and one SNP. A

traditional approach to identify the association is that for each SNP, we compare

the average trait value of individuals who carry the causal allele at the SNP

and that of the individuals who do not have the causal allele at the SNP of

interest. If the difference between those two values is above a certain threshold,

we declare that the investigated SNP has a significant association with the trait.

This approach is referred to as “single marker test” and has been successful in

many association studies. We analyze the power of the “single marker test” as

follows.

Assume we are investigating SNP A, with minor allele frequency (MAF) to be

pA and the causal allele is the minor allele (for the case where the causal allele is
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the major allele, the analysis is similar). Let N be the number of individuals and

yi be the trait value of individual i. Then the number of individuals with the minor

allele at SNP A can be denoted as NA = N · pA and the number of individuals

without the minor allele at SNP A can be denoted as N¬A = N ·p¬A = N ·(1−pA)

We use xAi to denote the allele of individual i at SNP A. yi is any real number

and xAi ∈ {0, 1}. We set xAi = 1 when the allele of individual i at SNP A is the

minor allele and xAi = 0 otherwise.

We assume that a trait value of individual i follows the normal distribution

with a certain mean µ and a variance σ2. If the minor allele affects the trait, the

mean trait value (µ) of individuals with the minor allele will increase by a certain

value βA (effect size). Now, we can obtain the distribution of yi as

yi ∼ N(µ+ xAi βA, σ
2) (5.1)

Let ȲA be the average trait value of individuals who have the causal allele at

SNP A and Ȳ¬A be the average trait value of individuals who do not carry the

causal allele at SNP A. Then we can derive the distributions of ȲA and Ȳ¬A as

follows:

ȲA =

∑
i:xAi =1 yi

NA
∼ N(µ+ βA,

σ2

N · pA
), Ȳ¬A =

∑
i:xAi =0 yi

N¬A
∼ N(µ,

σ2

N · p¬A
) (5.2)

We normalize the difference between ȲA and Ȳ¬A to obtain the following statistic

SA, which is normally distributed with mean λA
√
N (the non-centrality parame-

ter) and unit variance.

SA =
ȲA − Ȳ¬A√

σ2

N ·pA·(1−pA)

∼ N(λA
√
N, 1), where λA =

βA
√
pA(1− pA)

σ
(5.3)

Given the significance level α and the observed value of the test statistic SA,

the SNP is deemed as significant, or statistically associated with the trait, if

|SA| ≥ Φ−1(1 − α/2), where Φ−1 is the quantile function of the standard normal

distribution. For simplicity, we use the notation T = Φ−1(1−α/2) as the per-SNP

threshold.
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We declare all those SNPs with statistic |SA| > T to be associated with trait.

So the per-causal-SNP power of a putative causal SNP A, which is the probability

of |SA| > T , can be calculated as

P1(A) = P (|SA| > T ) = Φ
(
−T + λA

√
N
)

+ 1− Φ
(
T + λA

√
N
)

(5.4)

The average power P1 is obtained by averaging per-causal-SNP powers over all

putative causal SNPs.

5.3.2 The Brute-force Approach for Pairwise Association Test

Current studies on complex disease have also suggested that some SNPs influence

traits in pairs. Only when both causal alleles appear on a pair of SNPs, the

trait value is increased. To detect the interaction of SNPs that influence the

trait, we need to consider the association between a trait and a pair of SNPs

(pairwise association test). We analyze the power of the brute force approach

which calculates the association between a trait and all pairs of SNPs as follows.

We assume there exists a SNP pair AB, composed of SNP A and SNP B, that

influence a trait. Assume the causal alleles are minor alleles at both SNPs. Our

statistic is the difference between the average trait value of individuals who have

minor alleles on both SNPs and that of individuals who do not have minor allele

on at least one of the two SNPs A and B. Here we assume the two SNPs have

same (positive) direction of effect. We use the same notation as in section 5.3.1.

The expected number of individuals who have minor alleles at both SNPs can be

computed as NAB = N · pA · pB and the expected number of individuals who do

not have minor alleles at both SNPs can be computed as N¬AB = N · (1−pA ·pB).

If an individual carries the causal alleles at both SNPs A and B, the mean of

trait value is increased or decreased by the effect size of the SNP pairs, which is
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denoted as βAB. Then we can write the distribution of yi as

yi ∼ N(µ+ xAi x
B
i βAB, σ

2) (5.5)

Let ȲAB be the average trait value of individuals with causal alleles at both

SNPs and let Ȳ¬AB be the average trait value of individuals without causal alleles

at both SNPs. For simplicity, let
∑

11 denote
∑

i:xAi =1∧xBi =1, and similarly for∑
10,
∑

01,
∑

00 for different alleles of SNPs A and B. We can calculate ȲAB and

Ȳ¬AB as

ȲAB =
1

NAB

∑
11

yi ∼ N(µ+ βAB,
σ2

NpApB
),

Ȳ¬AB =
1

N¬AB

∑
00,01,10

yi ∼ N(µ,
σ2

N(1− pApB)
) (5.6)

We normalize the difference between ȲAB and Ȳ¬AB to obtain the following statis-

tic SAB, which is normally distributed with mean λAB
√
N (the non-centrality

parameter) and unit variance.

SAB =
ȲAB − Ȳ¬AB√

σ2

NpApB(1−pApB)

∼ N(λAB
√
N, 1), where λAB =

βAB
√
pApB(1− pApB)

σ
(5.7)

According to [PP12], we set the per-SNP-pair significance level α = 10−12.

The per-SNP-pair statistic threshold is then T2 = −Φ−1(α/2) = 7.13. The per-

causal-SNP-pair power of a putative causal SNP pair AB can be estimated as

PBF (AB ) = Φ
(
−T2 + λAB

√
N
)

+ 1− Φ
(
T2 + λAB

√
N
)

(5.8)

The average power PBF is obtained by averaging per-causal-SNP-pair powers over

all putative causal SNP pairs.

Assuming the total number of SNPs is M , we define the cost of brute-force

method to be the total number of SNP pairs needed for association analysis, that

is, CBF (M) =
(
M
2

)
.
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5.3.3 Two Stage Model

In the brute force approach, the total number of SNP pairs to be considered is(
M
2

)
and we need to compute the statistic SAB for all these pairs. Considering

the number of SNPs involved in current GWAS, the computational burden makes

this strategy infeasible.

