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ABSTRACT	OF	THE	THESIS	
	

An	Efficient	Second-Order	Poisson-Boltzmann	Method	
	
By	
	

Haixin	Wei	
	

Master	of	Materials	Science	and	Engineering	
	

	University	of	California,	Irvine,	2019	
	

Professor	Ray,	Chair	
	
	
	

						Immersed	interface	method	(IIM)	is	a	promising	high-accuracy	numerical	scheme	for	

the	Poisson-Boltzmann	model	that	has	been	widely	used	to	study	electrostatic	interactions	

in	biomolecules.	However,	the	IIM	suffers	from	instability	and	slow	convergence	for	typical	

applications.	In	this	study,	we	introduced	both	analytical	interface	and	surface	regulation	

into	IIM	to	address	these	issues.	The	analytical	interface	setup	leads	to	better	accuracy	and	

its	convergence	closely	follows	a	quadratic	manner	as	predicted	by	theory.	The	surface	

regulation	further	speeds	up	the	convergence	for	nontrivial	biomolecules.	In	addition,	

uncertainties	of	the	numerical	energies	for	tested	systems	are	also	reduced	by	about	half.	

More	interestingly,	the	analytical	setup	significantly	improves	the	linear	solver	efficiency	

and	stability	by	generating	more	precise	and	better-conditioned	linear	systems.	Finally,	we	

implemented	the	bottleneck	linear	system	solver	on	GPUs	to	further	improve	the	efficiency	

of	the	method,	so	it	can	be	widely	used	for	practical	biomolecular	applications.	
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INTRODUCTION	

	

Electrostatic	interactions	play	crucial	roles	in	biophysical	processes	such	as	protein-

protein	and	protein-ligand	interactions.	Accurate	and	efficient	treatment	of	electrostatics	is	

thus	vital	in	computational	analyses	of	biomolecular	structures	and	dynamics.	A	closely	

related	issue	is	the	modeling	of	water	molecules	and	their	electrostatic	interactions	with	

biomolecules	that	must	be	considered	for	any	realistic	representation	of	biomolecules	at	

physiological	conditions.	Since	most	particles	in	explicit	molecular	model	are	water	

molecules	that	solvate	the	target	biomolecules,	treating	these	water	molecules	implicitly	

would	allow	higher	computational	efficiency	without	losing	any	atomic-level	resolution	of	

the	biomolecules.	The	main	idea	of	implicit	solvation	treatment	is	to	model	water	

molecules	as	continuous	medium	while	still	treating	the	biomolecular	solutes	in	atomic	

detail.	In	this	model,	the	solute	molecule	is	treated	as	a	low	dielectric	constant	region	with	

a	number	of	point	charges	located	at	atomic	centers,	and	the	solvent	is	treated	as	a	high	

dielectric	constant	region.	Poisson-Boltzmann	equation	(PBE)-based	implicit	solvent	model	

has	been	one	such	attempt	and	been	widely	used	in	biomolecular	applications.		

To	solve	PBE,	numerical	solutions	are	almost	always	needed	for	biomolecular	

applications,	since	analytic	solution	of	the	PBE	can	be	achieved	only	in	a	few	specific	cases	

with	simple	solute	geometry.	Among	the	numerical	solution	methods,	finite-difference	

methods	(FDM),1-16	finite-element	methods17-26	and	boundary-element	methods27-44	are	

mostly	used.	Or	alternatively,	semi-analytical	generalized	Born	approaches,	particularly	in	

MD,	were	also	explored.7,	9,	11,	12,	45-56	Within	numerical	methods,	FDM	has	the	advantage	of	

being	straightforward	and	physically	transparent	in	its	discretization.	However,	if	a	direct	



2	
	

discretization	is	used	without	considering	the	discontinuity	in	the	dielectric	constant,	the	

numerical	solutions	tend	to	have	large	errors,	and	the	errors	are	particularly	obvious	near	

the	solute-solvent	interface.	To	overcome	this	problem,	Davis	and	McCammon	proposed	a	

harmonic	average	(HA)	method	to	approach	the	approximate	dielectric	constant	near	

surface	in	1991.57	Efforts	have	also	been	reported	recently	by	Wei	and	co-workers	and	Li	

and	co-workers	to	develop	higher	accuracy	interface	schemes,	the	immersed	interface	

method	(IIM)	and	the	matched	interface	and	boundary	(MIB)	method,	to	improve	

numerical	accuracy	of	the	PBE	solution58-66	Additional	higher-order	schemes	are	also	

developed,67,	68	some	of	which	are	specifically	for	nonlinear	PBE.	The	idea	of	IIM	is	to	

enforce	the	interface	conditions	into	the	finite-difference	schemes	at	grid	points	near	the	

interface.	On	the	other	hand,	the	scheme	of	MIB	is	enforcing	the	lowest-order	jump	

condition	repeatedly	to	achieve	the	high-order	jump	condition.	Alternatively,	instead	of	

treating	the	solute-solvent	interface	explicitly,	Alexov	and	co-workers	proposed	an	

approach	that	uses	Gaussian-based	smooth	dielectric	functions	to	model	the	implicit	

solvation	environment	in	an	interface-free	manner.69,	70	Some	other	interesting	approaches	

have	also	been	proposed	to	improve	implicit	solvent	models,	such	as	coupling	electrostatic	

and	nonelectrostatic	interactions	within	the	implicit	solvation	treatment,71-75	explicit	

simulating	implicit	solvent	as	a	fluid	for	the	purpose	of	more	physical	modeling	of	solvation	

interactions,76-78	and	using	the	level	set	function	to	better	define	the	solvent	and	solute	

interfaces	for	dielectric	assignment.79,	80	Among	those	methods,	IIM	has	been	a	promising	

high-accuracy	numerical	scheme,	and	is	able	to	achieve	energy	conservation	in	PB	

molecular	dynamics	(MD).81	This	can	be	attributed,	in	part,	to	the	fact	that	a	uniform	higher	

accuracy	of	O(h2)	can	be	achieved	even	near	the	interface.82		
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However,	the	original	IIM	has	also	suffered	from	numerical	instability	in	complex	

biomolecular	environments.59	This	in	part	is	due	to	the	use	of	the	level	set	scheme	to	track	

the	molecular	interface	and	compute	associated	jump	conditions.	Here	the	molecular	

interface	is	defined	with	an	analytical	density	function	recently	developed	by	our	group.83	

It	has	been	shown	that	the	density	function	method	performs	better	than	geometry-based	

methods	such	as	van	der	Waals	surface	and	solvent	exclude	surface	in	terms	of	errors,	

transferability,	conformation	dependence,	and	convergence.83	The	extensive	use	of	the	

level	set	scheme	in	the	original	IIM,	however,	was	found	to	introduce	noises	in	interface	

properties	that	leads	to	numerical	instability.	For	example,	it	uses	a	least	square	

interpolation	approach	to	obtain	all	interface	parameters	and	jump	conditions.82	Though	

this	is	a	general	scheme	for	partial	differential	equations	with	interface,	it	may	not	always	

work	on	the	molecular	interface	formed	by	densely	packed	atoms.	In	addition	to	the	

instability	issue,	the	original	IIM	is	also	very	slow	and	does	not	work	well	even	when	coarse	

grids	are	used	in	biomolecular	applications.59	This	can	be	attributed	to	the	extensive	use	of	

finite-difference	interface	approximations	that	may	also	fail	to	capture	the	interface	

characteristics	at	coarse	grid	spacings	and	lead	to	inconsistent	linear	systems	that	are	

poorly	conditioned	and	take	longer	time	to	solve.		

