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Abstract

Recent work in knowledge compilation suggests that relations which can be described
precisely by either Horn theories or tree constraint networks are identifiable in output
polynomial time. Algorithms for computing approximations using these languages were
also proposed. Upon testing such approximations on artificially generated and real life
data, it was immediately observed that they yield numerous superfluous models. As a
result, although certain entailment queries can be answered reliably, these methods may be
ineffective for a large class of membership queries.

To improve the approximation quality, we investigate here the k-decomposition problem,
that is, determining whether a relation can be described by a disjunction of k tractable
theories. The paper discusses the complexity of this task, outlines several algorithms for
computing both exact and approximate ^-decompositions, and evaluates the potential of this
approach empirically. We focus on the class of tree constraint networks and Horn theories
and report results on artificially generated relations and on three real life cases. Our
experiments show that for uniform random relations, the quality of upper bound
approximations improves as k increases. However, when we require very high accuracy,
decomposition is not effective since k grows linearly with the size of the data. When the
data comes from a near-tractable source, the approach is useful. Experiments show that for
the King Rook King problem the generalizing pxjwer of such methods is comparable to that
of recently developed leaming algorithms.
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Abstract

Recent work in knowledge compilation sug
gests that relations which can be described pre
cisely by either Horn iheoriesor tree constraint
networks are identifiable in output polynomial
time. Algorithms for computing approxima
tions using these languages were also proposed.
Upon testing such approximations on artifi
cially generated and real life data, it was im
mediately observed that they yield numerous
superfluous models. As a result, although cer
tain entailment queries can be answered reli
ably, these methods may be ineffective for a
large class of membership queries.
To improve the approximation quality, we in
vestigate here the k-decomposition problem,
that is, determining whether a relation can be
described by a disjunction of k tractable theo
ries. The paper discusses the complexity of this
task, outlines several algorithms for computing
both exact and approximate ^-decompositions,
and evaluates the potential of this approach
empirically. We focus on the class of tree con
straint networks and Horn theories and report
results on artificially generated relations and
on three real life cases. Our experiments show
that for uniform random relations, the quality
of upper bound approximations improves as k
increases. However, when we require very high
accuracy, decomposition is not effective since k
grows linearly with the size of the data. When
the data comes from a near-tractable source,
the approach is useful. Experiments show that
for the King Rook King problem the general
izing power of such methods is comparable to
that of recently developed learning algorithms.

1 Introduction

Recently, frameworks for approximating intractable the
ories and relations using tractable languages were pro
posed using the notions of identifiability [2] and knowl
edge compilation [9]. The goal is to replace an in
tractable theory, or its set of models, with a tight up
per and lower bound tractable language, thus allowing
efficient query processing using the tractable approxima
tions.

*This work was partially supported by NSF grant IRI-
9157636, by Air Force Office of Scientific Research grant
AFOSR 900136, by TOSHIBA of america and by Xerox
grant.

Eddie Schwalb

Information and Computer Science
University of California, Irvine, CA 92717

eschwalb@ics.uci.edu

In this paper, following [2] and in contrast to [9], we as
sume that the input theory is given by its set of models
(or tuples) representing, perhaps, a set of observations
and the task is to describe these observations using a
tractable language. In [1, 2] it was shown that relations
that can be described precisely by either Horn theories
or tree networks crin be identified in polynomial time.
Otherwise, tight upper bound Horn theory or tree net
work approximations can be computed. In this paper
we investigate empirically the effectiveness of such ap
proximations on artificially generated relations as well
as some real life data.

The effectiveness of an approximation should be mea
sured with respect to a class of queries. There are two
common types of queries on a theory <p: entailment
queries (whether a formula holds in all models of ip), and
membership queries (whether a given tuple is a model of
(f). The first is common in automated reasoning while
the second appears often in learning and classification
tasks. Each query type dictates a different evaluation
measure. We use, respectively, two measures: the frac
tion of clauses correctly entailed by the approximation,
and the number of superfluous models in the approxima
tion.