We propose a two-stage model to reduce the number of tests needed while

maintaining similar power with the brute force approach. In the first stage, we

propose two statistic thresholds Ta and Tb and perform the single marker test on

all SNPs. In the second stage, we pair all SNPs that are significant under threshold

Ta with those significant SNPs under threshold Tb. Then we perform a pairwise

association test between traits and all those pairs. The SNP pairs which pass the

per-SNP-pair statistic threshold T2 are considered to be statistically associated

with the trait.

The analysis of single marker test in the first stage is quite similar to that of

the one SNP association test in Section 5.3.1. We derive the similar equations

with (5.1), (5.2) and (5.3) except that the effect size of SNP A becomes pBβAB,

when the pair of SNP A and SNP B is the causal SNP pair. So the statistic SA

of SNP A becomes

SA =
ȲA − Ȳ¬A√

σ2

N ·pA·(1−pA)

∼ N(λA
√
N, 1), where λA =

pBβAB
√
pA(1− pA)

σ
(5.9)

The analysis of SNP B is the same except that we switch pA and pB in the

equations.

Assume a pair of SNPs A and B are putatively associated with a trait. The

underlying effect size βAB could either be positive or negative. Here we first

analyze the case where the true effect size is positive. To find such positive

pairwise association in our model, SA must be no less than Ta, SB must be no less

than Tb (or vice versa, but here we only analyze one case since we will show in

Section 5.3.6 that the other case is not necessary) and SAB must be at least T2.
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Hence, we need to consider three statistics and three thresholds to compute the

analytical power of the two-stage model. Under the assumption that we are aware

the effect size is positive, the per-causal-SNP-pair power of a putative causal SNP

pair AB can be denoted as

P+
2 (AB) = P (SA ≥ Ta, SB ≥ Tb and SAB ≥ T2) (5.10)

However, considering the fact that whether the effect size is positive or negative

is hidden from us, we also need to calculate the probability where SAB is less than

−T2, that is,

P−2 (AB) = P (SA ≤ −Ta, SB ≤ −Tb and SAB ≤ −T2) (5.11)

So, the per-causal-SNP-pair power of a putative causal SNP pair AB is

P2(AB) = P+
2 (AB) + P−2 (AB) (5.12)

The analysis for the case where the true effect size is negative is exactly the

same except that the non-centrality parameters for SA, SB and SAB are negative.

To calculate the value of P2(AB) in Equation (5.12), we need to take into

account correlations between statistics. The two statistics SA and SAB are corre-

lated because both involve SNP A. Similarly, we have a correlation between SB

and SAB. We assume SNPs are independent, and hence there is no correlation

between SA and SB. The average power P2 is obtained by averaging per-causal-

SNP-pair powers over all putative causal SNP pairs. Computing the analytical

power of the two-stage model is complicated as a result of the correlations be-

tween statistics. We estimate the power using a multivariate normal distribution

(MVN) framework as in Section 5.3.4.

Denote the per-SNP significance level corresponding to the statistic thresholds

Ta and Tb in the first stage to be αA and αB, respectively. Then we have αA =
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2Φ(−Ta) and αB = 2Φ(−Tb). The cost of the two stage model can be computed

as CTS(M,αA, αB) ≈M2αAαB.

Let’s measure the cost saving by the ratio between cost of brute-force method

(CBF ) and that of the two-stage model (CTS):

CBF (M)

CTS(M,αA, αB)
=

(
M
2

)
M2αAαB

≈ 1

2αAαB
(5.13)

And we define the power loss to be

1− P2

PBF
(5.14)

For a given dataset, there exists a trade-off between the power loss and cost

saving. The trade off is controlled by the two thresholds Ta and Tb. We carefully

design the thresholds to achieve high cost saving while maintaining low power

loss. The details of the algorithm is summarized in Section 5.3.6.

5.3.4 Estimating the Two Stage Power Using the MVN

In this section, we provide an approach to compute the power of the two stage

model in Equation (5.12). The distribution of association statistics SA, SB and

SAB has been derived in Section 5.3.2 and 5.3.3. We aim to compute the power

in Equation (5.12) for any given thresholds Ta, Tb and T2.

For many widely used statistical tests, the statistics over multiple markers

asymptotically follow a Multivariate Normal Distribution(MVN) [SM05, Lin05].

To derive the analytical power of our two stage model, we use the framework of

MVN proposed by [HKE09]. This method creates a MVN using the non-centrality

parameters (NCPs) of statistics as a mean vector in the MVN. The NCPs of SA,

SB, and SAB are already derived in Equations (5.7) and (5.9). So the mean

vector is (λA
√
N, λB

√
N, λAB

√
N). The covariance matrix in the MVN will be
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the correlations among statistics. We assume SNPs are independent of each other,

so the correlation between SA and SA is 1, and the correlation between SA and

SB is 0. The covariance matrix is as follows:


1 0 Cor(SA, SAB)

0 1 Cor(SB, SAB)

Cor(SA, SAB) Cor(SB, SAB) 1


We only need to compute the correlation between SA (or SB) and SAB to

derive the complete MVN. To find a correlation between two statistics, SA and

SAB, we use the following formula where Var(X) denotes the variance of X and

Cov(X, Y ) denotes the covariance between X and Y ,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) (5.15)

In our model, X = SA and Y = SAB, and Var(SA) = Var(SAB) = 1. Then we

can compute Cov(SA, SAB) as

Cov(SA, SAB) = (1/2)Var(SA + SAB)− 1 (5.16)

Hence, we need to derive Var(SA+SAB) to find the covariance or the correlation

between statistics. The covariance and the correlation are equivalent in this case

because variances of statistics are 1.

Using Equations (5.7) and (5.9), we can write SA + SAB as

SA + SAB =
√
N/σ2

(
θA
(
ȲA − Ȳ¬A

)
+ θAB

(
ȲAB − Ȳ¬AB

))
(5.17)

where θA =
√
pA(1− pA) and θAB =

√
pApB(1− pApB).

