
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Identifying and Preventing Large-scale Internet Abuse

Permalink
https://escholarship.org/uc/item/7dv8f2tn

Author
Borgolte, Kevin

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dv8f2tn
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Identifying and Preventing Large-scale Internet Abuse

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Kevin Borgolte

Committee in Charge:

Professor Christopher Kruegel, Co-Chair

Professor Giovanni Vigna, Co-Chair

Professor Ben Zhao
The University of Chicago

September 2018

The dissertation of Kevin Borgolte is approved.

Professor Ben Zhao

Professor Giovanni Vigna, Committee Co-Chair

Professor Christopher Kruegel, Committee Co-Chair

June 2018

Identifying and Preventing Large-scale Internet Abuse

Copyright © 2018

by

Kevin Borgolte

iii

Acknowledgements

Without question, this dissertation would not have seen the light of day without the incredible

support of numerous exceptional people along the way.

I thank my two advisors, Christopher Kruegel and Giovanni Vigna, for their inspiration, guid-

ance and insight, for believing in me pursuing my own research ideas, and for encouraging me every

step of theway. I also thankMathias Payer, for being an unofficial academicmentor, and for support-

ing me in my academic development and career. From a research perspective alone, this dissertation

stands on the shoulders of my co-authors. Most notably, Shuang Hao and Tobias Fiebig: Thank

you for .*, for as if I would try to list all reasons individually, I would fail and forget at least one.

Of course, my acknowledgement would be incomplete without thanking my work family, the

SecLab, current or former, postdoc, graduate student, or intern. Thank you for being there for me

the last few years, the unforgettable deadlines, the nerve-wracking iCTFs and CTFs, all the joy and

pleasantries that come with family, but also all the drama that we had, created, or otherwise were

involved in, and which made us all grow closer together in the end. A special thank you goes to

my divorced work wife, Francesco Disperati, for the “the good stuff,” without whom overhauling

the SecLab’s entire infrastructure would have delayed my dissertation by a while, and the countless

other things. I also want to thank Tim Robinson, for being the SecLab’s financial and administrative

wizard, and for taking care of everything that a horde of (wild) graduate students threw his way,

however outlandish it.

I also cannot imagine that this dissertation would have been possible without the love and unwa-

vering support of my family: my mother, Claudia, my late grandfather, Bernard, and, alphabetically

(because otherwise I might not hear the end of it), Björn, Hansi, Heinz-Willi, Kolja, Monika, Sigrid,

and Tina. Thank you!

And, finally, Martina: Thank you for your love, encouragement, joining me in Santa Barbara,

putting up with me working endlessly, and, well, simply said, everything.

iv

Curriculum Vitæ
Kevin Borgolte

Education

Doctor of Philosophy (Ph.D.), Computer Science
University of California, Santa Barbara, United States of America
September 2013 – September 2018 (Expected)

• Outstanding Graduate Student Award, May 2016
• Ph.D. Student Progress Award, March 2014

Master of Science ETH (M.Sc. ETH), Computer Science
Swiss Federal Institute of Technology Zurich, Switzerland
Eidgenössische Technische Hochschule Zürich, Schweiz
September 2010 – September 2012

Bachelor of Science (B.Sc.), Computer Science
University of Bonn, Germany
Rheinische Friedrich-Wilhelms-Universität Bonn, Deutschland
September 2007 – September 2010

Research Experience

Graduate Student Researcher
Computer Security Group, Department of Computer Science
University of California, Santa Barbara
September 2013 – September 2018

Research Scholar
Computer Security Group, Department of Computer Science
University of California, Santa Barbara
February 2012 – September 2013

Research Assistant
Chair of System Design, Department of Management, Technology and Economics
Swiss Federal Institute of Technology Zurich
August 2011 – July 2012

Research Assistant
Chair of Communication Systems, Department of Computer Science
University of Bonn
January 2009 – September 2009

v

Teaching Experience

Teaching Assistant in Compilers (CS 160)
Department of Computer Science
University of California, Santa Barbara
January 2016 – March 2016

Teaching Assistant in Computer Architecture (BA-INF 023)
Department of Computer Science
University of Bonn
April 2010 – September 2010

Teaching Assistant in Systems Programming (BA-INF 034)
Department of Computer Science
University of Bonn
October 2009 – March 2010

Community Service

• Program Committee Member, 38th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), July 2018

• ExternalReviewer, 15th Conference onDetection of Intrusions andMalware&Vulnerability
Assessment (DIMVA), June 2018

• ProgramCommitteeMember, 10th USENIXWorkshop onCyber Security Experimentation
and Test (CSET), August 2017

• External Reviewer, 26th USENIX Security Symposium (USENIX Security), August 2017

• Reviewer, Journal of Information Security and Applications, March 2017

• Program Committee Member, 1st International Conference on Advances in Cyber-Technol-
ogies and Cyber-Systems (CYBER), October 2016

• Program Committee Chair, 10th Graduate Student Workshop on Computing (GSWC),
March 2016 (Best Reviewer Award)

• External Reviewer, 1th IEEE European Symposium on Security and Privacy (EuroS&P),
March 2016

• External Reviewer, 22nd ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS), October 2015

• ProgramCommitteeMember, 9th Graduate StudentWorkshop on Computing (GSWC), Oc-
tober 2014 (Best Reviewer Award)

vi

Publications

[1] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Delta: Automatic Identi-
fication of Unknown Web-based Infection Campaigns”. In: Proceedings of the 20th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Virgil D. Gligor
and Moti Yung. Berlin, Germany: Association for Computing Machinery (ACM), Nov.
2013, pp. 109–120. ISBN: 978-1-4503-2477-9. DOI: 10.1145/2508859.2516725.

[2] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Relevant Change Detection:
Framework for the Precise Extraction of Modified and Novel Web-based Content as a Fil-
tering Technique for Analysis Engines”. In: Proceedings of the 23rd World Wide Web Confer-
ence (WWW). Ed. by Andrei Z. Broder, Kyuseok Shim, and Torsten Suel. WWW Com-
panion. Developers’ Track. Seoul, Republic of Korea: International World Wide Web Con-
ference Committee (IW3C2), Apr. 2014, pp. 595–598. ISBN: 978-1-4503-2745-9. DOI:
10.1145/2567948.2578039.

[3] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupé, Yanick Fratantonio,
Luca Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili. “Ten Years of iCTF: The Good,
The Bad, and The Ugly”. In: Proceedings of the 1st USENIX Summit on Gaming, Games and
Gamification in Security Education (3GSE). Ed. by Zachary N. J. Peterson. San Diego, CA:
USENIX Association, Aug. 2014. URL: https://www.usenix.org/conference/
3gse14/summit-program/presentation/vigna (visited on 08/20/2018).

[4] Yinzhi Cao, Yan Shoshitaishvili, Kevin Borgolte, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. “Protecting Web Single Sign-on against Relying Party Impersonation At-
tacks through a Bi-directional Secure Channel with Authentication”. In: Proceedings of the
17th International Symposium on Recent Advances in Intrusion Detection (RAID). Ed. by Angelos
Stavrou,Herbert Bos, andGeorgios Portokalidis. Vol. 8688. LectureNotes inComputer Sci-
ence (LNCS). Gothenburg, Sweden: Springer International Publishing, Sept. 2014, pp. 276–
298. ISBN: 978-3-319-11379-1. DOI: 10.1007/978-3-319-11379-1_14.

[5] Mathias Payer, Ling Huang, Neil Zhenqiang Gong, Kevin Borgolte, and Mario Frank.
“What You Submit is Who You Are: A Multi-Modal Approach for Deanonymizing Scien-
tific Publications”. In: IEEE Transactions on Information Forensics and Security (TIFS) 10.1 (Jan.
2015), pp. 200–212. ISSN: 1556-6013. DOI: 10.1109/TIFS.2014.2368355.

[6] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Meerkat: Detecting Website
Defacements through Image-based Object Recognition”. In: Proceedings of the 24th USENIX
Security Symposium (USENIX Security). Ed. by Jaeyeon Jung Jung and Thorsten Holz. Wash-
ington, D.C., USA: USENIX Association, Aug. 2015, pp. 595–610. ISBN: 978-1-931971-
232.URL: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/borgolte (visited on 08/20/2018).

vii

https://doi.org/10.1145/2508859.2516725
https://doi.org/10.1145/2567948.2578039
https://www.usenix.org/conference/3gse14/summit-program/presentation/vigna
https://www.usenix.org/conference/3gse14/summit-program/presentation/vigna
https://doi.org/10.1007/978-3-319-11379-1_14
https://doi.org/10.1109/TIFS.2014.2368355
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/borgolte
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/borgolte

[7] Shuang Hao, Kevin Borgolte, Nick Nikiforakis, Gianluca Stringhini, Manuel Egele,
Michael Eubanks, Brian Krebs, and Giovanni Vigna. “Drops for Stuff: An Analysis of Re-
shipping Mule Scams”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). Ed. by Ninghui Li and Christopher Kruegel. Denver, CO,
USA: Association for Computing Machinery (ACM), Oct. 2015, pp. 1081–1092. ISBN:
978-1-4503-3832-5. DOI: 10.1145/2810103.2813620.

[8] Antonio Bianchi,Kevin Borgolte, Jacopo Corbetta, Francesco Disperati, Andrew Dutcher,
John Grosen, Paul Grosen, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Nick
Stephens, Giovanni Vigna, and Ruoyu Wang. “Cyber Grand Shellphish”. In: Phrack 15.70
(Jan. 2017). Authors listed alphabetically. URL: http://phrack.org/papers/cyber_
grand_shellphish.html (visited on 08/20/2018).

[9] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel, and Giovanni Vigna.
“Something From Nothing (There): Collecting Global IPv6 Datasets From DNS”. In: Pro-
ceedings of the 18th Passive and Active Measurement (PAM). Ed. by Mohamed Ali Kâafar, Steve
Uhlig, and Johanna Amann. Vol. 10176. Lecture Notes in Computer Science (LNCS). Syd-
ney, Australia: Springer International Publishing, Mar. 2017, pp. 30–43. ISBN: 978-3-319-
54328-4. DOI: 10.1007/978-3-319-54328-4_3.

[10] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni Vigna.
“Cloud Strife: Mitigating the Security Risks of Domain-Validated Certificates”. In: Pro-
ceedings of the 25th Network and Distributed System Security Symposium (NDSS). Ed. by Patrick
Traynor and Alina Oprea. San Diego, CA, USA: Internet Society (ISOC), Feb. 2018. ISBN:
1891562-49-5. DOI: 10.14722/ndss.2018.23327.

[11] Yan Shoshitaishvili, Antonio Bianchi, Kevin Borgolte, Amat Cama, Jacopo Corbetta,
Francesco Disperati, Andrew Dutcher, John Grosen, Paul Grosen, Aravind Machiry,
Christopher Salls, Nick Stephens, Ruoyu Wang, and Giovanni Vigna. “Mechanical Phish:
Resilient Autonomous Hacking”. In: IEEE Security & Privacy 16.2 (Mar.–Apr. 2018),
pp. 12–22. ISSN: 1558-4046. DOI: 10.1109/MSP.2018.1870858.

[12] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel, Giovanni Vigna, and
Anja Feldmann. “In rDNS We Trust: Revisiting a Common Data-Source’s Reliability”.
In: Proceedings of the 19th Passive and Active Measurement (PAM). Ed. by Robert Beverly
and Georgios Smaragdakis. Vol. 10771. Lecture Notes in Computer Science (LNCS).
Berlin, Germany: Springer International Publishing, Mar. 2018, pp. 131–145. ISBN:
978-3-319-54327-7. DOI: 10.1007/978-3-319-76481-8_10.

[13] Kevin Borgolte, Shuang Hao, Tobias Fiebig, and Giovanni Vigna. “Enumerating Active
IPv6 Hosts for Large-scale Security Scans via DNSSEC-signed Reverse Zones”. In: Proceed-
ings of the 39th IEEE Symposium on Security & Privacy (S&P). Ed. by Bryan Parno and Christo-
pher Kruegel. San Francisco, CA, USA: Institute of Electrical and Electronics Engineers
(IEEE), May 2018, pp. 438–452. ISBN: 978-1-5386-4353-2. DOI: 10.1109/SP.2018.
00027.

viii

https://doi.org/10.1145/2810103.2813620
http://phrack.org/papers/cyber_grand_shellphish.html
http://phrack.org/papers/cyber_grand_shellphish.html
https://doi.org/10.1007/978-3-319-54328-4_3
https://doi.org/10.14722/ndss.2018.23327
https://doi.org/10.1109/MSP.2018.1870858
https://doi.org/10.1007/978-3-319-76481-8_10
https://doi.org/10.1109/SP.2018.00027
https://doi.org/10.1109/SP.2018.00027

[14] Wei Meng, Chenxiong Qian, Shuang Hao, Kevin Borgolte, Giovanni Vigna, Christopher
Kruegel, and Wenke Lee. “Rampart: Protecting Web Applications from CPU-Exhaustion
Denial-of-Service Attacks”. In: Proceedings of the 27th USENIX Security Symposium (USENIX
Security). Ed. by William Enck and Adrienne Porter Felt. Baltimore, MD, USA: USENIX
Association, Aug. 2018. URL: https://www.usenix.org/conference/usenixsecur
ity18/presentation/meng (visited on 08/20/2018).

[15] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. “Investi-
gatingOperators’ Perspective on SecurityMisconfigurations”. In:Proceedings of the 25thACM
SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Michael Backes
andXiaoFengWang.Toronto,ON,Canada:Association forComputingMachinery (ACM),
Oct. 2018. ISBN: 978-1-4503-5693-0. DOI: 10.1145/3243734.3243794.

ix

https://www.usenix.org/conference/usenixsecurity18/presentation/meng
https://www.usenix.org/conference/usenixsecurity18/presentation/meng
https://doi.org/10.1145/3243734.3243794

This page intentionally left blank

x

Abstract

Identifying and Preventing Large-scale Internet Abuse

by

Kevin Borgolte

The widespread access to the Internet and the ubiquity of web-based services make it easy to com-

municate and interact globally. Unfortunately, the software and protocols implementing the func-

tionality of these services are often vulnerable to attacks. In turn, an attacker can exploit them to

compromise, take over, and abuse the services for her own nefarious purposes. In this dissertation,

we aim to better understand such attacks, and we develop methods and algorithms to detect and

prevent them, which we evaluate on large-scale datasets.

First, we detail Meerkat, a system to detect a visible way in which websites are being compro-

mised, namely website defacements. They can inflict significant harm on the websites’ operators

through the loss of sales, the loss in reputation, or because of legal ramifications. Meerkat requires

no prior knowledge about the websites’ content or their structure, but only the Uniform Resource

Identifier (URI) at which they can be reached. By design, Meerkat mimics how a human analyst

decides if a website was defaced when viewing it in a browser, by using computer vision techniques.

Thus, it tackles the problem of detecting website defacements through their attention-seeking na-

ture, their goal and purpose, rather than code or data artifacts that they might exhibit. In turn, it is

much harder for an attacker to evade our system, as she needs to change her modus operandi. When

Meerkat detects a website as defaced, the website can automatically be put into maintenance mode

or restored to a known good state.

An attacker, however, is not limited to abuse a compromised website in a way that is visible to

the website’s visitors. Instead, she can misuse the website to infect its visitors with malicious soft-

xi

ware (malware). Although malware is well studied, identifying malicious websites remains a major

challenge in today’s Internet. Second, we introduce Delta, a novel, purely static analysis approach

that extracts change-related features between two versions of the same website, uses machine learn-

ing to derive a model of website changes, detects if an introduced change was malicious or benign,

identifies the underlying infection vector based on clustering, and generates an identifying signa-

ture. Furthermore, due to the way Delta clusters campaigns, it can uncover infection campaigns

that leverage specific vulnerable applications as a distribution channel, and it can greatly reduce the

human labor necessary to uncover the application responsible for a service’s compromise.

Third, we investigate the practicality and impact of domain takeover attacks, which an attacker

can similarly abuse to spread misinformation or malware, and we present a defense on how such

takeover attacks can be rendered toothless. Specifically, the new elasticity of Internet resources, in

particular Internet protocol (IP) addresses in the context of Infrastructure-as-a-Service cloud ser-

vice providers, combined with previously made protocol assumptions can lead to security issues. In

Cloud Strife, we show that this dynamic component pairedwith recent developments in trust-based

ecosystems (e.g., Transport Layer Security (TLS) certificates) creates so far unknown attack vectors.

For example, a substantial number of stale domain name system (DNS) records points to readily

available IP addresses in clouds, yet, they are still actively attempted to be accessed. Often, these

records belong to discontinued services that were previously hosted in the cloud. We demonstrate

that it is practical, and time and cost-efficient for attackers to allocate the IP addresses to which stale

DNS records point. Further considering the ubiquity of domain validation in trust ecosystems, an

attacker can impersonate the service by obtaining and using a valid certificate that is trusted by all

major operating systems and browsers, which severely increases the attackers’ capabilities. The at-

tacker can then also exploit residual trust in the domain name for phishing, receiving and sending

emails, or possibly distributing code to clients that load remote code from the domain (e.g., load-

ing of native code by mobile apps, or JavaScript libraries by websites). To prevent such attacks, we

xii

introduce a new authentication method for trust-based domain validation that mitigates staleness is-

sues without incurring additional certificate requester effort by incorporating existing trust into the

validation process.

Finally, the analyses of Delta, Meerkat, and Cloud Strife havemade use of large-scale measure-

ments to assess our approaches’ impact and viability. Indeed, security research in general has made

extensive use of exhaustive Internet-wide scans over the recent years, as they can provide significant

insights into the state of security of the Internet (e.g., if classes of devices are behaving maliciously,

or if they might be insecure and could turn malicious in an instant). However, the address space of

the Internet’s core addressing protocol (Internet Protocol version 4; IPv4) is exhausted, and a mi-

gration to its successor (Internet Protocol version 6; IPv6), the only accepted long-term solution, is

inevitable. In turn, to better understand the security of devices connected to the Internet, in par-

ticular Internet of Things devices, it is imperative to include IPv6 addresses in security evaluations

and scans. Unfortunately, it is practically infeasible to iterate through the entire IPv6 address space,

as it is 296 times larger than the IPv4 address space. Without enumerating hosts prior to scanning,

we will be unable to retain visibility into the overall security of Internet-connected devices in the

future, and we will be unable to detect and prevent their abuse or compromise. To mitigate this

blind spot, we introduce a novel technique to enumerate part of the IPv6 address space by walking

DNSSEC-signed IPv6 reverse zones. We show (i) that enumerating active IPv6 hosts is practical

without a preferential network position contrary to common belief, (ii) that the security of active

IPv6 hosts is currently still lagging behind the security state of IPv4 hosts, and (iii) that unintended

default IPv6 connectivity is a major security issue.

xiii

This page intentionally left blank

xiv

Permissions and Attributions

1. The content of Chapter 2 is the result of a collaboration with Christopher Kruegel and Gio-

vanni Vigna. It previously appeared in parts as “Meerkat: Detecting Website Defacements

through Image-based Object Recognition” in the Proceedings of the 24th USENIX Security

Symposium (USENIX Security) (Aug. 2015) [6]. It is reproduced with permission.

2. The content of Chapter 3 is the result of a collaboration with Christopher Kruegel and Gio-

vanni Vigna. It previously appeared in parts as “Delta: Automatic Identification of Unknown

Web-based Infection Campaigns” in the Proceedings of the 20th ACM SIGSAC Conference

on Computer and Communications Security (CCS) (Nov. 2013) [1]. It is reproduced with

permission.

3. The content of Chapter 4 is the result of a collaboration with Tobias Fiebig, Shuang Hao,

Christopher Kruegel, and Giovanni Vigna. It previously appeared in parts as “Cloud Strife:

Mitigating the Security Risks of Domain-Validated Certificates” in the Proceedings of the

25th Network and Distributed System Security Symposium (NDSS) (Feb. 2018) [10]. It is

reproduced with permission.

4. The content of Chapter 5 is the result of a collaboration with Shuang Hao, Tobias Fiebig, and

Giovanni Vigna. It previously appeared in parts as “Enumerating Active IPv6Hosts for Large-

scale Security Scans via DNSSEC-signedReverse Zones” in the Proceedings of the 39th IEEE

Symposium on Security & Privacy (S&P) (May 2018) [13]. It is reproduced with permission.

5. Parts of the contents of Chapter 1, Chapter 6, and Chapter 7 are the results of the aforemen-

tioned collaborations. They are reproduced with permission.

xv

This page intentionally left blank

xvi

Contents

Acknowledgements iv

Curriculum Vitae v

Abstract xi

Permissions and Attributions xv

Contents xvii

List of Figures xix

List of Listings xxi

List of Tables xxiii

1 Introduction 1

2 Detecting Website Defacements 9
2.1 Motivation and Contributions . 10
2.2 Approach . 14
2.3 Evaluation . 26
2.4 Limitations . 36
2.5 Conclusion . 40

3 Identifying Web-based Malware Infection Campaigns 45
3.1 Motivation and Contributions . 46
3.2 Approach . 49
3.3 Fuzzy Tree Difference . 56
3.4 Similarity Measures . 60
3.5 Evaluation . 65
3.6 Limitations . 74

xvii

3.7 Conclusion . 77

4 Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates 79
4.1 Motivation and Contributions . 80
4.2 Background . 84
4.3 Problem Analysis . 89
4.4 Mitigation . 103
4.5 Conclusion . 113

5 Enumerating IPv6 Hosts 115
5.1 Motivation and Contributions . 116
5.2 Background . 120
5.3 Approach . 124
5.4 Ethical Considerations . 133
5.5 Evaluation . 135
5.6 Mitigation . 146
5.7 Conclusion . 149

6 Related Work 153
6.1 Website Defacement Detection . 153
6.2 Image-based Detection in Security . 155
6.3 Detection of Malicious Code . 157
6.4 Web Dynamics in Security . 159
6.5 DNS Security . 160
6.6 IP Address Squatting and Takeover Attacks . 161
6.7 Certificate Validation Security . 162
6.8 Cloud Security . 162
6.9 IPv4 Security Scanning . 163
6.10 Enumerating and Scanning IPv6 Addresses . 164
6.11 DNSSEC Privacy Issues . 167

7 Summary 169

A Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates 173
A.1 Takeover Attack Proof of Concept . 173

B Copyright 175

Bibliography 177

xviii

List of Figures

1.1 Website of the Keighley Cougars, normal and defaced . 3
1.2 Defacements reported to Zone-H and phishing pages reported to PhishTank 8

2.1 Meerkat architecture . 22
2.2 Representative windows of defacement group logos . 31
2.3 True positive and false positive rates for the reporter split 42
2.4 True positive and false positive rates, and fine-tuning analysis, for the time-wise split 43

3.1 Delta architecture . 50
3.2 General tree difference and fuzzy tree difference comparison 59
3.3 Time and distribution properties of the dataset . 69
3.4 Analysis time overview . 74

4.1 Time between allocations of the same IP address per AWS EC2 availability zone . . . 98
4.2 Share of newly-observed IP addresses (churn) per AWS EC2 availability zone 99
4.3 Certificate request process that mitigates domain takeover attacks 109

5.1 Example DNS client and server interaction with and without DNSSEC 121
5.2 Online collection and NSEC3 hash gaps . 129
5.3 Comparison of our enumeration technique to Fiebig et al. 137

xix

This page intentionally left blank

xx

List of Listings

3.1 Example HTML source, base version . 59
3.2 Example HTML source, current version . 59
3.3 Cool Exploit Kit infection vector . 71
3.4 Cross-site request forgery token . 72

5.1 Example IPv6 reverse zone for 2001:db8::/32 . 124
5.2 Example NSEC and NSEC3 RRs for the reverse IPv6 zone for 2001:db8::/32 . . 131

A.1 Instructions to verify the signature . 173
A.2 Proof of concept certificate, signed by Let’s Encrypt . 174
A.3 Proof of concept message . 174
A.4 Signature for the proof of concept message . 174

xxi

This page intentionally left blank

xxii

List of Tables

2.1 Recent high-profile website defacements . 12
2.2 Number of samples per cross-validation bins used for the reporter split 34
2.3 Traditional and report split true positive, false positive, and Bayesian detection rates 36

4.1 Ports and protocols used for IP address liveness checking 101

5.1 IPv6 penetration of real-world networks . 119
5.2 Number of IPv6 hosts enumerated and sub-networks identified 139

xxiii

This page intentionally left blank

xxiv

Chapter 1

Introduction

The widespread access to the Internet and the ubiquity of Internet-connected services has made it

easy to communicate and interact globally. Unfortunately, the software and protocols implementing

the services’ functionality are often vulnerable to attacks because of software or design bugs, legacy

code, not being maintained, entirely new classes of vulnerabilities, a disconnect in what they are

supposed to do and what they are actually doing, or just evolution in how they are being used. In

turn, attackers can exploit them for their own nefarious purposes, to turn a profit from criminal

enterprises, or to wreak havoc for fun. Today, such abuse on the Internet is rampant and users must

tread carefully to not be defrauded, scammed, extorted, misled, influenced, or have their (private)

data siphoned off and misused.

One attack plaguing the Internet is the defacement and vandalism of websites, which is an attack

that disrupts the operation of companies and organizations, tarnishes their brand, and affects web-

sites of all sizes, from those of large corporations to the websites of single individuals [16, 17, 18].

In a website defacement, an attacker replaces the content of a legitimate website with some of her

own content. A website might be defaced for many different reasons and in many different ways.

For example, an attacker might deface the website by brute-forcing the administrator’s credentials,

1

Introduction Chapter 1

by leveraging a SQL injection to introduce content or code, or by hijacking the domain name. Ul-

timately, however, all defacements have one common characteristic: The defacer leaves a message

that is shown to the visitors of the website instead of the legitimate content, changing the visual

appearance of the website.

Although nearly all defacers vandalize websites for their “15 minutes of fame,” and to get a plat-

form to publicize their message, their messages vary. Some of them hope to embarrass the websites

operators, others make a political or religious statement, and others again do it for “bragging rights.”

For instance, in the beginning of November 2014, as reported by the BBC [19], attackers defaced

the website of the Keighley Cougars, a professional rugby club from England. The defacers modi-

fied the website so that visitors were greeted with a message in support of the terrorist organization

“Islamic State of Iraq and the Levant/Syria” (ISIL/ISIS) (see Figure 1.1). In another example, in late

2012, defacers close to the Syrian regime defaced the homepage of the prominent Qatari television

network Al Jazeera, and instead of news articles, visitors were shown a message alleging Al Jazeera

of “spreading false fabricated news.”

A prime example that quantifies the actual impact of defacements is the Telegraph, a major UK

daily newspaper, which was defaced in September 2011. The Telegraph is the third most-visited

website in the United Kingdom, according to MajesticSEO, and it is the 21st most visited website

in the United States, according to Alexa. Each month, its homepage is visited over 125 million

times (48 times per second), and, since reports state that the defacement lasted around three hours,

an estimated more than 500,000 visitors saw the defacement instead of the legitimate website.1

Unfortunately, detecting website defacement abuse has not received much attention from the

scientific community, while, at the same time, defacements have become more prominent. The

number of reported defacements has been exceeding the number of reported phishing pages since

1The number of visitors was likely much higher because the website was defaced on a Sunday afternoon local time
in the United Kingdom.

2

Introduction Chapter 1

(a) Normal, non-defaced version (b) Defaced version

Figure 1.1: Screenshots of the Keighley Cougars website, its normal version and after it was defaced

in an attack onNovember 2, 2014 by the defacer groupTeamSystemDz, who is using the defacement

to show support for the terrorist organization Islamic State of Iraq and the Levant/Syria (ISIL/ISIS).

October 2006 by a factor of seven on average, and reached up to 33.39 defacements being reported

to Zone-H2 per phishing page reported to PhishTank3 (see Figure 1.2). Similarly, while a mere 783

verified defacements were reported on average each day to Zone-H in 2003, the number of reports

increased to 3,258 verified defacements per day for the year 2012, to over 4,785 verified defacements

being reported each day to Zone-H in 2014. This corresponds to an increase of websites being

defaced by 46.87% from 2012 to 2014 alone [20].

Defacements, however, are only one possible attack. An attacker can also exploit server-side vul-

nerabilities to inject malicious code snippets, called infection vectors, which, in turn, attack the web-

site’s visitors through drive-by install, download, or mining attacks. In drive-by mining attacks, the

malicious code monetizes the compromise by abusing the visitors’ computational resources to mine

2Zone-H [20] is an Internet archive containing only defaced websites, all reported defacements are mirrored locally
and manually verified [21]. Upon manual inspection, a reported defacement is removed from the archive if it does not
constitute a defacement, or it is marked as verified.

3PhishTank is the largest public clearinghouse of data about phishing scams, users report potential phishing scams
and other users agree or disagree with the submitter, resulting in a user-assigned phishing score. Phishing pages are not
being verified by expert analysts.

3

Introduction Chapter 1

cryptocurrencies [22]. On the other hand, drive-by install and download attacks exploit client-side

vulnerabilities to download or install malicious software (malware), or con the user into installing

malware herself [23]. Once the malware has gained a foothold on the user’s device, amongst other

threats, it can steal a user’s private data, like credit card numbers or social security information, or at-

tempt to extort the user by encrypting her files and only disclosing the decryption key upon payment

of a ransom. Furthermore, if an attacker finds a server-side vulnerability that affects multiple web-

sites (possibly thousands), she can automate the exploitation, search for other vulnerable websites,

and launch a carefully crafted infection campaign to maximize the number of potential victims.

Reports by the security company Sophos [24, 25] show that in 2012 over 80% of all websites at-

tacking users were compromised legitimate websites, such as those of trade associations, nightclubs,

television companies or elementary schools. All of these websites had been altered, in one way or

another, to attack visitors. In another case, a range of websites hosting documentation for software

developers were modified to serve carefully crafted infection vectors that exploited client-side vul-

nerabilities, which were then leveraged as the first stepping stone in sophisticated attacks against

Twitter [26], Facebook’s engineering team [27], and Apple [28].

Today’s challenges in detecting such infection vectors are that websites have become more dy-

namic and that their static content changes regularly, that is, the underlying infection vector might

not be easily detectable by analysis tools, or even by well-trained human security analysts. Adding

new content to the website, showing different, personalized advertisements, or even comments left

by visitors are legitimate modifications. Unwanted modifications on the other hand, that is, changes

from which a user might want herself to be protected, include the aforementioned defacements or

the insertion of an infection vector. Yet, any modification, legitimate or unwanted, resets what we

know about the website’s behavior and forces us to reanalyze it for maliciousness, either through an

automatic detection system, or by manually inspecting any new content prior to its inclusion into

the website. Even worse, prior work in the area of web evolution [29, 30, 31, 32, 33] suggests that

4

Introduction Chapter 1

websites do not change in well-defined and long intervals, but that they evolve constantly through

small changes, and, if one takes into account personalized advertisements, a change might happen at

every visit, which, in turn, makes it necessary to analyze the websites on each visit.

The state of the art in protecting a user frommaliciousweb-based content ismainly implemented

through blacklists, which are queried before the website is rendered or retrieved by the browser. The

Google Safe Browsing list [23] is likely the most prominent example. By definition, blacklists are

reactive, which is an undesirable property for a protection mechanism because a malicious website

can potentially stay undetected for an extended period. Furthermore, each website compromised

as part as an infection campaign needs to be identified and added to the blacklist separately, even

though the websites attack visitors in the same, well-known way.

This is particularly problematic because Internet services have become much more elastic with

the introduction of Infrastructure-as-a-Service (IaaS) and other as-a-Service offerings, such as those

of the popular cloud service providers Amazon Web Services (AWS) or Microsoft Azure. Indeed,

clouds have changed the entire landscape of system operations on the Internet because their elastic-

ity allows operators to rapidly allocate and use resources as needed at the stroke of a key, without

any prior commitment. While this elasticity is beneficial to the clouds’ users and being credited

for spurring innovation, attackers receive the same benefits, which means that they can evade reac-

tive protection, such as blacklists, more easily. Even worse, the clouds’ elasticity introduced new

blind spots and made way for entirely new attacks that exploit previously ignored effects of resource

sharing, which, for example, allow attackers to circumvent authentication to other cloud users’ re-

sources [34], or steal their cryptographic private keys [35].

In order to better assess the ramifications of these new blind spots and to understand the In-

ternet’s global state of security, the security community adopted Internet-wide security scans as a

measurement method. These measurements allow us, for instance, to estimate the global impact of

insecure configurations, shared cryptographic keys, or the scale of vulnerable software installations.

5

Introduction Chapter 1

However, the increasing growth of the Internet will render state-of-the-art methods, which rely on

exhaustive host scanning, soon unsuitable for accurate measurements: They are limited to the cur-

rent version of the Internet protocol (version 4; IPv4), but IPv4’s address space is exhausted, and the

migration to version 6 of the Internet protocol (IPv6) is inevitable. In fact, some networks, such as

the network of T-Mobile US [36], which is the third largest wireless carriers in the United States,

are IPv6-only already. These networks cannot be scanned and analyzed by current approaches be-

cause the IPv6 address space is 296 times larger than the IPv4 address space. In turn, to retain the

capability of large-scale measurements of Internet abuse and abuse potential, we need to find new

measurement techniques. Worse yet, IPv6 introduces additional attack surface that is ripe for abuse

by miscreants because hosts previously accessible only in private networks might suddenly become

publicly accessible, and they might not be secured properly, as it is often the case for Internet of

Things devices. Indeed, a study comparing IPv6 and IPv4 security of roughly 300,000 servers and

routers already indicated that IPv6 security posture is worse than its IPv4 counterpart [37]. Without

access to the corresponding measurement techniques, we will lose the ability to understand future

large-scale Internet abuse.

In this dissertation, we aim to better understand and address large-scale Internet abuse, and to

improve visibility into the unknowns of the Internet, with the ultimate goal of making the Internet

safer. We make the following contributions in the area of Internet abuse:

• We develop two techniques to identify occurring abuse on the Internet:

– We develop Meerkat, a novel analysis method to automatically detect website deface-

ment attacks (Chapter 2). Our analysis method does not rely on manual feature engi-

neering or domain knowledge about website defacements, but it learns high-level fea-

tures from data automatically. Meerkat detects a superset of defacement attacks com-

pared to prior work, and it is more accurate.

6

Introduction Chapter 1

– WedevelopDelta, a new approach to automatically discover known and unknownweb-

basedmalware infection campaigns, assess their impact and scale, and facilitate root cause

analysis (Chapter 3). Our approach leverages that malicious behavior requires modifica-

tions to be made, which Delta identifies, extracts, and analyzes.

• We present Cloud Strife, a mitigation to prevent existing abuse potential, which is caused by the

increased elasticity of clouds (Chapter 4) Our mitigation stops the novel IP address use-after-

free attack, which we discovered, from being successfully exploited for TLS-based services,

for example, for phishing, impersonation attacks, or malware distribution.

• We introduce a new technique to uncover future abuse potential, that is, a technique to enumer-

ate actively used IPv6 addresses for security scanning by pruning unused parts of the IPv6

address space (Chapter 5). We then use our technique to evaluate the security posture of IPv6-

connected devices.

7

Introduction Chapter 1

January 2000

January 2001

January 2002

January 2003

January 2004

January 2005

January 2006

January 2007

January 2008

January 2009

January 2010

January 2011

January 2012

January 2013

January 2014
100

1,000

10,000

100,000

1,000,000

Re
po

rt
ed

 W
eb

si
te

s

Reported Websites per Month

Defacements
Phishing Pages

Figure 1.2: Defacements reported to Zone-H and phishing pages reported to PhishTank, per month

from January 2000 to including October 2014. The drops in reported defacements in February

2002, February 2009, and March 2009 are because Zone-H was under maintenance, and they did

not accept new reports. No data is available from PhishTank earlier than October 2006, when it was

launched. The trend of an increasing number of defacements per month, as well as the gap in the

number of defacements to the number of phishing pages of a factor of up to 33x are evident.

8

Chapter 2

Detecting Website Defacements

In this chapter, we approach the problem of defacement detection from a previously unexplored an-

gle: We use computer vision techniques to recognize if a website was defaced, similarly to how a

human analyst decides if a websitewas defacedwhen viewing it in a browser. We introduceMeerkat,

a defacement detection system that requires no prior knowledge about the website’s content or its

structure, but only the Uniform Resource Locator (URL) at which it can be accessed. Upon detec-

tion of a defacement, the system notifies the website operator that her website is defaced, who can

then take appropriate action. To detect defacements, Meerkat automatically learns high-level fea-

tures from screenshots of defaced websites by combining recent advances in machine learning with

techniques from computer vision. These features are then used to create models that allow for the

detection of newly-defaced websites.

We show the practicality of Meerkat on the largest website defacement dataset to date, com-

prised of 10,053,772 defacements observed between January 1998 and May 2014, and 2,554,905

legitimate websites. Overall, Meerkat achieves true positive rates between 97.422% and 98.816%,

9

Detecting Website Defacements Chapter 2

false positive rates between 0.547% and 1.528%, and Bayesian detection rates1 between 98.583% and

99.845%, thus significantly outperforming existing approaches.

2.1 Motivation and Contributions

The defacement and vandalism of websites is an attack that disrupts the operation of companies and

organizations, tarnishes their brand, and plagueswebsites of all sizes, from those of large corporations

to the websites of single individuals [16, 17, 18].

In a website defacement, an attacker replaces the content of a legitimate website with some of

her own content. A website might be defaced for many different reasons and in many different ways:

An attacker might deface the website by brute-forcing the administrator’s credentials, by leveraging

a SQL injection to introduce content or code, or by hijacking the domain name. Ultimately, how-

ever, all defaced websites share one characteristic: The defacer leaves a message that is shown to the

website’s visitors instead of the legitimate content, changing the visual appearance of the website.

Unfortunately, reliably detecting such website defacements is challenging, as there are many ways

in which an attacker can tamper with the website’s appearance, including re-routing the traffic to a

different website, which does not affect the legitimate website’s content directly in any way.

According to the Malaysian Computer Emergency Response Team (CERT), 26.04% of all re-

ported incidents in 2013 were website defacements, but only 1.5% of the reported incidents were

defacements in 2003, and 10.81% were website defacements in 2007 [38, 39]. This surge and the

increase in defacements and cyber-vandalism is generally attributed to the rise of hacktivist groups,

like anonymous or LulzSec [40, 41], but also gained traction through the escalation of national and

international conflicts [42, 43]. Although the scientific consensus is that the attacks employed to de-

face a website are rather primitive [40], hacktivist groups as well as other politically and religiously-

1The Bayesian detection rate is the likelihood that if we detect a website as defaced, it actually is defaced, that is,
P(true positive|positive).

10

Detecting Website Defacements Chapter 2

motivated defacers have been extremely successful recently: In February 2015, Google Vietnam was

defaced by Lizard Squad and remained defaced for several hours [44]; in January 2015, the website

of Malaysia Airlines was defaced by Cyber Caliphate [18]; in late 2014, the defacer group Team Sys-

tem Dz defaced over 1,700 websites to speak out against the actions of the US in the Syrian civil war

and to advocate for ISIS/ISIL [17]; in April 2014, over 100 websites belonging to the government

and major companies in Zambia were defaced by Syrian and Saudi Arabian defacers to voice against

the Western world’s “meddling” in the Syrian civil war [45]; in January 2014, the website of the

popular mobile game Angry Birds was defaced in protest of governmental spying by the NSA and

GHCQ [46]; and in October 2013, a Pakistani defacer group gained access to the domain registrars

of Suriname, Antigua & Barbados, and Saint Lucia and defaced the regional websites of Audi, AVG,

BlackBerry, BMW, Canon, Coca-Cola, Fujitsu, Hitachi, Honda, IBM, Intel, Microsoft, Samsung,

Symantec, Rolls-Royce, Vodafone, and other companies for “bragging rights” [47]. Yet, website

vandalism is still being played down as a problem, instead of being acknowledged and addressed.

Overall, attackers confirmedly defaced over 53,000 websites ranked on Alexa’s, MajesticSEO’s,

and QuantCast’s top 1 million lists in 2014, which shows that not only websites that are consider-

ing “low-hanging fruit” are being defaced, but that high-profile ones are being attacked alike (see

Table 2.1). While the list of prominent defacements goes on [19, 48, 49, 50, 51, 52, 53, 54, 55, 56],

it is important to note that most techniques to deface a website, like code and data injection attacks,

improper access control, or DNS hijacking and poisoning, have been well-studied and protection

mechanisms have been proposed by prior work [57, 58]. However, it is also extremely hard to pro-

tect against all defacement attacks simultaneously and at scale. Even worse, organizations are often

responsible for hundreds (or thousands) of different websites, with different levels of security [40].

A single insecure website that is defaced, however, can inflict significant harm on the organization:

in qualitative terms because of the loss of reputation, and in quantitative terms because of the cost of

having to investigate and remove the defacement.

11

Detecting Website Defacements Chapter 2

Month Website

Alexa MajesticSEO QuantCast Page Views
per Month ▼US Global TLD1 Global US

Nov 2014
princeton.edu 999 3,412 17 273 3,444 796,000
volvo.com 54,607 57,046 3,757 7,323 568,058 -
cca.gov.in2 146,0393 780,660 - - - -

Aug 2014 openelec.tv 7,2264 48,754 184 93,894 - -
omicsonline.org 7,5613 42,030 5,068 63,924 - -

Jul 2014

ct.gov 2,454 10,976 72 2,054 3,548 809,000
us.to 2,8465 28,100 18 11,061 - -
sunnewsonline.com 686 9,958 31,315 58,277 236,740 -
newsmoments.in 3,725 39,262 - - - -

Jun 2014 wordpress.net 3,5227 41,295 1,410 28,021 321,317 -

May 2014 arynews.tv 728 5,308 949 536,436 - -
sundaytimes.lk 1209 38,591 6 39,866 209,083 -

Mar 2014 taylorswift.com 3,560 23,425 12,161 23,608 15,678 1.2 million
gbjobs.com 79810 9,181 - - - -

Dec 2013 openssl.net 5,994 16,409 80 933 - -

Oct 2013

avg.com 117 155 471 854 - 37 million
aljazeera.net 2511 1,831 37 920 2,196 28 million
bitdefender.com 5,934 5,898 1,132 2,094 3,963 1.4 million
avira.com 2412 1,108 1,275 2,361 6,081 480,000
leaseweb.com 3594 4,035 23,585 44,451 230,626 -
metasploit.com 124,365 175,570 33,537 59,816 120,839 -

2011-201314

telegraph.co.uk 2113 225 3 107 613 125 million
ups.com 71 231 319 549 101 40 million
nationalgeographic.com 483 1,006 94 139 125 37 million
acer.com 4,060 6,042 - - 1,995 2.9 million
theregister.co.uk 2,737 3,457 443 14 11,327 1 million
vodafone.com 7,05213 20,625 5,833 2,980 101,624 -

Table 2.1: Recent high-profile websites that were defaced, with their respective page rank according to Alexa, MajesticSEO, and QuantCast, and their

monthly page impressions. These defacements were reported to Zone-H and include a major logistics company (UPS), computer and information

security vendors (BitDefender, Avira, AVG, MetaSploit), news websites (Al Jazeera, Ary News, News Moments, Sunday Times, Sun News Online,

Telegraph, TheRegister), a scientific society (National Geographic), a hardware vendor (Acer), theworld’s second largest telecommunications provider

(Vodafone), a singer-songwriter/actress (Taylor Swift), the state of Connecticut (ct.gov), an Indian federal ministry (cca.gov.in), an auto-mobile com-

pany (Volvo), an ivy-league university (Princeton), well-known open source projects (OpenSSL, OpenELEC), and a hosting provider (Leaseweb).

Missing fields represent unavailable data, data is unavailable due to being kept secret by the website operators or requiring subscriptions to Alexa,

MajesticSEO or QuantCast.

1 Top-level domain rank 2 Government of India, Ministry of Communications & Information Technology 3 Rank in India

4 Rank in Netherlands 5 Rank in Indonesia 6 Rank in Nigeria 7 Rank in Bulgaria 8 Rank in Pakistan 9 Rank in Sri Lanka

10 Rank in China 11 Rank in Yemen 12 Rank in Iran 13 Rank in United Kingdom 14 Selected high-profile website defacements from

Fortune 50 and Global 500 companies between 2011 to 2013

12

Detecting Website Defacements Chapter 2

Prior work on website defacements detection focused on detecting unauthorized changes to the

web server, for example, via host-based intrusion detection systems or file-based integrity checks.

However, most previous approaches lack the capabilities to detect the most prevailing defacement

techniques used today: code or data injection attacks, and DNS hijacking. This is because these

attacks do not actually modify the code or configuration of the website, but instead they introduce

new content or redirect the user to a different website.

Although defacements can inflict serious harm on the website operator, a two-month study by

Bartoli et al. [59] shows thatmanywebsite operators still react slowly to defacements with an average

response time of over 72 hours. Moreover, their study finds that mere 24% of the defaced websites

were restored within one day, about 50% defacements were removed within the first week, while

more than 37% of the websites remained defaced for over two weeks. Overall, their findings suggest

that prior website defacement protection techniques and detection methods have not been widely

adopted, likely because they are not comprehensive and miss some classes of attacks.

The logical first step to reduce the harm inflicted by defacements on the website operator is to

provide her means to quickly and comprehensively detect if her website has been defaced, so that she can

put the website in maintenance mode or restore its content to a known good state. As such, an au-

tomatic, accurate, thorough, and lightweight defacement detection system that monitors websites,

notifies the website’s operator, and acts as an early warning system is desired. In this chapter, we in-

troduce such a system, Meerkat, which is a monitoring system that automatically detects if a website

has been defaced. Meerkat detects website defacements by rendering the website in a browser, like a

human visitor would, and deciding, based on features learned exclusively from screenshots of deface-

ments and legitimate websites observed in the past, if the website’s look and feel is that of a defaced or a

legitimate website. If the website is detected as being defaced, the system notifies the operator, who,

in turn, can, depending on the confidence in Meerkat’s decision, put the website (automatically) in

maintenance mode or restore a known good state to reduce the damage.

13

Detecting Website Defacements Chapter 2

We make the following contributions:

• We introduce Meerkat, a website defacement detection system that learns a high-level feature

set from the visual representation of the website, that is, it learns a compressed representation

of the look and feel of website defacements and legitimate websites. Based on the learned fea-

tures, the system then produces a model to differentiate between defaced and legitimate web-

sites, which it uses to detect website defacements in the wild. In addition, the system notifies

the website’s operator upon detection.

• We evaluate Meerkat on the largest website defacement dataset to date, spanning 10,053,772

website defacements observed between January 1998 to May 2014, and 2,554,905 legitimate

and (supposedly) not defacedwebsites from theAlexa,MajesticSEO, andQuantCast top 1mil-

lion lists.

In the remainder of this chapter, we describe how Meerkat works in detail (Section 2.2), evaluate

our system on the largest defacement dataset to date (Section 2.3), discuss some limitations ofwebsite

defacement detection systems (Section 2.4), and, finally, we conclude (Section 2.5).

2.2 Approach

The approach Meerkat takes to detect website defacements is fundamentally different from prior

work for three reasons. First, while the system does leverage machine learning for classification, it

does not rely on handpicked features that were selected based on prior domain knowledge, that is,

it requires no feature engineering. Instead, Meerkat relies on recent advances in machine learning,

stacked autoencoders, to learn high-level features directly from data. Second, Meerkat does not

require the website operator to supply any information other than the domain name at which her

website can be accessed. We designed our system in this way because other defacement detection

14

Detecting Website Defacements Chapter 2

systems that require the operator to define keywords and other metadata, provide a reference version

of her website, or describe the website’s legitimate content, have rarely been adopted. By reducing

the effort required from the website operator to actually use a defacement detection system, we

hope to improve on this situation. Finally, Meerkat approaches defacement detection visually. The

system analyzes the look and feel of the website and how a user would experience it by rendering it

in a web browser and analyzing a screenshot of the website, instead of analyzing its source code or

content.

Approaching the problem of detecting website defacements visually has several advantages over

analyzing the source code or content of a website. Some defacements rely heavily on JavaScript and

Cascading Style Sheets (CSS) to stylize the defacement, which all must be analyzed in an overarch-

ing browser context, and others again rely heavily on images. In fact, similar to spam, phishing, and

many scams, defacements often do not contain much textual content, but include images to display

text instead [60], thus they trivially evade text-based detection approaches. Furthermore, the source

code of two websites can be vastly different, yet they appear the same to the human eye when ren-

dered in a browser. Therefore, leveraging prior work, to analyze the DOM tree, the website’s code,

or parts thereof, is unlikely to be successful when trying to detect website defacements accurately,

which is why we opted for a perceptual approach that does not suffer from the aforementioned prob-

lems.

Following, we describe howMeerkat learns from defacements and legitimate websites, and how

it detects defacements in the wild. Next, we motivate the structure of our deep neural network

briefly, then, we discuss the concept and motivation of fine-tuning the network, then, we provide

some notes on our implementation, and, last, we briefly recap how Meerkat can be deployed in

practice.

15

Detecting Website Defacements Chapter 2

2.2.1 Training and Detection

Before Meerkat can be trained, two crucial parameters must be selected that determine how and

from what data the system learns the look and feel of defacements:

Window Size.

Meerkat is not trained onwhole screenshots ofwebsites, but on awindow“into” eachwebsite

(i.e., only a part of the screenshot), thus we must select the size of these representative windows.

Some important considerations must be made before picking the size of the windows that we

extract.

A small window can be more accurate because it might only contain the exact representative

part of the defacement but not any noise, like an irrelevant background color. However, if

the windows are too small, the system will also have more false positives because the windows

are not representative of defacements; instead, they are representative for only parts of the

defacements, which might also occur in legitimate websites.

On the other hand, when using larger windows, it will take significantly longer to train the

network initially, but the network might learn a more accurate model. However, if the win-

dows are too large, then the system will learn about specific kinds of defacements in-detail

and overfit. For example, the system might learn that two defacements are different, while

the two defacements are actually the same but have a slightly different, dynamically-generated

background image.

Considering the trade-offs for different window sizes, for our implementation, we decided to

extract windows that are 160×160 pixels in size. Our evaluation later shows that this window

size works well in practice to detect website defacements (Section 2.3). We briefly explored

other window sizes, like 30×30, which fared worse.

16

Detecting Website Defacements Chapter 2

Window Extraction Strategy.

The strategy to extract the representative window from a screenshot is fundamental to learn

the look and feel of defacements and legitimatewebsites. If thewindows are extracted according

to some poorly chosen strategy, then we expect the classification accuracy to be poor as well.

For instance, if the strategy always extracts the part of a website that is just a plain background,

then the system will only detect plain backgrounds. Therefore, it is crucial that the window

extraction strategy is chosen well, and we compare some suitable strategies, like extracting

the window always from the center or at random, later (Section 2.2.1).

After selecting these parameters carefully, the system can be trained. This is where most of the

complexity of Meerkat lies. The training phase works as follows:

1. We collect a considerable amount of labeled legitimate websites and defacements, and we ex-

tract their graphic representation (i.e., a screenshot of the browser window; Section 2.2.1).

2. For each sample, we extract the 160×160 representative window from each screenshot ac-

cording to the selected extraction strategy (see Section 2.2.1).

3. The representative windows are first used to learn the features of our approach, and then to

learn the model for classification, for which we use a neural network (see Section 2.2.2).