In our experiments it became immediatelyapparent that
when the relations cannot be compiled into a language
(as is often the case) the resulting tightest upper bound
approximation is effective for certain entailment queries,
but still yields numerous superfluous models.
To improve effectiveness relative to membership queries,
we propose here to extend the model one step further
by considering, as our target language, a disjunction of
a fixed number of tractable theories. Specifically we ad
dress the following questions; Given a relation p and a
class of theories G, can p be decomposed exactly into
k subrelations, each represented by theories from ? If
not, does the approximation quality improve as the num
ber of theories in the disjunction increases ? What are
the complexity issues involved?

Our experiments show that for relations generated ran
domly and uniformly, the accuracy of an upper bound
approximation improves significantly with the disjunc
tion size. When we require the number of superfluous
models to be small, decomposition is not effective be
cause the number of theories required growslinearly with
the size of the input relation. However, when the rela
tion comes from a near-trau:table source, the approach is
useful.

Thepaper isorganized asfollows. Section 2contains def
initions and preliminaries, section 3 discusses the frame
work of ife-disjunctive approximations and presents the



algorithms used, and section 4 presents our empirical re
sults. Concluding remarks are given in section 5.

2 Definitions and Preliminaries

We denote propositional symbols, also called variables,
by uppercase letters P, Q, R, X, Y,Z,..., propositional lit
erals (i.e., P,-'P) by lowercase letters p,q,r,x,y,z,...,
and disjunctions of literals, or clauses, by a,/?,... . A
formula in conjunctive normal form (cnf) is a set of
clauses V? = {oi, ...,Oj}, implying their conjunction. The
models of a formula <p, M(ip), is the set of all satisfying
truth assignments to all of the formula's symbols. A
clause a is entailed by (p, written ^ a, iff a is true in
all models of p. A Horn formula is a cnf formula whose
clauses all have at most one positive literal.

A relation associates a set of multivalued variables, also
called attributes, with a set of tuples specifying their al
lowed combinations of values. A constraint network is a

set of such relations, each defined on a subset of the vari
ables. Taken together, this set represents a conjunction
of constraints that restricts value assignments to comply
with each and every constituent relation. The theory of
relations has been studied extensively in the database
literature [6].

Definition 1: (Relations and Networks)
Given a set of multivalued variables X = {Xj,...,Xn},
each associated with a domain of discrete values

D\,...,Dn respectively, a relation (or, alternatively, a
constraint) p = p{Xi,..., Xn) is any subset p C Di x
D2 X ... X D„. A constraint network N over X is a set
p\,- • - tPt of relations each defined on a subset of vari
ables 5i C X. Each relation pi specifies the set of allowed
assignments of the variables in 5i. A solution is an as
signment of a value to each variable that satisfies all the
constraints, and the network N represents the relation
rel{N) of all its solutions. If rel{N) = p we say that
N describes p. A constraint network in which all con
straints involve pairs of variables ({5i| = 2), is called a
binary constraint network. A constraint graph associates
each variable with a node and connects pair of variables
that appear in the same constraint. Tree networks are
binary networks whose constraint graph is a tree.

A cnf formula can be viewed as a special kind of con
straint network, where the domains are bi-valued (|Dj| =
2) and each clause specifies a constraint on its proposi
tional symbols. The set of models of the formula are the
set of solutions of the corresponding constraint network.
A bi-valued relation p = p{x\,..., x„) is descrtbedhy a cnf
formula p = p{xi,...,Xn) iff M{p) = p. We will use the
term theory to denote either a network or a propositional
formula.

Frequently, a relation cannot be precisely described by
a theory from a given language, in which case we use
approximations. We will examine primarily upper bound
approximations.

Definition 2: (Upper bounds)
Given a class of theories, fl, a theory T 6 is said to
be an upper bound of p relative to Q if p C M{T). T
is a tightest upper bound if p C M{T) and there is no

r € n such that p C M(T) C M(T).