We then decompose ȲA, Ȳ¬A and ȲAB in Equation (5.17) in terms of alleles of

SNPs A and B (xAi and xBi ). Substituting Equations (5.1), (5.2), (5.5) and (5.6)

into Equation (5.17) and rearranging common terms, we have
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SA + SAB =

√
N

σ2

[
P
∑
11

yi +Q
∑
10

yi −R
∑
01

yi − S
∑
00

yi

]
(5.18)

where

P =
θA
NpA

+
θAB

NpApB
, Q =

θA
NpA

− θAB
N(1− pApB)

R =
θA

N(1− pA)
+

θAB
N(1− pApB)

, S =
θA

N(1− pA)
+

θAB
N(1− pApB)

Note that Equation (5.18) consists of independent terms: each
∑

ab yi term rep-

resents a sum of trait values of disjoint individuals, where ab = 11, 10, 01 and 00,

respectively. Hence, if we take the variance of SA + SAB, covariances among all

terms are 0, and Var(SA + SAB) is a sum of variances of
∑

ab yi terms. Also, note

that Var(yi) = σ2, and hence Var (
∑

11 yi) is a sum of σ2 over individuals who

have minor alleles at both SNPs A and B. We can then compute the variance of

SA + SAB as

N

σ2

[
P 2Var

(∑
11

yi

)
+Q2Var

(∑
10

yi

)
+R2Var

(∑
01

yi

)
+ S2Var

(∑
00

yi

)]
= N

[
P 2NpApB +Q2NpA(1− pB) +R2N(1− pA)pB + S2N(1− pA)(1− pB)

]
(5.19)

We can also compute Var(SB+SAB) similarly using Equation (5.19) by exchanging

pA and pB.

Up to now we obtained all parameters for the MVN framework. Then, we

can compute the power as the area outside of the significance threshold under the

MVN we created. Fig. 5.2 helps to illustrate the ideas. We can see that in the

three dimension space of the MVN framework for statistics SA, SB and SAB, the

two cubes on the corners correspond to the significance region. Using the MVN,

we can compute the power of our two stage model for any given thresholds Ta,

Tb and TAB by summing up the volume of these two cubes under the MVN. This

method yields a very accurate estimate of power when there exist correlations

among statistics, and hence it provides an appropriate framework to compute the

analytical power of our model.
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Figure 5.2: The volume of the two cubes under the MVN is the power of our two

stage model.

5.3.5 Another Strategy to Computer the parameters of MVN

In Section 5.3.4, we proposed a complicated but step-by-step inference to compute

the covariance of two test statistics in the MVN framework.

Now we study SNP pair AB from another direction. First we make a virtual

SNP C. The allele of SNP C is exactly the same with the value of the SNP pair

AB. The minor allele frequency of SNP C is denoted as pC = pAB = pApB. The

statistic SC will be equivalent to statistic SAB. Instead of computing Cor(SA, SAB)

in the covariance matrix of the MVN, now we can compute Cor(SA, SC).

The genotype of SNP A and SNP C are binary values under dominant model.

The pearson correlation rAC between the genotypes of SNP A and SNP C is then

rAC =
pC(1− pA)√

pC(1− pC)pA(1− pA)
=

pApB(1− pA)√
pApB(1− pApB)pA(1− pA)

(5.20)

Under the case where SNP pair AB are the causal SNP pair of the phenotype,
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we are not observing SNP C but instead indirectly observing SNP A. Using the

theory of indirect association study, the correlation Cor(SA, SC) between the test

statistic SA and SC is equal to rAC . Similarly, we can compute the correlation

Cor(SB, SAB). The correlation computed from the formula (5.20) will be exactly

same with our calculation in Section 5.3.4. We prove it as follows.

Proof. In Section 5.3.4, we compute the correlation between SA and SAB as in

Equation (5.16). And the variance of SA+SAB is computed as in Equation (5.18).

Now let us simplify Equation (5.18) as follows.
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N
[
P 2NpApB +Q2NpA(1− pB) +R2N(1− pA)pB + S2N(1− pA)(1− pB)

]
= N

[
P 2NpApB +Q2NpA(1− pB) +R2N(1− pA)

]
= (

√
1− pA
pA

+

√
1− pApB
pApB

)2pApB + (

√
1− pA
pA

−
√

pApB
1− pApB

)2(pA − pApB)

+(

√
pA

1− pA
+

√
pApB

1− pApB
)2(1− pA)

=
pApB
pA
− 2pApB + 2

√
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√
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√
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+ 1

+1− pA − 2
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√
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√
pA√
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+
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pA
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√
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√
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√
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√
pA√
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√
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√
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√
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√
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√
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√
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√
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√
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√
1− pA

√
1− pApB

√
pApB√
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+ 2

√
1− pA

√
pApBpApB√

pA
√

1− pApB

= 2 + 2
pApB(1− pA)√

pA(1− pA)
√
pApB(1− pApB)

So now we have the correlation between SA and SAB as

Cor(SA, SAB) = (1/2)Var(SA + SAB)− 1

= 0.5 ∗ (2 + 2
pApB(1− pA)√

pA(1− pA)
√
pApB(1− pApB)

)− 1

=
pApB(1− pA)√

pA(1− pA)
√
pApB(1− pApB)
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Since pAB = pApB, this is exactly same with the correlation in the Equation (5.20).

Now we conclude that we can just use the correlation in Equation( 5.20) to

compute the correlation between SA and SAB. And we obtained all parameters of

the MVN using this simple formula to compute the power of TEPAA.

5.3.6 Efficient Pairwise Association Test Using TEPAA

In previous sections, we have illustrated how to calculate the power and cost

savings of our two stage model for any given threshold. In this section, we provide

a framework, TEPAA, to determine the first thresholds which generate a relatively

small number of SNP pairs for pairwise association test in the second stage while

losing a small amount of power compared to the brute force approach.

From Equation (5.12) and Section 5.3.4, we can see that the joint distribution

between the association statistics of single SNPs and the association statistic of

a pair of SNPs depends on the MAFs of the pair of SNPs. MAFs are observable

values, so we can categorize all SNP pairs based on the combination of their MAFs.

Since MAFs are continuous value, we can discretize the MAFs into bins to have a

small number of combinations. After removing rare variants, we can categorize all

SNPs into 9 bins, with step size 0.05. In order to detect the pairwise association

for all SNP pairs, we break all combinations of SNP pairs into two cases. First

we pair SNPs within different bins and this results in
(
9
2

)
categories. The second

case is to combine SNPs within one bin. So totally we have
(
9
2

)
+9 categories of

SNP pairs.