In	this	study,	we	present	a	new	implementation	of	the	second-order	accuracy	IIM	to	

address	those	issues.	Specifically,	we	show	how	to	calculate	geometric	properties	and	jump	

conditions	analytically	at	the	interface.	In	addition,	the	necessity	and	rationality	of	surface	

regulation	are	discussed,	along	with	a	simple	and	efficient	regulation	scheme.	We	also	

present	a	GPU	implementation	of	the	linear	solver	needed	in	the	IIM,	a	bottom	neck	of	the	

IIM.	Our	analysis	shows	that	the	new	strategy	improves	the	convergence	and	stability	of	
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IIM,	and	also	improves	the	efficiency	of	the	method.	The	GPU	implementation	further	

removes	the	bottle	neck	of	numerical	procedure.	These	new	developments	have	been	

implemented	into	the	Amber	molecular	modeling	suite	and	are	freely	available	for	the	

biomedical	community.84	
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CHAPTER	1	

METHODS	

	

1.1	Immersed	Interface	Method	

IIM	is	a	more	accurate	method	for	interface	treatment	than	most	traditional	ones,	

such	as	the	harmonic	average	method.59	In	IIM,	the	interface	can	be	used	to	separate	the	

problem	domain	into	inside	(Ω"),	outside	(Ω#),	and	interface	(Γ).	Next	finite-difference	grid	

points	are	classified	as	regular	grid	points	that	are	with	all	their	neighboring	grid	points	

(connected	with	grid	edges)	in	the	same	region	or	as	irregular	points	that	are	not.		

Next	the	jump	conditions	can	be	predefined	as	follows	so	the	PDE	is	well-posted,	

[𝜙]( = 𝑤,	

[𝜖𝜙,]( = 𝑣																																																																							(1)		

where	𝑤	and	𝑣	are	given	by	users	for	specific	problems	at	hand.	In	this	study	𝑤	and	

𝑣	are	defined	for	the	singularity-free	PBE	in	section	1.2.	

For	regular	points,	IIM	uses	the	standard	7-point	central	finite-difference	scheme,	

since	those	points	do	not	have	a	neighbor	located	in	a	different	region.	This	stencil	has	an	

accuracy	of	(O(h2)).	For	irregular	points,	IIM	proposes	a	new	finite-difference	stencil	that	

contains	at	least	10	points	instead	of	7	(typically	27	points)	are	used	to	minimize	the	

magnitude	of	the	local	truncation	error	while	satisfying	the	jump	conditions	(Eqn	1).	So	the	

finite-difference	scheme	becomes,	

∑ 𝛾0𝜙(𝑖 + 𝑖0, 𝑗 + 𝑗0, 𝑘 + 𝑘0) = 𝑓(𝑖, 𝑗, 𝑘) + 𝐶(𝑖, 𝑗, 𝑘),:
0 																										(2)	

where	ns	is	the	number	of	grid	points	(27	typically),	𝛾0	are	unknown	coefficients,	

C(i,j,k)	is	the	unknown	correction	term,	and	f(i,j,k)	is	the	discretized	right	hand	term	of	the	
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PBE.	In	this	study,	it	is	always	zero	because	the	singularity-free	PBE	is	used	as	discussed	in	

section	1.2.	

The	basic	idea	of	IIM	is	to	determine	𝛾0	in	Eqn	(2)	at	the	irregular	points	so	that	the	

second-order	global	accuracy	is	obtained	as	in	an	interface-free	problem	with	the	finite-

difference/finite-volume	discretization	scheme.	Specifically,	IIM	uses	the	interface	relations	

(see	section	1.5)	to	translate	all	the	outside	points	into	inside	(or	vice	versa)	and	then	

forces	the	truncation	error	of	the	inside	(or	outside)	to	O(h3).82		

The	local	truncation	error	T(i,j,k)	at	grid	point	(i,j,k)	is,	

𝑇(𝑖, 𝑗, 𝑘) = ∑ 𝛾0𝜙(𝑖 + 𝑖0, 𝑗 + 𝑗0, 𝑘 + 𝑘0) − 𝐶(𝑖, 𝑗, 𝑘)
,:
0 .																				(3)	

after	setting	f(i,j,k)=	0.	In	the	local	coordinate	frame,	the	Taylor	expansion	can	be	

used	to	expand	each	𝜙	in	the	neighborhood	of	the	projection	point	(X*)	of	the	grid	point	

(i,j,k)	from	each	side	of	the	interface	to	the	second	order.	Thus	there	are	20	terms,	

corresponding	to	𝜙(𝑋∗)±,	𝜙?(𝑋∗)	±,	𝜙@(𝑋∗)	±,	𝜙A(𝑋∗)	±,	𝜙??(𝑋∗)	±,	𝜙?@(𝑋∗)	±,	𝜙?A(𝑋∗)	±,	

𝜙@@(𝑋∗)	±,	𝜙@A(𝑋∗)	±,	𝜙AA(𝑋∗)	±.	Here	𝜉,	𝜂	and	𝜏	are	local	coordinates,	and	“+”,	“–”	denote	the	

outside	and	inside	region,	respectively.	By	using	the		interface	relations	as	shown	in	the	

section	1.5,82	those	20	terms	are	reduced	to	10,	all	in	the	inside	(or	outside)	region	as	

shown	below.	

𝑇(𝑖, 𝑗, 𝑘) = 𝑎F𝜙" + 𝑎G𝜙?" + 𝑎H𝜙@" + 𝑎I𝜙A" + 𝑎J𝜙??" + 𝑎K𝜙?@" + 𝑎L𝜙?A" + 𝑎M𝜙@@" +

																						𝑎O𝜙@A" + 𝑎FP𝜙AA" + 𝑇Q(𝑖, 𝑗, 𝑘) − 𝐶(𝑖, 𝑗, 𝑘) + 𝑂(max	{|𝛾0|ℎH}),	 	 (4)	

where	𝑇Q(𝑖, 𝑗, 𝑘)	is	a	constant	term	from	imposing	the	interface	relations.	

Finally,	the	expansion	is	matched	against	the	differential	equation	to	the	leading	

terms	to	obtain	a	system	of	equations	for	the	finite-difference	coefficients.	For	the	Poisson	

equation,	we	have	𝑎F = 0,	𝑎G = 0,	𝑎H = 0,	𝑎I = 0,	𝑎J = 1,	𝑎K = 0,	𝑎L = 0,	𝑎M = 1,	𝑎O = 0,	
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𝑎FP = 1.	Then	the	constant	term	C(i,j,k)	can	be	determined	with	the	accuracy	of	O(h2).	With	

10	equations	and	27	unknowns	(𝛾0),	the	problem	is	in	principle	solvable.82	

Furthermore,	it	appears	that	with	17	extra	degrees	of	freedom,	special	𝛾0	can	be	

chosen	to	fulfill	some	optimization	requirement	such	as	the	maximum	principle	preserving	

scheme,	to	achieve	even	better	performance.82	However,	this	may	not	always	be	the	case,	

which	will	be	discussed	latter.	

	

1.2	Removal	of	Charge	Singularity	

Point	charge	models	are	widely	used	in	molecular	simulations	of	biomolecules.	