Once the neural network is trained, Meerkat detects defacements in the wild. Its detection phase

consists of only two steps, on which we expand later:

1. The website is visited with a browser to retrieve a representative screenshot (Section 2.2.1).

2. A slidingwindow approach is used to check if the website is defaced and, if so, an alert is raised

(Section 2.2.1).

17

Detecting Website Defacements Chapter 2

Screenshot Collection

The first step to detect if a website has been defaced based on its look and feel is to collect a screenshot

of how thewebsite looks for a normal visitor. Meerkat visits thewebsite with a browser that renders

thewebsite like any other browser would, and takes a screenshot once the browser finished rendering

the website. In our implementation, we use PhantomJS to collect the screenshots of the websites.

PhantomJS is a headless browser based on the WebKit layout engine that renders websites (nearly)

identical to Safari or Google Chrome. PhantomJS also executes included JavaScript code, renders

Cascading Style Sheets (CSS), and includes dynamic content, such as advertisements, like a browser

that a human would use.

Another important aspect in collecting a representative screenshot of a website with a headless

browser is the resolution of the simulated screen. The resolution of the display is important when

collecting screenshots because many websites render differently for different screen sizes, such as for

mobile devices, tablets, small laptops, or large displays. In our case, we decided to fix the resolution

to 1600×900 pixels, which is a display resolution often found in budget and mid-range laptops.

Window Extraction Techniques

For training the system, after collecting the screenshots, we need to extract a representative window

from each screenshot so that we can train the neural network to detect defacements. Various tech-

niques can be used to extract the representative window, which can be grouped into deterministic

and non-deterministic techniques. Hereinafter, we discuss the trade-offs for four possible techniques:

(i) selecting the center window, (ii) selecting n non-overlapping windows according to some mea-

sure (explained later), (iii) uniformly selecting the window at random, and (iv) randomly sampling

the window’s center from a Gaussian distribution for the x and y dimension separately.

18

Detecting Website Defacements Chapter 2

Deterministic Window Extraction The most straightforward deterministic technique is to al-

ways extracts the window from the center of the screenshot of the website. However, this makes

evading the system trivial. Generally, if an attacker can accurately predict the window that will be

extracted, he can force the system to learn about defacements poorly, and, in turn, deteriorate clas-

sification performance drastically. Therefore, such a simple technique is unsuitable for a detection

system in an adversarial context.

Alternatively, one can extract the window according to some measure. Identifying the most

representative window according to a measure (e.g., the Shannon entropy), however, forces us to

compute it for all possible windows and then pick the top ranking one. In turn, for a 1600×900
screenshot and a 160×160window, we would need to evaluate over one million candidate windows

for each sample in the dataset. In total, for our dataset, this would require over 13 trillion computa-

tions of the measure just to extract the representative windows. Clearly, this is impractical.

Nonetheless, a deterministic selection strategy based on a clever measure can increase the accu-

racy of the system, and it can also be extended trivially to extract multiple top-ranking windows at

no additional cost. However, using more than one window per sample increases the dataset size by

a factor of n and prolongs training time. Therefore, n would have to be chosen carefully.

Taking into account the trade-offs the different deterministic extraction strategies bear (increased

training and detection time, ease of evasion, or computationally impractical) and considering that

a comprehensive evaluation of them would require at least an order of magnitude of additional ex-

periments,2 we decided to select a non-deterministic extraction strategy that follows intuition and

is based on user interface and user experience design principles instead. This selection makes our

classification performance a lower bound: Other window extraction strategies might be more accu-

2Performing these additional experimentswould require at least sixmonths just in computational time on our current
GPU infrastructure, which is why we decided against performing them.

19

Detecting Website Defacements Chapter 2

rate and/or robust, but (at the same time) they also incur significant additional cost at training and

detection time.

Non-deterministicWindowExtraction Arelatively straightforward non-deterministic strategy

to extract a window from a screenshot is to select it uniformly at random. However, one cannot

simply take any point from the website’s screenshot as the center of the window. Instead, it must

be sampled so that the whole window contains only valid data, forcing us to sample its center from

the interval [80,1520] for x and [80,820] for y (these intervals are specific to the screenshot size

(1600×900) and window size (160×160)). Therefore, pixels at the border have a slightly lower

probability to occur in a window than those in the center. Although this is an unintended side effect,

it has negligible impact in practice because the center of a website is more likely to be descriptive

anyways. Alternatively, we could create an “infinite” image bywrapping the screenshot at its borders,

whichwould, however, yield artifacts becausewewould combine parts of the top of thewebsitewith

parts of the bottom (and left and right, respectively), resulting in windows that do not occur on the

real website, which, in turn, might disturb or confuse detection.

Alternatively to selecting the window’s center uniformly at random, one can sample it from

any other distribution, discretizing the sampled point. For instance, from a Gaussian distribution to

extract windows from mostly the center of the screenshot, but not extracting from it exclusively. A

focus on the center of the website is often desirable because it is likely to be more descriptive of the

website’s look and feel. For robustness, however, we also want to the system to not learn exclusively

from the center but to also learn about defacements that occur at the border of thewebsite. Therefore,

for our implementation, we extract a single window per website with a Gaussian extraction strategy

with µx = 800 and σx = 134.63975 for x and µy = 450 and σy = 61.00864 for y , so that the

windows at the border of the screenshot have a lower probability to be sampled but are not ignored

completely. If x and y values outside of the screenshot are sampled, we simply resample the value

20

Detecting Website Defacements Chapter 2

for x or y respectively. We selected these specific µ and σ values so that we sample values outside

of the screenshot only with likelihood 0.0001%.

Defacement Detection

After Meerkat has been trained on a set of extracted windows, it can detect if a website has been

defaced. Detecting website defacements with Meerkat is conceptually simple:

1. We visit the website that we want to check with our browser, and we take a screenshot of the

rendered website (see Section 2.2.1).

2. We apply a standard sliding window detection approach on the screenshot we took to check

if a part of the screenshot is detected as being defaced, similarly to prior work in image classi-

fication [61].

3. If a window is detected to be a defacement by Meerkat, we raise an alert and inform the

website operator that her website has been defaced.

Note that Meerkat does not compare a possibly-defaced website to an older, legitimate version of it,

and, thus, does not need to analyze or store an older version. Instead, it detects defacements solely

by examining how the current version looks like.

Exclusively to improve performance, instead of starting in a corner of the screenshot, our system

starts in the center and moves outward. This behavior is motivated by the fact that the center of

the website is likely more descriptive, and our training set was focused on the center region of the

screenshots. This does not mean, however, that Meerkat misses defacements that are at the border

of a website, they will be detected when the sliding window reaches the actually-defaced part, the

border. The same is also true if a website is only partially defaced: once the sliding window reaches

the defaced area, Meerkat detects that the website is defaced.

21

Detecting Website Defacements Chapter 2

Screenshot collection1

Window extraction2 …
… … … …

…

Local
receptive

fields

L2 pooling Local contrast
normalization

Feed-forward with dropout

…

Feature learning and classification3

Defaced

Legitimate

… …

160x160x3
18x18x3

1600x900x3

Figure 2.1: Meerkat architecture

Additionally, a special case worth mentioning is that a legitimate website might show a large

promotional screen or an advertisement with the same intention of a website defacer: attracting at-

tention. In turn, such a promotional screen might be similar in its look and feel to that of a website

defacement. While Meerkat might currently (theoretically) mislabel them as defacements, our eval-

uation shows that they do not matter much (Section 2.3). Furthermore, if they start to matter at one

point in the future, it is straightforward to consider them: the defacement engine can make use of

an advertisement blocker, and the website operator could whitelist the system to not be shown any

promotional screens.

2.2.2 Neural Network Structure

In this section, we briefly discuss the design of our deep neural network and how the different layers

of the network interact with the input image. The structure of our deep neural networkwas notably

inspired by prior work by Le at al. [62], Krizhevsky et al. [63], Sermanet et al. [61], and Girshick et

al. [64]. We refer to them for further details.

The main components of our deep neural network are autoencoders, which we stack on top of

each other, and a standard feed-forward neural network. Autoencoders are a special type of neural

network that are used for unsupervised learning. The goal of an autoencoder is to find a compressed,

possibly approximated encoding/representation of the input, which can be used to remove noise

22

Detecting Website Defacements Chapter 2

from the input, or, when autoencoders are stacked, they can learn high-level features directly from

the input, like where edges in an image are, or if cats or human faces are part of an image [62].

Overall, the structure of our deep neural network is based on the following idea: First, we use

a stacked autoencoder to denoise the input image and learn a compressed representation of both

defaced and legitimate websites, that is, we leverage the stacked autoencoder to learn high-level

features, similar to Le et al. [62]; and, second, we utilize a feed-forward neural networkwith dropout

for classification, similar to Krizhevsky et al. [63].

The initial layer of our stacked autoencoder is composed of local receptive fields. This layer

is motivated by the need to scale the autoencoders to large images [65, 66, 62, 67, 68], this layer

groups parts of the image to connect to the next layer of the autoencoder, instead of allowing the

whole image to be used as input to each node of the following layer. It takes 20,164 (1422) sub-

images of size 18×18 as input, extracted at a stride of 1 from the 160×160 representative window

(see Figure 2.1; note that each pixel in each sub-image has three dimensions for the three colors: red,

green, and blue). The second layer of our stacked autoencoder employs L2 pooling to denoise local

deformations of the image and to learn invariant features [69, 67, 70, 71]. Finally, the last layer of

our autoencoder performs local contrast normalization for robustness [72].

The output of the stacked autoencoder is then used as the input to a feed-forward neural network

with dropout that provides a 2-way softmax output. The 2-way softmax output corresponds to

the two classes that we want to detect: defaced websites and legitimate websites. We use dropout

in our deep neural network to prevent overfitting of the network, and to force it to learn more

robust features by preventing neurons to rely on other neurons of the network being available (i.e.,

to prevent the co-adaptation of neurons) [73].

23

Detecting Website Defacements Chapter 2

2.2.3 Fine-Tuning the Network’s Parameters

In an adversarial context, such as when trying to detect if an attacker defaced a website, concept

drift can be introduced intentionally by the attacker and impede the accuracy of the detection sys-

tem drastically. Furthermore, concept drift also occurs naturally, such as when the style of deface-

ments evolves over time in such a way that the features cannot distinguish between legitimate and

defacement anymore. Therefore, concept drift can be a severe limitation of any detection system, if

it is not taken into account and addressed properly.

Meerkat can deal with concept drift in two different, fully-automatic ways: fine-tuning the net-

work’s parameters (adjusting feature weights), and retraining the entire network on new data. While

the latter is conceptually straightforward and addresses all kinds of concept drift, it is computation-

ally expensive. The former, on the other hand, allows us to deal with some forms of concept drift

gracefully and is computationally much less expensive. However, it requires some further attention:

when fine-tuning the neural network, Meerkat does not learn new features, but adjusts how impor-

tant the already learned features are. Therefore, fine-tuning cannot address major concept drift for

which the already learned features do not model defacements accurately anymore. Instead, when we

fine-tune the network’s parameters, we adjust the already learned weights of the deeper layers of the

neural network so that new observations of defacements and legitimate websites are classified prop-

erly. As such, fine-tuning the network to maintain an accurate detection performance requires no

additional information about the websites at all, but only defacements and legitimate websites that

were not part of the training set before.

Conceptually speaking, when fine-tuning the network given new defacements and legitimate

websites, we search for a better and, given the new data, more optimal set of weights in the space of

all possible weights. To do so more efficiently, instead of initializing the weights at random, we

initialize them based on the previously-learned weights.

24

Detecting Website Defacements Chapter 2

2.2.4 Implementation

We implemented a prototype of Meerkat using Python and the “Convolutional Architecture for

Fast Feature Embedding” (Caffe) framework by Jia et al. [74]. Caffe was used because of its high-

performance and ease of use, however, it does not offer all functionality that our neural network

requires and some modifications were made.

Overall, the general architecture ofMeerkat is embarrassingly parallel: the screenshot collection

engine is completely separate from the detection engine except for providing its input. For instance,

to quickly collect the screenshots of all websites, we utilized 125 machines (with 2 cores and 2 GiB

memory each), and collection peaked at about 300 screenshots per second. Similarly, once the neu-

ral network has been trained, the learned parameters can be distributed to multiple machines and

detection can be scaled out horizontally, and, although the system is trained on a GPU, once trained,

the detection engine does not require a GPU and can run on common CPUs instead.

Training the system, on the other hand, is not parallelized to multiple machines yet, but some

clever tricks can be used to reduce training time significantly [63], which we leave for future work.

2.2.5 Real-world Deployment

Meerkat’s main deployment is as a monitoring service, acting as an early warning system for website

defacements, to which a website operator subscribes with only the URL at which his website can

be reached. For each monitored website, the system regularly checks, such as every few minutes

(or even seconds), that the website is not defaced. If it detects it as being defaced, it notifies the

website’s operator, who, in turn, depending on the confidence in the warning, manually investigates,

or automatically puts the website in maintenance mode or restores a known good state. Acting as an

early warning system, Meerkat reduces the reaction time to defacements from hours, days, and even

25

Detecting Website Defacements Chapter 2

weeks (see Section 2.1) down to minutes (or even seconds), and, therefore, it reduces the damage

inflicted on the website’s operator by the defacement significantly.

Furthermore, Meerkat can also reduce human labor: currently, Zone-H manually vets all sub-

missions for defacements [21], of which nearly two-thirds are invalid. Meerkat automates this sig-

nificant amount of work.

2.3 Evaluation

We evaluate our implementation of Meerkat in various settings. However, first, we provide details

on what data our dataset is composed of, and how we partition it to simulate various defacement

scenarios.

Our evaluation scenarios are traditional and simulations of real-world events, such as a new de-

facer group emerging, or how the system’s accuracy changes over time, with andwithout fine-tuning

the neural network.

In our experiments, a true positive is a website defacement being detected as a defacement and a

true negative is a legitimate website being detected as legitimate. Correspondingly, a false positive is

a legitimate website that is being detected as being defaced, and a false negative is a defacement being

detected as being legitimate.

2.3.1 Dataset

The dataset on which we evaluate Meerkat contains data from two different sources. First, it in-

cludes a comprehensive dataset of 10,053,772 defacements observed from January 1998 to May 9,

2014. We obtained this data through a subscription from Zone-H, but it is also freely available

from http://zone-h.org under a more restrictive license. From those defacements, 9,258,176

defacements were verified manually by Zone-H [21]. The remaining 795,596 website defacements

26

Detecting Website Defacements Chapter 2

were pending verification, and we do not include them in our dataset. Second, our dataset contains

2,554,905 unique (supposedly) undefaced websites from the top 1 million lists from Alexa, Majestic-

SEO, and QuantCast.3 Note that we cannot be certain that the legitimate websites in our dataset are

not defaced, and since manual verification is impractical at such a large scale, the true negative rate

is actually a lower bound and the false positive rate is an upper bound, correspondingly. In layman’s

terms: the system might be more accurate than our results suggest.4

To accurately evaluate the classification performance of Meerkat in a real-world deployment,

we report its accuracy in three different scenarios:

• Traditional, to compare to prior work, that is, by performing 10-fold cross-validation by sam-

pling from all data uniformly at random, so that each bin contains 925,817 defacements and

255,490 legitimate websites.

• Reporter, to simulate a new defacer emerging, that is, by performing 10-fold cross-validation

on the reporters of a defacement and including only their defacements in their respective bin.

Legitimate website are sampled from the legitimate data uniformly at random.

• Time-wise, to evaluate the practicality of our approach in a real-world setting, that is, we

start by training the system on all data from December 2012 to December 2013, and, then,

we detect defacements from January to May 2014. We report the system’s detection accuracy

for each month.

We evaluate our system in these settings to prevent a positive skew of our results that might be the

result of the different evaluation method and how the dataset is composed. For instance, a reporter

3The list of all 2,554,905 legitimate websites included in our dataset is available upon request.
4Over 191,000 website in our legitimate dataset have been defaced at one point in the past, thus, it is likely that some

of them are actually defaced and therefore mislabeled; thus, if classified correctly as a defacement by Meerkat, they
appear as false positives in our results.

27

Detecting Website Defacements Chapter 2

of a defacement might introduce an inherit bias to the distribution of the defacement by only re-

porting the defacements of one specific defacer (such as themselves), or there might be a bias in how

defacements and how the web evolved. Those potential pitfalls might skew the results positively or

negatively and must be considered for an accurate comparison to prior work.5

Finally, to account for the different number of samples of legitimate websites (2,554,905) and

defaced websites (10,053,772), we report the Bayesian detection rate [75]. The Bayesian detection

rate is normalized to the number of samples and corresponds to the likelihood if we detect a website

as being defaced, it is actually defaced (the likelihood of a positive prediction being correct, that is a

true positive; that is, P(true positive|positive)).

2.3.2 Features Learned

The features that Meerkat learns depend on the data it is being trained on. Although one can treat

the system as a black-box and not worry about its internal details, understanding how it comes to

its final decision helps to reason about its robustness and to understand how difficult the system is to

evade or to estimate when the system must be retrained to retain its accuracy. In our experiments,

Meerkat learned various features automatically and directly from image data, of which we manu-

ally grouped some on a higher, more conceptual level. We manually identified the learned features

by evaluating which representative windows activate the same neuron of the neural network, that is,

which windows trigger the same feature to be recognized by Meerkat. Note that all the features we

discuss hereinafter have been learned automatically from data and no domain knowledge whatsoever

was required to learn and use these features; yet, the overlap with features that an analyst with do-

5We cannot compare prior work (Section 6.1) on our dataset directly as they do not scale to its size, and we cannot
compare on their datasets because they are too small to train Meerkat accurately.

28

Detecting Website Defacements Chapter 2

main knowledge would use confirms the prospects of feature/representational learning for website

defacement detection. Some of the learned features can be best described as:

Defacement Group Logos.

Meerkat learned to recognize the individual logos of some of the most prolific defacement

groups directly (see Figure 2.2). Clearly, the logos of the defacer groups themselves are ex-

tremely descriptive of website defacements because they are very unlikely to be included in

legitimate websites.

Color Combinations.

Meerkat also learned to recognize unique or specific color combinations indicative of legiti-

mate and defaced websites, including but not limited to one of the most prominent combina-

tions: bright red or green text on a black background, which is an often used color combina-

tion by defacers, but rarely seen on legitimate websites. On the other hand, small black text

on a white or brightly colored background is being consulted as a non-definitive indicator for

a legitimate, non-defaced website.

Letter Combinations.

Interestingly, defacers often not only mix colors, but also mix characters from different alpha-

bets right next to each other, such as Arabic or Cyrillic script being mixed with Latin script,

to promote their message in both their native language and also in English as the web’s lingua

franca. Additionally, sometimes the defacement contains characters in a character set encoding

specific to the defacer’s native language, like ISO-8859-13 for Baltic languages or Windows-

1256 for Arabic. As such, characters appear differently or are replaced by special characters if

the browser does not support it, or if the website does not specify the character set and if the

browser’s fallback is different (like in our case, as we fall back to UTF-8), resulting in a look

29

Detecting Website Defacements Chapter 2

and feel that is descriptive of defacements, and, correspondingly, it was automatically learned

by Meerkat.

Leetspeak.

Similarly to letter combinations, Meerkat learned that defacers often use “leetspeak,” an En-

glish alphabet in which some characters are replaced by numbers or special characters (e.g.,

“leetspeak” as “1337sp34k”) and in which some words are deliberately misspelled (“owned”

as “pwned,” “the” as “teh,” or “hax0red” instead of “hacked”). Defacers often use leetspeak

to discern themselves from “common folks,” and to show that they are “elite” and special,

which, in turn, makes it often a good indicator that a website has indeed been defaced.

Typographical and Grammatical Errors.

While some typographical mistakes are deliberate (as in the case of leetspeak, see above), many

defacers make other unintentional typographical and grammatical mistakes, which rarely oc-

curred on the legitimate websites in our dataset. Many defacers make these mistakes most

likely because they are non-native English speakers (the country of the reporter of the deface-

ment, part of the meta-data in our dataset, suggests that most defacers do not speak English

as their first language). Meerkat learned to detect some of these mistakes at training and

values them as a supporting indicator of a website defacement. Some of the examples of (sup-

posedly) unintentional typographical and grammatical errors include “greats to” (instead of

“greets to”), “goals is” (instead of “goals are”), or “visit us in our website” (instead of “visit

our website”).

Note that, since Meerkat works on image data, the system is unaware that it analyzes text and the

textual features, such as unique letter combinations, leetspeak, or typographical and grammatical

errors, are actually being evaluated on rendered text. As such, it seems likely that the textual fea-

tures are specific to the font, possibly overfitting on the specific font type. However, we manually

30

Detecting Website Defacements Chapter 2

Figure 2.2: Example representativewindows of defacement group logos thatMeerkat learned to rec-

ognized to be a significant indicator for defacements. Note that Meerkat also recognizes variations

and that there are many other features used for classification.

confirmed that the system actually learned a more robust feature and is not overfitting: it combines

slight variances in the font family and size in a single high-level feature. Furthermore, given the slid-

ing window approach Meerkat employs for detection, the features are also completely independent

of the position of the text in the representative window and website.

While some of the learned features can be evaded theoretically, evading them almost always con-

tradicts the defacer’s goal: Making a name for themselves in the most “stylish” and personalized way

possible, thus, it is unlikely that these features will change drastically in the near future. Further-

more, Meerkat also consults features that were not as easy to discern into high-level feature groups

manually, such as artifacts unique to legitimate or defaced websites, or features that are indicative

for one group but are not definitive because they might appear more often in defaced websites, but

also sometimes legitimately. Meerkat can also be retrained easily and new features are learned au-

tomatically once the old features do not model defacements accurately anymore (i.e., if the concept

of a defacement drifted significantly). Finally, since Meerkat uses a non-linear classifier to combine

those features, it can learn more complex models about defacements and legitimate websites, and

simply evading only some features will not be sufficient to evade detection.

Interestingly, some high-level features (letter and color combinations) that Meerkat learned au-

tomatically from data have been leveraged to a smaller degree by prior work [76, 77] (through man-

ual feature engineering), while others (logos, leetspeak, and typographical mistakes) had not been

utilized yet. Further suggesting that representation learning and inspection of the learned features

31

Detecting Website Defacements Chapter 2

can yield important insight into security challenges that were dominated by feature engineering in

the past, such as intrusion, malware, or phishing detection.

2.3.3 Traditional Split

First, for an accurate comparison to prior work, we evaluate Meerkat on our dataset using 10-fold

cross-validation, that is, we split the dataset into 10 bins that contain 925,817 website defacements

and 255,490 legitimate websites each. Note that we discard six website defacements and five legit-

imate websites from our dataset at random to have the same number of samples in each bin. Next,

for each bin, we train the system on the other nine bins (training bins) and measure its classification

performance on the 10th bin (test bin). Considering the 10 different 90% training and 10% test-

set partitions of our dataset separately, Meerkat achieves true positive rates between 97.422% and

98.375%, and false positive rates ranging from 0.547% to 1.419%. The Bayesian detection rate is

between 99.603% and 99.845%.

More interestingly, as a partition-independent measure of the system’s classification perfor-

mance, the average true positive rate is 97.878%, the average false positive rate is 1.012%, and the

average Bayesian detection rate is 99.716%. If Meerkat detects a defacement and raises an alert, with

likelihood 99.716% it is a website defacement. Therefore, Meerkat is significantly outperforming

current state-of-the-art approaches.

2.3.4 Reporter Split

For the reporter split, we partition our dataset by the reporter of the defacedwebsite. We deliberately

designed the experiment this way to show that Meerkat is not overfitting on specific defacements,

which our results verify.

While a partition by reporter might seem counter-intuitive at first, it becomes clear that such a

split ismeaningful and that it can be used to evaluate that a newdefacer group emerges once it is taken

32

Detecting Website Defacements Chapter 2

into account that these groups often have unique defacement designs and that defaced websites are

most often reported by the defacers themselves. Therefore, if we split by reporter, we are practically

splitting by defacer group. Meaning, we create themost difficult scenario for a defacement detection

system: detecting a defacer and her defacement style although we have never seen defacements from

him/her before.

In the same way as for the traditional split, we employ 10-fold cross-validation. However, we

do so slightly differently: first, we separate the reporters of the defacements into 10 bins uniformly

at random (each bin containing 7,602 reporters). Second, we construct the corresponding deface-

ment bins, that is, we construct a defacement bin for each reporter bin so that it contains only the

defacements reported by these reporters. For each bin, we then trainMeerkat on the remaining nine

bins and use the 10th bin for testing. Note that the defacement bins contain a different number of

samples, simply because the number of reported defacements varies per reporter (see Table 2.2). We

account for the uneven distribution of defacements by reporting the average true positive and false

positive rate weighted by the number of samples.

Overall, when simulating the emergence of a new defacer, Meerkat achieves a true positive rate

of 97.882% and a false positive rate of 1.528% if bins are weighted, and 97.933% and 1.546% if they

are not (see Figure 2.3; the true positive rate is between 97.061% and 98.465%, the false positive

rate is between 0.661% and 2.564%). The Bayesian detection rates for the reporter split are 99.567%

(unweighted) and 99.571% (weighted) respectively (per split, the Bayesian detection rate is between

99.286% and 99.814%).

2.3.5 Time-wise Split

The time-wise experiment evaluates howwellMeerkat detects website defacements in thewild, that

is, in a real-world deployment. Here, we train the system on defacements seen in the past, and we

33

Detecting Website Defacements Chapter 2

Bin Defacements Legitimate Websites

1 1,116,808 308,202
2 992,232 273,823
3 712,270 196,563
4 907,306 250,387
5 696,069 192,092
6 734,208 202,617
7 1,276,764 352,345
8 789,895 217,985
9 979,309 270,257
10 1,053,147 290,634

Total 9,258,008 2,554,905

Table 2.2: Number of samples per cross-validation bins used for the reporter split. The total number

of defacements in the reporter split contains fewer defacements than available in thewhole dataset be-

cause otherwise reporters would be distributed unevenly per bin. However, due to the considerable

size of the dataset, omitting these defacements has negligible impact.

detect defacements in the present. Similar to the reporter split, the time-wise experiment shows that

Meerkat does not overfit on past defacements, and that it successfully detects present defacements.

Our training set selection follows a simple argument: It is extremely unlikely that websites to-

day will be defaced in the same way as they were defaced in 2005 or even 1998. Including those

defacements in our training set would then very likely decrease classification performance for de-

facement detection in 2014. Equivalently, one would not include this data to train the system in

practice.

Therefore, we train Meerkat on all defacements that were reported between December 2012

and December 2013 (i.e., 13 months with 1,778,660 defacements observed in total), and 1,762,966

legitimatewebsites that we sample from all legitimatewebsites uniformly at random. We then detect

defacements over a five months time frame, from January to May 2014, and we report the classifica-

tion performance for eachmonth. The test data from January toMay 2014 spans a total of 1,538,878

unique samples that are distributed as follows: 421,758 samples from January 2014, 364,168 sam-

34

Detecting Website Defacements Chapter 2

ples from February 2014, 474,758 samples fromMarch 2014, 241,926 samples fromApril 2014, and

81,268 samples from the beginning of May 2014.

In detail, Meerkat achieves a true positive rate between 98.310% and 98.816% when the system

is fine-tuned after each month on the data observed in that month, and 97.603% to 98.606% when

it is not. Although there is no significant difference in its accuracy from January to March when the

neural network is fine-tuned and when it is not (see Figure 2.4), a non-negligible difference between

their accuracy can be observed for April and the beginning of May (increase in 0.452 percentage

points (pp) and 1.211 pp for the true positive rate; decrease of 1.513 pp and 1.550 pp for the false

positive rate). The Bayesian detection rate, if no fine-tuning is used, decreases from 98.583% in

January 2014 to 97.666% in February (0.917 pp decrease) to 97.177% in May (1.406 pp decrease to

January). If fine-tuning is utilized, the Bayesian detection rate increases from 98.583% in January

2014 to 98.717% in May (0.134 pp).

Unsurprisingly, the regularly fine-tuned system performs better over time, probably because

some defacers became significantly more active in 2014, like Team System Dz, who started to de-

face websites just in January 2014 and who were not active before at all, and because some defacers

changed their defacements to spread a different message as opposed to the one they spread the year

before. When the system is not fine-tuned, however, these minor changes to the defacements allow

attackers to evade detection without actively trying to evade it, with a minor accuracy deterioration

already visible after just four to five months, confirming that detection systems need to be able to

tackle even minor concept drift adequately and gracefully to maintain accurate detection capabilities

over time, like Meerkat does with fine-tuning.

35

Detecting Website Defacements Chapter 2

Split True Positive Rate False Positive Rate Bayesian Detection Rate

Traditional 97.878% 1.012% 99.716%

Reporter (weighted) 97.882% 1.528% 99.571%

Reporter (unweighted) 97.933% 1.546% 99.567%

Time-wise with Fine-tuning 98.310% – 98.816% 1.233% – 1.413% 98.583% – 98.767%

Time-wise without Fine-tuning 97.603% – 98.606% 1.413% – 2.835% 97.177% – 98.583%

Table 2.3: Average true positive, false positive, and Bayesian detection rates for traditional and re-

porter split. Lower and upper bound of true positive, false positive, and Bayesian detection rate for

time-wise split from January to May 2014.

2.4 Limitations

Similar to other systems leveraging machine learning, our system has some limitations that can be

used to evade detection. We discuss some of these limitations and show how they can be addressed

for a real-world deployment. First, we discuss concept drift, a problem all systems leveraging machine

learning have to deal with; second, we remark on browser fingerprinting and delayed defacement, an issue

all client-based detection approaches have to address; and, lastly, we introduce the concept of tiny

defacements, a limitation specific to defacement detection systems.

2.4.1 Concept Drift

Concept drift is the problem of predictive analysis approaches, such as detection systems, that the

statistical properties of the input used to train the models change. In turn, a direct result of concept

drift is often a heavy deterioration of the classification performance, up to the pointwhere the system

cannot differentiate between good and bad behavior anymore. For instance, prior work [78, 79, 80,

81, 82, 83, 84, 85] has shown that concept drift (in the sense of adversarial learning) can actually be

leveraged to evade detection systems and classifiers in practice. Therefore, a detection system must

address it.

36

Detecting Website Defacements Chapter 2

While concept drift is a major issue for all systems using machine learning, it can generally be

addressed, due to its nature, by adopting a new feature space or retraining the machine learning

model on new data, or with an increased weight on new data. However, often, old instances do

not follow the statistical properties of the new feature models, and, therefore, they are classified less

accurately than before. This has little impact in practice, because old instances are less likely to occur

in the future anyways, but it is important to realize that this approach allows attackers to evade the

system by oscillating their attack strategy.

For Meerkat, those shortcomings can be addressed more easily than for traditional systems. For

minor concept drift, the system’s accuracy can be maintained by fine-tuning the parameters of the

network. Here, the system simply needs to learn minor adjustments to the weights of existing fea-

tures fromnewdata, because some features have becomemore important and others have become less

important (they differ now more from other features than they did previously, relatively speaking;

since we start with already-initialized weights, fine-tuning requires much less time than training

the whole system again). The features still model the differences between defacements and legiti-

mate websites, however, the weights are not optimal anymore and need to be adjusted. Once the

new weights are learned, classification performance is restored. Therefore, to address minor concept

drift adequately, we recommend fine-tuning the model regularly, for example, every month (see

Section 2.3.5).

While fine-tuning the system’s parameters can theoretically address major concept drift similar

to retraining the system on new data, in practice, we expect prediction accuracy to decrease, since

different or more features must be modeled with the same amount of resources. Instead, for major

concept drift, increasing the number of hidden nodes of the neural network that learn the com-

pressed representation (the features) and their weights, and then retraining the system can maintain

the system’s accuracy. Simply adding nodes to the hidden layers of the neural network can counter-

act the issue of major concept drift because we increase the number of features that Meerkat learns

37

Detecting Website Defacements Chapter 2

from data directly. Therefore, introducing more hidden units allows the system to learn additional

and different internal representations about the look and feel of defacements, while, at the same time,

maintaining a model of how the old defacements look like. However, it requires computationally-

costly retraining of the network (previously, having those additional hidden units in the network

would result in overfitting because the systemwould learnmore complex representations than neces-

sary, and each would only differ little from one another; the system would then be prone to missing

minor variations of defacements).

It is important to note that in both cases, for minor and major concept drift, Meerkat requires

no additional feature engineering because the features are learned automatically from data. In turn,

this allows Meerkat to handle any form of concept drift much more gracefully than approaches

introduced by prior approaches, which require manual feature engineering.

2.4.2 Fingerprinting and Delayed Defacement

A second limitation of detection systems is fingerprinting. Since we are leveraging a web browser to

collect the data that we are analyzing, in our case fingerprinting corresponds to IP-based and browser

fingerprinting. For IP-based fingerprinting, a set of VPNs and proxies can be used to cloak and

regularly change the browser’s IP address. In case of browser fingerprinting, the server or some client-

side JavaScript code detects what browser is rendering the website, and then displays the website

differently for different browsers. In its current form, the screenshot engine from Meerkat might

be detectable (to some degree) by browser fingerprinting. It is theoretically possible to detect it

because it is currently built on the headless browser PhantomJS rather than a “headful” browser

typically used by a normal user, like Google Chrome. However, since PhantomJS is built from the

same components as Google Chrome, fingerprinting the current screenshot engine is not trivial and

requires intimate knowledge of the differences between the different versions of the components and

their interaction. Therefore, we argue that the evasion through browser fingerprinting is unlikely. If,

38

Detecting Website Defacements Chapter 2

however, the screenshot engine is evaded this way in the future, only some minor engineering effort

is required to utilize a browser extension for a headful browser to retrieve the websites’ screenshots

instead.

Additionally, the issue of delaying the defacement emerges, also referred to as the snapshot prob-

lem [1]. With the increased popularity and use of JavaScript, client-side rendering, and asynchronous

requests to backends by websites to provide a seamless and “reload-free” user experience, it is uncer-

tain at what point in time a website is representative of how a user would experience it. This then

bears the issue of when a detection system can take a representative snapshot of the website and stop

executing client-side scripts. For instance, if a detection system takes a snapshot always after five sec-

onds, to evade detection, defacers could simply inject JavaScript that only defaces the website if a

user interacts with it for at least six seconds.

While delayed defacements are currently scarce, it is likely that they will gain some traction

once more detection systems have been put in place, in a way similar to mimicry attacks and the

evasions of malware detection systems [86, 87]. However, prior work can be leveraged to detect

evasions [88] or trigger the functionality [89] to force the defacement to be shown. Both approaches

are complementary toMeerkat andwe leave their adoption to defacement detection for futurework,

once delayed defacements are actually occurring in the wild.

2.4.3 Tiny Defacements

A third limitation of all current defacement detection systems, including Meerkat, is the lack of de-

tection capabilities for tiny defacements. Tiny defacements describe a class of defacements in which

only a very minor modification is made to part of the content of the defaced website. For instance, a

defacer might be dissatisfied by an article published by a newspaper. Instead of defacing the website

as a whole, the attacker modifies (or deletes) the news article. It is clear that such defacements are

very hard to differentiate from the original content because they might only have minor semantic

39

Detecting Website Defacements Chapter 2

changes to text or images. Thus, to detect tiny defacements, the detection system must understand

the semantics of the website’s content, its language, and its general behavior to derive a meaningful

model for the website.

However, while those defacements exist, they are extremely scarce in numbers, or they are rarely

noticed. In fact, it is seldom the case that a defacer wants to modify a website without embarrass-

ing the operator more publicly. Most often, the goal of the defacer is to expose the insecurity of the

website, ridicule the operator, show their own “superiority,” and place their opinion and beliefs in

the most public space possible. Therefore, tiny defacements are currently of little interest to the de-

facers themselves, and, hence, also of little impact for detection systems. However, we acknowledge

that tiny defacements must be addressed once they increase in numbers, possibly leveraging recent

work to extract relevant changes from websites [2], and advances in natural language processing.

2.5 Conclusion

In this chapter, we introduced Meerkat, a monitoring system to detect website defacements, which

utilizes a novel approach based on the look and feel of a website to identify if the website has been de-

faced. To accurately identify website defacements, Meerkat leverages recent advances in machine

learning, like stacked autoencoders and deep neural networks, and combines them with computer

vision techniques. Different from prior work, Meerkat does not rely on additional information

supplied by the website’s operator, or on manually-engineered features based on domain knowledge

acquired a priori, such as how defacements look. Instead, Meerkat automatically learns high-level

features from data directly. By deciding if a website has been defaced based on a region of the screen-

shot of the website instead of the whole screenshot, the system is robust to the normal evolution of

websites and defacements and can be used at scale. Additionally, to prevent the evasion of the sys-

40

Detecting Website Defacements Chapter 2

tem through changes to the look and feel of defacements and to be robust against defacement variants,

Meerkat employs various techniques, such as dropout and fine-tuning.

We showed the practicality of Meerkat on the largest website defacement dataset to date, span-

ning 10,053,772 defacements observed between January 1998 and May 2014, and 2,554,905 legiti-

mate websites. On this dataset, in different scenarios, the system accurately detects defacements with

a true positive rate between 97.422% and 98.816%, a false positive rate between 0.547% and 1.528%,

and a Bayesian detection rate between 98.583% and 99.845%, thus significantly outperforming ex-

isting state-of-the-art approaches.

41

Detecting Website Defacements Chapter 2

 0.965

 0.970

 0.975

 0.980

 0.985

 0.990

Tr
ue

 P
os

iti
ve

 R
at

e

Reporter Split

0.9787
0.9788
0.9789
0.9790
0.9791
0.9792
0.9793
0.9794

1 2 3 4 5 6 7 8 9 10
Reporter Bin

0.005

0.010

0.015

0.020

0.025

0.030

Fa
ls

e
Po

si
tiv

e
Ra

te

W
ei

gh
te

d

M
ea

n

0.0151
0.0152
0.0153
0.0154
0.0155
0.0156
0.0157
0.0158

Figure 2.3: True positive and false positive rates for the reporter split per bin of the 10-fold cross-

validation set. Note that the scales for true positives and false negatives are the same, but that the

y -axis goes from 0.965 to 0.99 for the true positive rate and 0.005 to 0.03 for the false positive rate.

The weighted mean true positive rate is 97.882% and its false positive rate is 1.528% (weighted by

samples per bin). The unweighted mean true positive rate is 97.933% and its false positive rate is

1.546%.

42

Detecting Website Defacements Chapter 2

 0.970
 0.975
 0.980
 0.985
 0.990
 0.995
 1.000

Tr
ue

 P
os

iti
ve

 R
at

e
Time-wise Split, with and without Fine-tuning

with Fine-tuning
without Fine-tuning

0.010
0.015
0.020
0.025
0.030
0.035
0.040

Fa
ls

e
Po

si
tiv

e
Ra

te with Fine-tuning
without Fine-tuning

January 2014 February 2014 March 2014 April 2014 May 2014

-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015

Di
ffe

re
nc

e
w

ith
 F

t -
 w

ith
ou

t F
t True Positive Rate

False Positive Rate

Figure 2.4: True positive and false positive rates, and their differences with and without fine-tuning,

for the time-wise split. Note that the scales for true positives and false negatives are the same, but

that the y -axis goes from 0.97 to 1 for the true positive rate and 0.01 to 0.04 for the false positive rate.

No significant change is visible for the true positive rate in the beginning regardless if the network

is fine-tuned regularly or not, however, a non-negligible difference is observable for May 2014. A

difference is observable for the false positive rate starting in February 2014, after the network was

first fine-tuned.

43

This page intentionally left blank

44

Chapter 3

Identifying Web-based Malware Infection

Campaigns

Identifying malicious websites has become a major challenge in today’s Internet. Previous work fo-

cused on detecting if a website is malicious by dynamically executing JavaScript in instrumented

environments or by rendering them in client honeypots. Both techniques bear a significant evalua-

tion overhead, since the analysis can take up to tens of seconds or even minutes per sample.

In this chapter, we introduce Delta, a novel, purely static analysis approach, which (i) extracts

change-related features between two versions of the same website, (ii) uses a machine-learning algo-

rithm to derive amodel of website changes, (iii) detects if a changewasmalicious or benign, (iv) iden-

tifies the underlying infection vector campaign based on clustering, and (v) generates an identifying

signature.

We demonstrate the effectiveness of Delta by evaluating it on a dataset of over 26million pairs of

websites, by pairing it with a web crawler for four months. Over this time span, Delta successfully

identified previously unknown infection campaigns, including a campaign that targeted installations

45

Identifying Web-based Malware Infection Campaigns Chapter 3

of the Discuz!X Internet forum software, in which infection vectors were injected that redirected

the forums’ visitors to an installation of the Cool Exploit Kit.

3.1 Motivation and Contributions

The rapid growth of the Internet and the pervasiveness of web-based services has made it easy to in-

teract with others globally. The software used to implement the functionality of websites, however,

is often vulnerable to different attack vectors, like cross-site scripting or SQL injections. In turn, an

attacker can exploit these server-side vulnerabilities to inject malicious code snippets, so called infec-

tion vectors, that attack visitors of a compromised website through drive-by attacks. In such drive-by

install and download attacks, these malicious code snippets exploit client-side vulnerabilities to in-

stall malware, either directly themselves or indirectly through redirections, or they try to convince

the user to install malware herself. The malware, once installed, can then steal her credentials to

leverage them for phishing attacks on colleagues and acquaintances, siphon off sensitive data, such as

her credit card information, or encrypt her files and demand a ransom. Moreover, if an attacker au-

tomates the exploitation of a server-side vulnerability, she can launch an infection campaign spanning

thousands of websites, to maximize the number of her victims.

A major challenge for accurately detecting infection vectors is that websites have become more

complex andmore dynamic, and, as a result, the infection vectormight not be perceptible by analysis

techniques, or even difficult to discover for experienced human analysts. For example, legitimate

content changes might be made to the website, like showing personalized advertisements, or users

might have interacted with the website and left a comment or review. Unfortunately, as soon as

a modification was made, the website must be reanalyzed, as a single modification can change the

website’s behavior and turn it malicious. Evenworse, previouswork in the area of web evolution [29,

46

Identifying Web-based Malware Infection Campaigns Chapter 3

30, 31, 32, 33] suggests that websites evolve constantly through small changes, and if one takes into

account personalization, a change that requires reanalysis might occur every visit for each user.

The most prominent method to protect users from malicious web-based content are, as we dis-

cussed before in Chapter 1, blacklists, such as the Google Safe Browsing list, which are reactive. This

is problematic because their reactive character implies that blacklists are not guaranteed to be com-

prehensive, and that malicious websites can potentially stay undetected for an extended time, as each

website of an infection campaign needs to be identified and added to the blacklist individually. Con-

sidering that the same infection vector is often reused by an attacker and spread among a multitude

of different websites in an infection campaign to maximize its impact, current defenses might not be

able to protect users from known attacks. Furthermore, once a website is blacklisted, justified or by

accident, its operator must go to great lengths to remove her website from the blacklist, although it

might now be benign. Such a removal process can take a frustrating amount of time since it is often

subject to some form of verification that the website is now benign, a process that might not happen

immediately, during which the website remains inaccessible to a potentially large share of its users.

In turn, users are inconvenienced, possibly alienated, and companies might experience financial loss

or a loss in reputation. Clearly, a proactive on-demand approach is preferable to detect infection vec-

tors, especially those that are unknown and not covered by blacklists at all. Unfortunately, the most

promising proactive approach, that is, scanning a website preemptively with an online analyzer sys-

tem [90, 91, 92] is computationally very expensive, and it introduces delays up to multiple seconds

per website. Since such a delay imposes an unacceptable cost to the users’ experience, it is unlikely

that these approaches would be widely deployed, or that they would find their way into current

browsers as a protection mechanism.

However, the compromised websites that are part of an infection campaign usually follow a sim-

ple pattern: The infection vector was inserted in the same or very similar way, and its appearance is

similar across the campaign. In terms of compromise, they might be inserted by taking advantage of

47

Identifying Web-based Malware Infection Campaigns Chapter 3

improperly controlled access, or by exploiting software vulnerabilities in a web framework or appli-

cation used by all of the campaign’s websites. Often, the infectedwebsites share some commonalities,

such as employing the same underlying software stack, or sharing a server that was attacked. For ex-

ample, in 2013, Apache web server installations were attacked, and the web server’s executable was

augmented with the backdoor “Linux/Cdorked.A” [93, 94], which injects malicious code to redi-

rect the web server’s visitors to exploit pages. Consequently, by being able to identify an infection

vector as part of a campaign, instead of just detecting that thewebsite is malicious, we can provide im-

portant additional feedback, and we can analyze its root cause more easily because of commonalities

in different observations.

To overcome the limitations of current approachesmainly based on dynamic analysis of websites,

and to facilitate root cause analysis, we introduce Delta, which identifies malicious activity in a

website based on static analysis of the differences between the current and previous versions of the

website. We cluster these differences, determine if the introduced or removed elements are associated

with malicious behavior, identify the infection campaign it belongs to, pinpoint the actual infection

vector, and automatically generate an identifying signature that can be leveraged for content-based

protection.

The main contributions of this chapter are:

• We introduce Delta, which is based on a novel approach to statically analyze and detect web-

based infection vectors, and which identifies infection campaigns based on features associated

with modifications observed between two versions of a website.

• We develop a tree difference algorithm that is resistant to tiny changes, such as typographical

corrections or the small evolutionary modifications a website undergoes.

• We develop a set of modification-motivated similarity measures to model the concepts of in-

serting and removing malicious behavior into and from a website.

48

Identifying Web-based Malware Infection Campaigns Chapter 3

• We evaluate Delta on a large scale dataset, containing 26 million unique pairs of websites,

to show its applicability in real-world scenarios in terms of infection campaign detection and

identification capabilities.

3.2 Approach

Delta, instead of trying to solve the problem of deciding if a website is malicious or benign provides

a solution to the search problem of finding new infection campaigns and identifying similar, known

infection campaigns. Nonetheless, we are still interested in deciding if a website’s current behavior

is malicious or benign. Instead of analyzing websites in their entirety, Delta investigates only the

difference between two versions of the same website.

The main idea of Delta is to identify if the change made to a website altered the behavior of the

website, that is, if we can be certain that the new version of the website is malicious or benign, by in-

vestigating if the modifications are similar to already observed ones, such as modifications associated

with an ongoing infection campaign. In order to identify the changes that were made to a website,

we need a base version, that is, an older version of the same website.

The analysis process of our system is described hereinafter, followed by a discussion on potential

uses of our system, and the impact of deploying Delta.

3.2.1 Analysis Process

Delta’s analysis process follows a simple four-step process, which is shown in Figure 3.1, and whose

steps are:

1. Retrieval and normalization of the website.

2. Similarity measurement with respect to a base version.

49

Identifying Web-based Malware Infection Campaigns Chapter 3

Fetch
website

Current
DOM tree

Base
DOM tree

Cluster feature vector

Benign change

Infection campaign

New campaign?1

<script type="text/javascript"
language="javascript"> ...

Generate
signature

<input name="csrfmiddlewaretoken"
value=" ...Parse to tree

and normalize
2

Compute differences via fuzzy
tree difference algorithm

3
4

5

Figure 3.1: Delta architecture

3. Cluster assignment of the similarity vector.

4. Generation of the identifying signature.

Evidently, a base version of a website has to be available. In the case that a local base version does

not exist, however, we might still be able to retrieve an older version through web archives, such

as the Internet Archive [95] or a web cache provided by a search engine. This makes our approach

applicable for websites that are visited rarely and were no local base version is kept, if we accept the

overhead to retrieve the base version from a remote archive. While this might seem counter-intuitive

because of the potentially large time difference between the archived and current version, we show

in our evaluation that this is indeed a possible alternative.

Following this brief overview, we discuss the important steps of the analysis process in more

detail. First, normalization of a website; second, how the similarity to the base version is measured;

third, how the identifying signature is generated.

Retrieval and Normalization

First, we retrieve the current version of a website, for instance the website a user requested. Then,

after we have retrieved the source code of that website, excluding all external references, such as in-

cluded scripts or frames, we perform multiple normalization steps: we normalize capitalization of

all tags, we reorder attributes of each tag and discard invalid attributes, and we normalize the quota-

tion of an attribute’s value. We perform this normalization step to ensure that functional equivalent

50

Identifying Web-based Malware Infection Campaigns Chapter 3

tags are treated equally during our evaluation, and that changes such as changing the capitalization

of a tag or switching from single to double quotes do not affect our final results.

Similarity Measurement and Clustering

Following these normalization steps, we measure the similarity to an already known (and normal-

ized) base version. Measuring the similarity between two versions of the same website in a meaning-

ful way is non-trivial. The Delta performs unordered tree-to-tree comparison via a novel algorithm

that we introduce in Section 3.3. The algorithm extracts the nodes (or tags; subsequently, we use

both terms interchangeably) from the Domain Object Model (DOM) tree of a website that are dif-

ferent between base and current version. Second, based on the extracted nodes, we leverage a variety

of different features to extract meaningful information from the two versions (described in detail in

Section 3.4). The system then tries assigning these feature vectors to a cluster, or detects them as

outliers, if they are not similar to any previously-observed modifications. Each different tag type,

for example., <input> or <script>, is treated separately, that is, each type is assigned its own feature

space; we do not project two tags of a different type into the same feature space. Additionally, due

to the different nature of our features, where different distance metrics are essential for accurate clus-

ter assignment, we perform consensus clustering for different groups: binary features, absolute and

relative features are all treated as separate clustering instances. The cluster assignment and outlier

detection process then distinguishes between three different cases:

• Assignment to an existing cluster:

– Insertion or removal of an infection vector, if the cluster corresponds to a known infec-

tion campaign.

– Legitimate modification, for example, a version update of a library or the insertion of

Facebook’s like button, if the cluster does not correspond to an infection campaign.

51

Identifying Web-based Malware Infection Campaigns Chapter 3

• Detection as an outlier:

– Potentially the start of a new infection campaign, if malicious behavior was inserted.

– Potentially the end of a running infection campaign, if malicious behavior was removed.

– A modification that is not of primary interest to us, such as a new article, template mod-

ifications, or a redesign of the website.

• Formation of a new cluster (the similarity vector we are clustering and other vectors that are

close, which were outliers before, put the number of total vectors in this area of the feature

space above the threshold to form a new cluster, that is, we observed the number of the same

modification in the wild that we require to constitute a trend, see Section 3.5.1):

– New infection campaign, if the node was inserted and is associated with malicious be-

havior.

– End of an infection campaign, if the node was removed and is associated with malicious

behavior.

– Legitimate modification, for example, an update to a new, bleeding-edge version of a

library or the content-management system used, such as Wordpress.

Upon cluster assignment of the similarity vector, we output the associated cluster, that is, the cor-

responding trend (subsequently, we use these terms interchangeably). For instance, an infection

campaign if the corresponding modification inserted or removed a known infection vector. Here,

it is important to note that the detected clusters do not discriminate between removed and inserted

nodes but treat them equally because we do not leverage the notion of removal or insertion in the

feature computation, but attach it to the vector as “external” meta information that is not used dur-

ing clustering. This supports the detection of removal and insertion of the same trend with the exact

same cluster in both cases and, therefore, increases robustness of our system.

52

Identifying Web-based Malware Infection Campaigns Chapter 3

Delta does not provide detection capabilities for malicious behavior on its own, but rather relies

on an external detection system. This detection system is queried once a new cluster is formed to

identify if this observed trend constitutes amalicious or a benign cluster. In order to guarantee a high

likelihood, we “bootstrap” each cluster by querying for 10 random samples, and acquire a consensus

decision for the returned labels. For instance, a new cluster is observed and nine out of 10 of the

random samples from this cluster have been assigned the label malicious, then Delta will assign the

label malicious to any new observation in this cluster.

