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Abstract 
 

Host Genetic Regulation of Root-Associated Bacterial Communities in Sorghum And A 
Case Study of Manipulating Agricultural Microbiomes with Biologicals 

 
by 
 

Siwen Deng 
 

Doctor of Philosophy in Plant Biology 
 

University of California, Berkeley 
 

Professor Devin Coleman-Derr, Co-Chair 
 

Professor Sarah C. Hake, Co-Chair 
 
 

Recent work suggests that plants have a plethora of previously underappreciated 
microbial allies that help them during their growth and development. The close 
interactions between plants and their complex microbial communities, otherwise known 
as the plant microbiome, play essential roles in plant health and productivity (Turner, 
James and Poole, 2013). Recent studies in various plant species have discovered multiple 
factors that shape the plant root microbiome, including geographical location, soil source, 
host genotype, and cultivation practice (Peiffer et al., 2013; Edwards et al., 2015; Naylor 
et al., 2017; Xu et al., 2018). Accumulating evidence suggests an interaction between 
host genetics and plant microbiome composition (Horton et al., 2014; Naylor et al., 2017; 
Fitzpatrick et al., 2018; Walters et al., 2018). However, identifying specific mechanisms 
driving microbiome acquisition and assembly, as well as the host genetic variants 
involved in these processes, has proved challenging. A few groups have delved into the 
impact of individual genes on microbiome composition (Lebeis et al., 2015; Castrillo et 
al., 2017). However, these studies were guided by a priori hypotheses of gene 
involvement. We believe that additional research is needed to better understand the host 
genetic regulation of plant-associated microbes within a naturally occurring ecological 
context. 
 

Here I describe how we utilize recent advances in sequencing technology, 
quantitative genetics, statistical models, and data mining in conjunction with a successful 
sorghum diversity panel (Casa et al., 2008) to perform a population-level microbiome 
study using large scale genetic approaches. In this experiment, we used 200 diverse 
sorghum ecotypes and planted them in a replicated field trial. Our experimental design 
allowed us to control the environmental effect on associated microbiome composition in 
order to better resolve the impacts of host genetics. After examining multiple sample 
types, including the leaf, root, and rhizosphere, we first demonstrated that for sorghum 
plants, the rhizosphere represents the most suitable fraction of the plant microbiome for 
studying the host genetic effect, as compared to the root and leaf. We calculated broad 
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sense heritability scores of the rhizosphere-associated microbial partners across all of the 
200 sorghum diverse lines. We then identified which rhizosphere microbes exhibit 
reproducible associations with specific sorghum genotypes; these included members of 
the microbial orders Verrucomicrobiales, Flavobacteriales, Planctomycetales, and 
Burkholderiales. We also demonstrated that the heritable taxa in sorghum show a strong 
degree of overlap with heritable lineages previously identified in maize. To gain further 
insight into the host genetic regulation that is responsible for determining root 
microbiome variation, we employed a Genome-Wide Association Study (GWAS) 
approach, which allows us to rapidly scan genetic markers across the complete sets of 
DNA of many sorghum germplasm to find genetic variation associated with particular 
microbiome-related traits. We identified multiple plant loci that are associated with 
variation in the sorghum root microbiome. Furthermore, we demonstrated that GWAS 
could be used as a non-candidate approach to predict microbiome structure based solely 
on host genetic information. Collectively, this work demonstrates the utility of GWAS for 
analysis of host-mediated control of rhizosphere microbiome phenotypes and advances 
our knowledge of the relationship between the plant microbiome and host genetics 
control. 
 

Finally, I describe our work on testing the effect of a commercially available soil 
amendment on agricultural soil and strawberry root bacterial microbiome. This final 
study highlights the main overarching significance of the above mentioned studies: 
understanding host genetic regulation of the plant root microbiome can provide insights 
into how to develop new and improved microbial formulations that are able to enhance 
crop productivity under a range of biotic and abiotic factors. 
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Chapter 1 

Environmental and Host-Specific Factors Shaping 
Root-Associated Microbiomes and an Evaluation of 
Quantitative Approaches for Dissecting Host Genetic 
Control of Microbiome Composition 
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1.1 Introduction 
 

Microbes are fundamental to the function and maintenance of ecosystems, as they 
can influence many important ecosystem processes and can be found in virtually all 
environments, including soils, oceans, and the bodies of eukaryotic organisms (van der 
Heijden, Bardgett and van Straalen, 2008; Fierer and Lennon, 2011). The community of 
microorganisms, or microbes, living in a particular environment is known as a 
microbiome. For example, the human gut microbiome harbours a plethora of 
microorganisms having important functions relevant to human health (Clemente et al., 
2012), including increasing the host's ability to harvest energy and absorb nutrients from 
food (Krajmalnik-Brown and Ilhan, 2012), protecting the host from pathogen invasion 
and colonization (Kamada et al., 2013) and modulating host immunity and metabolism 
(Zhang et al., 2019). For many terrestrial endophytic communities, or communities 
residing within another host’s body, the soil microbiome represents the primary reservoir 
of microbial diversity. Soil microbiomes have crucial roles in global nutrient cycling, the 
maintenance of soil health, and soil carbon sequestration, and can affect the health of 
plants and animals both directly and indirectly (Fierer, 2017; Saleem, Hu and Jousset, 
2019). The soil microbiome plays a particularly influential role in shaping the plant root 
microbiome, which has been shown to enhance plant growth and health via mechanisms 
that include facilitating the solubilization and uptake of mineral nutrients, producing 
phytohormones to help plants withstand environmental stress, and eliminating phytotoxic 
compounds and soil-borne pathogens (Berendsen, Pieterse and Bakker, 2012). 
 

1.1.1 Interactions between plants and soil microbes 
 

Plants provide habitats, such as the phyllosphere (leaf), spermosphere (seed), and 
rhizosphere (root), for microbial colonization, and provide resources for microbial 
growth, as they are a major source of organic compounds (Turner, James and Poole, 
2013). Rhizospheres, the narrow zone of soil adhering to the surface of the roots, are the 
primary interface between soil microbes and plant roots due to the organic carbon 
provided by the plant (Mendes, Garbeva and Raaijmakers, 2013). In fact, a large 
percentage of total organic carbon in the rhizosphere comes from sloughed plant root 
cells and tissues, as well as carbon-rich exudates, including carbohydrates, amino acids, 
organic acid ions, lipids, coumarins, flavonoids, and polysaccharide mucilage, which all 
serve as substrates for microbial metabolism (Reinhold-Hurek et al., 2015). Studies using 
stable isotope probing, where 13C was given to plants and fixed though photosynthesis, 
have identified a number of microbes actively metabolized plant-derived carbon (Lu et 
al., 2006; Haichar et al., 2008). In addition to carbohydrates, amino acids that are 
secreted by plants have also been discovered to drive the development of plant-specific 
microbial communities in the rhizosphere (Moe, 2013). Amino acid uptake by microbes 
has been traced using dual (13C, 15N) labelled glycine in wheat (Nasholm, Huss-Danell 
and Hogberg, 2001; Owen and Jones, 2001; Moe, 2013). In this, and similar experiments, 
amino acids were shown to provide microbes with not only a source of nitrogen, but 
carbon as well. Deamination or transamination of amino acids releases inorganic 
nitrogen, leaving carbon skeletons that can be used by microbes as a carbon source.  
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As mentioned above, the close interactions between plants and their complex 
microbial communities (the plant microbiome), can in turn play important roles in plant 
health and productivity (Turner, James and Poole, 2013). For example, one microbe that 
is widely reported as a plant growth promoter is Trichoderma, which has been reported to 
have the ability to enhance plant growth and yield, activate plant defenses against 
pathogens, promote nutrient uptake, improve seed germination, modulate carbohydrate 
metabolism and photosynthesis, and synthesize phytohormones to alter plant growth 
(Harman et al., 2004; Harman, 2006; Stewart and Hill, 2014). Some Trichoderma 
species, such as T. harzianum, can directly interact with plants by colonizing the root 
surface and intercellular spaces in the epidermis and outer root cortex of the plants, where 
they are able to promote plant growth through this contact (Yedidia, Benhamou and Chet, 
1999). Another recent study reported a Trichoderma species, T. asperellum, regulating 
ethylene production by decreasing its precursor 1-aminocyclopropane-1-carboxylate 
(ACC). As ethylene is a plant growth inhibitor, observed Trichoderma spp. with ACC 
deaminase activity are able to promote root elongation in Brassica napus (Viterbo et al., 
2010). Many Trichoderma bioinoculants are now commercially available with strain 
mixes becoming increasingly common, due to their greater consistency of performance. 
Another extensively studied plant growth-promoting bacteria is Rhizobia spp., whose 
members are capable of forming a symbiotic association with the roots of legumes and 
perform nitrogen fixation. Notably, they form specialized structures within the plant root 
called nodules, where nitrogen is converted to ammonia by Rhizobia in exchange for 
photosynthate (Masson-Boivin and Sachs, 2018). Mechanistically, these benefits are the 
result of a variety of complex exchanges with the host. For instance, the improvements to 
plant health due to Rhizobia are the result of improved nutrient uptake, which is, in large 
part, thanks to their ability to fix nitrogen from the surrounding environment. Other 
microbes improve yield by competing with pathogens; for example, Pseudomonas spp. 
suppresses plant diseases by producing antibiotics that inhibit pathogen colonization 
(And and Keel, 2003). Still others are capable of increasing plant host immunity without 
triggering yield penalties, priming plants for future attacks. As an example, some plant 
growth-promoting bacteria and fungi enhance plant defenses against pathogens and 
insects via an important mechanism called induced systemic resistance (ISR), by which 
selected microbes in the rhizosphere prime the whole plant body for enhanced defense 
against a broad range of pathogens and insect herbivores. Interestingly, a wide variety of 
root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and 
mycorrhizal fungi, have been shown to promote the plant immune system for enhanced 
defense without directly activating costly defenses (Pieterse et al., 2014); mechanisms 
behind these processes are still under investigation. 
 

However, in addition to these beneficial interactions, there are also a host of 
detrimental ones, and the specific fitness outcome for a given plant is determined by the 
total composition and activity of its microbial community. As a result, much effort has 
been put into identifying the forces that contribute to plant microbiome development, and 
a wide range of host and environmental factors are now known to influence plant 
microbiome composition. Plant-associated microbial communities have been shown to 
vary according to different spatial compartments (Lundberg et al., 2012; Peiffer et al., 
2013; Edwards et al., 2015), with above and below ground and epiphytic and endophytic 
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communities often showing significant differences. In the case of the root microbiome, 
the community that colonizes the plant is a subset of the surrounding soil 
microbiome, and recent research has shown that this source soil microbiome is strongly 
influenced by a variety of environmental factors like temperature, soil pH, and seasonal 
variation (Fierer, 2017). Finally, the identity of the plant host and plant genetics has also 
been shown to be an important player in modulating plant-associated microbiomes (Agler 
et al., 2016).  
 

1.1.2 Host genotypic effects on plant associated microbial communities 
 

The early papers that have explored host genotype’s influence on the microbiome 
have shown that it seems to be small, and in some cases non-significant, relative to many 
of the other important factors. The very first plant microbiome paper that explored 
differences between soil type and genotype involved two accessions of the model plant 
Arabidopsis thaliana (Lundberg et al., 2012). They observed that the impact of host 
genotype was secondary to most other influential factors, including sample type and soil 
origin. Another study used wild and domesticated accessions of barley (Hordeum 
vulgare) to investigate the structural and functional diversification among root-associated 
microbial communities and found that host genotype has a small but significant effect on 
the diversity of root-associated bacterial communities, which possibly represents a 
footprint of barley domestication (Bulgarelli et al., 2015). Yet a third study investigated 
the rhizosphere bacterial diversity of 27 modern maize inbred lines to test the influence of 
maize host genotype on its rhizosphere microbial community across field environments. 
The maize rhizosphere also exhibited a small but significant fraction of variation in 
microbial diversity (both α- and β-diversity) across fields that could be attributed to host 
genetics (Peiffer et al., 2013). A fourth study on three Agave species found that the 
microbial communities associated with agave plants are shaped by a number of 
environmental and host-related factors, in which the biogeography of the plant host 
species played the dominant role. Although both the prokaryotic and fungal data sets 
displayed clustering by sample type, geography and host species, additional comparison 
with other sympatric agave or non-agave species in the same arid environments would be 
necessary to fully understand the host genotype effect (Desgarennes et al., 2014; 
Coleman-Derr et al., 2016). Consistently in these studies, species effects tended to be 
nonsignificant (Schlaeppi et al., 2014) or small (Lundberg et al., 2012; Peiffer et al., 
2013; Fonseca-García et al., 2016); however, many of these studies only considered a 
small subset of cultivars or species. 
 

Later studies have delved deeper into this question of host influence by examining 
more genotypes or cultivars, and these found a consistent, significant, though small, 
effect of genotype. A recent study in Arabidopsis thaliana used 4 accessions for 600 
plants total to show that the root rhizosphere and endophytic compartment microbiota of 
plants grown under controlled conditions in natural soils are sufficiently dependent on the 
host to remain consistent across different soil types and developmental stages, as well as 
sufficiently dependent on host genotype in varying between inbred Arabidopsis thaliana 
accessions. Their results provided a key step towards defining microbiome functional 
capacity and the host genes that potentially contribute to microbial association 
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phenotypes. Another recent study of 19 diverse cereal grasses found that host species 
were highly significant and explained ~19.4 and 23.4% of variance within the 
rhizosphere and root endosphere, respectively. The species effect size observed in this 
study, as compared with the relatively low values observed in previous studies, suggests 
that the influence of host species on the root microbiome should be considered in the 
context of the working phylogenetic framework, and a broader array of considered 
species will accordingly produce a greater host effect (Naylor et al., 2017). Finally, a 
recent, large-scale longitudinal field study of the maize rhizosphere microbiome 
identified bacterial taxa of which relative abundances were partially explained by genetic 
differences between the maize lines, above and beyond the strong influences of field, 
plant age, and weather on the diversity of the rhizosphere microbiome (Walters et al., 
2018). Collectively, these prior studies demonstrate not only that genotype has the 
potential to influence community composition, but also that the strength of the impact of 
genotype can vary from sample type to sample type and study to study.  
 

One exciting idea that emerges from these more recent studies is that comparisons 
of microbiomes across a broad range of hosts can be used to answer broader questions 
about microbial sensitivity to genotype. For instance, in a recent study of the maize 
microbiome, several key features of microbial sensitivity to genotype, or ‘heritability’, 
were revealed. First and foremost, while it is true that the heritability of individual 
rhizosphere operational taxonomic unit (OTUs) in maize plants was lower than for most 
traditional agronomic traits (0.15–0.25, whereas the heritability of plant yield is around 
0.3 and flowering time can be 0.9 or higher), there is a noticeable range of effect size of 
plant genetics on the relative abundances across rhizosphere associated taxa. Despite 
strong environmental patterning, they identified close to 150 OTUs with significantly 
high heritability. These heritable OTUs were highly diverse, including 26 
Alphaproteobacteria, 9 Betaproteobacteria, 12 Actinobacteria, 6 Verrucomicrobia, and 8 
Bacteroidetes. Others belong to the bacterial classes WS3, Beta- and 
Gammaproteobacteria, Planctomycetes, Firmicutes, Chloroflexi, Acidobacteria, and 
Gemmatimonadetes, as well as, interestingly, the Archaeal phylum Crenarchaeota 
(candidatus Nitrososphaera). Furthermore, and more importantly, mapping the heritable 
OTUs onto a common phylogeny revealed some clusters of related taxa. This is not 
completely unexpected: since plant genotype selects on microbial phenotypes, heritable 
taxa likely encode functions that are phylogenetically restricted, with function manifested 
at the taxon level. 
 

Another recent study of 3,024 rice (Oryza sativa) accessions also found heritable 
taxa in the leaf microbiome. This study investigated the community composition of 
bacteria across leaves of 3,024 rice accessions from field trials in China and the 
Philippines using metagenomics. Through this experimental approach, they identified 
rice genomic regions controlling the abundance of microbial network hubs, and showed 
that they were enriched for processes involved in stress responses and carbohydrate 
metabolism. Additionally, they found that the networks revealed key microbial groups 
that not only regulate the establishment of the community, but also appear to be 
controlled genetically by the host. Both this study and the previously discussed study of 
the maize microbiome have emerged in the past two years, and to date there are no 
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studies on heritability of microbial lineages in the microbiome of other plant tissues. For 
this reason, the extent to which heritability of microbial lineage is consistent across other 
plant tissue types, as well as across other plant hosts, remains to be tested.  
 

1.1.3 Quantitative genetics approaches for dissecting host effects on 
plant microbiome composition 
 

A second potentially important idea to emerge out of recent efforts to dissect the 
interplay between host genotype and microbiome composition is that this style of 
experiment can also be adopted for a traditional dissection of the host genetics controlling 
the microbiome through Genome-Wide Association Studies (GWAS) or quantitative trait 
loci (QTL) analysis. GWAS represent a powerful approach to determine aspects of the 
genetic architecture, which are associated with complex traits in large natural populations 
with high genetic diversity. Though pioneered by human geneticists, many more GWAS 
studies have been conducted in plants (Brachi, Morris and Borevitz, 2011), and it has 
become increasingly popular for studying the genetics of natural variation and traits of 
agricultural importance. When inbred lines are available, GWAS can be particularly 
useful because it has the advantage of repetitively using panels of diverse lines with 
known genotypes that can be phenotyped for any trait of interest at any given time, 
making it possible to study many different traits in multiple environments (Atwell et al., 
2010; Huang and Han, 2014). 
 

The first large and well-designed GWAS study was conducted in humans to study 
the genetic basis of seven common human diseases (Burton, P., Clayton, D., Cardon, L. 
et al., 2007), and advanced the understanding of the genetic basis for many common 
phenotypes of biomedical importance (McCarthy et al., 2008). In plants, the most 
common method for identifying genetic loci responsible for variation in complex traits 
was QTL mapping (Glazier, Nadeau and Aitman, 2002). However, QTL mapping has 
limitations associated with allelic diversity and genomic resolution (Borevitz and 
Nordborg, 2003). GWAS allows for the screening of markers across the genome 
(especially single-nucleotide polymorphisms, or SNPs) that are correlated with single or 
multiple scorable phenotypes. Mapping using GWAS in large populations draws on 
recombination events to identify the genetic loci underlying traits, and because there are 
millennia of such events to draw upon, resolution and mapping power are much higher in 
GWAS than with QTL mapping (Korte and Farlow, 2013). When combined with dense, 
genome wide marker coverage, GWAS can substantially improve genetic resolution 
relative to QTL mapping (Morrell, Buckler and Ross-Ibarra, 2011). The higher resolution 
provided by GWAS can even reach to the gene level and samples from previously well-
studied populations can be used, where genetic variations can be associated with 
phenotypic variation (Brachi, Morris and Borevitz, 2011). After mapping has been 
completed, loci of interest may be correlated with candidate genes within the interval for 
further annotation and functional tests. 
 

GWAS have been successfully carried out in more than 22 plant species and have 
lead to the discovery of new mechanisms and genes underlying variation in plant growth 
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and development. Studies have examined the basis of agronomic traits, including 
flowering time, plant height, seed quality and weight, fruit weight, leaf angle and leaf 
size, in rice, maize, barley, wheat, millet, and many more (Ogura and Busch, 2015). 
GWAS for seed-related traits have received the most attention due to their high relevance 
for crop yield and breeding (Linkies et al., 2010). For example, a collection of inbred 
lines of rapeseed (Brassica napus) which originated from geographically diverse regions, 
were utilized to identify multiple loci associated with seed quality and seed weight-
related traits via a GWAS approach (Li et al., 2014). GWAS for seed-related or fruit-
related phenotypes has also led to the identification of multiple novel candidate genes in 
many more species, such as maize, rice, barley, soybean, and tomato (Huang et al., 2011, 
2013; Pasam et al., 2012; Xue et al., 2013; Hwang et al., 2014; Sauvage et al., 2014; 
Yang et al., 2014; Ogura and Busch, 2015). In addition, GWASs on leaf and root traits 
has proven being powerful in dissecting molecular processes that underlie the 
quantitative regulation of organ growth and development. For example, the liguleless 
genes, which regulate the leaf angle in maize and leads to more upright leaves in modern 
maize varieties, were mapped by GWAS in Nested Association Mapping (NAM) lines 
for maize leaf angle and size (Tian et al., 2011). Over the last few years, large-scale 
image acquisition and automated trait quantification from these images have emerged to 
allow high-throughput phenotyping of root traits. Efficient phenotyping of root traits 
coupled with GWAS approaches have led to the uncovering of genes regulating the 
elongation rate of primary roots, such as CALCIUM SENSOR RECEPTOR (Slovak et 
al., 2014) and F-box family gene KURZ UND KLEIN (Meijón et al., 2014). 
 

However, there are a number of potential challenges to the successful 
implementation of GWAS. Firstly, GWAS studies are adversely affected by crop 
population structure. Often traits will fail to have a significant GWAS result when family 
or population structure produces spurious associations, resulting in an inflated discovery 
rate and false positives (Han and Huang, 2013). Computational methods such as mixed 
linear, multilocus, and multitrait mixed models have been developed, improved, and 
optimized to address the problem. Secondly, GWAS has low power to detect rare alleles, 
which are a substantial proportion of natural variation. Additionally, in the interval of one 
GWAS locus, there may be hundreds of genes, only one of which might be the causal 
gene. As a result, followup analyses (e.g. gene annotation, expression profiles, functional 
analysis) are necessary. Another challenge is low coverage sequencing. Modern high 
throughput sequencing can provide low cost sequencing for many samples, at the expense 
of relatively low coverage. A downside of this is that sometimes there are missing data 
that must be inferred using imputation methods. These methods are mostly based on 
HiddenMarkov models and are easiest for plants with long-range linkage disequilibrium 
and inbreeding (such as sorghum) (Han and Huang, 2013). In practice, using imputation 
in conjunction with low coverage sequencing has been shown to greatly increase the 
power of GWAS (Pasaniuc et al., 2012). Collectively, this suggests that there are a 
number of potential pitfalls that may be encountered when attempting GWAS, which 
need to be taken into account or addressed in order to successfully implement such an 
approach. 
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It is worth noting that GWAS has not been used with equal prevalence across all 
crops. For example, research on the important cereal, feedstock and bioenergy crop 
sorghum, which is a staple for populations across the globe, has not been extensively 
studied with GWAS to date. This being said, a small number of GWAS have been 
previously conducted in sorghum, including one for plant height (Morris, Ramu, et al., 
2013) and flavonoid pigmentation (Morris, Rhodes, et al., 2013), demonstrating the 
efficacy of this approach for sorghum. In fact, sorghum represents an attractive model 
system for GWAS due to its low ploidy level (2n), which makes high throughput 
sequencing less prone to error, and thereby facilitates easier GWAS. As opposed to crops 
like wheat, which can be found in tetra- and hexaploid varieties, using diploid relatives 
such as sorghum may be a good baseline for future genome level research in polyploidy 
crops (Morrell, Buckler and Ross-Ibarra, 2011). Finally, selfing species such as barley, 
rice, and sorghum, tend to have individual loci with large additive effects, for example 
with flowering time (Lin, Schertz and Paterson, 1995). Further analysis of loci discovered 
through GWAS in a selfing species may be of more significance due to the potential 
higher effect of said loci. Given the applicability of GWAS for sorghum, its historical 
lack of use, and the importance of sorghum for global agriculture, we argue that sorghum 
is an attractive model system for GWAS-based dissection of host-control of microbiome 
composition.  
 

More recently, GWAS has been tried using traits that are complex or multivariate, 
like the microbiome, rather than simple, single, quantifiable phenotypes. The very first 
genome-wide scan for variants that are associated with microbiome traits was performed 
in the gut microbiomes of a large (n = 645) mouse advanced intercross line, which 
identified 18 host QTLs associated with relative abundances of specific microbial taxa in 
the gut (Benson et al., 2010). Later, several GWAS have been carried out in human 
microbiome. In the Hutterites, a founder population that lives and eats communally, 
researchers examined the association of ~200K host genotypes with the relative 
abundance of fecal bacterial taxa and identified an association between a taxon known to 
affect obesity (genus Akkermansia) and a variant near Phospholipases D1 (PLD1), a gene 
previously associated with body mass index (Davenport et al., 2015). 
 

A recent GWAS that used the leaf microbial community as the phenotypic trait in 
Arabidopsis thaliana suggests that plant loci responsible for defense and cell wall 
integrity affect microbial community variation (Horton et al., 2014), and this result 
established GWAS as a potential tool for studying the role of plant host genetic 
heterogeneity in shaping microbial community. However, a later study conducted by 
(Wallace et al., 2018) analyzed the metabolically active bacteria of maize leaves across 
300 diverse maize lines growing in a common environment using GWAS and was not 
successful in identifying significant correlations with host genetic loci. Heritability 
analysis of 49 community diversity metrics, 380 bacterial clades, and 9,042 predicted 
metagenomic functions only yielded 2 diversity metrics, 5 bacterial clades, and 200 
metabolic functions as being significantly heritable. 

 
The mixed success of microbiome GWAS in plants could be due to one of the 

general limitations and challenges of GWAS described above, or perhaps to more 
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microbiome specific issues. For example, the sample type chosen may have profound 
effects on the ability to detect correlations. Use of GWAS in the context of root 
associated microbiome has yet to be extensively explored; here, selection of sample type 
(rhizosphere or endosphere) and host system may be critical factors that determine the 
success of such efforts. Previous work comparing the root microbiomes of a broad range 
of cereal crops has demonstrated the degree to which microbial communities correlate 
with host phylogenetic distance is strongest in the root endosphere (Naylor et al., 2017), 
while another study of different rice cultivars found that host genotype correlated with 
microbial association most strongly in the rhizosphere (Edwards et al., 2015). 
Collectively, these data suggest the sample type exhibiting the strongest correlation may 
be different for each host, and that an initial evaluation of the degree of correlation 
between genotype and microbiome phenotype across sample types may be helpful for 
successful implementation of GWAS. Alternatively, the selection of host may have a 
large impact. For instance, in the rhizosphere, microbiomes are heavily influenced by 
exudation. Hosts, which have strong, complex or varied exudation patterns, may also 
have greater impact on these particular communities. 
 