However,	the	representation	of	point	charges	by	delta	functions	introduces	singularity	to	

the	PDE.	Several	strategies	are	available	to	remove	the	charge	singularity,21,	63,	85,	86	and	

here	we	adopt	the	recently	developed	reaction	field	potential	method.59	

Briefly	this	method	solves	the	PDE	in	two	different	regions	with	different	potentials,	

i.e.	the	reaction	field	potential	inside	and	the	total	field	potential	outside.	Here	the	reaction	

field	potential	is	the	potential	caused	only	by	induced	charges.87	

Thus,	the	unified	equation	describing	the	whole	region	is,	

∇ ∙ 𝜀∇𝜙 = 0																																																																				(5)	

but	with	the	modified	jump	conditions	as	follows,	

[𝜙]=∑ _
`abc`def 	=	𝑤		

[𝜀𝜙,]	=	𝜀	inside	(∑
_
`abc`def )n	=	𝑣																																																				(6)	

Here,	the	subscript	n	means	the	gradient	is	along	the	interface	normal	direction	n.59	

	

2.3	Density	Function	Strategy	
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To	obtain	the	interface	relations	and	the	jump	conditions,	it	is	necessary	to	know	

the	geometry	of	the	interface	and	the	jump	condition	values	on	the	interface,	in	addition	to	

the	tangential	derivatives	of	the	jump	conditions.	These	quantities	can	be	obtained	

analytically	if	the	density	function	strategy	is	used	to	define	the	interface.82	

The	main	idea	of	the	density	function	method	is	to	use	a	smooth	function	to	

approximate	the	solute	exclusive	surface	(SES)	of	a	molecule,	and	in	the	meantime	adjust	

the	parameters	of	the	density	function	accordingly	so	that	the	reaction	field	energies	

obtained	from	these	two	models	agree	the	best.83	Specifically,	given	the	nth	atom	centered	

at	rn,	its	density	function	𝜌,	is	defined	as,	

𝜌,(𝑥) = 𝜌,(
i" j̀
G k̀

).	 	 	 	 	 				(7)	

Here,	d=|r-rn|	is	the	distance	to	the	atom	center,	rc	is	the	VDW	radius	of	the	atom,	

and	rp	is	the	solvent	probe	radius.	

In	addition,	the	density	function	satisfies	the	following	constraints	to	be	physical	

and	reasonable,83	

𝜌,(𝑥) > 1,𝑤ℎ𝑒𝑛	𝑥 < 0		

𝜌,(𝑥) = 1,𝑤ℎ𝑒𝑛	𝑥 = 0	.	

𝜌,(𝑥) < 1,𝑤ℎ𝑒𝑛	𝑥 > 0	 	 	 	 						(8)	

Here	points	with	x=0	are	on	the	surface	of	an	atom.	To	guarantee	smoothness	and	

good	numerical	behaviors,	a	cubic-spline	interpolation	function	that	fulfills	the	above	

constraints	is	used.	Next,	under	the	requirement	of	achieving	the	best	agreement	of	

reaction	field	energies	with	the	given	benchmark	for	a	diversified	set	of	training	molecules,	

all	the	coefficients	in	the	interpolation	are	optimized	and	the	following	formula	is	

obtained.83	
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𝜌,(𝑥) =

⎩
⎪
⎨

⎪
⎧		1.00 − 4.527143𝑥 − 3.640532𝑥

G + 32.631235𝑥H			0.0 < x < 0.2
0.21 − 2.067608𝑥 + 15.938209𝑥G − 35.500854𝑥H			0.2 < x < 0.4
					0.15 + 0.047573𝑥 − 5.362303𝑥G + 13.12218𝑥H			0.4 < x < 0.6
					0.05 − 0.522686𝑥 + 2.511005𝑥G − 4.487867𝑥H			0.6 < x < 0.8
					0.01 − 0.056828𝑥 − 0.181716𝑥G + 1.079289𝑥H			0.8 < x < 1.0

	

	 																																																																																																																															(9)	

Given	the	atomic	density	function,	the	molecular	density	function	is	a	summation	of	

all	the	atomic	density	functions	as	

𝜌(𝑥) = ∑ 𝜌,(𝑥,)c}~0
, 																																																										(10)	

More	details	can	be	found	in	the	literature.83	

Note	that	in	the	original	IIM,	all	the	geometric	and	physical	interface	properties	are	

obtained	via	the	level-set	numerical	toolkit.82	However,	with	the	use	of	the	density	function,	

we	can	obtain	all	these	quantities	analytically,	including	the	interface	normal	direction	𝝃,	

interface	curvatures	𝜉@@ ,	𝜉AA	and	𝜉@A ,	jump	condition	values	𝑤	and	𝑣,	and	their	tangential	

derivatives	on	the	interface.	More	importantly,	by	using	this	method,	the	numerical	

instability	arising	from	applying	hard	spheres	in	classical	molecular	surface	representation	

can	also	be	minimized	due	to	the	use	of	a	smoothly	varying	function.83	

	

2.4	Analytical	Interface	Relations	and	Jump	Conditions	

A	key	improvement	in	the	new	analytical	IIM	is	the	complete	elimination	of	the	level	

set	functions	used	to	interpolate	all	interface	properties.	This	is	a	more	natural	strategy	

because	the	underlining	density	function	to	represent	the	interface	is	a	continuous	cubic-

spline	function.	In	addition,	the	jump	conditions,	i.e.	Coulomb	potential	and	field	(Eqn	(6)),	

are	also	analytically	available.		
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There	are	roughly	three	steps	to	determine	all	the	analytical	interface	conditions	on	

the	interface.82	The	first	step	is	to	find	the	projection	point	of	an	irregular	grid	point.	The	

projection	point	here	means	a	point	right	on	the	interface	that	is	close	to	the	irregular	

point.	Recall	Eqns	(3)	and	(4),	this	is	necessary	for	the	Taylor	expansion	used	to	compute	

the	local	truncation	error.	The	best	choice	of	projection	point	is	the	interface	point	that	is	

closest	to	the	irregular	point.	However,	it	is	almost	impossible	to	locate	it,	and	even	if	we	

can,	it	is	definitely	not	worth	all	the	effort.82	Instead,	we	used	its	normal	projection	point	on	

the	interface.	The	normal	projection	point	can	be	easily	obtained	by	finding	the	intersection	

point	of	the	interface	and	the	steepest	descent	vector	starting	from	the	irregular	point	(i.e.	

along	the	gradient	of	the	density	function).	Because	we	are	looking	along	the	steepest	

descent	direction,	the	projection	point	may	also	approximate	the	closest	projection	point	

reasonably	well.	Specifically,	the	Newton’s	method	was	used	to	search	along	the	normal	

direction	for	the	projection	point.	One	of	the	advantages	of	this	method	is	that	we	can	

locate	the	projection	point	as	precise	as	possible	and	also	relatively	efficiently.	Specifically,	

the	precision	was	set	to	10-6	in	our	method	so	that	its	location	would	never	be	an	issue	in	

most	finite-difference	setups,	which	means,	

|𝜌(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡) − 1| ≤ 10"K.	 	 	 	 	(11)	

The	second	step	is	to	calculate	the	local	coordinate	transformation	matrix	and	the	

interface	curvature.	This	is	straightforward	given	the	analytical	density	function.	These	

quantities	will	be	used	in	Eqns	(4)	and	(6).	To	calculate	the	transformation	matrix,	we	need	

the	normal	direction	of	the	interface,	which	is	the	gradient	direction	of	the	density	function	

of	the	projection	point.	Next,	the	other	two	tangential	directions	can	be	determined	as	

follows,82	
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝝃 = �𝜌�, 𝜌�, 𝜌��

�
																																																									

𝜼 = (𝜌�, −𝜌�, 0)�																																																								

𝝉 = �𝜌�𝜌�, 𝜌�𝜌�,−𝜌�G − 𝜌�G�
�
			,				𝑖𝑓	𝜌�G ≥ 𝜌�G				

	
𝝃 = �𝜌�, 𝜌�, 𝜌��

�
																																																										

𝜼 = (𝜌�, 0,−𝜌�)�																																																										
	𝝉 = (−𝜌�𝜌�, 𝜌�G + 𝜌�G, −𝜌�𝜌�)�			,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 	 	 							(12)	

The	three	principal	curvatures	can	then	be	obtained	as	follows.	Under	the	local	

coordinates	of	the	interface,	the	following	relations	hold,	

𝜌𝜼(0,0,0) = 𝜌𝝉(0,0,0) = 0	 	 	 	 						(13)	

Based	on	Eqn	(13),	the	three	curvatures	are,	

𝜉@@ = − �𝜼𝜼
�𝝃
		

𝜉AA = − �𝝉𝝉
�𝝃
		

𝜉@A = −�𝜼𝝉
�𝝃
																																																																					(14)	

The	last	step	is	to	calculate	all	those	jump	conditions.	Given	Eqn	(14),	we	obtained	

the	following	equations	of	derivatives	of	Eqn	(6).	