Signature Generation

For each of the identified trends, we generate a signature that matches the textual representation of

all the nodes assigned to a cluster (e.g., a signature might describe the cluster containing “<script

src=’http://$random-url/exploit.js’>”). This signature is generated by simply interpreting the tex-

tual representation of each node as a deterministic finite automaton (DFA), merging them together,

and calculating the minimal version, which can be done in polynomial time. The resulting DFA

can then be translated into a regular expression that can be used by intrusion detection/prevention

systems.1

Such an identifying signature is, generally, an under/approximation of the actual (unknown)

signature. For instance, in the above example theURL is randomized. Here, the generated signature

only describes the observed samples, that is, where $random-url might be “a.com” or “b.org,” while

the trend could be more general and also include “c.net.” Leveraging only the identifying signature

would miss websites that follow the same trend, that is, websites who might serve the same infection

vector. While this is of no concern in the case of leveraging Delta for every request (here, we would

assign a similar, but unobserved, tag to the same cluster), it can be an issue if the generated signature

is used as input to other tools. A possible remedy is to generalize the signature and to introduce a

1Although generated signatures match normalized tags by default, it is trivial to normalize incoming data in the same
way and match arbitrary tags that follow the same trend.

53

Identifying Web-based Malware Infection Campaigns Chapter 3

widening operator to describe the different parts of the nodes following this trend. For instance, one

could simply widen five different characters at the same position in five different random samples

picked from a cluster to an over-approximating wildcard. An over-approximation, however, is also

likely to introduce incorrectmatches, which is whywe recommend usingDelta if no exact signature

matched.

3.2.2 Use Cases

We see Delta to be deployed in two main scenarios: paired with a web crawler to actively search for

new infection campaigns, and paired with a proxy to identify infection campaigns (passive), or to im-

prove user-protection (active). Additionally, there is a third, minor scenario: providing feedback on

evasions of detection systems. Subsequently, we describe all three use cases in more detail, however,

in the remaining of the chapter, we focus on the first use case: paired with a web crawler.

The most interesting use case, in our opinion, is the active identification of new infection cam-

paigns. In this case, one deploys the system side-by-side to a web crawler. While the web crawler

retrieves potentially interesting websites multiple times over a given period, our system analyzes the

differences. When our system detects a new cluster, that is, a significant number of very similar

modifications, an external detection system then decides if this change is associated with malicious

behavior or not. If malicious behavior was introduced then we found a new infection campaign,

and we can generate the identifying signature for this cluster. Based on the elements of the cluster,

we can then pinpoint the infection vector (e.g., identify parts of the tag that are common among all

websites in that cluster) and investigate other similarities manually (e.g., only online stores running

a specific version of the PHP application osCommerce were infected). Starting from those similari-

ties, it is then possible to: generate a more precise fingerprint for the campaign, find other infections

via search engines, and estimate the scope of an infection campaign.

54

Identifying Web-based Malware Infection Campaigns Chapter 3

The second envisioned deployment of Delta is the extension of a web browser or a proxy. In

most cases, the browser or proxy already caches visited websites for performance reasons. Moreover,

in security-sensitive environments, it is very likely that a detection system (e.g., an anti-malware en-

gine) is already in place to ensure that only benign websites can be accessed by the user. Such a

detection system can be leveraged by Delta to analyze inserted tags. The system can complement

these tools to prevent repetitive scanning of websites, to improve user experience by increasing anal-

ysis performance, and to provide insight into targeted attacks. For example, small changes a user

might encounter include automatic page impressions counter, updated weather or date information,

or the output of the processing time to render the website on the server’s side. While previous work

requires the reevaluation of the entire website, Delta can identify these changes as benign much

more easily. It is even possible to obtain more accurate results with our system than with the de-

tection system, for example, if it is based upon simple detection methods, such as fingerprinting of

known malicious scripts, or if the detection system is being evaded. Additionally, once a malicious

website is identified, Delta can verify that a malicious modification was removed and that the web-

site is now benign. Particularly, if an infection campaign is dormant or the exploit page is offline,

dynamic analysis systems detect that the website is benign because it does not detect any malicious

behavior. Since Delta is purely static and verifies that the malicious content was removed, it does

not have this disadvantage.

Lastly, Delta can also be leveraged to detect evasions and bugs in detection systems and online

analyzers. For example, if the analyzer is dynamic, but behaves different than a standard browser in

even a single case, then malware can fingerprint the detection system. Such a fingerprinting method

allows the attacker to thwart detection much more easily, for instance, without having to utilize a

blacklist of the IP addresses used by the online analyzer. Leveraging our system, we can detect these

evasions when they are introduced. The system can pinpoint the changed content precisely and, by

55

Identifying Web-based Malware Infection Campaigns Chapter 3

doing this, support the developer in identifying the reason why the analyzer is behaving differently,

correcting the corresponding bug, and preventing further evasions leveraging the same bug.

3.3 Fuzzy Tree Difference

First, to be able to measure the similarity between two websites in a meaningful way, we need to

define the notion of difference. We are primarily concerned if a website behaves in a benign or

malicious way. To this end, we need to understand what modifications to the content can result

in behavioral changes, and how we can isolate the modifications from other parts of the website

that have no effect on the overall behavior. We identify these interesting parts by leveraging the

hierarchical structure of a website and interpreting a website through its DOM tree.

Previous work introduced various algorithms to detect the semantic change in hierarchical struc-

tured data. Themain idea behindHTML, that is, describing how to display data instead of describing

the semantics of the data itself, renders nearly all introduced XML-centered approaches unsuitable

to extract meaningful information about the modifications. An often made assumption is that the

underlying tree structure has a significant semantic relationship with the content, which is not nec-

essarily the case for HTML. Moreover, leveraging standard maximum cardinality matching on cryp-

tographic hashes and simple edge weights of 1 (based in the nature of cryptographic hash functions),

any change would be visible, including very small changes that are uninteresting to us, such as single

character or word changes and legitimate evolutions. We denote such a tree-to-tree comparison as

not tiny change resistant or not fuzzy. To solve this problem, and to identify interesting modifications

made to a website more precisely and more efficiently, we generalize the previous notion of tree

difference algorithms and introduce a similarity weight. We refer to our algorithm as the fuzzy tree

difference algorithm, which is heavily influenced by the unordered tree-to-tree comparison algorithms

by Chawathe et al. [96] and Wang et al. [97]. Such a fuzzy algorithm is necessary when comparing

56

Identifying Web-based Malware Infection Campaigns Chapter 3

websites that have evolved over an extended period, for example, have been edited constantly over

a two-week period. Otherwise, the sheer number of remaining nodes to analyze makes it infeasible

to leverage computationally expensive features with reasonable performance overhead.

While we provide a formal description of the algorithm in Algorithm 1, we give a brief informal

description first: the algorithm expects three parameters, T1,T2 and tr . T1 and T2 are normalized

DOM trees, that is, all tags are capitalized in the same way, all attributes occur in the same order and

their values are enclosed in the same way (quote-wise). tr is the threshold value for the similarity

measurement, and can range from 0 to 1. Starting from the trees T1 and T2, we create a temporary

graph to match pairs of similar nodes through maximum weighted bipartite graph matching (Hun-

garian algorithm [98]). This graph is constructed by inserting every node of T1, then inserting every

node of T2. For each node from T2, we connect it with an edge to every node from T1 that has a sim-

ilar fuzzy hash value (i.e., the Jaro distance of both hashes must be greater or equal to tr) and that

takes the exact same path (in the sense of unordered tree-traversal) as the node from T2. The edge’s

weight is equal to the similaritymeasured through the Jaro distance between both hashes (i.e., at least

tr). Additionally, we color all matched nodes blue. In the last step, we remove the corresponding

matched nodes from the trees T1 and T2 and output a list of removed (remaining in T1) and inserted

(remaining in T2) nodes.

While the reason for coloring nodes might not be obvious, later on, we leverage the color of a

node in the remaining nodes of T1 and T2 in our similarity measures to detect a matching asymmetry,

that is, if a tag with a very similar hash and the same path from the root node was matched, such as

a template that was used more often in T2 than in T1.

The implementation of Delta under evaluation leverages ssdeep [99] as the fuzzy hash function

and a threshold of 0.99 for the Jaro distance [100] (which is normalized to 0 to 1, that is, we require

very similar tags). Similar to cryptographic hash functions like MD5 or SHA, a fuzzy hash function,

such as ssdeep, maps arbitrary long values to a short hash. In contrast to cryptographic hash function,

57

Identifying Web-based Malware Infection Campaigns Chapter 3

however, a fuzzy hash function maps similar values to similar hashes that can be then used to mea-

sure their similarity. This property allows us to efficiently compare nodes of the DOM tree or their

content regardless of their actual length, which otherwise might be computational too expensive

when using standard string similarity measures for longer tags or content. We selected the Jaro dis-

tance function to compare two hash values because it is a simple string similarity measure originally

introduced for duplicate detection by Jaro [100] and best suited for short strings while accounting

for exactly matched characters as well as transpositions, therefore it quantifies the similarity of fuzzy

hashes for similar data accurately.

In general, a threshold value of 1 when used with a cryptographic hash function is equivalent to

standard unordered tree-to-tree algorithms. On the other hand, a threshold value of 0 regardless of

the hash function is equivalent to comparing every element to every other element and impractical

for any modern website due to the sheer number of possible combinations, which is why a reduction

of potential matches is essential.

3.3.1 Example

An example of the tree difference algorithm is shown in Figure 3.2. The source code of a simple base

version and current version of a website are shown in Listing 3.1 and Listing 3.2 respectively. Two

modifications to the source code were made: first, a head tag including a script tag with an external

source URL was inserted, and, second, a typographical mistake in the class of the p tag was fixed and

one word in its content was changed: “foo” was replaced by “bar.” Figure 3.2 illustrates that for a

standard tree difference algorithm the modified p tag would, correctly, constitute a modified p tag

(the removed p tag is marked with a red background, while the inserted p tag is marked with a green

background). However, since we are interested in severe changes and modifications associated with

behavioral changes, these tiny changes are uninteresting to us, and, like the example shows, they are

discarded by our algorithm.

58

Identifying Web-based Malware Infection Campaigns Chapter 3

<html>
<body>

<p class="sumamry">
foo

</p>
</body>

</html>

Listing 3.1: Example HTML source, base

version

<html>
<head>

<script src="//url/malicious.js">
</script>

</head>
<body>

<p class="summary">
bar

</p>
</body>

</html>

Listing 3.2: Example HTML source, current

version

Current version

html

script

head

p

body

Base version

html

p

body

Fuzzy tree difference

html

script

head

Standard tree difference

html

script

head

p

body

p

Tree difference

vs.and

Figure 3.2: Comparison between a general tree difference algorithm and our fuzzy tree difference

algorithm (Section 3.3). Nodes with a green background denote nodes that were detected as inserted

in our example, while nodes with a red background were detected as being removed.

59

Identifying Web-based Malware Infection Campaigns Chapter 3

Algorithm 1 Fuzzy Tree Difference

1: function FuzzyTreeDifference(T1,T2, tr)
2: G ← Graph
3: for all n ∈ T1.nodes do
4: G ←G .insert_node(n)
5: for all n ∈ T2.nodes do
6: for allm ∈ T1.nodes do
7: if path(m) = path(n) then
8: d(m ,n)← jaro(hash(m), hash(n))
9: if d(m ,n) ≥ tr then

10: G .insert_node(n)
11: m .color← blue
12: n .color← blue
13: G .insert_edge(m ,n ,d(m ,n))

14: M ←max_weight_matching(G)
15: for all (m ,n) ∈M do
16: T1.remove_node(m)
17: T2.remove_node(n)
18: return T1,T2

3.4 Similarity Measures

The most interesting part of websites from a malicious code point of view is described by the HTML

markup language: JavaScript, inline frames, or the use of plugins. Most research on document sim-

ilarity, however, assumes that markup language is not of major interest and that it can be removed

without substantial loss of information. For detecting infection vectors, this assumption does not

hold. Essentially, this violationmakes applying existingwork in document similarity for identifying

infection vectors impractical, because core elements are discarded.

Therefore, we introduce our own similarity measures. Once we have extracted the different tags

between two versions of a website, we can map each tag into the feature space in which we cluster

similar changes together. In this section, we describe the features we are using and the intuition

60

Identifying Web-based Malware Infection Campaigns Chapter 3

behind them. Each of our features we apply on multiple levels (where applicable): the whole tag

and for every value of its attributes.

3.4.1 Template Propagation

First, we introduce the template propagation measure, a binary feature that simply models what

content was introduced or removed from the website in terms of their similarity to previous DOM

tree nodes, that is, it captures the concept of reused templates by checking if a node exist already in

the base version, but are unmatched, for example, because there are more matching candidates than

actual matches are possible. Since all matched nodes in the output T1 and T2 of our tree difference

algorithm are colored blue, we can simply set the value of this feature to 1 if the node is blue and 0

if it is not.

The motivation for this measure is that many websites, for example blogs, use templates when

publishing a new article or when showing a new comment, classified, or advertisement. Detecting

that a template is repeated allows us to model the degree to which a website has drifted away from

expected changes, for example, in terms of character count distributions for a blog with articles

written in English.

3.4.2 Shannon Entropy

Second, we leverage the Shannon entropy as a feature of information in a tag or an attribute’s value.

Two different features are derived from the Shannon entropy: (a) the absolute Shannon entropy,

which is dependent on the length of the string, (b) the normalized Shannon entropy, that is, the

absolute Shannon entropy divided by the ideal Shannon entropy of a string of the same length (i.e.,

it is normalized to the interval from 0 to 1).

61

Identifying Web-based Malware Infection Campaigns Chapter 3

Our intuition behind the Shannon entropy is to measure the distance on how far the tag or

attribute is away from a random source. For instance, to model that the URL in a “src” attribute of

a <script> tag was generated by a random source.

3.4.3 Character Count

In the third set of features we employ a character count. The first feature in this set simply measures

how often a single character occurs in the tag or the attribute’s value and discriminates between

upper- and lower-case characters. The second feature also measures how often a single character

occurs, however, it ignores capitalization and counts an “A” as an “a.” The third feature follows in

simplicity and is the count of each digit. A fourth, fifth and sixth feature are taking advantage of the

same method, but are performed on the fuzzy hash value (ssdeep in our implementation) of the tag

or attribute instead.

Beyond these six features, we are also computing relative features for both of those two sets, aswe

did already in case of the Shannon entropy. Alike to the Shannon entropy features, the motivation

behind these features is to model the character and digit distribution in a string.

3.4.4 Kolmogorov Complexity

The third set of measures we introduce is based on an approximation of the upper-bound on the

Kolmogorov complexity [101]. Kolmogorov complexity denotes a complexity measure specifying

the lower-bound of text necessary to describe another piece of text in an algorithmicway. One of the

most important properties of the complexity is its incomputability. An upper-bound on the other

hand is easy to compute by taking the length of the text compressed by any lossless compression

algorithm. Since these features are based on a second information theoretical measure, next to the

Shannon entropy, it is necessary to emphasize that they are complementary in our scenario: on the

62

Identifying Web-based Malware Infection Campaigns Chapter 3

one hand, Kolmogorov complexity is conceptually different from the Shannon entropy, and on the

other hand, we approximate the Kolmogorov complexity up to (at best) an additive constant.

These measures exploit the upper-bound and the fact that compressing already packed data re-

sults in nearly no benefit, in order to measure a change that introduces packed or encrypted data,

such as malicious data trying to evade detection.

We introduce, again, two different features based on computing an upper-bound of the Kol-

mogorov complexity. First, the absolute upper-bound on the tag extracted by our tree difference

algorithm; second, the ratio of the upper-bound over the length of the string. In case of very short

strings, the upper-bound might even take up more space than the actual string.

3.4.5 Script Inclusion

Scripts included in websites are the most prominent way to infect a user with malware, but they are

also used legitimately. Differences exist between how malicious scripts and legitimate ones are used

and included. For instance, malicious scripts are rarely including local files; instead, they usually

include from an external source or provide the source code directly. The following two binary

features model these differences.

Absolute Source URL

The enduring rise of content-delivery networks, which are often heavily relying on load-balancing

based on the domain name system (DNS), lead to scripts being included much more often with an

absolute and external source address in legitimate cases than it was the case prior to the predomi-

nance of these networks (due to potential compatibility issues if scripts are included differently). It

is important to understand if a website is hosted on a content-delivery network since it bears the

reasoning that these websites are generally much more optimized than personal websites, to save

63

Identifying Web-based Malware Infection Campaigns Chapter 3

on bandwidth on account of the smaller size. This then has an impact on the importance of other

features. This feature is also binary; it is 1 for an absolute non-external source URL and 0 otherwise.

Themany legitimate use cases of including scripts from an absoluteURL suggest that this feature

will not have a discriminatory impact on its own; rather, it supports other features by modeling

the inclusion-style in a website. The notion of a single inclusion-style roots in previous work by

Nikiforakis et al. [102], which suggests that websites follow the same inclusion patterns, that is, the

distribution of how scripts are included is biased toward either relative or absolute inclusions, and

only rarely uniform.

External Source URL

While the last feature is a bias function to judge the use of scripts with an absolute source, the next

feature is a bias function for the concept of external source URLs. It is important to mention that,

if an external script is included, assuming the external domain is maintained by a third party, then

the website operator has to trust that the third party providing the external script will not insert any

malicious code.

3.4.6 Inline Frames

Similar to the features to model the use of script tags, the following three binary features try to

model the inclusion of malicious inline frames, by looking into properties that are uncommon for

benign inclusions.

Absolute and External Source URL

Likewise to the nature of the source URL features for scripts, these features give an intuition on the

use of inline frames. Both features are identical to their script sibling, but they examine <iframe>

tags instead of <script> tags.

64

Identifying Web-based Malware Infection Campaigns Chapter 3

Their motivation follows closely the motivation for the script features: that is, the feature for

absolute source URLs is supporting other inline frame measures as a bias function. In the past, inline

frameswith an external source addresswere often used to include either advertisements or third party

widgets. Recently, those moved to inline JavaScript or embedding plugins directly. Adversaries, on

the other hand, still use these frames because they allow for easier fingerprinting and support deliver-

ing different infection vectors per user, for example depending on the browser’s patch-level, installed

plugins, or by obfuscating each reply differently. This fine-grained control helps the adversary to

maximize the attack efficacy while reducing the likelihood of detection.

Hidden Frame

Beyond absolute and external frames, another indicator for malicious content being included exists:

hidden frames. Legitimate frames are generally made visible to the user. Adversaries on the other

hand prefer that the included website is invisible, which is why they often resort to setting width

and height of the frame to a low value, so that the frame is visually hard to spot for a human. We

investigated a random sample of 10,000 inline frame tags that we extracted from our dataset and

found that legitimate inline frames are often set to a width and height of larger than 100 and rarely

hidden (the style attribute “display: none” is rarely used). We model this phenomenon, assuming

that a majority of malicious inline frames uses a much smaller area of screen space, by restricting

width and height of our feature to a maximum of 15 pixels. The feature is simply 1 for hidden

frames and 0 otherwise.

3.5 Evaluation

Generally, the problem we are trying to solve is an instance of knowledge discovery in databases [103,

104]. More precisely, when searching actively for infection campaigns pairedwith aweb crawler, we

65

Identifying Web-based Malware Infection Campaigns Chapter 3

are interested in detecting outliers, that is, novel changes, and the appearance of clusters, that is, when

a new trend is observed, for instance an infection campaign. While various clustering algorithms

can be employed, the design of our system encourages the use of an algorithm that detects local

outliers. Additionally, the distribution of a cluster can differ from the distribution of any other

cluster, particularly for clusters with a low member count, that is, it is not reasonable to assume that

all changes follow a very similar distribution in the feature space. Sincewe are primarily interested in

the formation of new clusters, when it is even less likely that this assumption will hold, centroid- or

distribution-based clustering algorithms such as k-means (whichwill give spherically shaped clusters)

or expectation-maximization (e.g., Gaussian mixture models) are unlikely to provide any valuable

insight on new infection campaigns early enough. To counter this issue, we adopt a variant of the

density-based clustering algorithm OPTICS (Ordering Points To Identify the Clustering Structure)

by Ankerst et al. [105], namelyOPTICS-OF (OPTICSwithOutlier Factors) by Breunig et al. [106].

3.5.1 OPTICS-OF

The OPTICS-OF algorithm takes two parameters: the maximum distance for a cluster and the min-

imal number of vectors necessary to form a cluster. In the scenario of trend analysis, the maximum

distance corresponds to the similarity of a change, while the minimal number of vectors necessary

describes the number of instances of a change we want to observe before we consider it a trend, that

is, before we want to verify that we found a previously-unknown infection campaign.

The algorithm works, in essence, as follows: if two vectors in the feature space are closer than

the maximum distance, then they are directly density-reachable. If at least the minimal number of

vectors are directly density-reachable from a vector, then this vector is a core object and forms a

cluster. A cluster does not only contain directly density-reachable vectors from this core object, but

is defined transitively, that is, it contains all vectors that are directly and transitively density-reachable

from the core objects. Therefore, an outlier is either not density-reachable to any other vector at all,

66

Identifying Web-based Malware Infection Campaigns Chapter 3

or only density-reachable to a number of vectors, where none of the vectors is a core object, that

is, none of the vectors forms a cluster. In our experiments, we require 10 similarity vectors that are

directly density-reachable to form a cluster.

3.5.2 Dataset

First, in this section, we describe in detail what constraints we imposed on our dataset, why these

constraintswere imposed, and howwe obtained our dataset. In general, it is a challenging problem to

obtain a representative sample of different and distinctmaliciouswebsites. Invernizzi et al. [107] have

shown that this is even the casewhen onlymediocre toxicity2 is required, that is, it is even difficult for

a dataset with a small but non-negligible percentage of malicious websites. This poses a problem for

collecting our dataset because we desire moderate toxicity and diversity among malicious infection

vectors to verify that we can correctly, and without bias, identify similar trends, and by this, similar

infection campaigns. Moreover, to discard trivial cases, the requirements on the websites in our

dataset are even more restrictive:

• Websites must have been set-up for a legitimate reason, that is, we are interested in landing

pages and not interested in exploit pages. Exploit pages denote websites that are set up by

an adversary to exclusively deliver malicious code, while landing pages denote the infected

legitimate page. We enforce this restriction because recent work establishes that legitimate

websites are nowadays the primary target and because other approaches by Provos et al. [23,

92], Ratanaworabhan et al. [108], Curtsinger et al. [109] or Seifert et al. [110] are already able

to detect purely malicious websites with outstanding accuracy.

• Two distinct versions of a website are required, that is, a website must have been modified

(legitimately or maliciously) to constitute a realistic sample.

2Toxicity measures the maliciousness of dataset and simply corresponds to the fraction of malicious samples in a
dataset over all the samples of the dataset.

67

Identifying Web-based Malware Infection Campaigns Chapter 3

Weobtained our dataset by crawling the web from January 2013 toMay 2013 via a 10-node clus-

ter of custom crawlers running an adaptive fetch schedule with a recrawl delay of at least 15 minutes

and an exponential back-off delay (multiplied by a constant factor of 10 if no change was observed

in a recrawl and with a strict maximum of one week). The hourly seed of URLs for our crawler con-

tained websites that were already present in our dataset and also Yandex’s search engines results for

Twitter’s trending topics. Additionally, to counter the problem of low toxicity and prevent a bias

toward benign websites, we injected a total of 2,979,942 URLs of websites into our crawl seed that

the Wepawet online analyzer [90] had analyzed previously, starting with samples observed in the

beginning of January 2013 and ending with samples observed at the end of April 2013. In total, af-

ter removing exact duplicates and restricting the number of pairs per unique URL to a maximum of

10, our dataset spans a size of 700GiB and 26,459,103 distinct website pairs from 12,464,920 unique

URLs. A distinct pair denotes a pair where both versions are different from each other in respect to

the SHA256 checksum of their normalized DOM tree.

The time difference, before a change between base and current version of a website was observed,

is shown in Figure 3.3a. The average time difference of our pairs is four weeks, with 80% of all pairs

being 2 hours or more apart, 70% being 12 hours or more apart, 60% being 7 days or more apart, and

50% being 20 days or more apart (median). Since not all websites have been recrawled after exactly

15 minutes, we can only observe that a change happens in at least 16% of the websites in a 15-minute

interval after a visit.

3.5.3 Case Studies: Identified Trends/Clusters

In our experiments, we identified a total of 67,038 different clusters, with the majority of clusters

having 30 or less elements. Figure 3.3b depicts the final distribution of cluster sizes we observed

in our experiments. Evidently, the observed distribution follows closely the power law function:

y = 2014 · (x − 10)−1.8. In addition, we observe that the total sum over all cluster sizes is less than

68

Identifying Web-based Malware Infection Campaigns Chapter 3

15 M
inutes

30 M
inutes

1 Hour

2 Hours

6 Hours

12 Hours
1 Day

3 Days

1 W
eek

1 M
onth

3 M
onths

6 M
onths

Time Difference

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ra
tio

 o
f T

ot
al

 P
ai

rs

Difference in Time CDF

(a) Overview of the difference in time between base and

current version of a pair in the final dataset

10 20 30 40 50 60 70 80 90 100
Cluster Size

0

250

500

750

1000

1250

1500

1750

2000

N
um

be
r o

f C
lu

st
er

s

Distribution of Cluster Sizes

Observed Clusters
Power Law: y = 2014 ¢ (x − 10)−1.8

(b) Overview of the number of different elements that are

in each cluster

Figure 3.3: Time and distribution properties of the dataset

the number of distinct tags that we have analyzed. This is the case because any remaining tags are

still considered to be outliers and do not constitute a trend yet. As a matter of fact, both the close

resemblance to a power law function and a non-negligible amount of outliers are expected, because

some changes are onlymade to a limited number ofwebsites, for example, very similar articles might

be posted to less websites than we require as a lower-bound to constitute a trend, and also because

our view of changes is limited by the seed and link expansion of the web crawler, that is, it is possible

that we only observed a subset of the true instances of each unique trend.

We feel that it is important to understand what a single cluster is actually describing, and we pro-

vide different examples about what tags have been clustered together. Therefore, we investigate two

clusters in more detail. Although both clusters are low-count clusters, that is, relatively small, their

small size actually illustrates that Delta does detect when a trend reaches a significant distribution

and that it does not rely on an unreasonable large number of observations of a single trend.

69

Identifying Web-based Malware Infection Campaigns Chapter 3

The first example we discuss is an actual infection campaign that we have observed in the wild,

an instance of a redirection to a Cool Exploit Kit installation. In contrast, the second example we

discuss corresponds to a cluster describing the change in cross-site request forgery tokens.

We selected these two clusters manually by filtering clusters based on the generated signature

with simple heuristics that suggest malicious behavior, such as external scripts that are included with

a random component or JavaScript with a non-negligible ratio of digits over characters (suggesting

obfuscation). Clearly, these and other heuristics can also be leveraged to order clusters according

to “levels of interest” or to remove clusters that are likely uninteresting and should not be analyzed

manually by an analyst.

Other trends we observed, but will not discuss in detail, include the modification of Facebook

Like buttons (the backlink URL changes), a version update for the JQuery library served for blogs

hosted on Wordpress.com, or the insertion of user-tracking tokens.

Cool Exploit Kit Infections of Discuz!X

One of the most interesting clusters, which shows the applicability of Delta in practice, describes

an infection vector used to redirect to a specific infection campaign that uses the Cool Exploit Kit to

distribute malware. This in-the-wild infection campaign was found at the beginning of April 2013

in a set of 15 different websites from the following 10 unique URLs:

• http://att.kafan.cn

• http://frozen-fs.net

• http://jses40813.ibbt.tw

• http://ppin888.com

• http://www.dv3.com.cn

• http://www.kxxwg.com

• http://www.ruadapalma.com

70

Identifying Web-based Malware Infection Campaigns Chapter 3

<script type="text/javascript" language="javascript">
p=parseInt;
ss=(123) ? String.fromCharCode : 0;
asgq=" [4036 character obfuscated string] "

.replace(/@/g,"9").split("!");
try { document.body&=0.1 } catch(gdsgsdg) {

zz=3; dbshre=79;
if(dbshre) { vfvwe=0;

try { document; }
catch(agdsg) { vfvwe=1; }
if(!vfvwe) { e=eval; }
s="";
if(zz) for(i=0;i−1374!=0;i++) {

if(window.document)
s+=ss(p(asgq[i],16)); }

if(window.document) e(s); }}</script>

Listing 3.3: Cool Exploit Kit infection vector

• http://www.sdchina.cn

• http://www.wlanwifi.net

• http://www.yysyuan.com

Once we verified that the cluster was indeed malicious, we investigated the underlying commonali-

ties between them. We found that all websites were using the discussion platform “Discuz!X” [111].

Discuz!X is an Internet forum software written in PHP and, according to the Chinese National Ra-

dio [112], the most popular Internet forum software used in China. Clearly, these infections are

part of the same infection campaign. Additionally, such a strong common ground suggests that the

infection is likely to be rooted in a security vulnerability in the Discuz!X software, and it provides

support identifying the cause and a removal method.

Listing 3.3 shows the respective generated signature of the infection. For this infection campaign,

we did not observe any differences in the tags that were clustered together.

71

Identifying Web-based Malware Infection Campaigns Chapter 3

<input
name="csrfmiddlewaretoken"
value="(JhD3IwCXcnnpRtvE42MN6r8dOBOWRoxG

|hH4f6eOMCOTEYF0RYoXFRDaTLzym61O2
[...]
|DNczoWjeN1nK6nq3whXYpSSnZGdxx0Og
|F9yLS0jNUXIURsXDRqxS5NVW7qXfWsgf)"/>

Listing 3.4: Cross-site request forgery token; | denotes an or

Beyond the inclusions of infection vectors pointing to an installation of the Cool Exploit Kit

observed in all pairs, one website (http://frozen-fs.net) also included an infection vector that tried

to infect visitors via an installation of the Blackhole exploit kit.

The domain that included the Cool Exploit Kit and the Blackhole exploit kit, “frozen-fs.net,”

was not cleaned up, and we observed that it was suspended by the provider 27 days after we detected

the infection.

Cross-Site Request Forgery Tokens

A second interesting low-count cluster we found during our evaluation models variations in cross-

site request forgery tokens in deployments of the Django web application framework. In total, we

identified a similar modification among 17 different pairs of websites. Each website used form-based

cross-site request forgery tokens and used the same identifier for a hidden formfield, that is, “csrfmid-

dlewaretoken.” For every pair, the attribute features did not diverge for the name attribute, while

all were different for the value attribute. Nonetheless, Delta clustered them together, since the ran-

dom entropy was nearly constant for the value attribute among all observed removed and inserted

instances. The entropywas nearly constant for the normalized case aswell as for the absolute entropy

features. The exact identifying signature for that cluster is shown in Listing 3.4.

We feel that this observed trend constitutes a perfect example in which the limitations of the

signature generation stick out and where Delta shows its robustness by clustering these changes

72

Identifying Web-based Malware Infection Campaigns Chapter 3

correctly together. While the signature can detect all observed instances correctly, it is clear that

when trying to match new versions of a website with the signature we would fail to identify the

changed token value correctly since the value will change to a new, unobserved random value.

3.5.4 Performance

In order to judge the actual applicability of our system in practice, a performance analysis is necessary.

We show in Figure 3.4 that the performance ofDelta allows for deployments in real-world scenarios.

However, corner cases exist that could impact an actual deployment, if the difference between the

base and current version of a website is particularly large. We performed a manual in-depth analysis

of the system that highlighted the actual performance bottleneck of our system: close to 80% of

the time when analyzing the two versions was spent by the Python library BeautifulSoup to parse

the HTML structure of a page. Although, the number of changes made to a website plays the most

important role in analyzing the changes, pairs that took longer than three seconds to analyze were

exclusively websites that sent data in an encoding different than specified. BeautifulSoup tries to

take care of this and follows a code path that can get multiple thousand function calls deep, and

easily hits the recursion limit of CPython. While we increased this limit in our evaluation to keep

these pairs and prevent a dataset bias, the particular functions are actually tail-recursive and, therefore,

can be expressed iteratively (thus, removing the necessity of allocating stackframes). However, the

abstruseness of the involved functions prevented us from doing the very same in a reasonable amount

of time. Regardless of these (still outstanding) engineering challenges for a general deployment, we

could analyze a single pair in a median time of 0.340 seconds and in an average time of in 2.232

seconds. It is also evident that we finished each analysis in at most 20 seconds, regardless of the

aforementioned problems encountered in BeautifulSoup.

These results, when taking into account that 60% of our data is seven days or more apart (see

Figure 3.4), support our claim that Delta does not necessarily need to keep a base version locally, but

73

Identifying Web-based Malware Infection Campaigns Chapter 3

50 M
illi

se
conds

100 M
illi

se
conds

200 M
illi

se
conds

Median

500 M
illi

se
conds

1 Second

2 Seconds

3 Seconds

5 Seconds

10 Seconds

20 Seconds

40 Seconds

Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ra
tio

 o
f T

ot
al

 P
ai

rs
Analysis Time CDF

Figure 3.4: Overview of the ratio of website pairs that have been completely analyzed in our exper-

iments in less than x seconds.

could rely on public archives like the InternetArchive or aweb cache by a search engine. Nonetheless,

we strongly recommend keeping a local version to prevent an additional delay in fetching thewebsite

and to prevent running into the problem of a potentially outdated or even non-existing version on

the side of the public archive.

3.6 Limitations

Similar to other static analysis approaches leveraging machine learning, our approach has some limi-

tations, which can be used to evade detection. This section discusses these limitations and how they

could be managed in a real-world deployment of Delta. First, we introduce a limitation called Step-

by-step Injection. Second, we will briefly discuss the Evolution of Infection Vectors as a major fundamental

problem in detecting malicious code. Lastly, we discuss the trade-off between dynamic and static

analysis and the limitations of either approach.

74

Identifying Web-based Malware Infection Campaigns Chapter 3

3.6.1 Step-by-step Injection

It is possible to circumvent Delta by adding malicious code in small steps, that is, in a series of modi-

fications where each step on its own gets detected as being benign, while the aggregation is malicious.

For example, an attacker could build an infection vector that delivers these small steps depending

on a cookie or the visitor’s IP address to keep track of the client’s previous version. However, we

argue that the scope of such an attack is heavily limited because: (a) it requires an attacker to be able

to inject code that is executed on the server-side, otherwise detection is possible because it has to

be done client-side, and the attack can also be impeded or even avoided by keeping the first version

instead of updating the stored base versionwith every visit; or (b) the DOM treewill bemodified on-

line, for example through JavaScript. In the first case, an important and drastically scope-reducing

factor is that the vulnerability needs to support such an iterative process, where, for example, mem-

ory regions are shared among browser tabs or between multiple visits to the same website, which is

highly unlikely given the strict separation current browser sandboxes enforce. In the latter case, on

the other hand, we suggest analyzing the website on every mutation event,3 that is, by considering

the website that was modified online as a new current version and comparing it to the stored base

version.

3.6.2 Evolution of Infection Vectors

Detecting malicious code is an arms race and malicious websites are no exception. Malware develop-

ers are trying to evade detection systems to gain the upper hand, while detection system developers

are trying to catch and prevent these evasions. Previous work on evasions motivated the search for

better and different detection systems [113]. More advanced obfuscation [114], encryption, poly-

and metamorphic code [115] and virtualized environments have become more common in response

3JavaScript events are called mutation events if they modify the DOM tree, for example, by changing attributes of a
node, such as the src attribute of a script tag, or inserting or removing elements from the DOM tree.

75

Identifying Web-based Malware Infection Campaigns Chapter 3

to these improvements and impeded detection systems. With more approaches being able to handle

these cases, it is to be expected that malware and infection vectors will evolve and successfully cir-

cumvent available detection systems. While retraining the machine learning algorithm on a more

recent dataset is often a possible approach to counter the evasion problem, it is only a near-sighted so-

lution to counter the dataset shift, as malware will deviate more severely, up to the point where the

features will not model the underlying problem anymore. Even in cases where the features are not

publicly known to an adversary, it is possible to partially derive these by probing the system carefully,

which then will either allow for successful evasion of the system or (on re-training) increase the false

positive and false negative rate because of misclassification due to minuscule differences between le-

gitimate and malicious code in the feature space. Both cases are obviously not desired for a detection

system, however, it is a general problem of all approaches employing machine learning [92, 23, 116,

117, 118, 110, 91, 33], and it is generally only countered reliably by adapting to a new feature space,

which we leave for future work.

3.6.3 Dynamic vs. Static Analysis

Delta in its current form is a purely static analysis system, while, at the same time, the Internet

is becoming more and more dynamic. While one might think that static analysis is inferior to dy-

namic analysis here, this is not the case. Instead, our system complements dynamic analysis systems:

it detects trends/infections statically and can forward the interesting trends/infections to dynamic

analysis systems that extract further information.

Our motivation to rely on a purely static analysis is based on multiple reasons. First, dynamic

analysis is not necessarily useful at the early stage in which our system operates, that is, trends that

change the behavior and are interesting to us show themselves first with static content changes, ren-

dering dynamic analysis (currently) unnecessary. A second argument against dynamic analysis for

Delta is that it, for instance by instrumenting embedded or included JavaScript to modify the DOM

76

Identifying Web-based Malware Infection Campaigns Chapter 3

tree to retrieve a “final” version of the website, under-approximates the behavior of the website to

this specific execution environment and might yield a potentially incomplete or untrue representa-

tion of the DOM tree. It also poses the questions of when to consider the DOM tree “final,” that is,

when to take a snapshot. Consequently, it might then be possible to evade the trend detection step in

the first place. Additionally, we might also miss infection campaigns that are statically present, but

which are removed dynamically or are inactive (for us). For example, servers could be unavailable

(for us) or code might not be loaded (for us), we could be fingerprinted, the IP address of our analysis

system might be in a region of the world that is not affected or simply because the user-agent of our

browser does not match a (unknown) regular expression. The third argument in favor of static anal-

ysis is that it can be considerably faster than dynamic analysis, which, in turn, allows us to leverage

more computationally-expensive features to increase trend detection accuracy.

Lastly, while the trend detection step is purely static, to detect malicious behavior, Delta relies

on an external analysis system that might very well use dynamic analysis. Generally, we do not

impose any limitations on this detection engine but that it can detect malicious behavior.

3.7 Conclusion

In this chapter, we introduced Delta, a novel, light-weight system to identify changes associated

with malicious and benign behavior in websites. The system leverages clustering of modification-

motivated features, which are extracted based on two versions of a website, rather than analyzing

the website in its entirety. To extract the important modifications accurately, we introduced a fuzzy

tree difference algorithm that extracts DOM tree nodes that were more heavily modified, discarding

changes in single characters or words, or legitimate evolutions. Beyond detecting if a change made

to a website is associated with malicious behavior or not, we showed that Delta supports the detec-

tion of previously-unknown infection campaigns by analyzing, unknown trends and measuring the

77

Identifying Web-based Malware Infection Campaigns Chapter 3

similarity to previous, known infection campaigns. Furthermore, we showed that the system can

generate an identifying signature of observed infection campaigns, which can then be leveraged to

protect users via content-based detection systems or as test-cases for online analyzer systems. Ulti-

mately, the system’s ability to identify specific infections is helpful in identifying the reason why the

website was infected by a specific campaign in the first place, such as a distinct version of the web

application among all infections; additionally, it facilitates the removal of malicious code and the

mitigation of additional infections in the future.

78

Chapter 4

Mitigating the Risks of Takeover Attacks

and Domain-Validated Certificates

Infrastructure-as-a-Service (IaaS), andmore generally the “cloud,” like AmazonWeb Services (AWS)

orMicrosoft Azure, have changed the landscape of systemoperations on the Internet. Their elasticity

allows operators to rapidly allocate and use resources as needed, from virtual machines, to storage,

to bandwidth, and even to IP addresses, which is what made them popular and spurred innovation.

In this chapter, we show that the dynamic component paired with recent developments in trust-

based ecosystems (e.g., TLS certificates) creates so far unknown attack vectors. Specifically, we dis-

cover a substantial number of stale DNS records that point to available IP addresses in clouds, yet,

are still actively attempted to be accessed. Often, these records belong to discontinued services that

were previously hosted in the cloud. We demonstrate that it is practical, and time and cost-efficient

for attackers to allocate IP addresses to which stale DNS records point. Considering the ubiquity of

domain validation in trust ecosystems, like TLS certificates, an attacker can impersonate the service

using a valid certificate trusted by all major operating systems and browsers. The attacker can then

also exploit residual trust in the domain name for phishing, receiving and sending emails, or possi-

79

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

bly distribute code to clients that load remote code from the domain (e.g., loading of native code by

mobile apps, or JavaScript libraries by websites).

Even worse, an aggressive attacker could execute the attack in less than 70 seconds, well below

common time-to-live (TTL) for DNS records. In turn, it means an attacker could exploit normal

service migrations in the cloud to obtain a valid TLS certificate for domains owned and managed by

others, and, worse, that she might not actually be bound by DNS records being (temporarily) stale,

but that she can exploit caching instead. We introduce a new authentication method for trust-based

domain validation that mitigates staleness issues without incurring additional certificate requester

effort by incorporating existing trust of a name into the validation process. Furthermore, we provide

recommendations for domain name owners and cloud operators to reduce their and their clients’

exposure to DNS staleness issues and the resulting domain takeover attacks.

4.1 Motivation and Contributions

Over the past ten years, cloud services have grown tremendously. Generally, clouds are comprised

of hundreds to thousands of commodity servers, which make up pools of computing resources that

are shared by different users. One of the main drivers behind the clouds’ rise in popularity is their

elasticity: Users can acquire and use resources as needed, on demand, and at scale, all while requiring

almost no upfront investment. In fact, Amazon Web Services (AWS), Amazon’s public cloud, serves

over one million active users worldwide [119], Microsoft Azure is gaining 120,000 new customers

each month [120], and the global cloud IP traffic has reached 3.9 zettabytes (3.9 billion terabytes)

in 2015 already [121]. Unfortunately, as the recent years have shown, the resource pooling and

increased popularity of cloud-based deployments also pose severe security issues to the clouds’ ten-

ants [122, 34].

80

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

With the clouds’ increase in popularity and their commoditization, website operators have been

empowered to deploy their website themselves instead of relying on more traditional web hosting.

At the same time, HTTPS has become basically a requirement for any website operator, not only

for dynamic websites trying to protect login credentials, but also for static websites. Unprotected

websites are being ranked lower by search engines [123], they are limited in browser features that

they can use [124], and they risk having content and advertisements injected, for example, by wire-

less access point operators or Internet Service Providers [125, 126]. For HTTP/2, it has become

practically mandatory because all major browsers support HTTP/2 over TLS only [127]. Website

operators now typically deployTLS certificates for their domains and useHTTPS to ensure integrity

and confidentiality for any communication with their website. For certificates to be trusted by the

websites’ visitors’ browsers, however, they need to be issued by trusted certificate authorities (CAs).

Traditional verification approaches involve identity documents, like verifying passports, which in-

curred high processing overhead. To cope with the high-volume demand for digital certificates,

CAs adopted automated approaches to verify and issue certificates, and now heavily rely on domain-

validation. Having launched only inApril 2016, Let’s Encrypt has since been dominating the domain-

validation part of the certificate authority ecosystem through openly available and well-designed

tooling that uses the Automatic Certificate Management Environment protocol (ACME) [128] to

validate domain ownership and issue certificates almost transparently for users. Today, Let’s En-

crypt has issued over 100 million certificates in less than 15 months and their certificates account for

80% of all publicly trusted certificates [129, 130].

Unfortunately, combining the elasticity of cloud infrastructure and the automation of certificate

issuance introduces new security vulnerabilities. We discover that stale and abandoned DNS entries

pointing to cloud IP addresses can be exploited by attackers to deceive domain-based certificate vali-

dation and obtain certificates for the victim domains. The problem stems from the ephemeral nature

of the cloud resources. More specifically, if a user releases a cloud IP address, but does not remove

81

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

the corresponding DNS entry before releasing the IP address, an attacker can allocate the same IP

address, impersonate ownership of the domain, and request trusted certificates from a CA, like Let’s

Encrypt. We call them IP address use-after-free vulnerabilities, which can enable a variety of at-

tacks and cause harm. Adversaries can leverage the acquired valid certificates for man-in-the-middle

attacks, for example, to intercept the HTTPS traffic to the victim domain on a wireless network.

Worse, if an attacker obtains a wild-card certificate, her attack capabilities are significantly enhanced,

possibly allowing her to impersonate any sub-domain, including non-existing ones. The obtained

certificates can be abused for phishing attacks, by impersonating the legitimate website, including

TLS verification and its “trustworthy green lock.” Attackers can deface the website, and they might

even be able to launch remote code execution attacks, for example, if JavaScript or native code is

being loaded from the domain that was taken over [6, 102, 131].

To better understand the prevalence of IP address use-after-free vulnerabilities in the wild, we

conduct a large-scale analysis. From passive DNS traffic, we extract over 130 million domains that

point to IP addresses of cloud networks. On these domains, we perform regular liveness probes

to determine whether their cloud IP addresses are allocated and in use. Our results indicate that

over 700,000 domains point to cloud IP addresses that are free, and which are susceptible to domain

takeover attacks due to use-after-free vulnerabilities. We further investigate the feasibility of obtain-

ing particularly interesting target IP addresses from cloud services, and we estimate that it would

cost attackers less than $1 (USD) to cycle through the necessary unique IP addresses, which renders

the attack economically viable for adversaries. Based on our in-depth analysis, we propose to extend

the ACME protocol version 2 by including our new trust-based identifier validation challenge, and

we provide practical recommendations for domain owners and cloud operators to protect themselves

from domain takeover attacks.

82

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

We make the following contributions:

• We conduct a comprehensive study of IP address use-after-free vulnerabilities, and the domain

takeover attacks that these vulnerabilities enable. We show that the scale of the vulnerabilities

is considerable: Over 700,000 unique domains point to IP addresses that are free and can be

abused to take over the respective domains.

• We discover that even well maintained DNS zones can be vulnerable to domain takeover at-

tacks: After releasing cloud IP address resources, an adversary might be able to exploit now

outdated zone information in DNS caches to launch attacks.

• We examine the feasibility of launching domain takeover attacks in the real world through

cloud IP address re-use, by analyzing their allocation cycles, and we show that it is practical,

time-efficient, and cost-efficient for an attacker to launch such attacks.

• We propose a new domain-validation method for automated certificate management environ-

ments (ACME) CAs that leverages the existing trust of a name to mitigate domain takeover

attacks.

The remainder of this chapter is organized as follows: First, we provide background detail on

DNS, operation of Infrastructure-as-a-Service clouds, and domain validation (Section 4.2). Next,

we analyze and evaluate to what degree IP address use-after-free vulnerabilities pose a security threat

(Section 4.3). Then, we present our mitigation technique, which retains almost all usability benefits

of automated domain-validation, yet protects against IP address use-after-free attacks (Section 4.4).

Finally, we conclude (Section 4.5).

83

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

4.2 Background

Weprovide a basic introduction to theDomainName System (DNS), to different operational models

in cloud setups, and to the use of domain-validation for TLS certificate issuance.

4.2.1 Domain Name System and DNSSEC

TheDomainName System (DNS) is a core protocol of the current Internet architecture. It facilitates

to use easily identifiable hierarchically organized names instead of IP addresses to access services

online. Although the fundamental idea of DNS is straightforward [132], we describe IPv4 and IPv6

resource records (RRs) and DNSSEC as they are essential.

Resolving names to IP addresses via DNS is done by requesting an A RR to resolve a name to an

IPv4 address, or an AAAA RR to resolve to an IPv6 address. The information for a RR is stored in

the so-called parent zone. Each record is served by (at least one) DNS server, which is authoritative

for that zone. There is, however, no automatic aspect within the DNS ecosystem that guarantees

that DNS entries remain fresh, that is, a method that ensures that a given RR never becomes stale,

but that it always points to the correct IP address or that it is removed if it should point nowhere.

DNS by itself does not provide authentication, which brings security issues due to response

spoofing, and spoofing can allow domain takeover attacks. DNSSEC is one method to provide in-

tegrity for the unencrypted DNS ecosystem. Authenticating existing records is a straightforward

extension of DNS through a signature record type (RRSIG) for each original resource record set

(RRset), which is signedwith a zone-signing key (ZSK). The public key portion of the ZSK is hosted

in the zone, while the parent zone provides a hash of the ZSK in a DS RR. The problem of distribut-

ing public keys in a trustworthy manner is solved through DNS’ hierarchical nature and its existing

chain of trust from the root zone to the queried zone. Crucial is that DNSSEC discourages the use

of online signing to prevent denial of service attacks against the nameserver and chosen-plaintext at-

84

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

tacks against the zone-signing key, as well as deploying the ZSK to (hidden) master nameservers to

automate signing of updated zone information online [133, Section 5]. Instead, it strongly encour-

ages to publish only zone information that was signed offline in a secure manner, and then deployed

to (hidden) masters [134, Section 3.1, Section 9, and Section 12][135, Section 3.4.3]. Furthermore,

the current state of the DNSSEC ecosystem shows significant deployment issues, for example, not

publishing all required records for validation, incorrectly rolling-over keys, or not rolling keys over

in the first place, which indicates a lack of care or toolingwhen deployingDNSSEC in practice [136].

4.2.2 Cloud Models

Cloud Computing has become a widely used concept in Computer Science. Following, we employ

the National Institute of Standards and Technology’s (NIST) definition of Cloud Computing [137].

Clouds are hardware and software bundles to provide users with five basic characteristics: on-

demand self-service, broad network access, resource pooling, rapid elasticity, and, measured services. Specifically,

it means that a cloud must provide services at its users’ demand, without requiring any further man-

ual interaction by the cloud operator, it must allow customers to (ideally) automatically scale their

resource usage based on their needs, and all operations must be metered precisely and billed accord-

ingly.

Cloud infrastructures generally have different deployment models, depending on their use case

and users: public for the general public, private for large operators or higher security requirements

(e.g., businesses or the government), or community for private clouds shared among multiple organi-

zations for cost-savings or security. We focus on IP address re-use vulnerabilities in public clouds.

The most distinguishing technical difference for clouds is their respective service model:

Software as a Service (SaaS).

The SaaSmodel is themost abstract setup. Customers interface with software provided by the

operator, either via their web-browser or a standardized program interface (API). Customers

85

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

do not have access “the underlying cloud infrastructure including network, servers, operating systems,

storage, or even individual application capabilities [...]” [137]. Examples include Microsoft Office

365 and the SalesForce Platform.

Platform as a Service (PaaS).

For PaaS clouds, users deploy their own code and applications to run on the cloud. Although

the executed code is under the users’ control, access to the underlying cloud infrastructure,

like network and disk, is similarly restricted as in the case of SaaS clouds. Examples include

Heroku and Google App Engine.

Infrastructure as a Service (IaaS).

IaaS clouds, on the other hand, give more control to cloud users. Here, a user can freely

request storage, network, memory, processing, and other resources as needed. Commonly,

these resources are provided to the user in form of a virtual machine (VM), on which the user

can install any operating system and software. Popular examples of IaaS clouds are Amazon

Web Services (AWS) EC2 and Microsoft Azure.