1.1.4 Design considerations for implementing a successful study to 
identify host genetic effect on plant microbiome regulation 
 

Finally, and perhaps most importantly, microbiome studies are often challenging 
because of the large number of often uncontrollable or unaccounted for confounding 
environmental, sample processing, and analysis related factors (Simmons et al., 2018). 
For this reason, when sampling a plant microbiome, one must take care to limit the 
influence of these other factors. Take for example, studying the rhizosphere fraction of 
the root microbiome. Studying root-associated microbiomes presents unique challenges, 
due in part to the inherent difficulties in sampling from soil. Soils are highly variable in 
terms of physical and chemical properties, and different soil conditions can be separated 
by as little as a few millimeters. This can lead to the samples, which are collected from 
adjacent sampling sites, having considerably different microbial community 
compositions and activities (Fierer and Lennon, 2011; O’Brien et al., 2016). Designing 
experiments that account for these potential positional and depth-related effects, by 
means of replication and careful sampling planning, are essential. 
 

As with any experimental platform, amplicon-based profiling can also introduce a 
number of potential biases that should be considered during sample processing and data 
analysis. These include methods chosen for DNA extraction, selection of PCR primers, 
and how library preparation is performed. Different methods can significantly impact the 
amount of usable data generated, as well as hinder the efforts to meaningfully compare 
results between studies. One important factor is the use of a consistent depth when 
excavating roots. Using soil core collectors and shovels to maintain consistent sampling 
depths and homogenization prior to DNA extraction is essential to the reproducibility 
within root microbiome studies (Simmons et al., 2018). One key factor that can 
negatively impact or disrupt sequencing results is bacterial contamination, which can 
come from many sources and is sometimes impossible to distinguish from the sampled 
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environmental bacteria (Salter et al., 2014; Weiss et al., 2014). For this reason, careful 
sterilization of sampling tools, experimental materials, and working environments are 
vital in order to avoid contamination.  
 

After sample collection, it is also essential to efficiently separate the rhizosphere 
and root fractions; using a harsh method of root surface sterilization can potentially lyse 
endophytes within roots prior to DNA extraction, while a more conservative wash may 
not remove all microbes from the root surface (Richter-Heitmann et al., 2016). Striking 
the appropriate balance is key. After sample processing, obtaining high-quality DNA is a 
high priority for successful downstream analyses. In our experience, DNA extraction 
from field-grown root samples through alternative methods, such as through CTAB-
based extraction, often contain substantially greater quantities of humic acids and other 
compounds compared to rhizosphere and soil samples. These compounds can prevent the 
enzymatic activity of the DNA polymerase during PCR amplification, even at low 
concentrations (Sutlović et al., 2005; Sutlovic et al., 2008). Using DNA extraction kits 
designed for soils on root samples, as opposed to a CTAB extraction followed by a 
phenol chloroform clean-up, can effectively rid samples of humic acids and result in 
high-quality DNA (Aleklett et al., 2015; Bogas et al., 2015; Hiscox et al., 2015; Zhang 
and Yao, 2015). Accordingly, we recommend using a commercially available DNA 
extraction kit for root samples as well. Secondly, thorough and consistent root grinding is 
important to break down the plant tissue and lyse the microbial cells to release microbial 
DNA without introducing bias between samples due to the variation in grinding pressure 
and time. 
 

Third, one main source for problems during amplification is the contamination of 
plant tissues with plant endosymbionts (chloroplast and mitochondria). The amplification 
from chloroplast or mitochondria 16S rRNA sequences can generate >80% of the 
sequences in root samples, and more in leaf tissues, though the amount of contamination 
is dependent on the choice of primers (Ghyselinck et al., 2013). Thus, the use of PNA 
clamps, peptide nucleic acid (PNA) oligos which block the amplification of host DNA, 
are necessary during the PCR step to suppress plant host chloroplast and mitochondrial 
16S contamination (von Wintzingerode et al., 2000; Lundberg et al., 2013). However, 
different plant species can have variation in the chloroplast and mitochondrial 16S 
sequence (Lundberg et al., 2013); therefore, it is important to check the compatibility of 
the universal PNAs with your specific plant system bioinformatically during 
experimental design in order to verify that they will block amplification of chloroplast 
and mitochondrial 16S genes. Following the amplification step, it is not apparent whether 
the PNAs successfully bound to mitochondrial and chloroplast templates; this is only 
revealed after sequencing [Figure 1-1]. To help ensure that the PNAs will effectively 
block contaminant amplification, an alignment of the PNA sequence to each chloroplast 
and mitochondrial 16S rRNA gene (there may be multiple copies) for the plant host being 
investigated should not reveal any mismatches. Even a single mismatch to the 13 bp PNA 
sequence, especially in the middle of the PNA clamp, can drastically reduce the 
effectiveness, as in the case of one of our studies, the provided chloroplast PNA sequence 
and the chloroplast 16S rRNA gene of Lactuca sativa (lettuce) [Figure 1-1] (Simmons et 
al., 2018).  
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Additionally, there are nine “hypervariable regions” (V1 to V9) in 16S rRNA 

genes, which contain considerable species-specific sequence diversity among different 
bacteria (Van de Peer, Chapelle and De Wachter, 1996; Ashelford et al., 2005). These 
hypervariable regions are flanked by regions of more conserved sequence, which allows 
the use of universal primers to amplify target sequences to identify and compare bacterial 
taxa (Baker, Smith and Cowan, 2003) [Figure 1-2]. To take advantage of the current 
high-throughput next generation sequencing technologies, paired-end Illumina MiSeq 
Platform has been adopted for providing a flexible and cost-effective sequencing option 
for 16S rRNA microbiome studies (Kozich et al., 2013). Typically, short regions of the 
16S rRNA gene are used rather than the full-length gene, allowing for an increased 
number of short reads per sample. Different results can be obtained from the same 
community depending upon which hypervariable region is amplified (Cruaud et al., 
2014). Previous studies have found the V4 region to be one of the most reliable for 
assigning taxonomy and it has been used for other extensive microbiome surveys (Yang, 
Wang and Qian, 2016; Thompson et al., 2017). Recently, a dual-indexing approach for 
multiplexed 16S rRNA of the V3 and V4 regions (approximately 500 bp) was developed 
(Fadrosh et al., 2014) [Figure 1-2]. Therefore, lengthening the target to the V3-V4 region 
is suggested here to increase variability and improve taxonomic resolution. 
 

Given that host genotype’s influence on the microbiome have shown to be small, 
and difficult to detect compared to many of the other important factors, the ability of 
identifying host genetic effects is heavily dependent on the degree of limiting the 
influence of these other environmental and experimental factors. Thus, experimental 
design is vital for a successful study on investigating the host genetic regulation on plant 
microbiome.  
 

1.1.5 The role of biologicals in plant growth and development 
 

Ultimately, a main goal of plant microbiome research is to find ways to harness 
the microbiome to improve crop performance. During a growing season, agricultural 
crops are frequently exposed to abiotic stresses, which hinder plant growth and reduce 
crop productivity. Abiotic stresses include extreme temperatures, drought, submergence, 
soil salinization, and nutrient imbalances, and many of these stresses are predicted to 
increase in frequency or severity in the coming century. Maintaining high levels of crop 
productivity under increasingly suboptimal growth environments will require the 
development of new agronomic tools. One new and promising strategy involves the 
utilization of microorganisms, which have been shown to be capable of mitigating abiotic 
stresses, and the plant microbiome has the potential of promoting growth and protecting 
the host through a variety of molecular mechanisms. While studies have begun to explore 
how specific members of the root microbiome act to enhance plant growth, we still lack a 
full understanding of the role of the broader root microbiome in shaping plant stress 
tolerance. 
 

Biologicals are products that can be used to improve crop performance. There 
already exists a large body of research on microorganisms beneficial to plants that can be 
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used to guide the screening process, to establish best practices for validation, and to help 
identify some pitfalls that may prevent transfer of benefits for greenhouse to field. These 
microbes are frequently labeled “plant growth promoting microbes” or PGPM and are 
defined as microbes, which confer any of a wide range of benefits to plants, including 
those growing under both favorable and stressful conditions. One of the most well-
studied plant growth-promoting bacteria is Rhizobia spp., whose members are capable of 
performing nitrogen fixation. Notably, they form specialized structures within the plant 
root called nodules, where nitrogen is converted to ammonia by Rhizobia in exchange for 
photosynthate (Masson-Boivin and Sachs, 2018). However, most other PGPM are unable 
to perform nitrogen fixation and instead offer other benefits to their hosts. While there are 
many unique mechanisms through which PGPM can benefit the plant host, the most well-
studied direct benefits are those that affect the host through facilitation of acquisition of 
mineral nutrients such as phosphate or through the synthesis and modulation of plant 
hormones, such as auxin and ethylene (Glick, 2012; Kim et al., 2012). Outside of direct 
benefits, other PGPM provide indirect benefits to the plant host, for instance, by acting as 
biocontrol agents, which may protect the plant when an abiotic stress might otherwise 
leave the plant with enhanced susceptibility to potential pathogens (Mendes et al., 2011; 
van der Voort et al., 2016). 
 

Beneficial microbes impact the native root microbiome in a variety of ways. The 
regulation of phytohormones is one of the main mechanisms through which PGPM are 
known to alleviate plant stress and rescue normal plant growth phenotypes during 
environmental stresses, such as drought. Many independent studies have demonstrated 
that PGPM have the potential to regulate hormone levels and metabolism in plants. 
Several Azospirillum spp. strains produce IAA or IAA-inducing signaling molecules, 
such as nitric oxide. These molecules can benefit plant growth during drought by 
increasing root growth and promoting lateral root and root hair formation, which 
facilitate increased uptake of water and nutrients (German et al., 2000; Creus et al., 2005; 
Molina-Favero et al., 2008; Arzanesh et al., 2011). GA also contributes to plant growth 
during drought (Colebrook et al., 2014). PGPM that are able to synthesize GA have 
beneficial effects on growth and yield of many crop plants (Bottini, Cassán and Piccoli, 
2004). For example, the GA-secreting rhizobacterium Pseudomonas putida H-2-3 
improved soybean growth under drought conditions (Kang et al., 2014). Notably, P. 
putida H-2-3 also displayed the ability to modulate superoxide dismutase, flavonoids, and 
radical scavenging activity, suggesting that the beneficial effect of this bacterium is 
relatively complex (Kang et al., 2014). Perhaps the most significant response to drought 
stress is mediated by ABA, which has an important role in regulating stomatal closure 
and drought-induced signal transduction. Many PGPM confer drought stress resistance 
by modifying ABA levels. For example, Arabidopsis plants inoculated with A. brasilense 
Sp245 display elevated levels of ABA compared to non-inoculated plants (Cohen, Bottini 
and Piccoli, 2008). Additionally, a PGPM isolated from the rhizosphere of Brassica 
napus, Phyllobacterium brassicacearum strain STM196, enhanced ABA content, leading 
to decreased leaf transpiration in Arabidopsis plants (Bresson et al., 2013). However, 
connecting PGPM to plant hormone modulation must be done carefully, as the 
manipulation of one hormone can also impact others due to crosstalk between plant 
hormone signaling pathways. For example, Platycladus orientalis seedlings inoculated 
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with Bacillus subtilis, a CK producing PGPM, displayed an elevated concentration of 
ABA in shoots, increased stomatal conductance, and enhanced tolerance to drought (Liu 
et al., 2013). 
 

Another key mechanism employed by PGPM to facilitate plant growth is to lower 
plant ethylene levels by secreting the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase, which cleaves ACC, the immediate precursor of ethylene. Under drought 
conditions, ethylene endogenously regulates plant homeostasis and results in reduced root 
and shoot growth. However, PGPM that produce the enzyme ACC deaminase improve 
drought tolerance and rescue normal plant growth by degrading ACC, thereby decreasing 
the level of ethylene in the plant (Glick, 2005). For example, inoculation of Pisum 
sativum with ACC deaminase producing Pseudomonas fluorescens biotype G (ACC-5) 
induced longer roots, which led to an increased uptake of water from soil during drought 
(Zahir et al., 2008). Another well-characterized endophytic PGPM, Burkholderia 
phytofirmans PsJN, also produces ACC deaminase to promote plant growth. Mutants of 
these bacteria that lack ACC deaminase activity are no longer able to promote canola 
seedling root elongation (Sessitsch et al., 2005; Sun, Cheng and Glick, 2009). Inoculation 
of wheat plants with ACC deaminase producing PGPM in axenic studies showed better 
root development with increased root-shoot length, root-shoot mass, and lateral root 
number compared with control plants, which helped inoculated plants uptake more water 
and nutrients, resulting in improved growth and yield (Shakir, Bano and Arshad, 2012). 
Bacteria that have ACC deaminase activity are present in diverse bacteria lineages. In a 
study of wheat, 38 PGPM containing ACC deaminase were isolated. These PGPM 
included 12 distinct genera belonging to phylum Firmicutes, class Gammaproteobacteria 
and Betaproteobacteria, and genus Flavobacterium (Gontia-Mishra et al., 2017). Notably, 
not all strains within a given bacterial species contain ACC deaminase. Therefore, 
confirmation of ACC deaminase activity is often confirmed either directly by culturing 
bacteria with media in which ACC is the sole source of nitrogen or indirectly by PCR 
validating the presence of the ACC deaminase gene (Saravanakumar and Samiyappan, 
2007; Jalili et al., 2009). Taken together, the studies highlighted above demonstrate the 
critical role of phytohormone regulation in endophytic manipulation of plant growth and 
the response to drought stress. 
 

A challenge of using PGPM is that they are not always persistent and interaction 
with the existing soil or rhizosphere microbiome may limit their utility. In our study on 
the PGPM effects on the strawberry root bacterial microbiome, discussed below in 
Chapter 4, we observed that many of the shifts associated with amendment application 
are dependent on time. In the final time point, the treated samples are more similar to 
control samples for all sample types. Importantly, in the fourth time point, samples were 
collected nearly one month after the most recent amendment application, in contrast to 
the other time points, in which the amendment had been applied two weeks prior to 
collection. This result is also typical for studies conducted on the introduction of single 
organisms into complex soil systems. Several studies have found the general reduction of 
levels of individual inoculants introduced to soils(van Veen, van Overbeek and van Elsas, 
1997; Matos, Kerkhof and Garland, 2005; Kröber et al., 2014; Schreiter et al., 2014), 
finding in as little as a week there was more than a 99% reduction in abundance. Another 
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study with pathogenic Pseudomonas aeruginosa showed a decline to below detectable 
levels 3–5 weeks post introduction under non-sterile microcosms, while the population 
was maintained at high abundance under sterilized microcosms (Deredjian et al., 2014). 
Our data suggest that even in cases where amendments represent complex communities 
of microorganisms, soil and root communities both have a resilience that will lean 
towards eventual recapitulation of the native state following microbial inoculation. To 
what extent the activity of a biological depends on the colonization and persistence of the 
microbes in the product has yet to be thoroughly explored, and is likely dependent on the 
mode of action of the product, the complexity of the target community, and other 
environmental factors. Collectively, these observations have important implications for 
the successful use of such products in commercial agriculture, and suggest that repeated 
applications might be beneficial for the persistence of the plant growth promoting agents. 
 

1.2 Conclusion 
 
 In this chapter, we have discussed the complex interactions between environment, 
plants, and microbes, which ultimately act to shape the composition of plant-associated 
microbiomes. Recent studies in various plant species have discovered multiple factors in 
shaping the plant root microbiome, including geographical location, soil source, host 
genotype, and cultivation practice (Peiffer et al., 2013; Edwards et al., 2015; Naylor et 
al., 2017; Xu et al., 2018). However, identifying specific mechanisms driving 
microbiome acquisition and assembly and the host genetic variants involved in these 
processes has proved challenging. In particular, additional research is needed to explore 
the host genetic regulation of plant-associated microbes within the naturally occurring 
ecological context. There are numerous limitations in experimental methodologies in 
identifying the relative small host effect on microbiome regulation. We proposed to 
utilize recent advances in sequencing technology, computer science, statistical models, 
and a successful diversity panel to perform a population-level microbiome study using a 
large scale genetic approach. One optimal approach could be GWAS, which allows us to 
rapidly scan markers across the complete sets of DNA of many sorghum germplasm to 
find genetic variation associated with particular microbial traits. Such studies will help 
refine our knowledge and explore what universality may exist in how plants regulate their 
microbiome – for instance, to what extent root microbiome composition is varied with 
host genetics, as well as what genes are shared across populations and hosts that control 
these variations. In the following chapters, work that expands our knowledge of the 
relationship between host genetics and root microbiome composition and the impact of 
biological products on root microbiome composition will be described.  
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Figure 1-1 
 

 
 

Figure 1- 1. Representative results of PNA inefficiency 

Representative result from soil, rhizosphere, and root, soil samples from lettuce plants. 
The PNA sequence used to block chloroplast contamination of most plants is 
GGCTCAACCCTGGACAG (Lundberg et al., 2013). However, lettuce contains a 
mismatch in the chloroplast 16S ribosomal RNA gene (GGCTCAACTCTGGACAG). 
This renders the PNA ineffective, resulting in a high relative abundance of reads that 
match to Cyanobacteria in rhizosphere and root samples. 
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Figure 1-2 
 

 
 

Figure 1- 2. Illustration of the variable regions within the 16S rRNA gene 

The peaks are region of high conservation, while the valleys are regions of low 
conservation, and are labeled as hypervariable regions, with red bars on the x axis 
defining these regions as V1 to V9 (Modified from Ashelford et al., 2005). There is an 
example of a set of primers designed in the conserved region to amplify V3-V4 region. 
The length of the product is around 594 bps, which can be sequenced using 300 bp 
paired-end MiSeq protocol. 
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Chapter 2 

Identifying Heritable Microbes in the Sorghum 
Rhizosphere Microbiome 
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2.1 Abstract 
 

Host genetics and the associated microbiome can influence both plant 
development and plant health. Despite much research, the rules governing microbial 
community recruitment to the host microbiome remain unknown. To improve our 
understanding of the relationship between the host genetics and plant microbiome, we 
first asked the questions of whether host genetic diversity results in differences of 
microbial community across a variety of sorghum cultivars. A recent study of 27 maize 
inbred line has identified that host genetic variance could partially explain the difference 
in the relative abundances of certain microbial taxa in maize rhizosphere, although 
environmental factors, such as soil source, plant age, and field conditions, have been 
shown to be more influential to the plant-associated microbiome. In our study, we 
conducted a population-level microbiome analysis of the rhizosphere microbiomes of 200 
sorghum genotypes to dissect microbial sensitivity to host genotype. Using 16S rRNA 
amplicon datasets, we quantified the effect of plant genotype on both community-level 
traits and microbial lineage-level traits. We calculated broad sense heritabilities of the 
microbial partners of sorghum rhizosphere across all of these 200 sorghum diverse lines, 
and defined a fraction of the microbiome considered to be heritable. Interestingly, when 
we compared the heritable taxa within sorghum rhizosphere with the ones within maize 
rhizospheres, we observed a significant overlap in the heritable fraction of the 
rhizosphere microbiome of these two different cereal crops. Collectively, the results 
suggest that some rhizosphere microbes are heritable and they are phylogenetically 
clustered and may be similar across different hosts. 
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2.2 Introduction 
 

Recent work has shown that root-associated microbial communities are in part 
shaped by host genetics (Peiffer et al., 2013; Schlaeppi et al., 2014; Edwards et al., 2015; 
Naylor et al., 2017). A study comparing the root microbiomes of a broad range of cereal 
crops has demonstrated a strong correlation between host genetic differences and 
microbiome differences (Naylor et al., 2017), suggesting that a subset of the plant 
microbiome may be sensitive to the influence of host genotype across a range of plant 
hosts. In maize, these genotype-sensitive, or ‘heritable’, microbes have been shown to be 
phylogenetically clustered within specific taxonomic lineages (Walters et al., 2018); 
however, it remains unclear whether this increased genotype sensitivity in these 
microorganisms is unique to maize or is a common feature amongst other plant hosts as 
well. 
 

In the context of the root microbiome, we propose Sorghum bicolor (L.) as an 
excellent plant system for dissection of host-genetic control of microbiome composition. 
Sorghum is a heavy producer of root exudates, and the sorghum microbiome has been 
shown to house an unusually large number of host-specific microbes (Naylor et al., 
2017). Additionally, there is a wide range of natural adaptation in traditional sorghum 
varieties from across Africa and Asia, and a collection of breeding lines generated from 
U.S. sorghum breeding programs, both of which provide a rich source of phenotypic and 
genotypic variation (Casa et al., 2008). Several genome sequences of sorghum varieties 
have been completed, and variation in nucleotide diversity, linkage disequilibrium, and 
recombination rates across the genome have been quantified (Morris, Ramu, et al., 2013), 
providing an understanding of the genomic patterns of diversification in sorghum. 
(Morris, Ramu, et al., 2013; Chopra et al., 2017; Cuevas et al., 2019; Zhou et al., 2019) 
has also shown that sorghum is suitable for Genome-Wide Association Study (GWAS) 
analysis. Finally, sorghum is an important cereal crop grown widely throughout the world 
as a food, feedstock, and biofuel. Studying host genetic regulation of microbiome in an 
agronomically relevant cereal might prove useful for similar studies in other related 
crops, including maize and barley, and help guide microbiome-based efforts for crop 
improvement. 
 

In this chapter, we show a model system that we used to dissect the host-genetic 
control of bacterial microbiome composition in sorghum rhizosphere. Using 16S rRNA 
sequencing, we have profiled the microbiome of a panel of 200 diverse genotypes of 
field-grown sorghum. First, we demonstrate that for sorghum, the rhizosphere represents 
a more suitable fraction of the plant microbiome for studying the host genetic effects than 
either root or leaf. Next, we show that a large fraction of the rhizosphere microbiome 
responds to host genotype. To quantify the response, we calculated broad sense 
heritabilities, which is defined as the proportion of phenotypic variance explained by the 
effects of host genotypes (Lynch, Walsh and Others, 1998) of rhizosphere related traits. 
We include both community-level traits, such as the overall community diversity and 
eigenvectors produced by ordination analysis (principal component analysis; PCA), and 
microbial lineage-level traits, which are the abundances of specific taxa comprising the 
microbial community. Furthermore, we define the fraction of the microbial taxa 
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considered to be heritable and find that this fraction is biased towards specific 
phylogenetic clades of often high abundance organisms. Finally, we combined our 
dataset of heritable taxa within sorghum rhizosphere with two previously published 
datasets of heritable taxa within maize rhizospheres, and performed a comparative 
analysis (Walters et al., 2018). Within the rhizosphere, we demonstrate that the heritable 
taxa in sorghum show a strong degree of overlap with heritable lineages identified in 
maize, spanning fifteen different bacterial orders (Walters et al., 2018). Collectively, 
these observations suggest that some rhizosphere microbes are heritable and these are 
phylogenetically clustered and may be similar across hosts. Host-mediated microbiome 
engineering provides a potential new direction of microbial applications. 
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2.3 Results 
 

2.3.1 Selection of germplasm and sample type for quantitative genetic 
analyses  
 

In this study, the relationship between host genotype and microbiome 
composition was explored through a field experiment involving 200 genotypes selected 
from the Sorghum Association Panel (SAP) germplasm collection [Table 2-1] (Casa et 
al., 2008). To ensure a uniform starting inoculum for all sorghum seedlings and to control 
their planting density, seeds were first sown into a thoroughly homogenized field soil mix 
and grown in the greenhouse, followed by transplanting to the experimental field site in 
Albany, California. The field consisted of three replicate blocks, with each block 
containing plots of three replicate plants for each of the 200 selected genotypes. At nine 
weeks post germination, leaf, root and rhizosphere samples were collected from one plant 
per plot. 
 

As prior studies suggest that the strength of the correlation between host genotype 
and microbiome composition may vary by sample type in a host species dependent 
manner, we first sought to determine whether leaf, root or rhizosphere samples were most 
suitable for downstream GWAS analyses in sorghum. The soil adhering to the surface of 
the roots, referred to as the rhizosphere, is a critical interface influenced by root, whereas 
the roots represents the inside of the root tissue. Using a subset of 24 genotypes from our 
collection of 200 [Figure 2-1], the microbiome composition of leaf, root, and rhizosphere 
sample types was analyzed using paired-end sequencing of the V3–V4 region of the 
ribosomal 16S rRNA on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, 
USA). The resulting dataset demonstrated comparatively high levels or microbial 
diversity within both root and rhizosphere samples and strong clustering of above and 
below ground sample types [Figure 2-2a; Figure 2-2b]. Three independent Mantel’s 
tests were used to evaluate the degree of correlation between host genotypic distance and 
microbiome composition for leaf, root and rhizosphere sample types [Figure 2-2c]; of the 
three compartments, only rhizosphere exhibited a significant Mantel’s correlation (R2 = 
0.12999624, p value = 0.0150). Based on these results, subsequent investigation of the 
microbiomes of the full panel of 200 lines, including heritability and GWAS analyses, 
was performed using rhizosphere samples.  
 

2.3.2 Heritable principal components and individual taxa within 
sorghum rhizospheres 
 

To investigate host genotype dependent variation in the sorghum rhizosphere 
microbiome, the rhizospheres of 598 field grown plants (including three replicates of 
each of 200 genotypes) were profiled using V3-V4 16S rRNA amplicon sequencing. 
Compositional analysis of the resulting microbiome dataset (1189 OTUs) exhibited 
profiles consistent with recent microbiome studies involving the sorghum rhizosphere 
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(Naylor et al., 2017; Xu et al., 2018) from a variety of field sites, with Proteobacteria, 
Actinobacteria and Acidobacteria comprising the top three dominant phyla [Figure 2-3].  