Assuming the power of the brute force approach is 50%, we can calculate the

effect size βAB from Equation (5.8). Then for each category of SNP pairs, we can

compute the power loss and cost savings from Equations (5.13) and (5.14) with

the MVN, given two first stage significance levels αA and αB. We do an exhaustive

71



search over the space [0, 1) with a small step size to find the optimal values of αA

and αB to achieve best cost saving while maintaining power loss 1%. The values

of αA and αB are shown in Table 5.1 when there are 5, 326 samples in the dataset.

For SNPs in each bin, we carry out the single marker test and sort the asso-

ciation statistics of single SNPs. Then for each category of SNP pairs, we do a

binary search in each involved bin to find all SNPs that pass the pre-computed

thresholds. The selected SNPs are then paired for the second stage pairwise as-

sociation test. Based on the pre-computed values of αA and αB, we can estimate

the cost savings for each category of SNP pairs as in Table 5.1. We propose a

threshold for each bin for each category of SNP pairs, and the bins are disjoint.

So, in the calculation of Equation (5.10), we only need to consider the case where

SA > Ta and SB > Tb and it is not necessary to consider the case SA > Tb and

SB > Ta. We have the same conclusion in the calculation of Equation (5.11).

We summarize the framework of TEPAA as in Algorithm 3.

Although the calculation is based on the assumption that the brute force ap-

proach has power 50%, our approach is robust to the effect size. We did simula-

tions for different effect sizes, which generate different power for the brute force

approach. The cost saving of TEPAA is stable when achieving 1% power loss

under various effect size.

5.4 Discussions

In this work, we proposed a two-stage model to detect SNP pairs associated with

trait. The key idea behind our method is that we model the joint distribution

between association statistics at single SNPs and association statistics at pairs of

SNPs to allow us to apply a two-stage model that provides guarantees that we

detect associations of pairs of SNPs with small number of tests while losing very

little power. We rapidly eliminate from consideration pairs of SNPs which with
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Algorithm 3: Framework of TEPAA

Input: A GWAS data set with genotype and phenotype for each

individual.

Output: SNP pairs associated with the phenotype.

1 Remove rare variants, categorize rest SNPs into 9 bins according to MAFs,

with step size 0.05.

2 Pre-compute the thresholds for each combination of bins as in Table 5.1,

which only depends on the second stage threshold.

3 For SNPs in each bin, we carry out the single marker test and sort the

association statistics of single SNP.

4 For each category of SNP pairs, we do a binary search in each involved bin

to find all SNPs that pass the pre-computed thresholds in Table 5.1.

5 Pair up the selected SNPs with positive statistics from different bin in Step

(4) to perform pairwise association test. Then pair up the selected SNPs

with negative statistics in Step (4) to perform pairwise association test.
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high probability are not associated with the trait. Using extensive simulations,

we show that our approach can reduce computation time by a factor of 60 while

only losing approximately 1% of the power obtained by the brute-force approach.
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Table 5.1: The threshold for SNP A/SNP B and cost savings in various combina-

tion of MAFs to achieve power loss of 1%. Here we assume the MAF of SNP A

is smaller than that of SNP B in each pair. The first and second number in each

cell is the threshold for SNP A (αA) and SNP B (αB), respectively. These two

thresholds are scaled by 10−2. The third number in each cell is the cost saving,

which is the ratio between cost of brute-force method and that of the two-stage

model.
MAF of SNP B

M
A
F

o
f
S
N
P

A

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 34/34

/8

8/50

/25

7/58

/25

5/62

/32

2/76

/66

0.82/84

/145

0.26/79

/487

0.10/84

/1190

0.02/90

/5555

0.15 - 14/14

/51

3/24

/139

3/31

/107

2/46

/108

1/58

/172

0.35/54

/529

0.13/62

/1241

0.03/69

/4830

0.2 - - 5/5

/400

2/9

/556

2/16

/312

1/21

/476

0.47/31

/686

0.19/58

/907

0.05/69

/2899

0.25 - - - 3/3

/1100

2/5

/1000

1/7

/1429

1/16

/625

0.26/21

/1831

0.10/42

/2380

0.3 - - - - 1/1

/1e5

1/3

/3333

1/4

/2500

0.62/12

/1344

0.13/16

/4807

0.35 - - - - - 0.6/0.6

/2.7e4

0.5/1

/2e4

0.1/2

/5e4

0.03/8

/4e4

0.4 - - - - - - 0.3/0.3

/1.1e5

0.1/0.6

/1.6e5

0.1/1

/1e5

0.45 - - - - - - - 0.2/0.2

/2.5e5

0.1/0.5

/2e5

0.5 - - - - - - - - 0.1/0.1

/1e6
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CHAPTER 6

Fast Detection of IBD Segments Associated

With Quantitative Traits

6.1 Background

Two individuals are identical-by-descent (IBD) at a locus if they have alleles in-

herited from a recent common ancestor. Several methods have been developed to

detect the IBD segments between purportedly unrelated individuals. The current

state-of-the-art methods such as GERMLINE [GLS09] and Beagle [BB10, BB11]

can detect even small (2 centimorgan) IBD segments shared between individu-

als from whole genome sequence data. The IBD segments detected by an IBD

detection method can be used in various applications such as haplotype phas-

ing [KMF08], imputation [JAS12] and heritability analysis in founder popula-

tions [PHT11, ZHS12, BB13].

One promising application of IBD information is in association mapping [PNT07,

GKL11, BT12, HKR13]. The traditional approach for association mapping is to

perform a statistical test between a single SNP and the observed case/control

status or quantitative phenotypes. These single-SNP-based association testing

approaches are designed to have high power to detect association for common

SNPs (minor allele frequency > 0.01). Unfortunately, rare causal variants will

not be identified by these traditional approaches. Association testing based on

IBD information is an alternative to standard association testing methods which

may have advantages for discovering associations in loci where rare variants play
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a role.

Rare causal variants are likely to have been introduced into a population re-

cently. These mutations are initially “private” to the individual in which they

occurred, but then are passed on to progeny. IBD segments containing these re-

cently derived rare alleles are likely to be discovered, because these rare alleles

actually can help IBD detection algorithms to detect IBD segments between indi-

viduals. If the shared IBD segments contains these rare causal alleles, IBD map-

ping approaches can identify the loci harboring the rare causal mutation through

the association mapping between IBD segments and the phenotypes of interest.