We investigate IaaS clouds because they allow us to freely and rapidly allocate IP addresses as part of

their resource pooling characteristic. Depending on the external interfaces of PaaS clouds, they may

also be vulnerable to re-use attacks, which are related to the IP address use-after-free vulnerabilities

that we describe.

4.2.3 Domain-Validated Certificates

The HTTPS ecosystem is based on certificate authorities (CAs), which are trusted by operating sys-

tem and browser vendors. These vendors include the CAs’ certificates in their products, and certifi-

cates that are presented to clients have to demonstrate a chain of signatures to a certificate of a trusted

86

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

CA. The job of a CA is to verify that the entity that requests a certificate to be issued is authorized

to obtain a signed certificate for the specific domain(s) that the certificate is supposed to be valid for.

Various methods to assert authority over a domain exist. Classical and more expensive methods

of identification require a CA to verify that a requesting party conforms to the domain-owning

party by checking identity documents, for example, passports, or company incorporation forms.

However, such processes incur significant overhead.

Nowadays, more cost-effective methods of validating domain ownership, or rather establishing

that the requesting party is currently controlling the domain, exist, and they have been adopted by

all major CAs, mainly to combat operating costs. These methods are generally referred to as issuance

of a domain-validated certificate, because only authority over the domain is established. The three

most common validation methods are:

DNS Validation.

To validate ownership of a domain via DNS, the certificate requester must set a nonce that she

received from the CA in a DNS record, usually a TXT record, which the CA will attempt to

query and validate. Requiring the requester to change a DNS entry implies that she controls

the domain’s DNS zone, which is considered a strong indicator for authority over a domain.

Email Validation.

Similarly, to validate a domain via email, the CA sends an email to (a) one of the mail ad-

dresses listed in the domain’s WHOIS data, or, (b) to one of the common administrative email

accounts, like “postmaster,” “webmaster,” or “sslmaster.” The email includes a unique token

that must be send to the CA, or a unique link that needs to be visited to verify ownership of

the email address, and, in turn, the domain.

Web-based Validation.

For web-based validation the certificate requester receives a token from the CA that she must

87

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

make available via HTTP at a CA-specified path on the domain for which the certificate was

requested. Once made available, the CA verifies that the token is accessible and contains the

correct value, and only then attests ownership of the domain and issues certificate.

Traditionally, CAs were dominated by an enclosed and business-oriented community. CAcert

was among the earliest and most prominent approaches to introduce a community driven CA ef-

fort [138]. Unfortunately, due to insufficient support by browser and operating system vendors, it

never reachedwidespread adoption. Furthermore, the recent rise of TLS related incidents, for exam-

ple, DigiNotar [139] and CAs issuing illegitimate certificates [140], lead to two new developments

trying to disrupt the established CA ecosystem: the wide-spread introduction and requirement of

certificate transparency and the Let’s Encrypt CA.

Certificate transparency is a framework that specifies that a CA must publish to a tamper-proof,

append-only log, which can be audited by authorized parties [141, 142]. Its purpose is to allow po-

tentially affected parties, for example, domain owners, to verify that a CA has not issued a certificate

for a given domain to an unauthorized party. In an ideal world, all CAs would participate in this

scheme and publish certificate transparency logs, but, unfortunately, not all CAs do currently par-

ticipate. However, some individual CAs have been forced to publish transparency logs by browser

vendors, most notably Google, who threatened to void their trust in the CAs and to remove the CAs’

certificate from their products if the CA does not comply with Google’s request. Without a doubt,

the removal of a CA from a major browser, such as Google Chrome, would have severe business and

financial consequences for a CA, as it might have to refund cost for already issued certificates and it

would likely have difficulty acquiring new customers, which is what forces a CA into compliance

and why it is willing to participate in the certificate transparency scheme. One example of such an

occurrence is Symantec, who has been required to publish certificate transparency logs after they

issued certificates for google.com without Google’s authorization [140].

88

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Let’s Encrypt, on the other hand, is an effort to make TLS encryption more prevalent on the In-

ternet. They practice a leaner and completely automatic identity verification process, and they only

issue certificates with short lifetimes of 90 days, to limit the potential damage of key compromise

and mis-issuance, as well as to encourage automation [143]. Contrary to the most other CAs, Let’s

Encrypt issues certificates free of charge, and identity is verified exclusively via web-based validation

and through DNS validation. Thanks to a combination of a browser-trusted certificate, being free

of charge, and software tooling openly available to reduce system administrator effort, it has led to

a significant increase in the number of systems on the Internet which use validly signed certificates,

as well as it increased Let’s Encrypt’s popularity and market share [144].

4.3 Problem Analysis

Mitigations to protect from security problems can be implemented with varying degree of com-

plexity, and for problems of varying degree of complexity. However, in practice, these security

measures bear performance overhead and have usability drawbacks, which might not be acceptable.

In turn, their actual real-world deployment depends on security risk evaluations, operational costs,

and human costs. Therefore, before trying to mitigate a non-issue, it is necessary to justify them

with supporting data instead of recommending absolutes.

Following, we first discuss the different security issues in respect to use-after-free vulnerabilities

for IP addresses in respect to DNS-based domain validation. We then evaluate to what degree those

security issues are practical to exploit. Finally, we estimate how many domains might be susceptible

to takeovers and whether protecting them is worthwhile.

For our problem analysis, we investigate and interact with systems that are online and in-use by

third parties. Naturally, those systems are outside of our control. In turn, our analysis poses ethical

challenges to not affect or impact the legitimate users of such systems in any way. We discuss the

89

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

considerations we undertook for an ethical and appropriate, yet realistic, analysis separately for each

experiment in their respective sections.

4.3.1 Impact

Domain takeovers bear serious consequences, even temporary takeovers can provide ample opportu-

nity for an attacker (Section 4.1). Naturally, the way an attacker might cause harm to the legitimate

domain operator and domain users varies from case to case and the space of attacks is vast, which is

why we only discuss a subset of possible attacks:

Malicious and Remote Code Loading.

Likely the most straight-forward way for an attacker to turn a profit through a domain she

took over is by serving malicious code, serving advertisements, or including affiliate mar-

keting [1, 102, 131]. Although considered easier to launch for websites, the attack is not

restricted to websites. Instead, an attack could also be launched on mobile or desktop appli-

cations, for example, through remote code loading [145, 146]. Unfortunately, HTTPS and

HSTS themselves do not mitigate such an attack.

TLS Certificates.

Another way for an attacker to leverage a domain takeover attack or to increase its success

chance is by requesting a TLS certificate that is trusted by operating systems and browsers. Re-

questing a trusted TLS certificate has become practically feasible because of domain-validated

certificates, such as Let’s Encrypt. Once she has obtained the certificate, she has increased

capabilities for remote code loading attacks over HTTPS, even including HSTS.

Nameservers.

A domain might also point to a nameserver, where the domain server can be for the same do-

main or different ones. In practice, these cases occur because DNS demands multiple name-

90

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

servers for redundancy, and if a nameserver does not respond, a client automatically and, trans-

parent to the user, retries queries with fail-over nameservers. Therefore, a domain pointing to

a free IP address for a nameserver only incurs a latency penalty and is barely noticeable by the

user. However, an attacker could take over the entire domain and even create additional do-

mains. For a domain owner, taking over a domain that is being used as nameserver equates to

the worst case scenario. Unfortunately, even entire top-level domains have been vulnerable

to nameserver domain takeover attacks [147].

Email Servers.

Similarly, after gaining control over a domain, an attacker might be able to send and receive

emails. Importantly, a DNS MX record is not required: if a domain has no MX record set,

then its respective A record is being used. Acquiring the capability to send or receive email

allows an attacker to abuse a domain for spear-phishing and phishing campaigns, such as CEO

email scams, or to recruit victims for fraudulent schemes [148, 7].

Sub-domain Attacks.

Finally, top-level domains are not the only worthwhile takeover targets for an attacker. Sub-

domains are at least similarly interesting for attacks, even sub-domains that might have never

been used in production, as they could still be abused for authentication bypass vulnerabilities,

for example, like it recently happened to the ride-sharing company Uber [149].

Regarding TLS certificate related attacks, it is sufficient for an attacker to request an ordinary certifi-

cate. She does not require a wild-card certificate to launch successful attacks. However, if an attacker

can obtain a wild-card certificate, her capabilities are significantly extended. For example, if she can

receive a wild-card certificate for “support.example.com,” she would then be able to impersonate,

intercept traffic to any sub-domain of “support.example.com,” and even launch sub-domain related

attacks at themain domain “example.com” [149]. Although, currently, wild-card certificates are not

91

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

supported by free domain-validated certificate authorities, like Let’s Encrypt or StartCom, at least

Let’s Encrypt is planning to support them as early as January 2018 [150]. Furthermore, wild-card

certificates are already supported by other mainstream CAs, such as Comodo. While they charge

a fee, they allow significantly longer validity periods of up to three years, which can make attacks

even more disastrous.

4.3.2 Taxonomy

For a precise classification of how IP address use-after-free vulnerabilities are being rendered possible,

we distinguish four different cases in which a domain points to a free IP address (i.e., the domain is

stale) through the following taxonomy:1

Early Migration.

A domain-IP mapping is migrating early if the domain is in use by the operator, and the records

at the authoritative nameserver have been updated to point to the new IP address before the

old IP address is being released and available for others to request and use.

Delayed Migration.

Similarly, a domain-IP mapping is migrating with delay if the domain is in use by the operator,

and the records at the authoritative nameserver have not been updated yet, that is, they point

to a released IP address.

Auxiliary.

Differently, a domain-IP mapping is auxiliary if the domain is used by the operator, and the

domain has multiple records, which point to both current and old IP address, possibly in a

way so that the old and free IP address would only be used as in a fail-over scenario and has

otherwise no practical impact.
1Our study focuses on TLS certificates, web servers, domain-validation through HTTP, and type A DNS records.

However, our findings also apply to other record types, for example, MX or NS.

92

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Abandoned.

We define a domain-IP mapping as abandoned if the domain is not used legitimately anymore.

For example, a company might become defunct and is not operating the service anymore

that was previously offered at the domain, but it retains ownership of the domain until its

expiration.

Depending on how the domain becomes stale, the length of the window of opportunity differs. In

case of an early migration, an attacker has the shortest window of exploitation: the cache lifetime of

the domain IP mapping. Note, however, that the time a domain IP mapping might be cached is not

strictly its time to live (TTL) as set by the authoritative nameserver. Themapping can be purged from

the cache before its expiration, and a caching nameserver might ignore the TTL entirely and cache

entries longer, for example, for performance reasons, though in violation of the DNS RFC [151].

Theoretically, early migration could prevent IP address use-after-free attacks under the assumption

that no intermediate nameservers cache entries longer and that the IP address is released only after the

TTL has expired. Practically, unfortunately, human error results in domains not always migrating

early and intermediate nameserversmight ignore the TTL. Therefore, even those domainsmigrating

early can be at risk of temporary domain takeovers.

From a security standpoint, the remaining three classes are more worrisome. The easiest case to

launch a successful attack against is an abandoned domain: the attacker is not rushed by the legitimate

operator, and she can wait until an opportunity arises. Fortunately, it is also the least interesting

case for an attacker because users are not expected to contact the service at the domain regularly

anymore but only sporadically (e.g., through an outdated bookmark for a website), thus, the number

of potential victims is generally low.

For domains that migrate with delay, the window of opportunity to validate ownership of a

domain is fixed in time and often short. While an attacker could miss the window, she can lurk and

wait for a target domain migrating with delay by repeatedly trying to allocate the target IP address,

93

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

which we later show is practical (Section 4.3.3). More important, once the window of opportunity

has passed, the successfully validated domain is not useless to the attacker even though she has no

control over the host with the IP address behind the domain-IP mapping anymore (it is now a new

IP address, which is not under the attacker’s control). For instance, in case of domain-validated

TLS certificates, once an attacker validated that she owns the domain, she can later leverage the

obtained certificate for man-in-the-middle attacks, for example, for a wireless network at a coffee

shop, because the certificate is trusted by major operating systems and browsers. Here, the number

of victims is larger than in the case of abandoned domains, but seldom substantial. The core problem

with domain-IP mappings that are migrated with delay lies in the long-term capabilities granted to

the attacker.

Auxiliary domain-IP mappings are the most troublesome case: they provide a constant window

of opportunity and can cause the most havoc. First, an attacker can remain stealthy as a “fail-over”

until a viable opportunity arises. During normal operation, the attacker’s machine does not respond

or it redirects all traffic to a legitimate host. Second, an attacker can force a fail-over to the IP address

under his control by launching a denial of service (DoS) attack against the legitimate hosts. However,

even without forcing a fail-over, an attacker will see a subset of traffic due to implicit round-robin

in DNS, which occurs because DNS records have no implied order. Upon forcing fail-over, the

attacker forces a domain-validation service to connect to the host under the control of the attacker,

as no other hosts are responsive. Correspondingly, without forcing a fail-over, the attacker might

need to try multiple times until the domain-validation service connects to the address under her

control and, in turn, validates her ownership of the domain. The attacker can verify ownership of

the domain successfully in both cases, for example, to request a certificate, and a significant number

of users will connect to the attacker’s machine (all or a subset due to DNS’ round-robin). Overall,

auxiliary domain-IP mappings can affect the most victims and it can provide ample opportunity to

cause harm, for example, to visitors of a website by injecting malicious code.

94

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

After we classified the reasons for why IP address use-after-free vulnerabilities exist and what

their impact can be, the immediate next question becomes: can an attacker actually exploit these

vulnerabilities in practice, by allocating the same IP address the victim has freed?

4.3.3 IP Address Churn

An attacker can successfully exploit an IP address use-after-free vulnerability in practice if she can get

a cloud provider to assign the recently freed IP address to herself within the window of opportunity.

Following, we determine whether it is practical for Amazon Web Services (AWS) and Microsoft

Azure, the two largest cloud providers today [152].

Specifically, we repeatedly allocate and free IP addresses in succession. To prevent starvation,

we are using a slow allocation cycle to not interfere with the clouds’ operations: We request five IP

addresses per region, freeing them immediately, and then sleeping for 10 seconds, that is, effectively

allocating 1 IP address every two seconds. We performed our IP address churn experiment from

April 29, 2017 01:03UTC to June 6, 2017 23:27UTC spanning all regions of the cloud providers at

the time for a total cost of $31.06 (USD). Over the course of ourmeasurements, we cycled through a

total of 14,159,705 allocations of 1,613,082 unique IP addresses. Aswe always first released addresses

before allocating the next batch, we cannot cause address starvation. This is highlighted by us always

receiving an IP address upon issuing an API request.

The success of our technique depends on how fast we can iterate through the pool of free IPv4

addresses for a given availability zone. This depends on the overall size of the pool, and its variance,

that is, how fast addresses are allocated by other users. To illustrate these characteristics for each

availability zone, we investigate the churn (see Figure 4.2) and time between allocation of the same

address (see Figure 4.1). We show only AWS specific plots in the pursuit of brevity and comprehen-

sibility, as Azure is not behaving significantly different.

95

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Using the churn plots in Figure 4.2, we get an overview of change in the IaaS cloud’s IP pools.

Figure 4.2 shows the churn in allocated addresses for AWS, that is, for each daywe allocated addresses

we plot the fraction of addresses we previously allocated and the fraction of addresses we did not

previously receive as an allocation. Dates without data relate to dates where either the IaaS provider

conducted maintenance operations, or our measurement scripts were not yet running for that zone.

The natural patternwe expect for the churn plots is an initially high share of new addresses while

the pool is being initially explored. This pattern should then slowly approach a stable socket, which

corresponds to those addresses that are handed back to the pool by other tenants. Indeed, we find

this pattern in our data. For example, Figure 4.2a and Figure 4.2g show this expected pattern. How-

ever, these zones have a relatively large pool of addresses that are free at any given time. Zones like

eu-west-2 (see Figure 4.2i) are significantly smaller, hence converge more quickly. This further-

more underlines that the allocation algorithm must, in some form, iterate through the whole pool

of addresses, instead of just allocating the (same) first free addresses.

In addition, we also find a couple of interesting events: Zone ap-southeast-2 (see Figure 4.2e)

started off similar to eu-west-2. However, at the beginning of week 20 in 2017, a large batch of

free addresses was added to the pool, leading to a “restart” of the churn pattern. In eu-west-1 (see

Figure 4.2i) and us-east-1 (see Figure 4.2k)we see the effect if several days of not iterating through the

pool: As soon as we restart our allocation script, we observe a slight rise in new addresses, which have

accumulated during the time we did not perform measurements. We find the last notable pattern in

us-west-2 (see Figure 4.2n). Here, a substantial amount of so far unseen addresses is released to the

pool in the middle of each week.

Next, we take a look on how long it takes to iterate through the whole pool, that is, how fast an

attacker could obtain a specific address. For this, we look at how much time passes on average, until

an address is allocated for the second time. Given our earlier observation that we do indeed circle

through the IP pool, we expect the mean to correspond to the point where we iterated through the

96

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

IP address pool. This is summarized with boxplots (without outliers) in Figure 4.1. We find that

with our ethically restricted approachmost pools are exhaustedwithin under a day. Only the largest,

like eu-west-1 and us-east-1 reach means significantly over a day.

Although we used a slow allocation cycle to not interfere with the clouds’ operations, an at-

tacker is not bound by the same ethical standard. Practically, the attacker will be bound only by the

response time of the IP address allocation API endpoint and her network latency to it. Therefore, an

attacker can cycle through available IP addresses much more rapidly. In fact, considering the AWS

API limit (10,000 requests per second [153]) and the number of requests needed to exhaust pools in

our experiments, an attacker would only need between two and 61 seconds to acquire a target IP

once the victim has freed it, using a rapid allocation cycle of 5,000 IP allocations per second. In prac-

tice, this theoretical limit is not necessary for an attacker to launch a successful attack. For example,

DNS cache times are almost always five minutes, and often much longer with 60 minutes to multi-

ple hours, thus, allowing an attacker to be successful by exploiting caching effects with rates of less

than 50 IP address allocations per second.

4.3.4 Affected Domain Names

Considering the worrying high-rate of IP address churn for major cloud providers and low oppor-

tunity cost for an attacker to launch an attack, the only question that remains unanswered before

we can determine whether temporary stale domains pointing to readily available IP addresses are a

problem in practice is whether a significant number of domains are affected?

For a better understanding of how many domains are affected by IP address churn, we observe

DNS traffic through Farsight’s passive DNS measurements [154]. The Farsight passive DNS dataset

is provided through a continuous data feed. For our collection and DNS data analysis, we follow es-

tablished best practices for collecting and handling Internet measurement data [155], we anonymize

97

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

ap-north
east-

1

ap-north
east-

2

ap-so
uth-1

ap-so
utheast-

1

ap-so
utheast-

2

ca-centra
l-1

eu-centra
l-1

eu-w
est-

1

eu-w
est-

2

sa
-east-

1

us-e
ast-

1

us-e
ast-

2

us-w
est-

1

us-w
est-

2

Availability Zone

10 Seconds

1 Minute

1 Hour

1 Day

1 Week
2 Weeks
4 Weeks

Ti
m

e
Be

tw
ee

n
Re

oc
cu

rr
en

ce

Figure 4.1: Time between allocations of the same IP address per AWS EC2 availability zone

all incoming data immediately by removing any resolver information, and we only retain successful

DNS responses.

Specifically, we collect all DNS responses containing A records pointing to the Amazon Web

Services (AWS) EC2 cloud, theMicrosoft Azure cloud, and theDigitalOcean cloud spanning exactly

120 days from April 11, 2017 0:00 UTC to August 9, 2017 0:00 UTC. Overall, we extract and

analyze 130,274,722 unique domains with 767,108,850 unique domain-IP mappings, counting also

sub-domains. Including sub-domains is important for completeness, however, it makes an accurate

comparison to top domain lists (e.g., Alexa), to estimate the domains’ popularity, difficult, because

they do not include sub-domains. Matching at the second-level of a domain is similarly problematic

due to potentially over-estimating the impact of ephemeral sub-domains and the loss of information

98

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(a) ap-northeast-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(b) ap-northeast-2
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(c) ap-south-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(d) ap-southeast-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(e) ap-southeast-2

Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(f) ca-central-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(g) eu-central-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(h) eu-west-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(i) eu-west-2
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(j) sa-east-1

Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(k) us-east-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(l) us-east-2
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(m) us-west-1
Time0%

100%

N
ew

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

(n) us-west-2

New

Reoccurring

No Data

Figure 4.2: Share of newly-observed IP addresses (churn) per AWS EC2 availability zone

on sub-domains of special second-level domains, such as .ac.nz or .co.uk. It remains for future work

to evaluate the distribution of DNS zone staleness in regard to domain popularity.

We perform our evaluation on a Kubernetes cluster comprised of 656 processor cores and 3,020

GiB memory, and which is connected at a dedicated 10 Gbps Internet uplink.2 For each domain, we

2The cluster is on a network separated from the main network of the institution at which the experiments are per-
formed. The network traffic generated for our evaluation is not subject to packet introspection, which would have had
a negative impact on our measurements.

99

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

test every six hours3 from June 10, 2017 0:00 UTC to August 9, 2017 0:00 UTC (60 days) whether

the IP address is still in use or if it might be freed and available:

1. We resolve the domain and check if the IP address the domain points belongs to a network of

a cloud provider.4 If the domain points to a cloud IP, we test if the IP address is responsive

and whether it might be free and available to others. If it does not point to a cloud provider

or does not exist anymore, we do not perform any further tests.

2. We test if the IP address responds to ICMP ping requests, or responds to any packet sent on 36

of the most frequently used TCP and UDP ports (see Table 4.1) [156] within a two seconds

timeout.5 If we receive a response to any of our requests, we mark the IP address as online and

allocated. Correspondingly, if we receive no response until the timeout is reached, we mark

the IP address as offline and freed.

Naturally, ingress firewall rules could prevent our test from succeeding and, thus, our estimation

is an upper-bound. One might expect it to be a gross over-approximation because cloud virtual

machines instances have traditionally received public IP addresses. Nowadays, however, this is not

necessarily the case: cloud instances that do not need a public IP address can and generally do live

in cloud-only internal networks. Furthermore, by default, many machines respond to ICMP ping

requests or allow for secure shell (SSH) access via TCP on port 22. Additionally, a public IP address

associated with an instance is freed and can be reused by others if the instance is shutdown, even

if it is later powered on again (it receives a new IP address at this point). In turn, it means that we

only misclassify machines as offline with heavy ingress filtering that do not provide a service on the

3Some tests were up to twelve hours apart because of scheduling delay.
4We exclude networks of cloud providers that are used for services other than cloud virtual machine instances, for

example, Load-Balancing-as-a-Service.
5We chose a two seconds timeout after we experimented with higher timeouts of five to ten seconds and did not

notice any difference in results. A shorter timeouf of one second resulted in a high misclassification rate due to network
and system load. The cut-off for no misclassifications was close to 1.4 seconds in our tests. Out of carefulness, we chose
a two-second timeout.

100

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Protocol (Common) TCP UDP Port(s) ▲
FTP 3 3 21
SSH 3 3 22, 2222, 22022
Telnet 3 3 23
SMTP 3 3 25, 587
WHOIS 3 43
DNS 3 3 53
HTTP 3 80, 8000, 8080
Kerberos 3 3 88
POP3 3 3 110
IMAP 3 3 143
LDAP 3 3 389
HTTP (Secure) 3 443, 8443
SMTP (Secure) 3 3 465
LDAP (Secure) 3 3 636
Telnet (Secure) 3 3 992
IMAP (Secure) 3 3 993
POP3 (Secure) 3 3 995
MS SQL 3 3 1433
CPanel 3 2082
CPanel (Secure) 3 2083
CPanel WHM 3 2086
CPanel WHM (Secure) 3 2087
MySQL 3 3 3306
2Wire RPC 3 3 3479
Virtuosso 3 4643
Postgres 3 3 5432
CWMP 3 3 7547
Plesk 3 8087
Webmin 3 10000
ENSIM 3 19638

Table 4.1: Ports and protocols used for IP address liveness checking

top 36 ports (see Table 4.1), and which have not been migrated to an internal network yet, which is

becoming scarcer. Therefore, although our estimate remains an upper-bound, we are confident that

it is a close estimate.

Over the course of our measurements, we classify 702,180 unique domains (0.539%) as pointing

to available and freed IP addresses. Therefore, these domains, most likely, have been vulnerable to a

(temporary) domain takeover attack at some point in time. In fact, while themajority of domains mi-

grated delayed (80.31%), a non-negligible amount of domain-IP mappings are abandoned (17.24%)

101

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

and, fortunately, only a small number of domain-IP mappings are auxiliary (2.45%). Note that we

only determine that the domain could be taken over, but its prior purpose remains unknown. Fur-

ther investigation by future work is required to determine howmany of the vulnerable domains have

been actively used in the past and what the impact of an attack on them would be, for example, on a

website that is protected through HTTPS and requires a TLS certificate, or a domain that is used to

load remote code for amobile application (see Section 4.3.1). Although the amount of vulnerable do-

mains appears small relatively speaking, in absolute terms, the number of stale domains is quite large.

Additionally, due to the nature of our dataset, we only observe domains that are actively being at-

tempted to be accessed: the estimated number of cases that might be vulnerable to domain takeover

attacks and could be abused for phishing or scams, but which were not being accessed during our

observation period, might be significantly larger.

4.3.5 Proof of Concept Domain Takeover

Finally, we show the practicality of domain takeover attacks through a proof of concept certificate

request to Let’s Encrypt. Certainly, we face the largest ethical challenges with this experiment, as

disrupting or having any impact on legitimate users raises ethical concerns. For example, it is im-

possible to guarantee that we do not interfere with any third party operation that might rely on the

domain, or that we do not accidentally receive Personally Identifiable Information (PII) or other

confidential data. Therefore, we perform a domain takeover attack for a domain under our control.

After obtaining the certificate from Let’s Encrypt and verifying that it has been published to certifi-

cate transparency logs, we revoke it, and publish the revocation to Let’s Encrypt. The time until

these actions appear in CT logs serves as an indication of the time that passes before the legitimate

owner would be able to notice the attack by monitoring CT logs.

For our proof of concept experiment, we gained temporary control over the domain “cloud-

strife.seclab.cs.ucsb.edu” by attempting to re-allocate the IP address to which the domain points to

102

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

(34.215.255.68). Note, that the IP address is located in the availability zone us-west-2, which has

a high churn that makes takeover attackers more difficult. While this may seem contradictory, as

a high churn means that an attacker can allocate more addresses per time-unit, a high churn also

indicates a larger IP address pool. Ultimately, we were able to successfully re-allocate the IP ad-

dress within 27 minutes and 55 seconds with a slow allocation cycle of two IP addresses per second.

While anecdotal, it serves as an estimate of the time needed to launch an attack successfully under

unfavorable conditions for an attacker (high churn, low allocation rate). We requested a TLS cer-

tificate from Let’s Encrypt, it appeared in different certificate transparency logs between 34 minutes

and 61 minutes later, and we revoked the certificate immediately after certificate transparency log

entries had been propagated. Our certificate request was published at the Certificate Search (crt.sh)

web-interface under id 250959196; it can be viewed at https://crt.sh/?id=250959196. The

certificate that we obtained from Let’s Encrypt and a message signed by the respective private key is

contained in Appendix A.1.

Although the incorrect migration of domain-IP mappings is comparatively small on a relative

scale, we believe that the absolute numbers speak volumes paired with the practicality of takeovers.

Together, they justify looking closer at mitigating IP address use-after-free at its core, however, with

a strong requirement to incur as little additional overhead on usability or performance as possible.

4.4 Mitigation

Weaddress the issue of IP re-use attacks abusing staleDNS records, particular for IP addresses belong-

ing to cloud networks, a topic that has received little attention so far. To be more specific, we inves-

tigate IP address use-after-free vulnerabilities, which can pose severe security threats, and which can

be made even more dangerous through domain-validated TLS certificates (see Section 4.3). Current

automated domain-validation-based certificate issuance systems are also threatened to be exploited

103

https://crt.sh/?id=250959196

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

through man-in-the-middle attacks discussed by Gavrichenkov et al. [157]. Existing defenses rely

on certificate revocation, which is severely fragmented and cannot be relied on in practice [158, 159].

It became only recentlymore tractable, for example, throughCRLite [160], but these solutions have

not been adopted yet. One core problem is that revocation checks in browsers are not comprehen-

sive: Chrome generally does not verify revocations, its CRLSet is limited to emergency revocations

by design [161], and Mozilla’s Firefox similarly limits revocation checks through OneCRL to CA

intermediate certificates [162]. Certificate revocations in other software and libraries, which rely on

the same certificate issuance processes andwould also be required to adopt the new revocation checks,

are rarely checked in practice [163]. Furthermore, revocations are reactive by nature, and they pro-

vide a window of opportunity to an attacker by design: the time until the revocation has propagated

plus the time until the attacker’s certificate has been revoked by the issuing CA on request of the le-

gitimate party, the latter of which is generally a manual process as additional verification is required.

We believe that the first line of defense should be with domain-validation-based CAs and it should

be preventive. Therefore, we propose an additional layer of protection for domain-validation-based

CAs, such as Let’s Encrypt, that can efficiently and with negligible overhead prevent these attacks.

Our mitigation technique builds on the ACME protocol version 2 [128] and it is complimentary to

the certificate transparency framework [141].

4.4.1 General Concept and Threat Model

The underlying problem of IP address re-use attacks is that a domain-validated certificate can be re-

quested as soon as an attacker controls the IP address towhich a domain points to, and that requesting

and receiving a trusted certificate is fully automatic and only a matter of seconds nowadays. An at-

tacker might be able to obtain the IP address legitimately, because the domain record was left stale.

To obtain a certificate, she might also be able to perform man-in-the-middle attacks between the au-

thenticating CA and the target system. A similar issue occurs, if she can (temporarily) compromise

104

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

the DNS (delegation or authoritative servers) for a domain. Then, she can simply change the IP ad-

dress a record points to, as well as potential CAA or DANE TLSA records [164, 165]. Technically,

attacks involving DNS-based attacks should be prevented by DNSSEC [134]. However, if key sign-

ing is performed online on the authoritative servers itself (against DNSSEC best practices) [166], and

she compromises one of these servers, then she regains full control over the domain. Although, do-

main takeovers rarely tend to last for extended periods of time, TLS certificate for the domain can

later be used by the attacker until the certificate’s expiration date, possibly involving other man-in-

the-middle attacks.

For all certificate requests that a CA receives, one of the following four cases applies:

1. No certificate has been requested for this domain in the past.

2. A certificate for the domain has been requested in the past, and the domain still points to the

same IP address.

3. A certificate for the domain has been requested in the past, but the domain now points to a

different IP address.

4. A certificate for the domain has been requested in the past, but it was verified in a more strict

manner, possibly using extended validation (EV).

The first case is relatively frequent, and it is indistinguishable from the legitimate first use of domain-

validated certificate issuance, which it is impossible to protect against without extended validation,

which is itself often deemed too costly or impractical. We also acknowledge that an attacker who

has compromised the system to which this domain points to will, in any case, be able to issue a new

certificate for the domain, or steal the existing one.6 Hence, a full system compromise is outside of

6Certificate theft can be protected through hardware security modules and may further become a commodity
through methods like Intel SGX or ARM’s TrustZone, which can be used to entrench certificate handling in a secured
enclave.

105

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

the scope of our work. What our mitigation technique has to ensure is that a domain-validated cer-

tificate is only issued if the CA can verify that there has been no non-cooperative change of authority

over either the system the domain points to or DNS zone for the domain.

Concerning our threat model, the attacker does not control a trusted CA, and she has average

resources and skills, that is, she is not a state-level actor and cannot expend significant resources for

a successful attack. Her overall objective is to obtain a domain-validated TLS certificate for a target

domain that already uses a valid TLS certificate issued by a third party CA. However, she has no

administrative access to the machine that the target domain currently points to, she cannot steal the

current certificate or factors its keys in a reasonable amount of time, but, instead, she must request

a new certificate. Taken into account the current operational model for domain-validating CAs,

to achieve her goal, the attacker can: (a) obtain access to an IP address to which a stale A record

for the domain points to, (b) perform a man-in-the-middle attack somewhere on the path between

the issuing CA and the system to which the target domain points to, or, (c) illegitimately take over

authority over the DNS zone for some amount of time.

4.4.2 Pre-Signature Certificate Consistency Checks

To ensure that an attacker within our threat model cannot request a new certificate, we must ensure

that she cannot show that there has been a cooperative change for: (a) the IP address to which the

domain points to, or (b) theDNSzone of the domain. Oneway to accomplish this task is by requiring

each subsequent certificate request for a domain for which a certificate has been issued in the past by

trusted CA, or which was covered by a similarly issued wild-card certificate, to be signed with a

preexisting certificate.

106

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Pre-Signed Domains

A challenge for a CA receiving a domain-validation certificate request is to determine whether a TLS

certificate has been issued to this domain in the past, either by itself, or possibly by another trusted

CA. Fortunately, two approaches to implement these requirements exist that are viable:

Federated Approach.

In case of the federated approach, each trusted CA is required to publish its issued certificates

in multiple certificate transparency logs, which do not need to be run by the CA itself [141].

This approach has the strong advantage that it utilizes established technology, meaning that

the required functionality is readily available and no additional service needs to be deployed

and managed. Although certificate transparency logs are not yet required for every CA or

every certificate, and not all CAs are publishing certificate logs, Google Chrome is already

requiring CT logs to some certificates: for all certificates issued by Symantec, WoSign, and

StartCom, aswell as for all extended validation certificates (since January 2015). Furthermore,

enforcing the requirement for all trusted CAs is expected within the next years [167]. Thus,

expected development and policy changes would further empower this approach.

From an algorithmic point of view, a naïve existence check requires lookups for each trusted

CA in an aggregated database. Fortunately, by leveraging CAA records via DNS combined

withDNSSEC, one can limit lookups to a small set of CAs, for example, only one or twoCAs.

Specifically, it is more likely that one of the authorized CAs has issued a certificate for the

domain in the past. Once a previously issued certificate has been found that is still valid, then

the search can be terminated early, which reduces lookup time. Additionally, CAA records

have become mandatory to be honored by CAs in September 2017 [168]. Therefore, due to

the increasing adoption and availability of CT and CAA, we consider this approach the most

practical and promising one.

107

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Centralized Approach.

Alternatively, a centralized approach is possible. Here, a single authority, possibly IANA,

would provide an oracle service. The service would return a boolean answer when queried,

confirming whether any CA ever issued a certificate for a specified domain. Before issuing

a new certificate, CAs would have to check if a certificate has been issued in the past. Fur-

thermore, they must notify the authority of newly issued certificates. Unfortunately, the

centralized approach bears potential trust issues and poses a single point of failure.

4.4.3 Domain Takeover Resistant Identifier Validation Challenge

Next, we develop a practical identifier validation challenge that is resistant to domain takeover at-

tacks. Specifically, we target the ACME protocol, which is used by Let’s Encrypt and others to

automate the process of issuing certificates. To do so, we introduce an additional challenge to the

ACMEv2 RFC [128]. No other changes to the RFC are necessary. In turn, it allows our validation

challenge to be minimally invasive to the protocol and its subsequent implementations, yet, at the

same time, it significantly improves security by mitigating the attacks that we present in this chap-

ter. The core idea of our proposed challenge is to leverage existing certificates to form a chain of

trust. Implementing a solution that uses existing certificates to sign responses to identification val-

idation challenges triggers various issues with the handling of key material. For example, private

keys should not be used outside of the context for which their respective certificate has been issued,

which would happen if we naïvely sign a challenge response with a key, for which the respective cer-

tificate was issued for handling TLS server connections. Fortunately for us, retrieving the challenge

response through over HTTPS eliminates the problem, and verifying the used certificate satisfies all

requirements we put forth in the previous sections.

108

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Client ACME CA4 Host challenge
at https://example.com

example.com
Webserver

Respond with challenge3

Request certificate1

5 Verify challenge and

existing certificate
CT Logs

Check for existing
certificates

2

Figure 4.3: Certificate request process that mitigates domain takeover attacks

Our challenge works as follows (see Figure 4.3):

Ê The client sends a new certificate request for her domain, for example, “example.com,” to a

domain-validating ACME CA.

Ë The CA checks whether a certificate for the domain “example.com” exists, that is, that one

has been issued by a trusted CA in the past. The CA is free to include expired certificates in

the check or ignore them according to an agreed-on policy (see Section 4.4.4).

Ì The CA issues a challenge to the client, which she needs to fulfill to validate ownership of

the domain. If a prior certificate exists, the CA sends two challenges: first, our challenge,

which is similar to the original HTTP challenge, and which includes a token to be hosted

at a specified path at the domain of the requested certificate, and, second, a challenge that is

considered more trustworthy than the HTTP challenge, such as a whois-based challenge or a

DNS-based challenge. Following the ACMEv2 RFC, a client needs to satisfy only one of the

two challenges. If she fails our challenge, whichmight happen in some cases (see Section 4.4.4),

the more trustworthy challenge must be completed. For more details on how challenges are

implemented, we refer to Section 8 “Identifier Validation Challenges”’of the ACME v2 RFC.

109

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Alternatively, if no prior certificate exists, the CA is free to send any challenges as defined by

the RFC.

Í Once the client receives our challenge, she will host the nonce from it at the URL specified

by the challenge to serve as the verification resource.

Î The CA will attempt to access the verification resource, and, in turn, verify that the challenge

has been completed by the client. Verification requires that the nonce has been placed at the

resource, as well as that the HTTPS response is signed with the private key for a certificate of

the domain that was previously issued by a trusted CA (see certificate existence check; Ë).

4.4.4 Failure Cases

There exist some possible failure scenarios of our challenge, which must be handled gracefully to

preserve security of domain-validation. However, the simple failure of the process does not (yet)

indicate an attack. Furthermore, as soon as a failure has been resolved, the above process can be used

to regularly renew certificates automatically because the HTTPS challenge will not fail again for the

same reason.

Lost Access to Old Certificate or Private Key

Among the most likely non-malicious scenarios for failure is the case of an operator who has lost

access to her prior certificate or private key. Here, the HTTPS response cannot be signed and the

challenge will fail. From a security standpoint, this case must be treated like a potential attack by

the CA because it is impossible to automatically distinguish between a legitimate lost key, and an

attacker not having access to the key in the first place. Instead, the operator should use a DNS-based

challenge or whois-based challenge. Note that no additional certificate request is required, but the

same certificate request will be used. In fact, instead of issuing the certificate, first, a prompt that

110

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

additional verification is needed will be shown to the operator, and once she passes the additional

challenge (sent along with the first challenge; Ì), only then the certificate will be issued.

Expired Certificate

Another common case in which the HTTPS challenge might fail are expired certificates. Operators

may simply forget to renew their certificates in time, or a service may be shut down for a longer

period, preventing certificate from being renewed. Whether expired certificates should be accepted,

and if so, whether their expiration should be limited by a grace period, is a policy decision rather

than a technical decision. Basically, two options exist:

1. Accept an expired certificate.

2. Treat it like an attack.

Relaxing the requirement and allowing expired certificates could increase the usability of our ap-

proach. However, relaxing requirements for corner cases introduces additional sources for potential

errors, and thereby, security issues. Ultimately, we err on the side of caution and default to strong

security and treating it as an attack, as also recommended by Fiebig et al. [169].

Legitimate Change of Authority

A third legitimate case that might fail is a legitimate change of domain ownership, possibly without

the consent of the previous owner. Such cases include but are not limited to seizures because of

copyright violations, or court orders, or a simple lapse in renewing the domain itself. Again, such a

change in ownership cannot be recognized as legitimate by an automated system, simply because an

attack has exactly the same properties. Therefore, similar to the lost private key access, the CA fails

the HTTPS challenge and it requests a second challenge to be completed by the client, which any

legitimate client can complete easily.

111

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

Possible Attacks

Following our earlier reasoning, attacks are cases in which the requesting client cannot prove a con-

tinuity in authority using previously issued valid certificates, which are considered rare, particular as

you renew certificates in the validity period of your current period, and often automatically. Consid-

ering prior work (Chapter 6) and the attacks that we present in this chapter, a large portion of attacks

are time critical. Therefore, the first aspect in the process of resolving a potential attack should be

time. By increasing the time requirement, we increase the likelihood of the enabling attack to be

detected. Nonetheless, potential for stale DNS attacks remains. Yet, we can approach this issue by

designing an extended process for validating ownership of a domain and the correct delegation to an

IP address. Unsurprisingly, CAs already commonly offer such extended validation processes. In ad-

dition, this service could also be offered by official institutions or NGOs with a sufficient trust level

and the resources to do this. The certificates issued in this process would not even have to be valid

for an extended time period. In fact, they can be used as simple seeds to re-initiate the continuous

process of retrieving domain validated certificates.

4.4.5 Transitioning Techniques

One of the biggest problems when introducing new technique is the transitioning phase. However,

for the adoption of our challenge, this is not an issue. The certificate ecosystem already makes ex-

tensive use of validity periods, generally certificates are set to expire within 1-3 years, and even as

early as three months in case of Let’s Encrypt. If our challenge would be adopted, we can also make

use of extensive CT logs, which contain over hundreds of millions of domains already. For domains

for which no entry exist in CT logs, we realize that our challenge is based upon trust on first use [170].

However, this does not leave domains for which certificates are already issued with less security than

today, but it strictly increases security. Furthermore, CAs may add domains for which they previ-

112

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

ously signed certificates to certificate transparency logs voluntarily. Therefore, we believe that our

system provides a robust and painless transition toward an increase of security for domain-validated

certificates within the diverse certificate ecosystem.

4.4.6 Best Practices

Beyond directly addressing the root cause of the presented problems in the certificate issuing process,

we suggest that cloud providers deploy mitigations as well. These mitigation techniques aim to pre-

vent attackers from allocating specific addresses, for example, by rate-limiting IP address allocation

and release operations, using disjoint sets of IP addresses for different tenants to reduce attack surface,

and perhaps even by monitoring their networks for (non-scanning) inbound traffic to unallocated

addresses to warn previous users of those addresses.7 Finally, for cloud tenants, we strongly suggest

keeping old addresses allocated when migrating IP addresses, at least until the TTL of the record has

expired out, preferably until one can be reasonable sure that it is not cached anymore (preferably

from a day to a week). Furthermore, we can only stress the importance of maintaining DNS zones

properly and to remove obsolete records as quickly as possible to not fall victim to domain takeover

attacks.

4.5 Conclusion

We have shown that it is practical, time-efficient, and cost-efficient for an attacker to (temporarily)

takeover domains by exploiting so-called IP address use-after-free vulnerabilities on, currently, the

two largest Infrastructure-as-a-Service clouds (Amazon AWS and Microsoft Azure).

In our study, we discovered that attacks are practical on public clouds because of their instances’

ephemeral nature and the “throw-away culture” of development operations concerning immutable

7The noise-to-signal ratio might impractical for monitoring because of Internet-wide scanning efforts, and filtering
scanning traffic from other traffic might be too costly for a supplemental warning service.

113

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter 4

instances and service migration. In turn, it is not necessary to takeover the IP address to which a

domain points to, but IP address migration occurs regularly and sometimes is outside of the control

of the cloud user (e.g., reboot or shutdown of the hypervisor because of an update), thus freeing

the previously assigned IP address and making it available for re-use by others. Here, a slightly

incorrect DNS domain record migration strategy can immediately render domains vulnerable to

IP address use-after-free attacks. In fact, the problem is even further amplified for so-called spot

instances, which are significantly cheaper instances, but which can be terminated at any point and

without notice to the cloud user, and for which he cannot protect himself from temporary domain

takeovers.

We have examined the reasons of why and how IP address re-use domain takeover attacks can

occur in practice, and we classify them according to what their potential impact in practice is. Partic-

ularly, we investigated their impact on domain-validated TLS certificate issuance, such as through

automatic certificate management environments (ACME), for example, Let’s Encrypt. Based on our

findings, we then developed best practice recommendations for cloud operators as well as domain

owners and cloud users, which can reduce vulnerability to the aforementioned attacks.

Finally, we introduced a new mitigation techniques that addresses the issue of domain takeover

attacks for trust-based domain-validation services, focusing on the real-world case of automatic cer-

tificate issuance. Our mitigation technique protects against IP address use-after-free attacks with

negligible operational overhead and only requiresmanual intervention in disaster-recovery scenarios,

thus, rendering it practical for real-world deployment even under strict performance and usability

requirements of services like Let’s Encrypt.

114

Chapter 5

Enumerating IPv6 Hosts

Security research has made extensive use of exhaustive Internet-wide scans over the recent years, as

they can provide significant insights into the overall state of security of the Internet, and ZMapmade

scanning the entire IPv4 address space practical. However, the IPv4 address space is exhausted, and a

switch to IPv6, the only accepted long-term solution, is inevitable. In turn, to better understand the

security of devices connected to the Internet, including in particular Internet of Things devices, it is

imperative to include IPv6 addresses in security evaluations and scans. Unfortunately, it is practically

infeasible to iterate through the entire IPv6 address space, as it is 296 times larger than the IPv4 address

space. Therefore, enumeration of active hosts prior to scanning is necessary. Without it, we will be

unable to investigate the overall security of Internet-connected devices in the future.

In this chapter, we introduce a novel technique to enumerate an active part of the IPv6 address

space by walking DNSSEC-signed IPv6 reverse zones. Subsequently, by scanning the enumerated

addresses, we uncover significant security problems: the exposure of sensitive data, and incorrectly

controlled access to hosts, such as access to routing infrastructure via administrative interfaces, all of

which were accessible via IPv6. Furthermore, from our analysis of the differences between accessing

dual-stack hosts via IPv6 and IPv4, we hypothesize that the root cause is thatmachines automatically

115

Enumerating IPv6 Hosts Chapter 5

and by default take on globally routable IPv6 addresses. This is a practice that the affected system

administrators appear unaware of, as the respective services are almost always properly protected

from unauthorized access via IPv4.

Our findings indicate (i) that enumerating active IPv6 hosts is practical without a preferential

network position contrary to common belief, (ii) that the security of active IPv6 hosts is currently

still lagging behind the security state of IPv4 hosts, and (iii) that unintended IPv6 connectivity is a

major security issue for unaware system administrators.

5.1 Motivation and Contributions

There has been a multitude of Internet-wide security challenges of varying severity over the recent

years. Heartbleed [171] and SSL related vulnerabilities [172, 173], common misconfigurations of

database systems [174], and other issues like protocol amplifiers [175, 176] have been investigated

closely. Studying these issues methodologically has only been possible because exhaustive security

scans of the Internet Protocol version 4 (IPv4) address space became practical through ZMap in late

2013 [177]. Since then, Internet-wide IPv4 security scans have become an integral part of modern

security research.

The total number of IPv4 addresses is, however, limited. For many of those addresses, their use

is further restricted through special use arrangements, and because of large allocations to institutions

thatwere early adopters of the Internet. In fact, all addressesmanaged by the InternetAssignedNum-

bers Authority (IANA) have been allocated as of September 24, 2015 when the American Registry

for Internet Numbers (ARIN) allocated its last IPv4 address [178].

The accepted long-term solution to the IPv4 address exhaustion problem is considered to be the

Internet Protocol version 6 (IPv6) [179, 180]. Contrary to the 32-bit wide addresses of IPv4, IPv6

116

Enumerating IPv6 Hosts Chapter 5

uses 128-bit wide addresses (7.9× 1028 as many as IPv4) and its adoption would eliminate the need

for further address resources for the foreseeable future.

Indeed, IPv6 has gained significant traction in recent years: In August 2016, Google reported

that almost 13% of their users accessed their services via IPv6. This number increased by an order

of magnitude in just three years from 1.3% as of July 2013 [181]. Similarly, the Internet Society

reports that “global IPv6 traffic has grownmore than 500% since June 6, 2012.” Many other network

operators have deployed IPv6 to significant parts of their network since then [182]. In fact, for some

networks, up to 97% of all devices use IPv6 (see Table 5.1).

Unfortunately, the vast address space of IPv6 threatens to take the important tool of Internet-

wide scans away from the security community. Theoretically, for IPv6, up to 2128 addresses (ap-

proximately 3.4× 1038) can be allocated. While scanning all reachable devices is considered to be a

solved problem for the IPv4 address space [177], it is practically infeasible to scan the entire IPv6 ad-

dress space, because it is larger than the IPv4 address space by 296 (28 orders of magnitude). In fact,

a sweep over the entire IPv6 address space would take 7.532 × 1023 years with state-of-art tools for

Internet-wide scanning.

Due to the Internet’s continuing growth and its increasing dependence on IPv6 globally, it is

critical to include IPv6-connected devices in future Internet-wide security evaluations, in addition

to IPv4. This need is further amplified by the fact that IPv6 traffic is commonly enabled (by default).

Often no standard security mechanisms, such as firewalls, have been put in place for IPv6, even

though they are already in place for IPv4. In turn, it exposes the respective hosts to attacks from

miscreants via IPv6 [183, 37].

At the same time, it remains difficult to perform Internet-wide IPv6 security scans, which leaves

a dangerous blind spot. To address this issue, authors have started to suggest various techniques to

perform Internet-wide IPv6 security scans, which leverage IPv6 seed sets to scan IPv6 hosts. The

most recent of these, 6gen, has been presented by Murdock et al. [184]. However, most existing ap-

117

Enumerating IPv6 Hosts Chapter 5

proaches to collect active IPv6 addresses as seed sets require network vantage points or leverage older,

possibly stale, public datasets. For example, some techniques require access to content delivery net-

works or traffic brokers to observe IPv6 traffic and collect addresses [185, 186]. Others extract IPv6

addresses from historical forward DNS records, in the hope that they are still active [37]. Unfortu-

nately, some techniques to collect these records, such as ANY queries, have since been deprecated

by the operators of major nameservers to protect from denial of service attacks [187], which ren-

ders them impractical for IPv6 address collection. Fiebig et al. [9] recently introduced a different

methodology to enumerate IPv6 hosts, namely by exploiting the NXDOMAIN semantics in the

DNS ecosystem. However, their technique can be mitigated comparatively easily, as they demon-

strated on an industry conference in 2016 [188]. Therefore, it is necessary to identify new seed-set

collection techniques that allow researchers, who might not have access to network vantage points,

to include IPv6-connected devices at scale in Internet-wide security evaluations.

To retain the capabilities of security researchers to conduct Internet-wide scans, we introduce a

novel IPv6 address enumeration technique that leverages DNSSEC-signed IPv6 reverse zones. We

show that our approach enumerates classes of active IPv6 addresses that existing techniquesmiss, and

that prior work has not evaluated. Furthermore, our technique does not depend on implementation-

specific behavior and it is resilient against the mitigation techniques that have been put in place to

protect against the enumeration techniques of prior work. Instead, to prevent our enumeration

technique, significant changes to the DNSSEC standard are required.

In our evaluation, we discovered that IPv6-connected hosts expose a variety of critical security is-

sues: exposed file sharing, access to interior and exterior routing protocols, remote access to switches

and routers, remote monitoring, hosts that can be exploited to launch reflected and amplified denial

of service attacks, and, alarmingly, remote system management ports vulnerable to attacks that al-

low full machine takeover (e.g., IPMI, which provides practically physical access through remote

keyboard and video).