𝑤@ = ∑ _�
`��� 𝜂� 		

𝑤A = ∑ _�
`��� 𝜏� 		

𝑤@@ = ∑ 3 _�
`��� 𝜂�G −

_�
`��
+ _�

`��
𝜉� ∙ (𝜉@@)� 		

𝑤AA = ∑ 3 _�
`��� 𝜏�G −

_�
`��
+ _�

`��
𝜉� ∙ (𝜉AA)�		

𝑤@A = ∑ 3 _�
`��� 𝜂�𝜏� +

_�
`��
𝜉� ∙ (𝜉@A)� 		

𝑣@ = ∑ 3 _�
`��� 𝜉�𝜂� 		



12	
	

𝑣A = ∑ 3 _�
`��� 𝜉�𝜏� 																																																																(15)	

The	summation	here	is	over	all	the	charges	or	atoms.	Now	all	the	quantities	needed	

are	obtained,	the	interface	relations	can	be	constructed	as,	

	𝜙# = 𝜙" + 𝑤	

𝜙?# =
��

��
𝜙?" +

�
��
		

𝜙@# = 𝜙@" + 𝑤@		

𝜙A# = 𝜙A" + 𝑤A		

𝜙??# = ��

��
𝜙??" + ��

�

��
− 1�𝜙@@" + ��

�

��
− 1�𝜙AA" + �𝜙?# − 𝜙?"��𝜉@@ + 𝜉AA� − 𝑤@@ − 𝑤AA		

𝜙?@# = ��

��
𝜙?@" + �𝜙@# −

��

��
𝜙@"� 𝜉@@ + �𝜙A# −

��

��
𝜙A"� 𝜉@A +

��
��
		

𝜙?A# = ��

��
𝜙?A" + �𝜙@# −

��

��
𝜙@"� 𝜉@A + �𝜙A# −

��

��
𝜙A"� 𝜉AA +

��
��
		

𝜙@@# = 𝜙@@" + �𝜙?" − 𝜙?#�𝜉@@ + 𝑤@@ 		

𝜙AA# = 𝜙AA" + �𝜙?" − 𝜙?#�𝜉AA + 𝑤AA		

𝜙@A# = 𝜙@A" + �𝜙?" − 𝜙?#�𝜉@A + 𝑤@A																																																																																				(16)	

	

2.5	Surface	Regulation	

Even	if	the	density	function	surface	was	designed	to	handle	the	deeply	buried	atoms	

as	the	standard	SES	approach,	it	is	still	limited	in	approximating	the	solvent	reentry	

interface	formed	among	solvent	accessible	atoms.83	For	example,	the	reentry	interface	is	

often	flatter	than	what	the	density	function	predicts,	as	shown	in	Figure	1.	In	addition,	it	is	

almost	impossible	to	model	the	reentry	surface	as	being	formed	by	a	spherical	probe	as	in	
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SES.	We	thus	resort	to	a	surface	regulation	scheme	to	adjust	the	interface	geometric	

parameters	to	partially	alleviate	the	limitations.		

Our	regulation	scheme	follows	two	principles.	First,	we	exploited	the	original	SES	

idea	that	the	molecular	interface	is	simply	a	surface	formed	by	probing	the	molecules	of	

hard	spheres	of	different	radii.	Thus,	the	interface	is	a	union	of	solvent-exposed	spheres	of	

different	radii.	Second,	the	inward-facing	portion	(aka	solvent	reentry	portion)	of	the	

interface	cannot	have	a	surface	curvature	higher	than	that	of	solvent	probe.	Thus,	a	

regulation	scheme	was	developed	with	the	following	two	steps	for	the	solvent	reentry	

portion,	i.e.	when	the	surface	curvature	is	negative.	First,	if	the	curvature	of	the	surface	is	

larger	than	1/rp,	it	is	reset	to	1/rp,	where	rp	is	the	solvent	probe	radius	(Figure	1).	Second,	

the	mixing	curvature	ξητ	is	set	to	be	zero,	and	the	other	two	curvatures	is	set	to	equal	to	

whichever	has	a	smaller	absolute	value.	This	step	implies	the	use	of	a	sphere	to	represent	

the	reentry	surface.	These	changes	were	found	to	improve	the	numerical	stability	and	

convergence	of	the	IIM	calculations,	especially	for	coarse	grid	situations,	as	discussed	in	

later	chapter,	Results	and	Discussion.	

	

Figure	1.	Treatment	of	the	reentry	surface.	The	solid	line	represents	the	solvent	

excluded	surface.	The	dash	line	represents	the	solvent	accessible	surface.	The	dot	circle	

+ + 
- 
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represents	the	solvent	probe.	“+”	signs	represent	surface	elements	with	positive	curvature	

and	“-”	signs	represent	surface	elements	with	negative	curvature.	

	

2.6	Overview	of	the	Numerical	Procedure	

Apparently,	the	whole	process	of	solving	PBE	with	IIM	involves	many	procedures.	

Here	we	outline	the	main	numerical	procedures	step	by	step.	

1)	Use	the	molecular	density	function	to	classify	grid	points	into	regular	and	

irregular	points;	

2)	For	regular	points,	set	up	the	discretized	equation	with	the	standard	seven-point	

stencil;	

3)	For	irregular	points,	calculate	all	the	needed	interface	geometry	parameters	(e.g.	

curvatures)	using	the	density	function;	

4)	Apply	the	regulation	scheme	to	revise	the	obtained	interface	geometry	

parameters;	

5)	For	irregular	points,	continue	calculating	the	needed	jump	conditions,	i.e.	w	and	v,	

analytically	using	the	density	function	and	the	geometry	parameters	just	obtained;	

6)	Set	up	the	discretized	equation	for	irregular	points	using	the	obtained	geometry	

parameters	and	jump	conditions;	

7)	Combine	the	equations	of	both	regular	and	irregular	points	and	solve	the	full	

linear	system	to	obtain	the	potentials;	

In	the	above	procedures,	steps	3),	4),	and	5)	were	completely	rewritten	in	our	

analytical	implementation	of	IIM.	Step	7	was	also	rewritten	for	both	CPU	and	GPU	

calculations.	
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CHAPTER	2	

ANALYTICAL	TEST	CASES	AND	COMPUTATION	DETAILS	

	

To	validate	the	accuracy	and	precision	of	the	proposed	method,	we	first	used	a	well-

studied	analytical	model,	i.e.	a	single	dielectric	sphere	imbedded	with	point	charges.	The	

analytical	potential	in	the	inside	region	is,		

𝜙��" (𝑟, 𝜃, 𝜑) =¡ ¡
4𝜋

2𝑙 + 1

¤

0¥"¤

1
𝑅G¤#F

(𝑙 + 1)(𝜀" − 𝜀#)
𝜀"(𝑙𝜀" + (𝑙 + 1)𝜀#)𝑄¤0𝑟

¤𝑌¤0(𝜃, 𝜑)
©

¤¥P

	

						𝑄¤0 = ∑ 𝑞«𝑟«¤𝑌¤0∗ (𝜃«, 𝜑«)
¬­
«¥F 	 	 	 	 								(17)	

where	R	is	the	radius	of	the	sphere,	and	the	center	is	set	to	the	origin.	𝑁_	is	the	

number	of	charges,	𝑌¤0	are	the	spherical	harmonics	as	spherical	coordinates	are	used.	