Two categories of methods have been proposed to discover IBD segments as-

sociated with the phenotype. The first category of methods compare the IBD

rate of case/case pairs with the background IBD rate to detect excessive IBD be-

tween cases, and is referred to as pairwise methods [PNT07, BT12, HKR13]. The

motivation for pairwise methods is that if a rare variant occurred in a relatively

recent ancestor, cases are more likely to share an IBD segment containing the

causal variant. The second category of methods is referred to as clustering meth-

ods [GKL11]. Individuals are divided into clusters based on the IBD information,

and then each cluster is tested for association assuming that the cluster tags a

rare causal variation.

There are several computational challenges in pairwise methods. The first

challenge is computational inefficiency. In pairwise methods, since the statistic is

dependent on two individuals sharing IBD segments, it is difficult to analytically

obtain the asymptotic distribution of the test statistic. In order to compute the

p-value for the test statistic, one needs to approximate the null distribution of

the test statistic through permutations, where the vector of phenotype traits is

permuted. In the genome-wide association studies (GWAS), the p-value thresh-

old is necessarily low due to multiple testing [BT12]. Thus one must perform a

large number of permutations, which can be computationally demanding. The
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second challenge is fine-mapping. In GWAS, after one identifies significant loci,

it is important to pinpoint the most significant peak within the loci for follow-up

studies. However, in the permutation test, the smallest p-value one can estimate

is constrained by the number of permutations, often resulting in many SNPs with

the same minimal p-values in the region.

Previously proposed pairwise methods are only applicable to case/control data

since they explicitly classify each IBD segment as either being shared between two

case individuals or otherwise. In this section, we present a IBD association map-

ping method designed for quantitative traits. In our method, we first construct

the IBD graph based on detected IBD information given by IBD detection algo-

rithm at a locus similar to case/control data [HKR13]. Then the test statistic for

hypothesis testing can be computed based on the graph representation of the IBD

information, which is referred to as the edge-based statistic. Similar to the pair-

wise method, the asymptotic distribution of the edge-based statistic is not easily

obtained. Thus assessing the significance of the association requires permutation

testing, which becomes a great burden when we obtain small p-values. However

we show that permutation testing is not necessary, by showing the connection

between the edge-based statistic and a linear model. We demonstrate the equiv-

alence between the permutation test and the linear model both analytically and

empirically on real data. Using the linear model, we can obtain the p-values for

each locus very efficiently.

A further advantage of the connection to linear models is that we can include

any covariate and/or random effects terms in the model, because the proposed

IBD mapping statistic is reduced to a simple linear model. Incorporating study-

specific covariates such as age, sex and other environment factors in the model

can greatly improve the statistical power of the association mapping. The ability

to include random effects term in the model is particularly useful for controlling

population structure. In IBD association mapping, if two individuals are closely
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related, their genomes are more likely to share an IBD segment at each genomic

locus. In addition, if they share the causal variants, their phenotype will also be

similar. This causes a correlation between the IBD structure and the phenotype

at many loci, which leads to false positive association signals and inflation of p-

values. To correct for the population structure caused by the genetic relatedness

between individuals, we utilize a mixed model and include a random effect term

which follows normal distribution with covariance of kinship matrix reflecting the

closeness between individuals. We demonstrate that our method can control the

population structure by applying it to the 1966 North Finland Birth Cohort Data

for 10 phenotype traits.

6.2 Methods

6.2.1 The IBD graph

Given N individuals, the IBD information at a genomic locus can be represented

as an IBD graph with N vertices (Figure 6.1). An edge exists between a pair of

vertices if two individuals are IBD at the locus. The value yi for each vertex i is

the trait value of the corresponding individual, and the vector Y = (y1, y2, ..., yN)

contains the phenotypes for all individuals.

6.2.2 Edge-based IBD association mapping statistics

Let V be the set of individuals and let E be the set of edges in the IBD graph,

that is, all IBD relationships. We define the edge statistic for IBD association

mapping at genomic locus k as

Sk =
∑

(i,j)∈E
(yi + yj) (6.1)

The intuition behind this statistic is that, if a genomic locus contains the causal

mutation affecting the phenotype of interest, we would expect that individuals
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Figure 6.1: An example of IBD graph. IBD detection method provides IBD

information as shown in the table. Then we build a graph where vertices are

individuals and edges are IBD relationships.

sharing IBD at this locus tend to have higher or lower phenotype values than

others not sharing IBD. Each of these values contribute more than once to the

statistic Sk and will distinguish the associated genomic locus from other loci.

Since the statistics are based on the edges which are dependent on two individuals,

asymptotic distribution of Sk is difficult to obtain analytically. In this case, one

straightforward way to compute the significance of the association is through

permutation.

6.2.3 Permutation Test

To approximate the distribution of Sk under null hypothesis, we can permute the

phenotype of all individuals. Let

v = (v1, v2, ..., vN),∀vi ∈ Y

be the vector of trait values of N individuals, where vi denotes the phenotype value

for i-th individual in the permutation. A single permutation can be thought of as

randomly permuting a vector of the trait values. The test statistic, Sk, is a function

of v. Let v̂ be the vector of observed phenotype vector. The standard permutation

test is equivalent to sampling a new v from all possible permutations of v̂ assuming
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a uniform distribution. Let B be the set of sampled v. The estimated p-value is

p̂ =
1

|B|
∑
v∈B

δ(|Sk(v)| ≥ |Sk(v̂)|) (6.2)

where δ is the indicator function. The drawback of this approach is its inefficiency

because it requires a large number of permutations to obtain a small p-value. The

denominator |B| in Equation (6.2) needs to be large enough to make the value p̂

small and thus large number of permutations are required. To assess a p-value p

with standard error p/10, we need approximately 100/p permutations.

6.2.4 IBD-degreetype

To obtain the edge statistic Sk, we sum the trait values involved with each edge

in the IBD graph. From the view of vertices, the trait value of each individual

contributes di times to the statistic Sk, where di is the degree of the correspond-

ing vertex in the IBD graph. We introduce a concept called the IBD-degreetype

which is simply the degree of each individual in the IBD graph. We denote

D = (d1, d2, ..., dN) to be the vector of IBD-degreetypes of N individuals. Obtain-

ing the degrees of vertices is equivalent to splitting all edges and counting how

many edges are adjacent to each vertex (Figure 6.2). Then we assign these num-

bers to the vertices. Given this, we consider the IBD-degreetype as conceptually

similar to a genotype where the alleles of each individual are analogous to the

degree of corresponding vertex in the IBD graph.