To quantify the response, we calculated broad sense heritabilities, which is 
defined as the proportion of phenotypic variance explained by the effects of host 
genotypes rather than environmental effects (Lynch, Walsh and Others, 1998), of 
rhizosphere related traits. We include both community-level traits, such as the overall 
community diversity and eigenvectors produced by ordination analysis (principal 
component analysis; PCA), and microbial lineage-level traits, which are the abundances 
of specific taxa comprising the microbial community. 

To explore whether microbes with high heritability in the sorghum dataset are 
phylogenetically clustered, we partitioned the 1189 OTUs into heritable (n=347) and non-
heritable fractions (n=842) using an H2 cutoff score of 0.15 [Figure 2-4a; Table 2-2]. 
Several bacterial orders, including Verrucomicrobiales, Flavobacteriales, 
Planctomycetales, and Burkholderiales, were observed to have significantly greater 
numbers of OTUs within the heritable as compared to non-heritable OTU fraction 
(Fisher’s test, P<0.05) [Figure 2-4a; Table 2-2]. Notably, all 6 Flavobacteriales OTUs 
were present in the heritable fraction [Figure 2-4b]. By comparison, the order Bacillalles 
contained significantly fewer OTUs in the heritable fraction, but the percentage of read 
counts attributable to this order was significantly greater for the heritable fraction, 
suggesting that its heritable members are abundant organisms within the rhizosphere 
[Figure 2-4b; Table 2-2]. Collectively, these data demonstrate that specific bacterial 
lineages are enriched for microorganisms that are susceptible to host genotypic selection. 
 

2.3.3 Comparative analysis of heritable taxa within sorghum and maize 
rhizospheres 
 

A recent study of two separate maize microbiomes suggests that specific bacterial 
lineages are more sensitive to the effect of host genotype than others (Walters et al., 
2018). To determine if a bacterial lineage’s responsiveness to host genetics is a trait 
conserved across different plant hosts that diverged more than 11 million years ago 
(Swigonova et al., 2004), the broad sense heritability (H2) of individual OTUs in our 
sorghum dataset was evaluated. Broad-sense heritabilities for individual OTUs ranged 
from 0 to 66%. By comparison, the variance attributable to genotype for individual OTUs 
in the first of two experiments across 27 inbred maize lines had a maximum of 23% 
(performed in 2010) , while the second exhibited a maximum variance attributable to 
genotype of 54% (performed in 2015) (Walters et al., 2018).  
 

We hypothesized that despite the considerable evolutionary distance between 
maize and sorghum, the bacterial lineages containing OTUs most responsive to host 
genotypic effects in maize would also contain OTUs exhibiting such susceptibility within 
sorghum. To test this, we compared the top 100 most heritable OTUs from both maize 
datasets (referred to as NAM 2010 and NAM 2015) and the sorghum dataset described 
above. Of the 65 bacterial orders represented by these 300 heritable OTUs, 26 orders 
contained heritable OTUs in at least two of the datasets, while a total of 15 orders were 
shared across all three datasets [Figure 2-5]. Of the remaining orders, most were unique 
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to maize; only a few orders were present in the maize heritable fraction (1 in NAM 2010, 
10 in NAM 2015, and 1 shared between both) that were only present in the non-heritable 
fraction of the sorghum dataset [Figure 2-5]. To evaluate whether these overlaps 
represented a significant overrepresentation of heritable orders, we performed a 
permutation test (n=10,000) in which we resampled 100 random OTUs from the 1189 
total sorghum OTUs. Notably, we found the overlap between heritable sorghum OTUs 
and both the individual and combined heritable maize OTUs to be significant, compared 
with the resampled sorghum OTUs [Figure 2-5]. This result suggests that there is 
conservation between the bacterial orders being recruited by maize and sorghum. An 
identification of bacterial orders containing the greatest number of heritable OTUs across 
all three datasets identified Actinomycetales, Burkholderiales and Myxococcales as the 
three most frequently represented [Figure 2-6a]. These results are likely in part driven by 
the overall frequency of these lineages within the rhizosphere microbiome, with more 
common lineages resulting in a greater fraction of heritable microbes due to their 
ubiquity. To help account for this, we normalized the frequency of heritable sorghum 
OTUs (n=100) by total sorghum OTU counts (n=1189) belonging to each order [Figure 
2-6b]. These results demonstrate that while the prevalence of Actinomycetales and 
Myxococcales among heritable microbes is consistent with their general prevalence in the 
overall dataset, Burkholderiales (p-value = 0.000984) and two other lineages, including 
the Verrucomicrobia (p-value = 6.688e-06) and Planctomycetes (p-value = 6.382e-06), 
exhibited a significant enrichment in the heritable fraction not explained by their overall 
numbers. Collectively, these data demonstrate a significant overlap in the heritable 
fraction of the rhizosphere microbiome of two different cereal crops.  
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2.4 Discussion 
 

2.4.1 Sample type selection for studying the host effect of plant 
microbiome 
 

Previous studies that have employed a plant-associated microbiome GWAS have 
most often been conducted with leaf samples, and have had mixed success in identifying 
loci that correlate with microbiome phenotypes (Horton et al., 2014; Wallace et al., 2018; 
Roman-reyna et al., 2019). In this study, we compared the overall correlation between 
host genotype and bacterial microbiome distances across leaf, root, and rhizosphere of 
Sorghum bicolor, and demonstrate that of the three, the rhizosphere represents the most 
promising compartment for conducting experiments to untangle the heritability of the 
sorghum microbiome. Notably, the degree of correlation between sorghum phylogenetic 
distance and microbiome distance was highest in the rhizosphere and lowest in the leaves. 
This could in part be due to the phyllosphere microbiome’s relative simplicity. Even 
Arabidopsis rosette leaves, which are in close proximity to soil, harbor a distinct and 
relatively simple bacterial community compared to the root (Bergelson, Mittelstrass and 
Horton, 2019). By contrast, the rhizosphere represents a direct interface with the highly 
diverse and populated soil microbiome, which offers a greater pool of microbes upon 
which the host may exert influence (Bodenhausen, Horton and Bergelson, 2013). 
Alternatively, the greater correlation observed in the rhizosphere could be due to the 
plant’s reduced ability to select epiphytes in its aboveground microbiome; while the 
arrival of phyllosphere colonists is largely thought to be driven by wind and rainfall 
dispersal (Copeland et al., 2015), rhizosphere exudation is known to control chemotaxis 
and other colonization activities of select members of the surrounding soil environment. 
This provides a direct mechanism for host selection of its microbial inhabitants prior to 
direct interaction with the plant surface (Badri et al., 2013; Zhang et al., 2014; Zhalnina 
et al., 2018). Notably, sorghum is known to be an atypically strong producer of root 
exudates (Baerson et al., 2008). Given this, it is possible that other plant hosts may 
demonstrate the greatest selective influence within tissues other than the rhizosphere. 
Future efforts to investigate host control of the microbiome through GWAS or related 
techniques would benefit from careful selection of sample type following pilot studies 
designed to explore heritability across different host tissues.  
 

2.4.2 Heritable microbes within the rhizosphere are phylogenetically 
clustered and may be similar across hosts 
 

Within the rhizosphere, we demonstrate that a fraction of the microbiome can be 
considered heritable, and that these heritable taxa show a strong degree of overlap with 
heritable lineages identified in maize, spanning fifteen different bacterial orders (Walters 
et al., 2018). In particular, three of these orders, Verrucomicrobiales, Burkholderiales, 
and Planctomycetales were significantly enriched in the heritable fraction (H2 > 0.15) of 
our dataset. As members of Burkholderiales are known to form strong associations with 
both plant and animal hosts (Angus et al., 2014; Martínez-Hidalgo and Hirsch, 2017), 
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and some are well known to colonize only specific members of a host genus or species 
(Shu et al., 2018), it is feasible that the evolution of such relationships has necessitated 
additional genetic potential that allows for finer scale discrimination between hosts. In 
Burkholderia, this could be facilitated by their relatively large pan-genome, with diversity 
driven by large multi-replicon genomes and abundant genomic islands (Mannaa, Park and 
Seo, 2018). These observations suggest that heritability may be correlated with the degree 
to which an organism is symbiotic. This suggests that evaluating bacterial heritability 
may also be useful in identifying new lineages for which close but previously undetected 
associations with plant hosts exist. For example, we observed several lineages with high 
heritability that are common in soil, yet prior evidence of plant-microbe interactions in 
the literature is lacking, including Verrucomicrobiales (Bergmann et al., 2011) and 
Planctomycetales (Erbilgin, McDonald and Kerfeld, 2014). Heritability in these lineages 
might be facilitated by the presence of the Planctomycetes and Verrucomicrobia-type 
BMC gene cluster, which confers the ability to degrade certain plant polysaccharides 
(Erbilgin, McDonald and Kerfeld, 2014). However, whether these microbes are behaving 
as saprophytes or contain plant-beneficial characteristics is yet to be established. 
 

Unfortunately, low phylogenetic resolution of illumina-based 16S sequencing and 
the use of different 16S rRNA variable regions sequenced between studies precludes our 
ability to associate heritability with individual microbial species. In cases of crop-
associated microbiomes, the ability to distinguish between closely related bacteria is 
especially important, where beneficial species may be closely related to human 
pathogens, as is the case with Burkholderia spp. (Eberl and Vandamme, 2016). 
Nonetheless, the overlap of heritable lineages at higher taxonomic classification 
demonstrates that heritability of certain rhizosphere microorganisms may extend outside 
an individual host species and be a property of the rhizosphere environment more 
generally.  
 

Distinctions between the heritability of bacterial lineages identified in our data 
compared with Walters et al., 2018 also suggests the presence of sorghum and maize-
specific heritable lineages. These differences may be partially driven by species-specific 
exudates. Previous estimations by Bulgarelli et al., 2012 suggest that approximately 40% 
of Arabidopsis root colonists are attracted by lignocellulosic matrices, while the 
remaining 60% may be influenced by root exudates. Supporting this hypothesis, sorghum 
is an atypical exuder (Baerson et al., 2008), and a previous study of 18 plant species 
found sorghum also produces an atypical rhizosphere microbiome relative to other plant 
species (Naylor et al., 2017). However, disentangling species-specific patterns of 
heritability can be challenging; field soils are also a major environmental driver of 
microbial community diversity (Bulgarelli et al., 2012; Lundberg et al., 2012; Edwards et 
al., 2015; Walters et al., 2018), and rhizosphere diversity shifts across a growing season 
(Shi et al., 2016; Edwards et al., 2018; Xu et al., 2018) and between years (Shi et al., 
2016; Walters et al., 2018). Because many studies of plant microbiomes do not 
encompass multiple field sites, plant species, or years, our ability to disentangle which 
bacterial lineages are field or year specific, rather than broadly species-specific are 
limited. Additional dissection of the heritable fraction of the rhizosphere microbiome 
across a wider range of plant hosts and environments will help establish to what degree 
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the heritable lineages detected in this study constitute the heritable members of the plant 
rhizosphere more generally. 
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3.5 Methods 
 

Field experimental design and root microbiome samples collection The 
experimental field used in this study is an agricultural field site located in Albany, 
California (37.8864°N, 122.2982°W), characterized by a silty loam soil with pH 5.2 
(Naylor et al., 2017). Germplasm for the US sorghum association panel (SAP) used in 
this study (Casa et al., 2008) were obtained from GRIN (www.ars-grin.gov). To ensure a 
uniform starting inoculum for all sorghum seedlings and to control their planting density, 
seeds were first sown into a thoroughly homogenized field soil mix in a growth room 
with controlled environmental factors (25 °C, 16hr photoperiods) followed by 
transplanting to the agricultural field. To prepare the soil for seed germination, 0.54 cubic 
meters of soil was collected at depth of 0 to 20 cm from the field site that was 
subsequently used for planting. This soil was homogenized by separately mixing 4 
equally sized batches with irrigation water in a sterilized cement mixer followed by 
manually homogenization on a sterilized tarp surface. Soil was then transferred to 
sterilized 72-cell plant trays. To prepare seeds for planting, seeds were surface-sterilized 
through soaking 10 min in 10% bleach + 0.1% Tween-20, followed by 4 washes in sterile 
water. Following planting, sorghum seedlings were watered with approximately 5 ml of 
water using a mist nozzle every 24 hrs for the first three days, and bottom watered every 
three days until the 12th day, then transplanted to the field.  
 

The field consisted of three replicate blocks, with each block containing 200 plots 
for each of 200 selected genotypes. Six healthy sorghum seedlings of each genotype were 
transplanted to their respective plots at three positions separated by 15.2cm, and thinning 
to three seedlings per plot was performed at two weeks post transplanting. The subplots 
were organized in an alternating pattern with respect to the irrigation line to maximize the 
distance between each plant [Figure 2-7]. Plants were watered for one hour, three times 
per week, using drip irrigation with 1.89 L/hour rate flow emitters, resulting in 5.67 L of 
water per plant per week. To reduce the impact of weeds on plant growth and 
microbiome selection, manual weeding was performed three times per week throughout 
the growing season.  
 

To ensure that the genotypes were at a similar stage of development and that the 
host-associated microbiome had sufficient time to develop, collection of plant-associated 
samples was performed nine weeks post germination. Only the middle plant within each 
subplot was harvested to help mitigate potential confounding plant-plant interaction 
effects resulting from contact with roots from neighboring plants of other genotypes. 
Rhizosphere, leaf, and root samples were collected as described previously (Simmons et 
al., 2018).  
 

Germplasm selection In order to ensure that microbiome profiling was 
performed on a representative subset of the broad genetic diversity present in the 378 
member SAP panel, subsets of 200 genotypes were randomly sampled from the 378 
member panel 10,000 times and aggregate nucleotide diversity score was calculated for 
each using the R package “PopGenome”. From these data, the subset of 200 lines with 
the maximum diversity value was selected [Figure 2-1; Table 2-1]. For the pilot 
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experiment used to determine the appropriate sample type for GWAS, a subset of 24 lines 
were selected that included genotypes from a wide range of phylogenetic distances 
[Figure 2-1]. The lines used in this study are listed in [Table 2-1]. The phylogenetic tree 
of sorghum accessions was generated using the online tool: Interactive Tree Of Life 
(iTOL) v5 (Letunic and Bork, 2019).  
 

DNA extraction and PCR amplification DNA extraction for all samples was 
performed using extraction kits (MoBio PowerSoil DNA Isolation Kit, MoBio Inc., 
Carlsbad, CA) following the manufacturer’s protocol. We amplified the V3-V4 region of 
16S rRNA gene using a dual-indexed 16s rRNA Illumina iTags primer (341F (5’-
CCTACGGGNBGCASCAG-3’) and 785R (5’-GACTACNVGGGTATCTAATCC-3’) as 
described in (Xu et al., 2018) using 5-Prime Hot Master Mix (catalog No. 2200410). 
After DNA extraction, DNA samples were diluted to 5 ng/ µl and randomized in 96-well 
plates. Two wells received water rather than template on each 96-well plate as negative 
controls. PNA clamps described in were used to minimize host-derived amplicons from 
both chloroplast and mitochondrial 16S rRNA gene sequences (Lundberg et al., 2013). 
Reactions included 11.12 µL DNase-free sterile H20, 0.4 µg BSA, 10.0 µL 5-Prime Hot 
Master Mix, and 2 µL template, and 0.75 µM of chloroplast and mitochondria PNAs. 
PCR reactions were performed in triplicate in three thermocyclers (to account for 
possible thermocycler bias) with the following conditions: initial 3 min cycle at 94°C, 
then 30 cycles of 45 seconds at 94°C, 10 sec at 78°C, 1 min at 50°C, and 1.5 min at 72°C, 
followed by a final cycle of 10 min at 72°C. Triplicates were then pooled (128 samples 
per library) and DNA concentration for each sample was quantified using a Qubit reader 
with the Broad Range kit (ThermoFisher Scientific, Waltham, MA). Pools of amplicons 
were constructed using 100 ng for each PCR product. Before submitting for sequencing, 
pooled samples were cleaned up with 1.0X volume Agencourt AMPureXP (Beckman-
Coulter, West Sacramento, CA) beads according to the manufacturer’s directions, except 
for the modifications of using 1.0X rather than 1.6X volume beads per sample, 
dispensing 1500 µL 70% EtOH to each well rather than 200 µL, and eluting in 100 µL 
DNase-free H20 rather than 40 µL. DNA extractions, PCR amplification, and amplicon 
pooling were performed as described previously (Simmons et al., 2018). An aliquot of 
the pooled amplicons was diluted to 10 nM in 30µL total volume before submitting to the 
QB3 Vincent J. Coates Genomics Sequencing Laboratory facility at the University of 
California, Berkeley for sequencing using Illumina Miseq 300bp pair-end with v3 
chemistry. Sequences were returned demultiplexed and with adaptors removed. 
  

Amplicon sequence processing and taxonomic assignment Sequencing data 
were analyzed using the iTagger pipeline to obtain OTUs (Bolyen et al., 2019). The 
iTagger pipeline was developed by the U.S. Department of Energy’s Joint Genome 
Institute, which wraps several packages for the filtering, merging, clustering and 
taxonomy assignment, including CUTADAPT, FLASH, USEARCH, and RDP. In brief, 
after filtering 80,323,748 16S rRNA raw reads for known contaminants (Illumina adapter 
sequence and PhiX), primer sequences were trimmed from the 5’ ends of both forward 
and reverse reads. Low-quality bases were trimmed from the 3’ ends prior to assembly of 
forward and reverse reads with FLASH55. The remaining 66,524,452 high-quality 
merged reads were clustered with simultaneous chimera removal using UPARSE58. 



 
 

29 

After clustering, 37,819,153 read counts mapped to 10,006 OTUs at 97% identity. The 
resulting reads produced on average approximately 42974, 41162 and 34445 reads per 
sample for soils, rhizospheres, and roots respectively. Taxonomies were assigned to each 
OTU using the RDP Naïve Bayesian Classifier with custom reference databases. For the 
16S rRNA V3-V4 data, this database was compiled from the May 2013 version of the 
GreenGenes 16S database v13, trimmed to the V3-V4 region. After taxonomies were 
assigned to each OTU, OTUs were discarded if they were not assigned a Kingdom level 
RDP classification score of at least 0.5, or if they were not assigned to Kingdom Bacteria. 
To remove low abundance OTUs that are in many cases artifacts generated through the 
sequencing process, OTUs without at least 3 reads in at least 3 samples were removed. 
Samples that had less than 10,000 reads were also removed, which yielded 3,818 high-
abundance OTUs for downstream analyses. To account for differences in sequencing read 
depth across samples, all samples were normalized to an even read depth of 15,000 reads 
per sample random subsampling for specific analyses, or alternatively, by dividing the 
reads per OTU in a sample by the sum of usable reads in that sample, resulting in a table 
of relative abundance frequencies. OTUs, which were reduced to less than one read per 
OTU after rarefaction, were discarded to yield a total of measurable, normalized reads for 
downstream analysis. The raw sequencing reads for this project will be deposited in the 
NCBI Short Read Archive. 
 

Estimates of broad sense heritability (H2) of OTU abundance in rhizosphere 
To calculate the broad-sense heritability (H2) for individual OTU abundances, we fitted 
the following linear mixed model to OTU abundances of each individual OTU (n=1189) 
following a cumulative sum scaling (CSS) (Paulson et al., 2013) normalization procedure 
that adjusted for differences in sequencing depth and fit a normal distribution: 
 

Yijk = u + Gi + Rj + Bjk + e 
 

In this model for a given OTU, Yijk denotes the OTU abundance of the ith 
genotype evaluated in the kth block of the jth replicate; u denotes the overall mean; Gi is 
the random effect of the ith genotype; Rj is the random effect of the jth replicate; Bjk is 
the random effect of the kth block nested within the jth replicate; e denotes the residual 
error. To account for the spatial effects in the field, additional spatial variables were fitted 
as random effects using 2-dimensional splines in the above model using an R add-on 
package “sommer” (Covarrubias-Pazaran, 2016). Broad-sense heritability was estimated 
as the amount of variance explained by the genotype term (VG) relative to the total 
variance (VG + VE/j). Here j is the number of replications. To get the null distribution of 
H2, each OTU was randomly shuffled 1,000 times and then fitted to the same model as 
described above. Permutation p value was calculated as the probability of the permuted 
H2 values bigger than the observed H2. 
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Figure 2-1 
 

 
 
Figure 2- 1. Experimental design and line selection 

Phylogenetic tree representing the 378 member sorghum association panel (SAP, inner 
ring), subset of 200 lines selected for GWAS (2nd ring from the center, in blue), 24 lines 
used for sample type selection (Pilot, 3rd ring from the center, in yellow), and 18 
genotypes used for GWAS validation containing either the Chromosome 4 minor allele 
(red) or major allele (brown) identified by GWAS (outer ring). 
  



 
 

31 

Figure 2-2 
 

 
 
Figure 2- 2. Selection of sample type for quantitative genetic analyses 

a. Shannon’s Diversity values from 16S rRNA amplicon datasets for the leaf (green), 
rhizosphere (red), and root (yellow) sample types across all 24 genotypes used in the pilot 
experiment. b. Principal coordinate analysis generated using Bray-Curtis distance for the 
24 genotypes across leaf (green), rhizosphere (red), and root (yellow). c. Mantel’s R 
statistic plotted for each sample type indicating the degree of correlation between host 
genotypic distance and microbiome distance.  
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Figure 2-3 
 

 
 
Figure 2- 3. Composition of the sorghum microbiome across sample types 

a. Order level relative abundances of sorghum leaf, root, and rhizosphere (rhizo) 
microbiomes used for GWAS sample type selection (Pilot). b. Relative abundance of the 
top 15 orders in the 200 rhizosphere microbiomes used for GWAS, displayed both as an 
average relative abundance and separated by individual line. 
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Figure 2-4 
 

 
 
Figure 2- 4. Taxonomic classification of heritable rhizosphere microbes 

a. The relative percentage of total OTUs belonging to each of the top 17 bacterial orders 
for all OTUs (left bar), non-heritable OTUs (middle bar), or heritable OTUs (right bar). 
Orders with significantly greater number of OTUs in the heritable as compared to the 
non-heritable fraction as determined by Fisher’s exact test (P<0.05) are indicated with 
asterisks. b. Order-level scatterplot of the ratio between heritable and non-heritable OTU 
counts (x-axis) and OTU abundance (y-axis). Size of the points represents the total 
number of read counts represented by each bacterial order. Points outside the dashed lines 
indicate bacterial orders that were present only in the heritable (n=6) or non-heritable 
(n=40) fractions.  
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Figure 2-5 
 

 
 
Figure 2- 5. Comparison of the top 100 most heritable OTUs between maize and 
sorghum dataset 

Proportional Venn diagram of bacterial orders containing heritable OTUs identified in 
this study (Sorghum SAP), compared with those found in a large-scale field study of 
maize nested association mapping (NAM) parental lines grown over two separate years, 
published in Walters et al., 2018. The top 100 heritable OTUs (based on H2) from each 
dataset were classified at the taxonomic rank of order to generate the Venn diagram. 
NAM heritable orders only present in the SAP non-heritable fraction are represented by 
the blue sections. Superscript letters indicate the frequency that a random subsampling of 
100 sorghum OTUs (10,000 permutations) overlap with maize OTUs from either single 
year (a/b) or both (c). 
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Figure 2-6 
 

 
 
Figure 2- 6. Heritability of rhizosphere microbes across maize and sorghum 

a. Stacked barplot displaying cumulative counts (y-axis) of OTUs identified as heritable 
in any of the three datasets for all bacterial orders (x-axis), which have a total of at least 
three heritable OTUs. b. The fraction of heritable sorghum OTUs relative to all sorghum 
OTUs within each order are displayed as a heatmap. Asterisks indicate orders enriched in 
heritable OTUs (Fisher’s exact test, P<0.001).  
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Figure 2-7 
 

 
 
Figure 2- 7. Field experimental design 

Three replicate blocks, each containing 200 plots. Each plot contains a different sorghum 
genotype with three replicate plants. Leaf, root, and rhizosphere from the center plant of 
each plot were harvested (Red circles). Sorghum plant models were created with 
Biorender.com. 
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Table 2-1 
 
Table 2- 1. 200 genotypes selected from the Sorghum Association Panel (SAP) 

Subsets of 200 genotypes were randomly sampled from the SAP germplasm collection 
(Casa et al., 2008). 
 