After	solving	the	finite-difference	equations,	only	potentials	at	grid	points	are	

known.	To	obtain	potential	at	any	position	(x,y,z),	we	utilized	the	one-side	least-square	

interpolation	method.59	Next	the	reaction	field	energy	is	the	summation	of	the	products	of	

the	reaction	field	potential	and	the	charges.	

∆𝐺 = F
G
∑ 𝑞�𝜙��abc`def 																																																										(18)	

For	the	analytical	test,	four	off-centered	charged	models	were	used,	which	are	

monopole,	dipole,	quadrupole,	and	octupole.	The	radius	of	sphere	was	set	to	2	Å	for	

convenience,	which	is	about	the	size	of	a	united	carbon	atom.	The	Cartesian	coordinates	of	

each	charges	are	listed	in	Table	S1.	The	inside	dielectric	constant	was	set	to	1.0,	with	that	of	

outside	set	to	80.0.	The	truncation	order	l	in	Eqn	(18)	was	chosen	to	be	120,	leading	to	a	

precision	of	10-6.	
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A	total	of	573	biomolecular	structures	from	the	Amber	PBSA	benchmark	suite	were	

used	to	study	the	accuracy	and	efficiency	of	the	new	method.13	We	further	chose	eight	

small	proteins	about	1000	atoms	from	the	benchmark	suite	to	analyze	the	convergence	of	

the	new	method,	so	that	the	jobs	can	be	handled	on	our	local	compute	nodes	at	the	finest	

grid	spacing	tested.	These	biomolecules	were	assigned	charges	of	Cornell	et	al88	and	the	

modified	bond	radii.	The	probe	radius	was	set	to	1.4	Å.	All	testing	runs	were	performed	

with	the	following	conditions	unless	specified	otherwise.	The	convergence	criterion	of	10−4	

was	used	for	the	BiCG	linear	system	solver.	The	default	grid	spacing	was	0.5	Å	for	most	

calculations,	except	that	they	were	set	as	1.0	Å,	0.5	Å,	0.33	Å,	0.25	Å,	and	0.125	Å	in	the	

convergence	analysis.	The	ratio	of	the	grid	dimension	over	the	solute	dimension	

(the	fillratio	keyword	in	Amber)	was	set	to	1.5	and	4.0	for	biomolecular	tests	and	analytical	

tests,	respectively.	No	electrostatic	focusing	was	applied.	The	potential	values	on	all	grid	

points	were	initialized	to	zero.	The	conductor	boundary,	i.e.	zero	potential,	was	used	in	all	

non-periodic	PBSA	calculations.	The	dielectric	constants	were	set	to	1	and	80	for	solute	and	

solvent,	respectively.	All	other	parameters	were	set	as	default	in	the	PBSA	module	in	

Amber	18	package.84	

A	BiCG	linear	system	solver	for	GPUs	was	also	implemented	using	the	Nvidia	CUDA	

Sparse	Matrix	(cuSPARSE)	library,	which	provides	basic	linear	algebra	procedures	for	

sparse	matrix	operations.89	The	CSR	matrix	format	was	used	for	the	non-symmetric	

coefficient	matrix	as	in	our	previous	publication.90		All	GPU	and	CPU	tests	were	conducted	

on	a	dedicated	compute	node	with	two	NVIDIA	TITAN	Xp	GPU	cards,	one	Intel	Xeon	E5-

1620	v3	CPU,	and	16GB	main	memory.	Our	time	measurements	for	both	solvers	include	all	
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execution	time	of	the	solver	routines,	i.e.	time	elapsed	on	device	(GPU)	and	on	host	(CPU)	

and	also	for	transferring	data	between	the	device	and	the	host.	
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CHAPTER	3	

RESULTS	AND	DISCUSSION	

	

4.1	Performance	on	Analytical	Test	Cases	

4.1.1	Reaction	Field	Energy	The	accuracy	and	precision	of	reaction	field	energies	

were	investigated	with	five	different	grid	spacings,	1	Å,	0.5	Å,	0.33	Å,	0.25	Å	and	0.125	Å.	

The	detailed	results	of	different	programs	with	and	without	analytical	setup	are	shown	in	

Figure	2,	Table	1,	and	Table	S2.	
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—	analytical	setup									---	numerical	setup									···	analytical	value	

Figure	2.		Convergence	of	reaction	field	energies	(kcal/mol)	versus	grid	spacing	(Å)	

for	analytical	sphere	models	with	both	numerical	and	analytical	setups	for	IIM.	The	energy	

results	are	obtained	by	averaging	30	grid	orientations/offsets	for	each	test	case.	All	the	

curves	are	obtained	by	fitting	data	to	parabolas.	Note	that	the	data	points	at	grid	spacing	1	

Å	are	not	included	in	the	fitting.	

Clearly,	the	analytical	setup	obtains	better	accuracy	than	the	numerical	setup	in	all	

the	cases	regardless	of	the	grid	spacing.	Interestingly,	the	analytical	setup	version	can	

obtain	a	good	result	even	with	coarse	grid,	for	example	in	1	Å	spacing.	In	Figure	2	(a)	and	

(b),	though	not	included	in	the	fitting	process,	data	points	at	grid	spacing	of	1	Å	are	close	to	

the	fitting	curves	in	the	analytical	setup,	showing	that	those	data	have	already	entered	the	

convergence	region.	However,	for	numerical	setup,	there	is	no	sign	of	entering	convergence	

region	for	data	at	1	Å	for	any	test	cases.	Table	1	further	shows	that	the	relative	errors	are	

already	less	than	0.1%	for	all	the	cases	at	the	grid	spacing	of	0.5	Å	when	the	analytical	

setup	was	used,	much	less	than	those	of	the	numerical	setup	with	the	medium	value	of	

about	0.7%,	(Table	S2).	This	indicates	that	the	analytical	setup	leads	to	faster	converged	

results	than	the	numerical	setup.	

Table	1.	Reaction	field	energies	(kcal/mol)	for	the	analytical	sphere	models	with	

the	analytical	setup.	Each	energy	is	an	average	of	30	random	placements	of	the	finite	

difference	grid	over	a	tested	model.	Analytical	reaction	field	energies	were	calculated	using	

Mathematica	7.0.	

Spacing 1.000Å 0.500Å 0.330Å 0.250Å 0.125Å Analytical 
Monopole -102.80 -103.22 -103.26 -103.28 -103.29 -103.30 
Dipole -24.62 -24.80 -24.81 -24.83 -24.83 -24.83 
Quadrupole -8.56 -9.17 -9.17 -9.15 -9.16 -9.17 
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Octupole -24.70 -25.93 -26.02 -25.98 -25.98 -25.98 
	

4.1.2	Surface	Field	Surface	properties	are	often	important	for	calculation	of	

electrostatic	forces,	so	we	used	the	electric	field	at	interface	to	show	how	well	the	interface	

properties	can	be	reproduced	in	both	setups.	The	results	from	different	setups	are	

presented	in	Figure	3.	The	root	mean	square	deviation	(RMSD)	values	were	calculated	by	

comparing	values	from	different	interpolation	schemes	and	the	theoretical	values	obtained	

from	Eqn	(17),	where	the	three	interpolation	methods	used	are	those	studied	in	detail	in	

the	literature.91	
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Figure	3.	RMSDs	between	computed	normal	component	of	the	surface	electric	field	

with	analytical	values	(kcal/mol-e-Å)	versus	grid	spacing	(Å)	for	analytical	sphere	models	

with	both	numerical	and	analytical	setups	for	IIM.	