Clearly, if <p is a theory describing p (M(p) = p), and T
isan upper boundofp, then ifT ^ 7 we can infcr p )= 7.
Alternatively, if t ^ M{T) then t^p (p C M(T)).
Some languages admit a unique tightest upper bound. In
this case, U„{p) denotes the unique relation associated
with this tightest upper bound expressed within this lan
guage. It is known that Horn theories allow a unique
tightest upper bound [1, 2] while there may be many
tight upper bound tree networks [2].
In [2, 3] it is shown that Horn theories and tree networks
are identifiable, namely there is a polynomial algorithm
that Cein decide whether any given relation can be de
scribed precisely by a Horn theory or a tree-network, and
also finds the corresponding description whenever possi
ble. Otherwise, the algorithm computesan upper bound.
For Horn theories the algorithm generates the tightest
Horn upper-bound, but it is no longer polynomial in the
input relation. Fortree-networks the algorithm is always
polynomial but does not necessarily generate the tight
est upper bound. For completeness sake, we present the
algorithms for computing tight upper bounds for tree
constraint networks and Horn theories.

2.1 Computing a tight tree network

The tree algorithm [2], finds a tree-network representa
tion to a given relation, if such exists, otherwise it com
putes a tight upper bound.

Given an arbitrary relation, p, let n(xj) be the number
of tuples in p for which Xj = i,, and let n{xi,Xj) be the
number of tuples for which X,- = i, A Xj = Xj. Let us
define weights w{Xi,Xj) as

, n(x„Xj)n(x„x,)log / "
n(x,)n(xj)

The constraint graph of the tree approximation is com
puted as the maximum weight spanning tree formed with
the arc-weights w{Xi,Xj). Once the structure of the
tree is determined, the constraints of the network can
be obtained by projecting p onto the pairs of connected
variables in the tree.

2.2 Computing the tightest Horn upper bound

In [1, 2] it was shown that the models of a Horn theory
are closed under intersection when intersection is defined
as follows. Let x = {xi,Z2,.. .,z„} be a tuple where
Xi € {0,1}. Then true{x) is the set of variables as
signed to I and false{x) is the set of variables assigned
to 0. The intersection r = z n y is defined as frue(r) =
frue(z)nfrtie(y) and false{z) = false{x)Ufalse{y). A
bi-valued relation is said to be closed under intersection
iff Vz, y € p zny€p. The closure of p is the set of
models of the tightest Horn theory bounding p.

We compute the set of models of the tightest Horn upper
bound of a given relation by computing its intersection
closure. The procedure is polynomial in the size of the
output relation but not necessarily polynomied in the size
of its input. Once the set of its models is computed, the



Horn theory can be extracted by algorithms presented
in [1, 2].

3 Computing ^-decompositions

We now extend the notion of identifiability to a disjunc
tion of theories. We will assume (except when otherwise
noted) throughout this paper that our languages admit
a unique upper bound.

Definition 3; A relation p is ifc-decomposable rela
tive to a class of theories Q iff there exist a set of rela

tions Q = {pi, • ••,pk} such that p, is described in Q and
p = (jf_i Pi- Alanguage, fi, is t-identifiable iffor every
relation p, deciding if p is ifc-decomposable relative to Q
is polynomial.

Clearly, for any language that can describe a single tuple,
every theory is i-decomposable for k = \p\. The interest
ing task is to find the smallest k for which a theory is k-
decomposable. The following paragraphs provide the nec
essary and sufficient conditions for ifc-decomposability.

Definition 4; Let U„{p) be the unique tightest upper
bound of p relative to Q. We define a graph G„{p) as
follows. Each tuple, r G p, is mapped to a node and an
arc between two nodes x,y ^ p exists iff f}) 2 P-

Theorem 1: Given p and Q,

1. If G„{p) is not k-colorable then p is not k-
decomposable.

2. If G„{p) is k-colorable then p is k-decomposable
tff there exists a k-coloring of xi...i|^i (a value
of 1.. .ifc assigned for every tuple in p) for which
Vi < k the sets p( = {x | color{x) = i} satisfy
UM)Qp-

Consequently, a lower bound on k is the size of each
clique in Gn-

Theorem 1 suggests a brute force algorithm for comput
ing a jfc-decomposition. Enumerate all ifc-colorings for
Gn(p)i and, for each coloring, check whether condition
(2) is satisfied. If condition 2 can be tested in polynomial
time (true for Horn theories), then the algorithm's com
plexity is dominated by the complexity of enumerating
all k-colorings of a graph. Since finding even one color
ing is NP-complete, the problem is clearly intractable.
However, for the special case of ifc = 2, enumerating all
possible colorings can be done in time linear in the num
ber of colorings [4]. Moreover, for t = 2, it can be shown
that every connected component of Gn{p) (bi-partite for
ifc = 2) can be colored in at most two ways^ and, there
fore, 2#'°'"^''"""' possible colorings need to be checked.