SAP ID Line name Country Grain type 
PI48770 WHITE KAFIR United States na 

PI533750 K.3 Perimanjial Irungu Cholam India bicolor 
PI533776 KA 3 na na 
PI533789 Kodilib Sudan caudatum-guinea 
PI533800 IS 12666C Ethiopia caudatum 
PI533810 Karad 2-7-11 India durra 
PI533838 BA45 Faria Bonkum na na 
PI533839 K037 Camjin Nigeria guinea 
PI533841 ZA41 Danye na na 
PI533842 Nandyal India durra 
PI533843 SV 34 na na 
PI533845 EC 18246 (preconverted) na na 
PI533852 Cholia Talijhari na na 
PI533855 Chanan Singoo India bicolor-guinea 
PI533866 255 Tirter Sudan bicolor-caudatum 
PI533869 Msumbji SB 117 Tanzania guinea 
PI533876 KA 12 Janjari Nigeria caudatum 
PI533877 KA 15 Yazgar Giwa Nigeria caudatum 
PI533902 Orange No. l, Baijo Ethiopia bicolor-durra 
PI533912 Mendo Sudan caudatum 
PI533913 Nyan Dok Sudan caudatum-guinea 
PI533927 J.A.T.S. #67 Ethiopia bicolor 
PI533936 1903 AS 4633 Tanzania guinea 
PI533938 AS 5826 Holcus Zaire caudatum 
PI533939 AS 4055 N Kambwa Mosambique caudatum 
PI533940 AS 4601 Pawaga Tanzania bicolor 
PI533956 MN 586 (preconverted) Congo bicolor-durra 
PI533961 Wit Lichtenburg DL/59/1530 South Africa caudatum 
PI533965 SAP-148 Uganda bicolor-caudatum 
PI533967 SB-283 Uganda caudatum 
PI533970 2033Z-3 Uganda caudatum 
PI533976 Framiola DL/59/1539 South Africa caudatum-kafir 

PI533979 
Bulfontein White Kafir Corn 

DL/60/133 South Africa kafir 
PI533985 Barking 119 Sudan caudatum 
PI533986 Huria White 621 Sudan caudatum 
PI533987 Kireniga 317 Sudan caudatum 
PI533991 Sinidyil 177 Sudan caudatum-guinea 
PI533996 Hamaisi 38 Sudan caudatum-durra 
PI533997 MN 1592 (preconverted) Arabia durra-guinea 
PI533998 Brawley United States bicolor 
PI534009 Yerra Jonna Goda India durra 
PI534021 Jola Nandyal India durra 
PI534053 T 28 Uganda caudatum 
PI534063 BO 36 na na 
PI534070 BE 25 Nigeria guinea 
PI534075 KA 24 Nigeria caudatum 
PI534088 ZA 6 Nigeria caudatum 
PI534092 ZA 71 Nigeria caudatum 
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PI534101 A-106 Japan caudatum 
PI534105 EC 21361 G30 Uganda caudatum-kafir 
PI534108 EC 21428 SB 63 Uganda caudatum-kafir 
PI534112 EC 21463 STR 5/1 Uganda caudatum 
PI534123 No. 25 Gobo, Kaichama Ethiopia Ethiopia bicolor-durra 
PI534127 No. 37 Ubi, Abelti Ethiopia Ethiopia bicolor-kafir 
PI534132 No. 59 Bekedjie, Kembolcha Ethiopia Ethiopia durra 
PI534139 Tuery 11 Sudan caudatum-guinea 
PI534167 F.R. Miller na na 
PI542718 SAN CHI SAN na na 
PI548797 Tx2891 na na 
PI561071 RTx436 na na 
PI564164 RTX433 na na 
PI564165 RTX434 na na 
PI576332 SAP-287 China bicolor 
PI576333 SAP-306 United States guinea-kafir 
PI576339 SAP-312 Zimbabwe caudatum-kafir 
PI576345 SAP-294 South Africa kafir 
PI576347 SAP-342 United States bicolor 
PI576348 SAP-341 United States bicolor 
PI576349 SAP-343 United States bicolor 
PI576350 SAP-417 na na 
PI576352 Marupantse Botswana caudatum-kafir 
PI576359 Butivori India durra-guinea 
PI576364 Chari Uri India caudatum 
PI576366 Jowar Red Jankinagar India bicolor-durra 
PI576373 SAP-325 Japan bicolor-caudatum 
PI576385 SAP-135 Nigeria na 
PI576386 SAP-347 Uganda na 
PI576387 Awanlek Sudan na 
PI576390 Kharuth Waragel India durra 
PI576393 MN 708 (preconverted) Ethiopia caudatum 
PI576394 Lambas Sudan caudatum 
PI576399 SAP-224 Sudan caudatum 
PI576418 SAP-147 Nigeria guinea 
PI576422 SAP-141 South Africa kafir 
PI576435 Lula Uganda bicolor-kafir 
PI576437 SAP-155 Brazil na 
PI595699 SAP-340 India durra 
PI595702 SAP-311 Zimbabwe caudatum-kafir 
PI595714 SAP-139 Sudan caudatum 
PI595720 SAP-149 Ethiopia bicolor-durra 
PI595741 SAP-134 Senegal guinea 
PI595743 SAP-154 na caudatum-guinea 
PI595744 SAP-157 Guatemala caudatum-kafir 
PI597949 SAP-146 India guinea 
PI597950 SAP-250 India durra-guinea 
PI597951 SAP-264 West Volta guinea 
PI597952 SAP-323 Sudan caudatum 
PI597957 SAP-151 Ethiopia bicolor-durra 
PI597960 SAP-137 Nigeria bicolor-caudatum 
PI597964 SAP-166 Ethiopia caudatum 
PI597966 SAP-158 Venezuela caudatum 
PI597972 SAP-398 na na 
PI597973 SAP-171 Sudan bicolor-durra 
PI597976 SAP-172 Mali guinea 
PI597980 SAP-173 Mali caudatum 
PI597982 SAP-175 Sudan caudatum 



 
 

39 

PI598069 RTx2909 na na 
PI607931 Tx2911 na na 
PI609456 SAP-386 na guinea 
PI629040 Tx2917 na na 
PI629059 BTx2928 na na 
PI641849 WACONIA na na 
PI641874 DAY MILO na na 
PI642998 Black Spanish na na 
PI651492 COWLEY na na 
PI653616 WRAY na na 
PI655970 Standard Blackhull Kafir na na 
PI655971 STANDARD WHITE MILO na na 
PI655973 SPUR FETERITA na na 
PI655974 TEXAS BLACKHULL KAFIR na na 
PI655975 WHEATLAND na na 
PI655976 RED KAFIR na na 
PI655977 TAM2566 na na 
PI655979 Tx2741 na na 
PI655980 Tx2785 na na 
PI655981 SAP-50 na na 
PI655982 SAP-380 na na 
PI655983 SUGAR DRIP na na 
PI655985 PLAINSMAN na na 
PI655986 CAPROCK na na 
PI655987 MARTIN na na 
PI655988 COMBINE KAFIR-60 na na 
PI655989 REDBINE-60 na na 
PI655991 TX 378 (REDLAN) B LINE na na 
PI655995 DEER na na 
PI655997 R TX 431 na na 
PI656000 RTx432 na na 
PI656001 TX2783 na na 
PI656010 RTx2536 na na 
PI656012 90M na na 
PI656013 94Q63 na na 
PI656014 Acme Broomcorn na na 
PI656015 Ajabsido na na 
PI656016 B KS66 na na 
PI656017 100M na na 
PI656018 BTx2752 na na 
PI656019 BTx3042 na na 
PI656022 BTx615 na na 
PI656024 SEPON82 na na 
PI656025 Shan Qui Red na na 
PI656028 Town na na 
PI656029 BTx642 na na 
PI656030 58M na na 
PI656031 CE151-262-A1 na na 
PI656033 60M na na 
PI656034 Dorado na na 
PI656035 El Mota na na 
PI656036 ICSV 1089BF na na 
PI656041 80M na na 
PI656043 KAT83369 na na 
PI656046 LianTang Ai na na 
PI656048 Malisor 84-7 na na 
PI656049 Marupantse na na 
PI656050 Mota Maradi na na 
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PI656051 MR732 na na 
PI656052 N250B na na 
PI656053 N290B na na 
PI656056 P850029 na na 
PI656058 P9517 na na 
PI656059 Pinolero 1 na na 
PI656064 Chiragon-2 na na 
PI656067 Rambharose na na 
PI656069 SC 326-6 na na 
PI656070 SC 748-5 na na 
PI656071 SC 1019 na na 
PI656075 SC 1251 na na 
PI656076 SC 1271 na na 
PI656078 SC 1424 na na 
PI656079 SC 1426 na na 
PI656081 SC 1439 na na 
PI656083 SC 1451 na na 
PI656085 SC 1465 na na 
PI656087 SC 1476 na na 
PI656093 SC 295 na na 
PI656094 SC 301 na na 
PI656095 SC 373 na na 
PI656096 SC 391 na na 
PI656101 SC 525 na na 
PI656103 SC 610 na na 
PI656104 SC 621 na na 
PI656106 SC 695 na na 
PI656107 SC 702 na na 
PI656113 SC 1277 na na 
PI656114 SC 134 na na 
PI656115 SC 1440 na na 
PI656118 SC 332 na na 
PI656120 SC 790 na na 
PI656121 SC 947 na na 
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Table 2-2 
 
Table 2- 2. The broad-sense heritability (H2) of individual OTUs 

The IDs are the OTU ID from itagger pipeline. Taxonomies were assigned to each OTU 
using the RDP Naïve Bayesian Classifier with custom reference databases (See method 
for detailed information). 347 OTUs with heritability scores > 0.15 are shown here. 
 

ID H2 
Taxonomy Information 

Phylum Class Order Family 

X35 0.66 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae 

X59 0.59 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X9 0.57 Chloroflexi Ktedonobacteria KtedonobacteriaCL KtedonobacteriaCL 

X565 0.54 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X7 0.54 unclassified unclassified unclassified unclassified 

X61 0.49 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X155 0.49 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 

X5 0.47 Actinobacteria ActinobacteriaPH Actinomycetales Catenulisporaceae 

X353 0.46 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X4 0.46 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 

X171 0.45 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 

X265 0.41 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X157 0.41 Actinobacteria ActinobacteriaPH Actinomycetales Streptomycetaceae 

X359 0.41 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 

X300 0.41 unclassified unclassified unclassified unclassified 

X425 0.4 unclassified unclassified unclassified unclassified 

X650 0.39 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X159 0.38 unclassified unclassified unclassified unclassified 

X250 0.38 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X74 0.38 Proteobacteria Betaproteobacteria Burkholderiales BurkholderialesOR 

X225 0.38 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X892 0.38 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X2 0.37 Firmicutes Bacilli Bacillales Bacillaceae 

X131 0.37 Actinobacteria ActinobacteriaPH Actinomycetales Nocardioidaceae 

X51 0.37 Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae 

X484 0.36 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X494 0.36 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X132 0.36 Actinobacteria ActinobacteriaPH Actinomycetales Nocardiaceae 

X730 0.36 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X521 0.35 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X30 0.35 Actinobacteria ActinobacteriaPH Actinomycetales Frankiaceae 

X343 0.35 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X758 0.35 Actinobacteria ActinobacteriaPH Actinomycetales Nocardioidaceae 
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X566 0.35 unclassified unclassified unclassified unclassified 

X245 0.35 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X509 0.35 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X212 0.35 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae 

X662 0.35 Bacteroidetes Flavobacteria Flavobacteriales Cryomorphaceae 

X179 0.34 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X204 0.34 unclassified unclassified unclassified unclassified 

X1215 0.34 Acidobacteria AcidobacteriaPH AcidobacteriaPH Koribacteraceae 

X340 0.34 Proteobacteria Alphaproteobacteria Sphingomonadales SphingomonadalesOR 

X318 0.33 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X85 0.33 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X139 0.33 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X557 0.33 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X384 0.32 unclassified unclassified unclassified unclassified 

X551 0.32 TM7 TM7PH TM7PH TM7PH 

X702 0.32 unclassified unclassified unclassified unclassified 

X515 0.32 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X593 0.32 Chloroflexi Thermomicrobia ThermomicrobiaCL ThermomicrobiaCL 

X31 0.32 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X355 0.32 unclassified unclassified unclassified unclassified 

X1101 0.32 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae 

X473 0.31 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae 

X370 0.31 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X246 0.31 unclassified unclassified unclassified unclassified 

X485 0.31 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X947 0.31 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 

X1313 0.31 Proteobacteria Betaproteobacteria Rhodocyclales unclassified 

X363 0.31 unclassified unclassified unclassified unclassified 

X14 0.31 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X129 0.31 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 

X123 0.31 Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae 

X71 0.31 Actinobacteria ActinobacteriaPH MC47 MC47OR 

X46 0.31 unclassified unclassified unclassified unclassified 

X369 0.31 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X277 0.31 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X404 0.31 unclassified unclassified unclassified unclassified 

X475 0.31 Proteobacteria Deltaproteobacteria Syntrophobacterales Syntrophobacteraceae 

X744 0.3 Proteobacteria Gammaproteobacteria Thiotrichales ThiotrichalesOR 

X128 0.3 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X683 0.3 Actinobacteria ActinobacteriaPH Actinomycetales Actinospicaceae 

X342 0.3 Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae 

X1422 0.3 Proteobacteria Betaproteobacteria BetaproteobacteriaCL BetaproteobacteriaCL 

X360 0.3 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 
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X1056 0.3 Proteobacteria Alphaproteobacteria AlphaproteobacteriaCL AlphaproteobacteriaCL 

X232 0.3 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X135 0.3 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X659 0.3 Chloroflexi Anaerolineae A4b A4bOR 

X449 0.29 Proteobacteria Alphaproteobacteria Rhizobiales RhizobialesOR 

X181 0.29 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X577 0.29 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X1380 0.29 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X110 0.29 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X13 0.29 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X1333 0.29 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X455 0.29 Firmicutes Bacilli Bacillales Alicyclobacillaceae 

X317 0.28 Acidobacteria AcidobacteriaPH AcidobacteriaPH Koribacteraceae 

X1304 0.28 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X253 0.28 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 

X895 0.28 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X237 0.28 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X312 0.28 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X572 0.28 unclassified unclassified unclassified unclassified 

X117 0.28 Actinobacteria ActinobacteriaPH Actinomycetales Mycobacteriaceae 

X830 0.28 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X210 0.28 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X813 0.28 Acidobacteria AcidobacteriaPH AcidobacteriaPH AcidobacteriaPH 

X535 0.28 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X928 0.28 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X329 0.28 Chloroflexi Thermomicrobia ThermomicrobiaCL ThermomicrobiaCL 

X249 0.28 Actinobacteria ActinobacteriaPH Actinomycetales Nocardioidaceae 

X362 0.28 Verrucomicrobia Opitutae Opitutales Opitutaceae 

X178 0.27 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 

X890 0.27 Acidobacteria AcidobacteriaPH AcidobacteriaPH AcidobacteriaPH 

X222 0.27 Actinobacteria ActinobacteriaPH Acidimicrobiales AcidimicrobialesOR 

X235 0.27 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X612 0.27 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X109 0.27 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X173 0.27 Acidobacteria Chloracidobacteria ChloracidobacteriaCL ChloracidobacteriaCL 

X737 0.27 Chloroflexi Ktedonobacteria KtedonobacteriaCL KtedonobacteriaCL 

X859 0.27 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X1042 0.27 unclassified unclassified unclassified unclassified 

X694 0.26 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 

X795 0.26 Chloroflexi SOGA31 SOGA31CL SOGA31CL 

X856 0.26 Actinobacteria ActinobacteriaPH Actinomycetales Pseudonocardiaceae 

X116 0.26 Verrucomicrobia Opitutae Opitutales Opitutaceae 

X18 0.26 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 
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X457 0.26 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae 

X323 0.26 Chloroflexi ChloroflexiPH Herpetosiphonales Herpetosiphonaceae 

X458 0.26 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X272 0.26 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae 

X88 0.26 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X411 0.26 Nitrospirae NitrospiraePH Nitrospirales Nitrospiraceae 

X162 0.26 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X113 0.26 Chloroflexi SOGA31 SOGA31CL SOGA31CL 

X91 0.25 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X185 0.25 TM7 TM7PH TM7PH TM7PH 

X442 0.25 Actinobacteria ActinobacteriaPH Solirubrobacterales SolirubrobacteralesOR 

X1196 0.25 TM7 TM7PH TM7PH TM7PH 

X933 0.25 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X571 0.25 Chloroflexi Thermomicrobia ThermomicrobiaCL ThermomicrobiaCL 

X142 0.25 Actinobacteria ActinobacteriaPH Actinomycetales Micromonosporaceae 

X487 0.24 Verrucomicrobia Opitutae Opitutales Opitutaceae 

X970 0.24 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X729 0.24 Proteobacteria Deltaproteobacteria Desulfuromonadales Geobacteraceae 

X759 0.24 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X1125 0.24 Proteobacteria Deltaproteobacteria Myxococcales Myxococcaceae 

X1008 0.24 Actinobacteria ActinobacteriaPH Actinomycetales ActinomycetalesOR 

X594 0.24 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X1112 0.24 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X763 0.24 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X393 0.24 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 

X862 0.24 Elusimicrobia ElusimicrobiaPH FAC88 FAC88OR 

X168 0.24 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 

X675 0.23 Actinobacteria ActinobacteriaPH Solirubrobacterales Patulibacteraceae 

X188 0.23 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X595 0.23 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X238 0.23 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X72 0.23 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X211 0.23 Chloroflexi SOGA31 SOGA31CL SOGA31CL 

X197 0.23 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 

X94 0.23 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae 

X422 0.23 Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae 

X489 0.23 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X1190 0.23 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X153 0.23 Acidobacteria AcidobacteriaPH Acidobacteriales Acidobacteriaceae 

X375 0.23 Chloroflexi ChloroflexiPH Roseiflexales Kouleothrixaceae 

X434 0.23 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X1171 0.23 Bacteroidetes Sphingobacteria Sphingobacteriales unclassified 

X143 0.23 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 
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X1065 0.23 Planctomycetes Planctomycea Pirellulales PirellulalesOR 

X400 0.23 Proteobacteria Betaproteobacteria BetaproteobacteriaCL BetaproteobacteriaCL 

X108 0.23 TM7 TM7PH TM7PH TM7PH 

X954 0.23 Gemmatimonadetes GemmatimonadetesPH GemmatimonadetesPH GemmatimonadetesPH 

X703 0.23 Armatimonadetes CH21 CH21CL CH21CL 

X83 0.23 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X997 0.23 Elusimicrobia ElusimicrobiaPH ElusimicrobiaPH ElusimicrobiaPH 

X130 0.23 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X501 0.23 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X70 0.23 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 

X802 0.22 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X240 0.22 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae 

X998 0.22 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X746 0.22 Firmicutes Bacilli Bacillales Paenibacillaceae 

X807 0.22 Acidobacteria AcidobacteriaPH AcidobacteriaPH AcidobacteriaPH 

X874 0.22 Actinobacteria ActinobacteriaPH ActinobacteriaPH ActinobacteriaPH 

X407 0.22 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X960 0.22 Actinobacteria ActinobacteriaPH Solirubrobacterales SolirubrobacteralesOR 

X22 0.22 Acidobacteria AcidobacteriaPH Acidobacteriales Acidobacteriaceae 

X985 0.22 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X214 0.22 Chloroflexi Thermomicrobia Thermomicrobiales ThermomicrobialesOR 

X288 0.22 TM7 TM7PH TM7PH TM7PH 

X133 0.22 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X416 0.22 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X189 0.22 Actinobacteria ActinobacteriaPH Actinomycetales Nocardioidaceae 

X392 0.22 Actinobacteria ActinobacteriaPH Actinomycetales Mycobacteriaceae 

X366 0.22 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X198 0.22 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae 

X797 0.22 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X734 0.21 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X424 0.21 Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae 

X172 0.21 Actinobacteria ActinobacteriaPH Actinomycetales Thermomonosporaceae 

X0 0.21 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 

X789 0.21 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X65 0.21 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X1210 0.21 BRC1 BRC1PH BRC1PH BRC1PH 

X881 0.21 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X269 0.21 Actinobacteria ActinobacteriaPH Acidimicrobiales EB1017 

X736 0.21 Chloroflexi SOGA31 SOGA31CL SOGA31CL 

X925 0.21 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X896 0.21 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X104 0.21 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X490 0.21 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 
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X127 0.21 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X298 0.21 unclassified unclassified unclassified unclassified 

X606 0.21 Actinobacteria ActinobacteriaPH Solirubrobacterales SolirubrobacteralesOR 

X976 0.21 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X290 0.21 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X105 0.21 Actinobacteria ActinobacteriaPH Actinomycetales Intrasporangiaceae 

X207 0.21 Actinobacteria ActinobacteriaPH Solirubrobacterales Patulibacteraceae 

X934 0.21 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae 

X107 0.2 Actinobacteria ActinobacteriaPH Solirubrobacterales SolirubrobacteralesOR 

X1145 0.2 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X339 0.2 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X1079 0.2 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae 

X1256 0.2 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X766 0.2 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X735 0.2 Chloroflexi ChloroflexiPH Chloroflexales ChloroflexalesOR 

X29 0.2 Actinobacteria ActinobacteriaPH Actinomycetales Intrasporangiaceae 

X832 0.2 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X64 0.2 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales GemmatimonadalesOR 

X576 0.2 Actinobacteria ActinobacteriaPH Acidimicrobiales Iamiaceae 

X60 0.2 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 

X161 0.2 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X413 0.2 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X260 0.2 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X1081 0.2 TM6 TM6PH TM6PH TM6PH 

X285 0.2 TM7 TM7PH TM7PH TM7PH 

X491 0.19 Chloroflexi Ktedonobacteria KtedonobacteriaCL KtedonobacteriaCL 

X1281 0.19 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X600 0.19 Proteobacteria Alphaproteobacteria Rhizobiales RhizobialesOR 

X804 0.19 Actinobacteria ActinobacteriaPH Actinomycetales Nocardiaceae 

X24 0.19 Proteobacteria Betaproteobacteria BetaproteobacteriaCL BetaproteobacteriaCL 

X809 0.19 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X1012 0.19 unclassified unclassified unclassified unclassified 

X95 0.19 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae 

X531 0.19 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X1165 0.19 Proteobacteria Deltaproteobacteria DeltaproteobacteriaCL DeltaproteobacteriaCL 

X949 0.19 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X119 0.19 Acidobacteria AcidobacteriaPH Acidobacteriales Acidobacteriaceae 

X454 0.19 Proteobacteria Betaproteobacteria BetaproteobacteriaCL BetaproteobacteriaCL 

X93 0.19 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X1051 0.19 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X798 0.19 Actinobacteria ActinobacteriaPH Actinomycetales Streptomycetaceae 

X767 0.19 Chloroflexi Anaerolineae Anaerolineales Anaerolinaceae 

X11 0.19 Firmicutes Bacilli Bacillales Bacillaceae 
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X647 0.19 Chloroflexi Anaerolineae Anaerolineales Anaerolinaceae 

X399 0.19 Actinobacteria ActinobacteriaPH ActinobacteriaPH ActinobacteriaPH 

X1205 0.19 Proteobacteria Deltaproteobacteria MIZ46 MIZ46OR 

X98 0.19 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X936 0.19 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X352 0.19 Firmicutes Bacilli Bacillales Thermoactinomycetaceae 

X81 0.18 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 

X1092 0.18 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X456 0.18 Acidobacteria Chloracidobacteria ChloracidobacteriaCL ChloracidobacteriaCL 

X894 0.18 Proteobacteria Gammaproteobacteria Legionellales Coxiellaceae 

X1200 0.18 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X451 0.18 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X618 0.18 Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae 

X857 0.18 Chloroflexi Ktedonobacteria KtedonobacteriaCL KtedonobacteriaCL 

X1207 0.18 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X678 0.18 unclassified unclassified unclassified unclassified 

X445 0.18 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X114 0.18 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 

X727 0.18 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X1283 0.18 Proteobacteria Gammaproteobacteria unclassified unclassified 

X713 0.18 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales GemmatimonadalesOR 

X638 0.18 Elusimicrobia ElusimicrobiaPH ElusimicrobiaPH ElusimicrobiaPH 

X821 0.18 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X295 0.18 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X3 0.18 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae 

X749 0.18 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X771 0.18 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X598 0.18 Proteobacteria Betaproteobacteria Burkholderiales BurkholderialesOR 

X430 0.18 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X213 0.18 Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae 

X963 0.17 Gemmatimonadetes GemmatimonadetesPH GemmatimonadetesPH GemmatimonadetesPH 

X987 0.17 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X326 0.17 Actinobacteria ActinobacteriaPH MC47 MC47OR 

X514 0.17 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X36 0.17 Actinobacteria ActinobacteriaPH Actinomycetales Micrococcaceae 

X1097 0.17 Gemmatimonadetes GemmatimonadetesPH GemmatimonadetesPH GemmatimonadetesPH 

X585 0.17 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X273 0.17 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X1309 0.17 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X38 0.17 Acidobacteria Sva0725 Sva0725CL Sva0725CL 

X918 0.17 BRC1 BRC1PH BRC1PH BRC1PH 

X96 0.17 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X27 0.17 Acidobacteria Solibacteres Solibacterales Solibacteraceae 
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X48 0.17 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X206 0.17 Actinobacteria ActinobacteriaPH ActinobacteriaPH ActinobacteriaPH 

X526 0.17 Actinobacteria ActinobacteriaPH Actinomycetales Actinospicaceae 

X1132 0.17 unclassified unclassified unclassified unclassified 

X325 0.17 Firmicutes Bacilli Bacillales Bacillaceae 

X287 0.17 Actinobacteria ActinobacteriaPH Actinomycetales Pseudonocardiaceae 

X279 0.17 Chloroflexi Thermomicrobia ThermomicrobiaCL ThermomicrobiaCL 

X1030 0.17 Verrucomicrobia Opitutae Opitutales Opitutaceae 

X440 0.17 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X337 0.17 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X414 0.17 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae 

X382 0.17 Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 

X462 0.16 Acidobacteria AcidobacteriaPH Acidobacteriales Acidobacteriaceae 

X124 0.16 Chloroflexi ChloroflexiPH Roseiflexales Kouleothrixaceae 

X1293 0.16 Chloroflexi TK17 TK17CL TK17CL 

X778 0.16 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X247 0.16 Actinobacteria ActinobacteriaPH Actinomycetales ActinomycetalesOR 

X848 0.16 Armatimonadetes CH21 CH21CL CH21CL 

X258 0.16 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X506 0.16 Chloroflexi Anaerolineae Caldilineales Caldilineaceae 

X1407 0.16 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X917 0.16 Elusimicrobia ElusimicrobiaPH ElusimicrobiaPH ElusimicrobiaPH 

X869 0.16 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X706 0.16 Actinobacteria ActinobacteriaPH Solirubrobacterales Patulibacteraceae 