It	is	clear	that	for	all	the	three	interpolation	schemes,	the	analytical	setup	always	

gives	better	agreement	with	theory.	Of	all	the	interpolation	schemes	used,	the	1-d	

interpolation	shows	the	best	performance,	which	is	consistent	with	the	literature	

observation.91	Interestingly	for	some	cases,	the	worst	results	for	the	analytical	setup	can	

even	beat	the	best	results	for	the	numerical	setup.	

	

4.2	Reaction	Field	Energies	of	Nontrivial	Biomolecules	

4.2.1	Convergence	Analysis	We	conducted	convergence	analysis	of	the	PB	reaction	

field	energy	versus	grid	spacing	for	the	IIM	with	different	setups.	The	results	for	the	eight	

chosen	proteins	are	shown	in	Figure	4.	IIM	with	both	analytical	and	numerical	setups	

converge	at	very	fine	grids	in	a	unified	quadratic	manner,	as	predicted	by	the	theory.	The	

converged	values	are	consistent	with	our	previously	implemented	solvers,	and	also	

consistent	with	other	existing	solvers	as	in	DelPhi	and	APBS,	and	higher	order	solver	such	

as	MIBPB.92	However,	the	convergence	curves	do	not	show	a	significant	improvement	after	

we	analytically	computed	all	interface	parameters	and	jump	conditions.	Indeed,	some	of	

the	test	cases	were	found	to	lead	to	even	worse	results	(as	in	case	(b)	of	Figure	4).		

The	reason	is	that	we	do	not	have	proper	interface	parameters.	When	numerically	

solving	PDEs	for	systems	with	interfaces,	interface	parameters	must	converge	in	a	

quadratic	form,	so	we	can	guarantee	the	whole	numerical	scheme	converges	in	a	quadratic	

manner.	However,	this	does	not	hold	for	the	analytical	setup.	Even	if	the	analytical	setup	
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can	obtain	extremely	accurate	interface	parameters	(with	relative	error	of	10-6)	on	each	

projection	point,	the	projection	point	may	not	necessarily	be	a	good	representation	of	its	

neighborhood	on	the	interface.	Therefore,	when	we	resort	to	a	finer	grid	spacing,	a	new	

projection	point	in	this	neighborhood	may	give	a	set	of	totally	different	interface	

parameters	(even	the	sign	may	be	different	for	curvatures	due	to	the	crowded	atomic	

packing	in	biomolecules),	causing	the	method	fail	to	converge	in	a	quadratic	manner.	

Indeed,	if	we	include	the	data	at	the	grid	spacing	of	1.0	Å	in	the	fitting	curves,	the	

asymptotic	energy	would	converge	to	a	wrong	value.	This	phenomenon	shows	that	the	data	

at	the	space	1.0	Å	have	not	entered	the	convergence	region,	thus	leading	to	poor	

performance	with	the	analytical	setup.	We	believe	this	is	because	the	interface	parameters	

do	not	converge	in	a	quadratic	form,	which	motivated	us	to	develop	a	surface	regulation	

scheme.	
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—	analytical	setup				---	numerical	setup				···	analytical	setup	with	surface	regulation	
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Figure	4.	Convergence	trends	for	reaction	field	energies	of	nontrivial	biomolecules	

(kcal/mol)	versus	grid	spacing	(Å).	The	energy	results	are	obtained	by	averaging	of	

systematic	30	rotations/offsets	of	the	tested	molecules.	All	the	curves	are	obtained	by	

fitting	data	at	discrete	grid	point	to	a	parabola	(y=a+bx2).	(Note	that	for	the	analytical	setup	

without	surface	regulation,	data	at	grid	spacing	equal	to	1	Å	are	not	included	in	the	fitting.)		

That	better	interface	parameters	are	required	to	unleash	the	full	potential	of	the	

analytical	setup	can	also	be	illustrated	in	the	following	rationale.	Nontrivial	biomolecules	in	

our	test	cases	contain	atoms	with	radii	as	small	as	0.6	Å.	Thus,	a	sampling	grid	spacing	of	

1.0	Å	or	0.5	Å	is	inadequate	to	capture	the	surface	curvatures	(𝜉@@ ,	etc).	In	the	numerical	

IIM	scheme,	the	interface	properties	(such	as	curvatures)	are	not	accurate	as	they	would	be	

in	the	analytical	IIM,	because	certain	fuzziness	from	the	use	of	the	coarse	grid	is	introduced	

within	the	neighborhood	of	the	projection	point.82	Coincidently,	however,	these	inaccurate	

properties	lead	to	a	better	representation	of	the	surface	for	the	numerical	IIM	when	the	

coarse	grid	is	used	(Figure	4).	Therefore,	for	a	coarse	grid	such	as	of	1.0	Å,	the	accuracy	of	

the	IIM	scheme	cannot	achieve	what	the	theory	best	predicts	and	thus	the	data	deviate	

from	the	fitting	curves.	Thus,	a	better	way	to	deal	with	coarse	grids	is	to	adopt	some	

fuzziness	for	the	surface	description.		We	implemented	the	surface	regulation	to	introduce	

some	“inaccuracy”	but	more	“representativeness”	into	the	analytical	IIM	for	coarse	grid	

spacings	such	as	1.0	Å.		

As	shown	in	Figure	4,	the	convergence	performance	of	the	analytical	setup	with	

surface	regulation	is	much	better	than	the	results	without	regulation	and	the	data	follow	

the	quadratic	pattern	more	closely.	Worth	noting	is	that	the	PB	energies	at	the	grid	spacing	

of	1.0	Å	enter	the	convergence	region	when	the	surface	regulation	is	used.	In	addition,	the	
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analytical	setup	makes	it	converge	faster	(flatter	convergence	curve)	than	the	numerical	

setup	for	every	test	case.	The	detailed	discussion	is	shown	below.	

4.2.2	Accuracy	and	Uncertainty	For	the	widely	used	coarse	grid	spacing	of	1.0	Å,	

the	analytical	setup	without	regulation	does	not	show	an	improvement.	The	maximum,	

medium	and	minimum	relative	errors	of	reaction	field	energy	at	1.0	Å	for	the	eight	tested	

proteins	are	3.51%,	2.90%	and	2.05%,	respectively	(Table	2).	Those	for	the	numerical	

setup	are	2.54%,	1.79%,	and	0.58%,	respectively	(Table	S3).	It	can	be	seen	that	the	

analytical	setup	alone	does	not	improve	the	convergence	for	complex	interfaces.	The	

reason	is	that	those	projection	points	do	not	have	enough	representativeness	as	we	

discussed	above.	However,	for	analytical	setup	with	regulation,	those	three	errors	are	

1.22%,	1.03%,	and	0.49%,	respectively	(Table	3),	with	the	accuracy	almost	doubled	for	all	

chosen	cases.	This	shows	that	by	introducing	surface	regulation,	we	successfully	made	the	

interface	more	representative	and	thus	improved	the	convergence	properties.	As	for	the	

widely	used	coarse	grid	spacing	of	0.5	Å,	the	convergence	improvement	is	similar	to	that	of	

1.0	Å,	with	the	convergence	of	the	analytical	setup	with	regulations	is	also	roughly	twice	

better	than	the	other	two	schemes.		