Corollary 1: Given a language 0 such that Gn can be
computed in polynomial time, then 2-decomposability can
be decided in time polynomial in of Gn{p)-

3.1 Approximated Decomposition

Because computing a ifc-decomposition is a difficult task,
we examine polynomial approximation algorithms for

'We thank Dan Roth for this observation.

two related formulation of this problem: (1) (minimiza
tion) given a theory p and a language Q, find the minimal
k for which ip is k-decomposable relative to 0. (2) (upper
bound decomposition) given fi and k, find a fc-disjunctive
upper-bound of ip relative to Q that minimizes the num
ber of superfluous models.

For the first task, we describe a greedy approximation
algorithm. The algorithm can be viewed as a variant of
the algorithm suggested by theorem 1. It starts from two
arbitrary models x,y E p, and computes U„({x,y}). If
f/„({x,y}) 2 p it concludes that x and y must partici
pate in different relations; otherwise, the algorithm adds
U„{{x,y}) to pi and deletes t/o({^'y}) from p. The al
gorithm continues with a third and fourth tuple, until
all models in p are covered (see Figure 1).

Lemma 1: Algorithm GreedyDecompose (Figure 1)
terminates in 0(lp| • k • tp) steps where k is the num
ber of resulting theories and tp is the number of steps
required to test whether Un{p) Q P-

In the second task, the disjunction size ifc, is fixed
in advance. The partitioning algorithm for that task,
divides the input relation p into k equeil partitions,
Pi,...,Pk, tind outputs their tightest upper bounds,
Un{pi),- -,Unipk)- Clearly, p C UiU„ipi) C U„{p).
The complexity of partitioning is 0{k • tp) where tp is
the time required to compute U„{p). Note that for Horn
theories the greedy algorithm is always polynomial while
the partitioning algorithm can be exponential. Note also
that the partitioning algorithm has no control over the
number of superfluous models.

To control the number of superfluous models we define e
approximations and show how such approximations can
be computed by the greedy algorithm.

Definitions: ( (ifc,c)-approximations) A relation p
is {k,£)-decomposable relative to iff there exists a set
of relations Q = {pi,P2 •••Pk) such that p, is described
in n, and, *

k k

P^IJp, and y}p'-p ^c\p\ (1)
t=i 1=1

Q is called a {k,e) upper bound.

A (ifc,e) upper bound can be computed by GreedyDe
compose if we allow only a bounded number of models
in each subrelation pi to fall outside the input relation,
namely \pi —p\< p|p|, and if the actual disjunction size
generated (ifc) happens to be smaller than k'. This can
be implemented by modifying line 10 of GreedyDecom-
pose (Figure 1) to accommodate some models not in p
(e.g. "if \U„{pi U{x}) - p| < jrlpl then...").

4 Experiments

In this section we evaluate the quality of the approxi
mation obtained. We use two measures: the number of
superfluous models divided by the whole tuple space (2")
and the fraction of clausal entailment queries answered
correctly.

Notice that the unique tightest upper bound with respect
a class n is guaranteed to correctly answer entailment



GreedyDecompose
1. Input(p, a class of theories (i and a polynomial algorithm to compute U„{p))
2. Output(Q = {pi.•• •.p*}) ; The disjunction of the relations - see Definition 3Output(Q = {pi,•••.p*}) ; The disjunct

Begin
Q <— {} ; Initialize an
p' p ; We use p' tc
while p' ^ {) do

choose arbitrary e € p'
flag •— false ; /loj detects
if Q ^ } then

foreach Pi € Q do
if U„(p, U {r}) C p then

P. - U {i})
p' p' - p,
flag «— true

end-if
end-for

end-if
if flag = false then ; Here,

Q *- Qv [x] ; a new
p' —p'-{x} : a sing]

end-if
end-while

Initialize an empty disjunction.
We use p' to preserve p for comparisons.

; flag detects whether this tuple requires a new relation p.