X49 0.16 Nitrospirae NitrospiraePH Nitrospirales Nitrospiraceae 

X698 0.16 unclassified unclassified unclassified unclassified 

X544 0.16 Actinobacteria ActinobacteriaPH Actinomycetales Micromonosporaceae 

X793 0.16 Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae 

X959 0.16 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae 

X1155 0.16 Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae 

X930 0.16 Actinobacteria ActinobacteriaPH Acidimicrobiales Microthrixaceae 

X1186 0.16 unclassified unclassified unclassified unclassified 

X201 0.16 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae 

X505 0.16 Actinobacteria ActinobacteriaPH Actinomycetales Nocardioidaceae 

X40 0.16 Proteobacteria Alphaproteobacteria Rhizobiales RhizobialesOR 

X831 0.16 Chloroflexi Ktedonobacteria KtedonobacteriaCL KtedonobacteriaCL 

X692 0.16 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X532 0.16 Actinobacteria ActinobacteriaPH MC47 MC47OR 

X754 0.16 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X528 0.16 Actinobacteria ActinobacteriaPH Solirubrobacterales SolirubrobacteralesOR 

X556 0.16 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X190 0.15 Actinobacteria ActinobacteriaPH Solirubrobacterales Patulibacteraceae 

X632 0.15 unclassified unclassified unclassified unclassified 
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X76 0.15 Proteobacteria Alphaproteobacteria AlphaproteobacteriaCL AlphaproteobacteriaCL 

X938 0.15 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae 

X580 0.15 Proteobacteria Deltaproteobacteria Syntrophobacterales Syntrophobacteraceae 

X75 0.15 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X587 0.15 Proteobacteria Deltaproteobacteria Myxococcales Myxococcaceae 

X472 0.15 Chloroflexi ChloroflexiPH Chloroflexales ChloroflexalesOR 

X209 0.15 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X145 0.15 Acidobacteria AcidobacteriaPH Acidobacteriales Acidobacteriaceae 

X47 0.15 Actinobacteria ActinobacteriaPH Actinomycetales Geodermatophilaceae 

X230 0.15 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae 

X92 0.15 Actinobacteria ActinobacteriaPH Actinomycetales Catenulisporaceae 

X54 0.15 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X943 0.15 Actinobacteria ActinobacteriaPH Acidimicrobiales Iamiaceae 
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Chapter 3 

Dissecting Host Genetic Control of the Sorghum 
Rhizosphere Microbiome Through Genome-Wide 
Association Studies 
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3.1 Abstract 
 

Host genetics has recently been shown to be a driver of plant microbiome 
composition in many plant species. However, identifying the underlying genetic loci 
controlling microbial selection remains challenging. Although recent efforts have begun 
to dissect the impact of individual genes on microbiome composition, there is a lack of 
global approaches to comprehensively examine the host genotype influences on microbial 
community composition. Genome-Wide Association Study (GWAS) represents a 
potentially powerful and unbiased method to identify microbes sensitive to host 
genotype, and to connect them with the genetic loci that control them. To identify genetic 
loci in sorghum that are associated with root microbiome regulation, we performed a 
comprehensive GWAS analysis to investigate host genotype-dependent influences on 
microbial community structure. Here, we utilize this same dataset, a population-level 
microbiome analysis of the rhizosphere microbiomes of 200 sorghum genotypes, to 
demonstrate the utility of GWAS in dissecting host genetic influence on the plant 
microbiome. We show that GWAS can be used to identify host loci that correlate with the 
abundance of specific subsets of the rhizosphere microbiome. Surprisingly, we further 
demonstrate that these results can be used to predict the rhizosphere microbiome structure 
for an independent panel of sorghum genotypes based solely on knowledge of host 
genotypic information.  
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3.2 Introduction 
 

Despite consistent evidence of the interaction between host genetics and plant 
microbiome composition, the identification of specific genetic elements driving host-
genotype dependent microbiome acquisition and assembly in plants remains a challenge. 
Recent efforts guided by a priori hypotheses of gene involvement have begun to dissect 
the impact of individual genes on microbiome composition (Lebeis et al., 2015; Castrillo 
et al., 2017). However, these studies are inherently limited in scope to the relatively small 
fraction of plant genes for which we have sufficient knowledge to make predictions about 
their influence in microbiome-related processes. Additionally, many plant traits predicted 
to impact microbiome composition and activity, such as root exudation (Zhalnina et al., 
2018) and root system architecture (Saleem et al., 2018), are inherently complex and 
potentially governed by a very large number of genes. Collectively, this suggests the need 
for alternative large-scale and unbiased methods for identifying the genes that regulate 
the host-mediated selection of the microbiome. 
 

Genome-wide association studies (GWAS) represent a powerful approach to map 
loci, which are associated with complex traits in a genetically diverse population. Though 
pioneered for use in human genetics, to date the majority of GWAS studies have been 
conducted in plants (Brachi, Morris and Borevitz, 2011), and it has become an 
increasingly popular tool for studying the genetic basis of natural variation and traits of 
agricultural importance. When inbred lines are available, GWAS can be particularly 
useful because once these lines have been genotyped, they can be phenotyped multiple 
times, making it possible to study many different traits in many different environments 
(Atwell et al., 2010). While GWAS is typically used in the context of a single 
quantitative phenotypic trait, analyses of multivariate molecular traits, such as RNA-seq 
expression data and metabolite profiles, have also been conducted (Schaefer et al., no 
date; Wu et al., 2018). More recently, several attempts have been made to use host-
associated microbiome census data as an input to GWAS, which in theory will allow for 
the identification of host genetic loci controlling microbiome composition (Davenport et 
al., 2015; Wang et al., 2016).  
 

In plants, a recent GWAS in Arabidopsis thaliana that used leaf microbial 
community data as the phenotypic trait suggested that plant loci responsible for defense 
and cell wall integrity affect microbial community variation (Horton et al., 2014), 
establishing GWAS as a potential tool for studying the role of plant host genetic 
heterogeneity in shaping plant-associated microbial communities. Several other recent 
phyllosphere studies that have performed GWAS to identify genetic factors controlling 
these associations in the leaf microbiome, with mixed degrees of success (Horton et al., 
2014; Wallace et al., 2018; Roman-reyna et al., 2019). However, the use of GWAS in the 
context of root-associated microbiome has yet to be extensively explored; here, selection 
of sample type (rhizosphere or endosphere) and host system may be critical factors that 
determine the success of such efforts. Previous work comparing the root microbiomes of 
a broad range of cereal crops has demonstrated the degree to which microbial 
communities correlate with host phylogenetic distance is strongest in the root endosphere 
(Naylor et al., 2017), while another study of different rice cultivars found that host 
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genotype correlated with microbial association most strongly in the rhizosphere (Edwards 
et al., 2015). Collectively, these data suggest the sample type exhibiting the strongest 
correlation may different for each host, and that an initial evaluation of the degree of 
correlation between genotype and microbiome phenotype across sample types may be 
helpful for successful implementation of GWAS.  
 

We show that GWAS can be used to identify specific genetic loci within the host 
genome that are correlated with the abundance of specific heritable lineages, and that 
differences in microbiome composition can be predicted solely from genotypic 
information. This work described in this chapter demonstrates the utility of GWAS for 
the analysis of host-mediated control of rhizosphere microbiome phenotypes. 
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3.3 Results 
 

3.3.1 Genetic loci correlated with rhizosphere microbial abundance 
through genome-wide association 
 

Recent work in the leaf microbiome has demonstrated the potential utility of 
GWAS for uncovering loci correlated with microbiome composition. Here, we sought to 
use GWAS analyses with rhizosphere microbiome datasets using both global properties 
of the OTU dataset and the abundances of individual OTUs. We first conducted a 
principal component analysis on our dataset. Bi-plots of principal components (PCs) 1, 
and 2 are presented in [Figure 3-1a]. For overall community composition, a subset of 
PCs was selected from an analysis of the abundance patterns of the 1189 OTUs. To 
prioritize individual PCs for inclusion in our GWAS analysis, the heritability of the top 
ten PCs were determined [Table 3-1]; PC1 through PC10 collectively explain 75% of the 
total amount of variance in our dataset [Figure 3-1b, Table 3-1]. Among the top ten PCs, 
PC1 and PC5 had the two highest heritability scores (H2 =0.35 and 0.42, respectively). 
PCs with heritability scores larger than 0.25 were selected for downstream analyses, 
including PC1, PC3, PC5, PC9, and PC10. GWAS analysis was performed first using 
eigenvectors from PCA as input, and Manhattan plots were generated to show the 
association between genotypes and each community-level trait, PCs [Figure 3-2]. The 
Manhattan plot of GWAS analysis performed on PC1 revealed a significant correlation 
between community composition and a locus of approximately 0.93 Mb on Chromosome 
4 with a moderately stringent threshold of –log (10-4)[Figure 3-3a]. The Manhattan plot 
of PC5 and PC10 also revealed an identifiable peak on chromosome 6. The peak on PC5 
was slightly below the threshold of significance [Figure 3-3b], and PC10 had a 
moderately stringent threshold of –log (10-4) [Figure 3-3a]. 
 

As results from PC1, PC5, and PC10 are derived from the properties of overall 
microbiome composition, it is unclear which specific microbial lineages drive these 
correlations. To determine if the observed correlations at these two loci (Chromosome 4 
and Chromosome 6) were driven by one common or several different sets of OTUs, we 
performed separate GWAS analyses using the abundances of each single OTU as input 
[Figure 3-4]. From these analyses, two distinct sets of OTUs were found to have 
significant correlations with the loci on chromosomes 4 (n=40) and 6 (n=11), expect 
OTU18 from Burkholderiales order [Figure 3-4]. Taxonomy information of these OTUs 
are presented in [Table 3-2]. Notably, significant correlations between OTU abundance 
and genotype at each locus appear to be unique to a select group of microbes [Figure 3-
4], suggesting that different sorghum genes influence the abundance patterns of different 
groups of microbes. 
 

3.3.2 Expression pattern of candidate genes within the genetic loci 
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To determine if distinct sets of OTUs identified by GWAS were associated with 
host genotype, we evaluated the ratio of relative abundance of each OTU between the 
chromosome 4 major and minor allele containing sorghum lines. Notably, bacterial 
clades with a single membrane (monoderm) were more heavily enriched in sorghum 
containing the major allele, while bacteria with two membranes (diderms) were more 
heavily enriched in the minor allele group [Figure 3-5a]. The chromosome 4 locus 
contains approximately 27 candidate genes, several of which exhibited strong root 
specific expression patterns [Figure 3-5b]. Two notable candidates include gamma 
carbonic anhydrase-like 2 and a putative Beta-1,4 endoxylanase, which exhibited the 
strongest root specific expression pattern in publicly available sorghum RNA-Seq data 
obtained from phytozome v12.1 (Goodstein et al., 2012) [Figure 3-5b]. 
 

3.3.3 Microbiome composition prediction using sorghum genotypic data 
 

To validate that genetic differences across sorghum genotypes at the candidate 
loci on chromosome 4 identified by GWAS are indeed responsible for observed 
differences in the rhizosphere microbiome composition a follow up experiment was 
performed using eighteen additional sorghum lines, including genotypes not present in 
the original study. To help disentangle phylogenetic-relatedness from loci-specific 
effects, the new selected sorghum genotypes spanned the diversity panel, and for each 
minor allele genotype (n=9), we included a phylogenetically related major allele line 
(n=9) [Figure 2-1]. Following two weeks of growth in a mixture of calcined clay and 
field soil in the growth chamber, the rhizosphere microbiomes of two replicates of each 
genotype were collected and microbiome composition was analyzed using 16S rRNA 
amplicon sequencing as in the main study. A canonical analysis of principal coordinates 
(CAP) ordination constrained on genotypic group demonstrates that the rhizospheres of 
genotypes belonging to major and minor allele groups separate into distinct clusters 
[Figure 3-7].  
 

Next, we performed indicator species analysis to identify OTUs that distinguished 
the two chromosome 4 allele groups. We identified 16 indicator OTUs for the major 
allele, and 4 indicators for the minor allele. Notably, 15 of 16 major allele indicators were 
monoderm bacterial lineages, while all 4 minor allele indicators were diderm bacteria 
[Table 3-3]. To determine whether patterns of indicator OTUs were consistent between 
the growth chamber validation and our primary field experiment, we used indicator 
species analysis to compare the six minor allele group members present in the 200 line 
GWAS panel against six closely related major allele containing lines. Comparing the top 
100 indicators from each allele group for this analysis, we observed similar trends in 
abundance of indicator OTUs across bacterial orders, including two monoderms, 
Actinomycetales and Solirubrobacterales, as abundant indicators of the major allele, and 
three diderms, Burkholderia, Sphingobacterales, and Xanthomonadales, as indicators of 
the minor allele. Collectively, these experiments support the findings of our sorghum 
GWAS, that a locus located on chromosome 4 is capable of selecting for specific 
bacterial lineages, with signals that persist across two developmental timepoints, and is 
stable between growth chamber and field grown sorghum plants. 
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3.4 Discussion 
 

3.4.1 Multiple sorghum loci are responsible for controlling the 
rhizobiome 
 

In this study, we demonstrate that GWAS can be used to successfully identify 
correlations between specific host genetic loci and the abundance of specific microbes 
within the host microbiome, as well as overall rhizosphere community structure. To our 
knowledge, this is the first example of such work in a crop rhizosphere. Similar to 
previous plant microbiome GWAS studies (Horton et al., 2014; Wallace et al., 2018; 
Roman-reyna et al., 2019), no single strong effect loci was observed, providing additional 
evidence that microbiome association is a polygenic trait. In this study, several loci were 
identified to have strong associations with the microbiome structure, and the most 
significant of these maps to a locus on chromosome 4. This locus contains several strong 
candidate genes exhibiting root specific expression and natural genetic variation across 
sorghum varieties. One candidate gene located near the center of this locus encodes a 
beta 1,4 endo xylanase. Xylanases are responsible for the degradation of xylan into 
xylose, and are one of the primary catabolizers of hemicellulose, a major component of 
the plant cell wall (Meents, Watanabe and Samuels, 2018). A loss or alteration of 
function of a beta 1,4 endo xylanase could potentially impact the rhizosphere microbiome 
through one of several mechanisms. First, such enzymes are responsible for loosening the 
cell wall architecture, and may control the degree of plasticity in the barrier between the 
root and surrounding rhizosphere environments. This loosening could potentially allow 
for greater release of cell wall or apoplast derived metabolites, including carbohydrates, 
into the rhizosphere environment (Sasse, Martinoia and Northen, 2018). Plant-derived 
metabolites may contribute to chemotactic response of certain microbes into the 
rhizosphere and/ or proliferation of fast growing bacterial clades capable growing on 
diverse carbon substrates (Goldfarb et al., 2011; Chaparro et al., 2013). Alternatively, 
altered xylanase activity could lead to shifts in carbohydrate profiles within the cell wall, 
leading to heightened plant immune responses (Claverie et al., 2018; Hou et al., 2019). 
The catabolic byproducts of microbially-produced xylanase used in pathogen invasion are 
in part responsible for triggering innate immune responses in plants, and various 
components of the plant immune signalling network have been shown to influence 
microbiome structure (Lebeis et al., 2015; Castrillo et al., 2017).  
 

Another candidate gene within the chromosome 4 locus, that also displays root-
specific expression, encodes γ carbonic anhydrase-like 2. In plants, carbonic anhydrases 
(CA) facilitate the reversible hydration of CO2 to bicarbonate (Parisi et al., 2004; 
DiMario et al., 2017). Sorghum is predicted to encode 17 CAs, include 3 γCAs (DiMario 
et al., 2017). γCA and γCA-like isoforms are nuclear encoded, mitochondrial-localized 
proteins, that make up the mitochondrial Complex I (NADH-ubiquinone oxidoreductase) 
(Sunderhaus et al., 2006). While studies of plant CAs have mainly focused on 
photosynthetic tissue, CA activity has also been observed in non-photosynthetic tissues, 
including roots (DiMario et al., 2017). In rice, CA1 expression is increased in both shoots 
and roots in response to osmotic and salt stresses, and expression of rice CA1 in 
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Arabidopsis thaliana conferred enhanced salt tolerance (Yu et al., 2007). Previous studies 
have also implicated CA activity in plant-microbe interactions (Floryszak-Wieczorek and 
Arasimowicz-Jelonek, 2017); CA was first observed in root nodules of legumes 
inoculated with Rhizobium (Atkins, 1974), and has since been implicated in disease 
resistance, having both antioxidant activity and salicylic acid (SA) binding capability 
(Slaymaker et al., 2002; Restrepo et al., 2005). In Arabidopsis thaliana, a chloroplast-
localized CA, salicylic acid-binding protein 3 (AtSABP3), is regulated by nitric oxide via 
S-nitrosylation. S-nitrosylation of AtSABP3 suppresses both its interaction with SA and 
CA activity (Wang et al., 2009). Collectively, these studies suggest that a loss or 
alteration of function of CA could potentially impact the composition of the rhizosphere 
microbiome. Future validation experiments using genetic mutants within this and other 
candidate genes can be used to help elucidate the underlying genetic element(s) 
responsible for modulation of the rhizosphere microbiome.  
 

3.4.2 Host genotypic data can predict microbiome differences 
 

Here we show GWAS can be used as a non-candidate approach to predict 
microbiome structure based solely on host genetic information, building on previous 
studies that have observed inter- and intra-species variation capable of generating 
variation in microbiomes (Bulgarelli et al., 2012; Lundberg et al., 2012; Peiffer et al., 
2013; Horton et al., 2014; Haney et al., 2015; Naylor et al., 2017; Fitzpatrick et al., 2018; 
Walters et al., 2018). Although the underlying cause of these shifts are not well 
understood, candidate driven approaches have implicated disease resistance (Lebeis et 
al., 2015; Castrillo et al., 2017), nutrient status (Hiruma et al., 2016; Khan et al., 2016; 
Castrillo et al., 2017), sugar signaling (Yamada et al., 2016), and plant age (Wagner et 
al., 2016; Edwards et al., 2018) as major factors. However, these directed approaches 
limit the potential to capture novel mechanisms compared to non-candidate approaches 
such as GWAS.  
 

What has become clear from previous studies of plant-associated microbiomes, is 
the complex nature of this interaction. Many of these traits are likely to be controlled by a 
large number of genes, with each having only a small effect on the overall phenotype. As 
such, future studies should take advantage of large panels to draw statistically significant 
associations. Despite these challenges, a recent GWAS of the rice phyllosphere 
microbiome identified genomic regions overlapping with quantitative trait loci (QTLs) 
for resistance and carbohydrate metabolism that regulate microbiome composition. Using 
near-isogenic lines that vary in cellulose and salicylate production, they predictably 
modulated the abundance of certain bacterial lineages that associate with the plant 
(Roman-reyna et al., 2019). 
 

Collectively, our study adds to a growing list of evidence that genetic factors of 
plant hosts are capable of modulating their associated microbiomes. Moving forward, 
additional efforts will promote a more mature understanding of the host molecular 
mechanisms underlying the assembly of microbiomes and identification of the beneficial 
functions microbes provide to their hosts. These efforts will facilitate future breeding 



 
 

58 

efforts aimed at promoting beneficial microbiomes capable of promoting plant yield 
under a number of challenging biotic and abiotic stresses. 
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3.5 Methods 
 

GWAS For each OTU, GWAS was conducted separately using the best linear 
unbiased predictors (BLUPs) obtained from the linear mixed model. Population structure 
was accounted for using statistical methods that allow us to detect both population 
structure (Q) and relative kinship (K) to control spurious association. The Q model (y = 
Sα + Qν + e), the K model (y = Sα + Zu + e), and the Q + K model (y = Xβ + Sα + Qν + 
Zu + e) described previously in (Yu et al., 2008), used in our study. In the model 
equations, y is a vector of phenotypic observation; α is a vector of allelic effects; e is a 
vector of residual effects; ν is a vector of population effects; β is a vector of fixed effects 
other than allelic or population group effects; u is a vector of polygenic background 
effects; Q is the matrix relating y to ν; and X, S, and Z are incidence matrices of 1s and 0s 
relating y to β, α, and u, respectively. To account for the population structure and genetic 
relatedness, the first three principal components (PCs) and kinship matrix were calculated 
using the SNPs obtained from (Morris, Ramu, et al., 2013) and fitted into the MLM-
based GWAS pipeline for each OTU using GEMMA (Zhou and Stephens, 2012).  
 

GWAS Validation For the GWAS validation experiment, the 378 genotypes of 
the SAP were first subset into lines containing the major (n=343) and minor (n=14) allele 
for the two haplotypes found at the peak on chromosome 4 described in the text. From 
the 200 genotypes not originally selected as part of the GWAS, a total of nine sorghum 
genotypes belonging to the minor allele were selected, with an effort to include genotypes 
spanning the phylogenetic tree. For each of these nine minor allele lines, another 
genotype containing the major allele with close overall genetic relatedness was selected, 
resulting in nine major and nine minor allele containing linges (n=18). Two replicates of 
each line were grown in growth chambers (33°C/28°C, 16h light/ 8h dark, 60% humidity) 
in a 10% vermiculite/ 90% calcined clay mixture rinsed with a soil wash prepared from a 
2:1 ratio of field soil to water from the field site used in the main experiment. Plants were 
watered daily with approximately 5 ml of autoclaved Milli-Q water using a spray bottle 
for the first three days, followed by top watering with 15 ml of water every three days. 
An additional misting was performed to the soil surface every 24 hrs to prevent drying. 
Following two weeks of growth, plants were harvested and rhizosphere microbiomes 
extracted as described for the field experiment.  
 

Microbiome Statistical Analysis All statistical analyses of the amplicon datasets 
were performed in R using the normalized reduced dataset with 1189 OTUs and 598 
samples, with each sample containing 10,000 reads, unless stated otherwise. For alpha-
diversity measurement, Shannon’s Diversity was calculated as eX, where X is Shannon’s 
Entropy as determined with the diversity function in the R package vegan (Oksanen et 
al., 2016). Principal coordinate analyses were performed with the function pcoa in the R 
package ape (Paradis, Claude and Strimmer, 2004), using the Bray-Curtis distance 
obtained from function vegdist in the R package vegan (Oksanen et al., 2016). Mantel’s 
tests were used to determine the correlation between host phylogenetic distances and 
microbiome distances using the mantel function in the R package vegan with 9 999 
permutations, and using Spearman’s correlations to reduce the effect of outliers. Indicator 
species analyses were performed using the function indval in the R package labdsv 
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(Roberts and Roberts, 2016), with p-values based on permutation tests run with 10,000 
permutations. To account for multiple testing performed for all 430 genera in our dataset, 
multiple testing corrections were performed with an FDR of 0.05 using the p.adjust 
function in the base R package stats. Canonical Analysis of Principal Coordinates (CAPs) 
was performed for the final validation experiment to test the amount of variance 
explained by genotypic group using the capscale function in the R package vegan 
(Oksanen et al., 2016); an ANOVA like permutation test using the sum of all constrained 
eigenvalues was performed to determine the percent variance explained by each factor 
using the function anova.cca in package vegan.  
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Figure 3-1 
 

 
 

Figure 3- 1. Principal component analysis (PCA) on rhizosphere samples 

a. PCA bi-plots of principal components 1 and 2 generated using all 598 rhizosphere 
samples. Each dot represents a sorghum accession. The red arrows indicate OTUs. b. The 
amount of variance explained by the top 10 PCs. 
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Figure 3-2 
 

 
 
Figure 3- 2. GWAS on heritable PCs 

Manhattan plots shows the results of GWAS for heritable PCs with broad sense 
heritability >= 0.25, including PC1, PC3, PC5, PC9, and PC10.  
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Figure 3-3 
 

 
 
Figure 3- 3. GWAS peaks for PC1, PC5 and PC10 

a. Manhattan plot of PC1 community analysis GWAS, displaying a locus on chromosome 
4. b. Manhattan plot of PC5 community analysis GWAS, displaying a locus on 
chromosome 6. c. Manhattan plot of PC10 community analysis GWAS, displaying a 
locus on chromosome 6. 
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Figure 3-4 
 

 
 
Figure 3- 4. GWAS analyses using the abundances of individual OTUs 

Individual OTUs have correlations with the loci on chromosomes 4 and 6. There are 40 
OTUs showed significant correlations with the locus on chromosome 4, and 11 OTUs 
showed significant correlations with the locus on chromosome 6. OTU18 shared between 
both chromosomes. Taxonomy information of these OTUs is presented in [Table 3-2]. 
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Figure 3-5 
 

 
 
Figure 3- 5. A sorghum genetic locus on chromosome 4 

a. GWAS using individual OTU abundance. OTUs with at least 5 SNPs above -log (10-3) 
in the window (size = 1.15 Mb) identified on the same chromosome 4 locus as PC1 
GWAS. Relative abundance of OTUs that associate with the sorghum major (red) or 
minor (blue) allele groups within this locus (upper heat map). OTUs were grouped based 
on the predicted presence of one or two membranes (monoderm or diderm) within each 
bacterial order. b. Tissue-specific gene expression data for sorghum genes within the 
chromosome 4 locus. The publicly available sorghum RNA-Seq data was obtained from 
phytozome v12.1. 
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Figure 3-6 
 

 
 
Figure 3- 6. Tissue-specific gene expression data for sorghum genes within the 
chromosome 6 locus 

Tissue-specific gene expression data for sorghum genes within the chromosome 6 locus. 
The publicly available sorghum RNA-Seq data was obtained from phytozome v12.1  
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Figure 3-7 
 

 
 
Figure 3- 7. Sorghum genetic information can be used to predict rhizosphere 
microbiome composition 

a. Canonical Analysis of Principle Coordinates of the rhizosphere microbiome for nine 
major allele genotypes (yellow) and nine minor allele genotypes (green). b. Relative 
abundance of chromosome 4 indicator OTUs. Six minor allele and six phylogenetically 
related major allele genotypes present in the 200 line GWAS field experiment were 
compared to the nine minor/major allele indicator OTUs used for the growth chamber 
validation experiment. Colors represent indicator OTUs grouped at the taxonomic level 
of order. 
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Table 3-1 
 
Table 3- 1. Proportion of variance explained by the top ten PCs and the heritability 
scores 

 
Top 10 

PCs 
Proportion of 

Variance 
Cumulative 
Proportion  

Broad Sense 
Heritability 

PC1 0.2112 0.2112  0.3501 
PC2 0.1248 0.3361  0.0295 
PC3 0.1166 0.4526  0.3108 
PC4 0.0795 0.5321  0.2102 
PC5 0.0750 0.6071  0.4212 
PC6 0.0500 0.6570  0.0982 
PC7 0.0274 0.6845  0.1973 
PC8 0.0241 0.7086  0.1230 
PC9 0.0216 0.7301  0.3220 
PC10 0.0202 0.7504 0.2484 
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Table 3- 2. Taxonomy information of OTUs associated with two genetic loci on 
chromosome 4 and 6 

GWAS analyses using the abundances of individual OTUs obtained 50 OTUs correlated 
with genetic loci on chromosomes 4 and 6. There are 40 OTUs showed significant 
correlations with the locus on chromosome 4, and 11 OTUs showed significant 
correlations with the locus on chromosome 6. OTU18 shared between both 
chromosomes. 
 