The IBD-degreetypes can be used for statistical testing in the IBD association

mapping. According to the definition of IBD-degreetype, we can rewrite the test

statistic Sk as

Sk =
∑
i∈V

diyi = DTY (6.3)

We refer to this statistic as the sum statistic. The intuition is that individuals

sharing IBD segments containing causal variants are likely to have similar (high)
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Figure 6.2: Equivalence between two IBD statistics.

trait value and have higher degrees. The trait value of individuals with causal

haplotype at this locus can be aggregated by the weighted sum of trait values,

where the weight for each individual is the corresponding degree in the IBD graph,

which is what Equation (6.3) computes exactly. In the next section, we show how

this property could help us to compute the p-value efficiently.

6.2.5 Efficient computation of p-values

The formulation of the statistic in equation (6.3) closely resembles the regression

estimator in linear models. We can use this observation with an additional as-

sumptions to obtain p-values analytically which eliminates the need for performing

permutation.

If we assume that the phenotype follows a normal distribution with variance

σ2, then we can represent the phenotype using the linear model which includes

the IBD-degreetype and the effect of the IBD-degreetype on the phenotype γ

yi = µ+ γdi + εi (6.4)
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where εi is normally distributed with mean 0 and variance σ2, εi ∼ N(0, σ2).

Written using vector notation

Y = µ1 + γD + e (6.5)

where 1 is a column vector of “1”s and e is a random vector where each element

is independent and has variance σ2.

This can be represented using a multivariate normal distribution where the

covariance matrix is σ2I and I is the identity matrix, e ∼ N(0, σ2I). We note that

if the region is not involved in the phenotype, then γ = 0. However, if the region

is involved in the phenotype, then γ 6= 0. We can obtain an estimate of γ, using

ordinary least squares (OLS) estimates.

γ̂ =
DTY − 1

N
∗ 1TD ∗ 1TY

DTD − 1
N
∗ (1TD)2

(6.6)

µ̂ =
1

N
1TY − 1

N
γ̂1TD (6.7)

The estimated residuals ε̂i = yi−µ̂−γ̂di can be used to estimate the standard error

σ̂ =
√

êT ê
N−2 . Since the studies are large, the association statistic will approximately

follow the normal distribution

γ̂ ∼ N

(
γ,
σ̂2

N

)
(6.8)

We note the close relationship between Equation (6.6) and Equation (6.3).

Since 1
N
∗ 1TD ∗ 1TY and DTD− 1

N
∗ (1TD)2 are all constants in Equation (6.6),

we denote them as C1 and C2 respectively. Now we can derive Sk from γ̂ by

scaling a constant factor C2 and then shifting a constant factor C1 as follows

Sk = DTY = C2γ̂ + C1 (6.9)

So Sk will approximately follow the following normal distribution

Sk ∼ N(C2
2γ + C1,

C2
2 σ̂

2

N
) (6.10)
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Under the null hypothesis where γ = 0, we can obtain the p-value of Sk using

the quantile of the normal distribution without needing to apply permutation test.

We declare the investigated locus to be significant if | Sk−C1

C2σ̂/
√
N
| ≥ φ−1(1 − α/2),

where α is the significance level.

We see that the p-value of Sk is equal to the p-value of γ̂ since there is a linear

transformation between Sk and γ̂. The permutation test just gives another way

to compute the p-value of Sk, where the null distribution of Sk is approximated

by permuting the vector Y . So, we can compute the p-value of Sk rapidly using

the linear model.

6.2.6 Control for population structure

There are two reasons that population structure affects association mapping. The

first is that variants other than the one which is being tested in the statistical test

might affect the phenotype. The second is that different individuals might have

different total amounts of shared IBD segments. We extend our proposed IBD

mapping method to correct for the effect of populations structure due to both

reasons. The first challenge is that the results can be confounded by relatedness

among the individuals affecting variants outside the locus under consideration.

Intuitively, if two individuals are closely related, at each position in their genome

they are more likely to share an IBD segment. In addition, their genetic relat-

edness will cause their phenotypes to be more similar. This causes an apparent

correlation between the IBD-degreetype and the phenotype at each position in

the genome.

In order to motivate how we address this problem we first consider the standard

Fisher polygenic model where each variant in the genome affects the phenotype

independently. In this case, the generative model for the phenotype is

yj = µ+
M∑
i=1

βixij + εj (6.11)
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where the effect of each variant on the phenotype is βi, the phenotypic mean is

µ and εj is the contribution of the environment on the phenotype which is nor-

mally distributed with variance σ2
e , denoted εj ∼ N(0, σ2

e). Since most of the

variants do not affect the phenotype, βi = 0 for most variants. We note that the

inherent assumption for this model is the “additive” assumption in that the vari-

ants all contribute linearly to the phenotype value and ignore more sophisticated

phenomenon which include non additive effects or gene-by-gene interactions.

If we denote the vector of phenotypes Y and vector of effect sizes β, the matrix

of genotypes X and the vector of environmental contributions e, then the model

for the population can be denoted as

Y = µ1 +Xβ + e (6.12)

where 1 is a column vector of 1’s, and e is a random vector drawn from the

multivariate normal distribution with mean 0 and covariance matrix σ2
eI, denoted

as e ∼ N(0, σ2
eI).

Our IBD statistic Equation (6.3) makes the same assumptions as linear re-

gression which assumes that the phenotype of each individual is independently

distributed. Unfortunately, this is not always the case. The reason is due to

the discrepancy between the statistical model in Equation (6.3) which is used for

testing compared to the true genotype phenotype model in Equation (6.11) which

generated the data. If we are considering region k and represent the variants

which are not in the region with i /∈ k, the terms which are missing from the test-

ing model,
∑

i/∈K βixij, are referred to as unmodeled factors. These unmodeled

factors correspond to the variants that affect the phenotype in the genome other

than the variant which is being tested in the statistical test. After we incorporate

the IBD-degreetype, the generative model can be denoted as

Y = µ1 + γkDk +
∑
i 6=k

βixi + e (6.13)
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If the values for these unmodeled factors are independently distributed, then

these factors will increase the amount of variance, but not violate the indepen-

dently distributed assumption of the statistics. However, if the unmodeled factors

are not independently distributed, which is the case when individuals in the sam-

ple are related to different degrees. Then this will violate the assumptions of the

statistical test in Equation (6.3).