118

Enumerating IPv6 Hosts Chapter 5

Category Network Operator Percentage

Wireless Carrier
Digicel Trinidad & Tobago 97.04%
Verizon Wireless 77.65%
T-Mobile USA 71.09%

University University of Twente 79.17%
Virginia Tech 70.06%

Organization United States Space and Naval Warfare Systems Command (SPAWAR) 74.52%

Broadband Provider Google Fiber 64.96%
xs4all (Netherlands) 61.75%

Table 5.1: IPv6 penetration of real-world networks [189]

We make the following contributions:

• We introduce a practical enumeration technique that effectively exploits DNSSEC zone walk-

ing to identify active IPv6 hosts by utilizing unique features and thewell-structured format of

the IPv6 reverse DNS tree. We focus on reverse zones that have deployed NSEC3 to thwart

existing zone-walking attacks. Specifically, we exploit intricacies of how the IPv6 reverse

zone is organized to make enumerating active IPv6 addresses in the face of NSEC3 practical.

• Our methodology is resilient against mitigations, including techniques effective against ear-

lier enumeration approaches, and, to mitigate it, modifications to the DNSSEC standard are

required. In fact, we enumerate hosts that have been hidden from established methodology

using existing mitigations already.

• Using our methodology, we identify several vulnerabilities and misconfigurations of hosts

reachable via IPv6 thatwere hidden from scans usingmethodology of priorwork. Our results

indicate that the exposed IPv6 addresses can cause additional and significant security risks,

and network operators are required to take precautions when adding IPv6 addresses into the

DNSSEC-signed reverse zones, as it inevitably leaks information about the presence of those

hosts to potential attackers.

119

Enumerating IPv6 Hosts Chapter 5

In the remainder of this chapter, we provide the necessary background information (Section 5.2), de-

tail our enumeration technique (Section 5.3), discuss ethical considerations for active measurements

(Section 5.4), evaluate our technique (Section 5.5), consider potential mitigations (Section 5.6), and,

ultimately, conclude (Section 5.7).

5.2 Background

Some background information on the Domain Name System (DNS), DNSSEC, denial of existence

records, and the way the IPv6 reverse zone is organized is required for our enumeration technique.

5.2.1 Domain Name System and DNSSEC

DNS is a core protocol of the current Internet architecture. It allows using easily identifiable hierar-

chically organized names instead of IP addresses to access services online. While the basic idea of the

DNS is straightforward [132], denials of existence (NXDOMAIN) require some attention, as our

approach builds upon their equivalent in the scope of DNSSEC.

In a simplified schema (see Figure 5.1), a client talks to a nameserver to inquire about whether a

specific name for a specific resource record (RR) type exists within a zone. If the record does exist,

then the nameserver responds with the respective answer (e.g., in case of an A record, with the IPv4

address mapping for a name). If the record does not exist, the nameserver generates a NXDOMAIN

response (NX signifying “non-existing”).

Unfortunately, however, the DNS protocol does not provide authenticity and it is suscepti-

ble to a variety of attacks, including man-in-the-middle attacks, like filtering, redirection, and re-

sponse spoofing [190, 191]. An intermediate nameserver could (maliciously) hijack NXDOMAIN

responses and replace them with a record that points to an advertisement website [192, 193]. While

120

Enumerating IPv6 Hosts Chapter 5

1 Queries for b.edu 2 Looks up name in
zone information - a.edu …

 - g.edu …
 - y.edu …

3a Returns NXDOMAIN response for b.edu

3b Returns NSEC record (a.edu, g.edu)
NameserverClient

Zone Information

Figure 5.1: Example DNS interaction between a client querying a nameserver without and with

DNSSEC. The client queries the nameserver for a record of the domain “b.edu” (1). The name-

server looks up the resource record (RR) in the zone information (2). Here, the queried resource

does not exist in the zone file. If DNSSEC is not present, then the nameserver responds with a single

NXDOMAIN response that is generated online (3a). If DNSSEC is present, then the nameserver

responds with an authenticated response. Since DNSSEC discourages online signing, a pre-signed

entry must exist. However, pre-signed denials of existence for any possible query are impractical

from a space and computational perspective. Therefore, DNSSEC returns pre-signed denials of ex-

istence for an entire name range: the previous existing entry with an associated record is “a.edu,”

the next existing entry with a record is “g.edu” (3b), effectively leaking the existence of those names

within the zone.

the intermediate nameserver is intentionally violating the standard, it is technically able to return

bogus responses because they are not authenticated.

DNSSEC aims to solve these authentication problems via cryptographic signatures for records

contained as part of a zone. Authenticating existing records is an extension of DNS through a signa-

ture record type (RRSIG) for each original record, which is signed with a zone-signing key (ZSK).

The public key portion of the ZSK is hosted in the zone, while the parent zone provides a hash of

the ZSK in a DS RR. In turn, it solves the problem of distributing public keys in a trustworthy

manner through DNS’ hierarchical nature and its existing chain of trust from the root zone to the

queried zone. Intuitively, signing NXDOMAIN RRs would be possible if the zone-signing key is

121

Enumerating IPv6 Hosts Chapter 5

available at the nameserver, so that the generated records can be signed online. However, DNSSEC

discourages the use of online signing to prevent denial of service attacks against the nameserver and

chosen-plaintext attacks against the zone-signing key [133]. Instead, it strongly encourages to serve

zone information that was signed offline. Consequently, authenticating denials of existence naïvely

is impractical: all non-existing names would have to be signed and it would require operators to

create zones of practically unbounded size. As a solution, a single NSEC RR is used to deny the ex-

istence of a range of records: it describes the previous existing name and the next existing name. For

example, an NSEC record might point to “a.edu” as the previous existing name and “g.edu” as the

next existing record. Then, any query for a name that is lexically between “a.edu” and “g.edu,” for

example, “c.edu” or “foo.edu,” would result in the same authenticated NSEC response. This is an

efficient authenticated denial of existence, satisfying the requirements of DNSSEC.

5.2.2 IPv6 and Reverse IPv6 Zones

Contrary to IPv4’s quad-dotted decimal representation, IPv6 addresses are instead represented as

32 hexadecimal digits, which are divided into eight groups of four digits to ease readability, for

example, 2001:0db8:0000:0bad:f00d:feed:cafe:0001. For convenience, addresses can be ab-

breviated by removing leading zeroes and replacing the largest consecutive group of zeroes with a

double colon, for example, the above address can be abbreviated to the shorter 2001:db8::bad:

f00d:feed:cafe:1.

Conceptually, reverse zones are like any other standardDNS zone, but they have a specificmean-

ing: They are used tomap an address or resource, such as an IPv4 or IPv6 address, to a name instead of

the other way around. For IPv6, the designated reverse zone is ip6.arpa and it is hierarchically orga-

nized at nibble (a nibble is a single hexadecimal digit) boundaries in reverse order. Listing 5.1 depicts

an example reverse zone for 2001:db8::/32 with two entries, one for 2001:db8::bad:f00d:

122

Enumerating IPv6 Hosts Chapter 5

feed:cafe:2 pointing to “h.a.edu” and one for 2001:db8::bad:f00d:feed:cafe:9 pointing

to “s.a.edu.”

In practice, reverse address zones are used for a variety of reasons. Initially devised for trou-

bleshooting, reverse lookups for forward-confirmed reverse DNS names are nowadays its main use

case and considered best operational practice [194]. A forward-confirmed reverse DNS lookup cor-

responds to looking up the domain name with an address and then looking up the address for that

domain name, if they are the same, then the lookup is considered confirmed. Today, most mail

transfer agents (MTA) rely on confirming reverse DNS lookups to reduce spam and might reject or

bounce incoming mail if the lookup is not forward-confirmed [195]. Consequently, network oper-

ators are essentially forced to deploy reverse zones to not degrade the quality of service for the hosts

in their network. In practice, reverse zones are regularly populated automatically via DHCP and

IPv6 node information queries and the reverse zone information accurately represents an active part

of the network [196, 197, 12].

Due to DNS’ inherent hierarchical design and the IPv6 address space being split into a signifi-

cant number of sub-networks, it is not possible to simply download the entire reverse zone for IPv6

to enumerate hosts. In fact, the sub-networks are delegated to thousands of different nameservers

worldwide, which do not allow to download the respective reverse zones directly. Hence, it moti-

vates the need for an effective IPv6 address enumeration technique.

Fortunately, the IPv6 reverse zone (ip6.arpa) supports DNSSEC since April 2010, which en-

ables our enumeration approach if the respective delegate reverse zones are also DNSSEC-signed.

Currently, as of January 2018, already 51 out of 59 delegate IPv6 reverse zones (i.e., zones below

ip6.arpa) are signed via DNSSEC [198], and, thus, this allows our approach to enumerate IPv6 hosts

within those zones, that is, within those networks. Interestingly, the (still) unsigned reverse zones

include the 6-to-4 zone (2002::/16), which is an IPv6 transition mechanism and which can be enu-

merated through traditional IPv4 enumeration techniques.

123

Enumerating IPv6 Hosts Chapter 5

$TTL 1h
@ IN SOA ns1.a.edu. admin.a.edu. (

2018010101 ; serial
1h 15m 1w 1h) ; refresh retry copy cache

@ IN NS ns1.a.edu.

; IPv6 PTR Entries
2.0.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IN \
PTR h.a.edu.
9.0.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IN \
PTR s.a.edu.

Listing 5.1: Example IPv6 reverse zone for 2001:db8::/32

5.3 Approach

Following, we describe our approach, which enumerates active IPv6 addresses by walking an IPv6

network’s reverse zone. The network can be the entire IPv6 address space or any sub-network that

might be of particular interest, for example as part of a security evaluation. Consequently, our

approach can be targeted and can be faster than state-of-the-art techniques.

Our enumeration technique requires that the reverse zone for the network is signed viaDNSSEC

because it relies on NSEC or NSEC3 responses for non-existing addresses. Nevertheless, it is al-

ready practical because over 86% of the top-level delegations in the IPv6 reverse zone are already

DNSSEC signed and it is expected that all zones will support DNSSEC soon [199]. In fact, NIST

recommends deployingDNSSEC since September 2013 [200] and adoption has been ever increasing

since then [199]. If the records are not signed yet, for example because a large network is partitioned

into smaller networks and only some of the zones employ DNSSEC then we can still enumerate the

hosts within networks for which the reverse zones are signed (regardless of whether intermediate

zones are signed).

A fundamental difference of our approach to existing techniques that determine an active part

of the IPv6 address space through network vantage points or datasets is that our approach can enu-

124

Enumerating IPv6 Hosts Chapter 5

merate hosts that do not actively initiate connections, nor does it require that IPv6 addresses appear

in a forward zone. At the same time, conventional “brute-force” enumeration attacks known from

IPv4 [177] do not scale to the vast IPv6 address space, while our approach can enumerate sparsely

populated IPv6 networks without problems.

5.3.1 Reverse Zones with NSEC

It is an understood problem that NSEC denials of existence allow zone-walking attacks on signed

zones because they leak the previous and next existing name of that zone. In case of the IPv6 re-

verse zone, those leaks correspond to the previous and next IPv6 name pointer (PTR) for an address

in that reverse zone, or a nameserver (NS), if a subdomain (sub-network) is delegated to another

nameserver [201]. We modify the existing NSEC-based approach and exploit the organization of

the IPv6 reverse zone to enumerate addresses more efficiently.

Starting from a target IPv6 reverse zone, for example, the root zone for the entire IPv6 address

space, the steps to enumerate the reverse zone for NSEC-based denials of existence records are:

1. Bootstrapping: We query for a random string below the target zone, like foobar.ip6.arpa, to

determine a starting point for address enumeration (seed). Based on the organization of the

IPv6 reverse zone (as specified by RFC 5855 [202]), it is guaranteed that a random string

that is not a single hexadecimal digit will result in a NSEC response. In turn, it removes the

requirement to identify a non-existing address in the address space prior enumeration.

2. Zone Walking: Starting from the seed, we follow the chain by iteratively querying the next

addresses incremented by one, that is, the next address that might not exist and could yield a

denial of existence.

If we do not receive a NSEC response, then we discovered an active address, and we keep in-

crementing the address until we receive a NSEC response. Once we receive a NSEC response,

125

Enumerating IPv6 Hosts Chapter 5

based on the organization of the IPv6 reverse zone, we can immediately identify if the next en-

try of a NSEC record is an address or a sub-network: if it is not a full-length IPv6 address (32

nibbles), then this sub-part of the reverse zone is delegated, possibly to another DNS server.

If we encounter a zone delegation, we optionally identify via a random seed whether it is

signed at all, and if so, if we can immediately descend into it (NSEC) or if it requires further

processing (NSEC3). If we can descend into it, we optionally add it to a sub-zone queue (i.e.,

we perform breadth-first search).

We terminate the zone-walking step if the next address in the returned NSEC record points

to the seed (we have closed the chain and formed a circle).

3. Sub-zone Enumeration (optional): For each sub-zone that we added to our queue, we may de-

scend into it and recursively apply the same enumeration strategy.

Intuitively, the runtime of our approach to enumerate IPv6 addresses for NSEC-based reverse zones

is linear and requires O (n +m) DNS queries to nameservers for the reverse zone where n is the

number of addresses within the networks and m is the number of zone delegations.

5.3.2 Reverse Zones with NSEC3

In an attempt tomitigate the side effect of zone-walking attacks onDNSSEC-signed zones, Laurie et

al. proposed NSEC3 [201]. Instead of listing the previous and next existing name in clear, NSEC3

uses a cryptographic hash for the names in the zone, sorts the hash values in alphabetical order, and

then uses each pair of consecutive hash values in the zone to indicate the denials of existence through

a NSEC3 record.

If the zone is using NSEC3, then the nameserver responds to a query for a non-existing name n

as follows: it computes its hash value h (n) where h is the cryptographic hash function as specified

for the zone, and it then returns the NSEC3 record with the pre-computed hashes of the existing

126

Enumerating IPv6 Hosts Chapter 5

names n1 and n2, such that h (n1) < h (n) < h (n2). Note that n1 < n < n2 does generally not hold

because h is not order-preserving. In fact, since the names are ordered by their hash value, and since

h is not order-preserving, only the cryptographic hashes of two existing names are exposed, which

are considered computationally difficult to reverse.

Given a NSEC3 response, the client can verify herself that the name does indeed not exist in

the zone. She verifies that the NSEC3 response is authentic and then verifies that the queried name,

when hashed, falls into the range specified by the NSEC3 record. To hash the queried name, she uses

the parameters specified in the authenticated NSEC3 record, that is, hash algorithm (only SHA1 is

currently supported), salt, and the number of iterations, which are valid for the entire zone.

Nevertheless, NSEC3 records still leak two existing records from the zone, even though their

names are cryptographically hashed. Therefore, they are technically still vulnerable to zone enumer-

ation through brute-force and dictionary attacks [203, 204]. In fact, the attacks identified by prior

work inspired our research. However, existing approaches for forward zones are ineffective for the

IPv6 reverse zone because of the reverse zone’s organization: (i) existing dictionary attacks, such

as nsec3walker, are inefficient due to the small alphabet (0-f, one character maximum) and the large

height of the zone’s hierarchical tree; and (ii) uninformed brute-force attacks are computationally

expensive and considerable computational resources are required to successfully launch them, partic-

ularly considering the size of the IPv6 address space. Following, for our case, we show the contrary:

enumerating IPv6 addresses for NSEC3-protected reverse zones is practical and effectively compu-

tationally less complex than uninformed brute-force attacks.

Different from NSEC-based address enumeration, in case of NSEC3, a two-phased approach

is required. First, we need to collect the NSEC3 chain for a zone online by actively querying for

names. Subsequently, we can unblind the IPv6 addresses offline. Note that the first phase does

not necessarily have to be completed before we can launch the second phase. We can launch the

second phase as early as the firstNSEC3 record is being observed, which can reduce the time required

127

Enumerating IPv6 Hosts Chapter 5

to enumerate the target network’s addresses significantly. Furthermore, even though a network

operator could change hash parameters during the collection phase, such as the salt or the iteration

count, previously collectedNSEC3 records can still be unblinded and used to enumerate hostswithin

the zone. Following, we discuss how our approach can efficiently unblind NSEC3-protected IPv6

addresses in the reverse zone by exploiting intricate details of the specification and implementation

of the IPv6 reverse zone.

5.3.3 Online Collection

The design of NSEC3 makes it computationally impractical to follow its chain to find the next hash.

Instead, the core idea is to randomly query for names that do not exist until the full NSEC3 chain

has been recovered. Similar to the NSEC case, a complete chain of NSEC3 records forms a closed

circle and, thus, can be verified easily. During the sampling process, any not-yet-discovered NSEC3

records leave missing “gaps” on the circle. Eventually, the sampling process will fill all gaps (see

Figure 5.2). The problem of discovering names whose hashes are inside one of the remaining gaps

is similarly embarrassingly parallel as the offline unblinding step and can easily be sped up massively

through graphical processing units.

For NSEC3-based reverse zones, online collection works as follows:

1. Bootstrapping: We query for a random string below the target zone, like foobar.ip6.arpa, to

determine a starting point for online collection. As in the case for NSEC, it is guaranteed

that a random string that is not a single hexadecimal digit will result in a NSEC3 response

and it removes the requirement to identify a non-existing address in the address space prior

enumeration.

128

Enumerating IPv6 Hosts Chapter 5

Seed

Unknown

Identified Hash Gap

SeedHashed
Address #1 Hashed

Address #2

SeedHashed
Address #1 Hashed

Address #2

Hashed
Address #3

Hashed
Address #4

SeedHashed
Address #1

Hashed
Address #2

Hashed
Address #3

Hashed
Address #4

Hashed
Address #5

Hashed
Address #6

1 Initial hash chain 2 A!er 1st DNS query 3 A!er 2nd DNS query 4 A!er 3rd DNS query

SeedHashed
Address #1 Hashed

Address #2

Hashed
Address #3

Hashed
Address #4

Hashed
Address #5

Hashed
Address #6

5 A!er 4th DNS query

SeedHashed
Address #1

Hashed
Address #2

Hashed
Address #3

Hashed
Address #4

Hashed
Address #5

Hashed
Address #6

Hashed
Address #7

6 A!er nth DNS query

…

Figure 5.2: Online collection andNSEC3 hash gaps. During the online collection phase forNSEC3-

protected zones, we first bootstrap by choosing a random seed that is guaranteed to result in aNSEC3

response for the zone, which exposes two hashed addresses. Following, we walk the zone randomly

and iteratively fill hash gaps to discover more addresses until we have successfully identified all hash

gaps.

In addition, we are also interested in the current hash algorithm, salt, and iteration count to

fill hash gaps locally as to not query the nameserver unnecessarily or cause suspicion or incur

unnecessary load.

2. Zone-Walking: We calculate the hash value for a randomname under the zone based on salt and

iteration count. If the hash value is covered already by a range uncovered from the previously

collected NSEC3 records, then we repeatedly select random names until a hash falls into a gap

and is guaranteed to reveal more information about the NSEC3 chain (see Figure 5.2).

129

Enumerating IPv6 Hosts Chapter 5

Intuitively, with the number of hash gaps decreasing, the probability to hit one of the remain-

ing ones decreases too, and the time requirement increases. The average number of required

hash calculations isO (r log r)with r being the number of records in the zone (addresses plus

delegated sub-zones).

Already during the collection phase we can determine whether a hash is a full IPv6 address or

a zone delegation: a NSEC3 record leaks whether the next hashed value is a PTR record (full

IPv6 address) or a NS record (sub-zone delegation) (see Listing 5.2). In fact, this detail allows

us to separate addresses and networks into different buckets and unblind them separately later,

which reduces computational cost significantly.

We retain all NSEC3 records for offline unblinding.

We repeat the zone-walking step until no more hash gaps exist or in case an exit condition

is true, in which case parts of the address space remain unexplored. If we have filled all hash

gaps within the NSEC3 circle, we have successfully collected all hashed IPv6 addresses and

sub-zone prefixes.

The runtime of the online collection phase isO (n +m)DNS queries to the nameservers where n is

the number of addresses within the target network and m is the number of sub-zone delegations.

To probabilistically enumerate addresses within a zone, one may specify an exit condition that

terminates the zone walking step. A trivial condition might be a timeout during which a new gap

must be filled. However, a more intelligent solution is to fill in all gaps until at most x gaps of at most

size y exist. At that point, at most x × y hashes of the entire zone will not be collected through

our approach (effectively, missing at most x × y addresses or sub-zones). Here, x and y can be

chosen to specific probabilistic requirements, such as “at least 95% of the zone must be enumerated.”

Additionally, if hashes within those ranges are later discovered during unblinding, the gaps can be

filled.

130

Enumerating IPv6 Hosts Chapter 5

; Reverse IPv6 NSEC Entries
2.0.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IN \
NSEC 9.0.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. \
PTR RRSIG

; Reverse IPv6 NSEC3 Entries
1PDJ9FP13S70NCFCJCV35B8LLVT68U5Q.8.b.d.0.1.0.0.2.ip6.arpa. IN NSEC3 1 0 10 86\
B3E6B74F0A2C23 G5AL6GMJ6ARLJ9M5F56LL48JPHJ1SGQK PTR RRSIG

Listing 5.2: Example NSEC and NSEC3 RRs for the reverse IPv6 zone for 2001:db8::

/32. A client querying for a name that is lexically between 2001:db8::bad:f00d:feed:

cafe:2 and 2001:db8::bad:f00d:feed:cafe:9 will receive the NSEC (top) record from

the nameserver. For NSEC3, if no record exists in the zone whose hash is lexically between

1PDJ9FP13S70NCFCJCV35B8LLVT68U5Q and G5AL6GMJ6ARLJ9M5F56LL48JPHJ1SGQK (base32-

encoded SHA1), then the NSEC3 record will be returned.

5.3.4 Offline Unblinding

Following online collection, the next step to enumerate IPv6 addresses is to unblind the collected

hashes offline. Since DNSSEC leverages cryptographically secure hashes, the naïve choice falls to

brute-force attacks. Brute-force attacks, however, are impractical because of the large search space

for SHA1, which is the only supported hash of DNSSEC, at 2160 possible values.

Generally, domain names can be composed of letters, digits, and hyphens [205]. The IPv6 re-

verse zone, however, follows a well-defined structure: each subdomain is strictly a hexadecimal

digit (see Section 5.2.2). Practically, by leveraging the organization of the IPv6 reverse zone, we can

unblind hashed IPv6 addresses (which we identified as full addresses during online collection) signif-

icantly faster through directed search. We exploit the fact that addresses are almost never randomly

assigned from a network’s range, but instead follow observable patterns. First, addresses are often

assigned incrementally through static assignment or via DHCPv6, possibly with gaps at earlier nib-

bles, such as 2001:db8::1/64, 2001:db8::2/64, or, with a gap, 2001:db8::1:1/64. Second,

131

Enumerating IPv6 Hosts Chapter 5

addresses are also more likely to be assigned through stateless address autoconfiguration (SLAAC)

than being randomly picked. With SLAAC, a host commonly assigns itself an IPv6 address based

on its MAC address, in which case 12 nibbles (out of 32 nibbles) of the IPv6 address are based on

the host’s MAC address, which is vendor-based, and additional four nibbles are constant across all

IPs assigned through SLAAC. For example, a host with MAC address 00:11:22:33:44:55 on the

network 2001:db8::/32would assign itself the IPv6 address 2001:db8::211:22ff:fe33:4455.

As of January 2018, only 24,434 vendor prefixes are officially in use [206], and combined with the

constant nibbles, it reduces the search space by a factor of 225. Inherently, a MAC-based address

assignment strategy allows Internet-wide equipment and user tracking, because the MAC is consid-

ered universally unique and remains constant across networks. To prevent such tracking, privacy

extensions were added to SLAAC, for which temporary addresses may be used instead. These pri-

vacy extensions make the enumeration attack more difficult initially due to the addresses’ ephemeral

nature, however, their effectiveness degrades over time since addresses are generally not reused. Fur-

thermore, their use is commonly limited to end users and they are not used by servers or network

equipment.

Overall, we can reduce the search space from 2128 to as little as 239 for full IPv6 addresses (al-

though the SHA1 search space is 2160, it is reduced to 2128 because IPv6 addresses are only 128-bit

wide) depending on network prefix and address assignment strategies used. By guiding the address

search intelligently, we can further speed up the unblinding process. Specifically, we can exploit that

a hash gap (pair of NSEC3 records) leaks the type of the preceding and following resource record.

The type of the resource record indicates the length of the unhashed value (PTR for full addresses,

NS and SOA for network prefixes), which, in turn, significantly reduces the complexity of unblind-

ing the hashed value. Practically, we can reduce the search space down to as little as 239 for full

addresses and 233 for networks, which renders enumeration practical. Notably, we successfully un-

132

Enumerating IPv6 Hosts Chapter 5

blinded various networks of different sizes (/32, /48, and /64) in mere hours, including for reverse

zones with high hash iteration count (see Section 5.5).

Unblinding zone delegations is practical for similar reasons: First, we accurately identify them

as delegated zones during online collection (since the NSEC3 record leaks whether the next hash

is a PTR or NS record). Second, we exploit that sub-networks, a common cause for sub-zones

being delegated, are commonly assigned and used incrementally rather than randomly from the vast

address space. Third, we exploit that networks are allocated at specific nibble boundaries, effectively

limiting the search space to
∑

0≤i≤824i (≤ 233).

For example, for the hashes g5al6gmj6arlj9m5f56ll48jphj1sgqk and 1pdj9fp13s70ncf

cjcv35b8llvt68u5q (see Listing 5.2), we only need to attempt to unblind full addresses as they are

PTR records. Combined with the salt 86b3e6b74f0a2c23, we can then unblind the hashes to 2.0

.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa and 9.0

.0.0.e.f.a.c.d.e.e.f.d.0.0.f.d.a.b.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa, that is,

they represent the IPv6 addresses 2001:db8:bad:f00d:feed:cafe:2 and 2001:db8:bad:f00d:

feed:cafe:9 respectively.

In summary, our approach can quickly enumerate IPv6 hosts and networks, even for sparsely

populated IPv6 networks, by exploiting the well-defined organization of IPv6 addresses and net-

works, and by leveraging the structure of the IPv6 reverse zone and the information (record type)

leakage of DNSSEC-based denial of existence records (NSEC3).

5.4 Ethical Considerations

In our evaluation, we perform active measurements on the enumerated addresses to establish if they

are actually active. We also establish a limited set of additional data points on the running software

versions and possibly security-sensitive configuration settings. For our data acquisition, we adopt

133

Enumerating IPv6 Hosts Chapter 5

the high andwell-accepted ethical standards of prior work conducting Internet-wide activemeasure-

ments [177, 207, 9]. We further ensured that our measurements do not disrupt or harm evaluation

targets, for example, through unintended resource or bandwidth consumption, andwe put a process

for a permanent opt-out of our measurements in place.

5.4.1 Preventing Disruption

In addition to standard ICMPv6 (Internet Control Message Protocol version 6) echo request to es-

tablish host reachability, we performed only basic service and version detection on open service

ports. Misconfigurations, such as weak cryptographic keys, were only evaluated based on protocol

handshake information. Similar to prior work, our independent evaluation of this measurement pro-

cedure yields that it is of negligible risk compared to the benefits provided to the community. This

approach prevents misleading findings and reduces false positives, which would cast an incorrectly

insecure picture of the evaluated hosts. Examples of such false positives are services listening on non-

standard ports or services secured via tcpwrapper, which would also not be detected correctly by a

standard port scan.

5.4.2 Subject Information and Opt-Out

A network administrator might misjudge our measurements for attacks, due to receiving alerts from

an intrusion detection system deployed at the evaluated network. To inform the operators of the

measured networks, we follow best practices [177] and provide a “usage notice” website reachable

at both the IPv4 and IPv6 addresses of the measurement machine. The notice explains that the

measurements are benign in nature, who is conducting them, how to contact the authors, and how

to opt out of future measurements. We have not received any opt-out requests or related complaints.

134

Enumerating IPv6 Hosts Chapter 5

5.4.3 Responsible Disclosure

We encountered several vulnerable systems and deployments during our evaluation. With the publi-

cation of ourmethodology, an attacker could use it to enumerate active IPv6 addresses and rediscover

vulnerable devices and infrastructure. Therefore, we conducted a responsible disclosure process for

our findings, having informed the affected parties. To prevent any possible harm, we contacted the

individual parties and the responsible Computer Security Incident Response Teams (CSIRT). The

responsible disclosure process has been completed for all our findings.

5.5 Evaluation

We first evaluate how our technique fares on an Internet-scale. We then look in-depth at various

issues IPv6 networks exhibit in the wild, which prior studies have missed, possibly due to being

unable to target and enumerate specific IPv6 networks or IPv6-only hosts. Our results underline

the need for an active enumeration technique for future IPv6 security studies, instead of being able

to rely on data collected at network vantage points.

5.5.1 Internet-wide Enumeration

First, we enumerate the entire IPv6 address space using our technique. To enumerate the address

spacemore quickly,we seed our enumeration techniquewith IPv6network prefixes thatweobtained

from aggregating a view on the global routing table (GRT). We aggregate this GRT from Border

Gateway Protocol (BGP) dumps available from RIPE RIS [208] and Routeviews [209] following

current best practices [210]. In addition, we leverage the enumeration technique of Fiebig et al. to

establish a baseline [9].

We find that our technique performs favorably compared to the enumeration technique of Fiebig

et al. (see Figure 5.3). Specifically, we perform better than the baseline for large prefixes. For in-

135

Enumerating IPv6 Hosts Chapter 5

stance, for network prefixes of size /32, the maximum allocation size for IPv6, we identify 3,770

more networks, while for networks of size /48, the general allocation size for IPv6, we find 2,649

more networks [211, 212]. Unfortunately, however, due to the delayed deployment of DNSSEC,

our technique currently enumerates fewer different prefixes than Fiebig et al. for more specific nib-

bles in IPv6 addresses. We expect this behavior to change in the near future as the adoption of

DNSSEC is increasing, which, in turn, allows our technique to enumerate even more addresses.

Interestingly, during our study we encounter 316 networks using DNSSEC that have an un-

trusted path from the root zone. In detail, of these 316 networks, 191 utilize NSEC and 125 have

NSEC3 configured. This observation underlines that DNSSEC and DNS zones are not necessarily

configured correctly in practice. Following the hierarchical concept of DNSSEC, there should not

be a zone that is DNSSEC-signed that was not found by enumerating from the reverse zone root

(ip6.arpa). DNS is strongly hierarchical by design, and following the tree-based key distribution and

verification schema of DNSSEC, there should be no signed zone that is only reachable through in-

termediate unsigned zones. It further indicates that the seed-based approach we utilized not only

reduces the overall runtime, but also discovers networks and enumerates hosts that would other-

wise not be found by naïvely enumerating the reverse zone in a top-down fashion. In practice, the

time to unblind IPv6 addresses is reduced further by exploiting the knowledge of total addresses in a

reverse zone (the number of hashes that we collected online prior to unblinding) and address assign-

ment strategies. Addresses are rarely assigned randomly, but instead follow incremental strategies or

use stateless address auto-configuration, and allow us to direct our unblinding process in the search

space and reduce its time further.

We find fewer records than Fiebig et al. While they enumerated 5.8M unique addresses using

their technique in late September 2016 [9], and—with an improved version running on multiple

hosts at the same time—over 10M in early 2017 [12], we merely found 2.2M addresses running the

published toolchain on a single host (compared to 5.8M).Wemostly attribute this to the significantly

136

Enumerating IPv6 Hosts Chapter 5

/0 /8 /16 /24 /32 /40 /48 /56 /64 /72 /80 /88 /96 /104 /112 /120
/4 /12 /20 /28 /36 /44 /52 /60 /68 /76 /84 /92 /100 /108 /116 /124

IPv6 Address Prefix Size

0
100

101

102

103

104

105

106

107

U
ni

qu
e

Ite
m

s F
ou

nd
 p

er
 P

re
fix

 L
en

gt
h

DNSSEC NXDOMAIN

Figure 5.3: Records enumerated by our DNSSEC-based technique and the technique by Fiebig et

al. [9]. Applied on a global scale, we identify more unique prefixes than the technique by Fiebig et al.

for prefix lengths between /20 and /56, for example, 3,395 more networks with a prefix length of at

least /44. For networks smaller than a prefix of /60, the number of discovered prefixes increasesmore

slowly, because DNSSEC is not yet being frequently deployed at smaller leaf networks (compared

to its wide-spread adoption for zones at the higher level). The deployment of DNSSEC for these

smaller networks is expected to increase in the near future.

higher number of necessary requests of their approach compared to ourmore informed enumeration

technique (Figure 5.2), leading to an increased impact of packet loss. Indeed, especially due to the

higher number of requests, their technique can be detected and selectively mitigated with relative

ease. Hence, our technique does not only provide more reliability by being harder to mitigate, but

also puts less stress on networks. Both features are desirable when conducting large-scale active

measurements.

In summary, we find that our technique shows great promise. We easily out-perform existing

techniques for zones that are already DNSSEC signed. Our technique is only hampered by the

current deployment state ofDNSSEC for leaf zones. However, the adoption ofDNSSEC is expected

137

Enumerating IPv6 Hosts Chapter 5

to increase even further in the future, as is the adoption of IPv6. Therefore, we expect our approach

will be able to enumerate significantly more networks in the near future.

5.5.2 Observed Security Issues

Following the demonstration of the large-scale potential of our technique, we utilize it to survey

network security issues in current IPv6 deployments around the globe. Specifically, we have scanned

338 different IPv6 networks, and we report detailed findings of the security posture of five different

networks with different and diverse security requirements: (i) a French Internet service provider

(ISP), (ii) a Ukrainian Local Internet Registry (LIR) and transfer broker (responsible to facilitate IP

address space transfers), (iii) a European domain registry, (iv) a supercomputing facility in theUnited

States, and (v) a large German university. The security issues we have uncovered in these networks

illustrate that even experienced network operators from a variety of backgrounds might be unaware

of the problems that a hasty IPv6 deployment can bring.

For each identified network of hosts, we perform the following two steps:

1. We look up the hostnames for the enumerated IPv6 addresses within the reverse zone, and

then forward look up the hostnames to obtain the corresponding IPv4 addresses. If a host-

name maps to a single IPv4 address, then we assume that IPv4 and IPv6 address point to the

same physical host and compare open ports and available services through access via IPv4 and

IPv6, respectively. If a hostname maps to multiple IPv4 addresses, we do not further evaluate

its security as it would skew the comparative analysis because it is uncertain which IPv6 and

IPv4 addresses correspond to each other.

2. We evaluate the enumerated hosts with nmap and we specify the command-line arguments

-Pn -O -sV –nsock-engine=epool -p1-10000 -sS -sU –max-retries 1 to identify potential security

issues.

138

Enumerating IPv6 Hosts Chapter 5

Network

Hosts

Sub-NetworksIPv6-only Dual-stack Total

French Internet Service Provider 2,069 66,545 70,818* 43
Ukrainian LIR 4,619 245† 4,864 611
European Domain Registry 130 119‡ 249 0
United States Supercomputing Facility 28 1,343 1,371 1
German University 138 97§ 235 0

Table 5.2: Number of IPv6 hosts enumerated and sub-networks identified

* We successfully unblinded 68,614 addresses within our timeout of 12 hours, and only 2,204 hosts

remain blinded for a 96.90% success rate. † Two (2) hosts leak private IPv4 addresses via forward

DNS lookups from two networks, and two (2) hosts point to IPv4 localhost addresses.

‡ Five (5) hosts leak private IPv4 addresses via forward DNS lookups.

§ Sixteen (16) hosts leak private IPv4 addresses via forward DNS lookups.

We responsibly disclosed our findings to the network operators for all networks that we have evalu-

ated in the course of this chapter. We hope that our findings motivate network operators to evaluate

the security of IPv6-connected devices on their network.

The different networks that we investigated in-depth vary in the way they deploy DNSSEC:

one network deploys NSEC3 and the remaining four deploy NSEC. They also differ in size as the

number of active hosts ranges from 235 to 70,818, with between 28 and 4,619 hosts classified as

IPv6-only. We classify a host as IPv6-only if we were unable to confirm that its hostname, which

we obtained from the reverse IPv6 zone, points to exactly a single IPv4 address in the forward zone.

An IPv6 network might be split into various sub-networks for specific purposes or regions. Un-

surprisingly, the number of sub-networks differs quite a lot per network type: the French Internet

service provider’s network has 43 sub-networks, which likely correspond to different regions where

they provide their services; the Ukrainian LIR delegates the most networks (611), most likely to its

customers, some of which are government and law enforcement entities; the European domain reg-

139

Enumerating IPv6 Hosts Chapter 5

istry and theGerman university do not have any sub-networks, possibly because of a central network

operations center; and the United States supercomputing facility uses one sub-network, possibly for

users of the computing cluster or the cluster itself. While we did not include the sub-networks in

our evaluation, our technique can enumerate them readily as they are also DNSSEC-signed.

We are focusing our efforts on the following problems and discuss them separately: (i) for IPv4

and IPv6 dual-stack hosts, we look at all ports accessible via IPv6 but not via IPv4 and vice-versa;

(ii) for IPv6-only hosts, we look at all services that can be accessed externally and which could be

a security risk; and (iii) potential privacy concerns for names in the reverse zone. Particularly, we

investigate more closely:

• Remote access protocols: Secure Shell (SSH), Telnet, and remote desktop sharing.

• File sharing: Apple Filing Protocol (AFP), FTP, HTTP, Server Message Block (SMB), and

WebDAV.

• Monitoring and system management: Nagios Remote Plugin Executor (NRPE), Simple

NetworkManagement Protocol (SNMP), Intelligent PlatformManagement Interface (IPMI),

and management interfaces for machine virtualization (Hyper-V, VMware).

• Network management via routing protocols: Open Shortest Path First (OSPF) as an inte-

rior gateway protocol, and the Border Gateway Protocol (both iBGP and BGP).

5.5.3 Dual-stack Analysis: IPv4 vs. IPv6

We contrast the security deployment of IPv4 and IPv6 by taking an in-depth look into some existing

networks. In total, we investigate more closely the differences in security measures of accessing

68,349 hosts through IPv6 compared to through IPv4. The hosts are part of the networks of five

different institutions with varying security requirements.

140

Enumerating IPv6 Hosts Chapter 5

The infrastructure network of the French Internet service provider is the most populous net-

work, of the ones we have investigated more closely, with 66,545 dual-stack hosts. Fortunately,

most hosts are secured appropriately. In fact, much to our surprise, hosts following incremental

IPv6 address assignment pattern exhibit the same or better security, that is, the same or less exposed

ports through IPv6 than via IPv4. This might be the case because the services are configured to lis-

ten on their respective IPv4 address only, instead of the default to listen on all available addresses

(IPv4 and IPv6) or interfaces, and, thus, no access via IPv6 is possible. On the other hand, hosts who

have taken on globally routable addresses via stateless address autoconfiguration (SLAAC) do exhibit

worse security. Alongside world-readable Apple file sharing we discovered open ports for access to

management interfaces of Cisco switches via Telnet, access to Hewlett Packard StoreFabric network

storage devices (both client and management interface ports), as well as read-only SNMP access for

various networking devices (access might not be restricted to read-only, but without potentially dis-

rupting infrastructure, we are unable to confirm whether access is read-write; therefore, we report

all SNMP access as read-only).

Different is the network of the supercomputing facility in the United States, for which we enu-

merated 1,371 IPv6-capable hosts, with 1,343 of them being dual-stack. Although a significant

amount of services, like HTTP(s), FTP(s), IMAP(s), SMTP(s), POP3(s), are available on the net-

work, almost all of them are accessible via IPv4 and IPv6 and we consider them as intentionally

open and without additional security risk. Of all 1,371 hosts, 828 hosts assigned themselves IPv6

addresses through SLAAC,while the remaining 543 hosts have IPv6 addresses assigned incrementally

with gaps due to jumps at earlier nibble boundaries, confirming that guided search for enumeration

has substantial benefits. There was no difference in security for incrementally assigned addresses

and automatically assigned address through SLAAC, but hosts remained more open to attackers via

IPv6 than IPv4. Specifically, we still encountered services accessible via IPv6 that are likely unin-

tentionally accessible as they are security-sensitive, including, but not limited, to BGP (secured via

141

Enumerating IPv6 Hosts Chapter 5

tcpwrapper for some hosts only), Telnet access to Cisco routers, and access to Microsoft’s Active

Directory.

Similar to the supercomputing facility, a variety of IPv6 hosts on the German University’s net-

work expose SSH, HTTP, and FTP. Again, we observed the same ports being publicly accessible via

IPv4. Since universities often provide HTTP and FTP mirrors of open-source software, and SSH

is generally considered secure, we do not consider them potential security problems. Alarmingly,

however, we still determined a plethora of potentially critical security problems. In particular, pub-

licly accessible via IPv6 but not IPv4 are: interior BGP and exterior BGP for 57 hosts, old SSH

versions on two Cisco switches, SNMP on 35 hosts, Nagios Remote Plugin Executor for 38 hosts, a

portmap version on 38 hosts that can be exploited to launch reflected and amplified denial of service

attacks [213], and fingerd on one host. Especially concerning are the exposure of BGP, portmap,

and SSH access on the two Cisco switches, which used weak host keys (512-bit RSA).

We observed no significant differences in security for dual-stack hosts for the European domain

registry or the Ukrainian LIR. Yet, over all networks, the security of hosts whose addresses appear

assigned through SLAAC, that is, automatically based on the hosts’ MAC addresses, is worse than

those for which the address is assigned incrementally.

5.5.4 Security Posture of IPv6-only Hosts

We also enumerated hosts that are single-stack and thus are only reachable via IPv6. Interestingly,

some early proponents of IPv6 without prior experience operating IPv4 networks exhibited the

worst security measures and exposed administrative, infrastructure, and network management in-

terfaces through IPv6 to the world. Most likely, they assume more secure defaults and might not

know better given a lack of experience.

Unfortunately, although experience helps to mitigate some issues, it is not a silver bullet. An

example is the infrastructure network of a major LIR in theUkraine of which almost all hosts (4,619

142

Enumerating IPv6 Hosts Chapter 5

of 4,864 hosts) are reachable only through IPv6. However, since the network operator has extensive

experience operating an IPv4 network, we were expecting a relatively secure network. Regardless

of prior operating experience, we discovered critical security issues on two IPv6-only hosts, both of

which do not have an entry in the forward zone. Both hosts expose the Quagga routing software’s

management port as well as BGP via IPv6 and could be used to control routing for all the LIR’s sub-

networks, which include law enforcement and government entities. Although already concerning,

we detected an old version of Quagga (0.99.22.1) at a core network router, which is potentially

vulnerable to a remote code execution and a denial-of-service attack [214, 215]. Unfortunately,

the critical security issues did not stop there, and, even more alarming, we discovered a vulnerable

version of SuperMicro IPMI at an IPv6 address that was assigned automatically (via stateless address

autoconfiguration), which not only allows full remote execution, but it allows an attacker to gain

practically physical access to the machine remotely.

Wemanually confirmed that all vulnerable hostswere not part of any public dataset used byCzyz

et al. [37], which further emphasizes the need for practical IPv6 address enumeration techniques,

and it illustrates that existing datasets might in fact cast a skewed result on the security state of IPv6-

connected devices. Considering that Czyz et al. collected their dataset from ANY records on the

forward zone, it is clear why prior work did not include it: the hosts’ IPv6 addresses do not appear

in the forward zone at all, but only appear in the reverse zone.

As in the case for dual-stack hosts, we reach the conclusion that the security posture of IPv6-only

hosts varies in the way addresses are assigned. For devices who leverage SLAAC security is worse

than for those who have addresses assigned manually or via DHCPv6.

5.5.5 Privacy Issues

A possible security and fundamental privacy issue we discovered is the leakage of meaningful host-

names through the automatic population of the reverse zone.

143

Enumerating IPv6 Hosts Chapter 5

In case of the European NIC, regardless of the deployed security measures at those hosts, the re-

spective hostnames leaked information about their use case: configuration management and deploy-

ment, system and network monitoring, logging, version control, bug tracking, as well as registry

internal infrastructure (authentication, transfers, validation). Although not a security issue necessar-

ily, it opens an avenue for reconnaissance for attackers and it might provide the extra information

that is necessary to circumvent security measures that have been put in place.

Similarly, for the French ISP, stateless autoconfigured IPv6 addresses leaked that Apple, Cisco,

and Hewlett Packard devices are on the network. From reverse DNS entries, we further determined

that the Apple devices are laptops and based on a combination of reverse DNS, MAC address, and

service and version detection on open ports, we can determine that the Hewlett Packard devices

are HP StoreFabric storage devices, while the Cisco devices are top-of-rack switches. Additionally,

based on hostnames themselves and routes taken to hosts, we believe that we have enumerated hosts

in four data centers or office buildings: two in Paris, one in Lyon, and one in Toulouse.

Significantly more concerning is the case of the United States supercomputing facility though.

The way the reverse zone is used and populated allows us to track employees’ devices and even their

location. Specifically, we were able to track 13 phones and 10 laptops of employees over time and

we correlated their working hours, and their presence across two buildings. Of the ten laptops, three

laptops are connected via Ethernet and Wi-Fi, allowing higher fidelity tracking, and one person is

using two laptops. From reverse zone information, we can also determine that four people work

in the main complex, while another nine work in an adjacent and affiliated research center. We

manually verified this to be true through its website.

Tracking is made possible due to the automatic populating of the reverse zone. To track work-

ing hours, regular liveness probes are sufficient (e.g., via ICMPv6). On the other hand, tracking

users across buildings is possible in two different ways. First, through liveness probes over multiple

network prefixes, since the remaining nibbles of the address stay constant (due to SLAAC), and, sec-

144

Enumerating IPv6 Hosts Chapter 5

ond, through forward DNS lookups on the hostname under a different subdomain (the subdomain

used for Wi-Fi access in the buildings is different). More fine-grained location tracking, up to floors

and even rooms, is sometimes possible through tracing the route to the host and investigating inter-

mediate router hostnames more closely. The privacy implications of automatically populating the

reverse zone are further amplified by host and node information, such as names in “jane-iphone” or

“doe-notebook” (with only one person with the first name Jane or last name Doe working at the

facility).

5.5.6 Discussion

From our evaluation it is apparent that IPv6 hosts can be, and sometimes are, secured in the same

manner and to the same level as IPv4 hosts. However, as of today, IPv6-connected hosts still lag

behind in regard of security when compared to IPv4 hosts, and their improvement progress must

be monitored and evaluated closely as to not relive the “Wild West” days of the Internet from the

1990s.

Furthermore, we discovered that stateless address configuration can be a significant security prob-

lem if network-based firewalls are not deployed. Our findings show that devices take on global IPv6

addresses automatically if they are advertised an IPv6 route, regardless of whether they are secured

appropriately. Since some networks are secured appropriately and since the self-assigned IPv6 ad-

dresses do not fit into the networks’ address assignment pattern, we suspect that the devices with

self-assigned addresses have worse security because the network operators are unaware of their be-

havior and might assume that they do not support IPv6 yet, possibly because support might have

been added with a software update after deployment. We believe that we encountered these cases be-

cause IPv6 is sometimes enabled by default in newer firmware versions of switches and routers, which

might be installed for part of a data center only, for example, through a staggered deployment, and

because laptops might normally connect to IPv4-only networks exclusively, but sometimes connect

145

Enumerating IPv6 Hosts Chapter 5

to a network where an IPv6 route is advertised. For them, host-based firewall rules might not be

configured for IPv6 yet, thus exposing the machine completely to the rest of the Internet.

5.6 Mitigation

In response to zone-walking attacks against DNSSEC, a variety of defenses have been proposed.

Some of these approaches would also prevent enumerating IPv6 addresses from the reverse zone.

However, the proposed defenses have significant shortcomings and some require to fully trust the

nameserver with the authoritative zone-signing keys, a practice that DNSSEC strongly discourages.

We discuss how those techniques would impact our approach and, if adopted, what other issues they

bear.

5.6.1 Reverse Zone Modifications

A straightforward solution to prevent IPv6 addresses from being enumerated via DNSSEC on the

reverse zone is to drop the reverse zone completely or to not deployDNSSECon it. Not keeping any

reverse zone information for IPv6 addresses has significant problems though, which would render

the affected IPv6 addresses almost entirely useless in practice. Nowadays, reverse zones are used

to protect against spam and other inconveniences and the lack of a reverse entry for an address is

considered a lack of trust and “sign of trouble.” For instance, almost all incoming email servers

(SMTP) are configured to look up the reverse name and reject incoming mail from IP addresses that

do not hold a valid reverse DNS record. Therefore, not keeping a specific IP address in a reverse zone

immediately limits the use of that address. For instance, in the case of a hosting or access Internet

service provider, it would effectively prevent its customers from sending email.

Alternatively to dropping the reverse zone entirely, one could choose not to deploy DNSSEC

for it. However, similarly as to verifying that an IP address has a reverse entry, some SMTP servers

146

Enumerating IPv6 Hosts Chapter 5

are trusting signed and valid reverse entries more and service them quicker (e.g., no greylisting). In

turn, the decision to not sign the reverse zone can degrade the overall quality of service but it would

not prevent the service to be used at all. In addition, this technique exposes the reverse zone to the

known problems of DNS that have been solved by DNSSEC. For example, by effectively removing

any authenticity on a zone one enables malicious nameservers to return bogus responses (again).

In both cases, the respective authority for the reverse zone needs to decide on the trade-off:

whether she prefers to degrade quality of service, or whether she wants to prevent zone-walking and

protect the privacy of addresses on her network. It is understandable that network operators prefer

to guarantee a high quality of service over preventing zone-walking attacks, particularly considering

that IP addresses will become public during communication with other hosts anyways. Thus, hiding

them is merely a misguided attempt at security through obscurity. Furthermore, security manage-

ment of the hosts that could be enumerated is often outside of the responsibilities of the network

operator herself (instead, a system administrator is often responsible) while the quality of service is

her métier.

5.6.2 Minimally Covering NSEC Records

An alternative approach to preventing zone-walking attacks via already existing DNSSEC record

types, such as NSEC3, was proposed by Weiler et al. [133]. Instead of signing the zone offline

and thus, by requirement, introducing large spans for NSEC3 records, Weiler et al. suggest to sign

records online and to return minimally covering NSEC3 records on demand. For instance, a minimal

covering NSEC3 record for a non-existing domain n with hashed name hn would fake the previous

existing hash as hn − 1 and next existing hash as hn + 1. For proving the denial of existence for n ,

it is irrelevant whether hn ± 1 actually exist, if they do not exist the denial record is considered a

“white lie.”

147

Enumerating IPv6 Hosts Chapter 5

Minimally covering NSEC3 records prevent zone-walking attacks effectively. However, this

approach requires online signing and thus requires the full zone-signing secret key to be available at

the nameserver. If the zone-signing key is deployed to the authoritative nameservers, then any single

compromised authoritative nameserver results in a complete zone compromise, and any bogus and

possibly malicious responses can be signed and returned. This would be a direct contradiction to the

goals of DNSSEC and its operational practices [216]. Given the computational overhead of online

signing DNS responses and its potential security risks, minimally covering NSEC records have so far

been adopted only hesitantly.

5.6.3 NSEC4

Another attempt to revolutionize DNSSEC’s denial of existence records was the proposal of NSEC4

by Gieben et al. [217]. However, the respective Internet-Draft does not propose any techniques

that would prevent zone-walking, and thus cannot be considered a mitigation technique. Instead, it

introduces performance optimizations for denials of existence of wildcard records and the opt-out

flag. The draft has expired in January 2013 and has not been renewed. The optimizations have been

integrated into NSEC5.