OTU ID 
Taxonomy Information 

Phylum Class Order Family 

X445 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 

X312 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales VerrucomicrobialesOR 

X521 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X730 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 

X996 unclassified unclassified Methanobacteriales unclassified 

X148 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 

X205 Proteobacteria Alphaproteobacteria Sphingomonadales SphingomonadalesOR 

X340 Proteobacteria Alphaproteobacteria Sphingomonadales SphingomonadalesOR 

X359 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 

X14 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X682 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X692 Bacteroidetes Sphingobacteria Sphingobacteriales SphingobacterialesOR 

X1158 Bacteroidetes Sphingobacteria Sphingobacteriales Flammeovirgaceae 

X531 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X846 Verrucomicrobia Spartobacteria Spartobacteriales Spartobacteriaceae 

X190 Actinobacteria ActinobacteriaPH Solirubrobacterales Patulibacteraceae 

X302 Acidobacteria Solibacteres Solibacterales Solibacteraceae 

X734 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 

X286 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X695 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X802 Proteobacteria Betaproteobacteria Rhodocyclales RhodocyclalesOR 

X422 Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae 

X766 Proteobacteria Deltaproteobacteria Myxococcales MyxococcalesOR 

X326 Actinobacteria ActinobacteriaPH MC47 MC47OR 

X461 Actinobacteria ActinobacteriaPH MC47 MC47OR 

X323 Chloroflexi ChloroflexiPH Herpetosiphonales Herpetosiphonaceae 

X199 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X1020 Gemmatimonadetes GemmatimonadetesPH Gemmatimonadales Gemmatimonadaceae 

X1103 Elusimicrobia ElusimicrobiaPH FAC88 FAC88OR 

X82 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae 

X94 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae 

X506 Chloroflexi Anaerolineae Caldilineales Caldilineaceae 
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X18 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 

X318 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X577 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 

X947 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 

X11 Firmicutes Bacilli Bacillales Bacillaceae 

X325 Firmicutes Bacilli Bacillales Bacillaceae 

X1239 Firmicutes Bacilli Bacillales Bacillaceae 

X1289 Firmicutes Bacilli Bacillales Planococcaceae 

X1039 AD3 AD3PH AD3PH AD3PH 

X30 Actinobacteria ActinobacteriaPH Actinomycetales Frankiaceae 

X78 Actinobacteria ActinobacteriaPH Actinomycetales Thermomonosporaceae 

X172 Actinobacteria ActinobacteriaPH Actinomycetales Thermomonosporaceae 

X544 Actinobacteria ActinobacteriaPH Actinomycetales Micromonosporaceae 

X798 Actinobacteria ActinobacteriaPH Actinomycetales Streptomycetaceae 

X1170 Actinobacteria ActinobacteriaPH Actinomycetales unclassified 

X1190 Acidobacteria AcidobacteriaPH Acidobacteriales AcidobacterialesOR 

X904 Actinobacteria ActinobacteriaPH Acidimicrobiales EB1017 

X943 Actinobacteria ActinobacteriaPH Acidimicrobiales Iamiaceae 
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Table 3- 3. Indicator species analysis on the validation dataset 

 
OTU ID p-value Allele Order Bacterial Lineages 

X211 1.47E-05 Major SOGA31CL monoderm 
X1448 0.000728477 Major Roseiflexales monoderm 
X1535 0.001353937 Major Actinomycetales monoderm 
X68 0.001662987 Major Solirubrobacterales monoderm 

X1099 0.001743929 Major SOGA31CL monoderm 
X71 0.002656365 Major MC47 monoderm 
X764 0.003061074 Major Actinomycetales monoderm 
X3724 0.004518028 Major ThermomicrobiaCL monoderm 
X113 0.005886681 Major SOGA31CL monoderm 
X505 0.006460633 Major Actinomycetales monoderm 
X1576 0.006497425 Major Actinomycetales monoderm 
X712 0.0065195 Major MC47 monoderm 
X471 0.006556291 Major Acidimicrobiales diderm 
X2530 0.007520235 Major Solirubrobacterales monoderm 
X131 0.007689478 Major Actinomycetales monoderm 
X1318 0.007836645 Major Solirubrobacterales monoderm 
X18 0.005128771 Minor Burkholderiales diderm 

X2114 0.005945548 Minor ChloracidobacteriaCL diderm 
X148 0.006129507 Minor Sphingomonadales diderm 
X1299 0.007534952 Minor CH21CL diderm 
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Chapter 4 

Evaluation of a Plant Growth-Promoting Microbial Soil 
Amendment Effects on Root Microbiome in Strawberry 
Plants 
 
 
A modified version of this chapter is submitted as “Deng, S., Wipf, H.M.L., Pierroz, G., 
Raab, T.K., Khanna, R. and Coleman-Derr, D., 2019. A Plant Growth-Promoting 
Microbial Soil Amendment Dynamically Alters the Strawberry Root Bacterial 
Microbiome. Scientific reports, 9(1), pp.1-15.”  
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4.1 Abstract  
 

Given concerns about food sufficiency in the U.S. and worldwide for the coming 
decades, every effort must be made to optimize the environmental conditions on crop 
production. There is an increasing demand for using microbial strategies to improve plant 
productivity in agricultural production. However, much work still remains to fully 
elucidate how beneficial plant-microbe associations are established and function, as well 
as what role soil amendments may play in shaping these interactions. Here, we describe a 
set of experiments to test the effect of a commercially available soil amendment product 
on the soil and strawberry (Fragaria x ananassa Monterey) root microbiome. We tested 
the hypothesis that this product’s application may correlate with distinct shifts in the root 
and rhizosphere microbiomes. The bacterial communities of the soil, rhizosphere, and 
root endosphere from amendment-treated and untreated fields were profiled at four time 
points across the strawberry growing season using 16S rRNA amplicon sequencing on 
the Illumina MiSeq platform. In all sample types, bacterial community composition and 
relative abundance were significantly altered with amendment application. Importantly, 
time point effects on community composition are more pronounced in the root and 
rhizosphere, which suggests an interaction between plant development and the effect of 
amendment treatment. Surprisingly, there was a slight overlap between the taxa within 
the amendment and those enriched in plant and soil following amendment application, 
suggesting that VESTA may act to rewire existing networks of organisms through an, as 
of yet, uncharacterized mechanism. Taken together, these results demonstrate that a 
commercial microbial soil amendment can impact the community structure of both plant 
roots and the surrounding environment.  
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4.2 Introduction 
 

Agriculture faces numerous abiotic and biotic challenges in optimizing crop 
production. Drought and excess salinity impact 45% and 19.5% of agricultural land, 
respectively (Flowers and Yeo, 1995; Dos Reis, Lima and de Souza, 2012; Onaga and 
Wydra, 2016), and plant disease is one of the leading constraints of agricultural 
productivity (Savary et al., 2012; Carroll et al., 2017) that accounts for total annual yield 
losses of US$220 billion globally (Chakraborty and Newton, 2011). Achieving food 
security is further compounded by the effects of climate change and rapid population 
growth (Alexandratos and Bruinsma, 2012; Myers et al., 2017). While preventative 
measures and early management of stresses are key to fortifying crop yield, current 
strategies often have calamitous ramifications and are unsustainable. Widely employed 
methods include the heavy application of exogenous fertilizers (Havlin et al., 2005), 
growth enhancers (Nawaz et al., 2016), pesticides (Oerke, 2006), and soil sterilization 
methods, such as fumigation with methyl bromide (MeBr) (Braun and Supkoff, 1994). 
While these treatments can be effective for managing stressors, they also can have dire 
consequences for human health, the environment, and long-term soil quality and health 
(Yates, Wang and Ernst, 1997). Adverse impacts of these methods include water, air, 
soil, and food contamination, increased incidences of cancer, the disruption of 
reproductive, neurological, and respiratory systems of mammals, birds, and fish, 
reductions in pollination and other important ecosystem services, ozone depletion, and 
eutrophication (Pimentel, 2005; Savci, 2012; Stehle and Schulz, 2015; Kim, Kabir and 
Jahan, 2017; Sabarwal, Kumar and Singh, 2018; Siviter et al., 2018). In recognition of 
these consequences, the regulation of several widely-used pesticides has increased in 
recent years (Duniway, 2002). Often in conjunction with pesticide use, chemical 
fertilizers are applied to help stimulate crop fitness and boost yields. Yet, not only is the 
supply of raw source materials for fertilizer production rapidly dwindling, several 
considerable issues arise with their intensive use (Gilbert, 2009). Only ~30% to 40% of 
applied fertilizer is actually taken up and utilized by crops, with the majority being lost to 
the environment (Yu et al., 2015). Runoff, leaching, and volatilization of fertilizers 
pollute air and water systems, contributing to ozone depletion, eutrophication and marine 
‘dead zones’, and increased incidence of human disease (Anderson, Glibert and 
Burkholder, 2002; Savci, 2012). Due to the lack of sustainability and the environmental 
impacts of pesticide and fertilizer use, new approaches are needed to further support and 
improve crop performance.  
  

One promising alternative that is being actively pursued is the use of plant 
growth-promoting microbes (PGPM), where there are a growing number of microbial 
amendments being commercialized for various crops (Berg, 2009; Coleman-Derr and 
Tringe, 2014; Vejan et al., 2016; Kumar and Verma, 2018). Along with the enhancement 
of plant productivity and yield, PGPM can allow for significant reductions in the 
application of chemical fertilizers and pesticides (Singh, Singh and Prabha, 2016; 
Timmusk et al., 2017). Recent work has shown that plants recruit specific microbial 
colonists via root and leaf metabolites, some of which are exuded into the soil and 
surrounding environment (Singh et al., 2004). In exchange for these compounds, PGPM 
can promote plant growth through a variety of mechanisms, including increasing soil 
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nutrient bioavailability, improving water acquisition, decreasing herbivore damage, and 
suppressing plant disease (Yang, Kloepper and Ryu, 2009; Berendsen, Pieterse and 
Bakker, 2012; Turner, James and Poole, 2013; Pii et al., 2015). 
 

The agronomic production of strawberry, an important horticultural commodity 
crop valued at US$2.8 billion (Suh, Guan and Khachatryan, 2017), faces a number of 
disease-related challenges, including the devastation by Verticillium dahliae, Pythium, 
Rhizoctonia, and Cylindrocarpon spp. (Martin and Bull, 2002). Pathogen attack can 
occur at many different stages of plant development and remains one of the biggest 
threats to the strawberry market (Daugaard and Lindhard, 2000). Pre-planting soil 
fumigation with MeBr is found to effectively suppress a broad range of strawberry 
diseases and has been the predominant strategy used for commercial strawberry 
production in California. As the use of this pesticide is being discontinued in many parts 
of the United States (Duniway, 2002), strawberry serves as a good agronomic system for 
the study of PGPM use as an alternative to traditional disease control methods (Martin 
and Bull, 2002). Strawberry further presents itself as a relevant biological system with its 
use in many recent development and fruit growth studies. Previous studies have utilized 
strawberry in investigating the effects of animal compost as a non-synthetic alternative to 
MeBr on root disease suppression (Millner, Ringer and Maas, 2004). Plant-associated 
Stenotrophomonas strains were also shown to stimulate root growth and root hair 
development by efficiently colonizing the strawberry rhizosphere (Suckstorff and Berg, 
2003). An amplicon-based metagenomics approach has also identified microbes that 
potentially play a role in yield decline in strawberry (Xu et al., 2015), where low 
abundances of beneficial bacteria and a nematode fungus, in addition to high levels of 
fungal root rot pathogens and wet soil conditions, have contributed to yield decline. 
Taken together, these recent findings suggest that manipulating the strawberry 
microbiome may be an effective way to increase both fitness and yield. 
 

There is ongoing research on how certain PGPM affect crop performance and the 
resident soil and plant-associated microorganisms (Castro-Sowinski et al., 2007; Trabelsi 
and Mhamdi, 2013). Field inoculation of rhizobia strains enhanced populations of Alpha- 
and Gamma-proteobacteria, together with Firmicutes and Actinobacteria, in the bulk soil 
of common bean plants (Trabelsi et al., 2011). However, inoculation of Azospirillum 
strains showed no prominent effects on the population structure of rhizobacterial 
communities in maize (Herschkovitz et al., 2005). Yet, few studies have explored the 
effect of community-level microbial amendments on the native soil microbiome, the 
survival of applied microorganisms in the field, and the temporal community dynamics of 
host-associated epiphytes and endophytes following amendment application. Additional 
research is needed to understand how microbial-based methods can be employed for 
improving crop growth.  
  

In this study, we explore the effect of a commercially available microbial soil 
amendment, VESTA, on the microbiome of strawberry plants. VESTA is a fermented 
liquid product composed of a broad spectrum of microbes, fermentation by-products and 
organic acids (VESTA, SOBEC Corporation, Fowler, CA), and the direct effect of 
VESTA on microbial communities in the soil or plant host is unknown. Here, we 
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investigate the effect of the amendment on soil physicochemistry, strawberry growth, and 
bacterial community composition, diversity, and function. We observed phenotypic 
differences in overall biomass and lateral root growth in amendment-treated strawberry 
plants. 16S rRNA gene amplicon-based Illumina sequencing revealed substantial changes 
in the strawberry microbiome following treatment with the amendment, but suggests that 
this effect is the result of the amendment modulating the compositional profile of existing 
root and soil microbes, rather than through replacement of the community with the 
product’s microorganisms. Shotgun sequencing of the amendment largely corroborated 
the community composition profile obtained through amplicon sequencing, and offers 
insight into its potential function. Together, these findings demonstrate that a commercial 
microbial soil amendment can alter the community structure of the strawberry root and 
surrounding soil environment. 
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4.3 Results 
 

4.3.1 The microbial soil amendment VESTA enhances strawberry yield 
and alters soil chemistry 
 

Roots from strawberries grown in amendment-treated fields displayed enhanced 
growth, as evidenced by significantly greater fresh weight across time points in 
comparison to control roots [Figure 4-1a]; treated plants displayed enhanced above-
ground growth at each time point as well [Figure 4-1b]. This indicates that amendment-
treated samples may differ from control in their greater ability to absorb water from the 
surrounding soil. Visual inspection revealed that this effect was likely from enhanced 
root-proliferation at the crown and greater aboveground shoot biomass [Figure 4-1b]. 
Additionally, amendment-treated roots only had significantly greater dry weight in the 
first and second time points out of the three time points that this trait was measured 
[Figure 4-2]. Lastly, the water content of amendment-treated roots was uniformly higher 
than in the control plants [Figure 4-1a], which can impact photosynthesis, plant 
performance, and actualized growth potential(Lambers, Stuart Chapin and Pons, 2008). 
  

In comparison to control soils, soils treated with the soil amendment had a higher 
wet-cohesive strength, greater mass plant-derived materials, and increased average soil 
particle aggregate-size. Additionally, treated soil had slightly increased soil pH (7.44 
versus 7.32 for control) [Table 4-1a]. Electrical conductivity (EC10) was also higher in 
amendment-treated soil compared to control soils (0.242 dS/m vs. 0.184 dS/m) [Table 4-
1a]. Comparing nitrate levels, amendment-treated soil was composed of distinctly less 
nitrate than the controls [Table 4-1a]. Total nitrogen of treated soils was 0.188% dry 
weight, while for controls it was 0.177% dry weight; for total carbon content, treated 
soils contained 0.385% dry weight while control soils contained 0.249% dry weight 
[Table 4-1a]. Based on energy-dispersive X-ray fluorescence (EDXRF), overall 
micronutrients were lower in the treated soils than controls [Table 4-1b]. In comparison 
to control plants, the roots of plants treated with the amendment product also had 
significantly higher phosphorus levels (2315 µg/g vs. 1747 µg/g of tissue) and 
significantly lower levels of aluminum, iron, and molybdenum; foliar tissue collected 
from treated plants at time point four showed generally greater levels of micronutrients 
than those collected from control plants [Table 4-2]. Taken together, these results 
demonstrate that amendment application has a significant effect not only on root growth, 
but on soil physiochemistry as well. However, with the constraints of a two-block design, 
we acknowledge that there is an unknown degree of spatial influence on soil 
physiochemistry, as well as on bacterial community assembly, and additional studies 
utilizing a fully randomized block design are needed to confirm these reported effects of 
the microbial soil amendment. 
 

4.3.2 Amendment treatment effects on bacterial diversity and 
composition of the strawberry root microbiome 
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To investigate the impact of amendment application on bacterial community 
composition in the root, rhizosphere, and surrounding soil, we performed 16S rRNA 
amplicon sequencing on the Illumina MiSeq platform using custom V3-V4 dual-indexed 
primers(Takahashi et al., 2014; Naylor et al., 2017). To allow for a direct comparison of 
microbes present in the amendment and microbes observed in our treated samples, 
samples of the product were also processed and sequenced using the same protocol. After 
demultiplexing, quality control, clustering based on 97% similarity threshold, and 
assigning taxonomies, 13,545 OTUs were generated. To remove underrepresented 
sequences which often represent sequencing artifacts(Tremblay et al., 2015), we filtered 
these OTUs by removing OTUs not seen more than 5 times in at least 3% of the samples 
(n=5). After filtering, we resampled the OTU table to normalize for differences in read 
count abundance between samples to a common read depth of 16,542 reads per sample. 
The resulting dataset of 3,387 OTUs was used in the downstream statistical analyses. 
 

We hypothesized that the addition of a complex microbial amendment would 
increase overall microbial diversity within the soil and root microbiomes. Rarefaction 
curves were used to estimate species richness as a function of sequencing depth and 
suggest that saturation in sequencing was achieved, as curves began to plateau or reached 
their asymptote for all sample types by treatment [Figure 4-3]. Unexpectedly, we found 
that total community diversity, as measured by Shannon’s Diversity, decreased in treated 
samples as compared to control samples, for both soil and rhizosphere sample types at 
every time point [Figure 4-4a; Table 4-3a]. By contrast, Shannon’s Diversity in the root 
was not significantly different between treated and control samples [Figure 4-4a; Table 
4-4]. Additionally, there is a significant effect of time point on Shannon’s Diversity (F 
value = 21.555, p<0.001) [Table 4-3b]. From time point 1 to 4, Shannon’s Diversity 
decreases in treated soil samples [Figure 4-4a]. In the rhizosphere, Shannon’s Diversity 
decreases from the 1st to the 3rd time point in treated samples; however, in the 4th, it 
increases to a level more similar to the Shannon’s diversity observed in the control 
samples [Figure 4-4a]. In the root, Shannon’s diversity in treated samples is similar to 
levels in control samples, increasing from time point 1 to 2, and then gradually decreases 
again for all successive time points [Figure 4-4a]. Finally, the mean number of observed 
species was found to be lower in amendment-treated samples than control samples in all 
sample types and time points [Figure 4-5a]. Taken together, these results suggest that 
amendment application alters root-associated microbial communities and is correlated 
with an overall decrease in bacterial diversity in the treated area, but that this effect is 
mitigated in some way within the plant host. 
 

To test which factors in our experimental design contribute to differences in the 
beta diversity of bacterial communities associated with the soil, rhizosphere, and root, 
permutation multivariate analysis of variance (PERMANOVA) analyses were performed 
independently on each sample type using Bray-Curtis distances. These results indicated 
that the effect of amendment application on community composition was larger in soil 
than in the root and rhizosphere samples [Table 4-5]. These results also revealed that 
time point influenced community composition [Figure 4-5b; Table 4-5], and that this 
effect was least pronounced in soil samples as compared to root and rhizosphere. To 
further visualize whether amendment treatment influenced bacterial community 
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composition in the soil, rhizosphere, and root, we conducted principal coordinate analysis 
(PCoA) for all sequenced samples using both Bray-Curtis and UniFrac distances [Figure 
4-4b; Figure 4-5b]. PCoA using the Bray-Curtis dissimilarities [Figure 4-4b] displayed 
strong clustering of samples by sample type along the first PCoA axis, which explains 
36.8% of the variance. Additionally, we observed that samples cluster by treatment type 
along the second PCoA axis, which explains 15.7% of the variance. PCoA based on 
weighted UniFrac distances [Figure 4-5b] revealed similar trends. The result that the 
effect of time point was least pronounced in soil samples is observable in the PCoA plot, 
where for root and rhizospheres, amendment-treated samples belonging to the fourth time 
point were found to cluster closer to the untreated samples [Figure 4-5b]. Notably, 
samples taken at time point four were treated more than a month prior to sampling, 
whereas samples collected at all other time points had been treated one or two weeks 
prior to sampling. This suggests that in the interim between treatments, the soil and root 
microbiomes in the treated field may drift back towards a compositional profile more 
similar to that of control fields. To determine the percent of variance explained by the 
factors shown to be significant by PERMANOVA (time and treatment, and their 
interaction) [Table 4-5], we next performed a canonical analysis of principal coordinates 
(CAPS) using the Bray–Curtis distance independently on each sample type [Table 4-6a]. 
Results were very similar to those determined by PERMANOVA, where treatment 
explained the largest proportion of variance across all sample types (42%, 32%, and 39% 
in the soil, rhizosphere, and root, respectively) [Figure 4-6a]. The percent variance 
explained by time point is largest in the rhizosphere (21%), followed by the root (18%) 
and smallest in the soil (14%) [Figure 4-6a]. A CAPS analysis performed separately for 
each time point and constrained for treatment type showed that time point effects on 
community composition are more pronounced in the root and rhizosphere [Figure 4-6b, 
Table 4-6b], which suggests that the extent to which the amendment impacts bacterial 
communities varies across plant development and may be influenced by shifts in 
microbial recruitment and community maintenance via exudation rates and profiles. In 
addition, treatment explains less variation at time point four in root and rhizosphere, but 
not in soil [Figure 4-6b, Table 4-6b]. Taken together, these results suggest that treatment 
with the amendment has an effect on bacterial community composition not only in the 
soil, where it is applied, but also within and on the plant root. 
 

4.3.3 Amendment treatment is correlated with increases in 
Betaproteobacteria 
 

Amendment treatment was correlated with changes in relative abundance at 
different taxonomic levels within all sample types [Figure 4-7b]. Changes in the roots 
were characterized at the class level by a significant increase in Betaproteobacteria (P < 
0.001) and a concomitant decrease in the abundance of Actinobacteria (P < 0.001). An 
indicator species analysis was used to identify at higher taxonomic resolution the 
individual bacterial genera with enrichment or depletion patterns in roots treated with the 
amendment as compared to controls. These analyses revealed that genera from the 
families Alteromonadaceae, Comamonadaceae, Burkholderiales, which are known to 
contain species with beneficial properties to plants(Kyselková et al., 2009), were all 
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observed to be more abundant in amendment-treated roots. In addition, several families 
and genera of Betaproteobacteria (Ramlibacter, Rhodocyclales, Methylophilaceae, 
Methylotenera, Acidovorax, Comamondaceae) that were significantly enriched in 
amendment-treated samples versus control samples have the capabilities of nitrogen 
fixation(Loy et al., 2005; Shang and Yi, 2015; Yan et al., 2017), 
denitrification(Kalyuhznaya et al., 2009; Mustakhimov et al., 2013), and sulfur 
cycling(Schmalenberger et al., 2008) [Table 4-7]. However, it is important to note that 
the specific strains observed in our study that are represented by these indicator lineages 
may or may not possess these properties noted in the literature; additional work in the 
future to reveal the functional capacities of individual isolates through isolate sequencing 
and phenotyping will help to resolve this knowledge gap. 
  

Based on our observation that the amendment has an overall larger effect on soil 
microbiome composition than roots, we hypothesized that a larger number of OTUs 
would be shared between treated and control samples in roots, as compared to soils. 
However, we observed that the percentage of differentially present OTUs between 
amendment-treated and control samples is greatest in roots, where 594 (27.2%) and 396 
(18.2%) OTUs are distinct to control and amendment-treated, respectively, with only 
54.6 % of the OTUs held in common [Figure 4-7b]. By comparison, 2399 (79.0%) and 
2378 (77.6%) OTUs are shared across soil and rhizosphere samples, respectively. 
 

4.3.4 Community compositional changes associated with VESTA 
treatment are not driven by an increase in abundance of VESTA 
organisms 
 

To investigate whether the changes in community composition in the soil, root 
and rhizosphere following inoculation with the amendment product are due to increased 
colonization by microorganisms present within VESTA product, we first sought to 
characterize the microbial diversity, community composition, and compositional stability 
within the product. As the product VESTA is created by first mixing two raw pre-
products, BHF-10 and SOBEC, we collected initial samples of both pre-products, and 
weekly samples of VESTA for 14 weeks. Bray-Curtis distance of pairwise treated time 
point samples also showed that the product changes significantly over time [Figure 4-8, 
Figure 4-9]. As amendment application is typically administered using product prepared 
within one to two weeks, we considered the composition of VESTA samples after one 
and two weeks after the mixing of the pre-products as representative of the VESTA 
community applied in our strawberry field study for downstream analysis. 
  