Since	our	method	is	developed	to	balance	accuracy	and	efficiency	as	it	is	mostly	

used	to	process	tens	of	thousands	of	structures	to	post-process	MD	trajectories,	such	as	in	

MMPBSA	calculations,	it	is	essential	to	make	sure	the	PB	energy	error	is	negligible	

compared	to	the	intrinsic	error	of	MMPBSA,	which	is	usually	about	10%	as	discussed	in	one	

of	our	recent	papers.93	For	the	recommended	grid	spacing	of	0.5	Å,	the	relative	error	of	PB	

energies	with	respect	to	the	limiting	values	at	0	Å	is	about	0.5%	(Table	3),	which	is	twenty	

times	smaller	than	the	intrinsic	error	and	clearly	negligible.	It	is	also	interesting	to	
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compare	with	some	existing	higher-order	solvers,	such	as	MIBPB,	which	showed	a	relative	

error	of	about	0.2%	at	their	recommended	grid	spacing	of	1	Å	with	respect	to	the	finest	

tested	grid	of	0.2	Å.92	This	is	basically	the	same	if	we	also	compare	the	values	with	those	at	

0.2	Å	instead	of	0	Å	for	the	analytical	IIM.	In	summary	the	accuracy	of	both	our	second-

order	solver	and	higher-order	solvers	is	sufficient	for	post-processing	methods	that	are	

based	on	intensive	PBSA	calculations.	While	on	the	other	hand,	the	trade-off	in	accuracy	

and	efficiency	implies	that	our	second-order	solver	shall	benefit	more	in	CPU	intensive	

applications.	

Table	2.	Reaction	field	energies	(kcal/mol)	of	eight	selected	proteins	with	analytical	

setup.	

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 
1.000Å -1059.46 -1045.14 -772.98 -1083.10 -1130.23 -820.50 -1536.82 -924.65 
0.500Å -1032.95 -1019.10 -751.89 -1064.22 -1106.95 -800.71 -1512.05 -904.49 
0.333Å -1029.06 -1014.96 -748.88 -1061.70 -1105.35 -797.09 -1507.84 -901.55 
0.250Å -1028.47 -1014.02 -748.30 -1061.11 -1105.72 -796.15 -1507.01 -900.93 
0.125Å -1029.26 -1013.55 -747.08 -1060.72 -1106.34 -795.56 -1506.63 -900.68 
lim values -1028 -1013 -746.8 -1060 -1106 -794.9 -1506 -900.0 

	

Table	3.	Reaction	field	energies	(kcal/mol)	of	eight	selected	proteins	with	analytical	

setup	and	the	regulation	treatment.	

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 
1.000Å -1035.44 -1023.20 -754.93 -1065.92 -1108.35 -804.33 -1514.27 -908.97 
0.500Å -1028.61 -1014.24 -748.51 -1061.08 -1103.45 -797.99 -1507.33 -901.28 
0.333Å -1025.94 -1011.44 -746.64 -1059.50 -1102.77 -795.28 -1504.58 -899.36 
0.250Å -1026.06 -1011.24 -746.53 -1059.39 -1103.41 -794.77 -1504.37 -899.20 
0.125Å -1027.52 -1011.6 -745.98 -1059.60 -1104.72 -794.70 -1504.93 -899.54 
lim values -1026 -1011 -745.9 -1059 -1103 -794.6 -1504 -898.7 

	

Another	point	worth	addressing	is	the	numerical	uncertainty	of	numerical	reaction	

field	energies.	As	stated	previously,	the	final	PB	energy	is	an	average	over	PB	energies	of	30	

different	grid	orientations/offsets	of	our	test	molecule.	The	standard	deviations	of	collected	
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data	can	be	used	to	show	the	numerical	uncertainty	of	the	algorithm.	Table	4	shows	the	

standard	deviations	of	the	30	energies	computed	at	grid	spacings	of	0.5	Å	and	1.0	Å.	For	the	

numerical	setup	at	grid	spacing	of	1.0	Å,	the	maximum,	medium	and	minimum	fluctuations	

among	the	8	tested	proteins	are	7.70,	3.27,	and	1.93	kcal/mol,	respectively.	Those	for	the	

analytical	setup	at	the	same	grid	spacing	are	5.87,	4.51	and	2.68	kcal/mol,	respectively.	And	

for	the	analytical	setup	with	regulation,	they	are	3.25,	2.62	and	1.86	kcal/mol,	respectively.	

In	general,	the	energy	of	the	numerical	setup	may	fluctuate	about	2~3	times	larger	than	the	

analytical	setup,	which	clearly	shows	the	analytical	setup	is	much	more	stable	and	reliable	

than	the	numerical	setup.	Similar	behaviors	were	also	observed	with	the	grid	spacing	of	0.5	

Å.	The	regulation	scheme	almost	always	shows	a	smaller	fluctuation	than	the	other	two,	

and	the	performance	is	roughly	2~3	times	better	as	shown	in	Table	4.	Thus	it	is	clear	that	

both	the	convergence	accuracy	and	the	numerical	fluctuation	of	our	new	analytical	IIM	

solver	are	in	the	order	of	a	few	tenths	of	a	percentage	point	at	the	recommended	grid	

spacing	of	0.5	Å,	and	also	with	higher	efficiency.		

Table	4.	Reaction	field	energies	standard	deviation	(kcal/mol)	of	eight	selected	

proteins	with	three	setups	at	grid	spacing	of	0.5	Å	and	1.0	Å.	

 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 
0.5 Å         
numerical 4.529 1.070 1.209 3.214 1.571 0.509 4.015 0.532 
analytical 1.017 1.037 0.660 0.721 1.782 0.628 0.944 0.821 
regulation 0.838 1.046 0.707 0.570 1.332 0.591 0.971 0.722 
1.0 Å         
numerical 7.704 3.202 1.934 4.743 7.476 3.332 3.128 2.333 
analytical 4.024 5.191 2.938 2.678 4.997 5.154 2.762 5.873 
regulation 3.250 2.937 2.752 2.292 2.768 1.885 2.495 1.856 

	

	

4.3	Timing	and	Robustness	
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Figure	5	shows	the	timing	comparison	between	two	different	setups	for	IIM.	It	is	

clear	that	the	analytical	setup	is	faster	in	all	the	cases,	and	the	improvement	in	the	solver	

time	is	significant	for	grid	spacings	of	widely	used	1.0	Å	and	0.5	Å,	for	which	the	

performance	of	analytical	setup	is	five-times/double	of	that	of	the	numerical	setup	on	

average.	We	believe	this	is	because	the	analytical	setup	gives	much	more	precise	

coefficients	for	the	final	discretized	equations,	leading	to	better-conditioned	linear	systems.	

Thus,	the	numerical	solver	takes	fewer	iterations	to	reach	the	convergence.	Because	the	

solver	phase	is	the	most	time-consuming	part	in	these	programs	as	shown	in	Table	5,	this	

leads	to	a	dramatic	reduction	in	the	overall	running	time.	For	finer	grid	spacing	of	0.25	Å,	

the	speedup	is	not	that	significant	any	more,	which	is	understandable,	as	the	difference	

between	analytical	setup	and	numerical	setup	becomes	negligible.	

Table	5.	Percentages	of	the	average	solver	time	in	IIM	runs	for	the	protein	test	set.	

grid spacing 1Å 0.5Å 0.25Å 
numerical setup 74% 82% 90% 
analytical setup 23% 51% 78% 

	

Figure	5	also	shows	that	the	analytical	setup	can	be	more	stable.	For	spacing	of	both	

1Å	and	0.5Å	cases,	the	timing	data	are	more	concentrated	near	the	fitting	curves,	which	

shows	a	more	unified	scaling	behavior.	Besides,	for	the	protein	test	set,	3	(out	of	573)	cases	

failed	for	the	numerical	setup	(bad	data	or	NaN	for	PB	energies),	but	none	for	the	analytical	

setup,	as	showed	in	Table	6.	We	further	confirmed	this	result	with	the	analytical	setup	tests	

in	which	no	case	failed.	The	reaction	field	energies	of	the	analytical	setup	tests	are	shown	in	

Table	S4	in	Supplementary	Materials.	This	is	consistent	with	the	observations	in	other	

analyses	of	the	methods.	

Table	6.	Failed	test	cases	for	the	IIM	runs	with	numerical	setup.	