If we can add the tuple to p,, then
add it, and
don't iterate on tuples already in pi,
and signal that no new relation p, is needed.

Here, we add to the disjunction Q
a new relation which consists of
a single tuple z.

Figure 1: The greedy algorithm for decomposing a relation.

queries of formulas expressed in Q. In particular, a Horn
tightest upper bound willinfer correctly all Horn queries.

Observation 1: Lei C/„(ip) be the unique tighiesi upper
bound of ip. For every q € 0, U„{<p) ^ a iff >p^ a.

Proof: Clearly, if C^n(v) N ^ N If ^ N
Q then Q is an upper bound of ip. Since U^{ip) is the
tightest upper bound, it also entails a. •

Consequently, it is meaningless to measure the effective
ness of the approximation with respect to queries from
the bounding language since we are guaranteed correct
answers.

We evaluate the effectiveness of the approximation on ar
tificially generated relations and three real life databases;
the KRK problem from the chess domain, the "politi
cians" relation that represents voting records of politi
cians, and the "breast-cancer" relation that represents
medical records of patients.

4.1 Horn upper bound

Tables 1 and 2 summarize the results for random input
relations. In Table 1, the input is a relation (whose num
ber of attributes and models are given) and the output
is the number of superfluous models in the tightest Horn
upper bounding relation. Table 2 reports the fraction
of entailment queries correctly answered as a function of
the clauses size, for relations having 10 variables and 50
models (also reported in the 2nd row of Table 1). Addi
tional details are provided in Figure 3(a) by the curve la
beled "Single Partition". Note that most of the 3-literal
clauses were not enteiiled by the theory nor by its upper
bound.

Real Life Data: The "politicians" relation is defined over
16 bi-valued attributes and consists of 125 tuples. The
tightest Horn upper bound consists of 1160 tuples.

As observed, although tightest Horn upper bounds ex
clude many non-models, they also contain numerous su-

Table 1
membership queries

iNum ot

variables
num ot

models
superfluous

models

Table 2

entailment queries

IV um ot

literals accuracy

perfluous models and thus may be unacceptable for an
swering membership queries.

4.2 Disjunctive Horn approximations

We next show the improvement (over tightest Horn up
per bound) obtained using disjunction of Horn theo
ries. Given a constant k, the partitioning algorithm
computes a ib-disjunctive Horn theory. As described
earlier, the algorithm partitions the input relation p
into k disjoint subrelations of equal size, pi,.. .,pk,
and compute the Horn upper bound of each pi yield
ing I7j,(pi),..., Ua(pk). The results are summarized in
Figures 2 and 3.

In Figure 2 we plot the size | UjU„{pi)\ (number of mod
els) as a function of k, the disjunction size. The input
relations have 9 and 11 attributes with 32 and 200 models
respectively. We show, for instance, that when approx
imating with five theories, for 9 and 11 attributes the
fraction of superfluous models (with respect to 2®, 2'')
was reduced from 29%,51% to 8%,33% respectively.

In Figure 3 we report the results obtained on relations
having 10 attributes and 50 models. In this case, the
tightest single upper bound Horn approximation had 325
models on average. Every point is obtained by testing
all clauses of a fixed length and computing the fraction
of correctly answered queries. This is averaged over 50
relations. We observe in Figure 3(a) that the approxima
tion obtained using disjunction of nine Horn theories was
significantly better thzui the tightest upper bound. In
Figure 3(b) we report the accuracy as it improves when
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Figure 2: Decomposition by partitioning ofrandom relations.

Appnndmation of random relations
with respect to singleclause queries ;
10 attributes, 50 tuples, 200 repetitions.

123456 7 89
Number of Literals In the Clause

(a) effectiveness vs clause size,

Approximation of random relations,
single clausequeriesfor multiplepartitioiH
10 attributes, 50 tuples, 200 repetiiions.

Number of Partitions

(b) effectiveness vs number of partitions.

Figure 3

Quality of k computed by GreedyDecompose
for Exact Horn k-IdentinabiUty, 900 runs,

200-210 tuples, 11-14 attr., k=40-70.

ta 10 iL i
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Relative Error E

Figure 4; Stability of
GreedyDecompose.