To help eliminate potential taxonomic bias introduced by our choice of 16S rRNA 
primers used in our study, a shotgun metagenomic analysis of the VESTA product was 
also performed. Both shotgun and 16S datasets revealed a community composition of 
roughly 500 organisms [Figure 4-10a] that was largely comprised of the genera 
Mycobacterium, Caulobacter, Novosphingobium, Bacillus, Flavobacterium, and 
Pseudomonas, many of which are reported to contain strains with plant growth-
promoting characteristics(Marek-Kozaczuk and Skorupska, 2001; Kyselková et al., 2009; 
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Soltani et al., 2010; Shafi, Tian and Ji, 2017). Due to the unexpectedly complex nature of 
the VESTA community, an investigation into the functional capacity of the product 
provided limited information on the product’s potential relevance for plant growth-
promoting capabilities; however, we did observe an abundance of genes related to 
microbial stress responses, including dormancy, sporulation, and secondary metabolism, 
as well as phosphorus, sulfur, nitrogen, iron, and potassium metabolism, which could 
play a role in improving nutrient acquisition for the host plant [Figure 4-10b] (Terrazas 
et al., 2016). 
  

We next explored the overlap between OTUs present in the VESTA product with 
all those uniquely enriched in amendment-treated and control samples across the three 
different sample types. Surprisingly, we did not observe a large enrichment in abundance 
of the majority of the OTUs belonging to the product within treated versus control 
samples in any compartment [Figure 4-11a; Figure 4-12]. However, a comparison of the 
lists of OTUs uniquely enriched in control and treated samples across all sample types as 
determined by indicator species analysis with the list of OTUs present in the product 
revealed that a larger proportion (30% or 39 OTUs) were members of the product in the 
treated samples than OTUs in the controls (14% or 19 OTUs) [Figure 4-11b]. 
Additionally, the mean rank abundance within the product for all OTUs uniquely 
enriched in treated samples was roughly 1.5 fold higher than that for OTUs enriched in 
the control samples [Figure 4-11c]. Of the 639 OTUs present in the product, 436 
(68.2%), 426 (66.7%), and 327 (51.2%) were observed to also be present within the 
amendment-treated soil, rhizosphere, and root compartments, respectively [Figure 4-
12]. By comparison, 396 (62%), 413 (65%), and 288 (45%) OTUs from the product were 
observed to also be present in the control soil, rhizosphere, and root samples, 
respectively. 
 

Taken together, these results demonstrate that amendment treatment leads to a 
broad restructuring of the root microbiome, and that while treatment results in significant 
changes in microbial community composition, increases in the abundance of the microbes 
present in the product itself are not the primary driver of this difference. 
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4.4 Discussion 
 

Our 16S rRNA gene amplicon-based metagenomic analysis of soil, rhizosphere 
and root samples treated with the amendment product reveals that bacterial communities 
can be significantly altered by microbial amendment application. Unexpectedly, 
application of the amendment was associated with decreases in soil and rhizosphere 
Shannon Diversity. Similar results have been observed in previous studies; functional and 
bacterial and fungal diversity was shown to decrease post amendment application (Siles 
et al., 2014), and the shift was observed to be dependent on specific parameters, 
including soil type, soil pore size (15-20 µm), and year (White et al., 1994; Koyama et 
al., 2014). However, other studies reveal that inoculation with certain soil amendments 
can instead increase or not impact soil and rhizosphere alpha diversity, including 
application of biochar (De Tender et al., 2016; Jaiswal et al., 2017; Kolton et al., 2017), 
vermicompost (Strauss, Stover and Kluepfel, 2015), a heavy metal immobilizer 
amendment(Touceda-González et al., 2015), and bacterial inoculations(Tian and Gao, 
2014). One explanation for these discrepancies in effects may be the inherent complexity 
of each inoculant, and VESTA represents a more complex microbial system as compared 
with many of these other treatments. More generally, we expect that changes in microbial 
diversity in response to amendment application are likely dependent on a wide variety of 
factors, including edaphic and abiotic parameters of the environment being amended, but 
also the individual genetic and phenotypic characteristics of the microbes present in the 
amendment (Garbeva, van Veen and van Elsas, 2004; Pii et al., 2016). Additional studies 
in controlled settings that allow for additional environmental factors to be tested within 
the experimental design would further our understandings of the role of amendment 
application on soil and plant-associated microbial diversity. 
  

As a pre-existing community of microorganisms, VESTA differs from many 
commercially available products in that its constituents already exist within the bounds of 
an established nutrient exchange system. The absence of these types of supporting 
relationships is often cited as the reason many single microbe inoculants that show 
promise in greenhouse studies fail to produce significant effects when tested in more 
complex field-based trials. While it has been observed that successful establishment of 
introduced microbes occurs less readily in diverse soils(van Elsas et al., 2012; Vivant et 
al., 2013), and some research also indicates that rhizosphere microbiomes are highly 
buffered against microbial invaders (reviewed by (Ambrosini, de Souza and Passaglia, 
2016), we anticipated that the product’s diversity would allow for increased colonization 
of its constituents within the root and rhizosphere. Surprisingly, we observed that the 
changes in community composition following treatment with the amendment were not 
primarily shifts in the abundance of bacterial organisms present in the product, but 
instead shifts in bacteria native to the environment. This suggests that the amendment is 
instead acting through an unknown mechanism to rewire the abundance patterns of 
existing soil and root microbes. As precedent for this, past research has found that 
bacterial inoculants on seeds are correlated with improved plant growth due to the 
stimulation of native microflora (reviewed in (Khare and Arora, 2015)).  
  



 
 

83 

One of the primary shifts we observed across all sample types was an increase in 
the relative abundance of Betaproteobacteria with amendment application. 
Betaproteobacteria are Gram-negative aerobic or facultative bacteria that are comprised 
of chemolithotrophs and phototrophs, and they have a broad range of metabolic 
capabilities, including the ability to fix nitrogen (Falkow et al., 2006). Increases in this 
class suggest treatment could hypothetically increase nutrient bioavailability for both the 
plant and the surrounding microbial communities. With an indicator species analysis, 
family and genera under the phylum of Betaproteobacteria that are highly enriched under 
amendment treatment have been ascribed the functions of denitrification and sulfur 
cycling; this may partly explain the reduced nitrate in amendment-treated soils, as 
compared to control soils. Another primary shift we found with amendment application 
was a decrease in abundances of Actinobacteria, particularly in amendment-treated roots. 
As two recent studies have demonstrated that water stress in crop roots systems is 
correlated with an increase in the abundance of many Actinobacterial lineages(Naylor et 
al., 2017; Santos-Medellín et al., 2017), the observed decrease in Actinobacteria may be 
a result of the observed increase in water uptake in amendment-treated plants. Additional 
studies in other field sites will reveal which of these observed changes are typical for the 
application of the amendment, and which are specific to this experimental environment. 
  

There are several mechanisms by which treatment with the amendment may be 
enacting community changes. Microbes in the product may outcompete a few, select 
native microbes and eliminate existing community hubs by means of greater resource use 
efficiency and metabolic potential. Amendment application may also cause organisms 
from the amendment and/or native microbes to produce new or higher levels of 
antimicrobials that affect overall diversity (Hol et al., 2015). Metabolites produced 
initially from VESTA microbes may also directly impact plant growth, which then may 
cause indirect stimulation of a different community by influencing subsequent root 
growth and exudate release. In addition, the amendment product may directly contribute 
fungi or other microfauna that may then influence bacterial communities. While currently 
unknown, the specific mechanisms through which the amendment acts to modulate 
community structure, and whether this mechanism is also responsible for the observed 
growth promoting traits, will require further experimentation. VESTA has been utilized 
by commercial farmers in the past for its ability to improve plant disease resistance, 
growth, and yield. While the observed increase in plant biomass with amendment 
application may correlate with increased yield (Lima et al., 2017), additional testing is 
needed to determine how soil treatment directly relates to microbial and genetic 
signatures of soil fertility, plant growth, and - in particular - yield and fruit quality (such 
as flavor, resistance to rot, and nutritional profile), as well as to overall shifts in microbial 
abundances and the fungal communities associated with the plant and soil. Furthermore, 
although this study was conducted under agriculturally relevant field conditions, and in a 
pair of plots which had received identical treatment in prior years, the two-block design 
used in this study limits our ability to draw conclusions regarding the statistical 
significance of the effect of VESTA in shaping the root microbiome; future work using 
additional replication and randomization, and in additional soil environments, will be 
useful for determining how generalizable these findings are. 
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Finally, we observed that many of the shifts associated with amendment 
application are dependent on time. In the final time point, the treated samples are more 
similar to control samples for all sample types. Importantly, in the fourth time point, 
samples were collected nearly one month after the most recent amendment application, in 
contrast to the other time points, in which the amendment had been applied two weeks 
prior to collection. This result is typical for studies conducted on the introduction of 
single organisms into complex soil systems. Several studies have found the general 
reduction of levels of individual inoculants introduced to soils(van Veen, van Overbeek 
and van Elsas, 1997; Matos, Kerkhof and Garland, 2005; Kröber et al., 2014; Schreiter et 
al., 2014), finding as in little as a week there was more than a 99% reduction in 
abundance. Another study with pathogenic Pseudomonas aeruginosa showed a decline to 
below detectable levels after 3–5 weeks post introduction under non-sterile microcosms, 
while the population was maintained at high abundance under sterilized 
microcosms(Deredjian et al., 2014). Our data suggest that even in cases where 
amendments represent complex communities of microorganisms, soil and root 
communities both have a resilience that will lean towards eventual recapitulation of the 
native state following microbial inoculation. This has important implications for the 
successful use of such products in commercial agriculture, and suggests that repeated 
applications may be beneficial for the persistence of the plant growth promoting agents. 
  

Our 16S rRNA gene amplicon-based metagenomic analysis of soil, rhizosphere 
and root samples treated with the amendment product reveals that bacterial communities 
can be significantly altered by microbial amendment application. To our knowledge, this 
is the first reported instance of a microbial and nutrient-based soil amendment causing 
shifts in the bacterial communities present in the rhizosphere and root endosphere of a 
crop species. We find that the prescribed concentration of the product is effective in 
inducing changes in local bacterial communities, which may contribute to the root 
growth-promotion observed under treatment with the amendment. 
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4.5 Method 
 

Site description and amendment application To investigate the effect of the 
microbial soil amendment on field-grown strawberries, soil properties, and bacterial 
communities associated with the host and soil, we designed an experiment that allowed 
for collection of amendment–treated and untreated control samples from a commercial 
strawberry farm in Guadalupe, CA (34.9716° N, 120.5718° W) [Figure 4-12]. The sandy 
loam soil of the strawberry operation is a mixture of sandstone-derived alluvium from the 
Coast Range and wind-borne materials (Watson, 1919). Plugs of a day-neutral strawberry 
cultivar (Fragaria x ananassa Monterey) were transplanted to beds in 12-acre plots, and 
limited by the commercial farm site’s irrigation system, the microbial soil amendment 
VESTA was applied to one of two neighboring plots in a two-block design. The field 
utilized had been uniformly planted with broccoli (Brassica oleracea var. italica) the 
previous season and received identical watering and fertilizing treatments and crop 
rotations before the start of this study. The microbial soil amendment VESTA was 
fertigated via drip irrigation systems to the treated plot starting at seven days after 
planting, and the freshly prepared product was applied each month from January through 
August during the year of 2015. At the time of each application, 75 liters of VESTA was 
applied per acre. Water in the system was run for approximately 30 minutes in order to 
transfer the product into the strawberry root zone. 
  

Sample collection and processing Four replicate samples each of soil and whole 
root systems were collected from both treatments before (time point 1), during (time 
points 2 and 3) and after (time point 4) the fruit harvesting season, which were 
approximately two, three, four and seven months after planting. Soil samples were 
collected from the topsoil approximately 15 centimeters (cm) from each individual plant 
that was sampled, and whole root systems were collected by shoveling to a depth of 
approximately 20 cm and sent to the lab overnight with ice packs (Supporting 
Information Fig. S1). Samples were stored at -80°C until processing. The root endosphere 
and rhizosphere fractions were separated as detailed by(Simmons et al., 2018). In brief, 
fractions were placed in epiphyte removal buffer (0.75% KH2PO4, 0.95% K2HPO4, 1% 
Triton X-100 in ddH2O; filter sterilized at 0.2 µM) and separated using a sonication 
method (pulses at 160 W for 30 seconds, separated by a 30 second pause for 10 minutes 
at 4 °C). Root endosphere and rhizosphere samples were then stored in sterile epiphyte 
removal buffer at -80 °C until DNA extraction. 
  

Soil chemistry analysis For a broad survey of the amendment product’s influence 
on bulk soil chemistry, we utilized EDXRF for non-destructive analysis of soils [Table 4-
1a]. Samples weighing 1.80 to 1.85 grams of the <2 mm sieved and dried soils were 
analyzed in a Spectro XEPOS HE spectrometer (AMETEK Inc.; Berwyn, Pennsylvania, 
USA). Each sample was interrogated at 4 spots on a 35 mm-diameter planchet, and the 
values averaged after normalizing to a Compton scattering background. 
  

To standardize the chemical and physical tests and permit ease of handling, 
control and amendment treated soils were gently warmed from -8 °C to 3 °C overnight. 
Soil physical observations were performed using a <2 mm sieve to determine wet-
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cohesive strength, and physical manipulation was used to determine textural 
characteristics and average aggregate-size using oven-dried (55 °C for 48 to 72 hours). 
Two grams of soil solubilized in the saturated paste extract method was used in 
determining soil temperature-corrected pH with an Ag/AgCl electrode (Fisher Scientific), 
and electrical conductivity (EC10) with a conductivity probe Russell RL060-C (W.W. 
Grainger, Inc., Lake Forest, IL, USA) [Table 4-1b] (Rhoades et al., 1989). The <2 mm 
sieved fraction of two soil samples per treatment were analyzed first for soil carbon and 
nitrogen using a Carlo Erba 1500NA elemental analyzer (Carlo Erba; Milan, Italy). 
Separate subsamples were extracted(Keeney and Nelson, 1982) with 2M KCl to 
determine nitrate and ammonium levels with a WESCOR SmartChem 200 discrete 
analyzer (Unity Scientific; Milford, MA), and exchangeable cations from soil estimated 
using 1 M (pH=7.0) ammonium acetate extractions, followed by inductively coupled 
plasma-optical emission spectrometry (ICP-OES). 
  

Strawberry plant and product nutrient analysis The edible portions, 
strawberry aggregates of achenes, rely on the concerted efforts of the root zone and 
attendant microbiota to mine available nutrients from the soil that are then transported to 
the fruit. For all below ground tissue harvested at time points 1-4, Ca, Mg, K, Na, P, S, 
and micronutrients were analyzed with ICP-OES [Table 4-2]. Tissue was rinsed with 
distilled water, dried slowly at 55oC (48-72 h), and ground to flour consistency using a 
reciprocating ball-mill (SPEX Inc.; Metuchen, NJ). Powder was then digested using an 
overnight soak in concentrated HNO3 at room temperature, followed by heating to 180-
210 oC in a programmable heating block in 2:1 (v/v) HNO3:HClO4, as described 
in(Miller, 1997). All values are expressed on a mg/kg oven-dry basis, utilizing 
subsamples dried to constant weight at 105 oC. Foliar tissues were only compared at time 
point 4, the final harvest, in order to not interfere with commercial fruit harvest. 
Composited from 5 plants spatially-dispersed in the control field and the amendment-
treated field each, leaves were dried and ball-milled as described above. Energy-
dispersive X-ray fluorescence (EDXRF) was then used to analyze a suite of elements 
similar to that for roots [Table 4-2]. The nutrient profile of the liquid product VESTA 
was assessed by D&D Agricultural Laboratory, Inc. (Fresno, CA) by means of a pH 
analyzer, electrical conductivity meter for soluble salts, FP-528 (Leco Corporation, St. 
Joseph, MI) for total nitrogen, and Optima 8000 ICP-OES (PerkinElmer, Inc., Waltham, 
MA) for all other parameters [Table 4-8]. 
  

DNA extraction and PCR amplification Soil and rhizosphere DNA was 
extracted using extraction kits (MoBio PowerSoil DNA Isolation Kit, MoBio Inc., 
Carlsbad, CA) following the manufacturer’s protocol. For root endosphere samples, roots 
were homogenized using mortar and pestle in liquid nitrogen and DNA was extracted 
using a modified CTAB DNA extraction procedure(Naylor et al., 2017). Due to high 
humic substances in root endosphere DNA, which potentially inhibit PCR reaction, we 
performed a cleanup step after DNA extraction using a modified MoBio PowerSoil kit 
protocol supplied by the manufacturer. We previously tested that DNA extraction method 
had no significant effect on the DNA preparation method(Naylor et al., 2017). We 
amplified V3-V4 region of 16S ribosomal gene using a dual-indexed 16s rRNA Illumina 
iTags primer (341F (5’-CCTACGGGNBGCASCAG-3’) and 785R (5’-
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GACTACNVGGGTATCTAATCC-3’) as described in(Takahashi et al., 2014) using 5-
Prime Hot Master Mix (catalog No. 2200410). After DNA extraction, DNA samples were 
diluted to 5 ng/ µl and randomized in 96-well plates. Water blanks were included on each 
96-well plate as negative controls. PNA clamps were used to minimize host-derived 
amplicons from both chloroplast and mitochondrial 16S rRNA gene sequences(Lundberg 
et al., 2013). Reactions included 11.12 µL DNase-free sterile H20, 0.4 µg BSA, 10.0 µL 
5-Prime Hot Master Mix, and 2 µL template, and 0.75 µM of chloroplast and 
mitochondria PNAs. PCR reactions were performed in triplicate in three thermocyclers 
(to account for possible thermocycler bias) with the following conditions: initial 3 min 
cycle at 94°C, then 30 cycles of 45 seconds at 94°C, 10 sec at 78°C, 1 min at 50°C, and 
1.5 min at 72°C, followed by a final cycle of 10 min at 72°C. Triplicates were then 
pooled (128 samples per library) and DNA concentration for each sample was quantified 
using Qubit reader. Pools of amplicons were constructed using 100 ng for each PCR 
product. Before submitting for sequencing, pooled samples were cleaned up with 1.0X 
volume Agencourt AMPureXP (Beckman-Coulter, West Sacramento, CA) beads 
according to the manufacturer’s directions, except for the modifications of using 1.0X 
rather than 1.6X volume beads per sample, dispensing 1500 µL 70% EtOH to each well 
rather than 200 µL, and eluting in 100 µL DNase-free H20 rather than 40 µL. An aliquot 
of the pooled amplicons was diluted to 10 nM in 30µL total volume before submitting to 
the QB3 facility at UC Berkeley for sequencing using Illumina Miseq 300bp pair-end 
with v3 chemistry. 
  

Amplicon sequence processing, OTU classification and taxonomic assignment 
Sequencing data was analyzed using the iTagger pipeline developed by the U.S. 
Department of Energy’s Joint Genome Institute(Tremblay et al., 2015). This pipeline 
wraps several packages for the filtering, merging, clustering and taxonomy assignment, 
including CUTADAPT, FLASH, USEARCH, and RDP(Wang et al., 2007; Edgar, 2010; 
Magoč and Salzberg, 2011; Martin, 2011). In brief, after filtering 28,581,170 16S rRNA 
raw reads for known contaminants (Illumina adapter sequence and PhiX), primer 
sequences were trimmed from the 5’ ends of both forward and reverse reads. Low-quality 
bases were trimmed from the 3’ ends prior to assembly of forward and reverse reads with 
FLASH(Magoč and Salzberg, 2011). The remaining 18,717,158 high-quality merged 
reads were clustered with simultaneous chimera removal using UPARSE(Edgar, 2013). 
After clustering, 11,204,438 read counts mapped to 13, 545 operational taxonomic units 
(OTUs) at 97% identity. The resulting reads produced on average approximately 72,298, 
88,493 and 76,070 reads per sample for soils, rhizospheres, and roots respectively. 
Taxonomies were assigned to each OTU using the RDP Naïve Bayesian Classifier(Wang 
et al., 2007) with custom reference databases. For the 16S rRNA V3-V4 data, this 
database was compiled from the May 2013 version of the GreenGenes 16S 
database(DeSantis et al., 2006), the Silva 16S database(Quast et al., 2013) and additional 
manually curated 16S rRNA sequences, trimmed to the V3-V4 region. After taxonomies 
were assigned to each OTU, we discarded 1) all OTUs that were not assigned a Kingdom 
level RDP classification score of at least 0.5, 2) all OTUs that were not assigned to 
Kingdom Bacteria. To remove low abundance OTUs that are in many cases artifacts 
generated through the sequencing process, we removed OTUs without at least 5 reads in 
at least 5 samples. We also removed samples have less than 10,000 reads, which yielded 
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3,387 high-abundance OTUs (respectively) for downstream analyses. These thresholds 
were found to be suitable using technical replicates in a dataset published 
previously(Coleman-Derr et al., 2016). To account for differences in sequencing read 
depth across samples, all samples were rarefied to 16,542 reads per sample for specific 
analyses, or alternatively, by dividing the reads per OTU in a sample by the sum of 
usable reads in that sample, resulting in a table of relative abundance frequencies; OTUs 
which were reduced to less than one read per OTU after rarefaction were discarded to 
yield 2,464,758 measurable, rarefied reads for downstream analysis. The raw sequencing 
reads for this project will be deposited in the NCBI Short Read Archive SUB3636449. 
  

Shotgun metagenomic sequence processing and analysis of amendment 
product In order to assess the metagenomic composition of the VESTA product itself, 
three 50mL aliquots were made from the same batch of VESTA and treated as technical 
replicates. To extract genomic DNA, the 50 mL aliquots of homogenized product were 
centrifuged at 10,000 rpm for 20 minutes. The supernatant was discarded, and the pellet 
was then re-homogenized. Of the resulting sediment, 0.250 grams were processed 
according to manufacturer instructions with the PowerSoil DNA Isolation Kit (MO BIO 
Laboratories, Inc., Carlsbad, CA, USA). DNA was sheared to 300 bp using a Covaris 
Focused-ultrasonicator (Covaris, Inc., Woburn, MA, USA), and then used to generate 
libraries with the Kapa LTP Library Preparation Kit (Kapa Biosystems, Inc., Wilmington, 
MA) and adapters and unique barcodes provided by the QB3-Berkeley facility to allow 
for multiplexing. Sequencing was performed at QB3-Berkeley on the Illumina 
HiSeq2500 system with 150 bp paired-end reads. De-multiplexing was performed by the 
California Institute for Quantitative Biosciences (QB3-Berkeley) Functional Genomics 
Laboratory. We received sequences for 266 million reads, or an average of 88.5±4.1 
million reads per technical replicate, for a total of 45.5 billion bases. Raw reads were 
uploaded to Metagenomics RAST server (MG-RAST) for paired-end joining, quality 
control, and taxonomic and functional annotation(Meyer et al., 2008). The raw 
metagenome sequencing reads for this project will be deposited in the NCBI Short Read 
Archive SUB3688024. After quality control, one of the three technical replicates was 
revealed to be of much lower quality and was discarded. The two replicates we chose to 
retain accounted for a total of 172 million reads, of which 21.1 million (12.3%) failed 
quality control, 11.4 million (6.63%) could not be identified, and 139 million (81.1%) 
were assigned functional and/or taxonomic annotations according to default parameters 
(alignment length cutoff = 15bp, e-value cutoff = e-5, percent identity cutoff = 60%) 
using RefSeq database(O’Leary et al., 2016). Of those sequences which could be 
identified, 329,113 sequences (0.24%) contain ribosomal RNA genes, 63.6 million 
sequences (45.7%) contain predicted proteins with known functions, and 75.2 million 
sequences (54.0%) contain predicted proteins with unknown function. Over 97% of all 
reads were determined to belong to bacteria, compared to only 0.12% of reads being 
assigned fungal identity. For this reason, we decided to focus solely on the bacterial 
sequences in this study. Functional annotations according to the SEED subsystem 
database(Overbeek et al., 2014) are presented in this publication. 
  