This problem is referred to as “population structure” where differing de-

grees of relatedness between individuals in the GWAS cause an inflation of the

values of the association statistics leading to false positives. Many methods

for addressing population structure have been presented over the years includ-

ing genomic control [DR99] which scales the statistics to avoid inflation, prin-

cipal component based methods [PPP06] and most recently mixed model meth-

ods [KZW08, KSS10, LLL11, ZS12].

The basis of the mixed model approach to correct population structure is the

insight that the proportion of the genome shared corresponds to the expected

similarity in the values of the unmodeled factors. More precisely, the covariance

of the unmodeled factors is proportional to the amount of the genome shared.

The amount of genome shared is referred to as the “kinship matrix” and since

the genotypes are normalized, the kinship is simply K = XXT/M where X is the

N×M matrix of the normalized genotypes. We then add a term to the statistical

model to capture these unmodeled factors resulting in the statistical model

y = µ1 + γkDk + u + e (6.14)

where e ∼ N(0, σ2
eI) and u ∼ N(0, σ2

gK). u represents the contributions of

the unmodeled factors and e represents the effect of non-genetic factors on the

phenotype. When performing an association, mixed model methods estimate the

maximum likelihood for parameters µ, γi, σ
2
g and σ2

e using the likelihood

L(N, y, µ, σ2
e , σ

2
g ,K) = (2π)−

N
2 |σ2

gK + σ2
eI|−

1
2 e−

1
2
(y−µ)T (σ2

gK+σ2
eI)
−1(y−µ) (6.15)
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One intuition to explain mixed models is that they decompose the variance

of phenotype into a portion corresponding to the genetics (u) and a portion cor-

responding to the environment (e). The idea behind our method is that we can

use the mixed model to obtain the values of the genetic portion and then remove

them from the phenotypes obtaining a set of corrected phenotypes which are not

affected by population structure. The way this is done is that after the estimates

of σ2
g and σ2

e are estimated, we can then compute the maximum likelihood es-

timates for ûi. Our new phenotypes are then y′i = yi − ûi and can be used in

Equation (6.5).

The second challenge comes from the fact that some individuals have more

IBD segments than others. If some individuals are closely related to each other,

they will have higher IBD-degreetype over the genome and their phenotype will

contribute many times to the test statistic Sk, which further increases the variance

of our test statistic. We normalize the IBD-degreetype for each individual by

subtracting the mean of IBD-degreetype over the genome, which addresses the

problem.

6.3 Results

6.3.1 Equivalence between the permutation test and the linear model

The asymptotic distributions of the statistic in Equation (6.1) is difficult to obtain

analytically. This is because the statistic is based on the edges that depend on pair

of individuals. For this reason, we have to do a permutation test to assess the sta-

tistical significance. However, the permutation test is computationally inefficient.

If the true p-value is small, which is required in genome-wide association studies,

we will need a large number of permutations. For the genome-wide threshold of

IBD association testing(6 × 10−6, [BT12]), more than 10 million permutations

are required.
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We have shown that the edge statistic in Equation (6.1) is equivalent to the sum

statistic in Equation (6.3). We further demonstrated in Equation (6.10) that the

sum statistic Sk will approximately follow the normal distribution under the null

hypothesis and can be used to determine whether the test statistic is significant.

We here show by running experiments on the 1966 North Finland Birth Cohort

(NFBC66) dataset to further confirm the equivalence between permutation test

and linear model.

We first run Beagle [BT12] to obtain the IBD segments with threshold 10−6,

which is a commonly used threshold. Then we build a IBD graph for each genome

position. In the IBD graph, each vertex corresponds to one individual, and we

connect two vertices with an edge if the two individuals share an IBD segment at

this position. The IBD-degreetype is simply the degree of each vertex as defined.

We first compute the test statistic using Equation (6.3). The test statistic

is computed for the phenotype body mass index (BMI). Then we permute the

phenotype 10, 000 times and compute the corresponding test statistic for each

permutation to approximate the null distribution of Sk. The p-value is then

estimated using Equation (6.2).

We also compute the p-value for the association between each locus and the

phenotype BMI using model in Equation (6.14), which is much faster. The correla-

tion between p-values computed from permutation test and linear model is plotted

as in Figure 6.3. We can see that the p-values computed from the two methods

are highly correlated. This confirms the correctness of our proposal method that

we can use the linear model to compute the p-value for each genome position,

instead of doing permutation test, which is computational inefficient.
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Figure 6.3: The correction between p-values computed from permutation test and

linear model. The red vertical line represents the lower bound of p-values that

permutation test can approximate given the number of permutations.

6.3.2 Correcting for population structure

We applied our method to the 1966 North Finland Birth Cohort (NFBC66)

data to detect the IBD segments associated with the quantitative traits. The

NFBC66 data contains genotypes over 330, 000 SNPs for 5, 326 individuals. Ten

quantitative phenotypes are collected for each individual. We first applied Bea-

gle [BB10, BB11] to detect the IBD information from the genotypes. The output

of Beagle shows the IBD segments shared between individuals across the genome.

Then for each genomic locus, we represent the IBD information using an IBD
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graph as defined in section 6.1. Each vertex in the graph represents an individual

and we build an edge between two vertices if the corresponding individuals are

IBD at this locus. The IBD-degreetype is computed for each vertex. We estimate

the p-value of each variant using a linear model.

Since the population structure may cause substantial inflation of test statistic

and possibly spurious association, we evaluate the performance of our method

using the inflation factor. The inflation factor λ is the ratio of median chi-squared

test statistics to the median of an expected 1 degree-of-freedom chi-squared dis-

tribution [DR99]. An inflation factor greater than 1 indicates the presence of

inflation. We first applied the linear model without correction for population

structure over all ten phenotypes. From the middle column of Table 6.1, we can

see that inflation exists for most phenotypes.