5.6.4 NSEC5

Goldberg et al. [218] introduce NSEC5 as a solution to provably preventing zone enumeration at-

tacks. The adoption of NSEC5 would prevent enumeration of active IPv6 addresses through the

reverse zone, but, it comes at the significant cost of requiring additional online asymmetric cryptog-

raphy operations. In fact, the additionally incurred cost for online signingwhen deployingDNSSEC

renders nameservers subject to denial of service attacks and chosen-plaintext attacks [133], which

is why it might have been rejected by industry leaders in favor of signing zones offline. Specifi-

cally, denial of service attacks due to asymmetric cryptography can be abused in many more ways

148

Enumerating IPv6 Hosts Chapter 5

for DNSSEC over similarly authenticated protocols, like TLS, because it uses UDP for the trans-

port protocol instead of TCP. The latter are less impacted because they normally do not perform

any cryptographic operations prior completion of the TCP handshake, which acts as a way to ensure

that the connection between server and client is intended. On the contrary, in the case of DNSSEC,

no such protection exists and cryptographic operations must be performed when receiving the first

and only packet. Furthermore, it is more prone to abuse because of reflection and spoofed addresses.

Nonetheless, we support the authors’ effort to have NSEC5 become an Internet standard. The ad-

ditional computational cost incurred on the nameserver and the increased risk of denial of service

attacks might be a reason why the Internet-Draft remains a work in progress, and had to be renewed

by the authors prior to expiration five times already [219]. Without sufficient industry interest and

without an implementation except for the reference implementation for Knot DNS being available

(although NSEC5 solves a known problem and was proposed in mid 2014 [220], no implementa-

tion for the BIND nameserver exists), wide adoption of NSEC5 in the (near) future appears highly

unlikely, allowing our approach to be used in practice.

If NSEC5would be deployed for a zone, an attacker who is trying to enumerate that zonewould

need to obtain the NSEC5-signing-key. Once the attacker has obtained the key, she can degrade

NSEC5’s security guarantees to those of NSEC3, walk the zone, and, in turn, enumerate IPv6 ad-

dresses.

5.7 Conclusion

We introduced a technique to enumerate part of the active IPv6 address space as a starting point

to evaluate the security state of IPv6-connected hosts. Our approach leverages DNSSEC-signed

reverse DNS zones to enumerate active IPv6 addresses that can later be scanned through readily

available tools, such as nmap. Although NSEC3 should protect from zone-walking attacks, the

149

Enumerating IPv6 Hosts Chapter 5

combination of the well-defined structure of IPv6 addresses in the reverse zone, and the implications

of the disclosure of the record types for the previous and next hashes in the NSEC3 chain counteract

its protective impact. In turn, it reduces the search space needed to break the hashed addresses to

as little as 264, with additional reductions in practice through intelligent search due to incremental

(e.g., manual or via DHCPv6) and MAC address-based (stateless address autoconfiguration) address

assignment schemes. Exploiting these intricacies, we successfully demonstrate that it is practical to

enumerate active IPv6 addresses at scale in the face of NSEC3. Furthermore, to the best of our

knowledge, we are the first to introduce systematic and practical methodology to enumerate IPv6

addresses through NSEC and NSEC3 based DNSSEC-signed reverse zones by exploiting previously

ignored subtleties in the interplay of reverse zones and DNSSEC.

Based on the enumerated address set, we evaluated the state of security of IPv6 hosts and we

have shown that many are insufficiently secured. Specifically, IPv6-enabled systems often expose

critical infrastructure or sensitive and privacy-concerning information to the outside. For instance,

we discovered various routers exposing unsecured Telnet access, or internal file shares being exposed

via IPv6, and that the analysis of hostnames in the reverse zone can leak employees’ working hours

and locations. Furthermore, from our comparative analysis of scanning dual-stack hosts via IPv6

and IPv4, we conclude that one main cause is that globally routable IPv6 addresses are assigned

automatically to the machines. It appears that hosts assigning themselves a globally routable IPv6

address is a practice some system administrators are unaware of, as the respective hosts are almost

always properly protected from unauthorized access via IPv4.

Finally, we discussedmitigationmechanisms that could protect against zone-walking in the pres-

ence of DNSSEC and, in turn, could prevent IPv6 address enumeration attacks through DNSSEC-

signed reverse zones. Ultimately, we reach the conclusion that the proposed defenses suffer from

shortcomings that will prevent them from being adopted in practice in the (near) future. There-

150

Enumerating IPv6 Hosts Chapter 5

fore, we expect our approach to continue being a viable IPv6 address enumeration technique and to

further improve with the continued deployment of DNSSEC.

151

This page intentionally left blank

152

Chapter 6

Related Work

A large amount of prior work has been carried out to address Internet abuse of varying scale. Here-

inafter, we first discuss related work on tackling web-based threats, from detecting website deface-

ment, to defeating phishing through image-based analyses, to detecting malicious code, and, finally,

to leveraging and understanding the dynamic nature of the web to recognize intrusions. Following,

we discuss related work in the areas of DNS security and measurements, IP address squatting and

takeover attacks, the security of domain-based certificate and trust validation, and cloud security,

specifically issues grounded in resource sharing. Finally, we discuss prior work in the areas of IPv4-

wide security scanning tomeasure abuse and abuse potential, enumerating active IPv6 addresses, and

privacy issues with respect to DNSSEC and zone enumeration.

6.1 Website Defacement Detection

Similar toMeerkat, Davanzo et al. [76] introduce a system that acts a monitoring service for website

defacements. Their system utilizes the website’s HTML source code for detection, and its features

were selected manually based on domain knowledge acquired a priori, making the system prone to

concept drift. On their, comparatively, very small dataset containing only 300 legitimate websites

153

Related Work Chapter 6

and 320 defacements, they achieve false positive rates ranging from 3.56% to 100% (depending on

the machine learning algorithm used; suggesting extreme underfitting and overfitting with some

algorithms), and true positive rates between 70.07% to 100% (in the case of simply classifying every-

thing as a defacement; i.e., extreme underfitting). Overall, these results are significantly worse than

Meerkat, both in terms of false positives (1.012%) and true positives (97.878%).

Bartoli et al. [77] propose Goldrake, a website defacement monitoring tool that is very similar

to the tool proposed by Davanzo et al. and leverages a superset of their features. To learn an ac-

curate model, Goldrake requires knowledge about the monitored website to learn website-specific

parameters. However, it is unclear how well Goldrake detects defacements in practice because it is

evaluated on a small and (likely) non-diverse dataset comprised of only 11 legitimate websites and

20 defacements, on which it performs poorly with a high false negative rate (27%).

Medvet et al. [221] introduce a defacement detection system based on work by Bartoli et al. and

Davanzo et al., but the detection engine is replaced by a set of functions that are learned through

genetic programming. The learned functions take the features by Bartoli et al. and Davanzo et al. as

input, but classification is more accurate on a dataset comprised of 15 websites (between 0.71% and

23.38% false positives, and about 97.52% true positives). It is, again, unclear how the system would

fare in a real-world deployment because of the small and (likely) non-diverse dataset.

Note that all text-based approaches have major weaknesses, similar as those encountered in spam

and phishing detection, such as using images to show text to evade detection. Meerkat does not

suffer from these shortcomings.

Lastly, most commercial products that detect website defacements are built upon host-based

intrusion detection systems to monitor modifications of the files on the web server, for example, via

file integrity checks (checksums) [222, 223]. Therefore, those approaches bear the major drawback

that they can only detect the subset of defacements that modify files on disk, and that they cannot

detect other defacement attacks, such as through SQL injections, even when the defacements look

154

Related Work Chapter 6

exactly the same to the website’s visitors. Meerkat does not have this blind spot and detects these

stealthier attacks.

6.2 Image-based Detection in Security

No prior work, to the best of our knowledge, applies image-based methods to detect defacements,

which is why we compare Meerkat to prior work that visually detects phishing pages, or leverages

image-based techniques as part of a larger system.

Medvet et al. [224] propose a system to detect if a potential phishing page is similar to a legiti-

mate website. The system leverages features such as parts of the visible text, the images embedded on

the website, and the overall appearance of the website as rendered by the browser for detection. Sim-

ilarity is measured by comparing the 2-dimensional Haar wavelet transformations of the screenshots.

Their system achieves a 92.6% true positive rate and a 0% false positive rate on a dataset comprised

of 41 real-world phishing pages.

Similarly, Liu et al. [225] present an anti-phishing solution that is deployed at an email server

and detects linked phishing pages by assessing the visual similarity to the legitimate page, but only

when analysis is triggered on keyword detection. The system identifies phishing pages by comparing

the suspicious website to the legitimate website, which it does by measuring similarity between text

and image properties, like the font size and font face used, or the source of an image.

Although detecting phishing pages by comparing the similarity of two websites is sensible, for

defacements the difference between them is more interesting. Instead of creating a visually-similar

page to trick users into disclosing their credentials, a defacer wants to promote his message. Adopt-

ing existing phishing detection systems to detect defacements instead, that is, by comparing if the

website looks different from its usual representation, however, bears two problems: (i) the usual rep-

155

Related Work Chapter 6

resentation must be known and stored for comparison, and (ii) false positives are much more likely

if the website is dynamic or if it shows regularly-changing ads.

Anderson et al. [60] introduce image shingling, a technique similar to w-shingling, to cluster

screenshots of scams into campaigns. However, in its current form, image shingling cannot be used

to detect defacements as it is trivial to evade the clustering step with only minor modifications that

are invisible to the human eye, and, thus, the technique is unsuitable for a detection system in an

adversarial context.1

Nappa et al. [226] leverage perceptual hashing to group visually similar icons of malicious exe-

cutables, assuming that a similar icon suggests that the two executables are part of the same malware

distribution campaign. While it is theoretically possible to detect defacements through perceptual

hashing-based techniques and comparing the distance of the hashes, it is impractical to do so on a

large scale and in an adversarial context. For once, one must have a ground-truth screenshot that is

close enough to the screenshot that one wants to classify; if ground-truth is not available or slightly

too different, a system based on perceptual hashing will be unable to detect the defacement. Fur-

thermore, classification is not constant in the number of defacements the system has seen in the past:

For each new screenshot we would want to classify, we would need to compute the distance to the

hashes of at least some (or all) of the previously-seen defacements.2

Grier et al. [227] introduce their own image similarity measure to cluster malicious executables

that have similar looking user-interface components after being executed in a dynamic analysis envi-

ronment. Two images are considered similar if the root mean squared deviation between the images’

histograms is below some manually-determined threshold. Clearly, a defacement system based on

this technique is not suitable in an adversarial context: An attacker can (and eventually will) simply

1The authors acknowledge the shortcomings in an adversarial context in Section 4.2, but they do not discuss any
remediation techniques.

2Therefore, detection time increases with each observed defacement; it is at best in O(logn) and at worst in O(n),
with n being all observed defacements.

156

Related Work Chapter 6

change the colors slightly or add dynamic content, so that the root mean squared deviation is above

the threshold, but remains visually similar to the human eye. Furthermore, as for Nappa et al. [226],

one needs to pair-wise compare the histogram of the screenshot one wants to classify to some or all

of the already-seen defacements.

Meerkat does not suffer from any of these shortcomings: First, it learns high-level features on

the defacements’ general look and feel to detect also previously unseen defacements, and, second, its

classification time is constant in the number of already-seen defacements.

6.3 Detection of Malicious Code

Numerous papers have been published on detecting malicious activity in websites. To the extent of

our knowledge, no prior work exists that actively searches and finds previously unknown malware

infection campaigns. The majority of prior work focus on dynamic analysis of JavaScript in instru-

mented environments or on rendering websites in high-interaction client honeypots. It is important

to recall that Delta is complementary and provides additional information: the infection campaign

and the responsible node of the DOM tree.

Eshete et al. [228] discuss the effectiveness and efficacy issues of malicious website detection

techniques. Approaches from blacklists, to static heuristics, to dynamic analysis are compared in

their detection accuracy and time spent analyzing the website. A major argument on the weaknesses

of previouswork is theirmissing discussion on the necessity of episodic re-training or online learning

capabilities, to keep upwith the ongoing evolution ofweb-basedmalware, and to prevent the evasion

of deployed detection systems.

Cova et al. [90] introduce the system JSAND, to detect and analyze drive-by download attacks

and malicious JavaScript in an instrumented environment. The system leverages a comprehensive

dynamic analysis approach by instrumenting JavaScript to extract a variety of different features from

157

Related Work Chapter 6

redirection and cloaking, to deobfuscation, to observing heap exploitation. They compare JSAND

to client honeypots, such as Capture-HPC and PhoneyC, as well as the anti-virus engine ClamAV. It

shows a much lower false positive (0%) and false negative rate (0.2%) than all other approaches (5.2%

to 80.6%), while taking an average of 16.05 seconds to analyze a website. CaptureHPC, the closest

system in terms of accuracy takes 20 seconds per sample.

Canali et al. [91] extend the dynamic analysis system JSAND by implementing a pre-filtering

step. Themain goal is to prevent the submission of certainly benign websites to the dynamic analysis

system and, in turn, reduce the time spent on analyzing benign samples, that is, the system assigns to

a false negative a much higher cost than it does to a false positive. The filter method leverages a C4.5

(J48) decision tree and a diverse set of features spanning from the HTML content, to the JavaScript

code, to information about the host, to uniform resource location (URL) patterns. They evaluate

their filter on a dataset of 15,000 websites and compare it to similar methods by Seifert et al. [110]

and Ma et al. [118]. Both other methods yield more false positives and false negatives, but process

up to 10 times more samples in the same time.

Provos et al. [23, 92] introduce a system to detect URLs to malicious websites. However, they

are not considering legitimate infectedwebsites in general, as their approach is restricted to detecting

the inclusion of exploit pages, and hence their approach is complementary to our system’s capabili-

ties. Their system uses a proprietary machine learning algorithm to classify URLs based on features

like their use in “out of place” inline frames, obfuscated JavaScript, or links to known malware dis-

tribution sites. Besides detecting 90% of all malicious landing pages with 0.1% false positives, they

validate previous work by Moshchuk et al. [229] that infection vectors are inserted into legitimate

websites through exploiting vulnerabilities, advertisement networks, and third party widgets.

Delta complements prior work by being able to search and find known and unknown infection

vectors throughout the Internet, which prior work can then leverage to train their system for better

detection accuracy and increased user protection.

158

Related Work Chapter 6

6.4 Web Dynamics in Security

Maggi et al. [33] introduce a web application intrusion detection system, which is able to learn about

changes made to the web application. The problem of web application concept drift is addressed by

learning how the web application is accessed by a legitimate user and employing an unsupervised

classification algorithm. Features include, for example, a sequence corresponding to the order in

which websites are accessed or how web page parameters are distributed. The presented technique is

orthogonal toDelta: Themain goal is not to find new infection campaigns or to protect the visitor of

a website, but rather to protect the integrity of the web application. Protecting a normal, wandering

user would require intrusion detection and protection of all websites the user visits, since the access

pattern, onwhich the system is based, depend on the underlying architecture of thewebsite. A global

deployment to protect users, although possible theoretically, is practically impossible.

Davanzi et al. [76] study a similar approach for detecting the impact of web dynamics. They in-

troduce a system to detect if changes made to a website are defacements, which might cause serious

harm to the organization, monetary or reputation-wise, or if they are legitimate, officially approved

content changes. However, they explicitly point out that their approach does not work with mali-

cious modifications because their approach detects changes that are visible to the end-user, which is

the exact opposite of how malicious infection vectors are placed in practice. In detail, they employ

anomaly detection to regularly visit and monitor a set of 300 websites actively and detect if changes

made to the website constitute a defacement or not.

Delta, on the other hand, leverages web dynamics to derive additional information from ob-

served changes across a large number of websites, primarily a change in behavior (i.e., introducing

maliciousness), but also the impact and scale of changes, and commonalities in the operation of the

websites. This information then guides a human analyst or analysis tool to more quickly determine

159

Related Work Chapter 6

the root cause for a website being attacked and turning malicious, and, thus, facilitates removal of

the malicious behavior.

6.5 DNS Security

The domain name system (DNS) is a critical service in the Internet ecosystem and prior work has

studied DNS security extensively. Bell and Britton hold a patent in which they describe how a host

can be taken over by assigning the same IP address to a virtual interface on another system [230].

Yadav et al. report on domain-flux practices in botnets, a technique in which a domain generation

algorithm is used to generate many domains, of which the operator only needs to control one to re-

main in control of her botnet [231]. However, to some degree as the dual of exploiting stale DNS

records, one can register a single or multiple of those domains to take over a botnet, and it has been

done successfully by Stone et al. [232]. Liu et al. conducted a study similar to our problem analysis

for Cloud Strife [233]. However, methodological challenges and limitations of their datasets lead

them to an under-estimation of the impact of stale DNS records in cloud scenarios. Indeed, contrary

to them, we find that the problem of stale DNS records is amplified by multiple orders of magni-

tude. We further systematically analyze the practicality of acquiring the previously-used cloud IP

addresses, discover use-after-free attacks based on DNS caches, and we propose a usable mitigation

technique to automatically validate certificate issuance.

Instead of relying on correct DNS responses, bit-squatting exploits random bit-flips in DNS re-

quests to lure clients tomalicious or phishingwebsites [234]. Different fromour attack, bit-squatting

relies on integrity errors that occur at random and thus is not as targeted as our attack. Furthermore,

exploiting integrity errors, it can be mitigated easily via hardware and software, for example, by

adopting DNSSEC and leveraging its integrity guarantees. Similar to our technique, typo squat-

ting can be used to lure clients on malicious websites [235, 236, 237]. It remains important to note

160

Related Work Chapter 6

that in a typo-squatting attack, the attacker needs to register a new domain and hope that users visit

that domain. For our attack, although the window of opportunity might be shorter, the attack is

significantly more severe: It is impossible for users to tell whether they are in fact being attacked,

as domains and IP addresses have residual trust, and any connection might be marked trusted by

the browser due to domain-validated TLS certificates. Indeed, Zdrnja et al. demonstrated an ap-

proach to detect typo-squatting attacks from mined DNS data [238]. Different from prior work,

our study focuses on the vulnerabilities of stale DNS records pointing to cloud IP addresses, we

conduct comprehensive measurements, and we propose a mitigation to retain the convenience of

domain-validation for certificate issuance.

6.6 IP Address Squatting and Takeover Attacks

Taking over IP addresses is a well-known security problem. Themost common andwell discussed at-

tack method aims to take over entire network prefixes using BGP, which can be easily observed and

will be scrutinized quickly [239]. Wählisch et al. demonstrated amethod to detect such takeovers us-

ing RPKI [240]. Ballani et al. conducted a study investigating prefix hijacking in 2007 [241], while

Zhang et al. developed first defense methods against such attacks [242]. In 2015, Gavrichenkov

demonstrated that modern domain-validated TLS certificates (and thereby HTTPS) can be broken

using prefix hijacking [157]. Attackers with more powerful capabilities on the network path be-

tween a client requesting a certificate and a CA do not even have to perform prefix hijacking, but

instead can easily exploit IP address squatting, as they are already on the path. Cloud Strife, on the

other hand, details a new attack vector to conduct IP address squatting, which is practical, and time-

and cost-efficient to launch.

161

Related Work Chapter 6

6.7 Certificate Validation Security

The security threats we studied in Chapter 4 tie in with modern, domain-based, certificate authori-

ties and their surrounding security challenges. Various efforts currently track the adoption of Let’s

Encrypt [243, 244]. In general, the security implications of domain-based certificate validation are

widely accepted. In their analysis of the HTTPS/TLS trust ecosystem, Clark et al. [245] place great

trust inDANE [165] tomitigate this issue. Apart fromDANE,Certificate Transparency [141, 142] is

considered the ideal reactive mitigation for maliciously and wrongfully obtained certificates and has

received significant attention recently. The DNS certificate authority authorization (CAA) record

might reduce the impact of IP use-after-free attacks to some degree [164], as it limits the CAs that are

allowed to issue a certificate for a specific domain, and, thus, force an attacker to request a certificate

from these CAs. However, our analysis shows that current domain validation in trust ecosystem

is susceptible to use-after-free attacks regardless of CAA records. In fact, the only way to defend

against use-after-free attacks through CAA is to restrict certificate issuance in its entirety, which

then raises problems when the certificate expires while also relying on automatic certificate renewal

setups, such as those recommended by Let’s Encrypt, in which case automatic DNS zone updates

are required (which become difficult in the presence of DNSSEC). Overall, relying on CAA would

require numerous compromises in terms of certificate lifetime management and DNS zone main-

tenance, while still providing a potential (small) window of opportunity for an attacker whenever

the CAA record needs to be relaxed to allow certificate renewal. We introduced a mitigation that

incorporates existing trust of a name into the validation process and can protect against these attacks.

6.8 Cloud Security

Concurrent with the increasing adopting of cloud services, cloud security has drawn more research

attention. Chen et al. provided a contemporary summary and analysis of cloud security issues [246],

162

Related Work Chapter 6

and indicated problems of shared resources. Similarly, Subashini and Kavitha provided a compre-

hensive analysis of security challenges in cloud scenarios [247]. Their analysis of IaaS platforms only

includes similar issues to those approached by Ristenpart et al. [122]. Specifically, Ristenpart et al.

exploit shared resources in IaaS environments to facilitate cross-VM side-channel attacks. However,

they focus on physical computing resources and they do not investigate issues induced by logical re-

source sharing, for example, access to the same IP address pool. Jensen et al. focus on classical web

attacks, especially in SaaS (Software-as-a-Service) scenarios [248]. Takabi et al. discuss the over-

all issue of IP squatting that is related to secure handling of provisioning and multi-domain cloud

platforms with shared resource pools [249]. Zhang et al. investigate access control and trust man-

agement in the context of multi-tenant environments [250]. Cloud Strife is orthogonal to prior

cloud security research, and it focuses on the certificate ecosystem vulnerabilities as it is being used

in combination with cloud services.

6.9 IPv4 Security Scanning

Internet-wide scans have become an important tool for applied security research. They are impera-

tive to identify and understand the impact of new vulnerabilities or common misconfigurations, like

Heartbleed or DROWN. Heninger et al. scanned the IPv4 address space for weak cryptographic

keys used by TLS and SSH servers [207]. Alarmingly, they discovered shared secret keys due to a

lack of entropy during key generation, and they were even able to recover secret keys. Aviram et

al. discovered DROWN, a new attack that exploits flaws in SSLv2. To determine its practical im-

pact, they scanned the entire IPv4 address space and identified that 33% of all HTTPS servers were

vulnerable [251].

These discoveries have been made possible by various advances around Internet-wide scanning.

Heidemann et al. performed one of the first Internet-wide scans by sending ICMP messages to all

163

Related Work Chapter 6

allocated IPv4 addresses to identify reachable hosts [252]. Although enumerating all reachable hosts

took multiple months to complete, the study clearly indicated the potential and benefits of large-

scale probing. In 2013, Durumeric et al. developed ZMap [177], a fast scanning tool that can scan

the entire IPv4 address space in under five minutes given the right conditions. They further discuss

guidelines and best practices in using this tool to perform Internet-wide scans. We support their

guidelines and took similar precautions to minimize the impact of our measurements.

6.10 Enumerating and Scanning IPv6 Addresses

While Internet-wide scans have become a common tool in the IPv4 world, measurements for IPv6

are still lagging behind. Specifically, three distinct research directions have been pursued: prefix-

based measurements, studies based on client-centric vantage points, and, the most neglected, server-

centric and security motivated studies.

Monitoring and measuring the IPv6 deployment has been of growing interest ever since the

IPv6 standard was introduced. Large service providers and vendors, such as Cisco or Google, have

since been tracking the use of IPv6 [253, 181, 189]. Similarly, Dhamdhere et al. analyzed historical

BGP data to determine IPv6 deployment at the autonomous system (AS) level, for which they were

able to determine that it was lagging behind at edge networks [254]. While some publicly accessible

resources exist about the allocated IPv6 prefixes, for example, prefix assignments from IANA [255],

those resources only provide a high-level view and do not allow exact measurements. Furthermore,

considering that the smallest recommended end-user allocation for IPv6 networks is a /64 network

(232 times the size of the entire IPv4 address space), it is impossible to tell which part of an announced

prefix is allocated or in active use. Therefore, it is impossible to provide insights into IPv6 address

utilization from prefix information alone, and efficiently enumerating active IPv6 addresses remains

a challenge.

164

Related Work Chapter 6

To characterize IPv6 adoption by end-user systems, Colitti et al. included web resources from a

dual-stack host and from an IPv4-only host on the Google landing page, so that its visitors’ browsers

would attempt to access the dual-stack hosted resources via IPv6 first [256]. Due to possible browser

or DNS incompatibilities in respect to IPv6 however, the reported numbers are lower bounds.

Plonka and Berger passively measured which and how clients connected to a large content de-

livery network’s IPv6-capable servers and inferred patterns from it, like the stability and density of

active IPv6 addresses [186]. Foremski et al. develop Entropy/IP, which is an approach that lever-

ages machine learning to predict likely active IPv6 addresses, based on a seed set of active addresses

observed in the past [257]. Murdock et al. introduced a more generic approach (6Gen) to determine

potential IPv6 addresses from seed sets [184]. In both cases, addresses that are not in use might be

generated, and, hence, the generated addresses are subjected to subsequent liveness verification. Un-

fortunately, these prior studies depend on existing and comprehensive seed sets, which are difficult

to collect without the visibility that a network vantage point provides, such as a large Internet ser-

vice provider or network operator. However, due to their inherent privacy concerns, these vantage

points are heavily guarded and generally not accessible to third parties, such as academic researchers.

In contrast, in Chapter 5, we introduced an approach to enumerate an assigned part of the IPv6 In-

ternet that does not depend on a privileged network position. Furthermore, network vantage points

can miss certain hosts. For example, for the content delivery networks hosts that do not initiate any

connections to it, for example, servers, are missed. These hosts, however, are still discovered by our

approach (see Section 5.5). Ultimately, the dataset that our approach collects can be readily used as

input for generative algorithms, such as Entropy/IP [257] or 6Gen [184].

Czyz et al. aim to evaluate the general filtering policy applied to dual-stack servers (IPv6 and

IPv4; less than 20 ports) [37]. As a source for dual-stack hosts they rely on hostnames with both A

and AAAA records in the Rapid7 DNS ANY dataset [258]. Consequently, the security posture of

IPv6-only hosts is not evaluated, a gap we fill in Chapter 5. As our findings confirm, their results

165

Related Work Chapter 6

indicate that dual-stack enabled servers have more permissive IPv6 firewall policies compared to

IPv4, for example, SSH, Telnet, and SNMP are more than twice as open for IPv6-capable routers

as they are for their IPv4 counterparts. However, their work exhibits limitations that our technique

does not have. Specifically, due to their focus on dual-stack hosts Czyz et al. have missed IPv6-only

hosts as well as systems lacking forward-zone A or AAAA records. We overcome these limitations

by presenting a technique to identify active IPv6 hosts in specific networks instead of relying on

network vantage points or public, possibly stale, datasets. Hence, we can survey so-far neglected

IPv6-only systems, which exhibit critical security issues. Furthermore, contrary to Czyz et al., we

pinpoint a possible root cause of the differences in firewall policing between IPv4 and IPv6: Stateless

address autoconfiguration (SLAAC).

Fiebig et al. also utilize reverse DNS entries to obtain a view on assigned IPv6 addresses [9].

Specifically, they exploit semantic differences in the type of the response of a nameserver [259] to

enumerate reverse zones. However, their work does not include a security evaluation of the iden-

tified hosts. We leverage their work as a baseline for our evaluation and we find that our technique

performs better for large prefixes, due to the already high deployment rate of DNSSEC in their re-

spective reverse zones. Furthermore, we find that the usefulness of their technique has limitations.

After Fiebig et al. presented their findings in late 2016 [188], mitigation technique have been adopted

by network operators. Furthermore, their technique generates a significant request volume, which

can be mitigated similarly. In contrast, mitigations for our enumeration technique require signifi-

cant changes to the DNSSEC standard, which we hypothesize industry is unlikely going to adopt in

the near future due to deployment concerns (see Section 5.6). Furthermore, our technique is more

economical in generated requests, putting less strain on networks and rendering network-based de-

tection more difficult.

166

Related Work Chapter 6

6.11 DNSSEC Privacy Issues

DNSSEC-signed zones that leverage NSEC-based denial of existence are known to be vulnerable

to zone enumeration attacks [201]. Although NSEC3 renders it more difficult, as a hash-based ap-

proach, it remains possible to enumerate the zone through a brute-force attack. Goldberg et al. pre-

sented variants of NSEC3 and showed that the modified schemes would still be vulnerable to zone

enumeration through brute-force attacks [203]. To break the hashed names, Wander et al. lever-

aged a GPU to launch a dictionary attack against the “.com” zone and successfully unblinded 64%

of the zone [260]. We discussed prior work related to preventing zone-walking attacks on DNSSEC

in Section 5.6, which is why we omit it here in the pursuit of brevity.

Previous work hints at the potential of information leakage through reverse DNS zones [261,

262, 263]. However, they only provide preliminary insight, and do not discuss or leverage any

information leaks (e.g., resource record types and their meaning for IPv6 reverse zones) nor do they

conduct any empirical study on the real-world significance of such leaks. Contrary to prior work,

our approach transfers the challenge of unblinding NSEC3 into a new domain. There, we leverage

various intricate details, which have not yet received any attention, to considerably reduce the effort

to unblind IPv6 addresses from the NSEC3 chain. Specifically, we utilize the way reverse zones are

organized, thewell-defined structure of IPv6, and the insight thatNSEC3 still leaks the record types,

which have a specific meaning for reverse zones.

167

This page intentionally left blank

168

Chapter 7

Summary

In this dissertation, we investigated abuse on the Internet, which has become an ever-present and

ever-evolving threat for users with the increasing reliance on Internet-based services in daily life, be-

cause the software and protocols implementing these services’ functionality are often vulnerable to

attacks. Without carefully navigating these threats, miscreants can violate the users’ security, pri-

vacy, and trust by stealing and monetizing their private data, or by scamming, defrauding, or mis-

leading them. However, to enable users to steer clear of such abuse, we need to be able to analyze

and understand it first. We contributed to conquering the problem of Internet abuse from three

interconnected angles: identification, to address occurring abuse (Chapter 2 and Chapter 3); preven-

tion, to mitigate existing abuse and abuse potential (Chapter 4); and discovery, to reduce future abuse

potential (Chapter 5).

To identify large-scale abuse that is occurring on the Internet, we examined two current web-

based threats in depth: website defacements and malware infection campaigns.

To tackle defacements attacks, we introduced Meerkat, which is an automated detection system

that utilizes a novel approach based on the look and feel of a website to determine if the website has

been defaced. It leverages stacked autoencoders to automatically learn features of how website de-

169

Summary Chapter 7

facements look, and it uses a feed-forward neural network with dropout to classify them accurately.

We have demonstrated that Meerkat significantly outperforms state-of-the-art defacement detec-

tion systems on the largest dataset to date, spanning over 10 million defacements across 16 years.

Contrary to prior work, Meerkat does not require feature engineering based on a priori domain

knowledge, and, thus, it can tackle web evolution and evasions more gracefully. Since its inception

in 2015, Meerkat has already inspired companies and similar systems are now being offered as online

services against defacement attacks.

We then developed Delta, a light-weight system that extracts and analyzes the changes made to

websites, to determine if they introduce a change in behavior, such as a website being compromised

by an attacker and turning malicious. Delta leverages a novel fuzzy tree difference algorithm to ex-

tract only relevant changes, which it then clusters to distinguish stand-alone changes from groups

of changes. Based on the identified groups, it establishes the scale and impact of malware infection

campaigns, generates an identifying signature for easier detection, and facilitates root cause analysis

by establishing commonalities across a campaign’s websites. Aiding root cause analysis is crucial in

defending against Internet abuse, because we must not only detect the presence of web-based mal-

ware, but we must also identify known and unknown campaigns, to understand how they are being

launched. Indeed, Delta finds previously unknownweb-basedmalware infection campaigns at scale,

which we have shown by example of a campaign redirecting to the Cool Exploit Kit. Furthermore,

as a result of its design, Delta can identify malicious behavior even if it is currently inactive.

In order to prevent existing abuse and abuse potential, we presented Cloud Strife, a new miti-

gation for IP address takeover attacks for TLS-based services. Although these attacks were thought

to be difficult to launch and easy to detect, we discovered a new variant, called IP address use-after-

free, that we confirm is practical, time-efficient, and cost-efficient for attackers to launch. This is

the case because of how current online services are deployed, that is, their cloud-based ephemeral

character and the cloud’s underlying elasticity. Worse yet, attacks based on this new variant are im-

170

Summary Chapter 7

perceptible to its victim, as they are indistinguishable from normal system maintenance or service

migration. Specifically, to mitigate these attacks against TLS-based services, Cloud Strife increases

the security of the HTTP-based TLS certificate issuance process at the certificate authority level, by

enforcing a chain of trust to the legitimate owner and preventing certificates to be issued without a

strong proof of ownership. In turn, an attacker who is launching an IP address takeover attack, in-

cluding but not limited to IP address use-after-free vulnerabilities, will not be able to obtain a valid

certificate, which severely reduces her capabilities, and which downgrades her attack from a full im-

personation attack to a simple denial-of-service attack. Finally, our mitigation is practical and can

be deployed readily under strict real-world performance and usability requirements, because it has

negligible operational overhead and only requires intervention in disaster-recovery scenarios.

In our fourth contribution, we introduce a novel technique to discover future abuse potential

by enabling Internet-wide security measurements for IPv6. Specifically, our technique enumerates

active IPv6 addresses from the IPv6 reverse zone. To do so, it leverages the DNSSEC zone enumer-

ation attack, which we make practical even in the face of the zone enumeration defense NSEC3 by

exploiting previously ignored subtleties and intricate details in the organization of the IPv6 reverse

zone. Contrary to prior work, our technique discovers active IPv6-reachable hosts without requir-

ing a network vantage point to observe IPv6 traffic. It also discovers hosts that previous approaches

miss because they do not initiate connections that could be observed, such as those of routers or

servers, and it can be directed at specific networks more easily. Based on our technique, we have

then shown that IPv6 security posture is lagging behind its IPv4 counterpart for five networks of

varying scale and managed by various operators, which we conjecture is the case because of unin-

tended IPv6 connectivity, possibly through stateless address autoconfiguration (SLAAC).

In summary, in this dissertation, we made contributions to identifying, preventing, and discover-

ing current Internet abuse and future abuse potential. Due the adversarial nature of Internet abuse,

however, some issues remain, and future work should investigate more closely how we can address

171

Summary Chapter 7

them at their core. For example, we need to better understand how IPv6 deployment impacts se-

curity posture, what the abuse potential of newly IPv6-reachable devices is, and how evolution in

protocols and usage pattern impacts security.

172

Appendix A

Mitigating the Risks of Takeover Attacks
and Domain-Validated Certificates

A.1 Takeover Attack Proof of Concept
For our proof of concept experiment (see Section 4.3.5), we obtained a valid certificate for the do-
main “cloudstrife.seclab.cs.ucsb.edu.” The obtained certificate is shown in Listing A.2. The respec-
tive entry in the certificate transparency log can be found at https://crt.sh/?id=250959196.
We revoked the certificate after it has propagated to certificate transparency logs, that is, shortly
after issuance. In face of often ignored revocation checks, we opt not to publish the private key.
Instead, we prove ownership of the certificate by signing a unique message (see Listing A.3 and List-
ing A.4). We did not use the certificate for any purpose besides signing themessage. It can be verified
as follows (lines starting with # denote comments, and lines starting with $ denote commands):

Copy Listing A.2 to certificate.pem and Listing A.4 to message.txt.dgst.b64

Create message.txt
$ echo −n "Cloud Strife: Mitigating the Security Risks of Domain Validated \
Certificates" > message.txt

Convert the full certificate to raw PEM
$ openssl x509 −pubkey −noout −in certificate.pem > certificate_raw.pem

Decode the signature
$ base64 −d message.txt.dgst.b64 > message.txt.dgst

Verify the message
$ openssl dgst −sha256 −verify certificate_raw.pem −signature message.txt.dsgt \
message.txt

Listing A.1: Instructions to verify the signature

173

https://crt.sh/?id=250959196

Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates Chapter A

−−−−−BEGIN CERTIFICATE−−−−−
MIIFHzCCBAegAwIBAgISA3XAEcaykugGaCy9tCoCdJWKMA0GCSqGSIb3DQEBCwUA
MEoxCzAJBgNVBAYTAlVTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXB0MSMwIQYDVQQD
ExpMZXQncyBFbmNyeXB0IEF1dGhvcml0eSBYMzAeFw0xNzExMDkyMzA4NTVaFw0x
ODAyMDcyMzA4NTVaMCkxJzAlBgNVBAMTHmNsb3Vkc3RyaWZlLnNlY2xhYi5jcy51
Y3NiLmVkdTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAONF0TzeAA6N
q5Li7e9h6+Y//d8Zy2gbWN465t3MPVlz1lSLqCZvT4e3IDjuyQ/gx+yWnndtQrhs
zHt+GigQbBcAFM5YohIVrTr7M8ozZVZhu1x11xmPZYJ9hAi8NO6p2uoZMNwiHh35
XVFQs5LFG6QpPGBWoNtu1t5zwLYF01STlMS/hNn0P/KlrnAzs2tSX//OxxaY+jos
KQCl9LrXKhOXcmaZMXFe7t8uglFsjbEvM9TRFqeENROik/TLjRlyb3BM5HtKVnno
tDh6078qCgwMzZyh5YRy2uOGHCp13TdZQtOELq0qfGNjVClwRENo+AW1K8fPnw9L
S49OpBwzx2MCAwEAAaOCAh4wggIaMA4GA1UdDwEB/wQEAwIFoDAdBgNVHSUEFjAU
BggrBgEFBQcDAQYIKwYBBQUHAwIwDAYDVR0TAQH/BAIwADAdBgNVHQ4EFgQUKnFO
hVGO9fXAoSDpoRiztZhSYo4wHwYDVR0jBBgwFoAUqEpqYwR93brm0Tm3pkVl7/Oo
7KEwbwYIKwYBBQUHAQEEYzBhMC4GCCsGAQUFBzABhiJodHRwOi8vb2NzcC5pbnQt
eDMubGV0c2VuY3J5cHQub3JnMC8GCCsGAQUFBzAChiNodHRwOi8vY2VydC5pbnQt
eDMubGV0c2VuY3J5cHQub3JnLzApBgNVHREEIjAggh5jbG91ZHN0cmlmZS5zZWNs
YWIuY3MudWNzYi5lZHUwgf4GA1UdIASB9jCB8zAIBgZngQwBAgEwgeYGCysGAQQB
gt8TAQEBMIHWMCYGCCsGAQUFBwIBFhpodHRwOi8vY3BzLmxldHNlbmNyeXB0Lm9y
ZzCBqwYIKwYBBQUHAgIwgZ4MgZtUaGlzIENlcnRpZmljYXRlIG1heSBvbmx5IGJl
IHJlbGllZCB1cG9uIGJ5IFJlbHlpbmcgUGFydGllcyBhbmQgb25seSBpbiBhY2Nv
cmRhbmNlIHdpdGggdGhlIENlcnRpZmljYXRlIFBvbGljeSBmb3VuZCBhdCBodHRw
czovL2xldHNlbmNyeXB0Lm9yZy9yZXBvc2l0b3J5LzANBgkqhkiG9w0BAQsFAAOC
AQEAIj1W4ZzHlsaj6ccWccGyVahfk9JDhImMQLDUR02FYqtHLPjyM1JIIyYHP9xE
S2JZBbzMlrr2SjfxC3IQhDkUIjyPEeLv6WVT0hFbbzu3QAYjW5yigctpuggx/v7c
rhbWpmY9TJRU2QAsADF9NIeSXo+3zp15QAvrss2l+qtEK3uLgQ12+antYaI85wkc
P6MGHVV52asshcjy+v2wHxJDONmtzCHQbYXA7nhSUfspnVax8EfraGWF5XobZyLw
p91BZjOB1D+HD3ubtbk2PjlW/Eld7jgv2pCEM0iXk5suidCnG47jmZQA892iUVVf
tx4z5/ntnkiw7Gwwzm+o34fMmQ==
−−−−−END CERTIFICATE−−−−−

Listing A.2: Proof of concept certificate, signed by Let’s Encrypt

Cloud Strife: Mitigating the Security Risks of Domain Validated Certificates

Listing A.3: Proof of concept message

Bc99Sl5FwjqYLJl/jS1gPC9fyI9XiS/ex7QVg+zIFZpJ+aPCYcsGm4fGkJxathte
w4i0p3q3lSmnkukRoRNVSvMJdfJRm5QvRQr43HsC6iT+N2xZI/QLcH0nMGUftpR2
HuEiY8LwIalNuxOOjTZJwfTTSRM+NdCjSa39RDpqQLU5LGKjBpSTT/jfg0RwrX0w
MhDnq+iqqrW0kDg08bxARWUfY7tHUAvPpiyyEhnfyThliHFkrKUjAGtH6f+6fKFe
8pZO0XJHRoMuhq4OXMjOWKJZYu7XwQXn3GDoo1bwIwykwmIpUu9wGAjlimtTY5eW
uM0tg2PkmbuZi3JaGsczuQ==

Listing A.4: Signature for the proof of concept message

174

Appendix B

Copyright

The copyright of the following material is owned by their respective authors:

• The “Fetch website” icon in Figure 3.1 is from the collection “SEO and online marketing
Elements” by Freepik, courtesy of Flaticon.

• The “Client” icon in Figure 4.3 and Figure 5.1 is based on an icon from the collection “Little
People” by jacksonfox, courtesy of Graffletopia.

• The “example.com Webserver” icon in Figure 4.3 is from the collection “MonotoneServers”
by tugboat, courtesy of Graffletopia.

• The “ACME CA” icon in Figure 4.3 is based on an icon from the collection “Monotone-
Servers” by tugboat, courtesy of Graffletopia, and an icon from the collection “Typicons” by
Stephen Hutching, courtesy of Iconfinder.

• The “CT Logs” icon in Figure 4.3 is based on an icon from the collection “MonotoneIcons”
by tugboat, courtesy of Graffletopia.

• The “Nameserver” icon in Figure 5.1 is from the collection is from the collection “Monotone-
Servers” by tugboat, courtesy of Graffletopia.

All other rights reserved. Copyright © 2018 by Kevin Borgolte.

175

https://www.flaticon.com
https://graffletopia.com
https://graffletopia.com
https://graffletopia.com
https://iconfinder.com
https://graffletopia.com
https://graffletopia.com

This page intentionally left blank

176

Bibliography

[1] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Delta: Automatic Identi-
fication of Unknown Web-based Infection Campaigns”. In: Proceedings of the 20th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Virgil D. Gligor
and Moti Yung. Berlin, Germany: Association for Computing Machinery (ACM), Nov.
2013, pp. 109–120. ISBN: 978-1-4503-2477-9. DOI: 10.1145/2508859.2516725.

[2] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Relevant Change Detection:
Framework for the Precise Extraction of Modified and Novel Web-based Content as a Fil-
tering Technique for Analysis Engines”. In: Proceedings of the 23rd World Wide Web Confer-
ence (WWW). Ed. by Andrei Z. Broder, Kyuseok Shim, and Torsten Suel. WWW Com-
panion. Developers’ Track. Seoul, Republic of Korea: International World Wide Web Con-
ference Committee (IW3C2), Apr. 2014, pp. 595–598. ISBN: 978-1-4503-2745-9. DOI:
10.1145/2567948.2578039.

[3] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupé, Yanick Fratantonio, Luca
Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili. “Ten Years of iCTF: The Good, The
Bad, andTheUgly”. In:Proceedings of the 1stUSENIXSummit onGaming,Games andGamifica-
tion inSecurityEducation (3GSE). Ed. byZacharyN. J. Peterson. SanDiego,CA:USENIXAs-
sociation, Aug. 2014. URL: https://www.usenix.org/conference/3gse14/summit-
program/presentation/vigna (visited on 08/20/2018).

[4] Yinzhi Cao, Yan Shoshitaishvili, Kevin Borgolte, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. “Protecting Web Single Sign-on against Relying Party Impersonation At-
tacks through a Bi-directional Secure Channel with Authentication”. In: Proceedings of the
17th International Symposium on Recent Advances in Intrusion Detection (RAID). Ed. by Angelos
Stavrou, Herbert Bos, and Georgios Portokalidis. Vol. 8688. Lecture Notes in Computer
Science (LNCS). Gothenburg, Sweden: Springer International Publishing, Sept. 2014,
pp. 276–298. ISBN: 978-3-319-11379-1. DOI: 10.1007/978-3-319-11379-1_14.

[5] Mathias Payer, Ling Huang, Neil Zhenqiang Gong, Kevin Borgolte, and Mario Frank.
“What You Submit is Who You Are: A Multi-Modal Approach for Deanonymizing Scien-
tific Publications”. In: IEEE Transactions on Information Forensics and Security (TIFS) 10.1 (Jan.
2015), pp. 200–212. ISSN: 1556-6013. DOI: 10.1109/TIFS.2014.2368355.

177

https://doi.org/10.1145/2508859.2516725
https://doi.org/10.1145/2567948.2578039
https://www.usenix.org/conference/3gse14/summit-program/presentation/vigna
https://www.usenix.org/conference/3gse14/summit-program/presentation/vigna
https://doi.org/10.1007/978-3-319-11379-1_14
https://doi.org/10.1109/TIFS.2014.2368355

[6] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna. “Meerkat: Detecting Website
Defacements through Image-based Object Recognition”. In: Proceedings of the 24th USENIX
Security Symposium (USENIX Security). Ed. by Jaeyeon Jung Jung and Thorsten Holz. Wash-
ington, D.C., USA: USENIX Association, Aug. 2015, pp. 595–610. ISBN: 978-1-931971-
232.URL: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/borgolte (visited on 08/20/2018).

[7] ShuangHao,KevinBorgolte,NickNikiforakis,Gianluca Stringhini,Manuel Egele,Michael
Eubanks, Brian Krebs, and Giovanni Vigna. “Drops for Stuff: An Analysis of Reshipping
Mule Scams”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). Ed. by Ninghui Li and Christopher Kruegel. Denver, CO, USA:
Association for Computing Machinery (ACM), Oct. 2015, pp. 1081–1092. ISBN: 978-1-
4503-3832-5. DOI: 10.1145/2810103.2813620.

[8] Antonio Bianchi, Kevin Borgolte, Jacopo Corbetta, Francesco Disperati, Andrew Dutcher,
John Grosen, Paul Grosen, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Nick
Stephens, Giovanni Vigna, and Ruoyu Wang. “Cyber Grand Shellphish”. In: Phrack 15.70
(Jan. 2017). Authors listed alphabetically. URL: http://phrack.org/papers/cyber_
grand_shellphish.html (visited on 08/20/2018).

[9] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel, and Giovanni Vigna.
“Something From Nothing (There): Collecting Global IPv6 Datasets From DNS”. In:
Proceedings of the 18th Passive and Active Measurement (PAM). Ed. by Mohamed Ali Kâa-
far, Steve Uhlig, and Johanna Amann. Vol. 10176. Lecture Notes in Computer Science
(LNCS). Sydney, Australia: Springer International Publishing, Mar. 2017, pp. 30–43.
ISBN: 978-3-319-54328-4. DOI: 10.1007/978-3-319-54328-4_3.

[10] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni Vigna.
“Cloud Strife: Mitigating the Security Risks of Domain-Validated Certificates”. In: Pro-
ceedings of the 25th Network and Distributed System Security Symposium (NDSS). Ed. by Patrick
Traynor and Alina Oprea. San Diego, CA, USA: Internet Society (ISOC), Feb. 2018. ISBN:
1891562-49-5. DOI: 10.14722/ndss.2018.23327.

[11] Yan Shoshitaishvili, Antonio Bianchi, Kevin Borgolte, Amat Cama, Jacopo Corbetta,
Francesco Disperati, Andrew Dutcher, John Grosen, Paul Grosen, Aravind Machiry,
Christopher Salls, Nick Stephens, Ruoyu Wang, and Giovanni Vigna. “Mechanical Phish:
Resilient Autonomous Hacking”. In: IEEE Security & Privacy 16.2 (Mar.–Apr. 2018),
pp. 12–22. ISSN: 1558-4046. DOI: 10.1109/MSP.2018.1870858.

[12] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel, Giovanni Vigna, and
Anja Feldmann. “In rDNS We Trust: Revisiting a Common Data-Source’s Reliability”.
In: Proceedings of the 19th Passive and Active Measurement (PAM). Ed. by Robert Beverly
and Georgios Smaragdakis. Vol. 10771. Lecture Notes in Computer Science (LNCS).
Berlin, Germany: Springer International Publishing, Mar. 2018, pp. 131–145. ISBN:
978-3-319-54327-7. DOI: 10.1007/978-3-319-76481-8_10.

178

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/borgolte
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/borgolte
https://doi.org/10.1145/2810103.2813620
http://phrack.org/papers/cyber_grand_shellphish.html
http://phrack.org/papers/cyber_grand_shellphish.html
https://doi.org/10.1007/978-3-319-54328-4_3
https://doi.org/10.14722/ndss.2018.23327
https://doi.org/10.1109/MSP.2018.1870858
https://doi.org/10.1007/978-3-319-76481-8_10

[13] Kevin Borgolte, Shuang Hao, Tobias Fiebig, and Giovanni Vigna. “Enumerating Ac-
tive IPv6 Hosts for Large-scale Security Scans via DNSSEC-signed Reverse Zones”. In:
Proceedings of the 39th IEEE Symposium on Security & Privacy (S&P). Ed. by Bryan Parno
and Christopher Kruegel. San Francisco, CA, USA: Institute of Electrical and Elec-
tronics Engineers (IEEE), May 2018, pp. 438–452. ISBN: 978-1-5386-4353-2. DOI:
10.1109/SP.2018.00027.

[14] Wei Meng, Chenxiong Qian, Shuang Hao, Kevin Borgolte, Giovanni Vigna, Christopher
Kruegel, and Wenke Lee. “Rampart: Protecting Web Applications from CPU-Exhaustion
Denial-of-Service Attacks”. In: Proceedings of the 27th USENIX Security Symposium (USENIX
Security). Ed. by William Enck and Adrienne Porter Felt. Baltimore, MD, USA: USENIX
Association, Aug. 2018. URL: https://www.usenix.org/conference/usenixsecur
ity18/presentation/meng (visited on 08/20/2018).

[15] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. “Investigat-
ing Operators’ Perspective on Security Misconfigurations”. In: Proceedings of the 25th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Michael Backes
andXiaoFengWang.Toronto,ON,Canada:Association forComputingMachinery (ACM),
Oct. 2018. ISBN: 978-1-4503-5693-0. DOI: 10.1145/3243734.3243794.

[16] Giorgio Davanzo, Eric Medvet, and Alberto Bartoli. “A Comparative Study of Anomaly
Detection Techniques in Web Site Defacement Detection”. In: Proceedings of the 23rd IFIP
TC11 Information Security Conference & Privacy Conference. Ed. by Sushil Jajodia, Pierangela
Samarati, and Stelvio Cimato. Milan, Italy: International Federation for Information Pro-
cessing (IFIP), Sept. 2008, pp. 711–716. ISBN: 978-0-387-09699-5. DOI: 10.1007/978-
0-387-09699-5_50.

[17] Kevin Borgolte. A Brief Analysis of the ISIS/ISIL Defacement Campaign. Nov. 6, 2014. URL:
https://kevin.borgolte.me/notes/team-system-dz-isis-isil-defacement-
campaign/ (visited on 08/20/2018).