Statistical analysis RStudio (version 1.0.136; RStudio Team) was utilized for all 
statistical analyses with the packages phyloseq(McMurdie and Holmes, 2013) and 
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vegan(Oksanen et al., 2016). For plant phenotype data, scatter plots were generated using 
ggplot2, and Analysis of Variance (ANOVA) was performed with function aov. For the 
Alpha diversity measurement, Shannon Index of diversity and observed OTUs were 
calculated with the estimate_richness function in the R package phyloseq. ANOVAs were 
performed with function aov for Sample Type, Treatment, and Time Point. A Tukey’s 
Post Hoc test was performed using function TukeyHSD in the stats package and with 
HSD.test in the package agricolea to test which levels were significantly different from 
one another. Beta diversity was measured using Bray-Curtis distances and UniFrac 
distance with function ordinate in the R package phyloseq. For UniFrac distances, trees 
were built with default parameters using FastTree(Price, Dehal and Arkin, 2010) with an 
alignment constructed in Muscle(Edgar, 2004). Canonical Analysis of Principal 
Coordinates (CAPs) was performed for subsets of the data with each sample type and 
time point to determine the percent variance explained by treatment, time point and 
replicate, or treatment, sample type, and replicate, respectively, using the capscale 
function in the R package vegan(Oksanen et al., 2016). The non-parametric Kruskal-
Wallis test in R was used to compare Shannon indices and class-level relative abundances 
between treated and untreated within each time point and sample type. Indicator species 
analyses run on root samples to determine genera that were enriched for either control or 
amendment treatments were performed using R package indicspecies(De Caceres, Jansen 
and De Caceres, 2016), with p-values < 0.01 based on permutation tests run with 999 
permutations. All scripts used can be found at a public repository on github 
(https://github.com/siwendeng/Strawberry-Microbiome). 
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Figure 4-1 
 

 
 

Figure 4- 1. Treatment effect on strawberry root growth 

a. Line plot illustrating the average trend of 5 to 6 replicates per treatment per time point 
for root fresh weight (RFW) in grams and percentage Root Water Content (RWC) in 
amendment-treated (indicated in blue) and control (yellow) strawberry plants across the 
four sampling time points. RWC was calculated using (RFW – root dry weight)/RFW. 
Data shown are mean ± SE. (‘*’ indicates p-value < 0.01) b. Photographs of amendment-
treated and control strawberry fields across four time points in upper panel. Four time 
points correspond to sampling dates of March 18 (light grey circle), April 8 (grey circle), 
May 13 (dark grey circle), and August 24 (black circle) in 2015. c. Two representative 
plants from treated and control fields from the 3rd sampling time point in lower panel. 
Amendment-treated strawberry plant displays enhanced root proliferation at the crown 
and greater aboveground shoot biomass. 
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Figure 4-2 
 

 
 
Figure 4- 2. Treatment effects on strawberry plant dry weight 

Line plot illustrating the average trend of 5 to 6 replicates per treatment per time point for 
root dry weight across the three sampling time points. 
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Figure 4-3 
 

 
 
Figure 4- 3. Rarefaction curves to estimate alpha diversity 

a. Shannon’s diversity indices, and b. number of observed species, as a function of 
sequencing depth. 
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Figure 4-4 
 

 
 

Figure 4- 4. Treatment effect on strawberry root microbiome 

a. Box and whisker plots representing Shannon’s Diversity indices for all samples based 
on Bray-Curtis distances in amendment-treated (blue) and control (yellow) samples for 
each sample type and at each of the four sampling time points; soil (upper panel), 
rhizosphere (middle panel), and root (lower panel) indicate that amendment treatment 
correlates with a decrease in the within-sample diversity in soil and rhizosphere samples, 
but not in roots. The horizontal line within each box represents the median index value, 
and the bottom and top edges of each box indicate the 25th and 75th percentiles, 
respectively. Individual points are outliers. b. Principal coordinate analysis (PCoA) plot 
for all samples using Bray-Curtis distances indicates that the largest source of variation 
between microbial communities is sample type (PCo 1, 36.8%) and the second largest 
source of variation is treatment (PCo 2, 15.7%). Both control soil (light brown circles), 
rhizosphere (light yellow), and root (light green) samples and amendment-treated soil 
(dark brown), rhizosphere (dark yellow), and root (dark green) samples cluster together 
within their respective treatment and sample types.  



 
 

94 

Figure 4-5 
 

 
 

Figure 4- 5. Amendment application correlates to reduced numbers of observed 
species, and samples cluster by treatment 

a. Box-and-whisker plots of the numbers of observed species in amendment-treated 
(blue) and control (yellow) samples for each sample type (soil, rhizosphere, root) and 
across the four sampling time points (1st, 2nd, 3rd, 4th). The horizontal line within each 
box represents the median. The bottom and top edges of each box indicate the 25th and 
75th percentiles, respectively. Individual points are outliers. b. Principal coordinate 
analysis (PCoA) plot for all samples generated based on weighted UniFrac distances. The 
first two axes explain 67.0% of the data, with the primary axis (52.6% of variance) 
primarily distinguishing samples by sample type and the secondary axis (14.4% of 
variance) distinguishing samples by treatment type (amendment-treated or control). 
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Figure 4-6 
 

 
 
 

Figure 4- 6. Treatment type explains the greatest bacterial community variance for 
each sample type and time point 

a. Bar plots displaying the fraction of variance explained by treatment, time point and 
replicate, as determined by canonical analysis of principal coordinates (CAPS) using 
Bray-Curtis distances. The y-axis indicates the fraction of variance explained by each 
factor, and the shade of the bar indicates the level of significance (p>0.01 is in light grey; 
p<0.001 is in dark grey). b. Bar plots displaying the fraction of variance determined by 
CAPS using Bray-Curtis distances and performed separately for each time point (1st, 
2nd, 3rd, and 4th) on soil (shown in the upper panel), rhizosphere (middle panel), and 
root (lower panel) samples. The fraction of variation is indicated by the y-axis, and the 
shade of the bar indicates the level of significance. 
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Figure 4-7 
 

 
 
Figure 4- 7. Class-level relative abundance of bacterial communities indicate distinct 
soil, rhizosphere, and root profiles 

a. Relative abundances bar graphs for the top 12 most abundant bacterial classes for 
amendment-treated and control samples in soil (upper panel), rhizosphere (middle panel), 
and root (lower panel) across four time points (1st, 2nd, 3rd, 4th). b. Venn-diagrams 
displaying numbers of OTUs shared and distinct between amendment-treated (blue) and 
control (yellow) samples in soil (upper panel), rhizosphere (middle panel), and root 
(lower panel) compartments. 
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Figure 4-8 
 

 
 
Figure 4- 8. Relative abundance of bacterial communities of the amendment 

Relative abundance bar graphs showing bacterial communities shift from the pre-
products throughout a 13 weeks time course of the amendment Relative abundance bar 
graphs of the bacterial classes present in the initial pre-product. 1 BHF-10® and pre-
product 2 SOBEC®, as well as samples of the product VESTA® collected over a time 
course of 13 weeks. Week 0 was collected immediately after mixing the two pre-
products, Week 1 was collected after one week, Week 2 was collected after two weeks, 
etc. 
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Figure 4-9 
 

 
 
Figure 4- 9. Pairwise distances between the amendment products across time points 

Heat map representative of the pairwise Bray-Curtis distances between samples of the 
two pre-products and the samples of the amendment product across the 13 week time 
course the time points of which the amendment product was sampled. Degree of blue 
shading corresponds to Bray-Curtis distance value, where darker shading corresponds to 
less distance between the bacterial community profiles of samples. 
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Figure 4-10 
 

 
 
Figure 4- 10. Shotgun metagenomic analysis of the amendment product 

a. Comparison of the relative abundances of bacterial classes between 16S rRNA 
amplicon sequencing and shotgun whole genome sequencing of the amendment product. 
This slightly differs from 16S rRNA bacterial relative abundances. b. Functional profile 
of the amendment product and the relative abundances of genes ascribed to the listed 
categories, where relative abundances range from 0.1% - 14.5% and greater enrichment is 
indicated by corresponding block being more darkly shaded. There is high enrichment in 
carbohydrate, amino acid, and protein metabolism. 
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Figure 4-11 
 

 
 
Figure 4- 11. OTUs in the product are not highly enriched in treated or control 
samples 

a. Heatmap displaying degree of enrichment by log10 relative abundance in treated and 
control soil, rhizosphere, and root samples for the 639 OTUs present in the product. 
Product OTUs were sorted according to their relative abundance from top (highest) to the 
bottom (lowest). Darker shades of color indicate higher relative abundance within the 
samples, whereas lighter shades indicate lower relative abundance. Columns for 
amendment-treated soils, rhizospheres, and roots generally are darker, indicating greater 



 
 

101 

enrichment in product OTUs than controls, but there was no significant enrichment. 
b.Venn-Diagram displaying the OTUs shared and distinct to the product and those 
uniquely enriched in the amendment-treated or control roots, as determined with indicator 
species analysis. OTUs uniquely enriched in control (yellow) and treated (green) samples 
were compared with those present in the product (light blue). More OTUs from the 
product were distinctly shared with treated samples (50 vs. the 39 OTUs shared between 
the product and controls), and treated samples shared a larger proportion of total OTUs 
(30% or 50 of 167 OTUs total) with the product than controls (14% or 39 of 278 OTUs 
total). c. All OTUs present in the product were ranked by their relative abundance, with 
the y-axis representing the average read count for each product OTU. The median rank 
for OTUs which showed enrichment in the control (yellow circles; n=39) or treated roots 
(green circles; n=50) was calculated and is displayed with yellow and green dashed lines, 
respectively; the median rank for all OTUs in the product with no enrichment (light blue 
circles; n=550) is shown by the blue dashed line. This demonstrates that the median rank 
abundance in the product was roughly 1.5x higher in treated roots than that for OTUs 
enriched in controls. 
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Figure 4-12 
 

 
 
 

Figure 4- 12. Venn-Diagram of OTU numbers across different sample types 

A majority of OTUs in the amendment product (as shown by the blue sphere) are present 
either within the soil (brown), rhizosphere (yellow), or root (green) compartment of 
treated samples. Venn-Diagram displaying the numbers of OTUs from amendment-
treated soil, rhizosphere, and root samples that are shared or unique to the OTUs found in 
the amendment. OTUs used as determined by 16S amplicon sequencing. 
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Table 4-1 
 
Table 4- 1. Field soil chemical analyses in treated and control soils 

a. Soil pH was measured with 2.00 grams of soil with a Fischer Tris-electrode after a 3-
point calibration (n=13 control; m=9 treated). Electrical conductivity (EC) was also 
measured from 2 grams of water solubilized soil with a Thermo-Russell RL060-C 
conductivity meter, and total nitrogen and carbon were measured with a CarloErba1500N 
elemental analyzer. Total nitrogen and carbon data reported here is the average of two 
replicates. Nitrate levels were determined by WESCOR analyses on n=11 soil samples 
from control, and m=10 from the amendment-treated fields. Exchangeable Ca analyzed 
over 3 time points, mean + standard error of mean for n=10 controls, m=9 treated. b. 
Total elemental composition of soils, as determined by energy-dispersive X-ray 
fluorescence (EDXRF); values are expressed as mean ± standard error of the mean in dry 
weight or µg/g dry wt, and n=5 controls, m=4 for amendment-treated plants. Though 
many other elements were determined, their values were near instrumental detection 
limits, as EDXRF is only suitable for elements between Z> 11 (Na) and Z<92 (U). 
MANOVA significance values when tested for differences between values for treated and 
control samples: * (P<0.05), ** (P<0.01), and *** (P<0.001). 
 

a. Chemical parameters measured in soil from treated and control fields 

Parameter Amount in Control Soil Amount in Treated Soil 
pH 7.32 + 0.04 7.44 + 0.04 
EC 184 + 15 µS/cm 242 + 22 µS/cm * 
Total Nitrogen 0.177% dry weight 0.188% dry weight 
Total Carbon 0.249% dry weight 0.385% dry weight 
Nitrate 23.2 + 1.51 ppm 18.6 + 1.51 ppm * 
Ammonium 6.36 + 0.96 ppm 5.80 + 0.93 ppm 
Exchangeable [Ca++] 1256 + 34 mg/kg 1427 + 23 mg/kg *** 
b. Total elemental composition of soils from treated and control fields 
Parameter Amount in Control Soil Amount in Treated Soil 
pH 7.32 + 0.04 7.44 + 0.04 
EC 184 + 15 µS/cm 242 + 22 µS/cm * 
Total Nitrogen 0.177% dry weight 0.188% dry weight 
Total Carbon 0.249% dry weight 0.385% dry weight 
Nitrate 23.2 + 1.51 ppm 18.6 + 1.51 ppm * 
Ammonium 6.36 + 0.96 ppm 5.80 + 0.93 ppm 
Exchangeable [Ca++] 1256 + 34 mg/kg 1427 + 23 mg/kg *** 
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Table 4-2 
 
Table 4- 2. Chemical analyses of treated and untreated strawberry plants 

a. Acid-digestible nutrient pools from strawberry root tissues collected at time points 1-3, 
as determined by inductively coupled plasma emission spectroscopy (ICP-EOS); values 
are expressed as mean ± standard error of the mean in µg/g dry wt, and n=8, m=8 for 
control and treated plants. b. Total elemental composition by EDXRF of strawberry 
foliage; values are composited from n=5 controls, m=5 for VESTA-treated plants. NBS-
1533a Standard pine needles were also run on the same instrument, and elements for 
which certificate values are registered were satisfactorily quantified/recovered. 
MANOVA significance values when tested for differences between values for control 
and treated samples: * (P<0.05), ** (P<0.01), and *** (P<0.001). 
 

a. Acid-digestible nutrient pools from strawberry root tissues of plants grown in 
treated and control fields, collected at time points 1-3. 

Nutrient Amount in Control Roots 
(µg/g) 

Amount in Treated Roots 
(µg/g) 

Aluminum 3114 ± 371 2073 ± 172 * 
Boron 25.65 ± 8.61 15.41 ± 6.71 
Calcium 8760 ± 692 7068 ± 521 
Potassium 4006 ± 374 4511 ± 294 
Magnesium 3916 ± 229 3684 ± 283 
Phosphorus 1747 ± 107 2315 ± 89.6 *** 
Silicon 511.4 ± 70.3 447.3 ± 71.8 
Sulfur 18496 ± 3029 16192 ± 1282 
Iron 2995 ± 340 1951 ± 151 * 
Copper 33.9 ± 14.9 19.96 ± 1.81 
Manganese 103.6 ± 12.1 105.6 ± 9.90 
Molybdenum 3.505 ± 0.288 2.602 ± 0.193 * 
Sodium 1096 ± 159 1415 ± 191 
Zinc 53.62 ± 9.37 52.44 ± 2.65 

b. Total elemental composition of strawberry foliage from plants grown in 
treated and control fields, collected at time point 4. 

Nutrient Amount in Control Leaves Amount in Treated Leaves 
Sodium 0.31% 0.39% 
Magnesium 0.25% 0.29% 
Aluminum < 0.0020 % < 0.0020 % 
Silicon 0.13% 0.27% 
Phosphorous 0.18% 0.25% 
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Sulfur 0.12% 0.17% 
Chlorine 0.07% 0.11% 
Potassium 0.74% 0.99% 
Calcium 0.47% 0.69% 
Titanium 18.5 mg/kg 27.5 mg/kg 
Vanadium 0.2 mg/kg 0.7 mg/kg 
Chromium 0.6 mg/kg 0.8 mg/kg 
Manganese 34.9 mg/kg 52.3 mg/kg 
Iron 177.6 mg/kg 283.1 mg/kg 
Cobalt < 3.0 mg/kg < 2.9 mg/kg 
Nickel 6.7 mg/kg 9.4 mg/kg 
Molybdenum 6.1 mg/kg 3.4 mg/kg 
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Table 4-3 
 
Table 4- 3. Factors explaining the variation in Shannon’s Diversity of all samples 

a. Results from a Tukey's HSD (honest significant difference) test of Shannon's Diversity 
indices, as based on Bray-Curtis distances. ‘SD’ = standard deviation. b. ANOVA 
analyses for Shannon's Diversity across all samples based on the mixed linear model with 
factors sample type, treatment, time point and replicate as explanatory variables. 
Significant factors indicated by ***, denoting a p value of less than .001. 
 

a. Results from a Tukey's HSD (honest significant difference) test of Shannon's 
Diversity indices, as based on Bray-Curtis distances.  

SampleType by 
Treatment Means S.D. R Min Max Groups 

Soil.Control 5.7984 0.1464 19 5.5038 6.0671 a 
Rhizosphere.Control 5.5786 0.2135 24 5.1865 5.9477 ab 

Soil.Treated 5.2411 0.2392 20 4.7793 5.5888 bc 
Rhizosphere.Treated 4.9072 0.4673 23 3.9585 5.4575 c 

Root.Control 3.8148 0.5585 24 2.4223 4.9298 d 
Root.Treated 3.6779 0.5394 24 1.9864 4.2547 d 

b. ANOVA analyses for Shannon's Diversity across all samples based on the MLM 
with factors sample type, treatment, time point and replicate as explanatory variables. 

Factor DF Sum of 
Squares 

Mean 
Squares 

F 
Statistics p-value   

SampleType 2 82.59 41.3 271.701 <0.001 *** 
Treatment 1 6.68 6.68 43.968 <0.001 *** 
Time point 3 4.2 1.4 9.202 <0.001 *** 
Replicate 5 0.32 0.06 0.417 0.836   
Residuals 122 18.54 0.15       
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Table 4-4 
 
Table 4- 4.Kruskal-Wallis test on Shannon indices between treatments 

Table of Kruskal-Wallis test results comparing Shannon indices between treated and 
untreated samples within each sample type and time point. Significant factors indicated 
by *, **, and ***, denoting p value of less than .05, .01, and .001, respectively. 
 

Sample Type Time Point 
Kruskal-Wallis Test  

chi-squared p-value  
Soil 1 8.308 0.0039 ** 

Soil 2 NA NA  

Soil 3 8.308 0.0039 ** 

Soil 4 8.308 0.0039 ** 

Rhizosphere 1 7.410 0.0065 ** 

Rhizosphere 2 8.308 0.0039 ** 

Rhizosphere 3 8.308 0.0039 ** 

Rhizosphere 4 6.533 0.0106 * 

Root 1 1.256 0.2623  

Root 2 1.256 0.2623  

Root 3 0.641 0.4233  

Root 4 5.026 0.0250 * 
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Table 4-5 
 
Table 4- 5. Factors explaining the variance in bacterial community for all sample 
types 

Treatment and time point are highly significant factors explaining the variance in 
bacterial community differences between samples within each compartment (soil, 
rhizosphere, and root). Table of PERMANOVA analysis results using Bray-Curtis 
distances and performed independently on each sample type using the adonis function 
within the package vegan in R 70. ‘TRT” = treatment factor, ‘DF’ = degrees of freedom, 
and significant factors indicated by *, **, and ***, denoting p value of less than .05, .01, 
and .001, respectively 
 

Sample 
Type Factors DF Sum of 

Squares 
Mean 
Squares F Statistic R2 p-value   

Soil Treatment 1 1.4555 1.4555 35.278 0.4226 <0.001 *** 

Soil Time point 3 0.4781 0.1594 3.863 0.1388 <0.001 *** 

Soil TRT : Time 
point 3 0.2314 0.0772 1.87 0.0672 0.0286 * 

Soil Residuals 31 1.279 0.0413 0.371       

Soil Total 38 3.444     1     

Rhizosphere Treatment 1 1.8962 1.8962 31.429 0.3164 <0.001 *** 

Rhizosphere Time point 3 1.2491 0.4164 6.901 0.2084 <0.001 *** 

Rhizosphere TRT : Time 
point 3 0.4942 0.1647 2.731 0.0825 <0.001 *** 

Rhizosphere Residuals 39 2.353 0.0603 0.393       

Rhizosphere Total 46 5.9926     1     

Root Treatment 1 3.4715 3.4715 45.377 0.3924 <0.001 *** 

Root Time point 3 1.6196 0.5399 7.057 0.1831 <0.001 *** 

Root TRT : Time 
point 3 0.6952 0.2317 3.029 0.0786 0.0014 ** 

Root Residuals 40 3.0601 0.0765 0.346       

Root Total 47 8.8464     1     
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Table 4-6 
 

Table 4- 6. CAPS on testing the factors explaining the variation in samples 

a. Table displaying results of a canonical analysis of principal coordinates (CAPS) for all 
samples testing the hypothesis that sample type, treatment, time point, and replicate are 
significant factors explaining the variation between all samples in either Bray-Curtis or 
weighted UniFrac distances. b. Table displaying results of CAPS done for samples in 
each sample type (soil, rhizosphere, and root) individually, to test the hypothesis that 
treatment, time point, and replicate are significant factors in explaining the variation 
between samples in either Bray-Curtis or weighted UniFrac distances. ‘DF’ = degrees of 
freedom, and significant factors indicated by ***, denoting p value of less than .001. 
 

a. Results from CAPS using Bray-Curtis and UniFrac distances to determine significant 
factors explaining variance across bacterial communities. 

 
Factors Distance 

Metric DF Sum of 
Squares F Statistics p-value   

 Sample Type UniFrac 2 2.8844 108.4102 0.001 *** 
 Treatment UniFrac 1 0.5436 40.8648 0.001 *** 
 Time point UniFrac 3 0.2954 7.4008 0.001 *** 
 Replicate UniFrac 5 0.0652 0.9804 0.447   
 Residual UniFrac 122 1.623       
 

Sample Type Bray-
Curtis 2 13.5589 68.5415 0.001   

 
Treatment Bray-

Curtis 1 4.0932 41.3828 0.001 *** 

 
Time point Bray-

Curtis 3 1.6578 5.5868 0.001 *** 

 
Replicate Bray-

Curtis 5 0.465 0.9402 0.548 *** 

 
Residual Bray-

Curtis 122 12.067       

 b. Results from CAPS using Bray-Curtis and UniFrac distances done separately for each sample type.  

Sample Type Distance 
Metric Factors DF Sum of 

Squares 
F 
Statistic p-value % 

Variance 

Soil UniFrac Treatment 1 0.1171 34.8504 0.001 0.43 

Soil UniFrac Time 
point 3 0.0443 4.3922 0.001 0.16 

Soil UniFrac Replicate 5 0.0166 0.9847 0.487 0.06 

Soil UniFrac Residual 29 0.0975 0.2755 0.354   

Soil Bray Treatment 1 1.4555 32.6404 0.001 0.42 

Soil Bray Time 
point 3 0.4781 3.5739 0.001 0.14 

Soil Bray Replicate 5 0.2173 0.9746 0.453 0.06 

Soil Bray Residual 29 1.2931 3.444 0.375   

Rhizosphere UniFrac Treatment 1 0.1971 24.2593 0.001 0.26 
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Rhizosphere UniFrac Time 
point 3 0.2171 8.9069 0.001 0.29 

Rhizosphere UniFrac Replicate 5 0.0322 0.793 0.759 0.04 

Rhizosphere UniFrac Residual 37 0.3007 0.7472 0.402   

Rhizosphere Bray Treatment 1 1.8962 27.6167 0.001 0.32 

Rhizosphere Bray Time 
point 3 1.2491 6.064 0.001 0.21 

Rhizosphere Bray Replicate 5 0.3068 0.8936 0.635 0.05 

Rhizosphere Bray Residual 37 2.5405 5.9926 0.424   

Root UniFrac Treatment 1 0.5103 33.942 0.001 0.34 

Root UniFrac Time 
point 3 0.3451 7.6526 0.001 0.23 

Root UniFrac Replicate 5 0.0779 1.0361 0.419 0.05 

Root UniFrac Residual 38 0.5713 1.5045 0.38   

Root Bray Treatment 1 3.4715 39.2592 0.001 0.39 

Root Bray Time 
point 3 1.6196 6.1052 0.001 0.18 

Root Bray Replicate 5 0.3951 0.8937 0.613 0.04 

Root Bray Residual 38 3.3602 8.8464 0.38   
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Table 4-7 
 
Table 4- 7. OTUs enriched in treated root samples 

Several members of the kingdom Bacteria, phylum Proteobacteria, and class 
Betaproteobacteria that are more enriched in treated root samples have potential functions 
of sulfur cycling, denitrification, and nitrogen fixation. Summary of read counts and 
potential activities of Betaproteobacteria genera that are enriched in root samples with 
amendment treatment with potential function predicted based on a literature search. ‘RC’ 
= number of read counts. 
 

OTU 
Order Family Genus p-

value 
Control Treated Potential 

Function 
Rank RC RC 

13 Burkholderiales Comamonadaceae Acidovorax 0.001 2261 16523 Sulfur cycling 

11 Burkholderiales Burkholderiales unclassified 0.003 1007 14086 . 

15 Methylophilales Methylophilaceae Methylotenera 0.008 4930 8628 De- nitrification 

20 Methylophilales Methylophilaceae Methylotenera 0.001 878 8547 De- nitrification 

22 Burkholderiales Comamonadaceae Comamonadaceae 0.001 768 3966 Sulfur cycling 

55 Methylophilales Methylophilaceae Methylophilaceae 0.001 569 2454 De- nitrification 

158 Burkholderiales Comamonadaceae Ramlibacter 0.001 20 232 Nitrogen 
fixation 

465 Methylophilales Methylophilaceae Methylophilaceae 0.001 8 126 De- nitrification 

479 Burkholderiales Comamonadaceae Comamonadaceae 0.001 1 103 Sulfur cycling 

261 Rhodocyclales Rhodocyclales Rhodocyclales 0.008 16 79 Nitrogen 
fixation 

96 Rhodocyclales Rhodocyclales Rhodocyclales 0.007 18 70 Nitrogen 
fixation 

1054 Rhodocyclales Rhodocyclaceae Methyloversatilis 0.001 2 55 . 

1703 Burkholderiales Burkholderiaceae Chitinimonas 0.003 0 24 . 

233 Neisseriales Neisseriaceae Vogesella 0.004 0 20 . 

412 Burkholderiales Comamonadaceae Comamonadaceae 0.007 1 16 Sulfur cycling 

 
  



 
 

112 

Table 4-8 
 
Table 4- 8. Nutrient analysis of the product VESTA 

The nutrient profile of the liquid product VESTA assessed by D&D Agricultural 
Laboratory, Inc. (Fresno, CA) by means of a pH analyzer, electrical conductivity meter 
for soluble salts, FP-528 (Leco Corporation, St. Joseph, MI) for total nitrogen, and 
Optima 8000 ICP-OES (PerkinElmer, Inc., Waltham, MA) for all other parameters. 
 

Parameter Amount 
pH 6.89 
Soluble Salts (Electrical Conductivity) 0.61 dS/m 
Total Nitrogen  0.00% 
Phosphorus (P) 0.017 
Diphosphorus Pentoxide (P2O5) 0.04% 
Potassium (K) 0.10% 
Potassium Oxide (K2O) 0.12% 
Calcium Carbonate (CaCO3) 0.01% 
Magnesium Carbonate (MgCO3) 0.00% 
Zinc 0.49 ppm 
Manganese 1.05 ppm 
Iron 172.0 ppm 
Copper 0.84 ppm 
Boron 3.17 ppm 
Sodium 0.00% 
Chloride 0.00% 
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