In order to correct for the population structure, we incorporate a random ef-

fect term into our linear model. We first compute a pairwise relatedness matrix,

the kinship matrix, from genotypes to represent the population structure. Then

we estimate the contribution of the population structure to the phenotype using

a variance component model, resulting in an estimated covariance matrix of phe-

notypes. The covariance matrix models the effect of genetic relatedness on the

phenotypes. Finally we applied a generalized least square test at each variant to

detect the association. The inflation factors are also computed for all ten pheno-

types and the results are summarized in the third column of Table 6.1. We can see

that we can decrease the inflation factor in most cases. In four cases, the inflation

factor increases slightly. We also show the distribution of inflation factors in a

box plot as in Figure 6.4. We can see that with population structure correction,

the inflation factor is corrected to be close to 1.
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Phenotype without correction with correction

crp 1.028 1.029

height 1.065 0.904

dia 1.067 1.075

glu 1.074 1.039

hdl 0.977 0.981

ins 0.988 1.000

ldl 1.055 0.975

sys 1.132 1.076

bmi 1.000 0.983

tg 1.011 0.995

Table 6.1: Inflation factors for ten phenotypes from NFBC66 data. Phenotype

abbreviations are CRP, C-reactive protein; TG, triglyceride; INS, insulin plasma

levels; DBP, diastolic blood pressure; BMI, body mass index; GLU, glucose; HDL,

high-density lipoprotein; SBP, systolic blood pressure; LDL, low density lipopro-

tein.
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NFBC66 data, without (No) and with (Yes) population structure correction re-

spectively.

6.4 Discussions

In this section, we proposed a test statistic and a fast approach to detect the

significant IBD segments associated with quantitative phenotype traits. Previous

methods have been proposed to detect significant IBD segments in case-control

data, but are not suitable for continuous phenotypes. We proposed a test statistic

for continuous traits based on the IBD graph, which is built from the IBD infor-

mation. In the IBD graph, each vertex represents an individual and the edges

between vertices indicate the presence of IBD between the two individuals. Since

the asymptotic distribution of the test statistic is hard to derive analytically, we

conduct the permutation test to compute the p-value for each SNP. The drawback

of this approach is its inefficiency because it requires a large number of permu-

tations to obtain a small p-value. We further proposed a linear model where the

92



independent variable is the IBD-degree type. We proved the equivalence between

the p-value of the coefficient in the linear model and the p-value from the per-

mutation test, both analytically and from simulation. The linear model is a fast

approach. However, one more challenge is the population structure, where the dif-

fering degrees of relatedness between individuals in the GWAS cause an inflation

of the values of association statistics leading to false positives. We incorporated

this relatedness into our linear model to correct for the population structure. We

applied our method to the North Finland Birth Cohort Data and determined that

our method can correct the inflation factor toward 1.

The true utility of the IBD association testing is on detecting significant as-

sociations on rare variants that cannot be found using single SNP tests [BT12].

IBD association testing can be conducted without additional cost compared to

traditional GWAS on genotype data. The only extra effort is to compute IBD

segments from genotype data and build the IBD graph, which is computationally

feasible. Our approach is also fast compared to previous IBD association testing

methods. After we build the IBD graph, our method has the same computation

time as traditional GWAS approaches. Our method connects IBD mapping to

linear models. This permits analysis of the statistical power of IBD mapping,

which will depend on the effect sizes of the underlying variants and the genetic

structure in terms of the relatedness between individuals in the samples. This

type of analysis may motivate the development of novel IBD mapping statistics

which have higher statistical power than approaches currently being used. We

expect that our new method will promote the wide use of IBD association testing

and facilitate further research on the power and utility of IBD association testing.
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CHAPTER 7

Conclusion

In this dissertation, I presented several methods for detecting and analyzing

genetic variants. Genetic variants range from single nucleotide polymorphisms

(SNPs) to chromosomal structural variations (SVs). High-throughput Sequenc-

ing(HTS) technologies provide great opportunities for both detecting the genetic

variants and uncover genetic basis of complex traits and diseases. Although the

sequencing cost has decreased dramatically with the development of HTS tech-

nologies, it is still infeasible to sequence a large number of individuals in a study

due to budget constraints.

I first proposed a strategy to sequence many individuals simultaneously using

overlapping pools. Under this strategy, multiple individuals are grouped into one

pool and are sequenced together. The cost is reduced because only one sample

preparation is necessary per pool. In chapter 2, I presented an approach to recover

the genotype of all individuals accurately.

Structure variations, especially CNVs, play an important role in many com-

plex diseases and traits. In chapter 3, I proposed a statistical model to detect

the boundaries and copy numbers of CNVs. This method utilized read mapping

uncertainty where a read can be mapped to multiple positions in the reference

genome. It is the first attempt to predict CNVs at nucleotide resolution, and the

first to utilize uncertainty of read mapping. I further extended this approach to

detect CNVs from tumor genomes. The challenge of detecting CNVs in tumor

genomes lies in the fact that tumor samples are easily contaminated by normal
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stromal cells in the sample preparation step. I proposed a method to estimate the

contamination rate and incorporated it into the statistical model. In chapter 4,

I showed that this method can estimate the contamination rate precisely and we

can detect CNVs in tumor genomes with high accuracy.

For some complex diseases, SNPs may also influence the disease through inter-

actions. In an extreme scenario, two SNPs may not have any effect on a disease

independently, but they may affect the disease when both are present. The de-

tection of SNP interaction is a great computational challenge since we have to

consider all possible pairs of SNPs. I designed a two-stage model to reduce the

computational time greatly in chapter 5, and prove that some SNPs do not need

to be considered for combinations with other SNPs. This approach achieved 63

times speed up while maintaining 99% of the power of the brute force approach.

GWAS has identified many significant common SNPs associated with diseases

and traits. However, rare variants will not be identified in traditional GWAS. Rare

causal variants are likely to have been introduced into a population recently and

are likely to be in shared Identity-By-Descent (IBD) segments. If the segmental

IBD haplotype contains the disease causing mutation, then the individuals who

share this particular IBD segment are likely to share the disease as well. In

chapter 6, I proposed a new test statistic to detect IBD segments associated with

quantitative traits, and made a connection between the proposed statistic and

linear models so that it does not require permutations to assess the significance of

an association. In addition, the method can control for population structure by

utilizing linear mixed models. I applied the method to the 1966 North Finland

Birth Cohort (NFBC66) and demonstrated that our method could control for

populations structure. Also simulations proved the equivalence between the linear

model and permutation test.
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