[18] Gaurav Raghuvanshi, Newley Purnell, and Jason Ng. Malaysia Airlines Website Hacked
by Group Calling Itself ‘Cyber Caliphate’. The Wall Street Journal. Jan. 26, 2015. URL:
https://www.wsj.com/articles/malaysia-airlines-website-hacked-by-
group-calling-itself-cyber-caliphate-1422238358 (visited on 08/20/2018).

[19] British Broadcasting Company (BBC). Keighley Cougars website hacked to read ’I love you Isis’.
Nov. 3, 2014. URL: http://www.bbc.com/news/uk-england-leeds-29876394
(visited on 08/20/2018).

[20] Roberto Preatoni, Marcelo Almeida, Kevin Fernandez, and other unknown authors. Zone-
H.org - Unrestricted Information. Jan. 1998. URL: http://www.zone-h.org/ (visited on
08/20/2018).

[21] Eduard Kovacs. Softpedia Interview: Alberto Redi, Head of Zone-H. June 8, 2013. URL: https:
//news.softpedia.com/news/Softpedia-Interview-Alberto-Redi-Head-of-
Zone-H-359499.shtml (visited on 08/20/2018).

179

https://doi.org/10.1109/SP.2018.00027
https://www.usenix.org/conference/usenixsecurity18/presentation/meng
https://www.usenix.org/conference/usenixsecurity18/presentation/meng
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1007/978-0-387-09699-5_50
https://doi.org/10.1007/978-0-387-09699-5_50
https://kevin.borgolte.me/notes/team-system-dz-isis-isil-defacement-campaign/
https://kevin.borgolte.me/notes/team-system-dz-isis-isil-defacement-campaign/
https://www.wsj.com/articles/malaysia-airlines-website-hacked-by-group-calling-itself-cyber-caliphate-1422238358
https://www.wsj.com/articles/malaysia-airlines-website-hacked-by-group-calling-itself-cyber-caliphate-1422238358
http://www.bbc.com/news/uk-england-leeds-29876394
http://www.zone-h.org/
https://news.softpedia.com/news/Softpedia-Interview-Alberto-Redi-Head-of-Zone-H-359499.shtml
https://news.softpedia.com/news/Softpedia-Interview-Alberto-Redi-Head-of-Zone-H-359499.shtml
https://news.softpedia.com/news/Softpedia-Interview-Alberto-Redi-Head-of-Zone-H-359499.shtml

[22] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lindorfer,
Christopher Kruegel, Herbert Bos, and Giovanni Vigna. “MineSweeper: An In-depth Look
into Drive-by Cryptocurrency Mining and Its Defense”. In: Proceedings of the 25th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Michael Backes
and XiaoFeng Wang. Toronto, ON, Canada: Association for Computing Machinery
(ACM), Oct. 2018. ISBN: 978-1-4503-5693-0. DOI: 10.1145/3243734.3243858.

[23] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra
Modadugu. “The Ghost in the Browser: Analysis of Web-based Malware”. In: Pro-
ceedings of the 1st Workshop on Hot Topics in Understanding Botnets (HotBots). Ed. by Niels
Provos. Cambridge, MA, USA: USENIX Association, Apr. 10, 2007. URL: https :
//www.usenix.org/conference/hotbots-07/ghost-browser-analysis-web-
based-malware (visited on 08/21/2018).

[24] Sophos Security Team. Sophos Security Threat Report 2013. Tech. rep. Sophos, Dec. 4, 2012.
URL: https://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecur
itythreatreport2013.pdf (visited on 08/21/2018).

[25] Paul Baccas. Malware injected into legitimate JavaScript code on legitimate websites. Feb. 13, 2013.
URL: https://nakedsecurity.sophos.com/2013/02/13/malware-javascript
(visited on 08/21/2018).

[26] Dan Goodin. Twitter detects and shuts down password data hack in progress. Ars Technica. Feb. 1,
2013. URL: https://arstechnica.com/information-technology/2013/02/twi
tter-detects-and-shuts-down-password-data-hack-in-progress/ (visited on
08/21/2018).

[27] Facebook Security Team. Protecting People On Facebook. Feb. 15, 2013. URL: https://www.
facebook.com/note.php?note_id=10151249208250766 (visited on 08/21/2018).

[28] Jim Finke and JosephMenn. Exclusive: Apple,Macs hit by hackers who targeted Facebook. Reuters.
Feb. 13, 2013. URL: https://www.reuters.com/article/us-apple-hackers/
exclusive-apple-macs-hit-by-hackers-who-targeted-facebook-idUSBRE91I
10920130219 (visited on 08/21/2018).

[29] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. “A Large-Scale Study of
the Evolution of Web Pages”. In: Proceedings of the 12th World Wide Web Conference (WWW).
Ed. by Yih-Farn Robin Chen, László Kovács, and Steve Lawrence. Budapest, Hungary: In-
ternational World Wide Web Conference Committee (IW3C2), May 2003, pp. 669–678.
ISBN: 1-58113-680-3. DOI: 10.1145/775152.775246.

[30] Bernardo A. Huberman and Lada A. Adamic. “Evolutionary Dynamics of the World Wide
Web”. Jan. 13, 1999. arXiv: cond-mat/9901071.

180

https://doi.org/10.1145/3243734.3243858
https://www.usenix.org/conference/hotbots-07/ghost-browser-analysis-web-based-malware
https://www.usenix.org/conference/hotbots-07/ghost-browser-analysis-web-based-malware
https://www.usenix.org/conference/hotbots-07/ghost-browser-analysis-web-based-malware
https://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf
https://nakedsecurity.sophos.com/2013/02/13/malware-javascript
https://arstechnica.com/information-technology/2013/02/twitter-detects-and-shuts-down-password-data-hack-in-progress/
https://arstechnica.com/information-technology/2013/02/twitter-detects-and-shuts-down-password-data-hack-in-progress/
https://www.facebook.com/note.php?note_id=10151249208250766
https://www.facebook.com/note.php?note_id=10151249208250766
https://www.reuters.com/article/us-apple-hackers/exclusive-apple-macs-hit-by-hackers-who-targeted-facebook-idUSBRE91I10920130219
https://www.reuters.com/article/us-apple-hackers/exclusive-apple-macs-hit-by-hackers-who-targeted-facebook-idUSBRE91I10920130219
https://www.reuters.com/article/us-apple-hackers/exclusive-apple-macs-hit-by-hackers-who-targeted-facebook-idUSBRE91I10920130219
https://doi.org/10.1145/775152.775246
https://arxiv.org/abs/cond-mat/9901071

[31] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey Mogul. “Rate of
Change and other Metrics: a Live Study of the World Wide Web”. In: Proceedings of the 1st
USENIX Symposium on Internet Technologies and Systems (USITS). Ed. by Carl Staelin. Mon-
terey, CA, USA: USENIX Association, Dec. 1997, pp. 147–158. URL: https://www.
usenix.org/conference/usits-97/rate-change-and-other-metrics-live-
study-world-wide-web (visited on 08/21/2018).

[32] Ricardo Baeza-Yates, Carlos Castillo, and Felipe Saint-Jean. “Web Dynamics”. In: ed. by
Mark Levene and Alexandra Poulovassilis. Springer International Publishing, 2004.
Chap. Web Dynamics, Structure, and Page Quality, pp. 93–109. ISBN: 978-3-662-10874-
1. DOI: 10.1007/978-3-662-10874-1_5.

[33] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna. “Protect-
ing a Moving Target: Addressing Web Application Concept Drift”. In: Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detection (RAID). Ed. by Engin Kirda.
Vol. 5758. Lecture Notes in Computer Science (LNCS). Saint-Malo, France: Springer Inter-
national Publishing, Sept. 2009, pp. 21–40. ISBN: 978-3-642-04342-0. DOI: 10.1007/
978-3-642-04342-0_2.

[34] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Herbert Bos.
“Flip Feng Shui: Hammering a Needle in the Software Stack”. In: Proceedings of the 25th
USENIX Security Symposium (USENIX Security). Ed. by Thorsten Holz and Stefan Savage.
Austin, TX, USA: USENIX Association, Aug. 2016, pp. 1–18. ISBN: 978-1-931971-32-4.
URL: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/razavi (visited on 08/22/2018).

[35] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. “One Bit Flips, One
Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation”. In: Proceedings
of the 25th USENIX Security Symposium (USENIX Security). Ed. by Thorsten Holz and Ste-
fan Savage. Austin, TX, USA: USENIX Association, Aug. 2016, pp. 19–35. ISBN: 978-1-
931971-32-4. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/xiao (visited on 09/01/2018).

[36] Case Study: T-Mobile US Goes IPv6-only Using 464XLAT. Internet Society (ISOC). June 13,
2014. URL: https://www.internetsociety.org/resources/deploy360/2014/ca
se-study-t-mobile-us-goes-ipv6-only-using-464xlat/ (visited on 08/31/2018).

[37] Jakub Czyz, Matthew Luckie, Mark Allman, and Michael Bailey. “Don’t Forget to Lock the
Back Door! A Characterization of IPv6 Network Security Policy”. In: Proceedings of the 23rd
Network andDistributed System Security Symposium (NDSS). Ed. by Srdjan Capkun. San Diego,
CA, USA: Internet Society (ISOC), Feb. 2016. ISBN: 189156241X. DOI: 10.14722/nds
s.2016.23047.

[38] Malaysia Computer EmergencyResponseTeam (MyCERT).MyCERTIncident Statistics. Jan.
2014. URL: https://www.mycert.org.my/en/services/statistic/mycert/2013
/main/detail/914/index.html (visited on 08/20/2018).

181

https://www.usenix.org/conference/usits-97/rate-change-and-other-metrics-live-study-world-wide-web
https://www.usenix.org/conference/usits-97/rate-change-and-other-metrics-live-study-world-wide-web
https://www.usenix.org/conference/usits-97/rate-change-and-other-metrics-live-study-world-wide-web
https://doi.org/10.1007/978-3-662-10874-1_5
https://doi.org/10.1007/978-3-642-04342-0_2
https://doi.org/10.1007/978-3-642-04342-0_2
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.internetsociety.org/resources/deploy360/2014/case-study-t-mobile-us-goes-ipv6-only-using-464xlat/
https://www.internetsociety.org/resources/deploy360/2014/case-study-t-mobile-us-goes-ipv6-only-using-464xlat/
https://doi.org/10.14722/ndss.2016.23047
https://doi.org/10.14722/ndss.2016.23047
https://www.mycert.org.my/en/services/statistic/mycert/2013/main/detail/914/index.html
https://www.mycert.org.my/en/services/statistic/mycert/2013/main/detail/914/index.html

[39] Malaysia Computer Emergency Response Team (MyCERT). MyCERT 2nd Quarter 2013
Summary Report. Tech. rep. Aug. 6, 2013. URL: https://www.mycert.org.my/data/
content_files/27/804.pdf (visited on 08/20/2018).

[40] Steve Mansfield-Devine. “Hacktivism: assessing the damage”. In: Network Security 2011.8
(Aug. 2011), pp. 5–13. ISSN: 1353-4858. DOI: 10.1016/S1353-4858(11)70084-8.

[41] Mathieu Gorge. “Cyberterrorism: hype or reality?” In: Computer Fraud & Security 2007.2
(Feb. 2007), pp. 9–12. ISSN: 1361-3723. DOI: 10.1016/S1361-3723(07)70021-0.

[42] Henner Kircher. “The Practice of War: Production, Reproduction and Communication
of Armed Violence”. In: ed. by Aparna Rao, Michael Bollig, and Monika Böck. Berghahn
Books, Mar. 2011. Chap. 12. Martyrs, Victims, Friends and Foes: Internet Representations
by Palestinian Islamists, pp. 285–304. ISBN: 978-0857451415.

[43] Gabriel Weimann. “Terror on the Internet: The New Arena, the New Challenges”. In:
United States Institute of Peace Press, Mar. 2006. Chap. 6. Fighting Back: Responses to
Terrorism on the Internet, and Their Cost, pp. 197–202. ISBN: 978-1929223718.

[44] Newley Purnell.Google Access Is Disrupted in Vietnam. The Wall Street Journal. Feb. 23, 2015.
URL: https://www.wsj.com/articles/google-access-is-disrupted-in-viet
nam-1424680458 (visited on 08/20/2018).

[45] LimbikaniMakani. 100+Zambianwebsites hacked& defaced: Spar, Postdotnet, SEC,HomeAffairs,
Ministry of Finance. TechTrends Zambia. Apr. 15, 2014. URL: http://www.techtrends.
co.zm/zambian-websites-hacked/ (visited on 08/20/2018).

[46] British Broadcasting Company (BBC). Angry Birds website hacked after NSA-GCHQ leaks.
Jan. 29, 2014. URL: http://www.bbc.com/news/technology-25949341 (visited on
08/20/2018).

[47] AarshitMittal.NICOf Suriname,Antigua&BarbudaAnd Saint LuciaHacked By PakistaniHack-
ers. via Internet Archive Wayback Machine. Oct. 7, 2013. URL: https://web.archive.
org/web/20131013110912/http://cyber-n.com/2013/10/nic-of-suriname-
antigua-barbuda-and-saint-lucia-hacked-by-pakistani-hackers.html (vis-
ited on 08/20/2018).

[48] John Leyden. Islamist hackers attack Danish sites. The Register. Feb. 9, 2006. URL: https:
//www.theregister.co.uk/2006/02/09/islamic_defacement_protests/ (visited
on 08/20/2018).

[49] John Leyden. Hacktivists attack UN.org. The Register. Aug. 13, 2007. URL: https://www.
theregister.co.uk/2007/08/13/un_hack/ (visited on 08/20/2018).

[50] Giorgio Maone. United Nations VS SQL Injections, Aug. 12, 2007. URL: https : / /
hackademix.net/2007/08/12/united-nations-vs-sql-injections (visited on
08/20/2018).

182

https://www.mycert.org.my/data/content_files/27/804.pdf
https://www.mycert.org.my/data/content_files/27/804.pdf
https://doi.org/10.1016/S1353-4858(11)70084-8
https://doi.org/10.1016/S1361-3723(07)70021-0
https://www.wsj.com/articles/google-access-is-disrupted-in-vietnam-1424680458
https://www.wsj.com/articles/google-access-is-disrupted-in-vietnam-1424680458
http://www.techtrends.co.zm/zambian-websites-hacked/
http://www.techtrends.co.zm/zambian-websites-hacked/
http://www.bbc.com/news/technology-25949341
https://web.archive.org/web/20131013110912/http://cyber-n.com/2013/10/nic-of-suriname-antigua-barbuda-and-saint-lucia-hacked-by-pakistani-hackers.html
https://web.archive.org/web/20131013110912/http://cyber-n.com/2013/10/nic-of-suriname-antigua-barbuda-and-saint-lucia-hacked-by-pakistani-hackers.html
https://web.archive.org/web/20131013110912/http://cyber-n.com/2013/10/nic-of-suriname-antigua-barbuda-and-saint-lucia-hacked-by-pakistani-hackers.html
https://www.theregister.co.uk/2006/02/09/islamic_defacement_protests/
https://www.theregister.co.uk/2006/02/09/islamic_defacement_protests/
https://www.theregister.co.uk/2007/08/13/un_hack/
https://www.theregister.co.uk/2007/08/13/un_hack/
https://hackademix.net/2007/08/12/united-nations-vs-sql-injections
https://hackademix.net/2007/08/12/united-nations-vs-sql-injections

[51] Shaheem Reid.Hip-Hop Sites Hacked ByApparent Hate Group; SOHH,AllHipHop Temporarily
SuspendAccess. MTVNews. June 27, 2008. URL: http://www.mtv.com/news/1590117/
hip-hop-sites-hacked-by-apparent-hate-group-sohh-allhiphop-temporari
ly-suspend-access/ (visited on 08/20/2018).

[52] Byron Acohido. State Department webpages defaced. USA Today. Oct. 23, 2013. URL: https:
//www.usatoday.com/story/cybertruth/2013/10/23/department-of-state-
webpages-defaced/3170277/ (visited on 08/20/2018).

[53] John Leyden. Foxconn website defaced after iPhone assembly plant suicides. The Register. May 26,
2010. URL: http://www.channelregister.co.uk/2010/05/26/foxconn_defacem
ent_suicide_protest/ (visited on 08/20/2018).

[54] John Leyden. Anti-Israel hackers deface central bank site. The Register. Apr. 30, 2008. URL: h
ttps://www.theregister.co.uk/2008/04/30/bank_of_israel_hacking/ (visited
on 08/20/2018).

[55] British Broadcasting Company (BBC). Nottinghamshire Police website hacked by AnonGhost.
Nov. 7, 2014. URL: http://www.bbc.com/news/uk-england-nottinghamshire-
29951605 (visited on 08/20/2018).

[56] British Broadcasting Company (BBC). Shropshire Fire Service website hacked by AnonGhost.
Nov. 8, 2014. URL: http : / / www . bbc . com / news / uk - england - shropshire -
29966897 (visited on 08/20/2018).

[57] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. “Increased
DNS Forgery Resistance Through 0x20-Bit Encoding: SecURItY viA LeET QueRieS”.
In: Proceedings of the 15th ACM SIGSAC Conference on Computer and Communications Security
(CCS). Ed. by Paul Syverson and Somesh Jha. Alexandria, VA, USA: Association for Com-
puting Machinery (ACM), Oct. 2008, pp. 211–222. ISBN: 978-1-59593-810-7. DOI: 10.
1145/1455770.1455798.

[58] Giovanni Vigna and Christopher Kruegel. “Handbook of Information Security”. In: ed. by
Hossein Bidgoli. Vol. 3. John Wiley and Sons, Dec. 30, 2005. Chap. Host-based Intrusion
Detection. ISBN: 978-0471648338.

[59] Alberto Bartoli, Giorgio Davanzo, and Eric Medvet. “The Reaction Time to Web Site De-
facements”. In: IEEE Internet Computing 13 (4 July 21, 2009), pp. 52–58. ISSN: 1941-0131.
DOI: 10.1109/MIC.2009.91.

[60] David S. Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M. Voelker. “Spamscatter:
Characterizing Internet Scam Hosting Infrastructure”. In: Proceedings of the 16th USENIX
Security Symposium (USENIX Security). Ed. by Niels Provos. Boston, MA, USA: USENIX
Association, Aug. 2007. URL: https://www.usenix.org/conference/16th-usenix-
security-symposium/spamscatter-characterizing-internet-scam-hosting
(visited on 08/20/2018).

183

http://www.mtv.com/news/1590117/hip-hop-sites-hacked-by-apparent-hate-group-sohh-allhiphop-temporarily-suspend-access/
http://www.mtv.com/news/1590117/hip-hop-sites-hacked-by-apparent-hate-group-sohh-allhiphop-temporarily-suspend-access/
http://www.mtv.com/news/1590117/hip-hop-sites-hacked-by-apparent-hate-group-sohh-allhiphop-temporarily-suspend-access/
https://www.usatoday.com/story/cybertruth/2013/10/23/department-of-state-webpages-defaced/3170277/
https://www.usatoday.com/story/cybertruth/2013/10/23/department-of-state-webpages-defaced/3170277/
https://www.usatoday.com/story/cybertruth/2013/10/23/department-of-state-webpages-defaced/3170277/
http://www.channelregister.co.uk/2010/05/26/foxconn_defacement_suicide_protest/
http://www.channelregister.co.uk/2010/05/26/foxconn_defacement_suicide_protest/
https://www.theregister.co.uk/2008/04/30/bank_of_israel_hacking/
https://www.theregister.co.uk/2008/04/30/bank_of_israel_hacking/
http://www.bbc.com/news/uk-england-nottinghamshire-29951605
http://www.bbc.com/news/uk-england-nottinghamshire-29951605
http://www.bbc.com/news/uk-england-shropshire-29966897
http://www.bbc.com/news/uk-england-shropshire-29966897
https://doi.org/10.1145/1455770.1455798
https://doi.org/10.1145/1455770.1455798
https://doi.org/10.1109/MIC.2009.91
https://www.usenix.org/conference/16th-usenix-security-symposium/spamscatter-characterizing-internet-scam-hosting
https://www.usenix.org/conference/16th-usenix-security-symposium/spamscatter-characterizing-internet-scam-hosting

[61] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann Le-
Cun. “OverFeat: Integrated Recognition, Localization and Detection using Convolutional
Networks”. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR).
Ed. by Aaron Courville, Rob Fergus, and Brian Kingsbury. Banff, AB, Canada: Computa-
tional & Biological Learning Society (CBLS), Apr. 2014. arXiv: 1312.6229 [cs.CV].

[62] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Cor-
rado, Jeff Dean, and Andrew Y. Ng. “Building High-level Features Using Large Scale Un-
supervised Learning”. In: Proceedings of the 29th International Conference on Machine Learning
(ICML). Ed. by JOhn Langford and Joelle Pineau. Edinburgh, Scotland: Omnipress, June
2012, pp. 81–88. ISBN: 978-1-4503-1285-1. arXiv: 1112.6209 [cs.LG].

[63] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Proceedings of the 25th Conference on Neural Infor-
mation Processing Systems (NIPS). Ed. by Léon Bottou andChris J.C. Burges. Lake Tahoe,NV,
USA: Curran Associates Inc., Dec. 2012, pp. 1097–1105. URL: http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf (visited on 08/21/2018).

[64] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation”. In: Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Ed. by Aleix Martinez, Ronen
Basri, Rene Vidal, and Cornelia Fermuller. Columbus, OH,USA: Institute of Electrical and
Electronics Engineers (IEEE), June 2014, pp. 580–587. ISBN: 978-1-4799-5118-5. DOI:
10.1109/CVPR.2014.81.

[65] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-Based Learning
Applied toDocumentRecognition”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–
2324. ISSN: 0018-9219. DOI: 10.1109/5.726791.

[66] Rajat Raina, AnandMadhavan, and AndrewY.Ng. “Large-scale DeepUnsupervised Learn-
ing using Graphics Processors”. In: Proceedings of the 26th International Conference on Machine
Learning (ICML). Ed. by Léon Bottou and Michael Littman. Montréal, QC, Canada: Asso-
ciation for Computing Machinery (ACM), June 2009, pp. 873–880. ISBN: 978-1-60558-
516-1. DOI: 10.1145/1553374.1553486.

[67] Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Wei Koh, and Andrew Y.
Ng. “Tiled convolutional neural networks”. In: Proceedings of the 23rd Conference on Neural
Information Processing Systems (NIPS). Ed. by Richard Zemel and John Shawe-Taylor. Van-
couver, BC, Canada: Curran Associates Inc., Dec. 2010, pp. 1279–1287. URL: http://
papers.nips.cc/paper/4136-tiled-convolutional-neural-networks.pdf (vis-
ited on 08/21/2018).

184

https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1112.6209
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/1553374.1553486
http://papers.nips.cc/paper/4136-tiled-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4136-tiled-convolutional-neural-networks.pdf

[68] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. “Convolutional Deep
Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations”. In:
Proceedings of the 26th International Conference on Machine Learning (ICML). Ed. by Léon Bot-
tou and Michael Littman. Montréal, QC, Canada: Association for Computing Machinery
(ACM), June 2009, pp. 609–616. ISBN: 978-1-60558-516-1. DOI: 10.1145/1553374.
1553453.

[69] Pierre Sermanet, Soumith Chintala, and Yann LeCun. “Convolutional Neural Networks
Applied to House Numbers Digit Classification”. In: Proceedings of the 21st International Con-
ference on Pattern Recognition (ICPR). Ed. by Alberto Del Bimbo, Kim L. Boyer, and Katsushi
Ikeuchi. Tsukuba, Japan: Institute of Electrical and Electronics Engineers (IEEE), Nov. 2012,
pp. 3288–3291. ISBN: 978-4-9906441-0-9. arXiv: 1204.3968 [cs.CV].

[70] Aapo Hyvärinen, Jarmo Hurri, and Patrik O. Hoyer. Natural Image Statistics: A Probabilistic
Approach to Early Computational Vision. Vol. 39. Computational Imaging and Vision. Springer
International Publishing, June 4, 2009. ISBN: 978-1848824904.

[71] Karo Gregor and Yann LeCun. “Emergence of complex-like cells in a temporal product
network with local receptive fields”. June 2, 2010. arXiv: 1006.0448 [cs.NE].

[72] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. “What is the
best multi-stage architecture for object recognition?” In: Proceedings of the 12th IEEE Con-
ference on Computer Vision (ICCV). Ed. by Roberto Cipolla, Martial Hebert, Xiaoou Tang,
and Naokazu Yokoya. Kyoto, Japan: Institute of Electrical and Electronics Engineers (IEEE),
Sept. 2009, pp. 2146–2153. ISBN: 978-1-4244-4419-9. DOI: 10.1109/ICCV.2009.545
9469.

[73] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. “Improving neural networks by preventing co-adaptation of feature
detectors”. July 3, 2012. arXiv: 1207.0580 [cs.NE].

[74] Yangqing Jia and Eric Shelhamer. Caffe: An Open Source Convolutional Architecture for Fast
Feature Embedding. 2013. URL: https://caffe.berkeleyvision.org/ (visited on
08/20/2018).

[75] Stefan Axelsson. “The Base-Rate Fallacy and the Difficulty of Intrusion Detection”. In:
ACMTransactions on Information and System Security (TISSEC) 3 (3 Aug. 2000), pp. 186–205.
ISSN: 1094-9224. DOI: 10.1145/357830.357849.

[76] Giorgio Davanzo, Eric Medvet, and Alberto Bartoli. “Anomaly Detection Techniques for
a Web Defacement Monitoring Service”. In: Expert Systems with Applications (ESWA) 38 (10
Sept. 15, 2011), pp. 12521–12530. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2011.04.
038.

[77] Alberto Bartoli and EricMedvet. “Automatic Integrity Checks forRemoteWebResources”.
In: IEEE Internet Computing 10 (6 Nov. 13, 2006), pp. 56–62. ISSN: 1941-0131. DOI: 10.
1109/MIC.2006.117.

185

https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://arxiv.org/abs/1204.3968
https://arxiv.org/abs/1006.0448
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
https://arxiv.org/abs/1207.0580
https://caffe.berkeleyvision.org/
https://doi.org/10.1145/357830.357849
https://doi.org/10.1016/j.eswa.2011.04.038
https://doi.org/10.1016/j.eswa.2011.04.038
https://doi.org/10.1109/MIC.2006.117
https://doi.org/10.1109/MIC.2006.117

[78] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D. Tygar.
“Adversarial Machine Learning”. In: Proceedings of the 4th ACMWorkshop on Security and Artifi-
cial Intelligence (AISEC). Ed. by Alvaro A. Cárdenas, Rachel Greenstadt, and BenRubinstein.
Chicago, IL, USA: Association for Computing Machinery (ACM), Nov. 2011, pp. 43–58.
ISBN: 978-1-4503-1003-1. DOI: 10.1145/2046684.2046692.

[79] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. “The Security of Ma-
chine Learning”. In: Machine Learning 81 (2 Nov. 2010), pp. 121–148. ISSN: 1573-0565.
DOI: 10.1007/s10994-010-5188-5.

[80] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. “Can
Machine Learning Be Secure?” In: Proceedings of the 1st ACMASIA Symposium on Information,
Computer and Communications Security (ASIACCS). Ed. by Shiuhpyng Shieh and Sushil Jajo-
dia. Taipei, Taiwan: Association for Computing Machinery (ACM), Mar. 2006, pp. 16–25.
ISBN: 1-59593-272-0. DOI: 10.1145/1128817.1128824.

[81] Nedim Šrndic and Pavel Laskov. “Practical Evasion of a Learning-Based Classifier: A Case
Study”. In: Proceedings of the 35th IEEE Symposium on Security & Privacy (S&P). Ed. byMichael
Backes, Adrian Perrig, and Helen Wang. San Jose, CA, USA: Institute of Electrical and Elec-
tronics Engineers (IEEE), May 2014, pp. 197–211. ISBN: 978-1-4799-4686-0. DOI: 10.
1109/SP.2014.20.

[82] Daniel Lowd and Christopher Meek. “Adversarial Learning”. In: Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD).
Ed. by Roberto Bayardo and Kristin Bennett. Chicago, IL, USA: Association for Com-
puting Machinery (ACM), Aug. 2005, pp. 641–647. ISBN: 1-59593-135-X. DOI:
10.1145/1081870.1081950.

[83] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. “Adversarial
Classification”. In: Proceedings of the 10th ACMSIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD). Ed. by Johannes Gehrke and William DuMochel. Seattle,
WA, USA: Association for Computing Machinery (ACM), Aug. 2004, pp. 99–108. ISBN:
1-58113-888-1. DOI: 10.1145/1014052.1014066.

[84] Amir Globerson and Sam Roweis. “Nightmare at Test Time: Robust Learning by Feature
Deletion”. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Ed.
by William Cohen and Andrew Moore. Pittsburgh, PA, USA: Association for Computing
Machinery (ACM), June 2006, pp. 353–360. ISBN: 1-59593-383-2. DOI: 10.1145/1143
844.1143889.

[85] Han Xiao, Huang Xiao, and Claudia Eckert. “Adversarial Label Flips Attack on Support
VectorMachines”. In:Proceedings of the 20thEuropeanConference onArtificial Intelligence (ECAI).
Ed. by LucDeRaedt.Montepellier, France: IOS Press Amsterdam, Aug. 2012, pp. 870–875.
ISBN: 978-1-61499-098-7. DOI: 10.3233/978-1-61499-098-7-870.

186

https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1145/1081870.1081950
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1143844.1143889
https://doi.org/10.1145/1143844.1143889
https://doi.org/10.3233/978-1-61499-098-7-870

[86] David Wagner and Paolo Soto. “Mimicry Attacks on Host-based Intrusion Detection Sys-
tems”. In:Proceedings of the 9thACMSIGSACConference onComputer andCommunications Secu-
rity (CCS). Ed. by Ravi Sandhu. Washington, D.C., USA: Association for Computing Ma-
chinery (ACM), Nov. 2002, pp. 255–264. ISBN: 1-58113-612-9. DOI: 10.1145/586110.
586145.

[87] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni Vi-
gna. “Automating Mimicry Attacks Using Static Binary Analysis”. In: Proceedings of the 14th
USENIX Security Symposium (USENIX Security). Ed. by Patrick McDaniel. Baltimore, MD,
USA: USENIX Association, July 2005. URL: https://www.usenix.org/conference/
14th - usenix - security - symposium / automating - mimicry - attacks - using -
static-binary-analysis (visited on 08/21/2018).

[88] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and Gio-
vanni Vigna. “Revolver: An Automated Approach to the Detection of Evasive Web-based
Malware”. In: Proceedings of the 22nd USENIX Security Symposium (USENIX Security). Ed. by
Sam King. Washington, D.C, USA: USENIX Association, Aug. 2013, pp. 637–652. ISBN:
978-1-931971-03-4. URL: https://www.usenix.org/conference/usenixsecurity
13/technical-sessions/presentation/kapravelos (visited on 08/21/2018).

[89] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. “The Power of Procrastination:
Detection and Mitigation of Execution-stalling Malicious Code”. In: Proceedings of the 18th
ACM SIGSAC Conference on Computer and Communications Security (CCS). Ed. by George
Danezis and Vitaly Shmatikov. Chicago, IL, USA: Association for Computing Machinery
(ACM), Oct. 2011, pp. 285–296. ISBN: 978-1-4503-0948-6. DOI: 10.1145/2046707.
2046740.

[90] Marco Cova, Christopher Kruegel, and Giovanni Vigna. “Detection and analysis of drive-
by-download attacks and malicious JavaScript code”. In: Proceedings of the 19th World Wide
WebConference (WWW). Ed. by Juliana Freire and Soumen Chakrabarti. Raleigh, NC, USA:
International World Wide Web Conference Committee (IW3C2), Apr. 2010, pp. 281–290.
ISBN: 978-1-60558-799-8. DOI: 10.1145/1772690.1772720.

[91] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. “Prophiler: A
Fast Filter for the Large-Scale Detection of Malicious Web Pages”. In: Proceedings of the
20th World Wide Web Conference (WWW). Ed. by Krithi Ramamritham and Sowmya-
narayanan Sadagopan. Hyderabad, India: International World Wide Web Conference
Committee (IW3C2), Mar. 2011, pp. 197–206. ISBN: 978-1-4503-0632-4. DOI:
10.1145/1963405.1963436.

[92] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose. “All your
iFRAMEs point to Us”. In: Proceedings of the 17th USENIX Security Symposium (USENIX
Security). Ed. by Paul van Oorschot. San Jose, CA, USA: USENIX Association, Aug. 2008,
pp. 1–15. URL: https://www.usenix.org/conference/17th-usenix-security-
symposium/all-your-iframes-point-us (visited on 08/21/2018).

187

https://doi.org/10.1145/586110.586145
https://doi.org/10.1145/586110.586145
https://www.usenix.org/conference/14th-usenix-security-symposium/automating-mimicry-attacks-using-static-binary-analysis
https://www.usenix.org/conference/14th-usenix-security-symposium/automating-mimicry-attacks-using-static-binary-analysis
https://www.usenix.org/conference/14th-usenix-security-symposium/automating-mimicry-attacks-using-static-binary-analysis
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://doi.org/10.1145/2046707.2046740
https://doi.org/10.1145/2046707.2046740
https://doi.org/10.1145/1772690.1772720
https://doi.org/10.1145/1963405.1963436
https://www.usenix.org/conference/17th-usenix-security-symposium/all-your-iframes-point-us
https://www.usenix.org/conference/17th-usenix-security-symposium/all-your-iframes-point-us

[93] Pierre-Marc Bureau. Linux/Cdorked.A: NewApache backdoor being used in the wild to serve Black-
hole. ESET Security. Apr. 26, 2013. URL: https://www.welivesecurity.com/2013/
04/26/linuxcdorked-new-apache-backdoor-in-the-wild-serves-blackhole/
(visited on 08/21/2018).

[94] Daniel Cid. Apache Binary Backdoors on Cpanel-based servers. Sucuri Security. Apr. 26, 2013.
URL: https://blog.sucuri.net/2013/04/apache-binary-backdoors-on-cpan
el-based-servers.html (visited on 08/21/2018).

[95] Internet Archive. Internet Archive. URL: https://archive.org (visited on 09/01/2018).

[96] Sudarshan S.Chawathe andHectorGarcia-Molina. “MeaningfulChangeDetection in Struc-
tured Data”. In: Proceedings of the 23rd ACMSIGMOD International Conference onManagement
of Data (MOD). Ed. by Patrick Valduriez and Henry F. Korth. Tuscon, AZ, USA: Associa-
tion for ComputingMachinery (ACM),May 1997, pp. 26–37. ISBN: 0-89791-911-4. DOI:
10.1145/253260.253266.

[97] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. “X-Diff: An Effective Change Detection
Algorithm for XML Documents”. In: Proceedings of the 19th International Conference on Data
Engineering (ICDE). Ed. by Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayara-
man. Bangalore, India: Institute of Electrical and Electronics Engineers (IEEE), Mar. 2003,
pp. 519–530. ISBN: 0-7803-7665-X. DOI: 10.1109/ICDE.2003.1260818.

[98] HaroldW. Kuhn. “TheHungarianMethod for the Assignment Problem”. In:Naval Research
Logistics Quarterly (NRL) 2 (1/2 Mar. 1955), pp. 83–97. DOI: 10.1002/nav.3800020109.

[99] Jesse Kornblum. “Identifying Almost Identical Files Using Context Triggered Piecewise
Hashing”. In: Proceedings of the 6th Digital Forensic ResearchWorkshop (DFRWS). Lafayette, IN,
USA: Elsevier, Aug. 2006, pp. 91–97. DOI: 10.1016/j.diin.2006.06.015.

[100] Matthew A. Jaro. “Advances in Record-Linkage Methodology as Applied to Matching
the 1985 Census of Tampa, Florida”. In: Journal of the American Statistical Association (JASA)
84.406 (1989), pp. 414–420. DOI: 10.1080/01621459.1989.10478785.

[101] Andrei Nikolaevich Kolmogorov. “Three Approaches to the Quantitative Definition of In-
formation”. In: International Journal of Computer Mathematics (IJCM) 2 (1-4 1968), pp. 157–
168. DOI: 10.1080/00207166808803030.

[102] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. “You Are What
You Include: Large-scale Evaluation of Remote JavaScript Inclusions”. In: Proceedings
of the 19th ACM SIGSAC Conference on Computer and Communications Security (CCS).
Ed. by George Danezis and Virgil Gligor. Raleigh, NC, USA: Association for Com-
puting Machinery (ACM), Oct. 2012, pp. 736–747. ISBN: 978-1-4503-1651-4. DOI:
10.1145/2382196.2382274.

188

https://www.welivesecurity.com/2013/04/26/linuxcdorked-new-apache-backdoor-in-the-wild-serves-blackhole/
https://www.welivesecurity.com/2013/04/26/linuxcdorked-new-apache-backdoor-in-the-wild-serves-blackhole/
https://blog.sucuri.net/2013/04/apache-binary-backdoors-on-cpanel-based-servers.html
https://blog.sucuri.net/2013/04/apache-binary-backdoors-on-cpanel-based-servers.html
https://archive.org
https://doi.org/10.1145/253260.253266
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1145/2382196.2382274

[103] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “Knowledge Discovery
and Data Mining: Towards a Unifying Framework”. In: Proceedings of the 2nd International
Conference on Knowledge Discovery in Data Mining (KDD). Ed. by Evangelos Simoudis and
Jiawei Han. Portland, OR, USA: Association for the Advancement of Artificial Intelligence
(AAAI), Aug. 1996, pp. 82–88. ISBN: 978-1-57735-004-0. URL: https://www.aaai.
org/Papers/KDD/1996/KDD96-014.pdf (visited on 08/21/2018).

[104] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthu-
rusamy, eds. Advances in Knowledge Discovery and Data Mining. Association for the
Advancement of Artificial Intelligence (AAAI), Feb. 1, 1996. ISBN: 978-0262560979.

[105] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. “OPTICS: Or-
dering Points To Identify the Clustering Structure”. In: Proceedings of the 25th ACM SIG-
MOD International Conference on Management of Data (MOD). Ed. by Christos Faloutsos and
Shahram Ghandeharizadeh. Philadelphia, PA, USA: Association for Computing Machinery
(ACM), May 1999, pp. 49–60. ISBN: 1-58113-084-8. DOI: 10.1145/304182.304187.

[106] Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. “OPTICS-OF:
Identifying Local Outliers”. In: Proceedings of the 3rd European Conference on Principles of Knowl-
edge Discovery and Data Mining (PKDD). Ed. by Jan M. Żytkow and Jan Rauch. Vol. 1704.
Lecture Notes in Computer Science (LNCS). Prague, Czech Republic: Springer Interna-
tional Publishing, Sept. 1999, pp. 262–270. ISBN: 978-3-540-48247-5. DOI: 10.1007/
978-3-540-48247-5_28.

[107] Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Marco Cova, Christopher
Kruegel, and Giovanni Vigna. “EvilSeed: A Guided Approach to Finding Malicious Web
Pages”. In: Proceedings of the 33rd IEEE Symposium on Security & Privacy (S&P). Ed. by Somesh
Jha and Wenke Lee. San Francisco, CA, USA: Institute of Electrical and Electronics Engi-
neers (IEEE), May 2012, pp. 428–442. ISBN: 978-0-7695-4681-0. DOI: 10.1109/SP.
2012.33.

[108] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. “NOZZLE: A Defense
Against Heap-spraying Code Injection Attacks”. In: Proceedings of the 18th USENIX Se-
curity Symposium (USENIX Security). Ed. by Fabian Monrose. Montréal, QC, Canada:
USENIX Association, Aug. 2009, pp. 169–186. URL: https://www.usenix.org/
conference/usenixsecurity09/technical- sessions/presentation/nozzle-
defense-against-heap-spraying (visited on 08/21/2018).

[109] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. “ZOZ-
ZLE: Fast and Precise In-Browser JavaScript Malware Detection”. In: Proceedings of the
20th USENIX Security Symposium (USENIX Security). Ed. by David Wagner. San Fran-
cisco, CA, USA: USENIX Association, Aug. 2011. URL: https : / / www . usenix .
org/conference/usenix-security-11/zozzle-fast-and-precise-browser-
javascript-malware-detection (visited on 08/21/2018).

189

https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf
https://doi.org/10.1145/304182.304187
https://doi.org/10.1007/978-3-540-48247-5_28
https://doi.org/10.1007/978-3-540-48247-5_28
https://doi.org/10.1109/SP.2012.33
https://doi.org/10.1109/SP.2012.33
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/nozzle-defense-against-heap-spraying
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/nozzle-defense-against-heap-spraying
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/nozzle-defense-against-heap-spraying
https://www.usenix.org/conference/usenix-security-11/zozzle-fast-and-precise-browser-javascript-malware-detection
https://www.usenix.org/conference/usenix-security-11/zozzle-fast-and-precise-browser-javascript-malware-detection
https://www.usenix.org/conference/usenix-security-11/zozzle-fast-and-precise-browser-javascript-malware-detection

[110] Christian Seifert, IanWelch, and PeterKomisarczuk. “Identification ofMaliciousWebPages
with Static Heuristics”. In: Proceedings of the 2008 Australasian Telecommunication Networks and
Applications Conference (ATNAC). Ed. by Arek Dadej and Richard Harris. Adelaide, SA, Aus-
tralia: Institute of Electrical and Electronics Engineers (IEEE), Dec. 2008, pp. 91–96. ISBN:
978-1-4244-2602-7. DOI: 10.1109/ATNAC.2008.4783302.

[111] Discuz! Wikipedia. URL: https://en.wikipedia.org/wiki/Discuz! (visited on
08/21/2018).

[112] XuYang.Report on the success of theDiscuz! software. Chinese. ChineseNationalRadio. Aug. 24,
2010. URL: http://china.cnr.cn/gdgg/201008/t20100824_506943622.html
(visited on 08/21/2018).

[113] Moheeb Abu Rajab, Lucas Ballard, Nav Jagpal, Panayiotis Mavrommatis, Daisuke Nojiri,
Niels Provos, and Ludwig Schmidt.Trends inCircumventingWeb-MalwareDetection. Tech. rep.
Google, Aug. 17, 2011. URL: http://static.googleusercontent.com/media/rese
arch.google.com/en//archive/papers/rajab-2011a.pdf (visited on 08/21/2018).

[114] Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus. “English Shellcode”.
In: Proceedings of the 16th ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS). Ed. by Somesh Jha and Angelos D. Keromytis. Chicago, IL, USA: Association
for Computing Machinery (ACM), Nov. 2009, pp. 524–533. ISBN: 978-1-60558-894-0.
DOI: 10.1145/1653662.1653725.

[115] Michalis Polychronakis, Kostas Anagnostakis, and Evangelos Markatos. “Network-level
polymorphic shellcode detection using emulation”. In: Journal in Computer Virology (JCV) 2
(4 Feb. 2007), pp. 257–274. ISSN: 1772-9904. DOI: 10.1007/s11416-006-0031-z.

[116] JaeunChoi, GisungKim, Tae GhyoonKim, and SehunKim. “An Efficient FilteringMethod
for Detecting Malicious Web Pages”. In: Proceedings of the 10th Workshop on Information Secu-
rity Applications (WISA). Ed. by Dong Hoon Lee and Moti Yung. Vol. 7690. Lecture Notes
in Computer Science (LNCS). Jeju Island, Republic of Korea: Springer International Pub-
lishing, Aug. 2012, pp. 241–253. ISBN: 978-3-642-35416-8. DOI: 10.1007/978-3-642-
35416-8_17.

[117] Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen, Chi-Sung Laih, and Chia-Mei Chen.
“Malicious Web Content detection by machine learning”. In: Expert Systems with Applications
(ESWA) 37 (1 Jan. 2010), pp. 55–60. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2009.
05.023.

[118] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. “Beyond Blacklists:
Learning to Detect Malicious Web sites from Suspicious URLs”. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD). Ed.
by Peter Flach and Mohammed Zaki. Paris, France: Association for Computing Machinery
(ACM), July 2009, pp. 1245–1254. ISBN: 978-1-60558-495-9. DOI: 10.1145/1557019.
1557153.

190

https://doi.org/10.1109/ATNAC.2008.4783302
https://en.wikipedia.org/wiki/Discuz!
http://china.cnr.cn/gdgg/201008/t20100824_506943622.html
http://static.googleusercontent.com/media/research.google.com/en//archive/papers/rajab-2011a.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/papers/rajab-2011a.pdf
https://doi.org/10.1145/1653662.1653725
https://doi.org/10.1007/s11416-006-0031-z
https://doi.org/10.1007/978-3-642-35416-8_17
https://doi.org/10.1007/978-3-642-35416-8_17
https://doi.org/10.1016/j.eswa.2009.05.023
https://doi.org/10.1016/j.eswa.2009.05.023
https://doi.org/10.1145/1557019.1557153
https://doi.org/10.1145/1557019.1557153

[119] Ingrid Lunden. Amazon’s AWS Is Now A $7.3B Business As It Passes 1M Active Enterprise Cus-
tomers. TechCrunch. Oct. 7, 2015. URL: https://techcrunch.com/2015/10/07/am
azons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-
customers/ (visited on 08/23/2018).

[120] Haje Jan Kamps. Microsoft Celebrates Strong Azure Adoption at Build 2016. TechCrunch.
Mar. 31, 2016. URL: https://techcrunch.com/2016/03/31/azure- growth/
(visited on 08/23/2018).

[121] CiscoGlobal Cloud Index: Forecast andMethodology. Tech. rep. 1513879861264127. Cisco Pub-
lic, Feb. 1, 2018. URL: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.html
(visited on 08/22/2018).

[122] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. “Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-party Compute Clouds”. In: Pro-
ceedings of the 16th ACM SIGSAC Conference on Computer and Communications Security (CCS).
Ed. by Somesh Jha and Angelos D. Keromytis. Chicago, IL, USA: Association for Com-
puting Machinery (ACM), Nov. 2009, pp. 199–212. ISBN: 978-1-60558-894-0. DOI: 10.
1145/1653662.1653687.

[123] Zineb Ait Bahajji and Gary Illyes. HTTPS as a ranking signal. Google Webmaster Central
Blog. Google. Aug. 6, 2014. URL: https://webmasters.googleblog.com/2014/08/
https-as-ranking-signal.html (visited on 08/22/2018).

[124] Kayce Basques. Why HTTPS Matters. Google Developers: Web Fundamentals. Google.
URL: https://developers.google.com/web/fundamentals/security/encrypt-
in-transit/why-https (visited on 09/26/2017).

[125] Paul Venezia. Code injection: A new low for ISPs. InfoWorld. May 26, 2015. URL: http://
www.infoworld.com/article/2925839/net-neutrality/code-injection-new-
low-isps.html (visited on 08/22/2018).

[126] Eric Mill. The Web Is Deprecating HTTP And It’s Going To Be Okay. Motherboard, VICE.
May 14, 2015. URL: https://motherboard.vice.com/en_us/article/wnjyay/the
-web-is-deprecating-http-and-its-going-to-be-okay (visited on 08/22/2018).

[127] Daniel Stenberg.TLS inHTTP/2.Mar. 6, 2015.URL: https://daniel.haxx.se/blog/
2015/03/06/tls-in-http2/ (visited on 08/22/2018).

[128] Richard Barnes, Jacob Hoffman-Andrews, and James Kasten. Automatic Certificate Manage-
ment Environment (ACME). Internet-Draft draft-ietf-acme-acme-07. Internet Engineering
Task Force (IETF), June 21, 2017. URL: https://tools.ietf.org/id/draft-ietf-
acme-acme-07.txt (visited on 08/22/2018).

[129] Josh Aas. Milestone: 100 Million Certificates Issued. Let’s Encrypt. June 28, 2017. URL: htt
ps://letsencrypt.org//2017/06/28/hundred-million-certs.html (visited on
08/23/2018).

191

https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2016/03/31/azure-growth/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
https://motherboard.vice.com/en_us/article/wnjyay/the-web-is-deprecating-http-and-its-going-to-be-okay
https://motherboard.vice.com/en_us/article/wnjyay/the-web-is-deprecating-http-and-its-going-to-be-okay
https://daniel.haxx.se/blog/2015/03/06/tls-in-http2/
https://daniel.haxx.se/blog/2015/03/06/tls-in-http2/
https://tools.ietf.org/id/draft-ietf-acme-acme-07.txt
https://tools.ietf.org/id/draft-ietf-acme-acme-07.txt
https://letsencrypt.org//2017/06/28/hundred-million-certs.html
https://letsencrypt.org//2017/06/28/hundred-million-certs.html

[130] Dan Cvrcek. Let’s Encrypt in the spotlight. June 29, 2017. URL: https://dan.enigmabrid
ge.com/lets-encrypt-in-the-spotlight/ (visited on 08/23/2018).

[131] Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason, J. Alex Halder-
man, and Michael Bailey. “Security Challenges in an Increasingly Tangled Web”. In: Pro-
ceedings of the 26th World Wide Web Conference (WWW). Ed. by Eugene Agichtein and Ev-
geniy Gabrilovich. Perth, Australia: InternationalWorldWideWebConference Committee
(IW3C2), Apr. 2017, pp. 677–684. ISBN: 978-1-4503-4913-0. DOI: 10.1145/3038912.
3052686.

[132] Paul Mockapetris. Domain Names - Implementation and Specification. Tech. rep. 1035. RFC
Editor, Nov. 1987. 55 pp. DOI: 10.17487/rfc1035.

[133] SamuelWeiler and Johan Ihren.MinimallyCoveringNSECRecords andDNSSECOn-line Sign-
ing. Tech. rep. 4470. RFC Editor, Oct. 2015. 8 pp. DOI: 10.17487/rfc4470.

[134] Roy Arenda, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. DNS Security Intro-
duction and Requirements. Tech. rep. 4033. RFC Editor, Mar. 2005. 21 pp. DOI: 10.17487/
rfc4033.

[135] Olaf M. Kolkman, W. (Matthijs) Mekking, and R. (Miek) Gieben. DNSSEC Operational
Practices, Version 2. Tech. rep. 6781. RFC Editor, Dec. 2012. 71 pp. DOI: 10.17487/rfc6
781.

[136] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. “A Longitudi-
nal, End-to-End View of the DNSSEC Ecosystem”. In: Proceedings of the 26th USENIX Secu-
rity Symposium (USENIX Security). Ed. by Engin Kirda and Thomas Ristenpart. Vancouver,
BC, Canada:USENIXAssociation, Aug. 2017, pp. 1307–1322. ISBN: 978-1-931971-40-9.
URL: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/chung (visited on 08/22/2018).

[137] Peter Mell and Tim Grance. The NISTDefinition of Cloud Computing. Tech. rep. SP 800-145.
Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg (NIST), Sept. 2011. DOI: 10.6028/NIST.SP.
800-145.

[138] CAcert. Welcome to CAcert. URL: http://www.cacert.org/ (visited on 08/22/2018).

[139] J. R. Prins and Fox-IT Cybercrime. InterimReport: DigiNotar Certificate Authority Breach “Op-
eration Black Tulip”. Tech. rep. Fox-IT BV, Sept. 5, 2011. URL: https://www.rijksover
heid.nl/binaries/rijksoverheid/documenten/rapporten/2011/09/05/digino
tar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-
0.pdf (visited on 08/22/2018).

[140] Bill Budington. Symantec Issues Rogue EV Certificate for Google.com. Electronic Frontier Foun-
dation (EFF) Blog. Sept. 21, 2019. URL: https://www.eff.org/deeplinks/2015/09/
symantec-issues-rogue-ev-certificate-googlecom (visited on 08/22/2018).