Corniptlon/Nolse sensitivity for
200-400 tuples, 8-10attributes, 120 runs.
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Figure 5: Near-Horn relations.



the number of theories in the disjunction increases. We
plot results for clauses with 5,6,7 literals. Note that 50%
is the lowest accuracy possible since guessing yields at
least 50%. Figure 3(b) suggests that for small clause en-
tailment, disjunctive upper bounds do not improve much
over single Horn bounds, because for small clauses the
single Horn upper bound is already quite effective. As
the clause size increases, there are more non-Horn clauses
and therefore single Horn upper bounds are less effective
and consequently disjunctive bounds can be more cost-
effective.

The same experiments were performed on the "politi
cians" relation and roughly the same results were ob
tained.

In the remainder of this section we report results of ex
periments using GreedyDecotnpose for computing both
exact decomposition and approximate disjunctive upper
bounds.

We next focus on the behavior GreedyDecotnpose. Since
there exists an ordering of models for which the greedy
algorithm yields an optimal decomposition size k, we
evaluate its effectiveness by observing the variations of k
as a function of the order by which models are processed.
For every relation generated, GreedyDecotnpose was run
30 times, each time with a different random ordering.
Qo denotes the smallest size decomposition out of the 30
computed, and Qi,... ,Q29 denote the other 29 decom
positions. The stability, is measured by the relative error
Ei = , namely the fraction of cases the size of
the decomposition, ki = |Qil, was larger than ko = |Qo|-
As shown in Figure 4, in about 32% of the cases the size
of the decomposition computed was less than 5% larger
than ko = |Qo| and the largest variation was 35%. Thus
the algorithm is reasonably stable.

We next report results of experiments with exact decom
positions. The experiments were performed on small
bi-valued random relations, having about 30 models,
and larger relations, having 300 models. As Table 3(a)
shows, for relations with 30-34 models having 10 at
tributes, about 15 theories were required on the average
(i.e., k=15). For larger relations with 300-325 models
having 14 attributes, about 130 theories were needed.
Clearly, since the algorithm is not optimal, we do not
know whether smedler decompositions exist.

Tree networks (constraint networks whose constraint
graph is a tree) were examined next. We observed in
Table 3(b) that, as in the case of Horn theories, k might
be arbitrary large. However, it does not increas as fast
as the number of attributes.

To evaluate sensitivity to noise, we take a relation that
can be described by a Horn theory and corrupt randomly
selected models; the degree of noise introduced is mea
sured by the percentage of models corrupted. A modelis
corrupted by flippingeach of its bits with 0.5 probability.
As shown in Figure 5, when only a few models were cor
rupted, the corrupted relation admits a relatively small
k.

We next examine the effectiveness of bounded overflow
on k. Namely, we compute a {k,£) upper bound. To

demonstrate the effect on fc, we show (Figure 6(a)) the
dependence of the Horn disjunct size, k, on the overflow
fraction, defined as ^ . As expected, we
see that increasing overflow reduces the decomposition
size.

Finally, we measure the trade-off between noise and over
flow. We plotted the number of overflow models with re
spect to the number of corrupted models while holding k
under 5. We observe that k, which was increased by cor
ruption or noise, can be decreased by allowing overflow
proportional to the degree of corruption (Figure 6(b)).

4.2.1 Real Life Data

We report results of experiments made with three real
life databases taken from the machine learning repository
at U.C. Irvine. We first examine Horn fc-decompositions
of a bi-valued relation that represents voting records of
politicians. The relation can be represented exactly by
48 Horn theories. However, by allowing overflow, this
number can be reduced (see Figure 7(a)).

The breast cancer relation represents records of symp
toms and diagnosis (i.e. whether the patient had breast
cancer or not). The task is to derive a theory that en
ables efficient processing queries that involve symptoms
and diagnosis. The relation can be described exactly
by 38 tree networks; however, by allowing overflow, this
number can be reduced (see Figure 7(b)).