29	
	

grid spacing 1Å 0.5Å 0.25Å 
Failures 1lyp 

1dip 
1pih 
1mut 
1e6q 

2jhb 
1hyk 
1gnc 

	

	

—	analytical	setup		 	 ---	numerical	setup	

Figure	5.	Timing	comparison	between	two	different	setups	(without	regulation).	



30	
	

	

4.4	GPU	Implementation	

Finally,	we	implemented	the	BiCG	linear	system	solver	for	the	IIM,	which	is	the	most	

time-consuming	portion	of	the	algorithm	as	shown	in	Table	5.	The	results	with	the	protein	

test	set	are	showed	in	Figure	6.	The	PB	energies	agree	excellently	between	GPU	and	CPU	

programs,	with	the	medium	relative	error	of	0.07%	for	the	test	set.	The	timing	of	the	GPU	

solver	also	shows	an	impressive	performance	boost	here,	with	the	speedup	ratio	of	about	

20.	The	implementation	on	GPU	makes	the	analytical	setup	IIM	program	more	feasible	for	

practical	biomolecular	applications.	
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Figure	6.	Comparison	of	PB	energies	(kcal/mol)	and	solver	timing	(seconds)	

between	GPU	and	CPU	runs.	The	energy	trend	line	is	1.001x+1.088,	with	the	medium	

relative	deviation	between	the	two	sets	0.066%.	The	timing	trend	line	is	0.045x+0.921,	

with	the	GPU	program	about	20	times	faster	than	the	CPU	program.	
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CHAPTER	3	

CONCLUSION	

	

In	this	study,	we	introduced	both	analytical	setup	of	interface	conditions	and	surface	

regulation	into	the	IIM	to	address	its	instability	and	slow	convergence.	The	analytical	setup	

was	found	to	obtain	more	accurate	solutions	than	the	numerical	setup	in	the	analytical	test	

cases.	The	method	was	found	to	be	able	to	obtain	a	good	result	even	with	coarse	grid	

spacings,	like	1	Å.	At	the	widely	used	grid	spacing	of	0.5	Å,	the	analytical	setup	can	also	lead	

to	much	smaller	relative	errors	(less	than	0.1%)	than	the	numerical	setup.	Overall	the	

analytical	setup	converges	in	a	quadratic	manner,	as	predicted	by	theory.	

The	surface	regulation	scheme	further	speeds	up	the	convergence	for	nontrivial	

biomolecules.	For	the	widely	used	coarse	grid	spacings	of	0.5	and	1.0	Å,	the	analytical	setup	

with	the	surface	regulation	was	found	to	roughly	halve	the	relative	errors	from	the	

numerical	setup.	Specifically,	the	relative	error	of	PB	energies	at	0.5	Å	is	about	0.5%	with	

respect	to	the	limiting	values	at	0	Å	or	about	0.2%	with	respect	to	the	values	computed	at	

0.2	Å.	These	are	similar	to	those	of	the	higher-order	solvers	such	as	MIBPB	at	their	

recommended	grid	spacing.	In	addition,	the	numerical	uncertainty	of	the	PB	energies	is	

reduced	to	a	few	tenth	of	a	percentage	point	of	the	mean.	In	summary	both	numerical	error	

and	uncertainty	of	the	new	analytical	IIM	method	are	much	smaller	than	the	thermal	noise	

of	typical	room-temperature	MD	simulations,	for	which	the	PB	method	is	often	used	as	a	

post-processing	tool.	

More	interestingly	the	analytical	setup	significantly	improves	the	solver	efficiency	at	

the	tested	coarser	grid	spacings.	For	grid	spacings	of	1	Å	and	0.5	Å,	the	solver	time	was	
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decreased	by	5x	and	2x,	respectively.	This	is	because	the	analytical	setup	generates	more	

precise	coefficients	for	the	final	discretized	equations,	leading	to	better-conditioned	linear	

systems.	This	also	leads	to	a	more	stable	algorithm.	In	our	protein	test	set	over	500	

proteins,	none	of	them	failed	with	the	analytical	setup.	Finally,	we	implemented	the	GPU	

BiCG	solver	for	the	IIM.	The	PB	energies	agree	excellently	between	GPU	and	CPU	programs,	

and	the	timing	analysis	shows	that	the	GPU	solver	is	about	20	faster	than	the	CPU	solver,	

which	makes	the	analytical	setup	IIM	program	more	feasible	for	practical	biophysical	

studies.	
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SUPPLEMENTARY	MATERIALS	

	

Table	S1.	Cartesian	coordinates	of	solute	charges	for	the	analytical	monopole,	

dipole,	quadrupole	and	octapole	models,	respectively.	

Model	 Positive	Charge	

Coordinates	

Negative	Charge	

Coordinates	

Monopole	 (-0.10,	-0.10,	0.90)	 	

Dipole	 (-0.10,	-0.10,	0.90)	 (-0.10,	-0.10,	-0.10)	

Quadrupole	 (0.70,	-0.10,	-0.10)	

(-0.10,	0.70,	-0.10)	

(0.70,	0.70,	-0.10)	

(-0.10,	-0.10,	-0.10)	

Octupole	 (0.57,	-0.20,	0.57)	

(-0.20,	0.57,	0.57)	

(0.57,	-0.20,	-0.20)	

(-0.20,	0.57,	-0.20)	

(0.57,	0.57,	0.57)	

(-0.20,	-0.20,	0.57)	

(0.57,	0.57,	-0.20)	

(-0.20,	-0.20,	-0.20)	

Table	S2.	Reaction	field	energies	(kcal/mol)	for	analytical	sphere	models	with	the	

numerical	setup.	Each	reported	energy	is	an	average	of	30	energies	computed	with	random	

placements	of	the	finite	difference	grid	over	a	tested	model.	Analytical	reaction	field	

energies	were	calculated	using	Mathematica	7.0.		

Spacing 1.000Å 0.500Å 0.330Å 0.250Å 0.125Å Analytical 
Monopole -98.28 -102.83 -103.20 -103.25 -103.29 -103.30 
Dipole -22.24 -24.63 -24.79 -24.81 -24.83 -24.83 
Quadrupole -8.24 -9.15 -9.17 -9.15 -9.16 -9.17 
Octupole -23.41 -25.77 -26.00 -25.97 -25.97 -25.98 
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Table	S3.	Reaction	field	energies	(kcal/mol)	of	eight	selected	proteins	with	the	

numerical	setup.	

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 
1.000Å -1005.46 -1006.12 -731.75 -1044.30 -1077.87 -775.09 -1485.50 -886.03 
0.500Å -1021.22 -1010.82 -743.94 -1055.65 -1096.69 -791.29 -1500.24 -896.94 
0.333Å -1023.97 -1010.85 -745.13 -1057.86 -1100.80 -792.96 -1503.08 -898.26 
0.250Å -1025.45 -1011.00 -745.72 -1058.89 -1102.20 -793.70 -1503.55 -898.97 
0.125Å -1028.24 -1012.80 -746.32 -1059.89 -1104.71 -794.85 -1505.51 -899.91 
lim values -1027 -1012 -746.9 -1060 -1104 -795.3 -1505 -900.0 

	

Table	S4.	Reaction	field	energies	(kcal/mol)	of	eight	failed	test	cases	with	the	

analytical	setup.	

spacing 1lyp 1dip 1pih 1mut 1e6q 2jhb 1hyk 1gnc 
1.000Å -2442.64 -1627.51 -960.92 -1816.24 -2880.66 -1450.66 -629.21 -1664.35 
0.500Å -2431.12 -1595.02 -940.52 -1774.41 -2788.34 -1411.38 -615.45 -1619.93 
0.250Å -2427.93 -1589.63 -936.65 -1772.68 -2772.91 -1403.33 -612.19 -1615.88 

	