192

https://dan.enigmabridge.com/lets-encrypt-in-the-spotlight/
https://dan.enigmabridge.com/lets-encrypt-in-the-spotlight/
https://doi.org/10.1145/3038912.3052686
https://doi.org/10.1145/3038912.3052686
https://doi.org/10.17487/rfc1035
https://doi.org/10.17487/rfc4470
https://doi.org/10.17487/rfc4033
https://doi.org/10.17487/rfc4033
https://doi.org/10.17487/rfc6781
https://doi.org/10.17487/rfc6781
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chung
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chung
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
http://www.cacert.org/
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://www.rijksoverheid.nl/binaries/rijksoverheid/documenten/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://www.eff.org/deeplinks/2015/09/symantec-issues-rogue-ev-certificate-googlecom
https://www.eff.org/deeplinks/2015/09/symantec-issues-rogue-ev-certificate-googlecom

[141] Ben Laurie. “Certificate Transparency”. In: Queue 12.8 (Aug. 2014), 10:10–10:19. ISSN:
1542-7730. DOI: 10.1145/2668152.2668154.

[142] Ben Laurie, AdamLangley, and Emilia Kasper.Certificate Transparency. Tech. rep. 6962.RFC
Editor, June 2013. 27 pp. DOI: 10.17487/rfc6962.

[143] John Aas. Why ninety-day lifetimes for certificates? Let’s Encrypt. Nov. 9, 2015. URL: https:
//letsencrypt.org/2015/11/09/why-90-days.html (visited on 08/22/2018).

[144] Maarten Aertsen, Maciej Korczyński, Giovane C. M. Moura, Samaneh Tajalizadehkhoob,
and Jan van den Berg. “No domain left behind: is Let’s Encrypt democratizing encryption?”
In: Proceedings of the 2017 Applied Networking Research Workshop (ANRW). Ed. by Jörg Ott
and Renata Cruz Teixeira. Prague, Czech Republic: Association for Computing Machinery
(ACM), July 15, 2017, pp. 48–54. ISBN: 978-1-4503-5108-9. DOI: 10.1145/3106328.
3106338.

[145] Matthias Neugschwandtner, Martina Lindorfer, and Christian Platzer. “A View To A Kill:
WebViewExploitation”. In: Proceedings of the 6stUSENIXWorkshop on Large-Scale Exploits and
Emergent Threats (LEET). Ed. by Vern Paxson. Washington, D.C., USA: USENIX Associa-
tion, Aug. 2013. URL: https://www.usenix.org/conference/leet13/workshop-
program/presentation/Neugschwandtner (visited on 08/22/2018).

[146] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. “Attacks on WebView
in the Android System”. In: Proceedings of the 27th ACM ASIA Conference on Information,
Computer and Communications Security (ASIACCS). Ed. by James McDermott and Michael
Locasto. Orlando, FL, USA: Applied Computer Security Associates (ACSA), Dec. 2011,
pp. 343–352. ISBN: 978-1-4503-0672-0. DOI: 10.1145/2076732.2076781.

[147] Matthew Bryant. The .io Error – Taking Control of All .io Domains With a Targeted Registration.
July 10, 2017. URL: https://thehackerblog.com/the-io-error-taking-contro
l-of-all-io-domains-with-a-targeted-registration/ (visited on 08/22/2018).

[148] Brian Krebs. FBI: $2.3 Billion Lost to CEO Email Scams. Apr. 7, 2016. URL: https://kr
ebsonsecurity.com/2016/04/fbi-2-3-billion-lost-to-ceo-email-scams/
(visited on 08/22/2018).

[149] Arne Swinnen. Authentication Bypass on Uber’s Single Sign-On via Subdomain Takeover. June 25,
2017. URL: https://www.arneswinnen.net/2017/06/authentication-bypass-
on-ubers-sso-via-subdomain-takeover/ (visited on 08/22/2018).

[150] JohnAas.WildcardCertificatesComing January 2018. Let’s Encrypt. July 6, 2017.URL: https:
//letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.
html (visited on 08/22/2018).

193

https://doi.org/10.1145/2668152.2668154
https://doi.org/10.17487/rfc6962
https://letsencrypt.org/2015/11/09/why-90-days.html
https://letsencrypt.org/2015/11/09/why-90-days.html
https://doi.org/10.1145/3106328.3106338
https://doi.org/10.1145/3106328.3106338
https://www.usenix.org/conference/leet13/workshop-program/presentation/Neugschwandtner
https://www.usenix.org/conference/leet13/workshop-program/presentation/Neugschwandtner
https://doi.org/10.1145/2076732.2076781
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://krebsonsecurity.com/2016/04/fbi-2-3-billion-lost-to-ceo-email-scams/
https://krebsonsecurity.com/2016/04/fbi-2-3-billion-lost-to-ceo-email-scams/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html

[151] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy, and Srinivasan Se-
shan. “On the Responsiveness of DNS-based Network Control”. In: Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement (IMC). Ed. by Jim Kurose. Taormina,
Sicily, Italy: Association for Computing Machinery (ACM), Oct. 2004, pp. 21–26. ISBN:
1-58113-821-0. DOI: 10.1145/1028788.1028792.

[152] Cameron Coles. AWS vs Azure vs Google Cloud Market Share 2017. URL: https://www.
skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-
adoption-gap-with-amazon-aws/ (visited on 09/15/2017).

[153] Amazon Web Services, Inc. Throttle API Requests for Better Throughput. URL: http://docs.
aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-
throttling.html (visited on 08/08/2017).

[154] Farsight Inc. Farsight - Security Information Exchange (SIE). URL: https : / / www .
farsightsecurity.com/solutions/security-information-exchange/ (visited
on 08/22/2018).

[155] Mark Allman and Vern Paxson. “Issues and Etiquette Concerning Use of Shared Measure-
ment Data”. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement
(IMC). Ed. by Constantine Dovrolis and Matthew Roughan. San Diego, CA, USA: Asso-
ciation for Computing Machinery (ACM), Oct. 2007, pp. 135–140. ISBN: 978-1-59593-
908-1. DOI: 10.1145/1298306.1298327.

[156] Network Sorcery Inc. Well known SCTP, TCP and UDP ports. URL: http://www.networ
ksorcery.com/enp/protocol/ip/ports00000.htm (visited on 08/22/2018).

[157] Artyom Gavrichenkov. “Breaking HTTPS with BGP Hijacking”. In: Proceedings of the 2015
Black Hat Conference. Las Vegas, NV, USA: UBM Technology Group, Aug. 2015. URL: ht
tp://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breakin
g-HTTPS-With-BGP-Hijacking-wp.pdf (visited on 08/22/2018).

[158] Scott Helme. Revocation is broken. July 3, 2017. URL: https://scotthelme.co.uk/
revocation-is-broken/ (visited on 08/22/2018).

[159] Adam Langley. No, don’t enable revocation checking. Apr. 19, 2014. URL: https://www.imp
erialviolet.org/2014/04/19/revchecking.html (visited on 08/22/2018).

[160] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo
Wilson. “CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers”. In:
Proceedings of the 38th IEEE Symposium on Security & Privacy (S&P). Ed. by Úlfar Erlingsson
andBryanParno. San Jose,CA,USA: Institute of Electrical andElectronics Engineers (IEEE),
May 2017, pp. 539–556. ISBN: 978-1-5090-5533-3. DOI: 10.1109/SP.2017.17.

[161] The Chromium Projects. Chromium Security: CRLSets. URL: https://dev.chromium.
org/Home/chromium-security/crlsets (visited on 08/22/2018).

194

https://doi.org/10.1145/1028788.1028792
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://www.farsightsecurity.com/solutions/security-information-exchange/
https://www.farsightsecurity.com/solutions/security-information-exchange/
https://doi.org/10.1145/1298306.1298327
http://www.networksorcery.com/enp/protocol/ip/ports00000.htm
http://www.networksorcery.com/enp/protocol/ip/ports00000.htm
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
http://www.blackhat.com/docs/us-15/materials/us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf
https://scotthelme.co.uk/revocation-is-broken/
https://scotthelme.co.uk/revocation-is-broken/
https://www.imperialviolet.org/2014/04/19/revchecking.html
https://www.imperialviolet.org/2014/04/19/revchecking.html
https://doi.org/10.1109/SP.2017.17
https://dev.chromium.org/Home/chromium-security/crlsets
https://dev.chromium.org/Home/chromium-security/crlsets

[162] Mark Goodwin. Revoking Intermediate Certificates: Introducing OneCRL. Mozilla Security
Blog. Mozilla. Mar. 3, 2015. URL: https://blog.mozilla.org/security/2015/
03/03/revoking-intermediate-certificates-introducing-onecrl/ (visited on
08/22/2018).

[163] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly
Shmatikov. “The Most Dangerous Code in the World: Validating SSL Certificates in Non-
browser Software”. In: Proceedings of the 19th ACMSIGSACConference on Computer and Com-
munications Security (CCS). Ed. by George Danezis and Virgil Gligor. Raleigh, NC, USA:
Association for Computing Machinery (ACM), Oct. 2012, pp. 38–49. ISBN: 978-1-4503-
1651-4. DOI: 10.1145/2382196.2382204.

[164] Phillip Hallam-Baker and Rob Stradling. DNS Certification Authority Authorization (CAA)
Resource Record. Tech. rep. 6844. RFC Editor, Jan. 2013. 18 pp. DOI: 10.17487/rfc6844.

[165] Paul Hoffman and Jakob Schlyter. The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA. Tech. rep. 6698. RFC Editor, Aug. 2012.
37 pp. DOI: 10.17487/rfc6698.

[166] PowerDNS. PowerDNS Online Signing. URL: https://doc.powerdns.com/md/author
itative/dnssec/#online-signing (visited on 08/22/2018).

[167] Google Chrome Team. Certificate Transparency in Chrome. Jan. 31, 2018. URL: https://
github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md (visited on
08/22/2018).

[168] KirkHall. [cabfpub]Results on Ballot 187 -MakeCAACheckingMandatory.Mar. 8, 2017.URL:
https://cabforum.org/pipermail/public/2017-March/009988.html (visited on
08/22/2018).

[169] Tobias Fiebig, Franziska Lichtblau, Florian Streibelt, ThorbenKrueger, Pieter Lexis, Randy
Bush, and Anja Feldmann. “SoK: An Analysis of Protocol Design: Avoiding Traps for Im-
plementation and Deployment”. Oct. 18, 2016. arXiv: 1610.05531 [cs.CR].

[170] Tatu Ylonen. “SSH - Secure Login Connections Over the Internet”. In: Proceedings of the
6th USENIX Security Symposium (USENIX Security). Ed. by Greg Rose. San Jose, CA, USA:
USENIX Association, July 1996, pp. 37–42. URL: https://www.usenix.org/conf
erence/6th-usenix-security-symposium/presentation/ssh-secure-login-
connections-over-internet (visited on 08/22/2018).

[171] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al. “The
Matter of Heartbleed”. In: Proceedings of the 2014 Internet Measurement Conference (IMC).
Ed. by Aditya Akella and Nina Taft. Vancouver, BC, Canada: Association for Com-
puting Machinery (ACM), Nov. 2014, pp. 475–488. ISBN: 978-1-4503-3213-2. DOI:
10.1145/2663716.2663755.

195

https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.17487/rfc6844
https://doi.org/10.17487/rfc6698
https://doc.powerdns.com/md/authoritative/dnssec/#online-signing
https://doc.powerdns.com/md/authoritative/dnssec/#online-signing
https://github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md
https://github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md
https://cabforum.org/pipermail/public/2017-March/009988.html
https://arxiv.org/abs/1610.05531
https://www.usenix.org/conference/6th-usenix-security-symposium/presentation/ssh-secure-login-connections-over-internet
https://www.usenix.org/conference/6th-usenix-security-symposium/presentation/ssh-secure-login-connections-over-internet
https://www.usenix.org/conference/6th-usenix-security-symposium/presentation/ssh-secure-login-connections-over-internet
https://doi.org/10.1145/2663716.2663755

[172] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. “Analysis of the
HTTPS Certificate Ecosystem”. In: Proceedings of the 2013 Internet Measurement Conference
(IMC). Ed. by Krishna Gummadi and Craig Partidge. Barcelona, Spain: Association for
Computing Machinery (ACM), Oct. 2013, pp. 291–304. ISBN: 978-1-4503-1953-9. DOI:
10.1145/2504730.2504755.

[173] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M. Maggs, Alan
Mislove, and Christo Wilson. “Measurement and Analysis of Private Key Sharing in the
HTTPS Ecosystem”. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS). Ed. by Christopher Kruegel. Vienna, Austria: Association
for Computing Machinery (ACM), Oct. 2016, pp. 628–640. ISBN: 978-1-4503-3832-5.
DOI: 10.1145/2976749.2978301.

[174] Tobias Fiebig, Anja Feldmann, and Matthias Petschick. “A One-Year Perspective on Ex-
posed In-memory Key-Value Stores”. In: Proceedings of the 2016 ACMWorkshop on Automated
DecisionMaking for Active Cyber Defense (SafeConfig). Ed. by Nicholas J. Multari, Anoop Sing-
hal, and David O. Manz. Vienna, Austria: Association for Computing Machinery (ACM),
Oct. 24, 2016, pp. 17–22. ISBN: 978-1-4503-4566-8. DOI: 10.1145/2994475.2994480.

[175] Christian Rossow. “Amplification Hell: Revisiting Network Protocols for DDoS Abuse”.
In: Proceedings of the 21st Network and Distributed System Security Symposium (NDSS). Ed. by
Lujo Bauer. San Diego, CA, USA: Internet Society (ISOC), Feb. 2014. ISBN: 1-891562-
35-5. DOI: 10.14722/ndss.2014.23233.

[176] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael Bailey,
andManish Karir. “Taming the 800 PoundGorilla: TheRise andDecline ofNTPDDoSAt-
tacks”. In: Proceedings of the 2014 InternetMeasurement Conference (IMC). Ed. by Aditya Akella
and Nina Taft. Vancouver, BC, Canada: Association for Computing Machinery (ACM),
Nov. 2014, pp. 435–448. ISBN: 978-1-4503-3213-2. DOI: 10.1145/2663716.2663717.

[177] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. “ZMap: Fast Internet-wide Scan-
ning and Its Security Applications”. In: Proceedings of the 22nd USENIX Security Symposium
(USENIX Security). Ed. by Sam King. Washington, D.C, USA: USENIX Association, Aug.
2013, pp. 605–619. ISBN: 978-1-931971-03-4. URL: https://www.usenix.org/co
nference/usenixsecurity13/technical-sessions/paper/durumeric (visited on
08/21/2018).

[178] John Curran. ARIN IPv4 Free Pool Reaches Zero. American Registry for Internet Numbers
(ARIN). Sept. 24, 2015.URL: https://www.arin.net/vault/announcements/2015/
20150924.html (visited on 08/23/2018).

[179] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
Tech. rep. 2460. RFC Editor, Dec. 1998. 39 pp. DOI: 10.17487/rfc2460.

[180] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
Tech. rep. 8200. RFC Editor, July 2017. 42 pp. DOI: 10.17487/rfc8200.

196

https://doi.org/10.1145/2504730.2504755
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1145/2994475.2994480
https://doi.org/10.14722/ndss.2014.23233
https://doi.org/10.1145/2663716.2663717
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.arin.net/vault/announcements/2015/20150924.html
https://www.arin.net/vault/announcements/2015/20150924.html
https://doi.org/10.17487/rfc2460
https://doi.org/10.17487/rfc8200

[181] Google Inc. IPv6 - Google. URL: https://www.google.com/intl/en/ipv6/statist
ics.html (visited on 08/23/2018).

[182] Internet Society (ISOC).World IPv6Launch.URL:http://www.worldipv6launch.org/
(visited on 08/23/2018).

[183] Kiran K. Chittimaneni, Merike Kaeo, and Eric Vyncke. Operational Security Considerations
for IPv6 Networks. Internet-Draft draft-ietf-opsec-v6-09. Internet Engineering Task Force
(IETF), July 7, 2016. URL: https://tools.ietf.org/id/draft-ietf-opsec-v6-
09.txt (visited on 08/23/2018).

[184] AustinMurdock, Frank Li, Paul Bramsen, Zakir Durumeric, andVern Paxson. “Target Gen-
eration for Internet-wide IPv6 Scanning”. In: Proceedings of the 2017 InternetMeasurementCon-
ference (IMC). Ed. by SteveUhlig andOlafMaennel. London,UnitedKingdom:Association
for Computing Machinery (ACM), Nov. 2017, pp. 242–253. ISBN: 978-1-4503-5118-8.
DOI: 10.1145/3131365.3131405.

[185] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Osterweil, and Michael
Bailey. “Measuring IPv6 Adoption”. In: Proceedings of the 2014 ACMSIGCOMMConference
(SIGCOMM). Ed. by Fabián E. Bustamante, Y. Charlie Hu, Arvind Krishnamurthy, and
Sylvia Ratnasamy. Chicago, IL, USA: Association for Computing Machinery (ACM), Aug.
2014, pp. 87–98. ISBN: 978-1-4503-2836-4. DOI: 10.1145/2619239.2626295.

[186] David Plonka and Arthur Berger. “Temporal and Spatial Classification of Active IPv6 Ad-
dresses”. In: Proceedings of the 2015 Internet Measurement Conference (IMC). Ed. by Vivek Pai
and Neil Spring. Tokyo, Japan: Association for Computing Machinery (ACM), Oct. 2015,
pp. 509–522. ISBN: 978-1-4503-3848-6. DOI: 10.1145/2815675.2815678.

[187] Marek Majkowski and Ólafur Guðmundsson. Deprecating the DNS ANY meta-query type.
Cloudflare Inc. Mar. 6, 2015. URL: https://blog.cloudflare.com/deprecating-
dns-any-meta-query-type/ (visited on 08/23/2018).

[188] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel, and Giovanni Vigna.
“You can -j REJECT but you can not hide: Global scanning of the IPv6 Internet”. In:
Proceedings of the 33rd Chaos Computer Congress (CCC). Hamburg, Germany: Chaos Com-
puter Club, Dec. 2016. URL: https://media.ccc.de/v/33c3-8061-you_can_-
j_reject_but_you_can_not_hide_global_scanning_of_the_ipv6_internet
(visited on 08/23/2018).

[189] Internet Society (ISOC). The Future is Forever – World IPv6 Launch: Measurements. URL: ht
tp://www.worldipv6launch.org/measurements/ (visited on 08/23/2018).

[190] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. “Increased
DNS Forgery Resistance Through 0x20-bit Encoding: SecURItY viA LeER QueRieS”.
In: Proceedings of the 15th ACM SIGSAC Conference on Computer and Communications Security
(CCS). Ed. by Paul Syverson and Somesh Jha. Alexandria, VA, USA: Association for Com-

197

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://www.worldipv6launch.org/
https://tools.ietf.org/id/draft-ietf-opsec-v6-09.txt
https://tools.ietf.org/id/draft-ietf-opsec-v6-09.txt
https://doi.org/10.1145/3131365.3131405
https://doi.org/10.1145/2619239.2626295
https://doi.org/10.1145/2815675.2815678
https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/
https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/
https://media.ccc.de/v/33c3-8061-you_can_-j_reject_but_you_can_not_hide_global_scanning_of_the_ipv6_internet
https://media.ccc.de/v/33c3-8061-you_can_-j_reject_but_you_can_not_hide_global_scanning_of_the_ipv6_internet
http://www.worldipv6launch.org/measurements/
http://www.worldipv6launch.org/measurements/

puting Machinery (ACM), Oct. 2008, pp. 211–222. ISBN: 978-1-59593-810-7. DOI: 10.
1145/1455770.1455798.

[191] David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christopher P. Lee, and Wenke
Lee. “RecursiveDNSArchitectures andVulnerability Implications”. In:Proceedings of the 16th
Network andDistributed SystemSecurity Symposium (NDSS). Ed. byGiovanniVigna. SanDiego,
CA, USA: Internet Society (ISOC), Feb. 2009. URL: http://www.ndss-symposium.
org/ndss2009/recursive-dns-architectures-and-vulnerability-implicati
ons/ (visited on 08/23/2018).

[192] Bill Adler. Who Stole My Web Browser? Oct. 13, 2009. URL: https://infiniteedge.
blogspot.com/2009/10/who-stole-my-web-browser.html (visited on 08/23/2018).

[193] Cade Metz. Comcast trials DNS hijacker. The Register. July 28, 2009. URL: http://www.
theregister.co.uk/2009/07/28/comcast_dns_hijacker/ (visited on 08/23/2018).

[194] David Barr. Common DNSOperational and Configuration Errors. Tech. rep. 1912. RFC Editor,
Mar. 2013. 16 pp. DOI: 10.17487/rfc1912.

[195] JohnC.Klensin.SimpleMailTransfer Protocol. Tech. rep. 2821.RFCEditor,Mar. 2013. 79 pp.
DOI: 10.17487/rfc2821.

[196] Yakov Rekhter, Bernie Volz, and Mark Stapp. The Dynamic Host Configuration Protocol
(DHCP) Client Fully Qualified Domain Name (FQDN) Option. Tech. rep. 4702. RFC Editor,
Mar. 2013. 17 pp. DOI: 10.17487/rfc4702.

[197] Matt Crawford and Brian Haberman. IPv6 Node Information Queries. Tech. rep. 4620. RFC
Editor, Oct. 2015. 14 pp. DOI: 10.17487/rfc4620.

[198] Terry Manderson. IP6.ARPA DNSSEC Report. Internet Corporation for Assigned Names
and Numbers (ICANN). URL: http://stats.research.icann.org/dns/ip6_repor
t/ (visited on 02/23/2017).

[199] InternetCorporation forAssignedNames andNumbers (ICANN).DNSSECDeploymentRe-
port. URL: http://dnssec-deployment.icann.org/dctld/ (visited on 11/01/2017).

[200] Ramaswamy Chandramouli and Scott Rose. Secure Domain Name System (DNS) Deployment
Guide. Tech. rep. SP 800-81-2. Computer Security Division, Information Technology Lab-
oratory, National Institute of Standards and Technology, Gaithersburg (NIST), Sept. 2013.
DOI: 10.6028/NIST.SP.800-81-2.

[201] Ben Laurie, Geoff Sisson, and Roy Arends. DNS Security (DNSSEC) Hashed Authenticated
Denial of Existence. Tech. rep. 5155. RFC Editor, Mar. 2008. 52 pp. DOI: 10.17487/rfc5
155.

[202] Joe Abley and TerryManderson.Nameservers for IPv4 and IPv6Reverse Zones. Tech. rep. 5855.
RFC Editor, Oct. 2015. 12 pp. DOI: 10.17487/rfc5855.

198

https://doi.org/10.1145/1455770.1455798
https://doi.org/10.1145/1455770.1455798
http://www.ndss-symposium.org/ndss2009/recursive-dns-architectures-and-vulnerability-implications/
http://www.ndss-symposium.org/ndss2009/recursive-dns-architectures-and-vulnerability-implications/
http://www.ndss-symposium.org/ndss2009/recursive-dns-architectures-and-vulnerability-implications/
https://infiniteedge.blogspot.com/2009/10/who-stole-my-web-browser.html
https://infiniteedge.blogspot.com/2009/10/who-stole-my-web-browser.html
http://www.theregister.co.uk/2009/07/28/comcast_dns_hijacker/
http://www.theregister.co.uk/2009/07/28/comcast_dns_hijacker/
https://doi.org/10.17487/rfc1912
https://doi.org/10.17487/rfc2821
https://doi.org/10.17487/rfc4702
https://doi.org/10.17487/rfc4620
http://stats.research.icann.org/dns/ip6_report/
http://stats.research.icann.org/dns/ip6_report/
http://dnssec-deployment.icann.org/dctld/
https://doi.org/10.6028/NIST.SP.800-81-2
https://doi.org/10.17487/rfc5155
https://doi.org/10.17487/rfc5155
https://doi.org/10.17487/rfc5855

[203] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant, and
Asaf Ziv. “Stretching NSEC3 to the Limit: Efficient Zone Enumeration Attacks on NSEC3
Variants”. Feb. 8, 2015. URL: https://www.cs.bu.edu/~goldbe/papers/nsec3atta
cks.pdf (visited on 08/23/2018). .

[204] Daniel J. Bernstein. The nsec3walker tool. Jan. 22, 2017. URL: https://dnscurve.org/
nsec3walker.html (visited on 08/23/2018).

[205] Paul Mockapetris. Domain names - concepts and facilities. Tech. rep. 1034. RFC Editor, Nov.
1987. 55 pp. DOI: 10.17487/rfc1034.

[206] Institute of Electrical and Electronics Engineers (IEEE). IEEE Organizationally Unique Identi-
fier. URL: http://standards-oui.ieee.org/oui.txt (visited on 01/13/2018).

[207] NadiaHeninger, ZakirDurumeric, EricWustrow, and J. AlexHalderman. “MiningYour Ps
and Qs: Detection of Widespread Weak Keys in Network Devices”. In: Proceedings of the 21st
USENIX Security Symposium (USENIX Security). Ed. by Tadayoshi Kohno. Bellevue, WA,
USA: USENIX Association, Aug. 2012, pp. 205–220. ISBN: 978-1-931971-95-9. URL:
https://www.usenix.org/conference/usenixsecurity12/technical-sessions
/presentation/heninger (visited on 08/23/2018).

[208] Réseaux IP Européens (RIPE). Routing Information Service (RIS). URL: https://www.ri
pe.net/analyse/internet-measurements/routing-information-service-ris
(visited on 08/23/2018).

[209] University of Oregon. University of Oregon Route Views Archive Project. URL: http://rout
eviews.org (visited on 08/23/2018).

[210] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. “Collecting the Internet
AS-level Topology”. In:ACMSIGCOMMComputerCommunicationReview 35.1 (Jan. 2005),
pp. 53–61. ISSN: 0146-4833. DOI: 10.1145/1052812.1052825.

[211] American Registry for Internet Numbers (ARIN). ARIN Number Resource Policy Man-
ual. July 13, 2016. URL: https://www.arin.net/vault/policy/archive/nrpm_
20160713.pdf (visited on 08/23/2018).

[212] Geoff Huston and Dr. Thomas Narten. IPv6 Address Assignment to End Sites. Tech. rep. 6177.
RFC Editor, Mar. 2011. 9 pp. DOI: 10.17487/rfc6177.

[213] Level 3 Threat Research Labs.ANewDDoSReflection Attack: Portmapper; An EarlyWarning to
the Industry. Aug. 17, 2015. URL: http://blog.level3.com/security/a-new-ddos-
reflection-attack-portmapper-an-early-warning-to-the-industry/ (visited
on 08/11/2016).

[214] Kostya Kortchinsky and Joel Land. CVE-2016-2342: Quagga bgpd with BGP peers enabled for
VPnv4 contains a buffer overflow vulnerability. Mar. 10, 2016. URL: http://www.kb.cert.
org/vuls/id/270232 (visited on 08/23/2018).

199

https://www.cs.bu.edu/~goldbe/papers/nsec3attacks.pdf
https://www.cs.bu.edu/~goldbe/papers/nsec3attacks.pdf
https://dnscurve.org/nsec3walker.html
https://dnscurve.org/nsec3walker.html
https://doi.org/10.17487/rfc1034
http://standards-oui.ieee.org/oui.txt
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
http://routeviews.org
http://routeviews.org
https://doi.org/10.1145/1052812.1052825
https://www.arin.net/vault/policy/archive/nrpm_20160713.pdf
https://www.arin.net/vault/policy/archive/nrpm_20160713.pdf
https://doi.org/10.17487/rfc6177
http://blog.level3.com/security/a-new-ddos-reflection-attack-portmapper-an-early-warning-to-the-industry/
http://blog.level3.com/security/a-new-ddos-reflection-attack-portmapper-an-early-warning-to-the-industry/
http://www.kb.cert.org/vuls/id/270232
http://www.kb.cert.org/vuls/id/270232

[215] CVE-2016-4049: Denial of Service Vulnerability in Quagga BGP Routing Daemon (bgpd).
Mar. 10, 2016. URL: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2016-4049 (visited on 08/23/2018).

[216] Olaf M. Kolkman and R. (Miek) Gieben. DNSSEC Operational Practices. Tech. rep. 4641.
RFC Editor, Mar. 2013. 35 pp. DOI: 10.17487/rfc4641.

[217] R. (Miek) Gieben and W. (Matthijs) Mekking.DNSSecurity (DNSSEC)Authenticated Denial
of Existence. Internet-Draft draft-gieben-nsec4-01. Internet Engineering Task Force (IETF),
July 4, 2012. URL: https://tools.ietf.org/id/draft-gieben-nsec4-01.txt
(visited on 08/23/2018).

[218] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Sachin Vasant, and Asaf Ziv.
“NSEC5: Provably Preventing DNSSEC Zone Enumeration”. In: Proceedings of the
22nd Network and Distributed System Security Symposium (NDSS). Ed. by Engin Kirda.
San Diego, CA, USA: Internet Society (ISOC), Feb. 2015. ISBN: 189156238X. DOI:
10.14722/ndss.2015.23211.

[219] Jan Vcelak, Sharon Goldberg, Dimitrios Papadopoulos, Shumon Huque, and David
C. Lawrence. NSEC5, DNSSEC Authenticated Denial of Existence. Internet-Draft draft-
vcelak-nsec5-05. Internet Engineering Task Force (IETF), July 3, 2017. URL: https :
//tools.ietf.org/id/draft-vcelak-nsec5-05.txt (visited on 08/23/2018).

[220] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant,
and Asaf Ziv. “NSEC5: Provably Preventing DNSSEC Zone Enumeration”. July 25, 2014.
IACR Cryptology ePrint: 2014/582..

[221] EricMedvet, Cyril Fillon, andAlberto Bartoli. “Detection ofWebDefacements byMeans of
Genetic Programming”. In: Proceedings of the 3rd International Symposium on Information Assur-
ance and Security (IAS). Ed. by Qi Shi and Johnson Thomas. Manchester, United Kingdom:
Institute of Electrical and Electronics Engineers (IEEE), Aug. 2007, pp. 227–234. ISBN: 978-
0-7695-2876-2. DOI: 10.1109/IAS.2007.13.

[222] Gene H. Kim and Eugene H. Spafford. “The Design and Implementation of Tripwire: A
File System Integrity Checker”. In: Proceedings of the 2nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS). Ed. by Ravi Ganesan and Ravi Sandhu. Fairfax,
VA, USA: Association for Computing Machinery (ACM), Nov. 1994, pp. 18–29. ISBN:
0-89791-732-4. DOI: 10.1145/191177.191183.

[223] Adam G. Pennington, John D. Strunk, John Linwood Griffin, Craig A. N. Soules, Garth
R. Goodson, and Gregory R. Ganger. “Storage-based Intrusion Detection: Watching Stor-
age Activity for Suspicious Behavior”. In: Proceedings of the 12th USENIX Security Symposium
(USENIX Security). Ed. by Vern Paxson. Washington, D.C., USA: USENIX Association,
Aug. 2003. URL: https://www.usenix.org/conference/12th-usenix-security-
symposium/storage-based-intrusion-detection-watching-storage (visited on
08/21/2018).

200

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-4049
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-4049
https://doi.org/10.17487/rfc4641
https://tools.ietf.org/id/draft-gieben-nsec4-01.txt
https://doi.org/10.14722/ndss.2015.23211
https://tools.ietf.org/id/draft-vcelak-nsec5-05.txt
https://tools.ietf.org/id/draft-vcelak-nsec5-05.txt
https://eprint.iacr.org/2014/582
https://doi.org/10.1109/IAS.2007.13
https://doi.org/10.1145/191177.191183
https://www.usenix.org/conference/12th-usenix-security-symposium/storage-based-intrusion-detection-watching-storage
https://www.usenix.org/conference/12th-usenix-security-symposium/storage-based-intrusion-detection-watching-storage

[224] Eric Medvet, Engin Kirda, and Christopher Kruegel. “Visual-Similarity-Based Phish-
ing Detection”. In: Proceedings of the 4th International Conference on Security and Privacy
in Communication Networks (SecureComm). Istanbul, Turkey: Association for Comput-
ing Machinery (ACM), Sept. 2008, 22:1–22:6. ISBN: 978-1-60558-241-2. DOI:
10.1145/1460877.1460905.

[225] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and Anthony Y. Fu. “An Antiphishing Strat-
egy Based on Visual Similarity Assessment”. In: IEEE Internet Computing 10 (2 Mar. 2006),
pp. 58–65. ISSN: 1941-0131. DOI: 10.1109/MIC.2006.23.

[226] AntonioNappa,M.ZubairRafique, and JuanCaballero. “Driving in theCloud: AnAnalysis
of Drive-by Download Operations and Abuse Reporting”. In: Proceedings of the 10th Confer-
ence on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA). Ed. by Konrad
Rieck. Vol. 7967. Lecture Notes in Computer Science (LNCS). Berlin, Germany: Springer
International Publishing, July 2013, pp. 1–20. ISBN: 978-3-642-39235-1. DOI: 10.1007/
978-3-642-39235-1_1.

[227] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kirill
Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas Pitsillidis,
Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow, Kurt Thomas,
Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. “Manufacturing Compromise: The
Emergence of Exploit-as-a-Service”. In: Proceedings of the 19th ACM SIGSAC Conference
on Computer and Communications Security (CCS). Ed. by George Danezis and Virgil Gligor.
Raleigh, NC, USA: Association for Computing Machinery (ACM), Oct. 2012, pp. 821–
832. ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.2382283.

[228] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam. “Malicious Website De-
tection: Effectiveness and Efficiency Issues”. In: Proceedings of the 1st SysSec Workshop. Ed. by
EvanglosMarkatos and StefanoZanero. Amsterdam,Netherlands: Institute of Electrical and
Electronics Engineers (IEEE), July 6, 2011, pp. 123–126. ISBN: 978-1-4577-1528-0. DOI:
10.1109/SysSec.2011.9.

[229] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy. “A Crawler-
based Study of Spyware in the Web”. In: Proceedings of the 13th Network and Distributed System
Security Symposium (NDSS). Ed. by William Arbaugh and Dan Simon. San Diego, CA, USA:
Internet Society (ISOC), Feb. 2006. ISBN: 1-891562-22-3. URL: http://www.isoc.
org/isoc/conferences/ndss/06/proceedings/papers/spycrawler.pdf (visited
on 08/21/2018).

[230] JonAnthonyBell and EdwardGlen Britton. “Host Identity TakeoverUsingVirtual Internet
Protocol (IP) Addressing”. US Patent 5917997 (United States of America). June 29, 1999.
Granted.

201

https://doi.org/10.1145/1460877.1460905
https://doi.org/10.1109/MIC.2006.23
https://doi.org/10.1007/978-3-642-39235-1_1
https://doi.org/10.1007/978-3-642-39235-1_1
https://doi.org/10.1145/2382196.2382283
https://doi.org/10.1109/SysSec.2011.9
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/spycrawler.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/spycrawler.pdf

[231] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A. L. Narasimha Reddy, and Suprana-
maya Ranjan. “Detecting Algorithmically Generated Domain-Flux Attacks with DNS
Traffic Analysis”. In: IEEE/ACM Transactions on Networking (TNET) 20 (5 Feb. 10, 2012),
pp. 1663–1677. ISSN: 1558-2566. DOI: 10.1109/TNET.2012.2184552.

[232] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski,
Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. “Your Botnet is My Bot-
net: Analysis of a Botnet Takeover”. In: Proceedings of the 16th ACM SIGSAC Conference on
Computer and Communications Security (CCS). Ed. by Somesh Jha and Angelos D. Keromytis.
Chicago, IL, USA: Association for Computing Machinery (ACM), Nov. 2009, pp. 635–
647. ISBN: 978-1-60558-894-0. DOI: 10.1145/1653662.1653738.

[233] Daiping Liu, Shuai Hao, and Haining Wang. “All Your DNS Records Point to Us: Un-
derstanding the Security Threats of Dangling DNS Records”. In: Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security (CCS). Ed. by Christo-
pher Kruegel. Vienna, Austria: Association for Computing Machinery (ACM), Oct. 2016,
pp. 1414–1425. ISBN: 978-1-4503-3832-5. DOI: 10.1145/2976749.2978387.

[234] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank Piessens, and
Wouter Joosen. “Bitsquatting: Exploiting Bit-flips for Fun, or Profit?” In: Proceedings of the
22nd World Wide Web Conference (WWW). Ed. by Ricardo Baeza-Yates and Sue Moon. Rio
de Janeiro, Brazil: International World Wide Web Conference Committee (IW3C2), May
2010, pp. 989–998. ISBN: 978-1-4503-2035-1. DOI: 10.1145/2488388.2488474.

[235] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels. “Strider
Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting”. In: Proceedings
of the 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI). Ed. by
Steven M. Bellovin. San Jose, CA, USA: USENIX Association, July 2006, pp. 31–36.
URL: https://www.usenix.org/conference/sruti-06/strider-typo-patrol-
discovery-and-analysis-systematic-typo-squatting (visited on 08/22/2018).

[236] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and Chris
Kanich. “The Long “Taile” of Typosquatting Domain Names”. In: Proceedings of the 23rd
USENIX Security Symposium (USENIX Security). Ed. by Kevin Fu and Jaeyeon Jung. San
Diego,CA,USA:USENIXAssociation, Aug. 2014, pp. 191–206. ISBN: 978-1-931971-15-
7. URL: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/szurdi (visited on 08/22/2018).

[237] Mohammad Taha Khan, Xiang Huo, Zhou Li, and Chris Kanich. “Every Second Counts:
Quantifying the Negative Externalities of Cybercrime via Typosquatting”. In: Proceedings
of the 36th IEEE Symposium on Security & Privacy (S&P). Ed. by Vitaly Shmatikov and Lujo
Bauer. San Jose, CA, USA: Institute of Electrical and Electronics Engineers (IEEE), May
2015, pp. 135–150. ISBN: 978-1-4673-6949-7. DOI: 10.1109/SP.2015.16.

202

https://doi.org/10.1109/TNET.2012.2184552
https://doi.org/10.1145/1653662.1653738
https://doi.org/10.1145/2976749.2978387
https://doi.org/10.1145/2488388.2488474
https://www.usenix.org/conference/sruti-06/strider-typo-patrol-discovery-and-analysis-systematic-typo-squatting
https://www.usenix.org/conference/sruti-06/strider-typo-patrol-discovery-and-analysis-systematic-typo-squatting
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi
https://doi.org/10.1109/SP.2015.16

[238] Bojan Zdrnja, Nevil Brownlee, and Duane Wessels. “Passive Monitoring of DNS Anoma-
lies”. In: Proceedings of the 4thConference onDetection of Intrusions andMalware &Vulnerability As-
sessment (DIMVA). Ed. by Robin Sommer. Vol. 4579. Lecture Notes in Computer Science
(LNCS). Extended Abstract. Lucerne, Switzerland: Springer International Publishing, July
2007, pp. 129–139. ISBN: 978-3-540-73613-4. DOI: 10.1007/978-3-540-73614-1_8.

[239] He Yan, Ricardo Oliveira, Kevin Burnett, Dave Matthews, Lixia Zhang, and Dan Massey.
“BGPmon: A real-time, scalable, extensible monitoring system”. In: Proceedings of the 2009
Conference onCybersecurityApplications&TechnologyConference forHomeland Security (CATCH).
Washington,D.C., USA: Institute of Electrical and Electronics Engineers (IEEE),Mar. 2009,
pp. 212–223. ISBN: 978-0-7695-3568-5. DOI: 10.1109/CATCH.2009.28.

[240] Matthias Wählisch, Olaf Maennel, and Thomas C. Schmidt. “Towards Detecting BGP
Route Hijacking Using the RPKI”. In: Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM). Ed. by Venkat Padmanabhan and George Varghese. POSTER. Helsinki,
Finland: Association for Computing Machinery (ACM), Aug. 2012, pp. 103–104. ISBN:
978-1-4503-1419-0. DOI: 10.1145/2377677.2377702.

[241] Hitesh Ballani, Paul Francis, andXinyangZhang. “A Study of PrefixHijacking and Intercep-
tion in the Internet”. In: Proceedings of the 2007ACM SIGCOMM Conference (SIGCOMM).
Ed. by Nina Taft and Anja Feldmann. Kyoto, Japan: Association for Computing Machinery
(ACM), Aug. 2007, pp. 265–276. ISBN: 978-1-59593-713-1. DOI: 10.1145/1282380.
1282411.

[242] ZhengZhang, YingZhang, Y. Charlie Hu, andZ.MorleyMao. “Practical Defenses Against
BGP Prefix Hijacking”. In: Proceedings of the 2007 ACMCoNEXTConference (CoNEXT). Ed.
by Olivier Bonaventure and Roch Guerin. New York, NY, USA: Association for Comput-
ing Machinery (ACM), Dec. 2007, 3:1–3:12. ISBN: 978-1-59593-770-4. DOI: 10.1145/
1364654.1364658.

[243] Maarten Aertsen, Maciej Korczyński, Giovane C. M. Moura, Samaneh Tajalizadehkhoob,
and Jan van den Berg. “No domain left behind: is Let’s Encrypt democratizing encryption?”
Dec. 9, 2016. arXiv: 1612.03005 [cs.CR].

[244] Antonis Manousis, Roy Ragsdale, Ben Draffin, Adwiteeya Agrawal, and Vyas Sekar. “Shed-
ding Light on the Adoption of Let’s Encrypt”. Nov. 2, 2016. arXiv: 1611.00469 [cs.CR].

[245] JeremyClark and Paul C. vanOorschot. “SoK: SSL andHTTPS:Revisiting Past Challenges
and Evaluating Certificate Trust Model Enhancements”. In: Proceedings of the 34th IEEE Sym-
posium on Security & Privacy (S&P). Ed. by Wenke Lee, Michael Backes, and Adrian Perrig.
San Francisco, CA, USA: Institute of Electrical and Electronics Engineers (IEEE), May 2013,
pp. 511–525. ISBN: 978-0-7695-4977-4. DOI: 10.1109/SP.2013.41.

[246] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s New About Cloud Computing Secu-
rity. Tech. rep. UCB/EECS-2010-5. Department of Electrical Engineering and Computer
Science, University of California, Berkeley, Jan. 20, 2010. URL: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html (visited on 08/22/2018).

203

https://doi.org/10.1007/978-3-540-73614-1_8
https://doi.org/10.1109/CATCH.2009.28
https://doi.org/10.1145/2377677.2377702
https://doi.org/10.1145/1282380.1282411
https://doi.org/10.1145/1282380.1282411
https://doi.org/10.1145/1364654.1364658
https://doi.org/10.1145/1364654.1364658
https://arxiv.org/abs/1612.03005
https://arxiv.org/abs/1611.00469
https://doi.org/10.1109/SP.2013.41
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

[247] Subashini Subashini and Veeraruna Kavitha. “A survey on security issues in service delivery
models of cloud computing”. In: Journal of Network and Computer Applications (JNCA) 34 (1
Jan. 2011), pp. 1–11. ISSN: 1084-8045. DOI: 10.1016/j.jnca.2010.07.006.

[248] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. “On Technical Security
Issues in Cloud Computing”. In: Proceedings of the 2009 IEEE Conference on Cloud Computing
(CLOUD). Ed. by Liang-Jie Zhang. Bangalore, India: Institute of Electrical and Electronics
Engineers (IEEE), Sept. 2009, pp. 109–116. ISBN: 978-1-4244-5199-9. DOI: 10.1109/
CLOUD.2009.60.

[249] Hassan Takabi, James B. D. Joshi, and Gail-Joon Ahn. “Security and Privacy Challenges
in Cloud Computing Environments”. In: IEEE Security & Privacy 8.6 (Nov.–Dec. 2010),
pp. 24–31. ISSN: 1558-4046. DOI: 10.1109/MSP.2010.186.

[250] Yue Zhang and James B. D. Joshi. “Information Assurance, Security and Privacy Services”.
In: ed. by Shambhu Upadhyaya and H. Raghav Rao. Emerald Group Publishing, June 4,
2009. Chap. Access Control and Trust Management for Emerging Multidomain Environ-
ments. ISBN: 978-1848551947.

[251] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens
Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Kasper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval Shavitt. “DROWN: Breaking
TLS using SSLv2”. In: Proceedings of the 25th USENIX Security Symposium (USENIX Security).
Ed. by Thorsten Holz and Stefan Savage. Austin, TX, USA: USENIX Association, Aug.
2016, pp. 689–706. ISBN: 978-1-931971-32-4. URL: https://www.usenix.org/con
ference/usenixsecurity16/technical-sessions/presentation/aviram (visited
on 08/23/2018).

[252] John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos Papadopoulos, Genevieve
Bartlett, and Joseph Bannister. “Census and Survey of the Visible Internet”. In: Pro-
ceedings of the 8th ACM SIGCOMM Conference on Internet Measurement (IMC). Ed. by
Konstantina Papagiannaki and Zhi-Li Zhang. Vouliagmeni, Greece: Association for Com-
puting Machinery (ACM), Oct. 2008, pp. 169–182. ISBN: 978-1-60558-334-1. DOI:
10.1145/1452520.1452542.

[253] 6lab Cisco. Monitoring IPv6 adoption. Cisco. URL: http://6lab.cisco.com/stats/
(visited on 08/23/2018).

[254] Amogh Dhamdhere, Matthew Luckie, Bradley Huffaker, Ahmed Elmokashfi, Emile Aben,
andKimberly C. Claffy. “Measuring theDeployment of IPv6: Topology, Routing, and Per-
formance”. In: Proceedings of the 2012 InternetMeasurementConference (IMC). Ed. byRatulMa-
hajan and Alex Snoeren. Boston, MA, USA: Association for Computing Machinery (ACM),
Nov. 2012, pp. 537–550. ISBN: 978-1-4503-1705-4. DOI: 10.1145/2398776.2398832.

[255] Internet Assigned Numbers Authority (IANA). IPv6 Global Unicast Address Assign-
ments. URL: http : / / www . iana . org / assignments / ipv6 - unicast - address -
assignments/ipv6-unicast-address-assignments.xhtml (visited on 08/23/2018).

204

https://doi.org/10.1016/j.jnca.2010.07.006
https://doi.org/10.1109/CLOUD.2009.60
https://doi.org/10.1109/CLOUD.2009.60
https://doi.org/10.1109/MSP.2010.186
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://doi.org/10.1145/1452520.1452542
http://6lab.cisco.com/stats/
https://doi.org/10.1145/2398776.2398832
http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml

[256] Lorenzo Colitti, Steinar H. Gunderson, Erik Kline, and Tiziana Refice. “Evaluating IPv6
Adoption in the Internet”. In: Proceedings of the 11th Passive andActiveMeasurement (PAM). Ed.
by Arvind Krishnamurthy. Vol. 6032. Lecture Notes in Computer Science (LNCS). Zurich,
Switzerland: Springer International Publishing, Apr. 2010, pp. 141–150. ISBN: 978-3-642-
12334-4. DOI: 10.1007/978-3-642-12334-4_15.

[257] Pawel Foremski, David Plonka, and Arthur Berger. “Entropy/IP: Uncovering Structure in
IPv6 Addresses”. In: Proceedings of the 2016 Internet Measurement Conference (IMC). Ed. by
John Heidemann and Phillipa Gill. Santa Monica, CA, USA: Association for Computing
Machinery (ACM), Nov. 2016, pp. 167–181. ISBN: 978-1-4503-4526-2. DOI: 10.1145/
2987443.2987445.

[258] Rapid7 Labs. Forward DNS (FDNS) – (ANY) 2014–2017. Feb. 1, 2017. URL: https://
scans.io/study/sonar.fdns (visited on 08/23/2018).

[259] Stephane Bortzmeyer and Shumon Huque. NXDOMAIN: There Really Is Nothing Under-
neath. Tech. rep. 8020. RFC Editor, Nov. 2016. 9 pp. DOI: 10.17487/rfc8020.

[260] Matthaus Wander, Lorenz Schwittmann, Christopher Boelmann, and Torben Weis. “GPU-
based NSEC3 Hash Breaking”. In: Proceedings of the 13th IEEE International Symposium on
Network Computing and Applications (NCA). Ed. by Alfredo Goldman and Greg Malewicz.
Cambridge, MA, USA: Institute of Electrical and Electronics Engineers (IEEE), Aug. 2014,
pp. 137–144. ISBN: 978-1-4799-5393-6. DOI: 10.1109/NCA.2014.27.

[261] ScottRose andAnastaseNakassis. “Minimizing Information Leakage in theDNS”. In: IEEE
Network 22.2 (Mar.–Apr. 2008), pp. 22–25. ISSN: 0890-8044. DOI: 10.1109/MNET.2008.
4476067.

[262] Roy Arends and Peter Koch. “DNS for Fun and Profit”. In: Proceedings of the 12th DFN-
Workshop “Sicherheit in vernetzten Systemen”. Hamburg, Germany: DFN-CERT, Mar. 2005.
URL: https://www.dfn-cert.de/dokumente/workshop/2005/dfncert-ws2005-
f7paper.pdf (visited on 08/23/2018).

[263] Scott Rose, Ramaswamy Chandramouli, and Anastase Nakassis. “Information Leakage
through the Domain Name System”. In: Proceedings of the 2009 Conference on Cybersecurity
Applications & Technology Conference for Homeland Security (CATCH). Washington, D.C.,
USA: Institute of Electrical and Electronics Engineers (IEEE), Mar. 2009, pp. 16–21. ISBN:
978-0-7695-3568-5. DOI: 10.1109/CATCH.2009.10.

205

https://doi.org/10.1007/978-3-642-12334-4_15
https://doi.org/10.1145/2987443.2987445
https://doi.org/10.1145/2987443.2987445
https://scans.io/study/sonar.fdns
https://scans.io/study/sonar.fdns
https://doi.org/10.17487/rfc8020
https://doi.org/10.1109/NCA.2014.27
https://doi.org/10.1109/MNET.2008.4476067
https://doi.org/10.1109/MNET.2008.4476067
https://www.dfn-cert.de/dokumente/workshop/2005/dfncert-ws2005-f7paper.pdf
https://www.dfn-cert.de/dokumente/workshop/2005/dfncert-ws2005-f7paper.pdf
https://doi.org/10.1109/CATCH.2009.10

	Acknowledgements
	Curriculum Vitae
	Abstract
	Permissions and Attributions
	Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Detecting Website Defacements
	Motivation and Contributions
	Approach
	Evaluation
	Limitations
	Conclusion

	Identifying Web-based Malware Infection Campaigns
	Motivation and Contributions
	Approach
	Fuzzy Tree Difference
	Similarity Measures
	Evaluation
	Limitations
	Conclusion

	Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates
	Motivation and Contributions
	Background
	Problem Analysis
	Mitigation
	Conclusion

	Enumerating IPv6 Hosts
	Motivation and Contributions
	Background
	Approach
	Ethical Considerations
	Evaluation
	Mitigation
	Conclusion

	Related Work
	Website Defacement Detection
	Image-based Detection in Security
	Detection of Malicious Code
	Web Dynamics in Security
	DNS Security
	IP Address Squatting and Takeover Attacks
	Certificate Validation Security
	Cloud Security
	IPv4 Security Scanning
	Enumerating and Scanning IPv6 Addresses
	DNSSEC Privacy Issues

	Summary
	Mitigating the Risks of Takeover Attacks and Domain-Validated Certificates
	Takeover Attack Proof of Concept

	Copyright
	Bibliography