4.3 Learning with Horn upper bound

We next suggest that perhaps compilation methods that
aim at providing a tractable and concise representation
when all the data is available can be modified and used
for learning when only part of the data is available.
The experiments are performed on the King Rook King
(KRK) problem from the chess domain. The task is to
learn a predicate that classifies board positions as either
legal or illegal, given a small training set with positive
and negative examples. Each example is a tuple with
6 attributes that specify the coordinates of the white
king, the black rook and the black king. The multi
valued training relation puainin) is transformed into bi-
valued relation p',roininj "sing a set of predicates pro
vided by the expert, and f^n(/«rom«f»j) computed. To
classify an unseen instance z, we map it to a bi-valued
instance i' and check whether z' G U„{p'training)-

€ ^aiPtrainina)< classification Can be deter
mined accordingly- Otherwise, we guess the most fre
quent class.

We compare performance with a recent algorithm for
learning prolog programs, called FOCL [7]. Figure 4
shows that U„{ptrainini) *38 able to correctly classify
about 95% of the unseen examples when trained on 300
examples while FOCL was able to achieve better ac
curacy with only 200 examples. The curve labeled by
"HORN known" shows the frsurtion of unseen exzunples
found in the closure and that were correctly classified^.
The curve labeled "HORN" shows the final accuracy

'Since the target concept in the KRKdomain is not Horn,
we can only approximate it.



Table 3: Exact decomposability.
(a) i-Horn (b) k-Ttee

Controlled Overflow Horn k-Decomposition
32-36 tuples, 10-12 attributes, 150 runs.

Controlled overflow vs Noise for Horn Dec.
120-170tuples, 9-10attributes, k= 1-4,

104 runs.30 ,
y-4.6W7*0J<M3t

30 40 » «, 70 80 90 - 20 30 40 i 60
Overflow Percentage Percentage ofscrambled tuples

(a) (b)
Figure 6: Sensitivity to noise of Exact k-Horn decomposability.
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Figure 7: Decomposability of "real data"
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Figure 8: Learning with tightest
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achieved by guessing the most frequent class when the
unseen instance is not in f/n(Pira«n«nj)- more details
on the use of single-upper bounds on learning see [8].

5 Conclusion

This paper builds upon prior investigations into the
prospects of compiling empirical data into structures
that allow efficient processing of queries [2]. Previous
work had presented algorithms for describing or approx
imating data by Horn theories [1, 2] or tree constraint
networks [2, 3]. The effectiveness of these approximation
should be measured with respect to the class of queries
to be asked. We focus on entailment queries, which
are common in automated reasoning, and membership
queries, which are common in classification tasks. Upon
testing these approximations on artificially generated
and real life data, it was immediately observed that, al
though effective for some entailment queries, they are
ineffective for membership queries since they yield nu
merous supefiuous models.

We therefore propose to improve on the single tightest
upped bound approximation by approximating with a
disjunction of theories. We define the k-decomposttion
problem: given an integer k and a relation p, deter
mine whether p can be described by a disjunction of
k tractable theories. The paper presents the neces
sary and sufficient conditions for a relation to be k-
decomposable and identifies cases in which determining
2-decomposability is polynomial.

Because computing a fc-decomposition is a difficult task,
we examine polynomial approximation algorithms for
two related formulation of this problem: (1) (minimiza
tion) given a theory p and a language Q, find the minimal
k for which ip is k-decomposable relative to Q. (2) (upper
bound decomposition) givenQ and k, finda ib-disjunctive
upper-bound of p relative to that minimizes the num
ber of superfluous models. We evaluate the effedctive-
ness of these approximations empirically with respect to
both entailment and membership queries.

In our experiments we focus on the class of free con-
straint networks and Horn theories and report results
on artificially generated relations and on three real life
cases. For the second task, we observe that the quality

approximation obtained by upper bound decomposition
improves as k increases. For the first task, when the data
comes from a near-tractable source, or when the overflow
is proportional to the level of noise, the approach is use
ful since k is small. However, when the input relation is
not generated by a near-tractable source and we require
very high quality approximations in which the number
of superfluous models is bounded, decomposition is not
effective since k grows almost linearly with the size of
the input relation.

Fianlly we suggest that perhaps compilation methods,
that aim at providing a tractable and concise represen
tation when all the data is available, can be modified and
used for learning when only part of the data is available.
Experiments show that for the King Rook King problem
the generalizing power of the tightest upped bound Horn
approximation is comparable to that of recently devel
oped learning algorithms. For more details on the use of
single-upper bounds on learning see [8].
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